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Abstract

In this thesis we treat three problems from the theory and applications of random walks.

The first question we tackle is from the theory of the optimal stopping of random walks. We
solve the infinite-horizon optimal stopping problem for a class of reward functions admitting a
representation introduced in Boyarchenko and Levendorskii {1}, and obtain closed expressions
for the expected reward and optimal stopping time. Our methodology is a generalization of
an early paper by Darling et al. 2] and is based on probabilistic techniques: in particular a
path decomposition related to the Wiener-Hopf factorization. Examples from the literature and

perturbations are treated to demonstrate the flexibility of our approach.

The second question is related to the path structure of lattice random walks. We obtain the
exact asymptotics of the variance of the self-intersection local time V;,, which counts the number
of times the paths of a random walk intersect themselves. Qur approach extends and improves
upon that of Bolthausen [}], by making use of complex power series. In particular we state
and prove a complex Tauberian lemma, which avoids the assumption of monotonicity present in
the classical Tauberian theorem. While a bound of order O(n?) has previously been claimed in
the literature ([3], [1]), we argue that existing methods only show the upper bound O(n?logn),
unless extra conditions are imposed to ensure monotonicity of the underlying sequence. Using

the complex Tauberian approach we show that Var(V,,) ~ Cn?, thus settling a long-standing
misunderstanding.

Finally, in the last chapter, we prove a functional central limit theorem for one-dimension-
al random walk in random scenery, a result conjectured in 1979 by Kesten and Spitzer [7].
Essentially random walk in random scenery is the process defined by the partial sums of a
collection of random variables (the random scenery), sampled by a random walk. We show
that for Z-valued random walk attracted to the symmetric Cauchy law, and centered random
scenery with second moments, a functional central limit theorem holds, thus proving the Kesten

and Spitzer [5] conjecture which had remained open since 1979. Our proof makes use of the
asymptotic results obtained in the Chapter 3.
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“The philosophers have only interpreted the world, in various ways:
the point, however, is to change it.

Karl Marx.
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CHAPTER 1

Introduction

A random walk is defined as the partial sums process {Sp}n0 of a collection of independent
and identically distributed random variables X, Xo,...,

So=0 Sp=X1+--+X,, fornzl (1.0.1)

Random walk is a fundamental example in Markov processes, processes with stationary indepen-
dent increments and in certain cases of martingales thus bringing together methods from both
analysis and probability.

There are two obvious reasons for the widespread study of random walks. First, the rules that
govern it are simple and, as is often the case in mathematics, simple rules allow for very rich
behaviour with far reaching consequences. Second, it allows for a great variety of applications.
Any system that evolves through small random changes can be modelled by a random walk, or
by its continuous time analogues, Brownian motion, Lévy processes and diffusions.

Random walk is a central theme for this thesis. We shall consider three open problems from
the theory and applications of random walks. The methods used for the proofs vary from
probabilistic to analytical. However a unifying theme is the use of characteristic functions and

their probabilistic interpretation. Let us now give a brief description of the questions we shall
attempt to answer.

1.1 Optimal stopping

The first question treated in this thesis is from the theory of optimal stopping of one-dimensional
random walks.

Intuitively an optimal stopping problem consists in choosing a time to take a particular action,
in order to maximize an expected reward, or to minimize an expected cost. To give a precise
description of the situation we need the concept of stopping times. Assume we are given a
stochastic process {S; : t > 0} and its natural filtration {F; : t > 0} = o(S, : s < t). Then
an {F:}-stopping time is a random variable 7 € [0,00] such that the events {7 < t} are F;-
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measurable for every t € [0,00). This technical condition captures the important feature that
the decision to stop at the time ¢ must be based only on prior information. In other words, we
must be able to decide whether or not to stop at time ¢ having only observed the history of the
process until time ¢, F; = 0(S, : s < t), without having to “look into the future”.

In this setting an optimal stopping problem can be mathematically formulated as the optimiza-
tion problem

V(z) = supE[8"G(z + S,)), (1.1.1)
T€T

where the supremum is taken over the set 7 of permissible JF;-stopping times. Let us now have
a look at the other quantities involved in the above equation. The function G is the reward
function, B is a discount factor, and V is the value function. The reward function captures
the essential features of a cost or reward, while the discount factor models the cost of waiting;
in financial applications it is often interpreted as the interest rate. The value function is the

optimal expected reward. A solution to (1.1.1) consists in finding the stopping time 7* where
the supremum is attained and the value function V(z).

Optimal stopping problems can be divided in two classes, finite-horizon problems, and infinite-
horizon, or perpetual problems. In the first case we require 7 < T for some fixed T > 0, while
in the second case stopping times can take values in [0, c0). Finite-horizon problems are closely
related with free-boundary problems, which are boundary value problems, where the boundary
is an unknown function of time. While these rarely admit explicit solutions, this is not the case
for the perpetual problem. For this reason, in this thesis we shall restrict our attention to the
infinite-horizon case.

Optimal stopping problems first appeared in the sequential analysis of statistical observations
with Wald’s theory of sequential probability ratio tests in his seminal paper [6]. In essence
this represented a method of statistical inference where the number of observations was not
predetermined, but was instead decided during the experiment. Snell 7] was the first to for-
mulate a general optimal stopping problem for discrete time processes, and also obtained an
elegant characterization of the solution as the minimal supermartingale dominating the process
{B™G(Ss)}n30, well known as Snell’s envelope. Snell’s envelope is part of a large collection of
optimal stopping techniques which take advantage of the probabilistic structure of the process

and its unconditional finite-dimensional distributions, known as the martingale approach.

On the other hand, the Markovian approach exploits the analytical structure of the conditional
transition functions, which take into account the starting point of the process. This approach is
closely related with the Wald-Bellman equation, satisfied by the value function

V(z) = max(G(z), BV (z + S1)).

This equation was introduced by Arrow et al. [8] and Wald [6] and is based on the principles
of dynamic programming and the concept of “backwards induction”. The Markovian method
has proved to be very effective since, it brings in powerful analytical tools from the theory
of differential and integral equations through the infinitesimal generator of the process. The
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intimate relation between optimal stopping and free-boundary problems was explored in the
60’s by Mikhalevich [9] and a host of other authors. Of particular importance is the work of
McKean [10] who found the price of the American call option, a well known problem from
mathematical finance, as the solution to the optimal stopping problem (1.1.1) with

G(z) = (z — K)* £ max(z - K,0),

for geometric Brownian motion, which he then formulated as a free-boundary problem.

Apart from the vast theoretical progress achieved over the past fifty years (see Peskir and
Shiryaev [11] for an excellent overview), optimal stopping has found numerous applications in
economics, operational research and mathematical finance. The huge success of mathematical

finance, attracted further attention to optimal stopping as an invaluable tool for pricing financial
options.

Despite the progress made explicit expressions for the value function and the optimal stopping
time are rarely available. The finite-horizon case corresponds to free-boundary problems, which
in general do not admit explicit solutions. However, in the infinite-horizon case, particular cases
have been successfully treated in the literature. Darling et al. [2] solved (1.1.1), in the context of
random walks, for the reward functions G(z) = z*, and G(z) = (e®* — 1)*, and obtained closed
formulas for the value function and optimal stopping time. The authors proposed candidates for
V and 7, in terms of the extrema of the random walk, and then used a supermartingale verifica-
tion lemma (Lemma 2.2.1) to prove that the candidates are indeed optimal. The same approach
was more recently used by Mordecki [12] to solve the case G(r) = (K — €*)*, corresponding
to the perpetual American put option, while for the case G(z) = (z*)¥, with v > 0, explicit

solutions were given in Novikov and Shiryaev [13, 14] and Kyprianou and Surya [15] for random
walks and Lévy processes.

In all of the above, candidates are proposed in terms of the extrema of the process, and are then
shown to be optimal using a supermartingale lemma, and a decomposition of the paths of the
process related to the Wiener-Hopf factorization. These similarities suggest that general reward
functions can be treated using the same techniques. However no method was given for finding

the candidates, and the particular choices were not justified, making generalizations impossible.

In a different direction Boyarchenko and Levendorskii {16, 17] proposed a representation of the
reward function as a transformation

o0
G(z) = Y _ B"Elg(z + Sn)] (1.1.2)

n=0
of some auxiliary function g, which we shall call the payoff function. This representation was
introduced and developed in a series of papers by Boyarchenko and Levendorskii [1, 16, 17, 18] in
the context of random walks and Lévy processes, where the authors develop a systematic method
for choosing candidates for the optimal stopping time and the value function, for any reward
function that satisfies (!.1.2). In sharp contrast to [2, 12-15], Boyarchenko and Levendorskii [16]
used the Markovian approach to prove optimality by showing that the proposed value function
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solves the boundary value problem associated with (1.1.1), using an analytical version of the
Wiener-Hopf factorization for pseudo-differential operators. In this way the authors solved the
optimal stopping problem (1.1.1) for a fairly wide class of reward functions. In the discrete
case, they considered random walks whose increments admit a density and obtained an explicit
solution for the optimal stopping problem in the class of hitting times of semi-infinite intervals.
Recall that a hitting time of a set is the first time the process enters the set. Global optimality
in the class of all stopping times was obtained for monotone payoffs, under some regularity
conditions on the density of the increments. In the continuous case, they obtained an explicit
solution, once again in the class of hitting-times of semi-infinite intervals, with global optimality
in the class of all stopping times established for monotone payoffs. The approach is analytical

in flavour, and requires a lengthy proof and fairly strong assumptions.

Our approach is a combination of the two approaches described above and is based on two key
features, the Wiener-Hopf factorization (WHf) and the representation of the reward function
adapted from Boyarchenko and Levendorskii [16].

The term “Wiener-Hopf factorization” refers to a collection of results concerning the Laplace
transform of the characteristic function of a random walk, and is the culmination of a number
of works which include Spitzer [19, 20], Feller {21}, Greenwood and Pitman [22], while the rela-

tion with Lévy processes was developed in Pecherski and Rogozin [23], Greenwood and Pitman
[24](see also Bingham [25] for an overview).

The roots of the WHf can be traced back in time to analytical work by Paley and Wiener [26]
and Hopf [27] on the solutions of the integral equation

Q@ = [ T QW) f@-v)dy, z>0, (1.1.3)

where f is a given kernel. The complex analytic techniques used to analyze (1.1.3) include the
factorization of Fourier transforms and other operators, which in our setting is interpreted as a
factorization of the characteristic function. In the context of random walks and Lévy processes,

the probabilistic interpretation of this factorization, is a decomposition of the path in terms of
two independent parts.

The formulation we shall use is closely related with this decomposition, and was introduced in
Greenwood and Pitman (22] in terms of an independent geometric time. This geometric time
fits in very nicely with the representation (!.1.2) which can also be written as

o
G(z) = g BElg(z + Sa)] = l—i—B-Eg(x +5r), (1.1.4)
where T is a geometric random time with parameter 3, independent of the process. The path
of the random walk up to this geometric time is decomposed in terms of two independent
parts, equal in distribution to the infimum and supremum respectively. This decomposition is
fundamental and rooted in key properties of random walks, namely stationary and independent
increments, and the memoryless property of the geometric distribution.
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To be more precise, let {S,},cz+ be the random walk defined in (1.0.1), B the discount factor,
and assume T = Tj (geometric time) has distribution P(T > k) = ¥ for all k > 0. We denote
the extrema of the path stopped at the geometric time T by

= = i = = S-
I=1Ig oéﬁirsn and M = Mg osS:ng

The key fact of the Wiener-Hopf factorization that we shall use is that S7 — M is independent
of M and equal in distribution to I,

St -M 1 M, ST—MgI,
In terms of characteristic functions this is written as

E[eS7] =E [eit(ST—M)] E [eitM] —E [eitl] E [eitM] _

The Wiener-Hopf decomposition provides us with an invaluable tool for verifying optimality of
given candidates for the value function and the stopping time. However, the major shortcoming of
this method is that it does not provide us with a consistent method for choosing these candidates.
This brings us to the second key feature of our approach, which is the representation (1.1.2) of the
reward function introduced in Boyarchenko and Levendorskii [16]. This representation provides
us with explicit expressions for the candidate value function and stopping time. In addition, the
fact that the candidates are given in terms of the extrema up to the geometric time T', makes

the Wiener-Hopf decomposition a natural choice, and thus creates an important link between
the two approaches.

Overall our methodology brings together the probabilistic approach developed in [2, 12-15] and
the analytical approach in [16]. We use the representation (1.1.2) to obtain the candidates for
the optimal stopping time and value function in terms of the payoff function g, and the extrema
of the random walk. Then rather than using boundary value problem techniques, we employ
the verification lemma used in Darling et al. [2], and the Wiener-Hopf path decomposition
of the random walk to prove that indeed the candidates are optimal. Global optimality, as
opposed to optimality in the class of hitting times, of the proposed stopping time is shown for
general random walks thus improving upon Boyarchenko and Levendorskii [16]. On the other
hand, the representation (1.1.2) allows us to treat a fairly general class of reward functions, and
gives a precise method for choosing the candidates, thus avoiding the major shortcoming of the
probabilistic approach proposed in Darling et al. [2], Novikov and Shiryaev [13], Kyprianou and
Surya [15].

We first solve (1.1.1) in the setting of random walks since they are simpler than continuous
time processes while still allowing for rich behaviour. On the other hand random walks share
a key property with Brownian motion and Lévy processes, namely stationary and independent
increments. From our analysis, it turns out that this property is essential for obtaining closed
formulas, allowing us to extend our results to continuous time and Lévy processes. Finally
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several examples are given to demonstrate the flexibility of our method. Various classes of reward
functions are treated, including linear, exponential and power functions, and some perturbations.
In a more applied direction, we also obtain the price of a Canadian option, a generalization of
perpetual American options, which features in a numerical scheme for approximating American
options(finite-horizon) introduced by Carr [28]. Our solution is for a general random walk
and can be extended to Lévy processes with jumps of both signs, improving upon the existing

literature where spectrally one-sided Lévy processes were treated (see for example [29]).

The results presented in this chapter are joint work with H. Le and S. Utev and have been
published at the Journal of Applied Probability [30].

1.2 Asymptotics for self-intersections of random walks

The second object treated in this thesis is the asymptotic variance of the self-intersection local
time of random walks on the integer lattice Z¢, for d = 1,2. Given a random walk {Srn}n>0 in

the integer lattice Z4, the self-intersection local time V, counts the number of times the paths
of the random walk intersect themselves,

n

Vo= Z lis;=s,} = ZNZ(‘B)’

$,j=0
where Np,(z) = 3°i_g 1(s,=z} I8 the local time at point = € Z¢ up to time n.

The self-intersection characteristic V;, features prominently in the study of the self-avoiding walk
(SAW), a path that never visits the same site more than once. The SAW originated in statistical
physics and the theory of critical phenomena and it is the simplest model for linear polymer
molecules; these are long chains of smaller molecules called monomers, which tend to spread out
as much as possible demonstrating the excluded-volume effect. Despite their simple definition,
SAWs have raised many interesting questions (see Lawler [31] for an excellent account) which are
notoriously difficult to solve. The reason for this difficulty is the fact that the SAW cannot be

defined as a stochastic process in terms of transition probabilities, and thus it cannot be treated
by standard Markovian techniques.

A natural way to avoid this problem is by looking instead at a simple random walk whose paths
have been reweighed according to the number of intersections V,,. The resulting model is known

a8 a weakly self-avoiding walk (WSAW) or the Domb-Joyce model. The most common polymer
measure used to suppress self-intersections is defined in terms of the characteristic V,,

L

where Q is the random walk measure which assigns every path equal probability and ¢, is a
normalizing constant. The temperature constant ¢ controls the self-avoiding effect; negative
values result in self-avoiding walks by imposing a penalty on paths with high values of V,,, while
positive values produce a self-attracting effect. For an overview of such models see [32]. A
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different approach was recently given in Mérters and Sidorova (33] where rather than using a
change of measure, the self-intersection characteristic was conditioned to stay relatively small,

and the distribution of the resulting paths was studied through the asymptotics of V,,.

Apart from SAW’s, the asymptotics of V,, are also essential in the study of random walk in
random scenery(RWRS). RWRS is defined as the partial sums of a collection of iid variables
sampled by a random walk, and was first introduced in Kesten and Spitzer [5]. To be more

precise, if S, is a random walk in Z¢ and {£;},¢z¢+ an independent collection of iid real random
variables (random scenery), then by RWRS we shall mean the process

Zo=0, Zn=) &S)n>1
i=1

The connection between RWRS and local times becomes apparent through the expression

Zo =Y &(Si) =) _ Nu(z)é(),
i=1

T

To illustrate the relation with the self-intersection characteristic V;, we now give a simple example
taken from Kesten and Spitzer [5].

Example 1.2.1. Assume S, is a one-dimensional simple random walk, and let the random
scenery take the values +1, each with probability 1/2. Then we have

Var(2y,) = E(Z &(x) Nn(x))?

z€Z
n
—EY M@ =EY (Y Lismn))
z€Z z€Z k=0
n n n n
= EZ Z Z 1{su=5,=2) = EZZ 1(s,=s;} = EVy.
z€Z k=0 j=0 k=0 j=0

It should by now be obvious that the statistical behaviour of V;, features in many calculations
concerning the limiting distribution of RWRS. Asymptotic results for the mean and variance of
Vx have been used to prove functional limit theorems for Z,, in the literature (see [3, 5, 34, 35]). In
fact we shall make use of such results in Chapter 4 to prove that, when appropriately normalized,

Z,, satisfies a functional central limit theorem, a result conjectured by Kesten and Spitzer [5].

In this thesis we shall be primarily concerned with Var(V,,), for which we shall obtain an exact
asymptotic for one and two-dimensional random walks. The relation with RWRS will be explored
further in the last chapter, where we shall prove a functional central limit theorem for one-
dimensional RWRS making heavy use of the results presented in this chapter.

The origins of the study of the path structure of random walks can be traced back to Pélya
[36] who proved the remarkable fact that a simple random walk is recurrent in dimensions one

and two, and transient in higher dimensions. The topic truly flourished during the 50’s and 60’s
attracting much attention from the mathematical community. It is worth noting the significant
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contributions of P. Erd6s, who published a series of papers on the simple random walk and its
path structure (see for example Dvoretzky and Erdos [37], Erdés and Taylor [38, 39}, Erdés and
Révész [40]). Despite the vast research conducted, the topic is by no means saturated still hosting
a number of open questions. One such case, the Erdos-Taylor conjecture which states that the
largest local time is of the order of log(n)?, was formulated in 1960 (Erdés and Taylor [38]) but
was not proved until recently by Dembo et al. [41] using techniques from fractal measures.

The study of the structure of random walk paths brings together techniques from both analysis
and probability and allows a delicate interplay between the theory of Markov processes, harmonic
analysis, ergodic and potential theory. It is one of the most elegant topics in the theory of random
walks featuring a number of beautiful results and a vast literature, which would be impossible
to list in its entirety. Thus, for the remaining of this section, we shall restrict our attention to
those results which are most relevant to self-intersections and local time asymptotics.

In 1979, in a paper which introduced random walk in random scenery, Kesten and Spitzer [5)
considered the one-dimensional random walk with increments X;

EX; =0, P[n~Y°S, <z] - F,(x),

attracted to the stable distribution F,, with parameter 1 < a < 2, and obtained asymptotics of
the form

EV, = EENg(x) ~Cn? %, E[NY(0)] ~Con*~%, n—oov=1,23,....
z€Z

Their proofs were based on a class of results known as local limit theorems which describe the
asymptotic behaviour of the probability of return to the origin. For a random walk in the domain
of attraction of a-stable law (1 < a < 2), Stone [42] showed that

P[S, =0] ~Cn~%, n— oo,
while for mean zero random walk with second moments Spitzer [43] showed that
P[S, =0] ~ C(2mn)~%, n — o.
Local limit theorems for simple random walks were given in Lawler (31, Section 1.2}, where they
were then used (see Lawler [31, Chapter 6]) to obtain asymptotic bounds on V,, in the context

of the Edwards model and self-avoiding walks

Cni, d=1
EVp ~ { Cnlogn, d=2
Cn, d>3,

while for d = 2 we have Var(V;,) = O(n?).
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Using a similar approach, Bass et al. [44] proved that for two-dimensional random walk with
finite variance we have

EV,, = Cnlogn + o(nlogn),

while under slightly stronger moment conditions the error term was shown to be of the order
O(n). These estimates were then used to obtain a law of the iterated logarithm, and a large
deviations principle for the self-intersection local time V,,. Using a significantly different method-
ology, Chen [45] and Chen and Rosen [46] proved results of a similar nature. The self-intersection
local times of random walks were approximated by those of Brownian motion through the use
of the invariance principle, and the asymptotics were then derived from equivalent results for

continuous-time processes. More recently, Morters and Sidorova [33] gave large and moderate

deviation results for the slightly more general p-fold intersection local times
Anp) = 3 NE(2),
x

and introduced a new class of weakly self-avoiding walks, resulting from simple random walk
with A, (p) conditioned to stay small.

While local limit theorems have been very successful in proving bounds for the statistics of
Va, these usually require strong moment conditions to provide good convergence estimates.

Bolthausen (3], used a completely different approach, based on Karamata’s Tauberian theory,

which avoids the use of local limit theorems. More specifically Bolthausen [3] considered the
power series

o0
g =3 Var(V)X, A€ (0,1),
=0
and its asymptotic behaviour as A — 1—. The author then used Karamata’s Tauberian theo-
rem for power series ([21, Theorem XIII 5.5]) in order to deduce the asymptotic behaviour of

Yoo Var(V;), and Var(V;), as n — oo, and proved that the centered random walk in Z2 with
finite variance satisfies

EV, ~Cnlogn, Var(V,) = O(n?logn),

for some constant C. This approach was recently extended Cerny [4] to treat the asymptotics
of the variance of An(p), obtaining the result of [3] as a special case. The improved bound

Var(V,) = O(n?) is shown under the additional condition that the random walk distribution is
symmetrized.

Our methodology is based on and extends that of Bolthausen [3] in that we also consider the
power series

o0
g(N) =3 A Var(Vy),
=0
avoiding the use of local limit theorems. From that point on though, our approach deviates
significantly from that of Bolthausen [3]. In particular rather than appealing to Karamata’s

Tauberian theorem, we will state and prove a much different complex Tauberian result, which
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considers the behaviour of the power series on the open unit disc, rather than on (0, 1]. Related
results (see Flajolet and Odlyzko [47, Theorem 4]) have been previously used in the context
of combinatorial analysis, and are closely related with Darboux’s lemma (see Knuth and Wilf
[48]), which deduces the asymptotics of the Taylor coefficients of an analytic function from its
asymptotic expansion around its singularity nearest to the origin. The reason for this detour
is one of the basic assumptions of Karamata’s Tauberian theorem, namely the monotonicity of
the underlying sequence. Specifically, the Tauberian theorem can deduce the asymptotics of
the sequence a,, from it’s 2-transform } 5o anA™, but only if a, is a monotone sequence. In

the general case the underlying sequences that come up in the study of Var(V},,) are essentially
non-monotone, thus prohibiting the use of classical Tauberian results.

Bolthausen [3] avoided this technical difficulty by bounding the variance above by a monotone
sequence. While this allowed him to invoke the Tauberian theorem, the best bound possible
for Var(V,) is of the order of n?logn. On the other hand Cerny [4) did not consider an upper
bound, but instead attempted to obtain an exact asymptotic, overlooking the monotonicity
condition. The result is true for symmetrized distributions, a condition which guarantees the
monotonicity of the underlying sequence. Even though for the general case the best bound
available is O(n? log n), the O(n?) bound given in Lawler [31] for simple random walk, suggests
that a tighter bound should be available. As we shall see in Chapter 3 this is indeed the case.

In terms of methodology, the main contribution of Chapter 3 is the application of the complex
Tauberian Lemma 3.1.2. At the extra cost of having to bound certain integrals involving char-
acteristic functions, our approach improves upon existing techniques in two aspects. First we
completely avoid the monotonicity assumption, which allows us to treat situations inaccessible to
the classical Tauberian theory. Second, our complex Tauberian approach keeps track of smaller
order terms, which turn out to be of vital importance for obtaining the correct asymptotic for
the variance of V;,. By repeated use of an expansion of the characteristic function we derive
an asymptotic expansion for Var(V,,), and we use Lemma 3.1.2 in order to control the lower
order terms. From the resulting expression the exact asymptotic is immediately available. It is
very important to stress that our approach is flexible and with only slight modifications can be
applied to a range of similar situations, such as for example local limit and renewal theorems
(see Deligiannidis and Utev [49]).

In terms of results, the main contribution of Chapter 3 is the exact asymptotic for the variance
of V;, for one and two dimensional random walks. In two dimensions, our assumptions coincide
with those of Bolthausen (3], Cerny [4]. The proof in Bolthausen [3] is completed, and extended
by showing that Var(V;,) ~ Cn?, and thus that O(n?) is the best possible bound. The exact
constant is also calculated. For the one-dimensional case, we obtain the same result for random
walks in the domain of attraction of the symmetric Cauchy distribution, which corresponds to the
a-stable law with a = 1. This case has not been treated before, and the resulting asymptotics

are applied in Chapter 4 to prove a functional central limit for one-dimensional RWRS, thus
proving a conjecture by Kesten and Spitzer [5].

The results of this chapter are joint work with S. Utev and have been prepared as a preprint
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CHAPTER 1: INTRODUCTION

([50]). They will soon be submitted for publication.

1.3 A central limit theorem for random walk in random

scenery

The last result presented in this thesis is a central limit theorem for one-dimensional random
walk in random scenery (RWRS). Let {Sy,}n>0 be a random walk in Z¢ and {£,},¢z4 a collection

of iid real random variables, independent of S,, which we shall call the random scenery. Then
by RWRS we shall mean the process

n
Zo=0, Zn=) &S,
i=1

ie the partial sums of the random scenery indexed by the random walk.

The idea of random variables sampled by a random walk is certainly not new. Spitzer [43] first
proved that for arbitrary transient random walk, n~'/2Z,, is asymptotically normal. However,
the term RWRS didn’t appear until 1979 in Kesten and Spitzer [5], where a more general one-
dimensional random walk was treated. Kesten and Spitzer (5] proved that the scaled process
n~1/ GZ[,,,I satisfies a functional limit theorem, where the resulting limits were then used to obtain

a new class of self-similar processes. The two-dimensional case was treated by Bolthausen [3]
obtaining a Gaussian limit.

The dependence of the sampled scenery introduced by the random walk, implies that RWRS can
be considered as part of the limit theory of dependent variables. In the transient case the effect
of resampling is not significant, and hence the normalization for the central limit theorem, n!/2,
is the same as in the independent case (see Spitzer (43, p. 52]). In the recurrent case however, the
resampling effect kicks in, requiring normalization of the order of v/nlogn. In the direction of
dependent variables, Guillotin-Plantard and Prieur [35, 51] treated a more general situation by
dropping the assumption of independence from the random scenery; weakly dependent sceneries
were treated for both transient and recurrent random walks. Finally it is worth noting that
RWRS is also closely related with random ergodic theorems which deal with ergodic averages of
measure preserving flows sampled by random walks (see Lacey et al. [52]).

Since 1979 and the introduction of RWRS by Kesten and Spitzer [5] several limit theorems have

appeared in the literature, usually dealing with the weak convergence of ¢(n)Zj,,, where c(n) is
some normalizing sequence.

Kesten and Spitzer (5] considered the one-dimensional case where X; belongs to the domain of
attraction of a stable distribution F, with parameter 1 < a < 2,

EX; =0, Pn~2S, <] Fa(z),

11



CHAPTER 1: INTRODUCTION

and ¢ belongs to the domain of attraction of a stable distribution G with parameter 0 < B €2,

E¢(z) =0, P /7 is(k) < 2] — Gp(x).

k=1

The authors proved that the process n~=%Z,,, where § = 1 — 1/a + 1/(af), converges weakly in
C|[0, o), the space of continuous functions, to the non-Gaussian limit

Ay = /0 " Luz)dZ, (z) + /0 ” Li(z)dZ_(2),

where {Z,(t);t > 0} and {Z_(t);t > 0} are two right-continuous stable processes of index S,
and L.(z) is the local time at z of a right-continuous stable process of index a, independent of

Zy.

The simpler case with 0 < a < 1, corresponds to transient random walks and was treated in
Spitzer [43], for the random scenery &(x) taking the values +1 with equal probability. The more
general case where § is arbitrary is shortly discussed in Kesten and Spitzer [5] and shown to

converge, when appropriately scaled, to a stable process of index f.

The two dimensional random walk with finite non-singular covariance matrix X, and centered

random scenery with finite positive variance o2, was treated in Bolthausen (3] where it was
shown that

Ya(t) = ﬁlzilﬂzlnt]/a vnlogn

converges weakly in D[0, c0), the space of right-continuous functions, to standard Brownian
motion.

More recently, Guillotin-Plantard and Prieur [35, 51) treated the case where the random scenery
is assumed to be a family of weakly dependent random variables. When the sampling process
is a transient one-dimensional random walk the limiting process was Gaussian, while when the

random walk was recurrent the limiting process had a similar form to the one found in {5},

/ " Lil@)dZ.(2) + | " Li()dZ- ()
0 0

where in this case {Z,(t);t > 0} and {Z_(t);t > 0} are independent Brownian motions, while
L, is the local time of yet another independent Brownian motion.

In Chapter 4 we shall treat one-dimensional random walk in random scenery. In particular we
shall assume that the random walk has characteristic function satisfying the expansion

f(t) = Ee'Xt =1 — ~jt| + o([t]),

as t — oo, while the random scenery is independent with mean zero and finite variance o2. Our
conditions on the random walk imply that the random walk is recurrent and its increments lie
in the domain of attraction of the symmetric Cauchy law, a = 1. Even though this case has not
been treated in the literature, it was conjectured by Kesten and Spitzer [5] that the normalized
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sums should converge weakly to standard Brownian motion. We show that indeed the laws of

Yo(t) = /7Y Z[ny/oy/2nlogn, tel0,1],

converge weakly to the Wiener measure in D[0, 1}, thus proving the Kesten-Spitzer conjecture,
which has remained open since 1979.

In proving wesk convergence we shall repeatedly use the results of Chapter 3 on the variance
of the self-intersections characteristic V,,. It is important to note that the asymptotic bound of
order n?, proved in Chapter 3, is essential for the central limit theorem to hold for almost every

path of the random walk, in the following sense: if A = o(Sk : k € Z) encodes the full history of
the random walk then

e~=/ 2 P-almost surely.

]P(zn:s(si)/c\/nlogn < z|A) - /1
i=1 -

oo

In other words for almost every realization of the random walk w = (w;,ws, . ..) the partial sums
of the sampled scenery
n
e dd
—==) &(wi)
nlogn {

satisfy a central limit theorem.

This is in sharp contrast to the results in Bolthausen [3] where the best bound proved was of the
order of n? logn. The weaker bound implies that the limit V,,/EV,, — 1, used in the convergence
of the finite dimensional distributions, holds only in probability. Our improved bounds allow
us to show almost sure convergence, which in turn means that the central limit theorem can
be applied for almost every path of the random walk. It is also worth noting, that the bound
n? claimed in Bolthausen [3] was subsequently used in Cabus and Guillotin-Plantard [34]. Our
results of Chapter 3 and their application in Chapter 4, indeed complete the proofs in [3, 34]
thus finally settling a long-standing misunderstanding.

The results of this chapter are based on earlier work with S. Utev and have been presented at
the 33rd Conference on Stochastic Processes and Their Applications, held in Berlin in July 2009,

and at the Conference in Memory of Walter Philipp held in Graz in June 2009. They can also
be found in Deligiannidis and Utev [50).
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CHAPTER 2
Optimal stopping

2.1 Introduction

Let {S;}scz be a process with stationary independent increments, where the time parameter is
either discrete, t € T = Z+ = {0,1,2,...}, or continuous t € T = R*.

For a given reward function G and discount factor 3 = ¢™",r > 0, we consider the problem of
finding a pair (V*,7*) such that 7* € T and

V*(z) = V(z,7") =E [ﬂ*'G+(m + s,.)] = supE [B7G*(z + S-)] (2.1.1)

where G*(z) = max{G(z),0} and T is the set of all F-stopping times. In the discrete case we
define F = {Fp}n3o to be the natural filtration of the random walk, while in the continuous
case F = {F;};ecr+ is the augmented natural filtration of {S;},cr+that is right-continuous and

contains all P-null sets (see Rogers and Williams [53]). Recall that a filtration is right-continuous
if for all t > 0 we have F; = F;;, where

def
ft+ = n ft+h'
h>0

We shall refer to the function V*(z) as the value function of the optimal stopping problem

(2.1.1).

We combine the two approaches described in section 1.1 to give an explicit solution, in terms
of the extrema of the process, to (2.1.1) for payoff functions which admit the representation
(2.2.1)(or (2.2.11) in the continuous case), proving global optimality in the class of all stopping
times. This indeed contains all examples treated in the literature as special cases. In section 2.2
we present the main results for random walks. We also give explicit solutions in the continuous
time case for Lévy processes, the continuous time analogue of random walks. The proof is very
similar and is based on the key properties of stationary and independent increments. We also
consider the case when the representation (2.2.11) holds only on the half-line. Examples are

then provided in section 2.3 which cover cases from the literature and some perturbations which
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CHAPTER 2: OPTIMAL STOPPING

demonstrate the flexibility of our approach.

2.2 Main results

In this section we give an explicit solution to (2.1.1) for the general class of reward functions
which admit the representation (2.2.11) introduced in [1, 17], and we prove that the optimal
stopping time is the hitting time of a semi-infinite interval. We propose a candidate function
and a stopping time following closely the approach of [1, 17]. However rather than considering
the boundary value problem of (2.1.1), we prove optimality using Lemma 2.2.1, thus combining
the two approaches mentioned in the introduction. The dependence of the proposed candidate
function on the extrema of the process up to an independent geometric time allows us to use
results from the Wiener-Hopf factorization of random walks and Lévy processes (c.f. [22, 24]).
Using this approach, we rederive the solution to the optimal stopping problem obtained in
[1, 17], independently, with a new and significantly simpler proof. We also manage to weaken
the assumptions as we do not require monotonicity of the payoff function in order to show global

optimality of the stopping time. The results of {2, 13-15, 54] are then shown to be particular
cases.

First we treat the problem in discrete time in subsection 2.2.1, and then the continuous time

2.2.1 Optimal stopping in discrete time

Consider the random walk Sp = 0, and Sp, = Y p_; Xi, for n > 1. Let F = {F,}n0 be the
natural filtration of the random walk, ie F, = o(Sk,k < n). We shall in the following assume
that the discount factor satisfies 8 = e~" < 1, unless otherwise stated.

The reward functions G that we are interested in are those that have the representation

G(z) =) _B"Elg(z + Sn)] (22.1)

n=0
for some payoff function g.

Our result is closely linked with a geometric random time T = T which is independent of the
random walk {Sp},cz+ and whose distribution is given by P(T > k) = S* for k € Z*. Note
that, in terms of T', we can rewrite G in (2.2.1) as

G(e) = ;=5 Eloe + Sr)).

Let further the random variables I and M be defined as follows

IEI5=0<"£TS,. and M5M5=02:2TS,,,
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CHAPTER 2: OPTIMAL STOPPING

the infimum and supremum of the process up to the geometric time T. We emphasize the

dependence on 3 of the objects introduced above when it is convenient.

-

cases. In the first case we assume that there is an z* such that for all z < z*, E[g(z + M)} >0
and non-increasing, while for z > z*, E[g(x + M)] < 0, where M = sup,r S». Note that
this condition is automatic for any decreasing g which crosses zero once. The second class we
consider is defined similarly and contains increasing payoffs which cross zero once. We prove

the result using probabilistic arguments and most importantly the Wiener-Hopf factorization of
random walks.

Wiener-Hopf factorization for random walks. Greenwood and Pitman [22] have shown

that Sr— M is independent of M and equal in distribution to I (see also [55]). Thus in particular,
E [eST] =E [¢57"M] E [e¥]

=Ele/|E [eM], implying that (2.2.2)
St =M +1,

where 1 is a copy of I independent of the random walk and of T. Note that by considering the

reflected random walk {S,},ez+ = {—Sn}nez+, we also have that St — I is independent of [
and equal in distribution to M.

The starting point of the proof of our main result is the following lemma obtained in [2].

Lemma 2.2.1. Define the random walk So =0, S, = X1+ - -+ Xy, where X, X1, X2, ... are iid

random variables. Let r and f be nonnegative functions and B a constant satisfying 0 < 8 < 1.
If for all x

f(@) 2 r(z) and f(z) > E[Bf(z + X)],
then
f@) ZE[fr(z + S;)]

for all x and stopping times T.

In other words in the context of the optimal stopping problem (2.1.1), for a given reward function

G and a discount factor 8 € [0,1], if f > 0 satisfies the conditions of Lemma 2.2.1, then f is an
upper bound for the value function of the problem, ie

. — T+
fz2v (:c)—fxelgE[B Gt(z +S,)].

When the reward function G has.the representation (2.2.1) for some decreasing payoff function
9, Boyarchenko and Levendorskii [17) propose the following expression for the value function of

(2.1.1)
(1-B)"'E [1{z+1<=—}9(1' +87)], (2.2.3)
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where z* is such that for all z < z*, we have that E[g(x + I)] < 0, while for all z > z*,
Elg(z +I)} > 0.

In the next section we intend to use Lemma 2.2.1 and the results of [22] on the Wiener-Hopf
factorization of random walks, to prove that (2.2.3) is indeed the value function of (2.1.1). The
conditions we impose on the payoff function g and the random walk, are the weakest possible
for our method, and weaker than those required in [17].

Theorem 2.2.2. Assume that the function G(z) can be written in the form (2.2.1) for some
function g.

(i) If there is an * > —oo such that

E[g(z + M)] is positive and non-increasing, Vz < z*;

(2.2.4)
Efg(z + M)] <O, Vr > z*,
then the solution to (2.1.1) is given by the stopping time
™ =inf{n 20: 2+ S, <z*} (2.2.5)
and can be presented as
. 1
Vi(z) = mE [1{c+1<ary9(z + ST)] -
(ii) If there is an =* < 0o such that
E T+ N] < 0, Y. < t;
[g( )] Y T T (226)

E(g(x + I)] is positive and non-decreasing, Vx > z*,

then the solution to (2.1.1) is given by the stopping time 7* = inf{n > 0: z + S, > z*}
and can be presented as

1
V*z) = ‘1—_—513 1z+M2c19( + ST)]

Proof. (i) Writing
W(z) = (1 - B)'E [1{z41¢219(z + S1)] »

we would like to show that W(z) = V*(z). We proceed by first showing that W(z) > V*(z).
To do this we apply Lemma 2.2.1 and thus we need to show that its conditions are satisfied for
the particular choices 7 = G+ and f = W.

By writing M for a copy of M which is independent of the random walk and of the geometric
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time T, we have

1
W(z) = WE [1{z4+1<219(z + S7))

i
'_.l

E [1{z4+1<e}9(x + (ST — 1) + I)] (2.2.7)

—
-

TZ_BE [1{m+1<z'}9($ +M+1 )] )

However, we have assumed that for all z > z*, E[g(z + M)] £ 0. Thus

E[l{,_,,bz.}g(:z +1+ M)lz] <0,

from which it follows that

E [E [1{,,+1>z.}g(:c +1+ M) 11]] <0.

Continuing from (2.2.7) and using the above inequality we have

1 -
W(z) = mE [1{z+1s:*}9(9~” +M+ I)]

1 -
2 TT_B-]E [1{z+1<z'}9($ +M+ I)]

+ T—i_ﬂE [1{z+1>z‘}g(m + M+ I)]
= 1%?“'3 |9z + 1+ 31)]
1

= —1—_-B-E lg(z + ST)] = G(=).

The choice of z* also implies that W(z) > 0 and so what we have actually shown is that
W(z) > G*(z).

To prove that W(z) satisfies the second condition of Lemma 2.2.1, write

F(z) = 1(_oo,z+)(7) E[g(z + M)).
We express W in terms of F
Wi(z) = ﬁn [Fz+1)].

Let J be an independent Bernoulli random variable with parameter 8. Mordecki [54] has shown

that I = —J(X +I)~, where z~ is defined to be max(—z,0) and X is an independent increment
of the random walk. Thus

E(F(z+ 1) =E[F (z - J(X + I)7)]
=E[1y=qF (z - J(X +1)7)]
+E [1{J=1}F (37 -J(X + I)—)]
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=E[1{j=0}F(z)] +E [Lyy=yF (z — (X + I)7)]
=P(J=0)F(z) +P(J=1)E[F(z— (X +1)7)]
=(1-p)F(z)+BE[F(z - (X +1)7)]
>BE[F(z— (X +1)7)]

> BE(F(x+ X +1)],

where the fifth equality holds since we have assumed that J is independent of I,X. The first
inequality follows from the non-negativity of F', and the second from the facts that —z~ < z

and that F is non-increasing. We have shown that W(z) > E [ W (z + X)]. It now follows from
Lemma 2.2.1 that, for all stopping times T,

W(z) 2E[f"GY(z + 8],
so that W(z) > V*(z).

It remains to show that W(x) < V*(z) and that the stopping time 7* defined in (2.2.7) is indeed
optimal. For these, it suffices to show that

W(z) <E [,8"G+(z + S,.)] .

If this holds then we have shown that the supremum in (2.1.1) is attained at 7* which is thus
optimal.

Observe that z + I < z* if and only if the process has hit the interval (—oo,z*] before or
at the time T. Since 7* is by definition the hitting time of (—o0o,z*], it must be true that
{7 <T}={z+1I<z*} Thus we have

W(z) = -1—-_-1_-—B-E [1{z+lsz'} 9(3 +I+ M)]

= T-l-_ﬁ [l{ur'}g(m +I+ M)] (2.2.8)

= -i-_i-EE [1{7;.,.—} g(.’lt + S, + (I - Sr') + M)]
= B [ [Lrsr o(e + 80+ (1= 8y + 1) 17

It is obvious from its definition that at the stopping time 7*, the random walk attains a new

minimum value, and it is the first time the process drops below z*. In other words S,, > S,-,
for all n < 7%, and thus on the event {T > 7*},

I_S'r‘ = inf Sn— T

osn<T
= 8L 7(Sn = 5r°)
= .nf_(Su—Sp.).

By the strong Markov property and the above equality, the quantity I — S;. is independent of
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Fr-, since it depends only on the sequence {S, — S;« : n=7*,...,T}. Also by the memoryless
property of the geometric distribution conditional on F;«, on the event {T > 7*}, the length
T — 7* of the path {S, — S;. : n = 7*,...,T} is independent of {T" > 7*} and F.-, and is
geometrically distributed with parameter 8. These two facts together imply that in the last

expression of (2.2.8) we can replace I — S,+ by a copy of I, denoted by I, which is independent
of both the random walk {S,}ncz+ and M so that

E[Lirsry 9(2+ Sre + (I = 5r) + B) |7,
=E [1{T>r~} 9(-7: +S. 414+ M) i}',-] . (2.2.9)

In this way we get

W(z) = ————ﬂ-IE [E [1{T>.,.}g(:c + S + T + M) |F,e ]]
= ——ﬂE [ElLr37)9(z + Sr- + S0
= ;_—BEUP(T 2 7| Fr) Elg(@ + Spv + 1) | Fre]

=E [ Elg(a + 5+ + 51|71

Since I,M are independent of each other, of F,. and of T, their sum can be replaced by an
independent copy of Sy which we denote by S7. Note that this is also independent of T and of
Fre. Further using the representation (2.2.1) we can now show that

W(z) =E [87E[G(z + 5,-)|Fr-]]

(2.2.10)
=E [5Gz +5.)] SE[67G* (@ +5.-)]

Since it has been established that for any stopping time 7, W(z) < E[8"G*(z + S,)], we have

W(z) =E [ﬁf‘m(z + S, )] =supE[67G*(z +S,)].
€T

(ii) This can be reduced to case (i) by the transformation (z, S,) — (—z, ~Sp). O
Remark 2.2.1. The last inequality in (2.2.10) is actually an equality. To see this, we only need
to show that G(z + S,.) > 0. It follows from the definition of 7* that z + S, < z*. Thus, for
I2Tand M2 M, independent of each other and both also independent of {S;}icr+, We have
that z + Sy« + I € z*, and so it follows that

E[g(z+s,- +I+M)| S, I'] >0,

implying that G(z + S;+) > 0.

our proof establishes that the solution V“(a:) of the optimal stopping problem must also be
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infinite.

(b) It is clear from the proof that the solution of (2.1.1) is the same as the solution of (2.1.1)
with G*(z) replaced by G(z).

2.2.2 Optimal stopping in continuous time

We now treat the continuous time case. We state and prove the main result for reward functions
G of the form

G(z) = /0 T eTE l9(z + S¢)] dt = rE [g(z + ST)], (2.2.11)

where g is the payoff stream corresponding to G, and T an independent exponential time with
parameter r > 0. We conclude section 2.2 by proving that our results are still true even if the
reward function G has the desired representation only on the set where G is positive, allowing

us to treat power reward functions such as (z*)2, which do not have the representation on the
whole of the real line.

We consider a Lévy process {S;}:;cr+ starting from the origin, with its augmented natural
filtration F = {F;}:cr+, that is right-continuous and contains all P-null sets (see Rogers and
Williams [53]). We assume that the sample paths of {S;};cg+ are a.s. right-continuous with left
limits. The discount factor is given by 8 = e~" with » > 0. We also introduce an independent
exponential random variable T = T, with parameter r > 0 and define

=] = inf S nd M=M,= S;.
Isl= &t 5 o "7 oceer

Then, the results on the Wiener-Hopf factorization of Lévy processes given in [24] show that

St — M is independent f M and Sy—-M =1
We consider only reward functions G, which have the representation

G(z) = /000 e "E[g(z + S;)) dt (2.2.12)

for some payoff function g. This representation was introduced by Boyarchenko and Levendorskii
(1] and the optimal stopping problem was solved for monotone g. The method employed by the
suthors is analytical and the proof is very extensive. One shortcoming of the analytical approach

is that if g is non-monotone optimality is only obtained in the class of hitting times of semi-
infinite intervals.

We use Wiener-Hopf factorization and a continuous time analogue of Lemma .1 to weaken

the assumptions on g. As we shall see the optimal stopping problem can be solved even for
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non-monotone g, as long as some weaker monotonicity condition is satisfied.
In this section we present the main result for optimal stopping in continuous time.

Theorem 2.2.3. Assume that the function G(z) has the representation (2.2.12), where g is
continuous.

(i) If there is * > —oo such that

E[g(x + M)] is positive and non-increasing,  Vz < z*;

(2.2.13)
Efg(z+ M)] <0, Yz > z*,

then the solution of (2.1.1) is given by the optimal stopping time 7* = inf{t 20 : z+ S; <
z*} and can be written as

V*z) =r7'E [1{z41<e0) 9(z + ST)] -
(ii) If there is * < oo such that

Efg(zx +1)] <0, Vr < z*;

0 (2.2.14)
E{g(x + I)] is positive and non-decreasing,  Vz > z*,

then the solution of (2.1.1) is given by the optimal stopping time 7* =inf{t 20 : z+5; >
z*} and can be written as

V) =r"E [1{z+M2::'} gz + ST)] .

Proof. The proof is similar to that for the discrete case and so, in the following, we only outline
that for case (i).

Writing W(z) = r~'E [1{341¢z+} 9(z + S1)], e intend to show that
(i) W(z) > G*(z), and
(i) {e""*W(S¢)}iecr+ is a right-continuous supermartingale.

By Doob’s optional stopping theorem this will show that W(z) is an upper bound for the value
function of the continuous time optimal stopping problem

Vi(z) = sup Ele™"G*(z + S,)). (2.2.15)
TE

Finally we will show that the stopping time 7* defined in the statement of Theorem 2.2} achieves
a value at least as good as W(z) thus proving that 7* is optimal.

Using the result on the Wiener-Hopf factorization of Lévy processes, we can write

W(z) =r"'E [Ligt1gany 9 (@ + (Sr ~ 1) + 1)]
=r"'E [1{z+1sz-}g($ +M+1 )] ,
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where M is a copy of M independent of S; and of I. By our assumptions on g and z*, on the
event {x + I > z*}, we have that

E[l{z+1>z‘}g(3" +1+ M)II] <0
and thus
W(z) > r-E [1{”,@.}9(35 + M + 1)]
+77'E [1{z+l>z‘}g(x + M + I)]
=r-1E [g(:c + I+ M)]
=r~'Eg(z + Sr)] = G(z).

Since by choice of z* one can show that W(z) > 0, we actually have W(z) > G*(z).

Next, we show that {e "W (x + S;)}icr+ is a right-continuous supermartingale. For this, we
define

F(zr) = 1(—00,3:‘](‘77)114: [g(m + M)]»

and we write W(z) = r~!E[F(z + I)]. Continuing, it has been shown in [55] that if [ is a
copy of I, independent of the Lévy process and of T, then on the event {T > t}, I is equal in

distribution to (S + I } A I, where I = Orgirét S,, giving us the new expression
{8

W(z) =r'E [F (x + min{(S, + I), Ig})] .
By choice of z*, F(x) is non-negative and non-increasing, giving

W(z) > 'E [1{T>t}F (z + min{(S; + f),It})]
> lE [1{T>t}F(a: + St + i)] .

Since T is independent of the process and of I we have that
E [1{T>t}F(z +S+ i)] =P(T > O)E|[F(z + S¢ + 1))
and since by definition of T, P(T > t) = e~ we have
W(z) =r'E [e-'*F(x + 8+ i)] =E[e"W(z + st)]-.
By continuity of g we have that {e~"*W (S;)}cr+ is a right-continuous supermartingale. Because
e""W(S;) > 0 for all t > 0, we can apply Doob’s Optional Stopping Theorem (see Rogers and

Williams {53]) without requiring uniform integrability in order to get

W@) >E[e" W(z+8,)] >E[e" Gz +5,)].
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The arbitrary nature of 7 implies that W(z) > V*(z).

Similar arguments to the discrete case show that {z + I < z*} = {T > 7*}, and that on the
event {T > 7*}, St — S;. is independent of .. and equal in distribution to Sr. Then, if St is
a copy of St independent of S, T' and of F.«, it follows that

W(z) =r"'E [I{TZ,.-}g(m + (ST — Sre) + Sre) | Fre ]]
[1ir5ry9(@+ 81 + 5:2) 17 ||

B(T > 7 | Fro)E [9(z + 81 + 5,) 1Fr- ||

=r71E

=r7E

RG]

By definition of T' we have that
it can be deduced that

N

(T > 7| Fr») =€ ", and by the Strong Markov property

E[g(e + 81 + 5r) |Fr | =E [g(z + 57 + 5,-) | 0(S7-)

=rG(z + Sr+).
With the above in mind we find that

E [ E[G(s +S-) | Fr-]]
E[e G(z + 5,
<E [e‘r‘r' G*(z+ s,.)] .

i

Hence 7* is indeed optimal and W(z) is the value function of the continuous time optimal
stopping problem (2.2.15). 0

Representation on the half-line. We note that the requirement of Theorem 2.2.2 (respec-
tively Theorem 2.2.3) that G(z) has the representation (2.2.1) in the discrete time setting (re-
spectively (2.2.12) in the continuous time setting) on the whole of the real line can be modified
to allow for the representation to hold only on the set D = {z : G(z) > 0}, under the restriction

that D is a semi-infinite interval. We make this precise in the following proposition.

Proposition 2.2.4. Let D = {z : G(z) > 0} and assume that on this set G has the representa-

tion (2.2.1) in the discrete time setting (respectively (2.2.12) in the continuous time setting) for
some g.

(i) If D has the form (—oo,h) for some h, and if there is an x* < h such that (2.2.1) (resp.
(22

is stsll valid.

PP

(ii) If D has the form (h,00) for some h, and if there is an z* > h such that (2.2.6) (resp.

(2.2.14)) holds for all z € D, then the result of Theorem 2.2.2(ii) (resp. Theorem 2.2.4(1i))
i8 still valid.

Proof. We outline the proof for the first case in the discrete time setting. Most of the argument
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in the proof for Theorem 2.2.2(i) follows, except that we need to show that, under the current
assumptions, (a) it is still true that W(z) > G*(z) and (b) the representation (2.2.1) holds
at = + S,«. For (a), the inequality W(z) > G*(z) is true on D¢, the complement of D, since

W(z) 2 0 > G(x) for z € D°. When z lies in D, our assumptions imply that  + I > z* if and
only if h >z + 1 > z* and so

E [1{$+I>:t‘}g(z + ST)] <0.
Thus, W(z) > (1 — B)'E [g(x + S7)] and the representation (2.2.1) leads to W(z) > G*(z) as

implying that the representation (2.2.1) holds at z + S-.. O

2.3 Examples and applications

In this section, we apply our method to three classes of reward functions, specifically linear,
exponential and power functions. We examine specific examples from each case as well as some
perturbations which result in non-monotone payoff streams, thus demonstrating the weakening
of the restrictions imposed by Boyarchenko and Levendorskii [1].

In this section, we demonstrate how the results described in section 2.2 can be applied to a

wide class of functions, recalling that T', I and M are those defined at the beginning of subsec-

the continuous time setting.

2.3.1 Linear reward functions

As a first example, we treat the linear reward function G(z) = z in discrete time. We show that

G(z) has the representation (2.2.1) and we derive the corresponding payoff stream. By applying

supE [ (x + ST)"'] ,

given in [2]. We then restrict ourselves to a symmetric random walk on the integers in order
to consider the perturbed reward function G(z) = z + (—1)*c, for some constant c. We show
that G(z) has the required representation in terms of the payoff function g(z), and that the
restrictions imposed by Theorem 2.2.2 allow us to consider cases where g is non-monotone. By
restricting the processes under consideration even further, we treat simple symmetric random
walk and obtain a simple condition on g. More specifically we only require g to be monotone on
the interval (—00,2*), for some z*. On the rest of the real line we require g(z) + g(z + 1) to be
monotone. In continuous time the case G(z) = z + ¢1 + ¢3 cos(z) + c3 sin(z) is treated. We show
in particular that the non-monotone payoff function g(z) =z +1 + sin(z) + cos(z) satisfies our
assumptions for Brownian motion and spectrally positive Lévy processes.
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(a) Let G(z) = z and recall that 3 < 1. Note that the case 8 =1 has already been treated in
[2]. Assume for now that E [X] = p. It is easy to see that, if we take g(z) = (1 — 8)x — Bu, then
G(z) = (1 — B)~ ' E[g(z + St)] since

(1-B)'Elg(=z + Sr)} = Y_ B"Elg(z + 5n)]

n20
=" 81 - B)(z + np) — Byl
n20
=z+pl-B)Y np"-pd) g
nz20 n21
—z+ (1 —BuB  uB

a-B8p 1-g ~

Clearly, g(z) is an increasing function of x. To find the optimal barrier, we solve the following
equation for z*

Elg(z+I)] = (1 - B)" + (1 - B)E[]] - B =0. (23.1)

Bl = 22 - B,

the optimal stopping time is given by
=inf{n 20 : z+ S, 2 E[M]}.
Denoting the indicator function 1{,4a>g[Mm)} by I to simplify notation, the solution is given by

(1-B)V*(z) =E[I{(1-B)(z+ M +I) - up}]

=1E[I{(1—ﬁ)(l‘*'M)‘“ﬁ}"'l(l_ﬂ){lpﬂB v}

since I is independent of M and hence of I. This gives

(1-BV*(z) =E[1(1-8)(z+ M -E[M])],

so that
V*(z) =E[I(z+ M —E[M])] =E [(a:+M ~E[M])+] .

In particular, by letting 8 + 1, we recover the solution obtained in [2] for the same reward
function but with 8 = 1.

(b) We now consider a non-degenerate symmetric integer-valued random walk and the perturbed
reward function G(z) = x + (—1)%c, where ¢ € Z and c is a constant. Direct calculation
shows that G(z) has the representation (2.2.1) with g(z) = (1 — ) {z + (—1)*c8}, where § =

(1 -¢B)/(1 - B) > 1 and q = E[(—1)*]. We have that E[(~1)7] E[(~1)™] = E[(~1)5T], by the
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Wiener-Hopf factorization, and that E[(—1)!] = E[(—1)¥], by symmetry. Hence,
Elg(e + )] = (1 - B) {z +E[I] + (~1)7cV},

which is non-decreasing provided that 1 > 2|cv/8|. This condition for E [g(z + I)] to be non-
decreasing is clearly weaker than requiring that g is non-decressing, i.e. 1 > 2|c4|.

(c) By restricting our attention to the simple symmetric random walk, we are able to consider a
much broader class of functions. Let {Sp},cz+ be a simple symmetric random walk so that the
iid increments X are such that X = 1 with probability 1/2, and X = —1 with probability 1/2.

Let M, = maxpgign Si be the maximum of the random walk up to time n. Then, for k¥ > 0,
since by the Reflection Principle

P(M, >k, S, < k) =P(S, > k),

it is true that,

P(M, = k) =P(Sp = k) + P(S, = k +1),

which obviously also holds for k = 0 by symmetry. Hence,

P(M=k)=P(Sy =k)+P(Sr=k+1), keZ*,

and so

Elg(z + M) =Y _{g(z+k) +g(z + k — )} P(St = k) + g(z) P(Sr = 0).
k21
For E [g(x + M)] to be a non-increasing function of z € Z, it is sufficient to require g(z)+g(z+1)
to be non-increasing for integer-valued z, and g(z) non-increasing for z < z*, which is clearly
weaker than the assumption that g is globally decreasing.

As for the discrete time setting, Theorem 2.2.3 does not hold just for monotone functions, as
the following demonstrates.

(d) Assume that {S;};cr+ is a Lévy process starting from the origin such that the negative of
its infimum at the exponential time T has exponential distribution with parameter A. Note that
Brownian motion and spectrally positive Lévy processes have this property. For simplicity, we
assume that A = 1. Consider the perturbed reward function G(z) = z +¢; +¢3 cos(z) + c3 sin(z).
The function G(z) has the representation (2.2.1) with g(z) = z + & + & cos(z) + & sin(z),
where the relations between the coefficients can easily be obtained. A particular case is g(z) =

z + 1 + sin(x) + cos(z) which is clearly not monotone. However, Eg(z + I) = z + sin(z) is
monotone.
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This can be extended to a broader class of functions. Observe that

Elo(a+ 1) = | " gz - y)e v dy

and so, if g is differentiable,

T

%IE g(z+ D))= f g'(z)e* 7" dz.

-0

Thus, if [*_ ¢'(z)e* dz > 0 almost everywhere then, if E [g(x + I)] = 0 has a root z*, it must

be unique. Also E[g(z + I)] is non-decreasing in z, so that Theorem 2.2.3(ii) can be applied to
G.

2.3.2 Exponential reward functions

We now move on to exponential reward functions. We treat perpetual American calls and puts
rederiving the solutions presented earlier in [54], as well as in [2] as a special case. We also
consider the perturbed function G(z) = Ke® + ¢1 + c2sin(z) + cos(z) and show that under

certain conditions the non-monotone payoff g(z) = e* — 2 + sin(z) — cos(z) can be treated. We
write a = E [e¥] and assume that a8 < 1.

(a) Perpetual American call. The price of a Perpetual American call option with strike K,
under the random walk model, is the solution of the optimal stopping problem

V*(z) = supE [87(e**5" — K)*]
T€T

so that it corresponds to the case G(z) = e* — K. Note that the solution for this problem with
K =1 was obtained in [2] using a different method.

Observe that, if g(z) = (1 — af)e® — (1 — B)K, where recall that a = E[e*], then

> B Elg(z + Sn)] = D B"E [(1 - aB)e**5"] — (1 - B)K

n=0 n20
=(1-ap)e* ) (af)" - K = e — K = G(2).
n20
Since g is an increasing function and
_1-5
E [exp(S7)] = 77— 5 (23.2)

we apply Theorem 2.2.2(ii) to deduce that the optimal stopping barrier is the solution z* of

E [(1 ~aB)erH — (1 - ,3)1{] =0.
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Hence,

. 1-8 K . . M
T e— e e =KE
1= aBE[eT]’ ie. e [e ]

™ =inf{n>0 : z+ 8, > In(KE[eM))}).

The value function is

V*(z) = 1_1_515 [Liz+nmzz0y (1= aB)e™ 5T — (1 - B)K)]

and so, writing I for the indicator function 1zt Mpae}, We get

2l (err ) o]
o)

E[(e**M - KE [eM))"]
E [eM] ’

Vi(z)

Il

agreeing with the solution given in [54].

(b) (Perpetual American put) Similarly, for a Perpetual American put, the reward function can
be expressed in terms of the function g = K(1 — 8) — (1 — af)e® as

K-e*=Y B"E[g(x+Sn)].
n20

™ =inf{n >0 : z+ S, < In(KEle'])}

and the price as

E [(K]E[e'] - e”+’)+]

V*(x) = ]E[e’] IR

again agreeing with the solution given in [54].

(¢) Let {Sn}nez+ be a random walk such that the distribution of the negative of its infimum at
an independent geometric time T is a mixture of an atom at zero and an exponential distribution
with parameter 1. To see that such a random walk exists, consider the descending ladder
process of the random walk. The number of descending ladder points, up to an independent
geometric time, is also geometric (cf. [22]), say of parameter p, and is independent of the
ladder height process. Thus the distribution of the negative of the infimum is the geometric
compounding of the distribution of the descending ladder heights. If the descending ladder
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heights are exponentially distributed, then conditional on the geometric time not being zero, the
infimum of the random walk will also have exponential distribution. An example of a random
walk with exponentially distributed descending ladder heights is given in [21] (p. 193), where the

increments are distributed as the difference of two independent exponential random variables.
We note that, as in subsection 2.3.1(d), if G(z) = Ke® + ¢1 + ¢2 cos(z) + ¢ sin(z) then G(z) has

the representation (2.2.1) with g(z) = Ke® + é; + é; cos(z) + é3sin(z). For example, if

G(z) = ll:aﬁﬂez — 2 + {E[sin(ST)] — Elcos(St)]} cos(z)

+ {E[cos(ST)] + E[sin(ST)|} sin(z),

then g(r) = e® — 2 + sin(z) — cos(z), which is non-monotone. For such a g,
ez
Ely(e + D] = (1= plo@) +{ 5~ 2~ cosa)}.

It can be checked that, for all p > 0.4, E[g(z + I)] = 0 has a unique solution z*. The derivative
of F(z) = 1jz+ o) (7) E [g(z + I)] is given by

F'(z) = (1 - p){e® —sin(z) + cos(z)} + p {% + sin(:c)}

for z > z*, which again can be checked to be non-negative for z > z* when p > 0.4. Thus, F(z)

2.3.3 Canadian options

We now move on to Canadian options, a problem arising from the finance industry, in particular
from numerical schemes for the pricing of finite expiry American options. Under certain con-
ditions we get an explicit formula for the price of the Canadian put option with arbitrary final
payoff. So far this problem has been solved for Brownian motion and spectrally one-sided Lévy
processes(c.f. (28, 29]), while our result is for a general random walk and can be easily extended

to general Lévy processes with jumps of both signs, as long as we can compute its Wiener-Hopf
factors.

Canadian options have two rewards, a boundary payoffand a final payoff. The option, with strike
K, can be exercised at any time before maturity to receive the boundary payoff (K —€*)*, or at
maturity to receive the final payoff f(z) > 0. Under the random walk model, the maturity T° of
the Canadian option is a random variable which has a geometric distribution and is independent
of the random walk. We continue to write a = E [¢X] and assume that the parameter for the
distribution of T is a. We further assume that the following condition on the derivative of f
holds:

b}

where v = af3, and assume that ay < 1.



CHAPTER 2: OPTIMAL STOPPING

The price for the Canadian option is then given by
V*(z) = f‘ggE [ﬁr(K _ P tSTy ety + BT f(z + S7) 1{T>,_,-,}] . (2.3.3)
Observe that
V*(z) = SupE [/BT(K — ST + BT f(@ 4+ 5p) 1 {T>T}]
=E[Tf(z + 5p)]

+eup E ({7 (& —e=+5)* = 6T f(z + 570} ey |-
Thus, solving (2.3.3) is equivalent to solving the optimal stopping problem
7*(z) = supE [ (K ~ &™) — 67 f(@ + Sp)} 1pemy (2:3.4)
For this, we first re-express the second term in the above equation as follows:
E [0 1@+ 55) 1rery]

) [ﬁ’ZE [/3"f(z+s, +8,)

n=0

‘F"’] E [l{f‘=r+n}

fr]]

~E [y Y E (@ -y f(z+5:+8,) | ;,]]
n=0

- E‘%E [V E[f@+s.+30 | 7],

where {S,,},,¢cz+ is an iid copy of {Sn}nez+ and T is a geometric random variable, with parameter
7 independent of the random walk.

Write H(z) = {=2E [f(z + S7)]. Then, (2.3.4) becomes
V*(z) = su?_]E [v" {(K —e"*5)* — H(z + S.)}]. (2.3.5)
TE

the solution for (2.3.5) is identical with the solution for the optimal stopping problem

V*(z) = iggE [’y’ (K -e**S)y* —H(z + Sr))+]

(2.3.6)
= T - aX+Ss _ +
fgg_E[’y (K-e H(z + S;)) ]
Hence, if we write g(z) = K(1 —v) — (1 — av)e® — (1 — a) f(x), we have
o0
K-e*~H(z)=Y Y"E[g(z +S,)).
n=0
Assume that there is an z* € R such that g(z) satisfies the assumptions of Theorem 2.2.2(i).
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B replaced by 7, the function

1
Vie) =1 E [Lie+1,<ey 9(z + S7)]

is the solution for (2.3.0), and so also for (2.3.5). In other words,
V*(2) = V*(2) +E [87 f(z + Sp)]

is the solution for (2.3.3), while the optimal stopping time is 7* = inf{n 2 0 : z + S, < z*}.

2.3.4 Power reward functions

As a last example we treat power functions. We treat the quadratic case G(z) = (z*)? using
Proposition 2.2.1 which allows the representation to exist on a subset of the real line. We obtain
the explicit solution which has also appeared in [15]. The methodology can easily be used to
treat (z*)™ for any integer n. Finally we consider power functions with non-integer exponent
and under certain restrictions we rederive the solution given in [14]. In the following let {S;};er+
be a Lévy process starting from the origin.

(a) Assume that E [S?] < 0o and let G(z) = (z*)2. Writing m1, ma for the first two moments
of S respectively, one can check that the function g(x) = rz? — 2mz — (m2 — m?) satisfies

o0
r? = / e " E[g(z + S,)] dt.
0

Thus, with this choice of g, G admits the representation (2.2.12) on the set D = {z : G(z) >
0} = (0,00) and so Proposition 2.2.1(ii) applies subject to its conditions. Using the identity
St = I 4+ M and by direct calculation of E[S7)] and E [S2] in terms of the moments of I and
M, we get

rElg(z + I)] = 2? - 2E [M]z + 2E [M]? - E [M?] = (z - 51)? - k2 = Q(2),

where «; = E[M] and k; = E [M2] -E[M ]°. 1t is shown in [15] that Q(z) has a unique positive
root z*, such that Q(z) is positive increasing for all z > z*, and Q(z) < 0 for all 0 < z < z*,
thus proving that the conditions for Proposition 2.2..i(ii) are satisfied. It then follows that the
solution of the corresponding optimal stopping problem (2.1.1) is

V*(2) = 7' E[l{z4 M32+)9(z + ST)]
™ =inf{t:z+S; > z*},

which is precisely the solution given in [15].

(b) Let non-integer » > 0 and assume that E|S;|” < oo. Consider G(z) = (z*)”. For this, we
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first define Yo (v+1) In(iu)

fo(u) = Ta-»

and Pi(z) = 21_0 i /il, for k € Z*. Then for positive z it can be shown using Cauchy’s integral
theorem that

/:" fu(u) {Pp)(—iuz) - e"‘“z} d(iu) = z".

For each k, we further define a k-degree polynomial Rj ., such that

E[Rku(z + ST)} = Pi(—ux).

Using this polynomial, we define

) =78 { [ 0) (Russulo) - ey ) 0}

when the right-hand side is defined. It is now easy to see that
e o]
f Elg(z + Sp)] dt = r~'Elg, (« + S7)]
0

=R {/ooo fu(u) (P (~iuz) — e71%) d(iu)} -

so that G has the representation (2.2.12) in terms of g on (0, c0). Now

Ve—(v+1) In(z)

e-zz
Ta-o) {E [Rp).z(z+ D] - m} ,
is analytic for R(z) > 0 and continuous for R(2) > 0 (cf. Theorem 1, [25]). If

z-—[ule——zz
su ——
eink | E[e="M]
R(z)>0
(2)>0

(2.3.7)

remains bounded for all R, then by Cauchy’s rule

rE[g,(z + I)] '
#{| [ 2.0 (Rusle+ 1 - ;—h-‘-f;—’]) aw)| }
= #{[" 1) (B[Rupsutz + 1] - E—Fg—ﬁ]) d(iu)}

It has been shown in [14] that Q. (z) has a unique positive root z* such that Q,(z) is positive
increasing for all z > z*, and Q,(z) < Oforall0 < z < z*

I

. Thus, by Proposition 2.2. 1, the
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solution of the optimal stopping problem with G(z) = (z*) is given by

7B [1iz4M32190(x + ST)]

which is the same as the solution given in [14].

One case, in which (2.3.7) is satisfied and g, is well defined, is when the characteristic function of
the supremum is of the order (a + |z|)~, for positive integer k, and v > 2k. For example, when
S, is Brownian motion or any spectrally negative Lévy process that is not a subordinator, the
supremum is exponentially distributed with some parameter A > 0. Another situation is when
the positive jumps of the process have a phase-type distribution. In this case, it has been shown
(cf. [12]) that the supremum also has a phase-type distribution. Phase-type distributions have
rational transforms and, if the process is not a subordinator, then its characteristic function is of
form P(z)/Q(z), where the degree of the polynomial Q is one higher than that of the polynomial
P(z) (cf. [56]).

Remark 2.3.1. The author would like to thank Prof. A. Kyprianou for bringing to his attention
a paper by Surya [57).
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Asymptotics for the intersections

of random walks

In what follows we write C for a generic positive constant whose value is of no importance to
the work presented here. For fixed positive £, we also write C(¢), and D(¢) for generic positive

constants, depending on € where C(¢) — 0, while D(¢) may be unbounded as £ — 0.

3.1 Introduction and main results

Let X;, i € N be an i.i.d. sequence of Z%-valued random variables. We shall only consider the
cases d = 1,2. We define the random walk

So=0, Sp=) Xi forn>1 (3.1.1)

i=1

We further assume that all random walks considered are strongly aperiodic in the following
sense.

Definition 3.1.1 (Strongly aperiodic random walk). A random walk in Z? is strongly aperiodic

if there is no proper subgroup L of (Z%, +) such that for some z € Z¢ with P(X; = z) > 0, one
has P(X; ~z€ L) =1.

The objects of interest to us are the local time and the self-intersection local time of the random
walk.

Definition 3.1.2 (Local time and Self-intersection local time). Given a random walk (Sp)n30
we define its local time at point z up to time n by

Nn(x) = Z 1.z,

i=0
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and the self-intersection local time up to time n to be

n
Vo = Z 1g,=s;. (3.1.2)

4,j=0

In this chapter we shall obtain exact asymptotics for the variance of the self-intersection charac-
teristic V, of one and two-dimensional random walks. The remaining of this chapter is structured
as follows. In subsection 3.1.1 we discuss the limitations of the existing methods, while in subsec-
tion 3.1.2 we state and prove the Tauberian Lemma 3.1.2 for complex power series mentioned in
the introduction. The main results of this chapter are then summarized in Theorem 3.1.3 given
in subsection 3.1.3. The proof of Theorem 3.1.3(i), corresponding to the one-dimensional case

is given in section 3.2, while the proof of Theorem 3.1.3(ii), corresponding to two-dimensions, is
given in section 3.3.

3.1.1 Limitations of existing methods

As discussed in section 1.2 of the introduction, our methodology is an extension of the Tauberian
approach introduced in Bolthausen (3], where asymptotics for the mean and variance of V,, for
centered, planar random walks with second moments first appeared. In particular Bolthausen
[3] showed that

EV, ~ nlogn/2n/|Z|, Var(V;) = O(n?logn),

where ¥ is the finite, non-singular covariance matrix. It was actually claimed by the author that

Var(V,) = O(n?). However, as we shall see in what follows, the methodology used only obtains
the weaker bound O(n? log(n)).

The same approach, which relies on characteristic functions and the Tauberian Theorem for
power series (see Theorem 3.1.1 below), was used by Cerny [4] to treat more general local time
asymptotics which include the result on the variance of V;, obtained in [3]. Once again it is
claimed that the variance is of the order of O(n?), however a vital assumption of Theorem 3.1.1

was overlooked. Thus the best, rigorously proven bound so far in the literature for the general
case remains that of O(n?logn).

The approach used in {3, 4] relies on the following theorem which we quote from Feller [21,
Theorem XIII 5.5).

Theorem 3.1.1. Let g, > 0 and suppose that

Q(s) =Y gns™

n=0

converges for 0 < s < 1. If L varies slowly at infinity and 0 < p < oo, then the following are
equivalent

1 1
Q(s) ~ (l_s)pL (1_s>, s—1—, (3.1.3)
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1
i~ —— nPL(n , n — o0o. 3.1.4
go +q1+ t Qn—1 F(p 1) ( ) ( )

Furthermore, if the sequence {g.} is monotone and 0 < p < 00, then (3.1.3) is equivalent to

Qn ~ f,%n"'lL(n),n — 00. (3.1.5)

It is obvious from the above theorem, that in order to obtain the asymptotic order of a(n) from

that of the power series ) A\"a(n), the sequence needs to be monotone. As we shall soon see
this is not necessarily the case.

Bolthausen [3} avoided this technical difficulty by aiming for an upper bound, rather than an
exact asymptotic in the following manner

Var(V,.) =4 Z Z P(Sil = Sjl’siz = .‘iz) - P(Six = ij )]P(siz = jz)

0<ii <j1€n 0<iz<jasn

< SZP(S’il = Sjnsia = J'z) +82P(Si1 = Sjusiz = .12)
11 12

+8§:P(Si1 = 5 )P(Siz = jz) + SIZP(Sh = O5n )P(SM = sz)
1 2

+4 )" (B(Si=S;) - P(S; = S;)?)

0<i<j<n

= 8(@1(n) + Gz(n) + d3(n) + da(n)) + 4ds(n),

where I, I; are the sets of 4-tuples

n},

I = {(i1,51,92,J2) : 0 <43 €2 < j1 < ja €
<41 <12 < j2 €J1 < n}.

I = {(%1,]1,42,52) : O

It was then shown that &,(n) ~ Cn?, @3(n) ~ Cn? and ds(n) = O(n?). However as we show
next d4(n) ~ Cn?log(n).

To see why let us consider the power series o(\) = Y} _ @4(n)A\™. Let M, be the set of 5-tuples
M, = {(ml,mg,ma,m.;,ms) tmy,my,mg 2 0,me,m3zg >0,m;+---+mg = n}.

By a simple change of variables in the summation we have

o0
I(A) =D D P(Smy = Smytmytmatme)P(Smytms = Sy 4ma+ms)
n=0 M,,

SN Y T S A (S, = OB(S, =0).

ma=1mge=sl my=0

Then using the formula

P(S, = 0) = (2r)~? /J FH(e)dt,
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where J = [-7,7)? and f is the characteristic function of the X;, we have
a(})

=(1 —A) (2m)” Z Z Z Am2+mstms // fm2+m3+m4(t)fm3(s) dsdt

ma=1m3=1mq=0

i F2(8)f(s) dt ds
= (1= X)72\(2n) / / (L=Af@R)F() (X = Af())*

Fix € > 0. By strong aperiodicity for |t| > ¢, t € J we have |f(t)| <1 — C(e) <1 and thus

I1=AF()] > 1= M) > Cle) >0,

where C(¢) is a generic constant depending on the choice of €. Therefore, as explained in 3], as
A = 1, the most significant term must arise from integrating on the set

Ue = {(t,8) € J?: |t| <¢,|s| < €}
Then on this set we have, writing |t|; for (£t|t) and &' = £2/2
[ a=s ot s
" C// (1= A+ 5 (el +?:|(S)(1 = A+ 3ltle)?

/-3 log {1 +7+ &5 ) dr
~ (1 -,\)-1/ d =),
0 (1+r)?

~C(1—-\)""log (1%}) .

By Theorem 3.1.1 it follows that ds(n) ~ Cn?logn.

On the other hand Cerny [4] considered differences of the form

Z P(S;, = Sjnsiz = Sj:) - P(S;, = Sj1 )]P(Siz = J'z)’

11,82 »j 1 )j2
which does actually give the correct order n?, however not in the general case. The reason is that
Theorem 3.1.1 gives the order of a, only if the sequence is monotone. This is not always the case
with sequences such as the above. Under the additional restriction that the random walk has

symmetrized increments, which forces the characteristic function to be real and non-negative,
then this result holds.

In the rest of this chapter we shall use the approach used in [3, 4] to obtain an exact asymptotic
for the variance of V}, for one and two dimensional random walks. Unlike [3] and its modification
in 4], we allow the parameter ) to be complex in order to make use of the complex Tauberian
Lemma 3.1.2. This enables us to remove the assumption of monotonicity from the characteristic
associated with V,. In particular, this completes the proof in [3], since we do not need additional
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symmetry restrictions required for the classical Tauberian Theorem to be applied as in (3, 4],

nor extra moment assumptions required for application of the local limit theorems as in [31].

3.1.2 A complex Tauberian Lemma

In subsection 3.1.1 we saw how Karamata’s Tauberian Theorem for power series fails to give the
correct asymptotic order for the variance of the self-intersection local time for general random
walk, because of its restriction to monotone sequences. The key step for the results presented in
this chapter is the introduction of complex power series and the use of Lemma 3.1.2.

Various complex Tauberian results in the context of power series have appeared in the literature.
Of notable importance is Wiener’s Tauberian theory (see [58]). We refer the reader to [59] for
an overview of the field. Results similar to Lemma 3.1.2 have been used in the past in the
context of combinatorial analysis, and in fact Lemma 3.1.2 generalizes Flajolet and Odlyzko [47,
Theorem 4], which only treats algebraic singularities. Even though this approach has been well
known in the combinatorial community for some time now, it has not received the due attention
in the context of random walk intersections. In fact as we shall see in the remaining of this
chapter, the complex Tauberian approach, which finds its origins in early work by Wiener and

Darboux (see Knuth and Wilf {48] for Darboux’s lemma), is the key ingredient needed for the
estimation of the asymptotics of the self-intersections of random walks.

Lemma 3.1.2. Assume that f(2) = 3" i anz" is analytic for |z| < 1. Suppose that there exist

a € (0,1), a constant K > 0, such that |f(2)| < K, for R(z) < a, a sequence of non-negative

constants A, > 0, Y7m > 1, and non-negative monotone increasing functions l,, such that
F@I <D Amll = 2™ (|1~ 2|7Y),  for R(2) > a.
m

Then
lan| € 4K + Y AnC(Ym)n"™ U (n),

where C(y) = 4n~/2D(352)/T(3).

Proof. Let S be a circle around the origin of radius R = 1 — 1/n, for n > 2 and R = 1/2 for

n =1. We split S in two arcs, S; = {z € §: R(2) < a}, and S; = {2 € S: R(z) > a}. Next we

apply the Cauchy inversion formula which states that if S is any closed curve around the origin
contained in the region of convergence of Y n @n2", then

21nf(za"z e

Thus we have the bound

1
+ —

< —
T 2n

= __1_ -n~1 1
|an|—l2m./$f(z)z 4z < 5

f(z)z27 " 1dz
Sy

f(2)z7" 1dz|.
Sy
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By our assumptions, |f(z)| < K when ®(2) < , and since R™" < 4, forn 2 1,

27
\/ f(z)z~™ldz| € KR "dt < 87K .
Si 0
On the other hand for the integral on S,
"/2 . |
'/ f(z)z™ tdz| € ZR'"A,,; [1- Re*|" ™, (|1 - Re'|~1)dt,
S2 m -m/2

Fix m in the sum. Let the summand be denoted by I and to simplify notation let us ignore the
dependence on m. It remains to prove that

I € 2rC(y)An" " i(n).

Then since |1 — Re't| = [(1 - R)*+2R(1 - cos(t))]'/2 and | is monotone increasing, observe that
for all t and n

(1 - Re|™Y) =1 ([n~? + 2R(1 - cos(t))] /) < Un)
which together with R™" < 4 leads to the bound
n/2 )
d(n)A [ |1 - Reit|~7dt.

-n/2

From cos(t) < 1 —t2/4 for t € [-7/2,7/2), it follows that

n/2 x/2 Rt? —-y/2
/ |1 - Re!*|~7dt < / [(1 ~R)2+ ——] dt
—n/2 -n/2 2

- - I'(%)
<4n‘11[ 14627 gt = 2 ) -1
A [1+1¢%) dt = 2/mr—2—~ Q) ,

for all ¥ > 1, and therefore
I( 51) -1
8\/_ An""1(n) = 2rC(v)An" " i(n). m|

The ability to treat non-monotone sequences, as well as to keep track of smaller order terms
which turn out to be significant in this situation, is the vital step that allows us to correctly
estimate the order of the variance of V,, and actually calculate the constant of convergence.

3.1.3 Main results

Let X;, i € N be an i.i.d. sequence Z3-valued random variables and define the random walk

(Sa)nzo by So =0, S, = Yi X, for d = 1,2. We assume the random walk is strongly
aperiodic.

We
write f(t), t € J = [, )4, for the characteristic function of the X;. Our assumptions on
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the X; imply that for all t € J,

f(t) =1if and only if ¢t =0. (3.1.6)
We also make the following assumption.
Assumption 1. (i) For d = 1 we assume that f(t) has the following expansion around t = 0:
f(t)=1—4lt| + R(t),t € J = [-m,m), where R(t) =o(]t]), ast = 0. (3.1.7)

(ii) For d = 2 we assume that the X; have a non-singular covariance matrix £, which implies
that the characteristic function has the following expansion around ¢ = 0:

fity=1-1tls + R(t),teJ = [—m, )2, where R(t) = o(|t|?), as t — 0. (3.1.8)
and |t|5 := (Tt|t), where (|-) denotes the dot product on R2.

We have the following result on the variance of V.

Theorem 3.1.3. Let X, S, be defined as in (3.1.1), f(t) the characteristic function of X;, and
V,, the self-intersection local time of Sy, up to time n defined in (3. 1.2)

(i) For d =1 and f(t) satisfying (3.1.7)

1 1\
Var(Vn) ~4 (W‘ + W) n-.

(ii) For d = 2 and X; with a non-singular, finite covariance matriz T, f(t) satisfies (3.1.5)
and we have

Var(V,,) ~ 4(2m) 2|21~ Y2(1 + k)n?, where

n=/°°/°° drds 72
oo Q+r)(A+s8)/A+r+s)Z—4rs 6

In section 3.2 we prove Theorem 3.1.3(i) and in section 3.3 Theorem 3.1.3(ii).

3.2 Proof of Theorem 3.1.3(i)

Power series involving characteristic functions involve integrals of rational terms of the form

(1 = Af(t))~1. In order to make use of the full strength of Lemma 3.1.2 we will need bounds for
these quantities. We obtain these bounds in the following subsection.

3.2.1 Preliminary calculations

In our computations we shall be constantly dealing with integrals involving terms of the form

1-Af(t) and 1 — Af(t)f(s) for complex A with || < 1. In order to control the behaviour of the
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integrals we shall need bounds on these quantities, which we derive now using the expansion of
the characteristic function.

Lemma 3.2.1. Lett,s € J = [-m,7), A € C with |A\| < 1 and fizr o € (0,1) and € > 0 small
enough.

Let C(e) > 0 be a generic constant such that C(¢) - 0 as € — 0.
(i)For all |t| 2> €

11— Af(t)| = C(e) > 0,
| >

(B1)
1= Af(t)f(s)] > C(e) > 0.
(ii) For all [t| < € and R()) < o
Il_)‘f(t)l >C>0’
(B2)
I-Af®)f(s) 2C >0
(iii) For |t|,|s| < € and R(}) > o,
1= A1 2 [1 = A+ Mtl| - Beltl > Clt, (B3a)
1= Af@F(8)] 2 11 = A+ M (It + [s])] — Ae(It] + |s]) = C(It] + 1s]), (B3b)
1- £ < Cltl. (B4)
(iv) For R(\) > a, z1 = (1 = A)/|1 = A|, z2 = My, and § > 0 small enough
|21 + z2[t]| — 6c]t| = C > 0, Jor |t] < 6, (B5a)
|z1 + 22|t|} — 6c[t| > Clt|, for all t, (B5b)
|21 + z2(|t] + 8]} — 6 (|t] + 1s]) > C >0, for all |t], |s| < ¢, (B6a)
|21 + 22(|t] + |8])] — 6(I¢] + |8]) > C(Jt] + |s]), for all t,s. (B6b)

Remark 3.2.1. Note that from the proof we also obtain the following bounds for |t|, || < € and
some C > 0

11 =X+ Mt > Clel, (B7)
1= X+ 2y(it] + Is])| > C(It] + |s]), (B8)

for all € small enough.
Proof. First observe that since R(t) = o(|t|), for each & > 0 there exists 0. such that for all

|t| < & we have |R(t)| < 6,|t|, where 6, — 0 as ¢ — 0. In the following we fix ¢ > 0, and we let
0. be the corresponding constants. The bounds we derive hold for all & < o for some g > 0.
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(i) By strong aperiodicity |t| > ¢ implies | f(t)] < 1-C(€) < 1. Then using the triangle inequality

11— Af() =1 - [A[f(B)]
21-f@®)] > C(e) >0.

Similarly for |t| > € and arbitrary s € J

L =Af@)f ()l 2 1= SIS (s)]

>
>1-1f(#)| > Cle) > 0.

(ii) Suppose the real part of X is bounded above, R(A) < a. Then using (3.1.X) and the triangle
inequality

11 =Af()] =11 = A+ Avlt] = AR(t)
2 (1= Al — [Ajy|t] — Belt]
2 R(1-X) = (v +6)lt]
21-a-(v+0)lt|
2l—a-(v+6)e>2C>0

for all € < €1, for some €1 > 0.

Similarly

11 = A —v[t] + R())(1 — 7|s] + R(s))|
11— A — 276 — 20.e — v%€? — 29,2 — 262¢?
2l1-a-C(e)2C >0,

1= Af()f(s)| 2
>

for all € < €2, for some g2 > 0.

(iii) Suppose now that [t],]s| < ¢ and R(A) > o Then using (3.1.7) and the triangle inequality

1= () > [1 =X+ Mt]] - |R()
2 1= X+ Mt)| - 6eit]

and noting that R(1 — A) > 0 and R()\) > a we have

|1 = X+ Mitl| = 0elt] > RQ — A+ Avyjt]) — 6. [¢)
2 R(1 — X)) + R(A)vit] - 6.lt|
2 alt| — | = (a7 — 6¢)lt] = Clt|

for all € < g3, for some €3 > 0. Inequality (13:30) follows.
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Similarly

L= Af®f(s)]
= 1= M1 = 7lt| + R)(1 = 1ls| + B(s))
= [1=A(1 =11t + RE®) - Als| +21tlls]
~YIsIR(t) + R(s) - 1ItIR(s) + ROR(s) )]
> 1= A+ (It + Ish)] = 12tlls] — ¥(ItIR(s) + s R()) — RO)R(s)
> 1= A+ My(lt + lsD)] = 2%e(le] +1s]) — 10e(1t] + Isl) — 62(1t] + |s1)
2 1= A My (it + s = Be(lt] + fsl)
> (@~ A + Js)

where A, = y2e + 70 + 02. Since A, — 0 as £ — 0, there exists £4 > 0 such that for all £ < &4

L= Af(£)f(s)| > C(lt] + |s]) >0,

and Inequality (13:3D) follows.

Finally for |t| < € we have

= F®) =11 - 1+lt] - RE)| < t] + 6e]t] < Clt).

proving Inequality (134).
(iv) Now let z; = (1—A)/|1 - A| and 22 = My, with R()) > 0. Then 21| =1, R(z;) > 0, |22| < v,
and R(22) > a. For |t| < § we have by the triangle inequality,

|21 + zalt]] — Belt] 2 |z1| — |zaflt] — 6elt]

2
?1“(7+0e)|t|21-(7+0£)6>0

for § small enough and all £ < ¢5 for some 5 > 0, proving Inequality (I35a).
Alsoforallt € J

|21 + zalt|| — Belt] > R(z1 + zalt]) — Belt]
>

0+ R(A)vlt| - 6lt] > (ay - 6e)lt] > 0

since for & < €6, for some £¢ > 0, it is true that ay — 6, > 0, showing Inequality (137 'h). Inequali-
ties (13¢a) and (136G)) follow similarly. The Lemma then holds with & < €0 = min(gy,...,6). O

We are now ready to proceed with the proof of Theorem 3. 3(1). We first expand Var(V,) as a
sum

VN(Vn) =4 Z Z [P(six = SjuS,'z = J'z) - P(sﬁ = Sjl)P(Siz = sz)]'
0<i1<ji<n 0Kiz<jakn
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We are thus considering the sum over the set of 4-tuples

H= {(i17j17i2aj2) :0 $ il:jl’iQ,jQ S n,il < jlaiﬁ < j2}v
which we partition by intersecting it with the sets {i; < i2} and {i; > 2} to get the sets

A = {(i1, 1,12, J2) : i1,J1, %2, J2 € n, i1 < J1,1g < jo2,%1 < iz}, and

0<
B = {(41, 41,12, J2) : 0 < i1, 1,92, J2 € N, i1 < 1,92 < Jo,12 < i1}

We further partition A in the following sets

A' = {(i1,41,%2,42) 1 0 < i1 < j1 < i2 < j2 < n},
A% = {(i1,J1,42,72) : 0  §1 i < 1 < J2 < n},
= {(i1,J1,%2,J2) : 0 <41 <2 < j2 < j1 <n},
and B into the sets
B1={(i1’j17i2,j2):0<i2 <je<1u <]1Sn},
B? = {(i1,41,92,42) : 0 < iz < iy < /1 < ja < n},
= {(41,J1,92,J2) : 0 2 < 43 < j2 < j1 < n}.

By independence it is obvious that the sums over the sets A!, B! are zero, and therefore

Var(V,) = 4(a2(n) + as(n) + ba(n) + ba(n)), (3.2.1)

where az(n), az(n) are the sums over A? A3 respectively, and ba(n),bs(n) the sums over B2 and
B? respectively. We treat each one of these terms separately by considering the power series

[o <]
p(N) = a(n)".
n=0
3.2.2 First term
We first consider the sum over A3,
A% = {(i1, 41,42, j2) 1 0 < i1 g < jo < 1 S m}.

Then we have

az(n) = Z [P(S,', = Sjn Si, = sz) - P(Six = ij )P(Sia = 52 )]
Ad
= Z [P(Smx = Smy+matma+mes Smi+my = Smitmatms)

meM,,

- P(Sml = Sm|+m2+ms+m4)P(sm1+mz = Sm1+mg+m3)]

45



CHAPTER 3: ASYMPTOTICS FOR THE INTERSECTIONS OF RANDOM WALKS

Z [P(Sm2+m3+m4 = 0? Sma = 0) - P(S‘Vn2+m3+m4 = O)P(Sma = 0)] )
meM,,

where M, is the set of 5-tuples (m;,...,ms) with sum n, such that m;, mg, mg,ms > 0 and

m3 > 0. Using the Fourier inversion formula for the probability of return to the origin

P(S, =0) = (2n)"* / () dt, (3.2.2)
J

we calculate

p3(N) =) az(n)A"

n20

=(1- )\)_2

x 3 AmEmATR(S, = 0)[P(Smatmq = 0) — P(Smz tmytme = 0)]

m2,ms3,Mmye

=(1-A)"2%@2n)?

x Z AMma+matma //fms fm2+m‘(a:) fm’+m3+""(x)) dz dy

ma,ms,mMy

=(1-X)"%2r)"?

M () 1 f@
[/ (l—r\f(z))’((l—)\f(y)) l-z\f(x)f(y))dxdy

(1 _ N =-2(9p)-2 M) - f(z)) dzdy
= (1-27%2n) [f A=A @RI MW - MN@F)’

where J = [-7, 7).

By Inequality (B2), when R(X) < a, for some a € (0,1), we have the bound

M) — f(z) do dy
-/-c /:e (1-Xf(z) )2 1-Af(y)( - €@ @) <C <.

This together with Inequality (131), which bounds the integral away from zero, imply that

lp3(A)] € C < 00, for R(\) € a, (3.2.3)

From now on we shall assume that R()\) > a.

Fix a small £ > 0 and let

Ue={(t,s) € J:|t| < ¢,|8| < €}.

Integral away from zero. First we bound the integral when at least one of the variables is
bounded away from zero, i.e. on the complement of the set U,.

A ()(1 - f(x)) drdy
F(\
) = //p,u. T3 @20 - M)A - N
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which we decompose as follows,

Af(y)(1 — f(x))dxdy
B = f /J,B o A= M@RA - M)A - @)

M (W)L - f(x))dzdy
()= /J,B (0)/ A= @) - M) - @)

_ Af(y)( - f(z))dxdy
B0 = [I/BC(O) /;/B,(O) (1 =Af(@)2Q - Af@)(1 - Af(x)f(y)

We first treat I;(A) where |z| > €. Using the facts that |f(y)] < 1 and |1 — f(z)| < 2 and
Inequality (131)

Af(y)A - f(z))dzdy

|F1(M)] = 1 45/B.0) A= XM @)2A = Af )1 - M (2)f )

</, /J/B.«» - Af(gl(fﬁni ;ffé;;l)cldfiyf(x)f(y)t

<" / /J/B.(O) Ilfﬂf\(fi‘yy)l
=20 | =5

<o (20+ [ 7=3757)

where C(€),D(€), are the generic positive constants introduced at the beginning of this chapter.

Since R(A\) > a, by Inequality (33:) and a change of variables, z = y/|1 — Al, and arbitrary
0 <8 < K, where K =¢€/|1 - |,

BN <26 ([ 757 ,f;m 77+ D)

_D(e)/ ll1~A+A‘wl Bey| D(e))

where the absolute value is justified since for |y| < € by Inequality (133:) we have |1 — A+ Ayt -
8\t > Cit| >0

K |1 - Aldz
< Die) (/0 TN+ Mz — 0oz T D(e)

K d
_ D(e)(/(; —— z;i it D(e))
§

dz K dz
= D(e / f
( )( 0 “Z1 + 297| — 0,x| + 5 “zl + 222) - 6,2 + D(e))

and by Inequalities (137:1) and (1371)

SD(e)(D(e)+C/:dz+C/5K—
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1
- D(e)( (€) + Clog(I — I)) (3.2.4)
By Inequalities (I31), (B3a) and (34) and the usual change of variables, we have

f@I = f(z)] dzdy
Il < /J/B,(o, /, TN @RI M @I = M@ )

|z| dz
<D (e)/J T @)P

< D(e) (D(E) + C/: =X+ ‘f\le - 0ex)
<ooo0+ o)

where the last inequality follows from our calculations for Inequality (3.2.1).

Finally when both z and y are bounded away from zero the integral is bounded above uniformly
in X by Inequality (131), and thus |F3())| < D(e).

Thus so far we have that for complex A with |A\] <1

ot ot [© [ M) - f@)dzdy
)= @007 [ et o e tF @29

where F()\) = Fy + F; + F3 is the integral away from zero and satisfies the bound

FOI < DI -2 (D(e) + Clog( 1)) for =0 >

Remark 3.2.2. Note that in the bound for F(\), D(¢) may be unbounded as ¢ — 0. This has no
effect though, since for now ¢ is fixed. Later on we shall allow € — 0 but the behaviour of D(e)

will not concern us since we first take limits with respect to n and the effect of F()\) disappears
due to the higher order terms.

Error from use of expansion. The next step is to replace the characteristic function in the
integral term of p3(A) by its expansion (3.1.5). This will make explicit calculations possible.
This will introduce an error term, which we have to bound.

We write

/ / A(yz)dzdy
m2(1-MN20y Jo (1 =A+Mx)2(01 - X+ M)A =X+ Mz +y))

+F(\) + E()),

pa(A) =
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where E is the error from using the expansion (3.1.7)

1 / [ M()(1 — f(z)) dedy
7AW )_ ) A=A @)1 - M)A - N @IE)

3 /‘ / A(yz)dz dy
m2(1=XN2Jp Jo A =A+M2)2(1 = A+ M) A=A+ M(z+y))

and satisfies the bound
IEA)| € Ce)|1 = A|™® for R()) > a.

The proof of the above bound involves lengthy calculations and is given in full detail in Ap-
pendix A.

Expansion of the integral. We are now ready to calculate an expansion for ps(A).

Az dzdy
ps(A) = n2(1 - A)2/ _/ 1= A4+ M2)2(1 = A+ My)(1 = A+ My(z +9)
+ F(\) + E()),

and by Appendix A

IE(\)| < Ce)|1 = A|73, for R(A) > a

To make explicit calculations easier we extend the region of integration to [0, oo)’, and introduce
a new error term H(A),

3 Ayzdz dy
p3(A) = 72(1 - ,\)’2/0 /o A=A+ 22)2(1 - A+ My)(1 = X+ M(z + y))

+ F(\) + E(\) - H(\)

where we define, H(A\) = Hy(\) + H2()) + H3()\), and

B Ayzdxdy
B = 73(1 - A)’_/, /0 (L=2A+M2)21 - A+ My)1 - A+ y(z +y))

Hy(\) = Ayz dz dy

2(1 - A)zfo_/; Q=24+ M2)2Q - A+ )1 = A+ My(z +y))

- Ayz dxdy
Ha(M) n2(1 - ,\)2/, L QA=A +22)2(1 -2+ M)A - A+ Mz +y)

We now proceed to bound the integrals H;, i = 1,2,3 for A € C, with R()\) > « and |A| < 1.
Once again we write K for ¢|1 — \|~1.

By changing variables and using Inequality (37h) we have the following bound for H;

IHi (W] € OJ1 = A2 / °°/ ) Yle|dz dy
e Jo [1=A+ 2zl - A+ Mylll = A+ Xy(z + )|

<Ol -3 /°° / X vlz|dzdy
kJo |21+ 222]2|21 + 20y]|21 + 22(z + y)|
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oo pK
<Cl1- A|‘3/ / vdzdy
k Jo |21+ 202|271 + 22y|21 + 22(z + v))|

oo pK
<Cp - /\l_3/' / vdzdy
k Jo lz1+ zezly(z + y)

and since y > = implies 2y > z + y

00 K
<C|l1- A|‘3/ y~? dy/ |21 + z2z| " dzx
K 0

SCN=-MN3KYC+I|K|)=Cl1-)"2%"YC +In|K])
= D(e)|1 - A "*(C + In|K})

where we have used Inequality (35h) and the fact that for some fixed small § > 0 by Inequal-
ity (I3ha), it follows that

K ) K
/ |21 + 29z~ dx = / |21 + zoz| "l dx +/ |21 + zoz| "' dz
0 0 5
K
$C+/ zl'dr < C+ChiK)| (3.2.6)
§

Thus we have

IHi(\)] < D()|1 — A2 [log (‘1 ! I) +c] .

We continue with the second integral. By a change of variables and Inequalities (351)) and (I361))

o 5™ dzdy

Ha(\)| S C|1-A 2// lz]
OO L Y A Wy v £ i Wy v g g o gy

<Cl -3 /K/m 2] d= dy

= o Jk 121+ 222|321 + 229|121 + 22(z + )|

K poo
dzdy
<Cl—A'3//
<Cl | |21 + 22yl(z + y)

- d:cdy
<on-x [ it

<Ol - A2 K~Y(C + n|K))

by Inequality (3.2.6). Thus
\Ha(W)| < D(e)[1 = A2 [log (|1 L |) +o] .

Finally Inequalities (13%1)), (B31ih) and (3.2.G) and the fact that for z,y > 0, z + y 2 /Ty imply
that

o fr® dzd
|Ha(N)] < CJ1 - A 2// zdzdy
DRI A A e vy vy wrp ey gy e

o0 pOO
<ci _/\‘_3/ / zdxdy
kJk 151+ 227|221 + 20y||21 + 22(z + v))]
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<Cl-A / / _dody
zy(z +y)

— * dzdy
SCR-=A / / z3/2y3/2

SCNL=AN3K-1 < D(e)|1 = A2

Assume for now that X\ € (1/2,1). It is straightforward to calculate that

/ /’ Mz dzdy
0 Jo (I=A+Mz)2(1-A+My)(1 -2+ My(z+y))

P o0 zdzdy
=(1-2) 1'\7/0/0 (1 +272)2(1 + My)(1 + Mv(z + )

1 - o [Zr= zdzdy
=1=-)70n) 2/0/0 A+2)(1+y)(1+z+y)

=(1-2)")73

thus arriving at

Ayzdrdy _ _
/0 /o R [y vy e o e Bl Gt R G

Both sides of this equality are analytic in the open unit disc when considered as functions of

A € C, |A\] < 1, and equal on the set (1/2,1). Thus by analytic continuation (see for example
Kaplan [60, pg. 49]), the equality must hold on all of the open unit disc, proving that

p3(A) = 4(2m)72(1 - )73 (\7)2 + F(A) + E(\) — H()),
for all complex A with {A\] < 1.
Now we have bounds for all the error terms and we obtain the following expansion for p3(A),
p3(A) = 4(2m) 221 - N3+ £(N),

where &€ is the total error and satisfies

I€1 € D(e)1 = A|"2log |1 = A" + D(e)j1 — A|2 + C(e)1 = A8,
for R()) > a.

Remark 3.2.3. Note that factors involving powers of A can be included in the error term since
for example

Ica ~ ) (1 - ; )

for |A| > R()) > a.

<cl-nr et con- -t con -y,

Define the function
fO) = p3(A) = (m)72(1 = 1) 78 = £().
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For R()) < a, p3(}) is bounded above by a constant K > 0 by Inequality (3.2.3) and the second
term is also obviously bounded since

M-A>2RQ-A>1-a>0.

Thus for R(A\) < a we have that f()\) is indeed bounded above by a constant. On the other
hand, for ®()\) > a, we have by our previous calculations the bound

IfN)I < D(e)I1 = A" log |1 ~ AI™* + D(e)[1 = A2 + C(e)|1 = A2,

and thus f()) satisfies the conditions of Lemma 3.1.2.

Recall that p3(A) = Y o> as(n)z" and the fact that

o0
12 g n __ -3
Z(2n +2n+1))\ =1-x"3

n=0

Then by Lemma 3.1.2 applied to the function f(\) we obtain

1 3
az(n) — (my)~2 (-2-112 +gn+ l)‘ < 4K + C(e)n? + D(e)nlogn + D(e)n.
Therefore diving both sides by n? and taking limits as n — oo we have

lim sup
n—»00

and since this holds for all € small enough, and C(€) — 0 as € — 0, it must be that

lim
n—»00

2y = limsup

n—+00

zas(n) 1‘

2,”2 2 3( ) 1‘=0,

and we conclude that

a3z(n) ~ n?/2n3?

3.2.3 Second term

Next we consider the sum over the set A2,

= {(i1,J1,92,J2) : 0 < i3 < 4p < jy) < jz < n}.

az(n) = 2 [P(S" = Sj,,st‘z = sz) -P(S;, = S5 )P(S;, = jz)]
Al

Z [P(Sm‘= m1+mg+m3,Sm,+m2= m1+m2+ms+m¢)
meM,

- P(Srm = Sm1+mz+ms)P(Sm:+mz = m1+mz+ms+m4)]

52



CHAPTER 3: ASYMPTOTICS FOR THE INTERSECTIONS OF RANDOM WALKS

Z [P(Sm2+m3 =0, Sm3+m4 = 0) - P(Sm2+m3 = O)P(Sms'i'ﬂu = O)] y
meM,,

Y [ X P(Sm = 2)B(Smy = ~2)B(Smy = 2)

meM,, rez2?

~ P(Sma+ms = O)P(Smysmq =0);

il

where M,, is the set of 5-tuples (m,,...,ms) such that m;,mq,ms > 0, mz,mgy > 0 and

my + ++- + ms = n. We define pa(A) = Y7, a2(n)A™, and following the same approach as for
the first term we calculate

p2(N) = (1 = A)72A%(2m)~2
// f(z)dzdy [ fz+y) f)? ]
2 (1=-M@)A-A@) [1-Mz+y) 1-Af(2)f(@)

where we have made repeated use of the identity (3.2.2).

For R()\) € a € (0,1), by considerations similar to those for the first term we have that

lp2(V)| < K,

for some positive constant K.
From now on assume that R(\) > a.

Fix an € > 0 and let U = {(z,y) € J x J : |z| < ¢,|y| < €}. We claim that all significant

contributions to the integral Y ()\) come from this region.

Integral away from zero. Let us consider the integral on the complement of U,, that is when
at least one of z,y is bounded away from zero. Obviously if both are bounded away from zero
the integrand is bounded above by a constant since the numerator is obviously bounded above,

and the denominator is bounded below by strong aperiodicity and Inequality (131). Therefore
for

_ f(z) flx+y) f(y)?
() = -
W= B/( o Bf( , TG = X7@) [1 M@ty 1= Af(z)f(y)] dedy

we have the bound

RO < |f(=)|
[F1(A)] € ./.;/B.(O) [,/8‘(0) 11 = Af(2)|]1 = Af(y)

f(z + )] W)
X [u myy e I —Af(m)f(y)|] dzdy
< C(e)™! = D),

by Inequality (131). Recall that C(¢), D(¢) denote generic positive constants such that C)—0
as £ = 0, but D(e) may be unbounded.
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Next consider the region Vi = {(z,y) € J x J : |z| > ¢, |y| < £/2} where only z is bounded away
from zero. It is straightforward to show, using the triangle inequality, that in V;,

lz+yl > |z| - |yl > €/2

and thus |z + y| is also bounded away from zero. Thus using Inequality (I31) we have that all
terms in the denominator are bounded below by C(¢), apart from |1 — Af(y)| for which we use
Inequality (I334). Then the integral

B f(2) fe+y)  f@)?
B0 = /fv =2 @)Q - A () [1 ~M@+y) 1- Af(x)f(y)} e

satisfies by Inequality (13:3a)

() fe+y) fw)?
= <| [ T e - )

_dy
<Pe wi<e L= AF@)°

Since R()\) > a, by Inequality (I334) and a change of variables

€ dy
[F2(A)] < D(E)f 1T=A+ /\'ylyH — Oclyl

<0 [
©) |a+mw—@m

< D(e) (C+Clog(l1 £ I))

by Inequality (3.2.1), where z; = (1 — A)/|1 — A and 2; = Ay. The last integral F3 with y near
zero and z away, follows similarly giving the same order.

We can now write
p2(A) =Y(A) + F,

where

= (1 — \)~2)\2(0) -2 f(z)dzdy fz+y) f(y)?
Y= A=A lf TN =370 (T3 27~ T

and F = Fy + F3 + F3 is the error from considering the integral on the smaller region U,, and

satisfies

|F| € D(e)(C +log|1 - AI™Y).
Error from expansion. The next step is to replace the characteristic function by its expansion

(3.1.7) under the integral sign to allow for explicit calculations. This will introduce an additional
error term E()A) which satisfies the bound

[EQA) € Ce)|1 = AI73,  for R(N) > a.
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The proof of this involves lengthy calculations and is given in full detail in appendix A.
Expansion of the integral. Having estimated the errors arising from using the expansion

(3.1.7) we now have the following expression for p2()),

A2 dzdy
,(3) = m( / /  T= 2+ Mz = A+ Xy ~ X+ Mfz + )

/ dzdy
B / L A=A+ Mz = A+ MylyD) (A = A+ My([] + [y]))
+E+F,

where for R(A) > a

|E| < C(e)1 — A3,
|F| < D(e)|1 = A" log (|1 — A|7Y).

We will consider p2(A) as the difference of two integrals which we shall treat one by one.

The first integral is given by

/I o
=2+ M)A = A+ M)A =2+ M|z +y))’

To simplify the calculations we first enlarge the region of integration to [0, 00)? introducing a
new error term H()),

// dxdy
v, (L= X+ M)A = X+ My = X+ Mz +y))

=/°° /°° dzdy —H(\)
—00 =00 (1= A+ XZ[)(1 = A+ My)(1 = A+ Myjz + y|) ’

where H(A) = Hy(A) + Ha2()) + H3(A) and

Hy = / /‘ dzdy

wi>ed-e (1= A+ Mz)(L = A+ Myly)(1 = A+ Mz + 9))
H, = /‘ / dzdy

—eJiz>e (1= A+ M1 = A+ Mly)) (1 = X + Myjz + y))
Hy =/ / dzdy
i>e Jizi>e (1= A+ XMz} (1 =X + Mlyl)Q - A+ Mz +y))’

The calculations involved in bounding these terms are fairly lengthy and thus they are given in
full detail in the appendix. For Hy, by Lemma A 2.3, we have the uniform bound

|H1|</ /‘ dzdy
fi>e J=e 11 = A+ A7[2]ll1 = A+ Myyllll = A+ Mylz + y||

K
<1 ,\‘-1/ / dzdy
wi>k J-k |21 + zalzl||21 + 22|ylllz1 + 22|z + 9|

55



CHAPTER 3: ASYMPTOTICS FOR THE INTERSECTIONS OF RANDOM WALKS

< D(e)log(I1 M) +C.

Similarly for Hz, by symmetry and the bound for H;, we have that
|Ha| < Ce™'log|1 — A7

Finally we have |H3| < C + D(e)log|1 — A|~! by Lemma A.2.4.

Let for now A be real and A € (1/2,1). A straightforward calculation gives

dxdy —-— — -1 -2_2
f e T T MDA = A+ N S AT e g~ LN O

Since both sides of the above equality are analytic on the open unit disc, and equality holds for
all real A € (1/2,1), by analytic continuation it must be true for all A € {z € C: |z| < 1}.

Now we can move on to consider the next integral

dzdy
//u (X =2+ M@ = X+ My = X+ My(Jz| + |yl))

dzdy
___HI _ HI _ H’,
//,,, =24+ Mz)@ = A+ M)A =X+ Mzl + ) 1 72 3

where
H = /‘ / dz dy
V7 Juize Disi<e (1= A+ M2 = X+ My (L = X+ My(z] + |y])
H! =/ / dz dy
27 Jvi<e Jizize (1 =2+ Miz)(X = X+ My = A+ 2y(jz] + o))

H. = /‘ / dzdy
27 Duize Jieize (1= 2+ X121 = X+ My = X + M (Jz] + y]))°

Using Inequality (13°1) and the fact that on the region of integration |y|
upper bound

2 |z|, we have the

AR | —
ok Det<sc s+ 2aelles + zalallen + 2] + o)

sCII—»\l“/ /‘ dzdy
iz K Jizi<k Wzl + [yl)]21 + 22lz]|
- dxdy
<Cll- / /
l | ¥2|z1 + 2zl 22|$||
<Cl—/\_1/ -—/ —————SC Ak -
<Cj | k ¥ Jo a1 + 20| 1= AT K™ log(|1 — AI7Y),

where the last inequality follows from Inequality (33.2.6). Then by the definition of K

|Hi| < D(e) log(|1 — A|™Y).
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Similarly by symmetry, the same bound holds for Hj
Hj; < D(e)log(|1 - AI™Y).

Finally by Inequality (135))) and the fact that for z,y > 0 we have z +y > /Ty

® [® dzdy
H, SCI—/\_I/ /
Hal < €11 =2 « To ¥ malellies T mafelll + 2] + 1D
<Ot - I“/ / _dedy
zy(z +y)

- dzdy -
<Cll-A / ——= < Ce™ Y1 - A| < D(e).
p-nt [T [T S < et - M < Dl

It is straightforward to calculate for real A € (1/2,1)

/ / dxdy
oo (1= A+ Mz )(1 = A+ My = A+ My(|z] + [y]))

e s dzdy
-3t [ [ e

=(1-A)"} () 227?/3.

By analytic continuation this equality remains true for all complex A with |\| < 1.

Using all of our estimates, we have the following expansion for py())

o0

paA) = 3 aa(m)" = o G- N7 +E

n=0

where £ is the sum of all the errors and for R()) > o
€1 < C(e)[1 = Al + D(e)l1 = A2 + D(e)[1 — A|~2log (ﬁ) ,
where C(¢) — 0 as € = 0, while D(e) may be unbounded as € — 0.
We define the function
FO) = E0) = ) — 150 - )™

For R(\) > a we have by our previous calculations

IFO] < C(e))1 = N2 + D(e)|1 = ™2 + D(e)|1 - "2‘°g(ulau>

while for ®()) < a it follows from the arguments given for the ag(n) that |f(\)| < K, for some

positive constant K. Thus f satisfies the conditions of Lemma 3.1.2, and using the fact

1 3
2p24 2 n— (1 - \-3
E (2n +2n+1))\ 1-X)7°,

n=0
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we have

2

az(n) - 1217 ("2 + ‘12'1 + 1)| < 4K + C(e)n? + D(e)n + D(e)n log(n).

After we divide by n? and take limits as n — oo we have

2
limsup ‘?_41-7_;?_(71_) - 1. < Cle).

n—00

The arbitrary nature of £ and the fact that C(¢) — 0 as € — 0 imply that

24~ ag(n) 1‘

n—00 ]
and therefore

1
ag(n) ~ Wn

3.2.4 Third and fourth terms

We now consider the sum over B2.
ba(n) = 3 P(Si, = Sj1, Siz = S32) — B(Si, = 53,)P(Si, = Si))
B3
= Z [P(Sm,+mg = Omi+ma+mas Sm1 = m1+m3+m3+m4)

meM,

_P(Sm1+m2 = Sm1+m2+ms)lp(sm1 = m1+mg+m3+m4)]

Y [P(Smytme = OP(Smy = 0) = P(Smytmytme = OP(Sms = O)],
meM,

where M,, is the set of 5-tuples (mi,...,ms) such that mi,mg,ms > 0 and mz, m3 > 0 such
that m; + - -+ + mg = n. For J = [—m, 7) we have

72(N) = Y ba(m)A"

nz20

-0 Y 3 Y At (S 4my = O)P(Smy = 0)

m321lma21me20
~ B(Smatmytme = OP(Sms = 0)]

=(1- A)—2(21r)—2 Z z Z AMzHmatms ‘/-/J2 (fm2+m‘(m)fm3 (y)

m32lma21my20
— fratmatma(z) ™ (y) ) dz dy
o ages [ RE@IW) 1 - f(a)
(1= X)7(2m) //J A= @) TN - M@ fe) T
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It is trivial to see that this is of the same order as p3()\) and thus we have that
ba(n) ~ (2(27)~2y~2 4+ C(e))n?.
Now consider the sum over B3.

B? = {(i1, 41,12, j2) : 0 < i2 <41 < j2 < j1 < n}.

bs(n) = Z [P(Si, = SjsSi = j2) — P(S;, = Sj, YP(Si, = Sj,)]
A2

E [P(Sm1+m2 = sml+m2+ma+'m“s‘m1 = Sm1+mz+ma)
méeM,

- Il:’(Smﬁmz = Sm1+m2+ma+m4 )P(Sml = Sm1+mg+m3 )]

= Z [P(Smz+ms =0, Sma+my = 0) = P(Smytmy = 0)P(Smgtm, =0)],
meMv\

Z [Z P(Sm; = )P(Sm; = —2)P(Sp, = )

meEM, z€Z?
- P(Sma-{-ms = O)P(Sms-i'mq = 0)]’

where M, is the set of 5-tuples (m,...,ms) such that m,,ms > 0 and m2, m3,mq > 0 and

my+---+mg=n.

Then we have

a3(A) = (1 = A)72A%(2m)~2

f(z)f(y) flz+y) f(@)f(y)
<[ | e ey [1—Af(m+y) - 1—Af(x>f<y>] dody.

It is straightforward to show that this has similar expansion as p2(\) and thus we conclude that

1
b3(n) ~ az(n) ~ ﬁ,y—‘n

Conclusion. Recall that the variance of the self-intersections is given by

Var(Vy) = 4(a2(n) + az(n) + b2(n) + bz(n)). (3.2.7)

Our calculations have shown that

az(n) ~ ba(n) ~ n?/24y®
az(n) ~ ba(n) ~ n?/2r2y2

Thus we can conclude that

1 2
Var(V,,) ~ 4(1—"-2? + W)n .
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3.3 Proof of Theorem 3.1.3(ii
We begin with the decomposition given in the proof of Theorem:.1.3(i), and we write
Var(V,,) = 4(a2(n) + az(n) + b2(n) + b3(n)). (3.3.1)

We first obtain bounds for quantities of the form |1 — Af(t)], |1 — Af(t)f(s)]-

3.3.1 Preliminary Calculations

It is now shown that Lemma 3.2.1 can be extended to two-dimensional characteristic func-

tions satisfying (:3.1.%). We do not give a proof as it follows from the calculations for the
one-dimensional case and the following two facts.

First note that R(t) = o(|t|?) as t — 0 and thus for each ¢ > 0, there exists a positive 6, such
that

|R(t)] < Belt)?,
where 8, — 0 as € —» 0. Second there are constants C;,Cy > 0 such that
Ciltl? < |ZV2%)? < Coltf2.

To avoid cumbersome expressions we write

g(t,s) := |t|g + |8]s.

The proof of the following lemma is identical to the proof of Lemma 3.2.1, a direct analogue for
the one-dimensional case.

Lemma 3.3.1. Lett,s € J=[-mn), A\€e Cwith|A\| <l and fiza € (0,1). Suppose that
€ > 0 is small enough, and C(e) > 0 is a generic constant such that C(e) — 0 as € — 0.

(i)For all |t} 2> €

[1=Af(t)l = Ce) >0,
1L = Af(t)f(s)] = C(e) > 0. (332
(i) For all |t| < € and R(\) € a
11_Af(t)' >C>Oa
11— Af()f(s)| = C >0. (33.8)
(iii) For |t|,|s| < € and R(A) > a, and some A, +0 ase > 0,
L= A7 > |1 = A4+ Siths| - Bl > Cltls > O, (33.4)
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L= AFOF) 2 [1 - A+ 39(2,9)] — Aegltss) > Ot + 1sP), (3.3.5)
It - f(t) < CJtf2. (3.3.6)

(iv) For R(\) > a and 21 = (1 = A)/[1 = A, 22 = A2,

|21 + 2zor| — e 2 C > 0, for0<r<§é, (3.3.7)
|21 + 22r| — @er 2> Cr, for allr >0, (3.3.8)
|21 + 22(r + 8)| — Ge(r + s) 2C>0 forall0<r,8<34, (3.3.9)
|21 + 22(r + 8)| — Oc(r +8) 2 C(r + s) for allr,s > 0. (3.3.10)

Remark 3.3.1. Note that from the proof we also obtain the following bounds for [t],|s| < € and
some C >0

h—x+%m4>cm{ (3.3.11)
\1—A+%¢gn1>omﬁ+pﬁx (3.3.12)

for all € small enough.

3.3.2 The first term
Let us now consider the sum over A3,
A® = {(i1,J1,92,J2) : 0 €41 42 < Ja < i < n}.

Then we have

ag(n) = Z [P(Sﬁ = Sjns‘iz = Sja) - ]P(Sil = Sjl )P(Sin = ja)]
A3

i

Z [P(Sml = Sm1+mg+m3+mu Srru+m2 = m1+mg+m3)
meM,

- P(Smx = sm1+mz+ms+m4)P(Sm1+mz = SM1+M2+ms)]

i

Z [P(Sfm+ms+m4 =0, Sma = O) - P(sz+ms+m¢ = O)P(Sms = 0)] )
meM,,

where M, is the set of 5-tuples (m,,...,ms) such that my,ma,mg,ms > 0, mz > 0 and

my +-+++ms = n. Using the Fourier inversion formula for the probability of return to the origin
for two-dimensional random walk

mg:m:uw*/ﬂmm,
J
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where J = [~7, 7)2, and by calculations similar to those for the one-dimensional case

pad) = 3 aa(m)A®

n20

. _ AF(s)(1 - £(1)) dt ds
= @=N7en // A O20 - @)1= NOIG)

By calculations similar to those in section 3.2 we have that

lps(A)| < K, for R(\) € a

for some a € (0,1).
From now on assume that () > a.

Fix a small € > 0 and let
U.={(t,8) € J?: |t| < ¢,]|s| < €}.

Integral away from zero. We claim that all significant contributions in the integral above

come from the region U,. To see this we bound the integral when at least one of the variables
is bounded away from zero,

= Af(s)(1 — f(t))dtds
F&) / -[I’\U. (I =Af(£)2(1 = Af(s))(1 = Af(R)f(s))’

which we decompose as follows,

= Af(s)(1— f(t))dtds
A /J\B.«n/a (1 = AF(®))2(1 = Af(s))(X = Mf () F (s))

- Af(s)(1 — f(t))dtds
B = [ [, o T RO OISO

= Af(s)(1— f(t))dtds
et /J\B.(O) /J\B.(m (1= A1 = Af(8))(1 = Af(t)f(s))’

where B,(0) C J is an open ball of radius € around 0.

Let us consider Iy first. Then since |s| > ¢, by Inequality (13.3.2)

o < 11 — f(t)| dtds
IR (M) < /J\B.(o) /, 1= A ()21 = Mf(s)I[L = AF ()£ (s)]

11— £(8)] dt
<DE | T eP

11— 5] dt
<De(c+ /B.(m YOk

where recall that D(¢) stands for a generic positive constant that may be unbounded as £ — 0.
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Since ®()\) > a, by Inequality (:3.3.1), the change of variables £/2¢ — ¢, and polar coordinates

It]s dt
|F1(A)| < D(e) L.(O) (il - A+ 2|t|z; sltlﬂ)

r2rdr
© [ k 2
o (|11 -A+ 372 —6.r2)
€ rdr
<D
(5)/ T+ $\-r2| ~ 0.7

< Dle )/ [1—)\-+--r|
o

|21 + 2o7| —

and for some & small enough, by Inequalities (3.3.7) and (3.3.8)

< De)(C+ /6 S ﬂ)

r

< D()(C +log(1/|1 = A})). (3.3.13)

On the other hand, for F5(\) we have

[12(M)} < /J /J\ B.0) L= A f(t)|2l|11 :{\(ftzlgiltlf - A (@) f(s)]
<) [ =S
<DE(C+ fm T-a+ %?:lﬁl mrar)
<DE)(C+ /: =X +T§d:2| ~57)

< D(e)(C +log(]1 - N|~1))

by the same calculations as for Fy ().

The case when both t and s are bounded away from zero is trivial and the integral in this region
is bounded above by the constant D(¢) by Inequality (:.:3.2).

These facts imply that

P AF(8)(L - £2)
) =030 [ e sz *

where
FQ\) = F1()) + F2(\) + F3()),

i the error from integrating only over U, and not over the whole region J2. By the above
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calculations we have the bound
|F| < D()|1 — M| 2log(1/|1 — A]) + D(€)|1 — A|"2, when R(\) > a.

Error from using the expansion. The next step is to use the expansion (3.1.%) inside the
integral sign in order to make exact calculations possible. When we replace the characteristic

function by its expansion, an additional error term E will appear given by

— _ -4 Af(s)(1 — f(t)dtds)
p=o0-xen( f[ T3 070 - M) - ANOTE)

~ / / At|s/2dt ds )
e U=+ 3t12)2(1 = A+ 3lsle) (1 = A+ 3(ltls + Isle)) )

In Appendix A it is shown that when R(\) > o

|E| < )l = A%,

Error from region of integration. Having estimated the error from the use of the expansion
we now use polar coordinates to obtain the following expression for p3(}),

_ sdrds
s = T3 /0 /0 L=+ 321 - X+ 31— A+ 2(r2 + o2))
+E+F.

To simplify calculations we extend the region of integration to the whole of [0,00)2 to get the
expression

_ hy r3sdrds
pa(d) = (1 - A)2(2m)2[2| /o /0 L=+ 3r22(1 = X+ 382)(1 = A + 2(r2 + s2))

+E+F-H.

where H = H() is the error from integrating over the larger region [0, 00)2. We split this error
into a sum of three terms

H()\) = C(1 - \)"3(Hy()) + Ha(\) + Ha(N)),

given by

H = C// risdrds
(L=XA+3r22(1 -2+ —32)(1 A+ 3(r2 + s2))’

EC// r3sdrds
3 (=24 3221 - A+ 382)(1 - A+ }(r2 + s2))
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r3sdrds

H; = '
=] | G s )

We proceed by bounding these integrals for ®(A) > a € (0,1). For H;, by Inequalities (3.3.7)
and (3.3.8)

I r3sdrds
H{|<C ’
mi<e || g s g

r’sdrds
<Cl1 =)\t //
| | |21 + 2272|2|21 + 2282%|[21 + 22(r? + s2))|

K
_ rsdrds —1gr—1 dr
<COR-A // |21+zzr2|83r Clt=ATK /lzl+z2r2|‘

0

Fix now a small § > 0. Then since for r < § by the triangle inequality |2; + 2or%| > C > 0,

K 5 K

/ dr _ /’ dr +/ dr

4 |21 + 2272] J |21 + 2972 |21 + 2272
4

Td
<c+ [ S«
r

-]

Putting these two last inequalities together we have
1-
e < ol - N 22 gy,

where D(¢) is unbounded as ¢ — 0.

By similar calculations, for H we have

r3sdrds
|H2| < C// ’
JJ -2+ 3r221 — X+ 282(|1 = A+ (2 + 2)|

3sdrds
<CN - // A
| | |21 + 2272|2|21 + 228%||21 + 22(r2 + $2)]
- rsdrds drds
<Ol - A A s
| | // 2|z + 228°|rs 2282'7‘8 Cli=A // r2|2) + 2282|

—1lpr—
<CO|L-A"'K /——.lz 7 <D(e)
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And finally concerning H3 we have
r3sdrds drds
|H3l C// ris2rg X // ""'—'r2 5 D(E).
[
Expansion of the integral. Overall, having bound all the error terms we have the expression

p3(A)

r3sdrds

ICEEPVEIPTEr 5] /o /o (L=A+3r2)2(1 =X+ 2s2)(1 - A + 3(r2 + 52)) +&

where € is the total error and for (1) > a is bounded by
1€ < C(e)[1 = A=® + D(E)[1 - A2 + D(e)|1 — A= log(1/[1 — A).

Assume for the moment that A is real and A € (1/2,1). We can then calculate

// r’sdrds _g)-3
/] a+ 3r2)2(1 + 382)(1 + §(r2 + s2)) '

Since both sides of the equality are analytic on the open unit disc and equal on the set (1/2,1)
by analytic continuation they are equal on the whole of the open unit disc. Finally, we have the
expansion

ps(N) = @M ?ZITIAT2 (1 - NP+ E(N)
= (2m)7?Z|7 1 - N2 + £,

Note that the A~2 factor in the leading term has been moved inside the error term (see Re-

mark .2.3). Now we are ready to use the expansion of p3()\) and Lemma 3.1.2 to calculate the
exact order of az(n).

It is easy to see that if
1
c(n) = 5(112 +3n + 2),

then

o0

gV =Y et =(1-X)72,

n=0

Recall that p3(A) := Y°°0 ) az(n)A". Define the function
FQA) :=E) = ps(N) — g(N).

The function f satisfies the conditions of Lemma 3.1.2 since by our previous calculations we
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have that

< C(e)|1 = A3 + D(e)|1 = A2 4+ D(e)|1 — A" 2log(1/|1 — A]), if R(\) > a,
Tk, if RO < o

Then Lemma 3.1.2 applied to f implies that for all n,
laz(n) — c(n)| < 4K + C(e)n? + D(e)(nlogn + n),

and thus dividing by n? and taking limits as n — 0o we have the inequality

1 2
gn2z|

limsup lz az(n) — < C(e).
n—oo T

The arbitrary nature of ¢ along with the fact that lim._,o C(¢) = 0, imply that

lim -1- n?

n—oo N2

a3(n) - = 01

1
8n2|%|

and thus az(n) ~ n?/87%|L| as n — oo.

3.3.3 Second term

Now we consider the sum over the set A2,

A? = {(i1, 51,42, 52) : 0 < i1 < i2 < j1 < j2 < m}.

az(n) = Z [P(Sh = Sjn Si; = sz) - P(sﬁ = 95 )P(Siz = sz )]
A3

Z [P(Sml = STn1+Vnz+mavSm1+m2 = m|+mz+m3+m4)
meM,

- P(Smx = Sml+M2+M3)P(SM1+m: = Sm1+m2+m3+m.)]

Z [P(Sma+ms = 0, Sma+m, = 0) — P(Smy+ms = 0)P(Smy+me = 0)},
meM,,

D [2 P(Smy = 2)P(Smy = ~2)P(Spm, = 7)

meM, z2¢€Z?

= P(Smytms = OP(Smytm, =0)]

where M, is the set of 5-tuples (m,,...,ms) such that m;, ms,ms > 0 and ma, mg > 0.

Then we have
P2(2) = (1 - X)"22%(2r) 4

f(t)dtds fit+s) f(s)?
X /J/J (=22 = Af(s)) [1 —Mt+s) 1- )\f(t)f(S)]
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_ f/ (L= N)"22%(2m) 41 (1)
7Js @=AfENA = Af(8)(A = Af(t+3))(A - Af(t)f(s))
x [f(t+8) (1= Af(t)f(s)) — £(s)2 (1 — Af(t + )] dtds
— (1 _ W\~2)2(9\—4
= (1-X)"222(2r) /, /J X(t, s, \) dt ds.

By calculations similar to those in section 3.2 we have that for some constants K > 0 and
a€(0,1)

lp2(A\)| < K, for R(\) < a.
From now on assume that R®(\) > a.

Fix a small € > 0 and let
Ue={(t,s) € J x J : |t| <&,|s| < e}

Integral away from the origin. We claim that all significant contributions to the integral
Y (\) come from this region, so let us consider the integral when t or s is bounded away from
zero. Obviously if both are bounded away from zero the integral is bounded above by a constant.

Note also that when R(A) < a € (0,1) the integral is bounded above by a constant. Assume
from now on that R(A) > a.

Consider for example the region V = {(t,s) € I x J : |t| 2 ¢,|s] < €/2}. It is trivial to show
that in V, |t + s| is also bounded away from zero. By similar calculations as for the first term

ds
<26 [ %7
lsl<e
ds

<Def < _._1_
PO | W TeE—ee] < De)1og (1727,

lal<e

’ / X(t,s,)) dtds
|4

where once again D(¢) is a generic positive constant, which may be unbounded as € — 0. The
other cases follow similarly giving the same or smaller order.

We can now write

p3(A) = (1 - N)72x%(2m)~*

« // f(t)dtds [ ft+s) f(s)?
1 (1 =MEA=Af(8)) (1= Af(t+s) 1-Af()f(s)

+ F(X),

where F()) is the error term from integrating over U. and satisfies the bound

IF(N)] < D(e)[1 ~ A2 log(1/|1 ~ A]).

Error from the expansion. We now only have to consider the integral on a small neighbor-
hood of the origin. Near the origin we can use the Taylor expansion (3.1.~) of the characteristic

68



CHAPTER 3: ASYMPTOTICS FOR THE INTERSECTIONS OF RANDOM WALKS

function under the integral sign, to make exact calculations possible. This will introduce an
error term E = E()) for which we have the bound

IEQ)| < C(e)1=A"3, for R(N) > a.

The proof of this bound is given in full detail in Appendix A.

So far we have the expression

2 . // dtds
(1 —X)2(2m)4 (1= + %lﬂz)(l - A+ %|3|=)(1 -A+ %'t + 3|z)
//‘ dtds
T (A-x2(em)t JJ =X+ $lel=)(1 = A+ Flsle)(1 — A+ 3(Itl= + ‘SIE)))

p3(A) =

+F+E=Y,(\)-Y2(\)+F +E.

The above expression gives p3(\) as the difference of two integrals plus some error terms. We

will treat these integrals one by one.

Expansion of first integral. For the first integral we have

Yi(3) = (1 - \)~23%(2m) 4

x// dtds
(=2 + )1 -2+ 2sle)(1 - A+ At +slg)’

To make exact calculations possible we extend the region of integration. Assume for now that
X € (1/2,1) is real. For such A we have

// dtds
,u-x+%mau—x+§mga—x+gu+qg

o000

_ rsdtdrds
== /// A=A+3)(1-2+3s2)(1 -2+ 3(r? + 52 - 2rs cos(t)))

- Il - I2 - I3,
where we define
= |2|-1‘1 -Al'—l | - |k PH +dk|1kd|k22” — -
z 2 z 2 2
Jk1l<K ksl 17T 22lM 1+ 22|k 1+ zolky + ko |
SR N [ o e e
K4 2z + n "
lkal<K <k 1 2|K1{“||1Z1 + 22|K2{“|{21 22| 1 2| l
Iy = 2" 1 - A\? ‘ — dklkdl? S
K< lkal,lkal 2+ 2ol ||21+z2| 2| Hz1+z2] 1+ k2| l
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By analytic continuation this representation holds for all complex A with |A| < 1. For such A we
now bound the errors I; for i =1,2,3 and R(\) > a. By Lemma A.{.1 and symmetry

1, 112 < D(e) + D(e) log |1 = A7,

while by Lemma A.1.5 we have |I3| < D(g), where as before D(¢) > 0 may be unbounded as
e—0.

Therefore, from the above, the usual change of variables and Lemma A.1.3 we have that

Y (A) |E|_1A2 77 rsdrds .
1 = )
42 (1= 23 S (14 2r2)(1 + 352)y /(1 + (2 + 52))2 — A2r2s2

where £ is the total error and satisfies
IEI < D(e)|1 = A2 + D(e)|1 — A|"2log, |1 — A"t + C(e)|1 — M| 3.
Expansion of the second integral. Thus we now have the following expansion

Y2(A) = (1= 0)72(2m)~4N2

dtds
X !‘/ Q=X+ %—ltln)(l -A+ %(Elqs))(l -2+ %(|t|g + [8lz)) +&,

where £ is the error from the Taylor expansion, and satisfies the bound |£| < C(e)|1 — \|~3.
Let us now consider the integral above. Assume for now that X is real and lies in the interval

(1/2,1). Then we have

// dtds
1=+ )1 = A+ Zlsl=)(1 — A+ F(Itl= + [s]))

=1z ff . s ;
J) TR 3+ 3 -3+ J0+ o)

€ £
drds
=iz [ [ rs
3L (=24 3r2)(1 =X+ 3631~ A+ 3(r2 +2))

 rel=1/nd Tr rsdrds
= [B7 (@) 0/ 0/ 1=X2+3r3)(1 - A+ 382)(1 - A+ 3(r2 + 82))

-5 -1 - I3,

where we define

oC &
I =|xg! 21r2// rsdrds
1=|Z|7'(2) J T - A+ 31 - A+ 302+ #2)
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rsdrds

— - 1r2
I = |Z|~}(27) ([! (1_/\_*__«23,.2)(1_,\+%32)(1—/\+%(1‘2+32))

drds
1:2—127r)2// 7 .
3=Z]7( JJ (1-A+ %7.2)(1 -+ %32)(1 - A+ 12\-(1'2 + s2))

By analytic continuation the expansion also holds for complex A with |A| < 1. For such A we

now bound the terms I;,i = 1,2,3. By Inequalities (3.3.7) and (3.3.8) and a change of variables

rsdrds
<Cj1-)\"1 //
<Cl ! |21 + z2r2||z1 + 2282||21 + 22(72 + §2)|

- drds —1gr—1
- - <
<Cll-) // Tt Tl S <Cil-A'K C.

The bound for I is also bounded above by symmetry. So now let us consider the integral Is.

<Cl—,\‘1// rsdrds
<€l | ¥ |21 + 2272||21 + 228%||21 + 22(r2 + 82)]

0000
<C|1—,\|"/ drds
K

=Cl1-A"'K2=Cl1-)A<C

since |1 -\ <1+ |A<2.

Now we can calculate for A € (1/2,1) the integral

/‘/ rsdrds
1-A+3r2)(1 - A+ 38)(1 - A+ §(r2 + 52))

_ rsdrds
=@1-% // (1+3r)(1+ 31+ 302 + 82))

// drds
T +A)Q+A8)(1 + A(r +3))

-1 - drds w2 _
(=27 // AT ey -6 a-N"

All these facts together imply that we have the expansion for Yz()\)

2
Ya(A) = (1 - M) "2(2m) A% (27)% " V201 _)\)—I%A—z rE+]

2
= (2«)-2|>:|-1/2%(1 “NBHE+],

71



CHAPTER 3: ASYMPTOTICS FOR THE INTERSECTIONS OF RANDOM WALKS

where £ is the error from using Taylor under the integral sign, and satisfies |£] < C(e)|1 — A|~3
while |I| < C|1 — A\|72.

Calculation of the order. We are now ready to calculate the exact order of az(n). We have
seen that

Yi(A) - Y2(X)

_ 2is=1/2(1 _ y1=3 T drds _7r_2
@m)~° 21751 - A) (‘0/0/(1+r)(1+s)\[(1+r+8)2_4r3 6)+g

where for R(\) > a we have

€] < Cle)l1 = A7 + D(e)|1 — A2 log([1 — A|™Y) + D(e)]1 — A2
Now putting summing the error terms from the two integrals we have
pa(A) = 2m) 2T 721 - NP €

where

0000
x=/f drds n?
.4 A+7r)(1+8)/(1+r+s8)2—4rs 6’

and thus by application of Lemma 3.1.2 and calculations similar to the one-dimensional case we
have

1
az(n) — 5(27")_2|E|“x21 < C(e)n? + D(e)(nlogn + n)
from which we obtain
as(n) - 5(2) 2] sem?

. 1
h,?l, s:p 2 < C(e),

and by the arbitrary nature of ¢ and the fact that C(¢) — 0 as € — 0, we finally have
1
az(n) ~ 5(21r)‘2|2|‘11m2.

3.3.4 Third and fourth terms

We now consider the sum over B2.

bQ(n) = Z [P(Su = SjnSiz = sz) - P(Sil = Sjl )P(Stz = J'z)]
B3

= Z [P(S’"H'ms"_‘ mi+matmgs Omy = Smy+matmatme)
meM,,

"’P(Smx+m2 = M1+M2+7R3)P(SM1 = m1+mg+m3+m.)]
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= Z P(Smz+my = O)P(Smy = 0) — P(Smytmatme = 0)P(Smg = 0)],
meEM,

where M,, is the set of 5-tuples (my,...,ms) such that m;,m4,ms
that m; +--- +ms = n.

> 0 and my, m3 > 0 such

o2(N) = Y ba(n)A"

n20

—(1-X)"2 Z Z Z Ama+ma+ma [P(Sm,+m. = 0)P(Spm, = 0)

m32lmy21mg20

- P(Svnz+ms+m4 =0)P (Sma = 0)]

=(1-A\)" 2(27‘.)-4 Z 2 Z A\Ma+mstma // fm’+m‘(t)fm3(s)

ms21m221m420

_ fm2+m3+M4 (t)fma (3)) dtds

o a [ NFOf(s) 1- f(t)
= 1-N7m) f/ = MO L= M)A = o) ¥

It is trivial to see that this is of the same order as p3(\) and thus we have that
1
ba(n) ~ 5(21r)'2|2|’1n2.
Now consider the sum over B3.

B’= {(i1,71,%2,52) : 0 i < 4y <j2<nhi £ n}.

bs(n) = Z [P(Sg’, = Sjn Sia = sjz) = P(Sﬁ = Sjl )P(Siz = Sja )]
A3
Z [P(Sm1+mz = mx+m2+ms+musm1 = Sm1+m2+1N.3)
meM,

- P(Sm1+m2 = Sm1+m2+m3+m4)]p(sm1 = m1+mz+m3)]

= Z W‘(Smwms =0, Sm3+nu = 0) - P(Sma+ms = O)P(Sm3+m‘ = 0)] y
l'l'leMn

l

> [ P(Sms = 2)P(Sm, = ~2)B(Sm, =)

meM, z€Z?
= B(Smy4ms = OP(Smam, =0)],

where M, is the set of 5-tuples (my,...,ms) such that my, msg

2 0 and mg,m3,myq > 0 and
my+---+mg=n.

Then we have

as(N) = (1-3)~2)%(2r)~¢ / / . F()1(s) [ f(t+3) () (s)
JJJ -

MO -3 T A G+s  1- Af(t)f(s)] deds
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This has similar expansion as p2(A) and thus we conclude that
1 —2i5v-1_,2
ba(n) ~ az(n) ~ 5(2m) || sm”.
Conclusion. Recall that the variance of the self-intersections is given by
Var(V;) = 4(az2(n) + az(n) + bz(n) + bz(n)).
Our calculations have shown that

az(n) ~ ba(n) ~ %(2#)_2|Z|"1m2

1
az(n) ~ ba(n) ~ 5(21r)’2|2|‘1n2.
Thus overall we can conclude that
Var(V,) ~ 4(27) 22|~ Y/2(1 + k)n?,

where

~=/°°/°° drds n?
0oJo (1+r)1+8)/Q+r+s8)2—4rs 6
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CHAPTER 4

A central limit theorem for

random walk on random scenery

4.1 Introduction and main result

Let So =0, Sy, = E;:=1 X, for n > 1, be the random walk defined by the partial sums of the
iid sequence of Z-valued random variables X),X2, .... Suppose further, that £(a), indexed by

a € Z, are iid, real valued random variables and independent of the X;. Then by random walk
in random scenery we shall mean the process

n
Zo=0, Zn=) &Sk)n>1
k=1

In this chapter we shall consider the one dimensional random walk S, such that the characteristic
function f(t) of the increments satisfies (3.1.7), and an independent random scenery {£(i)}:cz

with mean zero and finite positive variance 0. Then we define a random variable in D0, 1], the
space of right-continuous functions with left limits,

Yo(t) = VY Zjny/0V/2nlogn, t€[0,1], (4.1.1)

where [z] denotes the integer part of z and c,, is a normalization constant that depends on n.

The main result of this chapter is a functional central limit theorem for one dimensional random
walk in random scenery. We shall show that the laws of Y, defined above converge weakly in
DI0,1] to the Wiener measure. This answers a question raised by Kesten and Spitzer [5] which
has remained open since 1979. The main result is summarized in Theorem 4.1.1 and is given in
the next subsection. The proof of Theorem 4.1.1 is then given in section {.2. In the proof of
weak convergence we shall use the asymptotics for the variance of the self-intersections obtained
in the previous chapter. In particular the upper bound of order n? we obtained for the variance
of the self-intersection local time is particularly important since it allows us to obtain the central
limit theorem almost surely. In other words conditionally on the full history of the random walk
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A = 0(Sp,n > 0), the observed random scenery (£(So),£(S1), .. . ) satisfies the classical central
limit theorem, for almost every path of the random walk.

4.1.1 Main result

We now state the main result of this chapter which answers a conjecture stated in Kesten and
Spitzer [5] and covers the case of random walk with increments in the domain of attraction of
the a-stable law with a = 1. We have the following limit theorem.

Theorem 4.1.1. Let So =0, Sp = Y p_; Xx,n > 1 be a strongly aperiodic random walk satis-
fying (3.1.7). Suppose further, that {{(a)}acz, are iid, real valued random variables and inde-
pendent of the X; with mean zero and variance g2 > 0. Define Zo =0, Zp = 3y, £(Sk),n 2 1
and the processes

Ya(t) = VTV Zny/0/2nlogn, te€[0,1].
The laws of (Y )nzo converge weakly in D[0,1] to the Wiener measure.
We prove the theorem in the next section. First we show convergence of the finite-dimensional
distributions and then we prove tightness.

Remark 4.1.1. Kesten and Spitzer [5] conjectured that if the {X;} are i.i.d. random variables
in the domain of attraction of the symmetric Cauchy law, and {¢;} are normal, then {Y,(t)}:>0
converges weakly to standard Brownian motion. Theorem 1.1.1 actually strengthens this con-
jecture, since variables attracted to the Cauchy law can be shown to satisfy (3.1.7). To see this
observe that

E[exp (itznj Xi/n)] = f(t/n)" = (1 —Altl/n + R(t/n))".
t=1

But then this can be expressed as
(1= Altl/n)" + (1 = 7ltl/n)* " nR(t/n) + (1 = v|t|/n)"2n?R(t/n)? + .- .
The first term converges to eI, while the rest all converge to zero, because
(1 = 4lt|/n)"*n*R(t/n)* < Cn*R(t/n)* =0

for k < n since R(t) = o(|t|). It is well known that e~7!*! is the characteristic function of the
symmetric Cauchy law, corresponding to the symmetric a-stable distribution with o = 1.

As an example it can be shown that a symmetric random variable with density

Cc

PX =0 =1

where C is an appropriate normalizing constant to make this a probability measure, satisfies

(3.1.7).
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4.2 Proof of Theorem 4.1.1

We prove weak convergence of the laws of Y,(t) in D[0, 1] by first showing convergence of the

finite dimensional distributions, and then showing tightness, in a manner similar to [3].

Weak convergence in D. D = D[0,1] is the space of functions z on [0,1] that are right-
continuous with left-hand limits, and D the Borel o-algebra relative to the Skorokhod topology

(see Billingsley [61]). For t;,...,tx € [0,1], define the natural projection =,,....+, from D to R¥
by:

LI Y (z) = (Z(tl), . ,x(tk)). (4.21)

Then Billingsley [61] states that 7o, 7; are everywhere continuous in the Skorokhod topology,
while for 0 < t < 1, 7, is continuous at z € D if and only if x is continuous at t. For a probability
measure P on (D, D), let Tp consist of those t in [0,1] for which the natural projection m; is
continuous except at a P-null set. We shall also need the concept of tightness for probability
measures.

Definition 4.2.1. A sequence {P,}n>0 of probability measures on a metric space S is said to
be tight if for every positive ¢, there exists a compact set K such that P,(K) > 1 — ¢ for all n.

To prove weak convergence we shall be using the following theorem which we quote from [61].

Theorem 4.2.1. If {P,} is tight and if Pan;.! , = Pm;! ., holds whenevert,,...,t; all lie
in Tp, then P, = P.

The Wiener measure assigns zero probability to all discontinuous paths and thus the correspond-
ing Tp is the whole unit interval. Thus the second condition of Theorem -.2.1 reduces to showing
weak convergence of the finite dimensional distributions. To prove tightness we shall use [61,
Theorem 15.5] which we quote below. We define for positive 5, w(8) := sup),_,j<s |z(s) — z(t)].

Theorem 4.2.2. Suppose that, for each positive 7, there erists an a such that
Po{z:|z(0)| >a}<n, n>1 (i)

Suppose further that, for each positive €, 1), there erist a §, 0 < § < 1, and an integer ng, such
that
Po{z:w:(8) 2} <n, n=no. (ii)

Then {P,} is tight.

Note that since Y,,(0) = 0, identically, (i) is automatically satisfied. We shall prove the second
condition by proving a slightly stronger one. If we can show that:

- 4 8) — 2 s 2 y 1
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then (ii) follows.

To see why we follow the proof of {61, Theorem 8.3]. Let § > 0 be fixed and define

Ar={z: sup |z(s) —z(t)| > ¢€}.
t<eKt+6

We split [0, 1] into intervals of the form [id, (i + 1)6]. If |s — t| < 4, then s, lie in the same or in
adjacent intervals. If for some x € D we have w;(8) > 3¢, then there exist s,t with |s —¢| < 6
with |z(s) — z(t)| > 2¢. Assume s,t € [i4, (i + 1)8]. Then by the triangle inequality

|z(8) — z(16)| + |x(i6) — z(t)| > 2¢,

and thus at least one of the terms in the left hand side must be greater than ¢. Similarly, if
8 € [(i — 1)8,i6) and ¢t € [i8, (i + 1)8]. This proves that

{z:w:(8) > 3¢} C U Ais,

i<§-1

from which it follows that

Pofz: we(6) > 3} <Pu( |J i) < Y PalAus),
i< i<é-1
and thus P, {z : w;(8) > 3¢} < (1 + [1/8])dn < 2. This proves (ii) with &, 7 replaced by 3¢,2n.

By the definition of Y(t) it is clear that if t = k/nand t + 6 = j/n, k < j < n, then (i)
becomes

1
SP{ sup [|Va(s) = Y.(k/n) >
P, 2 Valo) = Ya(k/m)] > <} <,

or equivalently 1
EP{ s(upa \Zk+i — Zi| > eoy/nlogn} < 1.
_n

If t, 6 are not integral multiples of 1/n then we can find k, j such that

St<—, —<t+g

a
3

<1
n
Then

su Ya(s) - Ya(t)] € n(8) — Yn
m‘gﬂl n(8) ()| k/nggle (8) = Ya(t)|

C
€ sup ————xZipy -2
k/n€s<ji/n aVnIOgn' (e} kl

C
€ max ————-|\Z,.,; — Z,
= i<j-k or/nlogn ognl k+i k|

C
< MAX — e Zp s —
S e~ ognl k+i — Zkl,

where the last inequality follows since if n is large enough we have j — k < nd.
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We now show that the above condition reduces to:

for every positive € > 0 there exist a A > 1, and an integer ng such that, if n > ng, then
P{max | Zi+: — Zk| > Aoy/nlogn} < <. (i")
i<n pY
By the above, with ne? instead of ¢, there exist A > 1 and an integer n; such that
P{max |Zi4; — Zk| > Aoy/nlogn} < in
i<n Y

forn>n;and k > 1. Let § = €2/A? € (0,1), and ng an integer exceeding n; /4.
If n > ng, then [nd] > n; and by (ii"”)

2
P{i‘gﬁfg] \Zrsi — Zk| 2 z\a\/nlogn} < %5-2- = 74,

and thus (ii’) follows. Finally if, as in our situation, {Z;}i>¢ is defined as the partial sums of a
stationary sequence then (ii"") becomes

P{r&agchd 2 Aoy/nlogn} < %

4.2.1 Convergence of finite-dimensional distributions
We first obtain a few results which will be used in the proof.

Lemma 4.2.3. Suppose that Sp,n > 0 satisfies the assumptions of Theorem .1.1 and let V,, be
its self-intersection local time as defined in (3.1.2). Then

E(Va) ~ 2nlogn/my, Var(V,) = O(n?).

Proof. For A € [0,1), let p(A) = Y0 _o A™P(Sp, = 0). Using (33.2.2) we express p()) in terms of
the characteristic function f(t),

P = 27t [ -ase)tat
J
Fix a small £ > 0. By strong aperiodicity for |t| > ¢, |1 — Af(t)| = C(¢) and thus
[ _a-xrenar<pee)
t|>e

where as before C(¢), D(e) denote generic positive constants such that as € = 0, C(€) — 0 but
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D(e) may be unbounded. Thus we have

oW =en [ a-rea
= (2m)? _2(1 ~ M) dt + (2m)~! / YO
= (2m)™! _2(1 —Af()"tdt + Ji(e),
where |J1(¢)| < D(¢). On the other hand, for |t| < ¢ we use (3.1.7) to show that
(2m)! ;(1 ~Af(@t)~tdt = (2m)! _1(1 — X4 Mt "dt + Ja(e)
= 2(2m)"1 /0 SO Lt at)dt 4+ Jae)

= = log(1=) + 206,

where |J2(¢)| < C(e)log(1/|1 — Al) is the error from using the expansion and can be bounded
using the techniques from Chapter 3. Overall we have that

pY) = - 1og(775) + Ni(0) + (o)

Since ¢ is arbitrarily small, we let first A — 1 and then £ — 0 to prove that

PR

Since by definition p(A) = Y geo A"P(Sm = 0), from the last asymptotic and Karamata’s
Tauberian theorem we have

n
ZIP(SJ- =0) ~logn/ny, asn— oc.
rd

Finally

E(a) =E( Y 1si=s; )

§,)=0
=n+1+ 2IE(Z; Ls=s, )

n-1 n
=n+1+2)" 3 P(S =)

i=0 j=it+1

n-1 n
=n+1+2)" Y P(S;_; =0)
i=0 j=i+1

n—ln—i

=n+1+2) S B(S; =0)

i=0 j=1
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n n-—j

=n+1+2) Y P(S;=0)

j=1i=0

n
=n+1+2Y (n—j+1)P(S;=0)
=

=n+1+02n+1)Y P(S;=0)-2) jP(S; =0).

j=1 Jj=1

It is a quick calculation to see that for A € [0,1) we have

ZJP(S,..O),\J -C ] SN i)t
T j=1

Af(t)dt
Zf)

-1
YD) ~C(—A)

by the usual calculations. By the Tauberian Theorem 3.1.1 we conclude that
n
> iP(S; =0) ~Cn.

i=1

Overall we have that E(V,) = 2n )"0 P(S; = 0) 4+ O(n). Therefore by our previous calculation

E(V,) ~ 2nlogn/ny+O(n) and the lemma follows. For the variance estimate see Chapter 2. O

This gives the following important corollary.

Corollary 1. v
n
BV, =1, a.s asn— oo.

Proof. Let € > 0 be given. Then

(EV,, 1> )=P(|Vn-Ean>s1Ev,,)

< var(Vn)
= e2(EV,)?
_ var(V},) (2nlogn/my)?
T e2(2nlogn/my)2 (EV,)?
C
< e2(logn)?’

for all n large enough, since by the first lemma EV,, ~ Cnlogn. This already proves convergence
in probability.

Consider now the limits along the geometric subsequence n,, = [p™], where p > 1 is arbitrary.

Then we have v "
—m 1l > < —
P( EV,,. 1‘ z E) S 2m2’
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which is summable over m. By the Borel-Cantelli lemma we now have that

P (tmeup { | —1[ ><}) =0
(n!l,g,{ IEVM t <€}) =1

This holds for arbitrary € > 0 and thus
| Vo 1 _
[ o]« 1)

[> o2 e o] o0
(N0 N
but if w is in the above set, then for all [ € N, there is an M such that

and thus foralle > 0

l=1 m=1k=m

Vo, (@)/EVa,. — 1| <&, forallm>M

and thus Vi, (w)/EV,,., — 1. It follows that V,,  /EV,,  — 1 as. as m — co. Observe now that

V,, is monotone increasing in n. For each n we can find m = m(n) such that [p™] < n < [p™}].

By monotonicity we have
Va.. < Vo < Vomit
EV,.,., EV,  EV,. '

It is obvious that as n — oo we also have that m = m(n) — co. Then letting n — 0o we have

Vo, EVn Vo Va Vi EY,
li . —2- gl f — i fm+1 Nm+1
ml—r+noo EVi.,. EV,, . lnql-)lo% EV, ll-,r;n_f;p EVn mh—)oo EV,,. + EV,,. ’

and thus we have

1 £ liminf Ve <l
iminf oo < limsup 2o <

Since p > 1 is arbitrary we may allow p — 1 and thus it must be that

Note that by the last two results we also have that

®YVa/2nlogn — 1, as.

Proposition 4.2.4. Suppose that as t — 0, for f(t) = E[e!tX], we have

F(t) =1=0(|t|]*),

where 0 < a < 2. Then as A = oo,
P(X| > A) = O(A™2).
Proof. Let F be the distribution function of X , and f its characteristic function. By our as-
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sumptions there exist positive C and to such that for all ¢t < ¢

11— f(®) < CJe)*.

Then since

1= F() > R - £(t)) = / (1 = costz) dF(z) > / (1 - costz) dF (),

|z|>A
for A > 1/to we have

1/A 1/A
(1 - costz)dF(z)dt < C/ tedt < CcA™ 1@
lz|>A 0

0

and bringing the cosine term over to the right hand side

/
P(X|> A4) = / dF(z)dt <CA™* + A/l g / costx dF(x)dt

1z|>A 0 lz{>A
- sin(z/A)
< [+3
SCA ™™ + / /A dF(z)
lz|>A

and since |z| > 1 implies sin(z)/z < sin(1) < 1 we have

P(|X| > A)(1 - sin(1)) < CA™°,

and thus

f dF(z) < CA™®,
|z{>A

for all A > 1/t.

For a € Z, recall that

Na(n) =) 1s;=a-

j=0
Lemma 4.2.5.

sug Nq(n) = o(n®), a.s. for each e > 0.
aE

Proof. If m € N, then

n

No(w" = 3 (S5 == 5, =0)
jlu ’jm=0
<ml Y 1S;=--=8;, =0)
J!< ‘Jm
=ml Y USj =Sj-j == Sj._j._, =0).
1€ Kdm
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Changing variables and writing M for the set of indices
M = {(i1,...,im) : 0 < ix < m,for all k, and i1 +--- +14k <},
we have that

E(No(n)™) < m! ZP(Su = 0)P(S;, =0)---P(S;,, = 0)

m-1
n—iy LD DA 1)

=ml Z Yoo Y B(Si, = 0)B(Si;, =0)---P(Si,, =0)

i1 =0 ig=0 i =0

n m

< m!(ZP(s,- = 0)) .
i=0

By our earlier calculations we know that

n
> B(S; =0) ~ Clogn,

=0

and thus E(Np(n)™) = O(log(n)™), which further implies that for all positive €, we have
E(No(n)™) = o{n¢).
No(n) is stochastically the largest among the N,(n) in the sense that
P(No(n) > t) > sup P(No(n) > t),

by stationary, independent increments since the walk begins at 0. Also note that by the triangle
inequality

P(sup{Na(n) : la| > n?} > t)
< P(supiy, S| > n?)
< P(supi¢,, Zk_—.o | Xk| > n?)
< P(Lk=o 1Xk| > n?)
<P(|Xi| > n) = O0(n™1)
by Proposition 1.2.1.

Continuing, since Ny(n) is stochastically the largest and by the Markov inequality we have

P(sgpNa(n) 2 t) -0(n™?)

= P(sup{Na(n) : |af < n?} > 1)
< (2n% +1) sup P(Na(n) 2 t) < (2n% + 1)P(No(n) > t)

< (2n? + 1)t~™E(No(n)™) = (2n? + 1)t ™0o(nf) for any m € N, > 0.
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Letting t = n® we have
P(sup Na(n) > n) < (2n? + 1)n"™%0(n°) + o(n™Y),
«

for all m € N and thus the lemma follows. O

Lemma 4.2.6. If0 <a <b, then

lan]  (bn]
Z Z 1(S; = S;) = o(nlogn), a.s.
Jj=1i=[an]+1
Proof. Observe that
{bn} {an) fon]  [bn]
Vi = DD LS =S)+Y D US:i=5))
[on] lan]  [bn]
=Vie+ Y, USi=8)+2) Y 1USi=8)).
i,j=[an]+1 j=0i=[an]+1
Note that
{bn] (bn]
Yo USi=8)= D 1S~ Spani+s = S; — Sianj+1)
i,j=lan]+1 ,j=[an]+1
fon] (bn]—{an]-1
= Y USi~Sini+1=S = Sanp) = . 15i=5))
i,jz[dﬂ]".’l th‘_'o
[tn]-[an]-1 .
= Z 1(S; = S;) = Vipn)-{an}-1

i,j=0

where S; is an independent copy of the random walk started at zero. Thus we have

) fan]  [bn]
Vi) = Vian] + Vion)—fani-1 23 Y 1(Si=S)).
=0 i={an]+1

We divide both sides by 2n log(n) /7~y and take the limit as n — oo. Using Lemma .2.:} we have

, L lem
=a+(b-a)+cn15%°nlog(n)z Y usi=5y),

j=0 i=[an]+1

and the lemma follows.

We are now ready to show convergence of finite dimensional distributions.

Let aj,...,am € R, 0 =10 < t; <-- <ty be given.

Y a5(Yalts) - Yalts-1))

j=1
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=YY" aj(Na([nt;]) — Na([nt;-1]))é()/dn, (4.2.2)

j=la€Z

where d,, = o/2nlogn/ /7.

First note that since by the finite time [nt;] the random walk will have attained a finite number
of distinct values, only finitely many terms in the double sum in (1.2.2) are non-zero and thus

we can interchange the order of summation so that
m
Y a;(Yalts) = Ya(tj-1))
Jj=1

= Y% a5(Na(ints]) — Na((nt;-1]))é(a)/dn.

a€l j=1

Let A = 0(X1,Xa,...), the o-algebra generated by the random walk increments. Conditional
on A, the above expression is a sum of independent random variables with non-identical distri-
butions.

We would like to apply the Lindeberg version of the central limit theorem for triangular arrays,
which we quote below from Billingsley [61, Theorem 7.2]. For each n, let &1, ..., €uk,., be
independent random variables with mean 0 and finite variance 02, . Let

Spn =&+ + &k,

and suppose its variance

Sh=0m+ ol
is positive, and let N be a standard normal variable.

Theorem 4.2.7 (Central Limit Theorem). If

k
1 & /
= £, dP >0 423
sﬁg enrlZen (423)

as n — 00, for each positive ¢, then S, /s, = N.

We proceed by checking if the Lindeberg condition (1.2.3) is satisfied. Let

sﬁ = d;zo'2 Z (Zaj(Na(["tj]) - Na([nt:i—ll)))z’

a€Z =1

To simplify notation we write

C(n,a) =d7' Y a;(Na(lnt;]) — Na(fnt;_1])).
i=1
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Then we have to check that for alle > 0

52 Y E[C(n,0)%(0)*1{C(n, )€ () 2 es,,}|A] -0,

a€cl
as n — o0.

We start with a lemma.

Lemma 4.2.8.

i X (S as(Nlts) ~ Nullty ) 07 -t = ),

a€l j=1

a.s. as n — Q.

Proof. To show this we proceed as follows,

a2y (Em:a,- (Na([nts)) — Na([ﬂtj-d)))2

acl j=1

=d;2 )" Y o} (Nallnt;)) — Na(lnt;-1))*

a€l j=1
m
+2472 3" Y aia(Na([nt;]) — Na([ntj—1])(Na(nti]) — Na((nti-1])
a€el i<j
\ m \ ints] [nt;] [nt;—1] [nt;_1]
= d; Z Eaj ( Z 1{S~=Sx=a} -2 Z Z 1{S,,=S;=a} + Z 1{sk=s,=a})
a€l j=1 k=0 k=0 =0 k,i=0
[nt;) [nt:)
+2d;22:2a.-aj Z Z I{Sk=S(=a}
a€Z i<) k=[nt;_1]+1 k=[nti_;]+1
) [nt;] [nt;-1] [nt;]  [ntj—i]
=d, Z Za.’i ( Z 1{5,=Si=a} — E L{sy=51=a} ~ 2 Z l{Sk=S(=a})
a€l j=1 k=0 k=0 k={ntj_1]+1 =0
\ [nt;) {nts)
+d, Z z aia; Z Z 1(5,=5=a}
a€l i<j k=(nt;_1])+1 k=[nt;—1]+1

and after we change the order of summation

[nt;]  [ntj-]

m
= d;? Z“}! (Vlﬂt;] = Vint;.a1 — 2 Z 2 1{Sk=s;})

j=1 k=[nt,-_1]+1 =0
) [nt;] [nt,]
+d, Za.-aj Z Z s, =5)-
i<j k=[nt;-1}4+1 k=[nt;_1]+1

The proof now follows by applying Corollary 1 and Lemma 4.2.6.
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By Lemma 1.2.% we have

Zaj(Na([ntjD - Na([ntj—l])) =o(n®) a.s.

i=1

as n — oo for any 6 > 0. Therefore for any positive 4, there exists a positive constant C’ such
that

2 m
s 200 2 (L as(Nallnts) ~ Na(nty-1)) 0~
’ a€Z j=1
_ Tecr (Sfas(Vallnts) - Nentsa))”  niogn

— 00
nlogn nb ’

as n — 0o, for § < 1, since the first fraction converges to a constant in probability. Note that
by Lemma 1.2.5, we have that s,/C(n,a) — oo uniformly in a. Now let M > 0 be arbitrary.
We can find N(M) such that for all n > N(M) and all a we have s,/C(n,a) > M. Therefore
conditional on A we have for arbitrary € > 0, M > 0, and for all n > N(M) large enough that

E(&(@)?1{€(@)? > e52/C(n,0)?}|4) <E(£(0)*1{(0)* > eM}|4).

Since this holds for arbitrary M and all n > N(M) and since £(a) is square integrable, it is now
clear that as n — o0

E(&(e)*1{£(e)? > £82/C(n, 0)?}) — 0.

Finally we have conditional on A

522 Y E(C(n, 0)%(2)"1{£(e)? > £53/C(n, 0} 4)

o€l

= 8323 C(n, ) E(£(2)*1{e(@)? > es3/C(n,a)?}4)

a€l
= CE(g(e)1{¢(e)? > es2/C(n, 0)*}4) 0,

as n — 00. We have shown that the central limit theorem applies to our case giving
lim P dn 23-1 aj; (Yﬂ(t:) Yn(tj__l))

n—00 {02 Zaez (Z;r;l aj(Na(["tj]) - Na([ntj-ll)))2}1/2

4
= (27)"1/? / e *'/2ds,  as.
- 00

L£z|A

Since we have already shown that

135 Y (Y- a5 (Vallnty) ~ Nalnts-11))”

a€Z  j=1
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converges a.s. to
m
Y adit; - tio),
J=1

we have that

> ai(Yalty) ~ Ya(ti-1)) 2 N(O, L7, a2(t; — t;-1)).

Jj=1
By the Cramér-Wold theorem (see [61], Theorem 7.7) (Yn(t;))j=1,...,m is asymptotically nor-
mally distributed with mean 0 and covariance matrix (min(¢;,¢;))s,j=1,....m- We have shown
convergence of the finite dimensional distributions and now it remains to show tightness.

4.2.2 Tightness

Following the discussion in the beginning of this section, it suffices to show that for any £ > 0
there exists arbitrarily large A > 0 such that for all n € N large enough we have

e (i1 AT) <

i<n

Let Z, = maxXogigm Zi- Now it is true that for p > /2

>
<P (25 2 00/ Von, Zin 2 (0= VD)7 Vi A)
+P (25,2 00/ Vs, Zn < (p - V2)o\/Vin | A)
<P(Zm > (0~ V2)oVVnl4)

P (252 9oV Vi, Zin < (= VDoV A)
=n>(zm>( —x/i)a\/m.‘t)
+P(Zpy > \/ﬁ, —Zm > —(p— \/_)a\/—|A)
=P(Zm>(p- V2 Vo |4)

+P (2 2 00V, 2ty s — Zin > V20:/Vn|4)

To proceed we need the concept of associated variables which we take from [62).

Definition 4.2.2. A finite collection of random variables, X, ..., X, is said to be associated if

for any two coordinatewise nondecreasing functions fi, f on R™ such that f; = fi( X100, Xm)
has finite variance for j = 1,2, Cov(f}, f2)

2 0. An infinite collection is said to be associated if
every finite subcollection is associated.

To determine whether the collection £é(a)acz is associated, we use Kemperman [63, Corollary 2]
which we quote below.

Corollary 2. Let X = X x --- x Xy, be the direct product of totally ordered measure spaces

(Xi, Fjy Aj) such that {(-’L‘,,yg) € X;j x Xj : z; < y;} 18 jointly measurable with respect to
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Fj. Let further u be a probability measure on X which is absolutely continuous with respect to
A=A1®:--® A, and possesses a density ¢ = du/ dA which satisfies

d(z)¢(y) < ¢z Vy)d(z Ay). (4.24)

[ t@e@naa) > [ sou(an) - [ otoda), (425)
whenever f and g are increasing measurable functions on X, such that all the integrals above

erist.

This corollary implies that all collections of independent variables are associated. To see why in
the case of {£(a)}acz let X; =R and let A; be the law of {(a), i.e. A\i(4) =P(£(a) € A) for all
A€BR). Let u=A=X ®-:-® A, 50 that ¢ = 1 and thus (4.2.1) is trivially satisfied. Then
(4.2.5) shows that the collection {£(a)}acz is associated.

It is clear that conditional on A, Z;, _, is non-decreasing in all components of the random field
{é(a)}aez. Also observe that

Zm = Zry =~ mox (= Y €(5) = min 3" &GSy

J=itl j=it+1

which is also non-decreasing in all components of the random field conditional on .A. It is now
easy to see for all constants ci,cz, that 1(z. > and 17 _ Z:,_,>c;} 8re also non-decreasing
in all components of the random field and since the variables are associated we have

E(l{z:n—1>cl}1{2"t‘z:n—1>c3l‘A) 2 E(I{Z;._,>c1}|A)E(1{z,..—z;,_1>ca|d4),
which implies that
P(Zm-1 2 €1:2Zm — 21 2 2} A) 2 (Z;,_; > ca| AYP(Zim — 25, 2 o A).

It is now obvious that

P(Zho1 > p0N Vi By = 2 > V20+/Va| A)
<P(Z.,> po\/T';|A) P(Zpo1 - Zm > Va30/Vn|A)

and using Chebyshev’s inequality
<P (23> po V| A) (20%Vn) 'E (Zm-1 - Zu)?|4)
We would now like to show that conditional on A the collection {€(Si)}ign is also associated.

Conditioned on A, the random walk S; will have attained a finite number m(n) < n of distinct

values which we denote by ay, ... yGm(n)- Let f,g be coordinatewise non-decreasing functions
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defined on R™. Then there are coordinatewise non-decreasing functions f ,d on R™™ such that
conditional on A,

F(E(S0), - --,€(Sn)) = f(E(a0),- -, E@mm))s  9(E(So); - - -, £(Sn)) = §(£(@0); - - -, E(@m(m)))-

Since the collection {£(a)}aez is associated we have

E (f((00),- - &(@mm)3(E(@0), -, El@mem)))
2E (f(s(QO)’ cos ’s(am(n)))) E (g(é(a())? ) €(am(n)))) .
This implies that
E (f(((sﬁ)a (R af(sn))g(ﬁ(so), ) E(Sn)) 'A)
=E (£(&(c0), - &(em(m))3(E(00), -+ E(amm)))

> E (f(€(@0), . §(emm))) E (3(€(00), -, £(otmem)))
=E (F(E(S0),- - £(Sa)) ) E (9(€(So), - £(50)) | 4)

proving that conditional on A the collection {£(S;)};<n is associated.
Then by Newman and Wright [62], Theorems 2,3
E((Zm-1~ Zm)*|A) SE(Z2]A) = 02Vp,

and thus
P(Zp, 2 po/Vin) < 2P(1Zm| 2 (p — V2)0\/Vim).

By the same inequality for the reflected random field (—¢(a))qecz We have
P (r&ag 1Z;| 2 po Vm> <2P (|z,,.| 2(- \/E)a\/Vm) .

By Lemma 1.2.3, Vi, /mlogm converges in probability to 2(ry)~1, for each § > O there exists a
m1(6) such that for m > m;(6) and p > v/2 we have

P(ﬁﬁlZﬂ > Cpa\/mlogm)
2P (|Zml > C(p - ﬁ)a\/m—log-_m—) +46.
We write A = Cpo and let € > 0.

We have already seen that Y,(t) is asymptotically normally distributed with mean zero and
variance ¢. Letting t = 1 and using the definition of Y,(t) we have that CZ,,/o\/mlog is
asymptotically normally distributed. Thus we have for A a standard normal variable

P (ClZnl/ov/miogm > C'A) - BN > O') < %
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Thus we can find a number m; such that for all m > my we have

P (ClZm|/ov/mlogm > c'A) < %

and finally we can pick )\ large enough so that 1/\ < ¢ and thus

2P (CIZml/U\/m logm > c',\) < 07\8-2-.

Finally for m > max(m;(g/2)?), m;) we have

P(max|Z;| < \/mlogm) < e/,

thus proving tightness of the sequence of laws of Y;,(). Along with the convergence of the finite
dimensional distributions Theorem 4.1.1 follows.
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CHAPTER 5

Conclusions and further research

In this thesis we treated three problems from the theory and applications of random walks. In

all of the following So = 0, Sp = X1 +--++ X;, for n > 1, where X, X;, X», ... is an iid sequence
of random variables.

5.1 Optimal stopping

The first problem we treated is the infinite-horizon optimal stopping problem (1.1.1) for the class
of reward functions G which admit the representation

G(z) = i BE [g(z + Sn)) (5.1.1)

n=0

in terms of a payoff function g; this representation was introduced and developed by Boyarchenko
and Levendorskii {1, 16, 17, 18).

Using the Wiener-Hopf factorization we obtained explicit expressions for the value function
and optimal stopping time in terms of the extrema of the random walk. Our approach is
probabilistic in flavour, and a combination of the analytical methodology in {1, 16-18] and the
probabilistic techniques in [2, 12~15]. In fact, this is one of our main contributions since we
obtain the full generality of [1, 17] with a much simpler and shorter proof, while we treat general
reward functions as opposed to the results in [1, 16-18] where particular cases were treated. In
addition, we weaken the assumptions in [1, 17 since we show global optimality of the stopping
time without requiring monotonicity of the payoff function g. For general random walks, the
proposed stopping time is shown to be 'globally optimal while in {17, 18] optimality was only
obtained in the smaller class of hitting times of semi-infinite intervals. Also, we only require
that the representation (5.1.1) holds on a semi-infinite interval rather than on the whole of the

real line. Finany,ourmethodohgymalightlymodiﬁedandusedboobtmnthesameresultsm
continuous time in the case of Lévy processes.

The generality of our method is clearly demonstrated since we obtain the results of [2, 12-15]

as particular cases; non-monotone perturbations of the payoff function g are also treated to
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illustrate the weaker monotonicity assumptions imposed on g.

As a new application, we obtain the price of a Canadian option, a problem arising in finance
and the numerical pricing of American options. Our solution is for general random walks and
can be extended to Lévy processes with jumps of both signs —assuming we can compute its
Wiener-Hopf factors— while in the existing literature only spectrally one-sided Lévy processes
have been treated (see for example [29]).

Further research. Extensions of our results and further research are possible in several direc-
tions. First of all, the monotonicity assumption on g may be dropped completely. The resulting
problem will be significantly different since for example in that case the optimal stopping time
may be the entry time of a finite rather than a semi-infinite interval. The lack of monotonicity
also implies that the value function will have a different form. Apart from considering different
reward functions, one may modify the process under consideration. For example Ruschendorf
and Urusov [64] treated diffusions. Even though our approach is not directly applicable to this

case, since the increments are no longer stationary, it would be very interesting to study possible
connections and whether our methodology can be adapted to this case.

In a different direction, optimal stopping games are a relatively new and lively topic bringing
together ideas from game theory and optimal stopping. The general theory in terms of Markov
processes has been extensively studied (see for example [65]), but explicit solutions are rarely
available (see [66]). Once again, the monotonicity structure will not be present introducing

several complications. However ideas from our research are still applicable and explicit solutions
may be available, albeit of a different form.

For practical applications it is important to note that although the solutions obtained in this
thesis are in a closed-form, their dependence on the extrema of the process implies that in order
to obtain numerical results we need to be able to calculate the Wiener-Hopf factors. These
are rarely available explicitly but they can be computed numerically. In addition, a general
Lévy process can be very well approximated by one with phase-type jumps in which case the
Wiener-Hopf factors are well known(see [12]). Also, numerical approximations to the finite-
horizon problem are possible using a sequence of simpler perpetual problems (see [18, 28]). This

problem is closely related with the pricing of American options and is therefore fundamental to
mathematical finance.

5.2 Asymptotics for the intersections of random walks

The second pioblem we treated is from the path structure of Z%-valued random walks. In
particular we studied the moments of the self-intersection local time V,, = Tt j=0 18:=s, and
obtained exact asymptotics of its variance as n — oo foronemdtwo-dimensmnal recurrent
random walks. ' L

The two dlmmmg:m hes dmdy been studied by Bolthausen (31 and Cerny [4] where the
bound O(n?) was claimed. ‘As explained in the introduction and Chapter 3, [3, 4] prove the
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weaker bound O(n? log n) for the general case while the claimed O(n?) bound was only obtained
under additional assumptions. The approach used relies on generating functions and the classical
Tauberian theorem for power series. In Chapter 3 we show rigorously that this approach breaks
down in the general case and can only be used to prove the O(n? logn) due to the monotonicity
assumption of the Tauberian theorem. To avoid this restriction we state and prove the Darboux-
Wiener complex Tauberian Lemma 3.1.2 which completely removes the monotonicity restriction
at the extra cost of having to prove certain bounds in the complex plane. This approach turns out
to be the key ingredient needed to revive the generating function approach in [3] and to obtain
the correct asymptotics. Using Lemma 3.1.2 we complete the proof in [3, 4] and strengthen it
by showing that O(n?) is the best possible upper bound. In the one-dimensional case, we treat
random walks with increments attracted to the symmetric Cauchy law, which are related with
a conjecture in Kesten and Spitzer [5].

Apart from completing the proof in [3, 4] and thus settling a long-standing question, another
major contribution is the application of Darboux-Wiener type results which allow one to treat
non-monotone sequences inaccessible to classical Tauberian theory. This is a powerful and
flexible method with many possible applications.

Further research. Further research is possible in several directions. Exact asymptotics can be
obtained for the p-fold self-intersection local times defined in section 1.2, which can then be used
to study the properties of weakly self-avoiding walks. Apart from V;,, our approach can be used
to treat quantities such as Y, Nn(Z)Nn(z + y) which capture the covariance between the local
time at different points. In further research conducted with S. Utev and M. Peligrad, for the one
dimensional random walk treated in Chapter 3, we have shown that E(Y"_ Ny,(z) Ny (z + 3)) ~
2nlogn/my and Var(3", Nu(z)Nn(z + y)) = O(n?). These asymptotics are useful for limit
theorems for random walk in random scenery, when the random scenery is stationary. In that
case quantities of the form 3y Nn(z)Nn(z + y) appear as coefficients in the covariance terms,
and hence their asymptotics are essential for proving limit theorems.

Finally extensions of the complex Tauberian Lemma 3.1.2 are of great theoretical interest. A

continuous version of Lemma 3.1.2 for Laplace transforms(instead of 2-transforms) would be a
powerful alternative to the classical Tauberian theory as it would be applicable to many cases
where monotonicity cannot be verified.

5.3 A central limit theorem for random walk on random
scenery

The third and last result obtained in this thesis is a functional central limit theorem for one-
dimensional random walk in random scenery, where the random walk has increments attracted
to the symmetric Cauchy law, thus proving a conjecture by Kesten and Spitzer [5]. The proof
makes heavy use of the asymptotics of Chapter 3, and in fact the tight O(n2) bound allows us
to prove a stronger version of the limit theorem in [3], where the partial sums of the sampled
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scenery satisfy a central limit theorem for almost every path of the random walk.

Further research. One popular direction for further research is to remove the independence
assumption from the random scenery. Several results have appeared in this direction (see for
example [35, 51]). In fact in further research with S. Utev and M. Peligrad we have obtained
a functional central limit theorem for stationary random sceneries with dependence structures
such as negative association (see for example [67]) and projective type criteria (see [68]). When
the scenery is positively associated the dependence structure is preserved under sampling by
a recurrent random walk, and thus similar results can be obtained. Finally, we have recently
considered the case where the random walk is replaced by a Markov chain, and under certain
assumptions it is also possible to obtain functional central limit theorems.



APPENDIX A
Appendix to Chapter 3

A.1 Error analysis for Theorem 3.1.3(i)

A.1.1 First term error analysis

We assume that R()) > a.

Whenever we analyse an error term arising from the use of the expansion we will telescope the
difference by replacing one factor at a time by its expansion. Thus we have

E = Ey + E; + E3 + E,,

where
o a F0) - () - 2]
By =(m~(1-A) f_ - TGP MW - dzdy,
e s F@)(1 - £(z)) = la]
By = ()71 =) (/ ST A M) - M@F@) =W
_ / fy)(1 - f(z)) —7lz| dmﬂ)
oo TR = M@ - M)W v
oyt -3 F0)1 - () - Alz]
By = "”’ (-% (f S TR M) - @)

—ef-e1=2+ /\‘Ylfl)z(l AN - M@FW) y)

E4-—(21l’) 2(1 A)-2( f(y)(l f(:t)) 7‘9:\
~eJoe (1= A+ M[z)3(1 — A+ My = Af(2) f(v))
_ / / v f(v)(l I(z)) = x|
cedoe =X+ M2 - A+»\7M)(1 A+ y(fef + lvi)) )

dzdy

First error. We first replace the numerator by v]z]. Note that for |z|,|y| < ¢

IF @)1~ £(z)) = vl=ll = | = vlyl + R())(vlel - R(z)) - ~l=]| < Cle)lal,
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where C(e) —+ 0 as € —+ 0. Then by the above and Inequalities (B3a) and (B3h)
|Ex|

=Cl|1 -2

/ ‘[ (f@)Q — f(=)) — 1lz|) dzdy
~eJ-e (1= Af(2)(1 - A ()1 - Af()f ()

< / /‘ C(e))l — A2z dzdy
S JoJo (IL=A+2z] = 6.2)2(|1 = A + Myl — 6ey)(|1 — A+ Mv(z + )| - Ac(z +y))

. / / C(e)|1 - N3z dzdy
“Jo Jo (21 + 27| — 6,2)3(J21 + z2y| ~ 6ey)(|21 + 22(z + y)| — Ac(z + 1))
and since by Inequality (B5h)

d L <
1—-A+Ayz} —0,:: Cn:

C,

we have

C(e)|1 = A2 dz dy
Eal < / /o (l21 + 22| — Bez)(J21 + z29| — Oey)(J21 + z2(z + )| — Ac(z + 1))
=Cl(e)|l - Al_aFl(/\) <C(e)|1 - A|'3,

where Fi(}) is uniformly bounded for all A by Lemma A.2.1 given in section A.2.

Second error. We now bound the error from replacing 1 — Af(z) in the denominator by
1-A+ Mzl

s izl
E;=C(1-)) / [_ - ,\f(y))a M (z)f(v))
1

[(1 Af(m))2 - (1 — )\+/\~/|z|)2] da:dy

Using (3.1.7) we calculate

(1= M@ - (@ >+ Ml < R +2RE)I1 - A+ Mgl

and therefbréby Inequalities (B34) and (B3h)

C 1 -2 Yz (Belzl |l — X + Mylz|| + 62|z]2) dz dy
\Eal < CJ1 - A / ./.. =M @R - X+ WP - M@ = A @FG)]
-2 _2l2l@elzl|l = X + Ayja]| + 62})2)
<= [/ A=A+ dlall = Gl = 3 + drfalP
drdy
(|1 A+ MM{ BelyD(l = A+ My(lz| + Y] - Ac(lz] + [])
= L) + ().
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For the first integral we cancel out

[ 61221 — A + Mylz]|
L) <Cl1 - 2/ f e
IMISCR =X | | T3l = 6Pl = A + Mzl

dzdy
x
= T2l = Gl = A+ Myl + D] = Ba izl + D)
29
<Cl1-A "/ |zI"6
=N | T x sl = Gl = X+ Ml
dxdy

X =X+ 2l = 6D (T = X+ My(lz] + )] — Al + o))
and since by Inequality (B3a)

Ell
11 = A+ Mzl - Oelzi| [1 - A+ A'yl:cll

the following upper bound is obtained

_ 1
L) € 81 - 7 f e ) TT= X+ 2712l = Bl (I = A+ Mylull — Belu)

dxdy
X =22l + WD = Aclial + D)
- -2 [ 1
a1 = M f fo =X+ Mzl = 02)( = A+ vyl — 62p)
dzdy

ol (0 Wy v e ey o
' - 1
= CO,1 - A3 / /
St B A A (P gy ey e
dzxdy
|zl + 23(z + y)| — Az + 9))

< Cle)t - A3,

uniformly in A by Lemma A .2.1.
For I,, again using Inequality (B3a) we cancel out the 23 term in the numerator to get

[2(M

<Clt-N? /' /' b’
=37 M2 = 02T = % 5 Wyl
dzdy

=2+ Myl = 0ey)(11 — A+ My(z + y)| — Ae(z + v))

-3 1
<C@R-A / f. M= A+ M2l = 0)(T = A+ dral = Bey)
o dzdy
(ll A+M(z+v)l Ac(z +y))

SCEN -2

/‘ / drdy ,
o (21 + 232] — 8ez)(|21 + 22yl = Oey)(|21 + za(z + y)| — A (z + 9))’
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and thus
IV < Ce)i1 — N3,

uniformly in A by Lemma A .2.1.

Third error. The third error appears from replacing the y-factor in the denominator by its
expansion and is given by

E;=CQ-))"?

€ vjzi 1 1
8 .L /.-. (1 - A+ M2} - Af()f () [1 M@ 1-2+ «\'rlyl] dedy.

Using (3.1.7) it is easy to show that
1= Af(¥) - Q= A+ MyDl < Oelxllyl,

which along with Inequalities (133a), (B3b) and (B:a) and a change of variables gives

|Es|
A2 ‘[ 6, |x|ly| dz dy
<Cit=A f T T R = @I =T =X Tl
cl1~- |-—2/ o 6edzdy
<Cl o T3~ X @S = AT
<CEON-N?

e p€ dzdy
X /o/o (1= A+ Mizll(11 = A+ 2yl = 6ep) (11 = A+ My(z + )| - Ae(z + y))

K (K dzdy
~3
<o -3 [ e T T T AT
<ClEh - A,

by aminbr modiﬁcatbntoLemma A2,
Fourth error. We can now consider the last error term given by

_ izl
Ec=C(1-x7? f_ eJoe W= 2+ M2NPA = A+ Mg

* [ @~ TR RG] e
(3.1.7) and so:ne d@mm for ‘z"'y‘ <e

= A(5) = (1~ A+ Mallel + WD) < Cle)(el + I
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By Inequalities (B:3a), (B3b), (B7) and (B¥)

| Es|
< Ce)l - A2
. /‘ ¢ ylz|(|z| + |y]) dzdy
) TR MR = 3+ Myl = M@ F @) = A+ (=l + 19D
-2 dzdy
<CEN - A / / T A+ Mzl = X+ il = M @I )]

_ dzdy
<CE-N"? f f T=A+Mz[1 = A+ 2l(1 = X + M(z +y)| — Ac(z + 1))

drdy
_ -3
<CEn-A / /o 21 + zazll1 + zabl([21 + 22 + ¥)] — Be(z +9))

<CEN -2,

uniformly in A by a minor modification of Lemma A.2.1.

A.1.2 Second term error analysis
We split the integral in two parts and perform error analysis on each part separately.

Errors in the first integral.

For the first integral the error is given by

_ f(@)f(z +y)dzdy
|ED] € C\I Al " / / (1= 2 (@)1 - A1 - A (= +v))

j j dxdy

e (L= A+ 27z )(A = A+ My)) (1 = A+ Mylz +y|)

We telescope the difference by replacing each factor consecutively by its expansion, and we bound
the resulting differences.

First error. First replace the numerator by 1. It is straightforward using (3.1.7) to see that
ﬁor |z}, Iy} < € and the fact that R(z) < 6|z}, where 8, >0 ase - 0,

|f($)f(z + v) =1 =|(1 - vlz| + R(z))(1 - 7|z + y| + R(z +v) -1
- €C(e)—0, ase—0.

Then using Inequality (B3a)

V) & et xI-3 (f(@)f(z +y)—1]dzdy
1B < ole - N : //v = Af @)L = M @)IIL - Af(z +y)|

- \~? 1
<O - // B (R W v e o (g g g o)
dxdy
(ll A+ Ay(lz + )| - belz + y])
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K K 1
<Ce))1 - A3 / /
OR=N | ] T+ zalel = Gl (o + 22l = Bol])
< dzdy
T sz + o) =0z + 9]

<C@EN -3,

uniformly in A by Lemma A.2.2.

Second error. Next we replace the z-term in the denominator by its expansion,

) dzdy 1!
B =ca-»" [, s e Tw =7 - =]

Once again we obtain the bound
1 = Af(z) = (1 = A+ Aylzl)] < Oclxl.

Using the above bound, the inequalities Inequalities (B7) and (B3a) and the change of variables
r=z/|1 = A}, s = y/|1 — )| we obtain

|E5V|

<O - /[u, =A@ ==z ﬂ;ﬁdg Af(@)IIL = A+ ylzl|
<CEI - N f [ =A@ = 3&— Wi =X @)]

< C(e)l} - / v, (1= A+ Ml - o.m)l(u = A+ Myl - 8elyl)

1
| kx (I1=A+Miz+yll - Ac!x+yl)d$dy
<ClEi-N"°

K (K R dzdy
* .[-x /—x T2 + 221l — Ola)(121 + zafy] — 8 (llz: + z2(le + )] - Aclz + u)
<CEh-N"2,

uniformly in ) by Lemma A 2.2

Third error. The next error arises from replacing the y-term by its expansion and is given by

E§"=C(1-,\)"ff‘ i [ - - ]

=X+ Ml =X +9) [T=37@) ~ T- 2+l

Once again the bound e
1= AF) = (1 = A+ Aly))| < Belyl,
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and Inequalities (B3a) and (B7) give

ED) = ote 1—)\*2// lyldzdy
L2 ROt I A e ey o v o9 5 iy g [ g wrpw
1
<C(e 1-A‘2//
Lt Y A Ty wry v = 1 gy wrp o e o
dzxdy
XA T Mz + o) = ez 7

— -3 1
<C@Eh-A / / x |21+ zalzl[(lz1 + zaly] — Bely))
dzdy

o+ z2lz + 9l - Bz + vl)
<Ce)1 = A3, '

uniformly in A by a minor modification of Lemma A.2.2.

Fourth error. Finally we replace the z, y-term by its expansion and we get the fourth error,

_ 1
EM=ca-)N"? //' (1 = A+ Mlal)(1 = A+ Mlyl)

1 1
e -
[1‘)‘)'(1'*'3!) 1—>~+f\7(lz+yl)] dedv.

It is straightforward to get the bound
=A(z+y) = (1 -2+ iz +y])| <Oz +yl.
The above along with a change of variables and Inequalities (B34), (B7) and (3.2.6) imply that

IE| = C(e)1 - A2

« / / |z + y|dzdy
A=A+ Mzl = A+ Myl = Af(z + )il - A+ Mylz + gl
€C(e)1 ~ A2

x// dzdy
v, L= X+ M2l = A+ ML = X+ iz + ol — 6ez + )
<Cle)1 -2 [ [ dz dy

K 1o + zizlllzs + zfeyl(lz + zalz + 3]l - Oelz + y])

SCE =A%,

uniformly in A.

Enors in the second integral.

Thetotalerrorintheaecondintegnlisgivenby
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g F@f W)
EPN) =C1-2) / / A= ME@)1= ) - Af(:c)f(y))

T2 MDA -2+ /\'Ylyl)(l A+ Ay(lz| + |v|))
First error. We replace the numerator with 1. It is straightforward to obtain the bound
If(@)f(v)* -1 < Cle),

which implies along with a change of variables, Inequalities (B3x) and (B3b) that

) - 1f(z)f(y)? —1|dzdy
EPW) € 1 -N"2 / / 1= 2@ = AW = Af(z)f(v)]

A 1
<O - N~ / / (1= X+ Mzl — 812D (L - A+ Myl - 6clsD)
y dzdy
(11 = X+ Xv(jzl + lyD)] - 8e(I=] + y])
- -3 !
=C(e)i1 - M /_ x /_ k (121 + za|z|| = Oelzl)(|21 + z2{yll — Oelv))

y dxdy
(121 + za(lz} + D)} — Ac(lz] + [y])
<C@h-N"°

uniformly in A, by Lemma A.2.1.

Second error. We replace the z-term in the denominator to obtain the error

By o -2 dzdy 1
E ) =C(1=-)) / f =M@ = M@ [1 =M@ 1- H*’rizl]'

From a change of varlsbles, Inequalities (B3x), (B3b) and (B7) and Lemma A 2.1 it follows that

P S jz| dzdy
BN < Cleia = A .[/u =M@ = M@ WL - A @I - A+ Mzl

-2 dzdy
<ClEn-A ff . D= X )T = M@ - A @)

-2 1
<O - "‘ | /,L (Il A+:\'7|z|l 6elz)(11 — X + Mylyl| — Belyl)

e xmﬁwm SO (=R R
‘,

-3 , s
<Ol - Al f {; d:tzxmtzn Ocltl)(lzwzzlyll =
X o maGih+ ] - Bl + WD)
< C(e)ll «\l"
uniformly in A.
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Third error. The expansion of the y-term gives the third error

EP(\) =c1 -2

1 1 1
X .//u. (1= A+ XM2))(1 - Af(2)f(y)) [1 M) 1-2+ Mlyl] ez dy.

Then a change of variables, Inequalities (B3a), (B3b) and (B7) and a minor modification of
Lemma A 2.1

2 ) 8ly| dz dy
Bl < Ot - A / / =2+ Myl = A+ Myl = AL - Af(@)F(v)]

- 0. dzdy
<Cl1-A // 1= xF Ml = M)t - A (@) )l

1
Cl-—)«"//
<ep-A [ WP o P T iy Wy v o g v
dzxdy

X =2+ 2l + ) = 82l + o)

K ¢K dzdy
-3
<CEN =X / / « T2 7zl + zalull — 6el0)
dzrdy
X Vor ¥ za002] + 19D = Belia] + 1D
< Ce)1 = A3,

uniformly in A .

Fourth error. Finally replacing the term involving both x and y gives the error

EQP0) =c(1-x)7?

dxzdy 1 1
X // (1 =2+ Mlzf)(1 = A+ Myl [1 =M@fW) T T=X+ Mzl + Iyl)] '

Once again Inequalities (B3a), (B3h) and (B7) and a minor modification of Lemma A.2.1 imply
that

2), - \=2 1
IEP (V) € Cle)1 - ) / v. T= X+ Ml = X + M|
Oc(lz| + lyl) dzd
L CEE @I = A+ (e )| =
. <C -3 oy '
< (e)%l =M~ / ve =X+ MzlllT = X+ Mt = A @7 B)]
1

< c<e>|1 »\r‘

/u. ll A+a\'rlzml AH’YWH

XA T wm N EE)
<Gl - N

T R
P ¥ z|zlllz1 + zlyll(l21 + za(fel + W = A=) + 11"
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and therefore
IEQ (M) < Cle)i1 - A2

uniformly in A.

A.2 Integral calculations for Theorem 3.1.3(i)

Lt K=el-\"La=1- 1=t zz=M.
Lemma A.2.1. For small € > 0, complez \ with |M\| < 1, v > 0 and K, 2z, 22 as defined above
the integral

dzrdy
B = o/o/ (|21 + 22z] — 0ez)(121 + 220] — Bey) (121 + 22(z + ¥)| - Ac(z + 3)) (A.21)

is finite.

Proof. Let a > 0 be fixed and very small. Then we split the region of integration into four parts.
The integral is then split into

PN = FO0N + FO0 + FO ) + FO W),

where

Dy o dzdy
(O .o/ o/ (21 + 222| - 6ez)(|21 + zay| ~ Oey) (121 + z2(z + y)| — Ac(z +¥))

)y = dzdy
R of / (x + 221 — 0,2)(1s + 20T~ Bet) 172 + 2@ + 9 - Az +9))

@) (1) = dzdy
R !0/ (I21 + 22| — Gez)(121 + 209} - 8ey)(|21 + za(z + y)] — Az + v))

03 o dzdy
RO ! .! (121 + 227| — 8ez)(l21 + 29| — O.y)(121 + za(x + y)l - Ac(x +¥))

We treat each one separately.

For the first integral we use Inequality (B5a) to get that alltermslnthedenommatorarebounded
sbove by constants aad thus F{’(}).< C < .

For the second integral we use Inequality (B5a) for terms !n' ol just y, a.nd Inequality (B5b)
ﬁorthomiuvolmz.%tlmhm S e

F(m(l)ﬂcl-/;m; jdzdy<0<oo”
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The third integral is finite by symmetry and the above calculations.
Finally for the fourth integral we use Inequality (B5b) for all terms in the denominator to get

KK dad KK 0000
FOw <o [[ o /
VO] narn <

Lemma A.2.2. For smalle >0, R(A\) > a, |A| <1, v >0 and K, 21, 22 as defined above the
integral

dx dy

<C <o O

dzdy
Fr()) = / A2,
2(%) 4 || o alell = Bl es + 22l = Ol 1z + 2l + 911~ Ak + ) (A-22)
is bounded uniformly in A.

Proof. To simplify notation we write

1

Y A) = .
X(@ 1Y) & o =8 (o1 + 2alol] = Soo) (o1 + 72l + 9l = Bels ¥ 9D

Then we have for some fixed positive a

B\ = // X(z,y,\) dzdy + // X(z,y,) dzdy

Bx(0)xBx(0) Bx (0)xBx(0)
lz+yl<a lz+yi2a
= F{" () + FA ().
Let us first treat FAD()).

W< [ [ Xeuwniwy
: Bk (0) Ba(-v)

=j ]X(z—u,u,x)dxdu
Bk (0) Ba(0)

2a o
< / fX(z—y,y,A)dzdy

-2a~a
a

iR / /X(z—y,y,A)dzdy.

For the first of these integrals we use Inequality (B5a), which imphes that for a, small enough
then |2, + zglzll - O.t:l:l is boumd bebw by a constant independent of A. Also since [z — y| <
vl + I} € 3a we also have that |21 + 23]z — y}f — 6|z — y| is also bounded below by a constant.
This impliesthattheﬁmintagmlisbounded above uniﬁormlymA

Letusnowoonaiderthenmdlntegral Inthmcasemtethat]z -yl 2yl -zl 2a>0. And
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thus we have using Inequality (B5b)
2(|z1 + 22|z — yl| — bc|z — yl) 2 2Clz — y| > Ca + Clz - y|.

Using this, Inequality (B5h) for the y-term, and Inequality (B5a) for the z-term, we get

/ iX(z—y,y,A)dzdy

y|>2a ~a

/‘ /‘ dzdy
A (l21 + zalz — yl| = belz — y) (121 + 22|yl — Gelyl) (21 + 22lzl| — Aclz])
v :

<c [ /(a+|x umyt‘c / /dI:;y= ag <C

lyi>2a ~a

uniformly in A. Note that in the last inequality we have used the fact that
atiz-ylZa+lyl - lz| >yl

Now we can consider Fz(z)(}\). Using Inequality (B5h) and |z + y| > a > 0 we have
2(jz1 + zalz + yll — Aelz +y]) 2 2Clz + y| 2 Ca + Clz +y|.
Therefore

o= [[ xeunay

Bx(0)x Bx(0)
lz+yi3a

o || ety
(I21 + zalxll - Bclzl)(|z1 + 2z2lyl| - Ocly) (@ + |z +¥))
Bk (0)xBx(0)

Now observe that

a o

[/ o <C<oo
J 4z + zafal] = Oelzl)(]21 + 2alyll - Oelyl)e + | + yi)

uniformly in A by Inequality (B5a). Using Inequalities (B5a) and (B5b) and since if |z]| < a we
have that a + |z + y| M+a lzl > lyl, we get

[ ] o
(121 + za2l| ~ &M)(lzl + zalyll - 6y + 1z + 3l)

a<lyi<K ~a
< / /m&C / /dxdy Caj—g C < o0,

a<| |<K a<lyl<K —a a
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uniformly in A.
By symmetry we also have
a
/‘ dzdy <C<
00.
(121 + zalz|| - Oelxf)(|21 + 22lyll — Oclyl)(a + |z + y[)
~aa<|yl<K

uniformly in X by symmetry and the previous integral.

Since |~z| = |z| and |~z —y| = |z + y|, we have that the integral over the regions (a, K)2
and (- K, —a)? must be equal. The same holds by symmetry for the integrals over the regions
(-K,-a) x (a,K) and (a, K) x (—K, —a). Therefore

/‘ dzxdy
(121 + zalzl|| - Oc|zl) (|21 + 2209l — Oclyl)(a + |z + y))
a<|yl< K a<jzi< K

_ dxdy
" 2[ / (s + 2212l 011 + 22l = GelyD(@+ 12 + )
-a K

dzdy
*"_4 / (o1 + 22121l = 0clel) (121 + 2alull - W) (e + 12 + )

= 2I(\) + 2I3()).

Then for I; we have

-' K K
dzdy dzdy
n»<cC a/ a/ (|z||y|(a+|z+y|) / / oy(z +v)

xxdzd 00 00
scjfz\/_”_ d’d”
a & y

<C‘a"“<C<oo.

Q

For the second integral we calculate
KL <C /f dv__<c jf dody
S lzllyl(a + |z +yl) = . d w=u)e iz +y)
5 y(a+iz-yl)

=C/i (a+u 7 f/zy(zdiiy )

los(v/a) dy bs(u/a) dy
<C vy +a) +C° yy-a) SC<e
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These two facts together imply that F3()\) < C < 0o, uniformly in A.

Lemma A.2.3.

dzdy -1
< CKC +log(K)).
// T a e T alie T 7 (C +log(K))
lz|<K<|y|

Proof. Let a > 0 be a fixed constant. We can choose this to be as small as we need.

/ / dzdy
21 + @iz + zalylllzs + zals + 9l

lzl< K<yl

/ / dxdy

|21 + z)z|llz1 + z2lylll2r + zalz + yl|
|lzl<K<iyl
lz4+yi<a

/ / dzdy

121 + z3jz]llz1 + 22lylllz1 + 22)z + vl
lzl<K<lyl
jz+y|3a

= H, + H,.
We first consider H;. Then observe that

dzxdy
|Hy| < C [/
iy P e+ 2l + 4

{z+yl<a

dzdy
3
¢ 1 + zalzlllyliz + 22l% + 9]

lWi>K z2€Ba(-y)

, dzdy
<C / / [ + zalz — wlllvlies + zale)]
ly|>K 2€Ba(0)

o [ [t

ly ~ =lly|
lyi>K 2€B.(0)

<C [ dzdy
(Il = 1=yl
lyl>K 2€B.(0)
<¢ W flfgl |
IvI>K=€B=(0) v y

“‘f" W= a)v

£C

K-a (v+a)v
<ef -i‘!w(!f 2y < CK-1
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Now let us move on to Ha.

dzdy

e ||
\Ha| Tex T zaialllizs + 22l + 9]

lzi<K<|yl
24yl

dzdy
<¢ [./ |21 + zalzl|lyl(e + |y + 1)

[zl<K <yl
lz+y|>a

dxdy
<c / / |21 + z2lzlllyl(c + |y + =i)
> K izl<a

dzdy
+C / o ¥ aEllle + W+ 2)

yl> K aglzi<K
= Hgl) + H;a).

For the first integral we have

) dxdy
H ‘C/ / Wi+ Wl = 12D

WI>K lzl<a

<o [ f lul(adfl(:l’-a)

WI>K lzl<a

<C /: y~2dy g CK™L.

For the second integral we have

@ decy
H"<C / f Tellta + ol - 1)
wi>K aglzi<K

. & Cj / zy(ad:(;y z)

<°f°y= (a(a+y K))

and sincey > K -
| ‘C/w L1og (L) dy < K" og(K)
i /K y? a? = gk ).
Lemma A.2.4.
] j e < CK~Y(C +1og(K))
0g .
i>K lel>K ¥ ”’"m’i + zalylliz1 + 2z + yl|

Proof. Weﬁrstsplititintotwopam

-
W !z; + zafz|||z1 + 2aylllz2 + zalz + W)
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< // dzdy
= |21 + za|zll|21 + 22lylllz1 + 22|z + Y]

iyl lz|>K
lz+yl<a
dzdy
= H; + H,.
/./ |21 + 22lz||21 + 2alylll21 + 22|z + | 1T
lyhlz|>K
[z+yi3a

Let us first consider H;.

dzdy
h<C / / |21 + z2lzlllz: + z2lplllz1 + zelz + vl

lyl>K z€Ba(~y)

dzdy
<€ ./ / |21 + 221z — ylllz1 + zalylllz1 + 22l

isi>K z€Ba(0)
d:l:dy / /
c
< / f Wiv—al = Iyl(lyl W= ED
y|>K z€Ba(0) €Ba(0)
dzdy
<[ [
< RS
ly|> K z€Ba(0)
®  dzdy —1
c LY _<ck'=ci-Al
S K-a y(y + a) C‘l A‘

Next we consider Hj,

00 dxdy -K dzdy
H<Cf /: Wi+ 1z + 70 / / oo TEWI@ + 5 F 9D

‘ -K dzdy -K dzdy
v [ Tera) o[ [ mwes T

Then integral over (K, 00)? is the same. Finally observe that

I -K/ e L | meran = [ s sox

Now

/ / !xllu\(a + lz +yl)

LI et [t
f" f xv(a-l-vy 5T l,, ?yﬁr%g}:ﬁ

aty—~-K -
JA “("‘zx‘*);ﬂf il

< CK~Y(C +log(K)).

"
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A.3 Error analysis for Theorem 3.1.3(ii)

A.3.1 First term error analysis

We now estimate the error arising from replacing the factors in the integral

/j Af(s)(1 — f(t))dtds (A3.1)
/3 (1= XMf())2(1 = Af(8))(1 — Af(2)f(s)) o

by their Taylor expansions. In other words we would like to find an upper bound for the quantity

I[EQA) =Cl1 = A7

/ / Af(8)(1 ~ f(t))
. (1= 2 (0)2(1 - Af(8))(2 - Af(2)£(s))

_ f/ Alt|pdtds
(L= A+ 3181221 — A + 3sl)(X = A+ 3 (Itls + Islz)) |

To simplify calculations we telescope the difference into a sum of errors arising from replacing
each factor consecutively and we use ;he fact that

B} < It = N~ (|Ea| + | Ea| + | Ea| + |E4l) ,
where the E; are defined as follows

E = / / M (2)(1 - f(t)) dtds
1= o, T=AMOPA = ME)A - A OF )

_ _/ / 3tlc dtds
v, (1= AF(E))2(1 - Af(e))(1 = Af(t)f(s))’

N 3(t|z dtds
Ba= / /u (1= Af(£)2(1 = Af(s))(1 - Af(t) f(s))

: / / Altlc dtds
C Ju (L= A+ 41t1e)2(2 = Af(8))(A - M) f(s))’
_ jltlc d de
Es /,/ e (1= 2+ 3lele)2(1 - >«f () — Af(t)f(s))

e (1=A+ éltln)’(l A+ 3lsle)(1 = Af(1)f(s))’

Ju, {1 =2+ éttl:)’(l py 3lslz)(1 = AF(£)f(s))

_ ]f 3ltls dtds
o (1= A+ Ht1e)2(1 = 2+ Fale)(3 - A+ 3(tle + alz))
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First error In the first error we replace the numerator by Alt|z/2 and thus the error is

|Er| =

/ / M () = £(t) — 3ltl=) dtds
. Q=221 - Af(8))(X = Af(£) S (38))

< / / IAf(8)(1 ~ £(2) — §ltls| dtds
S Lo, M= AR - Af(s)iL - A F ()]

Let us consider the numerator first. It can be shown that

[A£(8)(1 = £(£)) — 3ltlz| < Ocltlz + Cltlx:I?I:: < C(e)ltlx,

where C(c) >0 tends to O as € — 0.

We change variables £!/3¢ — t. Then by Inequalities (3.3.4) and (3.3.5) and scaling ¢t and s by
1/|1 — A} we get

Cle)
E —e %
Bl < 5=

/ / [t|2dtds

5 Y121 + 2alt2] = 8elel?]"|1zs + zalal?] = Bclsl2][Izs + 2a(12 + 18f2)] — Ac(ltl? + |aP2)|
where z; = (1 = A)/|1 = A}, 22 = A\/2, and K = K(\,€) = ¢/|1 - |

From Inequality (3.3.8) we get

lef? <C
[lz1 + zalt3] — Beftf2] =

and thus after changing to polar coordinates we have

|Ey| < Cle)l1 - A

KK ~
» f/ ; ' ) rsdrds
.d [l21 + 2373 = 8er?|{|21 + 2282] - 6e8?|||21 + 22(r2 + 82)] — A (12 + 52)]

= Cle)l1 - AP € Cle)1 = A,

where F()), ss defined in (A.4.9), is uniformly bounded by Lemma A.4.2.

Second error. We now replace the factor 1 — Af(t) in the denominator. Observe that

| ;.{(1‘_'-. AfEN? - (1-A+ %lt{s)z‘
< Oeftlz |1 — A+ $it)c) + 621212
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Using this, Inequalities (3.3.4) and (3.3.5) and the usual change of variables

211 = A+ 1tl=] + [t13 dt ds
B2l < Cle) // T= X+ FRalP T = AT — AT~ AP

ST = A+ 2J#)2) + J1)°
< C(E) /f “1 A+ é|3|2| - 9£|s|2| “1 A+ >‘]t|2| - aelt|2|
x dtds .
11— A+ 22 (1 - A+ 3Qt2 + 1s2)] - Actl2 + [s[2)]

Then using Inequality (3.3.8) for each summand in the numerator and the inequality
A 2
p—x+§m|>cm,

which follows from using the real part as a lower bound, we have

l¢]2]1 — )~+*ltl’1+ltl4
TR

and therefore
|t
Bl <ot )// 1L =X+ 318l = Gelofo| 11 — A+ 3121 — oclei?]

9 dtds
=X+ 30 + (1)) — Al + 1sP)]

Then by Inequality (3.3.4), polar coordinates and scaling ¢ and s by |1 - A

. K oK i
. L af ' rs
dtds

XM+ (= + 80| - Be(r2 + )’

where 'K; e/‘]i -)«}Finally by Lemma A.12 we have |y} < C(e)[1 ~ Al™.

Third error. The next error comes from replacing 1 - Af(8) in the denominator. It is an easy
calculation to check that for M <€

*iz«f—x\;f(a) -(1=2+ %Isl,—.)l < C(e)ls|z-

Using the above, the usual changes of variables and Inequality (3.3.8)

- lelsltledtds
1Bs| & [/ §1-Jx4»§m,| =2+ $lsllll - A (S = Af(s)]

rsdrds

<C(e)h - At x .
)l W — Ad(rd + g)Wz‘ + z82| - 0532‘,

./ / fz1 + zzr’mzx + :;3(r2 g
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and finally by a minor modification to Lemma A.4.2, |E3] < C(g)|1 — A~ L.

Fourth Error. Finally the last error arises from replacing the term 1 — Af(t)f(s) in the
denominator by its expansion. Using (3.1.8) we obtain the following bound

1= A£©F() = [1= A+ 5(tls + olo)] | < C) el +Islo)

Then we have the following bound using the usual change of variables £/2¢ —» t,

1
[tl=(ltls + tl=) dt ds

T =2+ 3= + Jslo)] |1 - A0 F ()]
1

<Ct) l/ -+ s}ur;[i |1 -+ 3si?|
. 1t12(1t) + |s|2) dtds '
1= 2+ 30812 + )] [[L = A+ 30112 + 1s12)] - Ac(ltl? + |sf2)

Using the above bounds, Inequslities (3.3.1) and (3.3.5), changing to polar coordinates and
scaling by |1 — A| we have

|Ed| -
dtds
< [/ 1= 2+ 31 11— A+ 31a][[1 = A+ 3Ot + 1o2)] - Ac(le + o)

=C(e))1 = \? ]7 A.rsdrds |
o 09 1+ arlin + 28 hz; +29(r? + 83)| — A (r? + 32)‘

<C(e)1-A"!

by a minor modification of Lemma A.4.2.
Thus all the errors are bounded above by C(e){1 — A|~! with C(¢) — 0 as & — 0 and therefore

B €11 = AH(E| + || + | Es| + |Eql) < C(e)1 - A2
A.3.2 Second term error analysis
Errors in first integral

We estimate theerror arlsingfrom using Taylor in the integral ¥;()\). That is we would like to
have an upper bound for the quantity

o il  f(®)F(t +s)dtds
Bl < =N ’l l f A= 2@ 3

)1~ Af(8))(1 ~ Af(t+ 8))

16
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dtds
(=24 2tle)Q = A+ 3Usl=)(1 — A+ 31t + 8lz) |

Similarly to the first term we telescope the difference,

|E| < [1 = N"2(1E1| + | E2| + | Es| + | Eal),

where we define

- F@)f(t+ s)dtds

= M/ CEYIO)CEYIONCEYICE)
_ dtds
(A=A = MDA =X E+ o)
dtds

P = W (= AFEONE ~ M)A = Mf(E +8))

dtds

)

T A=A+ 31 = M) (1 = Mt +5))

dtds
Fo= W (= A+ )1 = Af (@)L~ Af(t +9))

_ dtds
(1=X+3Itlz)(1 ~ A+ 3lsle)(1 = Af(E +8)]
dtds
E ll‘/ (1= X+ gitle)(1 — A+ glelz)(1 — Af(t + o))
dtds

T2+ 3t)( - A+ Flsle) (X = A+ 3t + 8l)

First error. We first consider the error from replacing the denominator f(t)f(t + s) by 1.

|[f(2)f(t +8) —1|dtds
Il < [f =A@ = @I = ME+

Using (3.1.%) and the fact that R(t) = o(|t|?) as ¢ —+ 0, we bound the numerator

£Of(e+0) = 11=|(1 - 3itle + RO) (1= 5lt-+ ol + R+ ) ~1]
. &C(e) =0, e 0. |
Using the sbove and o change of verisbles,

|Es| € Ce)it - A~z)~?
x f / ‘ | dtds |
. u« {21+ 2|t < O.ltl?] | |21 + zalsf3| - 6. [82[ |21 + 2alt + 82| - Ot + 82

=1 - AI"*C()G(N) € Cle)it - A,
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where G()\) is shown to be uniformly bounded in Lemma A.4.1.
Second error. We proceed by replacing the ¢ term in the denominator by its expansion. By
the same calculations as above,

‘t‘ndtds
|E2| < C(e) l/ L= AF(OI1 = Af()]|L = Af(t +8)| |1 — A+ 5itl=]

1
<0 l/ 10— 2+ 31t12] - 6c1ei2] |1 — X + o] - Belof?)

y dtds
1 =X+ gt + s3] ~ Oclt + 32|

<CEN-A"?

dtds
X
! / Nlzs + 2altl3] = 8c1t13] |12 + 22l8]?] — Bclsl?] |21 + zalt + si2] — Oclt + 5[]
K

<CEl - A"

by Lemma A.4.1.

Third error. By similar calculations we have

js|?dtds
|Es| < Cle) l / L= A+ 3P| [L = A+ B16P] [t = X+ 31612] — OclsP| 11 = Af (¢ +9)]

=C(e)|1 - ™!

dtds
X
!] |21 + 22[t12] [|21 + 2al8]3] - O.Ialﬁlﬁzl + 7|t + 8[3] — O]t + 5|3
K

< C( - A6 € C(e)L - A

by Lemma A 4.1,

Fourth error. Finally we replace the t + s-term in the denominator.

E ¢ [t + 8|z dtds
Bl < (‘)lj - )u-;m,] 11 ,\+§|s|.=] [1=X+3it +alz| [1 - Af(t + )]

o 1 dtds
<Clen-N ./j I«uﬂdﬂ’l lzx+zslsl’ﬂlz1+zalt+8|’l Olt + sf?|
<C(e)ll -,

bymlnosmodmumwhmmAu
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Errors in the second integral

We now estimate the error arising from using Taylor in the integral Y3(A). In other words we
would like to bound

_ f(t)f(s)*dtds
E|= ‘!/ (1 =Af(®))1Q = Af(8))(A = A () f(s))

_ // 1dtds
JJ (1-2+ Htle)Q = X + 3lsle)(X — A+ 3(It]s + Islx))

Once again we telescope the difference by replacing each factor one by one
|E| € |Ea| + |E2| + |Ea| + | E4l,

where we define

~ f(t)f(s)?dtds
|Ey| = [ / (1 =2f@®)Q = 2f(8))(1 = AF(t)f(s))

_ /‘ / dtds
), (1 = 2F(£)Q - Af(8))(1 - Af()f(s))’

dtds
|Eal = l [e=sreva e

_ / / 1dtds
gy 1=+ el = Af(8))(A - Af () ()’

‘ dtds
|Es| = l oo TRe v ey

_ / / 1dtds
LT =2+ B3 - X+ Flala)(1 - M()F(s))

dtds
\Eaf = [/ =2+ 3= A+ 2lal)1 - M)

_ [/‘ N dtds
gl -A4 )1 — A+ Rlslz)(1 — A+ 3((tle + [slz))

First error. By a trivial calculation we find that |f(t)f(s)? — 1] < C(¢) and therefore by
Inequalitiel(‘l H)to(i ;8)andchangingtopolarooordmates

|Ey| € Cle)it - A~

« / / rsdrds
44 121 + 2ar3] — ©,r3}||21 + 226%| — B,82[|21 + 22 (2 + 82)] — A (r? + 82)]
<O -N7, | |

by Lemma A.1.2,
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Second error. This arises from replacing 1 — Af(t) in the denominator. Using (3.1.8) and the
fact that R(t) = o(|t|*) one obtains the bound

1- ()~ (1= A+ 31t?) < Clelel?,

and therefore by Inequalities (3.3.4) to (3.3.8)

Tt 1
IEal < Gl = A u/,[ lTzx & Z2ltT2] = 0.1e] T2 + 2alol?] = 6ol
" dtds
e + 72 (6 + aP)] = A, (67 + 1oT)]
<CEN-AN1 |

by Lemma A.4.2.

Third error We replace the 1 — Af(s) term in the denominator. By the same calculations as
above we obtain

|Es| € C(e)j1 - \~!
.. dtds
X l/ 23 + zalti3{{lr + 2218]3] — Ocls3] [l21 + za(1t12 + [s12)] — Bc([¢]2 + |s]?)]

<C(9l1 - b\t

once again by Inequalities (3.3.4) to (3.3.8) and Lemma A.4.2.

Fourth error The last error term arises from replacing 1 — Af(t)f(s) in the denominator. By
similar calculations and application of Inequalities (3.3.4) to (3.3.8) we have
l.[x ./ |21 + z2l8[?| |21 + za(|t[2 + [8[2)] — 6e (]2 + |5]2)]
N (It]2 + |sf?) dtds
l21 + 2|t} |21 + za(t]? + |[2)]
L C(@h - A1,

1Ed| € Ce)|1 = N 7?

by a slight modification of Lemma A 4.2,

) a0
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A.4 Integral Calculations for Theorem 3.1.3(ii

Lemma A.4.1. For z; = (1 - X)/|1 = A}, z2 = \/2, R()) > a for some a € (0,1)

1
- z[x/ (lz1 + 2ala(?| - Belal?(ll21 + zalul?] - Gelyl?]

dzxdy
||21 + zolz + y|3| — O.jz + UPI

(Ad.1)

uniformly in A.

Proof. Fix some small 8 > 0. We split the region of integration in two parts. We first consider
the integral in the region |z + y| < 8 for some fixed positive 8 > 0, which we can choose to be
as small as we desire. On this region we have, changing to polar coordinates,

dydz
/ / 121 + 22f23] = Be|zf3| {121 + 22l?| - Oelyl?] |i21 + 22z + y[?] — Belz + 92|
|=+v|<ﬂ

- I =
5 |21 + zﬂxl’l — Belz1?| | 121 + 22lyl?] — Bely)?] ||21 + 2alz + 9I?] — Belx + y)2)
Kk X Bp(~

_ /‘/ dydz
aitp, e + zalaf?l - 0clz?| |21 + zalyl?] - Oly?] [|z1 + 2aly — o] — Bely — =I?|

KB«

Coo . rsdtdsdr
<C+ Cﬁ/o/.o/i“izg + 2213| — Oer?| ||21 + 2283 — 0,87 | |21 + 225 (r, 3,1))| — 8:f(r,s,t)|

where
£(r,8,8) =% + 8 + 2racos(t) = (r — 8)? + 2rs(1 — cos()).

Now let § < 8 be a small fixed positive constant. We can choose this to be as small as we want.
We split the integral

]7 / rsdtdsdr ‘
34 “21 + zgr3| — 9:"’“"4 + 228%| — 0,52 “zl + 22f(r, 8,8))| — B f(r, 8,1)|

K

ﬂ+‘

/ / / ‘; rsdtdsdr
3 {la+ zar% 0ur?] [[21 + 2287 — 0,87 |22 + 221 (s, D))| — 6o F (7> 8,0)]

., rsdtdadr
¥ oj of 0/ Tlox + 2ar%] = O] 121 + 2203 — 687 [[z1 + 22 (r, 3,8))| — B £ (r, 5, 1)]
= H; + Hj.

For Hj, since r,s < f + §, we can find lower bounds for all the factors of the denominator using

m
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Inequality (3.3.7). For the term including both r and s we have

[lz1 + 22£(r, 8,8))| — B f(r, 8,)| > |21 + 22f(r,8,8))| ~ 6.£(r, 3,¢) (A.4.2)
>1- (% + 0¢> (r* + 8% + 2rscos(t)) (A.4.3)
>1- (% + os) (r +8)? (A.4.4)
>1-4(-§+e¢) B+68)2i=C>0, (A.4.5)

and therefore |H3| € C < oo.
For H, we use Inequalities (3.3.7) and (3.3.8)

llz1 + 22 (r, 8, 6))| = 0 £ (r,3,t)| 2 |21 + 22£(r, 8,8))| — 6. f(r, 8,1) (A.4.6)
2 C((r—s)® + 2rs(1 - cos(t)) (A.4.7)
2 C(r - s)%. (A.4.8)

Thus we have

K
|H1|$C// ;‘sdsdr2 C// sdsdr ,
(r-s)2 = r(r — s)?
B+5 B+5 0
whxchisﬁnieebthbini’sTheoremandtheﬁactthat

sk 8 o 8 oo
C// sdrds < /‘/ sdrds c sdrds
r(r — 8)? (r + 8)r3 // s <o
B48 0% 03
Wemmmswmmmﬁgrdontmmgohlkl+ki?ﬁisﬁnité.
Let

N

Dy ={(z,y) R’ xR : |z| < B,y < B, |z +y| > 8},
Dg==_{(2,1;)€R2XR2=|3‘<I9’ S <K |z+yl > 8},

Dy ={(z,y) € R* xR*: B < |z| < K, lyl < B e +y] > B},
Dy={(z,y) R xR*: B 2| <K, B <yl < K, |z +y| > B}

Over D) all the factors of the denominator are bounded below by Inequality (3.3.7); therefore
the integral is finite. Note that since |z +y| > B, we have that

lz+yl? > C+Clz+y*
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By Inequality (3.3.8)

dydz
L/ 121 + zalz3| — Oelz[?| |12 + 22lyl?] — Belyl?] [|21 + 22|z + yI?| — belz + y|?]

<C / / dyd=
s |121 + 22l2?] = 8c]z)?| |12 + 22lw)?] - Bclyl?| (a + ]z + ¥l?)

<cC /ﬂ /" /’* rsdtdsdr
S Jlds Jo 82(B 412+ s+ 2rscos(t))
<C /ﬂ/" ["* rsdtdsdr
oJs Jo 82 (a + r? + 82 + 2rscos(t))
BrK  rdsdr B ro rdsdr
C C// <C<
< /o./p s:7ri+s§< oJs 82 %

where we have used Lemma A.4.3 and the inequality

(C+1r2+ 8% -4’ > C(r* + 5°).

Similarly over the region Ds by symmetry.
Finally over the region D4 we have by Inequality (3.3.R) and Lemma A.1.3 and the last inequality

]‘/ N dydx
e 121 + 2212 - 6 12P| Ilza T 2201%] — O 91| [1z1 + zalz + 97 = Belz + y)2|

®  dedr
<of | mAmmcos>

Lemma A.4.2. Forz :=(1 - A)/ll A}, 2= A/2 K =¢/|1 -], and R(A) > a € (0,1)

F())

/ /‘ rsdrds : (A.4.9)
lzx + 73| - 9:”’”121 + 228%| - 9e82n|31 +z9(r3 + 8%)| - A, (r2 +8%)[

is bounded cbovc umfomdy in A
Proof. Fix a small positive § > 0, and split the integral
FO) = R()) + Fz((\) + BN + Fi(),

where Fy,Fy,F, and Fy, mthaimsrah over the regions [0, 8]2, [0, 8] x [, K], [ﬂ K]x 0,8,

Wheti r,s < ﬁ, by!quﬁﬁwts 3.7) and (3:3.9) the denonﬂnator is bounded below and thus
|F1(N)] € C < oo uniformly in A.
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By Inequalities (3.3.7), (3.3.8) and (3.3.10)

|[F2(N)| € / / rz'i:x.djz) / ‘/‘; w'—g%gf < oo

and similarly for F3 by symmetry.
By Inequalities (3.3.8) and (3.3.10)

rsdrds drds
Il < j / P f /p At <O <%

uniformly in A.

Lemma A.4.3. Fora>b>0

/ * dt o m
-xG :thOS(t) - \/ai - ai
Proof. We bring the integral in contour form,
/" dt f 1 dz
—xa+beos(t) " Jra+2(z+1) iz
where I is the circle of radius 1 around the origin. continuing we have

z

ﬁ;‘;ﬂmu lfm
“sﬁm‘r

f( dz

z+8+ 3,-1)(;+§- g;-1).

Recall that a > b > 0. Then it is trivial to see that the larger root

g+ V& -1>1,

(A.4.10)

a

and thus lies outside the unit disc. It requires a little more work, but it is also easy to show that

'R-Vﬁ—ﬂ<h

and thus that this root lies within the m dbc Thus the integrand has one simple singularity

within the unit disc md applymg Ca.uchy’a reaidue theorem we obtain

f;-a-«-b (z+ u i67=== I/"'FTs
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Lemma A.4.4. If for some a € (0,1), we havelA| <1 and R()) > o then

dky dkg
< D(e)log, |1 — A|7L
//|k,}<e<]kzl 11~ A+ 3ka 211 = A+ 31R2)2l11 — A+ §ik1 + k22 h + |

Proof. We first change variables, and with 2, 22 as defined previously we have

// dk; dkg
lkal<e<ikal 11 = A+ 21k 2l11 = A + 31k22lI1 — A+ 31k1 + K2[?|

|1_A_1// dk, dk;
ter <K<l 121 + 221 (3|21 + 22lk2)2]|21 + 22]k1 + k23|

For some fixed, small § > 0 we split the region of integration

// dk; dk2
|21 + 22k1|2||21 + 22|k2|3||21 + 22]k1 + k2|2
ks | < K<ka)

// dk; dk2

|21 + z2lk1|2||21 + zalk2|2||21 + zalk1 + k2)?|
ik {<Kglkal
tki+ka|<s

// dk; dk2
|21 + zolk1(2|21 + z2|k2|2||21 + 22lk1 + k22|

ki< K<lka
|k1+kzl)6
For the first integral we have
f dky dkg
2 + z3lk1 |2 2 3
ksl <K< ka! |21 ALKTER + zg{k2|2||21 + za|k1 + k2|2
1 t-ka|<é .

<C // dk; dky
|21 + 22|k 2|21 + zalkaf3|2y + 2o]ks + K]
’GIEB&( bz)

<C // dk; dk;
|21 + 22{k1 — k2|?]|21 + za|ka|3||21 + 2a}ks |3
|h!<3

<O./*""‘/a‘/" rsdtdrds '
K Jo Jox |21+ 22(r? + 82 — 2rs cos(t))||21 + 228%||z1 + 2012|
gC/“’/"/"’ rsdtdrds
Kk Jo Jox (r?+ 52 — 2racos(t))s?|z; + zar2]
and by Lemma A .4.3 and Inequality (3.3.7)
< Gf”]‘ U rsdrds
) o (8—r)(s+7)s?|z + 221‘2'

€ Cr -~ € C’K"’ < D(e)1 - Al
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Thus we have that

/ dk; dk2 Dee).
11— A+ 3R] = X+ §lk2f?||1 = A+ 31Ky + & |2]
lka|<eglka|
\k1+kal <8

Let us now consider the integral over the region |kj + k3| > 6. Then we use the following trick:
2|k1 + kz\z 2D+ \kl + kziz,

for some positive constant D, since |k1 +kg| = 4. Then by Inequalities (3.3.7), (3.3.8) and (3.3.13)
and Lemma A.4.3

/j dk; dko
|21 + z2|k1 3|21 + z2lk2|?l|21 + zalky + Ka?|

lkil<K<€|ka|
k1 +k3| 26
< // dk; dk,
|21 + 22|k1|2|{k2|2(D + [k1 + k2|?)
ey i<Klka
|kx+ka|)6

</°°/x/" rsdtdrds
—x |21 + 2272(82(D + 12 + 52 + 2rs cos(t))

drds
c f / rs
< Jz1 + zzrzisz;-/'(D +ra+ .95)i —4rlg
rsdrds -
< C./ L 2 + zgrzlszvri + 3
rdrds
< C/m/ |22 + 227'2I82

—2 — - — )1
<o [y e[ pfegm <o - N,

dk; dk,
11 A+ 3121 = X+ Hk2l2]]1 = A + 3|ky + Ko 2]

{1} <eg|kal
< D(e)log, |1 - N™*
< D(e) + D(e) log, |1 — A1

Lemma A.4.8. For 21, 2y°as defined above and ®(X) >a

dk1 dkz '
I
' 3I LZ;/W L= X+ 3Pl X+ 3Rl — X+ 3Tk + ka2l | <<

uniformly in ).
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Proof. We first change variables scaling by |1 — A] and then split the region of integration for
some fixed, small 8 > 0

_ dk; dk;
Li<-)\"'C //
) < | | |21 + z2lk1|2]|21 + 22|k1 |21 + z2]k1 + k2|2

K<kl kal
- dk; dkg
<i1-M"tc / ]
<i-X T 2l Pl zalka Pl + 22l + KalP]
K<lki|,lkal
ey +kal<B

- dk; dkg
wn-ae Jfo |
‘ | e ’11 +22U¢1]2”z1 + z:lkﬂ?“zl + ‘72“‘71 T kﬂPl
X lh+hl>ﬁ

Fortheﬁrstintegnlwehave

/] dk; dke

lzl + nlk1 )z + z3)k1|?))21 + zalka + K2l?]
Kk |, lka
|h+hl<ﬂ

// dk; dkq

|21 + zﬂk;\’l\z; + zg\hPHzl + zolky + k2m
K<)k lkal
k1 €Bs(~ka)

<C // dk; dkg
|Zx + zai’hl’llzl + zzlhl’llzl + Zalkx + kzPI

o heB,(—bs) ’
dky dkg

< m+am MWM+ammM+aMH\C
‘~:_ klf‘

bytheca.lculmominthepmofofLemmaAM
Ebrtheothmmmdmhawmmy(sas)andIemmaAM

[ ]‘ “dkydky A
l2s + za!hl’ﬂlz + Zalkxl’llzx + zzlkl + kal’l

K ‘Lﬁ;

dk1 dk2
= ¢ j/ lhl’lkzl’(D + k1 + kzl’)

‘Cf / . rsdtdrds .
Jix a"a’(D+r3 + 8° -+ 2rs cos(t))
’ ' ‘rsdrds

i = CK~' < D(e)|1 - A,

BT
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