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Abstract

Surface mine planning involves the results of algorithmic numerical calculations being
used by engineers to make informed decisions relating to the design. The Department of
Mining Engineering at the University of Nottingham has in the past been involved in
developing modular algorithmic packages. The emphasis of the computer research has
now altered. Smaller specialised systems are now being developed to cover individual
aspects of the design process. Artificial intelligence techniques are being introduced into
the mining environment to solve the planning problems often associated with the large
amounts of uncertain information needed by the engineer. This thesis is concerned with
the development of MINDER, a decision support system capable of assisting the mine
planner in the complex task of optimum surface mining equipment selection. An expert
system shell has been used to create a series of individual application modules, each
containing a multi-level knowledge base structure. An information handling system has
been developed which is capable of storing consultation information and transfering it
between knowledge bases and between application modules. Once an effective method
of information handling had been achieved the flow of control between the system
knowledge bases was rapid and followed complex inferencing routes.

Most of the commercially available packages mathematically model a deposit, calculate
volumes and simulate operations. One of the aims of the MINDER system was to integrate
with other software, for example MINDER is capable of reading volumetric and material
information from Surpac mine planning software.
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Geological data and manufacturer’s equipment specifications are stored in DbaselV
databases. The expert system is capable of writing macros based on the consultation and
performing complex relational operations involved in the elimination and ranking of
equipment. In a similar manner macros are written to control the simulation package
GPSS, which used to simulate operations using the selected equipment. A range of ‘in-
house’ Pascal software is used for numerical calculations and matrix manipulation, an
example of this is the fuzzy logic software used to handle uncertain information.

Another aspect of the project is an investigation into the use of machine learning
techniques in the field of equipment selection. Knowledge induction software has been
used to induce new rules and check those produced in the MINDER system. Various
experiments have been carried out using neural network software to produce equipment
selection models. Training data taken from the mining industry was used on both these
systems, and the results were tested against MINDER consultation results.
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Chapter 1

Introduction

1.1 Surface Mine Planning

Over time the world wide mining industry has moved towards policies of
mechanisation and automation, increasing efficiency by implementing new production
and planning techniques. Management needs to be able to assess the future of any
mining operation, and complex information and planning systems are needed to justify

future investments.

The overall effect of the gradual depletion of high quality, easily extractable reserves
and increasing environmental pressures has directed the focus of the mining engineer's
attention to the development and production of innovative solutions (Pratt 1989).

The routine use of personal computer systems at all stages of the mine planning
operation has greatly enhanced the decision makiné capabilities of the engineer.
Specific decisions need to be made at set points throughout the design process. One of
the most important and difficult decisions to be made is the choice of mining method
and equipment to be used. Substantial economic losses can arise from the selection of
the wrong piece of equipment. Decisions are based on collated information on the
deposit, engineering knowledge and a large amount of subjective judgement.

1.2 Computer-Aided Mine Planning

Mine planning is a complex process due the individual nature of each deposit and the
high interdependence of the decisions required. Present mine planning software tends
to provide algorithmic support to the decision making process, in the form of geological
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models and numerical results. The mine planner often has to be conversant with a range
of computer languages and application packages.

From the initial stages of a modern mining project, computers are used to store, analyse
and sort borehole data. Large modelling packages record the geological structure and
build three-dimensional models of the geology, this permits classification and reserve
estimation to be carried out. Databases are used throughout the design for the storage of
many types of data. Specialist software covering such topics as optimum pit design and
equipment simulation help to develop the planned method of working. Financial
appraisal is usually carried out using spreadsheet based software.

Large amounts of mine planning software is now available, the usefulness of such
software is often be limited by the difficulties of data transfer and restructuring.
Individual mine design and planning software packages often lack the flexibility to
handle a wide range of real data, and are generally application specific. Some vendors
develop programs in their strongest areas of expertise and use other commercial
software to provide a comprehensive package (Gibbs 1990). The compatibility of the
various mine design and planning components across system boundaries requires
radical re-appraisal of the manner in which data is used by planning software.

1.3 Intelligent Mine Planning Applications

A large amount of heuristic decisions are involved in the planning of a surface mine and
the use of knowledge based systems as decision aids has introduced a new level of
sophistication to the available software. Development has moved away from large
expert systems and knowledge based software is being integrated with conventional
programs. Using these intelligent front ends to link and control external software
allows a mine designer's software capabilities to be extended. These techniques of
storing and distributing the resource of human knowledge augments the abilities of the

engineer and allows the dissemination of expertise.

The MINDER (MINe Design using Expert Reasoning) system discussed in this thesis is
an attempt to select an optimum item of equipment for a particular mining scenario. The
expert system uses information from mine design packages such as Surpac and
Datamine, accesses a commercial database (DbaselIV) and utilises simulation software
(GPSS). Pascal software has been written to perform the algorithmic functions required
by the expert system, and DOS text files are used for data handling.
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The inherent complexity and the large amounts of information, often of an uncertain
nature, indicate that intelligent computer techniques should be applied. Most planning
and engineering problems require that data be constantly updated to take account of on-
going changes in the design. The future will see the introduction of software that can
learn from experience, these are collectively known as machine leaming systems.

1.4 Project Objectives

The aim of the MINDER system is to act as a decision support tool for equipment
selection, and suggest starting points for a further detailed analysis. The general

objectives being :

O That the knowledge based system should minimise the need for the user
' to refer to other sources of information.

O The system should provide information on any aspects of the mining

operation - queried by the user.

o) The system should be capable of making decision based upon uncertain

information.

o) The system should reduce the requirement for the user to have any
specialist programming expertise.

o The system should provide an explanation to any conclusions or
recommendations made.

o To evaluate the use of knowledge induction systems to automatically

generate knowledge.

o To evaluate the use of neural networks as decision support aids to the
mine planner.

0) To apply the systems developed to a range of practical problem and
validate their operation.
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1.5 Thesis Overview

Chapter2:  discusses the computer software available to the mine planner
and illustrates some of the problems encountered when using

this software.

Chapter 3:  introduces the concept of knowledge based and machine learning
systems and describes their main features and applications.

Chapter4:  discusses the techniques and software used to develop the
MINDER system, it also provides information on the integration

and control of external software.

Chapter 5:  details the individual MINDER system application modules and
describes their function.

Chapter 6:  contains a selection of case studies, providing a validation for an
equipment selection, decision support system.

Chapter 7:  provides the conclusions reached during the project and suggests
some recommendations for further work in this field.
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Chapter 2

Mine Planning Using
Computer Techniques

2.1 Introduction

The objective of mine planning is to maximise the return on the investment while
optimising the recovery of the mineral inventory. Mining an exploitable mineral reserve
as a profitable venture is a complex task requiring a selection of specialist skills. The
planning of the mine determines its viability, as the mine's efficiency depends upon a

good mine plan.

The planning of a mine involves three majbr activities (Singhal 1989), each stage based
on the results of the preceding step:

o Economic and technical feasibility studies.
O Design, procurement and construction.
O Mining and reclamation.

The technical design aspects of the surface mine planning process can be further broken
down into the following topics:

Geological data processing.
Geological modelling.

Pit design.

Scheduling and simulation.
Economic evaluation.

0000
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Figure 2.1. Components of a Surface Mine Planning Operation

These procedures are generally undertaken in logical order iterating back to obtain
information, for example the scheduling of the production units may show limitations
in the selected pit design. Figure 2.1 shows the elements involved in surface mine
planning and the information obtained from each stage of the design.
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This chapter will discuss the use of computers in mine planning and consider their
application to each of the elements listed above. It is not intended as an exhaustive list
of available software, and concentrates mainly on surface mining.

2.2 The Use of Computer Techniques

Mining is very capital intensive, and risks are implicit in all mining ventures. The
depletion of high quality and readily accessible deposits means that the exploitation of
less favourable, geologically complex, remote deposits has become standard in the
industry. Moreover, low profit yield exploitation increases the importance of effective

design tools.

Surface mine planning requires the optimum use of surface and mineral information in a
combination of numerical computation and information processing, together with
significant input in the form of the planning engineers knowledge and experience

(Clarke 1989).
Surface mine design is often characterised by:

Data : Large unwieldy numerical data sets.

Data Manipulation : Data is often produced, modified and reproduced.
Calculations : A considerable number of repetitive calculations.

Result Analysis : Determination of conclusions from tabulated results.

Graphical Output : A large number of plans and sections are required.

0000

The volume and complexity of this information may cause the performance of the
engineer to decline. The introduction of computers has added a new dimension to mine
planning. The speed and accuracy of the algorithmic elements of the process eliminate
the need for time consuming, repetitive, manual calculations.

These programs are particularly useful in optimising the mine plan. Computers can
rapidly consider numerous alternatives and critically perform sensitivity analyses to
determine the plan which best suits the design objectives.

2.3 Computer Applications in the Mining Industry.

The application of computers has traditionally been slower in the mining industry than
in many other engineering disciplines due to the industry's reluctance to accept this new
technology, however this developing science has caused significant changes.
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Most large modern mines rely on the use of computers at some stage of the planning
process. Computers are used in both the long and short term planning of a mine.

Mine planning used to be limited to costly and inflexible mainframe computers.
Advances in computer technology have increased the power of the desktop computer,
and have consequently led to a greater use of computer aided mine planning.

Mining software has changed radically in the last ten years, and programs are now
available covering all facets of the design process. The quantity of software available
has increased and programs available five years ago have matured and been enhanced
by the advances in hardware. Over 600 commercial programs for all types of
applications are available ranging from simple spreadsheets to comprehensive pit design
packages. Several directories of mining software are available [1].

Mine planning software is often categorised by the development method (Denby 1987) :

Off-the-shelf : "Software produced by a software house or mining consultant
covering a whole range of planning tasks.” In the field of mineral evaluation, software
is actively marketed by many companies. These are the largest and most widely used
programs which vary in the modelling techniques and mine planning methods used.
These packages have evolved over time and there is usually a significant cost associated
with the acquisition of mineral evaluation software. A degree of complexity is often
built into this software requiring a training period ranging from days to weeks (Hrebar
1985).

In-house : "Software developed by a mining company computer department or
individual staff.” A few larger mining operations have had in-house computer based
reserve estimation for many years, such as Kidd's Creck in Canada, Nchanga in
Zambia and Palabora in South Africa. Palabora performs short and medium term
planning on computers based on the mine, long term planning is carried out at the head
office in Johannesburg (Kear 1990). Rossing uranium mine has developed a cost
modelling system to improve the data available for the mine planner (Knowles 1990).
Other recent systems developed have included Outokumpu Oy's Minenet software
system, developed on a Vax Mainframe computer, at the Enonkoski mine, Finland
(Pulkkinen et al. 1990). Computerised planning has also been recently introduced to the

[ Gibbs Associates produce a computer listing of over 600 programs for all categories of
mining applications (Gibbs 1987).
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Neves-Corvo copper mine, Portugal, installed on a network of workstations and IBM
personal computers. This system is used for underground development planning and
creates three dimensional images of the underground workings and mineral orebody
(Teixeira and Caupers 1990).

Combination : "Software bought-in and modified to improve the efficiency or
applicability of the system."” The unique nature of a reserve may require that existing
ore-reserve and mine planning software be customised. Boliden Engineering in Sweden
provide a mine planning package called BOLIS based on Microstation 3D-CAD,
Ashton Tate's Dbaselll and Microsoft Excel. The system is controlled by support
routines which use a combination of macros and the C language (Renstrém and
Andersson 1990). The Boron mine, California uses three individual programs, a
reserve estimator, a scheduling system and a spreadsheet for simulating costs
(Maddocks 1990). The RTZ general open-pit programs have been modified and tailored
to suit the mine planning requirements of Minas de Rio Tinto in southern Spain (Preller

and Rich 1990).

The major mining software houses are moving towards a modular approach to software
design, where a basic system can be purchased and supplementary modules are
available. Minex are an example of a company who market software in this form, a list
of their modules is given in Table 2.1 (Exploration Computer Services 1987).

Major Modules

BDS Borehole Database System

GMS Geologic Modelling System

MRS Mine Reserve System

MSS Mine Scheduling System
Supplementary Modules

DRG Dragline Simulation

TRK Vehicle Haulage Simulation

MRS/S Spoil Design

MSS/S Spoil Scheduling

Table 2.1 An Example of a Modular Mine Planning System

Development work undertaken in the past in the Department of Mining Engineering,
University of Nottingham was aimed at producing a comprehensive system called NU-
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MINE, figure 2.2. The system was not targeted at any particular type of deposit and
had individual modules linked via a central database (Atkinson et al. 1987). This was
one of the first attempts at modularisation of the computer aided mine planning process,
and included important central elements such as databases, utility software, and a

graphical user interface.

Utility Software

Figure 2.2 Initial NU-MINE Conceptual Design

Computer Aided Design has become synonymous with computer graphics, many mine
design packages allow the mine planner to create and display solids and surfaces
encountered in the design. These graphical techniques combine accuracy with a
flexibility of display, but the complex properties of mine design still strain present

software capabilities (Mill 1989).
2.4 Geological Data Processing

It is important that decisions made during the planning process are based on the most
accurate information possible. Much of the initial data upon which a mine plan is based
comes from the information entered into a drill hole database. Most commercial or in-
house mine planning software has a component capable of managing and interpreting

drill hole data as a standard feature.
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Information stored in any borehole database usually includes:

o Project Data : such as sitc information, borehole identifiers
and borehole location.

o Lithological Data : including collar elevations, mineral
elevations and thicknesses.

o Quality Data : laboratory information such as ash content or

grade.
O Geophysical Data : the results of any geophysical survey.

Statistical operations are often performed on drill hole databases to give histograms and
tabulated data to help with the borehole correlation. Many of the software packages
allow the user to plot boreholes in plan and in section. From the data in the database
two dimensional interpolated contour maps can be prepared, showing isopachs,

elevations or quality data.

It is important that the boreholes yield as much information as possible. For example if
rock strength information is needed for underground mine planning redrilling for more
data would be time consuming and could be very costly.

2.5 Geological Modelling

The primary objective of any modelling system is to define a mineral deposit or
orebody with respect to its size, shape, boundary or other physical parameters. Thus,
in this context, a model can be defined as 'an organised representation of reality’
(Croghan 1989). Geological models are built by projecting known data to approximate
'true’ outlines of underground surfaces in three dimensional space. There is a need to
match quality information with the lithological horizons determined in the model. The
model should be able to mitigate the problems caused by data with fundamentally
heterogeneous characteristics (Rendu 1984, Voortman 1987).

Software companies have developed a variety of techniques to define and generate
geological models. The modelling techniques developed reflect the type of deposit
worked with and there are differing philosophies about how best to represent three
dimensional deposit models. The modelling method chosen for a deposit should define
the volume contained within a geological outline from known data, as well as the

quality or grade values of the model segments.
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A substantial review of the modelling software available and individual capabilities is
given by Gibbs (1990). Integrated software packages for geological modelling usually
include more than one type of modelling. With models costing anything from US$
5,000 to USs 75,000 the purchasing of mine design software can represent a major
investment. The model geometries presently offered include those discussed in the next

sections.
2.5.1 Regular and Grid Block Models

These are by far the most common method used, and most packages have this type of
modelling available. The three dimensional block model, shown in figure 2.3a, was
originally developed for massive open pit deposits, and the two dimensional grid model
may be used for seam deposits. From a programming stand-point this is the simplest
model to code and manipulate, but the technique is very rigid and does not allow for
modelling of local detail (Davie 1984). Most packages have this modelling capability.

Figure 2.3a Figure 2.3b Figure 2.3¢

Regular Model Irregular Model Enhanced Octree Model

2.5.2 Irregular Block Models

These consist of blocks of different sizes within the same model. The model is initiated
with the same size blocks and then as geological definition is applied, "sub-blocks" are
created along the boundaries which provide a closer approximation to detail.
Techniques developed to control the splitting of the blocks include quadtree and octree
modelling, an example of a pure octree model is shown in figure 2.3b. The quadtree
and octree methods of cellular decomposition break the cube into either four or eight

segments of equal area or volume respectively (Mill 1989).
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This shape can then be defined mathematically, based on the theory of solids of
integration, as in the three dimensional component modelling system used by the Lynx
system (Houlding and Stoakes 1990). An example of a solid model created using the
Lynx system is shown in figure 2.7,

Packages offering solid modelling include: MINEX 3D, DATAMINE, Lynx.

2.5.7 Interpolation Techniques

The algorithms used in modelling to estimate numerical attributes and their variations in
three dimensional space is an extensive subject. Modern modelling packages usually
offer a selection of the following methods:

o Triangulation : A triangle represents the slope differential between the
three corner data points. Several methods are available. Mainly used for
surface or wireframe modelling.

O Inverse Power of Distance : A distance orientated algorithm is
used to assign weightings to particular value locations. Generally used

to set grade values in a block model.

o Polygon : This technique is provided by most modelling software, it
relies on the traditional polygonal method of calculating reserves.

Other techniques used within mine planning software include geostatistical techniques
such as kriging, use of a trend surface, least squares algorithms, Fourier analysis and

minimum curvature.
2.5.8 The Future of Modelling Software

Geological modelling packages have evolved to maintain compatibility with the
enhancements provided by hardware development (Cameron 1990). One of the main
developments has been the increase in processing power available allowing geological
models without size limitations to be produced.

Another major development is the use of graphics in mine planning software, both as a

method of display and as an interactive method of control. Computerised modelling
involves the production of both two and three dimensional views of the deposit. This
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capability goes beyond viewing the deposit, computers provide a three dimensional
descriptions of reality. Some state-of-the-art commercial software provides colouring
and shading, resultant images taking on the aspects of a photograph (Gibbs 1990).

Recent work at Imperial College has shown the use of new data structures in the
modelling and presentation of geological information (Mill 1989) which exploit
powerful spatial searching techniques. These searches will allow an optimum pattern
and schedule for the extraction of ore to be developed.

As computerised mine planning techniques advance mine planners need to be able to
control large amounts of detail in the geological models. The application of intelligent
computer systems to this area of expertise is being investigated, these techniques will
be discussed in more detail in the next chapter.

2.6 Pit Design

After modelling the geology the mine planner considers the appropriate parameters and
goes on to design the pit limits. These limits may be geological, property lease limits or
a combination of cost factors giving an economic limit (Jardine and Evans 1988). To
identify an optimum resource area and maximise earnings from an open pit mine,
significant variables such as yield, energy value and depth must be considered (Jeffreys
and Hoare 1985). The exploitation of the identified area should be optimised prior to

detailed scheduling costing and conventional financial analysis.

Many general mine planning programs have pit optimisation options as standard, others
contain interfaces to link with currently available pit optimisation software. The
optimisation programs tend to use block model information to determine the ideal pit
limits. The most popular optimisation packages are Whittle Programming'’s Three-D
and Four-D software, which can be used alongside many generalised mining packages
(Whittle 1988).

Optimum pits can be generated using a moving cone algorithm, repeatedly searching for
incremental pits consisting of combinations of blocks which are worth mining. It is
thought that the moving cone algorithm is inefficient and does not always find the
optimum pit (Whittle 1989). The Whittle software uses the Lerchs-Grossman method
which takes a different approach to the problem but always finds the optimal pit.

Chapter 2: 13






The reserves and optimum pit design are dependent upon the result of other aspects of a
modular planning process, such as slope stability and equipment selection. These parts
of the design process are often performed by the planning engineer using the results of

the previous stages.

2.7 Scheduling and Simulation

Simulation continues to be popular in the operational side of mining, one reason for this
is the need to solve the many waiting line and storage problems in the industry (Manula
et al. 1975). Scheduling requires tonnages from the design stage, equipment details and
information from the modelling system. In the field of mine planning a scheduling
system would require the following features (Singhal 1989) :

Annual and life-of-mine sequencing.
Muldple pit scheduling.

Annual and life-of-mine quality predictions.
Resource optimisation.

Mine production reporting and forecasting.
Fleet sizing, equipment simulation.
Capacity for cost analysis.

CO0O0O000O0

Computer orientated techniques can be effective in the scheduling of complex mining
systems. A scheduling model usually has its own event flow model that simulates the
parameters in detail, exercising logic for specific tasks (Srajer 1985). Simulation
languages such as GPSS, GASP and SLAM have reduced the programming skills

required to build simulation models.
Franklin (1985) reports on two types of computer scheduling systems.

o 'Computerised' scheduling : where blocks are picked
automatically until all constraints are met.

0] ‘Computer-aided' scheduling : where control remains in the hands
of the engineer, who uses the speed of the computer to manipulate
mining increments and evaluate them.

Many of the major commercial mine design packages contain scheduling modules, for
example the MINEX software contains a mineral scheduling package, a waste
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scheduling package and an overall mine scheduling package (Exploration Computer
Services 1987). Many specialised packages have been developed to simulate specific
mining activities.

2.8 Economic Analysis

Recently, increased operating costs and low product revenues have highlighted the
importance of selecting the most profitable project design. In the final analysis, the rate
of return on investment is the prime consideration in project evaluation. Many
evaluation techniques are available, almost all rely on predicting the cash flow profile
over the life of the mine.

The investment worth of the mineral deposit can be realistically evaluated in relation to
specific engineering design criteria. Selecting the best design parameter will ensure an
optimum investment performance.

The economic analysis is an on-going iterative process throughout the mine design, this
was shown in figure 2.1. Economic criteria are applied as constraints to the pit
optimisation and during the production scheduling.

It is possible to create micro-models simulating the economics of a single item of
equipment, which act as subroutines to production macro-model for the whole mine.

2.9 Conclusions

As mining projects become progressively more marginal from a financial stand-point, it
is essential to obtain the best possible deposit model for reserves assessment. In Britain
as the Environmental planning bill is brought into force there will be a need for
software to encompass all aspects faced by the mine planner, such as estate
management, environmental assessment, reclamation planning and requirements for

planning enquiries (Cameron 1990).

Reductions in the costs of hardware have led to the routine use of personal computer
systems at all stages of the mine planning operation. Some packages which run within
the constraints of these desktop computers assume a particular processing sequence.
These sequences build rigidity into the design method, modular systems and enhanced
user interfaces may eliminate this problem (Stokes and Henley 1990). Individual
modules may provide recommendations allowing the planner to meet the environmental
requirements required by current and future legislation.
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While there are numerous mine planning packages on the market today, there is no
shortage of disillusioned and frustrated mining engineers trying to use these to solve
real problems (Jardine and Evans 1988). These problems include the representation of
the unique properties of each deposit within a computer. Often inappropriate sets of
technical applications software are used for the specific problem. Kear (1990) suggests
a possible solution, engineers should develop their own software rather than ‘program’
a programmer who does not understand what the engineer really wants.

It is important that all planning work is based as far as possible on 'real-time’ data, so
that people involved with different aspects of the design process can be confident of
having updated information to work with. A method of throwing all the data into a
computer and expecting it to come up with a full mine design is still an unrealistic

approach (Brien et al. 1985).

In opposition to the view expressed above the commercial modelling software
companies believe the accuracy of their models is limited only by the reliability and
density of the data and the degree of detail required by the user (Houlding and Stoakes
1990). This is partly due to many packages offering a variety of modelling options
within a single consistent framework.

Many mining engineers are wary of large modelling packages due to their mathematical
content and lack of flexibility. Computer graphics have, to some extent, helped
overcome this problem. These systems provide a new degree of 'user-friendliness' as
two and three dimensional graphic controls can be introduced in the form of menu's
and mouse controlled systems. Mining companies have recently discovered the
advantages of linking their software to AutoCad, utilising the high quality presentation
features of this software as a relatively cheap software extension.

This decade has seen considerable software development. Most of this work has been
on a modular basis although systems to integrate the various facets of these modules
still require development. This favours the development of software which can easily

adapt to meet changing project requirements.

As nearly all mining projects rely on computer techniques at some stage of the design
process, it is the intelligent use of the application, irrespective of the source of the
software, that ensures success. Brien et al. (1985) belicve that a computer can not
replace an engineer because of the judgement required during the planning stages of a
mine design. The author believes that while not replacing an engineer, new computer
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techniques are becoming available which will be able to assist the planner in specific

design domains, acting as a second opinion and design guide.

The computer based research within the Department of Mining Engineering at
Nottingham University has progressed into specialised areas of mine design, such as
environmental assessment, spontaneous combustion risk, slope stability and equipment
selection. These individual modular programs link to commercial software providing
valuable aids to the mine planner. Research has moved away from conventional
approaches into the application of intelligent computer techniques in the mine design
process. The application of artificial intelligence techniques to the ficld of mine design
has resulted in both stand alone knowledge based systems and larger integrated systems
capable of linking to and controlling conventional software.
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Chapter 3

Intelligent Systems

3.1 Introduction

In recent years a new inter-disciplinary subfield of computer science known as Artificial
Intelligence (AI) has emerged. Researchers in this field are concerned with developing
computer systems that perform functions normally associated with human intelligence.
Many of the uncertainties concerning the nature of artificial intelligence arise because it
does not conform with other categories of science, it is often associated with cognitive
and behavioural psychology but this association neglects the mathematical and
engineering aspects of the subject (Campbell 1986).

Artificial intelligence can be divided into three relatively independent research areas :

O Natural Language Processing : techniques which allow computer
systems to accept inputs and produce outputs in a conventional language
like English. Several expert systems incorporate a primitive form of
natural language in their user interface.

(@) Robotics : the development of visual and tactile programs to allow
robots to 'see’ and 'manipulate’ objects in a dynamic environment.
Artificial intelligence is concerned with the heuristic techniques which
allow robots to function in these changing environments.

(o) Knowledge Based Systems : are concerned with the acquisition,

representation and manipulation of human knowledge in symbolic form.
Human knowledge consists of reasoning as well as facts or data.
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The majority of artificial intelligence research is concerned with abstract problem
solving. Knowledge based systems tend to focus on replicating the behaviour of a
specific expert in a narrowly defined problem area (figure 3.1). An expert system is a
caricature of the real expert who is said to know more and more about less and less
(Forsyth 1989). Expert systems technology offers an opportunity to build applications
that replicate intelligence. Knowledge is the fundamental concept. Harnessing,
distributing and amplifying this resource is the goal of expert systems (Goodall 1989).

ARTIFICIAL INTELLIGENCE KNOWLEDGE ENGINEERING

CONVENTIONAL PROGRAMMING

Figure 3.1 The Different Concerns of A.I. and Knowledge Engineering

There are many successful applications where an expert system can surpass a human,
these tend to be in restricted domains with well defined parameters (see section 3.11).
One reference source, the CRI Directory of Expert Systems (CRI 1986) lists over 600
systems at the end of 1985, at present there are well over 1000 commercial systems

available.

It is difficult to determine how much money is being invested in artificial intelligence
research, or expert systems in particular. There is a rapid commercialisation of the
technology. The introduction of several IBM-PC based building tools has expanded the
number of companies who can begin to experiment with these systems. Artificial
intelligence and expert systems are likely to remain a major growth area in the 1990's.

A variety of expert systems are currently under development within the Advanced

Computer Applications Group at Nottingham University. The equipment selection
system project, which is the topic of this thesis, has been on-going for three years. It is
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capable of providing advice on a range of surface mining excavating and haulage
equipment. A slope stability expert system (ESDS) has been in development for six
years. From an original Prolog system it has been updated to a shell system capable of
reading graphical information and using it to predict and explain possible slope failures
(Kizil 1990). A spontaneous combustion expert system (ESSH) has been created to
predict the occurrence of coal heatings in surface mines, underground workings and
during shipment (Ren 1991). Three researchers within the Advanced Computer
Applications Group are at present working in the field of environmental hazard
prediction. These environmetal systems utilise and control algorithmic modelling

packages using expert systems (Denby et al 1992).

The Advanced Computer Research Group has taken full advantage of currently
available expert system technology to produce decision support systems. The group is
also beginning to evaluate machine learning techniques as solutions to planning
problems in the mining industry. This Ph.D. project examines the application of
intelligent computer techniques to surface mine design. To ensure that all aspects of this
topic had been considered an investigation into the application of machine learning was
carried out. Machine learning systems replicating some of the decisions made by the
MINDER system were developed using machine learning and neural network software.

3.2 Expert Systems

Knowledge based or expert systems are perhaps the most developed of the three
aspects of artificial intelligence. Figure 3.2 shows how computing techniques have
developed to solve more complex problems. The area on the left of the figure consists
of structured problems which can be analysed by means of an exhaustive search, these
problems are solved using conventional programming techniques.

The area in the centre of figure 3.2 represents ill-structured problems which existing
symbolic programming techniques can help to solve. The heuristic and knowledge
representational techniques used to prune problem spaces and provide workable
answers to problems of this type will be discussed in this chapter.

The area to the right of figure 3.2 represents problems which are only just beginning to
be represented by conventional or commercially available artificial intelligence software.
The problem of manipulating substantial amounts of knowledge is being solved by
parallel processing systems which are capable of rapidly processing the knowledge.
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Figure 3.2 Problem Domains of Knowledge Engineering Techniques
(Modified from Harmon and King 1985)

Machine learning techniques such as knowledge induction and neural networks are
being used to solve problems where the systems must learn from experience. The use
of these new techniques will be discussed later in this chapter.

Expert systems are knowledge intensive computer systems. They contain large amounts
of expertise, i.e. knowledge about a particular domain. There are many expert system
definitions available (Gashnig 1981, Brachman 1983 and Jackson 1986), although
most are similar. Professor E. Feigenbaum (Barr and Feigenbaum 1981) of Stanford

University has defined an expert system as :

...an intelligent computer program that uses knowledge and inference procedures to
solve problems that are difficult enough to require significant human expertise for their
solution. Knowledge necessary to perform at such a level, plus the inference
procedures used, can be thought of as a model of the expertise of the best practitioners

of the field.'

Expert systems differ from conventional programs in an number of fundamental ways,
as is shown in table 3.1. It can be seen that conventional programs are ideal for batch
algorithmic processing of numeric data. Unfortunately, few real world problems fall

into this category.
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Conventional Software Knowledge Based Software

Requires correct data Capable of handling missing
or uncertain information
Fixed procedural structure Sequence determined
by inference engine

Good for numerical processing Good for symbol manipulation

Only a programmer can understand Natural language interfaces
Mid - run explanation impossible Mid - run explanation possible

Structure Structure

|Pr2!rlm=A!‘2Ilbll¢Eu | t System = + m + Data

Table 3.1 Conventional and Knowledge Based Systems

Expert systems work using knowledge rather than algorithms. 'Data’ can be converted
to 'knowledge' by analysing, selecting, sorting, summarising or organising the data.
Knowledge is more valuable than data (Stonier 1989). Digital computers therefore
know nothing, they merely store and manipulate information. Thus the term

'knowledge base' is, strictly speaking, a misnomer.

Once the knowledge is stored within an expert system, a reasoning or inferencing
strategy must be selected. Inferencing is to knowledge as processing is to data.
Inferencing introduces causality into an expert system, transforming perceptions into

conclusions.

Expert systems need to be thoroughly tested, the best way to accomplish this is to have
a set of test cases. An expert system should be tested for all cases of uncertain or
missing information and any failure mechanisms should be noted. Expert systems are
notorious for degrading very ungracefully, that is a small error in the reasoning can lead

to major error in a conclusion.
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Knowledge engineers are now realising that small useful systems can be built which are
not modelled on human experts. This is not revolutionary at all, it is simply an
extension of basic computer principles to new levels of sophistication. Barr and
Feigenbaum (1981) point out that most problems can be represented cither by a search
for points in a state space, by reduction to simpler sub-problems or by decision trees.

Expert systems offer a view of the future of computing, but there are areas in which
further development is needed before the full benefits of artificial intelligence in
commercial software is realised (Partridge 1986). These problems are listed below :

The problem of knowledge representation.
The problem of knowledge acquisition.

The problem of the human-machine interface.
The problem of approximate reasoning.

0000

Some of the techniques used in overcoming these problems are discussed in this

chapter.
3.3 Knowledge Representation

The knowledge representation problem concerns the mismatch between human and
computer 'memory’ - i.e. how to encode knowledge so that it is a faithful reflection of
the expert's knowledge and can be manipulated by a computer. Psychological research
suggests that we do not exhibit the kinds of reasoning behaviour that we associate with
deductive or 'theorem-proving' systems (Hart 1985). Humans reason from situations

to actions, using logical consequences.

Knowledge engineers, or epistemologists, have defined several dimensions to
knowledge, such as: scope, granularity, uncertainty, completeness, consistency and
modularity. These dimensions will affect the techniques used to represent knowledge.
At present the system builder's best option is to use whatever formalism is available
which suits the task at hand. The most widely used representation techniques are briefly

listed below :

Semantic Networks : These consists of a collection of objects (or nodes) for
the representation of physical entities, situations or events, connected by
descriptors (or links) characterising their interrelationship. One of their main

properties is class inheritance.
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Frames (or scripts) : These are a collection of semantic network nodes and
links (called slots) that together describe a single object, act or event. A frame is
similar to a form with a title and number of slots which accept predetermined data

types.

Predicate Logic : The assigning of an object to a certain class, for example an
object being described by an attribute is the definition of a predicate (Carrol
1958). Predicate logic allows the derivation of the consequences of facts.
Predicate logic clauses with only one conclusion atom (Hom Clauses) have led to
the development of logic languages such as Prolog (Clocksin and Mellish 1981).

Production Rules : Propositional logic leads to rule-based systems containing
rules called productions and these have formed the basis of several well known
expert systems. The rules can be simple or complex, composed of single or
multiple IF and THEN clauses. The format may also be extended by use of AND
or OR logical operators to provide alternative values and express alternative
clauses. The general form of the rules is :

IF [ (antecedent 1).....(antecedent n) ]
THEN [ (conclusion 1)......(conclusion m) ]

Production rules are a natural way of expressing knowledge. They are easy to
understand both by programmers and by users and, being modular, new rules
(knowledge) may be added or deleted independently of other rules (Rosenman
and Gero, 1985).

The knowledge representation techniques above have been discussed in detail
elsewhere (Jackson 1986, Shadbolt 1989, Clarke 1990). The use of the term 'deep’
knowledge based systems is now being used to describe systems which allow more
sophisticated representations of knowledge. Steels (1986) uses the term 'second
generation' expert systems to denote those that combine heuristic reasoning based on
rules with deep reasoning based on causal models of problem domains.

3.4 Knowledge Acquisition

Modern knowledge based systems are confined to well-circumscribed tasks, applying
relatively simple reasoning mechanisms to some very specific area of expertise.
Specialist knowledge is narrow but deep; the jocular definition of a specialist being
someone who knows ultimately ‘everything about nothing'. Common sense is the tool
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of the generalist, who knows 'nothing about everything', this knowledge is broad but
shallow (Goodall 1989).

Expert systems do not learn and thus are limited to using the specific facts and
heuristics which were set by a human expert. Their lack of common sense means that
expert systems cannot reason by analogy, and their performance deteriorates rapidly

when problems extend beyond the narrow tasks they were designed to perform.

Knowledge acquisition has been defined as ‘the transfer and transformation of potential
problem-solving expertise from some knowledge source into a program' (Buchanon

1983). The knowledge acquisition process usually involves the following stages :

000000

Identify the knowledge domain.

Examine the proposed system goals.

Locate the sources of domain knowledge.
Define domain boundaries.

Elicitate the knowledge.

Review and analyse the acquired knowledge.
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Figure 3.3 Sources of Engineering Knowledge
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Knowledge consists of facts, procedures and judgemental rules and is widely
disseminated. Most expert systems rely on the intuitive knowledge of the human
expert, although other knowledge sources in addition to the human expert may be
consulted. Figure 3.3 summarises the various sources of engineering information (after

Clarke 1990).

Experts are notoriously bad at introspection, when it comes to describing their
reasoning processes they tend to tell stories (Forsyth 1989). Obtaining the knowledge
may be difficult for three main reasons :

o Deliberate resistance of the expert.
o Inarticulacy of the expert.
o Cognitive mismatch between knowledge and rules.

Several knowledge clicitation techniques exist (Boose 1986 and Adeli 1988), including
interrogation, experimentation, observation, questionnaires and literature examination.
Most elicitation techniques tend to be highly interactive, involving frequent meetings
with the expert. Often a small prototype is developed, which is modified by
consultation with the expert. The expert becomes involved in the development and often
becomes an active member of the development team.

The well-known difficulties in knowledge acquisition has led to the development of
machine learning systems (Hart 1985). Software induction tools have been developed
which allow computers to generate rules from pre-classified examples. Knowledge
induction techniques are discussed in more detail later in this thesis.

A knowledge engineer must become familiar with the knowledge domain under
examination, which is not always easily achieved. Expert systems are now being
developed by engineers as artificial intelligence techniques become more widespread
and user friendly.

3.5 Development Tools for Expert Systems

A number of activities precede the development of an expert system, these include
identifying the problem domain, finding the expertise and selecting the development
tool. There are essentially four main types of development tool available for expert
systems, which are listed below in order of increasing sophistication :
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(o) Algorithmic languages. (such as 'C’, Pascal, Basic)

(o Symbolic languages. (such as Prolog, LISP)

o Development Environments.  (such as Art, KEE, LOOPS)

O Expert System Shells. (such as Crystal, Leonardo, Xi-Plus)

3.5.1 Algorithmic Languages

Conventional languages are procedural in nature and designed to work on an
algorithmic basis. In the field of expert system development they often act as
implementation languages for production systems. An expert system is developed using
an artificial intelligence language, shell or tool and translated into a conventional
language when it performs satisfactorily. The designer needs to be well aware of the
internal workings of the inference engine although object orientated languages (such as
'C**") have made it easier to develop inference structures using conventional
programming languages. It is possible, using these languages, to design software tools
which enable engineers to develop their own systems (Mutagwaba et al 1991).

Only a few individuals have insisted on applying conventional languages to tasks for
which they were not designed, almost all expert system development has taken place
using other development mediums (Bramer 1989).

3.5.2 Symbolic Languages

Human knowledge is a dynamic concept and any attempt to represent it must involve
extensible knowledge structures. This was recognised in the development of artificial
intelligence languages which tend to be based around list structures which can be

extended, truncated and combined as desired.

Using a 'raw’ artificial intelligence language allows an implementer more flexibility but
requires more effort to be spent on facilities such as the user interface for which the
language may not be particularly well suited. Symbolic languages such as LISP and
Prolog are the most common :

LISP (LISt Processor) : This language contains a set of primitive operators
that enable it to carry out several kinds of deductions with lists containing
arbitrary strings of characters representing predicates and their arguments

(Charniak and McDermott 198S).
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Prolog : Prolog is a higher level language than LISP in that it has deductive
and search capability already built in. Prolog is a vehicle for declarative
programming : by providing a Prolog program with a set of statements or
axioms describing some system, it deduces desired additional facts.

3.5.3 Development Environments

Development environments, or toolkits, are usually based on hardware optimised for a
symbol manipulation language such as LISP or Prolog. These symbolic languages are
embellished with context sensitive editors and graphics and often contain a built-in

inference method.

Typical development environments are KnowledgeCraft, Art and KEE (Jackson 1986)
which offer a variety of methods for representation and control of the reasoning
process. They provide some partially-working modules in a number of libraries which
can be linked by the programmer to develop applications. Programmers can also add
their own tools into the environment.

Many large scale applications in the USA have been built using these development
environments (Bramer 1989). Unfortunately these are generally large items of
software, which often require specialised hardware and are correspondingly expensive.

3.5.4 Expert System Shells

Expert system shells contain knowledge representation facilities and inferencing
mechanisms. A shell can be thought of as an expert system with all the domain specific
knowledge removed and a facility for entering a new knowledge base provided.

In Britain the principal development vehicles for expert systems in business and
industry have been relatively unsophisticated rule-based shells. A large number of
expert systems have been constructed in this manner, and are being used on a regular
basis (CRI 1986). Ready-made applications are now available, these allow solutions to
problems in specific domains and are mainly available in fields such as fault diagnosis

and legislative advice.

During the development of a major expert system many organisations purchase an
inexpensive shell for prototyping purposes. This allows small demonstration systems
to be built and problems recognised before the large scale development work begins.
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Inference methods vary significantly from one domain to another and expert system
shells have developed to allow the designer more flexibility during the building of the
expert system. Some of the expert system shells currently available are listed below :

EMYCIN (Empty MYCIN)

ESIE (Expert System Inference Engine)
Savoir

Leonardo

Crystal

KnowledgePro

COMDALE

Guru

Xi Plus

C0C000000O

3.5.5 Development Tool Selected

When work began on an equipment selection expert system the choice of a shell was
determined by the characteristics of the problem. The Xi Plus expert system shell was
selected to reduce programming effort and allow more time to be devoted to the
building of the knowledge bases. The development of the expert system using Xi Plus
took place on an IBM PS2, Model 70 running under MS-DOS, the configuration of

which is shown in figure 3.4.

The Xi Plus software is written in 'C', but both the end user and knowledge engineer
work with a simple English grammar. Knowledge representation is in the form of
production rules, following a simple IF-THEN format. Xi Plus provides knowledge
engineering facilities allowing a knowledge engineer to create, modify and explore
knowledge bases. Extensive interfacing facilities are also provided, these link Xi Plus
to external software such as Dbase IV and programs written in Pascal, C, or Assembler
(Expertech 1988).

The MINDER cquipment selection system, developed using Xi Plus, uses information
from Mine Design packages such as Surpac and Datamine, accesses a commercial
database (Dbase I'V) and utilises simulation software (GPSS). Pascal software has been
written to perform the algorithmic functions required by the expert system, and DOS
text files are used for data handling. Rules induced from machine learning software
have been imported into the expert system (see section 3.10 of this chapter). Figure 3.5
illustrates the major external software links to the expert system.
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3.6 Architecture of a Knowledge Based System

The fundamental components of all knowledge based systems are a knowledge base (to
store expertise) and an inference engine (to put it to work). Expert systems also require
a knowledge acquisition module and an explanatory interface. The architecture of a

complete expert system is shown in figure 3.6.

3.6.1 The Knowledge Base

The knowledge base is essentially an empty framework, which becomes a working
knowledge base with the addition of the expert's know how. For each application,
knowledge bases contain the high-level expertise and detailed knowledge
representations. Within an Xi Plus knowledge base information is represented in the

form of production rules, in a format similar to simple natural language.

3.6.2 The Inference Engine

The knowledge application system provides the computational mechanism to apply
stored knowledge to data to arrive at a conclusion. Xi Plus contains a ready built
inference engine, which is essentially a set of routines, which operate in conjunction
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Figure 3.6 Architecture of an Expert System
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with the internal database (working memory), to carry out inferencing and control

strategies (see section 3.8).
3.6.3 Working Memory (Internal Database)

The working memory acts as a working store, a ‘notepad’ which the inference engine
uses to hold data on the current status of a problem. The expert system's internal
database is equivalent to a table in the computer's memory. The database works with
the agenda (or inference register) which contains the information controlling the

inference process when running a query.
3.6.4 User Interface

The user interface is provided to handle the dialogue between the operator and the
inference engine. An intelligent user interface should allow the user to make enquiries
of the expert system, to volunteer data and inform the user of any conclusions. Expert
system interfaces often contain two other facilities:

o Help Facility : The user interface should provide additional
explanations to questions and supplements the users understanding.

o Explanation Facility : The explanation facility is an important aspect
of any expert system and allows the user an insight into the inferencing
process. A solution may be worthless unless the computer can justify
it's reasoning, often the explanation is more important than the results.

3.6.5 Knowledge Acquisition Module

This module is used to create the knowledge bases, it is the knowledge engineers
interface. This can connect to machine learning software, which is capable of inducing
rules from examples (see section 3.10 of this chapter). The knowledge acquisition
module contains two linking facilities :

o Knowledge Base Editor : The editor provides a means of building,
editing and examining the rules within a knowledge base. It also
provides the facilities of the user interface allowing the engineer to

consult the expert system.
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o Diagnostic Facility : This facility allows the knowledge engineer to
log the dialogue and trace the reasoning by displaying the chains of rules
fired.

3.6.6 External Interfacing

The capabilities of most expert systems can be extended by making use of external
interfacing. This permits a knowledge base to make use of functions that are best
written in a conventional programming language. Packages such as AutoCad,
Spreadsheets and Dbase IV can be called and controlled from the Xi Plus expert system
shell. The external interfaces used by the MINDER system will be discussed in more

detail in Chapter 4.

-------------------------------------------------------

DEFINITIONS

LIBRARIES

SRR R PRR SONEASRE

Figure 3.7 Knowledge Base Components

3.7 Knowledge Base Components

The basic units of an Xi Plus knowledge base are shown in figure 3.7. A knowledge
base can have just a few rules, or thousands, depending on its scope and application

domain.

3.7.1 Text Items

Within an Xi Plus knowledge base, identifiers can represent any item that can be
expressed in words. They are used with relations and values to form clauses analogous

to a spoken phrase :
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Spoken Phrase: Subject Verb Object
Xi Plus: (Identifier) (Relation) (Value)
Example: ground is hard

Identifiers are used in different ways within the knowledge base, an example of each of
these text items can be found in figure 3.8 which shows text items in a simple Xi Plus

knowledge base.

O Assertions : An assertion is a special type of identifier, the complete
phrase is either "true’ or 'false' and does not contain a separate relation

and value.

o Rules : Rules express the essential heuristics or knowledge of the
domain. The normal form of a rule is the basic [F-THEN format. This
format may be extended by the use of OR to provide alternative values
and express alternative clauses.

o Demons : A demon is a priority rule which fires immediately its
conditions become true. Demons share exactly the same format as
normal rules except that when is used instead of the if keyword.
Demons provide the forward chaining mechanism within Xi Plus (see

section 3.8).

O Facts : A fact is an assignment or unconditional rule, which is treated
as true in all circumstances.

o Defaults : A default is used within a knowledge base to establish a
value for an identifier, when all other means have been exhausted.

(o] Comments : Comments are used to annotate knowledge items, to help
in the understanding and maintenance of the knowledge base.

3.7.2 Arithmetic

In any numeric condition both a relation and value can be replaced by an arithmetic
expression, for example ‘if temperature > 30°. When using arithmetic representation
there is an obvious contradiction between making the expression readable and keeping

it in the normal terse format.
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comment comment MUD Knowledge Base

rule 1 if it rained yesterday - assertion
then ground is wet - identifier -relation-value

if excavation material is earth
rule 2 and ground is wet
then ground condition is muddy

d when ground condition is Anything - local variable

emon then do report ground condition - call to the report library
default default excavation material is earth - used if material unknown
fact fact it rained yesterday - assertion is true

Figure 3.8 Example of an Xi Plus Knowledge Base

3.7.3 Definitions and Libraries

The knowledge base may use definitions made at the application level, these are
available to all knowledge bases within the application.

(o) Questions : Questions are used to specify the screen presentation of a
single user question.

(o) Queries : Queries are used to specify the screen presentation of the
query to the knowledge base.

o Identifiers : Identifiers specify attributes for an identifier concerning
the way it is used within the knowledge base.

o Assertions : Assertions refer to a complete condition or consequence
of arule. It is treated as a statement which is either true or false.

Three types of libraries are supported within any Xi Plus application :

(0] Form Library : The form library contains form definitions. A form
definition is used to specify a screen display that is produced from a
knowledge base during a consultation.

o Report Library : The report library contains report files. A report file
is used to display information from the knowledge base during a
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consultation. It can contain pre-defined text plus information entered

dynamically at the time of display.

o Help Library : The help library contains help files. A help display is
produced, when help is requested, from an application or knowledge
base list, and from a form or question display during a consultation.

3.8 Inferencing Mechanisms

A knowledge based system is an essentially declarative system and as such should not
be dependent on the order in which the rules are entered, stored or processed, unless
there is some good reason for forcing modularity on the rules. This means that there are
two primary problems facing the inference engine (Harmon and King 1985) :

o A knowledge system must have a way to decide where to start. Rules
and facts reside in a static knowledge base. There must be a way for the

reasoning process to begin.

o The inference engine must resolve conflicts that occur when alternative
lines of reasoning emerge. It could be, for example, that the system
reaches a point at which four or more rules are ready to fire. The
inference engine must choose which rule to examine next.

3.8.1 Reasoning Systems

Considering the reasoning systems used by conventional expert systems, a clear
distinction is seen between monotonic and nonmonotonic reasoning. In 2 monotonic
reasoning system, all values concluded for an attribute remain true for the duration of
the consultation session. Facts that become true remain true, and the amount of true
information grows steadily. In a nonmonotonic reasoning system, facts that are true

may be retracted.

Design and planning are good examples of problems demanding nonmonotonic
reasoning. In the early stages of a mine planning problem, it may make sense to assume
certain values, later as more information becomes available, these values may change.

Changing the value of a single attribute is not difficult, current software allows
identifiers to be reset or to have new values forced into them. Tracking down all the
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implications based upon a particular fact is difficult. Most knowledge based systems
marketed today allow only carefully controlled nonmonotonic reasoning. Xi Plus
provides a 'what-if' facility allowing identifiers to be altered, although the forcing of
new values into established identifiers during a consultation must be monitored

carefully.

It is clearly desirable for a facility to be available to ensure that no piece of knowledge is
inserted which directly contradicts knowledge already in the knowledge base. These
systems are often known as knowledge base management systems and are similar to
database management systems (Bramer 1989). Xi Plus provides such a system in the
form of a powerful knowledge base debugger which checks knowledge for circular
reasoning, logical contradictions and unused consequences.

3.8.2 Modus Ponens

Before examining the complex inferencing strategies found in expert systems, the basic
simple inference (as found in Aristotelian logic) will be described (Carrol 1958). This
logical rule is known as modus ponens and sanctions inferences of the form :

When A is known to be true,
and if a rule states "If A, then B",
it is valid to conclude that B is true.

Stated differently, when the premises of a rule are true, this allows a degree of belief in
the conclusions. This infers the truth value of one proposition from another using a rule
of inference in one step. During a knowledge base consultation inferences (or proofs)
will involve long chains of reasoning using the rules of inference and some initial
suppositions (or axioms). These chains of reasoning are controlled using two basic
inferencing methods, forward and backward chaining (Gervarter 1985).

3.8.3 Forward Chaining

In forward chaining, (also known as data driven or event driven reasoning) the user
provides initial data and the inferences made are those which follow from the data. The
premises of the rules in the knowledge base are compared to the contents of the
working memory. When a rule succeeds, its conclusion(s) are placed in the working

memory.

Reasoning in a forward chaining system is described as a ‘recognise-act’ cycle. First,
the rules that can succeed are recognised, then one rule is selected and the conclusion
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(or action) is asserted into working memory. The system then uses this conclusion as
initial data and proceeds to the next cycle. The inferences made are always consistent
with the supplied data and knowledge items, but they may be irrelevant because the

user may not be interested in the conclusions that result.

Data driven processing employs what have become known as ‘demons’. A demon is
the procedure that is attached to a data object, whenever the condition relating to that
data becomes true the demon performs the appropriate processing function.

Figure 3.9 shows an example of a forward chaining procedure through a simple
knowledge base, the knowledge has been taken from the example shown in figure 3.8.
Rule 1 and rule 2 are presented in figure 3.9 as demon 1 and demon 2 respectively (a
demon being distinguished by the 'when' keyword). Two pieces of initial information

are provided :
o 'it rained yesterday'
o ‘excavation material is earth’

From the assertion ‘it rained yesterday’ the inference engine fires demon 1 and infers the
conclusion ‘the ground is wet'. This is used in conjunction with the second piece of initial
information to fire demon 2 and infer that the ‘ground condition is muddy’. The inference

engine then reports these two conclusions to the user.

USER INPUT

excavation material is earth

DEMON 2

when it rained yesterday
then ground is wet

when excavation material is earth
and ground is wet J
then ground condition is muddy

Y

( CONCLUSIONS )

ground is wet
ground condition is muddy

Figure 3.9 An Example of Forward Chaining
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It is assumed that the rules are applied 'in parallel' which is to say that every rule fires
on the basis of the initial data. This strategy is particularly appropriate in situations
where data is limited and expensive to collect (Graham 1989). Typical domains are
financial planning, process control, the configuration of complex systems and system

tuning.
3.8.4 Backward Chaining

Most existing expert systems use a backward chaining (or goal driven) reasoning
strategy. In backward chaining the inference engine starts at the goal and works
'backward' through subgoals in an effort to select an answer. It therefore reasons
backwards from conclusions to the conditions that establish them, data and information
only being supplied as required. If the number of possible outcomes (i.e. the values of
the goal attribute) are known, and if they are reasonably small in number, then

backward chaining is very efficient.

RULE1 PY EJ RULE 1
- FACT

if it rained yesterday o if it rained yesterday
then ground is wet it rained yesterday then ground is wet

(]

RULE2
if excavation material is earth

and ground is wet
then ground condition is muddy|

NNNNNNN
AAAAAAAAY

QRAARAAAY
i excavation material is earth  [%

3
*
N

m & S o< A

QUERY ( CONCLUSIONS )

ground condition Cgmund condition is muddy ’

Figure 3.10 An Example of Backward Chaining

Figure 3.10 shows an example of a backward chaining procedure through a simple
knowledge base, the knowledge has again been taken from the example shown in
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figure 3.8. The inference engine begins with the goal ‘ground condition is 7', initially the
system retrieves all the rules which make a conclusion about the goal. In the simplified
example in figure 3.10 rule 2 is selected.

Each condition in the antecedent part of the rule is then evaluated to see if the rule can
be fired. The system queries the user, who responds that the ‘excavation material is earth’.
If the user had responded ‘unknown’, the system would have taken the default value

which has been specified as ‘earrh’.

The conditions are evaluated in turn and the next condition of rule 2 ‘ground is wer results
in the inference engine chaining into the conclusion of rule 1. The antecent part of rule 1
which is the assertion ‘it rained yesterday’ is proved to be true by a knowledge base fact.

The inference engine then uses this information to back track through the rules firing
them in sequence, as shown on the right hand side of figure 3.10. This results in the
system providing an answer of ‘ground condition is muddy’.

Backward chaining mechanisms are generally used where the quantity of data is
potentially very large and where some specific characteristic of the system under
consideration is of interest. Typical applications include medical diagnosis and fault
finding, most expert system shells rely on some form of backward chaining.

3.8.5 Hybrid Systems

Many problem categories can be solved using either backward or forward chaining
strategies. A hybrid approach using both forward and backward chaining has been

shown to provide extra flexibility.

Xi Plus integrates both forms of inferencing and provides a smooth interface between
the two. The inference engine starts with a goal and then backward chains to some
plausible condition and then forward chains to exploit the consequences of this new
datum (Graham 1989). This is often called 'backward chaining with opportunistic
forward chaining', because the data directed search exploits the consequences of data as
they become available ‘opportunistically'. Within Xi Plus this method is controlled by

the use of demons.
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3.9 Uncertainty
Bertrand Russell noted in 1923 that :

‘All traditional logic habitually assumes that precise symbols are being employed. It is
therefore not applicable to this terrestrial life, but only to an imagined celestial

existence.’

One feature of expert systems is their ability to overcome the restraints of conventional
logic and continue reasoning in the face of uncertain or missing information. The
concept of 'uncertainty’ which arises in an expert system can be described as being
derived from the following sources (Jones 1989) :

Lack of data.

Inconsistency of data.
Imprecision in measurement.
Imprecision in concept.
Lack of theory.

00000

In practice a frequent problem is that knowledge is not available to an expert system (or
of dubious reliability), but it is nevertheless essential to the systems inferencing
process. There is no clear-cut and completely satisfactory way of dealing with this

problem of missing knowledge.

Many models of inexact reasoning have been developed, but none has been selected as
an optimum technique. The methods developed include : Bayes's theorem, certainty
factors, fuzzy logic, possibility theory, belief theory and the use of non-standard
logics. Another common technique is the use of formal definitions of linguistic
concepts of certainty, such as X is likely’ or X is suspected’. This technique is often used
in conjunction with other uncertainty methods.

It is important not to be carried away with quasi-mathematical formulations which look
impressive but do not actually correspond with real evidence. Experience with human
experts has shown that experts do not use information in a way compatible with
standard statistical methods (Negoita 1985). The following sections will consider a
selection of relevant uncertainty handling methods.
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3.9.1 Bayes's Theorem

The Reverend Bayes was an 18th century English vicar who spent his life studying
statistics. Essentially, the theories he developed rely on the belief that for everything,
no matter how unlikely, there is a prior probability that it could be true (Naylor 1989).
It may be a low probability, in fact it may be zero. This does not prevent the calculation
from proceeding as if a probability existed. Given relevant evidence this prior
probability can be modified to produce a posterior probability of the same hypothesis.
Bayes's rule can be encapsulated in the following expression.

P(H:E) = P(E:H) x %%'}
This states that the probability of a hypothesis (H) given some evidence (E) is the
probability of the evidence given the hypothesis times the probability of the hypothesis
divided by the probability of the evidence. Bayes's theorem has been used as the thread
to tie together chains of uncertain inference in many commercial expert systems, such
as PROSPECTOR (Gashnig et al 1981).

3.9.2 Certainty Factors

One of the simplest methods of coping with uncertain information is to assign
numerical certainty factors to rules. These numerical values indicate the level of doubt,
uncertainty or level of belief (Brown 1988 and Shortliffe 1976). Certainty factors have
values between -1 and +1 and are commonly determined from the representation shown

in figure 3.11.
There are three ways that degrees of certainty can be managed within an expert system :

o Facts may be concluded by more than one rule. A combining function
blends the certainty factors.

o Compound premises (clauses joined by AND or OR) may test uncertain
facts. An uncertain premise leads to an uncertain conclusion.

O  Rules themselves may be less than definite.
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Figure 3.11 Certainty Factor Representation (The Impact Ruler)

Two certainty factors (CFy and CF;) may be added to give a final measure of belief
(CF) using the following simple equations. The formula to be used depends on whether
the individual certainty factors are positive or negative. The combining function for
more than two certainty factors is applied incrementally (Giarratano and Riley 1989).

CF1 + (CF2x (1 -CFj)) If both CF; & CF; > 0
CE1.+.CE>
= If either CF c
i 1-min (ICF1l, | CF21) i Dalioht gk
CF; + (CF2x (1 + CFy1)) if both CF; & CF; < 0
CF=0.76

00 Jor 102" "lo3 04 |05 |06 07. |08 09 (1.0

Ignored Slight +Probable :  Almost Definite
Evidence ‘Evidence : Certain
> Evidence
CF1=0.6 : :

CF2=04

Figure 3.12 Certainty Factor Combination

An example of certainty factor combination is shown in figure 3.12. The first
conclusion is 0.6 certain and the second conclusion is 0.4 certain, which pushes the
total certainty 40 percent closer to total certainty. The final certainty factor is 0.76

certain. The calculation is shown below :

CF = 0.6 + (04 x (1 - 0.6)) = 0.76

It can be seen that as more positive information emerges then the confidence in a
conclusion rises. Indefinite information will never accumulate to yield a definite

conclusion.
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3.9.3 Fuzzy Set Logic

The concept of a fuzzy set was introduced by Zadeh (1965) who recognised that human
problems were not amenable to standard control systems. Zadeh's principle of

incompatibility states that :

‘As the complexity of a system increases, our ability to make precise and yet significant
statements about its behaviour diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually exclusive

characteristics.’

Set theory and formal logic are dual representations of the same information. The law
of the excluded middle states that for any 'thing' it is either true or untrue that it
possesses any given property. Fuzzy sets and fuzzy logic repeal this law. Any object
may be a member of a set 'to some degree’; and a logical proposition may hold true 'to
some degree'. Figure 3.13 illustrates the concept of fuzzy sets by their membership
definition. The classic set M shows a very well defined line of criteria for membership
of the set. The fuzzy set M' graphically illustrates the concept that there is a cloudy or
imprecise boundary for membership of the set. In the case of the fuzzy set, the grade of
membership of x in M' will be a number in the range of 0 to 1.

M

®e®

Membership Value of A = 1 Membership Value of A = 1
Membership Value of B =0 Membership Value of B = 0
Membership Value of x=1 Membership Valueof x: 0 <x <1

Figure 3.13 The Concept of Crisp and Fuzzy Sets (after King 1986)

A fuzzy set can be regarded as a label applied to a linguistic concept which has no
precise boundary; and such concepts, with all their associated vagueness, are how
humans mediate and exchange ideas (Fairhurst and Lin 1985). Figure 3.14 shows how
fuzzy sets can be represented numerically. The chart to left of the figure is a truth table
selecting numbers between 4 and 9. The chart on the right shows numbers which are
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near 7. This is a fuzzy set, each particular number along the x-axis has a degree of
membership of the set (normally represented as u(x)). The y-axis is scaled from 0
(meaning false) to 1 (meaning true).

Truth

1.0 1.0
] ] 1 (x)
- 5 — &~
B
— =g
0.0 Is.0 | 10.0 0.0 150 I10.0

The Crisp Set { x: 4<x<9 }

The Fuzzy Set { x: x near 7}

Figure 3.14 The Difference Between a Crisp Set and a Fuzzy Set

Often a weak point in the application of fuzzy logic is the mapping or membership
function of the set. Someone has to decide the shape of the fuzzy set graph such as the
one shown in figure 3.14 (Bellman and Zadeh 1970). There are no strong grounds for
prefering one mapping function over another and often many different functions are
applied. To allow these fuctions to take place the theoretical set operations of
intersection, union and complement are used.

GROUND CONDITION

Preference Structure Membership Value
Very Dry 0.1
Dry 0.3
Average 0.5
Wet 0.7
Very Wet 0.9
Impact Ruler (Similar to Certainty Factor)
: : %
1: Very Wet 0.5 : Average 0: Very Dry

Table 3.2 The Transformation of Ground Condition
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Linguistic variables from within a knowledge base need to be converted into
manipulative numerical values, (qualitative to quantitive). The linguistic preference
structure is assigned membership values of a set between 0 and 1 (Guo and Clibbery
1990). Table 3.2 illustrates this principle applied to the factor ground condition.

This linguistic preference structure allows fuzzy set membership values to be
manipulated in the form of matrices. Computer representations of fuzzy sets often take
the form of two dimensional arrays, stored as individual files in the computer memory
(Bandopadhyay 1987 and Clarke 1990). Within these knowledge matrices each column
represents an alternative within a particular domain, each row represents factor or
features relating to those alternatives and each cell in the matrix is the relative merit of a

factor for a particular alternative.

A simple example of a complete knowledge matrix is shown in figure 3.15. From this
knowledge matrix an evaluation matrix is built by extracting relevant information for the
problem. The example shown in figure 3.15 is an equipment selection example, the
alternatives are shown along the top of the knowledge matrix, and all factors are shown

at the side of the knowledge matrix.

Preference Structure

0.9 - very high
0.7 - high

0.5 - average
03 - low

0.1 - very low

|
130045
LY pov Pasqy
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e [ |
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Overtmrdan -:-’.- 3 8 3 3 o
a & o »
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Figure 3.15 Construction of a Simple Evaluation Matrix
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Final Rating Matrix

Figure 3.16 Combination of Knowledge Matrices

A variety of knowledge matrices may be considered, each representing knowledge from
different sources, possibly the opinions of a different experts, see figure 3.16. These
matrices may be aggregated together using a variety of techniques (Hippel 1982) such
as:

Pessimistic Aggregation.
Optimistic Aggregation.

Mean Aggregation.

Modified Pessimistic Aggregation.

00O

There are two main algorithms used to rank fuzzy alternatives these are the dominance
algorithm and the similarity algorithm (Bandopadhyay 1987 and Bellman and Zadeh
1970).

3.9.3.1 Multi-Criteria Dominance Algorithm

This algorithm ranks alternatives depending upon the domination of one alternative over
another. Within the evaluation matrix an alternative is said to dominate another if its

membership value for a given feature is greater than any other alternative (Clarke
1990). The imprecision or fuzzy nature of the attributes is accounted for by the

application of an equivalence limit (Alley 1979).
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Figure 3.17 Multi-Criteria Dominance Algorithm

Figure 3.17 shows an example of a decision using a dominance algorithm, the
evaluation matrix is a fuzzy set of equipment selection alternatives taken from the
knowledge matrix shown in figure 3.15. A dominance matrix is created from the
evaluation matrix. Each dy element within the dominance matrix indicates the number
of factors for which the value of alternative j dominates alternative i. For example the
dragline dominates the shovel twice (dj2) and the shovel dominates the shovel and
truck once (d23). The columns are summed to give the number of dominances over
other alternatives, the rows are summed to give the number of dominations by other
alternatives. The final ranking is achieved by a subtraction of the two values for each
alternative (Bandopadhyay 1987). Weightings are often applied to the factors within the
matrix to give a more realistic opinion.

3.9.3.2 Multi-Criteria Similarity Algorithm

The concept of fuzzy similarity was introduced by Yun and Huang (1987). Similarity is
defined by the concept of Hamming distance (Kaufman 1975 and Znotinas and Hippel
1979) which is a relative measure of difference between set members. For fuzzy sets,
Hamming distance can be defined as follows :
{ =0
AAB = Y | nCAG - n(BGxp)
i =1

where d(A,B) is the Hamming Distance between fuzzy sets A and B
and  p(A(xp) is the membership value of the fuzzy set.

A simple example of a similarity ranking of mining equipment is shown in figure 3.18,
where the evaluation matrix from figure 3.15 is taken as the fixed model which
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represents the actual mining conditions encountered. The aim is to select the item of
plant closest to the ideal values which are stored in an ideal matrix. The Hamming
distances are calculated by subtracting the matrix cells for each altemative from their
respective ideal value. Relational matrices are then developed using Hamming distance

ratios of the format :
ratio of cell rya = D1/ (D1+D2)
£
i
EVALUATION i
MATRIX ; f i IDEAL MATRIX
ACTUAL o | RO AT
MATRIX ——s w6 89 o9 o9
AND vt
IDEAL
MATRIX Cod flvum Sugpert a9 03 03 07
Meanny s 65 0SS 09
FACTOR D1=0.0 D1=0.2 D1=03 D1=0.1
HAMMING D2=0.2 D2s0.2 D2=0.3 D2=0.1
DISTANCES D3=0.4 D3 =02 D3=03 D3=0.1
D4 =06 D420.2 D4=0.1 D420.3
- 10 10 10f- 05 o5 05 [~ 05 05 025 - 05 05 075
RE::%T‘?:AL 00 - 066 075J 05 - 05 05 |05 ~ 05 025/ 05 - 05 075
00033 - 06]0505 - 05 |0505 - 0260505 -~ 075
MATRICES 00025 04 - Josos 05 - [075075075 — | 025025025 -
FACTOR
RANKING
MATRICES
FACTOR : 3 ? : FINAL RANKING
i;‘:&,:gg;’ 2 2 21 DRAGLINE 5
11 1 4 SHOVEL 6
SHOVEL AND TRUCK 7
MATRX[ 5 6 7 10 DOZER 10
TOTAL

Figure 3.18 Multi-Criteria Similarity Algorithm
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Each clement in the fuzzy relational matrix is then compared to a variable value. This
value is initially set at 1 and gradually reduced. If an element within the relational matrix
is greater than this value the element is changed to 1. This procedure is repeated until all
the rows consist of integers, and the order in which the rows fill with integers is placed
in the factor matrices. Each column of the factor matrices are transferred as rows into a
final factor matrix and the alternative columns are summed. The lower the total, the
more similar the alternative to the ideal matrix. The example shown in figure 3.18
selects the dragline. Weightings are often applied to the factors within the matrix to give

a more realistic opinion.

Fuzzy set logic has been successfully applied to many engineering problems such as :

(@) Seismic risk evaluation. (Dong et al 1986)

O Tender evaluation. (Nguyen 1986)

o land use. (Nijkamp and Vos 1977)

o Tunnel support design. (Fairhurst and Lin 1985)

o Rock mass classification. (Nguyen and Ashworth 1985)

3.10 Machine Learning

In the past, computer solutions have provided analytical solutions to structured
problems, these utilise conventional programming techniques. In solving ill-structured
problems symbolic programming techniques are applied. Heuristic and knowledge
representational techniques, such as expert systems, are used to prune problem spaces
and provide workable answer (Harmon and King 1985).

Many planning and engineering problems require that the data be constantly re-
evaluated to take on-going changes into account. This may involve the application of
nonmonotonic reasoning systems. In the early stages of a planning problem, it may
make good sense to assume certain values. Later as more information becomes

available, initial values may change.

If knowledge systems are to handle such problems, the systems will have to be able to
learn from their own experience and constantly update their knowledge (Buchanon
1976). These various approaches to building systems that can learn from experience are
normally spoken of as machine learning. Self leamning systems are only just beginning
to be represented by conventional or commercially available Al techniques.
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Expert Systems Neural Networks
Rule Based Example Based
Domain Specific Domain Free
Needs Rules Finds Rules
Much Programming _Little Programming
Difficult to Maintain Easy to Maintain
Not Fault Tolerant Fault Tolerant
Needs a Human Expent Needs a Database
Rigid Logic Fuzzy Logic
L_Requires Reprogramming Adaptive System

Table 3.3 Comparing Expert Systems and Neural Networks

Computers are currently becoming available which involve 'machine learning' and use
'parallel processing systems' allowing the rapid processing of self-learning reasoning.
Techniques such as knowledge induction and neural networks are now being used
along with parallel processing systems to overcome the nonmonotonic reasoning
barrier. Table 3.3 shows the differences between expert systems and neural networks.
If a rule based expert system is designed to model a process, and the process is
modified, then the expert system may need to be rebuilt. Whereas, with a neural
network based system, all one would have to do is retrain the network.

3.10.1 Knowledge Induction

Induction is defined as the automatic creation of a hypothesis by analysis of initial data.
The aim of induction is to alleviate the ‘expert system bottle-neck’ of knowledge
acquisition. Knowledge induction is important since the power of an expert system lics

in it’s specialist knowledge.

Experts are subjective, forgetful, they omit details and may be inconsistent. Experts
find it easier to quote examples then to describe processes. If a set of decisions are
provided which consist of the outcome and the factors contributing to this outcome then
a knowledge induction system can induce rules based on this data.

The relevance of a training set of data, from which the system learns, is important as
the system cannot induce what is not there (Hart 1985). This data set can take the form
of a truth table covering all results or it may be a set of noisy real data containing many

repetitions and irregular values.
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Figure 3.19 General Rule Induction Flowchart

The accuracy of the results is uncertain, often the quality of the results depends upon
the learning algorithm selected. Most algorithms involve the generation of a search tree,
in which the nodes of the tree make up decision rules, successive rules are generated
from these. The general method of rule generation is shown in figure 3.19. Most
techniques of knowledge induction can be split into three parts (the learner, performer
and critic) capable of generating new rules, using these rules and then evaluating them

repectively.
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3.10.1.1 Induction Techniques

Statistical analysis, although often useful in pattern recognition, is often not applicable
to knowledge induction. Heuristic methods are needed to guide this search and develop
low level rules into generic high quality rules. The search space often takes on the
aspect of a network, which may be optimised using many techniques including:

o Mitchell’s Technique : Mitchell’s ‘Binary Chop’ Technique lists all
possible descriptions of a set of data and the eliminates those that do not

apply (Mitchell 1982).

@) Quinlan’s ID3 : Interactive Dichotomizer 3, this creates a
discrimination tree from a subset of the data and verifies this against the
remaining information (Quinlan 1982). This has recently been
developed into the Quinlan C4 algorithm which involves the use of

probability on the decision tree.

O AQ11 : This is an incremental technique, appending conjunctive terms
to give new evidence, (Forsyth 1989).

o META-DENDRAL : This uses a crude search to generate low level
rules and takes only the positive results to generate offspring from

these. It handles uncertainty well (Buchanan 1976).

o BACON 4 : This mathematical learning program searches for
algorithmic relations and claims to have ‘rediscovered’ almost all 19th

century chemistry (Langley 1981).

O UNIMEM : This is a database which organises itself, generalising
similar examples, allowing more efficient retrieval of information

(Lebowitz 1986).

The number of plausible structures for any set of data varies depending on the
technique used. Many items of commercial software utilising these techniques are
available. The Mining Department at Nottingham University uses Xi Rule, a companion
program to Xi Plus, also marketed by Expertech. This software uses a modified form

of Quinlan's ID3.
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From the training set of data a subset is selected
this is refered to as the ‘window’.

To this window the CLS algorithm is applied.
The Concept Learning Algorithm (CLS) was
developed by psychologists based on human
learning methods.

The CLS algorithm finds the variable which is
most discriminatory and partitions the data with
respect to that variable.

Having divided the data into two subsets, each
subset is partitioned in a similar way until it
contains products of only one kind.

The end product is a discrimination tree, a
knowledge representation format which is easy

to understand and use.

This tree is then tested against the original data
and refined to generate a set of 'true' rules based

on the decision tree.

i

Figure 3.20 Quinlan's ID3 Algorithm
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3.10.1.2 Quinlan's ID3

Quinlan’s Interactive Dichotomizer 3 is a general purpose rule induction algorithm
which is incorporated into many rule induction packages. This technique may not
produce accurate rules when faced with noisy data as it tends to always seek perfect
rules. The program works in manner shown in figure 3.20.

The main problems with this method of knowledge induction are :

The rules are not probabilistic.

Several identical examples have no more effect than one.
It cannot deal with contradicting examples.

The results are over-sensitive to small alterations.

0000

The modified ID3 algorithm is known as C4, this solves these problems by generating
decision trees capable of being pruned. Pruning involves eliminating any excess
branching or empty outcomes at the leaf nodes of the tree, away from the root induced
knowledge. This reduces the effects of noise, insufficient attributes and insufficient

examples.
3.10.2 Neural Networks

Artificial neural network models or simply “neural nets” go by many names such as
connectionist models, parallel distributed processing models and neuromorphic
systems. Whatever the name, all these models attempt to achieve good performance via
dense interconnection of single computational elements. In this respect, artificial neural
network structure is based on our understanding of basic biological nervous systems

(Widrow 1990).

Neural networks have been under development since the 1950’s. Much of the work
done has been in generating software that simulates the learning behaviour of a
hypothetical brain. Humans often learn by trial and error (Bhagat 1990). Neural
networks operate analogously. A network must be trained by being repeatedly fed input
data together with corresponding target outcomes. After a sufficient number of training
iterations, the network learns to recognise patterns in the data and, in effect, creates an
internal model of the process governing the data. The network can then use this internal

model to make predictions for new input conditions.
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The neuron is the fundamental cellular unit of the nervous system which includes the
brain. Each neuron is a simple processing unit which receives and combines signals
from many other neurons. The brain consists of tens of billions of neurons densely
inter-connected. The axon (output path) of a neuron splits up and connects to dendrites
(input paths) of other neurons through a junction refered to as a synapse. The synaptic
efficiency (or strength) combined with neuron processing forms the basic memory
mechanism of the brain (NeuralWare Inc. 1990).

In an artificial neural network, the unit analogous to the biological neuron is referred to
as a “processing element”. An artificial neuron, or processing element, emulates the
axons and dendrites of its biological counterpart with wires and emulates the synapses
by using resistors with weighted values (Decker 1986).

Biological systems are generally not very efficient at analysing logic or detailed numeric
processing. Living creatures are far better than our present computer systems at pattern
recognition and a host of other tasks necessary for the survival of an organism in a
dynamic and hostile environment. Neural network computer systems provide a kind of

self programming based on experience.

This does not mean that neural network development attempts to exactly copy the
mechanisms of the brain. The primary parallel between biological nervous systems and
artificial neural networks is that each typically consists of a large number of simple
clements that learn and are able to collectively solve complicated and ambiguous

problems.
3.10.2.1 Neural Network Structure

All the processing in an artificial neural network is carried out by nodes (or processing
units) - there is no ‘executive’ or ‘overseer’. Networks are trained on data for which
the ‘right answer’ is known, after which they should be able to generalise what they
know, responding correctly to novel data (Lippman 1987).

Computational elements or nodes used in neural net models are nonlinear, typically
analog and may be slow compared to modem digital circuitry. The simplest nodes or
processing elements sums a number (N) of weighted inputs and passes the result

through a nonlinearity as shown in figure 3.21.
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A Neural Network Computational Element or Node.
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Figure 3.22 A Schematic of a Typical Neural Network Structure
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The result is an internal activity level for the processing element. The combined input is
then modified by a transfer function. This transfer function can be a threshold function
which only passes information if the combined activity level reaches a certain level, or it
can be a continuous function of the combined input. The internal threshold or offset (8)
characterises the node. Figure 3.21 illustrates three common types of nonlinearities;
hard limiters, threshold logic elements, and sigmoidal nonlinearity. More complex
nodes may include temporal integration or other types of time dependencies and more
complex mathematical operations than summation.

The output path of a processing element can be connected to input paths of other
processing elements through connection weights which correspond to the synaptic
strength of neural connections. Since cach connection has a corresponding weight, the
signals on the input lines to a processing element are modified by these weights prior to
being summed. Thus, the summation function is a weighted summation. In itself,
this simplified model of a neuron is not very interesting; the interesting effects result
from the ways the neurons are connected.

The structure of a neural network forms the basis for information storage and governs
the network’s learning process. Neural networks (see figure 3.22) comprise of
interconnected simulated neurons. The processing elements are usually grouped into
linear arrays called layers or slabs. Most neural networks consist of three to five layers,
namely the input layer, the middle or hidden layer (s) and the output layer. Data is
presented to the network in the input layer and the response of the network to a given
output is in the output layer.

The input vector, applied to the input layer, is multiplied by the weight matrix of that
layer while interlayer connections transfer the new information to the middle layer. The
steps are repeated, in tumn, in the middle and output layers to ultimately generate the
output vector. A network where data flows through the network from one layer to the
next is called a feedforward network. Transferring output from a later layer into an
carlier one is referred to as a feedback or resonant network.

Neural networks of the feedback type have the ability to learn from their own

experience without being explicitly programmed for each new input. These not only
detect patterns or significant relationships in data, but also remember the patterns by

associating them with the weights assigned during the training phase.
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Among a variety of available leamning algorithms, perhaps the most popular is the back
propagation algorithm. This method allows errors to be propagated backwards from the
outer layer to the middle layer(s) and on to the input layer.

The multi-layer, hierarchical networks are more powerful because they can generate
their own internal representations in the hidden layers. These hierarchical networks are
used for the better known applications, such as speech and character recognition (Arbib
and Sun-ichi-Amari 1988).

When analysing a network, two kinds of hidden unit representations need to be
studied. First, to understand what the weights mean. Second, to look at the patterns of
activation of units in the hidden layer in response to particular inputs. Introducing a
layer of hidden units increases the power of the network, since each hidden unit can
partition the input space in a different way. The output unit then computes a linear

combination of these partitionings to solve the problem.

If the number of processing elements in the middle layer is too great, it will replicate the
elements from the input layer, causing problems similar to those encountered in a single
layer network. If the number of processing elements in the middle layer is too small,
the network will require many iterations to train, and recall accuracy will suffer.

3.10.2.2 Neural Network Paradigms

There are many types of neural network structures. This section introduces standard
network examples, each showing different perspectives of this wide field. A selection
of paradigms are briefly described below (Grossberg 1988).

Perceptron Networks : In the mid 1950’s Frank Rosenblatt devised a computational

model for the retina which he named the ‘perceptron’. The perceptron was designed to
model and explain the pattern recognition capabilities of the visual system. This is
basically a three layer, strictly feedforward network without any feedback, cross-talk
between processing elements, or randomness about the operation of the network.

Adaline and Madaline Paradigms : Widrow's earliest contribution to neural computing
was the Adaline (ADAptive LInear NEuron). This was a threshold logic device which
used outputs of -1,+1, the input to the unit was also bi-state -1,+1. Like the
Perceptron, the Adaline is capable of classifying linearly scparable patterns. However,
certain multi-layer extensions to the adaline paradigm provide a much richer technique
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for separating the input space. One of the earliest approaches to solving the linear
separability problem was the Multiple Adaline or Madaline. The Adaline elements in a

Madaline network evolve as detectors for specific input features.

Brain-State-in-a-Box : Anderson’s brain-state-in-a-box is essentially a linear
associative network combined with a nonlinear post-processing algorithm which is
used to clean up spurious responses. There are two learning rules associated with linear
networks, Hebbian learning and Widrow-Hoff (delta rule) learning. These two rules
give rise to networks with different characteristics. The potential applications of the
brain-state-in-a-box come from the experiments which have been done to create
associative memories and simulate human cognitive processes.

Hopfield Networks : In 1978 John Hopfield developed a new type of neural network
based on research into the neuro-physiology of garden slugs. The nature of Hopfield
networks lend themselves to analog and optical implementations. Using very fine-line
processes, the researchers have been able to put millions of connections on a single
chip. The high fault tolerance of partially damaged systems lend this technique for use

in robotic and control applications.

Back-Propagation : Complex non-linearly separable classes can be separated with a
multi-layer network. Back-propagation assumes that all processing elements and
connections are somewhat to blame for an erroneous response. Responsibility for the
error is affixed by propagating the output error backward through the connections to the
previous layer. This process is repeated until the input layer is reached. The name
‘back-propagation’ derives from this method of distributing the blame for errors.

Counter-Propagation : Counter-propagation was invented by Robert Hecht-Nielson. It
selects from a set of exemplars by allowing them to compete amongst each other.
Normalised inputs and competition between exemplars selects the nearest neighbour.
This provides a method of constructing an adaptive pattern classifier. If the input
classes are reasonably well separated, the network can learn the categories and how to

separate them.

A whole range of minor network paradigms also exist, many are modified forms of
those described above. Indeed, the major problem of building a neural network is to
select and configure the correct paradigm for the problem requiring solution.
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3.11 Applications of Expert Systems

The last decade has seen an increased interest in Al, improvements in computer power
and advanced software products has moved Al from the laboratory into industry. Many

expert systems have been developed for worthy applications.

Recent studies suggest that to improve productivity large corporations will need to
improve the overall coordination of their production, scheduling and management
systems. Knowledge based systems can be used to monitor and control complex
equipment, replacing or assisting the expert operator or engineer. By acting as 'front-
ends' to large conventional computer packages, they allow the user to communicate
with these packages in a natural language format (Harmon and King 1985).

The ‘deskilling’ of expert tasks may enable decisions to be made by those with
considerably less expertise. This may be highly beneficial as the skills of leading
experts could be made available in an expert system form to the remotest (or poorest)
parts of the world. On the other hand this transference of skills could foster an
increasing reliance on relatively junior members of staff, providing an excuse to

dispense with the experts (Bramer 1989).
3.11.1 General Applications

It is very difficult to fully assess the expert systems currently functioning or under
development. The following list gives some idea of the areas where knowledge based

systems can be applied with examples of existing applications (Denby and Schofield
1991).

Control : Expert systems can be integrated into the control and monitoring of complex
equipment. Current applications include nuclear reactor control, steel mill control
(Intelligent Applications Ltd. 1990), and chemical plant control from COMDALE

technologies.

Diagnosis : The replacement of procedure manuals by small expert systems allows an
engineer to find the reason behind faults from a consultation with the system. These
have been widely used in medicine, MYCIN diagnoses bacterial infections of the blood
(Shortliffe 1976). DENDRAL (Feigenbaum et al 1971) analyses chemical spectrograms
and AMETHYST is a widely used machine vibration monitor.
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Design and Planning : Design involves a combination of numerical computation and
information processing, together with a significant expertise from the planning
engineer. Computer Aided Design systems have often lacked flexibility, expert systems
integrated into existing systems can now aid the planning engineer. Architects use
intelligent systems to help in the structural design of new buildings (Maher 1985) and a
system known as XROUTE is able to solve vehicle routing problems (Kadaba et al).
DEC use the R1 expert system to configure VAX computer systems to customer
orders, resulting in a saving of approximately $20 million per year.

Interpretation : Expert Systems may be used as intelligent front ends to conventional
software, providing an intelligent mediator between the user's ‘ordinary' language and
complex software commands. SHRDLU was one of the first natural language
processors (Lightwave Consultants 1985), INTELLECT a modern language processor

allows the user to communicate with a database in English (Partridge 1986).

3.11.2 Mining Applications

In the late 1970's the PROSPECTOR was developed for the mining industry, which was
one of the first working expert systems. The success of this initial system resulted in a
variety of expert systems being developed, but the mining industry has not (in many
cases) committed the resources necessary for the development and application of

knowledge engineering techniques.
3.11.2.1 Geological Applications

Expert systems have been developed in a diverse range of geological fields from
exploration to classification to reserve modelling. The topic of mineral prospecting is a

common application area for expert systems.

PROSPECTOR : This is a large scale expert system designed to interpret mineral
data and predict the location of mineral deposits. Inference networks are used to
express both judgemental and static knowledge, and Bayes's theory is used to
handle uncertain information. PROSPECTOR discovered a previously unknown

$100 million molybdenum deposit in Washington state (Gashnig et al 1981).
muPROSPECTOR : This expert system, patterned after PROSPECTOR also aids

the geologist in evaluating unknown mineral deposits. This system has been
developed on an IBM-PC allows new models to be built (McCammon 1986).

Chapter 3 : 45



UP : The Uranium Prospector is a small expert system developed to analyses the
reasoning processes in exploring for uranium deposits in sandstone. The system
runs on an IBM-PC and used weighted probability factors to give a final value of
probability of uranium endowment (Chhipa and Sengupta 1987).

Miller (1987) discusses the possible future uses of expert systems in the evaluation of
energy resources, to counteract the loss of valuable staff during down turns in the

energy and mineral industries. King (1986) explains the use of expert reasoning models
applied to mine geologic data and the application of imprecise and fuzzy logic to mining
situations. Applications of these reasoning models in expert systems have included :

GEOSTATI1 : GEOSTATI1 decides upon the values of parameters allowing
variograms to be drawn. The expert system also determines homogeneous areas

within a large deposit (David et al 1987).

muPETROL : muPETROL provides the means for classifying the sedimentary
basins of the world as the first step to acquiring a regional geological background
for estimating undiscovered petroleum reserves (Miller 1986).

A natural development of the use of these expert reasoning models is their application to
geological modelling. One of the benefits to emerge from the use of new data structures
has been the opportunity to exploit powerful spatial searching techniques. Combined
with a rule base, these searches allow complex modelling problems to be attempted.

GEOCAD : GEOCAD is a computer based system which is designed to assist the
geologist and the production or planing engineer. The software uses an information
management system and small expert system modules to integrate the exploitation

context and the engineers knowledge (Cheimanoff et al 1989).

Krupp Polysius : An expert system is integrated into the existing software

environment of the deposit modelling program. The ultimate objective is to develop
an optimum strategy for the exploitation of a mineral deposit using quarrying

techniques (Streckhardt and Kade 1990).

EXPLORE : This Greek geological modelling system is used to model large

lignite deposits. The software is being developed to understand statements such as
'hill', 'river'’ and 'valley' and apply these statcments to the model (Galitis and

Doganis 1986).
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3.11.2.2 Fault Diagnosis Applications

Automatic interaction with the real world has been a major element in the development
of mining expert systems. Fault diagnosis expert systems arc used extensively in the
mining industry.

CATS-1 : This is General Electric's expert system for diagnosing diescl
locomotive malfunctions. It is used by repair personnel and is integrated with a
videodisk and a video terminal to provide visual explanations (Harmon and King

1985).

DELTA : This is the Diesel-Electric Locomotive "Trouble-shooting' Aid,
developed by General Electric as a companion program to CATS-1. It is used by
maintenance teams and has been applied to underground locomotives (Harmon and

King 1986).

Trolex : Trolex are developing expert system applications for monitoring,
diagnosis and interpretation of machinery faults. This is achieved using the spectral
interpretation of vibration 'finger prints' (Billington 1990).

Longwall Shield Supports : The failure of longwall shield supports has been
modelled in an Prolog based expert system knowledge base. The system uses a
process of symptom interpretation, as most failures can be identified as a
manifestation of some well understood failure mechanism (Bandopadhyay and

Venkatasubramanian 1990)
3.11.2.3 Underground Mining Applications

In spite of its success in other areas, applications of expert systems in both the surface
and deep mining industry has been fairly limited. In the area of underground
environment, a variety of systems have been developed.

METHPRO : The U.S. Bureau of Mines has reported a PC based system to aid in
the selection of methane drainage techniques for underground coal mining
situations. The user provides the system with mine information, the computer
analyses the mines problems and recommends control strategies (King 1986).
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DUSTPRO : A companion program to METHPRO from the U.S. Bureau of Mines.
This piece of software gives advice on dust problems in underground coal mines.

HEATDIAG : This expert system has been developed to handle the problem of
heat and humidity in coal mines. HEATDIAG identifies the existence of heat and

humidity problems in a mine and suggests a solution when a problem arises.

MECS : The Methane Explosion Consultation System diagnoses and assesses the
possibility of a methane explosion based upon coal characteristics, geological and
production conditions (Guo and Xin 1990).

AITEMIN : This expert system, developed by AITEMIN, evaluates the methane
explosion risk in coal mines using fault trees. The system is used as a decision

support aid for mining safety personnel (Alarcon and Silva 1990).

ESSH : The Expert System for Spontaneous Heating has been developed by the
Advanced Computer Applications Group in the Department of Mining Engineering,
Nottingham University. A large knowledge based system contains the information,
engineering judgement and experience to perform a risk assessment on a coal secam
in an underground environment (Atkins et al 1990).

The use of expert systems for design and planning applications has meant the
development of decision support systems to aid the underground mine planner.

Tunnel Support Design : By classifying the rock around a proposed tunnel
using fuzzy logic techniques this program is able to advise a mine planner on tunnel
size and support characteristics (Fairhurst and Lin 1985).

Mine Ventilation Planning : This expert system controls an algorithmic
network analysis program, and examines the input and output with regard to legal
stipulations and ventilation principles. The system then analyses the network output
in terms of the critical parameters in the context of the given problem (Ramani et al).

PSSS : The Powered Support Selection System is an expert system designed to
select the proper roof supports based upon seam and roof characteristics. It
provides a subjective assessment of the roof stability and a supports suitability to

the mine roof (Guo and Xin 1990).
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RESCUE : This expert system was developed for underground mine fire
emergency situations. The atmosphere in the vicinity of the fire is monitored to
determine the response of the fire to fire-fighting techniques (Osei-Tutu and Baafi

1990).
3.11.2.4 Surface Mining Applications

Expert systems have been applied to various aspects of surface mine planning including
slope stability assessment.

SSA : The Slope Stability Analyser is a Prolog based expert system running on a
VAX Mainframe computer. This system guides the user through various failure
scenarios and suggest failure types. The system is very simple and is capable of
directing a student of slope stability in the right direction (Sinha and Sengupta

1989).

ESDS : The Expert System Slope Design System was originally built in Prolog in
the Department of Mining Engineering, University of Nottingham (Brown 1988).
This early expert system has now been altered to run using compiled high level
languages and a shell system. Based upon several Ph.D. thesis the system
automatically identifies potential slope instabilities (Kizil 1990).

Blast Design : This expert system which designs and evaluates opencast mining
blasts includes a fragmentation prediction function and an algorithm to select
blasting detonator delays. The program is written in LISP and runs on an IBM PC
(Scheck 1988).

Expert systems capable of selecting equipment and advising on equipment use have
been developed. These systems handle the uncertain information and heuristic
knowledge needed for such a decision, the optimum item of equipment is often not

readily apparent.

ASTURLABOR-hulla : This Spanish expert system sclects mining methods and
equipment primarily based on the characteristics of the coal seam to be worked. The

ASTURLABOR-hulla expert system is specific in as much as it selects a suitable
mining method for the geologically disturbed bituminous coal region of Central

Asturia in Spain (Cortina 1989).
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MINDER : The topic of this thesis is the MINDER, (MINe Design using Expert
Reasoning) system developed in the Advanced Computer Application Group. The
system is designed to select optimum items of surface mining equipment and will be

discussed in detail in subsequent chapters.

Truck Dispatching : The Canadian organisation CANMET have written a Prolog
dispatching algorithm which has been integrated into a real time simulation
program. It is claimed that information expressed as logical clauses simulates the
commands issued by a dispatching foreman (Stuart et al 1988).

3.12 Machine Learning Applications

The state of machine leaming technology is such that the prototype inducted and neural
network decision systems have been developed using low-cost software on widely
available hardware. These systems have many applications in a variety of industries
making the knowledge of the engineer more widely available and providing new

methods of storing and generating knowledge.

Knowledge induction systems are used in conjunction with expert system shells as rule
generators, hence their applications are inseparable from the expert system applications.
Knowledge induction systems have been used to generate knowledge for insurance
firms, medical consultancy, crime detection and mineral exploration (Attar Software

1990).

The major independent application of knowledge induction is the analysis of data. It is
possible to obtain better performance using these techniques to analyse data then by
consultation with an expert. Recent applications have included data driven modelling of
the financial markets (Ricketts 1990) and consumer credit card information (Attar
Software 1990). The accuracy of customer credit worthiness prediction using
knowledge inducted from examples is claimed to be approximately 20% more accurate

than an expert opinion.

The applications benefiting most from neural networks are those that require the
understanding and recognition of patterns, where many hypotheses are pursued in
parallel and where high computational rates are required. Neural networks have mainly
been developed in certain application areas and distinctive features of these applications

can be identified.
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Pattern Recognition : Neural networks have been used in sonar target
Classification, radar signal analysis, speech synthesis, handwriting recognition and
clectrocardiogram interpretation.

Data Compression : Neural networks can compress images for transmission down
a communication channel with limited band width, and then reconstruct them with

minimum error.

Chaotic systems : Dynamic systems that are theoretically deterministic but
unpredictable in practice - are commonplace. Many such systems are treated as
random, but if the underlying dynamics can be gleaned, better predictions might
follow than statistical methods would suggest. Neural nets are sometimes able to
extract the underlying dynamics, and make effective predictions.

Forecasting : Neural networks are claimed by some to be a better technique for
economic forecasting than any other method currently used. This claim should be
viewed with some reservation, since much depends on the reliability of the data as
an indicator, and the way a chaotic system is sampled over time.

Although there are few current examples of neural computing in the field of mining
engineering it is worth speculating on the possible applications of this technology in the
future. The following examples represent possible areas which could be exploited by
neural network technology (Denby, Schofield and Bradford 1991).

Reserve Estimation : In the past the assessment of mining reserves has moved
towards the use of mathematically complex geostatistical techniques. A neural
processing approach utilising the same input data would replace the semi-variogram
fitting phase with a network training phase. Surrounding samples would be related
to individual samples on a repeated basis, until the spatial relationship becomes
encoded into the network. The network could then be used to estimate unknown
grades at other positions. Such an approach would remove the need to understand a
number of abstract concepts and mathematical details of the geostatistical method

(Burnett 1992).
Image Analysis : In the field of mining engineering, image analysis techniques
have been widely applied to the fields of blast fragmentation, particulate analysis

and remote control of mining machinery. The pattern recognition proficiency of
neural networks add a new dimension to the capabilities of visual and aural

information processing systems.
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Data Compressioa : In an underground mine a large amount of information is sent
along data channels from transducers monitoring the underground environment.
Large amounts of data are continually registered and a method of optimising the
information transmission could increase the frequency and reliability of data flow
within a mine. In addition, there is often a requirement to archive large amounts of
mine data in an efficient form for later retrieval.

Automated Rock Loading : Semi-automatic rock loading equipment, utilising radio
remote control and video systems are already in use in underground mines (Laurila
and Aalto 1990). The video images of the rock pile being loaded could be correlated
with equipment information read from transducers to generate a neural model of the
loading operation. This system would be designed to ‘try out' various strategies
based on what has been taught to see if the loading technique could be improved.

Decision Support Systems : Neural networks could be applied to the complex
planning decisions made in the initial stages of a mine design. The large amounts of
uncertain or missing data associated with these decisions supports the use of
intelligent computer techniques. For a number of years the work within the
Advanced Computing Research Group at the Department of Mining Engineering
has centred on developing expert systems for the mining industry. The emphasis of
the rescarch group is now moving to encompass aspects of machine learning
technology, applying neural networks to the problems of geological hazard
assessment (Kizil 1992) and equipment selection (Denby and Schofield 1991).

3.13 Conclusions

Knowledge engineering still has strong roots in academia, but many commercial expert
systems are now available. A few years ago there was a small number of languages and
shells. Today there are at least twenty versions of Prolog, at least ten versions of LISP
and over thirty shells. The power of these tools has increased enormously.

Even with this increased power, computers still do not encompass the richness and
depth of human reasoning, and won't for the foreseeable future. It is easy to imagine
that an expert system is knowledgeable, but the system only understands the meanings
assigned to the symbol names and as much of the structure as the syntax allows.

An expert system's conclusions may differ from those of an expert. Experts
unavoidably make mistakes and frequently disagree amongst themselves. A demand for
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absolute correctness is likely to prove fruitless. An expert system recently embarrassed
the Pentagon by winning the annual naval war game several times. On one occasion it
did so by destroying it's own crippled ships and steaming on to victory. The rules had
to be subsequently changed to disallow this rather bloodthirsty option (Graham 1989).
At this point in time expert systems are no more than idiot-savants. As our ingenuity in
manipulating computer systems grows expert systems will become more savant and
less idiot (Stonier 1989).

It is clear that if expert systems can come to terms with the technical problems that
exist, the potential payoffs could be enormous. By way of summary, at least six kinds
of use can be identified (Bramer 1989).

To increase expert productivity.
To augment expert capability.

To spread expertise more widely.
To provide expert training aids.
To preserve expertise.

To provide heuristic solutions.

000000

The loss of professional expertise in geology, geophysics, engineering and
geochemistry may prove to be the most serious outcome of the cyclic nature of the
energy and mining industry (Gregg 1986). The first trials of expert systems in the
mining industry have proved the economic benefits of these systems by resolving
problems which conventional programs are incapable of solving due to the complex
symbolic manipulation involved.

The field of mine design provides an opportunity for the introduction of machine
learning systems. The inherent complexity and the large amounts of information, often
of an uncertain nature, all indicate that these techniques should be utilised. Expert
systems offer a method of interfacing and controlling the various types of machine

learning software.

Neural networks won’t replace database and knowledge based processing because they
are inefficient when presented with imprecise data. In the next few years, it is likely that
the first practical neuron based circuits will appear in silicon, and a neural network may
be used as a co-processor controlled by a host digital computer. The combination of
traditional computers and the unique power of neural networks could unravel problems

that otherwise would remain unsolved.
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The MINDER system discussed in this thesis is an attempt to select an optimum item of
equipment for a particular mining scenario. In view of the difficulties in selecting
equipment and the substantial economic losses arising from the selection of the wrong
piece of excavation equipment, it is certain that this kind of system provides a valuable
decision aid to a surface mine planner.
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Chapter 4

System Architecture

4.1 Introduction

Mine planning, as detailed in Chapter 2, is a complex process due to the site specific
nature and the high inter-dependence of the decisions required. The general approach to
mine planning is one of progressive plan refinement as alternatives are evaluated.
Figure 4.1 depicts some of the broad inter-relationships that exist.

Site Characteristics Mine Parameters Deposit Characteristics

EQUIPMENT
/’ SELECTION \
UNIT

MINING

SYSTEMS OPERATIONS

\ TYPE OF __/

MINING

Figure 4.1 The Inter-Relationships Involved in Equipment Selection

The equipment selection process begins with the conception of mine development.
Detailed analysis starts after the exploration has located a deposit and preliminary
analysis has established that development is feasible and financially justified. Three sets
of constraints are identified which define the input criteria for selecting the mining

equipment to be utilised.
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O Site Characteristics : Such as terrain, labour availability, rainfall and
temperature.

O Mine Parameters : Such as production rate, production requirement,

property limits and product quality.

O Deposit Characteristics : Such as depth of deposit, deposit size,
deposit thickness, nature of overburden and material properties.

Deciding the relative effectiveness of equipment systems involves both qualitative and
quantitive analysis. Direct numerical estimates can be determined to match production
requirements, these are often based on a broad variety of assumptions with respect to
actual site conditions, formation characteristics, machine performance, operator and
management skills. The model is related to 'average’ or ‘typical' conditions which, of

course, rarely occur ( Martin Consultants Inc. 1982).

The standard computer tools used in mine design include databases, spreadsheets,
simulation and algorithmic software. The linking of conventional mine planning tools is
not a new concept (Renstrdm and Anderson 1990). The application of expert systems
to control these software packages, however, provides an innovative approach to mine
design. MINDER (MINe Design using Expert Reasoning) is an expert system developed
to select surface mining equipment for a particular mine scenario. The MINDER system
interfaces to, and is capable of controlling, the following conventional software.

Pascal : Pascal software is run to perform algorithmic calculations.
DbaselV : Databases of equipment and geological information.

GPSS : To simulate certain surface mine truck operations.

Excel : The system results are reported to a spreadsheet for scheduling.

0000

By making the system compatible with this external software interaction the user is not
required to have knowledge of each of the software packages involved. For example
the expert system can interrogate a DbaselV database to obtain information without the
user being aware that a database has been accessed. Interaction with the user is reduced
by the singular input of data, and the use of inferencing procedures to determine

relevant information.
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The MINDER system is also capable of making a decision when information is uncertain
or missing. A variety of uncertainty techniques are used, including linguistic variables,
certainty factors and fuzzy logic techniques.

Parallel to the principal MINDER expert system development an expert system module
relying upon induced knowledge has been created using the Xi Rule knowledge
induction software. A series of experimental neural networks have also been created
using the Neural Works Explorer software package. These machine learning
applications replicate certain MINDER decisions and are used as validation models.

4.2 System Knowledge Modules

During the development of the MINDER system the structure of the knowledge modules
has changed drastically. The initial architecture of the envisaged system is represented

in figure 4.2,

This structure follows a general rule for large applications where knowledge bases are
broken down into a number of knowledge modules. These knowledge modules
incorporate different types of knowledge; textbook knowledge, heuristic (surface)
knowledge and deep knowledge. These may be defined in a hierarchy of three levels.

TOPLEVEL §
MAIN DECISION STRATEGY LEVEL

L

2298989200R00020

DRAULIC a
EXCAVATOR | KNOWLEDGE BASE
SPECIALIST LEVEL
KNOWLEDGE BASH
GEOLOGY
KNOWLEDGE BASE RESOURCE LEVEL
—

Figure 4.2 Initial MINDER System Structure
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o Strategy level : Analyse state of the solution to decide upon the next
course of action. This knowledge module is used to control the
execution of the specialist knowledge modules.

o Specialist level : These expert knowledge modules control the
engineering heuristics, they evaluate the best design and make decisions
based on the information from the resources level knowledge modules.

o Resources level : These modules contain the analytical knowledge
and reference information required for analysis and design. The
resource level modules also tend to control database management

systems and information acquisition.

Figure 4.2 shows the original MINDER knowledge modules split into these three levels.
The top level main decision controls the execution of the specialist equipment
knowledge modules. These specialist knowledge modules draw on information from
the application packages and the geology resource module rules to suggest design
factors. The geology resource module covered a wide range of resource factors. A set
of control rules were incorporated into the geology knowledge base to allow different

queries to be fired as required.

The impracticality of this approach soon became apparent. One of the first problems
was the transfer of information between the various levels. If all the data in the working
memory was used this rapidly led to memory shortages. As knowledge acquisition
techniques were applied to each knowledge domain, the amount of knowledge began to
increase beyond a reasonable number of rules necessitating a new structure for the
MINDER system. To achieve this each level of action within the initial architecture was
split into an independent application. These individual application modules contain a
hierarchical structure of knowledge bases. A simplified example of an application
module is shown in figure 4.3, which illustrates the present dragline module

architecture.

Each individual application remains divided into the same three levels. The information

from the geology knowledge base of figure 4.2, however, has been distributed into a
series of smaller domain specific knowledge bases as shown in figure 4.3. Typical
dragline resource knowledge bases include ; discontinuity spacing, blasting and digging
resistance. Each of these individual modules will be discussed in greater detail in the

next chapter.
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KNOWLEDGE 8.

GEOMETRIC ADVICE
KNOWLEDGE BASK J

Figure 4.3 Dragline Module Structure
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To retain continuity the files belonging to each application were created to the same
specifications. The directory structure was the same for each application, an example of

the directory structure is shown in figure 4.4.

Expert
Dbase
Pascal
Fuzzy
Data

(Xi Plus knowledge bases and applications)

(DbaselV databases and indexes)

(Executable ‘in-house’ algorithmic software)

(Xi Plus knowledge bases and applications)

(Information handling files and final results)

Figure 4.4 Typical Directory Structure

It is still important that information can be passed from one application to another. For
example, if the hydraulic excavator knowledge base has been consulted, and the
haulage application is then queried, information from the excavator consultation should
be used during the haulage selection process. The solution to this problem is detailed in

the next section.

4.3 Information Handling

A large knowledge based system needs the ability to transfer data between the
knowledge modules through a common communication medium. An inheritance
mechanism can be used to control the manner in which attributes and values are
connected to sub knowledge modules via relational links. Communication between the

different sections of a large expert system involves three functions :
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o Linkage of Knowledge Bases.
o Transfer of Data Between Knowledge Bases.
o Transfer of Data Between Applications.

4.3.1 Linkage of Knowledge Bases

Within Xi Plus, the facility for one knowledge base to call another as a subroutine uses
the following form of call :

if / when .....
then do kb (kb name)

This provides a convenient means of linking knowledge bases. When such a call is
invoked, the expert system automatically saves the current state of the consultation in
the top level knowledge base before loading and running a sub-knowledge module.

Upon completion of the sub-knowledge module query, the call 'command return’
returns control to the top level knowledge base. Xi Plus then restores the previous state

of the top level consultation.
4.3.2 Transfer of Data Between Knowledge Bases

There are three main methods of transferring information between knowledge bases, all
have been tried within the MINDER system, with varying degrees of success. The three

methods are as follows :

O The Subroutine Call.
o The Save and Load Command.
o Using a Comma Delimited File.

4.3.2.1 The Subroutine Call

The knowledge base subroutine call facility 'do kb' allows ‘using’ and 'giving' lists
which provide a simple and effective way of transferring data across knowledge bases.

The call takes the following format.

it / when ... .
then do kb (kb name) using (input list) giving (output list)

The (input list) represents a list of one or more parameters, separated by commas, from
the calling knowledge base. If omitted, no input parameters will be passed to the called
knowledge base. The (ouspws list) represents a list of identifiers or assertions, separated
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by commas, which will be assigned the values returned by the called knowledge base
as it's output parameters.

An entry parameter in the called knowledge base, usually placed at the start, accepts the
information into identifiers from the do kb input parameter list. The format to return an
output list of parameters to the top level is :

if / when .....

then command retura (output list)
This approach is only suitable for knowledge bases in which it is anticipated that only a
few items of data will need to be transferred. It is not an efficient method when a large

amount of data is to be manipulated.

The MINDER system initially relied upon this transfer technique. Problems arose,
however, in knowing which information was needed at a particular time and in which
knowledge base. An attempt to transfer all the information that may possibly be used
resulted in unwieldy commands and system failures when data was unavailable.
Attempts to send only useful information led to an overly complex sequence of data

transfer rules. A better transfer method was needed.
4.3.2.2 The Save and Load Command

To transfer the full set of consultation data between two knowledge bases, the values
given and inferred from the top level consultation are retained in a file using the

following command.

command save data file specification’ (¢.g. d:\minder\dataNemp)

This saves the whole of the consultation working memory to a file within the MINDER
directory structure (in this case temp.dbc). This file can then be loaded into a second
knowledge base using the following command :

command load data file specification’ (e.g. d\minder\data\emp)

This technique was used briefly during the early stages of MINDER development and
soon abandoned. If one value from a particular knowledge base is needed, the whole of
the working memory has to be loaded. The system often failed as the memory was

filled with irrelevant data.
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4.3.2.3 Using Comma Delineated Format (CDF) Files

The Xi Plus ‘report to file' facility allows any ASCII text string to be output into a text
file during a consultation. Any identifiers that are contained in square brackets in the
report text will be substituted for their respective values as the report is output. This
preserves the values of identifiers that may subsequently be reset. This facility is used
to build Comma Delincated Format (CDF) files which can act as data output files from a
knowledge base.

These files contain a sequence of fields, separated by commas, and organised into
records. A record corresponds to a row in a spreadsheet with the fields being cells in
that row. The CDF data file interface program (defined as the ‘read cdf’ procedure) is
called to read these cells. This Xi Plus call requires the file name and the location of the
cells within that file to be defined. The data read from the file cells are placed into expert
system identifiers. Figure 4.5 shows how an identifier can be passed between two

knowledge bases using a CDF file (temp.dat).

|

TOP LEVEL KNOWLEDGE BASE »

if/when .....
then report to file temp.dat fexcavation material }
and do kb discontinuity spacing

"excavation material”,"Aard limestond"

SUB LEVEL KNOWLEDGE BASE

> | if/when ... I
then do program read cdf using ("temp.dat”,"b5.b5") giving (excavation material )

Figure 4.5 Information Handling Using Text Files

The complexity of the MINDER system meant that this file reading technique had to be
modified to allow any identifier to be checked for a previous value at any time. This
was achieved using global data files known within the system as 'cerebral’ files. Figure
4.6 shows an example of part of a dragline cerebral file. Each module of the MINDER
system has a cerebral file in the application's data directory. At the beginning of each
consultation the cerebral file is reset with blank or zero values, this effectively clears the

working memory.
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EAULAGE DATABASE

(32322123 Corobtnl.dﬂ: (42222 2
L Excavation Machine b
"excavation machine", "blank"
LA Material Size e
"excavation material™, "blank®
"gravel”™,"blank"
"surpac file existence","blank"

"material type™, "blank"

"blasting used"™, "blank™
"fragmentation”, "blank™

Figure 4.6. An Example of a Cerebral File.

Each time a value is required the MINDER system checks the application's cerebral file.
If a blank value is returned the the system calls either a knowledge base, which will
infer a value for the identifier, or a form, which will allow the user to select a value for
the identifier. Once an identifier has been given a value, the value is written into the
cerebral file, ready for future use. Control rules interrupt the backward chaining
reasoning process using forward chaining demons, these obtain and reset the current
value of an identificr. An example of a set of control rules for the identifier excavation

material are shown below.

if check excavation material . e s . .
then do program read cdf using ("cerebral.dat™,"b7.b7") giving (excavation material)

when excavation material is blank

then command reset excavation material
and do form excavation material

and excavation material needs changing

when excavation material needs changing

then report to file reprtcdf.dat 7

and report to file repricdf.dat [excavation material)
and report to file reprtcdf.dat sir

and do form processing

and do program reprtcdf .
and command reset excavation material needs changing

The first rule is fired during the normal backward chaining inferencing process, reading
a value from the application cerebral file. If any value other than ‘blank’ is read then the
system continues to backward chain through the knowledge base.
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When the excavation material is blank a forward chaining demon interrupts, and a
form, or screen menu is called. This allows the user to select a value for excavation
material. An alternative to the form call would be a knowledge base call of the

following format :

and do kb excavation material giving (excavation material)

After returning control from the called knowledge base, this would place a value in the
identifier excavation material.

The excavation material value now needs to be written to the cerebral data file. The third
rule/demon does this by again interrupting the backward chaining to send the file row
number and value to a temporary text file. A form called 'processing’ informs the user
that "processing is in progress' while a simple Pascal program, ‘repricdf’, writes these
values from the temporary file to the appropriate row in the cerebral file. This
information storage procedure may increase the consultation time.

4.3.3 Transfer of Data Between Applications

Information needs to be transferred between different application modules. For
example, if the top level application is run and the MINDER system selects a dragline as
the ideal type of equipment, the dragline module would then be used and should be able
to access any information from the top level module. The data to be transferred is all
contained within the application cerebral files. There are three methods of transferring

cerebral file information used within the MINDER system.

o Copy 'cerebral' file : The cerebral file from the data directory of
one application is copied into the directory structure of a different
application. Thus the values of all identifiers from the previous

consultation are copied with the file.

o Copy certain identifiers : When the system realises that a previous
application has been consulted a block of relevant identifiers are read
from the previous cerebral file and written to the current cerebral file.

o Checking other file : During the normal backward chaining process,
the system checks the previous application's cerebral file instead of the
current cerebral file. Any values obtained are written to the current

cerebral file.
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44 Recursion Between Knowledge Bases

Once an effective method of information handling had been achieved the flow of control
between the system knowledge bases was rapid and often followed complex
inferencing routes. The use of cerebral files meant that a query initiated in any
knowledge base would call any sub (or higher level) knowledge bases needed to
complete that query. One surprising factor of this free flow of information was
recursion between smaller knowledge bases. An example of the recursive process
between knowledge bases is shown in figure 4.7.

Recursion is the process of repeatedly evaluating the same rules at different levels of a
consultation. Recursive descent in the rules of the MINDER system was well controlled.
Standard backward chaining inferencing within the MINDER system never used more
than two layers of recursive descent.

DIGGING RESISTANCE KNOWLEDGE BASE 2 BASIC DIGGING RESISTANCE
KNOWLEDGE BASE g

di resistance
ST Serne 3 query basic digging resistance
1
711
> BLASTING KNOWLEDGE BASE | . > e SPACING
. 4 KNOWLEDGE BASE

5 query disceatinuity spacing

Figure 4.7 Example of Recursion Between Knowledge Bases

In the example shown in figure 4.7, the consultation begins in the blasting knowledge
base. To advise on whether blasting is needed for a particular scenario, the system
needs an approximate value of the digging resistance of the excavation material (1). To
obtain this value the MINDER system combines three factors to give a value for digging

resistance.

o Basic digging resistance : Based on material, water and ground
conditions.

O  Discontinuity spacing : Information on bedding and fracture spacing.

o Blasting : The blast fragmentation characteristics of the material.
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The basic digging resistance knowledge base is consulted (2) and returns a numerical
value to the digging resistance knowledge base (3). This basic digging resistance value
is modified by the description of the discontinuity spacing (¢ & 8).

The blasting knowledge base is then reopened as a sub knowledge base by the digging
resistance knowledge base (6), this is equivalent to the start of a new blasting query.
When this query starts the blasting knowledge base again needs an approximate value
for the digging resistance of the excavation material. The basic digging resistance,
modified by the discontinuity spacing, has been reported to the cerebral file. The
blasting knowledge base reads this data from the cerebral file and advises the user on
potential explosives use based upon this value.

The blasting information provided is then returned to the digging resistance knowledge
base (7), where the basic digging resistance is modified by the fragmentation

description to give a final value of digging resistance.

The final digging resistance is passed into the blasting knowledge base (8), to satisfy
the initial digging resistance knowledge base call. The system finds that a blast

description exists and ends the consultation.

4.5 Linking to Geological Models

Information to enable the expert system to draw conclusions is also drawn from
geological and design models. These models are created using commercially available
modelling packages allowing the user to interpret the geology from borehole data and
to obtain reserves, quality data and other planning information. Pit shapes can then be
superimposed on the geology allowing in-pit volumes, bench positions, and other
scheduling information to be obtained (Schoficld and Denby 1989). Figure 4.8 shows
an example of a pit design superimposed upon the geology taken from the Surpac

Mining System.

The Department of Mining Engineering at Nottingham University uses two of the
widely available commercial mine design packages to model a variety of deposits.

O  Datamine : Developed by Mineral Industries Computing Limited.

o Surpac : Developed by Surpac Mining Systems.
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The geological modelling part of the Datamine software although capable of terrain
modelling largely relies upon a block modelling technique, whereas the Surpac
geological modelling relies on a system of string files and digital terrain model (DTM)
files. The string method of handling data makes interfacing with Surpac from an

external system easier.

Most data in the Surpac software is stored as strings. A string is a sequence of three
dimensional coordinates delineating some physical feature. Strings include crests and
toes of slopes, contours, edges of roads and many other elements (Surpac Mining
System 1989). Surpac string files are stored as rcadable and changeable text files,

which can be read into Xi-Plus.

Both Surpac and Datamine can be controlled by their own independent programming
languages, known as macro languages. These macro's enable geological modelling and
reserve estimates to be run automatically, allowing greater flexibility and speed where
large repetitive operations have to be performed.

When the expert system requires complex information, such as reserves based on
limiting criteria, i.e. cut off grades or pit boundaries (¢.g. reserves of a certain scam
within a box cut), this information can be obtained by running a macro within the
geological modelling package. This macro can be written from Xi Plus to a text file.
Surpac can then be run by rolling out Xi Plus onto disk and control returns to the

expert system after macro execution.

SURPAC QUTPUT FILR

Bwhe .
then do program surpec ransfor
and do program rend céf using ("surpec.txt®,"s1.21%) giviag (cxcavation material)

12, 34, 455, 56
3, 67, 115, 89
56, 87, 235, 17

Pascal Transfer Program

SURPAC TEXT FILE

“shale* , 235, 17

Figure 4.9 Surpac File Interrogation

This option was tested and simple reserve calculations were performed. On a practical
level, however, the control of the modelling and reserve process requires a highly
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complex knowledge base covering geological and scheduling aspects. Hence, the
MINDER system relies upon a manual execution of the geological modelling software,
but is capable of reformatting and interrogating the Surpac results files.

A simple Pascal file manipulation program is used to reformat the Surpac output files
and the Xi Plus read cdf procedure is used to read simple information such as material
types, densities and volumes from the text file produced. Figure 4.9 shows an example

of a simple Surpac file interrogation.

Rendered pit images have been produced by linking Surpac to AutoCad software.
Surpac contour files are converted into a DXF file format and read into an AutoCad
drawing as a series of three dimensional vectors, producing a line drawing. This wire
frame model can be used to generate three dimensional gridded surfaces, which are
superimposed on the line drawing allowing the user to create a series of high quality
plans sections and three dimensional views, as shown in figure 4.10.
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Figure 4.10 Converting Surpac Models into AutoCad Drawings

This wire frame model can then be shaded (using AutoShade software) and these
shaded models can be animated (using AutoFlix software). Shading changes a wire
frame model into a rendered picture that shows perspective, surface shading, and
specular reflection (Autodesk 1990). These pictures are very uscful in applications for
planning permission for a new surface mine. These computer images will be used as
the 'artists impressions' of the future, a rendered pit design is shown in figure 4.11.

The wire frame and the shaded models can be animated using AutoFlix software. The
animation techniques used on a personal computer equipped with mass market graphics
boards involves some compromises, however, this technique can bring a design to life

and provide an excellent perception of reality.
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O Roll Program : performs the same function as Load Program. It rolls
out some or all of the Xi Plus system to disk to make space for the
called program to reside in memory. This is useful for programs that are
too large to run together with Xi Plus in memory, such as AutoCad and
Dbasel V. It requires available disk space to hold the rolled out program
and a small time delay to perform the disk operations. Once the called
program has completed execution, control is returned to the calling
knowledge base.

Before running this external program, an interface (for example Dbase access) must be
pre-defined within the application’s external interfaces library. Within this definition,
Roll Program should be specified as the required language interface, to provide space
for DbaselV to reside in memory. The interface used is a general purpose interface,
which means it has no understanding of the program it calls and is therefore unable to
pass back any results or values. The results from the database are therefore transferred

to a text file, where they are read using the CDF data file interface.

4.6.1 Use of DbaselV

If all the data can be stored internally within the MINDER system, why use a commercial
database ? The database is not used for storing expert system knowledge, it is mainly
used for storing long lists of manufacturer's data and specifications. Such information
can be obtained from text books and manufacturers information. The database acts a
source of information for the expert system consultation. Most prototype expert
systems applications are restricted to limited amounts of data and have no facility for
sophisticated data management, by integrating an expert system with a database a
realistic data management system can be achieved (Renhak and Howard 1985 and

Schofield and Denby 1990).

A large quantity of information is needed to select an optimum item of equipment
which suits the design constraints of a particular mine. The task for the planner is to
match design information from a geological model and site investigations, with known
equipment specifications. During the conceptualisation of the MINDER system it was
decided to store the excavating and haulage equipment data in a commercially available
database. DbaseIV, developed by Ashton-Tate was chosen since it is an extensively
used, large capacity, database capable of being controlled by a macro language. Four
large database structures pertaining to this problem domain have been developed :
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A materials database : containing a wide range of rock types,
densities, swell factors and compressive strengths.

A truck database : containing information on truck sizes, weights,
payloads and other relevant information.

A dragline database : containing information on bucket sizes,
operating radii, clearance and other relevant information.

A hydraulic excavator database : created as a multi-level
database, the structure of which is shown in figure 4.12. This database
division is due to the structure of the data, i.e. hydraulic excavators can
be split into frontend and backhoes. The hierarchical structure is also
useful when performing relational operations. Each DbaselV file
contains tagged fields which link the files together, for example in
figure 4.12, the field MODEL is used to link the hydraulic excavator

file with the frontend data file.

Frontend

Hydraulic
Excavator
Database

Kexfleld MODEL
Kegfiold MODKL

1242

Backhoe

Database

N

Database P

Rexfisli BUCKRTID Kenfield BUCKETID

Bucket
Database

-

Figure 4.12 Hydraulic Excavator Database Structure

Xi Plus can link very easily into these DbaseIV databases and the interface between the
expert system and the database is used to perform the following operations :
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To extract information from DbaselV databases.

To sort or rank records in a database to provide the record with the

highest (or lowest) value in a particular field.

O To eliminate values in a particular database using a relational operation :
for example deleting all records with height > 20 m.

The user of the system should not be required to perform any programming in order
for the appropriate database actions to occur. The Xi Plus expert system accesses the
DbaselV databases by creating program files, which are of a text format. The
advantage of this method of control is that all program files once created and used can
be deleted, remaining totally invisible to the user who may not even realise that an
external program has been accessed. From a programming point of view, all
corrections and changes to Dbase and Xi Plus can be done in the same Xi Plus editor.

4.6.2 Controlling DbaselV

The DbaselV software is controlled from the expert system using macros, these enable
complex tasks to be carried out by the database running under the control of these
programs. The expert system creates DbaselV program files, which are of a text
format and incorporate variables relevant to the particular scenario. Figure 4.13 shows
a simple representation of the MINDER system controlling a Dbase operation.

Application Expert system writes
Knowlodgebion the Dbasel V program.
Application : DbaselV is called.
Knovisigsbare The program is
run immediately.
The ram uses the
Dbuzlr\‘;‘d.uban files
Tem DbaselV file and performs a
cmlen;.l?c expert system. %7 relational operstion.
The output (In a text file)
Is read by the expert system.

Figure 4.13 Simple DbaselV Relational Operation
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The writing of the program to the text file is integrated into the knowledge base rules
and fired during the normal chaining process of the inference engine. A major factor in
any of these operations is the transfer of information for the relational operation, from
Xi Plus into a DbaseIV program. The Xi Plus ‘report to file’ facility allows any
program lines to be sent to a text file as an ASCII text string, whilst automatic
substitution of identifier values enables expert system variables to be included. With
repeated reporting, successive lines can be built up to produce a complete program
file. The identifier values, now in a DbaseIV macro, are then used in subsequent

information retrieval or relational operations.

4.6.3 DbaselV Example

In a simple example of a truck database the database will consist of only four fields :
Truck Model, Manufacturer, Payload and Height and seven records. This database is
shown below in table 4.1. The actual MINDER truck database has seventeen fields and

over 150 trucks.

MODEL MANUFACTURER | PAYLOAD HEIGHT
R-170 EUCLID 25741 5.69
33-03b TEREX 19.96 3.58
D400 CATERPILLAR 36.29 3.4S

785 CATERPILLAR 115.94 5.57

HD325-2 KOMATSU 32.00 4.05
150CT WABQO 136.08 4.88
769C CATERPILLAR 31.75 3.94

Table 4.1 An Example of a Truck Database

Figure 4.14 shows an example of a truck knowledge base rule, where the consequent
part of the rule is being used to write a DbaseIV program. The system begins by
resetting the DbaseIV program file 'truck.prg’ and the output text file ‘temp.dat'. The
rule then writes the DbaseIV program commands to the text file ‘truck.prg'. In this
example the system has queried the user and knows that the minimum payload is 100
tons and that the maximum height is 5 meters. These identifiers, placed in square

brackets, will be transferred into the program file as their value equivalents.

The program is run using the do program command which executes the Dbase access
interface. The command uses the program 'truck.prg’, this means that as soon as
DbaselV is called this program is executed.
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The diagram in figure 4.14 showed the DbascIV program being written to the program
file. Figure 4.15 shows the running of this DbaseIV macro. The program first clears all
variables and references the database to be used, which in this case is the truck
database. The program then sets the variable P = 100, and the variable H = 5, these
values were transferred from the expert system. A relational operation is then
performed and the items of equipment which suit these Dbase conditions are transferred
to the result file ‘temp.dat’. Control then quits the external application and returns to the
expert system to continue the consultation.

The read cdf interface reads the result from the text file and places the value read from
the first location into the identifier 'truck’. In this simple example, the only truck with a
payload of over 100 tons and a height below five metres is the Wabco 150CT.

4.7 Linking to Simulation Software

Computer simulation is widely used as a decision-making tool in business and
industry. One definition of simulation is the construction of a mathematical model of a
physical system (Minuteman Software 1988). The basic requirement for this model is
that it should 'behave' like the physical system it is supposed to be modelling. For
example, it is proposed to upgrade an item of production equipment, such changes
involve considerable expenditure and the advantage of the mathematical model is to
estimate in advance the effect these changes will have. The only expense involved is
that of building and running the simulation model. Due to the speed of the computer
simulation, it is feasible to study a variety of proposed options in turn and identify the
configuration for optimum performance of the system (Strugul 1988). In the mining
industry simulation software is often used for the basic queueing model of a single
server (or excavator), large population (number of trucks) and random service (variable

loading time).

To perform a discrete-event simulation on a computer a program must describe the
sequence of events that occur, incorporating time assumptions and all possible options.
Several programming languages have been invented specifically for writing simulation
programs. Of these, GPSS (General Purpose Simulation System) is the most widely
used for discrete-event simulation (O'Donovan 1979). GPSS is a powerful, non-
procedural, language capable of simulating complex systems using relatively short

programs.
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The MINDER system uses GPSS in a manner similar to DbaseIV, programs are written
to text files, when run, GPSS automatically calls these program files. The user needs
no knowledge of simulation software and is not required to perform any programming
in order for the appropriate model to be used. The simulation model is created using
values passed from the expert system consultation into the program text file.

Knowledge base rules, fired during the normal chaining process of the inference
engine, control the reporting of lines of text to the program files in a similar way to
DbaselV macro creation. The simulation model is created using values passed from the
expert systemn consultation into the text file. These identifier values are then used as
variables in subsequent simulation operations. Figurc 4.16 shows how GPSS runs
the program to simulate the operations and produces a results file, a second piece of
software GPSS - REPT formats the results to allow them to be read back into the

expert system.

4.8 Handling Uncertainty

The proper handling of uncertainty has a radical impact upon the ultimate reliability of
an expert system. The techniques of dealing with uncertainty have been discussed in
Chapter 3. The certainty factor method can be included directly within the rule structure
of a knowledge base. In the MINDER knowledge bases certainty factors are only used,
in conjunction with linguistic concepts of certainty, in the dragline module to suggest
values for pit width and dig out length. The way the certainty factors are applied to

these calculations will be discussed in the next chapter.

As the MINDER system uses uncertain information and forms inferences based upon
missing data an internal software counter is to determine the overall uncertainty on
which any equipment decision is based. This statistic is reported to the user at the end
of a consultation with the MINDER system in the form shown in figure 4.17.

Fuzzy set logic often nceds extensive matrix algebra. The fuzzy set algebra is
performed by external software which is linked to and controlled by the expert system.
Almost every equipment decision made within the MINDER system relies, to some
extent upon one, or more, fuzzy logic rankings. A set of fuzzy logic Pascal software
was written in the Department of Mining Engincering at Nottingham University by
Clarke (1990). This software adapts the basic fuzzy logic techniques to manipulate
imprecise and fuzzy information, enabling complex problems to be analysed.
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To represent the fuzzy information as a computer file, each equipment alternative with a
particular knowledge domain has to be allocated values representing factors or features
relating to the item of equipment. These quantitive values are often formed from a
linguistic preference structure of adjectives which describe a particular feature. The
knowledge representation is achieved by storing all the information as numerical values
in a two-dimensional array within a text file. These text files are stored within the
respective application's fuzzy directory. The complete knowledge matrices are reduced
to evaluation matrices by the expert system. An evaluation, or actual matrix, in a text
file is in the format shown in figure 4.18.

It can be seen from the figure that the text format is quite simple, there is a title and a
line denoting the size of the matrix. A list of relevant factors is followed by a list of

equipment alternatives. The lower part of the figure is filled with the numerical
evaluation matrix made up of membership values of the fuzzy sets.

Haulage Actual Matrix

7 8
Material Size
Ground Condition
Daily Production
Length of Haul
Maximum Adverse Grade
Flexibility of Conditions
Total Tonnage
Bulldozer
Rear Dump Truck
Semi-trailer Rear Dump Truck
Semi-trailer Bottom Dump Truck

Train

Conveyor

Skip

Pipeline
0.8 0.8 0.8 0.6 0.8 0.4 0.8 0.0
0.0 0.8 0.8 0.8 0.0 0.4 0.2 0.2
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2
0.8 0.8 0.0 0.0 0.0 0.8 0.6 0.2
0.8 0.8 0.8 0.0 0.8 0.2 0.8 0.0
0.0 0.8 0.8 0.8 0.0 0.2 0.2 0.2
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2

Figure 4.18 An Example of a Haulage Evaluation Text File
Within the MINDER system the evaluation matrices are in two forms :

o A list of equipment alternatives (such as haulage type) against factors
based upon expert opinions (such as overburden depth).

O A list of equipment items (such as truck models) against factors based
on manufacturers specifications (such as bucket size).
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To create the actual evaluation matrix from a knowledge matrix, or database file, a
transfer process may be needed. This usually takes the form of Pascal file manipulation
software called from the MINDER system. This reads the relevant information and
reports this data, in the correct format, into an actual matrix text file.

The ideal matrix is a fixed model of actual or preferred data. For example, the ideal
matrix for the haulage selection evaluation matrix in figure 4.18 would represent the
actual mining conditions to be encountered with the appropriate ratings for each factor.
An example of a haulage ideal matrix is shown in figure 4.19.

Haulage Ideal Matrix

7 1
Material Size
Ground Condition
Daily Production
Length of Haul
Maximum Adverse Grade
Flexibility of Conditions
Total Tonnage
Ideal

O~OO0OO0OK~O
© e e e e e
RO ®O®

Figure 4.19 An Example of a Haulage Ideal Text File

A feature of the fuzzy algorithms presented in Chapter 3 is that they do not consider the
relative importance of the factors being considered, each factor is considered of equal
importance. In an atempt to place more emphasis during the evaluation on those factors
believed to be of greater importance the evaluation matrix is weighted (Alley et al
1979). This involves the construction of a weight vector for each evaluation matrix,
each factor within the matrix is assigned an exponent which is the corresponding
weight. The evaluation matrix is combined with the weight vectors to form a weighted

evaluation matrix using a matrix multiplication procedure.

For each MINDER fuzzy logic decision three independent weighting matrices are used,
these allow the user a broader spectrum of results on which to base a decision. For
example, when selecting a dragline from an evaluation matrix of available models the

user is presented with three dragline rankings :
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O Based on an equal weighting.
o Based on weighted operating radius and bucket size.
O Based on a weighted MUF (maximum usefulness factor).

The weight matrices are each contained in an individual text file similar to that of the
ideal matrices, an example is shown in figure 4.20.

Haulage Weighting Matrix
? 1

Material Size
Ground Condition
Daily Production
Length of Haul
Maximum Adverse Grade
Flexibility of Conditions
Total Tonnage
Weighting

2.0

Ladll S N N RN
MR At
0Ooo0oooo

Figure 4.20 An Example of a Haulage Weighting Text File

4.8.1 Fuzzy Logic Pascal Software

The fuzzy logic software within the Department of Mining Engineering was designed as
part of the Strip Mine Modelling System (SMMS) (Clarke 1990). This system was
designed to advise on dragline use in a strip mining operation.

The fuzzy logic software consisted of one large Pascal program designed to
procedurally perform matrix algebra, including :

Dominance ranking of alternatives.
Similarity ranking of alternatives.
Aggregation of evaluation matrices.
Weighting of evaluation matrices.

O00O0

For integration into the MINDER system this program was rewritten to act as a unit of
procedures to a controlling Pascal program. Each application module has it's own
variation of the control program calling the appropriate matrices from the apropos text
files, and performing pertinent actions to achieve a required ranking.
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The program is compiled to disk, in the Pascal directory of the application, and called
from an expert system rule using the ‘roll program’ extemal interface. An example of
the use of this software is shown in figure 4.21, the process shown in the figure is
usually iterated three times, once for each weighting to give three independent rankings.

4.9 Intelligent User Interface

An expert system intelligent front end performs many functions, one of the most
important being the simplification of the user interface. The expert system can ensure
that as much information as possible is taken from external software. In controlling the
external software, the expert system may be required to write programs in the language
of the application software. This would enable the computer package to execute in a set
order, ensuring that the results are reported to the correct data files. Given certain data
and a selection of rules the inference engine would be able to deduce certain other

information to minimise user input (Ahmad et al 1985).

Any interaction between the computer and the user should be in the form of questions
with suggested answers. The use of mouse driven 'pop-up' menus on most modern
application programs has led to a more widespread use of mining software, overcoming
the keyboard shyness of certain professional engineers. An intelligent interface should
ideally utilise as many user friendly options as possible.

Psychological barriers to the acceptance of expert systems are high. In this context it
should be remembered that one of the most important parts of a mine design expert
system is it's explanation facility. Often the conclusions reached are not as important as
the reasons for the conclusion, and any expert system must be able not only to advise,
but to give full explanations for any advice it may give (Schoficld and Denby 1989).

One of the concepts introduced by the classic expert systems such as MYCIN and

Prospector is the idea that a decision support system should be able to justify it's
conclusions on request. Obviously when profit-and-loss decisions are being made with

the help of a computer it is essential for the system to explain it's own reasoning.

The MINDER system utilises the Xi Plus 'form' facility to provide a menu driven user
interface, an on line help facility and full explanations. A form is defined as a formatted
screen display that can contain questions and reports, and provide full control over the
screen layout and colours used (Expertech 1988). In particular, a form may contain
multiple questions, to provide a more efficient way of entering data than a single item
per screen. Form definitions are held in the application form library.
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These Xi Plus forms are generated using ASCH characters and can include text, blocks
and simple lines. Simple diagrams can be constructed to help the user understand the

questions being asked.

To provide help information to the user during the progress of a consultation, the Xi
Plus help facility is utilised. Each module has a knowledge base dedicated solely to the

organisation and display of the application help screens.

Xi Plus has defined the F1 key as a help key, MINDER knowledge bases contain a set of
demons intended to interrupt the backward chaining inference mechanism and call the
help knowledge base whenever this key is pressed. These demons take the following
form :

when key help Anything

then do kb help using (help)
The identifier help has been given a value denoting the form being queried, the help
knowledge base displays a page of text explaining the question being asked. For
example, if the user presses the F1 key in the excavation application, while being asked
about the working bench height, the system displays the screen form shown in figure

4.23.

Xi Plus defines the F3 key as a why key, in much the same way as the F1 key is
defined as a help key. MINDER knowledge bases contain a set of demons which call a
knowledge base dedicated to the organisation and display of explanation forms. These
demons take the following form :

when key why Anything

then do kb why wsing (why)
The identifier why, similar to a help value, denotes the form being queried. The why
knowledge base is used to link the current form to the overall consultation and explain
the reason for the question. For example, if the user presses the F3 key in the
excavation application, while being asked for the working bench height the system

displays the screen form shown in figure 4.24.

The integrated use of demons, dedicated knowledge base rules and forms within
MINDER provide the user with a comprehensive explanatory interface. This interface
allows the user to interrogate the system, by posing 'help’ and ‘why' questions. Help
questions ask the system to explain the question (What do you mean by that ?). Why
questions ask it to explain why it requires some piece of information (Why are you
asking me that ?). Both facilities help make the system more usable but human-machine
interaction is still one of the weakest links in expert systems technology.
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4.10 Reporting of Results

The form library utility provided by Xi Plus is also used within the MINDER system to
report conclusions as they are inferred. These forms are similar to the user questioning
forms, but the menu input fields are replaced with text output fields displaying the
values assigned to the identifiers. These forms are not displayed as part of the normal
backward chaining inferencing process, they are displayed when the system reaches a
conclusion, using rules of the following form :

iffwhen dome belief in data
then do form belief in data
and report to file final.dat degree of belief
The form belief in data was shown in figure 4.17. This form reports the degree of

belief in the data based on the amount of missing or uncertain information during the
consultation.

Text files are routinely used in both expert systems and algorithmic applications, often
for the storage of temporary information. This facility is often used by the MINDER
System to store consultation information. At the end of a consultation, the cerebral file
can be accessed to give a list of identifiers used in the consultation and their assigned

values.

A text file result reporting facility has also been installed within the MINDER system. A
‘final.dat' text file is created during a consultation in the application module's data

directory. The MINDER system resets this file at the beginning of any consultation, and
then reports to the text file when any of the following events occur.

O Anidentifier is assigned a value.

O A new knowledge base is accessed.
o A conclusion is inferred.

O A fuzzy ranking is produced.

Since the final text file results are reported in order, this gives a realistic impression of
the inferencing process during the consultation. Figure 4.25 shows a simple example of

part of a dragline final report file.

During a mine planning operation, after the equipment selection decision has been
made, a scheduling operation is performed. This is usually undertaken using
spreadsheet software, such as Excel or Lotus 1-2-3. In an attempt to bridge the gap
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between these disparate elements of a mine planning project, the results of a MINDER
consultation are reported to Excel, a commercially available spreadsheet. The
information is presented in a time based worksheet format allowing a rapid and accurate

assessment of the equipment performance to be obtained.

Linkage to Excel is achieved using a combination of expert system knowledge bases
and Pascal software. The expert system gathers and organises the necessary
information from the various application modules accessed during the consultation. The
Pascal program then performs numerical and string handling procedures to arrange the

data into a spreadsheet compatible file with the spreadsheet.

Dragline Selection And Advice System

Damian Schofield 1991

Dragline Selection System

Knowledge Base : Dragline Bucket Size

Sub-Knowledge Base : Volume Per Hour

Yearly volume = 1510000
Volume per week = 30804
Volume per day = 6160.9

The required volume per hour = 616.1 m

$ 4

Sub Knowledge Base : Fuzzy Operatlions

Results of Fuzzy Operations on Dragline Database

Equal Operating Radius and

Weighting and Bucket Size Welghted

1. be 1260 W 1. be 1260 W 1.
2. be 1300 W 2. be 1300 W 2.
3. be 1370 W 3. be 1370 W 3
4, be 680 W 4. be 2750 W q,
5. be 1380 W 5. be 680 W 5.

The dragline selected is model be 1260 W

MUF
Weighted

be 1300 W
be 1260 W

. be 1370 W

be 680 W
be 1380 W

Figure 4.25 A Final Report File
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A range of different induction methods can be selected.

O Automatic : Automatic induction is the simplest form. Induction starts
immediately and displays a counter as it proceeds.

O Manual : Xi Rule informs the user of the most discriminatory variable,
and displays its ‘entropy’ value. The user may use this value or select a
preferred attribute for this branch. This process is repeated at each
branch until the induction is completed, or the user selects Automatic.
This enables the user to have manual control over the order in which the
attributes are branched on, which may be desirable for certain tasks.

O Semi-Auto : Semi-automatic induction allows the user to specify three
main aspects of the way you want the induction to proceed, and includes
an element of manual induction. Xi Plus specifies the following three

attributes:

O  Starting Attributes : Used to override the Xi Rule choice of
best attributes.

O Consecutive Attributes : If one of these attributes is used
then a consecutive attribute must be used first. For example the

system will ask for sex before asking if the user is pregnant.

O Priority of Attributes : If two entities have identical
‘entropy’ values, Xi Rule will take the order the attributes appear

on the Attributes screen.

An automatic induction carried out upon the examples shown in figure 4.29 produces a
screen similar to that shown in figure 4.30.

The rules screen shows the induced rules in a 'decision tree’ format, using the attribute
headings, outcomes and values. Associated with each leaf ending are two numbers :

O  First : The number of examples filtering through to the leaf ending.
O  Second : The probability of an outcome being correct.
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4.12 Neural Network Development

A neural network differs from an expert system in that is not programmed in the
conventional sense but is taught to give acceptable answers to sets of input parameters.
Known information is entered, weighted values are assigned to the connections, within
the architecture, in order to give the required output. The network is then repeatedly run
until the output is satisfactorily accurate. The weighted matrix of interconnections
allows the networks to learn and remember. As a result, when new information that is
not stored in the network is entered they can still provide adequate responses. Among
the variety of available learning algorithms discussed in Chapter 3, among the most
popular are the back and counter-propagation algorithms. These are examples of
supervised learning methods, where the network is exposed to the data with

corresponding outputs and attempts to self-organise.

IBM PC/PS 2's, compatibles and personal workstations play very important parts in
the neural network world. Simulations can be run on them, and new software allows
neural networks to be developed on them (Australian Personal Computer 1989). Neural
networks are being used and produced in the form of either ‘neurocomputers’
(hardware that models the parallelism of neurons), or ‘netware’ (software that emulates
neurons and their interconnections on conventional serial computers). An important

aspect of netware is that it can be simulated on conventional computers.

There are a number of vendors offering a wide variety of neural network products,
ranging from relatively inexpensive software tools for developing one’s own
applications to turnkey systems for specialist applications. Accordingly prices vary
from a few hundred to a few thousand pounds (Chemical Engineering 1990).

The Advanced Computer Research Group has invested in Neural Works Explorer, a
piece of training and development software which enables the development of small
applications. This software comes complete with InstaNet a facility for generating
standard network types from an extensive library. Future neural network development
will take place using Neural Works Professional II, a full-fledged network development

tool (NeuralWare Inc. 1990).

InstaNet allows the user to load a standard network type and specify it's attributes to
suit a given purpose. The number of layers are specified along with the number of
processing elements in each layer. A set of experimental neural networks have been
created using the Neural Works Explorer software to replicate certain equipment

Chapter 4 : 40









This is required for a counter-propagation network and has one element more than the
input layer, in this case four nodes. The four layers of the network are an input layer,
an input buffer (or normalising layer), a Kohonen (or hidden) layer and a Widrow Hoff
output layer. The counter-propagation network sclects from a set of exemplars by
allowing them to compete against each other. Normalised inputs and competition
between exemplars selects the nearest neighbour (Hecht-Nielsen 1987).

A ncural network can leam using a variety of different learning and recall parameters.
The Neural Works software has a learning and recall schedule submenu. The schedule
for a counter-propagation network model is shown in figure 4.33.

The learning and recall schedule contains all of the additional parameters required by a
processing element and not contained in the layer parameters. Only one column from
the recall subsection and one column from the learn subsection are used at one time. All
others are ignored. The recall counter is reset and incremented through it's entire set of
values during each recall. During learing, the counter is incremented once for each
training cycle and holds it's value. Each time a new training example is presented to the
network, the leam counter is incremented, the leamning rate can change dynamically as

the lcarning process proceeds.

The recall column factors are used to introduce and control noise in the data, introduce
randomness, designate weights and define the processing clement transfer function.
The learning temperature is again used to introduce noise into the data and the leam
coefficients control the learning rate. It is worth noting that the learning and recall
schedule selected in figure 4.33 is ctrpwh (counter-propagation Widrow Hoff).

Neural Works also allows the user to edit network global parameters such as :

O  Network title O  System information

O Network type O Display mode

O  Contol strategy O  Leam and recall schedules
O  Display Style

The global network editing screen for the network shown in figure 4.32 s illustrated in
figure 4.34. For a counter-propagation network, the network is defined as hetro-
associative, that is the network has a different number and type of output processing
elements compared to input clements. The learning and recall counters and schedules

have already been set.
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4.13 Conclusions

The ideal of integrating software systems used is now widely recognised, but in
practice has presented many problems. Computer companies have seen no benefits in
making their software compatible with other suppliers systems, and most information
transfer has been achieved through human means.

Some software has begun to incorporate linkages to other packages, for example
modemn word processing systems allow graphic images and spreadsheet information to
be included within documents. These connections allow software to gain the extra

benefits available from these extemal sources.

An expert system shell is a very strictly bounded environment not allowing large scale
data storage or complex algorithmic calculations. Thus, if any application problem
requires significant amounts of computation and data handling phrases, it becomes
imperative for the developer to perform these functions using other software packages

which can then be coupled to the shell.

Research is moving away from large, stand alone, expert systems and development is
being undertaken towards integration of knowledge based techniques with more
conventional programs. The expert systems act as front and back ends of complicated

suites of software and by their very nature may be highly interactive.

In keeping with this desegregate philosophy the MINDER system utilises external
software for the storage of large amounts of data, complex algorithmic processing, data
file handling and process simulation. The use of a knowledge based system to control
this software provides a step towards the rapprochement of the world of expert systems
with the diverse attributes of the real world.

The expert system ‘bottle-neck’ of knowledge acquisition is being eased by the
application of knowledge induction systems to generate or test expert system rules.
Accurate task representation is the key to successful knowledge capture, and to the
production of valid rules. Within Xi Rule task representation is reflected in the choice

of Attributes and Outcomes. It is important :

O  To select all possible Outcomes for a particular task.
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o Determine all Attributes affecting a specific Outcome, if unsure the
Attribute should be included as Xi Rule only uses relevant Attributes.

O If there is a large number of Attributes and Outcomes then the task
should be split into smaller separate tasks.

The earlier rule induction systems did not perform well when presented with
contradictory or probablistic data, and the outputs had to be interpreted with care. The
development of decision tree pruning techniques, such as the C4 algorithm, have led to
greater confidence in rules generated from inducted systems. These induction
Procedures may also be used in parallel with conventionally generated expert system
rules to identify questions and provoke discussion with the expert about gaps,

contradictions and data redundancy.

The potential benefits of neural networks extend beyond the high computational rates
provided by massive parallelism. Neural networks typically provide a greater degree of
robustness than standard von Neuman sequential computers because there are so many
more processing nodes, each with primarily local connections. This provides a high
fault tolerance, the ability to make an ‘educated’ guess and the ability to recover

gracefully from process element failure.

The process of developing a neural network remains something of an 'alchemic’
business. Nevertheless, some principles are emerging. The first question, as in any
software development programme, is to decide precisely what you want the system to
do. With neurocomputing, this means ‘asking the right questions’ and teaching the
network a meaningful classification system. The use of InstaNet within the Neural
Works software environment has led to the successful generation of a set of counter-

propagation decision support networks.

Chapter 4 : 46



Chapter §

Application Modules

5.1 Introduction

The MINDER expert system is used primarily for surface mining excavation and haulage
equipment selection. The methods of storing knowledge, interrogating and controlling
external programs and reaching conclusions using multiple knowledge bases have been
discussed in Chapter 4. This chapter will detail the application modules, each consisting
of a series of large interconnected knowledge bases, used by the MINDER system.

§ HAULAGE |
{ APPLICATION |

Figure 5.1 MINDER Application Modules
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The MINDER application modules are shown in figure 5.1, a brief description of each of
the module's respective selections is also shown. Each module runs independently

from the others, but may call upon information from a previous consultation through
cerebral text files. Hydraulic excavators, draglines and truck models are ranked from
databases of equipment specifications, while a more general suggestion of scraper type

is provided by the scraper module.

A haulage system can be selected from six alternatives, if a truck haulage system is
chosen then the haulage module will suggest the general type of truck to be used.
Finally it is possible to select a truck model from a database of over 200 trucks in the

truck application module.

Application Module Size in Bytes
Equipment Type 522,073
Hydraulic Excavator 648,450
Dragline 995,572
Scraper 365812
Haulage 470418
Truck 582,950
Spreadsheet Module 79,313

Table 5.1 The Size of the Application Modules

Each MINDER application module is stored on the 30 MB 'D:' partition of a 120 MB
hard disk on an IBM PS 2, Model 70. The directory structure of each application
module is similar to that described in Chapter 4, with a directory for the knowledge
bases, one for Pascal software, one for the application's databases and three data
directories : one for fuzzy logic matrices, one for Surpac data and one for the cercbral
system data. Table 5.1 shows the memory sizes of the various MINDER application
modules. The large amount of disk space used is mainly due to the large knowledge
bases used in each application. The total size of the MINDER system excluding back-up

files is approximately 3.5 MB.
The MINDER system is dependant upon a range of commercial software, this integration
allows flexibility for system development and use. The Xi Plus expert system shell is

needed to access the knowledge bases and to control the associated software, shown in
table 5.2. The associated software occupies approximately 8.5 MB of disk space.
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Application Software Size in Bytes
Xi Plus 936,272
Turbo Pascal 1,116,412
DbaselV 2,848,066
GPSS-PC 730,335
Excel 2,708,249

Mine Planping Software Size in Bytes
Datamine 4,789,432
Surpac 14,050,180

Table §.2 The Size of the Associated Software.

If the results from a commercial mine design package are to be used then much more
disk space will be needed to install this software. The size of the Datamine and Surpac
Mining systems are also shown in table 5.2. Using Surpac means that a total of
approximately 25 MB needs to be available to run the complete MINDER system. It
should be noted that this associated software is not dedicated and a proportion of it will

already be used by modem mine planners.

This chapter also contains details of equipment selection decisions made using
knowledge induction and neural network software. The techniques used to generate the
inducted rules and to create the counter-propagation networks have been discussed in

previous chapters.
5.2 Equipment Type Application Module

This application module is split into a number of sections. Firstly during the course of a
consultation the system gives the user general advice on the mining method. Secondly
the equipment selection and ranking sub-system is consulted. This is partitioned into
three parts depending upon the material to be excavated, topsoil, coal or waste.

The basic structure of the equipment selection application module is shown in figure
5.2. Information called from the resource level knowledge bases is listed at the bottom
of figure 5.2, these knowledge bases involve multiple connections and recursive
inferencing procedures too complex to be represented on the diagram.
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The initialisation knowledge base is accessed first, this resets the application cerebral
file and creates a new 'final.dat’ report file. Secondly the general advice knowledge
base is queried, the consultation progresses through this knowledge base collecting
initial information on the type of deposit, deposit inclination and overburden depth. The
system then presents the user with general advice on the basic techniques of working
the site. A picture of a general advice report is given in figure 5.3, where a stratified
stecply inclined mineral is considered. The MINDER system suggests an external dump,
an increasing pit depth due to increasing overburden ratio and advices vertical advance
with lateral advance for the safety cut-off. Notice that the initial data leading to the

conclusions is also shown at the top of the form.

Figure 5.4 Resource Level Knowledge Bases

The split of the equipment selection sub modules is based upon the type of material
being excavated. The material is classified as either topsoil, coal or waste by a resource
level knowledge base called material type. It is convenient at this point to note a
particular configuration of interconnected resource knowledge bases which occur
frequently in many application modules. If either blasting or digging resistance is
required by a particular application this initiates a sub-level, often recursive, query
which runs through the series of resource knowledge bases shown in figure 5.4.

These knowledge bases provide information to cach other which appears in forms
advising the user on preferred answers to certain questions. For example the system
will use digging resistance information to advise the user on whether blasting should be
used in a particular situation (see section 4.3, on recursion between knowledge bases).
Material information is retrieved from databases and basic excavation material
characteristics are derived. If any of these knowledge bases are accessed at the
equipment selection application level the specific equipment modules will use

information taken from the cerebral files.
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The topsoil removal equipment selection sub-module considers seven equipment
alternatives, shown in table 5.3. This selection is based upon three factors drawn from
the resource level knowledge bases, these factors are also shown in table 5.3. The
knowledge base provides a matrix of fuzzy set membership values as output, for
example if the topsoil thickness is thin then the dozers and scraper will have a higher
membership value than the dragline and bucket-wheel-excavator alternatives. This is
equivalent to the creation of a fuzzy evaluation matrix from a knowledge matrix. Three
fuzzy similarity rankings are performed, one with equal weightings, one biased
towards overburden thickness and one biased towards the length of the haul route.

Equipment Alternatives Decision _Factors
Bulldozer Topsoil Thickness
Front-End Loaders Haul Distance
Scraper Operational Flexibility
Dragline
Hydraulic Shovel
Bucket Wheel Excavator
Front-End Loader and Truck

Table 5.3 Topsoil Removal Equipment Alternatives
and Decision Factors

The coal loading equipment knowledge base considers the six alternatives shown in
table 5.4. The ranking is based upon the six factors shown to the right of table 5.4. The
factors, again estimated from resource level knowledge bases, are mainly expressed as

linguistic variables.
Equipment Alternatives Decision Factors
Electric Shovel Coal Seam Thickness
Front-End Loaders Fragmentation
Front-End H. ic Excavators Floor Conditions
Backhoe Hydraulic Excavators Mobility
Scrapers Operational Flexibility
Bucket Wheel Excavator Production Requirements

Table 5.4 Coal Loading Equipment Alternatives and Decision Factors
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Equipment Alternatives Decision Factors
Dragline Overburden Thickness
Hydraulic Shovel Overburden Characteristics
Hydraulic Shovel and Truck Length of Haul Route
Front-End Loader Coal Seam Support '
Bulldozer Segregation Characteristics
Front-End Loader and Truck Production Requirements
Bucket Wheel Excavator Operating Flexibility
Scrapers Mobility
Overburden Dip
Pit Slopes

Table 5.5 Overburden Removal Alternatives and Decision Factors

5.3 Hydraulic Excavator Application Module

A scries of interconnected knowledge modules make up the hydraulic excavator
selection module, and leads to a ranking based on digging resistance, bearing capacity,
bench dimensions and production requirements. Figure 5.6 shows the basic structure
of the hydraulic excavator knowledge bases.

Figure 5.6 Hydraulic Excavator Application Module
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The initialisation knowledge base is the first to be called, this resets the excavator
cerebral data file and the results file and also checks the top level application module to
collect information from any previous consultations. The hydraulic excavator ranking
utilises the three tiered hierarchical hydraulic excavator database, the system requires a
description of the working mode of the excavator, and needs to know the type of
bucket to be used to ensure that the correct database is interrogated. The working mode
knowledge base calls the digging resistance sequence of knowledge bases to gain

information needed to make this decision.

The hydraulic excavator ranking is dependant on four factors, digging resistance,
production requirements, bearing capacity and bench dimensions. The top level
knowledge base calls each of these sub-knowledge bases in turn to procure values for
these factors. Each knowledge base makes use of the large number of resource level

knowledge bases for information and database interrogations.

Once the four factors have been determined a series of complex relational operations, as
shown in figures 5.7 (a-d), are performed within the DbaselV hydraulic excavator

database.

A temporary database of relevant fields is
created based on working mode and bucket
type variables. This database includes new
fields such as maximum digging force
calculated using existing fields and

Figure 5.7 (a)

knowledge base information
A relational operation, controlled from the

i rformed to oFBATION
expert system is then perfo .
negatively bias all hydraulic excavators in (RiSENG
the database whose calculated digging
resistance is below the minimum required

for the particular scenario. Figure 5.7 (b)

The expert system then controls a similar operation to negatively weight all excavators
whose bucket size falls below the capacity required for the minimum required production.
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information handling system to give advice on any cquipment selected. An
undergraduate dissertation in the Department of Mining Enginecring, Nottingham
University was based upon the addition of extra knowledge into the dragline advice
module (Bower 1991). '

The hierarchical structure of the dragline module of the MINDER system is shown in
figure 5.8. The controlling knowledge base allows any combination of selection or
advisory consultation to be performed. The normal inferencing route is from the top
level MINDER selection of ‘dragline’ as the excavating method, to the selection of a
specific dragline using the dragline module. The advice system is then used to offer
geometric and operational advice on this particular item of equipment. SMMS is then run
to design the cut schedule using values from the expert system.

Figure 5.8 Dragline Module Knowledge Bases

Information is obtained from the top level cerebral file and from external databases. A
materials database is used to obtain densities, swell factors and compressive strengths of
particular materials. A dragline database has also been created containing a variety of
information, such as bucket capacities, operating radii, dumping depths, fairlead heights
and clearance radii.

When the dragline selection part of the module is consulted the system operates upon the
database of draglines and ranks them in order of suitability for a particular scenario.
When the dragline advice part of the module is consulted the system interrogates the
database to retrieve operating information about the dragline selected.
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S5.4.1 Dragline Selection

The dragline related knowledge has principally been acquired by the interrogation of
experts and examination of relevant technical literature including published papers,
Operators manuals and codes of practice. The dragline selection is principally based on
four criteria (Martin Consultants Inc. 1982). Figure 5.9 shows the main knowledge
bases which make up the selection part of the dragline module. The four main factors

required are as follows :

O Bucket size : The ideal dragline bucket size is based upon the required
production, modified by a bucket factor. The bucket factor is dependant
upon the digging and blasting characteristics of the material being
excavated.

O Operating radius : The ideal operating radius is dependant upon initial
estimates for the pit dimensions, such as overburden depth, spoil angle
and a subjective judgement of the maximum pit width.

O Digging depth : The digging depth is based upon the height of the
advance bench and the depth of the overburden.

@) MUF : The maximum usefulness factor can be calculated by multiplying

the bucket size by the operating radius.

R DO ORRRORS e . -, s mx_ul_'A ™ .
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KNOWLEDGE BASE |

Figure 5.9 Dragline Selection Knowledge Bases
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During a consultation with the dragline selection knowledge bases, the four results listed
above are estimated based on information from the resource level knowledge bases. The
system then accesses the dragline database and calculates a MUF for each dragline. The
user then has an option of applying a negative bias to any draglines whose values fall
outside the limits specified by the expert system. The database is then written to a text
file in the form of an matrix, this matrix is used as an actual evaluation matrix in the

fuzzy similarity ranking performed upon the draglines. The draglines are compared to a
text file containing the expert system ideal values.

Weightings are applied to the factors within the matrix to give a more realistic opinion.
The MINDER system repeats the fuzzy similarity ranking algorithm three times, each
recursion using a different weighting mechanism. The weighting mechanisms are as

follows:

O An equal weighting.
O A weighting favouring the bucket size and operating radius.

O A MUEF biased weighting.

The three rankings produced gives the user a range of results which allows a decision to
be made with more confidence. The dragline selected from this part of the module is

passed into the advice knowledge bases.

5.4.2 Dragline Advice

The dragline advice sub-module is split into operational and geometric sections. The
operational section suggests mining methods (such as whether an advanced bench is to
be used), the geometric focuses on numerical attributes (such as the height of a proposed

advanced bench). Advice is given by the respective knowledge bases of each advice
section on the factors shown in table 5.6.

The dragline advice part of the module is divided into smaller knowledge bases in much
the same way as the dragline selection knowledge bases in figure 5.8. These are used to
advise on particular factors for a particular mine scenario. During a consultation

information is drawn from the following sources :
Dragline selection consultation (cerebral files).

0
o More detailed knowledge bases (linked to the factor knowledge bases).
O Dragline database (dragline configuration information).
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Operational Advice Geometric advice
Use of Key Cut Maximum and Minimum Pit Width
Method of Bucket Loading Suggested Pit Width
Spoil Placement Method Suggested Dig Out
Spoil Placement Technique Advanced Bench Height
‘ Advance Benching Miscellaneous Advice

Table 5.6 Dragline Advice Main Knowledge Bases

The suggested pit width relies upon subjective judgements and as such is a contentious
value (Mining Magazine 1979). Within the expert system it is estimated using certainty
factors. Firstly the maximum pit width is determined using several mine parameters such
as ; rehandle material, overburden depth, spoil and highwall angles and operating radius
of the selected dragline. Then the minimum pit width is calculated based upon the
minimum width needed for turning circles and drainage requirements. The following
factors affect where the suggested pit width should lie between these two limits ( Denby

and Schofield 1991) :

O Highwall Instability O Mining method

O  Dragline Productivity O  Coal Recovery

O Restoration O Number of in pit machines

O Geological Disturbance o Operation Flexibility Requirement

As information on each of these values is obtained, a positive or negative certainty
factor is applied to the average suggested pit width, denoting whether this value should
be wider or narrower respectively. The combining function detailed in Chapter 3 blends
the certainty factors to give a final measure of belief. The suggested dig out length is

also determined using certainty factors.
5.5 Scraper Application Module

The scraper module does not deal with a database of individual scraper models, but
ranks the five types of scraper equipment available, shown in table 5.7. The ranking is
based upon seven factors drawn from resource level knowledge bases. Consultation of
the scraper module allows the expert system to create an evaluation matrix. Three fuzzy
logic rankings are again performed, one with equal weights, one biased towards the
required production and one dependant upon the material size and haulage distance.
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Equipment Alternatives Decision Factors
Tractor-Drawn Scraper Material Size
Under-Powered Rubber Tyred Scraper Length of Haul _
Full-Powered Single Engine Scraper Ground Conditions
All-Wheel-Drive Scraper Maximum Adverse Grade
Rubber-Tired Tractor with Trailer Scraper Operating Flexibility
Daily Production Rate
Total Tonnage

Table 5.7 Scraper Type Equipment Alternatives and Decision Factors

5.6 Haulage Application Module

The haulage application module ranks a variety of haulage systems depending on a set
of relevant factors, the haulage systems and applicable factors are shown in table 5.8.
All the factors used are available from previous equipment consultations.

Equipment Alternatives Decision Factors
Bulldozer Material Size
Truck _Length of Haul
Train Ground Conditions
Conveyor Maximum Adverse Grade
Skip Operating Flexibility __|
Pipeline Daily Production Rate
Total Tonnage

Table 5.8 Haulage Method Alternatives and Decision Factors

The haulage module checks whether a top level and/or specialist equipment module has
been consulted and then retrieves as much information as possible from the cerebral

data files, this operation is shown graphically in figure 5.10. If the top level
consultation suggests that a dragline is used then the haulage module reminds the user

that draglines usually direct cast across the pit and do not require a haulage system.
Scrapers also have their own inherent haulage systems and do not require any

additional equipment to be selected.
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Figure 5.10 Haulage Module Information Retrieval

A large amount of control needs to be applied to the haulage module to ensure that
values are not repeatedly checked and overwritten with blank values. A full compliment
of resource level knowledge bases is also present and can be accessed if no previous
consultation information is available. Three fuzzy logic rankings are performed on the
haulage types, one with equal weights, one biased towards the required production and

one dependant upon the material size and haulage distance.

5.7 Truck Application Module

The truck module has a different emphasis to the previously described application
modules. It is designed to match the optimum truck model for a chosen hydraulic

excavator model. The structure of the truck application module, as shown in figure
5.11, is similar to the others within the MINDER system to retain compatibility and

ensure the free flow of information. A ranking of preferred truck models is produced
based on production capabilities and suitability to the selected excavator characteristics.

The truck application module first accesses the initialisation knowledge base, which
resets the truck cerebral data file and the final results file and then draws information
from any top level or specialist excavation equipment consultations which have been
performed. The system then checks the excavation model to which the truck is to be
matched, information on this excavator model can then be drawn from the hydraulic
excavator database. To access this hierarchical database, the excavator working mode
and bucket type are needed, and should be retrieved from the excavator cerebral file. If
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not available, the truck application module is capable of ascertaining these values
through a series of resource level knowledge bases. The excavator bucket size, and
dumping height are read into the truck module from the database for the particular

model under consideration.

Figure 5.11 Truck Application Module Structure

The material information knowledge base then interrogates its respective database to
provide excavation material data, such as density, swell factors and compressive
strengths. In the technical information knowledge base the system determines the
minimum and maximum truck capacity and the minimum dump height.A minimum
truck capacity is provided by some manufacturers and is read from the excavator
database, where it is not available a value is calculated. The truck capacity limits are

estimated based on the truck loading requirements of between 3 and 7 excavator
buckets. The minimum dump height is calculated using either the front end or backhoe

dumping height.

The truck operation knowledge base then performs DbaselV relational operations on a
temporary truck database. All trucks whose payloads fall outside the minimum or
maximum truck capacity limits are cither deleted or negatively biased. This operation is
repeated for all trucks larger than the minimum dump height of the excavator model

selected.
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The fuzzy operation knowledge base converts this modified temporary truck database
into an evaluation matrix. Ideal values from the expert system are sent to an ideal matrix
text file. Three truck rankings are performed, one with equal weightings, one biased on
the production capabilities of the truck and one weighted on the ideal excavator dump
height. The user is asked to select a truck model from these three rankings.

The GPSS control knowledge base performs a truck - shovel simulation to determine
the optimum number of trucks to be used with the selected excavator. Programs are
written by the MINDER system to text files using the techniques described in Chapter 4.
The knowledge base first assimilates the information needed to write the GPSS

programs, a list of this data is shown in table 5.9.

Source of Information
From Truck Database, based on truck model selected

GPSS Information

Truck Payload
Truck Speed Empty From Truck Database, based on truck model selected
Truck Speed Full From Truck Database, based on truck model selecied
Drivers Hourly Wage From User
Truck and Mine Daily Costs From User
Required Production From User
Bucket Size Excavator Module, or Resource Level
Cycle Times Excavator Module, or Resource Level

Number of Bucket Loads Payload / Bucket Size
Loading and Dumping Cycle Times | Number of Bucket Loads x Cycle Time

Length of Haul Route Top Level, or Resource Level

Travel Time to Dump Length of Haul Route / Truck Speed Full
‘ Travel Time from Dump Length of Haul Route [ Truck Speed Empty

Table §.9 A List of GPSS Information

The GPSS programs simulate ten days operation with a variable number of trucks, from
one to ten. The results reported correlate with the optimum number of trucks to meet the

required production.
Figure 5.12 shows a GPSS program with the bold numbers representing variables

passed from the expert system into the program. The profit results are reported to a
GPSS formatted text file which can be interpreted and read back into the MINDER

system.
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Figure 5.13 shows the results of a complete GPSS truck simulation, controlled from the
MINDER system. The values can be treated as relative figures and if the proportions are
approximately correct a realistic number of trucks will be suggested. For example, in
figure 5.13 either five or six trucks are needed to gain a maximum return on investment.

5.8 Spreadsheet Application Module

The spreadsheet application module is a small reporting module the operation of which
is shown in figure 5.14. The knowledge based component of the module interrogates
other application modules which have been consulted. Information is taken from the
cerebral files of the applications since these are not reset until a new consultation is
initiated. The top level module provides information on the type of equipment to be
used, the spreadsheet module then queries the individual excavation equipment
application to obtain production information, equipment specifications and operational
factors. The running of the spreadsheet module involves a minimum amount of user
interaction since all information is obtained from previous application modules.

Pascal software is called from the expert system to calculate the scheduling information
based upon equipment production rates and block tonnages, this information is then
appended to previous scheduled data in the spreadsheet file. It is important that there is
some feedback from the Pascal software into the expert system so that any leftover
production can be included in the scheduling of the next block. This module is capable
of producing a range of spreadsheets during the planning of a surface mine, each

representing a different mined horizon.

5.9 Knowledge Induction

The MINDER top level equipment decision was chosen to be reproduced using
knowledge induction techniques. The first stage in this process was the assimilation of
past equipment decision case studies. The attributes to be used were then defined, it
was decided to base the decision on the same input variables as used in the MINDER
system. The system was split into the same three sub-modules based on the material

type being excavated.

The results of the case studies were not given as absolute decisions but as linguistic
variables. Each item of equipment was classified for each situation according to a

semantic preference structure, shown in table 5.10, to enable a proximate ranking to be

carried out.

Chapter 5: 20



Aynpoy uonediddy 133yspeards Jo uonesxd( p1's amdiyg

PIYspeaadg o) sproday

MOLET 3q {auBeug] |

PPON 20j8ARIXY HI0IG

1 s3ke] Joj s38vuuoy, Jo 19aqspeards

TEC00T SLTCBI 06€911

MoLET2q mdeig 7
%301g 3y} 10) s33vuu0 |, PIANPIYS

<

\ /

suonediddy S0
woJ,| uoneuLIoju]

g o tuuese (8
whoy
» ) NBaNe

o 8) Ge.A IR 18 S0V

OO “BHITINALID) IS o S| TIARD

B SALRE 0100 1 B

ININOJIWOD WALSAS LIAdXHA

Chapicr S : 21



Ranking Description
1 recommended
2 should be considered
3 may be considered
4 not recommended
5 not applicable to these conditions

Table 5.10 Semantic Ranking of Equipment Suitability

There were a large number of attributes and outcomes involved in the equipment
decisions so, as discussed in Chapter 4, the task has been split into smaller separate
tasks. Since this ranking was applied to each equipment type a knowledge base was
created for each each item of equipment. This result in a system architecture similar to

that shown in figure 5.15.

TOP LEVEL
CONTROL
KNOWLEDGE BASKE

OVERBURDEN
KNOWLEDGE BASH}:

Figure 5.15 Knowledge Induction Module Architecture

The rules were induced using the Xi Rule software, and the decision trees created were
pruned using the C4 algorithm to climinate any errors due to contradicting case studies
or missing information for decision nodes. The decision trees were then imported into
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Xi Plus as complete knowledge bases made up of a number of interconnected rules. A
network of inference queries and top level control was added manually within the

framework of the Xi Plus expert system shell.

The knowledge induction module occupies over 1IMB of disk space, twice the size of
the equivalent MINDER application module. This increase in size is due to the system
gathering all the information needed to perform the consultation and the performing the
equivalent of a fuzzy logic ranking using rules. No external software is accessed. The
inducted rules were tested against a test set of case studies and performed well. These

case studies are reported in Chapter 6.
5.10 Neural Networks Equipment Selection

The application of neural networks to the field of equipment selection has been
demonstrated by the creation of a variety of neural network decision models. It was
initially envisaged that back-propagation network models would be used, but a
thorough testing revealed spurious answers, and an unsuitability to the training data.

Eventually a series of counter-propagation networks were created, one of which is
shown in figure 5.16. This network is a four layer network used to select equipment
types for topsoil removal. The network has been trained using a file of past equipment

case studies.

The network is based on three input criteria : topsoil thickness, haul distance and
flexibility under varied conditions. These factors are entered as numerical inputs to the
network in the range of 0 to 1. The first hidden layer adjusts the inputs into normalised
vectors consistent with the Kohonen learning rule used in the second hidden layer. The
Kohonen layer uses this leaming technique to adapt the processing elements to recognise
particular codes. The Widrow-Hoff learning technique used in the output layer is a
method of computing the error signal in the output and adjusting the weights in the input

connections to eliminate this error.

In figure 5.16 the input values, represented by the size of the boxes on the processing
elements, are 0.3, 0.6 and 0.4 respectively. This illustrates a low topsoil thickness, an

average flexibility requirement and a haul distance of 300-600 m.
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The neural network provides the following ranked results.

O Front End Loader and Truck 0.50
O Scraper and Tractor 0.20
O Full Power Scraper 0.15
O Elevating Scraper 0.15

A more detailed counter-propagation network allowing dragline models to be selected
was created using the Neural Works software. A representation of this network is
shown in figure 5.17. This network was iteratively trained using small sets of training
data allowing an estimation of the required data for complete training to be made.

5.11 Conclusions

Competition between the manufacturers of hydraulic excavators and draglines is
intensive. The costs of overburden and mineral removal have been reported in many
technical journals and at conferences (Atkinson 1971, Straam Engineers 1978). Over
the past decade opencast mine operators have trended to use larger excavating
machinery (Mine and Quarry, 1991). The single greatest area of advance in opencast
mining equipment in the last decade has been in the area of diesel hydraulic shovels
which now challenge the long accepted dragline and electric rope shovel (Adams 1990).

The selection of equipment for an opencast mining operation is a complex decision in
which many relatively well defined parameters are taken into account. A discussion of
these factors and which equipment they influence has been provided by this chapter. In
practice, mine operators when purchasing an item of equipment display a personal
predisposed opinion, based on past service records, parts maintenance, manufacturer's

location and a host of other such factors.

The MINDER system considers geometric and operating parameters in selecting an
optimum item of equipment. It is possible to run any application module of the system
independently of the others making a range of decision information available to a mine
designer as it is needed. This allows multiple consultations to be performed and basic
sensitivity analysis to be undertaken on the equipment decisions. The equipment
rankings and simulations provided should act as a starting point for a mine designer,
allowing more complex cost analysis and scheduling operations to be performed.
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To retain flexibility in the design stages some computing or mining knowledge is
usually needed to decide on the order the application modules should run. In this
context, it should be remembered that one of the most important aspects of an expert
systems is the help and explanation facilities. Often the decision reached is not as

important as the reasons for the decision.

Chapter 5 : 26



Chapter 6

Case Studies

6.1 Introduction

This chapter presents a selection of MINDER case studies. Information from geological
models and pit reports is used to select working methods in addition to equipment types
and advise an engineer on their use. The objective is to evaluate the MINDER system
performance, providing a validation of the thesis and suggesting potential applications.

Equipment selection is often based upon subjective judgement and the aim of the
MINDER system is to provide optimum equipment configurations based upon site
constraints. This chapter will consider three case studies. The first is a simple test to
demonstrate the capabilities of the system. The second is an example of a large
Australian opencast mine and uses a mixture of real and created data. The third case
study was performed using real data from a large opencast site in Scotland, which

allowed the MINDER results to be compared with actual equipment used.

The case studies will be reported in a condensed format, the sites will be described and
the equipment results given. Small parts of the design will be considered in detail to
illustrate the workings of the MINDER system. Tables of data and results are reported in

appendices to keep the main body of the text readable.

6.2 Case Study 1

The first case study to be considered has a simple three layered geology, with a
horizontal topsoil layer of earth overlying a variable thickness of shale. This small area
could be part of a larger mine planning exercise. Below the shale lies a coal seam of
uniform thickness but variable depth. A schematic of this case study with an extended
vertical scale is shown in figure 6.1. This was generated using AutoCad based upon a

Surpac model of the deposit.
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Initially the general advice module of the top level MINDER knowledge base was run
which produced the advice shown in table 6.1. The deposit will be mined in the
sequence depicted by the block numbers in figure 6.1. For scheduling purposes any
upper blocks will have to be removed before any of the lower blocks. For example, the
first three topsoil blocks will have to be extracted before any of the waste or coal blocks

are removed.

A Surpac model of the deposit was interrogated to obtain volumes and tonnages for
each of the blocks. The MINDER system was consulted to provide an equipment type
and model (where applicable) for each of the individual blocks.

6.2.1 Topsoil Equipment Selection

The topsoil material type was defined as earth, density 1.65 t/m3. The thickness of the
topsoil across the whole area was constant at two metres, this gave each block a volume
3,200 m

- All the information needed to perform the full consultation for the topsoil material is
shown in Appendix 1, table 1. The results for each of the blocks within the topsoil
layer of case study 1 are displayed in Appendix 1, table 2. Three equipment rankings
were produced using various weighted fuzzy similarity techniques, as discussed in
Chapter 4, only the first three items of each equipment list are displayed here. It was
decided to use a scraper to remove the topsoil overlying the deposit.

The scraper module was consulted to select a suitable type of scraper for the conditions
encountered, the information was taken from Surpac results files and from interrogation
of the user. The Surpac results file was made up of the volume calculated between two

digital terrain models, these were the topography and the base of the topsoil. The
Surpac file also includes geological descriptors, such as material type, density and
swell factor. Table 2 in Appendix 1 shows the results of the scraper consultation, it can
be seen that the preferred item of equipment is an under-powered rubber tyred scraper.

6.2.2 Waste Equipment Selection

The waste material was defined as shale, density 2.35 t/m3. Although the thickness of
the shale across the deposit area varied between 13 and 33 metres, the blocks can be
considered as three sets of three blocks, one set of 13 m thickness, one of 23 m and the

last set 33 m thick.

Chapter 6 : 3



Table 3 in Appendix 1 details the information used for the analysis of the waste
material. The volume of each of the first three blocks was calculated by the Surpac
software as 20,800 m3, the next three blocks had a volume of 36,800 m3, and the last
three waste blocks contained 52,800 m3 of material. The base of topsoil and top of coal
digital terrain models were used by the Surpac software to calculate these volumes.

The equipment types suggested by both the American and British opinionated fuzzy
logic mechanisms are shown in tables 4, Appendix 1. Only the first three items of each
of the rankings is shown in each of the tables. It was decided on the basis of these

results to pursue a design using a truck and shovel combination.

The hydraulic excavator module was consulted using the numerical and linguistic
information listed in table 3, Appendix 1. It should be remembered that the MINDER
system had full access to the data used in all previous consultations while selecting a
hydraulic excavator model. In addition, some of the information given to the expert
system was in the form of conclusions, previously arrived at by the system which the

user was then asked to verify.

Table 5 in Appendix 1 provides the three fuzzy logic equipment rankings for the waste
blocks. It can be seen that the MINDER system advised the use of a variety of excavators
across the site. As the thickness of the shale increased so did the production
requirements. For the smaller block volumes the MINDER system preferred the Liebherr
T 991" hydraulic excavator, and for the larger volumes a Demag 'h 285’ was the
selected item of equipment. For the purposes of this case study it was decided to use
the Demag 'h 285" hydraulic excavator to remove the shale to ensure that the excavator

was capable of meeting the site production requirements.

6.2.3 Coal Equipment Selection

The coal was defined as bituminous coal, density 1.25 /m3. The thickness of the coal
seam across the whole area was constant at two metres, giving each block a volume of
3,200 m3. The Surpac software calculated these volumes using digital terrain models of
the top and bottom of the coal seam. Table 6 in Appendix 1 gives a list of the
information needed to perform the consultation to determine an optimum item of

excavation equipment for the coal seam.

Using the three equipment rankings provided by the MINDER system, shown in table 7,
Appendix 1, it was decided to use a hydraulic excavator to remove the coal. The
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hydraulic excavator module was consulted to select an excavator to match the coal seam
conditions. A Komatsu 'pc 400-1' hydraulic excavator was selected to remove the coal.

6.2.4 Machine Learning Modules

The information for case study 1 was read through the knowledge induction expert
system modules and the topsoil equipment selection neural network. The reason for this
consultation duplication was to test the accuracy of the learning systems compared to
the knowledge based system. The results from these tests are shown in table 8,

Appendix 1.

The inducted rules suggested an elevating scraper for the topsoil and a shovel truck
combination for the waste and coal seams, a good correlation with the MINDER results.
The neural network divided it's output between scrapers and a front end loader and
truck combination, agreeing with previously obtained equipment selections.

6.2.5 Scheduling Modules

The results of the equipment selection modules were automatically read into the
scheduling module and Excel spreadsheets were created using the techniques described
in previous chapters. The case study information was gathered and organised into three
spreadsheets, as shown in schedule 1, Appendix 1. In the table layer 1 refers to the
topsoil, layer 2 is the waste and layer 3 is the coal seam.

It can be seen that the schedule developed fulfils the requirement that the topsoil is
removed from a block before the waste and the shale is excavated before the coal. The
last of the waste and coal are removed in the tenth month, giving this area a life of ten

months.

These three spreadsheets can be converted into a graphical format as shown in charts 1,
2 and 3 in Appendix 1, which illustrate the removal of the blocks on a monthly basis.

6.2.6 Case Study 1 Summary

The MINDER system has analysed a simple three layer geology, with seams of varying
thickness. The deposit was split into nine separate blocks, each of which was

considered individually.
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The system selected an under-powered rubber-tyred scraper to remove the two metre
thick layer of topsoil overlaying the deposit. A Demag ‘285" hydraulic excavator was
suggested as the optimum item of equipment capable of meeting the production
requirements of the site. The system selected a Komatsu ‘pc 400-1' hydraulic excavator
to extract the coal. An initial working schedule for these items of equipment was

suggested using a spreadsheet and associated graphs.

6.3 Case Study 2

The second case study is a multi-seam deposit adapted from an Australian mine in the
Hunter Valley. The Permian coal measures have a major basal seam overlain by three
thinner coal seams. The deposit has been mined to a depth of 40 m, the purpose of this
case study was to select equipment for future mining which will progress to greater
depths. Equipment selection alternatives are available for this design allowing a
comparison to be made between the MINDER selected equipment and the equipment

selected by a team of mine planners (The Warren Centre, 1985).

6.3.1 Geology

The surface is relatively flat and the seams dip gently between 0 and 10 degrees. The
deposit displays lateral consistency in both lithology and seam thickness. A typical
geological section is shown in figure 6.2 and figure 6.3 is a simplified stratographic
column. The basal coal seam is eight metres thick and the three overlying seams are
cach two metres thickness. The interburden thickness between the coal seams varies
between 25 and 35 m. The area is overlain by a layer of topsoil, drift material and

weathered sandstone.

Limitof
Prviows
Working

Figure 6.2 Typical Geological Section
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For this study there was assumed to be no limit to the deposit down dip. Lateral
extension is limited to four kilometres in the strike direction. The deposit is to be mined

over a twenty five year period.

] Weathered
Superficial Deposits

Mudstone/Sandstone
Scam 4 - 2m thick
Porous Sandstone - 35 m
Seam 3 - 2m thick
Cemented Sandstone - 25 m
Seam 2 - 2m thick

Cemented Sandstone - 30m

Seam ! - 8m thick

Figure 6.3 Stratographic Sequence

The stratographic sequence shown in figure 6.3 contains a series of reference numbers,
these are used to denote the individuate layers considered during the assessment by the
MINDER system. The material properties given for the deposit included a coal in-situ
density of 1.3 m3 and a waste in-situ density of 2.2 /m3. Table 6.2 gives the volumes

and tonnages of the respective layers until the cut off depth is reached.

Layer Number | Material Type | Thickness (m) | Volume (MmJ3)| Tonnage (Mt) |
1 Topsoil 15 38.30 84.26
2 Waste 20 8.02 17.64
3 Waste 15 10.17 22.37
4 Wasie 35 42.28 93.02
5 Coal 2 5.60 7.28
6 Waste 35 67.21 147.86
7 Coal 2 8.55 11.12
8 Waste 25 63.14 138.91
9 Coal 2 10.56 13.73
10 Waste 30 78.64 173.01
11 Coal 8 41.27 6145
Table 6.2 Reserve Estimation
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The uniformity of the deposit meant that each layer was considered as a single block.
The top level MINDER module suggested that an internal dump was used and that the
deposit was mined by a lateral advance down dip with a vertical advance to the

stripping ratio cut off point.
6.3.2 Equipment Selection

A consultation was performed for each strata layer within the area under consideration,
and MINDER selected a particular item of equipment for each of the layers. The
information used and the ranked equipment results are listed in tabular form in
Appendix 2. Table 6.3 below gives a summarised list of the equipment selected for

each layer.
Layer Equipment Model Manufacturer
1 Shovel rh 120 0&K
2 Shovel h 241 Demag
3 Shovel h 185 Demag
4 Dragline be 1300 w Bucyrus Eire
5 Shovel rh 40 0&K
6 Dragline be 1300 w Bucyrus Eire
7 Shovel th 40 O0&K
8 Shovel h 285 Demag
9 Shovel rh 40 0&K
10 Dragline be 1380 w Bucyrus Eire
11 Shovel h 85 Demag

Table 6.3 Summarised Results

The preferred items of equipment were large hydraulic excavators and draglines. The
hydraulic shovels being used to mine the weathered zone, the coal and the thinner waste
layers, the draglines to extract the thicker sandstone strata. The MINDER dragline
module offered advice on the dragline working configuration to be used, an example of

a result from this case study is shown in figure 6.4.

The haulage application module suggested that rear dump trucks are used for the
transportation of the spoil. The preferred truck models varied depending on the
production requirements of the particular excavator. Tables 10 and 11 in Appendix 2

show the aggregated results of the haulage consultation.
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Dragline Advice Systesm

. Operational Advice bdd

The use of a key cut is not recommended.
Selective placement is not necessary.

Due to there being no abnormal conditions, layer
loading is advised as the method of bucket loading.
Spoil placement using the curvilinear technique

is advised.

Lack of special conditions suggest a dig and cast
technique of spoil placement.

An advance bench is to be used.

LA Geometric Advice LA

The maximum pit width is estimated as 75 m

The minimum pit width is estimated as 32 m

Number of in-pit machines suggests congestion.

The pit width certainty factor is 0,37.

Suggested pit width is 48.0 m

Maximum dig out is estimated as 43.7 m

Minimum dig out is estimated as 13.2 n

Suggested dig out is 27.5 m

A steady reduction in pit width as mining progresses

is advised,

Figure 6.4 General Dragline Advice

Simulation programs written by the expert system were run within GPSS, they advised
that a fleet of three trucks should be used for each of the hydraulic excavators on layers
1 and 3, four trucks for the h 241 excavator on layer 2 and five trucks for the large h

285 shovel on layer 8.

The inducted expert system and topsoil neural network were consulted using part of the
data from case study 2. The aggregated results of these tests are shown in table 12 of
Appendix 2. The induced rules ranked the equipment types in a similar order to the
MINDER results while the neural network differed slightly, showing an increased

preference for a scraper to remove the weathered material.

A schedule for the 25 year life of the mine has been prepared by the spreadsheet module
of the expert system, this is shown in schedule 1 of Appendix 2. Due to the large scale
of the deposit, the long time periods involved and the coarseness of the consultation
this schedule provides a course estimate of the yearly volumes which could be removed
using the selected equipment. It can be seen that the equipment suggested by the
MINDER system is capable of removing the waste within the 25 year life of the mine.
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The mining engineers who studied this site (The Warren Centre 1985) did not suggest
individual items of equipment but proposed a variety of viable mining options. These

options included :

(o) Dragline and truck / shovel operations.
O Dragline and shovels with mobile crushers.
o Draglines with mobile crushers.

The production sizes of the equipment needed which were estimated by the planning
team fell within 5 - 10 % of the bucket sizes of the equipment suggested by MINDER.
However, a discrepancy occurred between the MINDER system and the Warren Centre
planning team with the choice of haulage systems. When selecting a truck haulage
system, large 150-170 tonne trucks were selected and some of the mining

configurations considered favoured in pit conveyors and mobile crushers.

The reason for this difference of opinion is based on the knowledge sources of the two
planning alternatives. The Warren Centre team was at the time considering the use of
advanced surface mining technology, and as such advocated the use of relatively new
techniques in surface mine planning, such as the trend towards larger trucks and the use
of mobile crushers with conveyor units. MINDER on the other hand uses new computer

techniques to store the traditional knowledge of the surface mine planner.

6.3.3 Case Study 2 Summary

The MINDER system has analysed a large Australian coal deposit with simple geological
conditions. The site was split into strata layers, each of which was considered

individually. The material was considered to be homogeneous.

An O & K rh 120 hydraulic excavator with three Wabco 120 cm trucks was selected to
remove the weathered surface deposits. Three O & K rh 40's were to remove the
thinner upper coal seams and a larger Demag h 85 was chosen to extract the thicker
basal seam. The waste is to be removed using a combination of draglines and hydraulic
shovels. The draglines selected included two be 1300 w's and a larger be 1380 w for
the lowest overburden layer. The hydraulic excavators selected for waste extraction
were a h 241 front shovel for layer 2 which worked with four Rimpull rd 120 trucks, a

Demag h 185 was selected for layer 3 with three Wabco 120 cm trucks and a h 285
excavator for layer 8 which worked with a fleet of five Wabco 150 ct trucks.
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When compared to the mining configurations produced by the Warren Centre,
MINDER's results correlate well. The differences in the haulage equipment selected
could be overcome by incorporating new surface mining approaches and equipment

trends into the expert system.

6.4 Case Study 3

The third case study is based upon a large opencast coal site in the Motherwell district
of the Strathclyde region, Scotland. The site is presently being worked allowing a
comparison of MINDER equipment estimates with the actual equipment used.

The topography falls from a high point of just over 240 metres above ordinance datum
in the south-east corner of the site to a low point of just under 190 m in the north-west

comner of the site (British Coal 1989).

In general the ground slopes towards the north-west. The gradients over most of the
site are shallow ranging from 1 in 23 to 1 in 30, reaching a maximum of 1 in 3. There
is a well defined valley feature developing westwards to the site boundary. The
topography is clearly illustrated by the surface contours shown in figures 6.5. A shaded

representation of the topography is shown in figure 6.6 which clearly shows the valley
feature to the west of the site. The vertical scale in figure 6.6 has been exaggerated by a
factor of ten. The site is in a state of dereliction containing colliery tips, abandoned

buildings and a disused railway line.

6.4.1 Geology

The strata under consideration for this case study constitutes the section of the Coal
Measures from the Lower Drumgray seam to the Armadale Main, which is taken as the
basal seam over most of the site. A stratographic sequence with approximate

thicknesses is shown in figure 6.7.

Superficial deposits cover the entire site and consist of boulder clay, peat, sand and
gravel, with a thin covering of soil. The thickness of the drift material varies across the
site from 0.20 m to a maximum of 12.85 m, averaging 2.98 m. The majority of the site

has a cover of glacial till. Small deposits of peat have been located to the south-east and
south-west of the site up to a maximum thickness of 6m. There are also deposits of

colliery waste at various localities within the excavation area.
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Stratography Thickness
Range (m)

Superficial Deposits 0.20 - 12.85
Lower Drumgray Seam 0.56 - 0.73
Mudstone/Sandstone 8.50 - 12.00
Shotts Gas Seam 0.32 - 0.61
Clay overlaying 2045 - 24
Mudstone/Sandstone 43 - 24.50
Mill Seam 041 - 141
Sandstone with
Mudstone/Sandstone 7.00 - 16.80
Armadale Ball Seam 0.19 - 0.65
Mudstone overlying 224 -8.1
Siltstone/Sandstone ) 10
Armadale Main Seam 0.37-0.86

Figure 6.7 Statography and Thickness Ranges (British Coal 1989)

Most of the coal seams are simple seams with mudstone roofs. The floor is normally
mudstone or seatearth. Outcrop areas of the upper seams have been affected by drift
disturbance and the coal area has been accordingly delineated. The exception to this coal
description is the Mill seam which is a complex seam comprising two leaves and is the
thickest on the site. The mudstone parting varies in thickness between 0.09 and 0.64
metres. The coal occasionally becomes shaly across the site, this shaly coal is not

considered.

The Armadale Main seam is affected by thinning and washout over the site. A major
north-south trending washout channel up to 190 metres in width separates the Armadale
Main seam to the west of the site. The areas of working were also limited against a

large washout feature in the centre of the site.

The overall dip of the strata is northwards with variations to north-west or north-east
with dips generally no steeper than 1 in 20. Flat lying strata is present to the north and

south of the site in very shallow synclinal structures.
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The coal areas are generally unaffected by major faulting. However, there is one large
fault in the south-west corner of the site, running east-west. This downthrows
approximately forty metres to the north. Lesser, east-west trending faults have been
detected in the west of the site, these have average throws of between six and eight

metres.

6.4.2 Areas of Working

The site is to be worked in four areas these were defined by the site boundary, the
major fault and the seam outcrop positions. These four are shown in figure 6.8 which

was produced using Surpac software to create digital terrain models of the base of the
lower seams within each of these areas. Areas A and C are to be worked to the base of

the Armadale Main seam, area B is to be worked to the base of the Shotts Gas seam,
and area D to the base of the Mill seam.

A section drawn across the site shows the relative elevations of the various seams.
Figure 6.9 shows a section across line X-Y with the vertical axis exaggerated by a
factor of ten. The pit will have two deep areas where the strata is extracted to the
Armadale Main seam, with an raised area (area D) between them. The Armadale Main
and Armadale Ball secams are not mined within area D due to washouts and seam

thinning.
The size of the various areas has been estimated using Surpac software, and volumes

have been produced, these are shown in table 6.4. The coal seams have been analysed
to determine the amount of coal which can be exploited in each of the areas. The results

of this analysis can be seen in table 6.5.

Working Area Estimated Area (m?) Estimated Volume (m?)
A 471,000 19,782,000
B 365,000 5,110,000
C 1,182,000 26,005,000
D 373,000 5,222,000

Table 6.4 Estimated Sizes of the Working Areas
It can be seen from these tables that the total coal in situ is some 2,358,000 m3 in a total

pit volume of 76,105,000 m3 which gives an overall mine stripping ratio of
approximately 22.5. The density of the coal has been taken as 1.33 /m3 across the site.
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Coal Seams Working Area | Estimated Volume (m3) Estimated Tonnage
Lower Drumgray B 512,000 680,000
Shotts Gas B 141,000 188,000
Mill A 215,000 285,900
C 197,000 262,000
D 168,000 223,000
Armadale Ball A 143,000 190,000
C 256,000 341,000
Amadale Ball A 233,000 412,000
C 493,000 657,000
Total 2,358,000 3,238,000

Table 6.5 Estimated Coal Volumes and Tonnages

Initially the top level module of the MINDER system was run to give general advice on
the working of the site. This suggested that an external dump was used and that the
deposit was mined by a lateral advance with vertical advance to the stripping ratio cut

off point.

It is planned to mine the site from west to east in less than fifteen years. The cuts will
be approximately parallel to the strike and the waste is transported to an external spoil

dump.
6.4.3 Equipment Selection

These four areas are further divided into sixteen smaller areas for analysis as shown in
figure 6.11. A consultation was performed for each layer of strata in each of these small
areas. The information used and the equipment rankings performed are listed in tabular
form in Appendix 3. Table 6.6 below gives a list of the tables in Appendix 3.

The topsoil (drift) material was treated as boulder clay across most of the site, the
exceptions being area C4 where a sand and gravel material was considered and area A3
where the material was a peat/earth mixture. Each working area was consulted to give
three weighted rankings. The tabulated results in Appendix 3 show the overall

aggregated rankings of the equipment for each block.
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Appendix 3

Table Title

Table 1 Topsoil Information
Table 2 Topsoil Equipment
Table 3 Waste hfmﬁm
Table 4 (.Mvetag::%r‘:m@ﬁ&m)
Table § (.bo"yeasswhoﬂugsn es"cl.m)
Table 6 (\;Vb:?: E{qn:ll'gnea?n;
Table 7 (.bov‘evmmw;m)
Table 8 (abov:v :::-Egl?m;eam)
Table 9 Coal Information
Table 10 MSZ“' Dﬁfg;cstn)
Table 11 (g&ligm)
Table 12 C(z:‘llll:}qsu:p.:l)cm
Table 13 (Asnoﬂdseq gi.'ilmsee'fm)
Table 14 (Aﬁﬁ?ﬁﬁm;mm)
Table 15 Haulage Information
Table 16 {1‘,‘?&‘{..59 “.im
Table 17 &T&ﬁ“‘ﬁi‘:ﬁ?&)
Table 18 Machine Learning Results

Table 6.6 Information and Results in Appendix 3

The preferred item of equipment for topsoil/drift removal was the scraper, and the
preferred scraper type for the conditions encountered was an under-powered rubber-

tyred scraper.

The waste material varied across the site although the interburden layers predominantly
consisted of mudstone or sandstone. Each working area was consulted twice to give
two sets of weighted rankings based upon both the British and American matrices. The
results tables in Appendix 3 show the preferred items of equipment suggested by both

the American and British aggregated results.
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When the equipment type suggested by the top level consultation was a hydraulic
shovel then two equipment item consultations were performed based on whether the
equipment is to be used principally for this layer or for other layers within the site.

The optimum item of equipment suggested by the MINDER system varied across the
site. The system indicated a general preference for hydraulic excavators with draglines

being preferred in some of the thicker scam areas.

When a hydraulic excavator was considered principally for one layer of the site the
system tended to select shovels such as the O & K rh 75 or the Demag h 85. If more
layers were considered then larger models such as the O & K rh 120 or rh 185 were
selected. A Bucyrus Eire 1260 w was the preferred dragline equipment item across the

site.

Dragline Advice Systea

LA Operational Advice e

The use of a key cut is recommended

to ensure good highwall profile and condition,
Selective placement is not necessary.

Due to their being no abnormal conditions, layer
loading is advised as the method of bucket loading.
Spoil placement using the curvilinear technique

is advised.

Lack of special conditions suggest a dig and cast
technique of spoil placement.

An advance bench is not to be used.

LA Geometric Advice bl

The maximum pit width is estimated as 52 m
The minimum pit width is estimated as 25 m
Coal recovery may be increased with wider pit width.

Number of in-pit machines suggests congestion.
Dozing requirements may be reduced by a

narrower pit width.

The pit width certainty factor is 0.43.

Suggested pit width is 36.6 m

Maximum dig out is estimated as 32.6 m

Minimum dig out is estimated as 10.9 m

Suggested dig out is 21.8 m

A steady reduction in pit width as mining progresses

is advised.

Figure 6.12 General Dragline Advice
Since a dragline had been suggested as a possible equipment alternative the dragline

advice module of the MINDER system was run during the consultation. An example
giving the general advice for a single block is shown in figure 6.12.
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The coal material was constant across the site only varying in thickness from seam to
seam and from area to arca. Each working area in which a seam occurred was consulted

to give three weighted rankings. The aggregated results of these consultations are

shown in Appendix 3.

The preferred item of equipment for coal extraction was a hydraulic shovel, with a
scraper being selected in a few areas where the coal lies at shallow depths. The system
selected a range of different excavators as the seam thickness varied ranging from the

Kubota kh 20 to the Demag h71.

The dominant suggestion of the haulage application module was for the used of rear
dump trucks to transport the waste to the spoil dump. The overall selected truck model
is a Euclid r-100, tables 16 and 17 in Appendix 3 show the aggregated results of the
haulage consultation. The GPSS simulation software was run using programs written
by the MINDER system, the results of the truck shovel simulation suggested that a fleet

of eight trucks should be used, four working with each hydraulic excavator.

Selected information for case study 3 was used to consult the inducted expert system
modules and to run the topsoil equipment selection neural network. The results of these
tests are shown in table 18 in Appendix 3. A selection of blocks were used for these
consultations and the results were aggregated into final equipment rankings. The
inducted knowledge bases and ncural networks agree with the MINDER system
consultations to advise an elevating scraper as the topsoil/drift removal equipment and a
hydraulic shovel to remove the coal. A slight difference between the systems is noticed
in the waste consultation. Although the system suggests a shovel and truck as the
optimum type of equipment, a front end loader and truck option is preferred above a

dragline.
6.4.4 Equipment Scheduling

The MINDER equipment selection results for the site can be interpreted in a variety of
ways, whether a suite of hydraulic excavators is to be used or a dragline/shovel
combination as suggested for some of the deeper areas. For the purposes of simulating
the production over the life of the mine it was decided to use two O & K rh 120
excavators to mine the waste layers, and an O & K rh 6 to remove the coal. A fleet of
eight Euclid r-100 dump trucks will be used to transport the waste to the external dump.
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Damside Plant (Dec. 1991)
Waste Excavator Demag 185 (1)
Waste Excavator Cat 225 (1)
Coal Excavator O&Krh9 (»

Dragline BE 1260 w (1)
Dump Trucks Cat 777B 4
Dozer Cat 814 (1)
Dozer CatD6 (1)
Dozers Cat DON (2

Table 6.7 Actual Equipment used on the Opencast Site

The actual equipment used on the opencast site is shown in table 6.7. A Bucyrus Eire
1260 w dragline and Demag 185 hydraulic excavator make up the principle waste
removal equipment. A Caterpillar 225 excavator is used for topsoil/drift removal and
the coal is excavated using an O & K rh 9. A fleet of dozers are used for ancillary tasks

such as the flattening of the spoil peaks.

The results of the equipment selection modules were read into the MINDER scheduling
module creating Excel Spreadsheets of the production over the life of the mine. Two
simulations were performed one based on the equipment configuration suggested by the

MINDER system and one based on the actual equipment used.

The MINDER and actual schedules are shown in Appendix 3, schedules 1 and 2
respectively. It can be clearly seen that the equipment selected by the MINDER system
has a lower production rate then the actual equipment used. The suggested equipment
fulfils the requirements of the site within the specified time limits. The actual equipment

appears to have a production over capacity.

6.4.5 Case Study 3 Summary

The MINDER system has analysed the complex multi-layer geology of a large opencast
coal site. The site was split into sixteen working areas, each of which was considered
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individually. The large size of these areas introduces errors due to the assumptions
which have to be made on the homogeneity of the material within these areas.

The system selected under-powered rubber-tyred elevating scrapers to remove the
layers of topsoil and drift material overlying the coal deposits. Although a range of
equipment was suggested for the removal of the waste material a preference was shown
for hydraulic excavators. It was decided to excavate the waste using two O & K rh 120
hydraulic shovels, although applying some of the other suggested excavating
equipment to the site may be a useful exercise during the planning of the full mine site.
MINDER suggested a range of hydraulic shovels for coal removal, it was decided to
schedule the coal excavation using an O & K rh 6 hydraulic excavator.

The shovel and truck simulation suggested that a fleet of eight trucks are used to
transport the waste from the two rh 120 shovels, this is similar to the actual site which
uses four trucks to transport the waste from one hydraulic excavator.

In comparing the results of the consultation with the actual equipment used, the major
difference is the increased capacity of the actual excavating equipment. It is believed
that this is due to the difference between the theoretical rates of working produced using
manufacturers data and the actual production rates experienced by the contractors.
Upon questioning, the contractors quoted the production rates of various machines 5-
15 % lower than the production rates used by the MINDER system (Bell 1990).

It should be noted at this point that the MINDER system aims to select optimum
equipment for the conditions encountered without considering cost constraints, which

may alter the equipment decisions.

Overall the case study achieved it's objective, selecting an item of equipment which
meets the constraints imposed by the conditions encountered. The comparison with the
actual equipment used is inaccurate unless the financial aspects are considered and the

equipment available to the contractor is taken into account.
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Chapter 7

Conclusions

7.1 General Conclusions

The planning of an opencast mine is a complex process due to the inter-dependence of
the decisions required. A wide range of externally imposed factors may prohibit a
particular type of mining, these include mining and environmental law, deposit
conditions, community attitudes and industrial policies. Except where conditions exist
which prohibit a particular type of mining, the combined influences of the various
factors is related to their impact on the costs of operation. The method that proves to be
the most cost effective on an overall basis will be the one used to mine the deposit.

Changes in the economic climate and fiscal pressures have led to a situation where it is
essential to obtain the mine design which best matches the conditions encountered. This

methodology applies through all the stages of the design process. The decisions are
based on collated information on the deposit, engineering knowledge and subjective
judgement. This places increasing pressure on the mine planner to be an expert in a

wide range of fields.

The selection of excavation machinery has a significant effect on the profitability of a
opencast mining project, the importance of this decision is often overlooked by mine

operators and contractors who display predisposed opinions based on past contracts,
location and personal contacts.

Equipment selection is not an exact science and although the optimum selection for an
opencast mine is a complex decision, it can be broken down into a series of relatively

well defined parameters. The planning engineer often has inappropriate tools to cope
with the decisions that need to be made.
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In recent years the impact of computer technology on mine design has been profound,
numerous pieces of software are available to assist the mine planner. The planning
software available, however, is often unable to meet the complex demands arising from

the individual nature of each deposit.

The software is not always applicable to the particular planning problem or incapable of
dealing with large real data sets. This problem has not prevented some stages of the
mine design process relying on computer techniques. Equipment selection remains a
human task with the use of computer systems, such as databases and spreadsheets,

limited to the periphery of the decision.

The computer tools available have advanced considerably in recent years. Reductions in
the cost of hardware and the increasing availability of software has meant that

computers are now being used more extensively than before.

The rapid expansion of the computer industry has led to new methods of storing and
generating knowledge using computer systems, increasing the number of potential
mining applications. This new technology does not fully simulate the breadth of human
reasoning, but manipulates symbols following an inferred reasoning pattern.

Knowledge based techniques appear to be the most promising solution to mine
planning problems involving subjective and imprecise information. A variety of rule
based techniques have been applied to the field of mine design, storing and
manipulating operating and design knowledge and providing advice to the mine
planner. Initial applications of expert systems in the minerals industry have proved the
economic benefits of these systems by resolving problems which conventional
programs are incapable of solving due to the complex symbolic manipulation involved.
The application of these systems is still slower than in other comparable industries.

Expert systems reduce time and effort, improve decision making and minimise the
likelihood of errors. Although the final responsibility is often still dependant on a
human choice, these systems will ultimately lead to improved decisions.

Expert systems use a variety of methods for handling uncertain information. Fuzzy
logic is useful in dealing with ill defined information presented in the form of linguistic
concepts, and is capable of dealing with both qualitative and quantitative information.
The two fuzzy ranking techniques discussed in the thesis allow the subjectivity of

differing expert opinions to be incorporated into the analysis.
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An advantage of the expert system approach is the ability to explain any conclusions
reached and justify the inferencing process. When a fuzzy logic technique has been
used to rank alternatives it is often difficult to explain the conclusion reached, the user
must have a knowledge of the technique as the conclusions are presented in the form of

a numerical matrix.

An expert system is usually a strictly bounded environment which disallows large scale
data storage or complex algorithmic calculations. Thus in mine planning applications it
becomes imperative for these functions to be performed using other software packages

which can be coupled to the shell.

Development is moving away from large independent expert systems and the emphasis
is now on the modular integration of knowledge based techniques with conventional
programs. This solution provides applications using knowledge driven algorithms,
facilitating rapid analysis and generation of information. Often it is the intelligent use of

these applications which ensures a correct decision.

The expert system is also capable of acting as a front or back end to a range of

conventional software providing a new degree of 'user friendliness’. Two and three
dimensional graphicalm interfaces are now being incorporated as standard into modern

software, and the use of mouse and menu facilities can enhance the user interface.

The computer based research in the Department of Mining Engineering at Nottingham
University has progressed from the design of conventional mining software into the
development of intelligent systems which are applied to specialised areas of the design
process. Individual modular expert systems are developed which link into and utilise

software which is already available to the mine planner.

The MINDER system has been developed as a decision support tool for equipment
selection, and provides initial estimates of equipment requirements to guide the user
towards areas needing further detailed analysis. The system considers the geometric
and operating factors affecting the selection of a particular item of equipment.

A minimal amount of initial knowledge of equipment selection techniques is required by
the user as full on line help and explanation facilities are available. The help facility
covers the equipment selection process and describes the mining terms involved, the
explanation facility details the inferencing process under way and describes why a
particular value is needed. No computer experience is necessary to use the system as
the expert system relies on a question and answer interface with pull down menus used

whenever necessary.
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MINDER is capable of handling uncertain or missing information using a combination of
linguistic variables, certainty factors and external fuzzy logic software. The provision
of three fuzzy logic rankings for each MINDER equipment decision gives an insight into
the fuzzy logic matrices used. This provides a form of explanation showing which

factors were of greater importance for each equipment alternative.

The expert system is capable of not only linking with a range of commercially available
mine design software, but of writing macros and controlling the automatic operation of
this software. At present during the course of one consultation the expert system may :

Interrogate geological model result files.
Run external compiled Pascal software.
Perform relational operations on material and equipment databases.

Run truck/shovel simulations using GPSS.
Report the results to a spreadsheet.

00000

The use of a knowledge based system to control this complicated suite of software
allows a mine planner with no computer experience to perform complex tasks on a

range of commercially available software.

The MINDER system has itself been designed as a modular system, containing a
hierarchy of individual applications and knowledge modules. Any module may be run
independently of the others making a range of decision information available to the
mine planner as it is needed. This allows multiple consultations to be performed and

basic sensitivity analysis to be undertaken on the equipment decisions.

The modular structure of the MINDER system facilitates the inclusion of further rules
and knowledge modules. This allows the system to keep in line with current trends in

the mining industry and provides a more powerful directive tool.

The MINDER software has been repeatedly run in a number of case studies. These
demonstrated the ability of the software to perform detailed examinations of the
complex relationships between equipment geometry, operating methods and geological
conditions over a range of mining sequences. The MINDER system selected a set of
optimum equipment for the sites to meet the respective production requirements and
predicted where production problems may occur and larger items of equipment may be

needed.
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An additional objective of this project was to evaluate the use of machine learning
technologies, such as knowledge induction and neural networks, as decision support
aids for the mine planner. The field of mine design is a pertinent application of machine
leaming systems due to the inherent complexity of the decisions and the large amounts
of uncertain information involved. It would be possible to control these machine

leaming techniques using existing expert system technology.

Knowledge induction provides a solution to the expert system ‘bottle-neck’ of
knowledge acquisition by automatically generating a series of rules from a set of data.
To produce valid rules the example data must be split into a series of representative
attributes and outcomes. The use of decision tree pruning techniques, such as the C4
algorithm have led to greater confidence in rules generated from inducted systems.

Neural networks have potential to increase both the speed and robustness of
conventional computer systems. Within the next few years neural based circuitry will
appear in silicon, allowing the intelligent control of both hardware and software
systems. A neural network involves a large number of processing elements each with
primary local connections. These connections may be weighted during a training cycle
allowing a trained network to make educated guesses when presented with new
information. As with knowledge induction, neural networks require the data to be
described using a meaningful classification system. A major problem with
neurocomputing is the lack of explanation, in a manner similar to fuzzy logic the user
must understand the internal processes to glean any knowledge other than a simple

output value.

The MINDER top level equipment module was recreated using the Xi Rule knowledge
induction software. The decision tree created using the C4 algorithm was pruned to
eliminate any errors due to contradicting data and missing information. The large
module produced accessed no external software and attempted to select any item of
excavating equipment exclusively using rules. These rules were tested in parallel with
the MINDER system during the case studies and, although inefficient, they performed

well,

Two neural network models were trained to make equipment decisions, one to select
topsoil removal equipment and one to select a dragline model. These neural networks
were created using the InstaNet option of the Neural Works Explorer Package. A series
of counter-propagation networks were created after initial trials with back-propagation
networks provided spurious answers. Output from these networks was compared with
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test results from the MINDER case studies, and similar rankings were obtained. These
networks show the application of the technology and illustrate their potential for further

use.

The current interest in machine learning is based on a number of scientific and
economic expectations, some of which may be unreasonable. Although intelligent
systems can analyse and discriminate complex patterns, they can not perform many
simple human actions. In many fields such as learning the basic skills of a human
operator it has been found to be easier to train a neural network than to design and build
an expert system (Feldman 1990). The future of these machine learning systems
depends on the advent of technologies that support their speed and storage

requirements.

The mining industry still has to appreciate the full benefits of knowledge based and
machine learning technology. This will no doubt occur in a similar manner to the way
conventional computer systems have permeated into many aspects of mine design, and

will soon be considered essential.

The MINDER expert system has concentrated on one aspect of the mine design process,
attempting to eliminate the substantial economic losses arising from the selection of the
wrong piece of opencast mining machinery. There is a need for logical approaches to
eliminate weakness in the decision making process, this involves long term research

into further applications of intelligent computer systems.

There is a continuing rise in the levels of expertise in the mining industry leading to a
dissemination of expert knowledge. The loss of key personnel resulting in skill
shortages and a fall in professional expertise has been well documented. The use of
intelligent computer systems will not lead to the redundancy of experts, but will act as
decision aids, enhancing their performance, acting as a second opinion and design
guide. Whether these systems will mimic or climinate the subjective opinions of the
expert remains to be seen. Future computer systems may argue alternative viewpoints

with the same convictions as humans.

7.2 Recommendations for Future Work

The large number of inter-related factors and variables requiring consideration justify
the development of a detailed and comprehensive computer system to analyse the
equipment selection process and improve cfficiency. Often knowledge based and
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machine leamning research can be too 'pure’, losing applicability. Any mine design
system must be able to give 'real’ advice.

The MINDER system has been developed using a range of computer techniques, the
software has been tested on three case studies with distinct success. The development

work and case studies have identified areas where further work could be of value.

The refining of the knowledge within an expert system should be an on-going process,
with knowledge on current developments within the industry being added regularly. In
the case of the MINDER system, information should be provided on the trends within
the industry towards larger equipment and increasing priority being given to in-pit

crusher/conveyor haulage systems.

Extra knowledge to give advice on combinations of mining equipment would be an
advantage, this would involve the system taking into account the equipment selected in
other areas of the mine. It would also extend into preferred haulage items for different

combinations of excavating equipment.

MINDER would also be improved by the inclusion of knowledge which enabled the
expert system to spot erroneous equipment selections as they occurred. For example, if
across a site a small hydraulic excavator was the preferred item of equipment and for a
particular area, a dragline was selected the system should notice this and advise on why
this particular item was selected at this time.

The case studies highlighted the difference between the theoretical rates of working
calculated by standard methods using manufacturers data and the actual production rates
experienced by the contractors. An investigation into this difference would allow a
more realistic equipment decision to be made by the MINDER system.

The modular architecture of the MINDER system facilitates the addition of further rules
and allows extensive inferencing facilities for external software. At present the expert
system interrogates geological modelling result files after reserve estimations have been
performed. Work is already under way to develop intelligent systems to control the
geological modelling process (see section 3.11.2.1). The automatic control of a reserve
calculation within a piece of commercial modelling software would be a difficult task to

achieve and may require modifications to the modelling software.
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The increased use of graphical interfaces in modern software has led to an increased
'user-friendliness’ in mine planning software. Within the Department of Mining
Engineering at Nottingham University expert systems have recently been linked to
Geographic Information Systems (G.LS.) for slope design analysis (Kizil 1992). The
interface of graphical planning tools with the MINDER system would be a step towards a

fully integrated mine planning tool.

In a similar manner, increased development of the links to software used to continue the
planning process after the equipment selection decision would be of benefit. The
intelligent control of mine design software such as S.M.M.S. (see section 5.4) would
be an improvement, with variables being automatically passed from the expert system.
The scheduling option of the MINDER system could be expanded to deal with
scheduling information of increased complexity, on smaller time scales for short term

planning.

After selecting an optimum item of equipment a full cost analysis should be undertaken.
Research work being under taken in the Advanced Computer Applications Group at
Nottingham University to develop software to perform costings of excavation
machinery over time (Cebesoy 1991). There are also a wide range of commercially
available algorithmic software packages which are capable of performing depreciation

calculations on a selection of mining machinery.

The use of innovative machine learning techniques will change the appearance of
computer hardware and software over the next few years. Within the Department of
Mining Engineering at Nottingham University a number of projects are being initialised
involving neural networks for reserve estimation (Burnett 1992) and process control
(Denby, Schofic;ld and Bradford 1991). The use of these system in conjunction with
established expert system technology provide excellent prospects for the future.
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Appendix 1

Case Study 1

TABLE 1 : TOPSOIL INFORMATION
Identifier Value

Material - Earth
Material Thickness - 2 metres
Block Volume - 3,200 m3
Length of Haul Route - 100 - 200 metres
Flexibility of Operating Conditions ~ — Fair
Material Below Earth - Shale
Yearly Production - 126,720 tonnes
Yearly Holidays - 3 weeks
Days Worked per Week - 5 days
Maximum Adverse Grade - <3
Total Mine Production - Low

TABLE 2 : TOPSOIL EQUIPMENT

Equal Material Type Length
Weighting and Thickness of Haul
Scraper Scraper Scraper
Dozer Dozer Dazer
Front End Loader Hydraulic Shovel Front End Loader
SCRAPER SELECTION RESULTS
Equal Required Material Type
Weighting Tonnage Length of Haul
Under-Powered Under-Powered Under-Powered
Rubber Tyred Rubber Tyred Rubber Tyred
Full-Powered Full-Powered Tractor Drawn
Single Engine Single Engine
Tractor Drawn Tractor Drawn Full-Powered
Single Engine
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TABLE 3 : WASTE INFORMATION

Identifier Value
Material - Shale
Material Thickness — 'varies’
Volume of Block —_ 'varies’
Length of Haul Route — 150 - 300 metres
Flexibility of Operating Conditions  — Fair
Discontinuity Type - Bedding
Bedding Descriptor —_ Thick
Blasting ? — No
Matcrial Bencath Shale - Bituminous Coal
Condition of Shale - Moist
Mobility Requirement —_ Poor
Pit Slope Required - 70 degrees
Segregation Capability - Low
Excavator Working Mode - Front End
Mine Type - Strip Mine
Suggested Bench Height - 10 - 15 metres
Suggested Bench Width - 15 - 20 metres
Yearly Production —_ ‘varies'
Yearly Holidays - 3 weeks
Days Worked per Week - 5 days
Hours Worked per Day - 8 hours
Estimated Angle of Swing — 75° - 120°
Management Condition - Fair
Job Condition —_— Poor
TABLE 4 : WASTE EQUIPMENT
Equal Material Type Production
Weighting and Thickness Tonnage
(AMERICAN RESULTS)
Shovel and Truck Shovel and Truck Shovel and Truck
Shovel Shovel Shovel
Dragline i BWE
(BRITISH RESULTS
Dragline i Shovel and Truck
Shovel and Truck Shovel Frontend and Truck
Frontend and Truck Shovel and Truck Dragline

TABLE § : SHOVEL SELECTION RESULTS

Equal Digging Force Bench
Weighting and Production Dimensions
(Blocks 1-3)
r991 r991 r991

rh 40 h8s ms 1600

ms 1600 rh 40 h 185
~ (Blocks 4-6)

h 285 h 241 r991

r991 h 285 h 285

h 185 __h185 h 185
(Blocks 7-9)

h 285 h 285 r991

r991 h 241 h 285

h 185 h 185 h 185
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TABLE 6 : COAL INFORMATION

Identifier Value
Maierial - Bituminous Coal
Material Thickness - 2 metres
Volume of Block - 3,200 m3
Flexibility of Operating Conditions  — Fair
Length of Haul Route - 100 - 200 metres
Discontinuity Type - None
Material Beneath Coal - Hard Limestone
Condition of Coal - Moist
Mobility Requirement - Poor
Blasting ? - No
Segregation Capability - Low
Excavator Working Mode - Backhoe
Mine Type - Strip Mine
Suggesied Bench Height - 0 - 5 metres
Suggested Bench Width - 10 - 15 metres
Yearly Production - 40,000 m3
Yearly Holidays - 3 weeks
Days Worked per Week - 5 days
Hours Worked per Day — 8 hours
Estimated Angle of Swing - 75° - 120°
Management Condition - Fair
Job Condition - Poor

TABLE 7 : COAL EQUIPMENT

Equal Material Type Production and
Weighting and Thickness Length of Haul
Shovel Shovel Scraper
Scraper Scraper Shovel
Front End Loader Front End Loader Front End Loader
SHOVEL SELECTION RESULTS
Equal Required Material Type
Weighting Tonnage Length of Haul
pc 400-1 r991 pc 400-1
r991 pc 400-1 200 ck
r9%s5b r965b r991
TABLE 8 : MACHINE LEARNING RESULTS
(Knowledge Induction)
Topsoil Waste Coal
Elevating Scraper Shovel and Truck Shove! and Truck
Full Power Scraper Dozer Loader and Truck
Tractor Scraper Loader and Truck Elevating Scraper
(Neural Network)
Equipment Network Output
Elevating Scraper 0.325
Front End Shovel and Truck 0.295
Full Powered Scraper 0.234
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Appendix 2

Case Study 2

TABLE 1 : WEATHERED ZONE INFORMATION

Identifier Value
Material - Earth and weathered sst.
Material Thickness —_ 15 metres
Layer Volume - 38,300,000 m3
Length of Haul Route — 500 metres
Flexibility of Operating Conditions  — Good
Material Below Weathered Zone - Sandstone/Siltstone
Yearly Production - 1,500,000 m3
Yearly Holidays - 1 week
Days Worked per Week - 7 days
Maximum Adverse Grade - < 5°.10°
Total Mine Production - High

TABLE 2 : WEATHERED ZONE EQUIPMENT

(Layer 1)
Equal Material Type Length
Weighting and Thickness of Haul
Shovel Shovel Shovel
Front End Scraper Front End
Scraper Front End Scraper

TABLE 3 : SHOVEL SELECTION RESULTS

(Layer 1)

Equal Digging Force Bench
Weighting and Production Dimensions
rh 120 rh 120 P&H 1200
h 185 h 185 th 120
h 241 h 241 h 185
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TABLE 4 : WASTE INFORMATION

Identifier Value
Material - Sandstone
Material Thickness - 'varies’
Volume of Layer - 'varies’
Length of Haul Route — 500 metres
Flexibility of Operating Conditions  — Good
Discontinuity Type - Bedding
Bedding Descriptor - Thick
Blasting ? - Yes
Blast Fragmentation - Good
Matcrial Beneath Sandstone — Bituminous Coal
Condition of Sandstone - Wet
Mobility Requirement - Fair
Pit Slope Required - 62 degrees
Segregation Capability — Low
Excavator Working Mode - 'varies’
Mine Type - Strip Mine
Suggested Bench Height - 10 - 15 metres
Suggested Bench Width - 15 - 20 metres
Yearly Production - ‘varies’
Yearly Holidays - 1 weeks
Days Worked per Week - 7 days
Hours Worked per Day - 12 hours
Estimated Angle of Swing - 75° - 120°
Management Condition - Fair
Job Condition - Good

TABLE § : WASTE EQUIPMENT

British American Equipment
Results Results Selected
(Layer 2)
Shovel and Truck Shovel and Truck h 241
Front End / Truck Dragline h 285
Dragline Front End / Truck h 185
(Layer 3)
Shovel and Truck Shovel and Truck h 185

Dragline Dragline rh 120

Front End / Truck Front End / Truck h 241
~ (Layer 4)

Dragline Shovel and Truck be 1300 w
Shovel and Truck Dragline be 1260 w
Front End / Truck Front End / Truck be 1370 w

(Layer 6)

Dragline Dragline be 1300 w
Shovel and Truck Shovel and Truck be 1370 w
Front End / Truck_ Front End / Truck be 1260 w

(Layer 8)
Shovel and Truck Shovel and Truck h 285

Dragline Dragline h 241
Front End / Truck Front End / Truck h 185

(Layer 10)

Dragline Dragline be 1380 w
Shovel and Truck Shovel and Truck be 1570 w
Front End / Truck Front End / Truck be 1370 w
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TABLE 6 : COAL INFORMATION

Identifier Value
Material - Bituminous Coal
Material Thickness - ‘varies’
Volume of Layer - ‘varies’
Flexibility of Operating Conditions  — Good
Length of Haul Route - 500 metres
Discontinuity Type - Bedding
Bedding Descriptor - Thick
Material Beneath Coal - Sandstone
Condition of Coal - Wet
Mobility Requirement - Fair
Blasting ? - Yes
Blast Fragmentation - Good
Segregation Capability - Low
Excavator Working Mode - Front End
Mine Type - Strip Mine
Suggested Bench Height - 5 - 10 metres
Suggested Bench Width - 10 - 15 metres
Yearly Production - ‘varies’
Yearly Holidays — 1 weeks
Days Worked per Week - 7 days
Hours Worked per Day - 12 hours
Estimated Angle of Swing — 75° - 120°
Management Condition - Fair
Job Condition - Good

TABLE 7 : COAL EQUIPMENT

Equal Material Type Production and
Weighting and Thickness Length of Haul
(Layer §)
Shovel Shovel Shovel
Scraper Scraper Scraper
Front End Front End Front End
(Layer 7)
Shovel Shovel Shovel
Scraper Scraper Scraper
Front End Front End Front End
(Layer 9)
Shovel Shovel l_:ShovEe}l'd
Front End Scraper ront
Scraper Front End Scraper
(Layer 11)
Shovel Shovel Shovel
Front End Front End Front End
Scraper Scraper Scraper
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TABLE 8 : SHOVEL SELECTION RESULTS

Equal Required Material Type
Weighting Tonnage Length of Haul
(Layer 5)
rh 40 th 40 uh 80
uh 80 uh 80 Cat 245
Cat 245 Cat 245 rh 40
(Layer 7)
rh 40 rh 40 uh 80
uh 80 uh 80 Cat 245
Cat 245 P&H 650 rh 40
(Layer 9)
rh 40 Cat 245 rh 40
Cat 245 rh 40 uh 80
th 75 rth 75 Cat 245
(Layer 11)
h 85 th 75 h 85
rth 75 h 85 th 75
pc 1500 pc 1500 rh 40

TABLE 9 : HAULAGE INFORMATION

Identifier Value
Material - Sandstone
Material Thickness — 'varies’
Volume of Layer - 'varies'
Length of Haul Route - 500 m
Maximum Adverse Grade - 5°-10°
Flexibility of Operating Conditions  — Good
Discontinuity Type - Bedding
Bedding Descriptor - Thick
Blasting ? - Yes
Material Beneath Waste — *varies’ (Coal/Sstone)
Type of Excavation Machinery - ‘varies’ (Shovel/Dragline)
Excavator Working Mode - Front End
Hydraulic Excavator Type - 'varies’
Yearly Production — 'varies’
Yearly Holidays - 1 weeks
Days Worked per Week - 7 days
Hours Worked per Day - 12 hours

TABLE 10 : HAULAGE EQUIPMENT

Aggregated Results)
Equal Length Production
Weighting of Haul Weighted
Rear Dump Truck Rear Dump Truck Rear Dump Truck
Semitrailer Truck Semitrailer Truck BOﬂg_‘:ﬁ“’“P
Bottom Dump Bottom Dump Semitrailer Truck
Truck Truck
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TABLE 11 : TRUCK SELECTION RESULTS

Equal Height Payload
Weighting Weighted Weighted
(Layer 1)

Wabco 120 cm Wabco 120 cm Rimpull rd 120
Dart 4120 Cat 772 Dan 4120
Rimpull rd 120 Dart 4120 Wabco 120 cm
(Layer 2)

Rimpull rd 120 Dart 4120 Rimpull rd 120
Dart 4120 Rimpull rd 120 Dart 4120
Unit Rig mark 30 Unit Rig mark 30 Wabco 120 cm
(Layer 3)

Wabco 120 cm Wabco 120 cm Rimpull rd 120

Rimpull rd 120 Cat 772 Dart 4120
Dart 4120 Unit Rig mark 30 Wabco 120 cm
(Layer 8)
Wabco 150 ct Terex 34-11c Wabco 150 ct
Komatsu hd 1200 Wabco 150 ct Rimpull cw 150
Terex 34 -11c Komatsu hd 1200 Komatsu hd 1200
TABLE 12 : MACHINE LEARNING RESULTS
nowledge Induction)
Topsoil Waste Coal
Shovel Shovel and Truck Shovel and Truck
Elevating Scraper Dragline Loader and Truck
Front End Loader and Truck Elevating Scraper
- (Neural Network)
Equipment Network Output
Shovel 0.426
Elevating Scraper 0.402
Front End 0.172

Appendix2: 5



L einpayss -1z Apnig ese)

Paqn2 sanawm yusq woyrw wy sw sam3Y 1V : FLON

G L A G 5 S A S R e e e S84 aois woo] 11
69 269 269 69 69 269 26'9 769 26'9 69 769 ‘9 069 - 08el on— L T assp| 01
90 90 90 90 90 90 90 90 90 90 90 90 90 o ﬁ_ PACYS) ™) 6
ws ws LL'S wes LL'S LL'S LL'S LL'S LL'S LL'S LL'S LL'S LL'S [ Al [Ra0qg WM 8
910 90 90 9°0 90 90 90 90 970 90 90 90 oy RAOYS %)) L
"7 80'8 30'S 80'8 80’8 80’8 808 808 80'8 808 808 80’8 LY AR undug NIWA| 9
%00 90 [oo |50 90 |90 [v0 90 [0 9°0 90 |90 orw PANS ™| ¢
910 80’8 308 80'8 30'8 808 808 80°8 80'8 IS'L ££'9 66'Y A 00t1 9 g Ny 14
1 LT il &4 e 9'E e €¢ 4 611 S0 131 __— Rays TBM| [
990 9T¢ 9TE 61T 617 61T 61T Iy Paoyg NI (4
w (2 LY 1 Lyl LY 1 LYl LYl LY LY'] LY'1 LYl LYl Lyl [i7AR 3 PAOYS]  PARIEIM| 1
STIRAL $2IRA| €TIW7| IT L] 17I04) 0T L[ 1 awa)] QY awa)x] LI x| o1 amap] sT.map] py 2wAl c1 04 PPON| Jorsamdxy [T T ]
T Apmg 388D J0) IMPIPS
L &4 vt L XA VT |(F4 | X4 La4 rT | &4 8T € 8T s -_— Racys L0 B 8
069 769 76’9 69 26'9 069 769 769 769 69 26’9 26'9 LY 114 R__ wuug a0t
90 90 90 90 90 90 90 90 90 [X] or &—— Py 90D 6
ws LL'S LL'S 'S LL'S LL's LL'S LL'S LL'S 98°L 96T [49] $8T Y} Pacyg M 8
90 90 90 90 90 90 90 91°0 ory Raoyg ™) L
808 80'8 80’8 08 90°L 16'¢ th4 (A%% 88T 890 ~00€1 99 suiug AT 9
50 1600 o ToA0qS ™[ §
€8¢ Tt SL'1 90  00¢1 99 unsug ol »
[3 1R RAOYS nreM €
"y S MY Al T
Ll i Lyl wl A A 'l Lyl LY'L LYl vl LY Lyl ozl W PAOYS| PRI 1
TLIIL] T1IRA] 01 I8IL] (IRIL] SIWA| LIRA] 9IWMA GIRIL| PISIL|] C€IBIL| TIA| [4WA] 0w PPOl| 0ImARXY [T Y O |
T Apms 958)) 30] UPIGIS |

Appendix 2: 6



Appendix 3

Case Study 3

TABLE 1 : TOPSOIL INFORMATION

Identifier Value
Material - Clay/Peat/Sand/Gravel
Material Thickness — 'varies’ (0.2-12.8 m)
Block Volume - 'varies’
Length of Haul Route — ‘varies’ (0.3 - 2 km)
Water Condition —_ Moist
Mobility Requirement - Fair
Flexibility of Operating Conditions  — Fair
Material Below Topsoil - Mudstone/Sandstone
Yearly Production - approx 745,000 m?
Yearly Holidays - 2 weeks
Days Worked per Week - 6 days
Maximum Adverse Grade - Between 3° and 5°
Total Mine Production - High

TABLE 2 : TOPSOIL EQUIPMENT

3

Block 1
C1 Scraper Front End
C2 Scraper Front End
C3 Scraper Frol Doeer
C4 Scraper Front End
CS Scraper Front End
C6 Scraper Fron Dozer
D1 Dozer Scraper Front End
D2 Dozer Scraper Front End
D3 Dazer Scraper Front End
Al Dozer Front End Scraper
A2 Scraper Front End Dozer
A3 Scraper Front End Doeer
Bl Scraper Front End
B2 Scraper Front End
B3 Scraper Front End
B4 Scraper Front End

Scraper Type

UP. Rubber Tyred
U.P. Rubber Tyred
U.P. Rubber Tyred
U.P. Rubber Tyred
U.P. Rubber Tyred
UP. Rubber Tyred

U.P. Rubber Tyred
F.P. Rubber Tyred

U.P. Rubber Tyred
U.P. Rubber Tyred
UP. Rubber Tyred
UP. Rubber Tyred
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TABLE 3 : WASTE INFORMATION

Identifier Value

Material - Mudstone/Sandstone
Material Thickness - ‘varies’

Volume of Block - ‘varies’

Length of Haul Route — 'varies' (0.3-2 km)
Flexibility of Operating Conditions  — Fair

Discontinuity Type - Bedding

Bedding Descriptor - Thin

Blasting ? - No

Material Beneath Waste - 'varies’ (Coal/Sstone)
Water Condition - Moist

Mobility Requirement - Poor

Pit Slope Required - 65 degrees
Segregation Capability — Low
Excavator Working Mode - Backhoe

Mine Type - Strip Mine
Suggested Bench Height - 10 - 15 metres
Suggested Bench Width - 15 - 20 metres
Yearly Production - ‘varies’

Yearly Holidays - 2 weeks

Days Worked per Week - 6 days

Hours Worked per Day - 12 hours

Estimated Angle of Swing - 75° - 120°
Management Condition - Good

Job Condition - Fair

TABLE 4 : WASTE EQUIPMENT

(Interburden_above Lower Drumgray Seam)

Block British | American Layer Total

B4 Shovel Shovel exc.th 75 exc.rh 75
TABLE § : WASTE EQUIPMENT
(Interburden above Shotts Gas Seam)

Block British | American Layer Total
Bl Shovel Shovel exc.th 75 exc.rh 120
B Shovel Shovel exc. h 85 exc.rh 120
B3 Shovel Shovel exc. h 85 exc. P&H 1200
B4 Shovel Shovel exc. h 85 exc.rh 120

TABLE 6 : WASTE EQUIPMENT
(Interburden above Mill Seam)

Block British | American Layer Total
C3 Shovel Shovel exc.rh 120 exc.rh 185
C4 Dragline Shovel | drag. 1260/1300 -

Cs Shovel Shovel exc.rth 120 exc. rh 185
C6 Shovel Shovel exc.th 75 exc.th 120
D1 Shovel Shovel exc. h 121 exc. P&H 1200
D2 Shovel Shovel drag. 1260 —_

D3 Dragline Shovel drag. 1260 -

Al Dragline Shovel drag. 1260 -

A2 Shovel Shovel rh 120 exc. rh 185
A3 Dragline Shovel | drag. 1260/1300 -
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TABLE 7 : WASTE EQUIPMENT

(Interburden _above Armadale Ball Seam)

Block British | American Layer Total
C1 Shovel Shovel exc.th 75 exc. rh 120
C2 Shovel Shovel exc. rh 120 exc. rh 185
C3 Shovel Shovel exc.th 75 exc. rh 120
C4 Dragline Shovel drag. 1260 -

CS5 Shovel Shovel exc. h 85 exc. P&H 1200
Cé Shovel Shovel exc. h 85 exc. P&H 1200
Al Dragline Shovel drag. 1260/1300 -
A2 Dragline Shovel drag. 1300 -

A3 Dragline Shovel drag. 1370 -
TABLE 8 : WASTE EQUIPMENT
(Interburden sbove Armadale Main_Seam)

Block | British | American Layer Total
C1 Shovel Shovel exc.h 85 exc. rh 120
C3 Shovel Shovel exc.th 75 exc. rh 185
(o) Shovel Shovel exc.th 75 exc.rth 120
CSs Shovel Shovel exc.th 75 exc. rh 120
C6 Shovel Shovel exc. h 121 exc. P&H 1200
Al Shovel Shovel exc.h 85 exc. rh 120
A2 Shovel Shovel exc.th 75 exc.rh 120
A3 Shovel Shovel exc.th 75 exc. rh 120

TABLE 9 : COAL INFORMATION

1dentifier Value
Material — Bituminous Coal
Material Thickness - tyaries’ (0.2-1.41 m)
Volume of Block — *yaries’
Flexibility of Operating Conditions ~ — Fair
Discontinuity Type - None
Material Beneath Coal - Sandstonc/Mudstone
Condition of Coal —_ Moist
Mobility Requirement - Poor
Blasting ? — No
Segregation Capability - Low
Excavator Working Mode - Backhoe
Mine Type - Strip Mine
Suggested Bench Height - 0 - 5 metres
Suggested Bench Width - 10 - 15 metres
Yearly Production - *yaries’ (0.3-0.5 mv)
Yearly Holidays — 2 weeks
Days Worked per Week - 6 days
Hours Warked per Day - 12 hours
Estimated Angle of Swing — 75° - 120°
Management Condition —_ Good
Job Condition —_— Fair
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TABLE 10 : COAL EQUIPMENT

Lower Drugray Seam)

Block 1 2 3 Shovel Type

B4 Scraper Front End Shovel exc.th6
TABLE 11 : COAL EQUIPMENT
(Shotts_Gas_Seam)

Block 1 2 3 Shovel Type
Bl Shovel Scraper Front End exc. uh 082
B2 Shovel Scraper Front End exc.th6
B3 Shovel Scraper Front End exc.rh 6
B4 Shovel Scraper Front End exc. uh 30

TABLE 12 : COAL EQUIPMENT
(Mill Seam)

Block 1 2 3 Scraper Type
Cc3 Scraper Front End Shovel exc. kh 20
C4 Scraper Shovel Front End exc. kh 20
C5 Shovel Scraper Front End exc.th 6
C6 Shovel Scraper Front End exc.h71
D1 Shovel Scraper Front End exc. uh 30
D2 Shovel Scraper Front End exc. uh 082
D3 Shovel Front End Scraper exc.h71
Al Shovel Scraper Front End exc. uh 082
A2 Shovel Front End Scraper exc. uh 30
A3 Shovel Front End Scraper exc.h71

TABLE 13 : COAL EQUIPMENT
(Armadale Ball Seam)

Block 1 2 3 Scraper Type
Q1 Scraper Front End Shovel exc. kh 20
C2 Scraper Shovel Front End exc. kh 20
C3 Shovel Scraper Front End exc. uh 082
C4 Shovel Scraper Front End exc.th9
Cs Shovel Scraper Front End exc. uh 30
Cé6 Shovel Front End Scraper exc. uh 30
Al Shovel Front End Scraper exc.h 71
A2 Shovel Front End Scraper exc. th 30
A3 “Shovel Front End Scraper exc.h71

TABLE 14 : COAL EQUIPMENT
Armadale Main_Seam)

Block 1 2 3 Scraper Type
Ci Scraper Front End Shovel exc. kh 20
C3 Shovel Scraper Front End exc. uh 082
C4 Shovel Front End Scraper exc. uh 082
C5 Shovel Front End Scraper exc.th9
Cé Shovel Front End Scraper exc. uh 30
Al Shovel Front End Scraper exc. h71
A2 Shovel Front End Scraper exc.h71
A3 Shovel Front End Scraper exc.h71
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TABLE 18 : HAULAGE INFORMATION

Identifier Value
Material - Mudstone/Sandstone
Material Thickness - ‘varies’
Volume of Block - 'varies’
Length of Haul Route - ‘varies’ (0.3-2 km)
Maximum Adverse Grade - 5-10%
Flexibility of Operating Conditions  — Fair
Discontinuity Type - Bedding
Bedding Descriptor - Thin
Blasting ? - No
Material Beneath Waste - 'varies’ (Coal/Sstone)
Type of Excavation Machinery - Hydraulic Excavator
Excavator Working Mode - Backhoe
Hydraulic Excavator Type - O & Krh 120
Yearly Production - 'varies’
Yearly Holidays - 2 weeks
Days Worked per Week - 6 days
Hours Worked per Day — 12 hours

TABLE 16 : HAULAGE EQUIPMENT

(Aggregated Resul s)

Equal Length Production
Weighting of Haul Weighted
Rear Dump Truck Rear Dump Truck Rear Dump Truck
Semitrailer Truck Semitrailer Truck Semitrailer Truck
Bottom Dump Bottom Dump Bottom Dump
Truck Truck Truck
TABLE 17 : TRUCK EQUIPMENT
(Agpregated Results)

Equal Height Payload
Weighting Weighted Weighted
Euclid r-100 Euclid r-100 Euclid r-100

Rimpull rd-100 Rimpul! rd-100 Unit Rig m-100
Caterpillar 772 Unit Rig m-100 Caterpillar 772

TABLE 18 : MACHINE LEARNING RESULTS
ated Knowledge Induction Results)

Topsoil Waste Coal
Elevating Scraper Shovel and Truck Shovel and Truck
Full Power Scraper Loader and Truck Loader and Truck
Tractor Scraper Dragline Elevating Scraper
(Aggregated Neural Network Results)
Equipment Network Output

Elevating Scraper 0.415

Front End Shovel and Truck 0.372

Full Powered Scraper 0.213
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