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ABSTRACT

Glycine is the third most abundant of the amino acids

released by muscle. Perfused rat hind-limb and sheep

diaphragm preparations were employed to study the origin of
glycine produced by non-ruminant and ruminant muscle.

Neither the degradation of muscle and erythrocyte

glutathione nor the ‘leaching out’ of the intracellular

glycine poel contributed to the glycine released by either

muscle. When the perfusions were carried out with the medium

free of amino acids, the proteolysis accounted for 577 of

the total glycine release by the rat hind-limb and 3I84 by

the sheep diaphragm. Minimum de novo synthesis of glycine

was 12.3 2m0l1/3 h/30 g in the rat muscle and 10.3 umol/

Sh/30 g in the sheep muscle. Addition of serine to the

perfusion medium stimulated significantly both the rate of

glycine efflux and total glycine production in the rat

hind-limb. Similar results were obtained with the sheep

diaphragm; however, the increases were not statistically
significant. Addition of S—formyl tetrahydrofolate, a speci-
fic inhibitor of serine hydroxymethyltransferase,

2.1.2.1)

SHMT (EC
significantly decreased the rate of glycine efflux

$rom both the muscles. The observations using cold serine

were confirmed with the experiments employing radioisotopes.
Upto 40X of total glycine produced by the rat hind-limb was

derived from serine, whereas in the sheep diaphragm it was

only 4%. In both the muscles synthesis of glycine from

serine was by SHMT and not glycine synthase (EC 2.1.2.10).

S8ynthesis of glycine from threonine was negligible in both



the muscles. SHMT activity increased in liver, diaphragm and
hind-limb muscle of female rats treated with trenbolone
acetate or testosterone, anabolic agents.

Both the muscles incorporated *“C from (U-2“C)serine

and (3-*“C)serine to methionine, cystine, alanine, aspartate

and glutamate + glutamine. The label from (U-*<C)glucose was

recovered in serine and glycine in the rat hind-limb but not

in the sheep diaphragm.

A ‘serine-glycine’ cycle involving kidney and muscle is
proposed. The possible significance of glycine released by

muscle is discussed.

Development of a system for the perfusion of sheep

diaphragm with erythrocyte-free medium, and a method for the

determination of radiocactivity in C-2 of glycine also form a

part of the thesis.
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ABBREVIAT]ONS

Where appropriate, abbreviations have been used in

accordance with the Biochemical Journal recommendations to

authors (Biochem. J. (1985) 225, 1-26). Non-standard

abbreviations have been defined at appropriate places.

It is implied throughout this thesis that one is

dealing with L-amino acids with the exception of

DL-nor-leucine. Three-letter symbols for

amino acids have

been used in accordance with Bioches. J. (1984) 219,

345-373.



INTRODUCTION




1.1. EUNCTIONS OF MUSCLE

The primary function of muscle is the generation of

movement for locomotion and for the maintenance of posture.

The second function is to act as a large reservoir of body

protein. Skeletal muscle forms about 43% of the body weight

of an animal and 40% of total body protein (Wannemacher,

1975). This large amount of protein might be expected to

play a quantitatively important role in the nitrogen economy

of the animal. Muscle has been shown to provide amino acids

for gluconeogenesis (Felig et al., 1970), and to quickly

release amino acids in response to nutritional stress

(Millward, 1975). The free amino acids pool of muscle can

act as a good supply of amino acid for other organs of the

body (Pawlack and Pion, 1948).

1.2. RELEASE OF AMINO ACIDS FROM MUSCLE

Numerous studies employing the measurement

arteriovenous differences

of

across limbs, and work with

isolated preparations of muscle have both shown that amino

acids are released from muscle in rats (Ruderman and Berger,

19743 Ward, 1976; Vernon, 1977), sheep (Ballard et al.,

19763 Lindsay et al., 1977; Coward and Buttery, 1982),

cattle (Bell et al., 1975) and fasted man (Felig et al.,

1970). There is a large production of alanine, glutamine and

glycine (Table 1). After alanine and glutamine, glycine is

the third most important loss of amino nitrogen from muscle

(Ruderman and Berger, 1974; Ward, 1976; Vernon, 1977; Felig



Table 1§.

various species (7 of total output)

Species
(Muscle)

Rat~
(diaphragm)?

Rat~
(hind-limb)?

Rat*
(hind-limb)=

Human=
(forearm)=

Human=
(forearm)*

Humans<
(forearm)®

Cattle=
(hind-limb)*

Sheep~
(hind-1limb)?

Sheep~
(hind-limb)®

Sheep~
(hind—-limb)=

Sheep*
(hind-limb)”

Sheep*

(thind-limb)2:°

Sheep~”
(diaphragm)=

Ala

11

23

15.07

(21.81]

30

26

28

24

21

24.7

19.3

36.3

24.6

Release of individual amino acids from muscles of

Aming acids
Gln Gly Ser Pro Glu
25 Q 6 S b6
24.4 6.1 - S 1.5
11.6 11.3 S.4 3.8 3.8
- (12.4] (8.11 (6.2] -
9.9 10 2 8 -
27 a8 3 3 -
- 18.9 -ve 5.5 -
27 10 - - -ve
10 24 4 7 0.5
24 S 4 - -ve
26.4 21 -ve - -ve
18.2 20.3 2.9 - -ve
27.7 28.6 -ve - -ve
18 15.3 4.5 - 7.8

contd.



Table 1.

various species (7 of total output)

Species
(Muscle)

Rat=
(diaphragm)?

Rat~
(hind-1imb)?

Rat®
(hind=-1imb)=

Human=
(forearm)™>

Human-
(forearm)<

Human<
(forearm)®

Cattle=
(hind-limb)e

Sheep~
(thind-limb)~

Sheep~
(hind-limb)®

Sheep“
(hind-1imb)=

Sheep
(hind-1imb)~

Sheep

(hind-limb)2°

Sheep*
(di aphragm)=

Amino_acids

Lys

S.6
8-7
12.6

(14.21

9.9

11.7

-ve

-ve

4.8

1.2

His

3.5

W
o 0O

2.6

Release of individual amino acids from muscles of

Met Phe
3.2 3.4
1 3.5
1.2 2.5
£1.41 £3.31
1.5 2.1
1.3 1.9
3.0 2.8
S.8 3.7
0.9 2.4
- 3.8
- 4.4
- 3.5
- 4.3
- 3.8

Tyr

2.7

1.7
£2.351
2.4

1.9

-ve

Arg

3.9

4.9
£6.6]

6.2

contd



a, taken from Lindsay and Buttery (1980)

b, calculated from the data of Ward (1974);
square parentheses are from Vernon (1977)

c, Calculated from the data of Felig (1970)

calculated from the data of Heitmann and Bergman (1980)
e, calculated from the data of Shepperson (1983)

the values in

1, from 48 h fasted animal

2, from fed animal

3, from overnight fasted animal
4, from 60 h fasted animal

Sy from 4-6 weeks fasted animal
6, from 20 h fasted animal

7, from 48-96 h fasted animal
8, from 144 h fasted animal

9, from 72 h fasted animal

10, from acidotic animal



et al., 1970; Felig and Wahren, 1971; Pozefsky et al, 1949;
London and Foley, 1945; Coward and Buttery, 1982;

Shepperson, 1983). In addition, glycine efflux from

hind-limbs of sheep increases during fasting and acidosis

(Heitmann and Bergman, 1980). Similarly in rats, glycine

efflux from peripheral tissues, including muscle, skin and

adipose tissue increases during fasting (Aikawa et al.,

1973; Yamamoto et al., 1974). After a 4-6 week fast in man,

al though the output from muscle of most amino acids

including glycine decreases, a significant output of glycine

is still seen. The reduction in glycine output is much less

than that of most amino acids including alanine (Felig

et al., 1970). Recently Ebisawa et al. (1983) have reported

that the glycine synthesis in muscle increases about 47—-fold

in protein deficient rats. Treatment with trenbolone acetate

(TBA), an androgenic growth promoter increases the muscle

intracellular glycine concentration (see Buttery, 1978).

Also there is an increase in the efflux of glycine from

perfused hind-limbs of TBA treated rats (Vernon, 1977). Much

is known about the synthesis of alanine and glutamine in

muscle and their importance in inter-organ transfer of

carbon and nitrogen under different conditions (see reviews

Lindsay and Buttery, 1980; Snell,1980b,c; Snell and Duff,

1980; Lindsay, 1980; Ruderman, 19735), however, virtually no

information is available on the origin of glycine in muscle.
The physiological significance of this glycine release is
also not clear.



1.3. EFFLUX OF ALANINE, GLUTAMINE AND GLYCINE FROM MUSCLE

The large production of alanine from muscle led to the

proposal of the glucose-alanine cycle (Fig. 1). In this

cycle, glucose taken up by the muscle is converted to

pyruvate which is transaminated to alanine. The alanine is

reconverted to glucose in the liver. It is suggested that

this cycle plays a key role in gluconeogenesis with alanine

representing the passage of gluconeogenic precursors from

muscle to the liver, and the transport of nitrogen from the

muscle (see Felig, 1981).

Glutamine is also released from muscle in quantities

beyond that which is accounted for by the muscle

proteclysis. Muscle does not possess the enzymatic apparatus

to synthesise urea, therefore by releasing nitrogen as

glutamine, it is able to utilise amino acids without risk of

either trapping excessive amounts of 2-ketoglutarate and

oxaloacetate and thus inhibiting the ¢tricarboxylic acid

cycle or releasing a large quantity of ammonia into the

circulation (mee Ruderman, 1976).

There is also a large production of glycine from the

muscle (see section 1.2.). Serine and glycine is a

interconvertible couplet. A number of workers have observed

extraction of serine from muscle (see section 1.5.a.), which

suggests that serine could be a precursor of glycine in

muscle. In addition, serine is synthesised from glycine in

kidney (Rowsell et al.,1982).



Glucose

Glucose

Pyruvate

Blood

Muscle Alanine Liver

Fig. 1 The glucose - alanine cycle



Serine to glycine conversion is accompanied by the

synthesis of ‘one-carbon’ units (see Blakely, 1969). Both

glycine and ’‘one-carbon’ units take part in various

synthetic reactions. Also the glycine efflux increases in

different metabolic conditions (see section 1.2.).

Increased release of glycine in acidosis from muscle

suggests that glycine could act as a nitrogen carrier from

muscle in & manner similar to alanine and glutamine.
From the above some of the questions which arise are:
-~Is there a ‘serine-glycine’ cycle analogous to the ‘alanine

cycle’ in muscle, and if it exists what is its physiological

significance ?

-1s muscle synthesising ‘one-carbon’ units along with
glycine ?

~1s there increased need of ‘one-carbon’ units under

conditions of increased glycine release ?

~In muscle, from where and how does glycine abtain its
nitrogen ?
The information on the origin of glycine and its

pathways of biosynthesis in muscle would give a better

insight into the questions raised above.
1.4. ROLES OF GLYCINE IN ANIMALS

1.4.a. Protein synthesis

Glycine was the first amino acid to be isclated from a

protein when Braconnet

in 1820 isolated glycine from a

gelatine hydrolysate. Since it has a sweet taste he called



it "sucre de gelatine”. In 1846 Horsford determined its

elementary composition and called it ‘glycocoll’. Berzelius

suggested the name 'glycine; in 1848 and since then it has

been called by this name (see Neuberger, 1981; Meister,

1965). Glycine forms about 4.97% of most mammalian proteins.

However, in collagen (20-25% of total body protein) about

30% of the amino acids are glycine (see Neuberger, 1981).

Collagen 1is considered almost inert as its turnover is very

low (Neuberger, 1951; Robin, 1982).

1.4.b. Gluconeogenesis

Blycine is gluconeogenic because of its conversion to

serine. Gluconeogenesis from glycine and serine has been

demonstrated in the livers of rat, cat and sheep (Aikawa

et al., 1972; Beliveau and Freeland, 1982b; Wolf and Bergman,

1972a; Ishi kawa et al., 1972; Remesy et al., 1983). Exton and

Park (19467) found gluconeogenesis <from both serine and

alanine in perfused livers of fasted rats to be almost

equal. In sheep liver, alanine was found to be better

substrate for gluconeogenesis than serine or glycine (Wol+ff

and Bergman, 1972). Other reports are in conflict as to the

relative merits of serine, alanine and glycine as

gluconeogenic precursors (Aikawa et al., 1972; Ross et al.,

1967). The gluconeogenic amino acids, alanine, glycine and

serine do however form 70% of total amino acids removed by

the liver in the fed sheep (Bergman and Heitmann, 1978).



1i.4.c. Glutathione synthesis

The biosynthesis of glutathione (L—-Y—glutamyl -L-

cysteinyl—-glycine) involves the formation of

Y-glutamyl-cysteine from L-cysteine and L-glutamate by the

enzyme Y-glutamylcysteine synthetase. Glycine combines with

Y-glutamylcysteine to give glutathione. The enzyme

catalysing this reaction is glutathione synthetase. Both

reactions use one mole of ATP.

L-glutamate + L-cysteine + ATP T2 L-Y-glutamylcysteine +

ADP + HsPO, ———(I)

L-Y-glutamylcysteine + glycine + ATP T—= L-glutathione + ADP

+HsPOa ———(1II)

This tripeptide occurs in almost all cells. Although

great attention has been given to the biochemistry of

glutathione, its biological functions are not fully known.

The free -SH group of glutathione helps in maintaining the

-8H groups of proteins in reduced form (-SH groups are

essential for activity of a number of enzymes), in the

thiol-disulphide reaction in the cell, in reactions

involving reducing groups or potentially reducing groups

(not neccessary containing -SH groups) such as

dehydroascorbic acid, and also in a number of detoxification

reactions, e.g. in the reaction with H202, reduction of

peroxides arising from mercapturic acids

1981).

(see Neuberger,

Blutathione is also considered to participate in the

cellular transport of amino acids especially in the

(Meister,

kidney

1975). However, it is yet not known how important



the metabolic glutathione cycle is either in kidney or other
tissues. Roles for glutathione in anemia, acidosis,

detoxification of drugs and the apparent renal secretion of

cystine have also been suggested (see Neuberger, 1981;

Robins and Davies, 1985).

1.4.d. Purine synthesis

The origin of the atoms of purine nucleus is presented
below.
From CO4

- From
From — -

= N 1
asp ——>N/6\'\c/2§ 9ty
From

9 formate
formate- Qi 40\\“/

T

From amide H of gln

Glycine contributes carbon atoms at positions 4 and 5

and nitrogen at 7. The pathways for the purine biosynthesis

have been studied in mammals, birds, yeast and bacteria

(White et al., 1964). The reaction which involves glycine

is:

S—R-phosphoribosylamine + ATP +

glycineZ >glycin-
amideribonucleotide
+ ADP + P,
Purine nucleotides can be synthesised by two pathways,
the ‘de novo’' pathway and the ‘salvage’ pathway. The

‘salvage’ pathway eliminates the need for purine synthesis,

which is costly (synthesis of one purine nucleus requires

cleavage of at least 5 ATPs) as it uses preformed purine



bases and nucleosides (see Neuberger, 1981). The de novo

pathway accounts for about 10%Z of glycine metabolism (Nyhan,

1983). In humans about 2 umol/(Kg body wt/h) glycine are

required for purine synthesis (Wyngaarden and Kelly, 1982).

The synthesis of uric acid from glycine in perfused chick

liver requires 1.49 mole of oxygen which is equivalent to

the production of 9 mole of ATP/mol of wuric acid (Barratt

et al., 1974). In animals most of the information on purine

biosynthesis refers to liver, although recently evidence has

been presented for the de novo synthesis of purines in rat

muscle (Sheehan and Tully, 1983).

i.4.e. Haem synthesis

Eight carbon atoms and 4 nitrogen atoms of the

porphyrin moiety of haem are derived from the 8 molecules of

glycine used in the biosynthesis of each haem molecule. The

reaction in the synthesis of haem which involves glycine is
the initial and rate limiting step.

Succinyl CoA + Glycine =

{—aminolevulinate +
CO=- + CoA

It is catalysed by {§-aminolevulinate synthase. The

enzyme is located in the wmitochondria (for details of

biosynthesis of haemin see Tait, 1978; Cunningham, 1978).

1.4.f. Source of ‘one-carbon’ units

The conversion of serine to glycine by serine

hydroxymethyltransferase (EC 2.1.2.1.) (reaction 1) and the

catabolism of glycine by the glycine cleavage complex



(EC 2.1.2.10) (reaction II) produce ‘one-carbon’ units.

serine + tetrahydrofolate ——— glycine + 35,10-methylene

tetrahydrofolate ——(1)

glycine + tetrahydrofolate + NAD* ———— 5,10-methylene

tetrahydrofolate + CO. +
NH= + NADH-——(I1II)

In reaction I, C-3 of serine and in reaction 11, C-2 of

glycine are released as ‘one—-carbon’ units. In experiments

with rats fed a diet containing no methionine, but

homocystine, 70% of the radioactivity of the C-3 of serine

was incorporated into the methyl group of the methionine

isolated <from the body tissues (see Neuberger, 1981).

Similarly, Kretchmar and Price (1969) found that in mice

about 71% of C-3 of serine was oxidised via the formate

pathway. These observations suggest that serine to glycine

conversion provides a significant quantity of ‘one-carbon’

units in the body. The other sources of formate and methyl

groups in the body are sarcosine, betaine, choline,

histidine and tryptophan (see Neuberger, 1981).

The most important carrier of ‘one-carbon’ units is

tetrahydrofolate (THF). The ‘one-carbon’ units generated

from the reactions mentioned above are substituted onto THF

which can be converted by specific enzymes to other THF

derivatives (Fig. 2). 10-Formyl-THF donates its ‘one-carbon’

units to one of the two ‘one—carbon’ units used in purine

synthesis (C-2 of purine) and 5,10-methenyl-THF provides the

other formate group (C-8 of purine). 5,10-Methylene-THF is

also responsible for the addition of ‘on