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Abstract 

Evolutionary algorithms (EAs) based on the concept of Pareto dominance seem 

the most suitable technique for multiobjective optimisation. In multiobjective op- 

timisation, several criteria (usually conflicting) need to be taken into consideration 

simultaneously to assess a quality of a solution. Instead of finding a single solution, 

a set of trade-off or compromise solutions that represents a good approximation 

to the Pareto optimal set is often required. This thesis presents an investigation 

on evolutionary algorithms within the framework of multiobjective optimisation. 

This addresses a number of key issues in evolutionary multiobjective optimisation. 

Also, a new evolutionary multiobjective (EMO) algorithm is proposed. Firstly, this 

new EMO algorithm is applied to solve the multiple 0/1 knapsack problem (a well- 

known benchmark multiobjective combinatorial optimisation problem) producing 

competitive results when compared to other state-of-the-art MOEAs. 

Secondly, this thesis also investigates the application of general EMO algorithms 

to solve real-world nurse scheduling problems. One of the challenges in solving 

real-world nurse scheduling problems is that these problems are highly constrained 

and specific-problem heuristics are normally required to handle these constraints. 

These heuristics have considerable influence on the search which could override the 

effect that general EMO algorithms could have in the solution process when applied 

to this type of problems. This thesis outlines a proposal for a general approach to 

model the nurse scheduling problems without the requirement of problem-specific 

heuristics so that general EMO algorithms could be applied. This would also help 

to assess the problems and the performance of general EMO algorithms more fairly. 
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Chapter 1 

Introduction 

1.1 Motivation 

Many real-world optimisation problems are multiobjective by nature due to several 

criteria associated with them. Solving multiobjective optimisation problems by 

confronting these possibly conflicting criteria is one of the main challenges to a 

decision-maker. A suitable solution, which represents a good compromise between 

these criteria, is required. However, it is quite difficult to find such a solution 

due to the several criteria that need to be taken into consideration simultaneously. 

There are three approaches for selecting this good compromise solution which are 

categorised based on the process of handling the search and the decision making. 

These three approaches are a-priori preference articulation (decision making before 

search), a-posteriori preference articulation (search before decision making) and 

interactive preference articulation (interactive search and decision making) [33]. 

Within the scope of this thesis, the a-posteriori approach, which constructs a set 

of alternative solutions for the decision maker to select a suitable solution, will be 

discussed in detail. The challenge to this approach is that, without any preference 

to criteria, this set of solutions should be both well-converged and well-distributed. 
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This set is known as the Pareto front in Pareto-based multiobjective optimisation. 

Solutions in this set are said to be non-dominated, i. e. none of the solutions is 

better than others in the set. 

Evolutionary algorithms (EAs) are capable of generating multiple promising 

solutions in a single run and evolving a population of solutions towards the Pareto 

front. These properties make EAs especially adequate to deal with Pareto-based 

multiobjective optimisation problems (MOPs). In EAs, a population is maintained 

and evolved throughout the search process. Solutions in the population could 

survive and pass their characteristics to the next generations. This process is an 

analogy to biological evolution [37]. 

Over recent years, multiobjective optimisation problems and the application 

of evolutionary approaches to deal with these problems have received increasing 

attention from the research community. Some of the most interesting and difficult 

MOPs are real-world nurse scheduling problems in the field of personnel scheduling. 

There are a large number of constraints associated to real-world nurse scheduling 

problems. It is non-trivial to satisfy these constraints. It normally requires a par- 

ticular heuristic or metaheuristic to handle constraints of a given problem. Then, 

evolutionary approaches could be applied to optimise these solutions. A conven- 

tional approach to solve nurse scheduling problems using evolutionary algorithms 

is to employ a simple evolutionary algorithm incorporating problem-specific heuris- 

tics/metaheuristics. This approach could generate high quality solutions. How- 

ever, it is difficult to employ these heuristics/metaheuristics for other problems. 

There is interest in developing more general heuristics/metaheuristics which could 

be incorporated into general, strong performing EAs to solve nurse scheduling 

problems. 

The work reported in this thesis presents an investigation on general evolution- 

ary multiobjective optimisation (EMO) algorithms and the application of EMO 

algorithms in solving nurse scheduling problems. 
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1.2 Structure of this Thesis 

The remainder of this thesis is organised as follows. 

Chapter 2 provides the basic terminology for nurse scheduling problems. It also 

discusses common constraints and generic models related to nurse scheduling prob- 

lems. A brief review on different approaches to solve nurse scheduling problems, 

which concentrates on evolutionary approaches, is presented. 

Chapter 3 provides the basic concepts of multiobjective optimisation prob- 

lems and evolutionary multiobjective optimisation. Key issues in designing EMO 

algorithms are discussed in this chapter. Some of important and recent EMO al- 

gorithms are described. Chapter 3 also presents a set of performance metrics to 

assess EMO algorithms. A benchmark problem for evolutionary multiobjective 

optimisation, the multiple 0/1 knapsack problem, is presented and reviewed. 

Chapter 4 proposes an adaptive assortative mating scheme in the decision space 

which could be incorporated into EMO algorithms. This mating scheme adapts 

the mating pressure as the search progresses. 

Chapter 5 provides a brief review on relaxed Pareto dominance. It proposes 

a new form of relaxed Pareto dominance which is based on the concept of the 

hypervolume of individuals in the objective space. 

Chapter 6 further explores the ideas of volume dominance proposed in chap- 

ter 5. A new population-based EMO algorithm, called hyper volume evolutionary 

algorithm (HVEA), is proposed and compared to other state-of-the-art EMO al- 

gorithms. 

Chapter 7 reviews a real-world nurse scheduling problem, the QMC prob- 

lern [81]. This chapter investigates and proposes a new model for the QMC prob- 

lem which could be solved by general EMO algorithms. Based on this study of the 
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new model for the QMC problem, a more general approach to nurse scheduling 

problems is outlined. 

Chapter 8 briefly summarises the work investigated in this thesis. It also sug- 

gests future work which was drawn up based on the study of this thesis. 

1.3 Contribution of this Thesis 

The contributions of this thesis are as follows: 

"A review of common solution representation and constraint handling tech- 

niques for the multiple 0/1 knapsack problem, a well-known benchmark prob- 

lem in multiobjective optimisation. 

"A new form of relaxed Pareto dominance, named volume dominance is pro- 

posed. The concept of volume dominance is based on comparing the domi- 

nated volume of individuals to establish superiority between solutions in the 

population. It is shown that this new form of relaxed Pareto dominance in- 

corporated in different EMO algorithms is more robust than the conventional 

Pareto dominance which allows EMO algorithms to obtain more consistent 

performance. 

"A new EMO algorithm, hyper volume evolutionary algorithm (HVEA), which 

is based on the concept of volume dominance, is presented. HVEA exploits 

the principle of volume dominance to estimate individual fitness, rank and 

crowding around an individual. Results show that HVEA outperforms or 

remains competitive to other state-of-the-art EMO algorithms. 

"A more general EMO approach to solve nurse rostering problems based on 

exploiting constraint handling techniques for the multiple 0/1 knapsack prob- 

lem. 
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Chapter 2 

Nurse Scheduling Problems 

Personnel scheduling or personnel rostering refers to the construction of rosters for 

personnel (or staff) in an organisation over a scheduling period in such a way that 

the organisation fulfils the demand for its goods or services [51] while also adher- 

ing to existing certain work regulations. Personnel scheduling problems exist in 

almost all working environments. It is particularly a difficult and interesting prob- 

lem for organisations which have a large pool of personnel with multiple skills and 

work around the clock [7], such as fire brigade and rescue and health care services. 

High quality schedules help to provide better services, improve overall job satis- 

faction and better utilise the available workforce [81]. The process of constructing 

personnel rosters consists of two parts [51]. The first part is to determine the 

number of personnel, the set of personnel skills (or qualifications), personnel pref- 

erences, workplace regulations, service demand, the layout of the work timetable, 

constraints and other criteria (which vary amongst organisations). This first step 

could be referred to as the problem construction process. Then, the second step is 

to allocate suitable staff members to shifts in order to meet the demand of services 

a different times while attempting to satisfy workplace regulations and personnel 

preferences [11,14,50,511. Another possible need within the allocation step is 

to assign specific job requirements (or duties) to individual personnel members 
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in each shift. It is often difficult to find feasible schedules that satisfy all hard 

constraints, such as work regulations, employee preferences and job requirements. 

It is extremely difficult to find good-quality feasible schedules to these type of 

highly constrained and complex problems and even more difficult to find optimal 

solutions [51]. Within the personnel scheduling field, nurse scheduling and airline 

crew scheduling are the two sub-fields which have attracted much attention from 

researchers [51]. This chapter pays attention to the process of allocating staff mem- 

bers to shifts in nurse scheduling. The chapter will provide the basic terminologies 

and discuss the main approaches to tackle nurse scheduling problems proposed in 

the literature. 

2.1 Nurse Scheduling Problems 

Nurse scheduling is particularly difficult because of its nature that demands work- 

ing around the clock in hospitals. Nurses' well being and job satisfaction are af- 

fected by irregular shift work [24]. It is usually desired to meet nurse requests while 

confronting work regulation and other constraints during the personnel schedul- 

ing process. Producing good quality nurse schedules has a great impact on the 

quality of healthcare service, improving overall job satisfaction and making more 

efficient use of the workforce [30,81]. Many healthcare institutions use software 

to support the construction of nurse schedules but in many other cases this is still 

done manually [24]. For problems of considerable size, the non-automated con- 

struction of nurse schedules is time consuming, difficult and prone to errors. As 

Burke et al. note, "the automatic generation of high quality nurse schedules can 

lead to improvements in hospital resource efficiency, staff and patient safety, staff 

and patient satisfaction and administrative workload" [24]. This section provides 

basic terminology in nurse scheduling. It also discusses work regulations and other 

constraints in nurse scheduling which are mostly found in the literature. 
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2.1.1 Basic Terminologies 

2.1.1.1 Personnel 

Within the hospital environment staff members are organised into teams of nurses, 

also known as wards. Usually, each ward performs a set of fixed activities at a 

settled location [23]. Each nurse has some certain attributes as follows: 

Work regulations. This is the agreement and job description such as full- 

time/part-time basis, permanent/temporary employee, working shifts etc. It is 

common to have a personalised agreement for each nurse [23]. 

Qualifications and Skills. Personnel can be categorised based on a number of 

factors such as qualifications, skills, experience and responsibility [7,23,24]. In 

some cases, gender, nationality and personality are also of concern [7]. Based on 

their characteristics as well as particular nurse scheduling problems, qualifications 

and skills could be further classified such as disjoint, hierarchical, alternative. 

Disjoint skills set represents skills defined by a single criterion. Hierarchical skills 

sets means that nurses with higher qualifications could substitute those with lower. 

Alternative skills sets means that nurses with more experience could substitute 

higher skill nurses. 

2.1.1.2 Planning Period, Shifts and Scheduling 

Planning Period. The planning period defines the time horizon over which person- 

nel is scheduled. The typical planning period in nurse scheduling is 4 weeks (28 

days). 

Shift Type. Shift types (or shifts for short) are periods of work which are usually 

well defined by starting and ending times within a 24 hour period. Burke et at. [24] 

pointed out that many nurse scheduling problems employ three common shifts: 
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early, late and night. There are also other shift types such as day, short early, short 

late [22] an "unusual" shift [81]. The starting and ending times usually define the 

length of the shift which will have implication of certain work regulations. These 

shift types are also referred to as working shifts. 

Day-on and Day-of. A day, for which a nurse is allocated one of the above 

shift types, is known as a working day or day-on. While a day-off is a day in which 

the nurse is not allocated a working shift. 

Individual preferences. It is often the case that a nurse requests a day-off, 

annual leave or specific working shifts for some days of the planning period. 

Shift sequence/Shift pattern. A shift sequence (17] is a set of shift types on 

consecutive days, one shift a day. Shift sequences often have different lengths. A 

shift pattern [3] is often a fixed length set consisting of working shifts and non- 

working shifts. It is noted that in this case, a day-off is considered as a non-working 

shift. 

Schedule. The definition of a schedule (or a nurse schedule) is mainly given 
by the shift structures employed by nurse scheduling problems. A schedule is an 

ordered list of working shifts and days-off, or an ordered list of shift sequences and 
day-off periods, or an ordered list of one or more shift patterns. Then, the length 

of the schedule is the length of this ordered list which must be the same as the 

planning period. Nurse scheduling is often described as a non-cyclical approach. 

Non-cyclical approaches in nurse scheduling provide a greater degree of flexibility 

and ability to handle individual preferences, unpredicted demand and disruption 

due to nurse absences [24]. 

Ward schedule. The ward schedule consists of all nurse schedules combined for 

the same planning period. 

Coverage demand. The coverage demand (or coverage for short) indicates the 
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required number of nurses with specific qualification for each shift on a particular 

day during the planning period. 

2.1.2 Constraints in Nurse Scheduling 

Nurse scheduling problems are very difficult because many constraints are imposed 

on the problems. Different problems often possess different sets of constraints. 

Even if employing the same set of constraints, the type assigned to the constraint 

(hard or soft) could be different. Constraints are broadly classified into two types: 

hard constraints and soft constraints. Hard constraints are those that must be 

satisfied in order to make schedules feasible. Soft constraints are desirable but do 

not have to be satisfied. Cheang et al. [30] presented a good summary of nurse 

scheduling constraints. The most common nurse scheduling constraints in the 

literature are described below. These constraints are related to and categorised 

accordingly to coverage demand, work regulations and individual preferences. 

2.1.2.1 Work Regulation Constraints 

Most constraints in nurse scheduling fall into this sub-category because work reg- 

ulations define many rules which should be obeyed during the scheduling process. 
The main types of work regulation constraints are below: 

" Working hours define the maximum/minimum hours that a nurse works over 

a period of time (a week or a fortnight). 

9 Consecutive working shifts/days define the maximum/minimum number of 

shifts/days that a nurse works in a row. Maximum consecutive working 

shifts/days allow regular breaks in the schedule of a nurse. 

" Shift Patterns define illegal and/or undesired patterns of shift types. 
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" Shift Assignments define the maximum/minimum number of shifts that a 

nurse works in the planning period. 

" Working Weekends define constraints related to weekend work. For exam- 

ple maximum/minimum number of weekends that nurses work during the 

planning period or the requirement that nurses should work both days of a 

weekend. 

" Break periods define maximum/minimum amounts of time breaks between 

consecutive working shift patterns. 

2.1.2.2 Coverage Demand Constraints 

Coverage demand constraints impose an adequate level of staff to meet the patient 

demands which usually define the required number of nurses during the planning 

period. In more detail, coverage demand constraints indicate the number of nurses 

with certain qualifications and skills for any shift on any day over the whole plan- 

ning period. The required number of nurses could be a maximum, minimum or 

exact number. 

2.1.2.3 Individual Preference Constraints 

According to Ernst et al., the tendency in the modern workplace is to focus on 
individuals rather than on teams and hence, personnel schedules should cater to 

individual preferences [50]. This is particularly true in nurse scheduling because 

it is common that each nurse indicates his/her preference schedule. This allows 

nurses to get involved in the scheduling process. This might help to increase the 

nurse satisfaction level by attempting to meet the individual preference constraints. 

This could then lead to an increase in the quality of service offered to patient. 
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2.1.3 Objective Functions 

Objective functions are designed to assess the quality of schedules. Depending on 

the model used to represent schedules, different approaches could be employed to 

evaluate objective functions. It is common that objective functions are related to 

constraints in the model and hence objective functions could measure the violations 

on constraints or the cost of constraint violation. 

2.1.4 Generic Models 

Cheang et al. [30] pointed out that there are three common models for the nurse 

scheduling problem: a nurse-day view, a nurse-time slot view and a nurse-shift 

pattern view. 

1. A nurse-day view usually represents a ward schedule as a two-dimensional 

schedule. One dimension represents the set of days over the planning period 

and the other dimension represents the nurse schedule. Each variable in 

the structure represents a shift type (or a day-off) that a nurse works on a 

particular day. The two-dimensional structure could be extended to consider 

the shift types as the third dimension. These are known as binary models, 

where each variable takes a value or either 0 or 1 (with 1 indicating that a 

nurse works a shift on a day). 

2. A nurse-time slot view is a variant of the nurse-day day. Each decision vari- 

able represents the assignment of a nurse to a time period over the planning 

period. A nurse either receives an assignment or not. 

3. A nurse-shift pattern view pre-defines a set of shift patterns which are allo- 

cated to nurses. Each decision variable represents a shift pattern assigned 

to a nurse. Usually shift patterns, which are constructed and evaluated be- 

fore the search, often satisfy certain constraint types. An extension of the 
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nurse-shift pattern view is the nurse-shift sequence view. In the nurse-shift 

sequence view, high quality sequences of shifts are constructed during the 

search then assigned to nurses. 

2.2 Nurse Scheduling Approaches 

This section discusses recent and important approaches to nurse scheduling prob- 

lems in the literature. It pays attention to metaheuristic approaches, especially 

evolutionary approaches. More comprehensive reviews of nurse scheduling ap- 

proaches could be found in [24,30] and more general personnel scheduling ap- 

proaches in [50,51]. 

One of the first methods used for solving nurse scheduling problems (dated 

back to the 1970s) is mathematical programming [1,92,114,116,117]. These 

approaches usually attempt to optimise an objective function defined by the eval- 

uation of violations of certain constraints. It is possible that mathematical pro- 

gramming could find optimal solutions but only to small size problems. However, 

practical nurse scheduling problems are far more complex and difficult, and math- 

ematical programming maybe inappropriate and impractical to apply. There are 

only a few papers describing mathematical programming approaches for practical 

nurse scheduling problems [24]. 

During the 1980s, goal programming approaches to solve nurse scheduling at- 

tracted some attention from researchers. In goal programming, a desired level is 

defined for each criterion to be achieved. The priorities between criteria are also 

determined before search. Goal programming then attempts to find the closest 

solution to each of the criterion targets following their priorities. Mathematical 

programming is deployed using the principle of goal programming to find solu- 

tions [6,54,100]. The latest research investigates metaheuristics within a multi- 
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objective framework [11,21,70]. 

During the 1980s, artificial intelligence techniques were introduced for nurse 

scheduling problems and until today this area still attracts considerable attention 

from researchers. These techniques include constraint programming [87,89,97] 

and case-based reasoning [9,8,10,103,109]. In constraint programming, variables 

are assigned values in finite domains in order to satisfy all constraints imposed on 

those variables. Case-based reasoning attempt to solve new problems by exploiting 

information of solutions to previous similar problems. Case-based reasoning has the 

ability to learn new knowledge by judging new experience containing information 

that might help to solve new problems [7]. 

Over the last two decades, metaheuristic approaches to solve nurse schedul- 

ing problems have drawn great attention from researchers. Those metaheuristics 

include simulated annealing, tabu search, evolutionary algorithm, etc.. 

2.2.1 Simulated Annealing 

Simulated annealing approaches mimic the physical process of annealing in which 

the quality of solid material is improved by heating up the material then letting 

it cool down. The simulated annealing algorithm exploits this principle to help 

the search to escape local optimum and continue searching for the global opti- 

mum. A function, which controls the cooling process, indicates the probability 

that low quality solutions are accepted during the search. This probability is set 

to high value at the start of the search which allows poor quality solutions to be 

accepted and hence to easily escape from local optimum. Throughout the search, 

the probability is gradually reduced, hence it is more difficult to escape from the 

local optimum. The main purpose is to search in the neighbourhood of current 

local optimum rather than jump to a new local optimum as it is expected that the 

global optimum or near global optimum is eventually reached towards the end of 

13 



the search. 

Burke et al. [28] presented a simulated annealing approach for a multiobjec- 

tive nurse scheduling problem. They investigated two options to satisfy soft con- 

straints: a weighted-sum evaluation function emphasizing individual preferences, 

and a domination-based evaluation function encouraging the diversification of the 

population. Legal shift patterns are assigned to each nurse schedule to satisfy shift- 

related hard constraints. Then, an adaptive heurictic is used to find a solution by 

assigning one of the available shift patterns to each nurse. Finally, violations of 

coverage demands are repaired by modifying under-/over-covered shifts to make 

solutions feasible. 

2.2.2 Tabu Search 

Tabu search approaches use a list to hold solutions (or their attributes) that have 

been visited recently. It is preferred that solutions in this list are not visited again 

to avoid getting stuck in local optima. 

Burke et al. [25] presented tabu search as the drive-force within a hyper-heuristic 

to solve nurse scheduling problems. Typically, a hyper-heuristic chooses which 
heuristics and meta-heuristics are attempted to solve the problem based on the 

current performance of each heuristic. 

Burke et al. [221 presented an efficient and effective hybrid tabu search approach 

for nurse scheduling. An initial feasible solution is generated that satisfy all hard 

constraints. The hybrid tabu search never violates hard constraints while searching 

solutions that satisfy as many soft constraint as possible. The hybrid tabu search 

tries to solve complete weekend constraints first. It then improves the worst nurse 

schedule by switching part of this schedule with another nurse schedule. The best 

possible switch is chosen but there is no guarantee on the overall improvement for 
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every nurse schedule. Finally, their algorithm performs a major step, greedy shuf- 

fling, which searches all possible switches between parts of two nurses schedules. 

This step is very time-consuming. The model employs a time interval representa- 

tion, rather than a shift type representation, which enables shifts to be split and 

combined. This approach provides greater choice of shift work and part time work 

which could be closer to real-world nurse scheduling problems. 

2.2.3 Evolutionary Algorithms 

Evolutionary algorithms are based on the analogy to biological evolution. They 

maintain a population of solutions. Solutions in the populations are recombined 

and mutated to form new solutions. The population is evolved by selecting the 

best solutions from the current population of solutions and also selecting newly 

generated solutions for the next generation. It is common that in solving nurse 

scheduling problems, evolutionary algorithms employ some local search techniques 

such as a mutation process of solutions. The purpose is to not only improve the 

solution quality but also to maintain the solution feasibility which is one of the 

main challenges in nurse scheduling. 

Aickelin and Dowsland [3] pointed out that the classical generic algorithm is not 

suitable to handle the conflicts between objectives and constraints which usually 

occur in nurse scheduling problems. They suggest that problem-specific knowledge 

should be incorporated to overcome this issue. They proposed three types of prob- 

lem specific knowledge: co-operating subproblems, incentives, local search/repair. 

Co-operating subproblems involves decomposing the problem into easier problems 

based on grades of nurses. The population of the problem and the subpopula- 

tions of the subproblems are co-evolved. Incentives are used to penalise solutions 

with unbalanced shift coverage. In local search/repair, a simple hill-climber cycles 

through and accepts nurses' shift patterns that improve fitness. The hill-climber is 
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also there to improve the preferences of feasible solutions. One problem with this 

approach is that the shift patterns are pre-defined and limited. 

Aickelin and Dowsland [4] later proposed an indirect genetic algorithm using an 

indirect coding and heuristic decoder to the same problem. The heuristic decoder 

constructs feasible solutions from good quality permutations of nurses which are 

identified by GA operators. This approach avoids the issue in dealing with problem 

specific constraints and infeasibility. 

Jan et al. [69] proposed a population-less cooperative genetic algorithm ap- 

proach for a multiobjective nurse scheduling problem. A new solution is produced 

by applying two-point crossover on two nurse schedules of the same solution. This 

could be referred to as a mutation on a single solution, hence there is no crossover 

between solutions. Two objectives in the problem which are subject to minimisa- 

tion are: minimise the soft constraint violation penalty and minimise the variance 

on the nurse schedule penalties. 

Cai and Li [29] proposed a genetic algorithm for a nurse scheduling problem 

with three objectives: minimise personnel cost in satisfying coverage requirements, 

maximise staff surplus, and minimise the variation of the staff surplus. Individual 

preference is not considered. A crossover operator aims to maintain the diversity 

and attempts to maximise feasibility of offspring. The most violated constraint is 

repeatedly repaired by assigning an additional shift. 

Kawanaka et al. [74] proposed a genetic algorithm approach for nurse scheduling 

with various constraints. Crossover operators are applied to create new solutions. 

Infeasible solutions are then repaired by swapping shifts but trying to maintain 

parents' characteristic. Hard constraints employed by this model are minimum 

qualification coverage and other work regulations. Individual preferences, shift 

patterns and the balance of shifts are soft constraints. 

Inoue et al. [64] proposed an interactive approach using an evolutionary algo- 
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rithm for nurse scheduling. In their approach, users can modify solutions in the 

population to improve the quality of solutions regarding user's preference. The fit- 

ness of a solution measures the violations of coverage demands, illegal shift patterns 

and individual preferences. 

Ozcan [99] proposed a memetic approach for a nurse scheduling problem by 

exploiting a number of mutation, crossover and hill-climbing operators. There are 

a limited number of constraints. The problem has two types of shifts being assigned 

over a two week period. The hill-climbing operator changes shift assignments to 

repair violations on constraints one at a time. 

Moz and Pato [94] investigated a genetic algorithm approach for their nurse 

rescheduling problem which occurs when nurses cannot work in shifts that were 

previously assigned. The current schedule must be rebuilt if there is no provision 

for nurse absence. The challenge is that besides satisfying constraints, the new 

schedule must be as similar as possible to the current one. The approach studied 

several specific encodings and operators and constructive heuristics for sequencing 

problems applied to the nurse rescheduling problem. The fitness of individuals 

is defined based on the similarity between the rebuilt schedule and the current 

schedule. 

Puente et al. [104] present a genetic algorithm for the medical staff scheduling 

problem. The initial population of feasible solutions is produced by an ad-hoc 

heuristic schedule builder that satisfies hard constraints. Solutions are generated 

by a specific crossover operator, which exchanges whole work weeks. Infeasible so- 

lutions are then repaired. Individual fitness is based on the weighted sum approach 

based on satisfying soft constraints. 

Landa-Silva and Le [81] proposed a simple evolutionary algorithm with self 

adaptation for a multiobjective nurse scheduling problem. The problem tackled 

covers a quite balanced set of hard constraints and soft constraints. New solu- 
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tions are produced based on crossover of a pair of nurse schedules for the same 

nurse from two different solutions. Instead of using mutation, Landa-Silva and 

Le designed a self adaptive decoder which iteratively repairs violations of hard 

constraints during the construction of nurse schedules. A regeneration strategy, 

which introduces newly generated solutions to the population to prevent stagna- 

tion, is also employed. They set a target of individual preference to be satisfied and 

other three objectives are: the nurse qualification coverage demand, the variance 

of coverage demand amongst shifts and work regulations. 

Burke et al. [19] proposed a scatter search approach. The idea behind scatter 

search is to replace stochastic reproduction operators by systematic and strategi- 

cally designed rules (19]. In scatter search, a new solution is selected for the next 

generation depending not only on the solution quality but also its contribution 

to population's diversity. Their approach aims to maintain the highest quality 

and also a diverse population. In this approach, solution similarity is measured 

by looking at the number of days in which identical shifts are assigned for each 

nurse schedule. Then, to obtain a diverse population of solutions, solutions are 

constructed by assigning a shift to a nurse who has been assigned that shift on a 

particular day the least number of times in all other solutions in the population. 

Neighbourhood searches further improve the solution by moving and swapping 

shifts between nurses. 

2.2.4 Other Approaches 

Burke et al. [18] proposed a hybrid algorithm which combines a memetic algorithm 

and tabu search for the nurse scheduling problem [20]. The memetic algorithm em- 

ploys a steepest decent improvement heuristic as local search. Burke et al. reported 

that the hybrid approach is better than both tabu search and their memetic al- 

gorithms alone. They also report that memetic approaches are more robust than 
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tabu search but slower. 

Aickelin et al. [2] proposed an evolutionary squeaky wheel optimization that in- 

corporates evolutionary selection and mutation operators. This approach is a cycle 

of analysis, selection, mutation, prioritisation and construction. The analysis step 

identifies underperforming solution components which are discarded by the selec- 

tion step based on the fitness of these components. The mutation step continues 

randomly discarding some components. Incomplete solutions are then repaired by 

the prioritisation and construction steps. It is argued that improvements in this 

approach are obtained by selective solution disruption, iterative improvement and 

constructive repair. 

Brucker et al. [17] proposed an adaptive constructive method which is based 

on a decomposition approach. In this method, high quality shift sequences are 

constructed during the search, different from [3,4] where shift patterns are pre- 

defined. In the next step, nurse schedules and ward schedules are built based on the 

shift sequences. During this step constraint violations are considered. To improve 

the quality of nurse schedules, a greedy local search is also employed during and 

after the construction of nurse schedules. 

2.3 Summary 

This chapter presented the basic terminology, concepts and models for the nurse 

scheduling problem. The chapter also presented a brief description of constraints 

which are found most often in the literature as well as in real-world nurse scheduling 

scenarios. However, the chapter does not suggest how to handle constraints. The 

reason for this is that different models using different solution approaches are 

likely to use different constraint handlers. It is quite difficult to develop a generic 

approach for constraint satisfaction. 
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This chapter also summarised some approaches to nurse scheduling in the litera- 

ture, but paid more attention to evolutionary approaches. Evolutionary approaches 

are very powerful, but one of the main challenges is to maintain the feasibility of 

solutions. Evolutionary approaches for nurse scheduling problems usually deploy 

some kind of local search as mutation and/or repair methods to generate feasible 

solutions or even improve the quality of solutions. 

Even though, there were many models and approaches proposed for the nurse 

scheduling problems in the literature, there is still a big gap between nurse schedul- 

ing in research and the challenging requirements in real hospital environment [24]. 

The reason behind this is that models in research are often a much simplification 

of real-world nurse scheduling problems. The current trend is to address the re- 

quirement of the real world [24] and try to bridge the gap between research models 

and real-world models which could be pursed by including as many constraints in 

the research models but still allowing flexibility of models. 

It is noted that it is difficult to compare different approaches for nurse schedul- 

ing problems due to a wide range of nurse scheduling models deployed by re- 

searchers. Each approach is normally designed to solve only a few or even one spe- 

cific model. There is a trend of deploying the hybridisation of different approaches 

to solve nurse scheduling problems. Burke et al. [24] pointed out that interactive 

approaches, which incorporate problem specific methods and heuristics, are the 

current state-of-the-art in solving complex real-world nurse scheduling problems. 
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Chapter 3 

Evolutionary Multiobjective 

Optimisation 

Many real-world optimisation problems are multiobjective and the application of 

heuristic and evolutionary techniques to solve these kind of problems is a very 

active research area and has increased considerably over the last decade or so. 

The main challenge in solving multiobjective optimisation problems is that several 

criteria (usually conflicting) need to be taken into consideration simultaneously to 

assess the quality of a solution. Confronted with a multiobjective optimisation 

problem, a decision-maker should find an appropriate solution that represents a 

good compromise between the several possibly conflicting objectives. As aforemen- 

tioned in chapter 1, there are three approaches to find such a solution, a-priori, in- 

teractive and a-posteriori preference articulations. The a-priori approach requests 

the preference amongst objectives before the search. However this is a non-trivial 

task in real-world optimisation problems. The techniques deployed by the a-priori 

approach include lexicographic ordering, linear aggregating function and nonlinear 

aggregating function [33]. The lexicographic ordering technique ranks objectives 

in order of importance then the optimum solution is obtained by optimising ob- 

jective functions in a sequential manner, starting with the most important one. 
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The linear aggregating function technique uses weighting coefficients to compute 

solution's fitness which is then optimised. This coefficient vector represent the 

relative importance of objectives. The nonlinear aggregating function technique 

defines a suitable probability of acceptance (or goal) to be achieved for objectives. 

The main advantage of the a-priori approach is its simplicity and computational 

efficiency. However, this approach tends to prefer certain objectives in the prob- 

lem. It could lead the population to converge to a particular part in the search 

space. This approach is most suitable when the importance (or the goal) of each 

objective is clearly defined. However, if the goal of the objectives is not clearly 

defined by the decision makers, the interactive approach could be appropriate. The 

interactive preference articulation could be referred to as the process of finding an 

intermediate solution then obtaining response from the decision maker regarding 

this solution to alter the preferences of the objectives accordingly. This process is 

repeated until the decision maker is satisfied or no further improvement is possi- 

ble [33]. The interactive approach could be also ideal if only a certain region of 

the search domain is of interest. The last approach, the a-posteriori preference 

articulation, does not require any preference over the objectives. Regarding this 

approach, it is not easy to select just one solution because there are usually more 

than one good tradeoff solutions. Instead of find a single solution, it is required 

to generate a set of solutions known as a "front" or "trade-off" [32]. In Pareto 

based multiobjective optimisation, a set of non-dominated solutions, also known 

as a Pareto set, is sought so that the decision-maker can select the most appropri- 

ate solution. Using Pareto dominance, a solution x is said to be non-dominated if 

there is no other solution that is better than x for at least one objective and as 

good as x in the other objectives. 

Evolutionary algorithms seem especially suitable to deal with Pareto based 

multiobjective optimisation problems because they can produce multiple promising 

solutions in a single run. The term evolutionary algorithm (EA) is derived from 

Darwin's concept of natural evolution in biological organisms [37]. Every individual 
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in the population has a chance of surviving and reproducing its genetic material 

into future generations. Following the analogy to biological evolution, an EA 

evolves a population of solutions or individuals to find a good set of solutions 

to the optimisation problem at hand. The evolution in an EA is based on the 

recombination and mutation of selected parents to produce offspring. High quality 

offspring could replace parents and compete for survival and reproduction in next 

generations. 

This chapter provides the basic concepts of multiobjective optimisation prob- 

lems (MOPs) and evolutionary multiobjective optimisation (EMO). It reviews 

some of important and recent evolutionary multiobjective algorithms. Key is- 

sues in EMO algorithms are also discussed. This chapter suggests some direction 

in designing a good evolutionary multiobjective algorithm which should be able to 

obtain Pareto fronts that are both well-distributed and well-converged. Finally, a 

set of performance metrics to assess EMO algorithms is presented. 

3.1 Multiobjective Optimisation 

The MOP requires to find a n-decision variable vector Y that optimises the m- 

objective vector f (x). Without the loss of generality, let us assume that the MOP 

is a maximisation problem. 

Definition 1. (Multiobjective Optimisation Problem): given the decision 

vector x= (x1 
7 x2, .... xn)T which belongs to the feasible region S formed by con- 

straint conditions, maximise the objective vector x: 

maximise f (Y) = (fl x), f2(x), ... , fn(s)) 

subject to YES (3.1) 

23 



In order to find solutions to the MOP, the optimiser requires mechanisms to com- 

pare solutions to identify superior solutions. One of the classical methods is the 

weighted-sum approach which scalarises the m-objectives into a single objective 

represented by a scalar value: 

m 
F(x) _ wa. fi(x) (3.2) 

i=1 

where wi is the weight of the ith objective function. It is common that w is 

chosen as a normalised weight vector wi = 1). This is the simplest and 

probably the most widely accepted method [45]. However, it is controversial to 

choose an appropriate normalised weight vector w because the m-objectives could 

be non-commensurable. Additionally, choosing w is equivalent to defining a priori 

preferences over the m-objectives before the search which is also not an easy task. 

Recent multiobjective optimisation algorithms deploy a different approach, the 

use of a domination concept, which was proposed by Vilfredo Pareto in 1896 [101]. 

In the last two decades or so, Pareto dominance has been widely adopted as the 

technique to establish the superiority between solutions in multiobjective optimi- 

sation. 

In Pareto dominance, a solution x is considered to be better than a solution i 

if and only if the objective vector of x dominates the objective vector of ? ': 

Definition 2. (Pareto Dominance): A solution x" in the search space S dom- 

inates a solution x* in the search space S (x r x*) if and only if x is not worse 

than x* in all objectives (fi(x) > fi (? ) Vi = 1, ..., m) and Y is strictly better than 

x* in at least one objective i=1, ... ,m (f; (x) > fj(x*)). 

In the context of Pareto dominance, we can further distinguish between weak 

dominance and strong dominance [271 or loose dominance and strict dominance [38] 

respectively. 

24 



Weak dominance. Pareto dominance is sometimes simply referred to as a weak 

dominance. A solution x weakly dominates a solution x* (x" }- i*) if x is better 

than x* in at least one objective and is as good as x* in all other objectives. 

Strong dominance. A solution x strongly dominates a solution ?* (x >- x*) if x 

is strictly better than ? in all objectives. 

Non-dominance. If neither x dominates x* nor x* dominates x, then both 

solutions are said to be incomparable or non-dominated. In this case, no solution 

is clearly preferred over the other, at least under the Pareto dominance criterion. 

The set P* consisting of all non-dominated solutions for a given set of solutions 

P is called the non-dominated set of P. Solutions in P* are not dominated by any 

solutions in P. The non-dominated set P* is also termed as the Pareto set of P 

which refers to the decision variable space. In the literature, there is also another 

term known as the Pareto front of P which refers to the objective functions space. 

Definition 3. (Pareto Set): For a given MOP and its set of solutions P, the 

Pareto set P' is defined as follows: 

P'={xEPI-3x*EP: x*>-x} (3.3) 

When the set P is the entire search space (P = S), the Pareto set P* of the 

set P is called the Pareto-optimal set. 

Definition 4. (Pareto-Optimal Set): For a given MOP and its search space S, 

the Pareto-optimal set PF is defined as follows: 

PF={x"ESI-13? ES: i >-x"} (3.4) 

The procedure to find the Pareto set P' for the set of solutions P is as fol- 

lows [45]: 
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Step 1 Initialise P* = {xl}. Set counter i=2 for solutions in P. 

Step 2 Set xý is the first non-dominated solution in P* 

Step 3 Perform domination check for solution xi in P and non-dominated solu- 

tion x in P. 

Step 4 If x1 dominates x;, delete non-dominated solution xý from P*, set xj as 

the next non-dominated solution in P* then go to Step 3. If xý dominates 

xi, increase i by one then go to Step 2. If xi and xj* are non-dominated, set 

xj as the next non-dominated solution in P* then go to Step 3. For all three 

cases, if the last non-dominated solution in P* is reached, hence there is no 

more xj' solution to perform Step 3, then go to Step 5. 

Step 5 Insert x; into P* (P* = P* U {xi}). If i< JPJ, increase i by one then go 

to Step 2. Otherwise terminate and declare P* as the Pareto set. 

Although the conventional Pareto dominance has been extensively used in the 

literature as the criterion to compare the fitness of solutions in multiobjective opti- 

misation, there are proposals for alternative forms of Pareto dominance, known as 

relaxed Pareto dominance [84,86] also called `extended' dominance. These varia- 

tions of Pareto dominance aim to find solutions in difficult areas (like the extremes 

of the tradeoff surface) or attempt to combine convergence and diversity in or- 

der to improve the performance of multiobjective optimisers and achieve a better 

Pareto set in difficult problems. Usually in these relaxed or extended dominance 

relationships, some transferring functions are applied to the rn-objective values 

of the objective vector f (i) before comparing the solutions. In general, relaxed 

Pareto dominance allows a solution x to dominate another solution i for which 1 

and x* are Pareto non-dominated solutions or even x is Pareto-dominated by x*. 

It has been shown that relaxed Pareto dominance helps to obtain better quality 

Pareto fronts in some problems (e. g. [82,79,27]). More details on relaxed Pareto 

dominance will be discussed in chapter 5. 
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3.2 Evolutionary Algorithms 

The evolutionary algorithm stands for a class of stochastic optimisation technique 

inspired by the principles of natural selection and natural genetics [52,106]. EMO 

is the technique using EAs to solve MOPs [122,44,33]. Colleo Coello [33] pointed 

out that the potential of EAs for solving MOPs was suggested by Rosenberg in 

his PhD thesis [105]. Since then, there has been an enormous amount of work 

dedicated to this field. The first acknowledged EMO algorithm, by Schaffer [107], 

is the Vector Evaluation Genetic Algorithm (VEGA) which attempted to solve 

machine learning problems. During the 1990s, there were several EMO algorithms 

proposed in the field such as MOGA by Foncesca and Flemming [53], NPGA by 

Horn et al. [61], NSGA by Srinivas and Deb [110], SPEA by Zitzler and Thiele [125]. 

In the early 2000s, there was a surge of publications describing EMO algorithms 

including, but not limited to, PAES by Knowles and Corne [77], PESA2 by 

Coyne et al. [36], NSGA2 by Deb et al. [47], SPEA2 by Zitzler et al. [124], MOGLS 

by Jaszkiewicz [71], e-MOEA by Deb et al. [46], SEAM02 by Mumford [96] and 

IBEA by Zitzler and Künzli [123]. The contribution to the EMO field continues to 

grow with recent publications such as MOEA/D by Zhang and Li [121], and other 

hypervolume-based approaches such as SMS-EMOA by Beume et al. [12], SIBEA 

by Brochhoff and Zitzler [16] among many others. 

According to Deb [41], the EMO field was judged as one of the three fastest 

growing field of research and application among all computational intelligence top- 

ics in recent years. Despite the fact that EMO research and application has grown 

considerably [41], there is still strong interest in further improving the performance 

of EMO and exploring new challenging methodologies to attempt to find optimal 

solutions to multiobjective problems [91]. Perhaps the most noticeable research 

direction nowadays is to enhance EMO methods by incorporating concepts from 

different fields which results in sub-fields of research within the EMO framework. 

Examples of these sub-field are memetic algorithms and preference-based EMO 
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algorithms. Some important and recent EMO algorithms in the literature are re- 

viewed below. Other earlier EMO algorithms could be found in several review 

papers [31,32,34]. 

3.2.1 Overview of Evolutionary Algorithms 

Within the EA framework, individuals (solutions to the optimisation problem) are 

encoded as chromosomes, a collection of genes, which represents the characteristics 

of that individual. The chromosome is also known as the genenotype. The phe- 

notype, which represents the quality of the individual, is defined by decoding the 

chromosome. The evolutionary process starts by evaluating the quality of individ- 

uals in the population. Individuals in the current population, known as parents, 

then go through selection for the recombination process. Selected parents are re- 

combined to create offspring. The replacement process then chooses high quality 

individuals (i. e. parents and offspring) for the population of the next generation. 

These steps repeat until the stopping criteria is met. The conceptual evolutionary 

algorithm is as follows: 

ConConceptual Evolutionary Algorithm 

Initialisation: create an initial population 

Evaluation: evaluate fitness values of individuals in the population. 

while stopping criteria not met do 

Selection: choose high fitness value parents to fill the mating pool. 

Variation: apply variation operators on parents to create offspring. 

Evaluation: evaluate fitness values of parents and offspring. 

Replacement: replace parents with higher quality offspring. 

end while 

output the best individuals in the population 
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3.2.1.1 Individual Representation 

Within the EA framework, individuals are considered at two levels: the genotypic 

level and the phenotypic level [52]. The genotype of an individual, also referred to 

as the chromosome, is a string of genes of finite length. The chromosomes could 

be in any form such as binary, integer/alphabet, real-valued. The most common 

forms are binary (binary representation) and integer/alphabet (e. g. permutation 

representation). In the binary representation, each gene in encoded individuals 

takes a value of either 0 or 1 and the value of genes is important. In the permu- 

tation representation, each gene in encoded individuals take a distinguished value 

and the position of genes is important. The choice of chromosome representation, 

which depends on the problem as well as the EA itself, is important. An un- 

suitable representation could lead to unnecessary computational overhead and low 

performance of the EA. 

The genenotype represents the characteristics (decision variables) of individuals 

but not the quality of individuals. The quality of individuals, the phenotype, 

is obtained by decoding the chromosome. The phenotype is also known as the 

objective value of individuals. It is crucial to understand the differences between 

genotype and phenotype representations because of their different purposes and 

association to different stages during the evolutionary process. 

3.2.1.2 Evaluation of Individual Fitness 

The evaluation of an individual is the process which obtains the objective values, 

the phenotype, of the individual by decoding its genotype. The phenotype of indi- 

viduals could be used to directly compare individuals based on Pareto dominance 

and at different stages of the algorithm such as in SEAMO/SEAMO2 [115,96]. 

However, it is very common that the algorithm takes one step further in assessing 

individuals' quality by assigning a fitness to each individual. This process is re- 
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ferred to as the individual's fitness evaluation to distinguish from the individual's 

objective values evaluation. The fitness evaluation derives the fitness of an indi- 

vidual from its objective values. While computing the fitness of an individual, the 

fitness evaluation might or might not consider other individuals in the population. 

The fitness evaluation strategy is one of the core features of which could differen- 

tiate one EA from others. Fitness assignment strategies could be categorised into 

three types: 

Dominance-based: The fitness of individuals is determined by comparing indi- 

viduals to others in the population based on Pareto dominance (or other 

types of relaxed Pareto dominance); for example, NSGA2 and SPEA2. 

Non dominance-based: The fitness of individuals is determined by applying 

transferring functions on the objective values of individuals which combine 

and/or modify the objective values; for example, MOEA/D. 

Hybridisation: Based on some satisfaction on dominance condition, transferring 

functions are applied to the objective values of individuals to obtain the 

fitness value. For example, IBEA. 

3.2.1.3 Parents Selection 

The parents selection, or mating selection, is the process of selecting individuals 

to participate in the production of offspring [52]. There are two common mating 

selections: stochastic selection and tournament selection. Stochastic selection se- 

lect parents at random regardless of parents' quality/fitness. Tournament selection 

applies an additional layer onto the stochastic selection. In tournament selection, 

parents are also drawn at random but selected parents then undergo a fitness com- 

parison process. The highest quality parent, i. e. the winner of the tournament, is 

selected to be in the mating pool. The size of the tournament is usually set to 2 

(binary tournament). There are other schemes such as fitness proportionate selec- 
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tion and truncation selection. In fitness proportionate selection, the probability of 

each individual being selected for the mating pool is in proportion to its fitness. 

In truncation selection, each of the top (1/c)% individuals in the population (with 

respect to fitness) get c copies in the mating pool. The selection of parents is also 

one of the key feature in EAs. 

3.2.1.4 Replacement Strategy 

The replacement strategy, which is also known as the environmental selection or 

survival selection, is the process of selecting individuals for the next generation 

based on the fitness of individuals. As opposed to the parents selection, which is 

usually stochastic, the replacement strategy, which usually select the best individ- 

uals based on their fitness, is mainly deterministic [58]. The replacement strategy 

is categorised into generational and steady-state selection schemes. The difference 

between these two schemes is at which point parents and offspring compete for 

survival. In the generational selection scheme, for each generation, the offspring 

population is constructed (based on the parent population) first. The sizes of the 

offspring population and parent population are usually the same size of the current 

population. The offspring population and the current population are combined. 

Individuals from resulting population are then selected for the next generation. 

However, the steady-state selection scheme allows offspring to compete for sur- 

vivor and reproduction as soon as they are created. In other words, offspring are 

considered to replace their parents (or other individuals) in the current population 

immediately after offspring are constructed. Besides the fitness assignment and the 

parents selection, the replacement strategy is also one of the important aspects of 

an EA. 
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3.2.1.5 Reproduction Mechanism 

The reproduction mechanism uses the genetic material, the genotype, of parents to 

create offspring. The aim of the reproduction mechanism is to manipulate the gene 

structure of individuals in the current population, create new individuals with the 

expectation that better individuals could be obtained. There are a large number 

of genetic operators that can be used for the reproduction, but broadly these are 

divided into two categories: 

Recombination: is usually a binary operator which combines the genetic material 

from two parents to produce the genetic material for one or two offspring. 

The recombination operator, which is usually a random operator, decides 

which part of the genetic material from parents is inherited by the offspring. 

The principle behind the recombination is that "good" genes in parents are 

combined in the genetic material of the offspring. 

Mutation: is a unary operator which is applied to the genotype of one individual 

in order to slightly modify the gene structure of that solution. The muta- 

tion operator is most times a stochastic operator. The mutation operator 

attempts to introduce a few new features that might not be inherited from 

the parents. The purpose is to add diversity to the population and contribute 

so that the entire search space can be possibly explored [106]. 

It is noted that both recombination and mutation operators are genotypic repre- 

sentation dependent. Different individual representations often require different 

operators. It is also noted that while operators for mutation are usually problem 

independent, many recombination operators are problem specific. A few problem 

independent operators are presented below: 

The simplest form of mutation operator is bit lip mutation used with a binary 

representation. Each gene in the genetic material of an individual is inverted 
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(between 0 and 1) with certain probability (usually very low). This probability is 

known as the mutation probability, which is relatively small to prevent too much 

disruption of the inherited genetic material. For a permutation representation, the 

mutation operator usually swaps two arbitrarily selected genes in the permutation 

list, at, once or more times. 

Parent genotypes Offspring genotypes 
1 Fi F116J 11 01 11 101 11 1010110 

0O01010110000 11 1101011 

Figure 3.1: One Point Crossover 

Parent genotypes Offspring genotypes 
101110101110110110 1111 
U()01o1011()000110(110 

Figure 3.2: Two Point Crossover 

Parent L('InOtVI)(, s 

1011101011 
0001010110 

OH; S)n-ing genotypes 
111-0 0101 1n111I 
0011 110 0010 

Figure 3.3: Uniform Crossover 

Recombination, or crossover, operators have many different forms. Two coni- 

mon fortes of crossover for binary representation are k-point and uniform crossover. 

The simplest versions of k-point crossover are one-point crossover (figure 3.1) and 

two-point crossover (figure 3.2). In one-point crossover, a crossover point is selected 

at ran(loni then genes on one side of the crossover point are exchanged between 

individuals. In two-point crossover, two crossover points are selected at random 

and genes between two crossover points are exchanged between individuals [106]. 

In uniforme crossover (figure 3.3), every gene is exchanged between individuals with 

certain probability, which is usually set to 0.5. 

With respect to the permutation representation, crossover operators must pre- 

serve the genetic information i. e. all genes must be in the genotype in which ever 

way the permutation list is modified. Oliver et al. [98] presented cycle crossover, 

applied on two parents, which preserves the absolute position of genes in the per- 

mutation list. A crossover point is selected at random as the starting position of 
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the cycle. The gene at that position of the selected parent is copied to the genotype 

of the offspring (5). The next position of the cycle is the position, in the selected 

parent, of the gene which appears at the current position in the other parent (8). 

The cycle repeats until the gene at the starting position of the cycle is encoun- 

tered. Unfilled positions of the offspring are filled by genes, in those positions, of 

the other parent. The process of the cycle crossover is illustrated in figure 3.4. 

Parent 1 0 7 1 5 6 3 8 4 9 2 
Parent 223785491 06 

y-4 , 
l. 

l 
ý6 ý2 

, 
`. 

3 , 
j, 

5 

Offspring 1 0 3 7 5 6 4 8 1 9 2 
14 

,1 
ý2 16 ss 

Offspring 2 2 7 1 81 5 3 9 4 0 6 

Figure 3.4: Cycle Crossover 

Another crossover operator for permutation representation is uniform oraler- 

based crossover, applied on two parents. Uniform order-based crossover requires it 

random binary template. Firstly, the offspring is filled with genes from a selected 

parent at positions indicated its I in the template. The remaining genes in the 

selected parent, which are sorted in the same order as appeared in the other parent, 

then fill vacant positions in the offspring. The uniform order-based crossover is 

illustrated in figure 3.5. 

Parentl 0 17 1 5J 6 J3 I8 14 f91 2I 
Parent 2 12 13 17 18 15 14 19 1 0 G 

Template 11 0 0 1 1 1 0 1 0 0 

Offspring 11 01 21 71 51 61 31 8 4 9 1 
Offspring 2 2 0 7 8 5 4 6 1 3 9 

Figure 3.5: Uniform Order-Based Crossover 

In the literature, there are also other popular crossover operators for per- 

mutation representation such as partially mapped crossover [57], position based 

crossover [112], order crossovers [39,112]. These crossover operators and their 

comparison could be found in [111]. Throughout this thesis, one-point crossover 
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operator is employed for binary representation and cycle crossover is for permuta- 

tion representation. 

3.2.1.6 Stopping Criteria 

Stopping criteria define states in which the evolutionary search terminates and the 

best individuals are presented. Stopping criteria usually vary accordingly to the 

type of applications and the purpose of the studies. For theoretical studies, in 

which the purpose is to investigate the performance of newly proposed EAs for ex- 

ample, the stopping criteria are usually the number of evaluations (or generations) 

or the amount of execution time. However, the latter is rarely used due to its low 

reliability and dependence on other factors such as hardware, operating systems 

and programming languages. For real-world application (especially in real-time 

application), in which the computational time is limited, it is sensible to set the 

amount of execution time as the stopping criterion. There are other criteria such 

as on-line performance metrics which keep track of the improvement of population 

or best solutions until no improvement after a certain amount of time or evalua- 

tions. The number of generations could be also the stopping criterion of real-world 

applications. 

3.2.1.7 Other Issues in EA 

The core features of an EA have been discussed above. Although, when designing 

an EA, it is also worthwhile to pay attention to other issues in order to design a 

good performing EA. These issues include, but are not limited to: 

Population Initialisation & Reinitialisation. The simplest approach is to 

generate random individuals for the initial population. However, it is possible and 

often advisable to use heuristics to construct (better) individuals. The heuristics 

are usually knowledge-based and problem dependent. Apart from being generated 
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at the start of the search, new individuals could also be introduced during the 

search by heuristics instead of using reproduction operators as discussed above. 
This is known as reinitialisation in which a part or whole population is reinitialised 
if the search stagnates. 

Generational vs. Steady-State. As aforementioned, the replacement strat- 

egy could be either a generational or a steady-state approach, also referred to as 

generational or steady-state selection. The decision on which approach is deployed 

within an EA is mainly driven by the fitness assignment strategy. If the fitness 

assignment strategy requires all (or a large number of) individuals in the popu- 

lation to estimate the fitness of an individual, the generational approach should 

be employed. On the other hand, the steady-state selection could be used if the 

fitness of an individual is not effected by other individuals in the population. In- 

appropriate approaches could lead to expensive computational time and degraded 

performance of the search. It is noted that recent studies show a better per- 

formance of the steady-state selection over generational selection. For example, 

Durillo et al. [49] modified NSGA2 and SPEA2 from generational to steady-state 

selection and reported better performance than the original algorithms although 

the computational time increased significantly. Recent steady-state selection EAs, 

such as SEAMO2 [96], SMS-EMOA [12], MOEA/D [121] also report better per- 

formance than generational state-of-the-art EMO algorithms such as NSGA2 and 

SPEA2. Therefore EMO algorithms designers should pay attention to this issue. 

Exploration vs. Exploitation. This is also known as diversity vs. inten- 

sification of the population. The reproduction mechanism is mainly the driving 

force for exploration whereas exploitation is taken care by the replacement strat- 

egy. In EAs, it is very difficult to obtain good results in terms of both exploration 

and exploitation at the same time. There is usually a trade-off between these two 

aspects. Therefore, balancing well this trade-off could lead to high performance 
EMO algorithms. 
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Elitism. This term means that the best individuals are always included in the 

next population. It is unambiguous in the single-objective framework where there 

is only one best individual at anytime. However under the multiobjective frame- 

work, there could be always more than one best individuals. The number of best 

individuals could increase dramatically with respect to the number of objectives 

of the problem. With a limited population size, it is non-trivial to identify which 
best individuals should be kept. An external archive or favouring best solutions 

with at least one best objective value could be the answer. Laumanns et al. [83] 

also argued that the usefulness of elitism strongly depends on the mutation rate. 

However, in the author's opinion, it remains inconclusive how elitism should be 

tackled. 

Duplication. Duplication occurs in the population if there is at least a pair of 

distinct (in the decision space) individuals having the same objective values. The 

problem with allowing duplication is that all individuals in the population could 

converge too quickly to a single point in the objective space which is not desirable. 

To deal with this problem, a hard approach it to strictly not allow any duplication 

(like in SEAMO2) while in a soft approach is to allow the replacement strategy to 

eliminate duplication (like in NSGA2 and SPEA2). 

Mating Restriction. The idea of restricted mating comes from natural se- 

lection where mating only seems to happen between similar individuals. Deb and 

Goldberg [42] argued that mating between dissimilar individuals will likely lead 

to unfit offspring called lethals. However, mating between too similar individuals, 

known as in-breeding, could affect adversely the progress of the search. Mating 

restriction could be performed on either the genotype or phenotype of individu- 

als. In the literature, mating restriction is usually controlled by a mating radius 

7mating. There are a few studies which support the case of mating restriction on 

similar individuals [40,66,67,85]. Chapter 4 will present deeper discussion on 

mating restriction. 
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3.2.2 Multiobjective EAs in the Literature 

3.2.2.1 Non-dominated Sorting Genetic Algorithm (NSGA) 

Srinivas and Deb [110] proposed NSGA which ranked the population into fronts 

based on Pareto non-domination and each front is assigned an increased dummy 

fitness value. These classified individuals share dummy fitness values to maintain 

the diversity of the population. This process continues until all individuals in the 

population are classified. Later, Deb et at. [47] proposed a fast non-dominated sort- 

ing approach to classify individuals in a population into different non-domination 

levels or different fronts (NSGA2). NSGA2 employed a density estimation metric 

to preserve the population diversity. It required to sort each front according to each 

objective function value in ascending order of magnitude. The boundary individu- 

als are assigned an infinite distance value. The density of individuals surrounding 

other intermediate individuals in the front is the sum of the average normalised 

distance of two individuals on either side of this individual along each of the ob- 

jectives. The best fronts of the offspring population and the archive combined are 

selected for the next archive. If the size of the archive is greater than N, individ- 

uals in the last front are removed to reduce the size of the archive to N based on 

their crowding value. NSGA2 uses a fixed population and a fixed archive of size 

N. The mating pool is filled by binary tournament selection with the following 

priority: non-domination level then crowding distance. The offspring population 

is formed by applying crossover and mutation on the mating pool. There is no 

treatment to prevent duplication of individuals whilst forming the archive. Dupli- 

cated individuals could be spotted by the crowding value and removed during the 

truncation of the archive but this process is not exhaustive and hence duplicated 

solutions may remain. 
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3.2.2.2 Strength Pareto Evolutionary Algorithm (SPEA) 

Zitzler and Thiele [125] proposed SPEA which maintains a population P and stores 

all non-dominated individuals in an external archive P. Each individual in P is 

assigned a strength value proportional to the number of individual in P that it 

dominates. The strength value of EP is: 

SM IPI +1 
(3.5) 

and the fitness of x* EP is the sum of the strength value of all individuals in P 

that dominate x*: 

f(x`) =1+E s(x) (3.6) 
HERZ-ix 

SPEA deploys the average linkage clustering approach to reduce the size of the 

external archive P, if necessary. SPEA allows individuals from both the population 

P and the external archive P to be selected for reproduction. 

Later, Zitzler et at. [124] improved SPEA by employing a fine-grained fitness 

assignment strategy which for each individual takes into account how many indi- 

viduals it dominates and it is dominated by. Each individual in both the archive 

and the population is assigned a strength value S(s), indicating the number of 

individuals it dominates. The raw fitness R(x) of an individual is defined as the 

sum of the strength value of all individuals by which it is dominated. 

S(x)=I{x*e PU-p: x->- i'1I (3.7) 

R(x) =F S(i) (3.8) 
ä` EP U P: z"Y-i 

SPEA2 uses an adaptation of the k-th nearest neighbour method to estimate the 

density of an individual. The density of an individual is estimated as the inverse 

of the distance to the k-th nearest neighbour. Then, the density is added to the 
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raw fitness R(x) to yield the fitness of individual S. SPEA2 fills the mating pool 

using binary tournament selection only on the archive. Crossover and mutation 

is applied on the mating pool to create the offspring population. All individuals 

in the offspring and the archive population having fitness less than one, i. e. all 

non-dominated individuals in PUP, are copied to the next archive. Zitzler et at. 

pointed out that there are two situations: either the archive is too small or too 

large. If the archive is too small, the best dominated individuals, based on the 

strength, are copied to fill P. In the later situation, non-dominated individuals in 

the archive are iteratively removed until the archive size is not exceeded. The re- 

moval of non-dominated individuals from the archive is carefully managed by using 

an archive truncation method that guarantees the preservation of boundary solu- 

tions. As in NSGA2, SPEA2 relies on the archive truncation to remove duplicated 

individuals but it does not guarantee that the archive contains no duplication. 

3.2.2.3 Simple Evolutionary Algorithm for Multi-objective Optimiza- 

tion (SEAMO) 

Mumford (Valenzuela) proposed SEAMO [115] as a steady-state population and a 

simple elitist replacement strategy. Each individual in the population acts as the 

first parent once and a second parent is chosen at random. Offspring is produced by 

applying a crossover on the pair of parents, followed by a single random mutation. 

The offspring replaces one of the parents if either its objective vector improves 

on any best-so-far objective function or it dominates that parent. SEAMO does 

not allow duplication in its population. Therefore, any duplicated offspring dies 

before the replacement process. Mumford further investigated other replacement 

strategies and proposed SEAM02 [96]. The difference between the replacement 

strategy in SEAM02 and SEAMO is that in SEAM02, if neither the offspring 

dominates the parents nor the parents dominate the offspring, the offspring replaces 

a random individual in the population that the offspring dominates. SEAM02 and 
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SEAMO do not use any individual fitness assignment or niching technique. These 

algorithms heavily rely on the replacement strategy to maintain diversity (i. e. the 

replacement of the best-so-far solutions with offspring that improve on best-so- 

far) and pursuit convergence (i. e. the replacement of dominated parents with 

offspring). 

3.2.2.4 Indicator Based Evolutionary Algorithm (IBEA) 

Zitzler and Künzli [123] proposed a general framework indicator-based evolution- 

ary algorithm. IBEA could be referred to as an EMO algorithm but guided by 

general preference information of the dominance relationship, a binary quality in- 

dicator I ({x*} 
, 
{x}). IBEA uses a fixed size archive and an offspring population. 

Offspring is produced by recombination and mutation on a pair of parents se- 

lected from the archive. The archive and the offspring population is combined and 

truncated to generate the new archive for the next iteration. IBEA needs neither 

specifications of weights or targets (as in aggregation methods) nor the dominance 

relationship and distribution techniques (as in other EMO algorithms). IBEA uses 

this binary indicator guiding the search to generate the approximation set. The 

binary quality indicator in IBEA maps an ordered pair of individuals to a real 

number which therefore could be used for fitness calculation F(S). 

F(Y) _ (3.9) 
x' E P\{M} 

where n is the fitness scaling factor. Zitzler and Künzli [123] proposed two indi- 

cators, the additive e-indicator I, + and the hypervolume-indicator IHD. For an 

ordered pair of individuals (x*, x), the IE+(x*, x) indicator gives the minimum dis- 

tance for which x* is translated in each dimension in objective space to weakly 

dominate x while the IHD(x*, i) indicator measures the hyperspace volume that 

is dominated by x but not by x* with respect to a predefined reference point. 
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Zitzler and Künzli [123] also pointed out that the indicator values I (x*, x) 

could be widely spread for different problems making it difficult to approximate 

the value for ºK. Therefore, they suggested adaptively scaling the indicator values 

to the range [-1,1] for all solutions in the population. Furthermore, to eliminate 

the issue of estimating a good reference point for the IHD indicator, Zitzler and 

Kiinzli suggested also scaling the objective values to the range [0,1]. Therefore the 

fitness calculation in the adaptive IBEA is modified as follows: 

F(x) _ 
i'EP\{i} 

where c= max,,:, xE p 
{I I (x*, x) I} and I (i , x) is calculated based on the scaled 

objective values f' which is determined as follows: 

fä(x) = (f' (x) - b+) / (bi - bi (3.11) 

the lower bound is bi = min: 5Ep { fti(x)}, the upper bound is bti = maxjEp { f; (x)} 

and K=0.05 for all problems and indicators. See (123] for more details on IBEA. 

3.2.2.5 S-Metric Selection EMOA (SMS-EMOA) 

Beume et al. [12] proposed SMS-EMOA as a steady state population and selection 

scheme. SMS-EMOA's explicit goal is to maximise the hypervolume, S-metric 

value [125], of the population. At each iteration, an offspring is produced by re- 

combination and mutation. The offspring replaces an individual in the population 

Pt if it leads to higher quality of the population with respect to the S-metric 

by removing an individual which exclusively contributes the least hyper volume. 

The resulting population Pt+l, formed by combining the offspring and the pre- 

vious population Pt, is partitioned into different non-dominated fronts using the 

fast non-dominated sorting algorithm NSGA2 [47]. The first front R. 1 contains all 

non-dominated solutions of Pt+l, the second front contains all individuals that are 
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non-dominated in the set (Pt+i\7Z1), etc. Finally, an individual r is discarded from 

the last front 7 (the worst ranked front) if that individual is the one contributing 

the least hyper-volume to this last front R.. 

r= arg min [Os (s, 7Z�)] (3.12) 

As (s, R, ) =S (R.,, ) -S (Ry\ {s}) (3.13) 

Beume et al. also investigated several variants of SMS-EMOA aiming to promote 

solutions to partially filled regions of the Pareto front and to reduce expensive 

computation of the hypervolume measure. They suggested that if there is more 

than one front in Pt+l (v > 1), the selection based on equation 3.13 should be 

replaced by equation 3.14: 

r= arg max [d (s, Pt+l)] (3.14) 
9ERv 

d (s, Pa) _I {y E Ptl y >- s}l (3.15) 

The above means that the individual with the highest number of dominating points 

should be discarded. The purpose of this replacement strategy is to promote dom- 

inating individuals to rise in rank to better fronts and fill vacant (less populated) 

areas in the current Pareto front [12]. 

3.2.2.6 Multiobjective Evolutionary Algorithm Based on Decomposi- 

tion (MOEA/D) 

MOEA/D, proposed by Zhang and Li [121], decomposes a multiobjective optimi- 

sation problem into a number of scalar optimisation subproblems and optimises 

them simultaneously. Each subproblem is solved by utilising information from its 

neighbouring subproblems. All non-dominated individuals found during the search 

are stored in an external archive. MOEA/D predefines a set of N evenly spread 
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weight vectors 
{i,. 

.., 
AN}, where N is the number of subproblems, or the pop- 

ulation size of MOEA/D. Each ith subproblem corresponds to a weight vector a'. 

Each vector is the size of m (the number of objectives in the problem). N is de- 

termined based on a controlling parameter H which is explained more clearly in 

page 51. The neighborhood of the ith subproblem consists of all subproblems with 

the weight vectors closest to Ai which include the ith subproblem itself. Then, the 

population of MOEA/D consists of the best solution 0 found so far for each ith 

subproblem. At each iteration, an offspring in the ith subproblem is produced by 

recombination and mutation on parents which are the current solutions to subprob- 

lems in the neighbourhood of the ith subproblem. The offspring replaces current 

solutions of the ith subproblem and its neighbouring subproblems if the fitness 

value of the offspring is better than that of these current solutions. The fitness of 

a solution x is based on Tchebycheff approach: 

te(x ; j, z) = imax 
{A; I ft(x) - z4} (3.16) 

where z is the reference point z; = max { f; (S) ISE P}. For more details on 

MOEA/D see [121]. 

3.2.2.7 Other Classes of EMO algorithms 

Recently, there have been a number of approaches proposed not only to further 

improve the performance of existing EMO algorithms but also to make EMO al- 

gorithms more applicable and successful on the real-world applications. Some of 

these proposed approaches are briefly reviewed next. 

EMO Algorithm Local Search is a class of stochastic heuristics (also known 

as memetic algorithms) which combine evolutionary algorithms with one or more 

phases of local search to improve the quality of solutions [58]. Within the classical 

EMO algorithm's framework, offspring are usually produced by crossover opera- 
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tors followed by random mutations. Therefore, it is very common that in EMO 

algorithm Local Search, the random mutation is replaced by one or more local 

search phases. Local search strategies, such as hill-climbing, simulated annealing, 

tabu search, usually use problem specific operators/heuristics. There have been 

proposals for general memetic algorithms such as by Knowles [78], Jaszkiewics [72], 

Bosman and de Jong [15] as well as for problem specific such as personnel schedul- 

ing, timetabling, job-shop scheduling [26,18,60]. See [59] for more details. 

The epsilon-MOEA is based on the concept of e-dominance proposed by 

Laumanns et al. [82]. The algorithm aims to improve the convergence and the 

diversity as well as the computational time [82,46]. The underlying concept of this 

approach could be employed by any EMO algorithms by replacing the conventional 

Pareto dominance with e-dominance. f-dominance is discussed in section 5.2. 

Preference-based EMO algorithm is a very recent research trend within 

the EMO algorithm framework. The main purpose of preference-based EMO al- 

gorithms is to deal with a large number of objectives. Problems with many objec- 

tives (usually more than 3) are of particular difficulty because when considering 

many objectives the size of the Pareto front increases substantially and it is diffi- 

cult to generate and maintain all non-dominated individuals. This is because for 

many objectives, many solutions become mutually non-dominated. Another aim 

of preference-based EMO algorithms is to focus the search on particular parts of 

the Pareto front. A large number of objectives and the interest on particular parts 

in the search space are the two issues which are often encountered in real-world 

problems. The concept behind preference based EMO algorithms is to narrow the 

search space by incorporating preference information by the decision maker into the 

algorithm. There have been relatively few studies on this area, examples are those 

by Deb and Sundar [43], Deb et al. [48], Allmendinger et al. [5], Julian et al. [93], 

Thiele et al. [113], Wickramasinghe et al. [118]. The main approach to incorporate 

preference information in preference-based EMO algorithms is to define a reference 
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point in the objective space and restrict the search area around this point. At the 

time of writing, the most up-to-date contribution on preference-based EMO algo- 

rithms could that be of Julian et at. [93]. They proposed a variation of the Pareto 

dominance concept which facilitates the approximation of the efficient Pareto front 

around the desired area. Julian et at. also provided a simple strategy to update 

the reference point which allows the decision maker to interact with the search 

process. 

3.3 Performance Assessment 

The two main issues influencing the performance assessment of EMO algorithms 

are the chosen experimental problem and the set of performance metrics. The 

chosen problem should be understandable, easy to formulate, but yet difficult to 

solve [1251. Due to the multiobjective nature of the experimental problem, it 

require a set of performance metrics to assess the EMO algorithms' performance. 

This set of performance metrics should be able to address at least one of the follow- 

ing criteria for approximated Pareto sets obtained by MEOAs, which include, but 

are not limited to: the diversity, the convergence, the coverage and the distribution 

of solutions. 

3.3.1 The 0/1 Multiple Knapsack Problem 

Martello and Toth [88] formulated the single-objective knapsack problem as a set of 

n items and a knapsack. Each item has an associated weight (w; ) and an associated 

profit (p; ). The goal is to find a subset of n items that maximise the total profit. 

The total weight of this subset of n items must not exceed the knapsack's capacity 

(i. e. the subset of items fit into the knapsack). Martello and Toth [88] also defined 

a multiobjective knapsack problem which consists of n items, and m knapsacks. 
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Each knapsack has an associated capacity (cj). The task is to find m disjoint 

subsets of items, each subset fits into a knapsack and maximise the total profit of 

selected items. This 0/1 multiple knapsack problem can be defined as follow: 

mn 

maximise z=E pjxij 
i=i j=i n 

subject to E wi xgi < Cti, Vi = 1,... ,m 

j=l m 

i=1 

xti; =0or1 

There are also different proposals for the 0/1 multiple knapsack problem such 

as by Khuri et al. [75]. Different proposals reflect different real-world applica- 

tions. However those proposals have not been widely adopted so far. It was 

not until the proposal by Zitzler and Thiele [125] for the 0/1 multiple knapsack 

problem. This formulation described by Zitzler and Thiele is the multiobjective 

version directly extended from the single-objective knapsack problem proposed by 

Martello and Toth [881. Since then, this problem has been widely used as a bench- 

mark problem for the performance assessment of not only EMO algorithms but 

also other search algorithms. The 0/1 multiple knapsack problem proposed by 

Zitzler and Thiele [125], which will be used in this thesis, is described below. 

3.3.1.1 Problem Description 

The multiple 0/1 knapsack is defined as follows: Given a set of n items, a set 

of m knapsacks, weight and profit associated with each item in a knapsack, and 

an upper bound for the each knapsack capacity. The goal is to find a subset of 

items that maximise the profit in each knapsack and the knapsack weight does not 
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exceed its capacity. 

pti, j = profit of item j in knapsack i 

wi, 2 = weight of item j in knapsack i 

c1 = capacity of knapsack i 

find a vector Y= (xl, X2,. - ., xn) E {0,1}" such that: 

n 
Vi E {1,2,..., m} : Ewi, 

j. xj < ci (3.17) 
j=1 

and maximise f (x) _ (fl (i), f1 (x), 
... , f�, 

(x)), where 

n 
MY) =E pj, j"X; (3.18) 

j=l 

and xj =1 if and only if item j is selected, otherwise x3 = 0. 

3.3.1.2 Experimental Data 

Zitzler and Thiele suggested 9 different sets of data including instances with two, 

three and four objectives in combination with 250,500 and 750 items. Zitzler 

and Thiele also pointed out that the uncorrelated profits and weights, suggested 

by Martello and Toth [88], should be chosen when generating benchmark data 

for this problem. The profit and weight of an item j in knapsack i (ptij, wij) are 

random integers in the interval [10,100]. The capacity of a knapsack is half the 

total weight [125]. 
n 

cß = 0.5 E wij (3.19) 
j=1 
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3.3.1.3 Problem Implementation 

In the literature, there are three representations published for solutions to the 0/1 

knapsack problem, binary representation, numeric representation and symbolic 

representation [95]. It is pointed out by Michalewicz and Arabas [90] that there 

are three possible capacity constraint handling techniques for the knapsack prob- 

lem which are based on penalty functions, repair methods and decoders. These 

representation and constraint handling techniques could be directly extended to 

the 0/1 multiobjective knapsack problem. Reviews and comparisons on differ- 

ent representation and constraint handling techniques for the 0/1 multiobjective 

knapsack problem can be found in [35,95]. This section only reviews the most two 

favoured combinations in the literature which are the order-based representation 

with a decoder and the binary representation with a heuristics repair methods. 

Mumford (Valenzuela) deploys the order-based representation with a decoder 

for in the 0/1 multiple knapsack problem in SEAMO/SEAMO2 [115,96]. The 

solution is represented as a simple permutation of items to be packed. The decoder 

starts from the beginning of the permutation list, packing an item one at a time 

until the weight for any knapsack exceeds its capacity. The packing stops and 

the last packed item is removed from all knapsacks. The offspring reproduction 

is based on the recombination on a pair of parents using cycle crossover [98] and 

followed by random mutation that consists of swapping two arbitrarily selected 

items within a single permutation list [115]. 

Another type of representation is the binary representation where solutions to 

the 0/1 multiple knapsack problem are represented as strings of Os and 1s. Off- 

spring are produced by applying one point crossover on a pair of parents followed 

by bit-flip mutation. Unlike the order-based representation in SEAMO/SEAMO2, 

where the decoder starts from the beginning of the permutation list, in a binary 

representation, it is highly likely that the total weight of selected items (indicated 
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as ̀ 1') exceeds the capacity of knapsacks and lead to infeasible solutions. There- 

fore, it requires a heuristic to repair infeasible solutions. Two heuristics to repair 

infeasible solutions for the 0/1 multiple knapsack problem represented as binary 

strings, are discussed below. 

Zitzler and Thiele [1251 proposed a greedy repair method that repeatedly re- 

moved items from the set of selected items until the capacity constraint is satisfied. 

Items are deleted based on the order determined by the maximum profit/weight 

ratio per item (qj); for item j the maximum profit/weight ratio (qj) is given by the 

equation (3.20) 

qj = max { 
p' j} (3.20) 

i=1 I. w=,. i JJ 

Items with lowest q3 are removed first until the capacity constraint is fulfilled. This 

mechanism diminishes the overall profit as little as possible [125]. 

Jaszkiewicz [72] used a weighted linear scalarising approach to repair infeasible 

solutions. Items are sorted according to the following ratio: 

l= 
ým 

l 
Ai X p`j (3.21) 

m Li=1 wi, i 

where ý_ (Ai, A2, .... )tm) is the weight vector used in the current iteration. Later, 

Jaszkiewicz improved this greedy repair method which was subsequently deployed 

by Zhang and Li [121] as follows: Let set J= {j I1<j<nA xj = 1} is the 

set of selected items and set I= {i 11 <i<mA >j-1 waj x xj > c, 
} is a set of 

overfilled knapsacks. Repeatedly select item kEJ to remove until none of the 

knapsack is overfilled, such that: 

~ 

k= arg min 
F(xJ-) - F(x) (3.22) 

9EJ 
Eiei w=, 3 

where Yj - is different from 1 only by item j, xi- = x; for all ij and x; - = 0, 

and F(x) is the fitness value of x. There are two approaches, the weighted sum 
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approach (Fw$) and the Tchebycheff approach (Fte), to determine the fitness value 

of x [121]. 
m 

F'w8 (x I A, Z) Ai. (zi - . 
fi (i)) (3.23) J 

i=1 

F te max l. i" 
Izi 

- 
fi( )II (3.24) 

1<i<m 

where z" = (zl, Z2,... , z�a) is the reference point (the least upper bound in the objec- 

tive space) with respect to the current population, z; = max { ff (x) Ix- E P}, and ä 

is the weight vector. There could be several approaches to define A. Jaszkiewicz [72] 

suggested A to be a random normalised weight vector which is generated in every 

iteration (within the framework of EMO algorithms). However, the approach pro- 

posed by Zhang and Li [121] to define ä is employed here. Zhang and Li predefine 

a set of N evenly spread weight vectors ä, controlled by a parameter H, before 

the start of the evolutionary search. Each vector is the size of m (the number of 

ti 
objectives in the problem). More precisely, )1, n, 

... , AN are all the weight vectors 

in which each individual weight takes a value from: 

01H} (3.25) 
H, H, 77 

Therefore, the number of such vectors is N= CH+m_1 = (, ß_1)! 
(H+m 

1-! (m-i))! - 
H+m-1 ! 
(m-1)! H! Different values of H are used for each instance of the 0/1 multiple 

knapsack problem. For more detail, see [121]. 

This section reviews 4 different methods for solution representation and infea- 

sible solution repair mechanism for the 0/1 multiple knapsack problem. Different 

methods tend to have different performance [35,951. Therefore, it is suggested that 

the same methods should be used to eliminate or reduce the bias of one method 

over the others, when assessing the performance of different EMO algorithms. 

It is noted that mainly these EMO algorithms maintain diversity in the objec- 

tive space. 
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3.3.2 Performance Metrics 

There axe several metrics that have been proposed to measure the performance of 

EMO algorithms. Some of the most popular performance metrics are described 

below: 

Size of the space covered (S). The S-metric [125], also known as the 

hypervolume metric, measures the size of the region which is dominated by the 

obtained Pareto front. Therefore the higher value of the S-metric is preferred. 

In low dimension, 2- and 3- objective spaces, it is known as area and volume 

respectively. The S-metric requires a reference point which must be dominated by 

all solutions of the Pareto front. The choice of the reference point is vital to the 

calculation and assessment of the S-metric. If the reference point is too far away 

from obtained Pareto sets, it could lead to a considerably high value for S-metric. 

Consequently, an insignificant difference between obtained Pareto sets makes it 

difficult to assess the performance of EMO algorithms (figure 3.6). 

Figure 3.6: The choices of the reference point ref 1 (close to Pareto sets) and re f2 
(at the origin) impose different performance assessment of Pareto sets X' and X" 
regarding the S-metric. 

It is common that the S-metric is normalised to the percentage point by divid- 

ing S-metric by the normal value. This normal value is size of the region form by 

the reference point (used for the S-metric calculation) and a point that dominates 

all solutions in the Pareto sets. As aforementioned in section 3.1, it is assumed 

that the MOP is a maximisation problem. The S-metric calculation is still valid 

52 



for minimisation problems or problems with both maximised and minimised ob- 

jectives. All minimised objectives could be transformed to maximised objectives, 

then the S-metric calculation could be performed in a uniform manner. The ad- 

vantage of the S-metric is that it could assess the overall performance of the EMO 

algorithms without other additional metrics. However, the reference point used 

for the S-metric calculation must be chosen carefully to avoid ill-assessment. The 

process to choose this reference point will be further discussed in section 6.2.2.2. 

Coverage of two sets (C). The C-metric [125] measures the `degree' of dom- 

inance of a Pareto front over another Pareto front. 

C(X' X")= 
1{x"EX"; 3x'EX': x'rx"11 (3.26) 

IX�1 

C(X', X") =1 means that all solutions in X" are either dominated or equal to at 

least a solution in X'. Therefore the higher value of C-metric is preferred. Both 

C(X', X") and C(X", X') have to be considered as it does not always hold that 

C(X', X") =1- C(X", X'). 

Figure IT X' is better than X" but X' and X" are similar under the C-metric. 

This metric could be very useful if one Pareto set clearly dominates the other 

Pareto set. However it does not indicate how much one set is better than the other 

even in the above case. This metric sometimes misinterpret the performance of 

EMO algorithms if both C(X', X") and C(X", X') are low and quite the same. It 

could imply that both set are quite similar but actually one set is better than the 
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other (under other performance metric such as the size of the space covered S). 

This disadvantage is illustrated in figure 3.7. 

Generational Distance. The generational distance measures the distance 

from a non-dominated solution set P to the Pareto-optimal front Pt. 

LExfEP 
(drain( 

, 
Pt»2 

gd(P, pt) _, p, (3.27) 

where dmin(x, Pt) is the minimum Euclidean distance between 9 and points in Pt 

dmin(x, Pt) = min fi(X*))2 (3.28) 
x`EP= i=1 

The generational distance measurement indicates how close a non-dominated so- 

lutions set is to the Pareto-optimal front. In other words, this metric indicates 

the `degree' of convergence of a non-dominated solution set to any particular part 

of the Pareto-optimal front. The lower the value of the generational distance, the 

closer the non-dominated solution set is to a particular part of the true Pareto 

front indicating better performance of the algorithm. The value gd(P, Pt) =0 

indicates that all solutions in P are Pareto-optimal solutions. 

Inverted Generational Distance. The inverted generational distance works 

on the opposite manner to the generational distance metric. It measures the di- 

versity of a non-dominated solutions set along the whole true Pareto front. In 

other words, this metric indicates how close the Pareto-optimal front is to a non- 

dominated solutions set is. The lower the value of the inverted generational dis- 

tance, the more diversity in the non-dominated solution set indicating the better 

performance of the algorithm. The value igd(P, Pt) =1 means that P is the 

Pareto optimal set. 

EjEP: (dmin(Y, P))2 

zgd(P' Pt) = IN- 
(3.29) 
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Distance to the Pareto-optimal front (d(P, Pt)). The d(P, Pt) measures 

the average distance of solution in P to the Pareto optimal front Pt). The lower 

value of this metric is preferred. 

d(P, Pt) _ 
ýxEp iPl (x, Pt) (3.30) 

The above metrics measure the diversity, the convergence or the distance to 

the Pareto-optimal front of obtained Pareto sets. However none of them measure 
the distribution of solutions in a Pareto set. They do not indicate how close (or 

far) from one solution to others in the Pareto set is. The next two performance 

metrics attempt to provide such information of a Pareto set. 

Cluster (CLµ). Wu and Azarm [119] proposed a cluster metric which measures 

the average number of solutions in each small in grid which size is defined by 

an integer. The objective space is divided into 
µm number of small grids. 

CLµ(P) = NDC, 
I 
(P) (3.31) 

where NDC/. (P) is the number of grids that have at least one solution in P. The 

higher the value of the cluster quantity CLµ(P) is, the more clustered the solution 

set is, and the less preferred the solution set. The ideal case is CLµ(P) =1 which 

means all solutions in P belong to different grids. 

Schott Spacing (SS). Schott [108] proposed the spacing metric which mea- 

sure the variance of distance of each solution in P to its closest neighbour: 

SS(P) = VIPI'- 1E 
(d - dy)2 (3.32) 

xEP 

? EP m 

d: =min I fi(x) - f! (x*)ý (3.33) 
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d= dg (3.34) 
ýPý 

ýEr 
The lower variance is preferred as it indicate the better distribution of solutions 

in the Pareto set. The idea value of 0 as it indicates that the distances from one 

solution to its closest neighbour are the same for every solution in the Pareto set 

which means a uniform distribution of solutions in the Pareto set. 

It is noted that several performance metrics, which require the true Pareto front 

Pt) for calculation, include the generational distance, the inverted generational 

distance and the distance to the Pareto optimal front. However, it is often true 

that the Pareto front is unknown for a given problem. In this case, an estimated 

true Pareto front for that problem could always be used. The estimated true Pareto 

front could be obtained by using integer programming to solve the problem (with 

long computational time), solving a relaxed version of the problem, or in the worst 

case by combining the best solutions from several runs obtained by all algorithms 

under investigation. 

It is usually the case that a number of performance metrics are used in con- 

junction to assess the performance of EMO algorithms. The reason behind it is 

that within the multiobjective optimisation framework there are several criteria to 

assess the EMO algorithms performance such as diversity, convergence and distri- 

bution of an obtained set of solutions. One performance metric is often only able 

to assess on of such criteria. Further more the criteria are normally conflicted. In 

the author's opinion, amongst researchers the most popular performance metrics, 

the size of the space covered (S-metric) or the hypervolume, is better than other 

measurements. The space covered (S-metric) measures the size of the dominated 

region covered by obtained Pareto sets. This metric could assess both the diversity 

and the convergence of obtained Pareto sets. 
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Chapter 4 

Restricted Assortative Mating in 

EMO algorithms 

This chapter discusses the role of restricted mating schemes in the context of EMO 

algorithms. Afterwards, it suggests a dynamic assortative mating scheme that 

uses similarity in the decision space (genotypic assortative mating) and adapts the 

mating pressure as the search progresses. The results show that this mechanism 

improves the performance of SEAMO2 [96] on the multiple 0/1 knapsack problem. 

4.1 Introduction 

Selection plays an important role within EAs in selecting individuals for survival 

and selecting parents for recombination. This chapter draws attention to mating 

schemes, i. e. the selection of parents for recombination within EMO algorithms. 

The concept of restricted mating is quite similar to crowding/clustering techniques 

deployed by several EMO algorithms. Crowding/clustering techniques select par- 

ents for survival aiming to preserve the population's diversity. The restricted 

mating could preserve the diversity through the avoidance of certain parents re- 
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combination [33]. Deb and Goldberg [42] also suggested that the recombination 

of parents from different regions (of both decision and objective space) should 

be avoided because this type of recombination often creates low quality offspring. 

There have been a number of mating schemes for single objective EAs proposed 

in the literature including: fitness proportionate selection, tournament selection, 

rank-based selection, ancestry selection and assortative mating among others. In 

fitness proportionate selection, parents are chosen based on a probability propor- 

tional to their fitness compared to the rest of the population. In tournament 

selection, a group of individuals (usually two) is chosen (usually uniformly at ran- 

dom) from the population and the fittest individual from this group is selected as 

parent. In rank-based selection, individuals are first sorted according to some crite- 

ria (usually fitness) and a mapping function is used to assign a selection probability 

to each individual according to its rank in the ordering. In ancestry selection indi- 

viduals are organised in clans and parents are usually selected from different clans. 

In assortative mating (inspired on natural genetics), individuals are selected based 

on their similarity (in the objective or the decision space) based on the assumption 

that recombining parents that `look' alike produces better offspring. Some mating 

schemes incorporate some form of restricted mating (proposed by Goldberg [55] ) 

where recombination is allowed only if parents meet certain criteria. For reviews on 

mating schemes and their performance of single-objective evolutionary algorithms 

see [13,56,62]. 

Despite the various restricted mating schemes that have been investigated for 

single-objective evolutionary algorithms, the emphasis within EMO algorithms has 

been mainly on mechanisms to select individuals for survival. In Pareto-based mul- 

tiobjective optimisation the goal is to find a set of nondominated solutions that is 

as close as possible to the Pareto optimal front and also well spread and distributed 

over the trade-off surface [33,44]. Therefore, most modern EMO algorithms incor- 

porate selection mechanisms, like density-based selection and rank-based selection, 

in combination with elitism and archiving strategies to ensure the survival of good 
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nondominated solutions [33,44,83]. Also, most EMO algorithms use tournament 

or other basic selection mechanism for choosing parents and in most cases selection 

is based on fitness. Some restricted mating schemes have been investigated in the 

context of EMO algorithms but to a lesser extent than for single-objective evolu- 

tionary algorithms. In their book, Coello Coello et al. [33] express that restricted 

mating has not been fully investigated for EMO algorithms. They also note that 

there is no conclusive evidence to support whether restricted mating is beneficial 

or detrimental for the performance of these algorithms. Coello Coello et al. also 

suggest that experiments investigating the issue of restricted mating should benefit 

the literature on EMO algorithms. 

This chapter proposes a dynamic assortative mating scheme [40) for EMO. 

That is, parents are chosen based on their dissimilarity in the decision space and 

the dissimilarity threshold or mating pressure Qmating is adapted during the search. 

The chapter is organised as follows: Section 4.2 gives a more detailed account of 

related work. Section 4.3 describes the proposed mating scheme and how it is 

incorporated into SEAMO2. Section 4.3 also presents the experimental setting 

and results. 

4.2 Mating Schemes for EMOAs 

This section focuses on mating schemes proposed recently and that restrict mating 

based on similarity, i. e. assortative mating. For an overview of previous mating 

schemes within EMOAs refer to the book by Coello Coello et al. ([33], p. 316). Re- 

stricted mating has been usually implemented using the vmattin9 parameter which 

defines a mating radius or similarity threshold, which can be perceived as the mat- 

ing pressure. Individuals are not allowed to mate if the distance between them 

(objective or decision space) is larger than omatinq. Kim et al. [76] incorporated 

neighbourhood crossover into SPEA2 to rank individuals according to how close 
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they are in the objective space and used binary tournaments to select parents. 
Few years ago, Ishibuchi and Shibata started an investigation into the effect of 

restricted mating on the performance of the well-known NSGA2 and SPEA algo- 

rithms. In 2003 they proposed a restricted mating scheme based on the similarity 

between parents (assortative mating) [66]. Later, they modified their approach 

by incorporating a second layer to select parent A [67]. Their restricted mating 

scheme works as follows: 

1. A set SA of a candidates is chosen from the current population using iterative 

binary tournaments. 

2. The centre vector (average solution) I (i) _ (11 (S), f2(x)... in the 

objective space in SA is calculated where i(j) = 1/a EI1 f; (x, ) for i= 

1,2,..., m. 

3. The solution in SA that is most dissimilar (in the objective space) to I (x) is 

chosen as parent A. 

4. A set SB of ,ß candidates is chosen using iterative binary tournaments. 

5. The solution in SB that is most similar to parent A (in the objective space) 

is chosen as parent B. 

Ishibuchi and Shibata [67] observed that their modified mechanism was capable 

of improving both convergence and diversity in SPEA and NSGA2. However, they 

also noted that the parameters a and ,ß needed to be carefully adjusted to strike 

the balance between diversity and convergence speed. Note also that Ishibuchi 

and Shibata [671 used similarity in the objective space only. In 2004, they reported 

further experiments to investigate the effect of the mating pressure parameters 

(a and, 3) and also the effect of similarity (in the objective space) when selecting 

parents A and B [68]. They tried their restricted mating mechanism in a number 

of operation modes resulting from combining different settings: a= {1,2,3, 
... 

}; 
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,ß= 
{1,2,3 

. 3,... . }; parent A being similar or dissimilar to f -(Y); parent B being 

similar or dissimilar to parent A. Once again, they observed that convergence 

speed and diversity were affected by the settings of a and /3. They also expressed 

that there is a need to set a and /3 automatically in their mating scheme. More 

recently, Ishibuchi and Narukawa reported yet more experiments in which they 

observed that recombining similar parents (which is controlled by varying /3) had 

a positive impact on the performance of NSGA2, although they also observed 

that recombination seems to be less important than mutation on that particular 

algorithm [65]. They considered similarity in the objective and the decision space 

but only when selecting parent B and observed no significant difference in their 

results [65]. 

In summary, the investigations by Ishibuchi and Shibata considered fitness- 

based binary tournaments and distance in the objective space to choose parent 

A. For selecting parent B, they employed fitness-based binary tournaments and 

distance both in the objective space and the decision space. The mating pressure 

is controlled by the number of tournaments (a and 0) and by the target similarity 

to select parent A (with respect to the center vector f (x)) and parent B (with 

respect to parent A). Their results have shown that although their mating scheme 

is able to improve the performance of SPEA and NSGA2, careful adjustment of 

the parameters is required to strike the balance between convergence and diversity 

according to the problem size. 

4.3 The Assortative Mating Scheme 

The proposed mating scheme does not use tournaments, it uses dissimilarity in the 

decision space and changes the mating pressure Qmat; ng as the search progresses. 

Therefore, this scheme differs from those proposed by Kim et al. [76] and Ishibuchi 

and Shibata [68]. In the proposed assortative mating scheme two individuals are 

61 



considered for mating only if their dissimilarity (between their gene structures) is 

above a threshold Q,, &29,9. In other words, the two mated parents must be at a 

certain distance way from each other in the decision space. 

4.3.1 The Experimental Setting 

The proposed assortative mating scheme is incorporated into the SEAMO2 algo- 

rithm [96] and experiments are performed on the multiple 0/1 knapsack problem. 

SEAMO2 is chosen because it is a simple evolutionary algorithm for multiobjec- 

tive optimisation that relies mainly on its replacement strategy and it was shown 

to outperform more elaborate EMO algorithms like NSGA2 and SPEA2 on the 

multiple 0/1 knapsack problem [96]. Within this chapter, SEAMO2(RM) is re- 

ferred to the SEAMO2 approach using the proposed scheme for restricted mating. 

Then, the experiments focus on comparing the performance of SEAMO2(RM) 

against SEAMO2 [96], SPEA2 [124], NSGA2 [47] and SEAMO2(I) (the SEAMO2 

algorithm using Ishibuchi and Shibata's mating strategy [67]) on the multiple 0/1 

knapsack problem, with 3 and 4 knapsacks (with population size of 250,300 and 

350 respectively) and 750 items proposed in [125]. Results for short, medium and 

long runs of 500,960 and 1920 generations respectively, are reported to investigate 

the performance of SEAMO2(RM). Results from 30 independent runs for each 

experiment are used for statistical analysis and discussion. The two metrics, the 

size of the space covered S and the coverage of two sets C are used to assess the 

performance of the restricted mating scheme. 

4.3.2 Similarity Measurement 

Let's say T and T* are the sets of packed items in the knapsacks of solutions 1 and 
x* respectively. Then, the similarity in the decision space between x and ?, based 

on the Jaccard similarity coefficient (also known as Jaccard index), is measured as 
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follows: 

sim(ý, x*) = J(T, T*) = ITUT**I 
(4.1) 

For example, x={1,2,5} and x {2,3,4,5}, then 

sim(x, x*) . 
1{1,2,5} (l {2,3,4,5}1 

_ 
I{2,5}1 

=2=0.4 {1,2,5}(J{2,3,4,5}1 -- If 1,2,3,4,5TI 3 

The dissimilarity or the difference in the decision space between x and x* is then: 

di. ff(x, x*)=Ja(T, T*)=1-iTÜT*i (4.2) 

The recombination of individuals x and x* is allowed if and only if di ff (x, x*) > 

Qmatjng (where 0< omating < 1). Setting correctly the value of the mating pressure 

0mating is important and is discussed in the following sections. 

Note that the above definition of similarity/difference is not affected by the 

solution representation used for the multiple 0/1 knapsack problem. Although the 

above definition of dissimilarity could be only valid for the multiple 0/1 knap- 

sack problem, the proposed mating scheme can still be implemented if the simi- 

larity/difference between two solutions for the problem in hand is measured as a 

percentage. Therefore, it is argued here that the generality of the proposed mating 

scheme is not affected by the encoding of solutions or the method used to measure 

similarity/difference. 

4.3.3 Static Setting of the Mating Pressure 

The static setting is a simple strategy that presets vmating before starting the 

search and this value remains unchanged throughout the evolutionary process. It 

is required to calculate the value of di ff (x, x*) for every pair of individuals x 

and x* in the population. The 0mat%ng is then set to a value in the range of the 

minimum and maximum values of di ff f (x, ?) for every pair of individuals x and 
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x* in the population, where x 34 x*. The reason is that if o, ". t; ny is set to a value 

smaller than min(diff f (x, x*)) the restricted mating selection of parents becomes 

uniform selection, whereas if o,,.. tjng is set to a value greater than max(di ff (x, x*)) 

no pair of individuals x and x* would satisfy the restricted mating condition for 

recombination. 

In order to set Q�. tj,, g to an appropriate value within this range it is possible to 

let the population evolve for a limited number of generations and observe the trend 

on the values of di ff f (x, x*) in the whole population. A simple experiment on the 

multiple 0/1 knapsack problem is carried out that allows the population to evolve 

for 100 generations and the range is recorded in every generation. It is observed 

that the range reduces significantly from 60%-70% in the first few generations to 

0%-35% in later generations. Therefore, the value of a�LQting is set to a value in 

the range of (0.0,0.3). Eleven different values of crmating : 0.050,0.075,... , 
0.300 

are examined in SEAMO2(RM). Results from 30 independent runs are reported 

in Figure 4.1. Note that the figure only show results for six values of Omattng 

which are representative of all experimental data. The box-plots in Figure 4.1 

correspond to the percentage of the complement of the hyptervolume S metric, i. e. 

smaller values indicate better algorithm performance. One box-plot is given for 

each algorithm: NSGA2, SPEA2, SEAMO2, and SEAMO2(RM) using different 

values of cT,,,, ating which are indicated by NS2, SP2 and SE2 respectively while S. xx 

indicates SEAMO2(RM) with a given value for ainatq,,, g. 
Results are given for 2- 

(graphs a-b), 3- (graphs c-d) and 4- (graphs e-f) knapsacks with runs of 500 and 

1920 generations. 

Figure 4.1 shows clearly that with respect to the size of the space covered S the 

proposed mating scheme has a positive effect on the performance of SEAMO2(RM). 

In general, we can see that the performance of SEAMO2(RM) using a preset value 

of O'7natjng is consistent over the 30 independent runs (size of the boxplot). There 

is a significant improvement by applying a higher mating pressure (i. e. increas- 
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ing the value of omating). However, we can also observe that there is an upper 

limit for the mating pressure after which SEAMO2(RM) starts to perform worse. 

We can see in Figure 4.1 that this upper limit is about 25% for the 2-knapsack 

problem (Figure 4.1(a) and 4.1(b)), between 25%-30% for the 3-knapsack prob- 

lem (Figure 4.1(c) and 4.1(d)), and slighly above 30% for the 4-knapsack problem 

(Figure 4.1(e) and 4.1(f)). This is simply because when Qmatjng goes above a given 

value, no parents can be found that satisfy the restricted mating condition. 
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Figure 4.1: Performance of various EMO algorithms on the multiple 0/1 knapsack 
problem with respect to percentage of the complement of the S metric. 
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The results from the combined non-dominated fronts (Figure 4.2) after 30 inde- 

pendent runs of SEAMO2(RM) on the 2-knapsack problem suggest that increasing 

0mating seems to have a negative impact on convergence and a positive impact on 

diversity. For better visualisation, the non-dominated fronts are showed in a lower 

density (only solutions separated by a distance of at least 400 units in the objective 

space). The horizontal axis represents profit in knapsack one and the vertical axis 

represents profit in knapsack two. It is clearly that higher Qmating values reduce 

the convergence of SEAMO2(RM) but increase diversity (this is similar to the ob- 

servations by Ishibuchi and Shibata [66]). Therefore, adapting the mating pressure 

as the evolutionary search progresses is proposed next. 
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Figure 4.2: Results of SEAMO2(RM) on the 2-knapsack and 750 items problem 
for six values of Uma, ting. 
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4.3.4 Dynamic Setting of the Mating Pressure 

The dynamic setting attempt to adapt the 0mating during the evolutionary search. 

This allows to improve both convergence and diversity of the population along 

with the evolutionary process. To dynamically change the value of amat; n9, it is 

also required to establish the range from which the value of amating is then selected. 

As discussed in section 4.3.3, the value of 0mating is selected randomly with uniform 
distribution in every generation within the 5% and 95% of the range of objectives. 

This prevents the restricted mating becoming uniform selection (if 'mating is too 

low) or becoming a non-reproduction scheme (if 0 ating is too high). Note that 

the mating pressure Q,,, atin9 is set in a dynamic manner as the range is adjusted 

after every generation to reflect the change of diversity (in the decision space) in 

the population. Then, the chosen value of v,,,,, ati, g will adjust as the population 

diversity changes. For example, in the first few generations, the population is less 

`stable' with many randomly generated solutions provoking a high value of O�, ating 
due to the large different between parents. However, once the population is more 

`stable', changes in the value of vmating drive the population to evolve towards 

improving diversity (wider range) or improving convergence (smaller range). 

As before, 30 independent runs of SEAM02(RM) using the dynamic Qmating 

was executed. The `best results' obtained using Ishibuchi and Shibata's restricted 

mating strategy [67] and using the static mating strategy of section 4.3.3 are also in- 

cluded for comparison. These ̀best results' are based on the average of the S metric 

over 30 independent runs based on 90 combinations of values a= {1,3,4, 
... , 9,10} 

and ß= {1,2, 
... , 9,10} for Ishibuchi and Shibata's strategy and 11 different 

values of 0matznt9 in the static mating strategy. These `best results' are indi- 

cated as SE2I and SE2S in Figure 4.3 for Ishibuchi and Shibata's strategy in 

static restricted mating incorporated into SEAMO2. In the figure, SE2D indicates 

SEAMO2(RM) using the dynamic a�M. ti,, g. Figure 4.3 compares NSGA2, SPEA2, 

SEAMO2, SEAMO2 with Ishibuchi and Shibata's mating strategy, SEAMO2 with 
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the static a, &j, g setting and SEAMO2 with the dynamic Qmating. The results of 

these algorithms and variants, with respect to the complement of the hypervolume 

S metric are indicated in the Figure by NS2, SP2, SE2, SE2I, SE2S and SE2D 

respectively. Results are given for 2- (graphs a-c), 3- (graphs d-f) and 4- (graphs 

g-i) knapsacks with runs of 500,960 and 1920 generations. Table 4.1 shows the 

result for the coverage of two sets C metric. 
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Figure 4.3: Performance of various EMO algorithms on the multiple 0/1 knapsack 

problem with respect to percentage of the complement of the S metric. 

For each knapsack problem, Figure 4.3 shows the average non-covered objective 

space (smaller values indicate better algorithm performance) at generations 500, 
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960 and 1920 side by side to facilitate comparison. It is clear that the dynamic 

setting of a,,,, ting benefits SEAMO2 helping it to outperform NSGA2, SPEA2 and 

SEAMO2 as well as SEAMO2 with Ishibuchi and Shibata's mating strategy. Fur- 

thermore, both static and dynamic mating strategies outperform Ishibuchi and 

Shibata's restricted mating strategy when incorporated into SEAMO2. In most 

cases, the dynamic strategy outperforms the static one with the exception of the 

2-knapsack problem with short and medium runs (graphs ab in Figure 4.3). Ta- 

ble 4.1 shows the strong performance of SEAMO2D (the dynamic restricted mat- 

ing incorporated in SEAMO2) particularly on problems with 3 and 4 knapsacks. 

From Figure 4.3 and Table 4.1 it could be seen that the dynamic mating strategy 

significantly improves diversity but it slightly worsens convergence in the higher 

dimension problem (4 knapsacks). It is also noticed an interesting result is that 

Ishibuchi and Shibata's strategy seems to worsen the performance of SEAMO2 

(it was reported in [67] that Ishibuchi and Shibata's strategy improves the per- 

formance of SPEA and NSGA2). This is more noticeable in the early stages of 

the evolutionary search (generations 500 and 960) in low dimension problems (2 

and 3 knapsacks). It is believed that Ishibuchi and Shibata's mating strategy 

conforms with the selection strategy in SPEA and NSGA2 where individuals are 

uniformly chosen using tournament selection. However, Ishibuchi and Shibata's 

mating strategy interferes with the selection strategy in SEAMO2 (Ishibuchi and 

Shibata's mating strategy chooses the first parent with binary tournaments while 

in SEAMO2 each individual acts as the first parent once), while the proposed 

restricted mating does not alter the original behaviour of SEAMO2. 

Figure 4.4 shows (in lower density as in Figure 4.2) the combined nondom- 

inated fronts over 30 runs on the 2-knapsack problem. Figure 4.4 also shows 

that SEAMO2(RM) using the dynamic mating strategy outperforms SPEA2 and 

NSGA2 but its convergence is just slightly lower than for SEAMO2. Overall, re- 

sults in Figure 4.3, Figure 4.4 and Table 4.1 give evidence that the dynamic setting 

of (T.. ain9 is beneficial for SEAMO2 on the three multiple 0/1 knapsack problems. 
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Table 4.1: Average values (standard deviation) of coveraoe of two sets C(A > B). 
C(A r B) 

Algorithm 2 knapsacks 3 knapsacks 4 knapsacks 
A B 500 960 1920 500 960 1920 500 960 1920 
NSGA2 SEAMO2D 3(7) 12(16) 24(20) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
SPEA2 2(3) 8(7) 18(16) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
SEAMO2 11(17) 18(20) 26(19) 21(17) 24(16) 26(15) 26(22) 21(18) 19(14) 
SEAMO2I 0(0) 0(0) 0(1) 0(0) 0(0) 2(5) 0(0) 0(1) 1(3) 
SEA Mo2S 2(3) 3(4) 5(5) 0(1) 1(1) 1(1) 0(1) 1(1) 1(1) 
SEA Mo2D NSGA2 89(12) 69(24) 46(27) 92(7) 84(7) 77(8) 100(1) 99(3) 98(3) 

SPEA2 89(10) 74(15) 53(22) 88(8) 64(10) 45(9) 95(4) 84(7) 76(7) 
SEAM02 76(34) 60(38) 47(34) 34(29) 24(25) 18(19) 16(20) 15(18) 12(12) 
SEAMO2I 100(0) 100(3) 92(15) 100(1) 98(2) 82(25) 91(16) 84(23) 65(32) 

SEAMO2S 80(8) 82(11) 83(10) 86(6) 83(6) 78(8) 79(6) 75(7) 67(7) 

31 

30 

29 

28 

27 

26 

25 

24 

o NSGA2 A SPEA2 o SEAMO2 + SE2I x SE2S Q SE2D 

Figure 4.4: Results comparing NSGA2, SPEA2, SEAMO2, SE2I, SE2S and SE2D 
on the 2-knapsack problem with 750 items. 
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Figure 4.5 compares the proposed assortative mating scheme using the static 

setting and using the dynamic setting over 30 independent runs for the 2-knapsack 

problem with 750 items. The various static settings are indicated by SE2S. xx 

and the dynamic setting is indicated by SE2D. Figure 4.5 shows that the dynamic 

assortative mating scheme can simultaneously maintain the convergence and the 

diversity of the population but the static setting can only give a positive effect on 

the convergence (using lower amating) or on the diversity (using higher Urrating) but 

not both at the same time. This shows that adapting the diff(range) (from where 

amating is chosen) according to the population diversity during evolution, helps 

to strike a balance between convergence and diversity. Of course, more elaborate 

methods for adapting the mating pressure can be investigated, but the proposed 

one points us on the right direction. 
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Figure 4.5: Results comparing SE2S and SE2D on the 2-knapsack problem with 
750 items. 
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4.4 Summary 

This chapter proposes a restricted mating scheme for evolutionary multiobjective 

algorithms. This mating scheme is assortative because it selects parents based 

on their similarity in the decision space. Setting the mating pressure v,,. t; ng to a 

constant value provokes either convergence or diversity to be negatively affected. 

Therefore, the proposed scheme is dynamic because it varies omating taking into 

account the population diversity in the decision space. Experiments show that the 

simple mechanism to adapt the mating pressure helps SEAMO2 (simple evolution- 

ary algorithm for multiobjective optimisation) to improve its performance while 

striking a good balance between convergence and diversity. The proposed mating 

scheme can be incorporated into different EMO algorithms because it does not 

alter their original selection strategy. 

The study of the restricted mating scheme in this chapter show that the per- 

formance result for the multiple 0/1 knapsack problem using a simple heuristic 

decoder is improved by mating two different parents (in the decision space). This 

restricted mating scheme is also further applied to solve a nurse scheduling problem 

proposed by Landa-Silva and Le [81]. However it does not improve the result for 

this problem. Further experiments show that the heuristic decoder for this nurse 

scheduling problem highly affects the search which then eliminates the effect of the 

restricted mating on the search performance. Chapter 7 will further look into this 

issue to reduce the effect of the heuristic decoder. 
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Chapter 5 

Volume Dominance in EMO 

An important goal in multiobjective optimisation is to find a good set of nondomi- 

nated solutions that is both well-distributed and well-converged. Most multiobjec- 

tive optimisation algorithms use the conventional Pareto dominance relationship. 

Over recent years, new alternative approaches to the conventional Pareto domi- 

nance relationship, such as relaxed Pareto dominance, have been proposed which 

will be reviewed later in this chapter. The interest in relaxed forms of Pareto 

dominance has been increasing due to their capability to find extreme values in 

the objective space. First, this chapter conducts a short review on relaxed forms of 

Pareto dominance in the literature. Then, a new form of relaxed Pareto dominance, 

called volume dominance, is presented. We evaluate the performance of some EMO 

algorithms when using the proposed volume dominance instead of Pareto domi- 

nance. The results for this study using SEAMO2, SPEA2 and NSGA2 show that 

the proposed volume dominance is capable of obtaining a better and smoother 

trade-off front, and it is more robust than Pareto dominance which allows EMO 

algorithms to obtain more consistent performance. 
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5.1 Introduction 

EAs are capable of generating multiple promising solutions in a single run and 

evolving a population of solutions towards the Pareto front. These properties make 

EAs especially adequate to deal with Pareto based multiobjective optimisation 

problems. A good EMO algorithm should be able to obtain Pareto fronts that 

are both well-distributed and well-converged. Two issues when designing an EMO 

algorithm are to decide how solutions in the population should be evolved and to 

decide how to establish superiority between solutions in the population (i. e. how 

to compare solution fitness in a multiobjective sense). With respect to the first 

issue, a number of techniques have been investigated to `push' solutions towards 

the desired part of the tradeoff surface. For example, directed weighted vectors, 

restricted mating, archiving elite solutions, clustering/crowding, fitness sharing, 

specialised operators, etc. have been proposed to improve the distribution and the 

convergence of the population towards the Pareto front [33,46,80]. However, in 

our opinion, the latter issue of assigning fitness to solutions in the multiobjective 

context has received less attention than it deserves. 

For assigning fitness to solutions, most modern EMO algorithms adopt the 

conventional Pareto dominance relationship. There are few papers that propose 

different types of dominance relationship such as a-dominance, e-dominance, E- 

Pareto dominance and fuzzy dominance (details in section 5.2). These variations 

of dominance aim to help in finding solutions in difficult areas (like the extremes of 

the tradeoff surface) or attempt to combine convergence and diversity in order to 

achieve a better Pareto front in difficult problems. These variations of Pareto dom- 

inance, called relaxed Pareto dominance here, apply some transferring functions 

to the objective values before comparing the solutions using Pareto dominance. 

It has been shown that relaxed Pareto dominance helps to obtain better quality 

Pareto fronts in some problems (e. g. [82,79,27]). 
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This chapter proposes a new form of relaxed Pareto dominance, called vol- 

ume dominance. The volume dominance proposed here establishes the dominance 

relationship between two solutions in the multiobjective context based on the dom- 

inated volume in the objective space. The performance of the proposed volume 

dominance is compared to its counterpart, the conventional Pareto dominance, by 

deploying both types of dominance in some well-known EMO algorithms. The 

multiple knapsack problem is used in our experiments because benchmark results 

are available for this problem. 

5.2 Literature Review 

The concept of Pareto dominance is briefly discussed in section 3.1 of chapter 3. 

Although the conventional Pareto dominance has been widely accepted as the 

main technique to compare the quality of solutions in EMO, there are proposals 

for different types of dominance relationship as a way to improve the performance 

of multiobjective optimisers. These variations of Pareto dominance, such as a- 

dominance, c-dominance, E-Pareto dominance and fuzzy dominance, are known 

as relaxed Pareto dominance and they are slightly different from the conventional 

Pareto dominance. Relaxed forms of dominance may allow a solution :F to dominate 

another solution x* for which x and x* are Pareto nondominated solutions or even 

x is Pareto-dominated by x*. Some examples of relaxed dominance are described 

below. 

Structure of Domination. The first form of relaxed Paxeto dominance was 

that by Yu in 1974 who proposed a structure of domination over the objective 

space to explore the geometry of the set of all nondominated solutions [120]. Two 

new concepts of cone convexity and cone extreme points were introduced to study 

decision problems on polar cones and polyhedral cones. However, it is not until 

recently that there is an increasing interest in relaxed Pareto dominance within 
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the multiobjective optimisation community. 

a-Dominance. In 2001, Kokolo et al. introduced a-dominance to deal with 

what they call dominance resistant solutions, i. e. solutions that are fairly inferior 

qualitatively but for which dominating solutions are scarcely found [63). The main 

idea of a-dominance is to set up upper and lower bounds of trade-offs between 

objectives. In a-dominance, small detriments in one objective are considered ac- 

ceptable if it leads to a noticeable improvement in other objectives. 

e-Dominance. Laumanns et al. proposed a slightly different but simpler form 

of relaxed dominance called e-dominance which seeks to combine diversity and 

convergence in one criterion [82]. A solution x is said to e-dominate a solution 

x* if and only if (1 + E). xi > x1 Vi E 1, ... , m. The main difference between e- 

dominance and a-dominance is that e-dominance allows some Pareto-dominated 

solutions (i. e. X- Y- x*) to actually become preferred (i. e. x* e-dominates 9) which 

is not the case in a-dominance. 

Extended Pareto Dominance (E-Pareto). Jin and Wong proposed an 

extended Pareto dominance (E-Pareto) in their Adaptive Rectangle Archiving al- 

gorithm [73). Extended Pareto dominance is quite similar to c-dominance in the 

sense that both apply some sort of transferring functions to the objective vector 

before comparing them. In the extended Pareto dominance, X- E-dominates x* 

for some transferring function, FUN, and a constant vector e (> 0) if and only 

if Vi E 1,... ,m 
FUN(fz(x")) > FUN(fi(x*)) - e;, where m is the number of 

objectives and ff(x) is the ith objective function of S. Jin and Wong compared E- 

dominance to e-dominance and the conventional Pareto dominance and stated that 

E-dominance becomes e-dominance as FUN(fa(x)) = ln(fi (x)) and e= = ln(1 + c) 

and Pareto dominance as FUN(f; (x")) = fi(x) and ei = 0. 

Fuzzy Pareto Dominance. Several researchers have investigated the fuzzifi- 

cation of Pareto dominance. In fuzzy-Pareto-dominance, proposed by Koppen et 
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al. [79), x dominates i' by degree Pa with 

µQ(ß ,)_ 
nm i min(fi(x), fi(x`)) 

Fm 
i fi(x*) 

and x is dominated by i' at degree µp with 

)up(x, 
ý') 

_m 
mzn (fti(x), fi(x')) 

IM, fi(x) 

This fuzzy form of Pareto dominance becomes the conventional Pareto dominance 

(for x x*) when µ,, (x, x*) =1 and ap(x*, x) = 1, but µP(4 x*) <1 and 

pa(x*, x) < 1. Koppen et al. applied fuzzy-Pareto-dominance to deal with what 

they call the Pareto-Box problem, determining the expectation value for the size 

of the Pareto front of m points in an n-dimensional space. 

Peng et al. proposed a different concept for fuzzy dominance based on the 

credibility distribution of fuzzy variables [102. Here, ý and 77 are two fuzzy vari- 

ables with the credibility distribution '(x) and 111(x) respectively, where 4 (k)(x) = 
fx D(k-1)(t)dt and gl(k)(x) = f%, qf(k-1)(t)dt k=2,3, ... and -1, (')(x) = 4(x) and 
-00 

TM(x) =T (x). Then, it is said that ý k-Order Fuzzy Dominates rI if and only if 

c(k)(x) G W(c)(x) Vx E W. 

Gaining Factor. Burke and Landa-Silva proposed another form of relaxed 

dominance using a gaining factor [27]. For a 2-objective maximisation problem, 

x dominates x* if f2(x). (1 + gain) > f2(*) where gain = (fl(x) - fl(x*))/ fl(x) 

which is equivalent to the following relation: 

. 
fix*) 

+ 
f2(x") 

<2 fl (Z) f2 (2) 

For m objectives maximisation problem, 5 dominates x? if 

J1(xý) 
f2(ýý) fm(x') 

f1 (X) 
+ 

f2(x) 
+ 

... 
+ 

fm(x) 
G ? 7L 
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They showed that the performance of two multiobjective algorithms was improved 

by using relaxed dominance when solving a highly constrained combinatorial op- 

timisation problem. 

g-dominance. Julian et al. proposed a variation concept of the Pareto dom- 

inance, called g-dominance, which is based on the information included in a ref- 

erence point [93]. Unlike other relaxed Pareto dominance, g-dominance is only 

interested in a certain area of the search space which results in only a certain part 

of the Pareto front. The main aim of g-dominance is to approximate the Pareto 

front around the area defined by the reference point. Given a reference point V 

and a point w", Flagv(w") is defined as follows: 

1 if w= < vivi = 1, ... ,m 
Flag-(w) =1 if vi < widi = 1, ... ,m 

(5.1) 

0 otherwise 

Then g-dominance is as follows: a solution x g-dominates a solution x" for a given 

reference point g if 

1. Flag9(x) > Flagg(*) or 

2. Flagg(:? ) = Flagg(*) and Y Pareto-dominates x* 

Equation (5.1) means that Flag-(w) is set to 1 when either v Pareto-dominates 

w or vice versa and Flag�(w) is set to 0 if v and w are Pareto nondominated. In 

the other word, if a solution S is in the preferred area in objective space w. r. t a 

given reference point g then trigger Flagg(x) (set to 1). Therefore, in words, a 

solution x g-dominates a solution i for a given reference point 9 if x is in the 

preferred area defined by g but not x*, otherwise if both x and x* are either or not 

in the preferred area defined by g then x g- dominates x* if x Pareto-dominates x*. 

An interactive scheme to modify the reference point 9 is also suggested by Julian 

et al. [93]. The purpose of g-dominance is to drive the search to the preferred 
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area set by the decision maker. See [93] for more detail on how to efficiently use 

g-dominance in EMO. 

5.3 Volume Dominance 

All the above forms of relaxed dominance, like the conventional Pareto dominance, 

are based on comparing the objective vectors of solutions in one way or another. 

This chapter proposes a new form of relaxed Pareto dominance, called volume 
dominance which is based on a different concept: comparing the dominated vol- 

umes in the objective space between two solutions x and ?. This property makes 

volume dominance distinguishable from conventional Pareto dominance and other 

relaxed forms of dominance. 

The dominated volume of solution x is defined as the region R for which all 

feasible solutions in R are dominated by Z. In order to determine the dominated 

volume of solution x, it is required to define a reference point r in the objective 

space corresponding to a solution whose is dominated by all other solutions which 

objective vectors are also in R. Hence, the formula to calculate the dominated 

volume of x with respect to the reference point f= (rl, r2,... , r�, ) is defined as 

follows: 
m 

Vi = MAP) 
- r=) (5.2) 

i=l 

Then the dominated volumes of x and i* are compared to establish the dominance 

relationship between x and i. 

It should be noted that this proposed volume dominance relationship is not 

based on directly comparing the two dominated volumes. Instead, it is based on 

the relative dominated volume. The relative dominated volume is the volume of 

the region that is dominated by both x and x', called shared dominated volume. 
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The shared dominated volume is defined as follows: 

SVg�,. = [J(min(fi (xr-), fi (xw)) - r=) (5.3) 
i=l 

The volume dominance relationship of S and x* is then established by comparing 
the dominated volumes V- and V? to the shared dominated volume SVV, x.. Then, 

it is said that x* is volume-dominated by x (x* -< v x) for some ratios rSV if either: 

1. V,, - = SVA ,, ýi and Vy > SVj y, or 

2. V1 > Vý. > SVV, y. and rx, x, = 
sv v' > rSV 

y', x, 

Figure 5.1: Volume Dominance -A Form of Relaxed Dominance 

Figure 5.1(a) illustrates case 1 of the volume dominance. With respect to the 

reference point r, the dominated volume of i is indicated as the region 2 which 
is also the shared dominated volume of x and i (V? = SVA x: ). The dominated 

volume of x is indicated as the combined region of region 1 and region 2 (hence 

VV > SVA y. ). This is clearly the case of Pareto domination. 

Figure 5.1(b) illustrates case 2 of the volume dominance. With respect to the 

reference point r, the dominated volume of x* is indicated as the combined region 

of region 2 and region 3. The dominated volume of x" is indicated as the combined 

region of region 1 and region 3. The shared dominated volume of i and x* is 

region 3. Hence, r ,: ji 
is the ratio of the difference between region 1 and region 2 

(V - V-. ) to region 3, the shared dominated volume of x and x* (S1', ). 
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The value of the parameter rSV indicates how much larger the unshared vol- 

ume, the difference of region 1 to region 2 (Vj - Vx*), with respect to the shared 

volume, region 3 (SV), to allow x volume-dominates i. A small value for the 

parameter rSV indicates that a small difference between the dominated volumes 

of x and x* (w. r. t SV A. ) is enough to discriminate between x" and x* (or to allow 

x volume-dominates x*). 

It is noted that the proposed volume dominance contains a normalisation el- 

ement which prevents bias in some directions in cases with non-commensurable 

objective functions. Proof., Suppose it is required to normalise each objective 

function using n" = {niIi : 1... m} then 

VN _ 

(fi(x) ri l fi(x) 
- r` 

11 1\ 
ni ni 

J 

i_jl 
ni 

f in 
1(fi(x) - ri) V, 

Imini rImini 

SV 
(min (. fi(), fi(? )1 

_ 
ri 

ni ni J ni i-1 

_ 
min(fi(x), fi(x*)) - ri 

i1-111 
ni 

-fml 
(min(fi (&), fs (x*)) - ri) 

_ 
SVj, ý" 

_ Um 
1 ni m ni 

VN-VN V__V 
rx, ý" SVN SVAz sveit - ry ý' 

The proposed volume dominance also covers Pareto dominance (figure 5.1(a)). 

Proof: if X Pareto-dominates x* (x ý x*) i. e. fi(x) > ft(x*) Vi = 1, ... ,m and 

fz(i) > f; (? ) for at least one i=1, ... , m. The shared dominated volume: 

mm 
SVA. = fl(min(fz(i), f+(x*)) - r; ) = [J(fi(x*) 

- rti) = Výý. 
i=l i=I 

As ff(x) > ft(i) Vi = 1, 
... ,m and f; (x) > fs(? ) for at least one i=1,..., m, 

then V: F > V? i. e. Vg > SV,,,?. Therefore, x volume-dominates x* (x >-v x*) 
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At first sight, the above volume dominance relationship seems to be very sim- 

ilar to the well-known S-metric (hypervolume) proposed in [125]. However the 

underlying principle is different. The S-metric measures the size of the volume 

covered by a set of nondominated solutions to determine how good that set is 

in comparison to another set of nondominated solutions. The volume dominance 

compares the sizes of volume covered by each solution to establish the dominance 

relationship between any two solutions. Moreover, when using the S-metric, the 

volumes covered by the two non-dominated sets are compared directly while in the 

volume dominance the shared dominated volume is also considered. 

There is a crucial difference between the proposed volume dominance and other 
dominance relationships including conventional Pareto dominance and forms of 

relaxed dominance previously proposed in the literature. In order to decide dom- 

inance (discriminate) between solutions, volume dominance takes all objectives 

into consideration at once by combining them into a single unit vector rather than 

directly comparing each objective in turn as it happens in other dominance rela- 

tionships. This allows volume dominance to evaluate the whole objective vector 

to compensate improvement and detriment between objectives. 

5.3.1 Experimental Design 

Most relaxed forms of dominance presented in the literature aim to reach and main- 

tain extreme points in the objective space or points that are difficult to reach and 

maintain with conventional Pareto dominance. Other relaxed forms of dominance 

aim to combine diversity and convergence into a single criterion when discrimi- 

nating between solutions. These relaxed dominances have been proposed as an 

integral part of specific multiobjective algorithms [82,79,27,120,63,102]. To the 

best of our knowledge, none of these forms of relaxed dominance has been tested 

on different multiobjective optimisers and using a benchmark problem in order to 
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compare it to the conventional Pareto dominance. This issue is address here in 

this chapter. 

The initial experimental results presented here show that volume dominance 

could work well on different EMO algorithms such as SEAMO2 [96], SPEA2 [124] 

and NSGA2 [47] when solving the multiple knapsack problem [125], a well-known 
benchmark multiobjective combinatorial optimisation problem. The details of 

these algorithms are given in chapter 3. In the experiments, the conventional 
Pareto dominance is replaced by the volume dominance to analyse the impact on 

the performance of these three algorithms. The experiments are aimed to inves- 

tigate the performance of the volume dominance within the three evolutionary 

approaches with minimum alteration to the original algorithms. The replacement 

of the conventional Pareto dominance with the volume dominance in each algo- 

rithm is described below. 

In SEAMO2, the volume dominance is used instead of Pareto dominance to 

decide on the replacement of a parent or a random solution by an offspring. This 

is the only stage where solutions are compared for dominance relationship in this 

algorithm. However, this is not the case for SPEA2 and NSGA2. In both SPEA2 

and NSGA2, the fitness computation uses Pareto dominance whereas the mating 

scheme and the environmetal selection are based on the fitness value. It means 

that Pareto dominance is deployed in all these three stages. However the fitness 

computation using Pareto dominance is an integral part of these two algorithms, 
SPEA2 and NSGA2. Therefore, if volume dominance is used instead of Pareto 

dominance in the fitness computation it could lead to different EMO. It is not 

desired because this chapter is interseted in understanding if volume dominance 

could improve the performance of these EMO. The use of volume dominance con- 

cept to propose a new EMO is discussed in chapter 6. The environmental selection 

strategies in SPEA2 and NSGA2 employ additional techniques which relate to the 

density and the distance between solutions in the objective space. The mating 
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selection only use Pareto dominance (fitness value) to select parent. Therefore, it 

is beleived that applying volume dominance to this stage is the most appropriate 

in term of the degree of alteration to the original EMO algorithms. Therefore, in 

this preliminary investigation, the volume dominance is applied to the mating se- 

lection stage in SPEA2 and NSGA2. In other words, the comparison of individual 

fitnesses is conducted using the proposed volume dominance in order to decide on 

the superiority between individuals during the mating selection stage. 

The 750 items and 4 objectives knapsack instance of the multiple 0/1 knapsack 

problem proposed in [125) is used. Short and long runs with medium and large 

population sizes and using different values of rSV is examined. Each short run 

uses 175,000 fitness evaluations and each long run uses 672,000 fitness evaluations. 

The values used for population size are 250 and 350 individuals. Six different val- 

ues of rSV, 0.05,0.10,0.15,0.20,0.25 and 0.30 for the volume dominance are 

investigated. Regarding the values of rSV, other values (0.025,0.075,0.125, ... 
) 

are also examined but the results are very similar to those values addressed here in 

the thesis. Other values for rSV, which are greater than 0.30, are also examined 

but the results are extremely similar to the results obtained by Pareto dominance. 

The reason behind this is that when rSV is too big, the condition > rSV 

is no longer valid, hence volume dominance becomes Pareto dominance. The ref- 

erence point for volume dominance is chosen as the origin in the objective space. 

The results from 50 independent short runs and 30 independent long runs are 

summarised and discussed below. 

The metrics for evaluating the nondominated fronts produced by the volume 

dominance and the conventional Pareto dominance approaches are size of the space 

covered S and coverage of two sets C [125]. The S-metric, which measures the 

overall size of objective space covered by all nondominated solutions, is scaled as 

the percentage of the volume created by the origin and the reference point (41656, 

40363,41905,41744) which is the profit sum of all items in each knapsack. 
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5.3.2 Results and Discussion 

The boxplots in Figure 5.2,5.4,5.5 present the distribution of the reciprocal of the 

hypervolume S-metric. Therefore, the vertical axes of the boxplots measure the 

nondominated objective space. The lower the boxplot, the better performance of 

the algorithm is. The horizontal axes present Pareto dominance (PD) and volume 
dominance (VD) with different rSV ratios. Each graph label in Figure 5.2,5.4,5.5 

indicates the population size - the number of fitness evaluations. The average values 
(and the standard deviations in brackets) for the coverage C-metric, which com- 

pares the dominance of the Pareto front obtained by one optimisation technique to 

that obtained by another optimisation technique, are given in Table 5.1,5.2,5.3. In 

these tables, the column labels present the population size - the number of fitness 

evaluation and the row labels VDx refer to volume dominance using rSV = x/100. 

With respect to the coverage C-metric, the performance of SEAM02 with the 

proposed volume dominance and the Pareto dominance is quite similar as shown 

in Table 5.1. There is not any statistically significant difference between Pareto 

dominance and volume dominance regarding the coverage C-metric. However, with 

respect to the hypervolume metric S, Figure 5.2 shows that volume dominance in 

SEAMO2 suffers from using lower ratios rSV especially in longer runs. Using 

higher ratios rSV, volume dominance obtains competitive results compared to the 

conventional Pareto dominance, in both S and C metrics. 

Figure 5.3 presents the distribution of each objective in the objective space 
for one particular run using SEAMO2 with population size of 250 in a long run. 

The vertical axis represents the objective value while the horizontal axis represents 

each objective with different types of dominance. For example, in the horizontal 

axis, pol stands for objective 1 of Pareto dominance, and vd5_1 stands for ob- 

jective 1 of volume dominance using rSV = 0.05. A closer look at the values of 

individual objectives in the final nondominated sets, suggests that SEAMO2 using 
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the conventional Pareto dominance already obtains good extreme points in the 

objective space. Figure 5.3 shows that the sets of extreme points obtained with 

volume dominance using high ratios rSV are quite similar to the ones achieved 

with Pareto dominance. It seems that lower ratios rSV are less able to produce 

extreme points in this algorithm. However, volume dominance with low ratios rSV 

is better in pushing the set of the final nondominated solutions towards the Pareto 

front. In other words, the range of objective values is much better when using 

volume dominance with lower ratios rSV in SEAMO2. It indicates as smaller but 

higher (vertically) boxplots for volume dominance with lower ratios rSV. 

It is predicted that the search strategy in SEAMO2, which outperforms two 

well-known algorithms SPEA2 and NSGA2 [96], should be able to obtain good 

extreme values in the objective space but its trade-off front shows a lot of variation. 

Figure 5.3 provides evidence to support this. It can be seen that there is a large 

number of outlier values in the Boxplots for each objective when using Pareto 

dominance (PD). Volume dominance using low ratios rSV is less able to find outlier 

values. However, it is able to obtain a smoother trade-off front with considerably 

less variation. Figure 5.3 shows that the boxplots for volume dominance using 

ratios rSV of 0.05,0.10 and 0.15 (VD5, VD10 and VD15 respectively) are much 

smaller than the ones for Pareto dominance in all 4 objectives. Volume dominance 

using higher ratios obtains similar distribution of objective values as those achieved 

by the conventional Pareto dominance. 

In general, for SEAMO2 volume dominance is not capable of finding good 

extreme objective values as it is the case for Pareto dominance but it obtains 

a smoother trade-off front, especially when using lower ratios rSV. Furthermore, 

volume dominance helps SEAMO2 to push the trade-off front forward as a whole 

without bias on a particular objective. It is shown as smaller but higher boxplots 

for volume dominance with lower ratios rSV comparing these for Pareto dominance 

in figure 5.3. 
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Figure 5.2: The performance of Pareto dominance and volume dominance on 
SEAM02 for 4-objective knapsack problem on the reciprocal of the S-metric. 

Table 5.1: The performance of Pareto dominance and volume dominance on 
SEAMO2 for 4-obiective knapsack problem on the C(A >- B) metric. 

SEAMO2 C(A r B) 
Dominance Population size - The number of fitness evaluations 

A B 250-175,000 350-175,000 250-672,000 350-672,000 
PD VD5 20.6(34.3) 23.8(27.4) 1.7(4.8) 15.5(23.8) 

VD 10 21.7(24.5) 21.9(25.0) 8.0(15.7) 18.4(22.6) 
VD15 25.6(33.7) 20.5(28.5) 11.9(14.8) 16.5(20.1) 
VD20 14.9(23.0) 25.4(25.9) 12.1(14.1) 19.7(23.4) 
VD25 18.4(26.3) 27.4(27.8) 17.2(17.3) 19.8(24.9) 
VD30 17.8(21.6) 26.7(27.7) 15.1(17.4) 14.8(18.6) 

VD5 PD 18.0(26.9) 23.1(28.6) 20.0(17.8) 16.3(16.4) 
VD10 17.0(24.7) 22.9(29.2) 17.6(16.8) 14.2(19.6) 
VD15 23.4(30.3) 21.9(25.6) 18.7(19.6) 13.9(20.2) 
VD20 23.6(22.8) 17.2(25.1) 14.1(17.2) 14.2(17.2) 
VD 25 23.3(26.7) 15.9(22.0) 11.8(13.4) 10.1(13.0) 
VD30 20.3(24.9) 16.4(23.5) 16.4(19.3) 21.0(21.8) 
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Volume dominance deployed in SPEA2 and NSGA2 using low ratios rSV clearly 

outperforms Pareto dominance with respect to the C metric as seen in Tables 5.2 

and 5.3. For example, in Table 5.2, for the run with population size of 250 and 

using 175,000 fitness evaluations (250-175,000 column), none of the nondominated 

solutions produced using Pareto dominance dominates solutions produced using 

volume dominance for the case when rSV = 0.05 (PD VD5 0(0)). On the other 

hand, based on the bottom 6 rows in the table, it can be seen that 78.1% of 

the nondominated solutions produced using volume dominance for the case when 

rSV = 0.05 dominate solutions produced using Pareto dominance with a standard 

deviation of 7.4% based on 50 independent runs (VD5 PD 78.1(7.4)). However, as 

in SEAMO2, the hypervolume of the final nondominated set obtained by deploying 

volume dominance with low ratios rSV in SPEA2 and NSGA2 is worse than the 

one obtained by deploying Pareto dominance, but not as bad as in SEAMO2 

(Figures 5.4 and 5.5). 

As in SEAMO2, the distribution of each objective value in the objective space 

when using SPEA2 and NSGA2 with the two types of dominance are presented in 

Figures 5.6 and 5.7 for a particular run using SPEA2 and NSGA2 respectively. As it 

is shown, volume dominance using low ratios rSV, deployed in SPEA2 and NSGA2, 

is slightly worse in obtaining extreme objective values than Pareto dominance. 

However volume dominance is better in pushing the trade-off front forward in all 

objectives and obtaining a smoother trade-off front. Figure 5.6 and 5.7 show a 

better range and a smaller size of the boxplot for volume dominance using rSV = 

0.05 than for Pareto dominance. 

Based on the results with respect to the size of the space covered S, coverage 

of two sets C and the distribution of the trade-off front, it is suggested that the 

rSV ratio should be in the range of 0.15 to 0.20 for SEAMO2 and around 0.10 for 

SPEA2 and NSGA2. 
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Figure 5.4: The performance of Pareto dominance and volume dominance on 
SPEA2 for 4-objective knapsack problem on the reciprocal of the S-metric. 

Table 5.2: The performance of Pareto dominance and volume dominance on SPEA2 
for 4-obiective knapsack problem on the C(A >- B) metric. 

SPEA2 C(A }- B) 
Dominance Population size - The number of fitness evaluations 

A B 250-175,000 350-175,000 250-672,000 350-672,000 
PD VD5 0(0) 0(0) 0(0) 0(0) 

VD10 4.8(5.8) 10.4(15.4) 0.9(1.3) 1.7(1.9) 
VD15 20.3(15.2) 23.2(18.5) 10.5(8.1) 14.9(7.2) 
VD20 19.6(14.3) 26.6(20.2) 20.2(11.8) 21.7(10.7) 
VD25 20.7(14.2) 24.7(16.3) 20.8(10.0) 22.8(12.5) 
VD30 24.9(23.7) 24.5(18.8) 24.0(11.3) 28.2(17.4) 

VD5 PD 78.1(7.4) 77.3(6.6) 81.1(5.9) 73.7(8.3) 
VD10 52.8(18.4) 48.4(22.8) 68.8(9.4) 61.8(12.7) 
VD15 30.9(21.4) 31.4(22.2) 39.6(13.7) 33.6(11.6) 
VD20 30.5(17.0) 27.7(20.1) 29.9(13.7) 26.2(11.1) 
VD25 28.9(16.3) 27.6(16.9) 27.2(12.1) 26.3(11.5) 
VD30 35.0(23.8) 30.8(19.7) 24.3(12.4) 26.8(18.0) 
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Figure 5.5: The performance of Pareto dominance and volume dominance on 
NSGA2 for 4-objective knapsack problem on the reciprocal of the S-metric. 

Table 5.3: The performance of Pareto dominance and volume dominance on 
NSGA2 for 4-obiective knapsack problem on the C(A >- B) metric. 

NSGA2 C(A >- B) 
Dominance Population size - The number of fitness evaluations 

A B 250-175,000 350-175,000 250-672,000 350-672,000 
PD VD5 0(0) 0(0) 0(0) 0(0) 

VD10 0.9(2.1) 0.9(1.7) 0.1(0.2) 0.3(1.0) 
VD15 8.9(11.8) 13.5(10.9) 5.1(6.0) 4.9(6.5) 
VD20 17.3(13.5) 15.3(18.4) 9.3(10.1) 10.5(10.7) 
VD25 20.7(23.3) 49.4(40.6) 14.1(10.1) 14.2(8.7) 
VD30 78.1(37.3) 94.0(22.8) 14.3(8.0) 46.1(39.5) 

VD5 PD 83.1(7.7) 84.0(7.2) 82.3(5.2) 78.7(12.6) 
VD10 51.6(21.0) 51.6(16.6) 60.2(17.4) 53.5(19.1) 
VD15 25.6(17.9) 23.7(16.7) 27.9(14.2) 29.1(16.6) 
VD20 16.2(15.5) 22.1(17.4) 20.3(13.0) 22.9(16.9) 
VD25 24.7(24.1) 47.4(42.4) 18.8(9.1) 15.6(11.0) 
VD30 77.8(37.0) 95.4(17.6) 17.6(7.8) 43.7(41.1) 
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5.3.3 Summary 

The initial results show that for the 4-objective knapsack problem with 750 items, 

the performance of volume dominance using high ratios rSV is quite similar to 

that of Pareto dominance. However, promising results are obtained by using lower 

ratios rSV. That is, volume dominance using low ratios rSV is capable of obtaining 

smoother trade-off fronts and is also able to `push' the trade-off front in a more 

uniform manner than when using the conventional Pareto dominance, i. e. the 

trade-off front converges as a whole without bias on a particular objective. The 

results also suggest that volume dominance can be regarded as more robust than 

Pareto dominance because it helps the three algorithms implemented here to show 

more consistent performance compared to Pareto dominance which is indicated as 

smaller variations (smaller boxplots) for volume dominance using lower values for 

rSV in figures 5.3,5.6 and 5.7. By adjusting the rSV ratio, users could obtain 

results driven by different criteria, such as a better coverage, a better size of space 

covered or a better distribution of the objective values. 

5.4 Improved Volume Dominance 

The proposed volume dominance presented in the previous section shows promising 

results when compared to the conventional Pareto dominance. It is shown that 

volume dominance is able to obtain results driven by different criteria such as 

better coverage, better size of space covered or better distribution of the objective 

values. This can be done by adjusting the rSV ratio. However, there are some 

drawbacks in the initial proposal, these weaknesses are discussed below. 

First of all, volume dominance requires a preset reference point i" in order 

to calculate the dominated volume of a solution. As the search progresses, the 

population moves away from the reference point and this can lead to a considerable 
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increase in the dominated volume of a solution. Hence, volume dominance could 
be highly effective at the start of the search but exert less and less influence as 

the search progresses and the current non-dominated front moves away from the 

reference point. Therefore, it is argued that the reference point should be adaptive 

to reflect the status of the current population. In other words instead of being 

fixed, the reference point should be defined based on some characteristics of the 

current population. Secondly, the initial proposal for volume dominance does not 

take into account the current shape Pareto front during the search process. This 

issue is illustrated in Figure 5.8. 

Figure 5.8: Volume dominance. In the case of the convex front, both points should 
be regarded as equally good instead of X being evaluated as better than X* 

It is clear that for both cases 5.8(a) and 5.8(b) in Figure 5.8, S >-v x* for 

some ratio rSV by using the initial approach. However, one can easily point out 

that x }-', x* should not be the case in 5.8(b). As both x and i* in 5.8(b) seem 

equally good (close to the Pareto front), which should be regarded as non-volume- 

dominated solutions. In order to overcome this issue, it is suggested that volume 

dominance should consider the current Pareto front (the set of nondominated 

solutions of the current population) while establishing superiority between two 

solutions. These issues are addressed below and a clustering technique is proposed 

as an additional feature incorporated into the improved volume dominance. 
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5.4.1 Improved Volume Dominance 

5.4.1.1 Reference Point 

Volume dominance proposed in section 5.3 requires a reference point r to calculate 

the dominated volume of a solution x. The simple strategy is to define the reference 

point ras a fixed point, the origin of coordinates in the solution space. This simple 

strategy has the drawback of degrading the effectiveness of volume dominance 

as the search progresses. As the search progresses, the current population move 

towards the Pareto-optimal front and move away from the fixed reference point. It 

leads to an increase in the value of the shared dominated volume (SV(x-, x*)) but 

not the difference between dominated volume of any pair of solutions (V1 - V; ). 

As a result, the value of the ratio r1, ß: = 
ofSv vs 

reduces considerably which make it 
S, x-' 

more difficult to satisfy the second condition of volume dominance (r1, j; > rSV). 

Therefore, it degrades the effectiveness of volume dominance. A more elaborate, 

but yet more effective, strategy to estimate the reference point r" is discussed in 

this section. As the initial proposal, a common reference point is used to calculate 

the dominated volume for every solution in the population. However, the strategy 

proposed here has a designated reference point for each solution in the population. 

This strategy also considers the current state of the population in determining the 

reference point. 

ri = ff (x) - (rrup - rgnf) (5.4) 

ra"f = inf { f; (x*) 1 x* E P} (5.5) 

rt°p = sup{ f; (? ) IiE P} (5.6) 

The reference point (rl 
, r2 , ... , rm) for solution xEP, the current popula- 

tion, is given in equation (5.4). The estimation of rx = (ri, r2, ... , rm) is illustrated 

in Figure 5.9 where r'nf and rB°ß define a hyperbox. 
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Figure 5.9: Volume Dominance - Reference Point. 

5.4.1.2 Considering the Current Pareto Front 

Without taking the current Pareto front into consideration during the search, Fig- 

ure 5.8 illustrates the drawback of the initial proposed volume dominance. While 

establishing the superiority between solutions x and x*, the initial proposal defines 

the strength of solution x as the ratio of the dominated volume of i (V(s)) to 

the shared dominated volume of x and x* (SV (x, ? *)) with respect to the reference 

point F. Then the dominance of X- over x* (or vice versa) is determined based on 

comparing the ratio of the difference between their strengths to rSV. 

The improved volume dominance takes a different approach in defining the 

strength of solution Y. The strength of x is the ratio between the dominated 

volume of x (V(i)) and the volume that fairly represents the state of the current 

Pareto front. With respect to x, this fair representation of the current Pareto 

front is the subset consisting of nondominated solutions that Pareto-dominate X- 

(figure 5.10). However, determining the dominated volume of a solution set could 

be computationally expensive. Therefore, the dominated volume of this solution 

set is estimated as the dominated volume of the least solution xref that Pareto- 

dominates all solutions in that solution set. 
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front 

Figure 5.10: The fairly representative Pareto front of the population with respect 
to the individual I. 

Let us refer to this estimated dominated volume (w. r. t x) as the reference 

volume of i, V''1(x). 
m 

VTef(x)=-r, ) (5.7) 

i=1 

x"f = inf {{f()} U{f; (x*) 1 x* >- xA xw E ParetoFront} } (5.8) 

The strength of x" is then defined as follows: 

Str(x) =y 
f() 

(5.9) 

Therefore x volume-dominates x" (x tv x") if and only if the following condition 

holds for a positive ratio rstr: 

Str(£) - Str(x') > rstr (5.10) 

To additionally ensure the improvement of the Pareto front, condition (5.10) is 

relaxed whenever Str(x) =1 and Str(*) < 1. In other words, if none of nondom- 

inated solutions dominates x, x=f; (x) implying V''ef (x) =V (g), and it is not 

the case for i then x rv x*. 

It is noted that the current non-dominated front is required in order to apply 

this improved volume dominance. Therefore, one must use Pareto dominance to 

obtain the Pareto front and xref to estimate the reference volume of x, Vref (x) 
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5.4.1.3 Clustering Strategy 

This section proposes a clustering strategy as part of volume dominance that helps 

to improve the distribution of nondominated solutions w. r. t the objective space. 

This strategy is only considered when two solutions X and ? are regarded as mutu- 

ally non-volume-dominated. That is, for the case when both condition (5.10) and 

its relaxation do not hold for the pair of solutions x and x'. Solution If is said to 

dominate solution ? if i is in a less crowded area comparing to ? '. The degree of 

crowding of x is measured as the number of neighbours of x. The number of neigh- 

bours of x is the number of nondominated solutions in the current non-dominated 

set that e-dominates Y. The e-dominance deployed here is slightly different from 

the one proposed by Laumanns et al. [82] and other variants of c-dominance in the 

literature. The variants of c-dominance either deploy a dynamic adaptation for e 

value or a different ei value for each objective. The variant of e-dominance em- 

ployed here takes the advantage of both approaches, a different dynamic adaptive 

Ei value for each objective. The e;, value is estimated based on the current Pareto 

front as follows: 

Eti=(r - r)xµ (5.11) 

where ränf , r7" given in (5.5), (5.6) respectively and µ is a positive constant. Within 

the context of volume dominance, it is said that x E-dominates x* (x rE� i) if and 

only if fi (x) > f; (x*) - Eti Vi = 1,... 
'm and fs(S) > f{(x*) - Ei for at least one 

i=1, ... , m. Then the number of neighbours of x is defined as follows: 

N(s) _ {aý x* Y-Ev xA x* E ParetoFront} (5.12) 

It is then said that if condition (5.10) and its relaxation do not hold for either 

the pair (x, x*) or (x*, xý), then x volume-dominates ? (i >-v x') for a positive 

constant T if and only if: 

N(? ') - N(x) >T (5.13) 

99 



5.4.2 Experimental Design 

The improved volume dominance is incorporated into 3 algorithms SEAMO2 [96], 

SPEA2 [124] and NSGA2 [47]. The 750 items and 2-, 3-, and 4-objective instances 

of the knapsack problem proposed by Zitzler and Thiele [125] are used. Then the 

improved volume dominance is investigated based on short and long runs using 

different values of rSV. The population size used for the 2-, 3-, and 4-objective 

instances are 250,300 and 350 individuals respectively. The number of generations 

is 500 generations (short run) and 1920 generations (long run) as used by Zitzler 

et al. [124], Deb et al. [47] and Mumford [96]. For the improved volume dominance, 

5 different values of rSV = {0.025,0.05,0.075,0.10,0.15} in inequality (5.10),, v = 

0.01 in equation (5.11) and r=5 in inequality (5.13) are used. For the initial 

proposed volume dominance, four different values of rSV = {0.10,0.15,0.20,0.25} 

are used. The results from 30 independent runs are summarised and discussed. 

The results in section 5.4.3 are based on rSV = 0.075 using the new approach 

for the volume dominance and rSV = 0.15 for the initial approach of volume 

dominance. 

Four metrics are used to evaluate the nondominated fronts produced. The first 

metric is the S hypervolume proposed by Zitzler and Thiele [125] which measures 

the overall size of the objective space covered by all the nondominated solutions. 

Here, S is scaled as the percentage of the volume created by the origin and the 

reference point (39822,41166), (41968,41298,41402), (41841,40790,39651,41630) 

which is the sum profits of all items in each objective for 2-, 3- and 4-objective 

instance respectively. The second metric is the cluster CL, proposed by Wu and 

Azarm [119]. The CL, cluster metric indicates the average number of indistinct 

solutions in each small grid which size is specified by 1/µ. The ideal case is 

CL, =1 which means every obtained Pareto solution is distinct. In all other 

cases, CL, is greater than 1. The higher value of CL, is, the more clustered 

the solution set is, and therefore the less preferred the solution set. Here p is 
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set to 0.01 or in other words 1/µ = 100 units in the objective space. The third 

metric is the average distance from the obtained nondominated front to the Pareto- 

optimal front. However, the Pareto-optimal front is not available for every instance. 

Therefore, as aforementioned in section 3.3.2, the approximation of the Pareto- 

optimal front could be used instead. The lower value of this metric is, the better 

convergence, that is, the closer the obtained nondominated front is to the true 

Pareto front. Finally, the size of the nondominated fronts is assessed. 

5.4.3 Results and Discussion 

The boxplots in Figure 5.11 represent the distribution of the reciprocal of the 

hypervolume S-metric (1 - S). The vertical axes of the boxplots measure the 

percentage of the nondominated objective space. The lower the boxplot, the better 

performance of the algorithm is. The horizontal axes present Pareto Dominance 

(pd), the previous volume dominance (vdl) and the improved volume dominance 

proposed here (vd2) applying to three different evolutionary algorithms SEAMO2 

(se), SPEA2 (sp) and NSGA2 (ns). 

Regarding the hypervolume S-metric (Figure 5.11), the improved volume dom- 

inance incorporated into SEAMO2 (se_vd2) outperforms not only the Pareto dom- 

inance (se-pd) but also the previous volume dominance (se_vdl). The se_vd2 out- 

performs the se-pd and the se_vdl for all knapsack instances both in the short 

and long runs. The improved volume dominance when incorporated into NSGA2 

(ns_vd2) is slightly worst than ns_pd and ns-vdl in 2-knapsack instance but ns_vd2 

is able to compete against ns_pd and ns_vdl in higher dimension knapsack instances 

(3- and 4-objective). It is observed that the same result in SPEA2 as in NSAG2 

when comparing se_vd2 to se-pd and se_vdl. 
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Figure 5.11: Performance of Pareto dominance, previous volume dominance and 
new improved volume dominance on SEAMO2, SPEA2, NSGA2 for 2-, 3-, and 4- 

objective knapsack problems with 750 items on the reciprocal of the S-metric. 
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The performance of vd2 when incorporated in SPEA2 and NSGA2 is quite sim- 

ilar to vdl and pd with respect to the size of the nondominated set (Table 5.4(b), 

5.4(c)) as well as the cluster CL, of the nondominated set (Table 5.5(b), 5.5(c)). 

However, for SEAMO2, vd2 is noticeably better than vdl and pd regarding both 

the size of the nondominated set (Table 5.4(a)) and the cluster CL, of the non- 

dominated set (Table 5.5(a)) in almost all knapsack instances for both short and 

long runs, except for the 2-knapsack instance when vd2 is worse than vdl and pd 

in term of the cluster CL, of the nondominated set. 

Table 5.4: Average size (standard deviation) of the nondominated set. 
(a) SEAMO2 

ks generations se-pd se_vdl se_vd2 
2 500 59.37 (8.1) 59.53 (8.44) 82.9 (9) 
2 1920 101.67 (11.37) 104.5 (8.87) 198.9 (16.51) 
3 500 199 (19.04) 202.73 (16.29) 299.87 (0.57) 
3 1920 244.7 (10.54) 244.87 (11.11) 300 (0) 
4 500 284.5 (15.87) 286.77 (15.79) 350 (0) 
4 1920 321.27 (8.45) 316.2 (10.24) 350 (0) 

(b) SPEA2 

ks generations sp_pd sp vd1 sp_vd2 
2 500 76.6 (8.8 1) 77.27 (8.28) 70.9 (8.94) 
2 1920 134.63 (10.42) 131.9 (14.22) 126.1 (14.35) 
3 500 300 (0) 300 (0) 300 (0) 
3 1920 300 (0) 300 (0) 300 (0) 
4 500 350 (0) 350 (0) 350 (0) 
4 1920 350 (0) 350 (0) 350 (0) 

(c) NSGA2 
ks generations ns_pd ns_vdl ns_vd2 
2 500 66 (8.29) 66.1 (8.19) 62.27 (7.73) 
2 1920 85.83 (12.5) 73.2 (21.44) 73.63 (16.96) 
3 500 257.37 (9.92) 255.7 (12.55) 256.47 (8.17) 
3 1920 272.07 (7.52) 269 (5.38) 266.87 (6.43) 
4 500 335.7 (5.64) 335.8 (6.72) 334.37 (5.88) 
4 1920 338.7 (3.19) 338.9 (2.45) 338.07 (4.81) 
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Table 5.5: Average size (standard deviation) of the cluster metrics CLµ. 

(a) SEAMO2 
ks generations se-pd se_vdl se_vd2 
2 500 5.78 (0.79) 5.69 (0.7) 6.1 (0.8) 
2 1920 6.16 (1.05) 6.49 (0.94) 8.74 (0.74) 
3 500 7.23 (1.08) 7.25 (0.82) 3.95 (0.38) 
3 1920 6.6(0.1) 6.29 (0.6) 3.31 (0.23) 
4 500 5.8 (0.66) 6.1 (0.63) 3.06 (0.31) 
4 1920 5.2 (0.35) 5.29 (0.43) 2.77 (0.16) 

(b) SPEA2 

ks generations sp_pd sp_vdl sp_vd2 
2 500 4.15 (0.45) 4.34 (0.52) 4.32 (0.54) 
2 1920 6.17 (0.56) 6.16 (0.61) 6.34 (0.72) 
3 500 2.09 (0.16) 2.14 (0.25) 2.16 (0.21) 
3 1920 1.66 (0.09) 1.69 (0.08) 1.72 (0.09) 
4 500 1.45 (0.06) 1.43 (0.06) 1.46 (0.06) 
4 1920 1.36 (0.05) 1.38 (0.06) 1.35 (0.05) 

(c) NSGA2 
ks generations ns_pd ns_vdl ns_vd2 
2 500 4.52 (0.57) 4.52 (0.55) 4.48 (0.46) 
2 1920 5.04 (0.69) 4.26 (1.02) 4.42 (0.89) 
3 500 2.99 (0.25) 3 (0.3) 3.22 (0.36) 
3 1920 1.6 (0.07) 1.58 (0.07) 1.6 (0.07) 
4 500 1.97 (0.16) 1.9 (0.13) 1.99 (0.17) 
4 1920 1.78 (0.14) 1.77 (0.13) 1.82 (0.12) 

It is also pointed out here that se_vd2, comparing to se_vdl and se-pd, is 

able to not only find more nondominated solutions but also reduce the clustering 

in the nondominated set. In other words, se_vd2 is able to obtain more diverse 

solution sets and better extreme solutions. This promising result is accredited to 

the clustering strategy deployed in the improved volume dominance. 

104 



It is understandable that the average distance of the nondominated set found 

by vd2 is higher than vdl and pd incorporated into SEAMO2 (table 5.6(a). As 

it was aforementioned, it is argued here that se_vd2 is able to find more extreme 

solutions than se vdl and se-pd. Finding more extreme solutions could be inter- 

preted as obtaining more solutions that are slightly away from the approximation 

of the Pareto fronts. This is the reason why se_vd2 is not competitive with se_vdl 

and se-pd with respect to the average distance from the nondominated set to the 

approximation of the true Pareto front (table 5.6(a)). However, table 5.6(b), 5.6(c) 

show that vd2 clearly outperforms vdl and pd, when incorporated into SPEA2 and 

NSGA2 in all knapsack instances for both short and long runs. 

Table 5.6: Average distance (standard deviation) from the nondominated set to 
the approximation of the true Pareto Front. 

(a) SEAMO2 
ks generations se-pd se_vdl se_vd2 
2 500 498.88 (51.62) 491.97 (40.5) 602.42 (70.93) 
2 1920 389.18 (35.34) 387.93 (34.69) 432.57 (43.93) 
3 500 1381.9 (58.15) 1392.34 (68.96) 1506.43 (72.99) 
3 1920 1250.8 (41.71) 1269.06 (35.85) 1318.78 (50.35) 
4 500 744.97 (51.94) 733.9 (50) 808.94 (48.64) 
4 1920 677.02 (55.06) 668.83 (65.52) 695.78 (33.22) 

(b) SPEA2 
ks generations sp_pd sp_vdl sp_vd2 
2 500 701.4 (53.14) 676.4 (54.15) 638.26 (50.76) 
2 1920 466.5 (43.39) 468.89 (53.54) 450.24 (43.8) 
3 500 1985.72 (86.65) 1984.3 (68.79) 1960.08 (80.6) 
3 1920 1682.92 (47.05) 1687.89 (34.42) 1692.77 (42.44) 
4 500 1825.8 (100.38) 1761.69 (98.71) 1769.54 (115) 
4 1920 1605.61 (55.04) 1567.62 (67.82) 1571.16 (70.83) 

(c) NSGA2 
ks generations ns_pd ns_vdl ns_vd2 
2 500 613.85 (39.39) 623.58 (43.67) 592.18 (54.07) 
2 1920 429 (42.49) 454.39 (39.32) 429.03 (50.83) 
3 500 2029.53 (80.73) 2026.49 (90.53) 1933.72 (99.73) 
3 1920 1739.44 (74.74) 1729.7 (77.4) 1687.68 (69.35) 
4 500 1681.5 (135.55) 1711.23 (143.16) 1640.75 (110.29) 
4 1920 1316.23 (95.44) 1290.11 (89.45) 1285.49 (91.13) 
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Figure 5.12 shows the offline results for the 2-knapsack instance. They are the 

combined nondominated solutions from 30 long runs . For better visualisation, we 

show the nondominated fronts in a lower density. See that vd2, vdl and pd are 

quite similar when incorporated into SPEA2 and NSGA2 (Figure 5.12(b), 5.12(c)) 

but Figure 5.12(a) shows a better performance of vd2 over vdl and pd. 
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Figure 5.12: The combined non-dominated front obtained from 30 independent 

runs for 2-objective knapsack problem with 750 items. 
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5.5 Summary 

This chapter proposed a new form of relaxed Pareto dominance, called volume dom- 

inance. Extensive experiments are presented to compare the performance of both 

the initial proposal and the improved proposal of the volume dominance approach, 

an alternative to the conventional Pareto dominance, using three EMO algorithms, 

SEAMO2, SPEA2 and NSGA2. The results show that in most of the cases, us- 

ing 3 different knapsack instances using short and long runs, the new improved 

volume dominance approach performs better than the Pareto dominance and the 

initial proposed volume dominance. The improved volume dominance is more ef- 

fective when incorporated into SEAMO2 than when incorporated into SPEA2 and 

NSGA2. This could be due to the fact that SEAMO2 is a very simple strategy 

whereas SPEA2 and NSGA2 already deploy more elaborate mechanisms. It is 

suggested that this improved volume dominance could be used as a new strategy 

to assign fitness to solutions in multiobjective evolutionary algorithms. The next 

chapter will discuss in more details and propose a new EMO algorithm. 
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Chapter 6 

Hyper Volume Evolutionary 

Algorithm 

The previous chapter proposes volume dominance, a new form of relaxed Pareto 

dominance. It also suggests that the strategies associated to the improved volume 

dominance could be used to compute solutions' fitness and crowding. This chapter 

further explores these ideas and proposes a new EMO algorithm, named the Hy- 

per Volume Evolutionary Algorithm (HVEA). HVEA is a population-based EMO 

algorithm. The algorithm is characterised by: 

" An individual's fitness evaluation dependent on the current Pareto front of 

the population. 

"A ranking strategy to classify individuals based on their fitness. 

"A crowding assignment for individuals to preserve population diversity. 

The fitness of an individual indicates how close that individual is to the current 

Pareto front based on the ratio of its dominated hypervolume to the one of the 

current representative Pareto front of the population. The current representative 
Pareto front of the population with respect to an individual is the part the current 
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Pareto front contained nondominated individuals which dominate that individual 

(figure 6.1). The population is then ranked based on individual fitnesses rather 

than non-dominated sorting of the population. The crowding assignment takes into 

account the distances between an individual to all other solutions in its neighbour- 

hood which is defined by a parameter w, the neighbouring area radius. Extensive 

experiments on the multiple 0/1 knapsack problem using different greedy repair 

methods (as described in section 3.3.1) are presented to compare the performance 

of HVEA to other state-of-the-art EMO algorithms including NSGA2, SEAMO2, 

SPEA2, IBEA and MOEA/D. 

current 
representative---- 
Pareto front x 

current 
Pareto 
front 

Figure 6.1: The current representative Pareto front of the population with respect 
to the individual x 

6.1 Hyper Volume Evolutionary Algorithm 

The Hyper Volume Evolutionary Algorithm (HVEA) is a new approach to multi- 

objective optimisation. HVEA exploits the concept of the improved volume domi- 

nance (here, volume dominance for short) proposed in the previous chapter (chap- 

ter 5). HVEA deploys techniques that are well established in the literature as well 

as presents new mechanisms in order to find the Pareto front of the multiobjective 

problem in hand. As other population-based EMO algorithms, HVEA 

109 



uses a population for the generated offspring and an archive for keeping the 

best solutions found so far. 

" assigns scalar fitness values to individuals based on the Pareto dominance 

relationship. 

" employs a crowding strategy to maintain the diversity of the population and, 

if necessary, maintain the size of the archive during the truncation procedure. 

However, HVEA is distinguished by four characteristics: 

" The fitness of an individual is determined by the hyper volume of that indi- 

vidual and the hyper volume of the current representative Pareto front. 

" Individuals are ranked based on their fitness value. Individuals having frac- 

tional differences in fitness values are classified into the same rank. 

"A new niching technique to preserve the diversity of the population is dis- 

tance based. This technique takes into account distances from one particular 

individual to all other individuals in the population to determine the crowd- 

ing of the area around that individual. 

" Offspring, which improve the current Pareto front (move the Pareto front 

forward, or in other words, offspring that dominate individuals in the Pareto 

front), are guaranteed to be in the archive during the environmental selection 

and to be chosen during the tournament selection to fill the mating pool. 

The main loop of HVEA is as follows: 

Step 1: Initialisation: Generate an empty offspring population P and create an 

initial archive P consisting of random generated individuals (each of size 

N). 
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Step 2: Fitness Assignment: Calculate fitness values of individuals in P UP (cf. 

Section 6.1.1). 

Step 3: Ranking Assignment: Assign rank to each individual in P UP (cf. Sec- 

tion 6.1.2). 

Step 4: Environmental Selection: Repeatedly copy all individuals having the best 

rank to P and assign their crowding values until the size of P exceeds N. 

Then reduce the size of P by means of the truncation operator (cf. Sec- 

tion 6.1.3 and Section 6.1.4). 

Step 5: Termination: If the stopping criteria are satisfied then present all non- 

dominated individuals in P as solutions to the problem and stop the 

algorithm. Otherwise, go to Step 6. 

Step 6: Offspring Generation: Apply crossover and mutation on parents, which 

are chosen by binary tournament selection, to produce offspring (cf. Sec- 

tion 6.1.5). Go to Step 2. 

6.1.1 Fitness Assignment 

The fitness assignment procedure in HVEA deploys the concept of volume dom- 

inance proposed in the previous chapter. Based on the concept of volume dom- 

inance, each individual in the population is assigned a strength value which is 

defined as the ratio between the hyper volume of that individual and the hyper vol- 

ume of the current representative Pareto front of the population. The dominance 

relationship between two individuals is established by comparing their respective 

strengths with respect to the threshold strength rstr. In more detail, the fitness 

assignment of HVEA works as follows. Let: 

ParetoF'ront is the Pareto front of the combining offspring population P and 
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archive P. 

RP(x) is the current representative Pareto front, the set of all individuals 

in ParetoFront that Pareto-dominate x. 

RP(x) = 
{x* 1a*h x"n x* E ParetoFnont} (6.1) 

V (: F) is the hyper volume of individual x w. r. t. the reference point rte. 

V (x''ef) is the hyper volume of xTef , or the reference hyper volume of indi- 

vidual x, w. r. t. the reference point A. 

x1ef = inf {{fi(x)} U {fi(x*) 1 x* E RP(x)l} (6.2) 

Then, the fitness value of individual x is calculated as follows: 

fitness(s) =1- 
(V(Y) 

(6.3) 

As RP(x) is an empty set if XF is a Pareto solution, equation (6.3) is relaxed by 

setting f itness(x) = 0. The estimation of the reference point r= = (ri 
, r2 , ... , rm) 

and the hyper volume V (Y), V (xTef) (as given in section 5.4.1.2 chapter 5) is as 

follows: 

ri = fi(x) - 
(rr' 

- rmin) (6.4) 

r "n = min 
{ fi(x*) 1 x* EPU P} (6.5) 

rm8" = max 
{ fi(x*) x* EPU P} (6.6) 

m 
V(s) _ JI (fi (x) - rf) (6.7) 

i=l 
m 

V(x''ef) = 
L(xsef (6.8) 

i=1 
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The lower value of fitness(Y) is preferred. The 2-step procedure to determine the 

fitness values of individuals in the offspring population P and the archive P is as 

follows: 

Step 1: Use all individuals in P and P to update: 

min rmin = 
(rl min 

, r2 , ... 
min 

, rm) 
/ 
`6.9) 

rm _ (rm 
, r2 a", 

... , rm ) (6.10) 

where rr" and rr c are given by equation (6.5) and (6.6) respectively. 

Step 2: Update ParetoFront using all newly generated offspring in P. Assign 

fitness value of -1 to offspring that Pareto-dominate at least one individ- 

ual in ParetoFnnnt of the previous generation. Assign fitness value of 0 

to the remaining individuals in ParetoFront of the current generation. 

Apply equation (6.3) to assign fitness value to all remaining individuals 

in P and P. 

Assigning fitness value of -1 to offspring that Pareto-dominate at least one 

individual in ParetoFront enables HVEA to distinguish individuals that make a 

direct contribution towards moving the Pareto front forward during the environ- 

mental selection and mating selection. This fitness assignment strategy emphasises 

the idea of preferring individuals near the Pareto front, especially individuals that 

improve the Pareto front from the previous generation to the current one. 

6.1.2 Ranking Assignment 

As commonly found in the literature, the ranking assignment in EMO classifies 

individuals with similar (or identical) characteristic(s) into the same category(ies). 
The characteristic usually used is the Pareto non-domination. In other words, 
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Pareto non-dominated individuals are classified into one category (rank). There- 

fore, it is guaranteed that individuals with the same rank are all Pareto non- 

dominated. An example is NSGA2 [47] with its fast non-dominated sorting ap- 

proach. HVEA takes a paradigm shift in ranking individuals. HVEA does not 

guarantee this property. In HVEA, there is a case that an individual is Pareto 

dominated by another individual having the same rank. The main intention of 

this mechanism is to allow slightly worse quality individuals to be able to compete 

for survival and/or selection. HVEA computes ranking of an individual directly 

from its fitness value as follows: 

rank(e) =x 
1 [fitness 

J (6.11) 

Parameter µ indicates the "size" of each ranking level, whereas could be referred 

as the desired number of ranks (desired number of "fronts"). The advantage of this 

ranking assignment mechanism is that only Pareto non-dominated individuals are 

assigned rank 0 with the exception of individuals, which improve the Pareto front, 

the ranking for these individuals is set to -1. Other Pareto dominated individuals 

are assigned rank with some noise induction by applying equation (6.11). 

6.1.3 Environmental Selection 

Let F, be the set of individuals in P UP with rank(e) =i 

. Fi = 
fdj 

rank(x) =i Ad E PUP} (6.12) 

Individuals from , Fi are repeatedly copied to the archive P with i= -1,0,1,2, ... 
until the size of the archive P equals to or exceeds N. If the size of the archive P 

equals to N, the environmental selection finishes. If the archive size is larger than 

N, individuals in the last front Fl, being copied to the archive P, are removed 
from the archive P to reduce the size of the archive P to N and the last front J 
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must satisfy following conditions: 

d-1 

I. Fif <N (6.13) 

d-1 

IF=I + I. FdI >N (6.14) 
i=-1 

Individuals in Fl are sorted by their crowding values. The individual with the 

highest crowding value in Xi is removed from the archive P and from Y1. The 

crowding value of the remaining individuals in P, not just F1, are updated ac- 

cordingly. These processes are repeated until the size of the archive P equals 

to N. 

6.1.4 Crowding Assignment 

As NSGA2 and SPEA2, HVEA employs the distance-based approach to estimate 

the density of individuals around a particular individual. However HVEA's crowd- 

ing assignment mechanism is different from NSGA2 and SPEA2. Both NSGA2 and 

SPEA2 only consider "one neighbour" in the neighbouring area in order to deter- 

mine the density of a particular individual. NSGA2 combines the distance to the 

adjacent neighbour in each objective to estimate the crowding of a particular in- 

dividual, whereas SPEA2 considers the distance to the k-th nearest neighbour. 
HVEA takes into account all individuals in the neighbouring area to determine 

the crowding of a particular individual. The neighbouring area is defined by the 

current state of the combined population PUP and a radius w. An individual - 

is in the neighbouring area of an individual x (i. e. x' and i are neighbours) if the 

following condition is satisfied: 

Ixt _ xi ! :5 (rmax - rr»n) xw (6.15) 
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for Vi=1,2, 
... ,m where rm'n and rr»" are given by equation (6.5) and (6.6) 

respectively. Let NB(x) be the set of all neighbouring individuals of x, this means 
x* E NB(x) if and only if x* and I satisfy (6.15). Then, the crowding value of x 

is as follows: 

crowding(x) =E (d(x, x') + 1)-1 (6.16) 
x"ENB(g) 

where d(z, x*) is the Euclidean distance between 9 and ?* 

d(x, x') = 
E(xti 

- xi)2 (6.17) 
z=1 

and a lower value of crowding(x) is preferred because (x) is further away from 

other individuals in its neighbourhood. 

Apart from considering all individuals in the neighbouring area to estimate the 

crowding of a particular individual, another main difference between the crowd- 

ing assignment mechanism in HVEA and that of NSGA2 and SPEA2 is follows. 

NSGA2 only uses each front separately to estimate the crowding value of individ- 

uals in that front. SPEA2 uses all individuals in both the offspring population P 

and the archive P to estimate the crowding value of individuals. However to esti- 

mate the crowding value, HVEA only uses individuals in fronts, which are already 

added to the archive P. Additionally, the crowding value of individual xEP is 

repeatedly adjusted when a new front Fi is added to P which is not the case in 

SPEA2. The pseudocode for the crowding assignment of front Ti (-1 <i< 1) is 

as follows: 

Procedure CrowdingAssignm. ent(F; ) 

begin 

for each : in Fi 
for each ? in Ft (i" 34 x') 

if x" and i are neighbours 

then add (d(i, ail) + 1) -1 to crowding(R) and crowding(? ) 

endif 

endfor 
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for each front 2, (-1 <j< i) 

for each x' in Fj 

if x' and i are neighbours 
then add (d(ä,? ) + 1) to crowding(i) and crowding(? ) 

endif 

endfor 

endfor 

endfor 

end 

6.1.5 Generating Offspring 

HVEA chooses parents for the mating pool using binary tournament selection. In- 

dividuals that compete to be selected as the second parent are different from those 

that compete to be the first parent. The binary tournament selection prioritises 

the following order: ranking, crowding, fitness values of individuals. Crossover and 

mutation are applied on the mating pool to form the offspring population P. Any 

duplicated offspring dies out of the combined population P UR It guarantees no 

duplication in the combined population PUP before the environmental selection 

process. Consequently, there is no duplication of individuals in the archive P. 

To summarise, HVEA requires two parameters the size of each ranking level 

(0 < it < 1) and the radius of the neighbouring area (0 <w< 1). 

6.1.6 Comparison With SMS-EMOA 

It is emphasised that HVEA is clearly different from SMS-EMOA which uses the 

exclusive hypervolume contribution of individuals in the worst front to eliminate an 

individual during the steady-state selection scheme. HVEA uses the hypervolume 

of an individual to determine its fitness and its ranking. The next archive is selected 
from the combining offspring population and archive population using individual 

ranking and crowding. 
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6.2 Comparative Case Study 

6.2.1 Evolutionary Multiobjective Algorithms 

The performance of HVEA is compared to that of various EMO algorithms which 
deploy different concepts and approaches. These EMO algorithms are NSGA2 [47], 

SPEA2 [124), SEAMO2 [96), IBEA [123] and MOEA/D [121]. NSGA2 and SPEA2 

are two very well-known and good performing EMO algorithms which have been 

cited by a large number of publications since their proposals. SEAMO2 is a steady- 

state population and selection EMO algorithm which is simple but quite effective. 

IBEA is based on a new concept, solution's quality indicator, to guide the search. 

There are 2 quality indicators proposed by Zitzler and Künzli [123], the binary 

additive e-indicator and the hypervolume indicator. HVEA is compared to IBEA 

using each of these two quality indicators. Finally, MOEA/D, a very recent pro- 

posal, decomposes a MOP into several scalar optimisation subproblems and opti- 

mises them simultaneously. There are also 2 methods to calculate the individual 

fitness for MOEA/D. Both these methods are implemented in this comparative 

study. The detail for each EMO algorithm was given in section 3.2.2 of Chapter 3. 

6.2.2 Experimental Design 

6.2.2.1 Multiobjective Optimisation Problem 

The multiobjective optimisation problem used for investigating the performance of 

HVEA and other EMO algorithms is the multiple 0/1 knapsack problem proposed 

by Zitzler and Thiele [125]. A detailed description of the problem is given in 

section 3.3.1 of Chapter 3. There are 9 instances for this problem [125]. The 

population size used for each instance and for each EMO algorithms is given in 

table 6.1. 
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Table 6.1: Parameter Setting for The Multiple 0/1 Knapsack Problem 

Instance 
Population Size (S) 
for NSGA2, SPEA2, 

SEAMO2, IBEA, HVEA 

Population Size (N) 

for MOEA/D 

ks2_250 150 150 
ks2_500 200 200 
ks2_750 250 250 
ks3_250 200 351 
ks3_500 250 351 
ks3_750 300 351 
ks4_250 250 455 
ks4_500 300 455 
ks4_750 350 455 

As aforementioned in section 3.3.1 there are a number of different approaches in 

modelling the multiple 0/1 knapsack problem. The experimental results reported 

here, consider the different implementations for the multiple 0/1 knapsack prob- 

lem model. That is, in order to eliminate any bias due to the modelling method 

used to represent the multiple 0/1 knapsack problem, the performance of HVEA 

and selected EMO algorithms is assessed using different modelling methods sepa- 

rately. There are 4 different modelling-greedy-repair methods for the multiple 0/1 

knapsack problem as discussed in section 3.3.1. 

The assessment is based on 50 independent runs for statistical analysis, each run 

consists of 2000 generations. It is noticed that MOEA/D predefines the set of even 

spread weight vector {A1,.. 
., AN} where N= CH+, I,, 

_1 
(H: controlling parameter). 

Therefore, it is problematic to alter the population size N for MOEA/D to the 

required population size S. However, the same or at least nearly the same number 

of fitness evaluations (2000 x S) should be used for comparison. Therefore, it is 

suggested not to alter the population size N set by MOEA/D but instead to alter 

the number of generations for MOEA/D as follows: 

[2000 xSl (6.18) 

NJ 
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6.2.2.2 Performance Metrics 

The performance of HVEA and the other selected EMO algorithms is assessed 

based on 3 performance metrics: the hyper volume measurement proposed by 

Zitzler and Thiele [125], the generational distance and the inverted generational 

distance measurements. Additionally, the computational time spent by each EMO 

algorithm in these experiments is also reported. 

Regarding the hypervolume metric, Zitzler and Thiele suggested that the ref- 

erence point to estimate the hyper volume should be located in the origin of the 

objective space. However, this gives extreme points in the objective space much 

higher exclusive contribution to the hyper volume metric especially when the objec- 

tive values of the solutions are high. Therefore, it is suggested that the reference 

point r"_ (rl, r 2,. .., rm) should be close to the solution set P obtained by all 

algorithms. The estimation of the reference point is as follows: 

ui = max {f)} (6.19) 

lti = mien {fi(x)} (6.20) 
fc- 

ri=li-(ui-lti)x0.1 (6.21) 

ü and l are referred as the upper bound and lower bound respectively for the 

solution set P obtained by all algorithms. In other words, i is the least vector 

that dominates all solutions in P in the objective space and F the most vector that 

is dominated by all solutions in P in the objective space. 

Regarding the generational and inverted generational distance metrics, the true 

Pareto front Pt is not available for every instance of the multiple 0/1 knapsack 

problem. Therefore, it is suggested (as in MOEA/D [121]) to use the approximation 

of Pt estimated by Jaszkiewicz [72] to determine the generational distance and 
inverted generational distance measurements. 
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6.3 Results and Discussion 

Regarding HVEA, the parameter p in equation (6.11), which determines the rank 

of an individual based on its fitness, is set to it = 0.01. Different neighbouring area 

radius values w, which is given in (6.15), are experimented. The value of w should 
lie in the range 0<w<1. The reported results for w=0.01 and w=1.0 are 

abbreviated as hvl and hv100 respectively in both sets of figures and tables and 

as HVEAo. ol and HVEA,. o respectively in the text. 

Other values of the size of each front µ=0.025,0.05,0.075,0.1,0.15,0.2,0.3,0.5 

and the neighbouring area radius w=0.05,0.10,0.15,0.25,0.50,0.75 are also inves- 

tigated. However, results obtained from these combinations of the two parameters 

u and w are much worse than these ones reported here (µ = 0.01 and w=0.01,1.0). 
The results are worse because larger values of µ lead to the ranks for solutions in 

the population being the same which is not helpful to classify solutions into dif- 

ferent fronts. Regarding the neighbouring area radius, w=0.01 indicates a very 

small neighbouring area and w=1.0 indicates that every other solutions in the 

population are neighbours of a solution. These two values of w provide a more 

consistent evaluation for each solution in terms of assessing its neighbouring area. 

6.3.1 Comparison to EMO algorithms 

The performance of HVEA is compared to NSGA2, SEAMO2, SPEA2, IBEAE+ 

(additive c-indicator) and IBEAHV (hypervolume indicator) abbreviated as ns2, 

sea2, sp2, ib, + (ibe) and ibHv (ibhv) repsectively. The performance of these EMO 

algorithms is assessed using four greedy repair methods for the multiple 0/1 knap- 

sack problem: the binary encoding approach proposed by Zitzler and Thiele [125], 

the permutation encoding approach proposed by Mumford [115], and the 2 differ- 

ent weighted linear scalarising approaches proposed by Jaszkiewicz [72], namely to 

binary encoding (Tchebycheff) and ws binary encoding (weighted sum). 
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Figures 6.2 to 6.5 represent the boxplots of the dominated space (the hyper- 

volume S-metric value) for each algorithm. The higher (vertically) the boxplot is, 

the better performance of the algorithm is. Tables 6.2 to 6.5 and tables 6.6 to 6.9 

represent the average generational distance and the average inverted generational 

distance from the obtained Pareto fronts to the (estimated) Pareto-optimal front. 

The lower value of the distance is, the better performance of the algorithm is. Fi- 

nally, table 6.10 to 6.13 indicate the average computational time (in seconds) for 

each algorihms. The best value is highlighted as bold in all tables. 

Regarding the hypervolume metric, Figures 6.2 to 6.5 show that HVEA1.0 out- 

performs or at least remains competitive to NSGA2, SEAMO2, SPEA2 on all 9 

instances of the multiple 0/1 knapsack problem using all 4 different greedy repair 

methods. HVEAI, o is worse in only few cases out of 36 instance-repair method 

combinations which are mainly in the lowest dimension problem, that one with 

2-knapsacks. HVEAI. o outperforms IBEA (both IBEAE+ and IBEAHV) for the 3- 

knapsack problems but it is less competitive on the 2- and 4- knapsack problems. 

IBEAE+ tends to be the most effective EMO algorithm to provide the coverage 

(hypervolume) for the Pareto fronts. It is also noticed that HVEA1. O performs 

much better than HVEAO O1. The reason for this is that HVEA0.01 only looks 

at a tiny neighbouring area to determine the crowding of an individual whereas 

HVEA1.0 examines the whole objective space, i. e. every individual contributing 

towards computing the crowding of an individual. Results on the generational and 

inverted generational distance show more prominent evidence regarding this issue. 

Tables 6.2 to 6.5 show the generational distance from the non-dominated sets 

found to the true Pareto front while Tables 6.6 to 6.9 show the inverted generational 

distance from the true Pareto front to the non-dominated sets found. Bold figures 

indicate the best results for each instance. Both sets of tables clearly indicate that 

HVEA1. o provides better diversity than HVEA0.01 whereas HVEA0. O1 provides bet- 

ter convergence than HVEA1.0 due to the use of neighbouring area radius w. On 
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the performance regarding the generational distance metric, HVEA0.01 outperforms 

NSGA2 and SPEA2 and is competitive to SEAMO2 and IBEA. SEAMO2 is one 

of the best algorithms in terms of convergence, although SEAMO2 only exploits 

Pareto dominance without fitness, ranking and crowding estimation. The reason 
behind the good convergence ability of SEAMO2 is that this is a steady-state al- 

gorithm which allows offspring to compete for recombination immediately within 

the current generation. However, this also leads SEAMO2 to be one of the worst 

EMO algorithms in terms of diversity in the non-dominated sets found. The in- 

verted generational distance metric shows that HVEAI. O outperforms other EMO 

algorithms in most cases of the 36 instance-repair method combinations. HVEA1.0 

is clearly the best algorithm to provide diversity in high dimensional problems, 

the ones with 3- and 4-knapsacks. There is no strong evidence to determine which 

algorithm is the best in the 2-knapsack problem. 

The computational time spent by each algorithm are summarised in Tables 6.10 

to 6.13. We can see that SPEA2 and IBEA are the slowest algorithms due to the 

complexity in computation of fitness values (SPEA2) and indicator values (IBEA) 

while SEAMO2, NSGA2, HVEA are much faster algorithms. 

Taken all the above criteria into account, it is concluded that HVEA outper- 

forms NSGA2, SEAMO2, and SPEA2. The proposed algorithm remains compet- 
itive to IBEA but it is much faster in terms of computational time and this is an 

important advantage particularly in high dimensional problems. 
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Table 6.2: Generational Distance (permutation encoding) 
Instance hvl hvlOO ns2 sea2 sp2 ib, + ibiv 
ks2250 3.20 3.24 1.99 4.57 1.74 3.31 3.45 
ks2_500 10.10 10.37 6.00 14.47 5.46 10.65 12.02 
ks2_750 17.86 17.48 12.73 26.54 11.36 21.86 23.71 
ks3_250 6.96 14.59 24.31 8.04 10.83 6.15 5.73 
ks3_500 16.68 34.11 54.61 18.24 18.04 13.91 12.75 
ks3_750 26.57 54.02 73.69 29.58 23.35 22.61 20.36 
ks4_250 11.43 38.73 44.97 12.60 19.93 12.27 11.39 
ks4_500 22.37 66.97 95.02 27.28 27.74 22.97 20.84 
ks4_750 34.44 99.30 141.16 42.77 34.04 35.25 30.96 

Table 6.3: Generational Distance (binary encoding) 
Instance hvl hvlOO ns2 sea2 sp2 ib, + ibHv 
ks2_250 3.91 3.78 4.17 6.16 4.09 6.95 6.99 
ks2_500 11.42 11.03 13.39 15.10 13.78 17.66 18.07 
ks2_750 26.86 27.10 32.87 33.91 31.67 29.48 30.05 
ks3_250 8.45 13.95 22.16 8.62 14.18 10.06 9.77 
ks3_500 20.83 34.04 50.69 21.39 32.63 24.47 22.82 
1s3.750 35.71 55.08 74.63 40.78 52.56 38.58 35.84 
ks4_250 14.18 33.23 38.58 13.91 27.10 15.37 14.99 
ks4_500 31.13 75.38 96.31 30.97 66.35 32.20 28.85 
ks4150 52.80 119.03 150.58 52.89 106.08 53.40 44.81 

Table 6.4: Generational Distance (te binary encoding) 
Instance hvl hvlOO ns2 seat sp2 ib, + ibHv 
ks2_250 4.42 4.46 5.18 6.94 5.41 6.84 6.93 
W-500 16.33 16.60 17.68 23.92 17.62 18.35 19.01 
ks2_750 44.67 43.98 46.88 64.90 44.96 41.62 43.42 
ks3_250 13.99 18.92 28.85 11.79 21.06 13.64 13.50 
ks3_500 36.35 44.72 70.27 33.93 50.40 31.61 29.84 
ks3_750 64.61 78.85 113.39 67.64 85.45 59.47 56.29 
ks4_250 22.82 40.94 47.44 16.53 37.85 17.53 17.29 
ks4_500 51.52 89.40 114.67 40.71 89.75 43.05 37.09 
ks4_750 90.24 144.94 183.81 79.45 148.89 78.48 67.98 

Table 6.5: Generational Distance (ws binary encoding) 
Instance hvl hvlOO ns2 sea2 sp2 ib, + ibHv 
ks2250 2.02 1.96 2.24 3.89 2.07 2.91 2.92 
ks2_500 6.13 6.07 6.70 10.80 6.74 8.07 8.59 
ks2_750 16.53 16.38 18.42 27.96 17.26 17.40 17.62 
ks3_250 9.52 12.17 20.82 7.26 14.23 7.87 7.46 
ks3_500 20.87 27.25 47.72 16.50 31.60 16.88 15.90 
ks3_750 30.72 42.91 67.05 25.88 45.73 27.35 24.99 
ks4_250 17.06 29.66 35.52 12.52 27.13 13.59 13.35 
ks4_500 33.58 60.66 82.87 25.34 59.50 27.40 23.68 
ks4_750 54.58 97.91 131.27 42.68 96.22 44.91 38.29 
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Table 6.6: Inverted Generational Distance (permutation encoding) 
Instance hvl hvlOO ns2 seat sp2 ib, + ibHv 
ks2_250 10.13 9.06 8.45 11.49 8.67 8.48 8.48 
ks2_500 10.96 9.98 10.07 13.93 9.86 9.50 8.62 
ks2_750 48.07 46.02 42.92 64.14 44.40 38.07 38.01 
ks3_250 21.11 5.59 10.37 18.35 12.41 13.25 15.74 
ks3_500 48.73 15.58 25.60 43.54 39.14 33.71 37.69 
ks3_750 69.65 27.06 39.73 61.16 61.03 48.20 54.06 
ks4_250 19.33 9.39 13.57 14.98 14.53 12.30 15.03 
ks4_500 43.24 19.71 30.15 33.84 39.64 29.83 35.81 
ks4_750 68.36 33.56 49.35 54.58 65.93 49.84 57.93 

Table 6.7: Inverted Generational Distance (binary encoding) 
Instance hvl hvlOO ns2 sea2 sp2 ib, + ibgv 
ks2_250 14.55 13.88 9.75 16.81 10.51 10.67 9.89 
ks2 

_500 17.97 17.91 11.75 20.95 12.85 12.19 11.79 
ks2_750 81.69 81.09 54.68 98.40 54.63 56.50 55.30 
ks3_250 20.33 6.76 10.20 20.46 11.16 14.33 16.36 
ks3_500 46.55 22.41 27.22 49.62 31.86 36.09 39.43 
ks3_750 64.04 40.16 43.82 72.18 48.56 53.63 56.87 
ks4 

_250 18.37 8.47 12.53 16.64 12.67 13.45 15.90 
ks4_500 39.55 22.05 30.54 37.02 30.33 29.45 34.11 

7k7s4_750 62.33 38.87 51.83 60.39 51.45 49.51 55.66 

Table 6.8: Inverted Generational Distance (te binary encoding) 
Instance hvl hv100 ns2 sea2 sp2 ib6+ ibHv 
ks2_250 3.06 2.93 2.62 4.52 2.87 2.84 2.89 
ks2_500 6.88 6.80 5.79 8.72 6.03 5.52 5.72 
ks2_750 44.16 42.82 41.38 56.88 39.69 38.89 40.27 
ks3_250 14.83 7.03 12.19 17.76 9.19 9.10 11.10 
ks3_500 37.33 19.40 30.71 40.87 26.50 23.96 27.44 
ks3_750 52.74 36.67 52.38 59.90 42.18 37.78 41.14 
ks4_250 15.02 10.27 14.10 14.49 11.77 8.90 11.58 
ks4_500 35.20 25.91 35.61 32.69 30.65 22.04 26.31 
ks4150 56.33 45.72 60.56 53.05 52.58 37.70 43.18 

Table 6.9: Inverted Generational Distance (ws binary encoding) 
Instance hvl hv100 ns2 sea2 sp2 ibE+ ibHV 
ks2_250 3.80 3.40 2.70 4.90 3.05 3.14 3.34 
ks2_500 7.02 6.62 4.97 9.05 5.27 4.53 4.78 
ks2_750 41.14 40.31 28.86 52.55 27.86 26.11 27.82 
ks3_250 16.83 4.78 9.71 17.31 8.93 9.06 11.05 
ks3_500 40.25 13.21 22.43 40.48 24.74 23.92 27.69 
ks3_750 56.43 23.72 35.38 59.39 37.02 36.85 41.70 
ks4_250 16.08 7.75 11.47 14.33 11.35 9.17 11.85 
1s4_500 37.35 18.10 27.27 32.41 28.35 22.44 27.55 
ks4_750 58.56 31.92 46.15 52.21 47.00 38.13 45.26 
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Table 6.10: Computational Time in seconds (permutation encoding) 
Instance hvl hvlOO ns2 seat sp2 ibE+ ibxv 
ks2250 7 6 6 4 48 50 50 
ks2_500 14 14 14 9 97 96 91 
ks2_750 27 28 26 21 165 160 144 
ks3_250 14 18 11 7 103 103 158 
ks3_500 28 38 23 15 179 175 242 
ks3_750 46 66 39 32 272 264 368 
ks4_250 24 52 18 11 184 183 354 
ks4_500 44 114 36 22 294 286 545 
ks4_750 68 204 56 48 415 407 771 

Table 6.11: Computational Time in seconds (binary encoding) 
Instance hvl hvlOO ns2 sea2 sp2 ib, + ibHv 
ks2_250 8 8 7 6 50 51 51 
ks2_500 18 18 17 14 99 96 95 
ks2_750 31 32 30 26 165 157 149 
ks3_250 16 20 12 9 104 103 145 
ks3_500 31 39 25 21 175 170 236 
ks3_750 50 61 43 36 266 256 350 
ks4_250 27 50 19 14 185 183 351 
ks4_500 47 107 37 28 281 278 537 
ks4_750 73 168 60 48 396 392 746 

Table 6.12: Computational Time in seconds (te binary encoding) 
Instance hvl hvlOO ns2 sea2 sp2 ibf+ ibxv 
ks2250 13 13 12 10 54 55 60 
ks2_500 31 31 30 26 112 109 117 
ks2_750 58 58 56 51 192 182 198 
ks3250 22 28 18 16 109 110 150 
ks3_500 51 61 46 40 195 191 256 
ks3_750 93 109 86 76 310 301 392 
ks4_250 36 66 30 24 195 194 367 
ks4_500 75 143 66 57 307 308 565 
ks4_750 134 256 129 108 462 461 810 

Table 6.13: Computational Time in seconds (ws binary encoding) 
Instance hvl hvlOO ns2 seat sp2 ib, + ibHv 
ks2_250 12 13 12 9 54 54 53 
ks2_500 29 30 28 24 111 106 100 
ks2_750 55 55 52 48 188 178 164 
ks3250 22 27 18 15 108 109 162 
ks3_500 50 60 43 38 192 190 266 
ks3_750 87 103 80 71 302 295 390 
ks4250 36 67 29 22 194 193 367 
ks4_500 71 135 62 53 304 304 563 
ks4_750 122 233 114 95 449 446 800 
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6.3.2 Comparison to MOEA/D 

The performance of HVEA is also compared to MOEA/D separately due to the 

very particular settings in the approach employed by MOEA/D. As discussed in 

section 6.2.2.1, it is problematic to alter the population size N in MOEA/D in 

accordance with the population size S suggested for the multiple 0/1 knapsack 

problem. Furthermore, MOEA/D stores all non-dominated solutions found so far 

in an external archive which is then reported as the final result. Therefore, it 

is suggested to adapt HVEA to the setting similar to MOEA/D in terms of the 

population size and the external archive for non-dominated solutions. Experimen- 

tal results, including figures and tables, are presented in a similar format as in 

section 6.3.1. MOEA/D employed Tchebycheff and weight sum approach for the 

fitness calculation and these variants are abbreviated as "mo/t" and "mo/w" in 

the results presented below. The extracted population (truncated external popu- 

lation) is also reported so that the size of the extracted population does not exceed 

the suggested population size S. The truncation approach of NSGA2 is used here. 

In both sets of figures and tables, the extracted populations are presented using 

prefix "e", e. g. ehvl corresponds to the extracted population for algorithm hvl. 

We can see in the results presented in Figures 6.6 to 6.9 and Tables 6.14 

to 6.21 that MOEA/D outperforms HVEA in most cases out of 36 instance-repair 

method combinations on the hypervolume metric and the inverted generational 
distance metric. The convergence of MOEA/D is only better than that of HVEA 

in the linear scalarising greedy repair method. However the computational time of 
MOEA/D is considerably higher than that of HVEA. In the other 2 repair meth- 

ods, HVEA0.01 outperforms MOEA/D regarding the generational distance metric. 
Under a restriction of the size of the population, where the truncation is applied 

to the external population, HVEA is able to compete with MOEA/D. However 

HVEA is much faster than MOEA/D as it can be seen in Tables 6.23 to 6.25. 
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Table 6.14: Generational Distance (permutation encoding) 
Instance hvl hvlOO mo/t mow ehvl ehvlOO emo/t emo/w 
ks2_250 3.16 3.21 5.98 7.00 3.19 3.23 6.18 7.18 
ks2.500 10.00 10.17 17.57 16.05 10.08 10.33 18.64 16.84 
ks2_750 17.49 17.06 29.28 24.43 17.78 17.40 33.04 26.86 
ks3_250 2.08 2.84 4.64 3.86 7.99 9.90 14.77 13.18 
ks3_ 000 4.97 6.81 10.31 6.84 16.72 27.44 37.67 26.73 
ks3_750 9.29 12.21 17.22 9.99 26.94 48.53 59.89 38.67 
ks4_250 2.24 3.75 3.80 2.92 14.11 30.34 20.63 17.17 
ks4_500 4.23 6.79 8.21 5.11 24.22 57.09 39.98 34.94 
ks4_750 6.79 10.63 13.32 7.47 34.17 86.46 61.01 51.07 

Table 6.15: Generational Distance (binary encoding) 
Instance hvl hv100 mo/t mo/w ehvl ehvlOO emo/t emo/w 
ks2_250 3.91 3.78 4.47 7.28 3.91 3.78 4.54 7.29 
ks2_500 11.42 11.03 15.53 17.39 11.42 11.03 15.53 17.39 
ks2_750 26.86 27.10 34.07 34.88 26.86 27.10 34.07 34.88 
ks3_250 3.26 4.08 4.77 4.57 10.18 12.28 14.33 14.01 
63_500 10.67 10.69 12.18 10.15 24.41 31.16 37.44 32.18 
ks3_750 22.54 22.11 23.62 19.32 38.93 53.36 64.60 52.75 
ks4_250 3.26 4.46 4.08 3.63 16.27 26.40 21.17 19.24 
ks4_500 9.37 11.80 10.06 8.09 35.47 69.12 49.77 44.30 
ks4_750 18.56 20.13 16.93 12.85 57.80 114.62 80.97 71.23 

Table 6.16: Generational Distance (te binary encoding) 
Instance hvl hvlOO mo/t ehvl ehvlOO emo/t 
ks2250 4.40 4.43 2.83 4.41 4.45 3.05 
ks2_500 16.33 16.60 9.88 16.33 16.60 10.03 
ks2_750 44.67 43.98 23.54 44.67 43.98 23.63 
ks3_250 5.39 6.09 4.54 14.62 15.61 14.80 
ks3_500 16.66 15.73 10.49 37.71 42.51 37.10 
ks3_750 35.66 30.38 19.88 66.81 77.08 65.21 
ks4_250 4.91 5.75 3.61 22.65 34.78 20.41 
ks4_500 14.45 14.45 8.09 52.51 83.35 46.14 
ks4_750 30.20 24.54 13.47 93.91 141.43 65.90 

Table 6.17: Generational Distance (ws binary encoding) 
Instance hvl hvlOO mo/w ehvl ehvlOO emo/w 
ks2_250 1.91 1.85 1.81 2.01 1.95 1.96 
ks2_500 6.13 6.07 3.74 6.13 6.07 4.23 
ks2_750 16.53 16.38 8.10 16.53 16.38 9.08 
ks3_250 2.61 3.24 1.84 9.82 10.42 10.28 
ks3_500 7.64 8.11 3.15 21.95 25.21 18.53 
ks3_750 14.23 14.80 5.15 33.44 41.42 27.36 
ks4_250 3.02 3.66 1.56 17.80 24.37 16.10 
ks4_500 7,42 9.11 2.72 35.33 54.99 30.81 
ks4_750 14.49 16.17 4.34 58.33 93.31 44.10 
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Table 6.18: Inverted Generational Distance (permutation encoding) 
Instance hvl hvlOO mo/t mo/w ehvl ehvlOO emo/t emo/w 
ks2_250 10.13 9.06 3.07 4.26 10.13 9.06 3.07 4.26 
ks2_500 10.96 9.98 6.60 6.55 10.96 9.98 6.60 6.55 
ks2_750 48.07 46.02 37.36 31.90 48.07 46.02 37.37 31.90 
ks3_250 15.86 5.22 5.20 6.26 15.95 6.52 7.83 8.37 
ks3_500 42.80 15.02 16.43 15.10 42.85 16.99 19.83 18.18 
ks3_750 63.84 25.89 30.90 23.10 63.89 27.77 34.74 27.54 
ks4_250 14.97 5.32 5.76 5.91 15.08 11.06 12.70 9.77 
ks4_500 38.54 14.94 16.82 13.49 38.60 22.45 31.17 20.77 
ks4_750 63.77 29.00 31.73 22.26 63.87 36.84 49.64 31.97 

Table 6.19: Inverted Generational Distance (binary encoding) 
Instance hvl hv100 mo/t mo/w ehvl ehv100 emo/t emo/w 
ks2_250 14.55 13.88 2.78 5.35 14.55 13.88 2.79 5.35 
ks2 

_500 17.97 17.91 5.36 7.37 17.97 17.91 5.36 7.37 
ks2_750 81.69 81.09 33.08 35.57 81.69 81.09 33.08 35.57 
ks3_250 16.31 8.36 5.22 8.37 16.36 8.93 7.41 9.67 
ks3_500 41.47 25.90 17.05 24.17 41.50 26.38 20.07 25.59 
ks3_750 61.05 42.30 30.87 34.95 61.08 42.67 33.83 36.71 
ks4_250 14.87 6.95 6.10 8.84 14.97 10.12 11.59 10.91 
ks4_500 34.46 19.55 17.22 19.04 34.53 24.15 24.86 22.39 
ks4_750 56.85 36.89 32.02 32.62 56.92 41.66 43.02 36.28 

Table 6.20: Inverted Generational Distance (te binary encoding) 
Instance hvl hvlOO mo/t ehvl ehvlOO emo/t 
ks2_250 3.06 2.93 1.52 3.06 2.93 1.53 
ks2_500 6.88 6.80 3.69 6.88 6.80 3.69 
ks2_750 44.16 42.82 26.22 44.16 42.82 26.22 
ks3250 10.22 6.18 5.03 10.66 7.68 7.45 
ks3_500 30.69 19.09 15.73 30.86 20.57 18.94 
ks3_750 47.42 35.89 31.87 47.63 37.57 35.11 
ks4_250 10.89 7.15 5.52 11.17 12.61 12.42 
ks4_500 29.43 22.33 16.88 29.56 29.20 24.87 
ks4_750 49.19 42.32 32.32 49.37 50.01 42.92 

L'able 5.21: Inverted Uenerational instance kws olnary encoainf 
Instance hvl hvlOO mo/w ehvl ehvlOO emo/w 
ks2_250 3.80 3.39 1.20 3.80 3.40 1.21 
ks2_500 7.02 6.62 1.66 7.02 6.62 1.66 
ks2_750 41.14 40.31 10.29 41.14 40.31 10.31 
ks3_250 10.80 4.31 2.85 11.13 6.13 8.32 
ks3_500 31.88 14.04 6.71 32.08 15.44 13.18 
ks3_750 48.87 24.76 11.37 48.95 25.93 21.12 
ks4_250 11.45 4.99 2.97 11.66 10.52 13.93 
ks4_500 30.56 14.94 6.90 30.66 21.67 31.76 
ks4_750 50.08 29.11 12.00 50.20 36.67 47.92 
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Table 6.22: Computational Time in seconds (permutation encoding) 
Instance hvl hvlOO mo/t mo/w 
ks2_250 4 5 3 4 
ks2_500 8 9 8 9 
ks2_750 15 16 17 19 
ks3_250 16 26 40 38 
ks3_500 29 84 118 133 
ks3_750 46 177 172 181 
ks4_250 47 156 357 315 
ks4_500 112 602 1025 972 
ks4_750 163 870 1784 1807 

Table 6.23: Computational Time in seconds (binary encoding) 
Instance hvl hv100 mo/t mo/w 
ks2_250 8 8 5 5 
ks2_500 18 19 13 13 
ks2_750 32 33 25 25 
ks3_250 25 35 18 18 
ks3_500 39 56 39 40 
ks3_750 56 74 59 57 
ks4_250 55 139 113 87 
ks4_500 82 285 359 342 
ks4_750 110 427 536 538 

Table 6.24: Computational Time in seconds (te binary encoding) 
Instance hvl hvlOO mo/t 
ks2_250 14 13 9 
ks2_500 33 32 25 
ks2_750 62 59 51 
ks3_250 26 42 24 
ks3_500 58 81 60 
ks3_750 102 126 105 
ks4_250 49 164 98 
ks4_500 92 331 424 
ks4_750 157 527 769 

Table 6.25: Computational Time in seconds (ws binary encoding) 
Instance hvl hvlOO mo/w 
ks2_250 9 13 8 
ks2_500 21 30 22 
ks2_750 39 55 43 
ks3_250 21 44 33 
ks3_500 41 82 107 
ks3_750 66 124 137 
ks4_250 47 180 339 
ks4_500 75 326 885 
ks4150 111 500 1377 
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6.3.3 Further Discussion 

HVEA employs a parameter p in equation (6.11) to define the size of each front. 

The parameter p is set to 0.01, which is appropriate not only to the multiple 0/1 

knapsack problem, but could also be used in the settings when tackling other mul- 

tiobjective optimisation problems. That is, it is suggested that this parameter µ 

should be fixed to 0.01 rather than making it tunable. The more important param- 

eter in HVEA is w, the neighbouring area radius, which should be in the range [0,11. 

Section 6.3.1 shows a considerable difference in performance between HVEAo. ol and 

HVEA1. o. It was observed that HVEAI. o gives a much better performance regard- 

ing the hypervolume metric and the diversity of the non-dominated set. However, 

HVEAo. ol is better in convergence than HVEA1.0. One could tune w to obtain the 

desirable performance. For example, w could be set to 1.0 for benchmark prob- 

lems such as the multiple 0/1 knapsack problem to obtain non-dominated set with 

better diversity (generational distance metric) and better coverage (hypervolume 

metric). However, for real-world applications, where computational time could be 

expensive, w=0.01 could be deployed. Furthermore, in real-world applications, 

extreme solutions are likely to be of less of interest whereas better convergence 

and striking a good balance amongst objectives, is arguably more important. Ex- 

periments were also performed using different w values in the range [0,1] but the 

performance of HVEA degrades quite significantly. Therefore, it is suggested to 

use w=1.0 for better diversity and better coverage and 0.01 <w<0.05 for better 

convergence and faster computational time. 

The performance of HVEA against other EMO algorithms is also examined 

using a fixed computational time, although this approach is not widely adopted 

in the literature due to its low reliability. The computational time (in seconds), 

reported in Table 6.26, is deduced from the average computational time of all EMO 

algorithms on each knapsack instances over 2000 generations. The computational 

time for the linear scalarising greedy repair method proposed by Jaszkiewicz [72] is 
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twice as much as the ones proposed by Mumford [115] and Zitzler and Thiele [125]. 

Under this computation time restriction, HVEA outperforms NSGA2, SPEA2, 

IBEAE+ and IBEAHV. HVEA only outperforms SEAMO2 on the 2- and 3-knapsack 

problems. SEAMO2 is slightly better than HVEA on 4-knapsack problems. It is 

suggested that due to the steady-state approach and the simple Pareto dominance, 

SEAMO2 is able to perform more evaluations than any other EMO algorithms 

which could lead to a better performance. HVEA is slightly worse than but com- 

petitive to MOEA/D. 

Table 6.26: Computational Time (in seconds) for The Multiple 0/1 Knapsack 
Problem 

Instance Mumford [115] 
& Zitzler and Thiele [125] Jaszkiewicz [72] 

ks2_250 5 10 
ks2_500 15 30 
ks2_750 30 60 
ks3_250 15 30 
ks3_500 30 60 
ks3_750 45 90 
ks4_250 30 60 
ks4_500 45 90 
ks4_750 60 120 

6.4 Summary 

This chapter proposes a new population-based multiobjective evolutionary algo- 

rithm, the Hyper Volume Evolutionary Algorithm (HVEA). The experimental re- 

suits show that HVEA outperforms or remains competitive to various state-of-the- 

art EMO algorithms including NSGS2, SEAMO2, SPEA2, IBEAE+, IBEAHV and 

the strong performing MOEA/D. HVEA incorporates a new individual fitness as- 

signment strategy using the hypervolume of an individual without the requirement 

of determining the reference point for the hypervolume calculation. HVEA assesses 

the crowding of an individual by considering all individuals in its neighbourhood. 
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By tuning the only parameter w, the neighbouring area radius, a desired perfor- 

mance of the non-dominated set is attainable. That is, depending on the setting 

of the parameter w, either diversity and coverage or convergence and fast compu- 
tational time would be the favoured features when executing HVEA. 

The chapter also extensively studies the multiple 0/1 knapsack problem using 
different greedy repair methods. In order to assess the performance of EMO algo- 

rithms fairly, the same greedy repair method should be used. Furthermore, this 

study suggests that the greedy repair method proposed by Valenzuela [115 should 

be deployed while assessing the performance of EMO algorithms on the multiple 

0/1 knapsack problems in order to minimise the effect of the greedy repair method 

on the overall performance. 

With regard to further studies, it is of interest to investigate the incorporation 

of the steady-state selection, deployed by SEAMO2 and MOEA/D, into fitness 

and/or ranking assignment population-based EMO algorithms. The reason for this 

proposals is that steady-state selection allows strong offspring to immediately par- 
ticipate in the recombination process of the current generation and this could lead 

to better convergence whereas the fitness and/or ranking assignment population- 

based EMO algorithms consider the whole population during the environmental 

selection which could lead to a better diversity. 
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Chapter 7 

Theoretical Model To Real-world 

Nurse Scheduling Problems 

7.1 Introduction 

This chapter investigates the possibility of applying well-developed EMO algo- 

rithms to solve nurse scheduling problems. An introduction to real-world nurse 

scheduling was given in chapter 2. That chapter also discussed several evolu- 

tionary algorithm approaches to tackle this type of problems and it is observed 

that there is a great variation on how such algorithms operate on this problem. 

These approaches are normally based on a simple evolutionary algorithm incorpo- 

rating problem-specific heuristics/metaheuristics. These heuristics/metaheuristics 

are usually designed to tackle a specific nurse scheduling problem with a given set 

of constraints. Then such approaches could be extended to a class of problems with 

a similar set of constraints. Chapter 3 presented a brief review of several general 

EMO algorithms from the literature. These well-developed EMO algorithms show 

strong performance on several benchmark problems. Many of these benchmark 

problems have a smaller number of constraints and are easier to formulate (com- 
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pared to nurse scheduling) although still present huge search spaces. These proper- 

ties allow simple heuristics to construct feasible solutions for a given problem. The 

problem is then optimised by EMO algorithms. Due to the moderate effect on the 

search results of simple heuristics (compared to the effect of the EMO algorithms), 

it is relatively easy to compare and assess the performance of different EMO al- 

gorithms on such benchmark problems. Despite the strong performance of EMO 

algorithms, there is not much work in the literature on the application of general 

EMO algorithms to solve real-world nurse scheduling problems. The reason behind 

this is that real-world nurse scheduling problems are normally highly constrained 

and problem-specific heuristics/metaheuristics are usually required to generate fea- 

sible solutions. These heuristics are often elaborate techniques which could highly 

influence the overall search results. The effect of these problem-specific heuristics 

is likely to override the effect of general EMO algorithms on the search result. This 

is one of the main issues to address in the deployment of general EMO algorithms 

to solve real-world nurse scheduling problems. This chapter will address this issue. 

The main purpose of this chapter is to attempt to bridge the gap between the field 

of general EMO algorithms and the field of real-world nurse scheduling problems. 

It will show that general EMO algorithms themselves could solve real-world nurse 

scheduling problems without requirement of any problem-specific heuristics. Such 

results obtained by general EMO algorithms could be considered as the base-line 

performance against which other problem-specific heuristics could be compared. 

The nurse scheduling problem in the Ophthalmological ward at the Queens 

Medical Centre University Hospital NHS Trust (QMC) in Nottingham UK, which 

was originally described by Beddoe [7], is used in this investigation. The QMC 

problem has been discussed by several researchers using different approaches which 

include case-based reasoning [103,7,8,9,10] and evolutionary multiobjective 

algorithms [81]. It is noted that different approaches used slightly different models 

for the QMC problem. However the data sets for the QMC problem are exactly 

the same and the set of constraints together with their associated parameters are 
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highly similar. The QMC problem as described by Landa-Silva and Le [81] is 

further investigated in this chapter. The reasons for using the QMC problem as 

described in [81] are as follows: 

" The QMC problem covers a wide set of the most common constraints in 

nurse scheduling literature as identified in [30] together with their reasonable 

associated parameters which could be likely encountered in other real-world 

nurse scheduling problems. 

" The QMC model developed by Landa-Silva and Le [81) is more suitable to the 

framework of EMO because the model itself was developed to be optimised by 

a simple evolutionary algorithm for multiobjective optimisation (SEAMOR). 

" This QMC model clearly defined a set of hard constraints and a set of soft 

constraints which are quite balanced in term of the size of each set. It makes 

the problem neither too easy nor too hard to construct feasible solutions. 

" Finally, the 7 data sets of the QMC problem vary significantly regarding 

the available resources (available staff-hours). According to Landa-Silva and 

Le [81], in term of available staff -hours, one data set is just above the mini- 

mum requirement, two data sets are slightly under the minimum requirement, 

two data sets are quite under the minimum requirement and two data sets 

are heavily under the minimum requirement. This characteristic of the 7 

data sets not only makes the QMC problem challenging to be solved but also 

represents considerable variability in the instances difficulty which helps to 

assess how effective general EMO algorithms are in solving the QMC prob- 

lem. 

Chapter 3 reviewed a number of general EMO algorithms in the literature. 

Chapter 3 also discussed the multiple 0/1 knapsack problem which is widely ac- 

cepted as a benchmark problem to assess the performance of EMO algorithms. 
The four EMO algorithms, which are under investigation in this chapter are 
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NSGA2 [47], SPEA2 [124], SEAMO2 [96] and HVEA (proposed in chapter 6) 

which show strong performance on the multiple 0/1 knapsack problem. There are 

several representations and their associated greedy repair methods for the multiple 

0/1 knapsack problem. Different representation and greedy repair method tend to 

give different effect on the performance of EMO algorithms. In order to minimise 

this effect, it is suggested to use the permutation representation with a decoder 

proposed by Valenzuela [115] (as in section 6.4). The decoder is a very simple 

heuristic which accepts an item included in the knapsacks if the knapsack capacity 

constraint is not violated. This chapter will show how to model the QMC prob- 

lem using the multiple 0/1 knapsack problem by extending this simple principle of 

solution decoder. 

7.2 Queens Medical Centre Problem 

The ophthalmological ward in QMC consists of about 30 nurses. Depending on 

data sets, there are around 20 available nurses including both part-time and full- 

time nurses. Schedules are produced for 28 day periods and cover is required on 

a 24 hour basis, 7 days a week. According to Beddoe [7], schedules at the QMC 

ward are manually constructed as a three stage process: 

1. Based on the skills, nurses are grouped into teams. 

2. Preference schedules for the planning period are produced by individuals in 

consultation with other team members. 

3. The ward schedule is produced by combining individual preference schedules. 

Head nurses, then, repair constraint violations in the ward schedule. 

When repairing the ward schedule, head nurses aim to maintain individual prefer- 

ence schedules as much as possible. 
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7.2.1 Problem Description 

As described by Beddoe (7], in the QMC problem, each nurse works either on a full- 

time (FT) or part-time (PT) basis. Nurses are classified in a hierarchy according 

to their qualifications. There are four possible qualification categories: registered 
(RN), enrolled (EN), auxiliary (AN) and student (SN). Registered nurses are the 

most qualified and have received extensive training in both practical and man- 

agerial aspects of nursing, whereas enrolled nurses have received mainly practical 

training. Registered and enrolled nurses are classified as qualified (QN). Auxil- 

iary nurses are unqualified nurses and student nurses are training to be either 

registered or enrolled. Qualified and auxiliary nurses are both employed (PN). 

Qualified nurses can receive additional training according to the ward that they 

work in. In the ophthalmological ward, these nurses receive eye-training (ET). 

In the QMC problem, there are three types of normal working shifts: early (E), 

late (L), night (N). The early shift is from 07: 00 to 14: 45 counting for seven and 

a half hours (7.5 hours). The late shift is from 13: 00 to 21: 15 counting for seven 

and a half hours (7.5 hours). The night shift is from 21: 00 to 07: 15 counting for 

ten hours (10 hours). Occasionally, nurses indicate in their individual preference 

schedules the starting and finishing time that they prefer to work instead of one of 

the above normal shifts. In that case, the unusual shift is considered as the normal 

shift (early, late or night shift) that covers most of the hours of the unusual shift. 

For example, an unusual shift from 09: 00 to 17: 00 is considered as an early shift. 

If the unusual shift is equally spread over two adjacent normal shifts, one of these 

normal shifts is uniformly chosen at random. For example, an unusual shift from 

17: 00 to 01: 15 can be considered as a late or as a night shift. 

In the QMC problem, for each shift, there is a different coverage demand, i. e. 

the required number of nurses with specific qualifications and training. For each 

scheduling period, nurses could specify their individual working preferences (e. g. 
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days off, preferred shifts, etc. ). There are also a number of working regulations, 

including nurses annual leave (AL), which must be followed. Then, the problem is 

to construct a schedule that meets the workforce demand, satisfies all regulations 

and meets as many individual preferences as possible. Landa-Silva and Le [81] 

defined the sets of hard and soft constraints as follows: 

Hard Constraints 

OneShiftADay A nurse works at most one shift (early, late, or night) each day. 

MaxHours The maximum number of hours, which a nurse Ni could work, is 

defined by Hours; over a period of time according to each individual contract. 

MaxDaysOn Every nurse only allows to work the maximum of 6 consecutive days. 

This constraint guarantees regular breaks for nurses. 

MinDaysOn Full-time nurse must work at least 2 day consecutively. This con- 

straint is not applicable for most part time nurses because of the fewer num- 

ber of shifts that they work. 

Succession There are certain working shift patterns which must not be scheduled, 

i. e. a night shift must not be followed by an early shift. 

HardRequest Occasionally, nurses request annual leaves in their individual pref- 

erence schedules. These requests must be satisfied at all time. 

Soft Constraints 

SoftRequest Apart from annual leave, nurses could indicate working shifts or day- 

offs which they prefer for any particular days. These are desirable but might 

be violated. 

SingleNight Nurses at the QMC ward prefer to work night shifts in blocks of two 

or more. This applies to all full time nurses and certain types of part time 

nurses whose individual contracts are at least 20 hours a week. 
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WeekendSplit Nurses prefer to work both days of the weekend or none at all. 

WeekendBalance The maximum number of weekends that nurses may work over 

the scheduling period. In the QMC ward, nurses may not work more than 3 

out of 4 consecutive weekends. 

Coverage A certain number of nurses with specific qualifications and specific 

training should be assigned to particular shifts as shown in Table 7.1. 

Table 7.1: Coverage demand of nurses in each shift. 
Early Late Night 

QNs 432 
RNs 110 
ETs 111 

7.2.2 Problem Modelling 

Landa-Silva and Le [81] formulate the QMC problem as an ordered pair: 

NRP = (Nurses, C) (7.1) 

where Nurses = {NL :1<i< n} is a set of n nurses and C is a set of constraints. 

Constraints in C can be hard (must be satisfied) or soft (should be satisfied). A 

nurse Ni is defined as follows: 

Ni = (Detail,, Preference;, Schedule;, GeneSeq; ) (7.2) 

Detaili = (Contract;, Qualification;, Trained1, Hours; ) 

Contract; E {FT, PT} nurse N; is either full-time or part-time. 

Qualification, E {RN, EN, AN, SN} nurse Ni belongs to one of four qual- 

ification categories. 
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Trained, E {NoTrained, Trained} in the ophthalmological ward, qualified 

nurses can receive eye-training. 

Hours2 E N+ is the number of contracted hours for nurse Ni, for full-time 

nurses Hours; is 75 hours per fortnight, for part-time nurses Hours; is 

given per week as specified in their individual contract. 

Preference2 = {ptij :1<j< NoOfDays} is the individual preference schedule 

of nurse N; for the scheduling period, where NoOfDays is the length of the 

scheduling period, 28 in the QMC problem, and p1, ß E {AL, E, L, N, 0, U} is 

the preference of nurse Ni for day jth of the scheduling period. 0 indicates 

a day-off and U indicates no specific preference. In figure 7.1, the individual 

preference schedule illustrates Preferences. 

Schedulei = {sij :1<j< NoOfDays} is the individual schedule for nurse Ni, 

and s1, ß E {AL, E, L, N, 0, U} is the assigned shift for nurse Ni on day jth of 

the scheduling period (U indicates unassigned day). Then, a ward schedule 

for the QMC problem is a collection of n individual nurse schedules. In 

figure 7.1, the constructed individual schedule illustrates Schedule;. 

GeneSeq$ = Permutation {ensh :1< ensh < NoOfDays * NoOfShift} is the en- 

coded individual schedule for nurse Ni which is used in the EA framework. 

It is noted that this encoded schedule only represents the working shift pat- 
terns for nurse Ni, i. e. NoOfShift =3 for early (E), late (L) and night (N) 

shift. It does not include annual leaves (AL) and day-offs (0). In figure 7.1, 

the permutation list of shifts illustrates GeneSeq;. 

Constructed Individual Schedule Individual Preference Schedule 
12345671234567 
NLEEELN0 

171311181 131 21 151 4 11211711811412115 11611011912019 161 111 

The permutation list of shifts 

Figure 7.1: Constructed Schedule, Preference Schedule and Permutation List 
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In this model, hard constraints must be satisfied and this is enforced in the con- 

structed schedules. However, soft constraint violations are accepted but penalised. 

The quality of a feasible schedule is then assessed based on these penalties on soft 

constraint violations. Landa-Silva and Le simply count the number of violations 

of each soft constraint type. In order to serve the principle of EMO approach, the 

set of soft constraints are split into four groups which correspond to four objective 

functions: 

" Objective function 1 measures the level of nurse preferences satisfaction (i. e. 

SofRequest constraint). 

" Objective function 2 measures satisfaction of work regulations (i. e. Sin- 

gleNight, WeekendBalance and WeekendSplit constraints). 

" Objective function 3 measures the shortfalls in workforce demand (i. e. Cov- 

erage constraints). 

" Objective function 4 measures the distribution of nurses in the schedule to 

ensure a balanced coverage for the whole scheduling period. 

It is noted that the objective function 4 is to deal with an additional soft con- 

straint which is proposed by Landa-Silva and Le to the original QMC problem 

introduced by Beddoe [7]. This additional soft constraint attempts to evenly dis- 

tribute the number of nurses assigned to each shift over the scheduling period. 

Any surplus/shortage of nurses over the scheduling period should be kept to a 

minimum. This constraint prevents an excessive number of nurses being assigned 

to a particular shift while having a shortage of nurses in other shifts. The objective 

function 4 measures the satisfaction of this constraint based on statistical variation 

on the difference between the number of qualified nurses assigned to each shift and 

the coverage demand for qualified nurses. For example, for a schedule of 1-day 

and 3 shifts (Early, Late, Night), the difference between coverage demand and as- 

signed qualified nurses is calculated as in table7.2. Then, the objective function 4 
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is measured as the variation on the Difference set of 3* NoOfDays shifts. In this 

example, the value of the objective function 4 is 
(0-0)2+(1-3)2-{-(-1-0)2 

_3_0.667. 

Table 7.2: Measurement of the distribution of nurses (the objective function 4). 
Qualified Nurses Early Late Night 
Demand 432 
Assigned 441 
Difference 01 -1 

Landa-Silva and Le also pointed out that due to the shortfall of staff in hos- 

pitals recently nurses satisfaction is at the centre of the scheduling process in the 

QMC problem. Therefore, they pre-set a target value for objective function 1 to 

guarantee a minimum level of staff satisfaction while constructing schedules. The 

other 3 objective functions are subject to optimisation by SEAMOR, an algorithm 

based on the framework of SEAMO proposed by Mumford (Valenzuela) [96,115] 

with a re-generation strategy. The re-generation strategy was designed to activate 

the production of good-quality offspring to tackle the stagnation issue encountered 

by SEAMO when applied to the QMC problem. See [81] for more details on the 

measurement objective functions. 

7.2.3 Self-Adaptive Heuristic Decoder 

Landa-Silva and Le implemented a self-adaptive decoder for their QMC model. 

Based on the individual encoded schedules (GeneSegi), the self-adaptive decoder 

constructs individual schedules which are combined to produce the ward schedule 

for the planning period. The decoder repeatedly chooses a nurse Ni at random 

to create the individual schedule by decoding the encoded individual schedule 

GeneSeqj for that nurse Ni until all individual schedules are constructed to form 

the ward schedule. For each nurse Ni, the decoder starts from the beginning of the 

encoded individual schedule GeneSeqj and then assigns shifts to days until the end 

of the encoded individual schedule GeneSeqj is reached. For each encoded shift 

ensh in the GeneSegt, the corresponding working shift shift and assigned day j 
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are as follows: 

_ 
ensh -1 LNoofshifti +1 (7.3) 

sh = ensh - (j - 1) * NoOfShift (7.4) 

sh is 1,2, or 3 corresponding to early (E), late (L) or night (N) shift respectively. 

For example (figure 7.2), an encoded shift ensh = 13 implies day j=5 and sh =1 
(or shift = E) which means the early shift is assigned to 5th day of the planning 

period for nurse Ni (si, 5 = E). This is the provisional assignment, which is accepted 

if it does not violate any hard constraints. 

Constructed Individual Schedule 
23456 

Individual Preference Schedule 
1234567 

LN0 

Figure 7.2: The decoding process. 

However, if the provisional assignment sej = shift violates hard constraints, the 

provisional assignment is either rejected or repaired. The provisional assignment 

is rejected if it violates any of these hard constraints, HardRequest, OneShiftADay, 

MaxHours or MaxDaysOn. For example (figure 7.2), the decoder starts from the 

beginning of the permutation list GeneSegi for nurse Ni and assigns shifts to days 

as follows: s2,3 =E (ensh = 7), si,, =N (ensh = 3). However, the next two 

encoded shifts ensh =I and ensh = 8, corresponding to sa, l =E and 8i, 3 =L re- 

spectively, violate the OneShiftADay hard constraint hence these two assignments 

are rejected. The next encoded shift ensh = 13 leads to the assignment si, 5 = E. 

If Succession hard constraint is violated, the provisional assignment is repaired by 

allocating a different shift to day j. For example (figure 7.3), decoding ensh =4 

corresponding to assigning Si, 2 =E violates Succession hard constraint as it creates 

an illegal pattern (Night-Early). Therefore this provisional assignment is repaired 
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by assigning 8j, 2 =L from the individual preference schedule. If MinDaysOn hard 

constraint is violated, an additional shift is assigned to one of the days adjacent 

to day j (figure 7.4). 

The permutation list of shifts 

Figure 7.3: Repair the violation of the Succession constraint. 
Constructed Individual Schedule Individual Preference Schedule 
2345671234567 

ENLN0 

Figure 7.4: Repair the violation of the MinDaysOn constraint. 

Besides repairing the MinDaysOn and Succession hard constraints, the decoder 

also attempts to minimise the number of surplus nurses in each shift. This is to 

reduce the number of violations of the Coverage constraint and equally distribute 

nurses amongst all shifts. This is achieved by only assigning shifts to days if the 

coverage demand has not been exceeded yet. The main purpose of this strategy is 

to deal with the shortage of available staff -hours in the QMC problem. Further- 

more, the decoder also mimics the process of the real manual schedule construction 

by head nurses. As in the manual process, the decoder always attempts to satisfy 

individual preferences while repairing constraint violations (as shown in figure 7.3. 

An individual preference is accepted at a pre-defined probability if there is no vio- 
lation of hard constraints. The purpose of this approach is to construct schedules 

which meet the pre-set level for individual preference satisfaction measured by ob- 

jective function 1. See [81] for more detail on the evolutionary algorithm approach 

for the QMC problem. 

The SEAMOR produces a good set of alternative solutions to the QMC prob- 
lem [81). However it is quite elaborate and could be difficult to apply to other 
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problems or even the same problem with different hard constraints. Section 7.3 

examines a more general heuristic approach based on the principle of the heuristic 

approach employed by Mumford (Valenzuela) for the multiple 0/1 knapsack prob- 

lem. The QMC model proposed by Landa Silva and Le [81] is used to assess the 

performance of the new proposed approach. 

7.2.4 Preliminary Investigations 

This section discusses the model and the heuristic approach for the QMC problem 
in [81). Based on these discussion, new models and simpler heuristic approaches 

are examined. 

In the QMC model proposed by Landa-Silva and Le [81], one of the objectives 

measures the shortfall in the coverage demand and another objective measures the 

distribution of nurses for each shift over the planning period. Initial experimental 

results show that these two objectives are highly correlated with a value of around 

0.9. The reason could be that the heuristic only allows shift assignments that do 

not exceed the coverage demand. Therefore, it is reasonable to only consider the 

objective that measures violations on the coverage demand. In order to maintain 

the 3-dimensional search space, the objective function that measures the individual 

preferences satisfaction is optimised rather than being pre-set as a target. 

In [81}, the decoder deployed a heuristic to repair the MinDaysOn hard con- 

straint. During the decoding process, this heuristic assigns a shift to the adjacent 

day of day jth of the provisional assignment. It is noted that, at the begin- 

ning of the decoding process, there could be a high number of violations on the 

MinDaysOn hard constraint due to the partially filled nurse schedules. However, 

towards the end of the decoding process while the nurse schedule is filled by as- 

signments, violations on the MinDaysOn hard constraint could be much lower, or 

eventually eliminated. Therefore, if the MinDaysOn constraint is considered when 
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the decoding process finishes, it might be not necessary to deploy this repairing 

heuristic. 

The initial investigation presented here also examines the performance of differ- 

ent EMO algorithms (NSGA2, SPEA, SEAMO2 and HVEA) on solving the QMC 

problem using the heuristic decoder proposed by Landa-Silva and Le [81). Fig- 

ure 7.5 presents the search progress of these algorithms, measured using the hyper- 

volume metric. In Figures 7.5(a)-7.5(h), the vertical axes indicate the percentage 

of the dominated hypervolume and the horizontal axis indicates the hypervolume 

value achieved throughout the search progress which is based on one million eval- 

uations using different population size of 50 (Figure 7.5(a), 7.5(c), 7.5(e), 7.5(g)) 

and 200 (Figure 7.5(b), 7.5(d), 7.5(f), 7.5(h)). Figure 7.5 only shows results on 

4 data sets which are representative of the 7 data sets. Due to the similarity be- 

tween June2001 and July2001; April2001 and August2001; May2001 May2001 and 

September2001 in terms of the available nurse-hours and results, data obtained for 

instances July2001, August2001 and September2001 is not shown but algorithm 

assessment is based on all 7 data sets. 

Figure 7.5(a), 7.5(c), 7.5(e) and 7.5(g) shows that when using small population 

size of 50 individuals the results are similar for all algorithms. The reason behind 

this is that solutions produced by the heuristic decoder are already quite good. It 

is difficult for EMO algorithms to further improve the solutions set especially when 

using a small population of size 50. In other words, the heuristic decoder highly 

influences the search performance when using a small population. Figure 7.5(b), 

7.5(d), 7.5(f) and 7.5(h) shows the performance of the heuristic decoder in EMO 

algorithms by using a larger population size of 200 individuals. When using a large 

population, there are more solutions in the population some of them may not yet 

be good enough. Therefore EMO algorithm could further improve the solutions set 

slightly. The effect of the heuristic decoder seems to be reduced slightly but still 

considerable especially when being incorporated into NSGA2, SPEA2 and HVEA. 
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Figure 7.5: Performance, based on the S-metric, of EMO algorithms incorporated 

the heuristic decoder on the QMC model proposed in [81]. 

152 

(d) Apri12001-200 

(a) March2001-50 

(c) Apri12001-50 

(f) May2001-200 (e) May2001-50 



7.3 A New Model for QMC Problem 

This section discusses a new model for the QMC problem described by Landa-Silva 

and Le [81] together with a simple heuristic decoder. In the new QMC model, 

one single permutation represents the encoded ward schedule whereas the previ- 

ous model represents the ward schedule as n individual encoded nurse schedules. 

Three objective functions, which are optimised in the new QMC model, address 

three criteria: the satisfaction of work regulations, the shortfall in coverage de- 

mand of shifts over the planning period and the individual preference satisfaction. 

The heuristics decoder for the new QMC model is very simple. By decoding the 

encoded shift in the permutation, a shift assignment for a nurse is obtained. The 

decoder only accepts this shift assignment if it does not violate any of these hard 

constraints: OneShiftADay, MaxHours, MaxDaysOn, Succession, HardRequest. If 

there is any violation on MinDaysOn, which makes the solution infeasible, this so- 

lution is heavily penalised by multiplying its objective functions a= 100 times so 

that this infeasible solution is identifiable by optimisers. Then this new proposed 

decoder is incorporated into EMO algorithms to solve the QMC problem. 

This simple heuristic decoder was actually developed based on the principle 

of the decoder proposed by Mumford (Valenzuela) [115,96] for the multiple 0/1 

knapsack problem which terminates the packing process if the knapsack capacity 

is exceeded. In other words, the knapsack item is not accepted if the hard con- 

straint is violated. With an analogy to this principle, in the new QMC model, if 

a shift assignment violates hard constraints, the shift assignment is not accepted. 

However, the decoding process continue until the end of the permutation rather 

than terminating. A relaxed condition is applied to MinDaysOn hard constraint 

which heavily penalises infeasible solutions that violate this hard constraint. 

The new QMC model had been constructed based on further investigation on 

the model proposed in [81]. The rest of this section presents this investigation. 
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7.3.1 Hard Constraint Violation Repaired Heuristics 

The first attempt to reduce the effect of the heuristic decoder is based on the 

suggestion aforementioned in section 7.2.4. The objective function 1 that mea- 

sures the individual preferences satisfaction is optimised instead of the objective 

function 4 that measures the distribution of nurses. The heuristic repairing the 

violations of the MinDaysOn hard constraint is also opted out in the new ap- 

proach. This could lead to infeasible solutions which are heavily penalised in order 

to be identified as bad solutions by optimisers. Each objective of these infeasible 

solutions are multiplied by a= 100. Another component of the heuristic decoder, 

which is the repair for the Succession hard constraint violation, is also opted out 

in the approach proposed here. Rather than finding a different assignment to 

repair the Succession constraint violation, the same approach used to deal with 

other hard constraints such as MaxHours or MaxDaysOn is employed. This means 

that the provisional assignment is not repaired, but rejected, when the Succession 

constraint is violated. Results are presented in Figure 7.6. 

Figure 7.6 is presented in a format similar to that of figure 7.5. The experi- 

mental setting used for these experiments was also the same. In this new model of 

the QMC problem, the objective function 1 measuring the individual preferences 

satisfaction is optimised instead of the objective function 4 measuring the distribu- 

tion of nurses. Even though, this objective function 4 is not optimised throughout 

the search, its value is reported and used to produce the results in figure 7.6 so 

that they could be compared to the results obtained by the model proposed by 

Landa-Silva and Le [81]. In Figure 7.6, SEAMOR are the results obtained from 

the QMC model and the heuristic decoder proposed in [81], i. e. SEAMOR in Fig- 

ure 7.6 is the same as SEAMOR in Figure 7.5. Then, it is compared to HVEA, 

NSGA2, SPEA2 and SEAMO2 incorporating the heuristic decoder without repair- 

ing MinDaysOn and Succession hard constraint and using the mentioned objective 
function replacement. It is noted that only feasible solutions contribute to the re- 
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Figure 7.6: Performance, based on the S-metric, of EMO algorithms incorporated 
the heuristic decoder without repairing MinDaysOn hard constraint on the QMC 
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suits presented in Figure 7.6. That figure shows that results obtained by EMO 

algorithms on this new QMC model are worse than results obtained by SEAMOR 

on the previous QMC model. However, it is promising to observe that feasible 

solutions are achievable. Additionally, there is evidence of the reduced effect that 

the heuristic decoder appears to have on the search process. Firstly, there are dif- 

ferences in the performance amongst HVEA, NSGA2, SPEA2 and SEAMO2 when 

using a population of 200 individuals. Secondly, the effectiveness of the search 
(i. e. increase in hypervolume) does not increase dramatically at the beginning of 

the search then improve only slowly towards the end of the search as it was the 

case in the results of Figure 7.5. Furthermore, another promising result is that 

by optimising the objective function that measures individual preferences satisfac- 

tion, the satisfaction level increases about 5%-15% compared to that obtained by 

SEAMOR solving the QMC model proposed in [81]. 

7.3.2 A More Deterministic Heuristic Approach 

In this section, both the heuristic decoder proposed by Landa-Silva and Le [81] 

and the heuristic decoder examined in the previous section are applied to construct 

a nurse schedule for the QMC problem. As described in section 7.2.3, each nurse 

Ni is chosen at random and the heuristic decoder constructs a schedule for that 

nurse. This could lead to the situation in which early chosen nurses are fully 

assigned whereas later chosen nurses are partially assigned. This of course might 

not be the case for data sets with considerable shortage of available nurse-hours. 

However, it is likely the case for data sets with just about enough number of 

available nurse-hours. Therefore, to overcome this issue and to make the heuristic 

more deterministic, the GeneSegq for all nurses are combined into a single large 

GeneSeq. Within the EA framework, instead of applying crossover operators on 

GeneSeq; to produce individual nurse schedule, crossover operators are now applied 

on the single large GeneSeq to produce the ward schedule for the planning period. 

156 



The heuristic decoder is then applied onto GeneSeq. For each encoded shift ensh 

in the GeneSeq, nurse Na, day j and shift shift are obtained as follows: 

_ 
ensh -1 () ZL NoOfDay * NoOfShift] +17.5 

_ 
ensh - (i - 1) * NoOfDay * NoOfShift -1 (7.6) 

NoOfShift +1 

sh = ensh - (i - 1) * NoOfDay * NoOfShift - (j - 1) * NoOfShi ft (7.7) 

Nurse Nl Individual Schedule Nurse N2 Individual Schedule 

Figure 7.7: The decoding process using single permutation list of shifts. 

sh takes the value of 1,2 or 3 corresponding to early (E), late (L), night (N) 

shift respectively. Also to reduce the effect of the heuristic decoder, the proposal 

opts out the heuristic component which only allows the shift assignment if the 

coverage demand is not exceeded. The results of this new heuristic decoder and 

the new model for the QMC problem are presented in Figure 7.8. It shows that the 

new model for the QMC using this more deterministic decoder which is then opti- 

mised by NSGA2, SPEA2, SEAMO2, or HVEA obtains better results than the one 

proposed in [81] when compared using the same assessment criteria. The results 

are not improved only on the most difficult data sets (June2001 and July2001) 

where the available nurse-hours are well below the minimum requirement. Fur- 

thermore, the satisfaction level of nurses' preferences increases about 10%-17%, 

except in the results obtained by SEAMO2 (5%-10%) compared to that obtained 

by SEAMOR solving the QMC model proposed in [81]. It is noted that there are 

few extreme solutions obtained by the new model. These solutions have low values 

in one objective but high values in other objectives. However, by removing these 

extreme solutions from the non-dominated sets found, the performance are still 

very similar to that of non-dominated sets which include these extreme solutions. 
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7.4 A More General Approach to Nurse Schedul- 

ing Problems -A Proposal 

This section proposes a general approach to nurse scheduling problems so that they 

can be solved by applying general purpose EMO algorithms. The nurse scheduling 

problems could be modelled based on the principle of the multiple 0/1 knapsack 

problem using the heuristic decoder proposed in [115,961 as follows. Let's suppose 

that the knapsack capacity constraint is given by the upper bound for the multiple 

0/1 knapsack problem. The heuristic decoder packs items into knapsacks upto this 

upper bound, then terminates. Therefore, let's assume that there exists the upper 

bound for the nurse scheduling problems. This upper bound instructs the heuristic 

decoder whether to accept shift assignments or not. The heuristic decoder moves 

onto the next shift assignment until the permutation is exhausted. The important 

issue is to identify a suitable upper bound for a given nurse scheduling problem. 

This upper bound could consist of a set of hard constraints or a hard constraint. 

The properties of these hard constraints are: 

" Violations on these hard constraints are quickly and straightforwardly iden- 

tifiable. 

" It is not possible to repair violations on these hard constraints by any means. 

The only way is to not accept the shift assignment that generates these 

violations. 

Any hard constraints which impose conditions on `maximum values' could serve 
for the purpose of the upper bound. For examples: the maximum number of 

consecutive working days, the maximum number of consecutive working shifts, the 

maximum number of working hours over a period, etc. 

Nurse scheduling problems are usually highly constrained and complex. One 

of the important issues when solving nurse scheduling problems is how to handle 
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complex constraints. Under the EMO framework, let's assume that soft constraints 

are grouped into objective functions to be optimised. However, it is also required 

to handle hard constraints to make solutions feasible. As mentioned early in this 

section, there is a type of violations on hard constraints which is not possible to 

repair, e. g. the maximum number of consecutive working days. To make solutions 

feasible, it is suggested to not accept the shift assignment that generates these 

violations. There is another type of violations on hard constraints which is possible 

to repair, e. g. the maximum number of consecutive day-offs. However, in order 

to keep the heuristics as simple as possible, these type of violations are accepted 

but heavily penalised so that infeasible solutions are identifiable by the optimisers. 

In other words, hard constraints associated to these violations are relaxed as soft 

constraints but violations on these constraints are heavily penalised. There is 

another type of violations on hard constraints which cannot be repaired by either 

accepting or rejecting the shift assignment, e. g. the maximum consecutive working 

days hard constraint is violated by accepting a shift assignment, but rejecting that 

shift assignment leads to an illegal shift pattern. For example, one weekend day- 

off is an illegal shift pattern (a nurse must either work both days during weekend 

or none), but assigning an additional shift to the weekend violates the maximum 

consecutive working days. If this is the case, the decision on either accepting 

or rejecting the shift assignment is based on satisfying the most important hard 

constraint or it could be randomly decided. 

It is often the case that a given nurse scheduling problem consists of all soft 

constraints being satisfied as much as possible. The procedure to identify which 

constraints serve as the upper bound of the problem is based on the criteria pro- 

posed early in this section. Let's assume that a maximum of 6 consecutive working 

days is the soft constraint being served as the upper bound of the problem. How- 

ever, this condition could not be used directly in the heuristic decoder to decide 

whether to accept the shift assignment. Instead, (6 + E) consecutive working days 

could be used as an imaginary hard constraint that solutions must satisfy. This 
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value (6 + e) could be considered as the maximum acceptance level of violation 

on this constraint. However this constraint is still treated as the soft constraint 

which need to be satisfied. Therefore, e should be gradually reduced as the search 

progresses by assigning the average number of violations on this constraint to e 

which gradually reduces E. This is to make sure e is also being optimised. 

This general approach is drawn upon the investigation of the QMC problem. 

It has not yet been examined on other problems. Therefore, more investigation on 

the approach is required. 

7.5 Summary 

This chapter investigates the QMC model proposed by Landa-Silva and Le [81]. 

A new model and a much simpler heuristic decoder for general EMO algorithms 

to solve the QMC problem was investigated. It was shown that general EMO 

algorithms could be able to solve complex and highly constrained real-world nurse 

scheduling problems. This chapter also outlines a more general approach to nurse 

schedule problems to be solved by EMO algorithms. The approach is based on 

the investigation of the QMC problem, but it still needs to be developed and fully 

tested. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

The work in the thesis presents an in-depth investigation on the EMO field and 

proposes a new form of relaxed Pareto dominance, namely volume dominance. 

Based on the concept of the volume dominance, a new EMO algorithm, Hyper 

Volume Evolutionary Algorithm (HVEA), is proposed. HVEA outperforms or re- 

mains competitive to various state-of-the-art EMO algorithms. The thesis also 

studies the application of general purpose EMO algorithms in solving the multiple 

0/1 knapsack and a real-world nurse scheduling problems. 

As discussed in the introduction of the thesis (Chapter 1), the EMO field has 

drawn much attention from researchers over the last decade or so. There is a 

number of strong performing EMO algorithms that have been proposed including 

NSGA2, SPEA2, SEAMO2, MOEA/D amongst others. However, relatively little 

work has been published on the application of these strong performing general 

EMO algorithms to solve real-world nurse scheduling problems. In this thesis, a 

general purpose EMO algorithm called HVEA is proposed. This thesis also outlines 

an approach for solving nurse scheduling problems using general EMO algorithms. 
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This approach is drawn upon the investigation on the QMC problem {81J, a real- 

world nurse scheduling problem. 

Within the field of EMO, one of the key issues in designing an EMO algorithm 
is to set a mechanism to establish superiority between solutions in the population. 

That is, mechanisms or criteria to discriminate between solutions in the multiob- 

jective sense. However, this issue has not received much attention as it deserves. 

Most recent EMO algorithms deploy the conventional Pareto dominance relation- 

ship to compare solutions, but there are other types of dominance relationships, 

known as relaxed (or extended) Pareto dominance, in the literature. Chapter 5 

presents review on a number of relaxed Pareto dominance such as a-dominance, 

e-dominance, gain factor dominance, etc. Chapter 5 also proposes a new form of 

relaxed Pareto dominance called volume dominance. The improved version of vol- 

ume dominance is also discussed in chapter 5. Extensive experiments are presented 

to compare the performance of both the initial proposal and the improved version 

of volume dominance against the conventional Pareto dominance using three EMO 

algorithms from the literature: SEAMO2, SPEA2 and NSGA2. Experiments were 

conducted on the multiple 0/1 knapsack problem and promising results were ob- 

tained by the improved volume dominance. The key observations were that this 

improved volume dominance is capable of obtaining a better and smoother trade- 

off front and is also more robust than Pareto dominance. To the best knowledge of 

the author, this chapter presents the first investigation on incorporating a relaxed 

Pareto dominance into different EMO algorithms. 

Chapter 6 further explores the ideas of the volume dominance from chapter 5 

and proposes a new population-based multiobjective evolutionary algorithm, the 

Hyper Volume Evolutionary Algorithm (HVEA). The concept of volume dominance 

is investigated and used as a new strategy to assign fitness to solutions in HVEA. 

In this new algorithm, the fitness of an individual is estimated based on the hy- 

pervolume of that individual without the requirement of determining the reference 
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point for the hypervolume calculation. HVEA also deploys a clustering technique 

which assesses the crowding of an individual by considering all individuals in its 

neighbourhood which is defined by the parameter w, the neighbouring area radius. 

The HVEA approach outperforms or remains competitive to various state-of-the- 

art EMO algorithms including NSGS2, SEAMO2, SPEA2, IBEAE+, IBEAHv and 

a very strong performance MOEA/D on the multiple 0/1 knapsack problem. 

Chapter 6 also presents an extensive study on the multiple 0/1 knapsack prob- 

lern using different greedy repair methods to fix the violations of capacity con- 

straints. It is concluded that the same greedy repair method should be used for 

the multiple 0/1 knapsack problem to assess the performance of several EMO algo- 

rithms more fairly. It also suggested to use the greedy repair method proposed by 

Valenzuela [115] (to minimise the effect of the repair method) when assessing the 

performance of EMO algorithms on solving the multiple 0/1 knapsack problems. 

Chapter 7 presents an investigation on the QMC model proposed by Landa- 

Silva and Le [81], a real-world nurse scheduling problem. The purpose of this 

study is to apply well-developed general EMO algorithms to solve real-world nurse 

scheduling problems. Based on the QMC problem, this study attempts to model 

real-world nurse scheduling problems with complex constraints as a multiple 0/1 

knapsack problem. The study shows that special-purpose heuristics developed for 

nurse scheduling problems have strong effect on the search performance. Then, 

optimisers such as general EMO algorithms play a little role in the search perfor- 

mance if these special-purpose heuristics are incorporated. Chapter 7 also suggest 

a general approach to model real-world nurse scheduling problems in such a way 

that general EMO algorithms can be applied more effectively. It is suggested that 

results obtained by this approach could be used as the reference to assess the per- 

formance of special-purpose heuristics developed for a particular nurse scheduling 

problem. The study concludes that without special-purpose heuristics, it is possi- 

ble for general EMO algorithms to solve complex and highly constrained real-world 
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nurse scheduling problems. To the best knowledge of the author, this study is the 

first investigation to bridge the gap between general EMO algorithms in the EMO 

field and nurse scheduling problems in the real-world. 

Chapter 4, the final work of this thesis, studies restricted mating schemes in 

EMO algorithms. It proposes an adaptive assortative mating scheme that uses 

similarity in the decision space and adapts the mating pressure as the search pro- 

gresses. Initial results show that constant values for the mating pressure in this 

scheme provoke either convergence or diversity to be negatively affected. The 

study suggests a simple adaptive scheme which varies v nattn9 taking into account 

the population diversity in the decision space. Experiments show that this mech- 

anism improve the performance of SEAMO2 [96] while striking a good balance 

between convergence and diversity. 

8.2 Future Work 

Based on the study came out of this thesis, these are four suggestions for future 

work: 

1. It is noticed that in the literature, different forms of relaxed Pareto domi- 

nance have been proposed for different types of problems. It is interesting to 

see the performance of different relaxed Pareto dominance relationship while 

being incorporate into general EMO algorithms solving the same problems. 

Future work could to compare these alternative forms of dominance by in- 

corporating them into SEAMO2 to solve the multiple 0/1 knapsack problem 

because SEAMO2 is very simple but yet effective. Other state-of-the-art 

EMO algorithms could be investigated later. 

2. Durillo et al. [49] reported strong performance improvement by modifying 

NSGA2 and SPEA2 from generational to steady-state selection, but the 
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computational time increased significantly. This is due to the computation 

of individual fitness values when replacing a solution in the population by 

a better offspring. Other steady-state EMO algorithms such as SEAMO2, 

MOEA/D have also shown strong performance. Therefore, it is worthwhile 

to investigate the incorporation of steady-state selection in HVEA. 

3. Other strategies to set the threshold mating pressure for the restricted mating 

scheme studied in chapter 4 to further improve diversity and convergence of 

EMO algorithms could be studied. Future work could also to investigate 

and compare different mating schemes within general EMO algorithms when 

applied to different problems such as real-world nurse scheduling problems. 

As it is known, besides demanding good values for the multiple objective 

functions, decision makers could be also interested in obtaining a diverse set 

of solutions in the decision space. This would provide a variety of alternative 

choices (different layouts for the schedules). 

4. Chapter 7 outlined an initial study and proposal for a more general approach 

to modelling real-world nurse scheduling problems. This approach is drawn 

based on the investigation on the QMC problem. In order to clarify this ap- 

proach, this approach needs to be tested on other nurse scheduling problems. 
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