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Abstract 

The aim of this work was to implement a thorough method for quantifying the 

errors introduced to frame-based neurosurgical stereotactic procedures by the use 

of MRI. Chang & Fitzpatrick's reversed gradient distortion correction method was 

used, in combination with a phantom, to measure these errors. Spatial distortion 

in MR images of between 1 mm and 2 mm was measured. Further analysis 

showed that this typically introduced an additional error in the coordinate of the 

actual treatment point of 0.7 mm. The implications of this are discussed. 

The main source of distortion in the MR images used for stereotaxis was 
found to be the head ring. A comparison between imaging sequences and MR 

scanners revealed that the spatial distortion depends mainly on the bandwidth 

per pixel of the sequence rather than other differences in the imaging sequences. 
By comparison with a phase map distortion correction technique, the imaging 

parameters required to allow successful distortion correction with the reversed 

gradient method were identified. The most important was the use of full Fourier 

spin echo acquisitions. 
The reversed gradient correction method was applied to two contemporary 

EPI techniques. Considerable improvement was seen in the production of ADC 

maps after the images had been corrected for distortion. The method also was 

shown to be valid in application to BOLD fMRI data. 



Chapter 1 

Introduction 

The field of Magnetic Resonance Imaging (MRI) has experienced rapid growth in 

the 25 years since its foundation. In particular, its application as a tool for medical 
imaging has led to many advances in the understanding and diagnosis of disease 

processes. Its unique view of the living human body, both anatomically and 

physiologically, has allowed new insights and helped to forge a new relationship 
between men and women and their bodies. 

The range of medical disciplines which benefit from the extra information 

contained within a MR image is wide and expanding. However great the potential 

gain from applying MRI to a particular field, it is still vital that its use is validated. 
The role of physics research within the field of MRI is not just limited to the 

physics of the production of MR images or various MRI techniques, but also to 

the use of that knowledge and understanding to study the suitability and validity 

of new applications. 
One of the first regions of the body to be imaged with MRI, and for which 

MRI remains a primary diagnostic tool, is the brain. The high spatial resolution 

and excellent contrast between different tissues, allows MRI to provide localized 

diagnostic anatomical information unavailable from other imaging modalities. 
In the same imaging session, MRI can also provide a plethora of physiological 
information, covering blood flow, brain function, and relative chemical content, 

as well as information directly related to the fundamental physical parameters 
involved in MRI. The basic physical principles of MRI are described in Chapter 2. 

The information available in neurological MR images is of direct interest to 

neurosurgeons, among others. Imaging of the brain plays an important role 
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1. Introduction 

in planning a neurosurgical procedure. The more precisely the location and 
dimensions of the surgical target is known, the less invasive the surgery can 
be. A number of systems have been developed for reproducibly and accurately 

physically locating a three dimensional point within the human brain. This is 

known as stereotaxis. If the target can be visualized using a medical imaging 

technique, the target position may be transferred from the images onto the 

stereotactic system and used to guide the neurosurgeon during surgery. Surgery 

may take the form of an invasive operation, or the concentrated delivery of 
high energy x-rays from an external source to sterilize the target. Traditionally, 

stereotactic procedures have been planned using x-ray imaging modalities. It 

would be desirable to use MRI in this process. Further details of performing 

stereotactic procedures planned from medical images are given in Chapter 3. 

However, the use of MRI in the planning of stereotactic procedures is not 

without its problems. Conventional stereotactic systems using x-ray images usu- 

ally require apparatus to be attached to the patient for the duration of the 
imaging session. MRI is sensitive to metallic objects placed close to the region 
being imaged. Therefore, modified apparatus is required. Furthermore, MR im- 

ages usually exhibit some degree of spatial shift at various points throughout the 

image. This results in images which may be distorted and spatially incorrect. 

While this is not usually a problem in images to be interpreted diagnostically, 

it may result in an incorrect target being calculated in a stereotactic procedure 

planned from MR images. 

The aim of this thesis is twofold. Firstly, to implement methods to quantify 
the amount of spatial distortion present in MRI and if possible correct it. This 

may then be applied to MR images acquired especially for planning stereotactic 

neurosurgery. Any errors introduced by the spatial distortion in the MR images 

can be measured and their effect discussed. MRI has been used for stereotactic 

planning in a few centres throughout this decade, and the effect of spatial dis- 

tortion has been studied previously. However, it is felt that much of this previous 

work either has considered the errors from spatial distortion in isolation, has not 

measured the distortion using representative apparatus, has not considered the 

effects of different MRI acquisition schemes or MR scanners, and has not con- 
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1. Introduction 

sidered the source of spatial distortion. These points are addressed in this thesis 
hopefully forming a more coherent analysis. The work is outlined below. 

Sources of spatial distortion in MRI are outlined in Chapter 4. A method 

proposed by Chang & Fitzpatrick17 for correcting spatial distortion (the reversed 

gradient correction method) is implemented. This method can be used to quan- 

tify the amount of distortion present, as well as to produce corrected images. 

In this work it is used to measure the amount of distortion caused by various 
items of MRI compatible stereotactic apparatus so as to assess their individual 

contribution to spatial distortion. 

Spatial distortion is present in all MR images and may cause various problems 
depending on the subsequent use of the images. Distortion is usually worse in 

Echo Planar Imaging (EPI) acquisitionsioi and often causes problems when these 

images undergo further processing. Two contemporary fields where this is the 

case are the measurement of the diffusion of water within the brain, 58 and the 

detection of localized brain activation by a technique called BOLD functional MRI 

(fMRI). 56 As well as applying the distortion correction method to MR images for 

use with stereotaxis, it was also applied to correct EP images acquired for these 

two purposes. This is reported in Chapter 4. 

A number of methods are available to correct spatial distortion in MRI. Chap- 

ter 4 also briefly describes a comparison performed between the reversed gradient 

correction method and a phase map correction method. As well as comparing 

correction of real MR images, a computer simulation of a MRI acquisition was 

implemented in order to individually vary various parameters. This allowed the 

imaging parameters required for optimal correction to be determined, as well as 

the limitations of both methods to be appreciated. 
Finally, Chapter 4 describes two modifications to the reversed gradient dis- 

tortion correction method which theoretically appear to improve the correction 

of distortion present in a volumetric MRI acquisition. 
In order to aid the measurement of distortion present in MR images used for 

stereotaxis, a mock stereotactic set-up was constructed for MR imaging. This 

involved a plastic 'phantom' head surrounded by the MR compatible stereotactic 

apparatus. The actual dimensions of the phantom were determined by imaging 
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1. Introduction 

it with x-rays. This allows the spatial distortion in MR images to be measured 
by two independent methods: by direct comparison with the actual dimensions 

of the phantom, and by applying the reversed gradient correction method. This 

is reported in Chapter 5. With a relationship established between distortion 

from direct phantom measurements and from the reversed gradient distortion 

correction method, the distortion within a patient's brain could be estimated. A 

small number of patients undergoing stereotactic procedures were imaged using 
MRI as well as x-ray techniques. The reversed gradient correction method could 
be used to quantify the distortion present in the patient's brain compared to the 

phantom. 
MR images may be acquired using a wide range of contrast mechanisms. 

In identifying a particular target in the brain, one contrast mechanism may be 

preferable. A comparison is performed using the stereotactic phantom in order to 

assess whether the amount of spatial distortion varies with MR imaging sequence, 

and the results presented in Chapter 5. It also was possible to repeat the same 

comparison using a different MRI scanner with the same magnetic field strength. 
The comparison between sequences and between scanners not only verified the 

validity of their use, but also help to identify the sources which cause the spatial 
distortion. 

With methods for measuring spatial distortion in MR images used for stereo- 

taxis established, Chapter 6 considers the effect of these errors on the final 

stereotactic treatment coordinate. It is this final error which is needed to con- 

vince neurosurgeons of the validity in using MRI. 

This thesis presents a thorough method for measuring the spatial distortion in 

MR images used for the planning of frame-based stereotactic procedures and the 

effect of that distortion on the final treatment coordinate. It also was possible to 

apply the methods used to study the validity of the reversed gradient correction 

method and to apply it to correct distortion in contemporary EPI techniques. 

4 



Chapter 2 

An Introduction to Nuclear 

Magnetic Resonance Imaging 

2.1 Introduction 

The phenomenon of Nuclear Magnetic Resonance (NMR) was first reported in 

1946 by Bloch et a!. 6 and Purcell et al. 93 Two discoveries in 1950, that of 
the spin echo by Hahn, 33 and the chemical shift by Dickinson25 and Procter & 

Yu, 92 allowed NMR to be used as a high resolution non-destructive spectroscopic 

technique. In 1971, Damadian23 reported that a parameter measurable by NMR 

(T1 recovery) may have a larger value for cancerous tissue than for healthy tissue 

in vitro. This led to an interest in applying NMR to medical diagnosis. As 

the impact of x-ray Computed Tomography (CT) imaging was beginning to be 

felt in the medical world, in 1973 methods for spatially localising NMR signals 

were proposed (independently by Lauterbur57 and Mansfield & Grannell66). This 

quickly lead to the ability to produce two dimensional NMR images of a sample. 
While these were small at first, as the technology of producing strong uniform 

magnetic fields improved, samples of up to nearly one metre in diameter could 
be imaged. By 1980, with the advent of imaging schemes based on spin warp28 
Fourier imaging55 techniques, diagnostically useful medical NMR imaging of the 
human body became a reality. 37 Once in a medical imaging environment, the 

term Magnetic Resonance Imaging (MRI) became increasing common to describe 
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2. An Introduction to Nuclear Magnetic Resonance Imaging 

NMR imaging of humans and animals. The demands of the medical community 

along with those of the practicalities of mass production of the hardware required 
have helped to fuel the rapid expansion of MRI throughout the last two decades, 

to the stage where it now is seen as an equal diagnostic partner with CT. However, 

while the growth of new applications and techniques involving CT has slowed, 

the range of new MRI techniques and applications continues to grow rapidly, 

suggesting a diverse, interesting and exciting future. 

2.2 Fundamentals of NMR 

Nuclei which possess spin and an odd number of nucleons are observed to have 

a non-zero angular momentum, J. This results in a nuclear magnetic moment, 

µ, such that µ= ryJ where ry is the gyromagnetic ratio, which is a constant for 

a particular isotope (see Table 2.1). In the absence of an external magnetic field 

the eigenfunctions describing a nucleus are energetically degenerate. However, 

if it is placed in a magnetic field, Bo, then Zeeman splitting of its energy levels 

occurs. The direction of Bo may be used to define the direction of az axis. 
Quantum Mechanics predicts the shift in each energy level as 

Em = -m, zryhBp 
ý2.1ý 

where the eigenvalue mz = -I, -(I - 1), ... ,I-1, I and h is Planck's con- 

stant divided by 2ir. For a proton the spin quantum number I=2 and so 

mz = f2 (i. e., two energy levels, denoted 'spin up' and 'spin down'). 

A transition between these energy levels will occur with the absorption or 

emission of a photon with energy two (where wo is the angular frequency of the 

photon) where the energy of the photon equals the difference between the energy 
levels, i. e., 

ý 

Awo =12 -y Bo --12 yhBo 

wo = yBo (2.2) 

Thus the frequency of the electromagnetic radiation involved in a transition 

between the two energy levels is directly proportional to the magnitude of the 

magnetic field strength Bo and is known as the Larmor frequency (see Figure 2.1). 
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Figure 2.1 Zeeman splitting of proton energy levels 
under the influence of a magnetic field B0. 

Figure 2.2 The precession of a magnetic moment p 
around a magnetic field Bo aligned parallel to the z axis. 



2. An Introduction to Nuclear Magnetic Resonance Imaging 

The above description can also be given from a consideration of classical 

mechanics. This is useful as it allows certain phenomena to be described using a 

more visual picture. The application of a magnetic field, Bo, to a nucleus with 

angular momentum J results in a torque, µx Bo, being exerted on it. From the 

same analysis as that performed on a spinning gyroscope, the nucleus remains 
tilted at the same angle relative to the magnetic field, but precesses around an 

axis parallel to Bo (see Figure 2.2). The frequency of rotation can be calculated 

and is found to be the same as in Equation 2.2. If an electromagnetic field of 
this frequency is applied to the sample perpendicular to Bo, resonance with the 

magnetic field will occur and the angle of tilt of the magnetic moment relative 
to Bo will be increased. Electromagnetic radiation of other frequencies will not 

resonate and so not alter this angle. 
In practice it is always a collection of nuclei which is considered rather than 

a single nucleus. A sample can be considered as a group of non-interacting 
nuclei. In the absence of an external magnetic field, the degenerate energy state 
of the nuclei (or classically, the random orientation of the individual magnetic 
moments) result in no overall magnetization of the sample. When the sample is 

placed in a magnetic field, Zeeman splitting of the nuclear energy levels results in 

populations of nuclei in the various energy levels, being described by Boltzmann 

statistics. For a proton (with two energy levels) the difference in the fraction of 

nuclei in the higher energy state ('spin down') to the lower ('spin up') is given 
by 

An 
= tanh ( 

kT 0) (2.3) 

where k is Boltzmann's constant, T is the temperature, On is the difference 
between the number of nuclei in the lower and upper energy levels, and n is the 
total number of nuclei in both energy levels. It is interesting to note that at the 

temperature of the human body (about 310 K) in a magnetic field of 1 T, the 
fraction of proton nuclei in the higher energy state79 is roughly 3.3x10-6. 

Due to the differing populations in each energy state, a net magnetization of 
the sample, Mo, is produced. Classically, this is the sum of the magnetization 
due to the precessing magnetic moments. When equilibrium has been achieved 
in the presence of Bo, the phase of each precessing nuclear magnetic moment is 

7 



2. An Introduction to Nuclear Magnetic Resonance Imaging 

uncorrelated to other magnetic moments and so no magnetic moment would be 

expected in the x-y plane resulting in Mo being parallel to Bo. 

As 7hBo « kT the fraction ° (called the polarization) can be approximated 
to 

An 
ti ryhBo 

n 2kT 
(2.4) 

The net magnetization of a sample of nuclei, each with magnetic moments µ 

would be Mo = µ0n. As µ= ryJ and J is quantized in units of äh (for a 

proton) then Mo = 2'yhin or 

Mo -- 
n72 h2 Bo 

4kT 
(2.5) 

The nuclear susceptibility X is defined as the ratio of Mo to Bo and so in this 

case 

n72h2 
4kT (2.6) 

NMR involves manipulation and detection of the populations of nuclei in 

these energy levels in a magnetic field by the use of electromagnetic radiation 

of an appropriate (resonant) frequency. Nuclei which take part in this NMR 

are commonly referred to as 'spins'. The amplitude of the NMR signal received 
from the sample will depend on the difference in population between the energy 
levels. The small value of On results in an inherently poor sensitivity seen 
in NMR experiments compared to other spectroscopic techniques, as in NMR 

a signal effectively is received from only one nucleus in about 105. However, 

Equation 2.3 shows that the NMR sensitivity can be increased by increasing Bo 

or by decreasing the temperature of the sample. 
As will be described later, a MR image is composed of voxels, of which 

a typical size in a proton image of a human is 0.010 ml. In humans, water 

constitutes between 60% and 90% of the weight of soft tissues, therefore a voxel 

may typically contain 0.0075 ml of water. 1 mole of water has a mass of 18 g 

and contains two moles of hydrogen in a volume of 18 ml. Therefore, the typical 

excess in the number of proton spins per voxel in the lower energy state compared 

to the higher state, due to exposure to a static 1T magnetic field, would be 

2x(6.02x1023) x 0.0075 x (3.3x10-6) = 18 = 1.7x1015 
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2. An Introduction to Nuclear Magnetic Resonance Imaging 

Nuclear spin Gyromagnetic Measurement sen- 
Species quantum ratio 2 

NMR sensitivity 
sitivity relative to 

relative to 1H 
number I MHzT-1 1H 

1H 2 42.573 1 1 

13C 2 10.705 2.5x10-4 3x10-7 
19F 2 40.052 8.5x10-1 9x10-5 

23 Na 2 11.263 1.3x10-1 1x10-3 
31p 2 17.237 8.3x10-2 4x10-5 

Table 2.1: Some NMR Characteristics of Nuclei Commonly of Interest in MRI. 53,79 
NMR Sensitivity is the relative size of the NMR signal per nucleus at constant Bo. 
Measurement Sensitivity is the product of the NMR Sensitivity with the relative abun- 
dance of the particular nucleus in the human body, and so gives an indication of the 
size of the signal obtainable in MRI. 

In the description of NMR given in this section, the magnetic field, B0, was 

responsible for both causing Zeeman splitting of nuclear energy levels, and the 

population difference between those energy levels (i. e., the magnetization of the 

sample). As shown above, the amount of polarization obtained by placing a 

sample of water in a magnetic field of 1T is only 3.3x10-6. While it is usual 
in practice to use the same magnetic field to polarize and perform NMR, it 

need not be the case. The spins may be polarized by a magnetic field of one 

strength and NMR may occur in a magnetic field of a different strength. Other 

methods of magnetizing samples than by placement in a magnetic field also 

exist. It has been known for some time that nuclei in a noble gas in a magnetic 
field may be polarized to a high degree (close to 100%) by exposure to a laser 

beam of an appropriate frequency. This allows NMR of high sensitivity to be 

performed on these gases. As the magnetic field used is only required to cause 
Zeeman splitting and not the polarization itself, a range of field strengths may 
be used and in particular high magnetic fields are not required as the amount of 

polarization is independent of Bo. 

2.2.1 Spin-lattice and Spin-spin Relaxation 

If a sample is placed in a static magnetic field Bo and a magnetic field B1 

rotating in the x-y plane at the Larmor frequency is applied, photons will be 
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2. An Introduction to Nuclear Magnetic Resonance Imaging 

absorbed in the transfer of spins from the lower to the higher energy state. 
This results in a change in the magnetization of the sample. In classical terms, 

the electromagnetic radiation (applied for a time t) would resonate with the 

precessing magnetic moments and tip them away from the z axis. This results11' 
in Mo being tipped through an angle B where B= -yBit (see Figure 2.3). 

Following cessation of the electromagnetic field, the relative populations of 
the energy levels return to their equilibrium state through time with the emission 

of photons. This energy is absorbed and dissipated in the molecules surrounding 
the nucleus, and this surrounding environment is termed the lattice. This return 
to equilibrium is named spin-lattice (or longitudinal) relaxation and is described 

by an exponential recovery with a time constant T1. In classical terms, spin- 
lattice relaxation can be described as the return of Mo to its equilibrium position, 

parallel to Bo. 

In the classical description, the application of resonant electromagnetic radi- 
ation is thought of as tipping Mo away from the z axis by an angle 0. Thus, 

components of Mo will be seen in the x-y plane. During the application of the 

electromagnetic field, all magnetic moments will be resonating in phase with the 
B, field. However, after its cessation, each nucleus will precess freely with a 
frequency which depends on the local magnetic field which it experiences. Due 

to interactions with the magnetic moments of neighbouring nuclei, the local 

magnetic field will be slightly inhomogeneous from nucleus to nucleus. Hence 

each nucleus will precess with a slightly different frequency. The result will be a 
dephasing of the magnetic moments in the x-y plane, resulting in a decrease in 

the net magnetization in this plane. The irreversible loss of net magnetization 
in the x-y plane is called spin-spin (or transverse) relaxation and is described as 

an exponential decay with time constant T2. 

In practice the local magnetic field depends on more than contributions from 

neighbouring magnetic moments. A larger variation is produced by inhomo- 

geneities in the external magnetic field, Bo, which causes spins to dephase more 

rapidly than they would otherwise. The time constant describing the observed 
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a. b. 

Figure 2.3 The tipping of Mo away from the z axis under the influence 
of electromagnetic radiation at the Larmor frequency in the x-y plane. 
a) in the laboratory reference frame. 
b) in a reference frame rotating at the Larmor frequency. 

900 
d ý ý CL 

U- 
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T2* decay envelope 
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Figure 2.4 Free Induction Decay, M,, in the laboratory frame, after the 
application of a 900 RF pulse. The FID envelope is T2' exponential decay, 
and would be the NMR signal observed in the rotating frame. 
T, recovery of M. occurs more slowly than T2` decay. 



2. An Introduction to Nuclear Magnetic Resonance Imaging 

dephasing is denoted by T2 and it can be related to T2 by 

1111 
T2 T2 

+ 
, magnet 

+ 
, susceptibility 

+ (2.7) 

22 

It is found that the relaxation time constants Ti and T2 depend on a number 

of parameters, indeed it was the belief that Tl has a different range of values 
for normal tissue than for cancerous tissue that lead to the initial involvement of 
NMR in medical diagnosis. 

The exponential Tl and T2 relaxations described above may be combined into 

a single set of equations which describe the behaviour of the spins in a sample 

through time under the influence of Bl and Bo, in the rotating frame of reference. 
These are the Bloch equations'5, a6 and are given below (Equation 2.8). While 

these equations are extremely important in NMR, they are not used directly by 

the work in this thesis and so will not be discussed further. 

dMx 
-_ (Bo w1M. 

dt 7My 
'y J Ta 

dýy_ryMZBI-ryMýýBO-wl 
- 

ýy 
YJ 

dMz 
_ 

(Mz - M°) 
dt -7MyB1 T, 

(2.8) 

MRI is mainly concerned with imaging biological systems where the majority 

of molecules are in the liquid state, Also, due to the high proportion of water 
in tissue and the relatively high NMR sensitivity of hydrogen compared to other 

elements (see Table 2.1), MRI is almost exclusively applied to imaging water. 
Hence, unless otherwise stated, the following description will only consider NMR 

of protons in liquids. 

The values of Ti and T2 for free water are both of the order of several seconds 

at a magnetic field strength of the order of 1 T. However, once the water is placed 
in an environment such as a biological system, or is bound with other molecules, 

then the values for these two parameters are reduced so that Tl is typically of the 

order of hundreds of milliseconds and T2 is of the order of tens of milliseconds. 
The reduction of T2 can be explained by noting that the resonating molecules 

in tissue have a reduced mobility. Hence they will experience a particular local 

inhomogeneous magnetic field for longer. The greater mobility of the identical 
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2. An Introduction to Nuclear Magnetic Resonance Imaging 

molecules in free water result in an 'averaging out' of some of the local field 

inhomogeneities caused by neighbouring nuclei, leading to a larger T2 value for 

a particular region of the sample. 
Spin-lattice relaxation requires a transfer of energy between the spins and the 

lattice, which is mediated by fluctuations in magnetic field caused by molecular 

motion. This transfer will be more efficient when more molecular motion can be 

resolved into a fluctuation at the Larmor frequency, resulting in a smaller value 
for T1. Hence spin-lattice relaxation is also dependant on molecular motion and 

mobility. The fluctuating magnetic fields can have various sources, including res- 

onating nuclei, paramagnetic molecules, and chemically shifted molecules. This 

results in T1 values which depend on the local chemical environment of the spins. 
Variations in T1 values are observed with the value of Bo. An increase in 

Bo generally results in an increase in T1 for a particular sample. Variations of 
T1 with Bo would be expected because, as described above, T1 partly depends 

on mobility with respect to the Larmor frequency. A change in Bo results in a 
different Larmor frequency relative to the same molecular motion and hence a 
different amount of stimulated emission. As well as increasing with Bo different 

values of T1 for different samples are seen to converge to the value of T1 observed 
for free water. However T2 is not found to vary greatly with various values of 
Bo. 

Descriptions of the relaxation processes in a biological system are complex 

and incomplete. A simple hypothesis (the two phase model68) considers water 
in tissue to consist of free water and water bound to macromolecules (e. g., 

proteins), in various proportions. The bound water, having reduced mobility, has 

a shorter T1. An exchange of water molecules between the free and bound states 
is assumed. If this exchange is fast, (as it would appear to be in simple solutions) 
then the observed T1 can be approximated by considering the fraction of free and 
bound water, 79 such that 

11 
+bý 

111 
7"1 ' ýree Tbound _ 7-+lree) (2.9) 

where b is the fraction of bound tissue water, VIree is the spin-lattice relaxation 

time for free water, and Tb°°"d is the spin-lattice relaxation time for bound water. 
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Hence - is directly proportional to the fraction of bound water. However, this 

model is not always a suitable one, and does not explain the multi-exponential 

relaxation which can be observed, suggesting that a more complex process is 

occurring. 
The dependence of Tl on proportions of free and bound water led to initial 

hopes that NMR could be used to discriminate between tissues, especially be- 

tween healthy and cancerous tissues. 23 Large variations are observed between 

different tissues and differing pathology resulting in high contrast in MRI be- 

tween tissues compared to other diagnostic imaging tools, especially between 

soft tissues and white and grey matter in the brain. However, characterization of 

pathology by absolute Tl and T2 values has not yet proven to have any clinical 

value. " 

2.2.2 NMR signal 
As described in the previous section, the application of resonating electromag- 

netic radiation, B1, to a sample of nuclei in a magnetic field, B0, will tip the net 

magnetization, M0, away from the z axis. After the cessation of the electromag- 

netic radiation the magnetic moments will relax back to their equilibrium state. 
If any component of Mo is present in the x-y plane then due to its precession 

around the z axis, electromagnetic radiation will be emitted. In NMR imaging, 

magnetic field strengths of the order of a Tesla are used, resulting in a Larmor 

frequency for the proton in hydrogen of the order of 107 Hz. A photon of this 
frequency lies in the radiowave section of the electromagnetic spectrum. One 

method of detecting this is to place a coil with its axis in the x-y plane into 

which an oscillating e. m. f. is induced. This e. m. f. is the NMR signal, and all 

other NMR parameters (such as Tl and T2) must be deduced from it. 
For NMR imaging, short bursts of electromagnetic radiation are usually ap- 

plied to the sample. These are normally termed radiofrequency (RF) pulses, and 

their strength and duration define the angle 0 through which Mo is tipped, where 
0 ='yBlt. Thus a 90° pulse would result in Mo being tipped from the z axis 
into the x-y plane (see Figure 2.3). 

The rotating magnetic field B1 ideally would be applied as a circularly po- 
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larized RF pulse. Practically, the RF pulse is often only linearly polarized. This 

magnetic field can be resolved into two counter-rotating fields of frequency w, 

one of which is rotating in the same sense as the spins and thus resonates with 

them. The other field has no result other than reducing the efficiency of the RF 

pulse. 
After the application of a RF pulse which results in a component of Mo in the 

x-y plane, a NMR signal can be observed, either in the same coil which supplied 

the RF pulse, or in a separate receiver coil. The signal obtained is usually called 

a Free Induction Decay (FID) as it shows spin-spin decay in the absence of input 

RF (see Figure 2.4). The individual oscillations in the signal correspond to a 

rotation of Mo around the z axis. 
The dephasing of individual magnetic moments in the x-y plane is charac- 

terised by T2 decay, which occurs more rapidly in tissue water than Tl recovery. 
As the NMR signal is from a rotating net magnetization in the x-y plane, the 
duration of each FID is governed by T2*. The initial amplitude of the FID depends 

on the density of resonating protons in the sample, and on the magnitude of the 

component of Mo in the x-y plane. 
It is usual to convert the NMR signal into a frame of reference rotating at the 

Larmor frequency. This is achieved by passing the signal through two phase sen- 

sitive detectors (p. s. d. ) prior to digitization (known as quadrature detection). 79 

Each p. s. d. takes a reference signal at the expected Larmor frequency, with the 

phase of the reference signal to one p. s. d. 90° different to that of the other. 
If an input NMR signal is in phase with the reference then a positive output, 

proportional to the input signal strength, is obtained. If the phases are 900 or 
270° apart then there is no output, and if they are 180° apart a negative output 
is obtained. Hence the frequencies present in the output of a p. s. d. are the dif- 

ference between the frequencies of the input source and the reference frequency. 

If the reference signal is at the same frequency as the spins then one channel 

will show an exponential decay (the envelope of the FID, with time constant T2*, 

often called the real signal) and the other channel will contain no signal (the 

imaginary channel) as there is no component of the NMR signal which is 900 out 

of phase with the reference. In practice, not all the nuclei will be spinning at the 
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same frequency (for the same reasons as T2 ; T2) and so the signal will contain 

a range of frequencies, resulting in both real and imaginary signals. Acquiring 

both real and imaginary signals results in af improvement in the signal to 

noise ratio (SNR) during subsequent processing due to the ability to distinguish 

between positive and negative frequencies relative to the reference frequency. 

For NMR imaging techniques it is often necessary to excite only those nu- 

clei spinning with a certain frequency. This requires a RF pulse with a small 
bandwidth of frequencies. If this is desired (i. e., a rectangular step function 

in frequency space) then it is necessary to apply the RF pulse modulated by a 

sinc envelope (as a sinc function is the Fourier transform of a single period of a 

square wave). In practice, the application of finite sinc modulation still results in 

undesirable frequency components, hence the sinc function often is modulated 
further, typically with a Gaussian function. 

2.2.3 Chemical Shift 

Perturbations in the local magnetic field experienced by individual nuclei can be 

caused by interactions with the electrons in the surrounding chemical environ- 

ment. This results in a reduction in the local magnetic field, resulting in a new 
local magnetic field strength B where 

B= (1 - Q) Bo (2.10) 

where or is the shielding parameter. This results in the nucleus resonating with 

a different Larmor frequency, w. The chemical shift, d, is the fractional shift 
in Larmor frequency relative to a reference compound (often tetramethylsilane 
if the chemical shift of 1H is being considered) expressed in parts per million 
(p. p. m. ). That is 

6- 
W- Wref 

X 106 (2.11) 
Wref 

In MRI the chemical shift manifests itself mainly in the different frequencies 

obtained from free water (H20) and fat (containing CH2), the two main sources 

of proton NMR signals in biological tissue. At 1.5 T, it is observed that the 

resonant frequency of the hydrogen in fat is about 224 Hz below that of the 
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hydrogen in water, since 6 -- 3.5 p. p. m. During image construction, considered 
below, this can result in two shifted, but overlapping, images; a water and a 
fat image. Also, the high intensity from fat in many MR images can often 

mask abnormal signal from juxtaposed pathology. Therefore it often is desirable 

to selectively acquire a NMR signal from either water or fat and a number of 

methods exist to allow this to be performed during MRI acquisitions. ' 5.79.85 One 

such method is described at the end of the following section. 

2.2.4 Pulse Sequences 

The FID NMR signal described above only contains information concerning p 
(resonating proton density, from its initial amplitude) and T. In order to gain 
information relating to Ti and T2, as well as other parameters which may be 

measured by NMR, a sequence of RF pulses can be applied to a sample, resulting 
in the amplitude of the NMR signal being weighted by the required parameters. 

Saturation Recovery 

The simplest sequence used in MRI is known as saturation recovery. In this, 90° 

RF pulses are applied to the sample every TR seconds (see Figure 2.5). If TR 

is large compared to the sample's Tl then most of the spins will have relaxed 

and the amplitude of each FID will depend on p. If TR is approximately equal 

to Tl then not all of the spins will have relaxed by the time that the subsequent 
90° RF pulse is applied. Fewer magnetic moments will be orientated along the z 

axis to be tipped into the x-y plane, resulting in a FID with a smaller amplitude. 
The actual value of Tl could be obtained by repeating the pulse sequence with 

a different TR, and using both signals in the following equation. The amplitude 

of the FID's obtained from this pulse sequence, Se,., (after the first few FID's) 

can be described by 

S97 ap11-expl TR11 
(2.12) T 
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Inversion Recovery 

To improve the Tl weighting, the inversion recovery sequence can be used. In 

this, a 180° RF pulse is applied at a time TI before the 90° pulse of the saturation 

recovery sequence (see Figure 2.6). After the 180° pulse the spins relax from 

being aligned parallel to the -z axis back to being aligned with the +z axis 

with spin-lattice interactions, but with twice the range of the saturation recovery 

sequence. The 90° pulse tips and rephases the z axis component of Mo into the 

x-y plane so that its FID can be observed. The amplitude of the FID obtained 
from inversion recovery, S, can be described by 

Si,. ocp(1-2exp(-TI 
) 

+exp( 
7'R)) (2.13) 

and if TR » Tl then 

Si,. xp(i-2exp 
(-v)) 

(2.14) 

The signal may be negative or positive. MR images are usually displayed as 

modulus images; in this case the negative portion is mirrored around the zero 
level. 

Spin Echoes 

To gain information on the value of T2 for a sample, a sequence involving an 

echo must be used, such as the spin-echo pulse sequence described in Figure 2.7. 

The initial 90° pulse tips Mo into the x-y plane. The transverse magnetization 
then starts to relax with a time described by T2*. To extract T2, effects due to 

the magnetic field inhomogeneity need to be cancelled out. This is achievable 

as they depend on the spatial location of the spins. By applying a 180° pulse 
(after a time ZTE) all the magnetic moments are effectively mirrored about an 

axis in the x-y plane (see Figure 2.8) Each stationary nucleus still feels the same 
local magnetic field as it did before the 180° pulse, and hence still rotates at 
its own Larmor frequency. This results in a 'refocusing' of magnetic moments 

at a time TE after the 90° pulse, producing a NMR signal called an echo. The 

amplitude of this echo will depend on T2 (because T2 dephasing can not be 

refocused, as its source is not spatially fixed) as well as Tl and p. Repeated 1800 
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pulses (the Carr-Purcell-Meiboom-Gill (CPMG) sequence 16,72) result in repeated 

echoes which allow any multiexponential T2 behaviour to be seen. The envelope 

covering the echo peaks is the T2 decay curve, and after at least one repetition 

of the pulse sequence, its amplitude at the first echo, SSe, is given by 

TR - 
T2 TR) ( TE S, se oc p1-2 exp - ý, 1 

+ exp 
ý- 

7'i / 
exp - 7,2) 

(2.15) 

If TE « TR then 

T 
SSe ap 

ý1 
- exp 

\ 7, 
R) 

J 
exp 

(_T 
T2 / 

and if TR » Tl 

(2.16) 

S3eocpexpl-7, 
E) (2.17) 

The spin-echo pulse sequence, with or without an initial inversion pulse, is one 

of the most popular sequences to be used on clinical MRI units. By varying TI, 

TR, and TE, the NMR signal can be weighted more or less by p, T1, or T2. Long 

TR's and short TE's with no inversion pulse result in p weighting; short TE's 

and either short TR's or an inversion pulse result in Tl weighting; long TR's 

and long TE's without an inversion pulse result in T2 weighting. For imaging 

biological tissue using a static magnetic field of about 1T then typical ranges for 

TR are 300-2000 ms, TI = 100-1200 ms, and TE = 5-100 ms. If a sample has 

a short T1 then after the pulse sequence repetition time TR, more of the spins 

will have relaxed to be excited in the next pulse, resulting in a larger NMR signal 

amplitude. Hence in a saturation recovery MR image, short Tl areas usually 

appear bright. A short T2 results in the amplitude of the echoes decreasing more 

rapidly and so in an image, short T2 areas normally appear dark. 

The flip angle of the refocusing RF pulse does not need to be 180° for a 

spin echo to form. Supposing the first RF pulse tips the spins from the z axis 

to the +x axis in the x-y plane. Through a time 2E, the spins will dephase by 

T2 decay. In the rotating frame of reference, the slow spins will move towards 
(say) the -y axis and the fast spins towards the +y axis. Another RF pulse along 

the +x axis will tip the component of spins remaining along the x axis back to 

the z axis while the component of spins along the y axis will remain in the x-y 
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plane. These will form a spin echo along the -y axis after a further time T2 
. 

Spin 

echoes formed by refocusing RF pulses of less than 180° are often called Hahn 

echoes. The amplitude of the echo will be a maximum for a 180° RF refocusing 

pulse; less for lower flip angles. 

Stimulated Echoes 

If three or more non-180° RF pulses are applied in rapid succession, an echo is 

formed in addition to the Hahn echoes described above. If, after the Hahn echo 
described above, a further RF pulse is applied, the spins which had been tipped 

along the z axis by the second RF pulse will be tipped back into the x-y plane, 

along the x axis. While they had been 'stored' along the z axis, they had been 

experiencing slower Ti relaxation rather than T2 decay. Following the convention 

used for the description of the Hahn echo above, the fast spins will fall on the 

+x axis and the slow spins along the -x axis. This will combine to form a new 

echo along the -x axis at a time T2 where T2 is the time between the first two 

RF pulses. This is called a stimulated echo. The third RF pulse will also cause 
Hahn echoes; one from the first RF pulse and one from the second RF pulse. The 

third RF pulse will also refocus the Hahn echo cause by the first two RF pulses, 

resulting in a secondary Hahn echo. In order to observe all these echoes, the 

time between the first two RF pulses must be different from the time between 

the second two RF pulses; if these times are the same, some echoes will occur 

at the same time and interfere with each other. This is shown in Figure 2.9. 

An appreciation of various echo processes is important in MRI. As will be 

seen below, to acquire a MR image, RF pulses may be applied in rapid succession 
(i. e., short TR). Stimulated and secondary echoes may appear when they are not 

required and interfere with subsequent NMR signals, which in turn may result in 

artefacts in the final MR image. Even for MRI acquisitions which use 90°-180° 

RF pulses, unwanted echoes may still cause a problem. Slice selective RF pulses 
(described in Section 2.3.1 below) never result in a uniform flip angle across the 

slice profile, especially at the edges, and so an imaged slice will always contain a 

small number of spins with flip angles lower than expected. 
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Gradient Echoes 

An echo formed by the application of a RF pulse is termed a spin echo. A similar 

echo can be formed by applying an additional relatively small spatially varying 

magnetic field to the sample. This additional magnetic field is termed a magnetic 
field gradient. Application of a magnetic gradient increases the heterogeneity of 
the local magnetic field and hence causes dephasing of the spins at an increased 

rate. Spins that experience an increased local magnetic field rotate with a higher 

Larmor frequency, and vice versa. This dephasing appears similar to that which 

occurs as a result of T2 decay but the magnetic field gradient causes it to occur 
far more rapidly. If the magnitude of this magnetic gradient is then reversed 

while its spatial distribution remains the same, then the spins which experienced 

an increased local magnetic field now experience a lower magnetic field, and so 

now rotate with a lower Larmor frequency. Spins which had rotated more slowly 

now rotate more rapidly. As these spins rephase, an NMR signal is observed and 
termed a gradient echo (see Figure 2.10). In practice, magnetic field gradients 

may be applied and reversed in order to form a gradient echo in a shorter duration 

of time than the application of a 180° RF pulse, especially in the case of acquiring 
NMR echoes for the formation of a MR image, described in later sections. This 

results in shorter achievable TE times for gradient echoes compared with spin 

echoes, which allows the faster acquisition of a MR image. However, a gradient 

echo is not as ̀ complete' as a spin echo. While a spin echo rephases stationary 

spins dephased by all sources other than those causing T2 decay, a gradient echo 

only rephases spins which were dephased by the magnetic gradient applied to 

cause the echo. Dephasing caused by sources such as an inhomogeneous Bo 

magnetic field are not rephased by a gradient echo. As such, the amplitude of 
the gradient echo is smaller than that of a spin echo and does not describe the 
T2 decay envelope. 

The use of echoes is extremely important in NMR. Because a FID occurs 
immediately after the application of a RF pulse, it is technically difficult to acquire 
the beginning of the NMR signal and hence its initial amplitude is difficult to 
determine. More importantly, when magnetic gradients are applied in order to 
form a MR image, the FID dephases very rapidly resulting in little or no NMR 
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signal being detected. However, by use of an echo, the NMR signal is separated 
in time from the RF pulse and may be measured in its entirety. Also, as the 

spins are in phase at the centre of the echo, the NMR signal is measured both 

prior to and after a time when the spins are in phase. In a NMR signal of a FID, 

data can only be acquired at times after the spins were in phase (which was at 
the time of application of the RF pulse). The extra information contained in an 

echo results in improved NMR image quality than would be obtained from just 

FID's, as will be described later. Unless stated otherwise, further references in 

this thesis to the NMR signal will refer to the echo rather than the initial FID. 

Chemical Presaturation 

As mentioned in the previous section, proton NMR signals for imaging of biologi- 

cal systems mainly come from the hydrogen in free water or fat. To discriminate 

between these signals it is possible to modify a pulse sequence to suppress the 
NMR signal from either water or fat. One method of doing this is to apply a RF 

pulse to excite only water or fat immediately before the imaging sequence. 85 For 

example, if it is desired to suppress the NMR signal from the hydrogen in fat at 

a magnetic field strength of 1.5 T, a RF pulse may be applied with a bandwidth 

of 200 Hz and a frequency offset from the resonant frequency of hydrogen in 

water of -224 Hz. The flip angle is typically 1000 to 120° which tips the Mo of 
fat just below the x-y plane but leaves the Mo of water unchanged along the 

z axis. Unipolar magnetic gradients are then applied to dephase the fat Mo in 

the x-y plane, but as they are not reversed, they do not refocus it in a gradient 
echo. Use of gradients to dephase Mo in the x-y plane is often called spoiling or 
crushing. This is termed a fat saturation pulse. The imaging pulse sequence is 

applied immediately afterwards; for this, the frequencies and bandwidths of the 
RF pulses used will be determined to produce an image (as described in sections 
below) rather than selectively excite water, hence both water and fat will interact 

with the imaging RF pulses. However, as the fat Mo has been dephased in the 

x-y plane, it will not be rephased by the imaging sequence at the same times as 
the Mo of water and hence not contribute coherently to the NMR signal; it has 
been suppressed. However, as the Tl of fat is relatively short, the fat suppression 
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pulse must occur at close as possible in time before the start of the imaging 

sequence for its effect to be observed. 

Magnetization Transfer 

The proton NMR signals for imaging of biological systems mainly come from 

the hydrogen in free water or fat. One method of saturating the signal from 

fat and hence only imaging the signal from water, is described above. However, 

there is a considerable amount of hydrogen present in biological systems in other 

molecules other than H2O and CH2. In particular, hydrogen is present in large 

protein macromolecules. Because they are tightly bound, they do not contribute 
directly to the observed NMR signal (their T2's are much shorter than a millisec- 

ond). However, they still magnetically interact with the hydrogen in water and 
fat, which are resonating with similar frequencies. This is termed magnetization 
transfer (MT). The magnetization of hydrogen in water will be influenced by 

the density of hydrogen-bearing macromolecules in its local environment. The 

amount of MT occurring may be observed in MRI. The short T2 of hydrogen 

in macromolecules result in them having a large bandwidth of resonant frequen- 

cies*. The hydrogen in macromolecules may be saturated by application of a 
RF saturation pulse prior to imaging. At 1.5 T, this RF pulse typically may 
be applied with a central frequency offset from that of water by 1500 Hz and 

with a bandwidth of 500 Hz. This is called MT saturation (MTS). In the time 

following the MT saturation RF pulse, MT occurs between the hydrogen in wa- 
ter to the hydrogen in macromolecules, but the macromolecules do not possess 

coherent magnetization to transfer back to the water hydrogen. Therefore, in 

the following MR image, signal intensity in regions containing a high density of 

macromolecules will be lower. The difference between an image acquired with 
MTS and one acquired without will highlight the amount of MT occurring in 

each pixel and give rise to MT contrast (MTC). 

*The FT of a rapidly decaying FID, or echo, (i. e., short T2 or T2) gives a spectrum con- 
taining a wide range of frequencies. 
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2.3 NMR Imaging Techniques 

In the previous section a basic introduction to NMR has been given. Until 1973, 

NMR was used and developed mainly as a spectroscopic tool and method for 

measuring various parameters such as Tl and T2. However, once the possibility 

of using NMR to produce non-destructive images arose, new techniques were 
devised in order to produce images from the NMR signal. A brief introduction 

to the methods used to produce NMR images is given in this section, with 

emphasis on contemporary techniques used in medical MRI and the background 

behind them. 

2.3.1 Spatial Encoding 

One of the landmarks in the history of NMR was the realization in 1973 of 

methods of spatially encoding NMR signals, 57,66 and later of spatially localizing 

NMR signals. 31 This allowed an image consisting of the NMR signal from various 

spatially localized volumes throughout the sample to be constructed. This is 

done by applying linear magnetic gradients and RF pulses to the sample. Various 

techniques have been used but the most popular ones at the present time for 

acquiring two dimensional images (slices) through a sample are the spin warp 
technique and its high speed variants such as FLASH, and Echo Planar Imaging 

(EPI). These techniques are described below. The RF pulse sequences described 

in Section 2.2.4 above can be used with these to create images with their pixel 
intensities weighted by p, T1, or T2 as desired. 

Slice Selection 

To image a plane slice through a sample it is desirable that an NMR signal is only 

received from that slice. This can be achieved by selective excitation of only the 

spins in the required slice. It is assumed that the required slice is perpendicular 
to the z axis. If the sample is placed in a static magnetic field Bo and a smaller 

uniform magnetic field gradient Gz is also applied, such that the magnetic field 

along the z axis is described by 

B, z = Bo + zG, z (2.18) 
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where 

Gz = 
aBz 

az 
(2.19) 

then the Larmor frequency of spins will depend on their position along the z axis 

such that 

w (z) =7 (Bo + zG, z) 
(2.20) 

Hence the Larmor frequency has been spatially encoded along the z axis (see 

Figure 2.11). If a RF pulse of a certain frequency is applied then only the nuclei 

precessing at that frequency will be excited. The thickness of the slice excited 
depends on the bandwidth of the RF pulse and the magnitude of G. A wider 
bandwidth or a weaker gradient will result in a thicker slice. This process is called 

slice selection. 
As explained at the end of Section 2.2.2, it is usual to modulate finite RF 

pulses used for MRI with a sinc envelope. A finite sinc RF pulse may be considered 

to affect Mo instantaneously at the centre of the duration of its application. 
However, to ensure slice selection occurs, Gz must be applied throughout the 

whole application of the RF pulse. This results in the spins in the excited slice 
being dephased at the end of the application of G. The spins must be brought 

back into coherent phase in order for a NMR signal to be detected. This is 

performed in the same manner as the formation of a gradient echo, described 

in Section 2.2.4 and is referred to as slice refocusing. If the RF pulse was 

considered to act at the mid-point of its application, then the dephasing occurs 
from this point onwards under the influence of G, forming and area A3 (being 

the product of G, 3 and time). To rephase the spins, a gradient of opposite sign 

must be applied with equal modulus area to A3. 

A feature of MRI not available with any other non-destructive tomographic 

imaging technique is the ability to acquire images with any orientation through 

the sample, without moving the sample or imaging apparatus. Although this 

section relates the x, y, and z axes with the frequency, phase, and slice axes, 
this need not be the case. It may be required that the latter axes are rotated 

relative to the physical x, y, and z axes of the magnet, to obtain an oblique slice. 
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This is done by simultaneously applying combinations of the physical x, y, and 

z axis magnetic gradients so that the combination of three magnetic gradients 

result in a gradient in the required direction. 

Frequency Encoding 

It can be seen that if selective excitation is successively applied with magnetic 

gradients along the x, y, and z directions, then it would be possible to excite just 

one volume element (voxel) in the sample. However to construct a NMR image 

by consecutively exciting different voxels is very time consuming, inefficient, and 

will result in a relatively poor image. If a magnetic gradient is applied after the 
RF pulse and GZ have ceased, along the x axis (for example) then the frequency 

of each resonating nucleus is encoded along the x axis, where 

W (x) = ry (Bo + xGx) (2.21) 

where 

Gx = 
aBz 
äx 

(2.22) 

The NMR signal is collected simultaneously to the application of G., and consists 

of a band of frequencies corresponding to the NMR signals of precessing nuclei 

across the x axis. This is the sum of the individual NMR signals of spins rotating 

at different frequencies and weighted by the number of spins at each frequency. If 

the Fourier transform (FT) is taken of this signal, the frequencies and weightings 

will be revealed. As the Larmor frequency is a linear function of the displacement 

along the x axis (see Equation 2.21) then the FT will be a projection of the 

resonating nuclei along the x axis. The NMR signal has been spatially encoded, 

and this method is termed frequency encoding, as the spatial position depends 

on the frequency of the spins at that point. This is shown in Figure 2.12. The 

gradient applied while the NMR signal is acquired is the frequency encoding, or 

read, gradient. 
The usefulness of acquiring NMR signals as echoes rather than FID's can now 

be seen. If the NMR signal and spatial projection are considered as a Fourier 

transform pair, then to fully describe the projection in real space, both positive 
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and negative 'spatial frequencies' are required in the NMR signal. The origin of 
the NMR signal in relation to the Fourier transform, is when all the spins are in 

phase. This occurs at the centre of an echo, and hence the NMR signal of an 

echo contains both negative (before the centre of the echo) and positive (after 

the centre of the echo) components. An FID only contains a dephasing NMR 

signal, i. e., the positive components. In practice, this results in artefacts in the 

projection of the sample; these are described more fully in the section dealing 

with half Fourier MR images below. 

The idealized frequency encoded NMR signal can be described mathemati- 

cally. In the presence of only the uniform static magnetic field Bo, the NMR 

signal amplitude will depend on the density of spins within the sample, p(x), the 
Larmor frequency, and the relaxation processes. If the relaxation processes are 
ignored, then the NMR signal in the laboratory frame is 

S(t) a ei7B0t J p(x) dx (2.23) 

where t is the time during the NMR signal acquisition, with its origin when the 

spins are in phase, at the centre of an echo. The application of a linear frequency 

encoding gradient, G, as described by Equation 2.21 results in a NMR signal of 

S'(t) af eZ'Y(BO+xGx)tp(x) dx (2.24) 

Equation 2.24 is a Fourier transform, where S is the FT of p. Therefore, the 

inverse FT of S(t) yields p(x). 
To achieve frequency encoding requires the application of a magnetic gra- 

dient, as described above. However, this gradient will cause dephasing of the 

spins, as described in Section 2.2.4 referring to gradient echoes. This will result 
in a spin echo with reduced amplitude. To overcome this, a gradient echo is 

formed along the frequency encoded axis and arranged to peak at the centre of 
the spin echo. This is achieved by applied a gradient along the same axis but 

of opposite sign to the frequency encoding gradient, prior to application of the 
frequency encoding gradient itself. The dephasing caused by the initial gradient 
is refocused by the frequency encoding gradient to form an echo. 
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Projection Reconstruction 

By applying magnetic gradients along both the x and y axes simultaneously dur- 

ing collection of the NMR signal, a projection of the sample can be collected at 

any chosen in-slice angle. Hence a two dimensional image can be constructed 

using similar methods to those used for x-ray CT image construction, i. e., using 
filtered backprojection or iterative algebraic reconstruction techniques (ART). 

This method of acquiring MR images is termed projection reconstruction. Al- 

though methods involving projections were used to create two dimensional NMR 

images in the early days of MRI, they have been superseded by spin warp tech- 

niques in the vast majority of MRI techniques. 

In order to obtain all the projections required for image reconstruction, at 
least one iteration of the pulse sequence is required for each projection. As 

outlined in Section 2.2.4 above, after acquiring a NMR signal, it is necessary to 

wait some time, TR, before repeating the pulse sequence. This allows sufficient 
Ti recovery to occur so that a significant component of Mo is parallel to Bo and 

available to be tipped into the x-y plane by the next 90° RF pulse. To obtain 

a sufficiently large NMR signal in biological tissue this repetition time between 

acquisitions, TR, is between 300 ms and several seconds, resulting in imaging 

times of several minutes. Hence imaging moving structures (e. g., the human 

chest or abdomen) proves to be difficult, as these structures will not be in the 

same spatial location for the acquisition of each projection and the reconstructed 
image will suffer from artefacts. 

2.3.2 Two Dimensional Fourier Techniques and k Space 

In the description of the projection reconstruction technique for producing MR 
images, given above, one dimensional FT's are performed to obtain projections 

of the sample at many angles, from which a two dimensional image can be pro- 
duced. This relationship between a NMR signal (in the time domain) and a one 
dimensional projection of the sample obtained by the Fourier transform of the 
NMR signal, can be extended to two dimensions. 55 That is, a two dimensional 

Fourier transform pair exists between the two dimensional image and a two di- 

mensional data set of NMR signals. In order to produce a MR image, the correct 
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set of NMR signals must be collected to fill this data set. 
From the outset of work on the spatial localization of NMR signals66 it was 

realized that a useful concept was that of a variable to describe the 'reciprocal 

lattice' of the image, and with reference to optics, this was termed k. This 

variable references the Fourier transform of the image space (i. e., the NMR 

signals) and is in units of distance-', representing a spatial frequency. The set 

of NMR signals which it describes is termed k space. 
The acquisition of a MR image by projection reconstruction method can be 

described in terms of k space. When the frequency encoding gradient is applied 

solely along the x axis, the NMR signal acquired is sampling k space along the 

k, axis. When the frequency encoding gradient is entirely along the y axis, a 
line along the ky axis is acquired. For projections of intermediate angles, the 

gradient is applied along both x and y axes resulting in the NMR signal sampling 
k space in an oblique direction, but always passing through the origin of k space. 
This results in k space being sampled in a star type pattern, being densely 

sampled near the origin (i. e., low spatial frequencies, contributing mainly to the 

contrast of the MR image) and sparsely near the edges (high spatial frequencies, 

contributing mainly to the edges of the MR image). Although not a projection 

reconstruction MRI acquisition, Figure 2.13 shows the contribution of high and 

low spatial frequencies in k space to the final MR image. 

The sampling of k space is controlled by application of the x and y magnetic 

gradients. This means that any manner of trajectory through k space may be 

devised by appropriate manipulation of the gradients. A FT of the acquired k 

space will result in a MR image. In particular, an even rectilinear sampling of 

k space is desirable as it reduces some of the artefacts observed in projection 

reconstruction images, which are due to the varying combinations of inhomo- 

geneities in the x and y magnetic field gradients. Such a trajectory is produced 

by a spin warp technique. 

Spin Warp 

The spin warp imaging sequence28 was first introduced in 1980, and is performed 

as follows. A 90° RF pulse followed by a 180° pulse is used to create a spin 
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2. An Introduction to Nuclear Magnetic Resonance Imaging 

echo, during which a frequency encoded projection along the x axis is acquired 

as described above (hence the x axis is termed the frequency encoded axis). 

However, after the 90° pulse but before the application of the x axis (read) 

gradient, a magnetic gradient is briefly applied along the y axis. This has the 

effect of changing the phase of all the rotations of the spins within the excited slice 
by a known amount (hence the y axis is termed the phase encoding axis). The 

NMR signal is then acquired as before, representing one line in k space, parallel 

to the kx axis. The sequence is repeated with the phase encoding gradient set to 

produce a different phase offset by applying a different strength gradient for the 

same period of time, resulting in another line of data in k space parallel to the kx 

axis but with a different ky value. This is repeated until sufficient scans through 

k space have been made to produce a satisfactory image. The phase encoding 

usually starts with the gradient with the most negative value and steps linearly 

through zero to the most positive value. A two dimensional Fourier transform of 

this k space data set results in a two dimensional image of the sample. 
A qualitative description of phase encoding spatial information is given in 

Figure 2.14 and a typical spin warp pulse sequence is shown in Figure 2.15. This 

method typically is used to produce images with matrix sizes of 256x256 or 

512x512, resulting in pixel dimensions of less than one millimetre. 

The idealized NMR signal from one frequency encoding line is given in Equa- 

tion 2.24 above. This can be modified to include the effect of the phase encoding 

gradient, Gy, which has a different value for each frequency encoding line ac- 

quired, being Gy(n) for the nth phase encoding line. Assuming Gy can be applied 

as a square pulse for a constant duration, ty, then 

S3 (t, n) oc 
ff 

p(x, y)ei-y(B0+xGz)teiyGy(n)ty dx dy (2.25) 

As the position of any point in k space is determined by a product of the 

gradient strength and the duration for which it has been applied (the area under 

the gradient), k can be generally defined as 

k =, y fG (tý) dt' (2.26) 

This allows representation of the more realistic case of gradient waveforms which 

are trapezoidal rather than square pulses through time. In certain cases the 
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gradient waveform may be deliberately non-linear, e. g., when generated via a 

resonant circuit to allow rapid switching of the gradient. 
Equation 2.25 for a spin warp acquisition can be rewritten as 

Ssw(kx, ky) oc ff p(x, y)eikxxeikyy dx dy (2.27) 

where Ss,,, is now sampled in the rotating frame with the aid of p. s. d. 's, removing 
the frequency 'yB0, and where 

fty rt 

so 
kx = ry f Gx(t') dt' and ky = ry J Gy(n, t') dt' (2.28) 

2 

is the time before the centre of the echo in the frequency encoding direction 

at which the NMR signal acquisition is started. 
It is not necessary to apply the gradients along all three axes at separate 

times; as they are orthogonal they may be applied simultaneously. For example, 

while the slice select gradient is ramping down or performing the slice refocusing 
lobe, the phase encoding gradient may be active, and the frequency encoding 

gradient may be ramping up to its plateau. However, while the NMR signal is 

being acquired, only the frequency encoding gradient should be active. 

Multislice Imaging 

Often, several slices with different z axis positions are required during the study 

of a sample. If spin warp imaging is applied to each slice in turn, the total 

imaging time will be proportional to the number of slices acquired. This total 

study time can be reduced by interleaving the acquisition of multiple slices. The 

majority of the time in acquiring a spin warp image acquisition is spent after the 

NMR signal measurement, waiting for sufficient spin-lattice relaxation to have 

occurred before applying the next pulse (typically about 95% of the TR delay). 

During this time, another separate slice can be selectively excited and the NMR 

signal from it obtained independently from the first slice. This can be performed 
for several slices until TR for the first slice has elapsed. The total acquisition 

time for all the slices is then the same as the acquisition time for one slice. As 

described in Section 2.2.4 above, the choice of TR determines the Tl weighting of 

the MR image. For a chosen TR, only a certain number of multislice acquisitions 
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may be fitted into the period, before the first slice must be excited again. In 

practice, a compromise must be made between T, weighting and the number of 

multiple slices to be acquired in one acquisition. 
Section 2.3.1 above briefly described the process of slice selection. In prac- 

tice, due to the finite duration of the RF pulse and the effect of inhomogeneous 

magnetic fields, the slice profile is never exactly rectangular. The width of the 

slice profile is usually defined by its width at half the maximum (or central) am- 

plitude of the profile (FWHM). Hence, if slices are excited in turn in a multislice 

acquisition as described above, with no separation in between, interference will 

occur between the MO's of consecutive slices. This is known as slice 'cross-talk' 

and can lead to artefacts in the images. This effect may be reduced in a multi- 

slice acquisition by interleaving the slice excitation order so that the time between 

exciting adjacent slices is maximized, allowing as much spin-lattice relaxation as 

possible to occur. For example, in one TR period, the odd number slices are 

acquired first followed by the even numbered slices, in ascending order. To to- 

tally avoid any potential artefact of this kind, an abutting slice should not be 

excited until spin-lattice relaxation has occurred fully in any neighbouring slices. 
This may be done by performing two separate multislice acquisitions, the first 

acquiring the odd slices, the second acquiring the even. All slices are separated 
by one slice width, and a short TR may be used for both acquisitions. 

FLASH 

As with the projection reconstruction method, to acquire a spin warp image 

takes several minutes. This time can be reduced by using a Fast-Low-Angle- 
SHot (FLASH) technique, first introduced in 1985 by Haase et al. 32 It is based 

on the spin warp sequence described above with two modifications. Firstly, a 

gradient echo is used rather than a spin echo, and secondly a RF pulse with a 
flip angle of less than 90° is used for excitation. Use of a gradient echo reduces 
the total time taken to acquire one frequency encoded line of k space, as no 
time is required to apply the refocusing 180° pulse and associated slice selective 

gradients. Shorter TE's may be obtained than with spin echo techniques. The 

use of a low flip angle RF pulse (typically between 10° and 50°) results in Mo 
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not being tipped completely into the x-y plane; a component remains parallel to 
B0. This results in a relatively larger proportion of Mo being available for the 

next low flip angle RF pulse used for the next frequency encoding line. Hence, 

the TR between frequency encoding lines of k space in the same slice may be 

reduced and so the entire image may be acquired more rapidly. On a 1.5 T MR 

scanner imaging biological tissue, a reasonable FLASH image will be obtained 

with parameters such as TR=40 ms and a flip angle of 30° resulting in a 256x256 

matrix image being acquired in about ten seconds. 
As short TR values are used, coherent transverse magnetization may remain at 

the end of a TR period and interfere with the subsequent RF pulse. To remove 

this effect, spoiler gradients are applied to dephase any remaining transverse 

magnetization. These are usually applied along the frequency encoding axis for 

reasons mentioned below. 

The use of RF flip angles of less than 900 affects the quality of the image. 

As a smaller component of Mo is tipped into the x-y plane, a smaller e. m. f. 

is induced into the RF coil during reception of the NMR signal, resulting in a 
lower signal relative to the constant noise. The lower the flip angle (in order to 

acquire images more rapidly) the lower the signal to noise ratio in the image. 

Also, the choice of flip angle will influence the amount of spin-lattice relaxation 

which can occur in the TR period. For the first few low flip angle RF pulses, the 

magnetization parallel to B0 will decline until eventually a steady state will arise 

where the fraction of Mo tipped into the x-y plane is matched by that returning 

to be parallel to B0 from previous shots. The steady state value will depend on 
the flip angle, TR, and Tl of the sample. By fixing TR, the Ti weighting of the 

image may be varied by changing the flip angle alone. For a particular Tl and 
TR it is possible to optimize the flip angle to obtain maximum NMR signal; this 

angle is called the Ernst angle, aE, and is given by 
TR 

cos aE =e T1 (2.29) 

MR imaging sequences based on the FLASH technique are very popular on 

clinical MR systems. However, an important drawback of FLASH techniques is 

the difficulty in adapting the sequence to obtain contrast from anything other 

than Ti saturation recovery mechanisms. The addition of a RF inversion pulse 
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before acquiring each line of k space, to produce inversion recovery Ti contrast, 
is not possible without compromising the short imaging times. The TI effectively 

adds to the TR and with TI's typically between 150 ms and 800 ms on 1.5 T 

MR scanners, short TR's are not possible. T2 weighting is also difficult to ob- 

tain, since the long TE's required increase the TR. Also, as the gradient echo 

envelope decays more rapidly than the actual T2 envelope, true T2 weighting is 

not achieved, combined with less signal available in the gradient echo itself. 

These limitations may be overcome with the use of so-called "TurboFLASH" 

(also called snapshot FLASH) techniques. These use the same sequence as 
described above for FLASH, but optimized for very low flip angles, and as short 

TR values as possible, typically 5° and 10 ms. There is no 'dead' time in a TR 

interval for multislicing to occur, so all the phase encoding lines for an image 

are acquired consecutively. While TurboFLASH MR images may be acquired in 

the order of one second, the signal to noise in the resulting image is very low. 

As very small RF flip angles are used, the vast majority of Mo remains parallel 

to Bo throughout the acquisition, resulting in images with only very small Ti 

weighting; the images being predominantly proton density weighted. As the 

sequence itself creates little Ti or T2 weighting, RF pulses may be applied prior 

to the TurboFLASH sequence to prime the spins with the desired weighting, 

such as those described in Section 2.2.4 above. Applying preparation pulses 

to invert the spin system prior to a TurboFLASH acquisition is often termed 

Magnetization Prepared Rapid Acquisition Gradient recalled Echo (MP-RAGE). 

Care must be taken when selecting the delay between the inversion RF pulse 

and the beginning of the TurboFLASH acquisition. Contrast in a MR image is 

mainly defined by the low k space spatial frequency components. Therefore, the 

effective TI (compared to spin warp MRI) will be the time between the inversion 

RF pulse and the frequency encoding line which traverses the centre of k space 
(i. e., with no phase encoding). Single slice TurboFLASH sequences are typically 

used to image the heart within the duration of a breath-hold or to monitor the 

first pass of a blood contrast agent through a slice. Because a significant amount 

of magnetization remains along the axis parallel to Bo, not only are short TR 

times possible, but subsequent images may be acquired of the same slice in rapid 
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succession. Their other main use is for three dimensional imaging, as described 

below. 

The popularity of FLASH based MRI sequences has spawned a variety of 

modifications and wide range of acronyms to described the same sequences. 8' 

Often, this has arisen due to competition between manufacturers of MRI systems, 

as well as due to issues of copyright and patents. These sequence variants are 
described in more detail elsewhere. '5'8' Because of the short TR's used between 

RF pulses, the transverse magnetization also reaches a steady state, as described 

above, and may involve stimulated and secondary echoes. The steady state may 

either be deliberately utilized or destroyed. To reach and maintain a steady 

state, the total gradient strength applied along each axis must remain constant 
for each line of k space acquired. As the phase encoding gradient changes with 

each line, an opposite gradient must be applied along the phase encoding axis 

after the NMR signal has been acquired to cancel out the effect of the first 

phase encoding gradient (i. e., return to the ky=0 line in k space). This is called 

rewinding the phase. Sequences based on this FLASH variant are called GRASS 

(Gradient Recalled Acquisition in Steady State), FISP (Fast Imaging with Steady- 

state Precession), FAST (Fourier Acquired steady STate). These sequences are 

arranged to only sample the primary gradient echo; stimulated and secondary 

echoes are made to occur outside the NMR sampling window. Similar steady 

state FLASH based techniques, which only sample the stimulated and secondary 

echoes are called SSFP (Steady State Free Precession), PSIF (mirrored 'FISP'), 

and CE-FAST (Contrast Enhanced 'FAST'). The contrast mechanisms for steady 

state FLASH based sequences are complex. To maintain only Tl weighting in a 
FLASH image, any build up of steady state transverse magnetization between TR 

periods must be destroyed. This is performed by use of pseudo random spoiler 

gradients along all axes (the original FLASH) and by varying the phase of the RF 

pulses by a pseudo random amount (SPGR - Spoiled 'GRASS', RF-FAST - RF 

spoiled 'FAST'). This results in T, weighting at the expense of decreased signal 

to noise due to the lack of contribution from stimulated and secondary echoes. 
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Three Dimensional MRI Acquisitions 

One of the advantages of MRI compared with other non-destructive imaging 

techniques is its ability to acquire multiple slices throughout the sample at any 

oblique angle. If contiguous multislices are acquired a three dimensional volume 

of the sample may be built up. However, to obtain MR images with a satisfac- 

tory signal to noise, the slice thickness is usually larger than the in-slice pixel 

dimensions resulting in a multislice volume with non-cubic voxels. 

It is also possible to acquire NMR signal from throughout an excited volume 

resulting in a true MR volume acquisition. This is often performed using a 

modified TurboFLASH sequence. The slice selective portion excites the entire 

volume, or slab, to be imaged. If the entire sample is to be imaged in a single 

volume, slice selection is not required; all the spins in the sample are excited by 

the RF pulse. Phase encoding now occurs along two axes, one of which may be 

thought of as the usual in-plane phase encoding axis and the second axis as phase 

encoding in the slice selection direction. Phase encoding steps along the slice 

selective axis are often referred to as partitions, and the entire excited volume 

as a slab, in order to distinguish them from the excited slice in two dimensional 

imaging. Frequency encoding occurs along the third axis as normal. In order 

to acquire the entire volume, all the phase encoding steps in both axes must be 

stepped through, i. e., for 256 in-plane phase encoded lines and 128 partitions, 

32768 frequency encoding NMR signals must be acquired. In order to acquire all 

these data in an acceptable time, the repetition time for the frequency encoding 

axis must be very short. A three dimensional Fourier transform is performed on 

the entire three dimensional k space data set to produce the MR volume. This 

volume is usually stored as a series of contiguous images. 

Volume acquisitions may be weighted with Ti contrast by application of a 

preparation inversion RF pulse. Phase encoding steps may increment most rapidly 
(per frequency encoding line) either in the partition or the in-plane phase encod- 

ing directions. The inversion pulse would be applied once per the most rapidly 

varying phase cycle. This sequence is called 3D MP-RAGE and shown in Fig- 

ure 2.16 in its steady state form. Other steady state FLASH sequences may be 

modified for volumetric acquisitions, resulting in images weighted with a combi- 
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nation of Ti and T2 weighting. Two of these are called Constructive Interference 

in Steady State (3D CISS) and Double Echo Steady State (3D DESS). 

At first, there may seem to be little gain in performing a volume acquisition 
in comparison to a multislice TurboFLASH acquisition with the same number 

of slices as there were partitions. However, volume acquisitions have several 

advantages compared to multislice imaging with the same voxel dimensions, as 
described below. 

The signal to noise ratio (SNR) in a MR image depends on the voxel size and 

the number of times the acquisition is repeated (among other things). Consider 

a comparison between a single slice acquisition and a partition from a volume 

acquisition with identical acquisition parameters. The single slice thickness and 

partition thickness is v, and Np partitions were acquired. In the single slice 

case, the SNRstt, a vZ. For the volume acquisition, the data from the slab is 

acquired Np times, resulting in an improvement of Np in the SNR for the entire 

slab, vin SN (v= xN gi g Rpartition oc NP 
VN-p. The fractional increase in SNR for the 

partition compared to the single slice81 is Np. Hence, volume acquisitions result 
in improved SNR, or alternatively thinner slices with the same SNR, compared 

to multislice acquisitions. 
As mentioned above, in Section 2.3.1, in practice the profile of an excited 

slice is not rectangular. However, as the partitions in a volume acquisition are 
defined by phase encoding rather than selective excitation, their partition profile 
is far more rectangular. For the same reason, cross talk between partitions does 

not occur in volume acquisitions. Furthermore, as will be seen in Chapter 4, 

spatial distortion in MR images does not occur along the phase encoding axis. 
Hence, while a single slice may be distorted in two axes, a partition will only be 

distorted along one axis. 
The main disadvantages of volume acquisitions are patient movement and the 

difficulty in adapting them for use with spin echoes. Isolated movement during a 

multislice TurboFLASH acquisition would only affect the slice being acquired at 

the time it occurred. For a volume acquisition, movement at any time throughout 

the acquisition will affect all partitions via the three dimensional FT. The use of 

spin echoes in volume acquisitions would be advantageous to further increase the 
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SNR and provide T2 weighting. However, their use would considerably increase 

the acquisition time. Multiple spin echoes, as described below, may be used for 

volume acquisitions. While the prevalence of the 3D spin echo techniques may 
increase in the future, they are not currently in common use. 

2.3.3 Rapid MRI with Multiple Echoes 

The spin warp based MRI sequences describe above all acquire one NMR signal 

per RF excitation pulse. However, in the vast majority of sequences the duration 

of the NMR signal acquisition is far shorter than T2. Hence, there is still a coher- 

ent component of Mo in the x-y plane. In the MRI sequences described above, 

this signal is usually not required and removed by dephasing. Rather than trying 

to eliminate it, multiple echo sequences refocus the transverse magnetization 

and use the subsequent echoes to acquire extra phase encoded lines of k space. 
This is a far more efficient use of the transverse magnetization than in spin warp 
based sequences. It results in more rapid imaging, as a new RF excitation is 

not required for each frequency encoding line. By choosing the amount of phase 

encoding for each echo, the resultant images may be weighted by T1, T2, or T. 

However, multiple echo techniques also introduce extra problems. In particu- 
lar, each echo in the echo train occurs at a different time after the RF excitation 

pulse, and so will contain a unique T2 weighting. In a single echo spin warp 
image, each frequency encoding line is acquired at the same time after the RF 

excitation pulse; they will all have the same T2 weighting. The effect on the MR 

image of different lines of k space having different T2 weighting is not obvious, 

and in extreme cases may introduce artefacts. Multiple echo acquisitions are also 
less forgiving on imperfectly shaped gradient pulses and sequence timings. What 

may be only a small effect at the first echo may have increased to a larger and 

more serious effect in the later echoes. 

Multiple Spin Echo 

MR imaging sequences may be constructed by combining a spin warp imaging 

sequence with a CPMG16,72 type RF pulse sequence (see Section 2.2.4 above). 
The first echo is acquired as for a normal spin warp sequence, described above. 
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Further 180° RF pulses, separated by a time TE, refocus the previous echo into 

a new echo which also may be frequency encoded. Care must be taken to ensure 
that the repeated gradient echoes caused by the frequency encoding gradient 

always coincide with the spin echoes. Phase encoding is applied immediately 

before each frequency encoding line is acquired. In order to reduce image artefact, 
it is usual to 'rewind the phase' immediately after the cessation of the frequency 

encoding gradient and before the next 180° RF pulse is applied. 
The number of echoes which may be formed from the FID following one RF 

excitation is limited by the T2 of the sample and the rate at which echoes may be 

formed. The time for one TE period depends on the time taken to apply a 180° 

pulse and to switch the various gradients on and off (ramping), as well as the 

maximum gradient strength achievable which with the ramping time defines the 

area contained under a gradient pulse and hence the maximum possible excursion 
in k space and the minimum image resolution. On a modern clinical MR scanner, 
TE values for multiple spin echo sequences are typically of the order of 10 ms, 

and unlikely to be shorter than 5 ms. 
When these techniques were first introduced in routine clinical use, contem- 

porary gradient systems could not switch as rapidly or achieve high amplitudes, 

compared with systems produced today. Only a few multiple echoes could be 

acquired before the NMR signal had dephased due to T2 decay. In this case, the 

echoes would be phase encoded to cover k space sparsely in the phase encoding 
direction. This process would be repeated with a slightly different initial phase 

encoding offset following a subsequent RF excitation pulse. The resulting data 

are interleaved to produce the final map of k space. For example, to acquire 
256 phase encoding lines of k space when an echo train length of 8 echoes is 

possible, would require 32 interleaves. These acquisition schemes have acronyms 

such as Fast Spin Echo (FSE) or Turbo Spin Echo (TSE). They are of particular 

use in acquiring T2 weighted images in a shorter time than would be required for 

spin echo spin warp schemes. While waiting for the required TE to elapse before 

acquiring the frequency encoding line through the central region of k space, other 

echoes can be acquired of the higher spatial frequency components. 

On more modern MR systems, echo train lengths of up to 128 echoes may 
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be acquired, following one RF excitation. This allows a spin echo image to 
be acquired in a single shot with an acquisition time of less than one second. If 

both positive and negative portions of k space are acquired in the phase encoding 

axis, the sequence often is called Rapid Acquisition with Relaxation Enhancement 

(RARE)40 - which originally covered interleaved TSE sequences as well as the 

single shot method. If only just over half of k space is sampled in the phase 

encoding direction, the sequence is often called Half Fourier Acquisition with 
Single shot Turbo spin Echoes (HASTE). 

Rapid multiple spin echo sequences with 180° refocusing pulses have probably 

reached their lower limit, in terms of decreasing imaging times. A RARE sequence 

with a TE value of 5 ms applies a considerable amount of RF power to the patient, 

and is very close to the level 11 safety limit for RF absorption, as described in 

Section 2.6 below. Increasing the performance of the gradients will not allow 

more rapid acquisitions as it still will be limited by the SAR. Refocusing RF 

pulses of less than 180° may be used, 39 but this causes the introduction of more 

complex echo evolution schemes which interfere with the primary echo being 

acquired. 

Echo Planar Imaging 

The use of multiple gradient echoes rather than multiple spin echoes, would 

be expected to reduce imaging times still further. A method for acquiring a 
MR image in the duration of one EID was proposed by Mansfield in 1977 and 

termed Echo Planar Imaging (EPI). 64,101 Although it may appear to be a logical 

step from the MRI sequences described above, it should be appreciated that EPI 

was proposed, and implemented on dedicated MR scanners, before most of the 

imaging schemes mentioned above. 

An echo train of multiple gradient echoes may be performed very rapidly 

while simultaneously acquiring frequency encoded lines of k space. After the 

first gradient echo has been produced, the remaining duration of the frequency 

encoding gradient dephases the spins. If, after this, the gradient is immediately 

switched to be applied with the opposite polarity, a second gradient echo will be 

formed and may be acquired, under a gradient of opposite sign to the first. This 
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can be repeated very rapidly until the NMR signal has been completely dephased 

due to TZ decay. 

To produce an image, each frequency encoded gradient echo must be given 
differing amounts of phase encoding. A phase encoding scheme similar to that 

used for RARE could be used, however this would take a significant amount of 

time to apply (and rewind). The use of gradient echoes rather than spin echoes 

reduces the artefacts seen if the phase encoding axis is not rewound prior to the 

formation of another echo. Mansfield proposed applying only small amounts of 

phase encoding to increment subsequent frequency encoded lines along ky. In the 

most common contemporary form of EPI, the phase encoding gradient is applied 

as a brief 'blip' while the gradient along the frequency encoding axis is reversing its 

polarity. The portion of k space scanned by EPI in the phase encoding direction 

can be selected by applying a single gradient pulse in the phase encoding direction 

prior to the EPI readout echo train. This gradient, of opposite polarity to the 

phase encoding blips to follow, is called a pre k space excursion. If it is set to 

half the area of the sum of all subsequent phase encoding blips, then k space 

is sampled symmetrically, and the EPI acquisition termed Modulus Blipped EPI 

(MBEST). 47 A MBEST sequence is shown in Figure 2.17. For EPI acquisitions, 

the frequency encoding axis is often referred to as the switched axis, while the 

phase encoding axis as the blipped or broadening axis. 

Before performing a two dimensional DFT (see Section 2.4.1) on k space, 

every alternate phase encoded line must be reversed. This is because it was 

acquired under a gradient of the opposite sign and so sampled k space in the 

opposite direction. This may introduce an artefact in EP images not seen in other 

MR imaging modalities. In practice, the gradient waveforms along the frequency 

encoding axis are not exactly the shape demanded. In particular, the positive 

gradients may not be symmetric to the negative gradients. Unlike other MRI 

techniques, EPI acquisitions sample under both positive and negative gradient 

echo lobes. As alternate lines must be reversed (left-right) before the DFT is 

performed, a mismatch may arise in the position of the NMR signal between every 

other phase encoded line. This 'ripple' is at the highest frequency measurable by 

the DFT and results in two images being produced, one shifted by half the image 
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Figure 2.17 MBEST EPI sequence. A train of gradient echoes are 
formed along the frequency encoding axis. Alternate echoes are of 
opposite sign. While the frequency encoding gradient is switching, a 
brief blip is applied along the phase encoding axis to increment the 
phase for the next echo. The sequence shown here would result in 
a MR image with an 8x8 matrix. k space is sampled symmetrically 
for MBEST and a T2* weighted image is obtained. 
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matrix compared to the other. The central image is considered the main image 

while the image shifted relative to it by half a matrix step is termed the Nyquist 

ghost. The fraction of the signal in the ghost relative to the main image may 
be reduced by careful calibration of the EPI acquisition and by post processing 
techniques. 

The duration of EP acquisitions may be reduced further by acquiring the NMR 

signal under not just the uniform plateaus of the frequency encoding gradient, 
but under the rising and falling ramps also. It is usually desirable for a gradient 
to rise to its maximum value as fast as possible as this results in the maximum 

area for a fixed time under a particular gradient pulse. However, for the rapid 

switching of the frequency encoding gradient, required to acquire EP images 

as fast a possible, a significant time is spent ramping. Acquiring the NMR 

signal under a temporally varying gradient results in a non-uniform sampling of k 

space in the frequency encoding direction (see Equation 2.26). This introduces 

artefacts in the final image. A solution to this is to sample the NMR signal in 

a non-linear manner so that the acquired points in k space have a fixed spacing 
between them. Data is acquired more rapidly when the gradient is at its highest 

strengths. To enable non-linear sampling requires that the sampling window be 

aligned to the gradient waveform with greater accuracy than is usually required 

to avoid further image artefacts. 
Typically, a frequency encoding line will be acquired in less than 1 ms, result- 

ing in a total acquisition time for a 128x128 image of the order of 100 ms. As 

only one excitation RF pulse is applied, this is usually a 900 pulse, maximizing 

the amount of magnetization in the x-y plane available for imaging. A refocusing 
180° pulse may be applied before the EPI readout to form a spin echo, usually to 

coincide with the acquisition of the frequency encoding line passing through the 

centre of k space in the phase encoding direction. The spin echo results in a T2 

weighted EP image as opposed to the usual T2 weighting. In practice, EPI acqui- 

sitions of up to 128 echoes are routinely performed. Although more echoes can 
be acquired, they do not necessarily lead to the expected improvement in image 

resolution. Unlike most spin warp acquisitions, in EPI a significant amount of T2 

decay can occur throughout the duration for which the NMR signal is acquired. 
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This results in a relatively broad point spread function in the image in the phase 

encoding direction for each point in the sample. 15 For a typical EPI acquisition 

of 256 echoes, the point spread function is often larger than the size of a pixel, 
hence the resolution which appears to have been achieved is not real. 

Acquiring MR images in such a short period of time has a number of ap- 

plications. Movement of patients can introduce a number of artefacts in spin 

warp MRI techniques, which degrade their usefulness. In particular, techniques 

designed to measure movement itself, such as perfusion or diffusion, suffer from 

such movement artefacts. The use of EPI in these fields can be particularly ad- 

vantageous. Fast MRI techniques have obvious application to imaging the heart. 

While TurboFLASH images either may acquire one or two images per heartbeat 

or images of several phases of the cardiac cycle acquired over several heartbeats, 

EPI is the only MRI technique capable of imaging many different phases of the 

cardiac cycle in the duration of a single heartbeat. " This may be particularly 

advantageous in performing cardiac imaging of patients with irregular heartbeats 

or ECG signalst, as TurboFLASH images of different phases of the cardiac cycle 

require a regular ECG signal in order to interleave data from different heartbeats. 

Also, its relatively high SNR in comparison with TurboFLASH techniques make 
it the sequence of choice for performing BOLD functional imaging experiments 
(briefly described in Section 4.6.2). However, EPI acquisitions are far more sen- 

sitive to inhomogeneous magnetic fields, the effect of which is to cause spatial 
distortion along the phase encoded axis. This important problem is described 

more fully in Chapter 4. 

Technical requirements for EPI are higher than for conventional MRI. The 

number of echoes that may be acquired in an EPI acquisition is limited by the 

TZ of the sample. The T2 is reduced in the presence of inhomogeneous magnetic 
fields. Hence, to acquire as many echoes as possible, Bo should have a high level 

of homogeneity. To achieve a spatial resolution comparable with conventional 
MRI acquisitions, the strength of the frequency encoding gradient needs to be up 

to ten times higher and switched with a tenth of the duration, compared to that 

tAn electrocardiogram (ECG) shows the time varying electrical activity associated with a 
beating heart. 98 
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required for conventional MRI. As well as the technical difficulties in doing this, 

switching gradients quickly results in induced eddy currents in the magnet. These 

can cause opposing magnetic fields which interfere with the desired gradient 

waveform. However this problem was largely overcome by the development of 

active magnetic screening of gradient coils. 65 These almost completely eliminate 
the magnetic field outside the gradient set and so reduces the eddy currents 
induced. However, the advantage of having a MRI system capable of performing 
EPI extend beyond EPI itself, as the high performance gradients may be used 

to further optimize other MRI sequences, resulting in an overall improvement in 

image quality and reduction of imaging times. 

Half Fourier MRI 

As described above, the measured NMR signal is usually recorded in quadrature 

resulting in a real and imaginary signal. After a Fourier transform of these signals, 

the image will be complex. Normally the final displayed image is the modulus of 

these real and imaginary images; a phase image, of the angle between the real 

and imaginary components of each pixel, may also be constructed. 

As the NMR signal is generated by a real sample, it would be expected that 

the MR image also would contain only real components. If this is assumed to 

be the case then Fourier theory suggests that half the data in k space is related 

to the other half and therefore is redundant. Acquisition times of MR images 

can be reduced by only mapping half of k space in the phase encoding direction. 

Fourier theory 3,91 shows that if data contain only real components then there 

is a symmetry in its FT such that g (-k) =g (k)* where g (k) is the complex 

value of a point in k space and g (k)* is its complex conjugate. Hence, only 

the positive or negative part of k space is required. The remaining half may 
be constructed from the conjugate symmetry given above, prior to applying the 

FT to produce a real-only image. Techniques that use this result are called Half 

Fourier (HF) methods. 
In practice, it is never the case that a MR image consists of only real com- 

ponents. Imperfections in the imaging hardware including inhomogeneous static 

and gradient magnetic fields and flow effects result in an imaginary component 
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to the final MR image. The modulus image is usually calculated to remove phase 

effects. However, this is not possible in HF acquisitions as only the real com- 
ponent of the MR image is produced, and hence may contain phase artefacts. 
Also, the SNR is reduced by a factor of f due to less unique NMR signals being 

acquired. 
A compromise, to attempt to benefit from the reduced imaging times of HF 

techniques while reducing phase artefacts in the final image, is to acquire slightly 

more than half of k space. The central region of k space, which is sampled 

symmetrically, allows a crude, low resolution (in the phase encoding direction) 

MR image to be constructed containing true phase information. This can then 
be used to 'add' phase to the higher resolution real image produced by the HF 

technique described above. In practice, this can be implemented as a one stage 

process, such as the method of Margosian half Fourier reconstruction. 67 In many 

cases, this results in the production of images of very acceptable quality. This 

is especially true for non-compliant patients who are unlikely to keep still for the 
duration of a longer full Fourier acquisition. However, as the phase information 

is only contained in a low spatial resolution form, its use is not suitable for 

techniques requiring accurate high resolution phase information, such as phase 

contrast flow studies. 

2.4 MR Imaging Considerations 

A number of issues arise when performing MRI in practice. It is useful to give 

a brief description of some of the more important areas. As well as aiding the 

experimental set up of MRI acquisitions and interpretation of the images, they 

also provide further insight into the processes involved in MRI. 

2.4.1 Digital Fourier Transform and Aliasing 

In order to produce a MR image from k space, a two or three dimensional 

Fourier transform must be performed. This is almost exclusively performed by 

a computer using a digital representation of the k space data. Therefore, the 

continuous NMR signal first must be digitized. This process is limited by the 

sampling rate and the number of bits used to store the amplitude of the signal. 
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Of particular interest is the sampling rate as this defines the smallest unit of time 

which in turn relates to the interval between data points along the frequency 

encoding k axis (see Equation 2.26). Once a discrete matrix of k space has been 

acquired, a Discrete Fourier Transform (DFT) must be applied, of which the 

most efficient algorithm is the Fast Fourier Transform (FFT). 91 A limitation of 

the standard FFT algorithm is that it must be performed on a data set of a size 

which is an exact power of two. For this reason, most NMR signals are digitized 

into a number of points fulfilling this criterion, resulting in MR images contained 
in a matrix with each axis containing an exact power of two points. 

The properties of a DFT define the physical dimensions of the final MR 

image. 91 If there are N discrete points along a particular k space axis, and each 

discrete point spans a portion of k space of size Ok then for a symmetric coverage 

of k space the maximum position along the k axis will be kmax = ZNOk. Ok 

depends on the amount of gradient area swept out per sampling interval. After 

performing the DFT, the corresponding axis in 'image' space will contain N pixels 

with pixel dimension Zkmax or NOk while the image will span a distance of 2 
max 

or ök along that axis. Hence, the sampling rate defines the size of the image 

and the maximum excursion in k space will define the dimensions of a pixel, i. e., 

the image resolution. 
The finite digital sampling rate introduces an effect not seen in continuous 

FT analysis. The digitized k space contains NMR signals oscillating with a range 

of frequencies. The highest frequency which can be represented uniquely is a 

sinusoidal wave with a maximum amplitude in one sample point and minimum 

values in adjacent sampling points. This frequency is N. Digitization of any 

frequencies higher than this will result in the signal appearing in the discrete 

matrix as a lower frequency. This effect is known as aliasing and described by 

the Nyquist sampling theorem. In MRI, spatial encoding relates frequency to 

position. Therefore, spins emitting a NMR signal with a frequency greater than 

the Nyquist frequency will appear aliased in the digitized k space as a lower 

frequency and the signal will appear in the wrong place in the image. This 

occurs if the field of view (FOV) of a MR image is set to be smaller than the 

physical size of the object being imaged. As the linear gradient extends through 
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the sample outside the FOV, the NMR signal will contain frequencies from spins 

outside the desired FOV too. Aliasing in the frequency encoding direction may 
be eliminated by filtering the analogue NMR signal to remove frequencies outside 

the required range prior to digitization. The sampling rate may also be increased, 

doubling the FOV so that it covers the object; the extra peripheral regions may 
be removed from the image after the DFT has been performed. This latter 

technique is know as frequency oversampling. 
Aliasing is more of a problem in the phase encoding direction, both in plane 

and to a lesser extent in the slab direction if a three dimensional volume acquisi- 

tion is being acquired. As explained in Section 2.3.2, the rate of change of phase 

in the ky direction (i. e., a frequency) relates to spatial position along the phase 

encoding axis. In a MRI acquisition consisting of Npe phase encoding steps, if 

the rate of change of phase along ky exceeds the Nyquist frequency limit of Npe 

then aliasing will occur along the phase encoding axis. This is often referred to as 

phase wrap. This will occur if L ky is too large. The FOV in the phase encoding 

direction is oI and hence acquiring a MR image with a smaller FOV (and fixed 

Npe) results in a larger Oky. Oversampling may be applied in the phase encoding 

direction too, however this results in an increase in the acquisition time as more 

lines of k space, Npe, must be acquired. 

2.4.2 Bandwidth 

A range of spatial frequencies is contained within k space. The bandwidth of 

these frequencies depends on the duration for which k space is sampled and 

the gradient applied. The bandwidth, Owfe, of the actual NMR signal under a 

frequency encoding gradient acquired for a time tfe can be calculated as follows. 

Consider the difference between the maximum and minimum frequencies, Owfe, 

in Equation 2.21 expected for a FOV of a 
max 

. Assuming a constant gradient, 

Gx, then kmax = 2ryGxt fe and so Owfe = tN . 
It is often useful to express this 

in terms of bandwidth per pixel (or frequency per point), i. e., -L tf, 
The bandwidth per pixel may also be calculated in the phase encoding direc- 

tion. For a spin warp type experiment acquiring one frequency encoding line per 

RF excitation, the phase evolution throughout the NMR signal will be the same 
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for each frequency encoded line. This is because each frequency encoded line is 

acquired at the same time after the RF excitation which tips the magnetization 
into the x-y plane with a defined phase. Only the phase offset is changed by 

the phase encoding gradient. The same is true for most multiple spin echo ac- 

quisitions, as the acquisition of each echo usually occurs at the same time after 

the previous refocusing RF pulse. As all points in a phase encoding column of k 

space were acquired at the same effective time, the bandwidth per pixel in this 

direction is effectively infinite. 

However, this is not the case with EPI acquisitions. Phase encoding effectively 

occurs throughout the entire readout portion of the acquisition as there is no RF 

excitation to reset the phase. In this case, the time for which the spins evolve 

under the phase encoding gradient is tpe which for ne echoes typically is equal 

to netfe. Therefore, the bandwidth, Owpe is 
neI or e IW fe. tf, 

The bandwidth per point can be used to calculate the effect of spins rotating 

with a different frequency to their neighbours. For example, a voxel may contain 

spins of both water and fat. At 1.5 T, they will resonant with a difference in 

frequency of 224 Hz. Although at the same physical location, the fat image will 

appear shifted relative to the water image, in the frequency encoding direction, 

by 224 x tfe pixels. In the phase encoding direction, the shift will be 224 x tpe 

pixels, which will be zero for spin warp acquisition and for EPI will be ne times 

the shift in the frequency encoding direction. This highlights one of the problems 

of EPI compared to spin warp acquisition, i. e., it is more sensitive to erroneous 

frequencies of spins. Fat saturation is often more important for EPI than for spin 

warp acquisitions. As well as chemical shift effects, the local frequency of spins 

may be shifted due to an inhomogeneous Bo magnetic field. Again, this usually 

affects EPI acquisitions more than spin warp schemes. 

2.4.3 Flow Effects 

In a living biological system, as well as movement artefacts due to the respiratory 

and cardiac cycles, the flow of liquids, especially blood, can have an effect on 

the resultant image. Understanding the effects caused by flow allows the flow 

itself to be quantified, allowing MR imaging to be used to study these dynamic 

47 



2. An Introduction to Nuclear Magnetic Resonance Imaging 

effects. Flow can manifest itself in an image in one (or a combination) of four 

ways: ' time-of-flight effects, reversible phase effects, turbulence, and stagnation. 
Time-of-flight (TOF) effects only occur if a component of the flow is per- 

pendicular to the slice (or slab) being imaged. It can either result in a signal gain 
in the pixels containing the flow at low velocities, or signal loss at higher veloc- 
ities. Signal loss is usually only observed in sequences containing slice selective 

spin echoes. Neither TOF effect is readily observed in EPI acquisitions. At low 

velocities, the flowing liquid remains in the slice during the excitation and acqui- 

sition of (at least) one frequency encoding line. However by the time the next 

frequency encoded line is acquired, at a time TR later, the spins have flowed out 

of the slice and have been replaced by unsaturated ones. These fresh spins have 

a larger component of Mo along the z axis available to be tipped into the x-y 

plane than spins which were previously in the slice because the magnetization of 

these latter spins would not have fully relaxed back to the z axis. Enhancement 

of signal in the voxels containing flow is seen. By repeating the pulse sequence 

with various values of TR, the flow can be quantified. 

However, if the flow is fast enough to remove spins from the slice during 

the acquisition of a single spin echo frequency encoding line, then TOF signal 

loss occurs. In this case, some spins that were excited by the initial RF pulse 

have been replaced before the slice selective 180° refocusing RF pulse is applied. 

The spins which have left the slice do not feel the effect of the 180° RF pulse, 

are not refocused and so do not contribute to the NMR echo. Neither do the 

fresh unexcited spins that have replaced them. This effect is not so prominent 

in pulse sequences using gradient echoes (or spin echoes created using a non- 

slice-selective 180° RF pulse), as the flowing spins which experienced the initial 

excitation RF pulse are still refocused and contribute to an echo even when they 

have flowed out of the slice being imaged. 

Flow contained in the slice (or slab) being imaged can lead to phase shifts in 

the MR image. During an echo pulse sequence, flowing spins will move from a 

volume experiencing one magnetic field strength to a region experiencing another, 

resulting in a change in the phase of their rotation. It can be shown that this 

phase change is directly proportional to the velocity of the nuclei" and this 
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information can be extracted from a phase map. Methods have also been devised, 

using multiple gradient echoes, to rephase moving spins and hence allow them 

to contribute to the MR image without exhibiting flow effects. " 

When the flow is turbulent signal loss is seen and the phase change in the 

signal can not be modelled simply, hence flow information can not be extracted. 
At the other extreme, a 'false' flow signal can be seen from volumes from which 
flow is expected due to a brief stagnation of the flow. This can be seen if the 
MRI acquisitions are triggered from the cardiac cycle. A higher signal is seen in 

the arteries during diastole than during systole. 9 

These effects can be complicated in multislice acquisitions. In this case, there 
is the possibility than excited spins from one slice enter an adjacent slice and 

contribute to a signal there. However from this information, it can be deduced 

whether the flow is with or against the direction of multislice acquisition. 
The time-of-flight (TOF) flow effect can be used to construct MR images 

containing angiographic information (MRA). FLASH acquisitions may be per- 
formed with a short TR and large flip angle. The signal for spins which remain 
in the slice for its entire acquisition are saturated after the first few RF pulses 

and hence contribute only a very small signal in the final image. In-flowing blood 

will bring a continual supply of unsaturated spins into the slice. These will give 

a high signal from the large RF flip angle. The final image will contain very low 

signal from stationary spins and a high signal from inflowing blood, highlighting 

the vascular system. This can be extended to three dimensional FLASH MRI, 

resulting in a volume in which the only voxels with high signal intensity are those 

containing rapid in-flowing blood. TOF MRA is a unique method for produc- 
ing high resolution three dimensional angiograms without the use of additional 

contrast agents. 
Spins may also undergo incoherent movement due to diffusion effects. While 

diffusion does not significantly affect normal MRI acquisitions, MRI sequences 

may be sensitized to diffusion and thus used to quantify it. A method for doing 

this is described in Section 4.6.1. 

49 



2. An Introduction to Nuclear Magnetic Resonance imaging 

2.5 Instrumentation for MRI 

A MR imaging unit may be considered as consisting of a main static magnet, 
magnetic gradient fields, RF system, and processing computers. Although the 
hardware is crucial for the production of high quality MR images, it does not 
form part of the work presented in this thesis, beyond that. Therefore, only a 
brief description is given below; it is described in more detail elsewhere. 79 

2.5.1 Main Magnetic Field 

The largest item is the main magnet. Its design is a complex process, as a highly 

uniform strong magnetic field is required over a region which also must allow easy 

access of the patient. Although resistive and permanent magnets have been used, 
their maximum field strengths (for whole body imaging) are approximately 0.15 T 

and 0.3 T respectively. 53 However the trend has been towards higher magnetic 
field strengths, and to achieve this, magnetic fields created by a superconducting 

solenoid are used. Coils, typically of niobium-titanium alloy in a copper matrix 

are surrounded by liquid helium, with a boiling point of 4.2 K. To reduce the 
helium's boil-off rate, it is often surrounded by liquid nitrogen (77.4 K boiling 

point) and all enclosed in a vacuum system for insulation. Modern magnets may 

not have a second insulating layer of liquid nitrogen, but instead compress the 

cold helium gas which has boiled off, to re-liquefy it. 

For easy access of a patient lying on a couch, the bore of a whole body 

superconducting solenoid is aligned horizontally, resulting in the main magnetic 
field, B0, of the MRI scanner also being horizontal. Once superconducting, if 

the temperature of the solenoid coil rises enough for it to gain resistance, the 
heat generated causes a rapid boiling of the cryogen and loss of magnetic field; 

this is known as quenching. To create as uniform a magnetic field as possible, 

smaller 'shimming' coils are used to change the main field, resulting in typical 

maximum inhomogeneities over a central 30 cm diameter region of less than 
10 p. p. m. Shims are usually a combination of passive shims, often strategically 

placed ferromagnetic strips in trays around the circumference of the magnet's 
bore, and active shims, which are a series of up to 30 electromagnetic coils also 
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attached to the inside of the magnet's bore. Active shims may be adjusted, often 

under computer control, to fine tune the homogeneity of the static magnetic field. 

The strength of the main magnetic field is an important consideration. Stronger 

main magnets are more expensive, but result in a higher SNR. However the Tl 

contrast between different regions in a sample decreases with increasing field 

strength. The ability to detect differing pathology depends on contrast as well 

as resolution and so a contrast-to-noise ratio may be a useful concept. Larger 

main magnetic field strengths also result in larger spatial distortions due to an 
increased inhomogeneous local magnetic field caused by magnetic susceptibility 
differences, for the same sample. 

A strong static magnetic field will extend for some distance from the magnet 

itself. This is often a problem, as it can affect electrical equipment nearby, 

especially the computer system essential to control the MR scanner itself. In a 

clinical setting, the external magnetic field also could cause problems with medical 

equipment close to the magnet. It must be remembered that the field will extend 

upwards as well and may be felt in rooms above the magnet. The extent of 

this fringe field may be reduced by active or passive shielding. Passive shielding 

involves surrounding the magnet with a ferromagnetic shield. While this works, it 

adds a considerable amount of load to the floor as well as potentially interfering 

with the homogeneity of the main magnetic field. Active shielding drastically 

reduces the fringe field by surrounding the superconducting coils producing the 

main magnetic field by another set of superconducting coils producing a magnetic 

field of the opposite polarity. The outer coil effectively cancels the fringe field 

caused by the inner coil. However, as it also affects the field in the centre of 

the magnetic, the inner coil must generate a much higher primary magnetic field 

to overcome this. To produce a 1.5 T magnetic field, the inner coil alone may 

produce a 2.5 T field, of which 1T is 'cancelled' by the outer coil. 

2.5.2 Magnetic Gradients 

In order to spatially encode a NMR signal, magnetic field gradients are required, 

typically of strengths of a few tens of milliTesla per metre. A linear gradient 
is required and although a good approximation can be achieved near to the 
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central volume of the magnet, departure from this will result in incorrect spatial 

encoding and image distortion. Again, the design of electromagnetic coils to 

produce gradient magnetic fields suffers from the opposing requirements of a 

uniform, linear field with good patient access. The gradient coils are inserted 

inside the magnet's bore. They are not superconducting, but may be water 

cooled. 
The gradient along the main static magnetic field, G, can be achieved simply 

by the use of coils arranged in a Maxwell pair with currents circulating in opposite 
directions. This results in no contribution to the main magnetic field at the centre 

of the volume, and positive and negative contributions away from it. This also 

allows good access for large samples to be imaged. 

Magnetic gradients along axes perpendicular to the main magnetic field can 
be generated by the use of saddle configuration wires. These produce a linear 

gradient up to three-quarters of the coil radius from the central axis and allow 

greater access to the imaging volume. 
These designs can be improved by adding more coils, which can result in 

stronger and more uniform magnetic gradients. However this also increases the 

coils' inductance, which results in longer gradient switching times. Rapid switch- 

ing of magnetic gradients also results in considerable forces exerted on the coils. 

As well as stressing the coils and their mountings, these can also resulting in high 

audible noise levels. 

Gradient coil performance also may be limited by interactions of the gradient 
fields with the main magnet. This is a hindrance for gradient systems intended 

to be used for EPI acquisitions. Active shielding also may be employed for 

the gradients as well as the main magnetic field. 65 This reduces the magnetic 

gradient field outside the gradient set and hence reduces interactions with the 

main magnet. However, actively shielded magnetic gradients occupy more space 
in the limited volume inside the magnet's bore. 

The design of gradient coils benefit greatly from numerical computer models. 
The high performance gradient systems present on modern MR systems are only 

possible through use of such models. In particular the use of actively shielded 

gradients require the use of computer calculations. 113 
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2.5.3 RF System 

To excite the nuclei, a RF electromagnetic field must be applied to the sample, 

oscillating perpendicularly (in the x-y plane) to the main static magnetic field 

(which is parallel to the z axis). A solenoid coil as part of a resonant circuit is 

an efficient method of doing so, but if the main magnetic field is along the long 

axis of the MR imager, such as produced by superconducting solenoids, then a 

solenoid coil is not suitable. Saddle coils may be used, for both excitation and 
NMR signal detection, however a birdcage resonator design is more common as 
it results in greater RF field uniformity. 15 To obtain a high Q factor and hence a 
high SNR, the coil's 'filling factor' (the proportion of the coil's volume occupied 

by the sample) should be high. However if the sample is a conductor, induced 

currents in it will result in the RF coil being less efficient, hence lowering its Q 

factor, and so a compromise between the two has to be found. 

Another factor to be considered is that if the RF is not homogeneously dis- 

tributed throughout the sample then the tip angle of selective pulses will not 
be the same throughout the sample, resulting in modulated NMR signals from 

various volumes in the sample. However, RF attenuation in the body is not such 

a big problem as it may seem at first due to the compartmentalization of the 

body, reducing 'skin depth' effects. RF homogeneity is improved if the radius of 

the coil is large compared with the size of the sample; another consideration in 

coil design. 

If only a small volume of the sample is to be imaged, such as an eye or breast, 

the final SNR can be improved by using RF surface coils. These are placed over 

the volume to be imaged and result in images up to a depth that is approximately 

equal to the radius of the coil. 

In practice, a variety of RF coils are available for a whole body MR imaging 

system, to conform to the body part being imaged. In particular, a head coil 

which fits fairly close to the head, and a larger diameter body coil into which the 

trunk of a human will fit, are common on most clinical systems. In NMR, RF 

must be both applied and received. This is often performed by the same coil, 

which is electronically switched between transmit and receive modes. However, 

in some cases it may be preferential to transmit the RF pulses using one coil and 
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to receive on a separate coil system. This is often the case when surface coils 

are used, as they do not provide a uniform RF field. A larger coil may be used 

to transmit good RF pulses over the entire sample, while the surface coil is used 

to receive the NMR signal only. This is often the case when surface coils are 

positioned in a phased array configuration, where NMR signals from a number 

of spatially separate surface coils are combined to produce a more uniform MR 

image. 

The RF amplifier attached to the transmission coil must be capable of accu- 

rately supplying RF over a range of frequencies, with defined phase, and mod- 

ulated by generally shaped amplitude envelopes, such as a sinc waveform. It 

should also contain a power monitor to cut off the RF output if a fault would 

allow excessive transmission of RF power into the patient. 

The RF receive channel must be capable of detecting the small NMR signal 

and should introduce as little noise as possible. The bandwidth of acceptable 

frequencies must be set to the bandwidth of frequencies expected in the NMR 

signal. Setting the bandwidth too wide will result in sampling of frequencies 

containing only noise and so reduce the SNR of the actual signal. 

In order to reduce the amount of RF noise as well as image artefacts, the 

MR scanner should be placed within a Faraday cage, or screened room. This 

prevents radiowaves entering the room and being detected by the RF coil during 

MRI acquisition. Care must also be taken to filter all electrical cables entering the 

screened room to prevent RF entering the room through the cables. In particular, 

the cables carrying the high currents to drive the magnetic gradients must be 

filtered. 

2.5.4 Control System 

To control the various pulse and gradient sequences, and to collect, process, and 

display the NMR signals and MR images, a fairly sophisticated set of electronic 

hardware and computer is required. It must be able to communicate and inter- 

face with the equipment producing the gradient and RF pulse sequences, and 

synchronously digitize the received NMR signals at a rapid rate. Once the NMR 

signals have been collected, they need to be processed (including Fourier trans- 
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forming) before being displayed on a suitable monitor. For rapid processing, not 

only is a fast computer required, but also one with a large amount of directly 

accessible memory and external storage devices. 

2.5.5 MRI Systems 

Four whole body MRI scanners were used to acquire images for the work pre- 

sented in this thesis; two research systems and two clinical units. A 0.5 T whole 
body superconducting magnet system and 3T whole body magnet system (the 

latter with gradient coils to image the head) were used to acquire EP images, 

both built in-house and situated in the Magnetic Resonance Centre at the Uni- 

versity of Nottingham. A clinical 1.5 T Vision MR scanner supplied by Siemens 

(Erlangen, Germany) was used at the Queen's Medical Centre University Hospi- 

tal, Nottingham, as was a Siemens 1.5 T SP MR scanner. 

2.6 Safety 
Unlike images formed from x-rays, MRI does not present any risk to the person 
being imaged from ionizing radiations. However an assessment of any potential 
hazards and risks is still important. As a diagnostic imaging tool applied to tens of 

thousands of people each year, even a relatively small risk could cause morbidity 

or mortality to a few people. Hazards in MRI are normally considered from 

three sources: the static magnetic field, switched magnetic gradients, and RF 

power. These have been considered by the National Radiation Protection Board 

(NRPB) who devised the limits mentioned below26 for clinical MRI examinations. 
The proposed limits have been classified in to two levels, where exposure below 

level I is not believed to carry any risk, and exposure above level II is considered 
inadvisable. Exposures between the two levels are considered safe for healthy 

people. 

2.6.1 Static Main Magnetic Field 

Static magnetic fields of strengths of a few Telsas are not thought to have a 
harmful biological effect. The NRPB has set the level I whole body limit for the 
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Duration of 
field change 

t 
3ms <t 

120µs<t<3ms 
45µs<t<120µs 
2.5 µs<t<45µs 

level I 
20 
20 

2.4x 10-3 
t 

2.4 x 10-3 
A 

dB (Ts=I) 
dt 

level 11 
20 

60x 10-3 
t 

60x10-3 
t 

1300 (- 2 Wkg-1) 

Table 2.2: Limits for time varying magnetic fields. 26 

main static magnetic field of 2.5 T, with level II at 4.0 T. The main hazard from 

static magnetic fields is from loose ferromagnetic objects near, or in, the magnet. 
Unattached objects can be attracted towards the magnet, causing physical harm 

to a person in their path, or damage to the magnet or its housing. Special 

consideration must be given to emergency procedures such as fire or cardiac 

arrest, where the initial response may be to bring ferromagnetic equipment close 
to the magnet. Other objects such as cardiac pacemakers and other metallic 
implants, as well as external medical equipment, may cease to function correctly. 

2.6.2 Time Varying Magnetic Field 

The switching on and off of gradient magnetic fields in order to spatially encoding 

the MR image results in time varying magnetic fields. These cause a biological 

risk because of the current induced in the sample. This may interfere with cardiac 

ventricular fibrillation, other electrical signals and stimulation within the body, 

and may induce epilepsy. The most common effect is of nerve stimulation, espe- 

cially in the shoulders and the optical nerve; nevertheless, these effects are rare 

and not believed to be hazardous. The NRPB limits are given in Table 2.2. With 

rapid imaging techniques such as EPI, these limits may frequently be reached. 

2.6.3 RF Electromagnetic Field 

RF power dissipated in tissue could cause damage due to local heating. A rise 
in local body temperature of 1K is considered to be safe, and this value is used 

to set the level II limit on RF absorption (level I is set for a 0.5 K temperature 

rise). The lens of the eye has no blood supply to remove heat and so is chosen 

as the region of consideration. The levels are set in terms of Specific energy 
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Duration of SAR of whole SAR of SAR of SAR of 
exposure body (Wkg-1) head trunk limbs 
t (min) level I level II (Wkg-1) (Wkg-1) (Wkg-1) 

30 <t 1.0 2.0 2.0 4.0 6.0 
15 <t< 30 30 

t 
60 
t 

60 
t 

120 
t 180 

t 
t< 15 2.0 4.0 4.0 8.0 12.0 

Table 2.3: Bl radiofrequency SAR Iimits. 26 

Absorption Rate (SAR) and are shown in Table 2.3. Again, these limits may be 

reached fairly easily during routine clinical MR scanning using rapid multiple spin 

echo acquisitions, such as RARE or HASTE. 

Hazards from RF irradiation also include local heating caused by eddy currents 

induced into closed conducting loops (as opposed to direct RF absorption). Heat- 

ing effects have been noted in metallic implants, monitoring equipment attached 

to the patient, e. g., ECG electrodes and leads used to monitor the cardiac cycle, 

and in patients' legs if their bare feet are touching, causing a large conducting 
loop. 

2.6.4 Other Risks 

There is no convincing evidence that MRI examinations of pregnant women 

causes any detrimental effect on the embryo or foetus. However, it is proba- 

bly wise not to perform MRI during pregnancy unnecessarily, although it may be 

a preferable option to an x-ray examination, which is known to carry small risks. 
Finally, MRI acquisitions are noisy. Rapid switching of the magnetic gradient 

coils causes them to move slightly resulting in emission of sound. This can be 

quite considerable and so ear protection, in the form of headphones or ear plugs, 

must be worn. 
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Figure 2.18 Standard orthogonal imaging planes (transverse, coronal, 
and sagittal) relative to a supine person. The transverse plane also is 
often labelled transaxial. The magnet's three primary (x, y, z) axes 
are also given. For a typical whole body superconducting MRI system, 
the magnet's bore is horizontal as is the main magnetic field, Bo, both 
of which are parallel to the z axis. 
(adapted from `Application Guide for the Vision' by Siemens) 



Chapter 3 

Neurosurgical Stereotactic 

Techniques 

3.1 Origins of Neurology and Neurosurgery 

Throughout human history, man has been fascinated by the human brain, and 
diseases with which it may be associated. Archaeological evidence suggests that 

skull trepanation (removal of a portion of skull, leaving a hole) had been per- 
formed as long ago as 3000 BC., possibly to ease symptoms caused by trauma, 

or in the belief that it would allow the escape of troublesome daemons. In some 

cases, partial re-growth of the skull surrounding the trepine suggests that the 

patient survived the operation for several months. 112 

The understanding of the function of the brain was furthered during antiquity 
by Erasistratos in 300 BC., and Galen who believed it to be associated with 
intelligence, movement, and sensation. However, association between specific 
functions of the brain and particular physical regions within it was not made 

until the 17th century, when Descartes decided that the soul was located in a 

specific volume of the brain, the pineal gland. 24 Phrenology, hypothesized in 

the late 18th century by Gall, assumed the organization of the cerebral cortex*, 

and throughout the 19th century, further postulates assumed the connection 

of various regions of the brain with particular functions. In particular, Broca 

*the outer layer of the brain. 98 
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correlated speech impediments with the location of lesions found subsequently 
during post mortems, from 1861 onwards. ' Animal experiments by a number of 

researchers observed that electrical stimulation of various regions of monkeys and 
dogs' brains resulted in distinct muscular movements, leading them to propose 

a functional map of the brain. In 1925, Foerster was the first to experiment on 
the human motor cortex, using electrical stimulation to evoke specific muscle 

movements. For the first time, the site of an abnormality in the brain could now 
be suggested from a diagnosis of the symptoms. 112 

From then on, the increasing ability to associate various regions within the 

human brain with its function or disease, 86,87 allowed the development of neurol- 

ogy, the study of the central nervous system (CNS), and neurosurgery. However, 

in order to proceed, a method for accurately locating a point within the brain 

was required. Functional atlases of the brain were constructed from the addition 

of data from several people, but with the variations in size and shape between 

individual brains, these could only result in accurate location of function on the 

visible surface of the cerebral cortex; the location of function in deeper regions 

of the brain was more uncertain, and its position (relative to the brain's surface) 

variable between people. For neurosurgery too, this accuracy was required. The 

less well defined the location of the target of the surgery is, the more invasive 

the surgery needs to be, in order to find it, which in turn is likely to increase the 

chance of morbidity and mortality in the patient. 

3.2 Stereotaxis 

Stereotaxis (from the Greek stereos solid, taxis arrangement112) refers to tech- 

niques for accurately and reproducibly physically locating a three dimensional 

coordinate within a solid body or volume. These techniques have been applied 

to many fields, including medicine where its primary use is to define fixed points 

within the human head. Neurological stereotactic apparatus typically consists 

of a frame which is rigidly attached to the head. The frame contains devices 

that allow accurate and reproducible positioning, typically of a needle point, at 

a range of three dimensional coordinates relative to the frame. If the target 
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point is know relative to the headt then, as the frame is rigidly attached to the 
head, its coordinate can be transferred to the frame system. The coordinate can 
then be 'dialled up' on the frame, to allow positioning of the needle tip at the 
desired target. Its use in neurosurgery falls into two categories: image directed 

surgery, and functional surgery. In image directed neurosurgery, one or more 
images through the head, acquired using a variety of medical diagnostic imaging 

modalities, are used to localize the target point. In functional neurosurgery, the 

target point is selected from anatomical atlases rather than individual images. 

The contemporary work in this thesis, relating to stereotaxis, is only concerned 

with the former use. 
The first stereotactic system to examine the anatomy of the human head is 

believed to have be been used at the University of Utrecht in 1861 by Harting. 35 

In 1895, Rossilimo99 used a stereotactic device to drain a lesion, later suggested 

to be a cystic glioma; 48 his apparatus was based upon the 'encephalometer' of 
Professor Zernov of Moscow University which was introduced in 1889. A device 

for reproducibly localizing points within monkeys' cerebella was constructed and 

used by Sir Victor Horsley and Richard Clarke21,45 at University College London 

in 1906. This device, which is usually attributed as the first stereotactic frame, 

was used to guide electrodes to internal targets based on external anatomy; the 

frame was positioned on the head by locating plugs into the nose and ears, while 

plates fitted over the eyes. A stereotactic system was designed for human use in 

Canada in 1918 by Aubrey Mussen, 88 the target to be selected using an atlas of 

the head, but it was never used on a patient. It was not until 1933 that Kirschner 

devised a stereotactic method for guiding an electrocoagulation needle to treat 

tic douloureux in humans, 54 selecting the target using both x-ray radiographs 

and external landmarks; however its design was not suitable for extension to 

treat deeper targets. 

The routine application of stereotactic devices to human neurosurgery was 

not realized until 1947 when Spiegel and Wycislo5 introduced their stereotactic 

frame. This was attached to the patient using a plaster cast of his or her head, 

and initially used to treat functional disorders. A system was developed in 1949 

tor preferably, directly relative to the frame, after it has been rigidly attached to the head. 
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by Talirach and others109 to allow the positioning of a needle within the head. 

It used a two point sighting system to align the frame, attached to the patient's 
head, with a x-ray beam. The resulting radiographs allowed a grid of holes to 

be aligned to the frame, one of which would guide the needle, and depth to be 

calculated. As the benefits of using a stereotactic system became more widely 
known, many designs were implemented; two of the most successful and popular 

were those designed by Lars Leksell in Stockholm in 1949,59 and Riechert & 

Mundinger in Freiburg in 195595 (modified from an initial system by Riechert & 

Wolff, first used in 195096). These two systems were initially designed to be used 

with planar x-ray systems, while requiring only a small amount of computation 

for each procedure. Their success can be judged from their usage; the Riechert- 

Mundinger system had been used for over 10,000 stereotactic operations by 

1988.112 

With the introduction into routine clinical use of x-ray computed tomography 

(CT) systems in the early 1970's, a new dimension in neurology was opened up. 

Both the Leskell and Riechert-Mundinger systems were adapted to make use of 

this new, richly informative medium. The new perspective offered by transverse 

CT images through the head, coupled with the availability of relatively cheap 

computers, allowed new stereotactic systems and protocols to be developed to 

take advantage of these factors. Since the early 1980's, the Brown-Robert- 

Wells (BRW) stereotactic system (produced by Radionics, Burlington, MA, USA) 

has become increasing popular"-13 due to its simplicity and quoted millimetric 

accuracy. 97 This system relies on computer calculations to determine the final 

target coordinate to be 'dialled up' on the frame. Although designed primarily to 

allow surgical planning to be conducted directly from CT images, it also allows 

planning from magnetic resonance (MR) images and planar x-ray angiograms. 

The details of the BRW stereotactic system are described more fully below. 

The increased availability of diagnostic imaging modalities which are compatible 

with stereotactic systems allows individual planning of each patient undergoing 

a stereotactic procedure. This is especially important for targets which do not 

occur at specific locations; the location varying from patient to patient, and 

for all targets deep within the brain, whose location can only be accurately 
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determined from diagnostic images. The accurate determination of the target 
from diagnostic images, pre-operatively, also allows the surgery to be far less 

invasive than it would otherwise have had to be, which is likely to decrease the 

chance of morbidity and mortality in the patient. In addition, many regions of 
the brain could now be operated upon for the first time, as the accurate location 

of not only the target, but other critical structures to be avoided, dramatically 

increased the chance of a successful outcome. 
A typical contemporary stereotactic procedure, planned using a diagnostic 

imaging technique, would involve rigidly attaching a base ring to the patient's 
head, which remains in place for the entire duration of the operation. It is as- 

sumed that points within the patient's head remain at a constant, fixed, position 

relative to this head ring throughout the procedure. The ring is than attached 

to a specially designed frame during diagnostic imaging; the frame is visible on 
the images, allowing coordinates to be transformed from the image to the frame 

system, and hence to a coordinate system relative to the base head ring. The 

patient is then attached to a treatment jig via the base ring, which allows the 

target coordinate to be transferred to the calibrated treatment jig; usually defined 

as a needle tip. This procedure is described more fully below, with reference to 

the BRW system. 
Stereotaxis has become a widely accepted and used diagnostic and surgi- 

cal procedure in neurology. Its primary use is for obtaining intracranial biopsies, 

where small cores of tissue (typically 5x2 mm112) through the target are removed 

using a needle entered through the skull via a small burr hole, often performed 

under only a local anaesthetic. These samples can then be analysed to aid the 

diagnosis of the patient's condition. Inaccuracies in the locations of the biopsy 

may cause brain damage, or lead to false negative diagnoses of the samples, 

resulting in incorrect diagnosis and treatment of the patient. One measure of 

the success of stereotactic biopsies is the rates of mortality, morbidity, and posi- 

tive diagnosis; these are typically 0.5%, 2%, and over 90% respectively. 112 The 

mortality rate for radical neurosurgery is of the order of 5%. 112 Other neuro- 

surgical applications for which stereotactic biopsy techniques have been widely 

applied include aspiration of cystic tumours, cerebral abscesses, and intracere- 
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brat haematomas. 112 A stereotactic biopsy system may also be used to direct a 

craniotomy, although once the open surgery has begun, the inevitable distortion 

of normal brain anatomy means that the pre-operatively determined stereotactic 

target coordinate will probably no longer be correct. This highlights a further 

advantage to be gained from the decreased invasiveness of most stereotactic pro- 

cedures, compared with traditional methods: that the target coordinate is less 

likely to be displaced due to the surgical procedure itself. Stereotactic techniques 

have also been used to place an electrode at a specific target within the brain, 

to treat aneurysms, functional disorders, and destroy epileptogenic foci. 

3.3 Radiotherapy and Radiosurgery 

An application of stereotactic techniques which is becoming increasingly popular 

is its use to determine the target for external beam radiotherapy of the head. 

Radiotherapy of tumours is based upon the observation that a population of 

cancerous cells usually recovers more slowly after exposure to a high, but non- 

lethal dose of ionizing radiation, than does a population of healthy cells of the 

same tissue type. Repeated doses of radiation, preferably at about six hours 

intervals, but practically daily, reduce the surviving proportion of viable cancerous 

cells more rapidly than surround healthy cells. After a certain cumulative dose, 

the probability of any surviving viable cancerous cells is virtually zero, while the 

probability of surviving viable healthy cells is significantly greater than zero. This 

type of cumulative radiation treatment, consisting of many small treatments, is 

known as fractionated radiotherapy. ' 19 Ionizing radiation can also be delivered 

in just one, large amount, usually in a larger dose than the effective total dose of 

a fractionated treatment regime. This treatment is intended to sterilize all cells 

in the target volume, healthy or otherwise. This type of radiation treatment is 

often known as radiosurgery, as it can be considered as effectively 'burning out' 

the target volume. This technique is usually used to treat conditions other than 

cancer, however its use is limited to small volumes, as the body can not deal 

with a large volume of necrotic tissue. 

For many years, stereotaxis has been used to position solid radioisotopes 

within a target in the brain using very similar techniques to a stereotactic biopsy. 112 
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This interstitial irradiation, or brachytherapy, is intended to deliver a localized 

dose of ionizing radiation, and as such, the radioisotopes chosen are usually beta 

emitters, as beta particles have a limited range. Disadvantages of brachytherapy 

include a potentially high radiation dose to the neurosurgeon, and the difficulty 

in arranging the source accurately enough to result in a uniform delivery of dose 

to the target; 'hot spots' may result in unacceptably large volumes of necrosis, 

and underdosed volumes have a lower probability of successful treatment. 

The advantage of external beam radiotherapy is that it is completely non- 
invasive, thereby removing the associated risks of surgery, including the risks 

of intracranial haemorrhage and infection, and results in the irradiation of only 

the patient. The ionizing radiation used is usually either x-rays, produced by 

the deceleration of electrons exiting a linear accelerator, or gamma rays, from a 

solid sourced with typical energies between one and ten mega-electron volts. 51 

The problem of obtaining a uniform radiation dose throughout the target volume 
is reduced by placing the x-ray source at a distance from the target (typically 

100 cm). It is highly desirable to minimize the volume of healthy tissue irradiated 

outside the target volume, in order to minimize the chance of morbidity. However, 

at depths greater than about one centimetre, the amount of energy deposited 

by an incident beam of x-rays as it penetrates tissue has been found empirically 

to vary approximately as a combination of the inverse square law (with distance 

from the x-ray source) and exponential attenuation (with depth in tissue). 51 

This means that to deliver the required radiation dose to a target at depth 

in the head, using one incident x-ray beam, results in an even larger radiation 
dose to more superficial, healthy tissues. In order to reverse this effect, several 

collimated radiation beams are applied, either concurrently or in succession, from 

different angles around the target. These are arranged so that the cumulative 
dose, where all the beams cross, falls over the target volume. Generally, the 

more beams that are applied from different angles, the more uniform is the high 

dose target volume, and the lower is the dose absorbed at any point outside the 

target volume. By varying the weighting and dimensions of the various beams, a 

near uniform radiation dose can be applied over the whole target. This process 
$usually Cobalt-60. 
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is called radiotherapy treatment planning, and requires information regarding 

the x-ray beam characteristics, the dimensions and structure of the patient's 
head, and the target location within it. Due to the complexity of treating a 

patient stereotactically, relative to conventional radiotherapy, most patients are 

only treated on one occasion. 
The stereotactic frame, attached to the patient's head during diagnostic 

imaging, is then attached to the x-ray delivery system (usually a couch) instead 

of to a surgical jig. As the x-ray source is usually fairly immobile, the calibrated 

couch to which the patient is attached is moved so that the desired target within 
his or her head coincides with the isocentre§ of the x-ray delivery system. Irradi- 

ation is then given according to the individually calculated treatment plan. Two 

systems are routinely used to deliver stereotactic radiosurgery or radiotherapy. 
The first, the Cobalt-60 'gamma knife' is a dedicated stereotactic radiotherapy 

treatment system, consisting of many (typically 180 to over 200) small Cobalt- 

60 sources positioned radially around a hemisphere; the emitted gamma rays are 

focused by individual collimator tubes to the machine's isocentre. It was devel- 

oped by a group, including Lars Leksell, and first used in Stockholm in 1968.60 

While allowing the foundations of stereotactic neuro radiosurgery to be laid, the 

gamma knife remains prohibitively expensive to install and maintain, and is only 

in use in a handful of centres worldwide. An emerging alternative is to modify 

and use a conventional modern radiotherapy x-ray linear accelerator (linac). This 

was first proposed in 1983 by Heifetz et al., 38 and put into practice by 1985 by 

Colombo et al. 22 and Hartmann et al. 36 Linacs already are used in radiotherapy 

departments in a large number of hospitals, and so modifying one would be rel- 

atively cheap, not requiring a new installation, and the linac also could be used 
in its usual mode when not required for radiosurgery. The linear accelerator is 

usually mounted on a gantry which can rotate through 360° around a couch, 

upon which the patient lies for treatment. If the target point is set to the isocen- 

tre of the linac, then the rotation of the gantry, coupled with rotation of the 

couch, allows the x-ray beam to be incident upon the head over a wide range of 

the focal point in space around which all the axes of rotation and x-ray beam delivery, of 

the treatment device rotate. 
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angles, imitating the gamma knife. If the linac is continuously irradiating while 
the gantry or the couch is moving, then an arc is irradiated, producing a more 
uniform result than irradiating from a finite number of fixed angles. Additional 

collimation of the x-ray beam results in a x-ray beam profile at least as good 
as that produced by a gamma knife. An error associated with linacs which is 

potentially larger than that on a gamma knife is the change in position of the 

centre of the x-ray beam as the gantry, weighing several tens of thousands of 
Newtons, sags as it rotates through large angles. However, after adjustments to 

compensate for errors, a modern linac should be able to irradiate a volume from 

a wide range of angles while confining the centre of the x-ray beam to less than 

two millimetres. 
Stereotactic radiosurgery lends itself to a number of new treatments. Small 

brain tumours are particularly suitable for this technique, as the more accurate 
localization of the target, compared with traditional methods for head and neck 

radiotherapy, allow a smaller margin to be added for positional uncertainty and 

a higher radiation dose to be given, as less surrounding healthy tissue will be 

irradiated to a high dose, resulting in a lower probability of morbidity, The smaller 
high dose volume will reduce effects from any necrosis within, and it is also easier 

to achieve a more uniform and well defined high dose volume with radiation beams 

of smaller size. An emerging important use of stereotactic radiosurgery is in the 

treatment of arteriovenous malformations (AVM's), an abnormal growth of weak 
blood vessels in the brain between the arterial supply and venous drainage. While 

'short circuiting' the full blood supply to parts of the brain may cause problems, 

the major risk from an AVM is of it haemorrhaging. AVM's may be treated using 

stereotactic radiosurgery, with a lower radiation dose than that given to tumours, 

in a single-shot treatment. Although irradiation causes only slow occlusion of 
the feeding vessels and fistula (a late effect of radiation damage) over a few 

years, it can be used to treat AVM's in locations which would be impossible 

to treat surgically. It also has a very small mortality rate, unlike surgery to 

place a clip to seal the AVM. As the surrounding brain is healthy, to minimize 

morbidity, it is crucial to accurately treat as small a volume as possible. With 

the larger errors associated with traditional radiotherapy, over a centimetre in 
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margin would have to be added to the dimensions of the target volume, resulting 
in an unacceptably large volume of healthy brain being destroyed, along with the 

associated morbidity due to the large volume of necrosed tissue. Combined with 

excellent long term results and multi-modal imaging for planning, radiosurgery is 

becoming the treatment of choice for management of AVM's. 

3.4 The BRW and CRW Stereotactic Systems 

A modified form of the BRW system is currently in use in Nottingham. Imaging 

and neurosurgical biopsies are performed at the Queen's Medical Centre (QMC 

- the University Hospital in Nottingham). Radiosurgery of small tumours and 
AVM's, using a modified linac, is undertaken in conjunction with the City Hospital 

in Nottingham, where the radiotherapy department is based. The work in this 

thesis relating to stereotaxis is based around the use of the BRW system, which 
is described below. The BRW and CRW stereotactic systems are produced by 

Radionics (Burlington MA, USA). 

The Brown-Robert-Wells stereotactic system, first introduced in 197912,13 

and currently in use in Nottingham, consists of a head ring, various fiducial 

frames for imaging, and a surgical treatment jig. The head ring, approximately 
30 cm in diameter and 2x2 cm thick, is first attached to the patient, who may 
be under a general anaesthetic, or just locally anaethetized at the points where 

the ring is attached to the head. It is placed around the patient's head so that its 

axis of circular symmetry is parallel to the inferior-superior, axis of the patient, 

at a level near to the height of the patient's mouth. This low placement is one 

advantage of the BRW head ring over many of its competitors, as it allows clearer 

access to the top of the head during treatment. The ring is rigidly attached to 

the patient's skull by means of three upright posts. These are attached to the 
head ring at one end, and have threaded holes at the other. Each hole takes a 

pin, which is screwed through the post and into the patient's head, forcing its 

way a few millimetres into the skull. This results in the head ring being rigidly 

attached to the head. It remains in place throughout the procedure, providing a 
lthat is, feet-to-head. See Figure 2.18. 

67 



3. Neurosurgical Stereotactic Techniques 

fixed reference plane relative to the skull and, it is assumed, the brain. The ring 
is surprisingly well tolerated by non-anaethetized patients, and it may have to be 

'worn' for up to twelve hours. See Figure 3.1. 

To allow treatment planning, the patient must then be diagnostically imaged 

using one or more modalities. During each imaging session, an appropriate fidu- 

cial system must be fitted over the patient's head and rigidly attached to the 

head ring. Markers on this fiducial frame must be visible on the resultant images, 

while not obscuring too much anatomy. As their position relative to the head 

ring is already known, they are used to calculate the target coordinate(s) relative 

to the head ring. The fiducial system must have been designed to allow scaling, 

rotation, and translation transformations of the image to be performed. During 

imaging, the patient should not move, and to ensure this, is often attached to 

the couch upon which he or she lies while being imaged. The BRW system 

was primarily designed to be used with CT imaging. The cylindrical BRW CT- 

compatible fiducial frame, shown in Figure 3.2, consists of three sets of three 

rods. Each set of rods is arranged so that two are perpendicular to the head ring, 

and the third rod runs diagonally in between, forming a 'N' configuration. This 

is attached to the patient's head ring, Figure 3.3. He or she is then placed into 

a CT scanner, as shown in Figure 3.4. The transverse" images acquired by the 

CT scanner will 'cut' the rods, which then appear on each image as nine high- 

density points around the head (see Figure 3.5 for a typical example). Knowing 

the true dimensions of the fiducial rods, and by a consideration of similar trian- 

gles, three dimensional coordinates can be calculated for each of the diagonal 

rods (see Chapter 5) in known units. The coordinates of the three diagonal rods 
define the plane of the image slice (assumed to be flat) relative to the head ring, 

allowing any other point in the image to transformed from a two dimensional co- 

ordinate in pixels, to a three dimensional point relative to the head ring. During 

the planning of the treatment, points such as the centre and extremities of the 

target volume, may be transformed in this way. This is a straightforward tech- 

nique using a computer and appropriate software to identify the rod positions, 

select the target pixel coordinates and calculate the transformation, although it 

11that is, perpendicular to the inferior-superior axis of the patient. See Figure 2.18 
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Figure 3.1 BRW stereotactic head ring attached to patient's skull by 
upright posts and pins. All photographs taken after obtaining 
the patient's informed consent. 

Figure 3.2 BRW CT compatible fiducial frame. 



Figure 3.3 BRW CT compatible fiducial frame and head ring attached to 
patient. 



Figure 3.4 Stereotactic patient prior to contrast enhanced CT scan. 

Figure 3.5 Typical transaxial CT image. The nine fiducial rods of the 
BRW frame, the four upright posts, and central target 
volume, are visible (c. f. figure 3.13). 
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would be very laborious to perform manually. In Nottingham, patients under- 

going stereotactic techniques are scanned using a Siemens Somatom Plus CT 

scanner. 
Neurosurgery and radiotherapy have different requirements regarding the 

range of CT images acquired. Minimal neurosurgical planning only requires im- 

ages through the target lesion. Radiosurgery requires images throughout as much 

of the head as possible, limited only by the requirement that all fiducial rods are 

present in each image. This is because during the treatment planning for radio- 

therapy, the depth of tissue to the target point is needed at many points through 

each arc, in order to calculate the attenuation of the x-rays. 
Modifications to the system described above will usually be required to make 

it compatible with other imaging modalities. For planar x-ray angiography, a 
different fiducial system is used with the BRW system. Angiography involves 

imaging the vascular system; using x-ray, this is usually done by injecting a radio- 

opaque dye (contrast agent) into an artery via a catheter. This is particularly 

useful for visualizing AVM's, and there is a wealth of experience of diagnostically 

interpreting x-ray angiograms of them. With the increasing use of accurate and 

relatively quick digital subtraction angiography, where a radiograph taken when 

no contrast agent is present is subtracted from a radiograph taken when contrast 

is present, in order to improve the contrast of the blood vessels, angiography 

continues to play an important role in stereotactic planning. The fiducial system 

consists of a rectangular Perspex frame which attaches to the head ring. On 

each of the anterior, posterior, and both lateral** faces, four dots, identified by 

letters, are marked with a radio-opaque material. Plane lateral and anterior- 

posterior radiographs are taken, usually, but not necessarily, orthogonal to each 

other, so that eight dots (four on the near face, four on the far face) are visible 

on each angiographic image. These allow the same target points, identified in 

both angiograms, to be transformed to three dimensional coordinates relative to 

the head ring, corrected for magnification, rotation, translation, and divergence 

of the x-ray beam. Again, although the BRW angiographic system allows these 

images to be easily obtained, the transformation can only be routinely performed 

that is, front, back, and sides respectively. See Figure 2.18 
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using a computer system. "2 

Once the images have been acquired, the treatment planning is undertaken. 
All fiducial rods are identified, allowing a computer to transform any point within 

the image to a three dimensional coordinate relative to the head ring. For neu- 

rosurgery, the surgeon may just require the target point to be converted to the 

appropriate coodinates to 'dial up' on the treatment jig. In this case, one im- 

age may be selected as containing the centre of the lesion to be treated. Using 

the computer controlling the CT scanner, the coordinates of the fiducial rods 

are found, using the basic imaging processing software that is delivered with all 

CT scanners. The pixel coordinate of the target point is also found. These 

are entered into a small, separate, dedicated computer, similar to a modern 

day programmable desk-top calculator, which performs the numerical coordinate 

transform. Alternatively, the surgeon may wish to plan the surgery visually us- 

ing dedicated software on a computer, using the images transferred from the 

scanner, in order to select not only the target, but the most appropriate path of 

approach to the target, avoiding the most sensitive regions within the brain. The 

program then calculates a further transformation of the target coordinates to the 

system used to directly specify the coordinate on the treatment jig. Radiosurgery 

treatment planning may only be performed with the extensive use of a computer 

running dedicated software, and requires all the images acquired. The target 

volume, as well as other radiosensitive structures, is outlined on each image in 

which they appear, as well as the skin surface. The application of the arcs of 

radiation can then be modelled on the computer, taking into account the mea- 

sured characteristics of the radiation beam at the collimator field size selected, 

and the particular depth in the head for each portion of the arc that the beam 

has to traverse to reach the target. A map of the radiation dose throughout the 

target and head can then be constructed, and parameters of the arcs varied until 

the most uniform high dose volume covers the target volume, while minimizing 

'hot spots' of radiation dose elsewhere. This solution is then transformed into 

the coordinate system used by the treatment linear accelerator. 

Once the treatment has been planned, the patient is then moved to a treat- 

ment room. Neurosurgery takes place in a operating theatre. The patient is 
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fixed to the operating table via the head ring, onto which the biopsy treatment 

jig is attached, see Figure 3.6. This calibrated jig allows the target point to be 

'dialled up' using the previously calculated coordinates, so that the needle passes 

through the desired entry point, to the target point. The jig works according to 

a polar coordinate system; the two arcs are set, and the needle advanced along 

a radius until in reaches the desired pre-calculated depth. The initial BRW jig, 

shown in Figure 3.7, was not terribly convenient to use in theatre. It it was later 

modified, and this new Cosman-Roberts-Wells (CRW) biopsy jig greatly simpli- 
fies the setting of target coordinates, and use in theatre (see Figure 3.8). Its 

use in determining the target during a craniotomy is shown in Figure 3.9. For 

radiosurgery, the patient is attached to the calibrated treatment couch in the 

linac bunker. Extensive routine quality control tests will have been performed 

to ensure that the axes of rotation, collimation, and radiation output fall within 

predefined tolerances. The couch and linac gantry are moved to the starting 

position of the first arc. From outside the bunker, irradiation and movement 

of the gantry through the pre-planned arc are initiated. For the usual multi-arc 

treatment, the new starting positions of the couch and gantry are set before 

initiating the each arc. 
When treatment has been completed, the frame is removed quickly. In the 

case of radiotherapy, where is it desirable to perform fractionated treatment over 

at least a week, an alternative head ring is available for use with the BRW 

system - the Gill-Thomas-Cosman (GTC) head ring. A dental impression of 

the patient's teeth and roof of the mouth is taken while biting. This mouth bite 

is rigidly attached to the head ring, which is held at the back of the head by 

an individually moulded silicon pad placed over the occiput; straps over the top 

of the head complete the fastenings. With practice, the GTC head ring may 
be repeatabily attached to a cooperative patient's head with quoted variation of 

about 1 mm, which would be suitable for fractionated treatment. 

The BRW, and more recently the CRW, systems have been used in the 

Queen's Medical Centre in Nottingham for many years for performing stereotactic 

biopsies and directing craniotomies. These are planned using CT images and 

carried out at the rate of about one per week. Stereotactic radiotherapy of 

71 



a. 

Figure 3.6 Anaesthetized patient being prepared for neurosurgery. In 
Figure 3.6b, the CRW biopsy jig has been attached to the 
BRW head ring. 



HR Left 

Figure 3.7 BRW biopsy jig (from StereoPlan software). 

Figure 3.8 CRW biopsy jig (from StereoPlan software). 



Figure 3.9 Three dimensional localization of a tumour with the CRW 
biopsy jig during a craniotomy. Target coordinate chosen 
from CT and MR images. 
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small tumours was first undertaken in 1995, with the head ring being fitted, 

and patient CT scanned, at the QMC, while the radiotherapy occurred later 

that day at the Nottingham City Hospital. For radiosurgery of AVM's, planar 

x-ray angiography was also performed and used to aid the treatment planning. 
Image based treatment planning is performed using the StereoPlan and XKnife 

programs supplied by RSA (Burlington MA, USA), running on a Hewlett Packard 

715/75 workstation. For neurosurgical planning, where just the target coordinate 
in one slice is required quickly, a SCSI computer system is used. While the GTC 

head ring was successfully used on a few patients, its success depended on the 

cooperation of the patient, who had to understand exactly what was required 

of him or her, so far as maintaining a constant bite on the mouth bite. As 

the normal BRW surgical head ring was found to be so well tolerated, and 

fractionated stereotactic radiotherapy is not offered, the GTC head ring is not 

currently in routine use. 

3.5 Application of MRI to the BRW System 

The modification of the BRW system to allow the inclusion of MR images for 

treatment planning is not so straightforward as for other imaging modalities. 

Historically, most components of stereotactic systems have been constructed 

from steel or other ferromagnetic materials. Placing these within the uniform 

high static magnetic field of a MR imager results in them becoming magnetized 

leading to distortion of the main uniform field. The inhomogeneities cause spa- 

tial distortion in any images acquired, as described in Chapters 2 and 4. Large 

amounts of ferromagnetic materials may also cause physical danger to the pa- 

tient, staff, and equipment due to the large forces they experience within the 

high magnetic field. Conducting materials may also distort the main magnetic 

field if they are constructed so that they contain loops, which may allow induced 

eddy currents to circulate, resulting in the generation of a localized magnetic 

field. A further constraint is that it is highly preferable if the MR compatible 

fiducial system fits within the head RF coil inside the MR scanner, resulting in 

an image with a larger signal to noise ratio compared to larger diameter RF coils, 

such as a whole body coil. Head coils have a typical internal diameter of less 
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than 30 cm. Thus, a complete re-design of the stereotactic system is required 

to make it MR compatible. 
The MRI compatible BRW system uses a different head ring, separate from 

the usual CT compatible head ring. It is made of aluminium, 'broken' twice into 

two semicircles and re-joined with a non-conducting material insulating the two 
halves to block the flow of the majority of eddy currents (see Figure 3.10). It 

is attached to the patient using four up-right posts, with the pins that screw 
into the patient's skull being made of aluminium coated with plastic, in a similar 
fashion to the BRW head ring attachment. Onto this fits a fiducial frame made 

of Perspex and containing straight tubes, in 'N' configurations, which may be 

filled with distilled watertt, to provide a NMR signal during imaging. Whereas 

raw CT images may only be acquired as transverse sections, or slices at an angle 

to transverse of no more than about 20°, MR images may be acquired at any 

orientation relative to the patient. The MR compatible fiducials allow for sagittal 

and coronal images, as well as transverse, by modifying the 'N' configuration of 

the fiducial rods, by adding two extra rods to cross the open ends of the 'N', 

creating a square of rods, cut by a diagonal rod, from corner to corner. By 

placing sets of this boxed 'N' configuration on the anterior, posterior, laterals, 

and superior faces of the fiducial frame, any image acquired parallel to one of 

the transverse, sagittal, or coronal planes, or at not a large angle to one of them, 

will contain enough rods to allow the plane of that image to be defined. This 

MR compatible fiducial frame is called the Universal Compact Localizing Frame 

(UCLF), and shown in Figure 3.11. 

Both the MR compatible head ring and the fiducial system will fit within the 

head RF coil of the MR scanners used for imaging, which allows greater flexibility 

of patient position within the head coil (see Figure 3.12). A typical MR image 

acquired of a patient undergoing stereotactic planning is shown in Figure 3.13. 

However, with the low fitting of the head ring, level with the patient's mouth, 
it is not necessary to place the head ring within the coil, as in the vast majority 

of cases, the target volume will be over 5 cm superior to the head ring. If 

ttor, if a shorter Ti is required, a solution of copper sulphate and distilled water, or just tap 

water. 
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Figure 3.10 MR compatible BRW head ring. 

Figure 3.11 MR compatible fiducial frame (UCLF). 



Figure 3.12 Patient, with MR compatible BRW stereotactic system 
attached, positioned in opened RF head coil prior to MR 
scan. 

Figure 3.13 Typical transaxial MR image. The nine fiducial rods and 
central target are visible (c. f. Figure 3.5). The posterior rod is used for 
sagittal images only. 
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the head ring is butted up against the outside of the head coil, this is a large 

enough distance to allow the target volume to be in a region of uniform RF field, 

resulting in normal MR images. A larger diameter head ring, such as the BRW 

CT compatible head ring, is tolerated much better by patients than a relatively 

smaller, tight, BRW MR compatible head ring, and hence can be worn for a 
longer time by the patient, allowing more imaging modalities to be used, and 

more thorough treatment planning to take place. 
The BRW MR compatible head ring is designed to allow the traditional BRW 

CT compatible head ring to be fitted over the top of it, and rigidly attached 

together (see Figure 3.1). From then on, the head ring system behaves as if it 

was the usual BRW CT compatible head ring. Fiducial systems for CT and x-ray 

planar angiography may be fitted directly to the CT compatible head ring, which 
in turn will locate to the same fastenings on the couch in the operating theatre 
for biopsies, and the linac couch. 

In Nottingham, both the StereoPlan and XKnife image based treatment plan- 

ning systems, and the SCSI computer, accept MR images containing fiducial rods 

as positioned in the UCLF. Coordinates in these images are transformed to the 

same coordinate system as points from CT images acquired with the BRW fidu- 

cial system attached. Hence the StereoPlan and XKnife programs can register 
CT and MR image sets and display the result, allowing the neurosurgeon to 

use information from both imaging modalities simultaneously while planning the 

treatment. 

3.6 Discussion of Advantages and Disadvantages 
of Using M RI for Stereotactic Treatment Plan- 
ning 

The potential gain in using MR images to aid planning of stereotactic procedures 
is vast. Contrast in diagnostic x-ray images is purely due to different densities 

within the object, and hence only anatomy with contrasting densities is visi- 
ble. However, depending on the imaging sequence used, MR images may show 

not only water density contrast, but contrast between regions with equal water 
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densities containing different chemical environments, via Tl and T2 relaxation 

time weightings. Other MR imaging sequences can exploit or suppress other 

contrast mechanisms, described in Chapter 2; in particular, MR angiographic 
images are most informative regarding the location of AVM's. Use of the correct 
MR imaging sequence results in the lesion to be targeted being highly visible in 

MR images, compared to its visibility in CT images, if, indeed, it is visible in a 
CT image at all. The extra physiological information contained in MR images, 

from Tl and T2 effects, allow the boundary of the lesion to be defined more pre- 

cisely, especially when it is surrounded by pathological tissues which are not to 
be treated, e. g., the feeding vessels surrounding the nidus of an AVM. The ability 

to directly acquire images in planes other than transaxial is another advantage 

of using MRI; many lesions are more easily located and defined in non-transverse 

planes. Also, MR image sets may be acquired as a volume, with voxels isotropic 

in dimension with no artefacts due to 'cross-talk' between individual slices. This 

provides a consistent data set which may be sampled in different planes during 

post-processing, to allow the lesion or anatomy to be shown more clearly. 
The main disadvantage in using MR images for stereotactic planning is the 

inherent spatial distortion present in images acquired using contemporary tech- 

niques. This is mainly caused by inhomogeneities in the magnetic field, and is 

described in Chapter 4. It would be expected that the placement of the additional 

apparatus required for stereotaxis, as described earlier in this chapter, close to 

the region being imaged, could lead to a further increase in the inhomogeneity of 

the magnetic field. The problems caused by distortion for stereotactic planning 
based on MR images can be categorized into two groups. Firstly, distortion may 

cause problems for the clinician in determining the size and position of the lesion, 

as its shape may be distorted, and the distortion may have led to regions of false 

contrast enhancements or signal loss. Secondly, distortion, not only of the target 

point, but also of the fiducial rods, will lead to incorrect pixel coordinates being 

used in the stereotactic transform to three dimensional coordinates, and hence 

to an incorrect final target point. As the stereotactic system is being applied in 

order to improve the accuracy of locating the final target coordinate, the appli- 

cation of MR, with its potential spatial uncertainties may appear to be counter 
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intuitive. However, keen to utilize the advantages of MR over CT, as described 

above, research has been undertaken in many centres over the past decade to 

try to judge the suitability of using MR images for neurosurgical stereotactic 

planning. This is described more fully in Chapter 5. This work has concentrated 

on both correcting any distortion present in the MR images prior to their use 
for stereotactic planning, and quantifying the distortion present in order to judge 

whether it is acceptable. However, despite the positive conclusions of most of 

these works, it is still considered 'received wisdom', especially among clinicians, 

that spatial distortion in MR images invalidates the use of this modality for 

stereotactic treatment planning. 
To try to get what is seen as the best of both worlds, many centres acquire 

both CT and MR images of stereotactic patients, and use both to plan the 

treatment. However, this leads to a rather unscientific state of affairs. If the 

target coordinates calculated from the two modalities agree, then it would seem 

unnecessary to perform both scans, except for research purposes. If the target 

coordinate from MR differs greatly from that obtained from CT, the CT target 

coordinate is usually taken as the final coordinate, not least because of the 

concern that the difference may be due to spatial distortion in the MR image. 

Both these scenarios suggest that the extra effort in performing a MR scan, in 

terms of scanning time, prolonging the duration for which the patient must 'wear' 

the stereotactic head ring, and effort in modifying the stereotactic system to 

make it MR compatible, is not worthwhile or clinically useful. However, another 

possibility to account for the different target coordinates calculated from CT and 

MR images is that the two modalities are highlighting clinically useful different 

aspects of the target, rather than spatial distortion. If this is the case, then 

application of MR imaging will prove to be most valuable in precisely defining 

the target. Before this can be evaluated, the amount of spatial distortion present 

must be known, in order to allow any real spatial difference between anatomical 

structures to be appreciated. Furthermore, it would seem reasonable to conclude 

that if the spatial errors in MR images due to distortion are too great, then MRI 

should not be used routinely in stereotactic treatment planning as information 

$ although this does not, of course, invalidate its use in diagnosis 
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calculated from MR images would not be trusted or used. However, if the spatial 

errors are acceptable, then the target calculated from MR images is to be trusted, 

and so it is unnecessary to perform CT imaging for surgical planning purposes at 

all. CT still may be necessary for the planning of radiosurgery, as it is possible 
to convert the pixel intensity in a CT image to a physical density. At the x-ray 

energies used for radiotherapy, the Compton effect dominates the interactions 

between photons and atoms, and the resulting attenuation is proportional to 

density. 51 Treatment planning programs may uses this information to correct 
their radiation dose calculations for various densities throughout the head. 

Although CT images are generally assumed to be free from spatial distortion, 

they do suffer from their own artefacts. In particular, reconstruction 'streak' 

artefacts, caused by high density objects (such as the metal apparatus used for 

the BRW stereotactic head ring and fiduical frame) may overlay and obscure 

regions within the image, or cause regions to appear with incorrect contrast (this 

effect is present to a small degree in Figure 3.5 as a darker cross between the four 

posts). Although x-rays travel in straight lines, the finite collimation required of 

the beam and x-ray detectors, as well as finite mechanical tolerances, mean that 

CT images themselves may exhibit small amounts of spatial distortion. Despite 

this uncertainty, CT images are usually taken as the undistorted 'golden standard' 

against which potentially distorted MR images are compared. 

3.7 Conclusion 

This chapter has outlined the continuing importance of neurosurgical stereo- 

tactic techniques. The practical aspects of a stereotactic procedure have been 

described with reference to the BRW system. The superior contrast of anatomy 

and pathology available in MR images, relative to CT, has made its application 

to stereotactic treatment planning an important area of research. Spatial distor- 

tion of the MR images is the main drawback of this application of MRI. In order 
to judge the suitability of using MR images for neurosurgical stereotactic plan- 

ning, any distortion must be measured and quantified. However, this distortion 

is not the error in the final stereotactic coordinate, as distortion in the image 

affects both the target pixel coordinate and the fiducial rods' pixel coordinates, 
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and both are combined to calculate the final three dimensional coordinate. Pre- 

vious work mainly has considered the distortion present in MR images in order 

to judge its suitability for use in stereotactic treatment planning. Less attention 
has been given to considering the effect this distortion will have on the final 

three dimensional coordinate. The work presented in this thesis aims to provide 

a more comprehensive quantification of distortion in MR images and its effect on 

and relationship to the final three dimensional stereotactic coordinate. Sources 

of error, other than distortion in MR images, will be included from previously 

published work. An appreciation of what error is acceptable will be derived from 

calculation of what error is already being accepted by default, from standard CT 

planned stereotactic procedures. This will allow a more thorough evaluation of 

the suitability of the use of MR images in neurosurgical stereotactic treatment 

planning. 
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Chapter 4 

Spatial Distortion in M RI 

4.1 Introduction 

The work presented in this thesis was undertaken with the aim of being able 

to quantify the effect of distortion in MR images in stereotactic neurosurgical 

procedures, and to correct this distortion where possible. Before considering 

the particular case of the effects of MR image distortion in stereotaxis, it is 

necessary and enlightening to consider the subject of distortion in MR images 

more generally, as well as methods for its correction. 

This chapter presents a more thorough analysis of distortion in MR images, 

followed by reviews of previously published methods for its correction. As will 

be seen, inherent in any correction method lies quantification of the original 
distortion, and so a correction method serves the dual purpose of producing a 

corrected image and the production of a spatially localized map of the original 
distortion across the image. One of these correction methods, devised by Chang 

& Fitzpatrick'7 was implemented as part of the current work and used to correct 
distortion in single slice MR images, acquired using both spin warp and EPI 

acquisitions, as well as to quantify the initial distortion. This was performed on 
MR images of both phantoms and human subjects. 

With application to distortion in frame-based stereotaxis, an obvious poten- 

tial source of distortion in MR images would be the aluminium head ring used, 

as described in Chapter 3. The correction method was used to quantify any dif- 
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ference in distortion in images of a phantom with and without the local presence 

of the head ring in the MR scanner. 
While the work presented in this chapter was being performed, the chance 

arose to compare Chang & Fitzpatrick's correction method with another method 
for correcting distortion in MR images based on phase evolution, described below. 

The results of this comparison are presented here briefly, as they provide validation 

of the local implementation of Chang & Fitzpatrick's correction method as well 

as highlighting some limits and restrictions in the method. 
Although the work presented in this thesis is primarily concerned with dis- 

tortion in MR images with application to stereotaxis, the problem of MR image 

distortion is present in many other fields of MRI. The application of the im- 

plemented distortion correction method to two other wide-spread contemporary 

uses of EPI also is presented. 
Finally, the method of correcting the distortion present in multislice volume 

acquisitions presented by Chang & Fitzpatrick is implemented and explored more 
fully. Theoretical modifications to their method are presented, implemented, and 

evaluated. 

4.2 Sources and Description of Spatial Distor- 
tion in MRI 

As described in Chapter 2, the process of constructing a magnetic resonance 

image requires a known one-to-one relationship between the frequency of the 

nuclear magnetic resonance signal and the spatial position of its source. The 

presence of an unknown inhomogeneous magnetic field in the imaged volume 

results in the actual relationship deviating from the assumed relationship by an 

unknown amount. As the reconstruction of the image follows the assumed re- 
lationship, distortions of space and intensity in the final image result. Magnetic 

resonance imaging is usually performed using imaging systems that are designed 

to have a main static uniform magnetic field, onto which is superimposed spatially 

varying linear magnetic field gradients. These linear conditions are assumed to 

be true when constructing the image from the acquired NMR signal. However, 

in practice, these fields are not homogeneous; spatial magnetic field inhomo- 
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geneities are introduced by the design and construction of the sources of the 

main magnetic field and gradient sets, and from local magnetic fields caused 
by differences in magnetic susceptibility between various objects in the imaged 

volumes. 62 A MR image acquired in the presence of an inhomogeneous magnetic 
field, but reconstructed assuming a homogeneous field, will exhibit geometrical 

and intensity distortions. 17,62 

These magnetic field inhomogeneities may be classified in to two categories; 

static and time dependent. Time dependent inhomogeneous magnetic fields vary 
throughout the MR image acquisition, and are typically caused by the decay 

of short lived eddy currents, induced into the magnet by the switching of the 

magnetic gradients. They, and their effect on the resulting MR image, are difficult 

to model, and are ignored in the work in this thesis. Only static magnetic field 

in homogeneities, which remain constant throughout the image acquisition, are 

considered. 

4.2.1 Spatial Distortion in Spin Warp Acquisitions 

The effects of a static magnetic field inhomogeneity on a MR image can be 

modelled mathematically. 17 As shown in Chapter 2, the detected NMR signal, 
S, from a thin slice located at z=z1 as a function of time, t (or k), for a 

traditional spin echo spin warp imaging sequence, in homogeneous magnetic 

fields and ignoring T2 and T2 decay, can be written as 

S (k, ky, z1) a fff P(x, y, z) 8(z - zi) eikxxeikyy dx dy dz (4.1) 

If the frequency encoded and phase encoded axes are along x and y respectively, 

then 

kx = -y 
f tý 

Gý(t') dt' and ky = ry 
ýtpe 

Gy(t') dt' 
2` 

(4.2) 

where tfe is the time for which the NMR signal is sampled, while the readout 

gradient, Gx(t) is applied. The origin of t is taken at the centre of the echo, which 
is also set to the centre of the sampling window. tpe is the duration for which the 

phase encoded gradient, Gy(t), is applied, prior to the readout gradient. In order 

to elucidate the equations, it is usual to replace the integrals in Equation 4.2 
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with the product of time and the mean gradient over that duration. So, if 
te 

11 tpe 
2 

Gx = t! e 

ýL 
Gý(t') dt' and G., = 

tpe 
J Gy(t') dt' (4.3) 

then ky = yG., t and ky = 7Gytpe. In practice, the NMR signal is usually acquired 
in the presence of a constant gradient. 

A thin slice has been selected along the z axis at z=z1 away from the magnet's 
isocentre, represented in Equation 4.1 by a Dirac delta function. In the absence 

of any magnetic field gradients (or at the magnet's isocentre) the angular Larmor 

frequency is given by wo = yBo where 'y is the gyromagnetic ratio of the nucleus 

of interest. With the application of a linear slice selection gradient, G, the 

nuclei located at a distance z1 away from the isocentre will spin with frequency 

wl = 'y (Bo + G, zzl). Hence the slice at z1 will be excited by application of 

radiowaves with central angular frequency wl where 

zl =w yG WO (4.4) 

A static magnetic field inhomogeneity* can be described by a function Be(x, y, z) 

where Be is the deviation from the main static homogeneous magnetic field BO. 

(x, y, z) represents the actual coordinate system in space, regardless of any spatial 
distortion that may be introduced by Be. In the slice select direction, this will 
have the effect of modifying Equation 4.4. If radiowaves are applied at a general 
frequency w, then a slice, z', will be excited, where 

w= ry (Bp + Be(x, y, z) + G, zz') (4.5) 

As Be is a function of x, y, & z, then z' also is a function of position. During 

image acquisition, Equation 4.4 is expected to hold, and so radiowaves of fre- 

quency wl are applied, with the expectation of exciting a slice at z1. However, 

with the presence of Be, a slice zi will be excited, which from Equations 4.4 and 
4.5 is described by 

Be(x) y) z) 
zi (x' y' z) = zl - _G, 

*Be is also commonly referred to as LBa in the literature 

(4.6) 
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This results in a different slice being excited than would have been in the absence 

of Be. If the MR image is calculated without consideration of Be, then the signal 

which has come from slice zi will be 'labelled' as coming from z1. This can be 

viewed as signal actually originating from slice zi being spatially distorted to 

slice z1. Hence, to take account of Be, the argument of the delta function in 

Equation 4.1 must be replaced by the (z - zi), or (z 
- 

(z1 
- 

Be x y, z)) 

The presence of Be(x, y, z) in addition to Bo will result in the nuclei at any 

point precessing with frequency w(x, y, z) = y(Bo + Be(x, y, z)), according to 
Larmor's equation. After the radiowave excitation pulse, this will result in an 

accumulation of phase of the NMR signal with time, relative to the NMR signal 
in the absence of Be. This results in an additional term in Equation 4.1 of 

exp (iyBe(x, y, z)t). From general analysis of Fourier transform pairs, it can be 

shown that a spatial shift in one function of the pair results in a phase shift 
in the other function. -3 As the MR image is obtained by performing a Fourier 

transform on S, it might be expected that a phase change in S would result 
in a spatial shift in the MR image. For spin warp imaging, the duration of the 

phase encoding gradient (tpe) is kept constant, and the amplitude of Gy is varied 

with subsequent excitations to acquire different lines of k space. Although Be 

will result in a different phase of the spins during the application of the phase 

encoding gradient, this phase will be the same for each phase encoded line of k 

space, as the phase encoding gradient is applied for the same duration and at 

the same time, after each RF excitation. Hence, the difference in phase between 

adjacent lines of k space, for a particular kx, will not be affected by the addition 

of Be, and so Be will not affect the MR image in the phase encoded direction. 

This has been observed empirically by Sumanaweera et al. 1oa 

Rewriting Equation 4.1 to include the effects of Be gives 

S, (k.,;, k 
y, a 

fff 
(x z 

(z 
+ 

Be (x, y, z) 
-z eik. x eikyy ei1'Be(x, y, z)t dx dy1 

xý yý 1 P( , Y, )G1y 

frr/ Be(x, y, z) ikx(x+Be x, y, =) ikyy 
oc JJJ p(x, y, z) dIz+G- z1 Iee dx dy dz 

z 

(4.7) 

It can be seen that the addition of Be has caused a shift in the signal along 

the x and z axes of B` x y'z and Be x y'z respectively. It is useful to make the 
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following change of variables reflecting this spatial distortion, in order to derive 

the effect the distortion has on the final MR image. (x, y, z) represent the source 

of the NMR signal and (xl, yl, zl) represents the position to which that signal is 

assigned in the final MR image. yl is included for generality, and z' as a dummy 

variable for integration. 

xl =X + 
Be(x, y, z) 

GX 

yi=y 

'= z+ 
Be(x, y, z) 

Z Gz 

which, substituting into Equation 4.7, along with Equation 4.6, gives 

Sl(k., jCy, zl) OC 
fff 

p(x(xl, yl, Z'), y(xl, yl, Z'), zlxl, yl, z')) 

a(z' -Zje: 
kxxl 

e$kyyl i [i ( 

(4.8) 

Xi, yi, z, 
x 

)I- 
dxl dyl dz' (4.9) 

IyIz x, y, z 

where J 
(X1') 

is the Jacobian of the transformation between the (xl, yl, z') XlYlZ 
and (x, y, z) coordinate systems. The Jacobian is assumed to be non-zero and 
finite; this is discussed further below. It is given as 

J 
(xi, yil zll 

= 
X, y, z 

J 

Integrating over dz' gives 

axl . 9xl 
ax ay 

. 9y, 19y, 
ax ay 
OZ, -9z, ax ay 

OX, az 

. 9y, 
az 

. 9zl 
az 

=1+1 
äBe (x, y, z) +1 

öBe (x, y, z) 
Gx Ox Gz öz 

S1(kx, ky, z1) «ff P(x(xl, yl, zl), Y(xl, yl, zJ, z(xl, yl, zJ) 

eikaxl eikyyl li( xi3 Yi, Zi 
x, y, z /J 

-1 

(4.10) 

dx, dv, (4.11) 

Now the slice selection integral has been performed, Equation 4.6 can be rewritten 

consistently as 

zl _Z+ 
Be(x, y, z) 

Gz 

27, y, z 

. A., 9ý' 

(4.12) 
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where z is the actual source of Sl and zl is where it appears to be from in the 

presence of Be. 

A two dimensional Fourier transform of Sl over k., and ky yields the MR 

image, il, exhibiting any effects of Be. Likewise, i is the Fourier transform of S, 

the NMR signal in the absence of Be. They are given as 

il (x� yl, zl) = A11 Sl(k, ky' zl) e-ikxxi e-ikyyi dkx dky 

A p(x, y, z) 
xl, i xl J( 
2ý, y, z 

rr 

(4.13) 

and i(x, y, z) =AII S(k, ky, z) e-akxx e-Zkyy dkx dlüy 

=A p(x, y, z) (4.14) 

where A is a constant. Substituting Equation 4.14 into Equation 4.13 to eliminate 

p(x, y, z) gives 

zi(xi, yi, zi) _ 
i(x, y, z) 

xi i zi l 
J 

X, y, z 

(4.15) 

The above analysis of the effect of the addition of a spatially varying magnetic 
field inhomogeneity, Be, over the object being imaged by a spin warp acquisition, 
highlights two effects of the same distortion. One is the spatial shift of signal 

along the x and z axes, described by Equations 4.8 and 4.12, and the second is 

the effect that this has on the intensities in the spatially distorted image, shown 
by Equation 4.15. The latter effect causes a 'piling up' of image intensity due to 

non-linear spatial distortion. 

4.2.2 Spatial Distortion in EPI Acquisitions 

A similar analysis can be performed for other imaging sequences. For a slice 

selective full Fourier EPI sequence, where all the required region of k space is 

sampled after one RF excitation, the phase accumulation caused by Be is not 
'reset' between subsequent acquisitions of frequency encoded lines of k space 
by another RF pulse, as it is for spin warp imaging, but evolves throughout 

the whole acquisition. Echoes refocus the phase of the spinning nuclei at the 

centre of k space, and this point is taken as the origin of time. Each frequency 
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encoded gradient, along the readout x switched axis, also causes a subsequent 

gradient echo; the NMR signal is refocused once per image in the broadening 

phase encoded direction, and once per line of k space in the readout frequency 

encoded direction. Once again, the mean magnetic gradient strengths along the 

x and y axes are used, given by 

r ýLs fý 2 

Gx 
tGx(t') 

dt' and Gy 
t2ý 

Gy(t') dt' (4.16) 
tie ýLs 

2 
tpe 5 

tfe is the duration of one sweep of k space in the frequency encoded switched 
direction, and tpe spans the total time over which the broadening gradient is 

applied. For a typical EPI acquisition, tpe is the duration of the whole acquisition 

of k space, and tfe is N where Npe is the number of frequency encoded lines 

of k space acquired, i. e., the number of steps along the ky direction. Then 

kx = 7Gxt and ky = ryGyt. The integrals in Equation 4.16 give the area under 

the broadening gradient, regardless of whether a blipped or constant broadening 

gradient is used for phase encoding, and the area under the readout gradient, 

whether it is trapezoidal or sinusoidal. The analogous equation to Equation 4.7 

for a single slice EP image then becomes 

S1(kx, ky, z8) a 
fff 

P(x, y, z) 5 (z + 
Be( , y, z) 

_ zi) ei/cxx eilcyy ei7Bc(x, y, z)t dx dy dz 

\zJ 

yý z) 
_ Zl/ eikx 

ýý+ Be c, ) 
« 

fff 
P(xf y) z) b (z + 

Beýxý 

Gz J 

iky y+B` c, a, = 
eý» dx dy dz 

(4.17) 

By making the following substitutions, 

r. =r -- y, zý 
-1 - ... . /Y 

ij. -v 

ux 
Be(x, y, z) 

vi y' /-V 

y1 =x -4- 

vy 
Be(x, y, z) 

(4.18) - ... , Gz 

and 

J 
xl, yl, zl 

+1 aBe (x, y, z) 
+1a. 

Be (x, y, z) 1 aBe (x, y, z) 
X, y, 2 Gý ax Gy ay + 

G, z az 
(4.19) 
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Equation 4.9 is obtained and the analysis proceeds as above. Spatial distortion 

is present along all three axes. 
The distortion in EP images can be compared to the distortion in conventional 

spin warp images, assuming both are acquired with the same field of view. In the 

latter case, the NMR signal for each frequency encoded line of k space is typically 

acquired for 5 to 10 ms; for EPI it is typically a tenth of this duration which 

requires a magnetic gradient in the frequency encoded direction of ten times the 

magnitude. From consideration of Equations 4.8 (for spin warp imaging) and 

4.18 (for EPI) it can be seen that this will result in the spatial distortion along 

the frequency encoded axis of an EP image being one tenth of that in a spin 

warp image. However, in the phase encoded direction, where there is no spatial 

distortion in a spin warp image, in EPI the phase encoding magnetic gradient is 

effectively applied throughout the image acquisition. For an EP image composed 

from Npe (typically 128) frequency encoded lines of k space, this gradient would 

be affecting the phase of the spins for Npe times the duration of the frequency 

encoded gradient. For an image containing isotropic pixels, its magnitude would 

be i th of that of the readout magnetic gradient, and thus the spatial distortion 
Npe 

Npe times worse along the phase encoded axis than along the frequency encoded 

axis. As will be seen later in this chapter, spatial distortion in a spin warp image is 

typically 1 mm along the frequency encoded axis. For a typical EP image acquired 

with the same field of view, the spatial distortion along the frequency encoded 

axis would be 0.1 mm and 13 mm along the phase encoded axis. The spatial 
distortion in EP images is dominated by that along the phase encoded axis, and 

that along the frequency encoded axis is usually considered to be insignificant 

by comparison. Hence spatial distortion in the image plane is usually considered 

to be one dimensional under both imaging regimes; along the frequency encoded 

readout axis in a spin warp image and along the phase encoded broadening axis 
in a EP image. 

As can be seen from Equation 4.8, the distortion along the frequency encoded 

x axis depends on G. The choice of the value of Gý determines the extent to 

which k space is traversed along the kx axis (see Section 2.4.1). The maximum 

excursion along this axis is kxmaz = 2'yGxtfe, for the symmetric imaging experi- 
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ment considered above. In order to generate a MR image using a discrete Fourier 

transform (FT), the NMR signal must be digitized, in N points for a duration of 
tfe. The properties of the subsequent discrete FT91 result in the final image pos- 

sessing a pixel resolution of 2kx1 and total width (i. e., field of view) of N 
max 

2kxmax 

Hence, to maintain a fixed field-of-view (and pixel size), the product of G., and 
tfe must be constant. However, as G., may vary, so long as t f, compensates, 
it is possible to acquire an image with the same pixel size and field-of-view, but 

varying amounts of spatial distortion. It is more usual and convenient, to express 
this in terms of bandwidth per pixel (or frequency per point) along an axis, i. e., 
l. This is the range of frequencies which contribute to the signal intensity in tre 
any one pixel in the MR image (assuming linear magnetic gradients are used 
during image acquisition). Spatial distortion due to Be may now be presented 
in an alternative formalism: the addition of Be causes nuclei to precess with an 

additional frequency of 7Be and hence signal intensity in the MR image will be 

misplaced by 7Bet fe pixels. In the style of Equation 4.8 this is 

Xi =X+ i'Be(x, y, z) tfe (4.20) 

where Xl and X are in units of pixels. This can be a more useful form of 
Equation 4.8 in an empirical setting as it is usually easier to measure t f, than 

G, Hence, if the actual distortion caused by Be can be measured in the MR 

image, in the arbitrary units of pixels, then a value of Be at that point may be 

calculated. 
For both the spin warp and EP images considered above, the spatial distortion 

along the slice selected axis is the same. As can be seen from Equation 4.8, the 

larger the slice select magnetic gradient, the smaller the spatial distortion along 

the slice axis. For RF pulses of constant bandwidth, this is the same as saying that 

thinner slices result in less through-slice spatial distortion. For single slice MR 

images, the slice thickness is usually a few times larger than the in-image-plane 

pixel size. For a spin warp image on a modern MR scanner with an in-plane pixel 

size of 1 mm and slice thickness of 3 mm, the slice select gradient is typically 

three times the strength of the frequency encoded gradient, hence the spatial 
distortion along the slice select axis will be one third of that along the frequency 

encoded axis. 
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This section has outlined a mathematical description of the distorting effect 

that the addition of a static magnetic field inhomogeneity has on a MR image 

acquired in its presence. In the following sections, this description will be used 
to formulate schemes which attempt to correct the image distortion. 

4.3 Methods for the Correction of Spatial Dis- 
tortion 

A number of methods have been proposed to correct the spatial distortion in MR 

images caused by the addition of an inhomogeneous static magnetic field, Be. 

If Be could be determined, then its effect could be removed from Equation 4.7 

and an image free from its distorting effects constructed. Methods for correct- 
ing spatial distortion therefore revolve around determining Be, either directly or 
indirectly. As mentioned above, Be may be composed of magnetic fields origi- 

nating from many sources. Modern MR scanners can be shimmed to give a high 

level of uniformity over the imaging volume, leaving the magnetic field caused by 

magnetic susceptibility differences within the object being imaged to contribute 

significantly towards Be. As the distribution of regions of differing magnetic sus- 

ceptibility varies between patients, or between phantoms, the correction needs 

to be performed for each object being imaged in order to obtain distortion-free 

images. 29 

The majority of methods for correcting spatial distortion in MR images fall 

into two categories; those which calculate Be by determining the extra accu- 

mulation of phase in the NMR signal in k space due to Be, and those which 

calculate Be by determining the spatial shift in intensity seen in the final image. 

Both methods require the acquisition of additional information, on an object by 

object basis, in order for the correction to be performed. They will be termed 

the phase map correction method and the reversed gradient correction method, 

and are described below. 

In Section 4.2 above, it was mentioned that the slice selective magnetic 

gradient usually has a larger magnitude than either the phase or frequency encode 

gradients, for single slice acquisitions. From consideration of Equations 4.8,4.10, 

4.18, or 4.19, it can be seen that this will result in a smaller distorting effect 
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along the slice selected axis than along an axis in the image plane. Spatial 

distortion may then be considered to occur predominantly along only one axis in 

the plane of the image. The problem of correcting spatial distortion then reduces 
to correcting each one dimensional line in the image, along the axis exhibiting 
distortion. 

In a typical MRI acquisition, the NMR signal consists of contributions from 

the hydrogen nuclei present in both water and fat. There is a chemical shift in 

Larmor frequency between these nuclei, described in Chapter 2, which in a MR 

image may result in the fat image appearing shifted relative to the water image, 

along the same axes experiencing spatial distortion due to Be. This introduces 

added complications for both distortion correction methods described below, and 

so it is assumed that no chemical shift effects are seen in the images prior to 

correction. This can be ensured by either imaging fat-free phantoms or acquiring 

a MR image in such a way that the NMR signal from hydrogen nuclei in fat does 

not contribute to the detected NMR signal. 

4.3.1 Phase Map Correction Method 

As was seen in Section 4.2 above, the addition of Be results in an accumulation 

of phase in the NMR signal, compared to that which would be obtained in the 

absence of Be. If this additional phase can be measured and removed from the 

NMR signals used to map k space, then the resulting image will be free from 

the distorting effects of Be. A relatively quick and straightforward method for 

measuring the accumulation of phase (and hence Be) on a pixel-by-pixel basis, 

for a spin warp imaging acquisition was proposed by Sekihara et a/. 103 This 

was applied to the correction of spin warp images by Sekihara et al. 102,104 and 
Prammer et a!., 90 and is described below. 

A typical spin echo MRI acquisition of one frequency encoded line of k., space 

consists of a 900 RF excitation pulse followed by a 180° RF pulse, separated by 

a time 2TE. 
The 180° RF pulse refocuses the spinning nuclei into an echo, 

the centre of which forms after a further time 2TE after the 180° pulse. The 

frequency encoded readout gradient is applied throughout the spin echo while 

the NMR signal is being sampled. As the application of the frequency encoded 
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gradient causes the spinning nuclei to dephase (resulting in a loss of the NMR 

signal), another gradient is applied along the frequency encoded axis prior to 

the readout gradient of opposite effective sign. The dephasing caused by this 

earlier gradient is refocused by the readout gradient to cause a gradient echo. 
The spin and gradient echoes are usually arranged to coincide in time, resulting 
in the maximum and most coherent NMR signal being formed at the centre of 

this echo. For spin warp imaging, this process is repeated with different levels of 

phase encoding occurring along an orthogonal axis to build up a map covering 
k space. In the presence of Be it is not known whether phase changes across k 

space are due to evolution under the applied gradients or the effect of Be. 

If the spin warp MR imaging described above is repeated, but with an ad- 
ditional time delay, 2, inserted between the 90° and 180° RF pulses, the spin 

echo will occur at a time TE +T after the excitation RF pulse, while the gra- 
dient echo will still occur at a time of TE at centre of k_, space. This second 
image has effectively been acquired with an offset of T in the time variable, t, in 

Equation 4.7. From Fourier theory, 3,91 a shift in one variable results in a phase 

shift in the related variable in the Fourier transform pair. Hence, the first image, 

io, will be modulated by exp(iryBe(x, y, z)t) while the second image, i, will be 

modulated by exp(iryBe(x, y, z)(t + T)). The result of the Fourier transform of 
k space to calculate io and it is complext. The argument of each complex point 

in the image, 0, where 

O(x, y, z) = arctan ixz 
(4.21) 

((i(x, y, z)) 

yields the phase accumulation at that point. 29 If go(xl, yl, zi) is the phase at 

each point throughout io and ¢T(xl, yl, z1) the phase at each point throughout 

i, and as the duration of the acquisition of the NMR signal the same for both 

io and i, then 

4'Tlxliylý zlý -O0(x1, y1, 'z1) ='yBe(xl, yl, zl)(t+T) -'YBe(xl, yl, zl)t 

='yBe(xiýylýz1)T (4.22) 

tFor a hypothetically perfect MRI acquisition, as p(x, y, z) is real, so would be the calculated 
image. However, imperfections in a real imaging acquisition, such as timing offsets or imperfect 
RF pulses, result in a MR image being complex. 
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As the images are acquired in the presence of Be, they exhibit the spatial dis- 

tortion caused by Be, and hence are referenced by the distorted coordinates 
(xl, yl, zl). Unlike in the general analysis of spatial distortion presented in Sec- 

tion 4.2 above, Be is referenced by distorted coordinates as well, and is given 
by 

Be (x1, yl, z1) 
0'-00 

(4.23) 
'}'T 

Once Be is known, a corrected image may be produced as follows. For a spin 

warp MR image acquisition, from Equation 4.8, 
Be(x1, yl, zl) 

xl =x+ Gx 

yi =y 

z1 =z+ 
Be (xi, y1, z1) (4.24) 

G, 

In Equation 4.24 above, Be(x1i y1i z1) __ Be(x, y, z) as (x, y, z) and (x1, y1, z1) 
describe the same point in the object; it is just referenced by either correct or 
distorted coordinates. 

The Jacobian of the coordinate transform, in this case, is 

i( x, y, z 

Xi, Yi, Zi 

Ox ax ax äx1 äy1 äz1 

ay ay ay 
äx1 äy1 . 9z1 
az 8z az 

öx1 öy1 az1 

-1- _-N-1 --_ -- -7,72' -1, (4.25) 
Gx äx1 G, z 0z1 

As mentioned in Section 4.2 above, in a typical single slice MR imaging 

acquisition, the slice selective magnetic gradient is usually considerably larger 

than either the frequency or phase encoding magnetic gradient. Hence, from a 

consideration of Equations 4.24, the majority of the distortion can be seen to 

occur along the frequency encoded axis, for a spin warp acquisition. It is common 

practice to ignore the distortion along the slice selected axis and just consider 

the distortion along one axis, especially if the distortion in single slices is being 

corrected. 
In order to perform the correction, Equations 4.24 are used to calculate the 

spatial distortion at each point through the modulus image io and the Jacobian 
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calculated for each distorted image point. The correct image is then given, from 
Equation 4.15, as 

zo(xi, yi, zi) (r. ýi x) - \"' f .Y7 -/ 
X, y, z J( 

X1, yl, xl 

(4.26) 

Interpolation will have to be performed in order to map the discrete points 
(xi. yi, zl) to (x, y, z). 

In order for the corrected modulus image, i(x, y, z), to be meaningful, it must 
not contain any negative numbers or singularities. Hence, i (x:; ) 

must be 

greater than zero, i. e., 

öBe(xi, yi, zi) G'ý > äx1 when G., >0 and 

G_, < 
8Be ( l) Yl' zl) 

when Gý<0 for all xl (4.27) 

in distorted coordinates. If the Jacobian in Equation 4.10 could be used, along 

with Equation 4.15, the condition in Equation 4.27 may be stated in undistorted 

coordinates as 

öBe (x, y, z) Gý >- äx when Gx> 0 and 
äBe(x, y, z) Gx <-x, when G., <0 for all x (4.28) 

Generally, Be could be of either sign across the image, especially if it results from 

local differences in magnetic susceptibility rather than poor shimming. In order 
for this correction to produce meaningful results in practice, the effective imaging 

gradient along the axis experiencing distortion must be greater than any opposing 

gradient caused by Be, i. e., the total gradient must be either continuously rising 

or continuously falling. This is the same as stating that, for correction to be 

performed, the distortion may cause the image to be stretched and shifted, but 

no pixel must be shifted so much that it 'piles up' or 'piles over' adjacent pixels. 62 

The phase correction method also has been applied to EP imagesa9,82, ii6 by 

noting that in EP images, the majority of in-plane distortion occurs along the 

phase encoded axis, compared with the frequency encoded axis in spin warp MR 

tit could be used here theoretically, but it is more straightforward numerically to use Equa- 

tions 4.25 and 4.26 in this correction method. 
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imaging (see Section 4.2 above). One dimensional phase correction is performed 

along the phase encoded axis rather than the frequency encoded axis; all other 

steps in the phase correction process remain the same. 
The phase correction method generally performs well in the correction of one 

dimensional spatial distortion. However, it suffers from two problems related to 

phase wrapping and unconnected objects within an image. 

When the phase at each point in the distorted images is calculated using 
Equation 4.21, it always lies within the range -180° <0< 180°; no distinction 

can be made between phase angles which differ by multiples of 360°. If the 

phase across the images does vary by more than 360°, a crude phase calculation 

would result in an incorrect phase at those points, and so those pixels will be 

erroneously corrected. This may be overcome by using a number of algorithms, 82 

e. g., by following lines out from the centre of the phase maps and assuming any 
large discontinuity in the value of phase represents the phase crossing a 360° 

boundary; 360° may then be added to the radial phase values ("unwrapping the 

phase"). The phase also must not have wrapped between the images acquired 

with differing values of T, else incorrect phase value will be used in Equation 4.23. 

Hence, T must be small enough to ensure that this condition is met. However, 

this requires that an estimate of Be be known before the images are acquired, in 

order to choose an appropriate value for T. 

The second problem is more relevant to the application of the phase correction 

method to the correction of spatial distortion in MR images of the stereotactic 

apparatus (described in Section 3.5). It is that to ensure that phase wrapping 
has not occurred, all points in the image of the object must be connected. In 

order for the phase to be calculated at any particular pixel, it requires that there 

is some intensity present in that pixel; phase values calculated in the background 

noise are meaningless (and must be masked out so as not to take part in the 

phase correction method). In an image containing stereotactic fiducial rods, the 

rods are spatially separate from the object they surround and so the phase of the 

pixels representing the rods can not be stated with certainty. Sumanaweera et 

x1.107 believe that this problem may be overcome by acquiring a third image with 

z=1 ms "during which time no phase-wraps are typically expected", however it 
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is felt that this reasoning does not offer a general approach. Despite the success 

of the phase correction method in correcting spatial distortion, it is felt that 

the problems it suffers regarding unconnected objects in the MR image makes it 

unsuitable for general application of the characterization of spatial distortion in 

MR images used for stereotaxis. 

4.3.2 Reversed Gradient Correction Method 

A different approach to distortion correction in spin warp MR images has been 

taken by Chang & Fitzpatrick. " They noted that if a second acquisition is 

performed, identical to the first with the exception that the frequency encoded 

gradient is reversed in sign, then the effect of Be differs between the two images. 

For a modulus MR image, il�, acquired in the normal way, Equation 4.8 is 

restated as 

Be(x, y, z) (4.29) xl� =x+ Ir`'"SI 

whereas for the modulus image acquired with the sign of the frequency encoded 

gradient reversed, il,, Equation 4.8 becomes 

xl, =X- 
Be(x, y, z) (4.30) 

IGxI 
x, x1n, and xi, all reference the same actual point in the object, even though 

it could appear at a different pixel locations within the images. The subscript n 

relates to an image acquired with 'normal' gradient polarity; the subscript r to 

an image acquired with gradients with reversed polarity compared to 'normal'. 

A relationship between the distorted coordinates and the undistorted coordinate 

can be obtained by eliminating B`IG ýx from Equations 4.29 and 4.30 to give 

x= 
xln + xlr 

(4.31) 2 

If the distortion is considered to be only one dimensional, along the frequency 

encoded axis, then the Jacobian of Equation 4.10 may be written as 

J x1, y1, zr 
_ 

dxl 
(4.32) 

x, y, z dx 
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where xl could be either xl� or xlr. The corrected image, i, would then be given 
by Equation 4.15 as 

i(x, y, z) = i1 (xin, yi, z1) 
ddx- 

= iir (xir 
ý Yi, zi) der 

(4.33) 

In order to perform this correction, corresponding pairs of x1, and xl, must 
be identified. Integrating and rearranging Equation 4.33 gives 

Ji1n 
(x1n 

, yl, z1) 
dxln 

_f Zlr (xlr 
f yl, z1) dxlr (4.34) 

This equation defines a relationship between xi, and xl,. The limits of the 
integrals in Equation 4.34 must be chosen carefully. The edges of the object in 

the images il� and ilr along each line of the xl axis provide corresponding points 

which should satisfy Equation 4.34 and these are taken as the limits of integration. 

This allows pairs of xl� and xlr, and hence x, to be identified, from which the 

pixel shift due to distortion and the corresponding Jacobian can be calculated. 
Hence a corrected image may be produced using Equation 4.33 by correcting 

each frequency encoded line in turn. Corrected images may be calculated from 

both iln and ilr and may be combined as follows. Differentiating Equation 4.31 

with respect to x gives 

2_ 
dxln 

+ 
dxlr 

dx dx (4.35) 

and substituting from Equation 4.33 to eliminate the differentials in Equation 4.35 

gives 

2 iln (xln, yi, zi) ilr (xlr, 
yi, zI) i(x, y, z) - iln (xin, yi, zi) + iir (xir, Yi, zi) 

(4.36) 

This has the advantage of increasing the SNR in the corrected image by a factor 

approaching f compared to one uncorrected image. 

The reversed gradient correction method suffers from a different set of limi- 

tations than the phase correction method, described in Section 4.3.1. So long as 
the edges of the objects in the image are correctly identified, the correction can 
be performed independently for each object in the image, thereby overcoming 

the limitation of the phase correction method requiring one connected object. 
However, incorrect identification of the edges of the object may introduce an 
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artefact in the corrected image not seen with the phase correction method. If 

edges are incorrectly identified, an offset will appear on one side of Equation 4.34, 

including either the integral of a region of background noise or ignoring some 
image intensity within the object. This offset will affect all pairs of x1, and x1, 

calculated along that line and can therefore potentially introduce artefacts at any 

point along that line. Artefact would be expected to be more evident in regions 

of low image intensity within the object as that is where a small offset in Equa- 

tion 4.34 would cause the largest error in the pairing of x1n and x1r, i. e., a large 

change in x1 is required to produce the small change in the integral of image 

intensity needed to balance the erroneous offset. A more complete analysis of 

this effect is presented in Chang & Fitzpatrick's paper. " This effect would also 

be expected, to a lesser degree, in a corrected image produced from two noisy 

images; noise results in incorrect pairings of x1, ß and x1r leading to a blurring 

of the corrected image. It is also worth noting that for the reversed gradient 

correction method to work, valid edges of the object must be present in both il,. 

and ilr. 

As for the phase correction method, in order for the reversed gradient correc- 

tion method to produce a meaningful corrected image, the Jacobian term must 

be greater than zero. However, this condition must hold for both i1, 
ß and ilr, 

regardless of the sign of G, Hence, the condition for a meaningful correction 

with the reversed gradient method is 

G, > 
aBe(x, y, z) when G__ >0 and ax 

G, <- 
9B, (x, ' y, z) when Gx <0 for all x (4.37) 

If the main source of Be is from magnetic susceptibility mismatches within the 

object, which may result in Be of either sign, then this condition is effectively the 

same as for the phase correction method, i. e., that the effective imaging gradient 

along the axis experiencing distortion must be greater than any opposing gradient 

caused by Be. However, if the main contribution to Be is from external magnetic 
fields, e. g., due to poor shimming, then it may be that Be is predominately 

one sign or the other. This would make no difference to Equation 4.37, but 

with previous knowledge of the sign of Be, the sign of the frequency encoding 
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gradient used for the phase correction method could be chosen to favour the 

first inequality in Equation 4.28. This would allow Be inhomogeneities of larger 

magnitude to be corrected than would be possible using the reversed gradient 

method. 
In MRI, the NMR signal is acquired in the presence of a linear frequency 

encoding gradient. For a typical MRI acquisition, this gradient remains at a 

constant level while the NMR signal is acquired. Any static nonlinearities in 

the gradient will cause spatial distortion and may be considered as a component 

of Be. Gradient inhomogeneities of this type will be corrected by the phase 

map method as all NMR acquisitions are acquired in the presence of a gradient 

of the same sign and amplitude. However, this is not the case for the reversed 

gradient correction method. This method only can correct for a Be which remains 

invariant when the polarity of the frequency encoding gradient is reversed; if 

the gradient nonlinearity is reversed with the gradient it will not be corrected. 

However, both correction methods will correct for invariant gradient offsets. 

The reversed gradient correction method, described above for spin warp MR 

imaging, also may be applied to EP imaging. 8 As shown in Section 4.2, the 

distortion present in EP images along the phase encoded axis is analogous to 

distortion along the frequency encoded axis in spin warp images. However, due 

to the low bandwidth per point in EP images compared with spin warp imag- 

ing, the spatial distortion appears to be much worse in EP images. Therefore, 

Equation 4.37 will fail to be satisfied for much lower values of Be. 

Theoretically, Chang & Fitzpatrick's reversed gradient distortion correction 

method may easily be extended from the correction of distortion along one axis to 

the correction of distortion along two or three axes. 17 In this case, a contiguous 

volume of MR multislice images is required, spanning the object. The case for 

correction of spatial distortion along all three axes is described below, as would 

be found in a contiguous multislice EPI acquisition. The analysis may easily be 

reduced to distortion along two axes, such as would be found in a contiguous 

multislice spin warp acquisition. 

Equations 4.18 may be expressed in vector notation as 

rl =r+ Be(r)g (4.38) 
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where 

r= (x, y, z) 

ri = (xi, yi, zi) 
111 

g= Gx Gy G, z) 
(4.39) 

As Be is a scalar, it can be seen that all the distortion term vectors, Be(r)g, 

are parallel throughout the image volume, i. e., the distortion acts in one fixed 

direction throughout the volume. A new coordinate system may be defined, 

(xr., yr., zr. ), where the x, axis is parallel to g. The rotation of the y,. -zr plane 

around xr may be chosen arbitrarily. Hence, all the spatial distortion caused by 

Be appears to be acting along x, i. e., distortion which was present along all 

three of the MR scanner's axes of acquisition has been reduced to distortion in 

one dimension, along x,.. The magnitude of the effective gradient along xr is 

given by 

1 
IgI 

111 
ý+ Gy + Gz 

(4.40) 

Hence, the spatial distortion along the x, axis is 
Be(xr, Y" zr) 

xrl = Zr +G (4.41) 

To perform this one dimensional correction in the rotated coordinate space, two 

image volumes are needed. In order to reverse the sign of the effective gradient, 
G, along x,., a second image volume must be acquired with the signs of Gam, Gy, 

and Gz reversed. Both image volumes must be rotated so that x, lies along g, 

and one dimensional correction may then be performed along Zr. The corrected 
image volume may then be rotated back from (xr, yr, zr) to (x, y, z) to produce 

an image volume corrected for spatial distortion along all three axes. 
In order to study spatial distortion present in MR images used for planning 

stereotactic neurosurgery, it was decided to implement Chang & Fitzpatrick's 

reversed gradient correction method. 

4.3.3 Implementation of Reversed Gradient Correction Method 

The implementation of Chang & Fitzpatrick's reversed gradient distortion correc- 

tion method involves two stages. Firstly, acquiring two MR images at each slice 
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position, the second image with gradient(s) of reversed polarity. These images 

must then be post-processed to produce one corrected image per slice. 
The reversed gradient method can only correct for magnetic field inhomo- 

geneities which are invariant with gradient reversal, as described in Section 4.3.2 

above. The polarity of the gradients may be reversed in the imaging sequence 

prior to amplification. However, this will not reverse any offsets or non-linearities 

which are introduced by the gradient amplifiers, and hence it will not be possible 
to separate these effects from inhomogeneities within the magnetic field itself. If 

the required gradients were reversed by physically swapping the cables carrying 

current into the gradient set, any effects of the gradient amplifiers also would be 

reversed; the distortion corrected and measured would be that due to inhomo- 

geneities within the magnetic field in the environment of the object being imaged 

only. The latter option is not practical. Both normal and reversed gradient im- 

ages should be acquired with as little delay between them to reduce the chance 

of patient movement. Also, physically reversing the gradient connections results 
in all gradients along a particular axis being reversed; it will be seen later that in 

some cases (e. g., diffusion weighted imaging) it is necessary only to reverse the 

gradients used for image acquisition. As a compromise, gross gradient offsets 

should be removed by careful calibration of the MR scanner prior to image ac- 

quisition. The sign of a gradient then may easily be reversed within the sequence 

code. 
It was decided to implement the post-processing in a general, interactive, 

and easy to use fashion, so that it could be applied to a variety of MR imaging 

projects. The program was written in C, under the UNIX operating system, 

with the user interface and image display portions making use of XView and 
X Windows functions. This interface allowed quick and relatively easy post- 

processing, allowing interactive setting of a variety of parameters. All reference 

to frequency and phase encoded axes refer to the spin-warp case where distortion 

occurs along the frequency encoded axis. This axis is assumed to be horizontal 

(i. e., parallel to the lines in an image, as opposed to the columns). 
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Edge Detection 

In a practical setting, the reversed gradient correction method relies on the de- 

tection of the object's edges in the image. Although elaborate edge detection 

algorithms exist, it was felt that their use lay beyond the scope of this thesis, 

and so a thresholding method was used. A threshold value could be selected as 
a percentage of either the mean or maximum pixel intensity within an image. 
Scanning along each line of the image, an edge was assumed when the pixel 
intensity crossed this value. The same absolute threshold value was applied to 
both pairs of distorted images. An attempt was made to correct for false edges 
by ensuring that if an edge was detected along any particular line of the image, 

it was not too distant from detected edges in lines above and below it. Both left 

and right edges of the object in the image were detected. Due to artefacts which 
are often present at the edges of MR images, such as ghosts, spikes from an 
external radiofrequency source, or reconstruction artefacts, it was found that the 

success rate of the edge detection was improved by searching for edges from the 

centre of the images outwards rather than from the edges in. However, for images 

containing several spatially separate objects, this algorithm may mismatch the 

pairs of edges to their associated objects, and so in this case, edge detection from 

the edges inwards was allowed. Experimentation was performed in constructing 

various gradient maps of the MR images, and then performing a thresholding 

edge detection on the gradient maps. While this technique was successful, it did 

not perform so well as thresholding on the image itself, particularly when multi- 
ple objects existed within an image. When a multislice image set was available, 
the absolute threshold value was fixed for all images to try to ensure the same 
edge was detected throughout the volume. Also, the option was given to scan 
through the image to find single pixels which were considerably larger than their 
immediate neighbours; these 'spike' pixels could then be replaced by the mean 

of their neighbours, thus removing the possibility that they may be mistaken for 

an edge. While the methods described here improved the detection of edges and 
hence the efficacy of distortion correction, the detection of the same pairs of 
edges in the pair of distorted images remains a weakness of this implementation. 
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Image Correction 

Once the edges of the object(s) in both distorted images had been identified, 

the line integrals along each line, between each left and right edge pair were 

normalized to their geometric mean. Ideally, the signal intensity, excluding noise, 

should not change between the acquisitions of pairs of images, however this 

normalization ensures that the line integrals between the same lines in the pair 

of images are consistent. This may introduce a bias in particularly noisy images, 

but in this case, the correction is likely to be poor anyway. 
The distortion correction could now be performed between pairs of edges. 

Throughout the distortion correction process, images are considered in terms of 

unit pixels. The dimensions of the pixels are not necessary for the implementation 

of the single slice correction method; where necessary for volume correction, they 

are always kept as scaling factors of unit voxels. In implementation, it was felt to 

be most straightforward to step through each pixel in the corrected image matrix, 

giving x. The problem is then to determine values of xl� and xlr which satisfy 
Equation 4.31. This was done by first producing an array indexing corresponding 

pairs of xi, by xlr, by considering equal values of the line integral§ and then 

searching this array until Equation 4.31 was satisfied. This involved interpolation, 

as generally, an integral value of x gives rise to non-integer values of xl,, and 

xlr. Linear interpolation was used. Once a triad of x, xl, and xlr were known, 

the corrected image intensity could be calculated using Equation 4.36. This was 

repeated until the entire corrected image had been constructed. 

It has been shown that linear interpolation of MR images introduces errors; 

these may be avoided by using an interpolation method where the interpolated 

point is the sum of surrounding pixels weighted by a sinc function. 34 This method 

was implemented as an option for post-processing, typically calculated over a 

range of eight pixels in each dimension. However, it was not used routinely as no 

visible improvement in the results was seen while the increase in post-processing 
by stepping through xl� and asking, "What value of xl� is required so that 

21. 

- 

/'xln 

ii. (xj., yi, zi) dxi. 
x, ... 

x1_.. 

11 

xl, (edye) 
" xln(edac) 

iin ýxi,. 
> yi ý zi ) dxd i� (4.42) 
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time was significant. 

Distortion Map 

Once a corrected image had been produced, it was possible to produce an addi- 
tional image mapping the spatial distortion which had been corrected, on a pixel 
by pixel basis. This was optionally converted to a field map using Equation 4.20. 

As the main use of the reversed gradient correction method in this thesis is to 

quantify the spatial distortion present in MR images used for planning stereotac- 

tic procedures, an automatic algorithm was implemented to segment the map 

of pixel distortions into regions containing individual stereotactic fiducial rods, 

as well as the main object. Statistics could then be calculated for each region 
(i. e., each fiducial rod) independently. The measures chosen were the mean of 

the absolute distortion, and the standard deviation of the signed distortion, both 

taken over all the pixels within the chosen region which were considered to be in 

the object, as defined by the edge detection. 

Three Dimensional Volume Correction 

The implementation of the three dimensional version of Chang & Fitzpatrick's 

correction method proved to be computationally complicated. The angle of 

the vector g was calculated from the appropriate gradient strengths according 

to Equation 4.39. This was viewed as remapping the distorted volumes onto a 

rotated matrix volume, rotated by the same angle as g. Each point in the rotated 

matrix volume was stepped through, and its position in the unrotated distorted 

volume calculated. Interpolation was performed to find the pixel intensity at 

this point; the option of linear or sinc interpolation was given. The standard 

single slice distortion correction was then performed on each of the slices in the 

rotated volume; the corrected volume was then rotated back to the original image 

orientation. 
For the single slice version of Chang & Fitzpatrick's correction, the actual 

sign of the frequency encoding gradient was not required to enable the correc- 

tion to be performed, so long as it could be reversed. However, for the volume 

correction method, the relative sense of the sign of both the frequency encoded 
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and slice selected gradients is required. If the sense is incorrect, g would be 

calculated in the wrong quadrant and hence the volume rotated the wrong way 
(or resampled along the wrong direction). Hence, the rotation of the volume 

would not have brought the actual total distortion (along the real g) into the 

resampled images, resulting in incomplete distortion correction. In order to de- 

fine a consistent relative sign between the frequency encoded and slice selective 

axes, the following experiment was performed. Imaging was performed in the 

presence of an obvious Be magnetic field (produced by a coin positioned beneath 

one end of the RF head coil, containing a spherical phantom). Three multislice 

volume sets were obtained; the first with normal gradient, the second with the 
frequency encoded gradient reversed, and the third with slice selective gradient 

only reversed. Considering the first two volume sets, a positive frequency encod- 
ing gradient was designated as resulting in distortion shifting the image to the 

right. The second and third sets were resliced along the frequency encoded axis 

so that each new image contained the slice selective and phase encoded axes (i. e., 
the volume was rotated by 900 around the phase encoded axis). This allowed the 
distortion along the slice selective axis to be visualized. A positive slice selecting 

gradient was considered to be one that resulted in distortion causing shifts to the 

right of these resampled images. The functions in the computer program which 

calculated the rotations and resamplings required for Chang & Fitzpatrick's vol- 

ume correction method were then adjusted to correctly process image volumes 

which were orientated according to this convention. In the case of the uniform, 

spherical phantom in the presence of a large, local, Ber it was visually easy to see 

whether the signs of the gradients (and image orientation) was correct relative 
to each other, during the slice by slice correction in the rotated image space; in 

images of human subjects this was not so noticeable. 

The volume correction method performs the correction along an axis at an 

angle (defined by g) relative to the primary imaging axes. The distortion map is 

also initially calculated along g. It is more useful to know the distortion in the 

coordinate frame of the imaging axes. In order to do this, the volume distortion 

map must be resampled along the original imaging axes, along with the corrected 
image volume. However, the values of distortion in this map are still parallel to 
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g, and so the distortion map must be resolved into separate distortion along the 

frequency encoding and slice selective axes, on a pixel by pixel basis. These maps 

may then be characterized and compared by the same methods as distortion maps 

produced by single slice correction methods. 
Care must also be taken when dealing with non-cubic voxels, which is the 

usual case. It is computationally easier to consider the mulislice image volume 

as being made up of cubic voxels; this was especially so for the algorithms con- 

cerned with the rotation of, and interpolation into, the image volume. For this 

implementation, parameters were scaled before and after the correction to allow 
for non-cubic voxels, but the rotation and correction themselves were performed 

assuming cubic voxels. In particular, the angle of rotation of the volume, to align 

with g becomes 0 assuming all voxels are cubic, where 

CG., v., B= arctan G, v, 
(4.43) 

where v., and v, are the voxel dimensions along the frequency encoding and slice 

selective axes respectively. 

4.3.4 Results and Discussion of Reversed Gradient Correc- 
tion Method (single slice) 

In order to test the implementation of the reversed gradient method, a number of 

MR images were acquired in which spatial distortion was deliberately introduced, 

either by offsetting one of the shims of the main magnetic field, the addition of a 

paramagnetic object close to the object being images (e. g., a coin), or by imaging 

a phantom containing adjacent regions of differing magnetic susceptibility. These 

three cases are presented below to demonstrate the validity of the correction. 

EPI on 0.5 T system 

Coronal (i. e., horizontal, see Figure 2.18) MR images were acquired through a 

phantom using the 0.5 T magnet located in the Magnetic Resonance Centre at 

the University of Nottingham. The phantom consisted of a two litre glass beaker 

of tap water (with a diameter of 100 mm), in the centre of which a sealed 

vertical plastic tube (diameter 20 mm) of water doped with medical gadolinium 
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contrast agent was rigidly placed. A spin echo full Fourier EPI acquisition was 

used with 128 echoes. The voxel size was 1x1x2 mm. The magnet's shims and 

other imaging parameters had been manually adjusted for the best practically 

achievable performance. Figure 4.1 shows the MR image obtained (the average 

of ten acquisitions) with normal imaging parameters, the MR image obtained 

with a phase encoding blipped gradient of reversed polarity, the corrected image 

produced, and the calculated map of pixel shifts. The phase encoded axis is 

aligned horizontally. The circular tube appears distorted into an 'arrow-head' 

shape, as expected for this configuration. 62 The addition of gadolinium to the 

water in the central tube has reduced the T2 of the solution such that no signal 
is present in these inherently T2 weighted EP images. 

The correction performs well; the circular shape of both the beaker and tube 
is restored. However, the distortion map shows a typical artefact of the gradient 

reversal method, namely the erroneous shifting of pixel intensity into the central 

region of low pixel intensity. This is due to either an error in the edge detection or 
the effect of noise in the line integrals of intensity. However, the actual amount 

of image intensity shifted into the low intensity region is itself small, as reported 

elsewhere, '7 and so this artefact does not visibly manifest itself in the corrected 
image. By selecting the post-processing option to detect more than one pair of 

edges along each line, the artefact is removed as no correction occurs within the 

central region; see Figure 4.2. 

EPI on 3T system 

EP images of a structured phantom also were obtained using the 3T magnet lo- 

cated in the Magnetic Resonance Centre at the University of Nottingham. Again, 

a spin echo full Fourier EPI acquisition was used with 128 echoes. The voxel size 

was 1.6x1.6x2 mm. The long axis of the cylindrical phantom was aligned par- 

allel to the z axis of the magnet and transaxial images were obtained. The x2-y2 

shim was deliberately offset to provide a global Be field. The images acquired, 

along with the corrected image and distortion map, are shown in Figure 4.3. The 

gross distortion is corrected well, and the distortion map shows the characteristics 

expected from the x2-y2 shim. The images were orientated so that the phase 
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Figure 4.1 Coronal EP images of a beaker of water containing an upright 
cylinder. Acquired using the 0.5 T MRI system. 
a) Image acquired under normal conditions. 
b) Image acquired with reversed phase encoding blipped gradient 

(horizontal axis in images). 
c) Corrected image, using the reversed gradient method. One pair of left 

and right edges has been detected per line. 
d) Distortion map. Note that some intensity has been misregistered into 

the central region of the phantom. Scale bar represents distortion from 
-10 to 10 mm. 

10 

a. b. 

Figure 4.2 
a) Corrected image with edge detection capable of finding multiple edge- 

pairs per line. 
b) Distortion map. Scale bar represents ±10 mm. 
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Figure 4.3 EP images of a phantom acquired using the 3T MRI system. 
The x2-y2 shim was deliberately offset to cause distortion. 128x128 matrix. 
Full Fourier spin echo WEST EPI. 
Voxel dimensions were 1.6x16x2.0 mm 
a) Image acquired under normal conditions. 
b) Image acquired with reversed phase encoding blipped gradient 

(horizontal axis in images). 
C) Corrected image, using the reversed gradient method. One pair of left 

and right edges has been detected per line. Note misregistered signal 
in the centre of the diagonal stripes. 

d) Distortion map. Scale bar represents ±25 mm. 
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encoded axis was horizontal. Single pairs of edges were detected along each 
line. Artefact is seen in the phantom's internal regions of low image intensity. 

Attempting to use detection of multiple edge pairs fails with these images due 

to non-corresponding pairs of edges being detected in the two distorted images. 

Having shown the potential of the correction method, a volunteer's head was 
imaged using the 3T magnet. The magnet's shims and gradient strengths were 

adjusted previously, while imaging a phantom, to produce an image containing 
isotropic pixels and exhibiting as little spatial distortion as possible; this corre- 

sponds to a normal setting for the scanner prior to routine use. A spin echo 
full Fourier EPI acquisition was used with 64 echoes. The dimensions of a voxel 

were 3.5x3.5x2 mm. The transaxial images obtained with normal and reversed 

phase encoding gradients are shown in Figure 4.4 as well as the corrected image 

produced using the reversed gradient correction method. Successful correction 

occurs. 

Spin Warp on 1.5 T system 

Transaxial spin-warp images of a water phantom were acquired using the 1.5 T 

Vision scanner in the Imaging Centre of the Queen's Medical Centre. The results 

are shown in Figure 4.5 in the same format as for the EP images presented above. 
In this case, the images are orientated so that the frequency encoding gradient 

is horizontal. A magnetic field offset, Be, was generated by rigidly fixing a 

small coin to the phantom approximately 10 cm out of the plane of the image. 

The correction performs well and the spatial variation of Be is seen clearly in the 

distortion map. A typical Tl weighted spin-echo spin warp imaging sequence, was 

used to acquired these images. The 1.5 T Vision MR scanner performs a number 

of automatic adjustments at the beginning of each image acquisition, such as 

shimming and transmitter and receiver gains. In order for these adjustments not 
to change between acquiring an image with normal gradients and an image with 

reversed gradients, these adjustments were inhibited after acquisition of the first 

image, resulting in the values optimized for the first image being used for all 
Tse_12b130. vkc TE=15 ms TR=300 ms voxel size 1.17x1.17x5 mm on 256x256 matrix. 

Bandwidth per point of 130 Hz along the frequency encoding axis. 
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Figure 4.4 EP images of a volunteer's head acquired using the 3T MRI 
system. No offset of the shims was introduced. Full Fourier spin echo 
MBEST EPI. Voxel dimensions were 3-5X3-5x2-0 mm. 64x64 matrix. [a-d] 
as in Figure 4.3. Scale bar in distortion map represents ±10 mm but note 
that the extreme distortion values are in the posterior streak artefact 
caused by an erroneous edge being found in the skin. 



a. 

Figure 4.5 Full Fourier spin echo, spin warp images of a phantom 
acquired using the 1.5 T Vision MRI system. Distortion caused by a coin. 
Voxel dimensions were 1.2x1.2x5.0 mm. 
a) Image acquired under normal conditions. 
b) Image acquired with reversed frequency encoding gradient (horizontal 

axis in images). 
c) Corrected image, using the reversed gradient method. 
d) Distortion map. Scale bar represents distortion from -14 to 14 mm. 
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subsequent images. However, the automatic adjustment had to be enabled for 

the first acquisition of a particular sequence type to allow the MR scanner to 

correctly set RF pulse flip angles, gradient calibrations, and amplifier gains. 
The above experiment was repeated using a volunteer, with the coin attached 

to his chin. The same imaging parameters were used. Distortion of several 

centimetres is seen, in Figure 4.6. This is extremely well corrected, and again, 

the pattern of the Be field variation is clearly seen in the distortion map. No 

artefact is visible in the corrected image despite regions of low signal intensity 

in the skull and ventricles. The high SNR present in these images facilitates 

accurate edge detection and reduction of noise induced errors in the line integrals 

of intensity. 

4.3.5 Results and Discussion of Reversed Gradient Correc- 
tion Method (volume) 

The 3D reversed gradient correction method was applied to multislice spin echo 

spin warp image acquisitions, acquired on the Vision MR scanner. 64 contiguous 

slices of 256x256 pixels were acquired. Initial phantom experiments showed 

that the mean pixel intensity varied between adjacent slices if the volume was 

acquired in one multislice acquisition (TR=1410 ms). This appeared to be due to 

'cross-talk' between adjacent slices. Even though an interleaved slice excitation 

ordering scheme was used, the TR set was of the order or 1500 ms - too short to 

allow full longitudinal relaxation to occur. Longer TR's would have lead to long 

imaging times, and so each volume was acquired as two interleaved sets, where 

each set had a slice separation (centre to centre) equal to its slice width. This 

method of acquisition did not significantly add to the total imaging acquisition 

time, as with only 32 slices per set, the TR could be nearly halved. This also 

gave the additional benefit of increasing the Ti weighting to that which is more 

usual in clinical imaging. Images in each volume could be reordered correctly 
during post-processing. 
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Figure 4.6 Full Fourier spin echo, spin warp transverse images of a 
volunteer's head acquired using the 1.5 T Vision MRI system. Distortion 
caused by a coin taped to the volunteer's chin. Voxel dimensions were 
1.2x 1.2x5.0 mm. 
a) Image acquired under normal conditions. 
b) Image acquired with reversed frequency encoding gradient (horizontal 

axis in images). 
c) Corrected image, using the reversed gradient method. 
d) Distortion map. Scale bar represents distortion from -18 to 18 mm. 
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Volume Correction of Phantom 

The volume reversed gradient correction method was first applied to a spherical 

water filled phantom, imaged in the head coil using the same spin-echo spin warp 
imaging sequence as before. (se_12b130. wkc, TE=12 ms, TR=800 ms, voxel 

size 1x1x3 mm on a 256x256 matrix. Gx=3.059 mTm-1 and G, z=8.000 mTm-1, 

as quoted by the scanner. ) A copy of the sequence was modified to reverse the 

polarity of the frequency encoding and slice selective gradients. A third volume 

was acquired with just the frequency encoding gradient reversed, to allow sin- 

gle slice correction to be performed on all slices, for comparison. A coin was 

placed under the RF head coil to create a Be which caused a distortion of sev- 

eral pixels at most. Transaxial images were obtained. The results are shown in 

Figures 4.7,4.8, and 4.9 using the central slice of the volume as an example of 

the entire volume. Figure 4.7 shows the single slice reversed gradient correction. 
The volume correction first requires that both distorted volumes are rotated and 

re-sampled along g. This corresponded to rotation through an angle of 20.92°. 

Distorted images, in the rotated frame, are shown in Figure 4.8, along with the 

corrected image in this frame. Finally, the corrected images (and distortion map) 

are rotated back into the original acquisition plane, as shown in Figure 4.9. 

The volume correction on the spherical phantom appears to work well. Fig- 

ure 4.10 shows how the measured distortion varies with slice position, for both 

single slice and volume correction. The effect of the coin can be seen with 
increasing distortion towards the superior side of the phantom (low z values) 

where the coin was placed. For the results from the volume correction, distortion 

along both the frequency encoding and slice selective directions may be calcu- 
lated from the distortion map, per slice. It would be expected that the ratio 

of the distortion along these two axes would be in the ratio of their respective 

magnetic gradient field strengths, and this is observed. Figure 4.10c shows a 
direct comparison of distortion along the frequency encoded axis as calculated 
from the single slice and volume correction methods, on the same graph. This 

shows that the volume correction appears to be correcting more distortion along 

this axis than the single slice correction, although both curves follow a similar 

trend. This might be expected, as the volume correction method is attempting 
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u I a) normal 

LJ Iý u b) reversed c) corrected d) distortion map 

Figure 4.7 Single slice reversed gradient correction on multislice volume. 
Example of an image through a water filled spherical phantom. A coin 
placed under the RF head coil can be seen to have caused distortion. The 
frequency encoding gradient of this spin echo spin warp sequence was 
horizontal. The distortion map shows larger pixel shifts as bright or darker 
relative to the background (zero shift). The scale bar represents ±3 mm. 

u II 
a) normal 

rý 
ýý 

rý u b) reversed c) corrected d) distortion map 

Figure 4.8 Volume reversed gradient correction method. An example of 
correction of a slice after rotation around the phase encoding axis by the 
angle of vector g. 

a) corrected b) distortion map 

Figure 4.9 Volume reversed gradient correction method. Example of 
corrected slice rotated back into the original volume orientation. 



Figure 4.10 Mean absolute distortion per slice, measured using reversed gradient method. 
'Error bars' represent the spread of distortion throughout that slice. 
Transaxial slices through a spherical water phantom. A coin was placed under the RF head 
coil to create additional distortion, seen in the slices with lower z values. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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to correct for the distortion along the slice selective and frequency encoded axes 

and hence is correcting 'more' of the total distortion. 

The effect of noise in the MR image on the correction of distortion throughout 

an image volume was studied briefly using this experimental set-up. After all 
image acquisitions had been completed, a final multislice image volume was 

acquired with normal polarity magnetic gradients. This was then substituted as 

a multislice volume with inverted frequency encoded gradient for the single slice 

correction on all slices in the volume. The other image volume used for the 

correction was the multislice set acquired with normal gradients at the beginning 

of the experiment. The coin, causing measurable distortion, was left in place 

under the RF head coil. The only difference between the two volumes used for 

this correction should be noise. The results are presented in Figure 4.10d, along 

with the actual distortion measured when the second multislice volume used 

for correction actually did have the frequency encoding gradient inverted during 

acquisition. This shows a background offset in the mean absolute distortion over 

a slice of about 0.1 mm. The increase in the standard deviation of the distortion 

throughout each slice, which occurs in the centre of the volume, corresponds to 

slices containing the water meniscus within the phantom, which interferes with 

the edge detection. 

Volume Correction of Head 

The volume reversed gradient correction method was then applied to images of 

a volunteer's head. Unlike for a phantom, which may be totally spanned by the 

imaged volume, a person will always have part of his or her anatomy leaving the 

volume. As the reversed gradient correction method requires the same edges to 

be found in pairs of images along the frequency encoding and slice selective axes, 

these axes must be orientated so that the head is covered by the volume in these 

directions. Therefore the phase encoding axis must be aligned in the direction of 

the anatomy which leaves the volume. In the case of a head, the phase encoding 

axis must be parallel to the inferior-superior direction. This is unfortunate, as in 

many cases it is preferable not to align the phase encoding axis in this direction 

as it it likely that signal from the anatomy outside the volume will 'wrap' into 
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Figure 4.10d Comparison of the mean absolute distortion per slice and noise, produced by 
the reversed gradient method. 
'Error bars' represent the spread of distortion throughout that slice. 
Transaxial slices through a spherical water phantom. A coin was placed under the RF head 
coil to create additional distortion, seen in the slices with lower z values. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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the images. However, in the case of the head RF coil, this does not occur as the 

NMR signal from structures outside of the coil diminishes rapidly with distance 

outside of the coil, resulting in no visible 'wrap' of signal. 
Sagittal image orientation was chosen for acquisition of the MR image vol- 

umes through the head, with the same imaging parameters as those used for the 

acquisitions of the spherical phantom. The phase encoding gradient was aligned 

parallel to the inferior-superior axis. The results are shown in Figures 4.11,4.12, 

and 4.13. The distortion caused by the coin under the RF coil is clearly visible 

at the back of the head. Correction using the single slice reversed gradient cor- 

rection method is shown in Figure 4.11. Correction in the brain appears good; 

however artefacts are seen lower in the head, around the tongue, and in the air 

spaces behind the nose. Distorted images, in the rotated frame, are shown in 

Figure 4.12, along with the corrected image in this frame. Finally, the corrected 

images (and distortion map) are rotated back into the original acquisition plane, 

shown in Figure 4.13. While the gross shape of the head is correct, and the 

distortion caused by the coin is corrected and identified in the final distortion 

map, the final corrected images are blurred, compared to the initial images, and 

contain artefacts. Consequently, the data set is of a poorer diagnostic quality 

than the initial images. As the artefacts are more prominent in the corrected 

images of the head than the phantom, it is felt that the source of the artefacts 

results from the rotation and interpolation of the image volume. 

Figure 4.14 shows how the measured distortion varies with slice position, for 

both single slice and volume correction. The effect of the coin is not so obvious in 

these graphs, compared to the results from the spherical phantom, because mean 

absolute distortion over a sagittal slice does not highlight variations in distortion 

between the inferior and superior regions. Despite the poor quality of the final 

corrected image, both single slice and volume correction methods identify similar 

amounts of distortion in the frequency encoding direction. 

4.3.6 Validity of Reversed Gradient Correction Method 

The results presented in this section are similar to those presented elsewhere. 8 17 

Chang & Fitzpatrick's single slice distortion correction method appears to have 

111 



a) normal b) reversed c) corrected i d) distortion map 

Figure 4.11 Single slice reversed gradient correction on multislice 
volume. The central image of a multislice volume through a volunteer's 
head is shown as an example. A coin placed under the RF head coil can 
be seen to have caused distortion at the back of the head. The frequency 
encoding gradient of this spin echo spin warp sequence was anterior- 
posterior. The distortion map show larger pixel shifts as bright or darker 
relative to the background (zero shift); the scale bar covers a range of ±7 
mm. 

a) normal b) reversed c) corrected 

ýý _ 

d) distortion map 

Figure 4.12 Volume reversed gradient correction method. The correction 
of the central slice of the volume is shown after rotation around the phase 
encoding axis by the angle of vector g. 

a) corrected b) distortion map 

Figure 4.13 Volume reversed gradient correction method. The central 
slice of volume rotated back into the original volume orientation. 



Figure 4.14 Mean absolute distortion per slice, measured using reversed gradient method. 
'Error bars' represent the spread of distortion throughout that slice. 
Sagittal slices through a volunteer's head. A coin was placed under the RF head 

coil to create additional distortion. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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been implemented correctly, and works for both spin warp and EPI acquisitions. 
The volumetric correction has also been implemented and appears to work cor- 

rectly. However, the corrected images produced by the volumetric correction 

appear to be of a poorer quality than the raw distorted images, both as a result 

of blurring and the addition of artefacts. The majority of the spatial distor- 

tion occurs along the frequency encoded direction, and this is identified in both 

methods. Therefore, it is felt that as the volume correction method provides 
little extra information compared with the single slice method, and introduces 

more artefact, that it will not be used further in this work. 
The application of the single slice reversed gradient correction method to MR 

images of stereotactic apparatus would appear to be valid as no visible artefact 
is seen in the spin warp images of the brain. However, some artefact is observed 
in the corrected images in regions outside the brain (Figure 4.11), and this is 

a cause for concern. The multiple edge detection per frequency encoding line 

works, and should detect and correct the spatially separate fiducial rods as well as 

the main object. Its application to EP images also appears to be valid, although 

more prone to artefacts. Displacement maps (and Be field maps) have been 

successfully produced from the correction method on a pixel-by-pixel basis. 

4.4 Comparison of Correction Methods 

During the course of the work presented here using the reversed gradient cor- 

rection method, a chance arose to compare the efficacy of this correction with 
the phase map correction technique. The comparison has been presented in full 

elsewhere; 78,82,83 a summary is given here. 

4.4.1 Method for Comparison 

In order to compare the reversed gradient correction method with the phase 

map correction method, a computer simulation of an EPI acquisition was con- 

structed. This allowed various parameters which might affect the distortion cor- 

rection method to be varied independently. From a simulated circular cross 

section through a cylindrical structured phantom, a matrix of k space was cal- 

culated by numerically calculating an equation similar to Equation 4.17. The 
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main static magnetic field was aligned perpendicular to this cross-section. A two 
dimensional fast Fourier transform was used to calculate the image. Static and 
dynamic inhomogeneous magnetic fields, Be, could be added to the simulation, 

which produced the input data required by both correction methods. For the 

comparisons, acquisition parameters were chosen to be similar to those used on 
the 3T magnet, such as a 128 x 128 matrix with a 200 mm field of view, a 
frequency encoding gradient strength of 35 mTm-1 applied for 0.5 ms per line 

of k space, and an effective phase encoding gradient of 2 mTm-1. The T2 and 
T2 values used for the phantom were 100 ms and 60 ms respectively. Distor- 

tion effects along the slice selected direction were not modelled. The number of 
isochromat points used in the calculation of the matrix of k space was limited 

by computer processing time; a value of 256 per pixel resulted in reasonable 

calculation times. 

In order to compare the corrected images produced by both methods, four 

factors were considered: the effect of EP imaging sequence, various levels of 

signal to noise ratios, various levels of static field in homogeneities, and the effect 

of time varying magnetic field inhomogeneities such as might be produced by 

eddy currents. 
A problem which was considered throughout this work was how to quantify 

the success of the distortion correction, or alternatively, how to quantify the 

amount of distortion which has been corrected. In the case of real MR images, 

it is very difficult to do this as the undistorted image is not known. In the case 

of a computer generated simulation of a MRI acquisition, however, it would be 

expected that quantitative measures of the success of a distortion correction al- 

gorithm and implementation could be constructed. Unfortunately, no suitable 

quantification method could be found. Quantification of simple subtraction im- 

ages (of the image calculated by the distortion correction method and an image 

produced without the influence of Be) failed to produce a reliable score, i. e., one 

that agreed with the visual impression of the success of the correction. In the 
field of image registration of images acquired using different image modalities, or 

exploiting different NMR contrast mechanisms, various measures of the success 

of image registration have been constructed. As a well corrected image should 
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be in good registration with an image produced without the presence of Be, it 

was felt that one of these measures could be applicable in this case. A method 

used by Studholme et aL106 was implemented; this involved the calculation of a 
"feature space" between the two images, which could then be quantified by its 

third moment. It failed to show any correlation with an overall visual impression 

when used to compare corrected images with undistorted images, or when com- 

paring images corrected with the two different methods. The score seemed to be 

similarly affected by small differences between the images, possibly due to edge 
detection or interpolation algorithms, and more gross differences between images. 

For the comparison presented here, an overall visual inspection of the corrected 
images produced by the two methods was found to be adequate to judge the 

success of each method. Further work to quantify the success, or otherwise, of 

a correction algorithm under a certain set of imaging parameters would be most 

useful, however, it is felt that this lies in the field of image registration and so 

outside the scope of this thesis. 

4.4.2 Results and Discussion of Comparison 

An example of an undistorted image produced by the simulation program is pre- 

sented in Figure 4.15a. Regions of varying contrast, as well as lines of decreasing 

separation, are visible. An inhomogeneous field of the form x2-y2 was used to 

produce spatial distortion, and a typical example of its effect on an image is 

shown in Figure 4.15b. In order to study the effects of different EPI sequences 

on the correction, the simulation program produced images acquired with and 

without a 1800 spin echo refocusing RF pulse, and acquired with full, or reduced, 

coverage of k space in the phase encoding direction. 

EPI Sequence 

For reduced k space acquisitions, 8 echoes were acquired before the centre of 
k space and 64 echoes after. Margosian partial Fourier image reconstruction 

was performed; 67 this effectively uses the central 16 echoes to construct a phase 

map of a low resolution image (in the phase encoded direction) which is used to 

phase correct a full resolution image constructed by the half Fourier technique 
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a) Be=O 

Figure 4.15 Computer simulated phantom. a) is the EP image with no 
inhomogeneous magnetic field present, b) is the EP image in the presence 
of a simulated mis-adjusted x2-y2 shim. 

Comparison of corrected images produced by both distortion 
correction methods. 
Distorted images were of the form of figure 4.15b. 
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Figure 4.18 Corrected from half 
Fourier spin echo EPI. 
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Figure 4.17 Corrected from full 
Fourier gradient echo EPI. 
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Figure 4.19 Corrected from half 
Fourier gradient echo EPI. 

Apart from the full Fourier spin echo EP acquisition, the phase map 
correction method produces better corrected images than the reversed 
gradient method. Both methods show increased artefacts for half Fourier 
acquisitions. 
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(described in Section 2.3.3). 

Both methods corrected the distorted simulated images acquired with a spin 

echo full Fourier technique, as shown in Figure 4.16. However, the reversed 

gradient correction method introduced severe artefacts in the 'corrected' images 

that it produced, for all other imaging schemes. The phase map method corrected 

gradient echo full Fourier images well. It performed less well on the half Fourier 

images, although considerably better than the reversed gradient method in the 

same cases. The results of these corrections are shown in Figures 4.17,4.18, and 
4.19. 

The reversed gradient method performs poorly in these comparisons, with 

the exception of a full Fourier spin echo acquisition. It is believed that the 

poor performance of the reversed gradient method is due to signal loss in the 

distorted images in all cases apart from the full Fourier spin echo acquisition. 

As mentioned previously in this chapter, the reversed gradient method relies on 

the calculation of correct line integrals of intensity across the image. Anything 

which interferes with this integral will affect the correction along the entire line. 

Using the phase map correction method, an incorrect pixel value only affects the 

correction of that pixel. A gradient echo full Fourier MR acquisition does not 

refocus all the NMR signal; the resulting dephasing leads to signal loss in the 

MR image. A half Fourier reconstruction relies on a crude phase map to correct 

the entire image. In regions of rapidly changing phase, e. g., the edges of an 

object, incorrect values of phase will be assigned to pixels, resulting in incorrect 

pixel intensities. Both of these processes will interfere with the reversed gradient 

correction method more severely than the phase map correction method, as the 

effects of incorrect pixel intensities anywhere along a line will be felt along that 

entire line. Artefacts in images produced by Chang & Fitzpatrick's correction 

method using images acquired with gradient echo sequences have been noted by 

some other researchers and recently a method to reduce their effect has been 

reported'52 based on dynamic time warping. Unfortunately, it has not been 

possible to implement this method to see whether it improves the correction of 

the images used for this comparison. 
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Noise 

The effect of various levels of signal to noise ratios on the two correction methods 

were studied by adding various amounts of Gaussian noise to the k space data 

prior to image construction. An example of a noisy spin echo full Fourier distorted 

image is shown in Figure 4.20. Both methods corrected noisy images extremely 

well down to very low signal to noise ratios. The corrected image produced by 

the reversed gradient method had a higher SNR than that produced by the phase 

map correction method as it was the combination of both distorted images. The 

expected improvement of about f in SNR was seen in the reversed gradient 

corrected image compared to one distorted image. Combination of the images 

used to perform the phase map correction method was not performed as each 

image acquired with a different T would have slightly different T2 weighting. 
The decrease in SNR finally affects both correction schemes: in the reversed 

gradient correction method, significant noise in the intensity line integrals results 
in misplaced intensity in the corrected image, as described in Sections 4.3.3 and 

4.3.4; in the phase map correction method, the increase in noise increases the 

error in the phase value calculated for each pixel, which results in that pixel being 

poorly corrected. 

Level of Be 

The sensitivity of the correction methods to increasing static magnetic field in- 

homogeneities was studied by the addition in the simulation of a Be field which 

would be caused by a sphere with different magnetic susceptibility to the rest of 

the phantom, placed within the simulated phantom but out of the imaged slice. 
This resulted in a local magnetic field inhomogeneity of the form described by 

Lüdeke et a!. 62 Full Fourier spin echo EPI acquisitions were simulated. Both 

methods corrected this distortion until the maximum strength of the inhomo- 

geneous magnetic gradient equalled or surpassed that of the effective phase 

encoding gradient, as expected from Equations 4.28 and 4.37. Simulating an 

inhomogeneous magnetic field in this fashion introduces both positive and neg- 

ative inhomogeneous gradients, and it is felt that this is a valid simulation of 
inhomogeneities that would be found in, e. g., a human head. Simulations were 
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Figure 4.20 Example of a distorted computer simulated EP image. A 
large amount of Gaussian noise was added to the simulated k space prior 
to image construction. 
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Figure 4.21 Comparison of corrected images from both methods. Full 
Fourier spin echo EP acquisitions were modelled. In addition to the x2-y2 
static inhomogeneity, a time varying inhomogeneity was also simulated in 
k space, to simulate the effect of an eddy current. Although both corrected 
images show artefacts, in this case the reversed gradient method 
performs better than the phase map correction. 
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also performed by applying Be in the form of a linear magnetic gradient along the 

phase encoding axis; 82 this inhomogeneity may be more of the form that would be 

encountered from non-optimally adjusted magnetic shims. It was observed that 

if Be was applied with the same polarity as the effective phase encoded gradient, 

then the phase map correction method continued to correct the distortion even 

when the gradient caused by Be exceeded the effective phase encoding gradient. 
However, if Be is applied with opposing polarity to the phase encoding gradient, 

phase map correction fails when the gradient caused by Be equals or exceeds 

the magnitude of the phase encoding gradient. This follows from Equation 4.28. 

However, as the reversed gradient method requires two images acquired with 

opposing polarities of phase encoding gradient, then one of these images will be 

acquired when the phase encoding gradient is 'overcome' by the gradient caused 

by Be. This 'piling-over' of image signal intensity causes both correction meth- 

ods to fail; however with prior knowledge of the polarity of the gradient caused 

by Be, the polarity of the phase encoding gradient used to acquire images for 

the phase map correction method may be chosen to avoid this 'piling-over' of 

signal and hence allow success distortion correction even in regions of large Be 

in homogeneities. 

Eddy Currents 

Finally, the effect of time dependent inhomogeneous magnetic fields, such as 

might be produced by the effects of eddy currents, were studied. The simulation 

modelled the effect of the exponential decay of a x2-y2 inhomogeneity throughout 

the full Fourier spin echo EPI acquisition, with the amplitude of Be falling by 

35% throughout the acquisition of the NMR signal. The conjugate symmetry 

of k space is broken by the evolving Be throughout the image acquisition. This 

results in some visible signal loss at the edges of the distorted image, which in turn 

causes some artefacts in the corrected image produced by the reversed gradient 

correction method, see Figure 4.21a. The phase map correction method also 

suffers; the corrected images it produces, while an improvement on the distorted 

image, do not restore the full gross dimensions, or fine detail, of the original 

phantom; Figure 4.21b. 
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Summary of Comparisons 

This section has briefly outlined a simple comparison between the reversed gra- 
dient and phase map methods for correcting spatial distortion in modulus MR 

images. Of the parameters considered, the most important would appear to be 

that of imaging sequence, in this case the choice of spin or gradient echoes and 
full or partial Fourier acquisitions. This suggests that if the reversed gradient 
distortion correction method is to be used, it must be applied to full Fourier 

spin echo MR acquisitions only. The phase map correction method may be suc- 

cessfully applied to a wider range of imaging regimes, although partial Fourier 

techniques result in decreased performance. In the other situations considered, 

there was less of a difference between the corrected images produced by either 

method. So long as full Fourier spin echo MR acquisitions are performed, the 

reversed gradient correction method produced very similar results to the phase 

map correction method. However, for general use, the phase map correction 

method would appear to provide a far more robust correction. 

4.5 Distortion Caused by Stereotactic Apparatus 

In the previous sections of this chapter, the theory, implementation, and valida- 

tion of Chang & Fitzpatrick's reversed gradient distortion correction method has 

been described. This section outlines the application of this technique to the 

measurement of any additional distortion caused by the introduction of specific 

items of stereotactic apparatus into the volume being imaged. The application 

of the reversed gradient correction to more realistic and complete stereotactic 

set-ups is described in Chapter 5. 

Two particular items used in routine stereotaxis were studied; the aluminium 
MR compatible GTC head ring and the aluminium pins used to attach the CRW 

MR compatible head ring directly to the patient's skull. Their use in stereotaxis 
is described in Chapter 3. They are the only two metal stereotactic items that 

would be placed close to the patient's head during MR scanning. In both cases, 

a long uniform rectilinear water filled Perspex phantom, with rounded corners, 

was placed in the RF coil. Transaxial multislice image volumes were obtained 
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throughout the useful range of the head coil, using the 1.5 T Vision MR scan- 

ner. The spin echo, spin warp image acquisition was the same as described in 

Section 4.3.4. The single slice reversed gradient correction method was applied 
to each slice in turn. The mean absolute distortion per slice was calculated as 

was the standard deviation of the distortion over each slice. This was used to 

characterize the distortion throughout the volume. 
A pair of multislice volumes was acquired without any stereotactic apparatus 

present, the second volume with frequency encoding gradient reversed relative 

to the first. A further pair was acquired with the GTC head ring positioned 

abutting the inferior border of the RF head coil; the position it would be in were 

a patient being scanned. Care was taken not to move the patient bed, phantom, 

or head coil, during positioning of the GTC head ring. Both pairs of volumes 

were processed using the reversed gradient method. No additional distortion was 

visually observed between both corrected volumes. The results are plotted in 

Figure 4.22. The origin of the z slice selective axis is taken as the magnet's 

isocentre. This coincided with the centre of the RF head coil. The comparison 

between the distortion per slice is shown in Figure 4.22c. Throughout most of 

the volume, there is no significant difference between the images acquired with, 

and those acquired without, the GTC head ring present. Distortion increased 

with increasing distance from the isocentre in both z directions, as would be 

expected. However, at the inferior section of the phantom (negative z values; 

closer to the GTC head ring) a separation is seen between the two curves, with 

slightly more distortion being observed in the images acquired in the presence of 

the GTC head ring. It would seem reasonable that this small increase in distortion 

in the phantom is due to the presence of the GTC head ring. 

This experiment was repeated (on a different occasion) except that instead 

of placing the GTC head ring close to the phantom, an aluminium pin was 

taped to the centre of the phantom with its tip pointing into the phantom, 

as if inserted into a skull. The pin was attached to the phantom close to the 

magnet's isocentre. In this case, distortion was visible on a few images in the 

volume. An example is shown in Figure 4.23. A large amount of distortion 

is seen close to the tip of the pin, but it falls to background noise levels very 
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Figure 4.22 Effect of the GTC head ring on distortion. 
Mean absolute distortion per slice, measured using reversed gradient method. 
'Error bars' represent the spread of distortion throughout that slice. 
Transaxial slices through a long water phantom. 
The GTC head ring was placed outside the RF head coil between about z=-140 and z=-150 mm. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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Figure 4.23 The distortive effect of aluminium pins used to attach the MR 
compatible CRW head ring to a patient. High amounts of distortion are 
seen local to the pin's tip, which was placed against the water phantom, 
but the distortion falls to background levels within a short distance from the 
pin. 
a) Image acquired with normal frequency encoding gradient. 
b) Image acquired with reversed frequency encoding gradient. 
c) Corrected image 
d) Distortion map. Bright and dark points represent positive and negative 

shifts away from the grey uniform background, which represents no 
shift. The scale bar represents ±2 mm. 
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rapidly with increasing distance from the pin. It would appear that the local 

inhomogeneous magnetic field gradient very close to the pin's tip breaks the 

relationship described in Equation 4.37, as incomplete correction is seen at this 

point in the corrected image. The results of distortion per slice are presented 
in Figure 4.24. No significant difference is seen between the mean absolute 
distortion values between the two corrected volumes, as shown in Figure 4.24c. 
However, the standard deviation of the distortion increases dramatically for a 
few images close to the isocentre (z=0) which was the location of the pin, as 
shown in Figure 4.24b. As this increase in standard deviation is not observed in 

the absence of the pin (Figure 4.24a), it would appear that its local increase is 

a result of the distortion caused by the pin. This increase in standard deviation 

but not in mean absolute distortion throughout the slice is consistent with the 

observation from the distortion map (Figure 4.23d) that the pin causes only 
local distortion and that the distortion throughout the majority of the phantom 

remains at background levels. 

The investigations performed in this section using the reversed gradient cor- 

rection method to measure distortion, appear to show a small increase in dis- 

tortion caused by close proximity of the stereotactic apparatus. However, in the 

case of the GTC head ring, this additional distortion is small compared to the 

range of distortion across a slice. However, the measure of distortion used in this 

section is a mean over the entire slice. This may underestimate the effect of such 
distortion on the transformation of points to the stereotactic coordinate system 
by use of the fiducial rods. This is examined in more detail in Chapters 5 and 
6. The distortion caused by an aluminium stereotactic pin is considerable larger, 

but rapidly decreases with increasing distance from the pin. In practical use, 
the pin is secured into the outer surface of the patient's skull and so is always 

at least 10 mm away from the brain, and in the vast majority of cases, several 

centimetres from the target. This is also true of the pin's location in relation 
to any stereotactic fiducial rods. Therefore, it would seem to be unlikely that 

the distortion caused by the pin would have any global affect on the stereotactic 

process. 
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Figure 4.24 Effect of MRI compatible stereotactic pin on distortion. 
Mean absolute distortion per slice, measured using reversed gradient method. 
'Error bars' represent the spread of distortion throughout that slice. 
Transaxial slices through a long water phantom. The pin was placed near z=0. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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4. Spatial Distortion in MRI 

4.6 Applications of Distortion Correction to Con- 
temporary EPI Techniques 

Spatial distortion in MR images affects many other fields of MRI. The application 
of the reversed gradient distortion correction method to two other wide-spread 

uses of EPI is presented in this section. 

4.6.1 ADC Maps 

A MR image acquisition may be sensitized to the effect of the incoherent move- 

ment of the nuclei involved in NMR. 101,110 As it is not the main subject of this 

thesis, a full description of the processes involved in this movement will not be 

given; they are described in detail elsewhere. 15 This section will concentrate 

on the application of the reversed correction method on correction of spatial 
distortion in the EP acquisitions used to measure this effect. 

The incoherent movement of nuclei may be characterized, on a pixel by pixel 
basis, by the apparent diffusion coefficient (ADC) which represents the effect of 

all diffusion like processes ongoing throughout a particular pixel. 58 A fast MRI 

acquisition is desirable to prevent the effects of involuntary patient movements 
interfering with the calculation of the ADC. As it offers the fastest MR image 

acquisitions, EPI is ideal for this purpose, and indeed this field is one of the 

main contemporary applications of EPI to routine clinical MRI. A spin echo EPI 

sequence may be diffusion weighted with the application of two large and identi- 

cal diffusion weighting magnetic gradients, one either side of the refocusing RF 

pulse. Stationary nuclei are dephased by the first diffusion gradient and refocused 
by the second, thus contributing to the NMR signal. Nuclei which move between 

the application of the first and second diffusion gradients experience a different 

rephasing magnetic field under the second gradient than they experienced un- 
der the first diffusion gradient, and are not fully rephased. Consequently, they 

contribute less to the subsequent NMR signal. Hence diffusion weighting has 

been achieved. In order to affect image contrast enough, large diffusion gradi- 

ents are required, characterized by their b value. This may lead to the induction 

of significant eddy currents in the magnet. The magnetic field caused by these 
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eddy currents may have the effect of destroying the symmetry between the two 

diffusion gradients, thus incorrectly rephasing nuclei and resulting in false image 

contrast. If the eddy currents are still present during acquisition of the NMR 

signal, they also will generate a Be magnetic field, potentially causing MR image 

distortion. If the Be caused varies with time throughout the acquisition of the 

NMR signal, the spatial distortion caused is difficult to correct. However, if the 

Be field caused is slowly varying, it may be considered as static for the duration 

of the NMR signal acquisition and thus suitable for correction by the reversed 

gradient method. It has been demonstrated by others14 that the eddy currents 

caused by the diffusion gradients on a 1.5 T Siemens Vision MR scanner fall 

primarily into the latter category. It is assumed that, as the hardware is the same 

on the Vision MR scanner located in the Queen's Medical Centre as that used 
by Calamante et al., 14 then the Be caused by the diffusion gradients also may be 

considered to be static on the Vision in the QMC. 

In many settings, image maps of ADC values are of more use than the dif- 

fusion weighted image alone, e. g., in the ageing of infarcted brain tissue after a 

person has suffered a occlusive stroke, 114 or characterization of multiple sclero- 

sis. 44 Accurate ADC maps are also required for the construction of the diffusion 

tensor, 4 which may provide useful information in the characterization of these 

disease processes. 117 

Diffusion weighted imaging is particularly useful in the acute assessment of 

stroke patients, as dead brain tissue has been observed to exhibit a lower diffusion 

coefficient than viable tissue. This contrast mechanism appears to become clearly 

visible within about thirty minutes of tissue death (as opposed to other NMR 

contrast mechanisms, particularly T2, which only starts to become visible eight to 

ten hours after infarction80). Since an infarct may be clearly visible on a diffusion 

weighted image, an ADC map is extremely useful in trying to age the event (i. e., 
is it due to a new stroke or a previous stoke). 

In the simplest case, the ADC can be assumed to describe a monoexponential 

diffusion process within a voxel, given by'°' 

id = ioe-bD (4.44) 

where id is the image signal intensity of a particular pixel in the diffusion weighted 
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image, i° is the image signal intensity of the same pixel in a non-diffusion weighted 
image (i. e., a repeated acquisition with the magnitude of the diffusion weighted 

gradients set to zero), b is a constant characterizing the diffusion weighting, and 
D is the ADC. A map of D can be calculated from two images at each location. 

Any contribution to Be caused by the application of the diffusion gradients 

will not be present in i°, and hence the two images will be differentially distorted, 

making the identification of the same point in both images difficult, if not im- 

possible. A number of methods have been proposed to reduce the effect of eddy 

currents caused by the diffusion weighting gradients. 'Navigator' echoes may be 

added to the image acquisition50 from which one dimensional field maps may be 

constructed and used to enable a first order correction to be performed. Alter- 

natively, the whole imaging module may be surrounded with 'dummy' diffusion 

weighting gradients of opposite polarity, with the aim of inducing eddy currents 

of the opposite sense. These then will be cancelled by the application of the 

actual diffusion weighted gradients. 7 A similar effect may be achieved by using 

bipolar diffusion gradient pulses, 2 although this has the effect of either decreasing 

the diffusion weighting or increasing the effective echo time of the acquisition, 

for the same strength gradients. 

If it can be assumed that the Be field caused by the diffusion weighting 

gradients is static for the duration of image acquisition, then an alternative 

approach is to apply the reversed gradient correction method. If it is applied to 

both diffusion weighted and non-diffusion weighted images, then the corrected 

images produced should be in registration with each other. Not only will the 

effects of the diffusion weighting gradients have been removed, but the spatial 

distortion from other sources of magnetic field inhomogeneities will have been 

removed as well. This has the advantage of producing spatially correct ADC 

maps from EP images, allowing more accurate quantification of areas of the 

maps, as well as increasing the potential of image registration with other images 

acquired using an acquisition scheme less sensitive to Be effects. 

The comparison between the reversed gradient correction method and phase 

map, reported in Section 4.4 highlighted two areas in which the reversed gradient 

correction method performed well compared to the phase map correction method. 
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These were when using a full Fourier spin echo EP acquisition, such as is used in 

diffusion weighted sequences, and when image acquisition was performed in the 

presence of time varying eddy currents. Although it is being assumed that the 

Be caused by eddy currents created by the diffusion weighting gradients is static, 
it is encouraging to know that any small time varying component is unlikely to 

greatly affect the reversed gradient correction. 
A standard Siemens diffusion weighted sequence" was modified on the 1.5 T 

Vision MR scanner at the Queen's Medical Centre to reverse the polarity of 

the phase encoding gradients used for imaging. The polarity of the diffusion 

gradients were not changed so that any Be which they caused would act in 

the same sense for both normal and reversed phase encoding gradients, and 

hence potentially be correctable. The sequence acquired four images per slice; 

three diffusion weighted images, one along each primary axis, and one image 

with no additional diffusion weighting gradients. This was repeated with the 

reversed phase encoding sequence. The images were transferred from the scanner 

onto other computers for post-processing, which involved applying the reversed 

gradient distortion correction to produce four corrected images per slice. Three 

ADC maps were then calculated, one along each axis, and the mean of these was 

calculated to produce a map proportional to the trace of the diffusion tensor. 4 

The correction was tested using a phantom. A coronal image was acquired 

through a water filled phantom containing, among other structures, two adja- 

cent blocks of Balsa wood, which had been in the phantom for several months, 

allowing water to permeate the fibres of the wood. The voxel size of the im- 

ages was 2x2x5 mm. The results are presented in Figures 4.25,4.26,4.27, 

and 4.28. Typical distortion for EP images is seen along the phase encoding 

direction (horizontal in the Figure) although the differential bulk shift between 

images acquired with diffusion weighting gradients along different axes is not 

immediately visible. The gross correction of the distortion in the phantom after 

application of the reversed gradient correction method is clear. The direction of 

the fibres of the water soaked balsa wood (in the lower right of the phantom) 

II ep2d_se_1031hd3b125011. ekc with TE=103 ms, TR=5000 ms, and 0.8 ms per fre- 

quency encoding line. b=1000 s mm-2.128x128 matrix. 
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Figure 4.25 Correction of EP images of a phantom using the reversed 
gradient correction method. a) is an image acquired with normal gradient 
polarity, after automatic shimming had taken place. b) is the image 
acquired with reversed polarity of the phase encoding gradient (horizontal 
in these images). c) is the corrected image. No diffusion gradients were 
applied for this acquisition (i. e. T2 weighted EPI). 

Figure 4.26 Correction of EP images of phantom using reversed gradient 
correction method. Diffusion gradients of b=1000 s mm 2 applied along 
the frequency encoding axis (vertical in these images). 
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correction method. Diffusion gradients of b=1000 s mm-2 applied along 
the phase encoding axis (vertical in these images). Restricted diffusion 
can be seen in the two Balsa wood blocks in the lower right of the 
phantom. 

Figure 4.28 Correction of EP images of phantom using reversed gradient 
correction method. Diffusion gradients of b=1000 s mm 2 applied along 
the slice selective axis. Restricted diffusion can be seen in the two Balsa 
wood blocks in the lower right of the phantom. 
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provides excellent diffusion weighting contrast between the images acquired with 
diffusion weighting gradients along different axes due to the restricted diffusion 

perpendicular to the wood's fibres. 

Figures 4.29 and 4.30 show the result of calculating ADC maps from both the 

corrected and uncorrected images. The ADC maps produced from the corrected 
images show improved uniformity across the water (which fills the majority of the 

phantom), a reduction in the artefact caused by the misregistration of diffusion 

and non-diffusion weighted images (particularly visible at the edges of objects), 

and an improvement in gross shape of the image of the phantom. 
This experiment was repeated on an acute stroke patient; examples of the 

results are shown in Figure 4.31. Clear ADC maps are produced. The distort- 

ing effect of the directional diffusion gradients is seen more clearly in these raw 

transaxial images, in particular the image of Figure 4.31c (diffusion gradients 

applied along the vertical phase encoding axis) is clearly shifted relative to its 

neighbouring images. This distortion is shown clearly in the ADC maps calculated 

from the raw images, Figure 4.32, manifesting itself as bright boundary artefact 

and heterogeneity. By contrast, the ADC maps calculated from corrected im- 

ages, as shown in Figure 4.33, show little artefact. The trace image shows far 

more uniform ADC values over healthy white matter, while the individual ADC 

maps calculated from diffusion weighted gradients along orthogonal axes show 

varying ADC values due to restricted diffusion along various white matter fibre 

tracts. Small regions of 25 pixels were selected on the ADC maps, of which the 

mean and standard deviation of the ADC values were calculated. The value for 

tap water in the phantom at 20° C was 2.10x10_9 m2s-1 f 0.02x10-9 m2s-1 

and for normal appearing white matter in the stroke patient 0.79x10-9 m2s-1 

± 0.05x10-9 m2s-1, which compare well to the values published in the litera- 

ture. 44" 44,114 Mean absolute distortion values, over an entire slice, of up to 10 mm 

were observed for some diffusion weighted images. 

The reversed gradient distortion correction method may successfully be ap- 

plied to diffusion weighted EP images used to calculate ADC maps, providing the 

inhomogeneous magnetic fields present may be considered static throughout the 

image acquisition. This technique has the advantage of also correcting spatial 
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Figure 4.29 ADC maps of phantom calculated from distorted images. b), 
c), & d) are the ADC maps in the frequency, phase, and slice directions 
respectively. a) is the trace of the diffusion tensor. Misregistration 
artefacts can be seen around the edges of the phantom and around its 
internal structures. 
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Figure 4.30 ADC maps of phantom calculated from corrected images. 
b), c), & d) are the ADC maps in the frequency, phase, and slice directions 
respectively. a) is the trace of the diffusion tensor. Far fewer 
misregistration artefacts can be seen compared with the uncorrected 
maps, and the ADC values are more heterogeneous. Both 'normal' EPI 
distortion and the differential distorting effects off the diffusion weighting 
gradients have been corrected. 



Figure 4.31 Distorted EP images of an acute stroke patient. a) no 
diffusion weighting gradients (T2 weighted). b) diffusion gradients along 
frequency encoding axis (horizontal in these images). c) diffusion 
gradients along phase encoding axis. d) diffusion gradients along slice 
selective axis. All images acquired after automatic shimming had 
occurred. Differential vertical shifts can be seen with the application of 
differing directions of diffusion weighting gradients. 

,,,; agcs äüOw'e. vý, ýý, 
& d) are the ADC maps in the frequency, phase, and slice directions 
respectively. a) is the trace of the diffusion tensor. Misregistration 
artefacts can be seen around the edges of the brain and around internal 
structures. 

Figure 4.33 ADC maps calculated from corrected images. b), c), & d) 
are the ADC maps in the frequency, phase, and slice directions 
respectively. a) is the trace of the diffusion tensor. Far fewer 
misregistration artefacts can be seen compared with the uncorrected 
maps, and the ADC values are more heterogeneous. Both `normal' EPI 
distortion and the differential distorting effects off the diffusion weighting 
gradients have been corrected. 
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distortion in the EP images caused by other sources than the diffusion weighting 

gradients. Disadvantages include doubling the acquisition time, in order to ac- 
quire the images with reversed phase encoding gradient, although this results in 

a improvement in signal to noise in the correct image, compared to a single 
acquisition. It also does not correct for spatial distortion in the slice selected 
direction, although as described in Section 4.3.2 this is relatively small in EP 

images compared with the distortion present along the phase encoding direction. 

Artefacts will be introduced if the patient moves during image acquisition, and 
due to poor edge detection. The latter occurs with increased frequency the more 
inferior the images are acquired in the brain. Hence the application of the re- 

versed gradient correction method has its uses in the correction of distortion in 

EP images used to construct ADC maps, but must be used with care. 

4.6.2 BOLD Functional Imaging 

One of the more fascinating applications of echo planar imaging over the last 

decade had been to the area of functional brain imaging. This allows non-invasive 
identification of active regions of the brain during a particular stimulation or exe- 

cution of a task. First demonstrated by Kwong et a!. 11,56 in 1991, it is based on 
the following effects. '°1 Deoxyhaemoglobin in the blood is paramagnetic, while 

oxyhaemoglobin is weakly diamagnetic. This results in a magnetic susceptibility 

difference between deoxyhaemoglobin in blood and surrounding tissue, resulting 
in a shortening of the T2 relaxation time in a region, compared to the T2 that 

would be obtained in the presence of oxyhaemoglobin. When a region of the brain 

is active, it is believed that blood flow to that region increases while oxygen con- 

sumption there remains constant. Thus the proportion of oxyhaemoglobin in the 

tissue increases, resulting in an increase in the T2 measured in the region. This 

is known as the Blood Oxygen Level Dependent (BOLD) effect. 84 The difference 

between the signal in active and non-active regions increases with main magnetic 
field strength, and is typically one to five percent in the magnetic field range of 
1T to 3 T. 

A simple BOLD functional magnetic resonance imaging (fMRI) experiment 

would involve continual rapid acquisition of MR images through the brain, while 
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the subject performs an on/off task (or is presented with an on/off stimulus). 
The active regions of the brain would be expected to respond with the same 
frequency as the presentation of the task. Pixels following this pattern through 

time can be identified with post processing, allowing a map of brain function to 

be constructed. The design and analysis of fMRI experiments can be a complex 

process, especially if quantitative results are required. 

EPI is an ideal MR imaging sequence with which to observe this phenomenon, 

as it has a fast acquisition time (hence good temporal resolution), large T2 

weighting, and high signal to noise ratio. However, it has relatively poor spatial 

resolution compared with spin warp MRI techniques, making detailed identifica- 

tion of neuro anatomy sometimes difficult. It is often useful to acquire a high 

resolution spin warp image volume of the brain to provide anatomical detail, 

onto which the functional map calculated from EP images, may be superim- 

posed. This assumes the EPI and spin warp images are in (or may be put in 

to) registration with each other. As EP images are usually far more spatially 

distorted than spin warp images, it is not possible to exactly overlay results from 

EPI onto spin warp images. Volume registration techniques may help, but can 

not remove the differing spatial distortion between the different MR acquisition 

schemes. 
The reversed gradient correction method provides a method for correcting 

spatial distortion in EP images. As the spatial distortion in spin warp images 

is usually small compared to EPI acquisitions, it may be assumed that the spin 

warp images contain negligible spatial distortion. Hence, correcting the distortion 

in the EP images alone should provide an increase in the accuracy of superim- 

posing functional maps onto anatomical images. This was the aim of the work 

presented in this section. It is not the intention of this work to provide accurate 

registration between functional maps and anatomical images, but to demonstrate 

how distortion correction may improve the superposition of functional maps onto 

anatomical images. This, in turn, should improve the efficacy of any further 

registration performed. 

There are a number of problems in applying the reversed gradient correc- 

tion method to fMRI. Firstly, for each corrected image, two image acquisitions 
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are needed, the second with reversed phase encoding gradient. This would half 

the temporal resolution of the experiment, although if this was not important, 

the experiment would benefit from an improvement in signal to noise as well 

as correction of distortion. However, the main problem is likely to be the small 

amount of artefacts introduced into the corrected images, which has been ob- 

served throughout this chapter. As the BOLD effect itself is so small, any artefact 

may mask the BOLD effect entirely, or introduce spurious regions of activation. 
Therefore, it was felt that the best approach was to correct the distortion af- 

ter the fMRl processing had been completed, but before superposition of the 

activation onto a higher resolution spin warp image set. 
The following correction scheme was adopted. Immediately prior to the fMRI 

experiment, a set of spin echo EPI images were acquired in the same position 

and using the same imaging parameters (except for the 1800 RF pulse to form 

a spin echo rather than the usual gradient echo) as planned for the fMRI exper- 
iment. This was repeated with the phase encoding gradient reversed. The fMRI 

experiment was then performed as usual, followed by the acquisition of a high 

resolution spin warp image volume. Normal post processing was applied to the 

fMRI experiment, and a map of activation derived. This activation map will be 

distorted by the same amount as the raw EP images. 

The initial spin echo EP images were processed by the single slice reversed 

gradient correction method. A corrected image at each slice position was pro- 

duced by application of Equation 4.36 (where, in the case of EPI, x refers to 

the phase encoding gradient). A distortion map was also constructed, in terms 

of pixel shifts. From this map, or from direct use of Equation 4.33, the Ja- 

cobian could be calculated, and saved. The transformation between distorted 

and undistorted coordinates is now known, and images acquired subsequently 

may be corrected by application of Equation 4.33 without the acquisition of a 

second image with reversed phase encoding gradient. There is no mechanism 

within Equation 4.33 which depends on the image contrast. Hence, so long as 

the subsequent images are acquired with the same image parameters used in the 

acquisition of the initial images from which the distortion map was calculated, 

that the object being imaged has not moved, and Be not changed, contrast 
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changes in the subsequent images will not interfere with their correction. Hence 

the distortion map may be used to correct the activation map. The corrected 

activation map may now be superimposed on the high resolution spin warp image 

volume. 
The above correction scheme was implemented. Image acquisition was per- 

formed on the 1.5 T Vision MR scanner. EP imaging** parameters for the fMRI 

experiment were a 64x64 matrix, 3x3x3 mm voxel size, TE=60 ms, with each 
frequency encoded fine of k space being acquired in 0.600 ms. A volume of 15 

contiguous transaxial slices was acquired every two seconds; this was repeated 

128 times. The EPI parameters used for the initial spin echo scans from which 

the distortion map was constructed were the same as above. The TE was chosen 

as 60 ms as it has been reported that the maximum BOLD contrast at 1.5 T is 

observed at this value; this allowed adequate time for a refocusing RF pulse to be 

inserted without having to increase the TE. The reversal of the phase encoding 

gradient was performed in the sequence code. The high resolution spin warp MR 

acquisition used was a standard inversion recovery 3D TurboFLASH sequence 
(3D MP-RAGE) with pixel size 1x1x1 mm. This sequence was acquired with a 

known spatial offset relative to the EP images. A coin was placed under the RF 

head coil in order to generate a Be large enough to cause visible spatial distortion. 

A simple fMRI motor paradigm was used, involving gentle right hand finger 

tapping. The volunteer was verbally instructed when to start and stop. Each 

cycle consisted of 20 seconds of continuous tapping followed by 20 seconds of 

no tapping. This was repeated six times. The initial eight image volumes of no 

tapping were discarded; it was assumed that after this the image contrast had 

reached a steady state. This resulted in a total of 128 volumes; the maximum 

allowed on the Vision MR scanner under its present release of software. Post pro- 

cessing was performed using algorithms and software developed at the Magnetic 

Resonance Centre of the University of Nottingham. 20 This involved calculating 

the correlation coefficients between the on/off tapping instructions with the time 

course of each pixel. z scores were calculated from these, and pixels with a high 

*'the EPI sequence used for this experiment was kindly provided by Alistair Howsman, FIL, 

Queen's Square, London and David Porter, GOS, London. 
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z score were used to form an activation map. 
The results from the fMRI experiment are presented in Figure 4.34. This 

shows the activation, in red and yellow, superimposed on the average of the 
actual EP images used in the fMRl experiment. The images do not show much 
contrast due to the use of a TR of two seconds. BOLD activation is seen in 

the motor cortex in the left hemisphere, which is responsible for the right hand's 

movement, as expected. 
The activation map was interpolated to 1x1x1 mm voxels and overlaid onto 

the appropriate high resolution spin warp images. The registration between the 

activation map and spin warp images was based entirely on the known three 
dimensional offset between the two at the time of acquisition. Although more 
involved methods of image registration are normally used to perform this process, 
it was felt that the simple method used should highlight any difference between 

superposition of distorted and corrected activation maps, and it offers a fixed and 

controlled transformation. Selective slices of the superposition of uncorrected and 

corrected activation maps are shown in Figures 4.35 and 4.36 respectively. The 

superposition appears to work well. Little difference is seen visually between the 

uncorrected and corrected overlays, although on close inspection, the uncorrected 

activation map is seen to extend outside the brain, and is shifted slightly anterior 

relative to the corrected activation. 
The slice by slice distortion was quantified in the same way as elsewhere in 

this chapter, and the results shown in Figure 4.37. Examples of the uncorrected 

and corrected EP images are shown in Figure 4.38. Spatial distortion is clearly 

seen around the posterior portion of the brain, although little distortion is seen 

around the region of final activation. This explains why little difference was seen 
between the corrected and uncorrected activation overlays. 

The reversed gradient correction method has been successfully applied to cor- 

recting distortion in EP images used for fMRl, potentially allowing more accurate 

superposition of activation maps on to high resolution anatomical MR images. 

This suggests that co-registration techniques applied subsequently should ben- 

efit from the distortion correction. By only correcting the distortion in a post 

processed activation map, the effects of correction induced artefacts on the post 
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Figure 4.34 Transaxial BOLD fMRI activation maps (in red and yellow) 
overlaid on the average of the EPI images used for the fMRI experiment. 
Activation in the volunteer's left motor cortex is seen from the right hand 
tapping task performed. 



Figure 4.35 Superposition of the uncorrected BOLD activation maps on 
high resolution 3D MP-RAGE images. 

Figure 4.36 Superposition of BOLD activation maps, corrected with the 
reversed gradient correction method, on high resolution 3D MP-RAGE 
images. The corrected activation maps exhibit less 'spill over' outside the 
brain, and are shifted slightly anterior compared with the uncorrected 
maps. 



Figure 4.37 Distortion in EP images of fMRI volunteer's brain. 
Mean absolute distortion per slice, measured using reversed gradient method. 
'Error bars' represent the spread of distortion throughout that slice. 
Transabal slices. A coin was placed under the RF head coil to create additional distortion. 
Slices ordered from superior to inferior with increasing z coordinate. 
Acquired on the Vision MR scanner. 
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Figure 4.38 An examples of correction of an initial transaxial spin echo 
EP images using the reversed gradient method. Spatial distortion is seen 
in the posterior regions of the brain in a) and b). The phase encoding 
gradient is aligned parallel to the vertical axis in these images. The 
calculated distortion map is used to correct the fMRI activation map 
calculated at this slice position. The distorting affect of a coin placed 
under the RF head coil can be seen in the posterior portions of the brain. 
The scale bar represented ±8 mm. 
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processing are removed. The acquisition of spin echo EP images from which the 

initial distortion map is produced adds little relative time to the total imaging 

duration. The correction relies on no movement of the object throughout the 
imaging process, but this is already an existing requirement of fMRI experiments. 

4.7 Modifications to Chang & Fitzpatrick's Cor- 
rection Method 

In Section 4.3.2, Chang & Fitzpatrick's reversed gradient method for correction 

of distortion in both single MR images and MR image volumes was described. 

Section 4.3.6 concluded that the application of the single slice correction method 

was preferable to that used for volume correction. In this case, the distortion in 

the slice selective direction was ignored. However, it still would be preferable to 

measure and correct the distortion along this axis, even though it is usually less 

than that along the frequency encoding direction. In the course of this work, 

two new modifications for correcting the distortion along both the frequency and 

slice selected axes were devised, implemented, and assessed. 

In the usual implementation of Chang & Fitzpatrick's distortion correction 

method, a corrected image is constructed by the application of Equation 4.36. 

This avoids the numerical calculation of the differential terms which form the 

Jacobian. However, if the Jacobian is calculated explicitly, a corrected image may 

also be produced by application of Equation 4.26. If distortion along the slice 

selective gradient is ignored, then the Jacobian is of the form of Equation 4.32 

and single slice correction is performed. If the Jacobian of Equation 4.25 is used 

then an image volume is corrected for distortion along both the frequency and 

slice selective axes. In this case, substituting Equations 4.8 into Equation 4.10 

gives the Jacobian term, J, as 
dxl dzl dxl dzl 

j 
(Xj, Yj, Zj) 

x, y, z dx x dz dz X dx 
(4.45) 

In order to apply Equation 4.26, and to calculate the required Jacobian term, 

the pixel by pixel transformation between the distorted space, ii (xi, y, zj), and 

the corrected space, i(x, y, z), must be known. From this, the required dif- 

ferentials can be calculated numerically to construct the Jacobian term. The 
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new methods presented below use different methods to calculate this transfor- 

mation; 76 once known, both methods produce corrected image volumes by the 

same method, by application of Equation 4.26. 

4.7.1 New Volume Correction Method One 

By applying the single slice reversed gradient correction method to each slice 
in a contiguous multislice volume in turn, a relationship between the distorted 

coordinate in the frequency encoded direction, x1, and the corrected coordinate, 

x, is calculated, using Equations 4.34 and 4.31. However, no correction has 

been made in the slice selective direction, z, so these corrections apply to a 

slice at distorted slice position z1. The calculated relationship between x and xl 

therefore should be written as 

xl - Xi (x, y, zl) (4.46) 

because the x1 that is measured by the single slice correction method is dependent 

upon the distorted coordinate, z1. In order to calculate a spatially correct volume, 

x1 is required in terms of x, y, and z rather than x, y, and z1. 

An inhomogeneous static magnetic field, Be(x, y, z) causes signal in the MR 

image which actually came from the (correct) coordinate (x, y, z) to appear at 
(distorted) coordinate (x1, y, z1), where the relationship between the correct and 

distorted coordinates is given by Equation 4.24. By eliminating Be from these 

equations, and substituting for x1 from Equation 4.46 

z=z1-G(X1(x, y, zi)-x) (4.47) 

is obtained. This equation gives a relationship between z and z1, where z1 is in 

terms of x, y, and z1, i. e., 

z- Zi (x, y, zi ) (4.48) 

In order to produce a corrected volume, zi is required in terms of all three 

undistorted coordinates, x, y, and z. Equation 4.48 can be inverted numerically 

to achieve this, resulting in 

zl - Zi (x, y, z) (4.49) 
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In turn, Equation 4.49 can be numerically substituted into Equation 4.46 to 

eliminate z2 and gives 

xl = Xl (x, y, z) (4.50) 

Equations 4.49 and 4.50 give one distorted coordinate in terms of undistorted 

coordinates only. These may be used to numerically construct the differentials 

required to calculated the Jacobian term, stated in Equation 4.45, where 

J (xi, yi, zi) 
= 

dx 
Xi (x, y, z) X WZ_ 

d Zl (x, y, z) - 
, y, 

dzX i 
(x, y, z) X TX Zl (x, y, z) (4.51) 

using finite differences. The final stage is to construct the corrected volume. This 

involves stepping through each undistorted point and using Equations 4.49 and 
4.50 to calculate the required distorted coordinate before interpolating into the 

distorted image volume to find the image intensity at that point. The corrected 
image is then constructed using Equation 4.15. 

This volume distortion correction method would appear to have a number of 

advantages over Chang & Fitzpatrick's volume correction method. In particular, 

because edges of the object in the image volume only need to be found along the 

frequency encoding direction, the object may extend beyond the imaged volume 

in the slice selective direction as well as in the phase encoding direction, allowing 

more flexibility in the set-up of the MRI acquisition. 

This new correction method was implemented in the correction computer 

program. Its implementation involved a considerable amount of interpolation 

to find values at fractional pixel positions within arrays; a choice of bilinear or 

sinc interpolation was given. The MR image acquisition time is the same as 

for either of Chang & Fitzpatrick's correction methods, and the post-processing 

time similar to their volume correction. 
Results from a spherical phantom are presented in Figure 4.39. The same im- 

ages were used as obtained in Section 4.3.5 above. Graphs showing the calculated 

mean absolute distortion per slice are shown in Figure 4.40. Good correction is 

observed. The mean absolute distortion calculated by this method shows good 

agreement with the distortion calculated by Chang & Fitzpatrick's single slice 

method. 
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a) normal 

c) corrected (method 1) 

b) reversed 

d) corrected (method 2) 

Figure 4.39 New correction methods applied to a multislice volume. 
Example of an image through a water filled spherical phantom. A coin 
placed under the RF head coil can be seen to have caused distortion. The 
frequency encoding gradient of this spin echo spin warp sequence was 
vertical. c) shows an image corrected using the first new volume 
correction method. d) shows an image corrected using the second new 
volume correction method. 



Figure 4.40 Comparison of the mean absolute distortion per slice measured using various 
reversed gradient correction methods. 
'Error bars' represent the spread of distortion throughout that slice. 
Transaxial slices through a spherical water phantom. A coin was placed under the RF head 

coil to create additional distortion. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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The method also was applied to images of a volunteer's head, again using 
the same data as in Section 4.3.5. The corrected images are shown in Fig- 

ure 4.41, and a graph of the mean absolute distortion shown in Figure 4.42. In 

this case, streaking artefacts are seen in the corrected image, although the gross 
shape of the head has been corrected. The source of these was not immediately 

obvious, especially as they were not present in the corrected images of the spher- 
ical water phantom. The source of this artefact is explored in the next section 
(Section 4.7.2). 

Although this method appears to be initially attractive from a theoretical 

point of view, in practice it introduces unacceptable artefacts into the corrected 
images. However, as discussed in the following section, these artefacts do not 

affect the calculated values of distortion in either the x or z directions, as they 

do not depend on the differential cross terms of the Jacobian. Its use appears 

to be valid to calculate the amount of distortion present throughout an image 

volume. 

4.7.2 New Volume Correction Method Two 

As mentioned above, in order to correct a MR image volume, the relationship 
between the distorted and undistorted coordinates along the frequency encoded 

and slice selective axes must be found. One new method was outlined in Sec- 

tion 4.7.1 above, which calculated the relationship along the slice selective axis 
from that measured along the frequency encoded axis. Another approach is to 

measure both relationships separately, and this is the basis for the second new 

volume correction method described here. 

Three contiguous multislice MR image volumes are acquired, the first, i1, 

under normal gradient conditions, the second, i2, with the opposite polarity of 
frequency encoding gradient relative to i1, and the third, i3, with (just) the oppo- 

site polarity of slice selective gradient relative to i1. Chang & Fitzpatrick's single 

slice correction on each slice (in image volumes it and i2) yields the relationship 
between distorted and undistorted coordinates along the frequency encoded axis. 
The relationship along the slice selective axis is measured as follows. it and i3 are 

re-gridded into new volumes, ii and i3, in which the in-plane axes are the slice 
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a) normal 

c) corrected (method 1) 

b) reversed 

d) corrected (method 2) 

Figure 4.41 New correction methods applied to multislice volume. 
Example of an image through a volunteer's head. A coin placed under the 
RF head coil can be seen to have caused distortion. The frequency 
encoding gradient of this spin echo spin warp sequence was horizontal. c) 
shows an image corrected using the first new volume correction method. 
d) shows an image corrected using the second new volume correction 
method. Severe artefacts are seen in both corrected images. 



Figure 4.42 Comparison of the mean absolute distortion per slice measured using various 
reversed gradient correction methods. 
'Error bars' represent the spread of distortion throughout that slice. 
Sagittal slices through a volunteer's head. A coin was placed under the RF head 
coil to create additional distortion. 
Acquired on the Vision MR scanner. Spin echo, spin warp sequence, 130 Hz per pixel. 
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selective and phase encoding acquisition directions. This may be considered as 

a rotation of 900 around the phase encoded axis. No interpolation is necessary. 

Applying Chang & Fitzpatrick's single slice correction to each image in ii and 
i3 along the acquisition slice selective axis (now an in-plane axis in the rotated 
images), yields the relationship between z and z1. 

The two relationships which have been measured are 

xl Xi(x, y, zi) and 

zl Zi (xi, y, z) (4.52) 

as described for the first new volume correction method in Section 4.7.1 above. 

However, as for the first new volume correction method, to perform the 

correction, relationships are required in terms of the undistorted coordinates only, 

i. e., Xl(x, y, z) and Z1(x, y, z). Obtaining these from Equation 4.52 is not 

numerically straightforward. Two methods were implemented, both resulting in 

the same solution. The first works by assuming Xl (x, y, z) and Zi(x, y, z) are 

known already, and then using these 'answers' to calculate values of X1 (x, y, z1) 

and Zi (xl, y, z). Equation 4.52 may then be written as 

xl - Xi (x, y, Zl(x, y, z)) and (4.53) 

zi - Zi (X, (x, y, z), y, z) (4.54) 

This describes how to calculate the distorted coordinates if the amount of dis- 

tortion is known, for each correct coordinate. So long as there is no 'piling 

over' of signal intensity, there will be a one-to-one mapping between (x, y, z) and 

(X1, y, Z1) in Equations 4.53 and 4.54. This can be viewed as, "For a given 

(x, y, z), Z1(x, y, z) will yield z1 which may be substituted into Equation 4.53 

which will yield x1. This may be substituted into Equation 4.54, which will 

yield zl which was what we started with. " This reasoning can be used to cal- 

culate Xi(x, y, z) and Zi(x, y, z) iteratively by inserting starting 'guess' values 

of Xi(x, y, z) and Zi(x, y, z) into Equalities 4.53 and 4.54 to calculate new 

estimates of Xi(x, y, z) and Z1(x, y, z). These are substituted back into Equal- 

ities 4.53 and 4.54 until they converge to fixed values. The starting values used 

in practice were x and z. Once the solution has been found for all voxels within 
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the image volume, the corrected image maybe be constructed, as described in 

Section 4.7.1 above. 
This new correction method was implemented in the correction computer 

program. Its implementation involved a considerable amount of interpolation to 

find values at fractional pixel positions within arrays; a choice of bilinear or sinc 
interpolation was given. The MR image acquisition time is 1.5 times that for 

either of Chang & Fitzpatrick's correction methods, and the post-processing time 

similar to that for their volume correction. 
Results from a spherical phantom are presented in Figure 4.39d. Similar 

images were used as those described in Section 4.3.5 above. Graphs showing 

the calculated mean absolute distortion per slice are shown in Figure 4.40. Good 

correction is observed. The mean absolute distortion calculated by this method 

shows good agreement with the distortion calculated by Chang & Fitzpatrick's 

single slice method. 
Figure 4.40c shows a comparison of the distortion measured by both of Chang 

& Fitzpatrick's correction methods, and the two new methods proposed here. A 

difference is seen between the distortion measured in the slice selective direction 

by this new method, compared to that measured by the first new volume cor- 

rection method and Chang & Fitzpatrick's volume correction method. This is 

believed to be due to an offset in all the measured distortion values as is shown 

in Figure 4.10d. The second new volume correction method measured the z 

distortion directly, hence including this offset in an unscaled form. The other 

methods calculate the z distortion from the scaling of distortion calculated along 

other axes, this scaling includes a scaling down of the offset. 

The method was also applied to images of a volunteer's head, again using 

similar acquisitions as in Section 4.3.5. The corrected images are shown in 

Figure 4.41d, and a graph of the mean absolute distortion shown in Figure 4.42. 

Again, serious spike artefacts are seen in the corrected image, although the gross 

shape of the head has been corrected. 

A step by step analysis of the numerical calculations of both new correction 

methods revealed that the artefacts were caused by occasional large values of 

the Jacobian, and in particular, large values in the d and ä terms. These 
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Z-1 
Z 

Z+1 

x-1 x x+l 

121.208900 121.411858 121.614822 

121.583260 122.119614 122.397278 

94.606422 94.930908 95.524117 

Table 4.1: Values of Xl centred around corrupt point x=106, y=106, z=32 

large values occurred mainly around regions of changing contrast in the image. 

By studying the correction of these regions in particular, it was observed that 

the large values were due to a misalignment between the calculated xl values 
between adjacent images. When the finite difference between two xl values in two 

adjacent images (i. e., calculating how xl varied with z) was calculated to evaluate 

the differential, erroneously large values could occur. This is demonstrated by 

way of an example from the head data set, centred around an observed spike 

at (x=106, y=106, z=32). Table 4.1 shows calculated values of X1. ä gives 

a reasonable value at (106,106,32), i. e., of the order of one, as well as at all 

other coordinates. However, d has a large absolute value of 13.24. This will 

result in an intensity artefact in the corrected image. The values of Xi at the 

beginning and end of these rows give expected results, (e. g., X1(0, y, z)=0 and 
X1(255, y, z)=255, for a 256x256 image) and the success of the single slice 

reversed gradient correction on individual images suggests that correct values 

of X1 are being calculated, as indexed by x. The problem appears to lie when 

comparing values of X2 between adjacent slices (i. e., Xi indexed by z); at certain 

positions there is a mismatch, or offset, in Xi between adjacent slices. This 

could be caused by an edge detection mismatch between adjacent slices or an 

accumulated error in the integration from noise which affects different slices 

differently. This could be due to different structures coming in or out of view 

as one steps through the slices, or the changing shape of a structure with slice 

position causing problems (e. g., at the edge of a nasal cavity). Varying the 

threshold value used for edge detection changes the position of the corrupted 

points, but does not greatly affect their frequency of occurrence. Errors also 

may be introduced by the repeated application of interpolation to obtain values 

at fractional pixel positions in the various arrays. This also explains why there 
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does not appear to be any corrupt points in the corrected images of the spherical 

phantom, produced using both new correction methods, as the phantom contains 

no structures of varying contrast, nor a rapid change in edge position in any 
direction. 

This artefact is analogous to the mis-translation of intensity to the centre of 

regions of low signal intensity in the corrected image, as observed in the single 

slice correction (see Section 4.3.4). The artefact observed in both new methods 

appears to be a result of the single slice correction artefact occurring in different 

places in adjacent slices, causing a discontinuity when considering the change in 

distortion in the x direction with z, and vice versa. This will be most apparant 

when calculating the Jacobian term described in Equation 4.51, as this requires 

calculating changes in Xl with z, and Zl with x. No solution could be found to 

overcome this problem. 
The practical application of the second new volume correction method also 

leads to unacceptable artefacts in the corrected images. Once again, these arte- 

facts are not present in the measured pixel by pixel distortion maps (as these are 
in terms of xi-x and zl-z; no cross-terms are required), and so this method may 

be used to characterize the spatial distortion along both the frequency and slice 

selective axes. 

4.8 Conclusions 

The work presented in this chapter has summarized the theoretical background 

of spatial distortion in MR images. Both the reversed gradient and phase map 

correction schemes have been described. The single slice and volume reversed 

gradient correction methods, initially proposed by Chang & Fitzpatrick, have been 

implemented and verified on phantoms and human volunteers. It was decided 

that the volume correction introduced unacceptable amounts of artefacts, and 

would not be used further. 

A comparison between the reversed gradient and phase map correction meth- 

ods was undertaken, using a computer simulation of an EPI acquisition. It con- 

cluded that the phase map correction method performed better than the reversed 

gradient method in cases of partial coverage of k space and for acquisitions not 
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making use of a spin echo. Both methods performed equally in the case of noisy 
data, increasing levels of inhomogeneous magnetic field, and in full k space ac- 

quisitions making use of a spin echo. The source and nature of any artefacts 

seen in the corrected images was explored. 
The reversed gradient correction method was used to measure distortion 

caused by typical MR compatible aluminium apparatus needed when imaging 

patients undergoing stereotactic neurological procedures. Full Fourier spin echo 
image acquisitions were used throughout. The advantage of using the reversed 

gradient correction method is that it may be modified to allow correction of sev- 

eral unconnected objects within an image. This modification was implemented, 

as it will be required when imaging stereotactic patients, as the fiducial rods are 

separate from the head. It was found that the presence of the GTC head ring 

caused a detectable, but small, increase in overall distortion in slices close to it. 

Pins, which may be used to attach a stereotactic head ring to a patient's skull, 

were found to cause large amounts of local distortion, but the effect decreased 

rapidly with increasing distance from the pin. It was concluded that in normal 

use, the distortion from the pins would not contribute noticeable amounts of 

distortion to critical structures in the brain or stereotactic fiducial rods. 

The reversed gradient correction was applied to EPI, in fields other than 

imaging for stereotactic planning. Spatial distortion is a particular problem when 

registration between EP images is required. Two cases which require this are the 

construction of ADC maps, and BOLD functional MRI. The reversed gradient 

correction method was successfully applied to the correction of images prior to 

the construction of ADC maps, which greatly reduced the amount of artefact in 

the final result, both due to the diffusion weighting gradients and the distortion 

inherent in EPI. It was also successfully applied to correct the distortion present in 

the fMRI activation maps, although little spatial difference was observed between 

the corrected and uncorrected maps. 

Two modifications to the reversed gradient correction method were proposed, 

with the aim of characterizing and correcting distortion in volume MR image sets, 
but without the problems of Chang & Fitzpatrick's volume correction. While 

interesting theoretically, when implemented, it was found that neither method 
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offered any practical advantages over Chang & Fitzpatrick's volume correction, 

and both introduced severe artefacts. 
The reversed gradient correction method has been implemented successfully. 

It's strengths and weakness have been explored, and its use in characterizing 
distortion in MR images used for stereotactic planning validated. 
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Chapter 5 

Quantification of Errors in 
Stereotaxis 

5.1 Introduction 

In Chapter 4 the problem of spatial distortion in general MR imaging was stated. 
This was addressed by use of two methods for correcting this distortion, in order 
to produce spatially correct images. The reversed gradient and phase map cor- 

rection methods also could be used to quantify the initial amount of distortion 

present, on a pixel by pixel basis. 

Another method for calculating the spatial distortion at various points across 

a MR image is by comparing the coordinates of well defined points in the image 

against their true positions. This has been a popular, and relatively straightfor- 

ward, method. 17,73,74, loo However, its direct use to state the uncertainty in the 
final three dimensional stereotactic target coordinate is incorrect. As explained 

qualitatively in Chapter 3 and quantitatively below, prior to MR imaging of a 

stereotactic patient, a helmet of fiducial rods arranged in 'N' configurations, is 

attached to a head ring, which has previously been rigidly attached to the pa- 
tient's skull. The rods appear in the MR image, and are used to define the plane 

of the image, relative to the head ring. This allows any two dimensional pixel 

point within the image to be transformed to a three dimensional point, relative 
to the head ring. As the positions of both the fiducial rods used to calculate this 
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transform, and any pixel point throughout the image, may be distorted, this could 

result in an already distorted point being transformed by an erroneous transform. 
The relationship between spatial distortion of pixels in the MR image, and the 

error on the final stereotactic target coordinate calculated from this image, is 

not obvious. Empirical exploration of this relationship is one of the subjects of 
this chapter. 

Once a method to quantify the distortion in the stereotactic MR images has 

been implemented, it may also be used to identify the source of the distortion 

observed. This process is performed later in this chapter, to examine the effects 

of MR scanner, GTC stereotactic head ring, and imaging parameters, on the 

distortion. 

There would appear to be three main methods to quantify distortion in the 

final stereotactic coordinate: mathematical analysis, use of a phantom of known 

dimensions, and comparison of points in a patient's head in both MR and CT 

images, after image registration. The latter method would appear to be the 

most direct method, as it includes distortions caused by magnetic susceptibil- 

ity differences within the patient's head, and has been used in by a number of 

studies. 27,42 However, it depends on being able to identify the same anatomical 

points in both CT and MR images; the difference in their coordinates after a 

stereotactic transform, is taken as a measure of distortion at that point. Identi- 

fication of these points is not trivial, and points taken are typically in the distal 

portions of the head, or inferior regions of the head. 27,42,75 It is felt that this 

method, using a number of user defined anatomical points, has a number of 

weaknesses which make it unsuitable for accurate characterization of spatial dis- 

tortion. Firstly, it is difficult to find or define anatomical points within the brain 

which can be located precisely on both CT and MR images. The delineation of 

the same anatomy in CT and MR images would not necessarily be expected to 

be in the same spatial location, as contrast in each imaging modality is due to 

different mechanisms and physical properties. Also, due to repositioning of the 

patient on each scanner, the images would not be acquired in exactly the same 

plane or orientation, resulting in partial volume effects, which would introduce 

errors in identifying points, especially in through-slice dimension. Use of user 
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defined anatomical volumes, rather than points, circumvents some of the prob- 
lems mentioned above, but introduces another source of error, as it assumes that 

the distortion is constant across the defined volume. Another weakness in the 

method of using anatomical points is that there are few points which may be 

used in the regions of the brain which contains the vast majority of targets for 

stereotactic neurosurgery. The distal points used are not only usually located in 

spatially unrepresentative regions of the brain, but also in regions close to tissue- 

air boundaries, where local distortions in MR images would be expected to be 

higher than average, due to the large magnetic susceptibility difference between 

tissue and air, or bone. 

The problems with using anatomical points within a patient's head described 

above were partially overcome during the course of the work presented in this 

thesis by Sumanaweera et a!. 107 Glass tubes filled with a copper sulphate solution 

were inserted into a cadaver's head to the central region of the brain, onto which 

a stereotactic head ring and fiducial helmet was attached. This was imaged using 
CT and MR scanners, and the difference between the centres of the glass tubes 

in the CT and MR images measured. They found the difference between the 

final stereotactic target coordinates calculated from MR and CT to lie between 

1.5 mm and 2.6 mm for the four tubes used. The MR images were acquired 

on a 1.5 T MR scanner, although the bandwidths per pixel of the gradient echo 

sequences used were not quoted. While this is a significant improvement on 

comparison of the positions of normal anatomical points in MR and CT images, 

the use of a cadaver is not practical or easy to arrange in most MR scanning 

centres. Only four tubes were inserted into the brain providing only lines along 

which the MR distortion could be measured, and the lack of information regarding 

the bandwidth per pixel used for the MR image acquisition, makes it difficult to 

compare these results with those obtained on other MR scanners. 
The main disadvantage in comparing fixed points within a phantom, between 

MR and CT images, is that it is not completely representative of a human head, 

and does not allow the distortion to be calculated on a patient by patient basis. 

However, there is little difficulty in identifying points within each image, and the 

design of the phantom can allow these points to be distributed throughout the 
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imaged volume. Although partial volume effects are still present in each image, 

their influence usually can be removed as the physical shape of the phantom is 

known. 

For the reasons outlined above, a comparison of the location of anatomical 
points, or landmarks, between MR and CT will not be used in this thesis for quan- 
tification of distortion; a rigid phantom will be used instead. The mathematical 

method will be examined in Chapter 6, and the use of a phantom to characterize 
distortion is the main subject of this chapter. It falls into two main areas. Firstly, 

the implementation of a method for quantifying the distortion present in the 
final stereotactic target coordinate is described and its use demonstrated, and 

secondly the use of this method in the determination of the main sources of the 

observed distortion is outlined. 

5.2 Direct Phantom Measurements 

A head sized phantom was designed and constructed specifically for this work. 
It fits directly on to the MR compatible GTC stereotactic head ring, in place of 

the patient's mouth bite and occipital pad mounting. The MR compatible UCLF 

or CT BRW fiducial systems may be attached on to the GTC head ring. The 

apparatus of phantom, GTC head ring, and UCLF fiducial helmet, was imaged 

using both CT and MR scanners. Any spatial distortion present in the CT images 

was assumed to be small compared to distortions present in MR images, and so 

the CT images were assumed to be a spatially correct representation of the 

apparatus. All fiducial rods and phantom points were identified and transformed 

to three dimensional coordinates relative to the head ring, using a purpose written 

computer program. By comparing the CT coordinates to the MR coordinates 

of the same point in the phantom, the difference between MR and CT at that 

point could be calculated. This was taken as a measure of the spatial distortion 

in the MR image, due to the combination of distortion of the fiducial rods and 
distortion in the phantom. The phantom was designed to allow distortion along 

three orthogonal axes to be measured. The use of a phantom to quantify errors 
in all three dimensions of the stereotactic coordinate is rare; the only known case 

of doing so was reported briefly by Schad et aL, 100 using a Riechert-Mundinger 
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stereotactic system and a 1.5 T Siemens MR scanner. However, both their 

method and results are sparsely described and they do not appear to have taken 

their work further. 

This section describes the measurement of distortion in this way. At this 

stage, no attempt to correct for any distortion was made, to allow any effects due 

to distortion to be identified, and to quantify the 'worst case' errors. Section 5.3 

describes the application of this method to the study of the effect of different 

MR sequences on the spatial distortion, and the quantification of differences 

between two MR scanners. These results are used to infer possible sources for 

the measured distortion. 

The validity of the phantom used as a substitute for a human head, in so far 

as causing distortion in MR images is concerned, is examined by using Chang 

& Fitzpatrick's distortion correction method, as implemented in Chapter 4. A 

comparison between distortion measured in the head and that measured in the 

phantom is performed in Section 5.4. A similarity would suggest that the dis- 

tortion in the final stereotactic target coordinate measured using the phantom 

would be generally similar to that expected in the head of a patient undergoing 

stereotactic neurosurgery. This then allows the results of the distortion in the 

final stereotactic target coordinate measured using the phantom, with the ad- 

vantages described above, to be quoted as general expected values of distortion 

in a patient's head. The effect of correcting the distortion present in the MR 

images on the error in the final target coordinate is also measured. 

5.2.1 Materials and Method 

The exterior of the phantom consisted of a hollow Perspex cylinder, with an 
internal diameter of 170 mm and length of 160 mm. The Perspex was 5 mm 

thick, and the cylinder closed at both ends. During imaging, the long axis of the 

cylinder was aligned parallel to the inferior-superior axis of a human head being 

imaged for stereotactic treatment. The superior disc closing the cylinder was 

removable, attached via nylon screws and a water-tight 0 ring, and containing 

two large nylon screws to allow filling of the phantom with water. The inferior 

disc of the cylinder formed part of a Perspex plate which fitted to the same screw 
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fastenings and locator pins in the GTC head ring as a patient would, via their 

mouth bite and occipital pad mounting. 
An insert consisting of an arrangement of rods in known, fixed positions was 

placed into the hollow cylinder. The insert itself was fixed rigidly to the cylinder 

via Perspex locating pins. The remaining volume inside the cylinder was filled 

with a saline solution of 9% sodium chloride in distilled water. This models a 
human head better than just water79 and facilitates the tuning of the RF coil in 

the MR scanner, when containing the phantom. 
In order to minimize distortions created by the phantom itself, it was necessary 

to construct the phantom using materials with a small magnetic susceptibility 

difference compared to saline solution. The material also needed to have a 

sufficiently different density from water to allow good contrast with saline in 

CT images. Preliminary experiments were performed on a variety of materials. 
Cylindrical samples were fixed upright to the base of a large glass beaker filled 

with saline. This was then imaged on a x-ray machine (a radiotherapy simulator, 

at the Nottingham City hospital) with 120 kVp x-rays, and coronally using an 

EPI sequence on the 0.5 T MR scanner at the University of Nottingham. The 

CT scanner at the Queen's Medical Centre University hospital, used for imaging 

stereotactic patients, uses x-rays with a peak energy of 120 W. The contrast of 

each material on the x-ray radiograph was measured using a film densitometer. 

The materials were ranked for their magnetic susceptibility difference from saline 

by measuring the amount that each circle distorted into the expected arrowhead 

shape in the coronal MR images62 (by measuring the number of pixels between 

the edge of an overlaid circle and the peak of the arrowhead). Delrin* was found 

to exhibit no measurable distortion and had good x-ray contrast, and therefore 

was used to construct the phantom insert. 

To try to simulate the human head, the phantom insert was designed so 

that the bulk of the phantom volume would be saline. Straight solid rods would 

provide fixed positions within the phantom, being identified by their lack of signal 

in MR images. The insert was designed to be imaged by a wide range of MR 

imaging techniques, including traditional spin warp and EPI techniques. In order 

'An acetal resin (DuPont) 
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for the rods to be clearly visualized on images acquired at low resolution, 5 mm 
diameter rods were used. It was assumed that the phantom would be imaged 

in transverse, or near transverse, sections. In order to measure distortion in the 

through-slice direction, as well as the in-plane directions, rods were positioned 
in groups of three, in 'N' configurations, similar to those in the fiducial helmet. 

The two parallel rods were positioned parallel to the long axis of the cylinder 
(and hence would be 'cut' perpendicularly by a transverse image slice) with the 
diagonal rod running in between at an angle of 200 to the parallel rods. This 

large angle was felt to be necessary in order to allow through-slice differences to 

be measured to a similar precision to the in-slice differences, even with large pixel 

sizes. However, in order to span the length of the phantom, while containing as 

many triads of rods as possible, this required the insert to contain two identical 

partitions. Each partition spanned a length of 55 mm, the remaining length 

being filled by the Delrin framework supporting the rods. The triads of rods were 

arranged across the phantom to try to cover as much of the volume as possible. 
The phantom is shown schematically in Figure 5.1, and completed in Figure 5.2. 

It is shown attached to the GTC head ring, to which the UCLF fiducial helmet 

also is attached, in Figure 5.3. This design is different from many phantoms used 

to measure distortion in MR images in that it consists mainly of water. Many 

other phantoms used consist of water filled rods separated by air, 73,100 which 

would not necessarily mimic a human head as well as the phantom presented 

here. 

The GTC head ring is made from aluminium, and is approximately 245 mm 

wide and 290 mm high, at its outer perimeter, and made from metal of about 
17 mm thickness. Its design includes an anterior section, about 100 mm long, 

where the metal has been removed and replaced by plastic, to reduce the flow of 

eddy currents around the entire ring, induced in it by the switching of magnetic 
field gradients of the MR scanner during image acquisition. The screw threads 

and screws themselves, for attaching the patient or phantom to the head ring are 

made from stainless steel. There is no metal in the apparatus apart from that 

supplied on this head ring. 

The UCLF fiducial helmet is attached to the GTC head ring using nylon 
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Figure 5.1 (a) End on and (b) plan views of stereotactic phantom. 
The dotted lines indicate triads of rods, with the central 
rod being the diagonal one. The rods are numbered 0 to 
47. The saline solution is colured blue. 



Figure 5.2 Stereotactic phantom attached to MRI 
compatible GTC head ring. 

Figure 5.3 Stereotactic phantom attached to MRI 
compatible GTC head ring and surrounded 
by the MRI compatible fiducial system (UCLF). 
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screws. It contains hollow Perspex fiducial rods of 3 mm internal diameter, 

capped by plastic screws and rubber washers. These were carefully filled prior to 
imaging by tap water using a syringe and needle. The use of a solution of distilled 

water and copper sulphate is recommended by the manufacturers, to reduce the 
Tl of the solution and hence make it appear brighter on the Ti weighted images 

usually acquired for stereotactic planning. However, the Tl of the hospital's tap 

water was found to be between 700 ms and 1000 ms at 1.5 T, which resulted in 

the fiducials appearing with more than adequate contrast in MR images. 

The apparatus, consisting of the phantom attached to the GTC head ring, to 

which the UCLF fiducial helmet was attached, was then imaged. The apparatus 

was placed on the couch of the CT scanner, or in the quadrature head RF 

coil of the MR scanner, as if it was a supine patient's head. In the case of 

the MR scanner, the GTC head ring does not fit within the head coil, and the 

apparatus was placed inside the head coil as far as possible, with the head ring 
butted up against the head coil. Transverse image slices were acquired from both 

modalities. The images covered the apparatus over the length of the fiducial rods 
in the UCLF; there was no point acquiring images outside this range as pixels in 

an image could only be transformed to a three dimensional point relative to the 

head ring if all nine fiducial rods were visible in the image. The apparatus was 
firmly attached to the scanners' couches by Velcro straps or pads. 

The CRW stereotactic system defines an origin in space, being 80 mm superior 

of the top surface of whichever head ring is used, and in the centre of the head 

ring (and fiducial helmets) in the lateral and anterior-posterior directions. Unless 

indicated, this origin was used for all data analysis and for presentation of results 
below. The CRW origin (marked on the UCLF) was positioned visually, using 
lasers or focused lights, mounted on the MR scanners, to align with the magnet's 
isocentre. 

CT images were sequentially acquired on a Siemens Somatom Plus scanner at 
the Queen's Medical Centre, the University hospital in Nottingham, with 120 kVp 

x-rays. They were reconstructed on a 512x512 pixel image matrix by the scanner, 

which quoted a voxel size of 0.72 x 0.72 x 3.00 mm. 

MR images were acquired on a Siemens Magnetom Vision 1.5 T scanner using 
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the quadrature head RF coil. A standard full-Fourier spin warp, spin echo imaging 

sequence was used (using Siemens sequence se_12b130. wkc) on a 256x256 

matrix, with quoted voxel size of 1.0x1.0x3.0 mm. The echo time was 12 ms and 
repetition time 1000 ms; 33 interleaved multisliced images were obtained. This 

required frequency and maximum phase encoded gradients of 3.059 mTm-1 and 

a slice select gradient of 8.000 mTm-1. A gap of 0.6 mm (20% of slice thickness) 

was set between consecutive slices to reduce effects of 'cross talk', the effects of 

which were observed with smaller slice gaps. The frequency encoded direction 

was left to right, along x and the phase encoded direction was parallel to y. 
These are typical parameters used to scan patients for neurosurgical stereotaxis, 

with the exception of the slice gap, which is set to zero. 
Images were transferred from both CT and MR scanners to a Hewlett Packard 

715/75 Unix workstation via a Siemens' PACSNET and Merge computer, where 

they arrived encoded in ACR/NEMA version 2.0 image file format. ' These images 

were then processed and analysed as described below. 

5.2.2 Theory and Implementation 

In order to calculate the effect of any distortion in the MR images, points through- 

out the phantom must be identified and transformed from two dimensional pixel 

coordinates to three dimensional coordinates relative to the head ring, in known 

units. This must be done for both CT and MR images. A computer program 

was written to allow semi-automatic user identification of all required points 
in the images, calculate and perform the transformation, and to calculate the 

differences in the final three dimensional coordinates, between MR and CT. 

All rods appeared in the images as circular or elliptical shapes, depending 

on their orientation to the imaged slice and contained many pixels. As it was 
image distortion which was to be measured, it was necessary to reduce as much 

as possible, or eliminate, any errors associated with identification of the centre 

of the rod. It is this point which is taken as the position of the rod. If the centre 

of a rod was chosen by hand, its position could only be selected in units of the 

dimensions of a pixel, as the centre could be chosen as one pixel, or the next. 
If the rod is defined in the image by more than one pixel, along each axis, then 
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a more precise estimate of the centre of the rod may be calculated, by finding 

its centre of mass (COM). 63 The user's initial estimate of the centre of the 

particular rod was used to define a square region on the image, large enough to 

cover a typical rod, but small enough not to include pixels covering adjacent rods. 
The centre of mass was calculated over this region, using a pixel's intensity as its 

'mass', for both in-slice axes. In the MR images of the phantom, rods within the 

phantom are defined by their lack of signal compared to the surrounding saline; in 

this case, the pixel intensities within the region were inverted before calculation 

of the centre of mass. Practically, the centre of mass calculation worked much 
better if only pixels above a threshold value were included, removing effects of 
background noise. A level of 10% of the difference between the minimum and 

maximum pixel values with the region, was used. This is a common technique 

for identification of fiducial rods in modern stereotactic analysis . 
63,69 Assuming 

no noise or distortion, the centre of mass method will identify the centre of the 

rod exactly, so long as it is defined by at least two pixels along each axis; even 

with the addition of noise to the pixel intensities, the centre is still found with 

an error of much less than a pixel's dimensions. The accuracy of this method is 

studied in more detail in Chapter 6. 

Once the centres of all rods have been identified in an image, the fiducial 

rods are used to define the plane of the slice, and to construct a transformation 

matrix to transform any two dimensional pixel within that image to a three 

dimensional coordinate relative to a fixed origin. The following analysis, based 

on that described by Lemieux & Wootton, 112 assumes no distortion in the images, 

allowing the full effects of any distortion in the MR images to be observed. 
A rigid body transform must be constructed for each image slice, which 

will take account of linear scaling, translation, and rotation. As only linear 

transformations will be considered, three three dimensional points are required 

to define the plane of the image slice. These are the positions of the three 

diagonal fiducial rods, one in each triad. The height of a diagonal rod from the 

base of the fiducial system can be calculated from a consideration of Figure 5.4, 

regardless of the orientation of the image slice (so long as all fiducial rods are 
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diagonal fiducial rod and the plane of an image 
by similar triangles. Fiducial rods are black, the 
image plane is blue, and construction lines 
are green. 
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completely visualized in the image). That is, 

ý 
a+b 

xl (5.1) 

from similar triangles. Once the height of the image slice cutting the diagonal 

rod is known, the in-slice coordinates of that rod can be calculated from a look- 

up table, or further equations, as the position of all fiducial rods is known. The 

positions of the fiducial rods in the UCLF, used for these experiments, relative 
to the CRW origin, are given in millimetres by Equations 5.2. With reference to 

Figure 5.5, the fiducial rods are numbered clockwise from the lower left, where 

the rod with the largest diameter is the first rod. Only the diagonal rods are 

numbered. In each case, h,, is the height of the nth diagonal rod from the base 

of the fiducial system, calculated using Equation 5.1. 

xl = -100 yl = -58.5 + hl zl = hl - 55 

X2 = -60+h2 y2=-108.5 z2 =h2-55 

x3=100 y3=61.5+h3 z3=h3-55 
(5.2) 

The three points defining the plane of the image slice are now known. If the 

in-slice pixel coordinates of the nth diagonal rod are (X,,, Y,, ) with corresponding 

real coordinates, in known units, of (xn, yn, zn) then the problem is to find the 

slice transform matrix (STM), F, where if 

il'1 il'2 ii'3 

A= Y1 Y2 Y3 , 
111 

and B= 

(x1 x2 x3 

yl y2 Y3 
zl z2 23 

yi y2 Y3 
z1 Z2 23 

(5.3) 

then 

and so 

B= FA (5.4) 

(5.5) F= BA-1 

This gives an exact geometric solution for F, assuming that A is non-singular. 

However, the positions of the two fiducial rods, parallel to each other in each 

triad, have only been used to find the height of the central diagonal rod. They 
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Figure 5.5 Typical (a) CT and (b) MR transverse images of the 
stereotactic phantom. 
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may also be used to over-determine Equation 5.5; a robust solution may be 

found using singular value decomposition. 112 These methods have been compared 
by Lemieux & Jagoe61 who quantified the reduction in the error in the final 

coordinate by over-determining Equation 5.5. Their results showed that while the 

overdetermined STM gave a slightly smaller error on the final target coordinate 

than the STM calculated from just three fiducial rods, the difference was not 

statistically significant. For the work presented in this thesis, the method giving 

an exact solution for F was used, as it is simpler to implement, and should result 
in a 'worst case' error in the final coordinate. Both methods should be sensitive 

to the effects of spatial distortion. 

The three dimensional coordinates of the position of all rods in the phantom 

can now be calculated, for both CT and MR images, using the STM. It is highly 

unlikely that the image slices acquired by CT will exactly overlay those acquired 
by MR, especially in the through-slice direction. However, as all rods are straight, 

and it is assumed that there is no distortion in the CT images, then linear inter- 

polation may be used to calculate the coordinate of a CT rod at any particular 
MR slice position. It is assumed, for ease of the following explanation only, that 

the (x, y, z) axes are roughly aligned to the pixel axes (X, Y) and through-slice 

axis, and that the parallel rods in the phantom are roughly aligned parallel to the 

z axis. Practically, with the GTC head ring butted up against the RF head coil, 

this was always the case. For any parallel rod, its (XMR, YMR, ZMR) coordinate 

was calculated from MR images. The same rod was identified in two CT images 

with the closest zcT to the ZMR in question, and using linear interpolation (or 

extrapolation if appropriate), xcT and YCT calculated at zMR. The distortion of 

the rod in the MR image at that point, after stereotactic transform, could then 

be quantified as XCT-XMR and YCT-YMR in millimetres. This was calculated for 

all 32 parallel rods in the phantom, and used to define the in-slice MR distortion, 

after stereotactic transform. 

The 16 diagonal rods in the phantom were used to calculate the through-slice 

distortion in a MR image after stereotactic transform, as follows. The equation 

of a straight line along the diagonal rod was calculated from coordinates from the 

two CT images used above, giving z as a function of the ratio of the distance of 
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the diagonal rod between the two surrounding parallel rods in the x-y plane. This 

is similar to constructing a calibrated Equation 5.1 for the diagonal phantom rod. 
The ratio of the distance of the diagonal rod between the two parallel rods from 

the MR image can then be used in this equation to calculate the z coordinate of 
the diagonal rod, zh, independently of the STM for the MR image. The difference 

between this value and the z coordinate of the diagonal rod calculated using the 
STM for that MR slice, ZMR-Zh gives a measure of through-slice distortion in 

the MR image. 

As a check of the above process, the mean voxel sizes of both MR and CT 

images were calculated, using the pixel coordinates and actual coordinates of a 

number of rods in the phantom, and compared to the voxel size quoted by both 

scanners. Agreement was to within 1% (where quoted to that precision by the 

scanner), suggesting that the STM's for all images had been calculated correctly. 
For each triad of rods in the phantom, the distortion, relative to CT, could be 

calculated along three orthogonal directions, allowing a map of the distortion to 

be constructed throughout the phantom. In order to interpret the large number 

of results, they were combined in various ways. Each combination attempted 

to highlight the parameter being measured. It was wished to quantify how the 

distortion in the final stereotactic target coordinate varied throughout the phan- 

tom. There are two sets of axes along which the distortion may be quantified; 

the physical MR scanner axes X, Y, and Z, or the axes defined by the head 

ring, x, y, z. By varying the orientation of these axes to each other the major 

source of distortion may be revealed. If the major source of distortion lies with 

the head ring and associated apparatus, then imaging it at different locations 

within the scanner should result in patterns of distortion which move with the 

apparatus. If the major source of distortion is fixed relative to the scanner with a 

relatively small contribution from the head ring and apparatus, then imaging the 

apparatus at different locations should result in distortion patterns which vary 

with X, Y, Z, rather than relative to the apparatus. 

However, to benefit from this distinction and to allow the sources of distortion 

to be separated, the apparatus would need to be imaged at different orientations 

within the scanner. Due to the tight fit of the apparatus in the RF head coil, and 
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its fixed lateral position on the scanner's couch, this is not generally possible. 
The only direction in which the RF head coil may easily be repositioned is in the 

through-slice direction. This experiment is performed in Section 5.5, by moving 

the patient table (onto which the RF head coil containing the phantom apparatus 

was attached) further in or out of the magnet bore in steps of 50 mm. 

As mentioned above, the positioning of the apparatus within the head coil 

results in the two sets of axes being almost parallel. As such, no distinction 

will be made between distortion along an axis relative to the scanner, or relative 

to the head ring. In the following analysis, axes relative to the head ring are 

used. After being transformed to coordinates relative to the head ring, the data 

were 're-sliced', or 'binned', into slices orthogonal to the head ring, before being 

analysed further. This ensured that the analysis was performed with a consistent 

set of data, although strictly this should not be necessary, as all images were 

acquired orthogonal to the scanner's axes, i. e., with no tilt. 

In order to characterize how the distortion varied along the z axis, the mean 

of the absolute value of the distortion for all relevant rods in each slice, was 

calculated along x, y, and z axes. To measure the spread of distortion across 

each slice, the standard deviation of the distribution of the individual distortion 

of each rod throughout the image was calculated. This gives a measure of the 

spread of distortion over a slice, and is less affected by rogue points than a 

consideration of the maximum and minimum distortion would be. 

A method for presenting the variation of distortion along the x and y axes 

is not so straightforward, as there are no conveniently defined orthogonal slices 

(as the transverse images were for the variation along the z axis) over which 

the distortion can be averaged. The data were grouped into sagittal and coronal 

'slices' according to rod number, and the same analysis was performed to present 

variations in distortion along the x and y axes, as was done for the z axis above. 

5.2.3 Results and Discussion 

The results were calculated from transverse images acquired on the Siemens 

Vision MR scanner at the QMC, as described above. Typical transverse CT and 

MR images acquired of the phantom are shown in Figure 5.5. Figures 5.6,5.7, 
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and 5.8 show the variation of distortion along all three axes, with x, y, and z 

respectively. The origin of the abscissae of the graphs presented in this chapter 
is that defined by the CRW stereotactic system, defined above. This resulted in 

the GTC head ring being positioned between z=-80 mm and -100 mm for these 

three graphs. As the apparatus was prevented from being inserted into the RF 

head coil beyond a certain distance by the GTC head ring, the centre of the RF 

head coil was not aligned with the magnetic isocentre, but at z=60 mm. 
Figure 5.6 shows the distortion along all three axes, as a function of z position. 

Figure 5.6a suggests that the distortion along the x axis increases with decreasing 

z value, i. e., with decreasing distance to the GTC head ring and increasing 

distance from the magnet's isocentre. The spread of the 'error' bars, representing 

the range of distortion across each transverse slice, remains fairly constant over 

the range of z. This is borne out in Figures 5.6b and 5.6c, which show how 

the distortion along the y and z axes respectively varies along the z axis. Both 

graphs are fairly horizontal, suggesting little variation in distortion in the y and 

z directions across the phantom. The absolute values in these last two graphs 

are smaller than in Figure 5.6a. This correlates with the MR frequency encoded, 

phase encoded, and slice selected gradients being roughly parallel to the x, y, 

and z axes. 
Figures 5.7 and 5.8 present the same data as in Figure 5.6, but characterized 

by variation along the y and x directions respectively. All graphs are fairly 

horizontal, again suggesting that there is little variation in distortion with x and 

y positions within the phantom. 

5.3 Comparison of MR Sequences and Scanners 

In Section 5.2, a method has been presented for measuring and quantifying 

the distortion in the final three dimensional stereotactic coordinate calculated 

from MR images, using a phantom. In this section, the method is applied to 

measurement of the distortion on two MR scanners, both using a variety of MR 

imaging sequences, and to quantify the differences between these systems. 

Two 1.5 T MR scanners are in use at the Queen's Medical Centre in Not- 

tingham, both supplied by Siemens; a Vision, and an older SP model. Their 
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Figure 5.6 Variation of distortion in final x, y, &z coordinates along the z axis, calculated from MRI. 
The absolute difference between CT and MR for each rod in the stereotactic phantom 
was calculated. The mean for all rods in a transverse slice was calculated and plotted. 
The error bars are the standard deviation of the distortion across each slice, and are 
representative of the range of distortion across each slice. 
The GTC head ring was positioned between z=-80 and -100 mm. 
Acquired on the Vision MR scanner using sequence se_12b130. wkc 
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Figure 5.7 Variation of distortion in final x, y, &z coordinates along they axis, calculated from MRI. 
The absolute difference between CT and MR for each rod in the stereotactic phantom 
was calculated. The mean for all rods in an interpolated coronal slice was calculated 
and plotted. The error bars are the standard deviation of the distortion across each 
slice, and are representative of the range of distortion across each slice. 
Acquired on the Vision MR scanner using sequence se_ 12b 130. wkc 
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Figure 5.8 Variation of distortion in final x, y, &z coordinates along the x axis, calculated from MRI. 
The absolute difference between CT and MR for each rod in the stereotactic phantom 
was calculated. The mean for all rods in an interpolated sagittal slice was calculated 
and plotted. The error bars are the standard deviation of the distortion across each 
slice, and are representative of the range of distortion across each slice. 
Acquired on the Vision MR scanner using sequence se_12b130. wkc 
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5. Quantification of Errors in Stereotaxis 

specifications are briefly described in Section 2.5. At the same magnetic field 

strength, it would be expected that the amount of distortion caused by mag- 

netic susceptibility mismatches in the subject would be the same, whereas the 

amount of distortion caused by magnetic field in homogeneities, and possibly eddy 

currents, would be scanner dependent. 

A variety of scanning sequences are available on both scanners, the details of 

which are described in Chapter 2. It would be expected that for the same applied 

magnetic field gradients, and the same bandwidth per pixel, different sequences 

should cause the same amount of distortion. It also would be expected that 

the amount distortion would vary with the bandwidth per pixel, as described in 

Chapter 2, with the regions with highest distortion also expected to show the 

largest variation with changing bandwidth. 

Where appropriate, the use of the results to identify or eliminate possible 

sources of the observed distortion is discussed. 

5.3.1 Method 

The imaging parameters used for both scanners are as described in Section 5.2.1 

above. On the newer Vision scanner the actual gradient strengths are quoted, but 

the older SP does not provide this information readily. However, from analysis 

of comparable spin echo sequences available on both scanners (using the same 

selective RF pulses), it appeared that the same slice select magnetic field gradient 

was used to obtain the same slice thickness. By selecting the same slice thickness, 

pixel size, and matrix dimensions, for all the sequences used, it was assumed that 

the frequency encoded and slice select magnetic gradients should be the same for 

a fixed bandwidth per pixel, and hence their influence on distortion should be the 

same. As the apparatus fits tightly into the head RF coil, it can be positioned 

fairly reproducibly from experiment to experiment; the same is true for patients. 

Hence the same small field of view can be used for all experiments centred at the 

x-y isocentre. In this chapter, the same field of view and image matrix size was 

used throughout, and no need was seen to characterize the results by varying the 

field of view with fixed bandwidth per pixel. Transverse images were acquired 

throughout, relative to the MR scanners' axes. 
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5. Quantification of Errors in Stereotaxis 

The sequences selected were either mulislice two dimensional spin warp, or 

three dimensional FT variants. In the latter case the entire slab to be imaged 

was slice selected and phase encoding occurred along both axes perpendicular to 

the frequency encoded axis. For these sequences, the number of phase encoding 

steps in the slice select direction was set so that the same number of partitions 

as there was slices in the multislice case was obtained. Obviously, in this case, 

there was no slice gap, and the partition thickness was set to be 3.6 mm. 
A large number of imaging sequences were pre-installed on the MR scanners 

by Siemens. Two bandwidths per pixel are common in these; 130 Hz and 195 Hz. 

For the comparison between sequences and scanners, the choice of sequence was 

restricted to those with one of these two bandwidths. This limited the choice 

of sequences to the standard spin echo, FLASH, and FISP for two dimensional 

multislicing, and FLASH, FISP, and inversion recovery TurboFLASH (denoted 3D 

MP-RAGE by Siemens) for three dimensional imaging. On the Vision, additional 

sequences were available, and have been included for comparison with other 

Vision sequences only, as their counterparts were not generally available on the 

SP scanner. These included Turbo Spin Echo, TurboFLASHt, EPI, GRASE, and 

HASTE as two dimensional sequences, and in three dimensional form, Turbo 

Spin Echo, CISS, and DESS. These are described in Chapter 2. 

For the comparison between sequences of different bandwidths per pixel, a 

standard spin warp, spin echo sequence was used on the Vision. Sequences were 

available with bandwidths of 56 Hz, 65 Hz, 89 Hz, 130 Hz, and 150 Hz, and all 

of these were used. 
The results are presented graphically on the following pages, in the same 

format as the results presented in Section 5.2.3 above. Only the graphs which 

show variation of distortion with z have been included, as from the discussion 

in Section 5.2.3, it would appear that they are the most representative of the 

results. The 'error' bars, representing the spread of distortion throughout each 

slice, have been removed from most of the graphs to aid clarity; they were all of 

similar magnitude to those in the graphs which do contain the bars. 

tTSE and TurboFLASH sequences were available on the SP scanner, but not with compa- 

rable parameters with those available on the Vision 
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5. Quantification of Errors in Stereotaxis 

Obviously, only images in which all nine fiducial rods were visible could be 

processed and included in the following results. Their visibility varied between 

sequences and scanners. Also, due to the design of the phantom, images exhibit- 
ing partial volume effects between the saline solution and either the ends of the 

phantom or the structure supporting the rods, were clearly identifiable. These 
images were excluded from the following results, as they could result in a rod 

within the phantom being assigned a misleading position. 
A subset of these results were presented at the fifth annual meeting of the 

International Society for Magnetic Resonance in Medicine in 1997.77 

5.3.2 Results from Bandwidth Comparison and Discussion 

The results of the comparison between bandwidths on the Vision is shown in 

Figure 5.9. The curves are identified by the name of the spin echo sequence used, 

using Siemens nomenclature. The first few letters represent the sequence type (in 

this case, se for spin echo) followed by the minimum echo time in milliseconds, 

then b for bandwidth, followed by the bandwidth per pixel in Hertz. As expected, 

the sequences with larger bandwidth per pixel result in less distortion. As the 

distortion increases, with decreasing z, the difference in distortion between the 

sequences with difference bandwidth also increases. Although not a strictly valid 

comparison, as the graphs show the distortion in the final stereotactic coordinate 

rather than the actual distortion in the MR image, it is interesting to note that 
for slice position, say z=-30 mm, the ratio of distortion between sequences with 
bandwidths of 130 Hz and 65 Hz is 1.92, compared with the ratio of their 
bandwidths which is 2. The relationship between bandwidth per point and spatial 
distortion is described in Section 4.2. The measured distortion in the z direction, 

relative to the distortion in the x frequency encoded axis, also may be compared 
to that expected from theory. For the gradient strengths used, it would be 

expected that the distortion along the z axis would be s; ööö = 0.382 times that 

along the z axis, and this also compares well to typical values measured from 

Figure 5.9. 
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Figure 5.9 Variation of distortion in final x, y, &z coordinates along the z axis, 
with bandwidth per pixel. Comparison between spin echo sequences. 
Final number in sequence name is the bandwidth per point in Hertz. 
Acquired on the Vision MR scanner. 

Figure 5.9a 5.0 

ýb x 
mý 
ýU 

ý 

K 
f 

Figure 5.9b 

Figure 5.9c 

45 

4.0 

3.5 

30 

25- 

2.0- 

t5 

10 

0.5 

Q 0B 00ýQý 

n00,,, 

Q®9®® A9 ® 

A 

V aav-ý. e a 
0o Q0oa00 

0 

00 

ý 
8 

ý 

Ii vö 
5 
ýT 

s$ý 4ÜL 
tw 

ý 

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 

z slice position (mm) 

5.0 

45 
4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

o. o 

MRlsequence 
a se 70rb56 
o se 20b65 
A se 14b89 

v se 12b130 
O se 14b150 

11bý l l_ ýýým ýý 
-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 

z slice position (mm) 

50. 

45- 

40- 

3.5- 

3.0 

2.5 

2.0 

1.5 
ýte 

1.0 

05 

00 

MRI sequence 
ý se_70rb56 

se 20b65 

se_14b89 
o se_12b130 
0 se 14b150 

oa°a 
pQ U_ 

Aý g vv , ov o ý. 8ýý. 
h na Ei°ýey 

O00000000 0ý 00<>00 

-60 
-50 -40 -30 -20 -10 0 10 20 30 40 60 60 

z slice position (mm) 



5. Quantification of Errors in Stereotaxis 

5.3.3 Results from Scanner Comparison and Discussion 

The results of the comparison between the Vision and SP MR scanners is shown 
directly in Figure 5.10. Similar, standard spin echo, spin warp sequences on both 

scanners were used for this comparison, with a bandwidth per point of 130 Hz. 

The 'error' bars on this graph represent the range of distortion values present 

across the slice. 
The results from both scanners appear very similar. For the Vision, the 

distortion along the r frequency encoded direction is larger than for the SP, but 

this is reversed when considering distortion along the y phase encoded direction. 

This difference could be due to slightly different rotational alignment between the 

phantom apparatus in each scanner. Figure 5.11 shows the result of combining 

the measured distortion in the x and y directions, before finding the absolute 

mean for each slice, by Pythagorus. The results from both scanners now do not 

appear to be significantly different from each other. This is reasonable, as both 

scanners operate at the same nominal main static field strength, and with the 

same field of views set for image acquisition, the same gradient strengths should 
have been applied. 

Both the main magnets, shims, and gradient coils, are of different designs 

in the two scanners, with the Vision's main magnet being actively shielded with 

extra active shims, and different cryogen design, as well as a redesigned gradient 

set, compared to the unshielded main magnet of the SP, and older shim and gra- 
dient technology, resulting in wider tolerances on its magnetic field homogeneity. 

If the cause of the measured distortion were scanner related magnetic field in- 

homogeneities or eddy currents, then one would expect a difference between the 

measured distortion for the Vision and the SP, with the SP probably giving rise 

to the worst distortion. The similarity between the curves in Figure 5.11 suggests 

that the main causes of observed distortion are not eddy currents or magnetic 
field inhomogeneities due to the MR scanner. It would suggest that the sources 

of distortion lie with the apparatus itself, and further confirmation of this is given 
by the observation that the distortion increases as the distance to the head ring 
decreases. 

It is also worth noting that both scanners have different RF systems. The 
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Figure 5.10 Variation of distortion in final x, y, &z coordinates along the z axis. 
Comparison between Vision and SP MR scanners. 
The error bars are the standard deviation of the distortion across each slice, and are 
representative of the range of distortion across each slice. 
GTC head ring positioned between z=-80 and -100 mm. 
Acquired using spin echo, spin warp sequences with 130 Hertz per pixel bandwidth. 
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Figure 5.10 Variation of distortion in final x, y, &z coordinates along the z axis. 
Comparison between Vision and SP MR scanners. 
The error bars are the standard deviation of the distortion across each slice, and are 
representative of the range of distortion across each slice. 
GTC head ring positioned between z=-80 and -100 mm. 
Acquired using spin echo, spin warp sequences with 130 Hertz per pixel bandwidth. 
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Figure 5.11 Variation of distortion in final combined xy coordinate along the z axis. 
Comparison between Vision and SP MR scanners. 
The error bars are the standard deviation of the distortion across each slice, and are 
representative of the range of distortion across each slice. 
GTC head ring positioned between z=-80 and -100 mm. 
Acquired using spin echo sequences with 130 Hertz per pixel bandwidth. 
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5. Quantification of Errors in Stereotaxis 

increased distortion with decreasing z correlates with decreasing distance to the 

edge of the RF head coil used. It could be argued that the observed increase 

in distortion depends primarily on this. However, if this were the case, then by 

the same argument as above, one would expect the different systems to result 
in differing amount of distortion; this is not seen. In the images acquired on the 
Vision, no qualitative change in image quality, nor significant quantitative change 
in SNR, was seen throughout the volume spanned by the fiducial helmet. On the 
SP, image quality deteriorated more rapidly, to the extent that all nine fiducial 

rods could not be identified on the few images closest to the edge of the RF coil 
(and head ring). This shows a clear difference between the RF systems on the 

two scanners, which is not reflected in difference in the curves in Figure 5.11, 

suggesting that the position within the RF coil is not a major influence on the 

distortion being observed. 

5.3.4 Results from Sequence Comparison and Discussion 

The results of the comparison between distortion in images acquired using dif- 

ferent sequences on the Vision is shown in Figures 5.12 and 5.13 for sequences 

with 130 Hz and 195 Hz bandwidth per pixel respectively. The corresponding 

results from the SP scanner are shown in Figures 5.14 and 5.15 respectively. The 

curves are identified by the name of the Siemens sequence used, The calculated 

distortion appears to be fairly independent of the sequence used to acquire it, 

which is as expected. The effect of bandwidth, and the difference between scan- 

ners is therefore the same as discussed in previous two sections, 5.3.2 and 5.3.3. 

This has an implication for the sequence used to acquire images for stereotactic 

planning of patients. It appears to be a generally held view among clinicians that 

more distortion is present in T2 weighted images than in Ti weighted images, 

and hence the former should not be used for stereotactic planning. Many lesions 

show greater contrast to surrounding tissue in T2 weighted images than in Tl 

weighted images, and so T2 weighted images would be preferable. From these 

results, it appears that there is no difference in distortion between Ti and T2 

weighted images, with the same bandwidth per pixel. The idea that distortion 

is worse in T2 weighted images could be due to typical T2 weighted sequences 
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Figure 5.12 Variation of distortion in final x, y, &z coordinates along the z axis, 
with MR sequence, at constant bandwidth per point. 
All sequence have 130 Hertz per pixel bandwidth. 
Acquired on the Vision MR scanner. 
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Figure 5.13 Variation of distortion in final x, y, &z coordinates along the z axis, 
with MR sequence, at constant bandwidth per point. 
All sequences have 195 Hz per pixel bandwidth. 
Acquired on the Vision MR scanner. 
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Figure 5.14 Variation of distortion in final x, y, &z coordinates along the z axis, 
with MR sequence, at constant bandwidth per point. 
All sequence have 130 Hertz per pixel bandwidth. 
Acquired on the SP MR scanner. 
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Figure 5.15 Variation of distortion in final x, y, &z coordinates along the z axis, 
with MR sequence, at constant bandwidth per point. 
All sequence have 195 Hertz per pixel bandwidth. 
Acquired on the SP MR scanner. 
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5. Quantification of Errors in Stereotaxis 

having a smaller bandwidth per point than Tl weighted sequences. The longer 

echo time required for T2 weighted images allows the NMR signal to be sampled 
for a longer time, increasing signal to noise while decreasing the bandwidth per 

point. 
The only sequences showing a difference from the norm was the three di- 

mensional TurboFLASH (3D MPRAGE) on the SP, which resulted in a larger 

distortion along the z axis, for both bandwidths. This difference was not seen on 
the similar sequence on the Vision, nor in any other three dimensional sequences. 
The cause of this is not clear, however, the spread of results over each slice for 

this MPRAGE sequence was also greater than for the other sequences, and so 

this difference is not as significant as it first appears. The hardware on the SP is 

not as advanced as that on the Vision scanner, and it could be that its less than 

ideal response introduces artefacts in more demanding and sensitive sequence, 

such as a 3D MPRAGE. 

The images acquired from a number of sequences on both scanners were not 

good enough to be included in these results, due in all cases to some or all of 

the nine fiducial rods not being visible. These included TurboFLASH and TSE 

sequences on the SP, and HASTE, GRASE, and EPI sequences on the Vision. 

The lose of signal from the fiducials is not surprising for the sequences containing 

gradient echoes and short acquisition times, due to dephasing effects from the 

rods/air boundary and a lower SNR. Nor is it surprising for the TSE sequence 

on the SP in which ghosts from the interleaved multiple echo trains are clearly 

visible, suggesting either a poorly optimized sequence or hardware instabilities. 

The failure of the HASTE sequence on the Vision to visualize the fiducial rods is 

somewhat surprising, although it could be due to the lack of correction for phase 

and amplitude evolution throughout the multiple echoes of the 128 echoes in the 

echo train. By contrast, the fast spin echo sequence on the Vision (with between 

20 and 30 echoes per echo train) includes a pre-scan to attempt to correct for 

this effect. This correction is absent on the fast spin echo sequences on the SP 

and this could be one reason for the failure of the sequence on the SP, but not 

on the Vision. 
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5. Quantification of Errors in Stereotaxis 

5.4 Application of Distortion Correction to Stereo- 
taxis 

In the previous sections of this chapter, a phantom has been used to quantify the 

distortion present in the final stereotactic target coordinate calculated from MR 

images. In Chapter 4, Chang & Fitzpatrick's distortion correction method was 
implemented and used both to correct distortion in MR images and to quantify 

the distortion present. In this section, Chang & Fitzpatrick's correction method is 

used to attempt to correct distortion present in MR images of the apparatus used 
in this chapter. The spatial distortion throughout the phantom and the fiducial 

rods is quantified. This is required for the analysis presented in Chapter 6. 

As mentioned in the introduction to this chapter, one problem with using a 

phantom for distortion measurements is that it may not simulate the distortion 

present in a human head. Chang & Fitzpatrick's correction method is used to 

measure distortion in MR images of the head of a patient undergoing stereotactic 

neurosurgery. The distortion measured throughout the head is compared to the 

distortion measured throughout the phantom to demonstrate its validity. If the 

distortion measured in the phantom is similar to the distortion measured in a 

head, both of which are surrounded by the head ring and fiducial helmet, then the 

distortion measured in the final stereotactic target coordinate using the phantom 

will be comparable to that which would be seen in a human head. 

5.4.1 Method 

Images of both the phantom and the patient were obtained using a standard spin 

echo, spin warp sequence (se_12b130. wkc, TE=12 ms, TR=800 ms, voxel size 

1x1x3 mm on a 256x256 matrix. Gx=3.059 mTm-1 and G, z=8.000 mTm-1, 

as quoted by the scanner. The slices were separated by 3 mm to reduce effects 

from 'cross-talk'; the 'missing' slices were acquired by a second acquisition). 

A modified version of the sequence was produced with all the imaging gradi- 

ents applied along the frequency encoded direction having their values negated. 

Chang & Fitzpatrick's correction method was applied to these images to produce 

corrected images and pixel by pixel distortion maps. In addition, stereotactic tar- 
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5. Quantification of Errors in Stereotaxis 

get coordinates were calculated from the corrected images of the phantom, and 

these were compared with CT coordinates, using the same method as described 

in Section 5.2 above. Any effect of distortion correction on distortion in the final 

stereotactic target coordinate could then be seen. 
As implemented in Chapter 4, Chang & Fitzpatrick's correction method was 

not suitable for direct application to MR images containing the fiducial rods. As 

detailed in Chapter 4, edge detection of the object in the MR image is required, 

to reduce noise artefacts in the corrected image. Stereotactic images contain 

a number of separate objects, in particular, the patient's head (or phantom) 

and the fiducial rods. The edge detection algorithm was modified to find pairs 

of edges along each line in the frequency encoded direction. Correction was 

only performed between pairs of edges. This method relies heavily on finding 

the same pair of edges in the two images used for correction; if this does not 

happen, streak artefacts will be present in the corrected image. However, using 

multiple edge detection allows the distortion to be calculated in separate objects 

within the same image. In Chapter 4, other distortion correction algorithms 

were mentioned, including a method which relies on the construction of a phase 

map throughout objects within an image. This can only straightforwardly be 

performed on connected objects, since an unknown phase wrap of multiples of 

27r may occur between unconnected objects. This problem may be overcome by 

assuming a worst possible distortion, and then acquiring images with appropriate 

parameters (small enough T to ensure no phase wrapping for distortion smaller 

than the assumed maximum, as described in Chapter 4) from which a phase 

map of unconnected objects can be constructed. 107 No assumptions of this kind 

are required for the application of Chang & Fitzpatrick's distortion correction 

method. 

5.4.2 Results from Phantom and Discussion 

The results of applying the distortion correction on the phantom are presented 

in Figure 5.16. Figures 5.16a and 5.16b are two typical transverse image slices 

through the phantom, the first acquired with the frequency encoded gradient 

applied as normal, and the second acquired with the sign of the frequency encoded 
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Figure 5.16 Correction of distortion in the stereotactic phantom using 
the reversed gradient correction method. Multiple edge pairs could be 
detected along each row to allow the stereotactic fiducial rods to be 
corrected in isolation. Full Fourier spin echo, spin warp 
images acquired using the 1.5 T Vision MRI system. 
Voxel dimensions were 1x 1x3 mm. 
a. Image acquired under normal conditions. 
b. Image acquired with reversed frequency encoding gradient 

(horizontal axis in images). 
c. Corrected image, using the reversed gradient method. 
d. Distortion map. Scale bar represents distortion from -1 to 1 mm. 
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gradient reversed. The frequency encoded gradient is oriented parallel to the 
horizontal x axis, and differential distortion of the two vertically running diagonal 

fiducial rods can been seen between these two images. 

The corrected image produced by Chang & Fitzpatrick's correction method 
is shown in Figure 5.16c, and the distortion map produced from this correction 

shown in Figure 5.16d. The correction map image contains both positive and 

negative values, depending on whether a particular pixel has been distorted to 

the left (darker) or to the right (lighter). The uniform grey level value seen in 

the background represents no distortion; this may change from distortion map to 

map as the contrast has been adjusted to show the range of distortion present 
in the object. The success of the multiple edge detection can be seen; the 

fiducial rods have been separated from the main phantom. However, adjustment 

of the threshold value used for the multiple edge pair detection method was far 

more critical than for the single edge pair detection, to ensure successful edge 
detection. As described in Chapter 4, the streaking effect seen here is due to 

a mismatch between the detected position of the same edges in both images. 

Streaks between unconnected objects in the distortion map indicate the failure of 

the multiple edge detection method to correctly identify the same pairs of edges 

in both images. 

Figure 5.17 shows the effect of applying the correction to the MR images 

before calculating the final x stereotactic target coordinate. Points calculated 

from the corrected image show less distortion that those calculated from the raw 
MR image. The reduction is largest in the regions of greatest distortion. The 

variation of distortion along the x axis calculated from the corrected images is 

fairly uniform along the z axis, suggesting that the majority of the distortion has 

been corrected. 
Figure 5.18 shows the mean absolute distortion calculated from the correction 

algorithm. The program performing the correction was modified to automatically 

classify the distortion of each fiducial rod separately from the distortion in the 

main phantom. Data from the most inferior slices is not presented, as the multiple 

edge detection clearly failed to distinguish the fiducials from the main phantom 
in this slices. Most of the fiducial rods exhibit more distortion than the centrally 
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Figure 5.17 Variation of distortion in final x, y, &z coordinates along the z axis, calculated from MRI. 
The effect of distortion correction on the final 3D stereotactic coordinate. 
'Error bars' are shown for the corrected data; the 'error bars' for the uncorrected data 

are shown in Figure 5.6. 
Acquired on the Vision MR scanner using sequence se_12b130. wkc 
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Figure 5.18 Actual distortion for each fiducial rod and the main phantom. 
Measured using reversed gradient distortion correction method. 
GTC head ring positioned between x=-80 and -100 mm. 
Acquired on the Vision MR scanner using sequence se_12b130. wkc 
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Figure 5.20 Comparison of the actual distortion between the main phantom and a patient's head. 
Measured using reversed gradient distortion correction method. 
Head ring positioned between z=-80 and -100 mm. 
Acquired on the Vision MR scanner using sequence se 12b130. wkc 
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placed main phantom. As discussed in the introduction to this chapter, it would 

be expected that the combination of distortion of the fiducial rods, as well as of 

the phantom (or patient's head) would combine to result in a greater distortion 

being seen in the final stereotactic coordinate, than just the actual distortion 

within the phantom. This would appear to be borne out in these results, when 

compared with those presented in Section 5.2.3. 

It is interesting to note that the effect of distortion correction is seen mainly 

along the x axis, which is aligned parallel to the frequency encoded axis. While 

this would be expected for the actual distortion in the phantom, it is not obvious 

that the same effect would be seen in the distortion in the final stereotactic 

coordinate, after it has been transformed by Equation 5.5. 

The results presented here also are discussed in Chapter 6. 

5.4.3 Results from Patient and Discussion 

The result of the application of Chang & Fitzpatrick's distortion correction 

method to images of a patient is presented in Figure 5.19. The frequency en- 

coded gradient was applied parallel to the vertical axis of the images. The patient 

was undergoing a stereotactic biopsy of a suspected brain tumour and was im- 

aged on both CT and Vision MR scanners. Figure 5.19a and 5.19b show two 

potentially distorted images. Differences due to distortion can be seen between 

these two images around the anterior and posterior bone marrow. Figure 5.19c 

is the corrected image, and Figure 5.19d is the distortion map. As can be seen, 

the detection of multiple edges does not work well on patient data. The fiducial 

rods have been poorly identified, and the three anterior rods have been absorbed 

into the head, due to incorrect edge detection. Discrete streaks are also seen in 

the distortion map. This is a result of multiple edges found in the head, espe- 

cially around the skull. This increases the chance of a mismatch of edge pairs 

between the two images used in the correction. From visual inspection of the 

distortion map, the amount of distortion appears fairly constant over the brain. 

It also appear to be constant around the skin/skull, but of a different magnitude 

to that in the brain. The mean absolute distortion along the frequency encoded 

axis over the head is plotted as a function of z in Figure 5.20 along with the 
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Figure 5.19 Correction of distortion in a patient's brain using 
the reversed gradient correction method. Only a single edge pair 
was sought along each column as multiple edge pair detection found 
erroneous edges in the patient's skull. 
Images acquired using the 1.5 T Vision MRI system. 
Voxel dimensions were 1 x1 x3 mm. 
a. Image acquired under normal conditions. 
b. Image acquired with reversed frequency encoding gradient 

(vertical axis in images). 
c. Corrected image, using the reversed gradient method. 
d. Distortion map. Scale bar represents distortion from -2 to 2 mm. 
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5. Quantification of Errors in Stereotaxis 

mean absolute distortion over the phantom (as presented in Section 5.4.2) for 

comparison. The distortion map of the head has been manually segmented into 

brain and skin/skull regions, which have been plotted separately. The mean dis- 

tortion measured in the phantom appears to be very similar to that measure in 

the brain. As all the surgical stereotactic targets lie within the brain, it would 

seem that distortion measured in the phantom is similar to that measured in the 
brain. A local increase of distortion in MR images of regions of the brain close 
to structures such as the sinuses or petrous bone would be expected, and would 
have to be treated as a special case. However, in general the distortion measured 
in the final three dimensional stereotactic coordinate calculated from MR images 

of the phantom will be comparable to that seen in a brain, at a magnetic field 

strength of 1.5 T. The results obtained in this chapter using the phantom may 

then be considered valid in the context of a general human stereotactic patient. 
The artefacts seen in the image of the patient's head produced using this 

implementation of the reversed gradient method are concerning. While an occa- 

sional artefact may be acceptable and relatively easily interpreted in MR images 

of a phantom, this is not the case in MR images which will be open to diagnostic 

interpretation. As noted in Section 4.3.4, Figures 4.1,4.2, and 4.21, streaks in 

the distortion map as a result of misregistration of signal intensity across a low 

signal region do not necessarily introduce visible artefacts in the corrected image, 

as the misregistered intensity usually has a low value. However, the extent of 

the artefact would be extremely difficult to quantify and would be expected to 

vary on an image by image and patient by patient basis. It also is concerning 

that there appears to be a slight difference, in the form of banding, between ad- 
jacent lines in the distortion map. This suggests differing amounts of distortion 

correction occurring along adjacent lines. The cause of this may be due to a 

difference in edge detection between adjacent lines, due to a varying intensity 

around the perimeter of the object or indistinct edges as a result of through-slice 

partial volume effects. No method to overcome this form of artefact could be 

devised during the course of this works. Therefore, it is not believed to be wise 

t However, recently KannengieBer et al. 52 have applied dynamic time warping to the reversed 

gradient correction method and they believe this may overcome some of the streak artefacts 
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to use the reversed gradient correction method, as implemented for this work, to 
directly correct MR images of patients used for stereotactic planning. However, 

it may still be used to produce distortion maps of the patient's head, from which 

small regions may be sampled to provide a measure of localized distortion. This 

information is then available to the clinician for consideration during the selec- 

tion of the target on the uncorrected MR images. Hence, the reversed gradient 

correction method may be applied to measure distortion but can not reliably be 

used to correct it to produce MR images for diagnostic interpretation. 

5.5 Determination of Sources of Distortion 

In the previous section of this chapter, a method of quantifying the distortion in 

the final stereotactic target coordinate calculated from MR images of a phantom 

has been presented. While the method to calculate distortions and the results of 
its use stand in their own right, they may also be used, together with the results 
from Chapter 4 to gain insight into the causes of the observed distortion. Some 

information has already been extracted from the previous results in this chapter 

regarding the source of the observed distortion. Four additional experiments 

are described in this section to further classify the sources of distortion, and to 

eliminate other possible sources. 

5.5.1 Method 

To observe whether the pattern of distortion seen in Section 5.2.3 is caused by 

a source fixed relative to the phantom or relative to the magnet, mulislice MR 

images sets were acquired with the patient bed (onto which the RF head coil and 

apparatus were fixed) positioned further in, or out, of the magnet bore. It appears 

from Section 5.2.3 that the observed distortion varies mainly with position along 

the z axis. It is fortunate that this is the one position in which the apparatus 

may be moved easily. The table was moved in steps of 50 mm, resulting in an 

overlap between the one partition of the phantom with the other partition, at 

subsequent table positions. 

seen here. 
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As the aluminium GTC head ring was thought likely to be the major source of 
distortion, a non-metallic plate was designed and constructed to replace the GTC 

head ring, while holding the phantom and UCLF in the same relative positions to 

each other. The plate, and supporting fixtures, were constructed from Tufnol§, 

Perspex, and nylon. This was then imaged on both CT and MR scanners, as 
described in Section 5.2.1 and the distortion in the stereotactic coordinates of 

the phantom rods calculated, as above. The results were then compared to those 

obtained in the same way, but with the aluminium GTC head ring, as presented 
in Section 5.2.3. Although the Tufnol plate was carefully constructed to hold 

the phantom and UCLF in the same relative positions as the GTC head ring, the 

apparatus containing the Tufnol plate was scanned on the CT scanner as well as 

the MR scanner. The distortion in the MR images of the apparatus containing 

the Tufnol plate was calculated by comparison to the CT images obtained with 

the Tufnol plate, rather than those gathered with the GTC head ring. This 

should remove the effect of any systematic offsets due to the Tufnol plate not 

holding the phantom and UCLF in exactly the same relative positions as the GTC 

head ring. It was also felt to be useful to repeat the experiment described above 

of moving the patient bed in and out of the magnet bore, with the apparatus 

containing the Tufnol plate. 

All MR images acquired for this chapter were acquired with the frequency 

encoded gradient applied along the horizontal axis. The effect of swapping the 

frequency and phase encoded axes on distortion was examined, using the appa- 

ratus with the GTC head ring. 

As the apparatus was imaged on the various scanners over a number of 

months, the reproducibility of fitting the various components together was briefly 

measured by calculating the 'distortion' between two measurements of the same 

acquisition on different days, instead of between MR and CT. This would give 

an indication of the amount of measured distortion that might be due to recon- 

struction of the apparatus between CT and MR imaging sessions. 

§A phrenolic resin laminate (Tufnol, Birmingham, England) 
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5.5.2 Results from Tufnol Base Plate and Discussion 

The results of the distortion measured when the GTC head ring was replaced by 

a Tufnol base plate are presented in Figure 5.21. The results from Section 5.2.3 

are also plotted for comparison. The results show significantly less distortion 

along the x axis in the inferior partition of the phantom with the Tufnol plate 

present, compared with the distortion with the GTC head ring present. Distortion 

is also less in the superior partition of the phantom, but not by such a marked 

amount. No significant difference is seen in distortion in the y and z axes. As the 
GTC head ring is located approximately between Z=-80 mm and Z=-100 mm, 
it would appear that the GTC head ring is the major source of the observed 

distortion. 

5.5.3 Results from Phantom Translation and Discussion 

The results of the effect of the table translation on distortion, using the apparatus 

with the GTC head ring, are plotted in Figure 5.22. The results from images 

acquired at each table position are displayed in a different colour. Only the 

graphs of distortion as a function of z position are presented, since as described 

in Section 5.2.3, the amount of distortion only varied with z position, and this 

was also the case for these results. 

It was not possible to acquire images at all desired table positions, as the 

Vision MR scanner failed on various automatic checks when the apparatus was 

at particular off-centre locations. These failures related to the calculation of the 

RF power required for a 180° pulse, or calculation of the attenuation of the RF 

receiver. While this could have been overridden, it was felt to be too risky on a 

heavily used clinical MR scanner in case damaged resulted. 

As might be expected, the amount of distortion increased at large distances 

from the magnet's isocentre. The origin of the z axis is the magnet's isocentre. 

The most interesting feature of these results is the similarity seen in the distor- 

tion pattern at the two table positions with most negative z position (cyan and 

blue curves), and to some extent the following table position (green curve), in 

Figure 5.22a. This suggests that the source of distortion moves with the table, 

and therefore that the observed distortion is not caused primarily by sources such 
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Figure 5.21 Variation of distortion in final x, y, &z coordinates along the z axis, calculated from MRI. 
Comparison between the aluminium GTC head ring and a Tufnol substitute. 
The absolute difference between CT and MR for each rod in the stereotactic phantom 
was calculated. The mean for all rods in a transverse slice was calculated and plotted. 
The error bars are the standard deviation of the distortion across each slice, and are 
representative of the range of distortion across each slice. 
The GTC head ring was positioned between z=-80 and -100 mm. 
Acquired on the Vision MR scanner using sequence se_12b130. wkc 
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Figure 5.22 Variation of distortion in final x, y, &z coordinates along the z axis, calculated from MRI. 
Image acquisition was repeated for different postions of the apparatus along the z axis. 
Each apparatus position is shown in a different colour. 
Acquired on the Vision MR scanner using sequence se 12b130. wkc 
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as inhomogeneities in the main magnetic field, gradients, or eddy currents in the 

magnet housing. Likely sources of distortion moving with the table would be the 
RF head coil or apparatus, which includes the aluminium GTC head ring. 

Figure 5.23 shows the effect of table translation on distortion, when the GTC 

head ring has been replaced by the Tufnol base plate. As in Figure 5.21 above, 
less distortion is seen along the frequency encoded direction, whereas similar 

amount of distortion are seen along the other axes, compared to the results 

with the GTC head ring present. Also, the results acquired at different table 

positions match up more smoothly than those obtained with the GTC head ring 

present. Although this result may seem to conclusively show that the GTC head 

ring is the source of the distortion, it is felt that there is some uncertainty as 

to the rigidity of the apparatus when held together by the Tufnol base plate, 

compared to the GTC head ring. The difference in distortion in Figure 5.21 

is up to 1.5 mm. As presented below in Section 5.5.5, the reconstruction of 

the apparatus consisting of the GTC head ring may introduction a difference 

of about 0.2 mm in the final stereotactic coordinate. The construction of the 

apparatus with the Tufnol base plate does not seem to be so rigid, and so it might 

be reasonable to assume that its reconstruction would introduction a difference 

greater than 0.2 mm. Therefore, it would seem to be important to interpret 

these results in combination with results from other experiments presented in 

this chapter. 
It would appear that there is a baseline distortion of about 0.8 mm along the 

frequency encoded x axis which is seen in the superior portion of the phantom, 

with an additional amount of distortion of about 0.8 mm which is seen in the 

inferior portion of the phantom when the GTC head ring is present. This is 

discussed more fully below, in Section 5.5.6. 

5.5.4 Results from Interchanging Frequency and Phase En- 
coded Axes and Discussion 

The results of the comparison between the amounts of distortion measured in the 

final coordinates, calculated from images acquired with interchanged frequency 

and phase encoded axes are presented in Figure 5.24. It is clear that much 
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Figure 5.23 Variation of distortion in final x, y, &z coordinates along the z axis, calculated from MRI. 
Image acquisition was repeated for different postions of the apparatus along the z axis. 
Each apparatus position is shown in a different colour. 
Using the Tufnol GTC head ring substitute, instead of the aluminium GTC head ring. 
Acquired on the Vision MR scanner using sequence se_ 12b 130. wkc 
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Figure 5.24 Variation of distortion in final x, y, &z coordinates along the z axis, calculated from MRI. 
Comparison between images acquired with the frequency encoded gradient 
along the x axis and along the y axis. 
GTC head ring positioned between z=-80 and -100 mm. 
Acquired on the Vision MR scanner using sequence se 12b130. wkc 
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5. Quantification of Errors in Stereotaxis 

less distortion is seen in the final coordinate when the frequency encoded axis is 

aligned parallel to the y axis than when it is aligned parallel to the x axis. No 

difference was seen in distortion in the z direction, and so Figure 5.24c shows 

the result of combining the distortion along the x and y axes by Pythagorus 

to calculate the total in-plane distortion. The reason for this difference is not 

obvious from these results alone. However, it is interesting to note, with reference 

to Figure 5.5, that the MR compatible fiducial helmet consists of two parallel 

pairs of triads of rods, with one triad perpendicular to these. It may be that the 

effect of spatial distortion on the final coordinate is worse if it is parallel to a 

line joining all three rods in a triad than if it were perpendicular, or vice versa. 

If this is the case, it might be expected that the final distortion would be worse 

when the orientation of the two parallel triads of rod was such to maximize this 

effect, as the larger distortion would then be felt by two of the three triads of 

rods used to calculate the STM. Another reason could be that if the distortion 

is due primarily to eddy currents induced in the GTC head ring, then it could be 

conceivable that changing the orientation of the magnetic gradients to the head 

ring result in differing eddy currents in it. The effect of a shift in the position of 

a fiducial rod (i. e., spatial distortion) is examined more thoroughly in Chapter 6. 

It would seem to be clear that as a practical point, when acquiring MR images 

of a supine patient fitted with the GTC head ring and UCLF for stereotactic 

planning, it should be ensured that the frequency encoded axis be orientated 

vertically, to reduce distortion in the final target coordinate. With reference to 

Figure 5.10, the distortion in the final coordinate is a factor of approximately 

three greater if the frequency encoded gradient is parallel to the x axis than 

if it is parallel to the vertical y axis. In the former case, the mean distortion 

throughout the phantom is 1.5 mm compared to the latter case where it is 

0.5 mm. Fortunately, it is common in clinical practice to align the frequency 

encoded axis vertically for long acquisitions of images of heads, so that potential 

artefacts caused by eye motion in the phase encoded direction do not overlay the 

brain. 
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5. Quantification of Errors in Stereotaxis 

5.5.5 Results from Apparatus Reassembly and Discussion 

An indication of the accuracy to which the apparatus could be reproducibly as- 

sembled was gained by repeating image acquisition with the same parameters, 
but on separate days in between which the apparatus had been disassembled 

and then reassembled. This was performed twice with CT (with the scan dates 

separated by a year) and three times on the Vision over the same duration. Pairs 

of image acquisitions on the same modality were then processed as if calculating 
the distortion between MR and CT. Between all image sets, a constant differ- 

ence of about 0.2 mm was seen in the in-plane coordinates (the differences along 
the x and y axes combined by Pythagorus) and about 0.2 mm in the z axis. 
This was constant throughout the phantom, and so it would seem that there is 

a constant error of about 0.2 mm introduced into the final coordinate through 

repeated assembly of the apparatus. It would have been desirable to repeat the 

measurement more often, to obtain a measure of the application accuracy of the 

apparatus on the final target coordinate. However, this was not possible due 

to the restricted access to the busy MR and CT scanners. The total applica- 

tion accuracy of stereotactic frames has been studied in much greater detail by 

Maciunas et a!. 63 and their results are considered in more detail in Chapter 6. 

However, a mean uncertainty of 0.2 mm introduced by repeated assembly of the 

apparatus is consistent with the reapplication errors measured by Maciunas et al. 

of between 0.1 mm and 0.4 mm. 

5.5.6 Discussion of Sources of Distortion 

Spatial distortion in MR images is due to magnetic field in homogeneities. This 

could be due to existing inhomogeneities in the main static magnetic field or the 

magnetic field gradients, the effect of eddy currents, or differences in magnetic 

susceptibilities of objects in the magnet bore. 

The results in this chapter have been briefly discussed in isolation when they 

were presented. The results from Section 5.2.3 showed that the in-plane distor- 

tion rose from about 1.2 mm in the superior portion of the phantom to about 
2"0 mm in the inferior portion of the phantom closest to the GTC head ring. From 

Section 5.5.3, it was found that this spatial distribution of distortion remained 
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5. Quantification of Errors in Stereotaxis 

fairly constant, relative to the apparatus, as it was moved in the z direction. 

This suggests that the main source of distortion seen in the final stereotactic 

coordinate is fixed relative to the apparatus. Therefore it would seem unlikely 

that the main source of distortion lay with inhomogeneities in either the main 

magnetic field or the gradient magnetic fields, or any other source fixed relative 

to the magnet, such as eddy currents induced in the magnet's housing. Potential 

sources of distortion which moved with the apparatus were the RF head coil, the 

aluminium GTC head ring, the phantom, and the patient bed. It would seem 

to be unlikely that the fiducial helmet itself would cause significant distortion 

relative to the other suspect items mentioned. Due to the near symmetry be- 

tween the inferior and superior partitions of the phantom (see Figure 5.1), it 

would seem unlikely that one partition caused significantly more distortion than 

the other. 
The results from the direct comparison between the two different 1.5 T MR 

scanners, presented in Section 5.3.3, suggest that the source of distortion is 

unlikely to be the RF head coil or patient bed. Both items vary between scanners, 

as discussed in that section. If the source of distortion lay with these items of 
different design, it would be expected that a difference would be seen in the 

distortion results. No significant difference is seen. This also corroborates the 

conclusion of the previous paragraph suggesting that the cause of distortion does 

not lie with a source fixed relative to the magnet, as it would be expected that 

if it were fixed relative the magnet, then differences would be seen between two 

different magnets. While it is possible that the cause does lie with the RF coil 

and patient bed and it is just coincidence that two different designs interact in 

such a way as to result in the same overall distortion, it is felt that this is very 

unlikely. 
When the GTC head ring was replaced by a non-metal, Tufnol substitute, the 

results in Section 5.5.3 show little difference between distortion in the superior 

and inferior partitions of the phantom. This suggests that removal of the GTC 

head ring removes a major source of distortion. 

In Section 4.5, the reversed gradient correction method was used to measure 

the distortion caused by the GTC head ring and MRI compatible stereotactic 
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head pins. The presence of the GTC head ring was seen to result in a small 
increase in the mean distortion in slices within 70 mm of it. The results from 

Sections 5.5.2 and 5.5.3 agree well with this range; they suggest the GTC head 

ring causes distortion throughout the inferior portion of the phantom. For the 

results presented in this chapter, the GTC head ring was located between z=- 
80 mm and -100 mm and the inferior portion of the phantom ranged between 

z=-55 mm and -15 mm. 
It would therefore seem reasonable to conclude that it is most likely that the 

source of the observed distortion lies with the GTC head ring. 

5.6 Conclusions 

In this chapter, a method has been devised and presented to measure the dis- 

tortion in the final three dimensional stereotactic target coordinate calculated 
from images of a phantom. Distortion may be quantified along three orthogonal 

axes. By using a phantom, where all rod centres are automatically identified by 

their centre of mass, increased precision is expected over the use of user defined 

anatomical landmarks in patients' heads. 

For a standard spin echo MRI sequences on a 1.5 T Vision MR scanner with 
130 Hz per pixel bandwidth, using the GTC head ring and UCLF, and with the 
frequency encoded axis aligned horizontally, the distortion in the final stereotactic 

coordinate is 2.0 mm between 35 mm and 65 mm from the head ring, and ranging 
between 1.6 mm and 0.8 mm between 90 mm and 135 mm from the head ring. 
This is reduced to 0.6 mm and 0.4 mm respectively if the frequency encoded 

gradient is aligned vertically, as is the normal case for scanning patients' heads. 

While there are few direct comparisons available in the literature, distortions of 
between 1.5 mm and 2.6 mm have been reported in the stereotactic coordinate 

system in cadaver studies on a 1.5 T MRI scanner, 10' which appears to have used 
the same stereotactic system as was used for the experiments in this chapter. 
Using a different stereotactic system (a Riechert-Mundiger device), errors in 

the stereotactic coordinate in a mainly air-filled phantom have been reported 

of between 1 and 3 mm on a 1.5 T Siemens MRI scanner. 100 Distortion of 

anatomical landmarks in MR images, also acquired with a 1.5 T scanner, has 
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been quoted as up to 5 mm in the stereotactic coordinate system, 27 but also 

using a different stereotactic system. 
The expected reduction in distortion with an increase in bandwidth per pixel 

was observed. No significant difference was seen between different MR sequences 

with the same bandwidth per pixel. Recommendations for MR imaging of patients 

undergoing stereotactic neurosurgical procedures would be to use any sequence 

with a bandwidth for pixel of 130 Hz or more, and to align the frequency encoded 

axis vertically if using the UCLF. 

By performing additional experiments, and using the method presented in this 

chapter for quantifying spatial distortion, an estimate can be made of the major 

source of the observed distortion. This was found to be the MR compatible 

GTC head ring. This is not entirely surprising when it is considered that the 

ring is constructed from aluminium. However, there does not appear to be any 

other MRI compatible materials from which a rigid frame may be constructed. 

The manufacturers of the CRW system do not believe that plastic materials are 

rigid enough, and have encountered difficulties in manufacturing the items using 

ceramics. 
The reversed gradient correction method has been applied to MRI in a stereo- 

tactic setting. It has been used to verify the validity of the phantom as a brain 

phantom, regarding distortion. However, due to the potential of it introduc- 

ing artefacts in corrected images, as seen in Section 5.4.3 and Chapter 4, it is 

concluded that it is not wise to allow the corrected images to be interpreted clini- 

cally. Therefore, it is suggested that its use be limited to measuring the distortion 

present rather than for the correction of MR images used for stereotaxis. 
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Chapter 6 

Propagation of Errors in 

Stereotaxis 

6.1 Introduction 

In the previous two chapters, methods for quantifying the distortion present 
in MR images, and for estimating the error present in the final stereotactic 

target coordinate calculated from MR images, have been presented, implemented, 

measured, and discussed. In order to understand further how known spatial 
distortion in MR images affects the final stereotactic coordinate, it is necessary 

to consider other components of the stereotactic process which give rise to errors 

and to estimate their magnitude. The relative importance of each identified 

source of error may then be assessed. 
With the use of MR images in stereotactic treatment planning becoming more 

desirable, it is important to understand how spatial distortion in MR images 

affects the total error in a typical stereotactic procedure. Only then may its 

significance be judged. Previous work has concentrated on measuring the spatial 
distortion in MR images17,73,74 or in the final stereotactic coordinate 27,107 as 

performed in Chapter 5. However, the errors from MRI have not previously been 

combined with other errors in a stereotactic procedure and hence not viewed 
from the perspective of the final treatment error. 

The accuracy in the final target coordinate in stereotactic neurosurgery using 
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a modern frame and planning from CT images frequently has been quoted as be- 

ing sub-millimetric. 112 However, more recently, some doubt has been raised over 

these values; Maciunas et a!. 63 thoroughly measured the 'total' error in a typical 
CT planned stereotactic neurosurgical biopsy procedure using the BRW system, 
including measurements of the effect of parameters such as weight-bearing and 

reapplication of biopsy arc jigs, and reported typical total 'application accuracies' 

of between two and three millimetres. The use of MRI for stereotactic treatment 

planning has often been criticized as it was believed that errors introduced by 

spatial distortion in the images would result in treatment errors larger than one 

millimetre. However, if errors from other sources in the stereotactic process are 
larger than initially expected then the relative contribution of the error from 

spatial distortion in MRI to the total error may be smaller than expected. 

At the end of a stereotactic procedure, the error which is of interest to the 

clinician is the error relating to the difference between the centre of the planned 

target coordinate and the actual target in the patient's brain. This will be termed 

the treatment error. This error may be broken down into errors associated with 

various sub-processes. 
The final treatment error will be considered to be a result of - 

1. Mechanical inaccuracies in the fitting of the stereotactic apparatus to the 

patient and performing the treatment. This may manifest itself at a mini- 

mum of four distinct occurrences throughout the stereotactic procedure. 

(a) Non-rigid attachment of the head ring to the patient. In the BRW 

system attachment is achieved either by pins attached to the patient's 

skull or by a mouth bite and occipital pad. In the latter case, the posi- 

tion of the head ring is likely to be affected by the level of cooperation 

of the patient through time, in particular their ability to maintain a 

constant pressure on the mouth bite. For patients attached to the 

head ring via pins, as is the preferred method in Nottingham, it has 

been observed that the MR compatible pins, made of plastic with 

an aluminium core, have bent under the strain of being forced into 

the patient's skull. While this deformation is believed only to occur 
during fixing, there remains a possibility that the head ring may move 
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slightly relative to the patient through time. It is worth noting that 

it is only movement of the head ring relative to the patient between 

imaging and treatment that is important. 

(b) Mechanical inaccuracies in the 'helmet' of fiducial rods used, or in 

the attachment of the fiducial system to the head ring. These could 
be a result of miscalibration of the apparatus, wear and tear, or small 
deformations of the apparatus under the weight of the patient. The 

error could present itself as either a constant offset, or as random 

errors due to non-rigidity of the apparatus. A constant offset may 
be considered as spatial distortion of the image. For example, a 
damaged, bent fiducial rod in an undistorted image is analogous to 

an undamaged, correctly positioned fiducial rod in an image where 

the region containing that rod is spatially distorted. These errors will 

affect the calculation of the target coordinate. 

(c) Mechanical inaccuracies in the treatment apparatus. Whether using 

a stereotactic biopsy jig or radiotherapy linear accelerator, the target 

coordinate set on the apparatus may not be the physical target co- 

ordinate actually treated. This error could arise in the biopsy system 

due to stress from the weight of the patient or from the biopsy needle 

flexing during insertion into the brain. For treatments using a radio- 

therapy linear accelerator, an error will be introduced from small dif- 

ferences between the centre of the radiation field set in the apparatus 

and the actual field delivered. To increase the uniformity of the high 

radiation volume treated and reduce high radiation dose 'hot spots' 

outside this volume, radiation delivery is usually performed while the 

linear accelerator's gantry is rotating around the patient; the centre 

of the radiation field would be expected to shift slightly with gantry 

angle due to changes in the weight distribution of the gantry. From 

experience of mechanical calibration of modern linear accelerators, it 

is highly unlikely that the movement of the centre of the radiation 

treatment field will be less than one millimetre during rotation of the 

gantry or the couch. The weight of the patient on the treatment 
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couch and head ring fixation apparatus also may cause small changes 

in the treatment coordinate. 

(d) Brain deformation. During a stereotactic guided craniotomy, the brain 

may physically deform once a portion of skull has been removed and 

no longer supports it. The shape of the brain may also be modified 

by changes in intracranial pressure from the anaesthetic process, if 

used. Mean differences of 4.4 mm have been measured between 

the surface of the brain in images and the surface when exposed 

during surgery. 43.71 While the error deeper in the brain might be 

expected to be less than this value, it is unlikely to be negligible. By 

way of comparison, the displacement of the brain at different head 

orientations with the skull closed is believed to be less than 1 mm43 

while the brain displacement due to cardiac pulsatility is less than 

0.5 mm. 89 

2. Imaging. Two factors which may introduce errors via images acquired for 

planning are distortion and resolution. Distortion can be in the form of 

spatial shifting or pixel intensity modification. Small distortion of pixel 

intensity may affect the localization of fiducial rods by methods such as 

finding their centre of mass, as well as clinical interpretation and target 

selection. The effects of spatial distortion form the main subject of this 

thesis. It might be expected that a finite voxel size would limit the final 

target accuracy. However, in an image with large signal to noise, so long 

as each fiducial rod spans at least two pixels in both in-plane axes, then its 

centre of mass will yield its centre to a sub-pixel accuracy. Partial volume 

effects in the through-slice direction also will not affect the localization 

of the centre of mass of a fiducial rod so long as it is straight. It would 

seem that the larger effect of finite voxel size would be on the detection 

of the target centre. If this is selected on a pixel by pixel basis, then the 

uncertainty in the target coordinate will be related to the voxel dimensions. 

However, if a treatment volume is defined over areas in several slices and 

the target point is taken at the centre of this volume, then its location may 
118 be defined to sub-voxel accuracy. 
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3. Treatment planning. Uncertainties are introduced by the clinician during 

selection of the target point on the images. Unlike the fiducial rods whose 

centres are usually detected to sub-pixel accuracies by methods such as 
finding the centre of mass, the treatment target is usually defined quali- 

tatively on a pixel by pixel basis in the images. Repeated selection of the 

target on different occasions or by different clinicians, may result in a vari- 

ation of target coordinate, all of which may be clinically acceptable. This 

error has been estimated to lie between 0.3 mm and 2.4 mm for various 

well defined, near-point sized anatomical landmarks in the head. 41,42 It 

might be expected that this error would be larger when manually choosing 

the centre of a distributed target. 

A number of terms to describe some of these errors have been defined by 

the group at Vanderbilt University (Nashville, TN, USA)27,30,69 which includes 

Fitzpatrick and Maciunas. These are Fiducial Localization Error (FLE), which is 

the error with which the centre of a fiducial rod is found, and Target Registration 

Error (TRE), which is the error in a non-fiducial point in the image after being 

transformed to stereotactic space under the influence of FLE. Hence, the THE 

is the error in the final quoted target coordinate, and has been referred to as 

the error in the final target coordinate throughout this thesis. It is not the same 

as the treatment error ('application error' in Vanderbilt terminology) as it does 

not incorporate any mechanical errors associated with actual treatment. Another 

useful term is the Target Localization Error (TLE) which measures the error in 

localizing the centre of the target point in the image set. If the target is defined 

on a pixel by pixel basis, this will be of the order of the voxel dimensions; if it is 

defined by a centre of mass (or other geometric) method it is likely to be smaller 

than a voxel's dimensions. 

Many of the separate errors described above have been measured previously. 
In particular Maciunas et a!. 63 have considered the errors introduced from sources 

such as the stereotactic frame, CT imaging protocols, aiming accuracy, and the 

weight-bearing properties, of a variety of popular stereotactic neurosurgical sys- 

tems, including the BRW system (which includes the BRW and CRW stereotactic 

jigs). Previously, it would appear that the accepted view was that the final treat- 
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ment error was a combination of any errors from imaging (in particular image 

distortion) and the mechanical precision with which the target coordinate could 
be set on the treatment jig. By this reasoning, the millimetric scales on the 
treatment jig and sub-millimetre CT pixel sizes suggested localization errors of 
less than one millimetre. This fostered the view that spatial distortion of the 

order of a millimetre or two in MR images was unacceptable. Maciunas et al. 63 

found that a typical patient exerted a weight-bearing force of between 100 N 

and 250 N; when applied to a phantom, these caused mean errors in treatment 

position of 0.3 mm and 2.0 mm (worst case errors of 1 mm and 5 mm). Un- 

fortunately, these authors did not investigate the source of this error, and so 
it is unclear whether additional mechanical adjustments could be introduced to 

correct it. However, they found no measurable error if the phantom was stressed 

with less than 50 N, and it is interesting to note that many phantoms used to 

measure errors in the stereotactic process may weigh less than this. The weight 

of the phantom used in this thesis was approximately 180 N. Reapplication of a 

phantom to a treatment jig was found to lead to a mean error of 0.3 mm in the 

treatment point (worst case error 0.8 mm). They found no significant variation 
in the treatment error with target position in the image. However, they found 

what appeared to be a positive linear relationship with treatment error and CT 

slice thickness, as well as a positive linear relationship with treatment error and 

the angle to which the CT slice was tilted away from perpendicular to the fiducial 

system. Extrapolating to zero CT slice thickness (perpendicular to the fiducial 

system) gave a mean error of 1.6 mm and worse case error of 2.3 mm, which 
they associate with the mechanical accuracy of the whole stereotactic system. 

One of the interesting points raised by their work was the dependence of 
treatment error on slice thickness and slice angle. As all fiducial rods are straight, 

and assuming a symmetric image slice profile, the centre of mass method should 

correctly identify the centre of a fiducial rod regardless of slice thickness or 

orientation. Mathematically, as described in Chapter 5, the slice transform matrix 
(STM) does not favour any particular orientation of the image slice relative 

to the fiducial system (so long as all fiducials may be visualized separately). 
Hence, the dependence on slice angle is difficult to explain. The dependence on 
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slice thickness could be explained by the size of the target points used in their 

phantom; these were formed from the tip of a2 mm diameter rod, tapering to 

the point over 2 mm. This could not have been identified by a centre of mass 

method and therefore its TLE would depend on the voxel size. 
The work of Maciunas et a!. 63 would suggest that even with 'perfect' imaging 

and the use of targets which can be located precisely in the image, typical errors 
in the final treatment coordinate of 1.6 mm can be expected (up to 2.3 mm in 

the worst case). They also made the point that from a clinical point of view, it 

is a 'worst case' error rather than a mean error which is important. The risk of a 

neurosurgical procedure will depend more on how wrong it could be; it is of no 

comfort repeating surgery on a patient in the knowledge that the mean target 

will be closer to the desired target. They chose the 'worst case' error as "the 

mean error of localization at a confidence interval of 99.9% (a certainty of 999 

cases out of 1000). " 

The work in this chapter aims to investigate further the relationship between 

the error in localizing the centre of the fiducial rods and target point on the calcu- 
lated stereotactic target coordinate, and hence gain an increased understanding 

of the effects of spatial distortion in MR images on the target coordinate. This 

has been studied elsewhere by the use of fiducial rod perturbation 30,41,42,61 stud- 

ies and numerical analysis. 30 

Many studies have considered perturbations in either a generalized fiducial 

system or in systems developed locally. Lemieux & Jagoe61 performed numerical 

perturbation studies of the fiducial rod positions in the BRW system. Their 

method randomly perturbed the nine fiducial rods in the image plane, with a 

standard deviation of 1 mm along each axis (the pixel dimensions). The error 

caused by the resulting STM on unperturbed target points was then calculated for 

each fiducial perturbation pattern. Fiducial rods were identified using a centre of 

mass method. They found a THE of 1.6 mm with standard deviation 0.8 mm if 

the STM was calculated using the three diagonal fiducial rods (the method used 
in this thesis). If all nine fiducial rods were used, the THE was reduced slightly 

to 1.4±0.8 mm. Interestingly, they reported that the largest TRE's occurred in 

fiducial perturbation patterns which mimicked a tilt in the slice plane about the 
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lateral axis. They reported that the THE they measured was directly proportional 

to the in-plane pixel size, however they did not consider slice thickness. The THE 

from the perturbation studies was least at the in-plane centre of the fiducial 

system and increased with increasing radial distance from this centre. Although 

not a point considered in this work, they also studied the effect of adding a fourth 

triad of fiducial rods in a 'N' configuration, and reported that this reduced the 
THE by 40%. This could well be an important design parameter in the design 

of future stereotactic frames. 

Recently, Fitzpatrick et aL30 have produced rigorous expressions relating the 
THE to the FLE, the number of fixed fiducial points, N, and number of spatial 
dimensions in the data set to be registered. For a three dimensional image set, 

they showed that their general expression reduced to 

23 
(6.1) (TRE2(r)) (FN) 1+3 

fýý) k=1 

to second order, where k counts through the three principal axes with the origin 

at the centre of the fiducial system, dk is the distance of the target point along 

the kth axis, fk is the root mean square distance of the fiducial rods along the 

kth axis, and r= d1i + d2, j + d3k. Equation 6.1 gives an expression, which has 

been lacking for some time, allowing the error of point based image registration 

to be calculated for a range of applications, of which stereotaxis is only one. A 

linear dependence of THE on N-2 had been observed previously from simulation 

studies; "', "' this is borne out in Equation 6.1. Computer simulations were also 

performed by Fitzpatrick et a1.30 to check Equation 6.1 which they found to be 

extremely accurate. For fiducial rod perturbations of zero mean and a variance 

of s mm, placed in a configuration similar to a typical stereotactic head fiducial 

system, they calculated a THE of 2.2 mm, using three fiducial rods. This 

is higher than, although comparable with, the 1.6 mm reported by Lemieux 

& Jagoe6' above. A number of inferences were drawn from this equation by 
z 

Fitzpatrick et al. When r=0, (TRE2(r)) FN 
, giving the minimum THE 

at the centre of the fiducial system. As r increases, the THE increases, and 

approaches a r2 dependence. An increase in THE with increasing r has been 

measured before61 although it is interesting to note that Maciunas et a1.63 did 
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not measure any significant spatial variation in the treatment error. This could 

suggest that the treatment error they measured does not contain a significant 

contribution of the TRE, when using CT images for planning. Sensitivity to the 
design of the system of fiducials used comes into Equation 6.1 via the variable 
fk. This suggests that the fiducial rods should be placed as far from the centre 

of the system as possible, as well as away from the principle axes. In practice, the 

design of the fiducial system is more likely to be limited by the imaging modality, 

e. g., to be able to be placed within the imaging bore of a CT or MRI scanner. 
Also, for a fixed matrix size, increasing the field of view to include a larger fiducial 

system would reduce the resolution of the patient's anatomy. 

While the work of Fitzpatrick et a1.30 described above shows the relationship 

between FLE and TRE, it does not seek to quantify the size of the initial 

FLE; rather perturbation studies are performed. It would be useful to estimate 

a typical value for the FLE and this is done below. Also, while Equation 6.1 

shows the effect of and error in the spatial location of the fiducial rods, it does not 

include any error in the location of the target point, r, itself; in MRI, both fiducial 

rods and chosen target point are likely to be spatially distorted. Calculating the 

effect on TRE for an error in r (i. e., the TLE) as well as the FLE is not 

the same as including the effect of an error in r in Equation 6.1; doing that 

would just give information as to how the TRE varies with r. In this thesis, 

spatial distortion in MR images in both the fiducial rods and points throughout 

a phantom have been measured using Chang & Fitzpatrick's reversed gradient 

correction method. An estimate of the TRE at points throughout the phantom 

has also been measured in Chapter 5 by calculating the difference between the 

same target points from CT and MR images. This TRE includes contributions 

from spatially distorted fiducial rods and spatially distorted target points in the 

MR images. This allows the TRE measured directly to be compared to a TRE 

calculated using Equation 6.1 and this is undertaken below. 

6.2 Estimation of Fiducial Localization Error 

Fitzpatrick et a1.30 have recently analytically evaluated the relationship between 

the error in the spatial localization of fiducial points, FLE, and the resulting error 
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in the target points calculated from these fiducial points, TRE. Perturbation 

studies also have been useful in exploring this relationship. These usually assume 

that the FLE is normally distributed with a standard deviation of the order 

of half a pixel dimension. This would seem reasonable if the centre of the 
fiducial point could only be identified to the nearest pixel, giving an error of 
(±2 x pixel dimension). However, contemporary computer planning systems 

usually identify the centre of the fiducial point by a centre of mass method, or a 

variation thereof. In this case, the centre of the fiducial point may be localized 

to sub-pixel accuracy, resulting in a correspondingly smaller FLE. 

Figure 6.1 shows a representation of aMxM pixel portion of an image, 

I (x, y), containing a single contrast object of which the centre of mass of in- 

tensity is required. The object is spanned by more than one pixel in each di- 

rection. If this were not the case and the object only contributed to intensity 

in one pixel, then its centre could not be localized any more precisely that to 
(±ä x pixel dimension). The sum, A, of intensities over the portion of the image 

will be 
MN 

A=EEI(i, ß) (6.2) 
i=1 j=1 

and along the x axis, the centre of mass, COMA, will be 
MM 

COMX= Ä1: iEI(i, j) (6.3) 
i=1 j=1 

If random noise is superimposed on the intensities in the entire grid with a mean 

of zero and variance o2, then the error in A will result from the addition of 

MxM intensities values, hence 
M2 

CA Q2 = M2a2 
A- 

E 

k=1 

If Equation 6.3 is rewritten as 

COM-, = 
Ä 

where 

(6.4) 

(6.5) 

MM 

C-ýiBi and BiI(i, j) (6.6) 
i=1 j-1 
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Figure 6.1 Portion of image containing an object represented 
by intensity distribution I(x, y). The centre of mass of the intensity 
values, is calculated over the square from pixel coordinate (1,1) 
to (M, M), relative to the portion of the image chosen. 



6. Propagation of Errors in Stereotaxis 

then, as for the error in A, 

222 UC =2 QB 
i=1 

j=1 

and` 

From Equation 6.5 
G. 2 Q2 Q2 

ýCOM= - Ä2 

( 
C2 +2 

_ (COMx)2 

M 

QB=ýv2=MQ2 

M 

= MU2 Ei2 

= 
6M2(M 

+ 1)(2M + 1)Q2 

2 U2- 
(IM 

+ 1)(2M + 1)) +1 

= (COMz)2 M2a2 

N20r2/ 

(6.7) 

(6.8) 

(M + 1)(2M + 1) 1 
6 (EM12Eý1 j(2, j))2 

+ 
(EM1 Em 

1I(a, 3))2 

(6.9) 

Equation 6.9 gives an expression for the error in the calculated centre of mass 

of a spatially undistorted object in an image under the influence of noise, along 

the x axis. 7coMx varies with the level of noise, and strongly depends on M2. 

A similar expression (with the indices i and j reversed) will give the error along 
the y axis. For a fiducial rod in an image detected by the centre of mass method 

2=22 FLE - °'coNrx + ýCOMy (6.10) 

CT images were acquired of the stereotactic phantom for the work presented 
in Chapter 5 using a Siemens Somatom Plus CT scanner. The voxel size was 
0.72x0.72x3.00 mm. From regions placed over areas of water in the phantom, 

a typical intensity was 1035 with variance of 30. A typical intensity of a fiducial 

rod was 1500 and the rod diameter was 7 pixels. The expression derived above 

from the relationship that if w= xy then oL, = of (e )2 + oy 
(äv )2 
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was included in the section of the computer program written to analyse the 

stereotactic images in Chapter 5 and when applied to fiducial rods with CT 

imaging parameters as described above, resulted in typical values for the FLE 

of 6.3 µm. The value of M used was 15, and the positioning of the grid over 

each fiducial rod was performed manually. In order to allow a large value of M 
(to reduce the chance of missing pixels contributing to the fiducial rod) while 

reducing the effect of large M in Equation 6.9, a threshold of 10% (between 

maximum and minimum intensity values) was applied to all pixels in the grid and 

only those above the threshold were included in the COM or error calculations. 
For the BRW fiducial system, typical values of fk in Equation 6.1 are 130 mm, 

i. e., the distance of a diagonal fiducial rod from the centre of the fiducial system. 
For a target chosen at the centre of the fiducial system (i. e., dk = 0) and using 

the three diagonal fiducial rods to calculate the STM (i. e., N=3), Equation 6.1 

gives the THE=3.6 pm. For a target where all values of dk=50 mm, the 
THE=3.9 µm. As the target itself will be chosen on the scale of a pixel, the 

THE in targets calculated from CT images is negligible. 

Although it would be expected that the major contribution to FLE in MR 

images would be spatial distortion, it is useful to obtain a measure for FLE in 

MR images assuming no spatial distortion. MR images also were acquired of the 

stereotactic phantom for the work presented in Chapter 5 using a Siemens 1.5 T 

Vision MR scanner. In this case, images acquired using a standard spin warp spin 

echo sequence were used, with a bandwidth per point in the frequency encoding 

direction of 130 Hz. The voxel size in the images was 1.0. x1.0x3.0 mm. A 

typical mean intensity of water in the images was 550 with a variance of 104. 

A typical intensity of a fiducial rod (tap water) was 1900 with a diameter of 

4 pixels. Typical FLE's measured by the computer program were 27.0 µm. 
Although larger than the FLE measured from CT images, this is still much 

smaller than the size of a pixel. Substituting this value into Equation 6.1 as 
before, for a target at the centre of the fiducial system, the THE would be 

15.6 pm. For a target where all values of dk=50 mm, THE=17.4 pm where a 

typical fk is 110 mm for the MRI compatible fiducial frame. 

This section has outlined a method for estimating the FLE in images using a 
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centre of mass method. In practice, this error is far smaller than that often used 
in perturbation studies to evaluate the propagation of errors in the stereotactic 

process. When used in combination with the equation derived by Fitzpatrick et 

al. to relate the FLE to the TRE, a THE of less than 0.01 mm is obtained 
from CT images, and less than 0.02 mm from MR images. This suggests that 

the THE of targets chosen from images is negligible compared to other errors 
in the stereotactic process, such as those summarized in Section 6.1 above. It 

also demonstrates that the centre of mass method is adequate for the detection 

of the centre of fiducial rods. 

6.3 THE due to FLE and TLE in MRI 

Fitzpatrick et al. 30 have derived an equation (Equation 6.1) relating the THE 

to the FLE. It would be useful to have a similar expression relating the THE 

to both the FLE and the TLE, however deriving such an expression along the 

lines of Equation 6.1 was was not the approach taken in this thesis. In Chapter 5, 

a phantom was used to measure errors in the THE when calculated from MR 

images. Both the fiducial rods and target points were localized using a centre 

of mass method. In Section 6.2 above, it has been shown that the FLE in CT 

images is negligible when a centre of mass method is used to detect the centre 

of the fiducial rods. If the target point in CT images was also selected by a 

centre of mass method, as is possible with certain structures in a phantom and 

as was done with the phantom used in this work, then it would be expected 

that the THE would remain negligible. Therefore, the difference between the 

target coordinate in stereotactic space of the same phantom point, calculated 
from both CT and MR images, will yield the THE due to any spatial distortion 

present in the MR images. In this case, the THE from MRI will include the 

effects from the TLE as well as the FLE. Although an analytical expression for 

THE which depends on both FLE and TLE is not available, its properties may 

still be examined experimentally. In Chapter 5, Chang & Fitzpatrick's single slice 

reversed gradient correction method was used to measure the spatial distortion in 

both the fiducial rods and the phantom they surrounded. This may be considered 

a direct measurement of FLE and TLE due to spatial distortion. Assuming 
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that TLE=O, the measured FLE may be substituted into Equation 6.1 and the 

resultant THE calculated. This can be compared with the directly measured 
THE and differences may be attributed to the (unknown) effect of the TLE. 

For the work in this section, only one typical MR image of the phantom will 
be considered, in order to demonstrate the technique. A slice was chosen from 

the data presented in Section 5.4 with slice position z=20 mm as a typical slice 
in which the multiple edge detection required to identify all the fiducial rods, had 

worked well. Only the non-diagonal phantom rods will be considered as their in- 

slice position is less likely to change with through-slice distortion. The diagonal 

phantom rods could also have their in-plane position changed by through-slice 

distortion. This was felt to be appropriate and consistent because the single slice 

reversed gradient correction method used to measure the FLE and TLE only 

corrects (and hence measures) in-slice spatial distortion. 

6.3.1 TLE and FLE in MR Images from Reversed Gradient 
Correction 

By application of Chang & Fitzpatrick's reversed gradient correction method 

to the MR images of the stereotactic phantom (see Section 5.4), the in-slice 

TLE and FLE could be measured directly. The values quoted are the mean 
distortion values over a rod, calculated by the stereotactic computer program. 
For the rods in the phantom which appear as regions of low signal in the MR 

images, the mean distortion around the rods was measured and this was taken as 

the distortion at the centre of the rod. The results for the fiducial rods are shown 
in Table 6.1, for the phantom rods in Table 6.2, and graphically in Figure 6.2. 

The pixel coordinates of each rod are also given, with their origin shifted to the 

centre of the fiducial system. The pixel coordinates are given as measured in the 
distorted MR image, and after correction using the reversed gradient method; 

the difference between these two coordinates (i. e., the distortion) also is listed. 

All results in these tables have been converted to millimetres, using the pixel 
dimensions quoted by the MR scanner. 

From Tables 6.1 and 6.2, along with Figure 5.18, it can be seen that the 

spatial distortion measured in the fiducial rods is much larger (by a factor of 
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Figure 6.2 Distortion of the fiducial rods and target points in the 
phantom measured from MRI using the reversed gradient correction 
method. 
Values are in micrometres, for a typical MRI slice (z=-20 mm 
scanning sequence se_12b130. wkc voxel size 1x1x3 mm). 
The frequency encoding axis was horizontal. Positive distortion is 
to the right. It is interesting to note that the distortion of the 
diagonal fiducial rods is larger than the straight fiducial rods. 
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Fiducial rod 
number 

Uncorrected x 
pixel coordinate 

x distortion Corrected x 
pixel coordinate 

y pixel 
coordinate 

0 -99.016 0.417 -98.599 60.971 
1 -101.134 1.279 -99.855 -41.538 
2 -100.696 0.405 -100-291 -58-202 3 -61-090 0.490 -60-600 -104-370 
4 42-159 1.529 43.688 -104-952 
5 59.149 0.624 59.773 -105.316 
6 99-979 0-656 100-635 -60-939 
7 100.440 1.394 101-834 40-243 
8 101-675 0-477 102-152 58-170 

Table 6.1: Coordinates of the centre of mass of each fiducial rod. The mean dis- 
tortion of each rod, measured by the reversed gradient correction method, is listed 
and a corrected x coordinate (frequency encoding axis) is calculated. The fiducial rod 
numbering starts with the largest diameter rod, 0, and increments clockwise. 

between 5 and 10) than that throughout the phantom. This suggests than in 

practice, the FLE will be larger than the TLE in MRI. Two factors appear to be 

working in opposition in MR images used for stereotactic planning. Equation 6.1 

suggests that to minimize the THE the fiducial markers should be as far from 

the centre of the fiducial system as possible (i. e., increasing the fk's), while 
increasing the distance of the fiducial markers from the magnet's isocentre will 
increase the spatial distortion that they experience, thus increasing their FLE 

and the associated TRE. 

It is also apparent that the fiducial rods which cross the imaging plane di- 

agonally (namely rods 1,4, and 7) exhibit larger amounts of spatial distortion 

along the frequency encoding axis, despite being slightly closer to the magnet's 
isocentre that the other fiducial rods. This may be explained by considering a 

cylinder of differing magnetic susceptibility to its surroundings (such as a fidu- 

cial rod) placed in a static magnetic field, Bo, with its long axis parallel to the 
direction of Bo. This configuration results19,94 in no perturbation of the mag- 

netic field outside the cylinder and a constant Be inside the cylinder of --°3XB0, 

where AX is the difference in magnetic susceptibility between the material inside 

and outside the cylinder. This will result in spatial shifting of the cylinder along 

the frequency encoding axis of a spin warp MRI acquisition. If the cylinder is 

considered to be made of water (Xwater -9x10-6 ppm) and surrounded by air 
(Xnir ' : 0) then at a static magnetic field strength of 1.5 T, the inside of a fiducial 
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Phantom rod 
number 

Uncorrected x 
pixel coordinate 

x distortion Corrected x 
pixel coordinate 

y pixel 
coordinate 

0 -53.629 -0.046 -53.675 -47.616 
2 -7.425 -0.154 -7.579 -48.785 
3 6.512 -0.116 6.396 -52.758 
4 20.627 -0.106 20.524 -53.511 
5 34.768 0.103 34.871 -53.756 
6 48.293 0.151 48.444 -53.933 
7 -53-462 -0.090 -53-552 -33.684 
9 -7.013 -0.229 -7-242 -34-657 
14 -52.864 -0.107 -52.971 -19.463 
16 -6.505 -0.255 -6.760 -20-753 
17 7.266 -0.086 7.180 -7.268 
18 21-296 -0.034 21-262 -7.444 
19 34.897 0.031 34-928 -8-036 
20 49-118 0.020 49.138 -8-211 
21 -52.510 -0.114 -52.624 -5-604 
23 -6-142 -0.093 -6-235 -6-739 
24 7.355 -0.016 7.339 6.199 
26 53.597 0.087 53.684 5.636 
27 -48.229 -0-033 -48-262 8.098 
28 -34-054 -0.111 -34.165 7.220 
29 -20.022 -0.109 -20-131 7.228 
30 -5-278 -0-099 -5.377 6.429 
31 8.190 -0.101 8.089 20.646 
33 53.974 -0-112 53.862 19-795 
38 8-751 -0.226 8-525 34.582 
40 54-343 -0.079 54-264 33-652 
41 -46-989 -0-097 -47-086 53.724 
42 -32.865 -0.159 -33.024 53.563 
43 -18.786 -0-182 -18-968 53-425 
44 -4.834 -0-188 -5.022 52-933 
45 9.100 -0.157 8-943 49-873 
47 54.917 -0-089 54.828 47-381 

Table 6.2: Coordinates of the centre of mass of each phantom rod. The mean 
distortion around each rod, measured by the reversed gradient correction method, 
is listed and a corrected x coordinate (frequency encoding axis) is calculated. The 
phantom rod numbers are shown in Figure 5.4. 
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rod will experience Be -ý -4.5 x 10-6 T. Expressed as a frequency offset, Af 

(-4.5 x 10-6) x (42.57 x 106) _ -191 Hz. For the spin warp MRI acquisition used 

the bandwidth per pixel was 130 Hz and one pixel had dimensions of 1 mm in 

the frequency encoding direction. Therefore the expected spatial distortion of a 
fiducial rod would be 1.5 mm along the frequency encoding axis. This compares 

with a typical measured spatial distortion of fiducial rods with long axes parallel 

to Bo of 0.5 mm. The difference is likely to be due to an incorrect value for 

OX being used, as the fiducial rod is constructed of a plastic rod filled with tap 

water. 
If all fiducial rods were parallel to Bo the spatial distortion described above 

would not be a problem for the case of the stereotactic phantom used. The 

phantom is also a cylinder parallel to Bo and so its interior would also be spatially 

distorted by the same amount as the fiducial rods. However, this would not be 

the case for other objects, such as a human head. 

If the cylinder is tilted around one of its short axes away from its long axis 

being parallel to Bo then a magnetic field exterior to the cylinder will be created 

as well as the constant field inside the cylinder. In the extreme case of the cylinder 

being tilted by 90° (i. e., so that its long axis is perpendicular to Bo), the solution 

of both the internal and external Be fields is well known. 19,62,94 In particular, the 

internal field is -B0 to a first approximation. l9 For intermediate angles, the 

internal field would be expected to range between AXBo and -sBo. The result 

of this, applied to MRI of fiducial systems containing rods in 'N' configurations is 

that it is expected that rods will undergo differing amounts of spatial distortion 

depending on their individual orientation to Bo. The rods parallel to Bo (and the 

cylindrical phantom) all will be shifted by the same distance along the frequency 

encoding axis, while the diagonal fiducial rods will experience a different Be 

and so be shifted by a different amount. This explains the differential spatial 

distortion measured in the parallel and diagonal fiducial rods. 
The majority of the NMR signal will come from water in the main phantom. 

This will dominate the automatic measurement of resonant frequency performed 

by the MR scanner. This NMR signal will be offset due to the Be inside the 

phantom of AXBo and this will be largely compensated for by the adjustment of 
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resonant frequency. This will reduce the distorting effect of Be on the phantom 

and fiducial rods parallel to it. The diagonal fiducial rods experience a different 

internal Be and they will have little effect on the setting of resonant frequency. 

Therefore, the setting of resonant frequency will compensate less of the internal 
Be of the diagonal rods, and may even emphasize it. This explains why the 

measured spatial distortion is worse in the diagonal fiducial rods relative to the 

parallel rods. 

6.3.2 Calculation of STM's and TRE's 

From the results presented in Tables 6.1 and 6.2, two STM's may be calculated 
from MR images, and final treatment coordinates calculated for each phantom 

rod. The difference between these coordinates will highlight the effects of FLE 

and TLE. 

Using the uncorrected fiducial rod coordinates from Table 6.1 and the calcu- 
lations from Section 5.2.2, an 'uncorrected' STM may be calculated. It gives 

0.9950 -0.007141 -123.8 
STM� -0.007479 -1.0226 136.3 (6.11) 

-0.004004 -0.006171 48.87 

Using the fiducial rod coordinates corrected by the distortion value calculated 
from the reversed gradient correction method gives a 'corrected' STM as 

0.9970 -0.01334 -124.6 
STM, _ -0.007489 -1.0228 136.3 (6.12) 

-0.0008248 -0.01363 49.46 

In either case, the treatment point (x, y, z) is calculated from the in-slice pixel 

coordinates (X, Y) by 

xx 

y= STM xy (6.13) 

z 

(1) 
zl \1 

and the THE calculated as the difference between the coordinates of the same 

treatment point calculated from MR and CT images. 
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These can be applied to give various TRE's, relative to CT, for the phantom 

rods and the results are shown in Tables 6.3,6.4, and 6.5. If STM� is applied 
to uncorrected phantom rod coordinates, TRE,,,,, is obtained, quantifying the 
THE from uncorrected fiducial rods and uncorrected phantom rods. If STMC 

is applied to the uncorrected phantom rod coordinates, TRECU is obtained, i. e., 
the THE from corrected fiducial rods and uncorrected phantom rods. Finally, if 
STMC is applied to the corrected phantom rod coordinates, TRECC is obtained. 
While the TRE's are quoted as the total in-slice error, TREX and TREY are also 
tabulated separately. All calculations were performed by the computer program 

written to analyse the stereotactic images (see Chapter 5). 

For comparison with other published results, both the mean THE across 
the slice was calculated and the 'worst case' error (taken at the 99.9% con- 
fidence interval, assuming a normal distribution). For the TREuu, these were 
1-454 mm and 2.168 mm respectively, and for TRECC the corresponding values 

were 0.497 mm and 0.929 mm. 
From considering the STM's above with Equation 6.13, it can be seen that 

the final x coordinate will depend mostly on the X pixel coordinate and the final 

y coordinate will depend mostly on the Y pixel coordinate. This is because the 
first two diagonal terms are close to unity while the off diagonal terms are small, 

as a result of the orientation of the fiducial system relative to the MR images. 

This explains why, for the orientation of the fiducial system to image axes chosen, 

correcting the spatial distortion along the horizontal frequency encoding x axis 
improved the TREx but made little difference to the TREU. Although already 

suggested in Section 5.5.4 and shown in Figure 5.24 that there might be a 

preferable orientation of the fiducial system to the imaging axes, this is a subject 

that should be investigated further. 

Equation 6.1 was also applied to these data. A weakness of this equation 

would appear to be that it only considers one value for FLE throughout each 

slice. This may be reasonable in consideration of FLE's from CT images where 
the FLE may depend on a global parameter such as noise or the centre of 

marker localization method used. However, in MR images it might be expected, 

and indeed has been shown in Table 6.1 and argued in Section 6.3.1, that the 
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Fiducial rod TREU,,, (mm) TREF 
number x y x2 + y2 (mm) 

0 1.180 -0.588 1.318 0.354 
2 1.078 -0.554 1.212 0.337 
3 0.823 -0.657 1.053 0.340 
4 0.885 -0.667 1.108 0.343 
5 0.752 -0.773 1-050 0.348 
6 0-604 -0.788 0.993 0.355 
7 1-267 -0-402 1.329 0.348 
9 1.247 -0-582 1.376 0.330 
14 1-303 -0-389 1-360 0.342 
16 1.205 -0.557 1.327 0.325 
17 1.270 -0-509 1.368 0.323 
18 1.228 -0.629 1.380 0.325 
19 1.088 -0.484 1.190 0.330 
20 1.227 -0.598 1.365 0.338 
21 1.430 -0.336 1.469 0.340 
23 1.309 -0-574 1.429 0.323 
24 1.427 -0.372 1.475 0.323 
26 1-227 -0-648 1.387 0.341 
27 1-599 -0-276 1.622 0.338 
28 1-597 -0.312 1-627 0.330 
29 1.579 -0.356 1.619 0.325 
30 1.610 -0.389 1.656 0.322 
31 1-453 -0-346 1.493 0.325 
33 1.362 -0.468 1.440 0.343 
38 1.663 -0.453 1.724 0.330 
40 1.486 -0.524 1.576 0.348 
41 1.760 -0-348 1.823 0.354 
42 1.815 -0.265 1.834 0.347 
43 1.880 -0.242 1.896 0.343 
44 1.685 -0.377 1.727 0.340 
45 1.743 -0.381 1.784 0.339 
47 1.433 -0-501 1.518 0.355 

mean 1.454 

standard 0.238 
deviation 

Table 6.3: The directly measured uncorrected THE (TRE,,, d) taken as the difference 
between the treatment point of each phantom rod calculated from MR and CT images. 
The phantom rod numbers are shown in Figure 5.4. Also, the TREF calculated by 
Equation 6.1. 
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6. Propagation of Errors in Stereotaxis 

Fiducial rod TRECU (mm) 
number x y x2 + y2 

0 0.029 -0.586 0.587 
2 0-025 -0.555 0.556 
3 -0.174 -0.657 0.680 
4 -0-080 -0-670 0.674 
5 -0-186 -0.729 0.752 
6 -0-307 -0-786 0.843 
7 0.035 -0-400 0.401 
9 0.109 -0-586 0-596 

14 -0.014 -0.391 0-391 
16 -0-011 -0.564 0.564 
17 -0-008 -0-516 0.516 
18 -0.023 -0-639 0-639 
19 -0.132 -0.491 0-509 
20 0.033 -0.607 0.607 
21 0.028 -0-339 0-340 
23 0.003 -0-579 0-579 
24 0-067 -0.378 0-384 
26 -0-042 -0.660 0.661 
27 0.120 -0-276 0.301 
28 0-135 -0-313 0.340 
29 0.158 -0.359 0.393 
30 0.222 -0-395 0.453 
31 0.003 -0-351 0.351 
33 0.008 -0-478 0-478 
38 0.132 -0-458 0-477 
40 0.047 -0-533 0.535 
41 0.022 -0-360 0-361 
42 0.067 -0-294 0.302 
43 0.142 -0-262 0.298 
44 0-003 -0-389 0.389 
45 0-108 -0.394 0.408 
47 -0-093 -0.507 0-516 

mean 0.496 
standard 0.141 
deviation 

Table 6.4: TREE calculated using the STMC corrected for spatial distortion in the 
fiducial rods, but with no correction for spatial distortion in the phantom rods. 
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Fiducial rod TRECU (mm) 
number x y x2 + y2 

0 -0-017 -0-585 0-586 
2 -0-128 -0.554 0-568 
3 -0.289 -0-656 0-717 
4 -0.186 -0-669 0.694 
5 -0.134 -0.729 0.741 
6 -0.157 -0-787 0.802 
7 0-035 -0-400 0.401 
9 -0.119 -0-584 0.596 

14 -0.121 -0-390 0.408 
16 -0-265 -0-562 0.622 
17 -0.094 -0-515 0-524 
18 -0-057 -0-639 0.641 
19 -0.101 -0-492 0-502 
20 0.053 -0-607 0.609 
21 -0.085 -0.338 0.349 
23 -0-090 -0-578 0.585 
24 0-051 -0-378 0.381 
26 0.045 -0-661 0.662 
27 0.088 -0-275 0-289 
28 0.024 -0.312 0.313 
29 0.050 -0.359 0-362 
30 0.124 -0-394 0.413 
31 -0-098 -0.350 0-364 
33 -0-104 -0-477 0.488 
38 -0-093 -0-456 0-466 
40 -0-032 -0-532 0-533 
41 -0-075 -0-360 0.367 
42 -0.091 -0-293 0.307 
43 -0-039 -0.261 0.264 
44 -0.184 -0-388 0.429 
45 -0.049 -0-393 0.396 
47 -0-182 -0-507 0-538 

mean 0-497 
standard 0.144 
deviation 

Table 6.5: TRECC calculated using the STMT and target coordinates corrected for 

spatial distortion. 
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6. Propagation of Errors in Stereotaxis 

FLE due to spatial distortion is fiducial marker specific, and so the use of a 

single global FLE may not be so wise. The THE calculated from Equation 6.1 

is termed TREF. From Table 6.1, (FLE2) was calculated to be 0.311 mm2. The 

results for TREF are shown in the right hand column in Table 6.3. As (FLE2) 

was calculated from the uncorrected fiducial rod pixel cooordinates, it might be 

expected that TREF would correlate with the observed TREU'. However, as 

can be seen from Table 6.3 and the scatter plots in Figure 6.3, this does not 

appear to be the case. This could be explained by the relatively large variation 
in FLE between individual fiducial rods in MRI. 

From the results presented in this section, it would appear that the main cause 

of THE calculated from MR images is the spatial distortion in the fiducial rods. 

Correction of this distortion by the reversed gradient correction method decreases 

the measured THE by a factor between 2 and 6. Similar results have been 

reported on a patients, 27 although as discussed in Chapter 4, it is not thought 

that the use of anatomical landmarks is suitable for the evaluation of TRE. The 

near elimination of THE along the frequency encoding direction by the reversed 

gradient correction method (see Table 6.4) suggests that the implementation 

of the reversed gradient correction method with multiple edge detection works 

well. As mentioned above, for the orientation of fiducial system to imaging 

axes used for these measurements, it would be expected that distortions along 

an imaging axis would mainly affect the THE along the same axis after being 

transformed by the STM. This is borne out by the observation that correction of 

distortion along the frequency encoding axis in the image predominantly affects 

the THE along the x axis; the THE along the y axis remains unaffected by the 

correction. The magnitude of the THE along the y axis is surprising as it would 

not be expected that distortion would be observed along the phase encoding axis. 
As it remains fairly constant throughout the phantom (and in fact becomes the 

dominant source of THE after application of the reversed gradient correction 

method), it may be that it is due to a mechanical difference in the set up of 

the apparatus between MR and CT image acquisitions. It is interesting to note 

that this error is comparable to that which would be estimated from the work of 
Maciunas et alas for the weight of the phantom (180 N). The difference could 
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Figure 6.3 Plots of THE measured from a phantom 
against THE calculated by Equation 6.1. 
No correlation is seen. 
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6. Propagation of Errors in Stereotaxis 

also partly be explained from the difference in set up of the apparatus between 

CT and MR imaging. For CT imaging, the GTC head ring was rigidly attached 

to the couch, supporting both the phantom and fiducial system. During MR 

imaging, the apparatus was placed in the RF head coil resulting in most of the 

weight being supported by the fiducial system. It would not be surprising if the 

position of the phantom relative to the fiducial system changed between these 

two set ups. This would be an important consideration for future experiments 

and apparatus design, especially for MR imaging where rigid attachment of the 

head ring to the couch without stressing the fiducial system against the head coil 

could be relatively difficult. 

Inclusion of correction of the relatively small amount of spatial distortion 

of the target points made no noticeable difference to the TRE. While it is 

encouraging to see that a small TLE does not lead to a large TRE, unfortunately 

no further insight into the relationship between TRE and TLE can be gained. 
However, this is an area which may benefit from the use of computer perturbation 

studies. As seen above, the application of perturbation studies examining the 

effect of random shifts of all fiducial rods to spatial distortion in MR images 

may not be valid. This is because the fiducial rods which are not parallel to Bo 

would be expected to experience larger amounts of distortion than those parallel 

to Bo. Also, the distortion due to this effect is in the same direction along the 

frequency encoding axis for all fiducial rods; both these effects result in a non- 

random pattern of distortion of the fiducial rods. However, in the case of the 

examination of the effect of TLE on TRE in MRI, perturbation studies may be 

more useful as they would only consider the perturbations of a single point. 

6.4 Discussion and Conclusions 

The major sources of error in a frame based stereotactic process, from imaging 

to treatment, have been outlined and their magnitude assessed with reference to 

previously published literature. 

A method for estimating the error in localization of the centre of a fiducial rod, 
FLE, using a centre of mass method, has been described. This demonstrates 

that the centre of mass method results in a typical FLE of less that 0.05 mm 
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6. Propagation of Errors in Stereotaxis 

in an undistorted image. 

The spatial distortion of the fiducial rods in MR images was measured and 
found to be of the order of one millimetre. It was observed that the diagonal 

fiducial rod in the 'N' configurations experienced between two and three times 

more spatial misregistration than the parallel rods. A possible reason for this due 

to magnetic susceptibility differences was discussed. This observation suggests 

that studies examining the effect of FLE in MRI should consider systematic and 

anisotropic as well as random perturbations of the FLE. 

The error in the final target coordinate, TRE, planned from MRI has been 

examined in more detail for a single slice than was done in Chapter 5, using a 

phantom. By use of Chang & Fitzpatrick's reversed gradient correction method 

it was found that the major source of TRE was spatial distortion of the fiducial 

rods. Correcting the distortion in the fiducial rods reduced the TRE in the 

phantom from between 1.0 mm and 1.9 mm to between 0.3 mm and 0.8 mm. 
This results in the TRE being comparable, and in some cases less than, errors 
from other portions of the stereotactic process. It also is comparable to the 

TRE's measured elsewhere; in particular to those measured of rods in a cadaver's 

head by Sumanaweera et al. 107 using a 1.5 T MRI system, who quote uncorrected 
TRE's of between 1.5 mm and 2.6 mm, reduced to between 0.4 mm and 0.5 mm 

after reversed gradient correction. Correction of MR images by the reversed 

gradient method has been ruled out in clinical practice due to the potential 

induction of artefacts (see Chapter 4). However, as the main source of TRE 

appears to be the distortion in the fiducial rods, it could be advantageous to 

quickly manually segment the fiducial rods and object in the MR images and 

apply the reversed gradient correction to the fiducials rods alone. This would 

remove a major contribution to the TRE without the risk of introducing artefacts 
into the images which will be clinically interpreted. 

To judge the importance of the TRE from MRI, it is necessary to compare 

this error with other expected errors from the stereotactic process. The following 

values are qualitative estimates of typical values reported in various publications, 

along with the TRE measured here. The list is far from exhaustive; in particular 

errors reported by Maciunas et a!. 63 associated with weight-bearing have been 
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6. Propagation of Errors in Stereotaxis 

Clinical target selection 
Frame reapplication 
Mechanical inaccuracies 
(including brain motion or 
linac isocentre movement) 

THE from MRI (uncorrected / corrected) 
Treatment error (uncorrected / corrected) 
Treatment error (assuming THE=O) 

mean 'worst case' 
1-0 
0.3 
1.0 

1.5 / 0.5 
2.1 / 1.5 

1.4 

4.0 
0.8 
4.0 

2.2 / 0.9 
6.1 / 5.8 

5.7 

Table 6.6: Estimation of typical values of errors of various processes in a stereotactic 
treatment. All values are in millimetres. 

excluded. This is not because they are considered unimportant but because their 

source is unclear and may be compensated for in many existing stereotactic pro- 

cedures. For example, the devices for rigidly attaching the head ring to couches 

in Nottingham have adjustments to allow the frame to be brought to the vertical, 

as defined by calibrated isocentric lasers. Once this has been performed, it would 
be expected that any deformations of the head ring due to effects of the patient's 

weight would be constant between imaging and treatment. The estimated values 

are summarized in Table 6.6. The final treatment error is estimated by assuming 

that the individual errors are independent and may be added in quadrature. The 

treatment error arising if THE=O is also included for comparison, to allow the 

size of the contribution of error from the THE from MRI to be judged. These 

values are comparable to estimates of treatment errors published elsewhere, and 

summarized in earlier sections of this chapter. 

Table 6.6 suggests that a THE of 0.5 mm from MRI would not contribute 

significantly to the treatment error, assuming that reasonable values for the other 

errors have been chosen. Even if the THE is larger than 1 mm, it only results 
in a relatively small increase in the treatment error. Although these estimates of 

the various errors involved are only approximate, they demonstrate the point that 

in order to judge the significance of a calculated TRE, it must be compared to 

other errors in the stereotactic process. In particular, values such as these should 
be borne in mind by the clinician when planning stereotactic treatments. 

It is interesting to note that the errors in THE arising from MR images 

acquired in the presence of a stereotactic head ring and fiducial system are of 
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6. Propagation of Errors in Stereotaxis 

the order of THE reported elsewhere from the three dimensional registration of 
MR to CT images. ", "', 115.118 It should be mentioned, however, that a range 

of measures of the success of the registrations was used in these works. That 

used by West et a!. "8 is probably the closest to the THE used in this chapter. 
This suggests that the perceived advantages (i. e., increased accuracy) of using a 
frame based fiducial system for both MR and CT imaging may not materialize in 

practice. If this is the case, then many benefits would be obtained by removing 
the constraint of having to acquire MR images of the patient with the stereotactic 

apparatus, not least the increased comfort of the patient, the increased flexibility 

of the schedule for performing the MRI scan, and the potential of registering 

post-treatment images to the images used for planning in order to assess the 

success and accuracy of the actual treatment. This conclusion has been reached 
by many researchers several years ago and investigated further, to the extent 

that the suppliers of the BRW stereotactic system, Radionics, currently market 

a package to register MR images acquired in the absence of a fiducial system 

to CT images acquired with the BRW head ring and fiducial attached, with the 

USA's FDA approval. 
Despite the amount of work published in recent years regarding the use of 

MRI for stereotactic planning, it is felt that the point raised by Maciunas et 

a!. 63 and mentioned in Section 6.1 above, regarding the importance of the 'worst 

case' error still stands and has not been fully addressed. It is felt that what will 
finally convince the majority of clinicians involved in stereotactic treatments of 

the validity of the use of MRI in stereotaxis is not the numerical accuracy alone, 
but the quantification of any addition risk to their patients compared to their 

experience of planning from CT. 
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Chapter 7 

Conclusion 

The main aim of the work presented in this thesis was to implement a thor- 

ough method for quantifying the errors introduced in a neurosurgical frame-based 

stereotactic procedure by the use of MR rather than CT imaging techniques. To 

do so, Chang & Fitzpatrick's reversed gradient correction method was imple- 

mented, validated, and used. 
Spatial distortion in MR images typically led to an error in the final target 

coordinates of between 1 mm and 2 mm. The main source of this distortion was 

identified as the MRI compatible GTC head ring used. 

Correction of the spatial distortion was possible; this reduced the typical 

error in the final target coordinate to less than 0.5 mm. However, artefacts were 

observed in some corrected images produced by the reversed gradient method. 

The main source of these were believed to be imperfect edge detection in the 

MR images. Due to the potential problems of artefacts in corrected images, 

interfering with clinical interpretation of the images, it was concluded that the 

reversed gradient correction method should not be used to produce corrected 
images for stereotactic procedures. Its use was limited to the production of 

quantified distortion maps. Typical values of distortion in localized regions in the 

vicinity of the final target coordinate may be provided to the clinician to aid the 

planning process. 
In order to study some of the effects of spatial distortion in MRI, a phantom 

was constructed to mimic a head, containing a number of spatially discrete points. 
By comparison with CT images, assumed to contain no spatial distortion, the 
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error in the final target coordinate then could be measured directly. The use 

of the phantom as a reasonable substitute for a brain was verified, in terms 

of distortive properties. The phantom was used to demonstrate the additional 
distortion caused by the stereotactic apparatus, in particular the GTC head ring. 

The effect of different MRI acquisition schemes on spatial distortion of the 
final target coordinate was studied. It was found that the amount of distortion 

varied with the bandwidth per point of the acquisition only, and not with the 

sequence type. These measurements were repeated, with similar findings, on a 

second MRI scanner with the same magnetic field strength of 1.5 T but with 

a different construction. No significant difference was seen between spatial dis- 

tortion on both MRI scanners, for comparable image acquisitions. This study 

highlighted the importance of quoting MRI acquisition parameters, in particu- 

lar bandwidth per pixel, when publishing or discussing results. Without these 

details, comparison between imaging centres is difficult, reducing the ability to 

appreciate the results and conclusions of others in a local setting. 

Once the error in the final target coordinate, determined from MR images, 

was measured, it could be considered along with other errors which occur in a 

stereotactic process. This was investigated, with reference to errors published 

elsewhere, to allow the effect of the error introduced by spatial distortion in MRI 

to be considered on the coordinate of the actual point treated. This brief analysis 

found that the use of MR rather than CT images would increase the mean error 

in typical treatment coordinate from about 1.4 mm to 2.1 mm. 

The use of MRI for planning frame-based stereotactic procedures increases 

the error in the treatment coordinate. However, whether this is important will 

need to be judged clinically on a case by case basis. It also should be viewed with 

the findings published elsewhere, that the accuracy of the actual treatment point 
in a neurosurgical stereotactic procedure planned using CT images is unlikely in 

itself to be sub-millimetric. 
With the contribution of spatial distortion in MRI quantified, it would appear 

that three courses of action may be taken regarding the use of MR images in 

stereotactic planning - 

1. Accept the additional error in the treatment coordinate due to spatial dis- 
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tortion present in MRI. For many clinical cases, an error of a few millimetres 

may be acceptable. In particular, it may be that an increased contribution 

to the treatment error from spatial distortion is offset by improved local- 

ization of some targets due to the improved soft tissue contrast in MRI. 

While the contribution to the treatment error from spatial distortion in CT 

images is negligible, the error in visually locating the target often may be 

greater. Considerations such as these are difficult to quantify, yet may be 

an important contribution to the treatment error. They are usually ignored 

in the conclusions of studies considering the accuracy of stereotaxis and 

thus may not allow a true comparison between the use of MRI and CT to 

be assessed. 

2. Application of a distortion correction method prior to performing the stereo- 

tactic planning. Both the reversed gradient and phase map correction 

methods have been applied to MRI previously in other centres. The re- 

versed gradient correction method has been used in this work. It was 

concluded that while the reversed gradient correction method could be ap- 

plied to MR images acquired in a stereotactic setting, it was not wise to 

use it to produce corrected images to be interpreted clinically due to the 

potential of introducing artefacts. Although not studied in detail here, the 

phase map correction method also suffers from limitations in application 

to MR images of stereotactic apparatus. Limitations of both techniques 

may be overcome by further work. 

3. Frameless MRI stereotaxis. As mentioned in Chapter 6, the additional error 
introduced by using MR images in stereotactic planning is similar to the 

error measured after frameless co-registration has been performed between 

MR and CT images. This raises the possibility of acquiring MR images 

without the presence of any stereotactic apparatus and registering these 

images to CT images acquired of a patient attached to the stereotactic 

apparatus. This has been investigated and implemented in a few centres 

and its use becoming more generally accepted. This method has a number 

of advantages. The patient is not attached to the stereotactic apparatus 
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for the MRI scan. This results in less discomfort to the patient, eliminates 
the sources of spatial distortion associated with the stereotactic apparatus, 

and allows more flexibility in the scheduling of the MRI scan. Discomfort 

to the patient is reduced not only due to a reduction in the duration for 

which they must be attached to the stereotactic apparatus, but as the 

apparatus no longer needs to be MRI compatible (in particular, physically 

small enough to fit within the RF head coil), its design may facilitate 

patient comfort. The possibility also exists of registering images acquired 

after surgery to those acquired before, to observe the accuracy of the 

treatment. It would appear that this route, with or without MRI distortion 

correction, will result in the best practical implementation for incorporating 

MRI into the stereotactic planning process. 

It also was possible to use the reversed gradient method to correct spatial 
distortion and demonstrate a resulting improvement in accuracy of two contem- 

porary echo planar based MRI techniques, namely BOLD fMRI and the production 

of ADC maps. A large improvement in the quality of ADC maps was observed 

when the reversed gradient method was used to correct EP images acquired on a 
Siemens Vision MR scanner. This improvement was dependent on the properties 

of the Vision magnet system which allowed the effects of the diffusion weighting 

gradients to be considered as constant throughout the EPI acquisition. However, 

this may not be the case for other MRI systems. The method used to apply the 

reversed gradient method to correct distortion in EPI fMRI data appears to be 

valid, although no significant improvement in the overlay of areas of activation 

was observed. 
Finally, a comparison was performed between the reversed gradient correction 

method and a phase map correction method. This highlighted the strengths and 

weaknesses of both methods, as well as identifying some important MRI acqui- 

sition parameters. In particular, the reversed gradient method introduces unac- 

ceptable artefacts in the corrected image if applied to MR images acquired with 

gradient echoes or half Fourier techniques. The phase map correction method 
introduces fewer artefacts in to the corrected images and would appear to be the 

more robust method for image correction in a general MRI setting. 
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