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Abstract

Cosmic strings are linear concentrations of energy that may have been formed after
cosmological phase transitions in the early universe. Cosmic superstrings are analo-
gous objects arising in string theory, and in particular in models of brane inflation. The
latter possess two particular features, which differentiate them from the ordinary cos-
mic strings: a reduced intercommuting probability, and the ability to form junctions.
This thesis is concerned with the dynamics and cosmological implications of cosmic
strings and superstrings with junctions.

In Chapter 1, we give a brief introduction to the standard Big Bang model and the
inflationary paradigm. We also discuss cosmic string formation after the spontaneous
breaking of an Abelian U(1) gauge symmetry in the early Universe. In Chapter 2, we
present an overview of cosmic string dynamics using the Nambu-Goto method. We
discuss the properties of individual cosmic string segments and loops, as well as net-
work evolution in an expanding Universe. We also introduce cosmic superstrings, and
review the Nambu-Goto approach to study the evolution of junctions and the kinematic
constraints that govern their formation. We conclude with the study of junctions in an
expanding spacetime and present an exact solution for a closed loop of three strings
and two junctions in a de Sitter Universe.

In Chapter 3, we compare the two different approaches developed to study the dy-
namics of strings with junctions. We first extensively study the dynamics and stabil-
ity of a cosmic string loop with junctions using the modified Nambu-Goto approach.
Comparing our results with a field theory model that permits junctions we find very
good agreement. The Nambu-Goto method is once again confirmed to be a good ap-
proximation for studying cosmic string configurations.

In Chapter 4, we review the observational signatures of cosmic strings. More specif-
ically, we concentrate on their gravitational effects, discussing results and constraints
from lensing, gravitational radiation, CMB and pulsar timing. We also present recent
results for the case of cosmic (super)-strings with junctions.

Chapter 5 is concerned with the cosmological implications of cosmic superstring
networks. We first study the scaling patterns of such networks for different values of
the string coupling g, and different charges (p,q) on the strings. We then focus on
their CMB signatures, and derive upper bounds for the fundamental tension ux using
CMB and pulsar timing constraints. The difference between the scaling behaviour of
the networks at high and low values of g, is imprinted as a movement of the position
of the peak in the B-mode spectrum. Together with the constraints on Gur from CMB
and pulsar timing, this allows for the exciting possibility to constrain the value of the
string coupling g, using CMB data. We conclude in Chapter 6.



Units and Notation

We employ natural units o = ¢ = kg = 1. Greek indices y, v are spacetime indices
taking the values 0,1, 2,3 and repeated Greek indices are to be summed over these

values. The metric signature is (+,

—, —, —). In the following table, we present a sum-

mary of the most commonly used symbols in this thesis.

Symbol Ref. Definition

a (1.1) Scale factor

H (1.9 Hubble parameter
1) Sec. 1.4 Cosmic string tension
o Sec. 2.3 Spacelike worldsheet coordinate
L Sec. 2.3 Length of a cosmic string loop
T Sec. 2.3 Oscillation period of a cosmic string loop
P Sec. 2.4 Intercommutation probability

L(t) Sec. 2.4 Correlation length
£ Sec. 2.4 The scaling solution L(t)/t
p (2.37) The energy density in the long string network
v (2.42) Root mean square velocity of string segments
¢ (2.46) Loop formation efficiency
k (2.48) Curvature parameter

gs (2.58) String coupling

s(t) (2.60) The value of o at a junction

i 3.6) The tension of a (p;, g;) string in flat spacetime
R Sec. 3.4 Ratio of tensions y0/(2u,) for the butterfly loop
R Sec. 3.4 Ratio of tensions p;/(2u,) for the butterfly loop
P Sec. 4.3 Gravitational radiation power
r (4.14) Radiative efficiency coefficient
© Sec. 4.4 Fractional temperature fluctuation

Pi; (5.12) Microphysical intercommuting probability
w (5.13) Model-dependent volume parameter
i (5.14) Self-interaction coefficients

d¥, (5.15) Cross-interaction coefficients

M; (5.21) Power spectrum density
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Chapter 1

Introduction

1.1 The Standard Cosmological Model

In this chapter, we will introduce the standard cosmological model (1, 2, 3, 4]. We
will start with the Friedmann-Lemaitre-Robertson-Walker (FLRW) description of our
Universe, and then provide a brief overview of its thermal history. The Hot Big Bang
model can explain the observed expansion of our Universe, the origin of the Cosmic
Microwave Background Radiation, the synthesis of light elements (nucleosynthesis)
and the formation of large-scale structure. However, the model requires a set of very
peculiar initial conditions. The inflationary paradigm manages to determine these ini-
tial conditions, as well as the primordial perturbations that seed the observed structure

in the Universe.

As we will see, observations provide very good evidence for our cosmological
model until the nucleosynthesis era. Before that, particle physics models predict a

series of phase transitions, which are often associated with the production of topologi-
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cal defects, and in particular cosmic strings [5, 6]. Cosmic strings are line-like defects
which stretch across cosmological sizes and are sufficiently massive to have important
gravitational effects. Cosmic superstrings are analogous objects arising in string the-
ory and they have generated a fair amount of interest, since they can provide a link

between string theory and cosmology [7, 8, 9, 10].

1.1.1 The FLRW Universe

The cosmological principle states that, at any given cosmic time, our Universe looks
the same on large scales (> 100 Mpc), independently of the position of the observer or
the direction s/he prefers to look in. The spatial isotropy of the Universe on large scales
is best indicated by observations of the Cosmic Microwave Background Radiation' —
it is extremely uniform on large scales, exhibiting only minute fluctuations. We also

know that our Universe is expanding, following Hubble’s law.

In General Relativity, our spacetime can be written as R x ¥, where R represents the
time whereas X is a maximally symmetric three-dimensional space. The line element

for an expanding, homogeneous and isotropic Universe can be written as

ds? = dt? — a®(t)d¢?. (1.1

In equation (1.1), ¢ is the cosmic time, dI? is the comoving® three-dimensional line ele-

ment and a(t) is the scale factor, which describes the scaling of the comoving distances

''The Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) data were released in January

2010, see (11, 12, 13, 14].
?In comoving coordinates, the location of a freely moving object (e.g. a galaxy with negligible

peculiar velocity) is fixed.
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due to the expansion. It will be often useful to define the conformal time 7 as

dt
dr = — .
T OB (1.2)
and write equation (1.1) as
ds® = a®(r) [dr® — df?] . (1.3)

The metric (1.1) is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, and

in spherical polar coordinates r, 8, ¢ it takes the form [15]

dr?
1 — kr?

ds? = dt? — a*(t) ( + 72d6? + 12 sin? 9d¢2) , (1.4)

where k is the constant spatial curvature. It is useful to note that (1.1) is invariant under

k
k— —, (1.5)
||
r— /|klr, (1.6)
a

(1.7)

T

which means that we can consider three cases for the curvature. These are k =
—1,0 and 1 for open, flat and closed universes, corresponding to hyperbolic, flat Eu-
clidean and 3-sphere local geometries. There is now strong observational evidence that
the geometry of our observable Universe is spatially flat, up to 1% [16]. With k = 0,

the spatial part of the metric (1.1) is locally Euclidean.

If the comoving distance between two objects is ¢, their proper (dt = 0) radial

distance d is
d = a(t)X. (1.8)
Hence the expansion, or recessional, velocity is

v = Hd, (1.9)
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where the rate of expansion H = % is the Hubble parameter (note that dots denote
derivatives with respect to t), which is time dependent®. The last equation is Hubble’s
law: Galaxies far away seem to be receding from us with a velocity proportional to
their distance [18]. The Hubble parameter sets the characteristic time and length scale

of the observable Universe (t,d ~ H™1).

In order to determine the behaviour of the scale factor a(t), we need to solve the

Einstein equations in an FLRW background spacetime. They are [15]
1
Guw =Ry — §Rg,,,, = 8rGT,,, (1.10)

where R, is the Ricci tensor, R the Ricci scalar, T}, is the energy-momentum tensor
and G is Newton’s constant. Before we can solve the Einstein equations, we must
specify the matter content of the Universe. Following the usual approach, we consider

a perfect fluid. The energy-momentum tensor is
™ = (p+p)U*U" - pg"*, (1.11)

where p and p are the energy and pressure densities of the fluid, respectively, and U*
the fluid’s four-velocity. Given that the fluid must be at rest in comoving coordinates,

We€ can write
U* =(1,0,0,0). (1.12)

Thus, the form of the energy-momentum tensor compatible with homogeneity and

isotropy is

3Today, the Hubble parameter is Hy = 74.2 + 3.6 km s~ ‘Mpc ™! [17].
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The energy conservation equation V,,T** = 0 gives the continuity equation
p+3H(p+p)=0. (1.14)
Taking the equation of state to be
P = wp, (1.15)
where w = const, we can write equation (1.14) as

§+3(1+w)H=0. (1.16)

Integrating, we find

p x a3+, (1.17)

We can consider two important cases, namely matter (w = 0) and radiation (w =
1/3). The case w = 0 corresponds to p = 0, describing non-relativistic pressureless
matter. This is the state of the cold Universe, when atoms are mostly non-interacting.
It can also describe collections of stars and galaxies. When the Universe can be well-
described by p = 0, we say it is matter-dominated. On the other hand, when p =
p/3 we are in the radiation-dominated era, which describes photons and relativistic
particles moving at (almost) luminal speeds. In the matter era, the energy density falls

off as
Pm X a3, (1.18)

This can be easily understood as a decrease due to the expansion of the Universe. In

radiation, the energy density falls faster,

pr x a”?, (1.19)
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due to the additional factor coming from the redshifting of photons. More specifically,
the emitted wavelength A increases as the Universe expands, and its relation with the

observed wavelength )\ is defined in terms of the redshift z as

A
142=20_9 (1.20)
A a

Finally, from the Einstein equations (1.10) we find the Friedmann equations

| s
H+H'=2 = -2 (0+3p), (1.21)
and
.\ 2
2 (2) _8G K
H _(a) - ZF0- (1.22)

From equation (1.21), we see that for an expanding Universe (@ > 0) filled with mat-
ter that satisfies the so-called strong energy condition p + 3p > 0, we have ¢ < 0.

Following a(t) backwards in time, we hit a singularity a = 0 at ¢ = 0.

Now, let us solve equation (1.22) for the explicit dependence of the scale factor on
time for both matter and radiation domination for the simplest case of a flat (k = 0)

Universe. We find

a o« t'/? (1.23)
in the case of radiation domination, and

a x t*/3 (1.24)

in the case of matter domination. In addition, we find that the energy conservation

equation (1.14) can be derived from the Friedmann equations.

We can rewrite (1.22) using the density parameter, defined as

_ 871G p

3H2P=;C—T;, (1.25)
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where peri: = 3H?/8nG is the so-called critical density — substituting p = pgi¢ in

equation (1.22) gives a spatially flat universe. We can therefore write

k

1-1= 2H?’

(1.26)

which becomes 2 = 1 for k = 0.

The most exciting fact about the evolution of our Universe is the observational evi-
dence that, currently, its expansion is accelerating [19, 20]. This means that p+3p < 0
in equation (1.21), so that a is positive. Acceleration can be achieved by adding a

cosmological constant term to the Einstein equations. This gives
1
R, — —2-Rg,“, =81GT, — Agu. (1.27)

The cosmological constant represents the vacuum energy, which in turn can be thought

of as a fluid with a w = —1 equation of state. Thus,

pP=—p, (1.28)

and from equation (1.14) the energy density is constant — this means that the cosmo-
logical constant term will eventually dominate. Taking & = 0, p = const in equation

(1.22) and solving for the scale factor a, we find

a x eflt, (1.29)

The Friedmann equations with a cosmological constant become
(1.30)

and

. 2
HZE(E) _ &G _£+%. (1.31)
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Let us now perform some simple calculations for our flat Universe consisting of
different components labelled with the index 7, namely radiation, matter and vacuum
energy in the form of a cosmological constant (note that the value of the scale factor
today is set to unity, ap = 1). The total energy density of the Universe can be expressed

as

p= Zp H“’”—Zp‘“’(uz (), (1.32)

where from here onwards a superscript or subscript ‘0’ will denote the value of a

quantity at the present time. Consequently, the Hubble parameter can be written as
H? = H2 Y Q(1 4 2)30+w), (1.33)
The age of the Universe is

to * dz
to=[ at = [ & 1.34
0 /0 fo H{ 1 2) (1.34)

Today, the radiation term is of course negligible. Combining the above two equations

we find

o0 d
t0=/ 2 . (1.35)
O Ho(1+2)1/90,(1 + 2)8 + QY

Observations of our Universe find that it is composed of 4% baryonic matter (b), 23%
(cold) dark matter (dm) and 73% dark energy [21]. With O = 0% + © = ¢.27

and QY = 0.73 we find t; ~ 13.5 Gyr for Ho = 74.2 km s~'Mpc™~" [17].

Another important property is the existence of a particle horizon, which determines
the size of the observable Universe. More specifically, the particle horizon is defined
as the maximum distance a particle could have travelled in the age of the Universe.
Photons follow null radial geodesics, so the metric (1.1) gives

dy(t) = a(t) /O ai(i—) (1.36)
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For a flat universe, the horizon size is dy = 2t for radiation and dg = 3t for matter.

Particles separated by a distance > dy are causally disconnected.

1.1.2 A brief history of the Universe

Following the history of our expanding Universe back in time, we necessarily reach
a singularity at a = 0 — the Big Bang. There, the energy density approaches in-
finity and, of course, classical General Relativity breaks down and a quantum theory
of gravity is needed. The Hot Big Bang model is the most successful description of
our Universe after this initial singularity. The associated energy scale, which marks
the era of our uncertainty, is known as the Planck scale. The corresponding Planck
mass is m, ~ 10'® GeV , the Planck length is [, ~ 107% m, and the Planck time is
t, ~10"%s.

As we saw in the previous subsection, the density of radiation scales as p, & a™,

faster than the one of non-relativistic matter that scales as p,, < a~3. The present state
of the Universe is dominated by a cosmological constant with a significant contribution
from matter, while the radiation component is negligible. On the other hand, the very
early Universe was radiation dominated. To see when radiation becomes important,

we can define the matter/radiation equality time t., as a time for which

Pm(teq) = pr(teq)- (1.37)
We then find
Q(O)
1+ 20y = —— =~ 3200. (1.38)
0

For z > z.,, the Universe is radiation-dominated. We will later show that in the
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radiation era we can write
pr ox T4, (1.39)
where T is the temperature. We thus find the important relation
1
T, (1.40)
a

so that, moving back in time, the Universe gets hotter. The energy of particles also in-
creases with increasing temperature. We can therefore deduce that, when the Universe
was young, hot and dense, the various particle species were in relativistic motion and
were interacting strongly with each other. The basic assumption following this reason-
ing is that the early universe was in thermal equilibrium, and we can use the relativistic

perfect gas approximation®.

The particles in thermal equilibrium are muons, neutrons, protons, electrons, neu-
trinos and their antiparticles, as well as photons. Fermions (+) are described using
Fermi-Dirac distributions, while bosons (—) are described using Bose-Einstein dis-
tributions. Let us first define n4(P) to be the number density of species A in the

momentum interval (P, P + dP) and use ¢ = kg = h = 1 units. We then have

na(P) = 2—97TA—2P2[6E*“(P)/T + 1)1, (1.41)

where E% = m?% + P? is the energy of a particle of rest mass m 4 and momentum P,
while g4 is the number of spin states of the species (e.g., g4 = 2 for spin—% fermions)
and T is the temperature of the distribution. Then, the number density of a particle A

can be written as

(1.42)

gA /°° P2%dP
A

Ton2 | eEaPT £ 1

4Considering that the reaction rates change as the number density n o a3, while the expansion rate

in radiation era scales as a™ 2, thermal equilibrium should be a very good approximation at early times.
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The energy density can be found by multiplying the above integrand by a factor E4(P).

That is
_ga [® P2E4(P)dP
p=3% | et (149
For the pressure we have
T P*E4(P)~'dP
Pa= 67r2/0 eEaPT £1 (1.44)
Finally, the entropy density s 4 is given by
+
sa=EAZPA (1.45)

We can immediately see that in the relativistic limit, where Ef, ~ P?, we have py =

pa/3. In the same limit, we find

3 by = 1 for bosons
Na = by (g"g )> T3 x (1.46)
by = 3/4 for fermions
2 b, = 1 for bosons
pa=b, (ggg ) Tt x{ (1.47)

b, = 7/8 for fermions.
Here, ((3) ~ 1.202 is the Riemann zeta function. If T > m, the masses of the
particles can be neglected, so they are essentially behaving like radiation. As we move
backwards in time, the temperature is higher by the redshift factor (1 + z). This means
that for every particle there is a redshift for which T' ~ m. Before that, the particle
behaves like radiation. Hence, we can calculate the total energy density for radiation
domination by summing equation (1.47) for p over the different relativistic species A.

We find

pr=35 f(T)T, (1.48)
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where we define the effective degrees of freedom f(7T') as

f(T)=)_ 94 <§>4+§ D, s (—:;)4 (149)

bosons fermions

and T = (1 + 2)Ty is the temperature of the photons.
For the opposite limit, namely when m > T, the motion of the particle is non-
relativistic. Then, the number density is found to be exponentially suppressed by the

Boltzmann factor
ng o e”™AT (1.50)

as is the energy density, pressure and entropy. Therefore, the dynamics are mainly
determined by the particle species that are in relativistic motion. Heavy particles are
much fewer in number and their pressure, entropy and energy density are becoming

less important with the expansion and cooling of the Universe.

While in thermal equilibrium, we know that the entropy in a comoving volume is
conserved. That is

%(a3s)=o (1.51)

and, since s o« T°, we recover equation (1.40) and the radiation era expansion law.

We have seen that the general behaviour of the various particle species depends
on the temperature. Of course, massless particles (photons) will always be relativis-
tic. However, the massive particles will be part of the thermal equilibrium as long
as their interaction rate I' is much larger than the rate of expansion H. When this is
no longer true, the particles decouple from the thermal bath. At temperatures above
T ~ 102K ~ O(100) MeV or ¢ < 1074 sec, photons, muons, electrons, neutri-

nos (and their antiparticles) are in thermal equilibrium. Soon afterwards, the massive
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muons are the first to annihilate. The thermal equilibrium now consists of highly rel-
ativistic particles with a temperature T &< a~!. Then, neutrinos begin to decouple.
Neutrinos are special, because they are fermions with almost (but not quite) zero mass.
Since they are electrically neutral, they interact very weakly, and they decouple from
the rest at around 1MeV. At around ¢t ~ 100 s and at temperatures of order 0.1 MeV ,
neutrons and protons are not anymore in thermal equilibrium, so they start producing
light nuclei (e.g. deuterium, tritium, helium). This is the Big Bang Nucleosynthesis
(BBN) era. The observed primordial abundances for the light elements are in remark-
able agreement with the theoretical predictions based on the Hot Big Bang model (75%
hydrogen, 25% helium and small traces of heavier elements) [22]. At T ~ leV, the
matter domination era begins (matter-radiation equality). Att ~ 10° yr, T ~ 0.1 eV

we have H recombination through
e+p— H+~. (1.52)

At redshift z ~ 1100 the mean free path of the photon I'J ! becomes larger than H™!,
and photons decouple from matter and propagate freely (“last scattering”). This gas
of decoupled photons is the famous Cosmic Microwave Background, a characteristic
black-body spectrum of temperature 7" = 2.725+0.001 K (10) [23] which we observe

today.

Between the Planck scale and 7 ~ 102 K ~ O(100) MeV lies the idea of Grand
Unification. This idea was inspired by the phenomenal success of the electroweak the-
ory, for which Glashow, Salam and Weinberg were awarded the Nobel Prize in Physics
in 1979. This theory unifies two out of the four fundamental forces, the electromag-
netic and the weak force, under an SU(2) x U(1) gauge group. At high energies, above

a few hundred GeV, there is an underlying symmetry between the carriers of the two
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forces, namely the photon and the W and Z bosons. When the electroweak symmetry
becomes spontaneously broken, the W and Z particles acquire masses via the Higgs
mechanism, while the photon remains massless. It is then natural to wonder whether
the strong force, which is described by the eight-parameter quantum chromodynamics
(QCD) SU(3) group, joins the other two at some higher energy scale. In fact, the cou-
pling constants of the three forces, despite their name, depend on the energy, and one
finds that they converge to the same value at about 10'® GeV. The Standard Mode! of
particle physics combines the electroweak and QCD theories to a single Lagrangian
with SU(3) x SU(2) x U(1) symmetry. These scenarios gave birth to the so-called
Grand Unified Theories (GUTs), which include one or more symmetry-breaking phase

transitions from a group G down to the standard model group.

1.2 Topological Defects

Symmetry-breaking phase transitions in the early Universe are often accompanied by
the formation of ropological defects via the Kibble mechanism [24, 25]. Depending
on what kind of symmetry is broken, we can have point defects (monopoles), linear
defects (cosmic strings), planar defects (domain walls), textures, as well as their com-

binations (e.g. monopoles connected by strings) [5, 6].

To be more specific, let us consider a phase transition during which an initial sym-
metry group G is broken down to a subgroup H. The formation or not of topological
defects, and their kind, depends on the vacuum manifold M = G/H. As an example,
consider the case where the homotopy group mo(M) # 0, i.e. M is not connected.

Then, two-dimensional defects will form — domain walls. If 7, (M) # 0, M contains
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non shrinkable circles and line-like defects, cosmic strings, are formed. Monopoles

form when 7y(M) # 0 and textures when 73(M) # 0.

When the broken symmetry is a gauge symmetry, the emerging defects are called
local, and their energy is strongly confined. Global defects are the result of a global
symmetry breaking and have long range interactions. Depending on the energy scale
of symmetry breaking, local monopoles and domain walls can have disastrous cosmo-
logical effects, since they might dominate the energy density of the Universe. Local
textures are not cosmologically significant, as they decay quickly with time. Strings, on
the other hand, are far more interesting, and they will be studied extensively throughout
this thesis. Before starting our discussion of strings, we will talk a bit about inflation,
which deals with a few of the problems of standard cosmology, including that of stable

catastrophic defects.

1.3 Inflation

The Hot Big Bang model, despite its astonishing successes (e.g. the predictions for the

light elements abundances from BBN, the CMB), comes with a few serious shortcom-
ings.

The first is the so-called flatness problem. As we already stated, observations tell
us that our Universe is spatially flat (k = 0), up to 1% [16]. This means that, today,
the density parameter (2 is very close to unity. Combining equation (1.26) with the
behaviour of the scale factor as a function of time a ~ tP, with p < 1, we see that
(aH)~2 grows with time. Hence, {2 must have been extremely close to one at earlier

Q-1 ~ 10716

times, requiring extremely finely tuned initial conditions (for example,
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at nucleosynthesis).

In addition, there is the horizon problem. The particle horizon at the time of last
scattering corresponds to an angular radius of only 1 degree today. However, obser-
vations of the Cosmic Microwave Background Radiation show something completely
different — the whole sky is smooth, to about ten parts in 10%. This means that two
photons coming from opposite directions on the sky have nearly the same tempera-
ture. How can this be explained, if they were not in causal contact at the time of last

scattering?

Finally, GUTs predict the formation of massive stable magnetic monopoles. For
example, a typical SU(5) GUT monopole has m ~ 10'® GeV, hence its energy density
scales as a(t)~°. On the other hand, the energy density of relativistic fields scales
as a(t)™*, so monopoles would quickly come to dominate the energy density of the

Universe. This is the monopole problem.

The inflationary scenario [26, 27, 28, 29, 30] provides a solution to these problems.

It is defined as a period of accelerated expansion. That is

a> 0. (1.53)

From equation (1.21), we see that this means p + 3p < 0. Also,

d -1
(@)™ <0. (1.54)

The last equation tells us that, during inflation, the comoving Hubble radius decreases

with time.

Let us assume an equation of state p = —p during inflation, and revisit the flatness
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problem. The scale factor evolves as
a(t) = e, (1.55)

Substituting in equation (1.26), we find @ — 1 ~ e~2#¢, Thus, any initial curvature will
be decreased, and the value 2 = 1 becomes an attractor. A similar reasoning solves
the horizon problem, since the present observable Universe can originate from a very
small causally connected region inside the Hubble radius at the start of inflation, so
that photons coming from opposite directions from the sky can actually have the same
temperature. The solution of the monopole problem is obvious, as the exponential
expansion of space dilutes these defects and they cannot be observed today. Note
that, in order for this mechanism to work, the monopoles have to be produced before

inflation.

Inflation Dynamics

We saw earlier that, in order to have a period of inflation, we need an equation of
state which violates the strong energy condition. To get a system with p = —p, we
introduce scalar fields. Consider a spatially homogeneous scalar field (the so-called

inflaton field) with potential energy V (¢). The corresponding Lagrangian is
1
L= 3(2,0)(8"¢) ~ V(6). (156)
The stress-energy tensor is

T;u/ = (ap¢)(aV¢) - Lgul/ (157)
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and, considering an isotropic fluid, we find that the energy density p and pressure p are

given by
1.
p=56"+V(0) (1.58)
1 '2
p= §¢ - V(9). (1.59)

From the above equations we can immediately see that, provided ¢? < V, we have
p = —p and the inflaton can successfully drive inflation. Substituting (1.58) and (1.59)
into the Friedmann and continuity equations for £ = 0, we get

H? = ' 87rG[

Vi¢) + ¢2} (1.60)

<%>'+3H<13———¢V( ¢) = -V'(¢). (1.61)

Now, in order for inflation to take place, the potential term needs to dominate. This
corresponds to a quite flat potential, and using the “slow-roll approximation” we have
#* < V and ¢ < 3H¢. This gives

H? ~ %V(qﬁ) (1.62)

3Hop ~ —V'(¢). (1.63)

The conditions for the slow-roll approximation to hold are that the slow-roll parameters

! (V) ,QELV (1.64)

167rG V

are very small: ¢, 7 < 1.

Another important quantity is the amount of inflation, defined in terms of the e-

foldings number N between some initial time ¢ and the time at the end of inflation ¢;.
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We define

_alty)
N = ]n_a(t) . (1.65)

Inflation ends as the potential steepens with the scalar field oscillating around the min-
imum. The inflaton’s potential energy is transferred to radiation and the Universe is
thermalized — this is the reheating epoch and it is essential in order to recover the stan-
dard Big Bang evolution. The decay of the inflaton field was originally described per-
turbatively [31], but later a non-perturbative stage, preheating, was suggested {32, 33].
A new mechanism that produces cosmic strings after preheating was investigated in

[34].

To conclude, we should note that inflation is not only successful in solving the
problems of the standard cosmological model, but it also provides an explanation for
the origin of the primordial density fluctuations responsible for the observed structure

in the Universe and the CMB anisotropy. We will return to this subject in Chapter 4.

1.4 Cosmic Strings

Cosmic strings are linear topological defects that may have been formed as a result of
spontaneous symmetry breaking transitions in the early Universe, as originally demon-

strated by Kibble [24, 25].

A simple and illustrative model to study the formation of cosmic strings is the

Abelian U(1) gauge model. The Lagrangian density is
1
L = D,¢(D"¢)* - A_IF’WFW - V(9), (1.66)

where ¢(z) = ¢1 +1¢. is the complex scalar field expressed in terms of two real fields
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¢ and ¢, D, = 0, + ieA, is the covariant derivative, F,, = J,A, — 0, A, is the

electromagnetic field and the potential V'(¢) can be written as
1 1
V(9) = 7A(¢7¢ — 7°)? = ZA(61 +¢3 — )% An=const>0.  (1.67)

The Lagrangian has a local U(1) gauge symmetry, i.e. it is invariant under the trans-

formations
; 1
&(x) — @ g(x) and Ay(z) — Au(z) — E(‘)#‘a(z). (1.68)

As illustrated in Fig. 1.1 (left), the potential (1.67) has a circle of minima [¢| = 7,

while the ground state has a non-zero expectation value
(0[¢|0) = ne', (1.69)

where « is an arbitrary phase angle. This means that the ground state is not invariant
under the U(1) phase transformations: The U(1) gauge symmetry is spontaneously

broken.

Figure 1.1: Left: The potential V has a degenerate ground state where |¢| = 7, and a central
hump. Right: A closed loop around a cosmic string — the arrows indicate the different phases a.
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However, there exists a ground state where the U(1) symmetry is intact. It is the
state where (0|¢|0) = 0, corresponding to the maximum of the potential. This state
is unstable. To illustrate this, let us imagine a field at the very early stages of the
Universe, where the temperature 7" is high. There will be large fluctuations in ¢, so
the central hump is unimportant. However, when the Universe cools down the field
has to choose a ground state in the valley of minima, as its energy becomes too low to
overcome the hump. The symmetry is spontaneously broken and we get two massive
particles — the Higgs boson with mass m, = v/An and the gauge (vector) boson with

mass m, = v/2en.

The choice of vacuum is in principle random, and fields in different patches of
the Universe will choose different values of a. Now, imagine a closed loop with «
changing from 0 to 27 (Fig. 1.1, right). Then, somewhere in that loop ¢ must rise to
the top of the potential lump where it vanishes. As a result, a linear defect will form —
a cosmic string. Imagining this process repeating in different regions of the Universe,

we can deduce that a random network of cosmic strings will appear.

A string solution to the Abelian-Higgs model was found by Nielsen and Olesen
[35]. In cylindrical coordinates p, 6, z, and at large distances from the core, the Higgs

field has the form
¢ ~ ne™, (1.70)

where n is an integer, the winding number of the string. The gauge field asymptotically

’l/e ' )

which translatesto A, = A, = A, = 0, Ay = n/ep, as p — oc. Using Stoke’s theorem
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to integrate around a closed curve enclosing the string, we find a total magnetic flux
2mn

where B = V x A is the magnetic gauge field. The string carries n quanta of magnetic
flux. Note that, far away from the string core, we have D,¢ ~ 0 and F,, = 0, so the
string energy vanishes rapidly away from the core. The radius (width) of the string core
1

is determined by the Compton wavelengths of the Higgs and gauge bosons, d, o« m

and &, o« m; . The total string mass per unit length is

“an’ (1.73)

which gives p ~ 10?2 g cm™! for GUT scale strings.

Note that, in the case where the string’s length is much larger than its width, the
internal structure of the string is unimportant. The effective energy momentum tensor

for a straight string along the z-axis is [36]
T# = ud(z)d(y)diag(1,0,0,1). (1.74)

The string has a large tension equal to the energy density. This implies that curved

strings will contract and acquire relativistic velocities.

To conclude, let us return to inflation and the monopole problem. As we already
stated, all defects produced before inflation would be diluted to a non-observable level.
This means that also cosmic strings will be diluted! Actually, this is not quite true.
Early on, it was realised that strings can be formed at the end or near the end of infla-
tion [37, 38, 39]. More recently, it was found that cosmic string formation is generic
within supersymmetric grand unified theories (SUSY GUTs) [40, 41]. Another excit-
ing possibility arises in string-theory inspired models of brane inflation. As an exam-

ple, the popular D3 — D3 inflation model terminates with the collision and annihilation
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of a D3 and a D3 brane and the subsequent formation of strings (see, for example,
[42, 43, 44, 45, 46]). Another brane inflation model is D3/D7, which can end with
the formation of semilocal strings (see, for example, [47, 48] and references therein).
We will not discuss the details of these models here, as we will refer to them in more
detail later in the thesis. The basic idea is that cosmic strings can survive and be ob-
servable. The question that immediately arises is how they evolve and what are their
cosmological implications. Especially when it comes to cosmic superstrings, one will
surely wonder if it is possible to distinguish them from their field-theory analogues,
and whether their cosmological consequences can open an observational window to

string theory.



Chapter 2

Cosmic String Dynamics

2.1 Introduction

In the previous chapter we described the formation of cosmic strings in the early uni-
verse after the spontaneous breaking of a U(1) gauge symmetry. Cosmic strings are
linear concentrations of energy which stretch across the universe. They can also form
closed loops. Even though they are very thin, they have a huge tension that can trig-
ger observable cosmological effects. In order to quantify these effects, we need to
study the dynamics of strings and understand the evolution of a cosmic string network

throughout the history of the universe.

In this chapter, we will review some important aspects of cosmic string dynamics
(see [5],[6],[49]). We start by deriving the equations of motion for a cosmic string
using the Nambu-Goto approach. We solve these equations in Minkowski and FLRW
spacetime, and discuss some specific solutions. We then describe the basic features of

network evolution, and present the famous ‘one-scale model’ and its extensions.
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We also introduce cosmic superstrings, which are objects analogous to cosmic
strings arising in string theory, and in particular in models of brane inflation (see
[7, 8, 50]). These objects possess some distinctive features, which can be used in
order to distinguish them from the usual, Abelian Higgs cosmic strings. The most
striking of these is the ability to form bound states, which results in a configuration
with junctions where three strings meet. We present some basic elements of the theory
of cosmic strings with junctions, focusing on the Nambu-Goto approach developed by
Copeland, Kibble and Steer [S1, 52]. We conclude with the study of junctions in an
expanding spacetime — an exact solution for a three string loop in a de Sitter universe

is derived.

2.2 The Nambu-Goto action

Let us consider a cosmic string moving in a (3 + 1) dimensional spacetime. When its
thickness is much smaller than its radius of curvature, we can effectively treat it as a
one-dimensional object. As the string is moving, it spans a two-dimensional surface,

the so-called “string worldsheet”
o = 2#(0%), a =0, 1. 2.1

Then, its motion can be described by the Nambu-Goto action, which is proportional to

the area swept out by the string. That is [55, 56]
S = —,u/\/—'yd%, (2.2)

where . is the string’s tension, v, = g,,,0,2*0,x" is the induced metric on the world-

sheet with determinant ~, and g, is the metric of the background spacetime. The
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Nambu-Goto action is invariant under general coordinate transformations, as well as

under worldsheet parametrizations 0 — %(o®).

Varying equation (2.2) with respect to (o) we get the equations of motion

Viz# + T4 y*8,2" 8pa” = 0, (2.3)
where
u 1 pA
Fup = 59 (BPgAU + augz\p - 6/\gu,o) 24)

is the four-dimensional Christoffel symbol and the covariant Laplacian V2z* is given

by

1
Virh = —=—08,(v/ =71 "Bpzt). .

Varying the Nambu-Goto action with respect to the background metric g, we find

that the string energy-momentum tensor 7#¥(z) is given by

1
T (z) = —ﬁu/d20\/—'y'y“baax“abz”é(")(r)‘ — z*(0%)). (2.6)

2.3 String evolution

2.3.1 Minkowski spacetime

In flat (Minkowski) spacetime, the background metric g,, becomes g,, = 7,, =
diag(1, -1, —1,—1), which gives I's, = 0. The string equations of motion (2.3) are

then written as

Ba (V=77 0pz*) = 0. 2.7)
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Since the action (2.2) is worldsheet reparametrization invariant, we can choose a gauge.

A very useful choice is to fix 701 = 0 and o + 713 = 0. This gives
iz, = 0; T4z, + x"‘x:‘ =0, (2.8)

where dots and primes denote derivatives with respect to ¢ and o', respectively. This

is called the conformal gauge.

Using the conformal gauge, the equation of motion (2.7) becomes
# -1 =0, 2.9)

which is the well known wave equation. Furthermore, we can use the remaining gauge
freedom to set the timelike worldsheet coordinate o° equal to the Minkowksi time ¢.

Thus, we have
t=1"= 0" (2.10)

Then, we can immediately write the corresponding equations for the string’s trajectory
using the three-vector x(o,t), where ¢ = ¢! is the spacelike worldsheet coordinate.

Equations (2.8) can be written as

x-x =0, (2.11)
X2 +x?=1, (2.12)
x—-x"=0. (2.13)

The first equation tells us that the velocity of the string is perpendicular to its tangent
- that is, X is the physical velocity. In our chosen gauge, the string energy-momentum

tensor can be written as

T (x,t) = u/da(a’:”ic" — 2™2")68) (x — x(0,1)). (2.14)
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Using this expression and equation (2.12), we find
E= /ng"x =u/da, (2.15)
so that the spacelike coordinate o is proportional to the energy of the string.

The wave equation (2.13) has an elegant solution in terms of right and left movers.

That is

1

x(o,t) = §[a(a +t) + b(o —t)). (2.16)

The right and left movers satisfy the constraints

a’=b"%=1, (2.17)
with b’ = x’ — x and @’ = X’ + X (note that, when applied to b(¢ — t) and a(o + t),
primes denote derivatives with respect to (¢ — t) and (o + t), respectively). These
functions live on a sphere with unit radius, known as the Kibble-Turok sphere [57].
It is important to note that, although the right and left movers have to obey the above

constraints, they are otherwise arbitrary shaped waves which travel along the string

with the velocity of light.

Let us now consider what happens when the string forms a closed loop. If the loop

has length L (with 0 < ¢ < L), the requirement of spatial periodicity gives
x(o,t) = x(o + L, t). (2.18)
In the centre-of-mass frame the right and left movers are also spatially periodic, that is
a(o,t) = a(o + L,t); b(o,t) =b(o + L,t).

As for the time periodicity, it is clear that the loop has to be periodic in time with the

same period L. In fact, the actual period is T' = L/2 [57), as we can easily check that

x(o+L/2,t+ L/2) =x(o + L,t). (2.19)
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This equation tells us that the two halves of the loop are interchanged every T' = L/2.

The properties of the closed loop solutions give rise to a set of very special points
on the string. In particular, there are points on the string that can reach the velocity
of light for an instant during the loop’s motion [58]. As we mentioned before, the
functions a’ and b’ live on the surface of the unit sphere. Considering a closed loop in

its center-of-mass frame, we have

L L L L
/ x'do = / (a' + b')do = 0; / xdo = / (@' = b')de =0.
0 0 0 0

Thus

L L
/ b'de = —/ a'do =0, (2.20)
0 0

which means that the functions b’ and —a’ trace closed curves on the unit sphere
centered on the origin, as o runs from 0 to L. Therefore, they cannot lie only in one
hemisphere of the unit sphere, hence they will generally intersect. In that case, we will

have b’ = —a’! and the tangent vector x’ vanishes. The loop’s velocity squared is
.2 1 / 2
X (a,t)=Z[a (0 +t) —b'(o — 1)), (2.21)

which gives x? = 1. These points are called cusps.

There can be also sharp corners on the loop, where the functions a’ and b’ are
discontinuous [59]. These points are called kinks, and they appear after every string
intercommutation. They then travel along the string and away from each other at lumi-
nal speed. This leads to the build-up of additional small-scale structure (‘wiggliness’)

on the strings. We will return to the rdle of small-scale structure in Sec. 2.4.

!Note that this condition is only a matter of convention — if we define b = b(t—o)and a = a(t+0),

the same discussion holds for b’ = a’.
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Another property of loops in Minkowski spacetime is that their mean square veloc-

ity is [5]
T L
dt do 1
2 — — — 2 o —
(v?) /0 T/o TX =3 (2.22)

2.3.2 Loop solutions

We will now present a few representative exact solutions for closed loops in Minkowski
spacetime. We will start with a description of the main features of the circular loop,
which will be useful in Chapter 3. Then, we will briefly discuss some well-known

families of loop solutions.

The simplest loop solution is the initially static planar circular loop. Letting L = 27,

we can write
X = cost(cos o,sina,0). (2.23)

In Fig. 2.1 we illustrate the evolution of the circular loop. As we can see, the loop
collapses to a point at t = 7/2 and then re-expands®. We can easily check that, at the

collapse time ¢t = m/2, the whole loop takes the form of a cusp.

In 1982 Kibble and Turok [57], motivated by the possibility that cosmic strings are
responsible for the density perturbations needed for galaxy formation showed that any
initially static loop of string collapses after half a period of oscillation. However, they
discovered that if one perturbs slightly the collapsing solutions, one can get a class of
non-intersecting loops, which can have sufficiently long lifetimes. Letting L = 27

(and u = 0 + t.v = 0 — t), the Kibble-Turok family of loop solutions can be written

2This picture is not quite realistic. As Hawking showed [60], a circular loop will eventually form a

black hole after radiating away at most 29% of its energy.
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Figure 2.1: The evolution of the initially static circular loop. It collapses to a point at t = /2,
and then starts re-expanding. The arrows show the direction of the velocity.

as
1 . 1 . .
x(o,t) = é-el[(l —a)sinv + zosin 3v + sin u] (2.24)
1 1
—-éeg[(l — a)cosv + 30 cos 3v + cos u]
—e3[a(l — a)]? cosw.

They found that these strings do not intersect themselves for 0 < o < 1, i.e. there is

no trivial solution of the equation x(o,t) = x(o”, t) for this parameter range.
In 1985, Burden [61] extended the previous work of Kibble and Turok and presented
a broad class of loop solutions. Using our previous conventions, they can be written as
x(o,t) = %[M_1 cos(Mv)ég + M~ ' sin(Mwv)é, (2.25)
+N7'cos(Nu)és + N~ 'sin(Nu)
(cos @ + sin¥éy)],

with M and N relatively prime. If either M = 1, N # 1 (or vice versa), the loop does

not self-intersect.

As we already stated, a generic feature of smooth loops is the presence of cusps

[58]. Garfinkle and Vachaspati [59] constructed a class of cuspless kinked loops by
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connecting straight segments to form a rectangle. Of course, kinks are formed natu-
rally when loops self-intersect. In addition, kinks can prevent the formation of cusps,
as they correspond to discontinuities on the Kibble-Turok sphere. Cusps and kinks are
very important for the gravitational radiation signature of cosmic (super)strings. Un-
fortunately, important questions such as how many cusps are found per oscillation and
what is the percentage of non-self-intersecting loops in a network are still unanswered.
In Chapter 4, we will present calculations of radiated power from closed loops. We
will also discuss gravitational wave bursts from cusps and kinks in a cosmic string

network.

2.3.3 FLRW spacetime

After studying the string’s equation of motion in flat spacetime, we will now briefly
discuss what happens when we consider a background similar to the one of the observ-

able universe [5]. In an FLRW spacetime, the line element can be written as
ds® = a(1)?(dr? — dx?), (2.26)

where dx? is the line element on a flat 3D space, a(7) is the scale factor, and the
conformal time 7 is related to the physical time ¢ via dt = adr. For fixing the gauge,
we can again identify ¢ = 7 but we can only keep the transverse gauge condition

x - X’ = 0. The string equations of motion are [62]

! . 1 (x"\
X+2H(1-x%)%x == <i> L é+2Hex? =0 (2.27)
€

€

where H = a/a, € = x"2/(1 — x2), while dots and primes denote derivatives with

respect to 7 and o, respectively. As we can see, the expansion of the universe has a
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damping (friction) effect on the string’s motion. After a little algebra, we calculate the

energy of the string as
E = pa(r) / edo. (2.28)
Note that ¢ is equal to unity for a Minkowski spacetime.
The trivial solution of equation (2.27) is a straight static string
x(o) = Ao; A = const., (2.29)

which just gets stretched by the expansion. Considering perturbations on a straight

static string [63]
x(0) = co + éx(r,0), (2.30)
and taking a(7) = 7%, the linearised (in dx) equations of motion (2.27) give
o0x + -2{165( —&x" =0, (2.31)
c-6x = 0. (2.32)
The solution of (2.31) is a superposition of waves with mode frequency £. That is
6x(t,0) = A7V J,(kT)e*?, (2.33)

where J, is the Bessel function of the firstkind, A-c=0and v = a — 1/2.

Since we are working with comoving coordinates, the physical wavelength of the

perturbations is

A= a(r)?. (2.34)

Therefore, the quantity k7 ~ ¢/ represents the ratio of the horizon size to the wave-

length (size) of the mode.
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We can now investigate the two extreme cases. When k7 < 1, i.e. when the

wavelength of the mode is much larger than the horizon size, we find that

5 A E\Y  etko
X = ("é) m, (2.35)

which tells us that the comoving amplitude is constant in time. This means that both
the physical wavelength and the amplitude of the perturbations are proportional to the
scale factor. The string is conformally stretched, while its shape remains the same.

When k7 > 1, i.e. when the mode is well inside the horizon, we find

2 .
ox ~ AT7%/ — cos(kT — am/2)e*e. (2.36)

This means that, while the wavelength grows with the scale factor, the physical ampli-

tude a(7)dx stays constant. The mode straightens.

The aforementioned results can in fact be applied to the case of strongly curved
strings [63, 64] hence they are important for the treatment of loops. When a loop is
outside the horizon, it is conformally stretched. While it enters the horizon, its radius
progressively decreases and its shape is smoothed out. Finally, when the loop becomes
much smaller than the horizon, the effects of expansion become insignificant and it
starts oscillating freely — effectively, small loops in the universe behave as they would

in flat spacetime.

2.4 Network evolution

As we stated in Chapter 1, strings are formed after a symmetry breaking phase tran-
sition in the early universe. Simulations have shown that the formed string network

consists of a random (Brownian) tangle of infinite straight strings and closed loops
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[65, 66, 67]. In this section, we will discuss the basic properties of the evolution of a

cosmic string network (see [5],[6]).

Immediately after the network is formed, the string’s evolution is determined pri-
marily by damping effects due to the high radiation backreaction density. However,
strings will eventually begin to oscillate freely. We then have to take into account two
competing effects. The expansion of the universe, which stretches the strings, and the

energy loss through string interactions and self-intersections.

In order to understand the effect of string interactions, we need field theory sim-
ulations. That is because the Nambu-Goto approach is only accurate as long as the
strings under consideration do not intersect with themselves or with each other. When
two Abelian-Higgs cosmic string segments meet, there are two possible outcomes: the
strings just pass through one another, or they intercommute (exchange partners and
reconnect). Abelian-Higgs simulations have shown that strings prefer intercommuting
(Fig. 2.2), with a probability P almost equal to unity [68, 69]. An exception seems to

be possible when the relative velocity of the strings approaches the speed of light [70].

Figure 2.2: String Reconnection.

If long strings are meeting at two points, or if they self-intersect, they can form

closed loops (Fig. 2.3). These loops will eventually radiate their energy, hence they are



Cosmic String Dynamics 37

an important energy loss mechanism for the network.

—

Figure 2.3: Loop formation mechanisms: Upper: Two strings meet at two points Lower: Self-
intersection.

The so-called ‘one-scale model’ assumes that the string network can be charac-

terised by a single length scale, namely the correlation length L defined by

p=15, (2.37)

where p is the energy density in the long string network and u is the string tension. In
other words, we expect (on average) one string segment with length L in any volume
L3.

In principle, there are at least two different fundamental length scales in the net-
work — the typical “smoothness” length L of long strings, and the average distance
between strings L. The one-scale model takes the two lengths to be equal (L=L), an

approximation which appears to be reasonably well satisfied [71] for a network of NG

strings of tension p with intercommutation probability P = 1.

The energy loss rate can be approximated by [72]

s~ 28, P
pr-2-p— 7, (2.38)
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where - = d/dt and a(t) is the scale factor. The first term accounts for the expansion
of the universe, and the second for string interactions with associated loop-formation.
The network evolves towards a scaling regime, in which L is constant relative to the

horizon dy ~ t [72]. Indeed, setting L(t) = £(¢)t, it follows from equation (2.38) that

1

£ 1
£ % (2(6 -1+ E) , (2.39)

where a(t) ~ t? (3 = 1/2 in a radiation era, 3 = 2/3 in a matter era). The attractor

scaling solution of equation (2.39) is
£=[2(1-p)7" (2.40)

This scaling solution is independent of the initial conditions — if the initial network is
very dense, there will be sufficient intercommuting producing loops which will radiate
their energy away. On the other hand, if the initial density is small, intercommuting
will be rare. Both of the initial states will eventually reach the scaling regime. Numer-
ical simulations have confirmed the scaling behaviour of cosmic string networks (for

example, see [73], [74] and [75]).

As an aside, it is worth noting that, if the energy loss due to loop formation was
absent, the strings would soon dominate the energy density of the universe. Assuming

Hubble expansion only, we have
pstr x a(t) 7%, (2.41)

while prmar o a(t) ™3 and praq x a(t) ™.

Early numerical simulations also revealed the presence of small scale structure on
long strings [75, 76], and more complicated analytic modelling was performed in order

to incorporate its possible influence on the network’s dynamics. Austin, Copeland
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and Kibble developed a ‘three-scale’ model, keeping L and L separate and including
an additional length scale ¢ to account for the structure in the smallest scales [71].
Allen and Caldwell [77], as well as Austin [78], developed “kink-counting” models to

describe small-scale structure.

In the following, we will concentrate on the “Velocity-dependent One-Scale” (VOS)
model, developed by Martins and Shellard [79, 80]. VOS calculates the macroscopic
quantitative properties of a string network, it is simpler than the other analytic models
and has been successfully tested against both field theory and Nambu-Goto numerical
simulations [81]. It introduces a dynamical velocity component v to the equations,

describing the root mean square (rms) velocity of string segments

. 2
2 [*%edo
[edo (2.42)
Let us start by the equation
E(r) = a(r)p/eda. (2.43)
Differentiating with respect to conformal time and using ¢ = —2%)’(26 we find
. a
E=—-(1-2°
-(1=-20°E. (2.44)
Consequently, for the energy density p o< E/ a® we have
L P
= =-2- .
p S(1+7%) (2.45)
To this, we add a phenomenological term which describes loop production:
p a o -UP
-=-2-(1 el
s =2 1+0) - (2.46)

Here, ¢ represents the efficiency of loop formation. The equation for the velocity is

found to be

v =(1-1? (f - 2%) : (2.47)
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where k is the curvature parameter which indirectly encodes information about the

small-scale structure on strings. It can be expressed as a function of the velocity [80]

k

2v/2 — 88
_ \/_(1 8’0), (2.48)

T 1+ 85

and it incorporates the Virial condition v> < 1, observed in simulations.

Following the same procedure as before, one now finds a scaling solution with

s _  k(k+¢)
: _ k1-5)
vt o= BT o) (2.50)

Of particular note is that the velocity also enters a scaling regime (2.50) in which it
stays constant in time. This solution depends on cosmology (through the expansion
exponent () and on the loop formation efficiency, ¢, which, by comparison with nu-

merical simulations, is of order unity [79].

Before ending our discussion we should note that, even though pioneering analyti-
cal and numerical modelling of cosmic string networks has been performed, there still
exist some unresolved issues. We stated earlier that the production and decay of closed
loops is an important energy loss mechanism for the network. The basic question is
what is the typical size ¢ of these loops and what is the precise rdle of small scale struc-
ture (for a very recent study on loop distribution combining analytical and numerical

methods, see [82]).

When a loop is formed after an intercommutation of two strings or after a string self-
intersection, it oscillates with period £/2 while losing its energy through gravitational

radiation. The loop’s lifetime is estimated as [83]

/
ty~ —— ~ 10%
¢ Tou (2.51)
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for GUT strings (the parameter I' ~ 60). This lifetime is quite large, and sufficiently
big loops (i.e. loops with a size £ close to the characteristic length L of the net-
work, which scale in the same way as the long strings) can meet another segment
of string and reconnect to the long-string network. However, simulations in flat and
FLRW background spacetimes [74, 75, 76, 84] showed that the loops were in fact much
smaller than the horizon. Recent simulations showed [85, 86, 87] that many of these
small loops are produced only in a transient regime and they are not expected to be
present at the later stages of the network’s evolution. In addition, the simulations of
[86] find a sub-population of loops which exhibit scaling in radiation and matter (also
see [88, 89]). Recent analytical studies support that both small and large loops (with

¢/t ~ 0.1) will appear [90, 91, 92].

The typical size and distribution of loops in a cosmic string network is a subject still
under debate, mainly because of numerical issues due to the length and time scales
involved. Another issue is whether the most important energy loss mechanism of a
network is gravitational radiation. A different suggestion, based on Abelian Higgs

simulations, is that the string network loses energy because of particle emission [84,

93, 94].

An important property of long strings is the small-scale structure, which is respon-
sible for the production of tiny loops. Long strings are smooth on the horizon scale,
but on much smaller scale there is a significant sub-structure, with wiggles and kinks.
Kinks are a result of string intersections, and they straighten slowly due to the ex-
pansion of the universe [75]. The study of small-scale structure, or ‘wiggliness’, is
difficult numerically, due to the smallness of the scales in question. Gravitational ra-

diation from opposite travelling waves was believed to be responsible for damping the
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wiggles, but it is now proven to be suppressed [95].

2.5 Cosmic Superstrings

In 1985, Witten [96] was the first to consider the tantalising possibility that funda-
mental (F) strings produced in the early universe could progressively stretch to cosmic
size. Unfortunately, this possibility was quickly ruled out, at least in the context of
perturbative string theory. The fundamental strings are expected to have a huge ten-
sion, G > 1073, close to the Planck scale. Thus, they would produce big fluctuations
in the cosmic microwave background, incompatible with measurements demanding
Gp < 1075, Moreover, such high tension strings cannot be produced after inflation, as
their tension exceeds the upper bound on the energy scale of the inflationary vacuum.
On the other hand, if they are produced before inflation, they will be inevitably diluted,
together with the other kinds of topological defects which could have disastrous effects
for the universe (monopoles and domain walls). Finally, some instabilities were iden-
tified [96], which suggested that, even if these strings were successfully produced in

the early universe, they would be unable to survive until today.

Some years later, the ideas of braneworlds, extra dimensions and warped spacetime
[97, 98, 99, 100] gave a different twist to the story, describing our Universe as a D3-
brane embedded in a higher dimensional space, the bulk. Only gravity can propagate
in the bulk, while the standard model particles are confined to live on the brane. In
10D superstring theory models, Dp-branes of various dimensionality can exist. These
branes interact, unwind and evaporate, leading to a system of D3-branes, one of which

can play the role of our universe [101].
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According to the braneworld scenario, the extra dimensions can be warped. This
can provide a solution to the cosmic superstring tension problem, in the same way that
it was employed to deal with the hierarchy problem. When we allow for spacetime to

be warped, we can write the line element as [7, 99]
ds® = A(§)(dt? — dx?) — di?, (2.52)

where 7 denotes the extra dimensions. If this is the case in 10D superstring theory
models (with 6 warped extra dimensions), then the fundamental string tension y; could
in fact be close to the Planck scale, giving a much smaller effective tension p on the

brane. If the strings are localized at § = §,, we will have

1= A(s)uys, (2.53)

which can be much smaller than p; if A(y,) < 1.

The aforementioned approach provides a neat way around the tension problem. But
what about inflation? Surely, these strings must be produced after inflation, otherwise
they will be diluted. It turns out that the braneworld scenario can also provide a way
to realise inflation in string theory, together with the production of cosmic strings. In
models of the so-called brane inflation (42, 43, 44, 102, 103], a brane-antibrane pair
slowly move towards each other, collide and finally annihilate. Each brane carries
a U(1) gauge symmetry. During annihilation, tachyon rolling leads to spontaneous
symmetry breaking, and two kinds of strings are produced via the Kibble mechanism:
F-strings and D-strings [45, 46, 102, 104, 105, 106]. F-strings are quantum mechanical
objects, while D-strings are very similar to the usual cosmic strings. Note that the
catastrophic topological defects, i.e. domain walls and monopole-like defects, are not

being produced.
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To summarise, there are three necessary conditions for the existence of cosmic su-

perstrings [107]:

e The strings must be produced after inflation.

e They must be stable on cosmological scales.

e They must be observable, but not already excluded.

These conditions are satisfied in the context of brane inflation. Another desirable con-
dition is that cosmic superstrings should be distinguishable from ‘usual’ (solitonic)

cosmic strings.

Having established that cosmic superstrings can be produced and be stable at cos-
mological scales, we will now turn to the equally important issue of distinguishability.
Can we differentiate a cosmic superstring network from a solitonic one? The answer
is yes, because cosmic superstrings carry two unique characteristics: a reduced inter-

commuting probability [105], and the formation of junctions [108].

We have already mentioned that for usual Abelian cosmic strings, the intercom-
muting probability is essentially one. This is an extremely important feature, giving
rise to the scaling solution being a strong attractor - otherwise, the strings would soon

dominate the universe.

For cosmic superstrings, the situation is very different (see [8, 9, 107] and references
therein). First of all, these strings travel in the extra dimensions, and they can easily
miss each other. Secondly, even when they eventually meet, they do not necessarily
intercommute, because of charge conservation. To be more specific, let us denote as

(p, q) a string carrying p quanta of F charge and ¢ quanta of D charge. In general, a
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(p,q) and a (p', ¢’) string can forma (p + p',q + ¢') ora (p — p’, ¢ — ¢') string. Their
crossing results in a configuration of two trilinear vertices (junctions) connected by
the segment of the produced string. For example, consider an F-string (1,0) meeting a
D-string (0,1). They cannot simply intercommute, but they can form a bound state, an

FD-string (1,1) (see Fig. 2.4).

. D

e

Figure 2.4: An F siring interacts with a D string, forming an FD string.

FD

The (p,q) bound states were originally found using the SL(2,Z) duality of the
IIB superstring theory in ten dimensions [109]. One starts from the general ten-
dimensional supergravity action

1 [ 1 1
SO = 2—&-2' dl Iy —g X (R - ‘2‘(8¢)2 - ﬁe_¢H2) ) (2'54)

where H is a three-form field strength (H = dB), and ¢ is the dilaton. The type IIB
theory has two three-form field strengths H® = dB® 4 = 1,2. H) belongs to the
NS-NS (Neveu-Schwarz-Neveu-Schwarz) sector. H‘® belongs to the R-R (Ramond-
Ramond) sector. We also have two scalar fields, the dilaton ¢ in the NS-NS sector, and

the field x which belongs to the R-R sector, combined into a complex field
A= x+ie ? (2.55)

Setting the five-form field strength equal to zero (as the corresponding charges are

carried by a self-dual three-brane, whereas we are interested on charges carried by
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strings) the covariant action for this system can be written as
So = 2K:z/dl%s\/““(RJr —tr(BMOM™1) — i_1—2HTMH), (2.56)

where HY, H® are combined into a vector H = dB and the matrix M is given by

2
M=¢? A X : (2.57)
x 1

The symmetry of this system, studied in [109], suggests that the solutions should carry
both H® and H® electric charge. The F- and D-string can be mapped to each other
via S-duality. Measured in units of Q, where Q is the B, electric charge carried by
the string, we can consider solutions carrying charges (g1, ¢2) = (p, q), where p and
q are relatively prime integers. These solutions are now interpreted as bound states of

p F1-branes and ¢ D1-branes [110], and their tension in flat ten-dimensional type-1IB

theory is

Hip.g) = Vﬂpxq+ﬁ (2.58)

where g, = €? is the string coupling. Note that (p,q) = (1,0) corresponds to the
fundamental F-string, while (p, g¢) = (0, 1) corresponds to the D-string. The interaction
forming an FD bound state is mediated by the RR scalar x, and the merging occurs with

the F string passing its flux to the D string.

Cosmic strings also arise in Grand Unified Theories (GUTs). In a recent publication
[41], the authors investigated cosmic string formation in supersymmetric GUTs, and
examined all possible spontaneous symmetry breaking schemes from the GUT scale
down to the standard model gauge group. Their conclusion is that all phenomenolog-
ically consistent theories predict cosmic string formation at the end of the inflationary

period.
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The aforementioned features provide the fascinating possibility of distinguishing
cosmic superstrings, thus opening a window to string theory through cosmology. An
important question is immediately raised: Since the intercommuting probability of
cosmic superstrings is lower than unity, how will their network behave? Will it scale?
Network evolution and cosmological implications of cosmic superstring networks will
be the main subject later in this thesis. Before that, we need to introduce the theory of

cosmic strings with junctions and study their dynamics and stability.

2.6 Cosmic Strings with Junctions

2.6.1 Introduction

As already stated, cosmic superstrings can bind together, forming an entangled three
string configuration. The first study of the dynamics of three-string junctions in a local
cosmic string network was performed by Copeland, Kibble and Steer (hereafter CKS)
in [S1, 52], using an approach which had been previously adopted for representing
baryons as pieces of open string connected at a common point [53, 54]. Assuming

that the strings have no long-range interactions, the Nambu-Goto approximation can

be used.

In this section, we will review the CKS approach for the study of three semi-infinite
strings meeting at a junction. We will start by constructing the Nambu-Goto action for
a three string vertex, and then analyse the equations of motion and present a simple

exact solution [51].

The basic result of the CKS analysis is that the formation of junctions after the col-
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lision of two cosmic superstrings is governed by kinematic constraints, which depend
on the tensions and the collision angle. This will have important consequences for the

evolution of a cosmic superstring network.

2.6.2 Equations of motion

Following the standard approach, we use the conformal gauge, which imposes the

constraints
x-x' =0, X2+ x?=1, (2.59)

where x = 9,x and X’ = 0,X.

We consider a junction of three strings of tensions y;, (j = 1, 2, 3), and coordinates
x;(o,t) (Fig. 2.5). The convention for o is that it increases towards the junction for all

three strings. The action for this system is the sum of the Nambu-Goto actions for each

2

3

Figure 2.5: Three semi-infinite strings meeting at a junction. The arrows show the chosen conven-
tion for the direction of increasing o;.

string, together with extra terms to assure that the strings meet at the junction. These
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can be written as constraints using Lagrange multipliers. That is [51]

S = -Zﬂj/dt/da@(sj(t)—o) x/2(1 — %2)
+2 / dt £ (t) - [x;(s;(t), ¢) — X(@)], (2.60)
J

where X is the position of the vertex, f; are the Lagrange multipliers, and the s;(¢) are

the values of the spatial world sheet coordinates at the vertex.

Varying the action with respect to x; and using the gauge conditions (2.59) we get

the usual equation of motion

%; —x! = 0, (2.61)
with solution
1
xj(o,t) = §[aj(a +t) +b;(o —t)], (2.62)

while the gauge conditions impose
a? =b?=1 (2.63)
We also get (from the terms proportional to §(s;(t) — o))
/Lj(X; + -éjj(j) = fj, (264)

where the functions are evaluated at the vertex (s;(t),t). Varying with respect to the

Lagrange multipliers we get the boundary conditions
x;(s;(t), 1) = X(2), (2.65)
and varying with respect to X we find

> fi=o. (2.66)

J
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We can now write (2.65) as
a;(s; +t) + bj(s; —t) = 2X(t), (2.67)
and then use (2.64) and (2.66) to get

3 wil(1 4+ 85)a% + (1 - 8;)bj] = 0. (2.68)
J

Now, let us consider a junction for which the incoming waves are the b;(sj —1)’s,
which are determined using the initial conditions. We then calculate the outgoing

waves aj(s; + t) as follows. We begin by differentiating (2.67) with respect to ¢:
(1+3;)a) — (1 - 3;)b} = 2X. (2.69)
Substituting for the unknown waves a; into equation (2.68), we find
Zﬂj(l — 85)b = —(p + pa + p3)X. (2.70)
j

Eliminating X from the above pair of equations we get an expression for each (un-
known) a; as a function of the (known) b;’s. However, we still have to calculate the
evolution of the junction in o-space, namely $;. Using the gauge conditions a’f. =1,
we get a differential equation for $; as a function of the string tensions and the scalar

products

cij = bli(si —t) - bli(s; — t) = ¢y, .71)
For example, the corresponding equation for 5, is

pa(l = 1) _ M;(1 — c23)
pr+pe+ps Mi(1—co3) + Ma(1 — ca1) + Mz(1 — c12)

(2.72)

where M, = p? — (p2 — p3)?, with similar definitions for M, and M;. The equations

for $, and $3 can be obtained by cyclic permutations of equation (2.72).
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Given that |$;| < 1 and |c;;] < 1, it follows that all M; > 0. This means that our
configuration must satisfy the triangle inequalities: no string tension can exceed the

sum of the other two for the configuration to be stable.
Another important result is the relation
p181 + 282 + p3ss = 0, (2.73)

which expresses energy conservation. This can be obtained by summing equations
(2.72), although a more elegant way of deriving the same equation will be presented in

Chapter 3.

As we can see, equations (2.72) are differential equations for s;. This means that,
in general, numerical methods will be required to solve for the evolution of a string
configuration with junctions. Once the values of s;(t) are known, we can use equations
(2.69) and (2.70) to find the values of a}(s; + t), and then integrate to obtain a;. It is
important to note that this can be done as long as the incoming waves b’; are determined
by the initial conditions. The effects of other junctions will eventually start affecting
the incoming waves, which will be then determined by the dynamics of these junctions

(see Chapter 3 for a complete treatment).

There exists an exceptionally simple analytic solution [S1] describing three semi-
circular arcs symmetrically arranged around a common diameter (see Fig. 2.6). With

[1 = pg = 3, it can be written as

xi(t,0) = cost(cosa,0,sino)
1 3

Xo(t,0) = cost(—§ cos 0, %cos o,sin o)
1 3

x3(t,0) = cost(—=coso, —1/5: cos 0, sin o)

with |o| < 7/2 and $; = 0, so that s; = 7 for all £. It is obvious that it is a gen-
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eralisation of the well-known collapsing circular loop solution. The loops keep their

semicircular shape and collapse to a pointat ¢ = 7.

Figure 2.6: Three semicircular arcs symmetrically arranged around a common diameter - initial
configuration.

2.7 Collisions of strings with Y junctions

In this section, we will present the CKS approach for studying the problem of the

collision of two strings which become linked by a third one.

Let us first consider two straight strings with equal tensions p; = ps, which move

towards each other along the z-axis and collide at ¢ = 0 [51]. For ¢ < 0, we can write
x12(0,t) = (—y o cosa, Fy o sin a, 2ut). (2.74)

where v is the string velocity and v~ = /1 — v2. This gives

/

12 T (= !

-1

cosa, 7y~ " sina, 1v),

bl, = (=y 'cosa,Fy 'sina, Fv). 2.75)
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Let us suppose that the collision angle « is small and that the connecting string segment

forms along the z-direction. Then, for ¢ > 0, we will have
x3(o,t) = (0,0,0), as(o) = by(o) = (1,0,0). (2.76)

From the symmetry of the problem it is obvious that it is sufficient to study either of
the two junctions along the z-axis. Choosing the positive one and using (2.73), we find
s; = 8o = —(u3/2u1)ss. The vertex will be moving along the z-axis with uniform

velocity $3 and position X(t) = (s3(t), 0, 0). For the ¢;; of (2.71) we find
c12=Db} by = —y"2cos2a — v, ci3=Db] by =—y"lcosa = cy3. (2.77)

Substituting into (2.72) we get

-1
b = 2y cosclt - Its’ G =8y = —-&8'3- (2.78)
20y — pu3y~tcosa 20, )

Requiring the string 3 to grow means $3 > 0. Thus, we get the constraint

@ < arccos (%) (x—axis). (2.79)

This is consistent with our initial assumption that the connecting string would form on
the z-axis for small collision angle a. Similarly, for a string along the y-axis (a closer

to /2) one finds

. H37Y ]
a > arcsm | — —aXx .
<2“l ) (y—axis) (2.80)

From the triangle inequalities, we deduce that a junction cannot be formed if p3 > 2u;.
Also, we find that there is an upper bound on the velocity the strings can have in order

to form a junction:

2p
v < 222 2.81)

U3
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This means that very fast Abelian strings will simply pass through one another. For
non-Abelian strings, there are two possibilities: they can either become joined by a

string in the z-direction, or form a locked X' configuration.

Following the treatment of strings with equal tension, CKS extended their study to

the case of colliding strings with unequal tensions [52]. They first define

Lt = p1+ o, B = fy — o (2.82)
Then, from the triangle inequalities, it follows that y3 is in the range

B S p3 < Py (2.83)

Because the tensions of the colliding strings are not the same, the symmetry of the
equal tension case is lost. Now, suppose that at ¢ = 0 the strings bind forming a z-link,
where the new string is at an angle 6 to the z-axis, and moves along the z-direction

with velocity u (see Fig. 2.7). That is,
x3(0,t) = (v, '0cosf, v osin b, ut). (2.84)

After quite a bit of algebra, they found that the equation for the bridge velocity u is

2

2 (sin® a)u + [13(1 — v*) + p2 (v cos® a — sin’® a)|u? — p? v? cos® o = 0. (2.85)

This equation always has one positive root for u?, and also u? < v2. After u is found,

the angle # can be determined by the equation

tan 6 _u

tana v (2.86)

In [111], the authors showed that the above kinematic constraints, which were de-

rived for Nambu-Goto strings, are essentially the same if one considers collisions of
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Figure 2.7: Two strings with different tensions y; and p2 collide and become joined by a third
string p3, forming a z-link.

(p. q)-cosmic superstrings with tensions

fii = 4| P} + =5

The condition for junction formation is

s3 > 0.

9%

Then, the expression for s3 is found to be [111]

with

G:

v~ cosa

vz 1cos@

G4 —
fiy — Gz’

§3 =

a3

v2 cos? a + u? sin® @)

\/(1 _ 22)(

v2(1 —u?)

(2.87)

(2.88)

(2.89)

(2.90)
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This implies important kinematic constraints on the (v, a)) parameter space for a z-link

formation, which we will now derive following [111].

From the inequality u? < v?, we deduce that G < 1. Furthermore, the denominator

of (2.89) is always positive, respecting the triangle inequalities. We therefore have

A3
G > — 2
A (2.91)
which can be written as
f) = AT+ AT+ 43 <0, (2.92)
where
A, = [ cos’alil — p2 sin® a — 2 cos® o), (2.93)
Ay = 2p%p% cos’a — i — (2cos® a — 1)l i3, (2.94)
As = pF3—phplt. (2.95)

The condition (2.92) depends on the collision angle o, the collision velocity v and the
tensions of the three strings. It can be solved to obtain constraint on the values of v for

which a junction can form:
0 < v? < v?(a), (2.96)

where the critical velocity, v., depends on ji; and fio. The authors showed that v7%* <

1 only if
i3 > pylia-| = iy — m)- (2.97)

If this condition is satisfied, then the two colliding strings will simply pass through one

another without forming a junction, for v > v***,
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Let us now illustrate the effect of these constraints using a simple example. Taking

ji; = iz, the constraint (2.91) can be written as [111]

V1 —1v2cosa > /1% (2.98)

2/11
For the collision of an F with a D string forming an FD string and g, = 1, we find

[111]

v 1
v1—1v%2cosa > ﬁ and u~ 6 ~ 0. (2.99)

Using (2.99), we plot the allowed (v, ) parameter space for the formation of a z-link

(Fig. 2.8).

0.8+

T T T
0 01 02 03 " 04 495 086 U7
a

Figure 2.8: The allowed parameter range in (v, a) space for the collision of an F string with a D
string to form an FD string (z-link) is shown in blue for g, = 1.

The CKS predictions for the kinematic constraints governing junction formation are

derived using the Nambu-Goto approximation. One might wonder how successful they
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are when compared with field theory simulations, where the zero-width approximation
is not valid anymore. This comparison was performed in [112, 113], finding very good

agreement.

2.8 Cosmic Strings with Junctions in an FLRW uni-

verse

We will now study the evolution of cosmic strings with junctions in an expanding uni-
verse (see [114] for a nice study of cosmic string loops in FLRW spacetimes, and [115]
for a thorough investigation of cosmic string collisions in cosmological backgrounds).
In addition, we will present an exact solution for a loop with junctions in a de Sitter

background.

For three strings forming a junction in an FLRW spacetime, the action can be written

as
5= —Zuj/dr/da O(s;(r) — o)a?(r)y/x2(1 — %2)

3 [ard@hm bl XL @100

where 7 is the conformal time. Varying x; yields the usual equation of motion for a

string in an expanding universe

. 2&, .2 1 XIJ !
X; + Exj(l—xj)ze—j ?), (2.101)

12
/ _ . — _ X"
where X' = 0pX, X = O;x and ¢; = 1 / 1—_,%17 There are also boundary terms which give

us the boundary conditions

J

X'j .
pi | = +¢€8%; ) =1; (2.102)
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where the functions are evaluated at (s;(7), 7). Varying X provides the constraint

> =0 (2.103)
J

so we can write the boundary conditions as one equation

X'j ..
Zw o etk =0 (2.104)

J

By considering a circular loop
x = r(7)(cos g, sin 0, 0)

we find using eq. (2.101) that r(7) must satisfy

72— 1

r

a
s 2— . .2 . —
4+ 2-(1 = 7)F (2.105)

Now, let us consider a de Sitter universe, with a(t) = et H = const. Using

a_ 1
a7 (2.106)
we find a solution to eq. (2.105). That is
T = 1 T L -
=—7T=—c¢ .
V2 VoH (2.107)

We can generalise this solution to a configuration comprising three semicircular

arcs symmetrically arranged around a common diameter:

1

x,(t,0) = \/éHe"Ht(cosa,O,sina)
1 _ 1 3

Xa(t,0) = 75}{—(3 H’(—-—Q—coso,écosa,sina)
| 1 3

x3(t,0) = me H‘(—Ecoso,——é_—cosa,sino)

with |o| < w/2. Each one of them will satisfy the equation of motion and, if we
choose 1 = p2 = H3 We can check that the boundary condition (2.104) is satisfied

with §; = §o = §3 = 0, so that s;(t) = w/2 for all ¢.
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This solution can be thought of as a generalisation of a circular cosmic string loop

solution found in [116]. The physical radius is

R(t) = ar (2.108)

1
V2H
As the authors note, this solution appears to be static but it is only stationary - it is a

contracting loop standing still against the Hubble expansion.

2.9 Discussion

In this chapter we presented an overview of the most important features of cosmic
string dynamics in the Nambu-Goto approximation. In Minkowski spacetime, we stud-
ied the equations of motion and presented some representative exact loop solutions.
We identified special points on the string, namely cusps and kinks. Their appearance
is generic, and they are important sources of gravitational radiation, as we will see in
Chapter 4. We also studied the dynamics of strings in an FLRW spacetime. The Hubble
expansion damps the motion of the strings, with long wavelengths being conformally
stretched as the Universe expands. For short wavelengths and small loops of string
the Hubble damping is negligible, so the equations of motion are almost equivalent
to those in flat spacetime. We saw that a great deal of analytical and numerical work
has been devoted in network evolution. The ‘one-scale’ model takes into account the
expansion of the universe and the long string interactions with associated loop forma-
tion. The network evolves towards a scaling regime, where the characteristic length of
the long string network is constant relative to the horizon, in agreement with numerics.
The VOS model is a more sophisticated analytic model that introduces a dynamical ve-

locity component to the equations — it has also been tested, quite successfully, against
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numerical simulations.

The theoretical prediction of cosmic superstrings gave a new boost to the cosmic
string research community. The prospect of linking string theory with cosmology, i.e.
with observations, is very challenging. We saw that cosmic superstrings can bind to-
gether, forming an entangled three-string configuration. We presented an extensive
overview of the studies of cosmic strings with junctions in the Nambu-Goto approx-
imation, with particular attention on the kinematic constraints for the formation of
junctions. We ended our discussion by deriving the equations of motion for strings
with junctions in an expanding spacetime. An exact solution was found for a de Sitter

background.

In the next chapter, we will study the evolution and stability of cosmic string loops
with Y-junctions using the CKS approach and a field theory U(1)xU(1) model [117].
In addition, the aforementioned kinematic constraints will be of crucial importance
when we study the evolution and cosmological implications of multi-tension cosmic

superstring networks in Chapter 5.



Chapter 3

Evolution and Stability of cosmic

string loops with Y-junctions

3.1 Introduction

The realisation that cosmic superstrings can arise in superstring/M-theory as products
of brane inflation [42, 43, 44, 45, 46] has opened up a window on string theory through
cosmology, since we might be able to detect them through their imprints in the cosmic
microwave background radiation [118, 1 19, 120, 121, 122, 123], their lensing of distant

galaxies [124, 126, 127] and the production of gravitational waves [128, 129, 130].

As we have already mentioned, for standard field-theory strings the intercommuting
probability is essentially unity [68, 131, 132, 133, 134]. However, the situation for
cosmic superstrings is quite different - the intercommutation probability can be greatly
reduced due to the presence of the large extra dimensions, and it depends on the value

of the string coupling constant [105, 135, 136, 137]. Furthermore, a network of cosmic
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superstrings will look very different from a cosmic string one. As an example, let us
imagine a network of F- and D-strings. Inevitably, they will form bound states of p
F-strings and q D-strings. Thus, trilinear vertices (Y-junctions) will appear, which is
not the case in the Abelian-Higgs cosmic string scenario. This can lead to interesting
dynamics following the collision of such strings, and it is natural for one to wonder

how the existence of Y-junctions affects the properties of the string network.

However, stable composites can form even in Abelian Higgs models, provided that
the gauge coupling is sufficiently high. We also know that junctions are generic in
non-Abelian networks. In the following, we use the U(1)xU(1) model [117] of gauge
strings that permits junctions, focusing on the particular case of closed planar loops.
However, we should note that no known field theory model can give us the rich mass
spectrum of bound states for cosmic superstrings. This means that some of the field
theory results cannot be extrapolated to the case of cosmic superstrings, for which the

U(1)xU(1) field theory is only a toy model.

Our aim is to compare the two different approaches which have been used to de-
scribe the dynamics of strings with Y-junctions. The first is the Copeland, Kibble and
Steer (CKS) approach [51, 52], which is based on the modification of the Nambu-Goto
action. The second is to describe the strings as composite objects in terms of an un-
derlying classical field theory that will allow for the formation of junctions [117] (see
also [138, 139, 140, 141, 142, 143, 144]). This comparison has already been done
for ordinary cosmic strings with no junctions (for a review see [5, 6]). The results
demonstrated that the Nambu-Goto approach is an excellent approximation to describe
a cosmic string, provided that the string’s curvature is much larger than its width. Re-

cently [113], it has been shown that the late time dynamics of a system of straight
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strings colliding and forming Y-junctions can be very accurately described using the
CKS method. We would like to know whether this is still the case when considering

closed loops consisting of several strings.

Using the Nambu-Goto approximation to study these configurations is profitable
for a number of reasons. First of all, the Nambu-Goto simulations are much easier
and less numerically costly (for example, only planar loops can be evolved using the
field theory code). Furthermore, the CKS approach gives us the freedom to choose the
strings’ tension, while in the field theory model the spectrum of the tensions is very
limited. Additionally, with Nambu-Goto there is more freedom in the choice of the
intercommuting probability of cosmic superstrings because, unlike in field theory, it

can be dealt by hand and it is not constrained by the equations.

We will compare the field-theory and Nambu-Goto evolution of two initial loop con-
figurations which could be the result of two planar loops colliding. However, we must
stress that they are not expected to be representative of loops in a cosmic superstring
network. These are very specific configurations, but they still give us the opportu-
nity to explore the properties of Y-junctions, including a new feature, their stability to

decomposition into three new junctions, whose separation may grow significantly.

The chapter is organised as follows: In Section 3.2, we discuss the Nambu-Goto
method and describe our numerical technique, followed by a brief description of the
U(1)xU(1) field theory model in Section 3.3. In Section 3.4 we compare our results

for the two different approaches. We present our conclusions in Section 3.5.
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3.2 Nambu-Goto approach

3.2.1 Equations of motion

In this section we set up the Nambu-Goto equations of motion for a string loop with
J junctions in Minkowski spacetime, generalising the aforementioned CKS approach

that described the dynamics of three straight semi-infinite strings meeting at a junction.

Case of two junctions

As a warm-up, we first set up the equations of motion for a loop with two junctions
and three strings. The junctions are labelled by the index J = (A, B), and the position

of the ith string ( = 0, 1, 2) with tension y; is parameterised as
zf (7, 0:), (3.1)

where 7 and o, are the world-sheet coordinates (note that 7 is chosen to be the same

for all three strings). The induced metric on the world-sheet for string i is

ozl ox¥

Yab = G Fob v (3.2)

where a, b = (7, 0;) and ), is the 4-dimensional Minkowski metric. Below, a dot/dash
denotes a derivative with respect to 7/0; respectively. The values of the world-sheet
coordinate o at the junction are denoted by s; and since we are not expecting s to
be constant, they are generally 7 dependent. In the case of two junctions, we have the
freedom to take o to increase (or decrease) to a given junction for all three strings.

Hence we can choose o to increase from junction A to junction B so that

si(r) < 0y < sB(7). (3.3)
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The positions of the junctions are
X5(r) =af(r,8](r))  foralls. (3.4)
In the absence of background fluxes and after dilaton stabilisation, the dynamics of

a single infinite (p, q)-string in flat spacetime is given by the Dirac Born Infeld (DBI)

action [111]

Sper = —ﬂ/deU\/—|'Yab + AFg), (3.5)

where i = |q|/(gs)) is the tension of ¢ coincident D-strings, A = 27w/, with o the
Regge-slope parameter, and g, is the perturbative string coupling. F,, is the electro-
magnetic tensor on the string world-sheet, and the electric flux density is the momen-
tum conjugate to the electric field p = 0Lpp1/0F;,. The dynamics of three semi-
infinite (p, q)-strings meeting at a junction was discussed in [111] where it was shown
that the resulting equations of motion are exactly equivalent to those obtained by using
the Nambu-Goto action for each string, provided the ith string tension in the Nambu-

Goto action is taken to be given by

2
wi=1/p?+ (q—) : (3.6)

8

and one imposes charge conservation at the junction

ZP:‘ =0 ZQi = 0. (3.7

Hence, we may assume that the dynamics of each individual segment of string is de-

termined by the Nambu-Goto action.

In the conformal gauge

Yo+ Voo, =05 A, =0, (3.8)
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the Nambu-Goto action for the three strings of tensions 4; joined by two junctions is
s = - m / dr / do; [O(sP(r) — 0)0(=s{ () + %)

x4/ —z? i?]

+ 2 Z/dffz’i‘[xé‘(fas;’(f))—Xs‘(r)], (3.9)

J=(A,B)

where u; is given in equation (3.6) and the four-vector Lagrange multipliers f;},(7)

impose the constraints given in Eq. (3.4).

Varying the action (3.9) with respect to z/' yields the usual equation of motion for a

string in Minkowski space-time (away from the junction), namely the wave equation
Boa =0 = o= slat(u) + B )], (3.10)
where
U =0;+7, Vi=0;—T. (3.11)
From the conformal gauge conditions (3.8) the “left” and “right” movers satisfy
a?=0, b’=0 (3.12)

Furthermore, varying the action with respect to X, imposing the temporal gauge and

using the boundary conditions gives the energy conservation equation at each junction:
p18] + posy + pssy = 0. (3.13)

As the junction is moving, some of the strings will have ] > 0 while others ! < 0.
These represent growing/shrinking of the string not only in o-space, but also in real

space. The rate of creation of one string must balance the disappearance of other(s).

In order to study the evolution of the whole configuration, we need to determine the

dynamics of the two junctions. It is important to note that, unless the configuration is
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highly symmetric, we cannot determine its evolution using analytical methods, except
at early times. That is because, once an outgoing wave from one junction has reached
another junction, then the incoming waves cannot be taken directly from the initial
conditions and the problem becomes non-linear. In general, numerical methods will

be needed in order to solve the full system.

Let us first consider junction B. The algebraic procedure to determine the outgoing
waves a” as a function of the incoming waves b;" at junction B is very similar to the
one used in the case where three semi-infinite strings meet at a junction. The basic
difference is that the strings are now finite, hence the incoming waves at junction B

are the outgoing waves from junction A and vice versa. We can therefore write (for the

outgoing waves of junction B)

2
D ui(1 - Bk, (3.14)
Z“k j

k

(88 + Da =bF(1-5F) -

while the evolution of 52 is determined by

<Z u;) M;(1 - cB(t))

1-521) = =2 , 3.15
Y Mi(1—cB(t)) G
k
where
et (t) = bi(vy(t)) - bi(vs(t)), (3.16)
My = pd— (e — ), (3.17)

and cyclic permutations. At vertex A the procedure is similar, though the incoming

. 1
waves are now given by the a/"".
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Multiple Junctions

When three semi-infinite strings meet at a junction, we can always arrange the coordi-
nates o; such that they increase toward the junction on all three strings. However, this
cannot be done generally, and it is essential to generalise the above equations for the

case where there is a different orientation between the three strings at a junction.

To do so we associate a further parameter §; with the 3 strings meeting at junction
J. If 6] = +1 then on string %, o; increases into the junction J. If, on the other hand,
6] = —1 for string ¢ then o; decreases into the junction. Note that if junctions J and
K are connected by string i then 6] = —&. This sign difference introduces a slight

complication in the governing equations.

Let us work initially in the conformal gauge, without imposing the temporal gauge.
This will enable us to derive the energy conservation equation directly from the action.
The action for the whole string configuration can be written as

5= |m ] ar / do; /-2 22 [0 (8! {s1(7) — o:})

J(i)

N / dr £14 {a¥(r, ! (1)) - X*%(1)}
)

J(
where J(i) implies that J takes on the values of the junctions at either end of string
i (for semi-infinite strings it would take on just one value). The presence of the ©
terms ensures contributions only for the allowed range of o values while the Lagrange

multipliers f;** ensure that the strings are coincident at the junction locations X.

Varying the action with respect to X ¥ for a single junction gives:

Y =0, (3.18)

i(J)



Evolution and Stability of cosmic string loops with Y-junctions 70

where now i(J) implies that i takes on the indices of the strings that meet at junction
J (in the J > 2 case, different strings will meet at different junctions, while for J = 2,
the same three strings were meeting at both junctions). Then, varying the action with
respect z¢ for a single string yields, in general, Z}' = z!'”, but at the junctions this

becomes:

wd] (2t +3]al) = fly. (3.19)

1,

We now set the more restrictive gauge condition oo = 1 (giving 7 = t and o as
invariant length) while combining equations (3.18) and (3.19). This yields immediately

the energy conservation expression as the u = 0 equation:
7, o : :
0] sy + (5J~J,ujs3’ + 5,{,uks,{ =0 (3.20)

where 4, j, k are the indices of the three strings meeting at junction J. Consider, for
example, the simple case with three strings and two junctions, where we can always
choose 8] = 83 = 6] = +1. Now change the orientation of string 3. Then 33 picks up

a minus sign but so does 87, so the energy conservation equation is unchanged.

Another effect of the sign change relates to the identification of the waves along
the string as “incoming” or “outgoing” from a junction. Away from any junction, the

strings satisfy the usual wave equation

X, = xi (3.21)

with general solution
x;(t,0;) = % [a; (u;) + by ()] (3.22)
where u; = 0; +t, v; = 0; — t and the gauge conditions impose |a;| = |bj| = 1.

While in CKS o; always increased towards the junctions and the incoming waves were
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always given by b;, in the multi-junction case outgoing waves at junction J become

incoming waves at the junctions to which it is connected.

In the new gauge and using the general solution of the wave equation in terms of

right and left movers, the spatial equations become

Y wd] [(1+8)a + (1 - 8)bi] = 0.

i(J)
Defining
(
+b2(8i - t) if (5;] = +1
Zi - <
—al(s; +t) if & =-1.
and ,
+ali(s; +t) if § = +1
Yi = <
| -bi(si—t) if &/ =-1

we can rewrite this as

Y o [(L+886)Yi+(1-6/5)Z] = 0.
i(J)

In addition the constraint that the three strings meet at the junction becomes:

o2X7 = (14+6/8)Y, — (1 - 6/%)Z..

Eliminating the outgoing waves Y; we find:

Z“z 1_6J J

i(J)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Furthermore, eliminating X from equations (3.27) and (3.28) we can solve for the

unknown outgoing waves:

. ) 2
(1+(5;]8;])Y,=Z1(1-(5;]S;])—;Z ( 5hgh)z
h

(3.29)
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Squaring these equations and using the gauge condition that |Y;| = |Z;| = 1, the
equation for the time evolution of 4] as afunction of the incoming waves (along strings

i, j and k) at junction J becomes

M1 — ¢/ (1))

1-6/3](t) =
i S Mal1 = ()] (330
where h takes values (i, 7, k) and the incoming waves are combined via:
cl(t) =Z; - Z, (3.31)

plus cyclic permutations, and we have the definitions: u = u; + y; + pi and M; =
u? — (uj — px)?, plus cyclic permutations. Note that causality (IX’| < 1) implies the

triangle inequalities M; > 0.

3.2.2 Numerical Method

Given an arbitrary initial configuration (x;(0, 0;), X;(0, 0;)), we aim to solve for the
full loop evolution and hence (x;(t, 0;), X;(t, 0;)) for all £ > 0. As we have already
discussed, this calculation is often analytically intractable, except at early times. Thus,
we will generally have to employ numerical methods. The numerical procedure is as
follows: For every string ¢ connecting two junctions, we work entirely with a’ and b/,
reconstructing the closed string position x(t, o;) and velocity x(¢, o;) only a few times
in the lifetime of the loop. The initial conditions fix a;(o;) and b}(c;) between all the
junctions. First we calculate the ¢; (t = 0), from which ${(t = 0) is determined using
equation (3.30). Then at time 6t, s;(8t), u; (6t) and v (3t) can be calculated. The last
step is to extend the domain of definition of aj(u) and b;(v), which can be done with

equation (3.29). The time loop then continues.
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We will first study (both analytically and numerically) an initially static loop with
three strings and two junctions, having a butterfly shape (see Fig. 3.1). Our simulation
ends whenever the length of one string goes to zero, and hence when two junctions
meet. The outcome of such a collision is not well understood for cosmic superstrings,

and in any case is not included in the Nambu-Goto description described above. How-
ever, the field theory simulations discussed in Section 3.3 can of course continue be-

yond this time.

3.3 Field Theory Approach

While the Nambu-Goto formalism is quite easy to analyze numerically, it does not
necessarily give a complete description of Y-junctions. For example, one might expect
important interactions between the strings close to and at the junctions, and these are
not included in the Nambu-Goto action. Thus, we also study the butterfly configuration
using a field theory approach, which guarantees a more complete description of the
physics of Y-junctions. We will use the U(1) xU(1) model of gauge strings [117]. This

involves two Abelian Higgs models having Lagrangian density:

1 v . A
L = —FuP* — (D8)(D*6) - T (19 - n?)*
1 v . A
g Fuw P = (D) (D*) = F (jo = %)
+r (J¢* = 7) (Jl* - %) (3.32)
The two Abelian Higgs models are only coupled via the potential term of equation

(3.32). The model gives composite stable solutions (i.e. stable junctions) for a specific

range of values of the parameter «, which we discuss below. We follow the conventions
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of [113, 117] and define the gauge covariant derivatives as:
D,p = 0.0 —1ieA,d, (3.33)
D,y = 0,9 —igBuy, (3.34)
while the anti-symmetric field strength tensors are given by:
Fy.u = aﬂ,AV - 81/Ap, (335)
fpu = auBu - aqu- (3.36)

Finally, 7 and v are constants that set the energy-scales of the two halves of the model

while \; and & are dimensionless coupling constants.

For k = 0, the two U(1)’s are uncoupled and each half of the model admits string

solutions, which are characterised by the phase of ¢ (¢) having an integer wind-

ing 2mm (27n). When « # 0 the U(1)’s are coupled and, as shown in [117], for

0<k< %\/ 12, two parallel strings from each U(1) can bind to a composite string,

reducing their energy. Hence one can have Y-junctions in this theory and their for-

mation as a result of the collision of two infinite straight strings was studied in [113].

The numerical approach employed for the field-theory simulations follows [113], but

with a very different set of initial conditions, namely the ones required for the butterfly

configuration. These are described in Appendix A.
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3.4 Results

3.4.1 Analytic Nambu-Goto result for the butterfly configuration

with two vertices

Let us start by introducing the butterfly configuration with two junctions. The initial
conditions are a straight string with tension y (lying on the y axis) and two arcs of

unit circles with equal tensions y; = p5 in the z — y plane. The strings are initially

— A

Figure 3.1: The butterfly loop.

static: this means $; = 0 or equivalently that the vector sum of tensions at the junction

J vanishes

(3.37)

28]

It is useful to introduce the angle v, and we find that for an initially static loop, it is

&;.\!kn\

cosy = —R, R = pio/(2p11) = x, where z is the distance of the wings’ centres from
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the straight string. We then have:

Xo(t = 0,00) = (0,00,0), loo| < sin~,
x,(t = 0,01) = (—cosy +cosoy,sin0y,0), |0y <4,

Xy(t = 0,02) = (cosy — cosgy,sinay, 0), |og| < 7. (3.38)

Following our conventions, we label the lower vertex as A and the upper one as B
so that o; increases towards junction B for all strings. Because of symmetry, it is

sufficient to study one junction, say B. Att = 0 we find

a:) = b,O = (Oa 1a O),

aj=b'; = (—sinoy,cosoy,0),
a,=b'ys = (sino,, cosay,0). (3.39)
The energy conservation equation (3.13) implies that R$¥ = —38 and hence after
integration we have:
s5 () = siny — % (sT() —7). (3.40)

Thus, we only need to determine s7(t). We have ¢; = ¢; = cos(s® — t) and ¢, =

92cos?(sB —t) — 1 and, letting A = t — s¥ and using equation (3.30), we find

Ao 1—-R?
1+ RcosA’ (3.41)
Integrating the above equation, we get
tsin?y = —cosysin A + A — cosysiny + . 3.42)

Together with the definition of A and equation (3.40), we now have ¢, s and sB

specified as functions of the variable A.



Evolution and Stability of cosmic string loops with Y-junctions 77

It is useful to note that, since the string O is simply stationary and on the y axis for
all times, then the above t = 0 result is valid for all ¢ and the ordinarily difficult to

handle emitted waves are simply the waves set by the initial conditions.

3.4.2 Direct comparison of field theory and Nambu-Goto strings

We wish to compare the field-theory and Nambu-Goto evolution of two initial loop
configurations, which are variants of the butterfly loop. More specifically, we will

consider two closely related but different initial conditions (see Fig. 3.2). The first is

H4 Ho H

Figure 3.2: An example of a loop configuration with multiple junctions: the butterfly configu-
ration with a central string of tension jo and two arc strings of tension y;. The basic butterfly
configuration has just two junctions, but we find that under certain situations these can decompose
as indicated by the magnified region, with a single junction splitting into three junctions that ther;

continue to separate.
the butterfly configuration studied above, consisting of three strings and two junctions.
For both the Nambu-Goto and field-theory simulations, we use circular arcs with unit
radius. For the field-theory case, we follow the standard parameter choice 2 = A, =
A, = 2¢2 = 2¢% and 0 < £ < 1 in order for bound-states and Y-junctions to exist. We

additionally set 7 = v so that there is complete symmetry between the two halves of

the model.

For the field-theory simulations, we consider two cases:
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e Case 1: a(1,0) and a (0, 1) string forming the “wings”, with a (1, 1) bound state

string as the central segment.

e Case 2: a(1,—1) and a (1,1) string form the “wings”, so that a (2,0) bound

state string forms the central segment (Fig. 3.3).

- -

Figure 3.3: The ¢ and ¥ fluxes present in the butterfly configuration for field theory simulations
of case 2: (1,1) + (1,-1) — (2,0).

In the Nambu-Goto simulations, we defined the tension of the wings to be x;, and
the tension of the central straight segment to be uo. This choice greatly simplifies
matters, especially when it comes to constructing initially static configurations of loops
with junctions, which is a difficult task for both the Nambu-Goto and the field theory
approach. When it comes to long straight strings which collide to form a junction,
the situation is much simpler, and the study of such collisions of strings with equal
and unequal tensions has shown good agreement between the field theory and CKS
dynamics after junction formation [113]. In the field theory simulations, the string
tensions are calculated [117] for a given coupling  and cannot be set by hand. Thus,
in order to compare Nambu-Goto and field theory simulations, we first calculate the
tensions for the field theory, and then we use the results as inputs in the Nambu-Goto

code. Table 3.1 gives the string tensions for infinite straight strings (calculated via the
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method of [117]) for k = 0.8 and 0.95. From the definition of R = g:% the relevant
numerical values are also given in table 3.1 and we see that smaller R corresponds to
more stable junction. In case 1, R is never very small since most of the energy stems
from the covariant derivative term, which cannot be greatly reduced even by increasing
« to its maximum value. A large binding energy exists in case 2 since it involves the
cancellation of fluxes. Indeed, we see that for k = 0.95, R = 0.56, meaning that a

(2, 0) string is just slightly heavier than a (1, 1) string.

K 080 095
1a,0)/2mn° 0.864 0.728
B,/ 2mn? 1.452 1.133
B20)/ 270 1.622 1.271

R[(1,0)+(0,1) = (1,1)] 0.840 0.778
R[(1,1) +(1,—1) = (2,0)] 0559 0.561

Table 3.1: The energy per unit length and the corresponding R values for x = 0.8 and x = 0.95.

We start by presenting our Nambu-Goto results for the initial condition given by
case 1 with k = 0.8 (Fig. 3.4 left) and for the case of R = 0.5, hence uo = p (Fig. 3.4
right). Before discussing these results, it is useful to recall the initially static circular
Nambu-Goto loop of unit radius in Minkowski space-time (see Section 2.3.2). As we
know, such a loop collapses to a point after a time ¢ = § — this is also the collapse
time for those regions of the circular arcs on the butterfly wings that remain causally
disconnected from the junctions. In the buttefly case, the wings are parts of unit circles
and their length is determined by the initial conditions as 2(m — cos™!(R)). Now, the
wave equation tells us that information travels along the strings at the speed of light.
This means that, by the collapse time, information about the presence of the junction

will have travelled a length of 7/2 along the arcs. Hence, a length 7 — 2 cos™!(R) will

remain unaffected by the presence of the junction, i.e. it will behave like a circular
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“ c

t=0.8

t=1.12 t=1.57

2. a8 >

Figure 3.4: Results using the Nambu-Goto method with tensions set to match a field theory (1,0)+
(0,1) — (1,1) case with k = 0.8 (left plot), and all tensions equal (right plot). The later case
corresponds to R = 0.5 and includes a magnified region showing a kink.

loop. We are therefore expecting that a fraction of the arcs will collapse to a point,
reaching the speed of light, and yield a sharp kink in the string. Indeed, in the right
panel of Fig. 3.4 the collapse time is ¢ = 1.57 2 7/2 and a kink is formed when parts

of the wings instantaneously collapse to a point.

A direct comparison of field theory and Nambu-Goto results for the case 1 with
x = 0.8 is shown in Fig. 3.5, while that for case 2 with £ = 0.95 is shown in Fig. 3.6.
As we can immediately see, the agreement is excellent. This allows us to extend the

results for straight strings with kinks to strings with curvature.

In order to perform a more detailed comparison, we plot in Fig. 3.7 the length of
the central straight string as a function of time for the Nambu-Goto and field theory
simulations. In the NG case, the length is just the difference between so(t) at the two
junctions and, as we showed earlier, it can also be obtained analytically. Our results

confirm that the agreement is excellent until the collapse time. In case 2 we observe
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an initial departure, which is basically due to the (0, 1) string trying to follow a less
kinked route across the junction and therefore moving outwards from it, but then going

too far and so undergoing a few low-level oscillations.

Figure 3.5: The evolution of the butterfly configuration (1,0) + (0,1) — (1,1) with & = 0.8,
shown at equally spaced time intervals: ¢ = 0.000, 0.267, 0.533, 0.800, 1.067, with larger configu-
rations corresponding to earlier times. The field theory solution is shown as a bitmap, representing
the cumulative projection of its energy density onto the plane, while the Nambu-Goto solution is

shown as a solid black line.

Figure 3.6: As in Fig. 3.5 but for x = 0.95and (1,1) + (1,-1) — (2,0) .
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Central bridge length
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Figure 3.7: The length of the central bridge string as a function of time for the analytic NambL.J-
Goto solution (thin), the numerical Nambu-Goto results (thick, dashed) and the field theoretic
results (crosses). The collection of data with lower bridge lengths is for the (1,0) + (0, 1) 3 (1, 1)
case with & = 0.8 while higher bridge values correspond to (1,1) + (1, —1) — (2,0) with & =

0.95.
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3.4.3 Stability of Y-junctions

When the initial butterfly configuration consists of the case 2 scenario of (1,1) +

(1,—1) — (2,0), the field theory simulations show that the Y-junction can decom-

pose, as illustrated in Fig. 3.8.

(1,1)

Figure 3.8: The decomposition of a (1, 1)+ (1, -1) — (2,0) junction into three separate Y-
junctions.

Let us first try to explain why this decomposition occurs. As we know, the central
(2,0) string is a bound state of a (1,1) and a (1, —1) string. However, it can also
be constructed from two (1,0) strings. Whether this decomposition will take place
depends on the parameters of our U(1)xU(1) system. For our parameter choice x =
0.8 and k = 0.95, the ratio R = ﬁ—"; is approximately constant (see table 3.1, R ~
0.56). On the other hand, the ratio R = ﬁ‘—‘z (where pi; is defined to be the tension of
the (1, 0) string) decreases from 0.86 to (.78 with increasing  across that range. This
means that, as x increases, /1 becomes larger relative to both 1 and g1, which stay in
proportion to each other (as the R ratio stays constant). Hence, for the lower value of

. = 0.8 this decomposition involves a small j» and, as we see in Fig. 3.9, the (1,0)
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strings are formed and then grow in the time-scale of the simulation.

Figure 3.9: The decomposition of the Y-junction as seen in the field theory simulations for (1,1) 4
(1,—1) — (2,0) with k = 0.8.

The results for x = 0.95 have already been presented in Fig. 3.6. In that case, the
(1,0) strings do again form - the difference is that they do not grow, so the loop’s
evolution is identical to the one of the original butterfly loop. As we can see from

Fig. 3.9, the final state for the £ = 0.8 case is very different: the central bridge has
decomposed and peeled open.

The question is if we can reproduce this phenomenon using the Nambu-Goto simu-
lations - the answer is yes, but there is an important constraint: there is no way to get
the decomposition dynamically using the NG approach. We have to start with appro-
priate initial conditions. This is the second set of initial conditions shown in Fig. 3.2,

that is adding an initial perturbation consisting of three strings with tension iz, which
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are all taken to be arcs of circles of size h, effectively the distance between the junc-
tions (note that the free parameter h does not affect the general physical behaviour, if
initially small — we will therefore use & = 0.01). The Nambu-Goto evolution cor-
responding to the x = 0.8 field theory case 2 is shown in Fig. 3.10 (note that the
three-string perturbation is so small at £ = 0 that it cannot be resolved by eye). How-
ever, the snapshot at ¢ = 0.5 clearly shows the perturbation which is growing until the

end of the simulation, where the central bridge collapses. In Fig. 3.11 we present a

t=0.0 t=0.50
1+ H—
05+ 05—
o 0f-
) 0.5+
_1L =2 8
| | | | 11
5 ] 0 1 2 -2 -1 0 1 2
t=0.90 t=1.21
1+ 1=
05+ T
o 0
0.5 0.5
-1 -1 =
| | | | il |
2 =3 0 1 2 -1 -0.5 0 0.5 1

Figure 3.10: Nambu-Goto evolution of the perturbed butterfly loop corresponding to the x = 0.8
field theory case of Fig. 3.9, using a perturbation parameter 1 = 0.01 - the instability grows and

the loop is unstable.

direct comparison between our Nambu-Goto and field theory results for the unstable
configuration. The agreement is again very good throughout the evolution, and we
can explain the small departures we see using very simple arguments. At very small

times, we see that the field theory perturbation grows more quickly than the Nambu-
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Figure 3.11: Comparison between Nambu-Goto and field theoretic results for =0, 0.0667, 0.1333,
and 1.31. Field theory results shown as a bitmap are from simulations with £ = 0.8 while the ten-
sions in the Nambu-Goto case (solid black line) are set to match those derived from corresponding
theoretic calculations for straight, infinite strings. [h=0.01]

Goto one. This happens because in the Nambu-Goto case we start with all junctions
initially static, while in the field theory case the dynamical break-up happens very fast.
Additionally, in the Nambu-Goto case we use circular arcs' to construct the initial
perturbation, which is not expected to be a true represantion of the actual situation.
However, with this choice we manage to model the physical string-junction system us-
ing the Nambu-Goto approach, which cannot account for junction formation without
additional input that mimics the field-theory case just after string collision has occured.
At the very end of the simulations (close to the collapse time) we also see a small dis-
agreement. The field theory loop decays quicker and radiates strongly, which is of
ourse expected, since the Nambu-Goto approach cannot account for the interactions

C

between the strings. A similar Nambu-Goto evolution for k = 0.95 shows that the

IThis choice is not unique. For example, we can also construct an initially static perturbation using

straight lines.
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(1,1) + (1, —1) — (2,0) junction is stable to the breakup of junctions, again agreeing

with the results from field theory.

The approximate matching of the critical value for « at which the growing decom-
position occurs can be considered a success for the less computationally demanding
Nambu-Goto approach. As we will show below, it also allows us to make a prediction
based purely on the Nambu-Goto results as to when a junction will and will not be

unstable to decomposition into multiple junctions.

3.4.4 Stability of Y-junctions in the Nambu-Goto approach

We will now study analytically the stability of the initial perturbation for small times.
We will work with junction A; in Fig. 3.8, however the same analysis can be applied
to any other junction. Let us start by introducing the initial equilibrium conditions for
junction A;, which are defined in terms of the tensions (g, 1 and pp. The position of
junction A; in o-space is

s11(0)

y=m—cos " (;—O—h>,
23

s510) = n=m1—-7v—aq,

s

s53°(0) = p=v-a-g. (3.43)

. am : . N _
where a = cos™' 21 and h is the distance between junction A; (or A;) and junction

As in Fig. 3.8. As we will demonstrate, the behaviour of the perturbation depends on
whether the angle

p= % —cos ' (R) —cos™ ! (R—h) (3.44)
is positive or negative. As we will show below, for a given pair of tensions 1 and p,

there is a critical tension pg = ferit, for a small fixed perturbation size h, for which
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p = 0. Above and below this critical limit, we have two distinct regimes: one in which
the perturbation grows, and one in which it collapses. We will now consider the two

cases separately (note that we drop the index A, for simplicity).

Casel: p <0

The initial configuration comprises of three strings with tensions p;, 5 and

b'1(t =0,01) = (sinoy,cosay,0),
b'y(t =0,02) = (—sinoy,cosay,0),
b'3(t =0,03) = (—cosos,sinos,0). (3.45)

At a later time ¢ the incoming waves at junction A are

b1t s1(t) = (sin(s1(t) —1),cos(s1(t) — t),0),
by(ts2(t) = (= sin(sa(t) — ), cos (s5(t) = £),0),
b's(t, s3(t)) = (—cos(ss3(t) —t),sin(s3(t) — t),0).
(3.46)
Using a Taylor expansion around ¢ = 0 for s; we get s;(t) = s;(0)+\;t2+... (remember
$; = 0 initially), and using the relations between the angles we find (to first order in t)
c1 = cos(2a+2t),
cp = —COsaQ,
c3 = —cos{a+ 2t). 3.47)

Using equation (3.30), linearising in ¢ and with R = cosa = 5‘;—‘2 (which is always less

than unity due to the triangle inequalities) we find

S 1 . (2R -1
§1 = —S83 = ——ﬁt, Sg = 1 - R2 t. (348)
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Casell: p> 0

The initial conditions can be written as

b'i(t =0,01) = (sinoy,cosoy,0),
b'y(t = 0,02) = (—sinoy,cosoy,0),
b'3(t = 0,03) = (—cosos, —sinos,0). (3.49)

Following the same procedure we find

. .. 2v/1 —R?2
$; =0, Sg = —83 = ———i—:,R—t. (3.50)

Having the analytic expressions for s; for both cases, we can use equations (3.23)

and (3.27) to obtain the corresponding expression for X:

. 1
X=- > ui(1 - 4;)b}. (3.51)
dom
J
In order to study the motion of the vertex in real space, we define the angle
X
tan = .—y .
() ( Xm) (3.52)

Since the expression for this angle is very complicated, one can take the limit in which
the perturbation size h tends to zero, and also consider small deviations from the p = 0
case, either with positive or negative p. The critical tension p5 which leads to p = 0 is

obtained by setting (3.44) to zero and solving for po, resulting in

L= 1
Herit = 5 cos (cos™}(R—h) —7/2) (3.53)
Therefore, in the limit h — 0 and p2 = picrir €quation (3.51) reduces to
Xy _ R ~14+3R2+ VIR
X, (3.54)

. +
Xz 1+v1-R? R2(1+\/1-—R2—2R2\/1_Rz)t
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for p < 0, and

V1—- R? 3 2+ R2-2,/1-R?
R 2R t

Xy _
X, (3.55)
for p > 0. Notice that, as one should expect, in the critical tension limit R drops out
from the expressions, and only R = £ appears. For both cases (p > 0 and p < 0),

X, is initially positive, so it is the y direction which changes. For p > 0, the vertex A,

moves with an initial angle of

(3.56)

)

cp=1r+tan"l(

in the critical limit (2 = perit), and bigger angles for pz > ey therefore the per-

turbation does not grow. In contrast, for p < 0, the vertex A; moves away from the

y-axis, with an initial angle of

_ R
=g —tan"! | —————
’ (1 +VI- R‘2'> ! 3.57)

which is practically along the butterfly wing. In this case, the junctions separate ini-

tially from each other and the butterfly configuration is unstable.

It is insightful to visualise our results by plotting the evolution of the angle ¢
(Fig. 3.12). The main result is the discontinuity in ¢ when going from p > 0 to
p < 0. Negative p corresponds to the arc A;A; in Fig. 3.8 going from concave, as
shown, to convex. Equivalently, the center of the circle from which the arc is formed
moves from below the arc, as in the figure, to above it. This shows how the evolution
of the splitting of the Y-junction in the original butterfly depends mainly on the initial
local curvature of the strings involved. When p > 0 (see Fig. 3.8), strings 2 and 3
are “competing”in o-space while the butterfly wing (string 1) is not contributing much

(note that for small times $1 = 0 to first order in t). After some time and in real space
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Figure 3.12: Numerical (solid lines) and analytic (dashed red lines) evolution of the angle ¢, for
junction Al, for two cases with p > 0 and two with p < 0; all close to the critical value p = 0
(blue lines are closer to the critical value). For p < 0 (bottom curves) the Y-junction is said to
be unstable, since vertex A moves along the butterfly wing until it reaches 180°, and then it starts
moving towards the centre of the big arc, as shown in Fig. 3.10. For p > 0 (top curves), vertex
A moves downwards, leading to a stable Y-junction. The analytic approximations are calculated
using R = 0.561 and equations (3.54) and (3.55), which are linear truncations (in time), and only
hold for small times since ¢21 (t) ~ h. We choose h = 0.01.

the vertex A; moves downwards with an initial angle of ¢ > 7 + tan~'(v/1 — R?/R)
(with the equality in the limit of p — 0) from the z-axis, as can be seen in Fig. 3.12. In
this case the perturbation does not grow and, for a tension /i, big enough, it may even
collapse faster than the central bridge does. However, for p < 0 the local curvature is
such that the strings of the triangular perturbation grow in o-space. In real space, ver-
tex A, initially moves rapidly away from the y-axis and almost along the butterfly wing
(string 1), which corresponds to an initial angle of ¢ < m — tan"}(R/(1 — V1 — R?)
from the z-axis. In figures 3.10 and 3.12. one can see this initial evolution. Later in
the evolution (when the angle ¢ reaches 7), the segment A; A, changes from convex to
concave, and the vertex A, evolves like any other point on the big arc segment, hence
moving towards the centre of the butterfly wing, as one can see in the last two plots of

Fig. 3.10. Therefore, for p < 0 the perturbation grows for some time (which depends
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on how negative p initially is), implying the original butterfly Y-junction is unstable,

leading to the criterion for stability based on simply obtaining the value for p.

3.5 Discussion

In this chapter, we have extended previous studies on the dynamics of cosmic strings
to include the description of the situations one expects in cosmic superstring networks,

namely, the formation of junctions when strings of different kind form bound states.

We concentrated on a specific configuration and we centered our attention on the
comparison of Nambu-Goto and field theory numerical simulations. The advantage
of the Nambu-Goto approach is its simplicity, both analytical and numerical. The re-
duction in the degrees of freedom compared to field theory simulations allows for nu-
merical computations with larger dynamic range. However, we know that the Nambu-
Goto description breaks down when two strings cross, loops contract to a point, or
when junctions collide. This is well established for the case of usual Abelian cos-
mic strings, but algorithms have been developed (using feedback from the field theory
results) which nevertheless allow the Nambu-Goto approach to be used to model the
evolution of a cosmic string network. Establishing similar confidence for the case of
cosmic strings with junctions is of crucial importance. In this work, we have been able

to explore some aspects of the relationship between the two approaches.

We saw that, when it comes to the general dynamics, the Nambu-Goto action mod-
els very well the evolution of a configuration of strings with junctions. However, the
field theory approach unravelled a new phenomenon, a new instability that could not

be possibly seen using solely the Nambu-Goto method. We saw that a junction can in



Evolution and Stability of cosmic string loops with Y-junctions 93

fact break into three new junctions, hence the composite string unzips, changing com-
pletely the dynamics and evolution of the loop. Studying our field theory model, we
realized that for weakly-bound composites the junctions can cause the strings to unzip,
causing the aforementioned instability. We also discovered that we can in fact model
this using Nambu-Goto dynamics, provided that we use appropriate initial conditions,
i.e. introducing a perturbation consisting of three initially tiny strings with equal ten-
sions and letting the loop evolve. Remarkably, we could then predict when a junction
would unzip or not, depending on a single parameter, the angle p. With this done the

agreement between the two methods is remarkably good.

Our chosen configuration is not, of course, representative of a cosmological net-
work of cosmic superstrings. The key point here is that, given the feedback from field
theory, we were able to understand and model the instability using the Nambu-Goto
method. As we have already mentioned, the kinematic constraints derived using the
NG approach have been checked with field theory results and the agreement is (gener-
ally) good [112, 113, 144, 145]. We therefore believe it will again be possible to per-
form large-scale cosmological simulations of cosmic superstrings using the modified
Nambu-Goto approach, in the same manner that it is possible to perform simulations

of ordinary strings using the Nambu-Goto equations.



Chapter 4

Observational Signatures of Cosmic

Strings

4.1 Introduction

In this chapter, we will attempt to review the most important observational conse-
quences of cosmic strings [5, 6]. We concentrate on strings whose interactions are
primarily gravitational, determined by the value of Gu. We will present results and

constraints from lensing, gravitational radiation, CMB and pulsar timing.

When possible, we will extrapolate these results to cosmic superstrings. However,
most of the work on the subject of cosmic superstrings has been more qualitative than
quantitative, since the rich features of cosmic superstring networks cannot be fully im-
plemented in the calculations. Recently, however, more systematic efforts to quantify

the cosmological effects of cosmic superstrings have appeared in the literature — we

will highlight them where appropriate.
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4.2 Lensing

Let us start by studying the gravitational properties of a straight string lying along the

z-axis [5]. The Poisson equation for the Newtonian gravitational potential ¢ is
V2¢ = 47G(p + ps + Py + D). 4.1y

The string under consideration has an equation of state p, = —p,p, = p, = 0. This
gives V2¢ = 0. As a result, straight strings do not exert a gravitational force on any
surrounding matter. This unusual property is a result of the string’s tension, which acts

as a negative gravitational source cancelling out the effect of the string’s mass.

Taking the zero-width approximation and assuming that the gravitational field of
the string is sufficiently weak, we can linearise the Einstein equations and derive the

space-time metric of a straight static string. We find [36]
ds® = dt* — dz? — dr? — r2d9? (4.2)

in cylindrical coordinates (r, 8, z). The metric has a Minkowskian form, which means
that the spatial geometry around the string is locally Euclidean. However, this is not

true globally, since the angle 6 does not vary in the full range 0 < 6 < 2, but in the

smaller range
0 <6 <2m(1—4Gp). (4.3)
The geometry is actually conical, with a global deficit angle
A = 8nGp. (4.4)

For a GUT string, we expect that Gy is of order 107° — 10~7, and the deficit angle is

a few seconds of arc.
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The string acts as a cylindrical lens (Fig. 4.1). If a light source (e.g. a galaxy) is
behind it, the result of the string’s conical geometry is to create double images with a
typical angular separation of order A, similar magnitude, and no distortion [146, 147].
This feature is quite unique, as most classical lenses (ordinary compact matter) produce
odd numbers of images with distortion. The presice formula for the angular separation

Sa of the images is [146, 147]

Dls

8

Asin®f, 4.5)

dba =

where Dy is the normal distance of the source from the lens (the cosmic string), D; is
the normal distance between the source and the observer, and 6 is the angle between

the line of sight and the tangent to the string. Furthermore, observing in the vicinity of

>

Figure 4.1: The lensing of a distant light source by a cosmic string (CS).

a lensing effect due to a cosmic string should reveal an array of additional lensed pairs
[148].

Our previous analysis is only valid for a straight, static string. In fact, as we have
already discussed, there is a great deal of small scale structure (wiggliness) on the
strings. An observer will not be able to resolve the small scale structure, but its effect
can be quantified by an effective energy per unit length, U, which is larger than x. On

2

the contrary, the effective tension T is reduced. Overall, we will have a UT = u

equation of state [149, 150]. Hence, there is a non-zero gravitational acceleration

towards the string, proportional to UU — T. In that case, the expression for the angular
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separation becomes [151]

Dls
D,

da = 87GU sin 6. (4.6)

For straight strings with velocity v, the corresponding formula is [125, 126]

Dls
D,’

ba = 87Gp\/72(1 + 0 - v)2 — cos?6 4.7)

where 1 is the unit vector along the line of sight. The lensing effect of a string is

enhanced by its motion.

An observation suspected to be a signature of cosmic string lensing was reported in
[152]. Unfortunately, further investigation proved that the observed object was actually
a pair of interacting giant elliptical galaxies [124]. A recent paper [153] investigated
possible cosmic-string lensing candidates using imaging surveys. Their non-detection

placed un upper limit on the cosmic string tension, Gu < 6.5 1077,

Other suggested ways to detect cosmic strings are via microlensing or weak lensing.
Microlensing occurs when the lens and the source are in relative motion. This leads
to a measurable change of the apparent luminosity of the source over time, making
microlensing a very useful method of detection when the image splitting is too small
for astronomical measurements to resolve (i.e. when the lens mass is too low). A
recent study [127] investigated the possibility of detecting gravitational microlensing
of distant quasars by cosmic strings. Their calculation showed that the expected event
rate from long strings is very small, and the lensing time-scale too long. Furthermore,
the small loops contributions do not seem to enhance the detectability. Even when
the more optimistic estimations are made, CMB constraints significantly reduce the
available parameter space. The weak lensing properties of cosmic strings were recently

studied in [154]. The authors found that no signal exists for straight strings, and a
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small, difficult to detect signal is produced from strings with small scale-structure.

Finally, the lensing effects due to strings binding together to form Y-shaped junc-
tions were studied in [126, 155]. In the case of a static junction of three coplanar
strings, it was shown that an observer looking at a light source located behind the plane
of the strings will see three identical images. In fact, the force balance condition at the
junction, S fi =0,leads to a similar balance condition for the angular separations,

3. éa; =0, allowing for the relative tensions of the strings to be determined.

4.3 Gravitational Radiation

43.1 The weak-field approximation

We will briefly review the weak-field treatment of a gravitating cosmic string [5, 49].
For strings with energy scale 7 < my;, the weak-field treatment is generally applica-

ble, excluding the small regions around cusps and kinks.

Using the weak-field approximation, the spacetime metric can be written as a small

perturbation away from flat Minkowski space. That is
Guw = N + Ay, |hw < 1. (4.8)
Linearizing in h,,, and using the harmonic gauge conditions
@(M—lym>=m
N
the Einstein equations take the form

Ohy, = —161GS,,, (4.9)



Observational Signatures of Cosmic Strings 99

with O = 82 — V? the flat space d’Alembertian and S, = Ty — 30w T3

The standard retarded solution to equation (4.9) is

_ w(t', X))
hyw = 40/ Tx—x] %° ' (4.10)

where ¢ is the retarded time ¢ — [x — x'|. This means that the source points (t', x’)

cover all points on the past light cone of the field point (t,x) for which S, # 0 [49].

Using equation (2.14) for the string’s energy momentum tensor we find [58]

hu(t,x) = —4GN/|-£-:?;_—U)T[1 —n-i(r,0)] " \do, “4.11)

where Fj, = T,3y — z,T, + NuwZTy N = (X —r(1,0))/|x — r(r,0)| is the unit
vector from the source point r to the field point x and 7 =t — |x — r(r,0)|. If the

source is a periodic loop with period T and length L, the time average of h,,, over one

oscillation is [58]

4G X
(hu(x)) = “/ / Fyu(7,9) — B 7 _dodr. (4.12)

Ix — r(r, Ix —r(r,0)|
Note that equation (4.11) diverges if the string contains a cusp, where |f| = 1, so that
a cusp emits a thin pulse of gravitational energy in the direction of its motion. We will
futher analyse the gravitational bursts from cusps (and kinks) in Section 4.3.4. Also

note that, in most cases, the approximation n = x/|x|,r = |x| is used, since we are

interested in the energy transmitted at large distances from the source.

4.3.2 Gravitational Radiation from cosmic string loops

We have already discussed that gravitational wave emission is the main energy loss

mechanism for an oscillating macroscopic string loop. The gravitational radiation
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power for an isolated string loop of length L can be estimated using the quadrapole

formula [15]
d’D
P“G<dt3) ) (4.13)

where D is the quadrupole moment. With D ~ M L?, where M ~ pL is the mass of

the loop, and w ~ L~! the characteristic frequency, we find
P =TGp?, 4.14)

where T, the radiative efficiency coefficient, is a constant to be determined. Note that

the power is independent of the size L of the loop. Then, the lifetime of the loop is

given by
~“Tau (4.15)

However, the quadrupole formula cannot be trusted for relativistic sources, so we need

to use the full relativistic formalism [5, 6].

In the weak-field approximation, the power from an isolated periodic source can be

calculated as [15]
dP,
P=E= ZP Z/dQ oL (4.16)

where

1

dPn _ ng v 2
= §|Tu (wn, k)| ] “4.17)

dS} T

[Tlum, k)T (wn, k) —

is the radiation power per unit solid angle at frequency w, = 27n/T in the k-direction

k| = wn, T the oscillation period and

TH (wn, k /dte"""t/ dBre **TH (x, 1) (4.18)
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is the Fourier transform of the energy-momentum tensor.

The first studies of the radiated power from simple loops using the above formalism
were performed in [83] and [61]. In [83], the authors studied the gravitational radiation
emission from the Kibble-Turok family of loop solutions, while [61] was devoted to
the Burden solutions (see Section 2.3.2), for which the angular distribution of radiated
power dP, /df2 canbe expressed analytically in terms of Bessel functions. Both studies
found I’ ~ 100. A similar study, but for the cuspless kinked loops [59], found I" ~

50 — 100. Note that, in some special cases, the power diverges due to the presence of

persistent cusps.

A more thorough numerical investigation was performed in [156]. The authors stud-
ied the gravitational radiation power from cosmic string loops produced in a flat space
numerical simulation of loop fragmentation. The gravitational radiation was found to
be strongly peaked in the region I' = 40 — 60. A numerical treatment in an expanding

universe [74] produced very similar results, with (I') =~ 65. In Fig. 4.2 we present our

T T T T T T T T T
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0.2

dP /dQ

0.15

0.1
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mode number n

Figure 4.2: dP, /dSYin the equatorial plane for the planar circular loop. The radiation falls slowly
with increasing mode number n (c.f. with Fig.3 in [74]).
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results for the gravitational emission d P, /d(2 in the equatorial plane direction from an
idealised! planar circular loop using a simple numerical algorithm. Our discrete cir-
cular loop consists of 1000 points, and the numerical result is indistinguishable from
the analytics (c.f. with Fig. 3 in [74]). Finally, analytical and numerical work in
[158, 159, 160] improved the previous results and showed the possible existence of a

lower bound in the radiative efficiency of cosmic string loops, I',.;, ~ 39 [160].

4.3.3 Gravitational Radiation from wiggly strings

Using the weak field formalism, we can also estimate the power radiated from wiggly
strings. In [161], the gravitational radiation from a helical string was studied. Letting

w= 0 +1,v=0 —t, the string’s trajectory has the form z* = [t, 3(a + b)], with

a(u) = [6 cos(Qu), ?62_ sin(Qu), V1 — ezu] , (4.19)
b(v) = [é cos(§v), é sin(Qv), V1 — e%] , (4.20)

where € is the breathing frequency of the helix and the parameter e is its winding
number per unit length (0 < € < 1). In the limit ¢ — 0, the trajectory is just a straight
line across the z-axis. The energy-momentum tensor for this trajectory is periodic in
time with period 27Q2~", and also periodic in z with period 2707 1v/1 = €2. Due to
the symmetry of the problem, it is convenient to study the radiated power through a
cylinder centered on the source and having a radius much larger than the size of the

source. Then, the expression for the radiated power per unit angle per unit length

1As we have already mentioned, a realistic circular loop would collapse to form a black hole [60].

For the calculation of the radiated power per unit solid angle in this situation, see [157].
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becomes [161]

y 1
dzd0_2GZZw[ e T 1) = 3T nOE| . @20

where w = |k|, k = (ky,k.) and the energy flux is calculated in the k, direction.
Since there is no explicit dependence on the angle 6, the total power per unit length
in the z-direction is found by multiplying the RHS of equation (4.21) with 27. The

energy per unit length E along the z-axis can be written as [161]

E=—Lt
i (4.22)

For this reason, the radiated power diverges as € — 1. On the other hand, in the limit
¢ — 0 the power vanishes, since the trajectory reduces to that of a static straight string.
In [161], the radiated power as a function of ¢ was calculated numerically, finding
an increasing power with increasing e. The radiated power for a given € decreases
with increasing frequency w, while the contribution from odd frequencies becomes
less important with increasing €. For small ¢, almost all the power is emitted at the
Jlowest even mode. Finally, the gravitational damping of the oscillations was found to

be efficient for large-amplitude waves (¢ ~ 1).

This work was later generalised in [162, 163]. The general case can be treated as
a straight string with small-amplitude transverse perturbations. The most important
result is that both right- and left-moving modes are required to produce gravitational

radiation. If all the travelling waves on the string move along one direction, the radia-
tion power vanishes.
It is interesting to note that, in a recent treatment of GW emission from strings at

a stationary junction [164], it was found that a purely left-moving wave, generated on

one string leg, is partly reflected and transferred from the junction, resulting in the
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necessary mixing of left- and right-moving modes.

4.3.4 Gravitational Radiation from cusps and kinks

The gravitational wave bursts (GWB) from cosmic string cusps and kinks were stud-
ied in detail in [128, 165]. The scope of these papers was to assess whether conven-
tional cosmic strings could be detectable from gravitational wave detectors such as

LIGO/Advanced LIGO and LISA.

The authors of [128, 165] first calculate the logarithmic cusp waveform for a closed
loop of length L:

Gul
’W”Um%VﬁgﬁyﬁG&Aﬁ—G) (4.23)

Here, f = wm/2m = 2m/L is the frequency, O(x) is the step function (1 if z > 0;
0if z < 0), 8 is the angle between the wave vector n and the cusp vector n‘, and
8,, ~ (2/L|f])/® gives the opening angle of the cone where the GWB from the cusp
is concentrated. As we can see, there is a very slow decay with the mode number

|m|~"/3. The analogous calculation for a kink revealed a |m|~2/3 dependence, so we

expect stronger signals from cusps.

In order to sum the individual contributions from a network of cosmic string loops
in the Universe, the authors of [128, 165] consider the one-scale model, where the

typical length and number density of loops are given by
L ~at, ng(t)~a™'t™, (4.24)

where a ~ I'Gp, with ' ~ 50. The number of cusp events per unit spacetime volume
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is then given by

u(t) ~ 9%7%

~ 2cP a4, (4.25)
where P is the intercommuting probability (equal to unity for the usual cosmic strings
in consideration), while c is the average number of cusps per loop period T}, = L/2 ~
at/2. The waveform frequency is redshifted as f — (1+2)f in an expanding universe,
and also 7 must be transformed to the physical distance agr = (1 + 2)D4(2), where
Da(z) is the angular diameter distance at redshift z. The estimate for the rate of
GWB’s observed around frequency f coming from the spacetime volume in redshift

interval dz is [165]

v(z) w0 (2)Da(2)?

N~ G52 1+ )H )

(4.26)

The analogous result for kinks depends, of course, on the average number of kinks
per loop and has a 6,, dependence, since the burst from kinks is emitted in a fan of

directions of solid angle ~ 6, instead of a cone of solid angle ~ 62, (cusps).

Allowing for Gy to vary with an upper bound of 1078, the authors of [128, 165]
found that, even if only 10% of the loops in a network have cusps (i.e. ¢ = 0.1), their
GW bursts could be detectable from GW detectors such as LIGO/VIRGO and LISA,
for a wide range of tensions 107'* < Gu < 107, Even if the cusp events are very

few, LISA could potentially detect GW bursts from kinks.

In a later paper [166], the authors generalised the above treatment to include cosmic
superstrings, 1.e. strings with lower intercommuting probability P. Considering the
range 107 < P < 1 and taking ¢ = 1, they found that the signal is enhanced with
decreasing p, going above the noise levels of LIGO/Advanced LIGO, and well above

the noise levels of LISA, for a 107 < Gu < 107° range of tensions. Also allowing
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the fractional loop-length parameter a/T'Gp to vary as 1072 < o/TGu < 1, they
find that their previous results are quite robust, as long as a /TGu > 107" (o/TGpu >
10-7) in the case of LIGO (LISA). The general point is that a smaller reconnection
probability enhances the detectability of cosmic superstrings (for a detailed analysis

including the effects of late time acceleration and different loop distributions, see [ 129,
167)).

The average number of cusps and kinks on cosmic string loops is still an open ques-
tion, and their significance for GW emission has generated a fair amount of interest
for the case of cosmic superstrings. In [168], it was shown that pairs of FD-string
junctions, such as may form after F-D intercommutation in a cosmic superstring net-
work born at the end of brane inflation, generically contain cusps. More importantly,
their properties may allow for extra channels of energy loss, in addition to the usual
GW background. In [169, 170, 171], the authors studied cosmic string loops con-
taining junctions, finding a much bigger number of large amplitude kinks than the
one expected for standard loops (kink ‘proliferation’). For strings with small tensions
(Gp < 10712), a large number of kinks is allowed and the incoherent superposition of
bursts emitted at kink-Kink encounters leads to a GW background that is bigger than

the usual individual bursts from cusps and kinks.

In [172, 173], the effect of extra dimensions on the GW signal from cusps was thor-
oughly investigated. The main feature arising due to the motion of cosmic superstrings
in the extra dimensions is the avoidance of an exact cusp, since the unit curves a’ = b’
will miss each other in the higher dimensional Kibble-Turok sphere. The authors gen-
eralise the exact cusp to a “near cusp event”. The beaming cone is narrowed, resulting

in a decreased 6,, value. The most important result is that the gravitational radiation
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signal is suppressed — the kinematics have a larger effect than the reduced intercom-
mutation probability. Thus the bounds found in [166] are relaxed. In a subsequent
publication [174], the effect of extra dimensions on the kink signal was studied. The
main result is that the damping of the kink signal is not as significant, and the GWB’s

from kinks on cosmic superstrings are more likely to be detected by LIGO or LISA

4.4 Signatures and Constraints from CMB and pulsar
timing
4.4.1 The Cosmic Microwave Background and Inflation

As we saw in Chapter 1, when the temperature of the Universe cooled down to about
1 eV, electrons and nuclei joined to form neutral atoms and the Universe became trans-
parent. The CMB photons that were emitted after that era scattered freely, and they are
observed today as a blackbody spectrum with 7" = 2.725 £ 0.001 K (10) [23]. In the
following, we will sketch the physics of the CMB , and see how today’s observables

are connected with the inflationary paradigm (see [175, 176, 177, 178, 179, 180] and

references therein).

Along a direction (line of sight) n = (6, ¢) on the sky, the temperature fluctuation

can be expressed as an expansion in spherical harmonics
T(n) = amYem(n), (4.27)
fm |

where the index ¢ gives us the angular scale, with 8 ~ 7/¢ (i.e. large multipole mo-

ments represent small angular scales). The coefficients a,, give us the size of the
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irregularities on different scales, with the power spectrum defined by
(aéma;'m/> = Cl5€[’6mm’a (4.28)

with isotropy implying that all m’s are equivalent. We usually plot the quantity (AT} =

¢(¢ + 1)C¢/2m, which represents the power per logarithmic interval in £.

The temperature of the CMB is astonishingly uniform across the sky, exhibiting
only minute fluctuations at the 107 level, which have been analysed by the COBE
[181] and WMAP [14] satellites. In Fig. 4.3, we show the latest temperature power

spectrum as measured by WMAP. Because the fluctuations are so small, we can use
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Figure 4.3: The 7-year temperature (TT) power spectrum from WMAP. The curve is the ACDM
model best fit.

linear perturbation theory to describe them. Considering a spatially flat background
metric with linear scalar, vector and tensor perturbations, we can use the decomposi-
tion theorem to treat them separately. Without a source term, the vector perturbations

decay in an expanding background and can be neglected. For the scalar and tensor

perturbations, we can write

ds?® = a(7){(1 +2¥)dr* — [(1 — 2®)d;; + hijldz‘da’}, (4.29)
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where the Newtonian-like potentials ¥ and ® represent the density (scalar) perturba-
tions, while the tranverse and trace-free h;; describes the tensor perturbations (gravita-
tional waves). For an isotropic energy-momentum tensor, we have ® = ¥. We can now
see how inflation comes into the picture — during the period of accelerated expansion,
we have a generation of quantum fluctuations which are getting stretced to become
classical superhorizon density perturbations. They can be expressed as spatially vary-

ing quantum perturbations around the homogeneous background of the inflaton field

That is
o(t,x) = ¢o(t) + do(t, x). (4.30)

After horizon re-entry, these fluctuations source the density perturbations which form
the large-scale structure of the Universe via gravitational collapse. The variance of
these fluctuations results in a power spectrum in Fourier space. Within the slow-roll

approximation, we get [182]
Ps(k) = As(k/ko)™ ! @31)
for the scalar modes, and
Pr(k) = Ay(k/ko)™ 4.32)

for the tensor modes, where ko is some pivot wavenumber. The amplitudes are given

CH? 4 _ « o
by A, = 81GH? A = rA, = 16€A,, and the “spectral indices” are n, — 1 = —4e+ 2y

TE

n, = —2¢. Note that H is the Hubble parameter during inflation evaluated when
ko, = aH,i.e. when the mode with physical wavenumber ko /a exits the horizon H !

Through the € and 7 dependence, we deduce that the inflationary predictions for the

power spectra basically rely upon the inflationary potential V' (¢) and its derivatives. It
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is then evident that CMB observations of high precision are our best tool to constrain
inflationary physics.

At this point, let us just state the basic predictions of the inflationary paradigm,
which established it as the primary candidate for the generation of the primordial in-
homogeneities. The simplest inflationary models predict a flar geometry — we have
already seen that this has been tested to a very high accuracy, 1%, by measuring the
position of the first peak in the CMB [16]. They also predict Gaussianity and near
scale-invariance, namely n, =~ 1, n; =~ 0 to first approximation. To be more precise,
small deviations from scale invariance are predicted by the vast majority of inflationary
models. The 7-year WMAP data give n, = 0.9603 £ 0.014 [12]. In addition, inflation
predicts primordial gravitational waves, the yet unobserved tensor modes. Denoting
by r the ratio of the tensor to scalar spectra at some £, different inflationary models will
Jead to different predictions — this is again due to the V/(¢) dependence. The value of
r is still difficult to constrain, but an upper limit combining WMAPS and other data is

found to be 7 < 0.22 [183].

For completeness, we will now sketch the underlying physics behind the CMB spec-
tra we observe today. Before and around recombination, which is our time of interest,
we can approximate the photon-baryon plasma as a tightly coupled fluid. There is also
dark matter, which of course interacts only gravitationally, and its perturbations grow
as the Universe expands. For the photon-baryon fluid, there is a competition between
gravitationally driven collapse, and a restoring pressure force. More specifically, the
equation for the fractional temperature fluctuation © in wavenumber space is [184]

2 2

[(1+ B)O] + %@ = —%(1 + B)¥ - [(1+ B)®], (4.33)
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where ¢2 = 1/3(1 + B) is the photon-baryon sound speed and B = 21 js the
Py TPy
baryon inertia. Deconstructing this equation gives us almost all the information we

need to understand the general form of the TT spectrum (4.3).

Let us first ignore the effect of baryon inertia (i.e. take B = 0) and consider constant

gravitational potentials. This gives
a 2120 —
O + k0 =0, (4.34)

which is the simplest harmonic oscillator equation, with ¢2 = 1 /3 for the photon-
dominated fluid. With the initial conditions ©(0) and By, the solution to equation

(4.34) can be written as

O(7) = ©(0) cos(ks) + @kLcO) sin(ks), (4.35)

where s = [ c,dr gives us the sound horizon. Using adiabatic initial conditions, which

is the case for inflation, we have ©o = 0 and at recombination time 7, we have
O(r.) = ©(0) cos(ks.,). (4.36)

We see that all wavelengths share the same starting phase — they are temporally co-
herent. However, different k will result in different oscillation periods. Hence, at the
Jast scattering surface different wavelengths will be “caught” at different phases. For
example, for very large modes ks < 1, the perturbation is frozen into its initial condi-
tions. On smaller scales, we will have oscillations caught at their maxima or minima
at recombination, resulting to peaks in the power at k, = nn / S+, where n is an integer.
In addition, we will have modes which peak before reaching the recombination time

__ their amplitude will be very small at 7, and they will correspond to power spectrum

troughs.
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Now let us include gravity. We have

. 2 .
O + ’k*6 = —%\It - 9. (4.37)

In a flat Universe and in the absense of pressure, ® and ¥ are constant. Continuing

neglecting the baryons, we can write ¢2 = 1/3 and the new solution is
[© + ¥)(7) = [© + ¥](0) cos(ks). (4.38)

Hence, (© + ) is the effective temperature fluctuation we observe, with ¥ accounting
for the energy loss of the photons when they overcome the gravitational potentials. In

the large scale limit of equation (4.37) at recombination, we find
1
(© 4 ¥)(Trec) = g\I’(Trec)a (4.39)

which is the so-called Sachs-Wolfe effect [185]. The shape of the CMB TT power

spectrum at these scales is approximately flat and is known as the Sachs-Wolfe plateau.

Adding baryons, we finally get the full version of equation (4.33). Considering the

case of B = const, we can write
[© + ¥)(r.) = [© + (1 + B)¥](0) cos(ks) — BY, (4.40)

where s = 7./ \/§T1_+—B_) We thus get an increase in the amplitude, a shift of the
zero-point and a frequency decrease. The baryons drag the fluid deeper into the po-
tential wells. The zero point shift breaks the symmetry of the oscillations, and the
baryons enhance only the compressional phase, i.e. every other peak (first, third etc.).
This general result is valid also for a time-variable B, but with an additional adiabatic
damping effect. The specific peak positions and heights reflect the exact matter content
of the Universe. The latest measurements give (ph? = 0.02258, Q.h? = 0.1109 and

Q, = 0.73[12], and the ACDM model is a perfect fit to the data (see Fig. 4.3).
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After recombination, there is an additional contribution from the integrated Sachs-
Wolfe effect taking into account the varying of the gravitational potentials. This con-
tribution is a line integral of the form fr:c ddr. At the smallest scales, the oscillations
are heavily damped due to photon diffusion. This process is known as Silk damping
[186]. Furthermore, the last scattering surface has a thickness, and averaging through
it washes out anisotropy from small-scale fluctuations. Note that, in order to get an ac-
curate description for the CMB spectra, we need to solve the Einstein equations simul-
taneously with the Boltzmann equations for all radiation and matter particles present.

This can be done numerically using publicly available codes, like CMBFAST [187] or
CAMB [188].

Another CMB observable which is becoming increasingly more important is CMB
polarization. This is generated by Thomson scattering of photons by electrons, re-
sulting to a scattered polarized light that reaches the observer. We can decompose
the linear polarization pattern into a divergence part, the E-mode, and a curl part, the
B-mode. We thus get 3 additional spectra, namely CTE,CEE ,CPB. Note that the
B-mode spectrum can be sourced only by vector or tensor modes. This is extremely

important: scalar modes only source E-modes, so the observation of a B-mode signal

is a direct way of probing gravitational waves.

4.4.2 CMB anisotropy from cosmic strings

Now that we have a feel of the general features of the CMB spectra and their con-
nection to the inflationary paradigm, let us return to cosmic strings. First, a historical

note. Before the CMB data became available, strings were thought of as candidates



Observational Signatures of Cosmic Strings 114

for generating the energy density inhomogeneities responsible for structure formation
[58]. More specifically, the ratio dp/p for GUT strings is

5
—pﬁ ~ Gyt ~ 1075, 4.41)

which has the correct order of magnitude for seeding galaxy formation. Unfortunately,
the data from WMAP showed an angular spectrum consisting of a series of peaks,
while cosmic strings predict a pretty flat spectrum with a single, broad peak — note

that this is hardly surprising, since the cosmic string generated fluctuations are not

temporally coherent.

However, a contribution from cosmic strings cannot be excluded, but is limited
to less than 10% of the total CMB temperature anisotropy [121, 189, 190, 191, 192,
193, 194, 195]. Although a network of cosmic strings cannot source the majority
of the observed CMB TT spectrum, the CMB can be used to provide a distinctive
signature of their existence through the B-mode polarization spectrum. That is because
cosmic strings actively source scalar, tensor and vector perturbations, with the scalar
and vector ones being of similar magnitude (see [196, 197, 198, 199, 200, 201, 202,

203] for work on the subject).

The effect of a moving string on the CMB anisotropy was first studied in [204]. The
authors showed that a moving string will produce a line discontinuity in the tempera-

ture anisotropy maps. This anisotropy is given by

oT

- = Guy(v)v, (4.42)

where v is the transverse string velocity and 7(v) the corresponding Lorentz factor.
The so-called Kaiser-Stebbins effect is due to the conical spacetime around the string.

Photons passing from the two sides of the string will be Doppler shifted, producing a
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discontinuity separating a cold from a hot spot. However, this effect is quite difficult

to detect — for a recent study, see [205].

As we already stated, the most promising way to detect cosmic strings is via the
B-mode polarization spectrum. To evaluate CMB temperature and polarization spectra
sourced by cosmic string networks, we can use the publicly available code CMBACT

[206, 2071, which is a modification of CMBFAST [187] to include anisotropies from

active sources.

In CMBACT, the string network is represented as a collection of uncorrelated string
segments, an approximation proposed in [208] and adapted for calculation of CMB
spectra in [118, 206, 209]. In the unconnected segment model (USM), straight seg-
ments of strings are produced at some early time and given random/uncorrelated ori-
entations and velocities. At later times, a certain fraction of the number of segments
decays in such a way as to match the number density given by a scaling model. The
initial positions and orientations of the segments are drawn from uniform distributions,
and the direction of the velocity is taken to be uniformly distributed in the plane per-

pendicular to the string orientation (longitudinal velocities are neglected).

In the default version of CMBACT, the key parameters of the segments — namely
their length, rms velocity and number density — are modelled using the VOS equations
described in Section 2.4. The USM does not explicitly follow the loop distribution,
however the energy in the loops is effectively included as part of the covariant con-
servation of the energy momentum of the scaling network. On their own, the straight
string segments with open ends violate the energy conservation. To remedy this, CM-
BACT enforces energy conservation by calculating the components Ty, and T;; (with

i # j) of the energy momentum tensor and then using the covariant conservation equa-
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tion V#T,,, = 0 to calculate To: and T;;. Finally, the Einstein and Boltzmann codes are
integrated simulataneously. In Fig. 4.4 we show a typical CMB TT spectrum produced

using CMBACT. The procedure one can follow to normalise to 10% of the total contri-
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Figure 4.4: A typical CMB TT power spectrum induced by a cosmic string network using CM-
BACT.

bution is very simple [200]. First note that the overall amplitude of the CMB angular

spectra Cy is approximately determined by

: Gu\?2
Cpmm9® o (—6—“) : (4.43)
Thus, we can define
2000
=) (20+1)C]" (4.44)
=2

and adjust the free parameter of the code, namely G, to satisfy

fs = Chrngs/Ciotar = 0.1 (4.45)

8

Then, the adjusted value of G can be used to study the properties of the B-mode spec-

trum. In [200], this approach was used to investigate how the macroscopic properties
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of a cosmic string network affect the B-mode induced spectra. The correlation length
and the rms velocity of the main string type set the dominant momentum modes in
the strings stress-energy, which determine the position of the main peak. Larger string
correlation lengths will move the peaks in the TT and BB spectra to lower £. In addi-
tion, the rms velocity also controls the position of the peak, although the dependence is
non linear. The positions of the TT and BB peaks move to higher multipoles (smaller
scales) for low and moderate velocities, but move to larger scales (lower ¢) for higher
velocities. This non-trivial behaviour is a manifestation of the non-linear dependence
of the string stress energy on string velocities. Also, larger values of v decrease the
amount of BB power relative to TT power. The most important point is that, even
with a marginal contribution to the TT spectrum (of the order of 1%), strings can be a
prominent source of B mode polarization — that is, there is a predicted and observable

systematic excess of B-mode power over what is expected from inflation [200].

4.4.3 Constraints on Gy from CMB and pulsar timing

In a very recent publication [195], updated constraints on the cosmic string tension
using CMB and pulsar timing were derived. The authors first showed that the USM
can successfully describe CMB spectra obtained from Nambu-Goto and Abelian-Higgs

simulations, provided that the network parameters obtained from each simulation are
used as an input.

They first derive upper bounds on G using the fact that the TT power spectrum

produced by the string network must be limited to at most 10% contribution to the
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total. For the Nambu-Goto simulations, the authors find

Gp<26x1077, (4.46)

and for the Abelian-Higgs simulations

Gu<64x1077, (4.47)

The gravitational wave emission from a cosmic string network, in particular from
loop decay, would result in a stochastic GW background. Pulsar timing experiments
place very strong constraints in the amount of this background that can be present in the
Universe, using the fact that any gravitational waves which are propagating between us
and a pulsar would disturb the photon trajectories causing fluctuations in the expected

time of arrival of the observed pulses. In [195], the authors use the formula [210]

1- (vfad)) (1+1.42)%% -1
, (4.48)

Qgh? = 1.17 x 107*Gu < -
rade

T
where Qgh? is the energy density in gravitational waves, T = a/(I' Gp), « is the loop
production size relative to the horizon, and {2y, is the total matter density relative to the

critical density. They use parameters measured from the Nambu simulations to give

£rads (V2q) and set O = 0.3, T' = 60. Imposing the limit Q,h? < 2 x 1078 [211], they
find

Gu<7x1077 (4.49)

for o/ (TG < 1) and

Gp<5x107"/a (4.50)

for a/(TGp > 1). We can easily see that the constraints coming from pulsar timing

can potentially be stronger than the ones coming from CMB. However, the uncertain-

ties in the pulsar timing method are large [195].
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4.5 Discussion

In this chapter, we gave a fairly representative review of the observational signatures
of cosmic strings. Where possible, we also presented results from recent work on the
analogous signatures from cosmic strings with junctions and/or cosmic superstrings.
We paid special attention on the work on cusp/kink formation and gravitational wave
bursts from cosmic superstrings. Further studies on the average number of cusps per

loop oscillation and the characteristic loop size would boost this area of research, for

both cosmic strings and superstrings.

We also stressed that, arguably, the B-mode polarization is our best chance of prob-
ing a cosmic string network. In the next chapter, we will investigate the CMB imprints
of a cosmic superstring network. In order to determine the network’s evolution, we
will make use of the latest string-theory calculations for the intercommuting probabil-
ities of cosmic superstrings, and we will incorporate them to an extension of the VOS
model which includes the kinematic constraints for the formation of junctions. We will

then use a modified version of CMBACT, in order to include a multi-tension network

of different string types.



Chapter 5

Cosmological Implications of

multi-tension Cosmic Superstring

Networks

5.1 Introduction

Although it has been established that a network of cosmic strings cannot source the ma-
jority of the observed cosmic microwave background (CMB) temperature anisotropy
[118], the CMB can still provide a distinctive signature of their presence through the
specific primordial B-mode polarization spectrum [196, 197, 198, 199, 200, 201, 202,
203]. The spectrum generated by strings is different from the one generically produced
from tensor modes arising in inflationary scenarios, and future probes of the B-mode

should be able to reveal the presence of cosmic strings, even if strings contribute as

little as 0.1% to the CMB temperature anisotropy [199, 200, 201, 202, 203].
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Interest in cosmic strings has revived following the realisation that they can arise
in superstring theory [45, 46], for example in models of brane inflation [42, 43, 44,
103, 212, 213]. Cosmic superstrings can have small tensions (10~122Gu>10"7 (45,
46, 107]), can be effectively stable over cosmological timescales, and can stretch over
cosmological distances [104, 106, 214]. Hence, they can have interesting cosmolog-
ical implications. Furthermore, their intercommutation probabilities can be signifi-
cantly less than unity [46, 105, 135, 136] and, because of the charges present on them,
they can zip together to form Y-junctions (trilinear vertices), leading to more compli-
cated networks than those usually considered in the case of ‘standard’ Abelian cosmic
strings. Understanding the imprint of such additional network features on observables,
such as CMB temperature and polarization, is a step that may lead to interesting new
constraints on the basic parameters of the string theory, such as the string coupling g,

and the fundamental string tension pp.

Several approaches have been developed to model the evolution of cosmic string
networks, and an interesting recent attempt to extend them to cosmic superstring net-
works — which contain different types of string — is due to Tye, Wasserman and Wyman
[215]). Their model, based on the velocity-dependent one-scale model of Martins and
Shellard [79, 80], describes the evolution of a multiple tension string network (MTSN)
under the assumption that all types of strings have the same correlation length and
root-mean-square (RMS) velocity. Studying the evolution of the number density of
strings, they find that scaling is achieved when the energy associated to the formation
of junctions is assumed to be radiated away. This model has been extended in [216],
where the authors assigned a different correlation length and velocity to each string

type, and enforced energy conservation at each junction. Scaling is again achieved
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(with different number densities), but not as generically as in [215].

In a complementary approach, a number of authors have studied the kinematics
of cosmic string collisions [51, 52, 168]. When two Nambu-Goto (NG) strings (of
generally different tensions) collide, rather than intercommuting in the standard way,
they can form two junctions and a linking string of a third tension. Kinematically
this can only occur if the relative orientation, velocity and string tensions lie in certain
ranges. In [111], the authors extended their earlier studies to (p, g)-cosmic superstrings
by modifying the NG equations to take into account the additional requirements of
flux conservation. Once again the kinematic conditions required for the formation of
Y-junctions were established, with results very similar to the ones obtained for NG
strings. These kinematic constraints have been checked quite extensively with dynam-
ical field theory simulations of strings collisions, and the agreement is (generally) good
[112, 113, 144, 145, 217]. In a recent publication [218], they have been incorporated

into the model of [216], giving the new conditions required for scaling.

In the following, we will use the model of [218] to study the evolution of a cosmic
superstring network for different values of the string coupling g, and different charges
(p,q) on the strings. We find that in all cases the three lightest strings, i. e. the (1,0),
(0,1) and (1, 1) strings, dominate the string number density. When the string coupling
is large, gs ~ O(1), most of the network energy density is in the lightest (1,0) and
(0,1) strings (respectively F- and D-strings), whose tensions are approximately equal
__ the contribution from the (1,1) FD-string is subdominant. At smaller values of
gs ~ 0(1072), the (1,0) string becomes much lighter than both (0,1) and (1,1),

and dominates the string number density. However, the rarer (0,1) and (1, 1) strings

dominate the energy density of the network at small couplings because of their much
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larger tension. In either of the two limiting regimes, the energy density of the multi-

tension network is effectively dominated by strings of one tension.

With the scaling solutions to hand we then focus on the CMB imprints of these net-
works, using a modified version of the publicly available code CMBACT [206, 207].
In particular, we extend the Unconnected Segment Model (USM), first introduced in
[118, 209], to describe the MTSN of [218] and implement it in CMBACT to obtain the
CMB temperature and polarization spectra. We find that for sufficiently large values
of the parameter w, which is inversely proportional to the effective volume of the com-
pactified dimensions, the two limiting regimes, one with the network energy dominated
by light populous strings and the second with it dominated by rare heavy strings, can
each produce distinctly different shapes of CMB spectra, especially for the B-mode
polarization. In particular, for w ~ 1, the position of the peak in the B-mode spectrum
is at £ ~ 770 for g, = 0.9 and at ¢ =~ 610 for g; = 0.04. This allows for the exciting
possibility that upcoming observations may not only éonstrain the overall contribution
of strings, but in fact rule out certain values of the string coupling. Namely, the com-
bination of the normalization and the peak position of the B-mode spectrum can point

to a particular combination of gs and the fundamental string tension .

It is common to report constraints on standard cosmic strings in terms of bounds
on the single dimensionless string tension Gu. These bounds have an implicit as-
sumption on the number density of strings corresponding to the usual Abelian Higgs
model strings with intercommutation probability P = 1. However, in a more gen-
eral situation of strings with lower intercommutation probabilities and, as is the case
for cosmic superstrings, different tensions, each type of string will in principle have a

different number density: the same fraction of CMB anisotropy can be sourced either
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with many light strings or with a few heavy ones. In general, each type of observa-
tional bound will constrain a different combination of the string tensions and densities
(which, for cosmic superstrings, are derived from the fundamental string tension p
as well as g,). In particular CMB and pulsar bounds, which we discuss in Section 5.4,
will lead to different shapes of bounding contours in the (1r, g,) parameter plane. We
show that combining these two constraints can lead to complementary constraints on
properties of superstrings. The position of the peak in the B-mode spectrum can be

used to further eliminate a large region of the (pr, g) parameter space.

In Section 5.2 we summarise the extended VOS model which describes multi-
tension networks with junctions. We then present the scaling solutions for cosmic
superstrings as a function of the string coupling g,. In Section 5.3 we determine the
temperature and B-mode spectra for these scaling solutions using a generalised ver-
sion of CMBACT. Finally in Section 5.4 pulsar constraints on gravitational waves from

string networks are discussed. We conclude in Section 5.5.

5.2 Scaling of F-D superstring networks

F-D superstrings provide an example of a network of strings with multiple tensions that
can join each other at Y-shaped junctions. Letters F and D denote the type of quantized
charge carried by strings — the F charge is identified with fundamental strings, while

the D charge is carried by D-branes. A general (p, q) string has p quanta of F charge

and ¢ quanta of D charge [107, 109, 219].

In the following, we review the model developed in [216, 218], which describes

a network of N different types of strings with junctions. We then customize the pa-
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rameters of this model for the case of F-D superstrings paying particular attention to
their dependence on the string coupling g,. While the exact values of the parameters
are model-dependent, €.g. depend on the choice of the compactification manifold, we
are able to identify general trends in their dependence on g,. These trends, in turn,

lead to two different scaling scenarios in the limits of large and small g, that may be

distinguished observationally.

52.1 The VOS model for single type string networks

We introduced the VOS model for single type string networks in Section 2.4. The

relevant equations are

. a cvp

p=—2a(1+v2)p_T, (5'1)
, ko.a

v = (1 - ’U2) ('—L— - 25’0) y (52)

where the constant ¢ represents the efficiency of loop formation, and k& is the curva-
ture parameter which indirectly encodes information about the small-scale structure

on strings. It can be expressed as a function of the velocity [80];

_ 2v/2 (1—8116)’

T 1+ 8v6

k (5.3)

which incorporates the Virial condition v? < %, observed in simulations in expanding

background. The scaling solutions are

. k(k+D)
© T Ba-p G
. _ K1-P)
U7 Bk (5.5)

The relation between intercommutation probability and the loop chopping effi-

ciency parameter ¢ is not fully understood at present. Nambu-Goto simulations of
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strings interacting with a microphysical probability P < 1 suggest that ¢ =~ P/3 in
both the matter and radiation era [137]. A different dependence, & ~ P'/2, was re-
ported in [220] based on a flat space simulation. In the subsequent sections we will
take ¢ to scale as the cubic root of the corresponding intercommutation probability.
Such a weak dependence of ¢ on P can be attributed to the presence of small scale

structure on long strings, allowing for multiple chances of intercommutation when two

string segments Cross [137].

5.2.2 Evolution of multi-tension networks with junctions

In order to describe the evolution of a multi-tention string network (MTSN) with junc-
tions, we adopt the model developed in [216, 218]. In this model, one solves for the

energy densities and rms velocities of each string type using the following equations:

CiVipi _ Z df, iapilly (t) + 3 dopPa iy ()

i
= —2—(14+v)pi — .
pi —(1+vi)pi—— 2.~ 212 g (5.6)

k; a . Ugp (ﬂa + py — 1) i (t)L?
), = 1—-v3) | = —-2-v; + bly— v Zab i
v ( ! ) Li a béb b V; i Lng (57)

Here p; is the tension of the ith type of string, and, in analogy to networks consisting

of a single type of string, one defines a correlation length L; through

i
pi = _L_?— . (5.8)

As in the single string case, the coefficients ¢; in (5.6) quantify the efficiency with
which self-interactions of strings of type ¢ chop off closed loops, removing energy
m the long string network of type i. The last two terms in equation (5.6) model

fro

the effect of collisions between strings of different types, leading to the formation of
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new segments ending on 3-string junctions. More specifically, the penultimate term
describes the loss of energy, from network 7, due to string segments of type ¢ colliding
with segments of type a and forming links of type k. Similarly, the last term models the
energy gain in network ¢ through collisions between different strings a and b, leading
to the formation of a link of type i. The parameter d¥ = d¥, which we will discuss
in more detail below, is essentially the probability with which strings of types 7 and j
interact and produce a type k segment. This parameter captures quantum interaction
and volume effects [46, 105), as well as the kinematic constraints discussed in [51, 111,
112, 218]. The average length of the links formed by this process at time ¢ is denoted
as £5;(t), whose explicit form will be given below (equation (5.19)). In equation (5.7),
the coefficients k; are curvature parameters which indirectly encode information about

the small-scale structure on strings. We will follow [80] and take them to depend on

the rms velocities as

Lo V2 (1 —8v§)

n \1+ 8} (5.9)

Finally, the parameters b:, have been introduced in order to interpolate between the
model of [216] (where bi, = di,), in which the energy liberated by the formation of
junctions is redistributed in the network as kinetic energy, and a model analogous to
that in [215] (corresponding to b, = 0), in which all of this energy is radiated away.
The most realistic situation is probably somewhere in between, with b}, < d, so that

a fraction of the liberated energy is radiated away and the rest is redistributed. Finally,

Tnp is the magnitude of the relative velocity between strings of type a and b averaged

over all directions, that is Ugp = /02 + V7.
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5.2.3 Parameters for F-D cosmic superstring networks

We have already seen that in cosmic superstring networks the tension of each string
type is determined by the corresponding charges, (p, ¢), and the string coupling g,. In

ten flat dimensions and for vanishing RR scalar, the tension of a (p, g) string is given

by [107, 109, 219]

— HF
Hi = H(pigs) = g—\/P?QE +¢?, (5.10)

where pf is the tension of the lightest fundamental string (F-string) carrying charge
(1,0). The D-string has a charge (0, 1), while the strings carrying charges (p, q) with
p,q > lcanbe thought of as bound states between p F-strings and g D-strings. There is
an infinite hierarchy of such (p, g) bound states, but, as was found in [215, 216, 218],
the cosmological evolution of interacting networks of this type leads to solutions in
which only the first few lightest strings dominate, so one can truncate the system at

finite N. Here we will take N = 7 so we only have seven different types of strings

carrying charges (pi, ¢:) = (P, )i with

{(p.q)i} = {(1,0),(0,1),(1,1),(2,1),(1,2), 3,1), (1, 3)}, (i=1,..,7). (5.11)

The parameters in equations (5.6-5.7) which will determine the scaling patterns
of the cosmic superstring networks we consider are the self- and cross- interaction
coefficients, ¢; and dfj respectively. They are averaged network quantities that depend
on the microphysical intercommuting probabilities of the corresponding interaction
processes, which in turn can be modelled using string theory techniques [105, 135].

Note that the cross-interaction coefficients dfj also depend on kinematic constraints on

3_string junctions [51, 111, 112].
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We will first consider the microphysical intercommuting probability P;; for inter-
actions between strings of types %, j. For processes involving at least one F-string, that
is F-(p, g) interactions, this probability can be calculated perturbatively in string the-
ory [105, 135]. The result is a function of the string coupling g,, the relative velocity
v and the angle @ of the incoming strings. There is also a model-dependent volume
factor which depends on the size of the compact extra dimensions, parameterized by a
parameter w, and the amplitude of fluctuations of the string position fields. The latter

depends on the string tension and, therefore, on the string coupling g,. Let us write
’Pij(vao’ w7gs) = f;j(v’ 0, gs) vij(w,gs) s (5]2)

where F;;(v, 0, g,) is the quantum interaction piece and V;;(w, g,) the volume depen-
dence.

Let us discuss the volume-independent piece, F;;(v,6, g;). As mentioned above,
for interactions involving at least one F-string, we can use perturbative methods [ 105].
On the other hand, for interactions involving only D-strings or heavier composites,
the process is non-perturbative and less understood. At present there are at least two
approximate results, by Jackson, Jones & Polchinski [105] (hereafter JJP) based on a
worldsheet calculation, and by Hanany & Hashimoto [136] (hereafter HH) using a field
theory approach. The two calculations are in good qualitative agreement, but there are
quantitative differences reflecting the uncertainties arising from the currently incom-
plete understanding of such non-perturbative processes. Nevertheless, these calcula-
tions provide a basis for systematically computing the network coefficients in equations
(5.6-5.7), and allow us to study the effect of these uncertainties on the macroscopic

evolution of the networks!. As the available methods for calculating these processes

I'We will discuss how network results depend on this and other uncertainties in section 5.2.4.
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improve (for recent progress see [135]) such uncertainties will be eventually controlled.
Here, we will use the results of JJP for the perturbative processes involving at least one
F-string, and the result of HH for the non-perturbative D-D interactions. These have
non-trivial dependencies on v and 6 and the relevant string charges p and g (for details
see [105, 136]), but there are a few key features with respect to their dependence on
the string coupling g, which can be summarised: F-F string interactions scale with g2,
F-(p, q) interactions with ¢ 2> 1 scale with g,, and the non-perturbative D-D interac-
tions scale with U 1/9s  where U is a number of order unity. For interactions between
heavier composites, i.e. (p,q)-(7',¢') withg,¢' > 1 and p,p’ > 1, the amplitude is not
known but it is understood that it is enhanced with respect to the D-D amplitude by the
multiplicity g¢’ of the relevant Chan-Paton states [105]. In addition, for small values of
the coupling g, we can neglect the effect of the light perturbative F-strings so we will
approximate the enhanced amplitude as Fp q) gy = 1 — (1 — Fpp)?'. The detailed

form of the factors F;;(v, 8, g;) we assume (including their full v, § dependence) is

shown in table 5.1.

Interaction (¢7) F:
2 1-cosv1—=0%)*
F-F ‘qsﬁSs(imi_—_v%
vi4 cosos/l'——vf)2
F-D ( 9s 88in 6 vy/1—p?
q2u2+ gsp—cosd (l-uz)(g§p2+q'2))2
F'(p’ q) » q Z 1 SsinOv\/(l—v2)(g§p?+q2)
D-D min {%62 V 2/3(6/v) exp -—44%3/_26*4\/ 2/3(6/v) , 1}
(pq)-(r,d), a4 21 1-(1~Fpp)¥

Table 5.1: The coefficients F;; for different string interactions.

We now turn our attention to the volume factors V;;(w, g,). These arise because

the strings are moving in a higher-dimensional space so they can miss each other as
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they cross, leading to an overall suppression on the amplitude that scales with the
inverse of the volume of the extra dimensions. However, it has been argued [105]
that this suppression effect may not be as important as originally anticipated [46], be-
cause the string position fields are worldsheet scalars — not protected by any symmetry
_ and should therefore be stabilised at a minimum of a potential well (see however
[173, 221]), rather than explore the compact orthogonal dimensions. In this case, there
is still a volume effect arising from the fact that strings are quantum objects whose
positions fluctuate around the classical minimum, thus giving rise to an e