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Abstract 

Cosmic strings are linear concentrations of energy that may have been formed after 
cosmological phase transitions in the early universe. Cosmic superstrings are analo- 
gous objects arising in string theory, and in particular in models of brane inflation. The 
latter possess two particular features, which differentiate them from the ordinary cos- 
mic strings: a reduced intercommuting probability, and the ability to form junctions. 
This thesis is concerned with the dynamics and cosmological implications of cosmic 
strings and superstrings with junctions. 

In Chapter 1, we give a brief introduction to the standard Big Bang model and the 
inflationary paradigm. We also discuss cosmic string formation after the spontaneous 
breaking of an Abelian U(I) gauge symmetry in the early Universe. In Chapter 2, we 
present an overview of cosmic string dynamics using the Nambu-Goto method. We 
discuss the properties of individual cosmic string segments and loops, as well as net- 
work evolution in an expanding Universe. We also introduce cosmic superstrings, and 
review the Nambu-Goto approach to study the evolution of junctions and the kinematic 
constraints that govern their formation. We conclude with the study of junctions in an 
expanding spacetime and present an exact solution for a closed loop of three strings 
and two junctions in a de Sitter Universe. 

In Chapter 3, we compare the two different approaches developed to study the dy- 
namics of strings with junctions. We first extensively study the dynamics and stabil- 
ity of a cosmic string loop with junctions using the modified Nambu-Goto approach. 
Comparing our results with a field theory model that permits junctions we find very 
good agreement. The Nambu-Goto method is once again confirmed to be a good ap- 
proximation for studying cosmic string configurations. 

In Chapter 4, we review the observational signatures of cosmic strings. More specif- 
ically, we concentrate on their gravitational effects, discussing results and constraints 
from lensing, gravitational radiation, CMB and pulsar timing. We also present recent 
results for the case of cosmic (super)-strings with junctions. 

Chapter 5 is concerned with the cosmological implications of cosmic superstring 
networks. We first study the scaling patterns of such networks for different values of 
the string coupling g, and different charges (p, q) on the strings. We then focus on 
their CMB signatures, and derive upper bounds for the fundamental tension PFusing 
CMB and pulsar timing constraints. The difference between the scaling behaviour of 
the networks at high and low values of g, is imprinted as a movement of the position 
of the peak in the B-mode spectrum. Together with the constraints on GpFfrom CMB 
and pulsar timing, this allows for the exciting possibility to constrain the value of the 
string coupling g,, using CMB data. We conclude in Chapter 6. 



Units and Notation 

We employ natural units h=c= kB = 1. Greek indices p, v are spacetime indices 
taking the values 0,1,2,3 and repeated Greek indices are to be summed over these 
values. The metric signature is (+, -, -, -). In the following table, we present a sum- 
mary of the most commonly used symbols in this thesis. 

Symbol Ref. Definition 
a (1.1) Scale factor 
H 0.9) Hubble parameter 
P Sec. 1.4 Cosmic string tension 
or Sec. 2.3 Spacelike worldsheet coordinate 
L Sec. 2.3 Length of a cosmic string loop 
T Sec. 2.3 Oscillation period of a cosmic string loop 
Ip Sec. 2.4 Intercommutation probability 

L(t) Sec. 2.4 Correlation length 
Sec. 2.4 The scaling solution L(t)lt 

P (2.37) The energy density in the long string network 
V (2.42) Root mean square velocity of string segments 

(2.46) Loop formation efficiency 
k (2.48) Curvature parameter 
98 (2.58) String coupling 

(2.60) The value of o, at a junction 
(3.6) The tension of a (pi, qi) string in flat spacetime 

R Sec. 3.4 Ratio of tensions po/(2pi) for the butterfly loop 
Iz Sec. 3.4 Ratio of tensions pi/(2P2) for the butterfly loop 
P Sec. 4.3 Gravitational radiation power 
r (4.14) Radiative efficiency coefficient 
E) Sec. 4.4 Fractional temperature fluctuation 
pij (5.12) Microphysical intercommuting probability 
W (5.13) Model-dependent volume parameter 
Ci (5.14) Self-interaction coefficients 
dk ij (5.15) Cross-interaction coefficients 
Ali (5.21) Power spectrum density 
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Chapter 1 

Introduction 

1.1 The Standard Cosmological Model 

In this chapter, we will introduce the standard cosmological model [1,2,3,41. We 

will start with the Friedmann-Lema^ltre-Robertson-Walker (FLRW) description of our 

Universe, and then provide a brief overview of its thermal history. The Hot Big Bang 

model can explain the observed expansion of our Universe, the origin of the Cosmic 

Microwave Background Radiation, the synthesis of light elements (nucleosynthesis) 

and the formation of large-scale structure. However, the model requires a set of very 

peculiar initial conditions. The inflationary paradigm manages to determine these ini- 

tial conditions, as well as the primordial perturbations that seed the observed structure 

in the Universe. 

As we will see, observations provide very good evidence for our cosmological 

model until the nucleosynthesis era. Before that, particle physics models predict a 

series of phase transitions, which are often associated with the production of topologi- 
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cal defects, and in particular cosmic strings [5,61. Cosmic strings are line-like defects 

which stretch across cosmological sizes and are sufficiently massive to have important 

gravitational effects. Cosmic superstrings are analogous objects arising in string the- 

ory and they have generated a fair amount of interest, since they can provide a link 

between string theory and cosmology [7,8,9,101. 

1.1.1 The FLRW Universe 

The cosmological principle states that, at any given cosmic time, our Universe looks 

the same on large scales (> 100 Mpc), independently of the position of the observer or 

the direction s/he prefers to look in. The spatial isotropy of the Universe on large scales 

is best indicated by observations of the Cosmic Microwave Background Radiation'- 

it is extremely uniform on large scales, exhibiting only minute fluctuations. We also 

know that our Universe is expanding, following Hubble's law. 

In General Relativity, our spacetime can be written as RxE, where R represents the 

time whereas E is a maximally symmetric three-dimensional space. The line element 

for an expanding, homogeneous and isotropic Universe can be written as 

ds 2 
=dt2 -a 

2(t)df2. 

In equation (1.1), t is the cosmic time, d1' is the comoving2 three-dimensional line ele- 

ment and a(t) is the scale factor, which describes the scaling of the comoving distances 

'The Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) data were released in January 

2010, see [11,12,13,141. 
'In comoving coordinates, the location of a freely moving object (e. g. a galaxy with negligible 

peculiar velocity) is fixed. 
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due to the expansion. It will be often useful to define the conformal time -r as 

d7- = 
dt 

a(t)' 

and write equation (1.1) as 

dS2 
= a'(7-) 

[dT2 
- 

df2] 
. 

The metric (1.1) is the Friedmann-Lemeltre-Robertson-Walker (FLRW) metric, and 

in spherical polar coordinates r, 0,0 it takes the form [ 15] 

dS2 
= 

dt2 
-a2 

(t) dr 22+r2 
d02 +r2 sin 

2 OdO2 (1.4) 
(I 

- kr 
)I 

where k is the constant spatial curvature. It is useful to note that ( 1.1) is invariant under 

k 
(1.5) Jkl' 

Nv/ IkIr, (1.6) 

a 
-ý I MI 

which means that we can consider three cases for the curvature. These are k= 

- 1,0 and 1 for open, flat and closed universes, corresponding to hyperbolic, flat Eu- 

clidean and 3-sphere local geometries. There is now strong observational evidence that 

the geometry of our observable Universe is spatially flat, up to 1% [ 161. With k=0, 

the spatial part of the metric (1.1) is locally Euclidean. 

If the comoving distance between two objects is f, their proper (dt = 0) radial 

distance d is 

a(t)f. 

Hence the expansion, or recessional, velocity is 

Hd, 
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where the rate of expansion H is the Hubble parameter (note that dots denote a 

derivatives with respect to t), which is time dependent3 
. The last equation is Hubble's 

law: Galaxies far away seem to be receding from us with a velocity proportional to 

their distance [ 181. The Hubble parameter sets the characteristic time and length scale 

of the observable Universe (t, d- H-') 

In order to determine the behaviour of the scale factor a(t), we need to solve the 

Einstein equations in an FLRW background spacetime. They are [ 151 

Gil, = RAv -1 Rgj,, = 87rGTIv, 
2 

where RtIv is the Ricci tensor, R the Ricci scalar, T,,, is the energy-momentum tensor 

and G is Newton's constant. Before we can solve the Einstein equations, we must 

specify the matter content of the Universe. Following the usual approach, we consider 

a perfect fluid. The energy-momentum tensor is 

(p + p) UO U' - pg, 4v I (I. 11) 

where p and p are the energy and pressure densities of the fluid, respectively, and U4 

the fluid's four-velocity. Given that the fluid must be at rest in comoving coordinates, 

we can write 

uju = (1,0,0,0). (1.12) 

Thus, the form of the energy-momentum tensor compatible with homogeneity and 

isotropy is 

diag(p, -p, -p, -p). 
3Today, the Hubble parameter is Ho = 74.2 ± 3.6 km s-'Mpc-1 [17]. 
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The energy conservation equation V, TA' =0 gives the continuity equation 

ý 3H(p + p) = 0. 

Taking the equation of state to be 

WA 

where w= const, we can write equation (1.14) as 

6 

(1.14) 

(1.15) 

+ 3(1 + w)H = 0. 

Integrating, we find 

oc a -3(1+w) (1.17) 

We can consider two important cases, namely matter (u) = 0) and radiation (w = 

1/3). The case w=0 corresponds to p=0, describing non-relativistic pressureless 

matter. This is the state of the cold Universe, when atoms are mostly non-interacting. 

It can also describe collections of stars and galaxies. When the Universe can be well- 

described by p=0, we say it is matter-dominated. On the other hand, when p= 

p13 we are in the radiation-dominated era, which describes photons and relativistic 

particles moving at (almost) luminal speeds. In the matter era, the energy density falls 

off as 

-3 cx a (1.18) 

This can be easily understood as a decrease due to the expansion of the Universe. In 

radiation, the energy density falls faster, 

pr oc a 
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due to the additional factor coming from the redshifting of photons. More specifically, 

the emitted wavelength A increases as the Universe expands, and its relation with the 

observed wavelength Ao is defined in terms of the redshift z as 

Ao ao 
Aa 

Finally, from the Einstein equations (I. 10) we find the Friedmann equations 

2a 47rG 
Iý+H =a =- 3 

(p + 3p), 

and 

(il) 2 87rG k 
-P- - a3 a2 

From equation (1.21), we see that for an expanding Universe (6 > 0) filled with mat- 

ter that satisfies the so-called strong energy condition p+ 3p > 0, we have d<0. 

Following a(t) backwards in time, we hit a singularity a=0 at t= 

Now, let us solve equation (1.22) for the explicit dependence of the scale factor on 

time for both matter and radiation domination for the simplest case of a flat (k = 0) 

Universe. We find 

a oc t 
1/2 

in the case of radiation domination, and 

X t2/3 

in the case of matter domination. In addition, we find that the energy conservation 

equation (1.14) can be derived from the Friedmann equations. 

We can rewrite (1.22) using the density parameter, defined as 

87rG 
P= 

p (1.25) 
3H2 Pcrit 
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where p, it = 3H'/87rG is the so-called critical density - substituting p=p, it in 

equation (1.22) gives a spatially flat universe. We can therefore write 

-k a2H21 

which becomes Q=I for k=0. 

The most exciting fact about the evolution of our Universe is the observational evi- 

dence that, currently, its expansion is accelerating [ 19,20]. This means that p+ 3p <0 

in equation (1.21), so that d is positive. Acceleration can be achieved by adding a 

cosmological constant ten'n to the Einstein equations. This gives 

Ro, -1 gm, = 87rGT,,, - Agi,,. 
2 (1.27) 

The cosmological constant represents the vacuum energy, which in turn can be thought 

of as a fluid with aw= -I equation of state. Thus, 

p= -p, (1.28) 

and from equation (1.14) the energy density is constant - this means that the cosmo- 

logical constant term will eventually dominate. Taking k=0, p= const in equation 

(1.22) and solving for the scale factor a, we find 

a oc e 
Ht 

. 

The Friedmann equations with a cosmological constant become 

a=- 47rG 
(p + 3p) +A 

a33 

and 

2= 
(4)2 

= 
87rG 

p-k+A a3 a2 3 
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Let us now perform some simple calculations for our flat Universe consisting of 

different components labelled with the index i, namely radiation, matter and vacuum 

energy in the form of a cosmological constant (note that the value of the scale factor 

today is set to unity, ao = 1). The total energy density of the Universe can be expressed 

as 

(0) 3(1+wi) 
= 

(0) 
p=Epi a- EP 

i 
(1 + Z)3(1+wi), (1.32) 

ii 
where from here onwards a superscript or subscript '0' will denote the value of a 

quantity at the present time. Consequently, the Hubble parameter can be written as 

2= H02 + Z)3(1+wi) 

The age of the Universe is 

to 
to 

dt 
dz 

H(l + z) 

Today, the radiation term is of course negligible. Combining the above two equations 

we find 

to = 
00 dz 10 

Ho (1 + z) ýF90 
(1 + Z)3 

(o) + QA 

Observations of our Universe find that it is composed of 4% baryonic matter (b), 23% 

(cold) dark matter (dm) and 73% dark energy [211. With Qm(O) = Qb 
(0) 

+Q dt) = 0.2 7 

andQ(0) -0 73 we find to - 13.5Gyr for Ho = 74.2 kms-'Mpc-1 [17]. A-* 

Another important property is the existence of a particle horizon, which determines 

the size of the observable Universe. More specifically, the particle horizon is defined 

as the maximum distance a particle could have travelled in the age of the Universe. 

Photons follow null radial geodesics, so the metric 0- 1) gives 

dH(t) =a (t) 
tf Jo 

a(tl)' 
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For a flat universe, the horizon size is dH = 2t for radiation and dH = 3t for matter. 

Particles separated by a distance > dH are causally disconnected. 

A brief history of the Universe 

Following the history of our expanding Universe back in time, we necessarily reach 

a singularity at a=0- the Big Bang. There, the energy density approaches in- 

finity and, of course, classical General Relativity breaks down and a quantum theory 

of gravity is needed. The Hot Big Bang model is the most successful description of 

our Universe after this initial singularity. The associated energy scale, which marks 

the era of our uncertainty, is known as the Planck scale. The corresponding Planck 

rý -" m, and the Planck time is mass is mp - 1011 GeV, the Planck length is lp - 10 

10-43 S. 

As we saw in the previous subsection, the density of radiation scales as p, oc a-4 , 

faster than the one of non-relativistic matter that scales as p,,, (x a- 3. The present state 

of the Universe is dominated by a cosmological constant with a significant contribution 

from matter, while the radiation component is negligible. On the other hand, the very 

early Universe was radiation dominated. To see when radiation becomes important, 

we can define the matter/radiation equality time Gq as a time for which 

Pm (t, q) ý Pr (teq) (1.37) 

We then find 

Q(O) m I+Z, q 3200. (1.38) 
Q (0) - 

r 

For z>Z, q, the Universe is radiation-dominated. We will later show that in the 
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radiation era we can write 

p, oc T4 

where T is the temperature. We thus find the important relation 

oc (1.40) 
a 

so that, moving back in time, the Universe gets hotter. The energy of particles also in- 

creases with increasing temperature. We can therefore deduce that, when the Universe 

was young, hot and dense, the various particle species were in relativistic motion and 

were interacting strongly with each other. The basic assumption following this reason- 

ing is that the early universe was in thermal equilibrium, and we can use the relativistic 

perfect gas approximation 4- 

The particles in thermal equilibrium are muons, neutrons, protons, electrons, neu- 

trinos and their antiparticles, as well as photons. Fermions (+) are described using 

Fenni-Dirac distributions, while bosons (-) are described using Bose-Einstein dis- 

tributions. Let us first define nA(P) to be the number density of species A in the 

momentum interval (P, P+ dP) and use c= kB =h=1 units. We then have 

nA (P) : -- 
9A p2 [e EA(P) IT 

27r2 

where E2- rn2 + p2 is the energy of a particle of rest mass MA and momentum P, A-A 

while 9A is the number of spin states of the species (e. g., 9A =2 for spin-! fermions) 2 

and T is the temperature of the distribution. Then, the number density of a particle A 

can be written as 

NA 9A p2dP 
(1.42) 27r2 

f 
eEA(P)IT ±1* 

'Considering that the reaction rates change as the number density n cx a-', while the expansion rate 

in radiation era scales as a- 2, thermal equilibrium should be a very good approximation at early times. 
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The energy density can be found by multiplying the above integrand by a factor EA (P). 

That is 

IIA - 

9A 00 P2 EA(P)dP 
27r2 

fo 
eEA (P)IT ±1 

For the pressure we have 

9A 
M p4EA (P)-'dP 

PA = 672 
Jo 

eEA(P)IT ±1* 
(1.44) 

Finally, the entropy density SA is given by 

SA -": 
PA + PA 

T 

We can immediately see that in the relativistic limit, where EA2 ý-- P', we have PA ý 

PA13. In the same limit, we find 

NA = 
bN 9A((3) T3X 

bN =1 for bosons 
(1.46) 

( 

72 

) 

bN 
= 3/4 for fermions 

PA =bp 
(gA7r2 )T4X bp =I for bosons 

(1.47) 
30 

bp = 7/8 for fermions. 

Here, ((3) ý-- 1.202 is the Riemann zeta function. If T>m, the masses of the 

particles can be neglected, so they are essentially behaving like radiation. As we move 

backwards in time, the temperature is higher by the redshift factor (I + z). This means 

that for every particle there is a redshift for which T-m. Before that, the particle 

behaves like radiation. Hence, we can calculate the total energy density for radiation 

domination by summing equation (1.47) for p over the different relativistic species A. 

We find 

Pr : -- 
7r 2f 

(T)T 4 (1.48) 
30 
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where we define the effective degrees of freedom f (T) as 

(T) = 
E 

9A 
(TTi)' 

bosurts 

(T i)4 
9A 

T fermions 

and T= (I + z)To is the temperature of the photons. 

(1.49) 

For the opposite limit, namely when m >> T, the motion of the particle is non- 

relativistic. Then, the number density is found to be exponentially suppressed by the 

Boltzmann factor 

nA OC e-MA/T I (1.50) 

as is the energy density, pressure and entropy. Therefore, the dynamics are mainly 

determined by the particle species that are in relativistic motion. Heavy particles are 

much fewer in number and their pressure, entropy and energy density are becoming 

less important with the expansion and cooling of the Universe. 

While in thermal equilibrium, we know that the entropy in a comoving volume is 

conserved. That is 

d 
(a's) 

dt 
(1.51) 

and, since s oc T', we recover equation (1.40) and the radiation era expansion law. 

We have seen that the general behaviour of the various particle species depends 

on the temperature. Of course, massless particles (photons) will always be relativis- 

tic. However, the massive particles will be part of the thermal equilibrium as long 

as their interaction rate IF is much larger than the rate of expansion H. When this is 

no longer true, the particles decouple from the thermal bath. At temperatures above 

T -- 1012 K- 0(100) MeV or t ýý 10-' sec, photons, muons, electrons, neutri- 

nos (and their antiparticles) are in thermal equilibrium. Soon afterwards, the massive 
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muons are the first to annihilate. The thermal equilibrium now consists of highly rel- 

ativistic particles with a temperature T cx a-'. Then, neutrinos begin to decouple. 

Neutrinos are special, because they are fermions with almost (but not quite) zero mass. 

Since they are electrically neutral, they interact very weakly, and they decouple from 

the rest at around lMeV. At around t- 100 s and at temperatures of order 0.1 MeV , 

neutrons and protons are not anymore in thermal equilibrium, so they start producing 

light nuclei (e. g. deuterium, tritium, helium). This is the Big Bang Nucleosynthesis 

(BBN) era. The observed primordial abundances for the light elements are in remark- 

able agreement with the theoretical predictions based on the Hot Big Bang model (75VD 

hydrogen, 25% helium and small traces of heavier elements) [221. At T- 1eV, the 

matter domination era begins (matter-radiation equality). At t- 105 yr, T-0.1 eV 

we have H recombination through 

e+p ---ý (1.52) 

At redshift z L-- 1100 the mean free path of the photon F. -, I becomes I arger than H -', 

and photons decouple from matter and propagate freely ("last scattering"). This gas 

of decoupled photons is the famous Cosmic Microwave Background, a characteristic 

black-body spectrum of temperature T=2.725 ± 0.001 K (1u) [23] which we observe 

today. 

Between the Planck scale and T f-- 1012 K- 0(100) MeV lies the idea of Grand 

Unification. This idea was inspired by the phenomenal success of the electroweak the- 

ory, for which Glashow, Salam and Weinberg were awarded the Nobel Prize in Physics 

in 1979. This theory unifies two out of the four fundamental forces, the electromag- 

netic and the weak force, under an SU (2) xU (1) gauge group. At high energies, above 

a few hundred GeV, there is an underlying symmetry between the carriers of the two 
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forces, namely the photon and the W and Z bosons. When the electroweak symmetry 

becomes spontaneously broken, the W and Z particles acquire masses via the Higgs 

mechanism, while the photon remains massless. It is then natural to wonder whether 

the strong force, which is described by the eight-parameter quantum chromodynamics 

(QCD) SU(3) group, joins the other two at some higher energy scale. In fact, the cou- 

pling constants of the three forces, despite their name, depend on the energy, and one 

finds that they converge to the same value at about 1011 GeV. The Standard Model of 

particle physics combines the electroweak and QCD theories to a single Lagrangian 

with SU(3) x SU(2) x U(1) symmetry. These scenarios gave birth to the so-called 

Grand Unified Theories (GUTs), which include one or more symmetry-breaking phase 

transitions from a group G down to the standard model group. 

1.2 Topological Defects 

Symmetry-breaking phase transitions in the early Universe are often accompanied by 

the formation of topological defects via the Kibble mechanism [24,251. Depending 

on what kind of symmetry is broken, we can have point defects (monopoles), linear 

defects (cosmic strings), planar defects (domain walls), textures, as well as their com- 

binations (e. g. monopoles connected by strings) [5,61. 

To be more specific, let us consider a phase transition during which an initial sym- 

metry group G is broken down to a subgroup H. The formation or not of topological 

defects, and their kind, depends on the vacuum manifold M= GIH. As an example, 

consider the case where the homotopy group 7ro(M) :ý0, i. e. A4 is not connected. 

Then, two-dimensional defects will form - domain walls. If 7r, (M) :ý0, M contains 
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non shrinkable circles and line-like defects, cosmic strings, are formed. Monopoles 

form when 72 (-M) 
=34 0 and textures when 7r3 

(M) 

When the broken symmetry is a gauge symmetry, the emerging defects are called 

local, and their energy is strongly confined. Global defects are the result of a global 

symmetry breaking and have long range interactions. Depending on the energy scale 

of symmetry breaking, local monopoles and domain walls can have disastrous cosmo- 

logical effects, since they might dominate the energy density of the Universe. Local 

textures are not cosmologically significant, as they decay quickly with time. Strings, on 

the other hand, are far more interesting, and they will be studied extensively throughout 

this thesis. Before starting our discussion of strings, we will talk a bit about inflation, 

which deals with a few of the problems of standard cosmology, including that of stable 

catastrophic defects. 

1.3 Inflation 

The Hot Big Bang model, despite its astonishing successes (e. g. the predictions for the 

light elements abundances from BBN, the CMB), comes with a few serious shortcom- 

ings. 

The first is the so-called flatness problem. As we already stated, observations tell 

us that our Universe is spatially flat (k = 0), up to 1% [ 16]. This means that, today, 

the density parameter Q is very close to unity. Combining equation (1.26) with the 

behaviour of the scale factor as a function of time a-P, with p<1, we see that 

(aH) -2 grows with time. Hence, Q must have been extremely close to one at earlier 

times, requifing extremely finely tuned initial conditions (for example, IQ -II, 10-16 
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In addition, there is the horizon problem. The particle horizon at the time of last 

scattering corresponds to an angular radius of only I degree today. However, obser- 

vations of the Cosmic Microwave Background Radiation show something completely 

different - the whole sky is smooth, to about ten parts in 104 . This means that two 

photons coming from opposite directions on the sky have nearly the same tempera- 

ture. How can this be explained, if they were not in causal contact at the time of last 

scattering? 

Finally, GUTs predict the formation of massive stable magnetic monopoles. For 

example, a typical SU(5) GUT monopole hasm - 10" GeV, hence its energy density 

scales as a(t)-'. On the other hand, the energy density of relativistic fields scales 

as a(t)-', so monopoles would quickly come to dominate the energy density of the 

Universe. This is the monopole problem. 

The inflationary scenario [26,27,28,29,301 provides a solution to these problems. 

It is defined as a period of accelerated expansion. That is 

ä>0. 

From equation (1.21), we see that this means p+ 3p < 0. Also, 

d 
(aH)-1 < 0. 

dt 

The last equation tells us that, during inflation, the comoving Hubble radius decreases 

with time. 

Let us assume an equation of state p= -p during inflation, and revisit the flatness 
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problem. The scale factor evolves as 

a(t) =e (1.55) 

Substituting in equation (1.26), we find Q-I-e -IHt . Thus, any initial curvature will 

be decreased, and the value Q=I becomes an attractor. A similar reasoning solves 

the horizon problem, since the present observable Universe can originate from a very 

small causally connected region inside the Hubble radius at the start of inflation, so 

that photons coming from opposite directions from the sky can actually have the same 

temperature. The solution of the monopole problem is obvious, as the exponential 

expansion of space dilutes these defects and they cannot be observed today. Note 

that, in order for this mechanism to work, the monopoles have to be produced before 

inflation. 

Inflation Dynamics 

We saw earlier that, in order to have a period of inflation, we need an equation of 

state which violates the strong energy condition. To get a system with p= -p, we 

introduce scalar fields. Consider a spatially homogeneous scalar field (the so-called 

inflaton field) with potential energy V(O). The corresponding Lagrangian is 

1 (09"o) 
2 

The stress-energy tensor is 

Ti, = (amO)(ao) - Lgj,, 
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and, considering an isotropic fluid, we find that the energy density p and pressure p are 

given by 

1 
_ý2 V(O) 
2 

1 
'2 V(o 

- 

From the above equations we can immediately see that, provided 02 < V, we have 

-p and the inflaton can successfully drive inflation. Substituting (1.58) and (1.59) 

into the Friedmann and continuity equations for k=0, we get 

H2= 
87rG [V(O) 

+ 2] (1.60) 
32 

d 
V(O) -= -V'(0). dO 

Now, in order for inflation to take place, the potential term needs to dominate. This 

corresponds to a quite flat potential, and using the "slow-roll approximation" we have 

ý2 <V and ý< 3Hý. This gives 

2 87rGV( ), H30 (1.62) 

3Hq5 ý-- -V'(0). 

The conditions for the slow-roll approximation to hold are that the slow-roll parameters 

1v12v It 
f=- -; 71 

167rG 
(V) 

87rG V 

are very small: c, 71 < 1. 

Another important quantity is the amount of inflation, defined in terms of the e- 

foldings number N between some initial time t and the time at the end of inflation tf. 
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We define 

a(tf ) In- 
a (t) 

(1.65) 

Inflation ends as the potential steepens with the scalar field oscillating around the min- 

imum. The inflaton's potential energy is transferred to radiation and the Universe is 

thermalized - this is the reheating epoch and it is essential in order to recover the stan- 

dard Big Bang evolution. The decay of the inflaton field was originally described per- 

turbatively [3 11, but later a non-perturbative stage, preheating, was suggested [32,331. 

A new mechanism that produces cosmic strings after preheating was investigated in 

[341. 

To conclude, we should note that inflation is not only successful in solving the 

problems of the standard cosmological model, but it also provides an explanation for 

the origin of the primordial density fluctuations responsible for the observed structure 

in the Universe and the CMB anisotropy. We will return to this subject in Chapter 4. 

1.4 Cosmic Strings 

Cosmic strings are linear topological defects that may have been formed as a result of 

spontaneous symmetry breaking transitions in the early Universe, as originally demon- 

strated by Kibble [24,25]. 

A simple and illustrative model to study the formation of cosmic strings is the 

Abelian U(I) gauge model. The Lagrangian density is 

1 
Ft,, Fl" - V(O), (1.66) 

4 

where O(x) ý 01 + i02 is the complex scalar field expressed in terms of two real fields 
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ol and 02, D,, = (9m + ieA,, is the covariant derivative, F,,, = amA, - 9, A,, is the 

electromagnetic field and the potential V(O) can be written as 

1 2)2 =1 \( 02+02_ 2)2; A, Ti = const V(O) =4 Mo*O -0 

The Lagrangian has a local U(I) gauge symmetry, i. e. it is invariant under the trans- 

fon-nations 

O(x) ----> eiQ(x)o(x) and A,, (x) --+ A,, (x) -1 am aW 
e 

As illustrated in Fig. 1.1 (left), the potential (1.67) has a circle of minima jol = q, 

while the ground state has a non-zero expectation value 

(01010) = Rei" (1.69) 

where a is an arbitrary phase angle. This means that the ground state is not invariant 

under the U(I) phase transformations: The U(I) gauge symmetry is spontaneously 

broken. 

Figure LI: Left: The Potential V has a degenerate ground state where (: )ý, = ij, and a central 
hump. Right: A closed loop around a cosmic string - the arrows indicate the different phases a, 
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However, there exists a ground state where the U(I) symmetry is intact. It is the 

state where (01010) = 0, corresponding to the maximum of the potential. This state 

is unstable. To illustrate this, let us imagine a field at the very early stages of the 

Universe, where the temperature T is high. There will be large fluctuations in 0, so 

the central hump is unimportant. However, when the Universe cools down the field 

has to choose a ground state in the valley of minima, as its energy becomes too low to 

overcome the hump. The symmetry is spontaneously broken and we get two massive 

particles - the Higgs boson with mass m, = vr, \-, q and the gauge (vector) boson with 

mass m,, = vF2e? l. 

The choice of vacuum is in principle random, and fields in different patches of 

the Universe will choose different values of a. Now, imagine a closed loop with a 

changing from 0 to 27r (Fig. 1.1, right). Then, somewhere in that loop 0 must rise to 

the top of the potential lump where it vanishes. As a result, a linear defect will form 

a cosmic string. Imagining this process repeating in different regions of the Universe, 

we can deduce that a random network of cosmic strings will appear. 

A string solution to the Abelian-Higgs model was found by Nielsen and Olesen 

[351. In cylindrical coordinates p, 0, z, and at large distances from the core, the Higgs 

field has the form 

inO 
71 e (1.70) 

where n is an integer, the winding number of the string. The gauge field asymptotically 

becomes 

.10,, 
InO, 

ze 
(1.71) 

which translates to A, = Ap = A, = 0, AO = n, lep, as p --+ oc. Using Stoke's theorem 
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to integrate around a closed curve enclosing the string, we find a total magnetic flux 

4)B = 
IB 

- dS A dl = 
27rn 
e 

where B=VxA is the magnetic gauge field. The string carries n quanta of magnetic 

flux. Note that, far away from the string core, we have D,, o ý- 0 and F,,, ; ý-- 0, so the 

string energy vanishes rapidly away from the core. The radius (width) of the string core 

is determined by the Compton wavelengths of the Higgs and gauge bosons, 60 oc m. -1 

and 6v oc mv 1. The total string mass per unit length is 

(1.73) 

which gives p- 1022 g CM- I for GUT scale strings. 

Note that, in the case where the string's length is much larger than its width, the 

internal structure of the string is unimportant. The effective energy momentum tensor 

for a straight string along the z-axis is [36] 

Tß = itb(x)ä(y)diag(1,0,0,1). (1.74) 

The string has a large tension equal to the energy density. This implies that curved 

strings will contract and acquire relativistic velocities. 

To conclude, let us return to inflation and the monopole problem. As we already 

stated, all defects produced before inflation would be diluted to a non-observable level. 

This means that also cosmic strings will be diluted! Actually, this is not quite true. 

Early on, it was realised that strings can be formed at the end or near the end of infla- 

tion [37,38,391. More recently, it was found that cosmic string formation is generic 

within supersymmetric grand unified theories (SUSY GUTs) [40,41 ]. Another excit- 

ing possibility arises in string-theory inspired models of brane inflation. As an exam- 

ple, the popular D3 - D3 inflation model terminates with the collision and annihilation 
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of a D3 and a D3 brane and the subsequent formation of strings (see, for example, 

[42,43,44,45,461). Another brane inflation model is D3/D7, which can end with 

the formation of semilocal strings (see, for example, [47,48] and references therein). 

We will not discuss the details of these models here, as we will refer to them in more 

detail later in the thesis. The basic idea is that cosmic strings can survive and be ob- 

servable. The question that immediately arises is how they evolve and what are their 

cosmological implications. Especially when it comes to cosmic superstrings, one will 

surely wonder if it is possible to distinguish them from their field-theory analogues, 

and whether their cosmological consequences can open an observational window to 

string theory. 



Chapter 2 

Cosmic String Dynamics 

2.1 Introduction 

In the previous chapter we described the formation of cosmic strings in the early uni- 

verse after the spontaneous breaking of a U(I) gauge symmetry. Cosmic strings are 

linear concentrations of energy which stretch across the universe. They can also form 

closed loops. Even though they are very thin, they have a huge tension that can trig- 

ger observable cosmological effects. In order to quantify these effects, we need to 

study the dynamics of strings and understand the evolution of a cosmic string network 

throughout the history of the universe. 

In this chapter, we will review some important aspects of cosmic string dynamics 

(see [51, [61, [491). We start by deriving the equations of motion for a cosmic string 

using the Nambu-Goto approach. We solve these equations in Minkowski and FLRW 

spacetime, and discuss some specific solutions. We then describe the basic features of 

network evolution, and present the famous 'one-scale model' and its extensions. 
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We also introduce cosmic superstrings, which are objects analogous to cosmic 

strings arising in string theory, and in particular in models of brane inflation (see 

[7,8,501). These objects possess some distinctive features, which can be used in 

order to distinguish them from the usual, Abelian Higgs cosmic strings. The most 

striking of these is the ability to form bound states, which results in a configuration 

with junctions where three strings meet. We present some basic elements of the theory 

of cosmic strings with junctions, focusing on the Nambu-Goto approach developed by 

Copeland, Kibble and Steer [51,521. We conclude with the study of junctions in an 

expanding spacetime - an exact solution for a three string loop in a de Sitter universe 

is derived. 

2.2 The Nambu-Goto action 

Let us consider a cosmic string moving in a (3 + 1) dimensional spacetime. When its 

thickness is much smaller than its radius of curvature, we can effectively treat it as a 

one-dimensional object. As the string is moving, it spans a two-dimensional surface, 

the so-called "string worldsheet" 

x' (o, '), a=0,1. (2.1) 

Then, its motion can be described by the Nambu-Goto action, which is proportional to 

the area swept out by the string. That is [55,56] 

-it 
f 

-, /-ý5d or, (2.2) 

where p is the string's tension, 1W = gj,, OaxllObx' is the induced metric on the world- 

sheet with determinant -ý, and g,,, is the metric of the background spacetime. The 
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Nambu-Goto action is invariant under general coordinate transformations, as well as 

under worldsheet parametrizations o, ' -* &, (ab). 

Varying equation (2.2) with respect to x/I (or') we get the equations of motion 

V2Xii + rg 'Y ab (2.3) 
vp (9aXvabXp 7- 01 

where 

pu =1- 0'\g'p) (2.4) vp 2g"('9pg'\" 
+9g\' 

is the four-dimensional Christoffel symbol and the covariant Laplacian VIxA is given 

by 

ý, ýaba Xp). x aa 
b (2.5) V=--y 

Varying the Nambu-Goto, action with respect to the background metric g,,,,, we find 

that the string energy-momentum tensor P"(x) is given by 

1 
2,,, /-ý, aba Xpa Xv6(4) (XA 

_ XA (Ora)). (x) = pf dýab (2.6) 

2.3 String evolution 

2.3.1 Minkowski spacetime 

in flat (Minkowski) spacetime, the background metric g,,, becomes g., : -.,: 71pv :, ": 

diag(l, -1, -1, -1), which gives IF" = 0. The string equations of motion (2.3) are Vp 

then written as 

aa (. ý-7, yab abX14) 
--` 

0- (2.7) 



Cosmic String Dynamics 28 

Since the action (2.2) is worldsheet reparametrization invariant, we can choose a gauge. 

A very useful choice is to fix -yo, =0 and -ý00 + -ýIj = 0. This gives 

+ x/px/ = 0, (2.8) 
JU m 

where dots and primes denote derivatives with respect to uo and or 1, respectively. This 

is called the conformal gauge. 

Using the conformal gauge, the equation of motion (2.7) becomes 

äýI, - x", £ = 0, (2.9) 

which is the well known wave equation. Furthermore, we can use the remaining gauge 

freedom to set the timelike worldsheet coordinate aO equal to the Minkowksi time t. 

Thus, we have 

X0 = U0. (2.10) 

Then, we can immediately write the corresponding equations for the string's trajectory 

using the three-vector x(o,, t), where o, = a' is the spacelike worldsheet coordinate. 

Equations (2.8) can be written as 

i-x, = 0, (2.11) 

iC2 +x 12 = 1, 

k- x" = (2.13) 

The first equation tells us that the velocity of the string is perpendicular to its tangent 

- that is, ik is the physical velocity. In our chosen gauge, the string energy-momentum 

tensor can be written as 

TI" (x, t) =p1_ XipXiv)6(3) (X 
_ X(or, 
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Using this expression and equation (2.12), we find 

29 

E=f Tood 3X =pf do,, (2.15) 

so that the spacelike coordinate or is proportional to the energy of the string. 

The wave equation (2.13) has an elegant solution in terms of right and left movers. 

That is 

X(O', t) =1 a(a + t) + b(a - 2 

The right and left movers satisfy the constraints 

aO =b 
12 = 1, (2.17) 

with b' = x' - ic and a' = x' +: k (note that, when applied to b(o, - t) and a(cr + t), 

primes denote derivatives with respect to (or - t) and (or + t), respectively). These 

functions live on a sphere with unit radius, known as the Kibble-Turok sphere [571. 

It is important to note that, although the right and left movers have to obey the above 

constraints, they are otherwise arbitrary shaped waves which travel along the string 

with the velocity of light. 

Let us now consider what happens when the string forms a closed loop. If the loop 

has length L (with 0< or < L), the requirement of spatial periodicity gives 

x(a, t) = x(o, + L, t). 

In the centre-of-mass frame the fight and left movers are also spatially periodic, that is 

a(o,, t) = a(a + L, t); b(or, t) = b(a + L, t). 

As for the time periodicity, it is clear that the loop has to be periodic in time with the 

same period L. In fact, the actual period is T= L/2 [571, as we can easily check that 

x(a + L/2, t+ L/2) = x(o, + L, t). (2.19) 
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This equation tells us that the two halves of the loop are interchanged every T= L/2. 

The properties of the closed loop solutions give rise to a set of very special points 

on the string. In particular, there are points on the string that can reach the velocity 

of light for an instant during the loop's motion [581. As we mentioned before, the 

functions a' and b' live on the surface of the unit sphere. Considering a closed loop in 

its center-of-mass frame, we have 

ILLLL 

0 
xdo, = 

Jo (aý + b')do, = 0; 
1 

kdo, = 
fo 

(a' - b) dor = 0. 

Thus 

LL I b'der =- 
in 

aýdo, = 0, (2.20) 

which means that the functions V and -a' trace closed curves on the unit sphere 

centered on the origin, as or runs from 0 to L. Therefore, they cannot lie only in one 

hemisphere of the unit sphere, hence they will generally intersect. In that case, we will 

have bI = -a" and the tangent vector x' vanishes. The loop's velocity squared is 

i2 (or, t) =1 [a(or + t) - b(or _ t)12 
4 

which gives iC2 = 1. These points are called cusps. 

There can be also sharp comers on the loop, where the functions a' and b' are 

discontinuous [59]. These points are called kinks, and they appear after every string 

intercommutation. They then travel along the string and away from each other at lumi- 

nal speed. This leads to the build-up of additional small-scale structure ('wiggliness') 

on the strings. We will return to the role of small-scale structure in Sec. 2.4. 

'Note that this condition is only a matter of convention -if we define b= b(t -or) and a= a(t +or), 

the same discussion holds for b' = a. 
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Another property of loops in Minkowski spacetime is that their mean square veloc- 

ity is [51 

T dt L dok2 
=1 (2.22) 

oT 

fo 
L 2' 

2.3.2 Loop solutions 

We will now present a few representative exact solutions for closed loops in Minkowski 

spacetime. We will start with a description of the main features of the circular loop, 

which will be useful in Chapter 3. Then, we will briefly discuss some well-known 

families of loop solutions. 

The simplest loop solution is the initially static planar circular loop. Letting L= 27r, 

we can write 

x= cost (cos o,, sin o,, 0). (2.23) 

In Fig. 2.1 we illustrate the evolution of the circular loop. As we can see, the loop 

collapses to a point at t= 7r/2 and then re-expandS2. We can easily check that, at the 

collapse time t =7r/2, the whole loop takes the form of a cusp. 

In 1982 Kibble and Turok [571, motivated by the possibility that cosmic strings are 

responsible for the density perturbations needed for galaxy formation showed that any 

initially static loop of string collapses after half a period of oscillation. However, they 

discovered that if one perturbs slightly the collapsing solutions, one can get a class of 

non-intersecting loops, which can have sufficiently long lifetimes. Letting L= 27r 

(and u=o, + t, v= or - t), the Kibble-Turok family of loop solutions can be written 
2This picture is not quite realistic. As Hawking showed [60], a circular loop will eventually forrn a 

black hole after radiating away at most 29% of its energy. 
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Figure 2.1: The evolution of the initially static circular loop. It collapses to a point at t= 7r/2, 
and then starts re-expanding. The arrows show the direction of the velocity. 

as 

(0, t) =I el[(l -a) sin v+1a sin 3v + sin u] (2.24) 23 
1 

e2[(l - C0 COS V+Ia COS 3v + COS u] 23 

-e3 [a(l - a)] 11' COS V. 

They found that these strings do not intersect themselves for 0<a<1, i. e. there is 

no trivial solution of the equation x(c, t) = x(o, ', t) for this parameter range. 

In 1985, Burden [61 ] extended the previous work of Kibble and Turok and presented 

a broad class of loop solutions. Using our previous conventions, they can be written as 

X(O', t) =1 COS(MV)63 + M-1 sin(Mv)61 (2.25) 
2 

+N-'cos(Nu)r33+ N-1 sin(Nu) 

(cos 06, + sin 0162)] 
1 

with M and N relatively prime. If either M=1, N :ýI (or vice versa), the loop does 

not self-intersect. 

As we already stated, a generic feature of smooth loops is the presence of cusps 

[58]. Garfinkle and Vachaspati [59] constructed a class of cuspless kinked loops by 
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connecting straight segments to form a rectangle. Of course, kinks are formed natu- 

rally when loops self-intersect. In addition, kinks can prevent the formation of cusps, 

as they correspond to discontinuities on the Kibble-Turok sphere. Cusps and kinks are 

very important for the gravitational radiation signature of cosmic (super)strings. Un- 

fortunately, important questions such as how many cusps are found per oscillation and 

what is the percentage of non-self-intersecting loops in a network are still unanswered. 

In Chapter 4, we will present calculations of radiated power from closed loops. We 

will also discuss gravitational wave bursts from cusps and kinks in a cosmic string 

network. 

2.3.3 FLRW spacetime 

After studying the string's equation of motion in flat spacetime, we will now briefly 

discuss what happens when we consider a background similar to the one of the observ- 

able universe [5]. In an FLRW spacetime, the line element can be written as 

ds' = a(, r)'(dr' - dx'), (2.26) 

where dxI is the line element on a flat 3D space, a(-r) is the scale factor, and the 

conformal time -r is related to the physical time t via dt = adr. For fixing the gauge, 

we can again identify oO = -r but we can only keep the transverse gauge condition 

0. The string equations of motion are [621 

R+ 2H(l _ SC2): k X+ 2HCSC2 =0 (2.27) 

where H= d/a, 0= X12 / (1 
- i'), while dots and primes denote derivatives with 

respect to 7- and or, respectively. As we can see, the expansion of the universe has a 
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damping (friction) effect on the string's motion. After a little algebra, we calculate the 

energy of the string as 

pa(T-) 
f 

Edo,. (2.28) 

Note that E is equal to unity for a Minkowski spacetime. 

The trivial solution of equation (2.27) is a straight static string 

x(u) = Au; A= const., (2.29) 

which just gets stretched by the expansion. Considering perturbations on a straight 

static string [631 

X(U) ý CO'+ äX(7, Or), (2.30) 

and taking a(T) = r', the linearised (in 6x) equations of motion (2.27) give 

8: k + 
2a 

dic - 8xl, = 

äsc = 0. (2.32) 

The solution of (2.3 1) is a superposition of waves with mode frequency k. That is 

6x(7-, 
a) = A7--'J, (k7)e ika 

, (2.33) 

where J, is the Besse] function of the first kind, A-c=0 and v=a- 

Since we are working with comoving coordinates, the physical wavelength of the 

perturbations is 

a(, r 
27r 

k 
(2.34) 

Therefore, the quantity kT- - t/A represents the ratio of the horizon size to the wave- 

length (size) of the mode. 
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We can now investigate the two extreme cases. When kr < 1, i. e. when the 

wavelength of the mode is much larger than the horizon size, we find that 

6x -: zý A 
(k)" e ika 

2 r(v + 1), 
(2.35) 

which tells us that the comoving amplitude is constant in time. This means that both 

the physical wavelength and the amplitude of the perturbations are proportional to the 

scale factor. The string is conformally stretched, while its shape remains the same. 

When k7 >> 1, i. e. when the mode is well inside the horizon, we find 

k xA -r -' 
F2 

cos(k-r - a7r/2)e ika (2.36) 

This means that, while the wavelength grows with the scale factor, the physical ampli- 

tude a(, r)6x stays constant. The mode straightens. 

The aforementioned results can in fact be applied to the case of strongly curved 

strings [63,641 hence they are important for the treatment of loops. When a loop is 

outside the horizon, it is conformally stretched. While it enters the horizon, its radius 

progressively decreases and its shape is smoothed out. Finally, when the loop becomes 

much smaller than the horizon, the effects of expansion become insignificant and it 

starts oscillating freely - effectively, small loops in the universe behave as they would 

in flat spacetime. 

2.4 Network evolution 

As we stated in Chapter 1, strings are formed after a symmetry breaking phase tran- 

sition in the early universe. Simulations have shown that the formed string network 

consists of a random (Brownian) tangle of infinite straight strings and closed loops 
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[65,66,671. In this section, we will discuss the basic properties of the evolution of a 

cosmic string network (see [51, [61). 

Immediately after the network is formed, the string's evolution is determined pri- 

marily by damping effects due to the high radiation backreaction density. However, 

strings will eventually begin to oscillate freely. We then have to take into account two 

competing effects. The expansion of the universe, which stretches the strings, and the 

energy loss through string interactions and self-intersections. 

In order to understand the effect of string interactions, we need field theory sim- 

ulations. That is because the Nambu-Goto approach is only accurate as long as the 

strings under consideration do not intersect with themselves or with each other. When 

two Abelian-Higgs cosmic string segments meet, there are two possible outcomes: the 

strings just pass through one another, or they intercommute (exchange partners and 

reconnect). Abelian-Higgs simulations have shown that strings prefer intercommuting 

(Fig. 2.2), with a probability P almost equal to unity [68,69]. An exception seems to 

be possible when the relative velocity of the strings approaches the speed of light [701. 

Ir 

Figure 2.2: String Reconnection. 

If long strings are meeting at two points, or if they self-intersect, they can forrn 

closed loops (Fig. 2.3). These loops will eventually radiate their energy, hence they are 
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an important energy loss mechanism for the network. 

» 

21.1. 

Figure 23: Loop formation mechanisms: Upper: Two strings meet at two points Lower: Self- 
intersection. 

The so-called 'one-scale model' assumes that the string network can be charac- 

terised by a single length scale, namely the correlation length L defined by 

L2 (2.37) 

where p is the energy density in the long string network and p is the string tension. In 

other words, we expect (on average) one string segment with length L in any volume 

L'. 

In principle, there are at least two different fundamental length scales in the net- 

work - the typical "smoothness" length L of long strings, and the average distance 

between strings L. The one-scale model takes the two lengths to be equal (L=L), an 

approximation which appears to be reasonably well satisfied [711 for a network of NG 

strings of tension p with intercommutation probability P=1. 

The energy loss rate can be approximated by [721 

-2 
ap_ p (2.38) 
a L' 
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where -= d1dt and a(t) is the scale factor. The first term accounts for the expansion 

of the universe, and the second for string interactions with associated loop-formation. 

The network evolves towards a scaling regime, in which L is constant relative to the 

horizon dH -t [721. Indeed, setting L(t) = ý(t)t, it follows from equation (2.38) that 

ý=1 
2(, 3-1)+ (2.39) 

2t 
( 

where a(t) -P (0 = 1/2 in a radiation era, 0= 2/3 in a matter era). The attractor 

scaling solution of equation (2.39) is 

ý= [2(l - 0)]-l. (2.40) 

This scaling solution is independent of the initial conditions - if the initial network is 

very dense, there will be sufficient intercommuting producing loops which will radiate 

their energy away. On the other hand, if the initial density is small, intercommuting 

will be rare. Both of the initial states will eventually reach the scaling regime. Numer- 

ical simulations have confirmed the scaling behaviour of cosmic string networks (for 

example, see [731, [741 and [751). 

As an aside, it is worth noting that, if the energy loss due to loop formation was 

absent, the strings would soon dominate the energy density of the universe. Assuming 

Hubble expansion only, we have 

p, t, oc at 

while p,,,, t cc a(t) -3 and Prad oc a(t) -4 . 

Early numerical simulations also revealed the presence of small scale structure on 

long strings [75,761, and more complicated analytic modelling was performed in order 

to incorporate its possible influence on the network's dynamics. Austin, Copeland 
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and Kibble developed a 'three-scale' model, keeping L and L separate and including 

an additional length scale ( to account for the structure in the smallest scales [7 1 ]. 

Allen and Caldwell [771, as well as Austin [781, developed "kink-counting" models to 

describe small-scale structure. 

In the following, we will concentrate on the "Velocity-dependent One-Scale" (VOS) 

model, developed by Martins and Shellard [79,801. VOS calculates the macroscopic 

quantitative properties of a string network, it is simpler than the other analytic models 

and has been successfully tested against both field theory and Nambu-Goto, numerical 

simulations [811. It introduces a dynamical velocity component v to the equations, 

describing the root mean square (rms) velocity of string segments 

2 
=f 

*'Eda 
f Eda 

Let us start by the equation 

(2.42) 

E(-r) = a(7)p 
f 

cdo,. (2.43) 

Differentiating with respect to conformal time and using i= -26k2f we find 
a 

a (1 - 
2V2 )E. (2.44) 

a 

Consequently, for the energy density p oc Ela 3 we have 

-2 
a (1 + V2). (2.45) 
a 

To this, we add a phenomenological term which describes loop production: 

a+ V2) 
P 

2-(l - ý! L (2.46) 
aL 

Here, ý represents the efficiency of loop formation. The equation for the velocity is 

found to be 

v 
2) ý- ?v 

(2.47) 
(L 

a)' 
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where k is the curvature parameter which indirectly encodes information about the 

small-scale structure on strings. It can be expressed as a function of the velocity [80] 

2vý-2 1- 8v 6) 

(2.48) 
7r 

(1 

+ 8V6 

and it incorporates the Virial condition v2<1, observed in simulations. -2 

Following the same procedure as before, one now finds a scaling solution with 

e2 
k(k + 2) 

(2.49) 40(1 - 0) 

k(1 - ý3) 
ý3(k + ý) * (2.50) 

Of particular note is that the velocity also enters a scaling regime (2.50) in which it 

stays constant in time. This solution depends on cosmology (through the expansion 

exponent 0) and on the loop formation efficiency, ý, which, by comparison with nu- 

merical simulations, is of order unity [79]. 

Before ending our discussion we should note that, even though pioneering analyti- 

cal and numerical modelling of cosmic string networks has been performed, there still 

exist some unresolved issues. We stated earlier that the production and decay of closed 

loops is an important energy loss mechanism for the network. The basic question is 

what is the typical size f of these loops and what is the precise role of small scale struc- 

ture (for a very recent study on loop distribution combining analytical and numerical 

methods, see [821). 

When a loop is fonned after an intercommutation of two strings or after a string self- 

intersection, it oscillates with period t/2 while losing its energy through gravitational 

radiation. The loop's lifetime is estimated as [83] 

tj ; zzý 
f 

; Z: ý 104 
rGp 
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for GUT strings (the parameter r- 60). This lifetime is quite large, and sufficiently 

big loops (i. e. loops with a size f close to the characteristic length L of the net- 

work, which scale in the same way as the long strings) can meet another segment 

of string and reconnect to the long-string network. However, simulations in flat and 

FLRW background spacetimes [74,75,76,84] showed that the loops were in fact much 

smaller than the horizon. Recent simulations showed [85,86,871 that many of these 

small loops are produced only in a transient regime and they are not expected to be 

present at the later stages of the network's evolution. In addition, the simulations of 

[86] find a sub-population of loops which exhibit scaling in radiation and matter (also 

see [88,891). Recent analytical studies support that both small and large loops (with 

f1t - 0.1) will appear [90,91,921. 

The typical size and distribution of loops in a cosmic string network is a subject still 

under debate, mainly because of numerical issues due to the length and time scales 

involved. Another issue is whether the most important energy loss mechanism of a 

network is gravitational radiation. A different suggestion, based on Abelian Higgs 

simulations, is that the string network loses energy because of particle emission [84, 

93,941. 

An important property of long strings is the small-scale structure, which is respon- 

sible for the production of tiny loops. Long strings are smooth on the horizon scale, 

but on much smaller scale there is a significant sub-structure, with wiggles and kinks. 

Kinks are a result of string intersections, and they straighten slowly due to the ex- 

pansion of the universe [751. The study of small-scale structure, or 'wiggliness', is 

difficult numerically, due to the smallness of the scales in question. Gravitational ra- 

diation from opposite travelling waves was believed to be responsible for damping the 
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wiggles, but it is now proven to be suppressed [95]. 

2.5 Cosmic Superstrings 

In 1985, Witten [96] was the first to consider the tantalising possibility that funda- 

mental (F) strings produced in the early universe could progressively stretch to cosmic 

size. Unfortunately, this possibility was quickly ruled out, at least in the context of 

perturbative string theory. The fundamental strings are expected to have a huge ten- 

sion, Gp > 10-3, close to the Planck scale. Thus, they would produce big fluctuations 

in the cosmic microwave background, incompatible with measurements demanding 

Gp < 10-5. Moreover, such high tension strings cannot be produced after inflati6n, as 

their tension exceeds the upper bound on the energy scale of the inflationary vacuum. 

On the other hand, if they are produced before inflation, they will be inevitably diluted, 

together with the other kinds of topological defects which could have disastrous effects 

for the universe (monopoles and domain walls). Finally, some instabilities were iden- 

tified [961, which suggested that, even if these strings were successfully produced in 

the early universe, they would be unable to survive until today. 

Some years later, the ideas of braneworlds, extra dimensions and warped spacetime 

[97,98,99,1001 gave a different twist to the story, describing our Universe as a D3- 

brane embedded in a higher dimensional space, the bulk. Only gravity can propagate 

in the bulk, while the standard model particles are confined to live on the brane. in 

I OD superstring theory models, Dp-branes of various dimensionality can exist. These 

branes interact, unwind and evaporate, leading to a system of D3-branes, one of which 

can play the r6le of our universe [ 10 1 ]. 
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According to the braneworld scenario, the extra dimensions can be warped. This 

can provide a solution to the cosmic superstring tension problem, in the same way that 

it was employed to deal with the hierarchy problem. When we allow for spacetime to 

be warped, we can write the line element as [7,991 

dS2 
= A(ý)(&2 - 

dX2) 
- 

dý2, (2.52) 

where ý denotes the extra dimensions. If this is the case in IOD superstring theory 

models (with 6 warped extra dimensions), then the fundamental string tension jif could 

in fact be close to the Planck scale, giving a much smaller effective tension p on the 

brane. If the strings are localized at ý=ý,, we will have 

it = A%)pf, (2.53) 

which can be much smaller than pf if A(ý, ) < 

The aforementioned approach provides a neat way around the tension problem. But 

what about inflation? Surely, these strings must be produced after inflation, otherwise 

they will be diluted. It turns out that the braneworld scenario can also provide a way 

to realise inflation in string theory, together with the production of cosmic strings. In 

models of the so-called brane inflation [42,43,44,102,103], a brane-antibrane pair 

slowly move towards each other, collide and finally annihilate. Each brane carries 

a U(I) gauge symmetry. During annihilation, tachyon rolling leads to spontaneous 

symmetry breaking, and two kinds of strings are produced via the Kibble mechanism: 

F-strings and D-strings [45,46,102,104,105,1061. F-strings are quantum mechanical 

objects, while D-strings are very similar to the usual cosmic strings. Note that the 

catastrophic topological defects, i. e. domain walls and monopole-like defects, are not 

being produced. 
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To summarise, there are three necessary conditions for the existence of cosmic su- 

perstrings [ 107]: 

9 The strings must be produced after inflation. 

o They must be stable on cosmological scales. 

e They must be observable, but not already excluded. 

These conditions are satisfied in the context of brane inflation. Another desirable con- 

dition is that cosmic superstrings should be distinguishable from 'usual' (solitonic) 

cosmic strings. 

Having established that cosmic superstrings can be produced and be stable at cos- 

mological scales, we will now turn to the equally important issue of distinguishability. 

Can we differentiate a cosmic superstring network from a solitonic one? The answer 

is yes, because cosmic superstrings carry two unique characteristics: a reduced inter- 

commuting probability [ 1051, and the formation of junctions [ 108]. 

We have already mentioned that for usual Abelian cosmic strings, the intercom- 

muting probability is essentially one. This is an extremely important feature, giving 

rise to the scaling solution being a strong attractor - otherwise, the strings would soon 

dominate the universe. 

For cosmic superstrings, the situation is very different (see [8,9,1071 and references 

therein). First of all, these strings travel in the extra dimensions, and they can easily 

miss each other. Secondly, even when they eventually meet, they do not necessarily 

intercommute, because of charge conservation. To be more specific, let us denote as 

(p, q) a string carrying p quanta of F charge and q quanta of D charge. In general, a 
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(p, q) and a (p', q') string can form a (p + p', q+ q') or a (p - p', q- q') string. Their 

crossing results in a configuration of two trilinear vertices Ounctions) connected by 

the segment of the produced string. For example, consider an F-string (1,0) meeting a 

D-string (0,1). They cannot simply intercommute, but they can form a bound state, an 

FD-string (1,1) (see Fig. 2.4). 

Figure 2.4: An F string interacts with aD string, forming an FD string. 

The (p, q) bound states were originally found using the SL(2, Z) duality of the 

IIB superstring theory in ten dimensions [1091. One starts from the general ten- 

dimensional supergravity action 

so =12f dloxv/'--g x 
(R 

-1 
(190)2 

_I e-OH2) (2.54) 2 r, 2 12 

where H is a three-fonn field strength (H = dB), and 0 is the dilaton. The type IlB 

theory has two three-form field strengths HM = dB(i), i=1,2. H(') belongs to the 

NS-NS (Neveu-Schwarz-Neveu-Schwarz) sector. H (2) belongs to the R-R (Ramond- 

Ramond) sector. We also have two scalar fields, the dilaton 0 in the NS-NS sector, and 

the field X which belongs to the R-R sector, combined into a complex field 

x ie-0. (2.55) 

Setting the five-form field strength equal to zero (as the corresponding charges are 

carried by a self-dual three-brane, whereas we are interested on charges carried by 
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strings) the covariant action for this system can be written as 

1 
dlox,, I--g R+1 tr(aMaM-1) -1HT MH (2.56) So = ý-r2 

,f4 12 

where H('), H (2) are combined into a vector H= dB and the matrix M is given by 

eO 
JAI' 

X 
(2.57) 

The symmetry of this system, studied in [ 1091, suggests that the solutions should carry 

both H(') and HP) electric charge. The F- and D-string can be mapped to each other 

via S-duality. Measured in units of Q, where Q is the B., electric charge carried by 

the string, we can consider solutions carrying charges (qj, q2) --` (p, q), where p and 

q are relatively prime integers. These solutions are now interpreted as bound states of 

FI-branes and q Dl-branes [1101, and their tension in flat ten-dimensional type-1113 

theoryis 

t! F 
, ýF2 

2, A(p, q) : -- 95 
gs(p - Xq)2 +q (2.58) 

where g, = eO is the string coupling. Note that (p, q) = (1,0) corresponds to the 

fundamental F-string, while (p, q) = (0,1) corresponds to the D-string. The interaction 

forming an Fl) bound state is mediated by the RR scalar X, and the merging occurs with 

the F string passing its flux to the D string. 

Cosmic strings also arise in Grand Unified Theories (GUTs). In a recent publication 

[41 ], the authors investigated cosmic string formation in supersymmetric GUTs, and 

examined all possible spontaneous symmetry breaking schemes from the GUT scale 

down to the standard model gauge group. Their conclusion is that all phenomenolog- 

ically consistent theories predict cosmic string formation at the end of the inflationary 

period. 
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The aforementioned features provide the fascinating possibility of distinguishing 

cosmic superstrings, thus opening a window to string theory through cosmology. An 

important question is immediately raised: Since the intercommuting probability of 

cosmic superstrings is lower than unity, how will their network behave? Will it scale? 

Network evolution and cosmological implications of cosmic superstring networks will 

be the main subject later in this thesis. Before that, we need to introduce the theory of 

cosmic strings with junctions and study their dynamics and stability. 

2.6 Cosmic Strings with Junctions 

2.6.1 Introduction 

As already stated, cosmic superstrings can bind together, forming an entangled three 

string configuration. The first study of the dynan-dcs of three-string junctions in a local 

cosmic string network was performed by Copeland, Kibble and Steer (hereafter CKS) 

in [51,52], using an approach which had been previously adopted for representing 

baryons as pieces of open string connected at a common point [53,54]. Assuming 

that the strings have no long-range interactions, the Nambu-Goto approximation can 

be used. 

In this section, we will review the CKS approach for the study of three semi-infinite 

strings meeting at a junction. We will start by constructing the Nambu-Goto action for 

a three string vertex, and then analyse the equations of motion and present a simple 

exact solution [511. 

The basic result of the CKS analysis is that the formation of junctions after the col- 
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lision of two cosmic superstrings is governed by kinematic constraints, which depend 

on the tensions and the collision angle. This will have important consequences for the 

evolution of a cosmic superstring network. 

2.6.2 Equations of motion 

Following the standard approach, we use the conformal gauge, which imposes the 

constraints 

k-x1=0, ic2 +x 12 = 1, (2.59) 

where ic = )tx and x' = i9, x. 

We consider a junction of three strings of tensions pj, (j = 1,2,3), and coordinates 

xj (o,, t) (Fig. 2.5). The convention for o, is that it increases towards the junction for all 

three strings. The action for this system is the sum of the Nambu-Goto actions for each 

7 

1 

3 
Figure 2.5: Three semi-infinite strings meeting at a junction. The arrows show the chosen conven- 
tion for the direction of increasing cri. 

string, together with extra terms to assure that the strings meet at the junction. These 
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can be written as constraints using Lagrange multipliers. That is [511 

f1i 
I 

dt 
f 

dcr E) (sj (t) - u) 
ýxj2(1 

- kj2) 

+ dt fj (t) - [xj (sj (t), t) -X (t) (2.60) 

where X is the position of the vertex, fj are the Lagrange multipliers, and the sj (t) are 

the values of the spatial world sheet coordinates at the vertex. 

Varying the action with respect to xj and using the gauge conditions (2.59) we get 

the usual equation of motion 

xj -=0, 

with solution 

(2.61) 

xj (a, t=1 aj a+ t) + bj(a - (2.62) 2 

while the gauge conditions impose 

/2 1.2 b4 (2.63) 

We also get (from the terms proportional to 6 (sj (t) - o, )) 

Ai(xi + ýjij) = fi 1 (2.64) 

where the functions are evaluated at the vertex (sj(t), t). Varying with respect to the 

Lagrange multipliers we get the boundary conditions 

xi (si (t), 0=x (t), (2.65) 

and varying with respect to X we find 

Z fj = 0. (2.66) 
i 
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We can now write (2.65) as 

aj (sj + t) + bj (sj - t) = 2X (t), (2.67) 

and then use (2.64) and (2.66) to get 

pj[(i + ýj)aj' + (I - Aj)bjj = 0. (2.68) 

Now, let us consider a junction for which the incoming waves are the b,. (sj - t)'s, 

which are determined using the initial conditions. We then calculate the outgoing 

waves aý (sj + t) as follows. We begin by differentiating (2.67) with respect to t: 

(I + ýj)a, ' - (1 - ýj)bj = 2k (2.69) 

Substituting for the unknown waves aj' into equation (2.68), we find 

ýi)bj (Al + P2 + P3)k- (2.70) 

Eliminating X from the above pair of equations we get an expression for each (un- 

known) aý' as a function of the (known) bj"s. However, we still have to calculate the 

2 
evolution of the junction in o-space, namely ýp Using the gauge conditions a'j = 1, 

we get a differential equation for ýj as a function of the string tensions and the scalar 

products 

cij = b'i (si - t) - b'j (sj - t) = cji, 

For example, the corresponding equation for ýI is 

pi(i - ý, ) Ml (1 
- C23) 

fil + P2 + P3 
= A'11(1 - C23) + M2(l - C31) + M3(1 

- C12) 
(2.72) 

where All = 112 - (A2 - P3 )29 
with similar definitions for A, 12 and A13. The equations I 

for ý2 and -ý3 can be obtained by cyclic permutations of equation (2.72). 
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Given that I ýj 1 :51 and I cij I<1, it follows that all Mj ý! 0. This means that our 

configuration must satisfy the triangle inequalities: no string tension can exceed the 

sum of the other two for the configuration to be stable. 

Another important result is the relation 

filA1 + 42ý2 + t£3ý3 :` 01 (2.73) 

which expresses energy conservation. This can be obtained by summing equations 

(2.72), although a more elegant way of deriving the same equation will be presented in 

Chapter I 

As we can see, equations (2.72) are differential equations for sp This means that, 

in general, numerical methods will be required to solve for the evolution of a string 

configuration with junctions. Once the values of sj (t) are known, we can use equations 

(2.69) and (2.70) to find the values of aj' (sj + t), and then integrate to obtain ap It is 

important to note that this can be done as long as the incoming waves bj are determined 

by the initial conditions. The effects of other junctions will eventually start affecting 

the incoming waves, which will be then determined by the dynamics of these junctions 

(see Chapter 3 for a complete treatment). 

There exists an exceptionally simple analytic solution [51] describing three semi- 

circular arcs symmetrically arranged around a common diameter (see Fig. 2.6). With 

PI ý-- P2 ---: P39 it can be written as 

xi(t, a) cost(cosor, O, sina) 

X2(t, Or) COSt(- 
1 

Cos or, vl'3- Cos a, sin or) 22 

X3(tiU) COSt(- 
1 

Cos a, - 
vf3- cos o,, sin a) 22 

with lorl < 7r/2 and Aj = 0, so that sj = lE for all t. It is obvious that it is a gen- 2 
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eralisation of the well-known collapsing circular loop solution. The loops keep their 

semicircular shape and collapse to a point at t= Z21 * 

Figure 2.6: Three semicircular arcs symmetrically arranged around a common diameter - initial 
configuration. 

2.7 Collisions of strings with Y junctions 

In this section, we will present the CKS approach for studying the problem of the 

collision of two strings which become linked by a third one. 

Let us first consider two straight strings with equal tensions p, = p2, which move 

towards each other along the z-axis and collide at t=0 [511. For t<0, we can write 

X1,2(0ri t) " (-^ClOr COS Ce, T'Y-la sin a, ±vt). (2.74) 

where v is the string velocity and -y-I = výI- --v2. This gives 

a' -1 cos a, T sin ce, ± v), I, 2(- ^ý 

1,2 cosa, Ty-1 sin o,:: Fv). (2.75) 
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Let us suppose that the collision angle a is small and that the connecting string segment 

forms along the x-direction. Then, for t>0, we will have 

x3 (0,1 t) == (or, 0,0), a' (o, ) = b' (o, ) = (1,0,0). (2.76) 

From the symmetry of the problem it is obvious that it is sufficient to study either of 

the two junctions along the x-axis. Choosing the positive one and using (2.73), we find 

81 ý-- S2 I-- -(A312pj)S3. The vertex will be moving along the x-axis with uniform 

velocity ý3 and position X(t) ---: 
(S3(t)ý 0,0). For the cij of (2.71) we find 

C12 = b'l - b2 = --ý-2 cos2a -v2, C13= V, - b3 = -, y- 1 COS a= C23 - (2.77) 

Substituting into (2.72) we get 

2p, -y-' cos a- P3 P3 
83 

cos a 
Al = ý2 

21t, 
(2.78) 

Requiring the string 3 to grow means ý3 > 0. Thus, we get the constraint 

a< axccos 
P37 (x-axis). (2.79) 

( 
2p, 

This is consistent with our initial assumption that the connecting string would form on 

the x-axis for small collision angle a. Similarly, for a string along the y-axis (a closer 

to 7r/2) one finds 

a> arcsin 
"I-, ) 

(y-axis). 
( 

2p, (2.80) 

From the triangle inequalities, we deduce that a junction cannot be formed if /13 > 2pl. 

Also, we find that there is an upper bound on the velocity the strings can have in order 

to form ajunction: 

< 
2p, 

(2.81) 
/13 
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This means that very fast Abelian strings will simply pass through one another. For 

non-Abelian strings, there are two possibilities: they can either become joined by a 

string in the z-direction, or form a locked X configuration. 

Following the treatment of strings with equal tension, CKS extended their study to 

the case of colliding strings with unequal tensions [521. They first define 

tl+ ý- (2.82) ý /11 + /121 Ill - /12- 

Then, from the triangle inequalities, it follows that A3 is in the range 

A- !5 A3 < A+- (2.83) 

Because the tensions of the colliding strings are not the same, the symmetry of the 

equal tension case is lost. Now, suppose that at t=0 the strings bind forming a x-link, 

where the new string is at an angle 0 to the x-axis, and moves along the z-direction 

with velocity u (see Fig. 2.7). That is, 

X3 (Ori t) = cos 0, -y. -'u sin 0, ut). (2.84) 

After quite a bit of algebra, they found that the equation for the bridge velocity u is 

2 (sin' a)u' + [P2 V2) + /12 (V2 COS2 a- sin 
2 

a)]u 
22v2 

Cos 
2a=0. (2.85) 3 

This equation always has one positive root for u2, and also u2 < 7) 2. After u is found, 

the angle 0 can be determined by the equation 

tanO u 
tan ce v 

(2.86) 

In [I I I], the authors showed that the above kinematic constraints, which were de- 

rived for Nambu-Goto strings, are essentially the same if one considers collisions of 
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Figure 2.7: Two strings with different tensions p, and P2 collide and become joined by a third 
string /13, forming a x-link. 

(p, q)-cosmic superstrings with tensions 

qJ2 

s 
pJ2 + 

q?. 

s 
2 

(2.87) ý2 

The condition for junction formation is 

ý3 > 0- (2.88) 

Then, the expression for ý3 is found to be [I I I] 

Gfl+ - ft3 
83"-:: -_ 1 (2.89) 

P+ GP3 

with 

12 Co 2 C, + U2 8i, 12 a V2: O: S2 U2 
ýSin2 

a) 

V U2) 
Cos 0, (v 

(2.90) C: 
7u Cos 0 2( 
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This implies important kinematic constraints on the (v, a) parameter space for a x-link 

formation, which we will now derive following [I I I]. 

From the inequality U2 < V2, we deduce that G<1. Furthermore, the denominator 

of (2.89) is always positive, respecting the triangle inequalities. We therefore have 

A3 

which can be written as 

(2.91) 

AI-Y-4 + A2Y -2 + A3 < 01 (2.92) 

where 

A, 2 Cos 2a [fi 2_A2 Sin2 Ce _ p2 Cos 2 
a], (2.93) +3+ 

A2 
= 2A 2A2 Cos 2 Ce _ p2 _ (2 COS2 a_ 1)[, 2 f, 2, (2.94) +-3+3 

4_22 A3 : -"ý 113 K A- 
* (2.95) 

The condition (2.92) depends on the collision angle a, the collision velocity v and the 

tensions of the three strings. It can be solved to obtain constraint on the values of ji for 

which a junction can form: 

< V, < VACO, (2.96) 

where the critical velocity, v, depends on fl, and P2. The authors showed that Ilynax < 

1 only if 

2> fl+ Ip_I= lf, 2 
_ p2 1. P13 

-12 (2.97) 

If this condition is satisfied, then the two colliding strings will simply pass through one 

another without forming a junction, for v> vm-. C 
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Let us now illustrate the effect of these constraints using a simple example. Taking 

A, = ff2, the constraint (2.9 1) can be written as [I III 

VFJ 
--V2 

COS a> 
/13 

(2.98) 
2fi 

For the collision of an F with aD string forming an FD string and g, = 1, we find 

ý1- 
I 

V V2cosa > -- and u-0-0. (2.99) 
V2 

Using (2.99), we plot the allowed (v, a) parameter space for the formation of ax-link 

(Fig. 2.8). 

V 

Figure 2.8: The allowed parameter range in (v. a) space for the collision of an F string with aD 
string to form an FD string (x-link) is shown in blue for g, = 1. 

The CKS predictions for the kinematic constraints governing junction formation are 

derived using the Nambu-Goto approximation. One might wonder how successful they 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
a 
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are when compared with field theory simulations, where the zero-width approximation 

is not valid anymore. This comparison was perfon-ned in [ 112,113 1, finding very good 

agreement. 

2.8 Cosmic Strings with Junctions in an FLRW uni- 

verse 

We will now study the evolution of cosmic strings with junctions in an expanding uni- 

verse (see [ 1141 for a nice study of cosmic string loops in FLRW spacetimes, and [ 1151 

for a thorough investigation of cosmic string collisions in cosmological backgrounds). 

In addition, we will present an exact solution for a loop with junctions in a de Sitter 

background. 

For three strings forming ajunction in an FLRW spacetime, the action can be written 

as 

2 (, r) ýFX-i2 11 s d-r f do, E) (sj (T) 
- a)a (1 

- k2) 

d 2(T)f 
Taj 

(T) 
- 

[Xj (Sj (T), 7) -X 
(7) (2.100) 

where T is the conformal time. Varying xj yields the usual equation of motion for a 

string in an expanding universe 

a2x 
: Rj +2 kj (1 - kj) (2.101) 

a (j 

(E 

rXi2 

_X 1 X3 o9, x, k o9, x and Ej where x' There are also boundary terms which give 

us the boundary conditions 

lij 
( 'i 

+ Ei ýi sci 
)= 

fi (2.102) ej 
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where the functions are evaluated at (sj(7, ),, r). Varying X provides the constraint 

I: fj =0 (2.103) 
i 

so we can write the boundary conditions as one equation 

+ 'Ej ýj: kj o (2.104) 

By considering a circular loop 

x=r (-r) (cos a, sin o,, 0) 

we find using eq. (2.10 1) that r (7-) must satisfy 

a -2 
f+ 2-(l _ ý2)ý 

= (2.105) 
ar 

Now, let us consider a de Sitter universe, with a(t) = eHt' H= const. Using 

(2.106) 

we find a solution to eq. (2.105). That is 

-1 1 
We -Ht (2.107) ; ý=2H - 

We can generalise this solution to a configuration comprising three semicircular 

arcs symmetrically arranged around a common diameter: 

X, 
Ie (cos o,, 0, sin a) V2-H 

X2(tý 6) =1 -e -Ht(_ 
1 v, 3 

os 0', sin 0') 72iH 22 v' 

X3(tý 6) =1e -Ht(_ 
1 

--- -I Cos a, sin a) 72=-H 22 

with joj < 7r/2. Each one of them will satisfy the equation of motion and, if we 

choose p, :: -: P2 -": P3 we can check that the boundary condition (2.104) is satisfied 

with 91 = 
g2 = 43 = 0, so that sj (t) = 7r/2 for all t. 
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This solution can be thought of as a generalisation of a circular cosmic string loop 

solution found in [ 1161. The physical radius is 

R(t) = ar =1-. (2.108) 72=H 

As the authors note, this solution appears to be static but it is only stationary - it is a 

contracting loop standing still against the Hubble expansion. 

2.9 Discussion 

In this chapter we presented an overview of the most important features of cosmic 

string dynamics in the Nambu-Goto approximation. In Minkowski spacetime, we stud- 

ied the equations of motion and presented some representative exact loop solutions. 

We identified special points on the string, namely cusps and kinks. Their appearance 

is generic, and they are important sources of gravitational radiation, as we will see in 

Chapter 4. We also studied the dynamics of strings in an FLRW spacetime. The Hubble 

expansion damps the motion of the strings, with long wavelengths being conformally 

stretched as the Universe expands. For short wavelengths and small loops of string 

the Hubble damping is negligible, so the equations of motion are almost equivalent 

to those in flat spacetime. We saw that a great deal of analytical and numerical work 

has been devoted in network evolution. The 'one-scale' model takes into account the 

expansion of the universe and the long string interactions with associated loop forma- 

tion. The network evolves towards a scaling regime, where the characteristic length of 

the long string network is constant relative to the horizon, in agreement with numerics. 

The VOS model is a more sophisticated analytic model that introduces a dynamical ve- 

locity component to the equations - it has also been tested, quite successfully, against 
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numerical simulations. 

61 

The theoretical prediction of cosmic superstrings gave a new boost to the cosmic 

string research community. The prospect of linking string theory with cosmology, i. e. 

with observations, is very challenging. We saw that cosmic superstrings can bind to- 

gether, forming an entangled three-string configuration. We presented an extensive 

overview of the studies of cosmic strings with junctions in the Nambu-Goto approx- 

imation, with particular attention on the kinematic constraints for the formation of 

junctions. We ended our discussion by deriving the equations of motion for strings 

with junctions in an expanding spacetime. An exact solution was found for a de Sitter 

background. 

In the next chapter, we will study the evolution and stability of cosmic string loops 

with Y-junctions using the CKS approach and a field theory U(I) x U(I) model [ 117]. 

In addition, the aforementioned kinematic constraints will be of crucial importance 

when we study the evolution and cosmological implications of multi-tension cosmic 

superstring networks in Chapter 5. 



Chapter 3 

Evolution and Stability of cosmic 

string loops with Y-junctions 

3.1 Introduction 

The realisation that cosmic superstrings can arise in superstring/M-theory as products 

of brane inflation [42,43,44,45,461 has opened up a window on string theory through 

cosmology, since we might be able to detect them through their imprints in the cosmic 

microwave background radiation [118,119,120,121,122,1231, their lensing of distant 

galaxies [ 124,126,1271 and the production of gravitational waves [ 128,129,130]. 

As we have already mentioned, for standard field-theory strings the intercommuting 

probability is essentially unity [68,131,132,133,1341. However, the situation for 

cosmic superstrings is quite different - the intercommutation probability can be greatly 

reduced due to the presence of the large extra dimensions, and it depends on the value 

of the string coupling constant [ 105,135,136,1371. Furthermore, a network of cosmic 
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superstrings will look very different from a cosmic string one. As an example, let us 

imagine a network of F- and D-strings. Inevitably, they will form bound states of p 

F-strings and q D-strings. Thus, trilinear vertices (Y-junctions) will appear, which is 

not the case in the Abelian-Higgs cosmic string scenario. This can lead to interesting 

dynamics following the collision of such strings, and it is natural for one to wonder 

how the existence of Y-junctions affects the properties of the string network. 

However, stable composites can form even in Abelian Higgs models, provided that 

the gauge coupling is sufficiently high. We also know that junctions are generic in 

non-Abelian networks. In the following, we use the U(I) x U(1) model [ 1171 of gauge 

strings that permits junctions, focusing on the particular case of closed planar loops. 

However, we should note that no known field theory model can give us the rich mass 

spectrum of bound states for cosmic superstrings. This means that some of the field 

theory results cannot be extrapolated to the case of cosmic superstrings, for which the 

U(I) x U(I) field theory is only a toy model. 

Our aim is to compare the two different approaches which have been used to de- 

scribe the dynamics of strings with Y-junctions. The first is the Copeland, Kibble and 

Steer (CKS) approach [51,521, which is based on the modification of the Nambu-Goto 

action. The second is to describe the strings as composite objects in terms of an un- 

derlying classical field theory that will allow for the formation of junctions [ 1171 (see 

also [138,139,140,141,142,143,1441). This comparison has already been done 

for ordinary cosmic strings with no junctions (for a review see [5,6]). The results 

demonstrated that the Nambu-Goto, approach is an excellent approximation to describe 

a cosmic string, provided that the string's curvature is much larger than its width. Re- 

cently [ 1131, it has been shown that the late time dynamics of a system of straight 
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strings colliding and forming Y-junctions can be very accurately described using the 

CKS method. We would like to know whether this is still the case when considering 

closed loops consisting of several strings. 

Using the Nambu-Goto approximation to study these configurations is profitable 

for a number of reasons. First of all, the Nambu-Goto simulations are much easier 

and less numerically costly (for example, only planar loops can be evolved using the 

field theory code). Furthermore, the CKS approach gives us the freedom to choose the 

strings' tension, while in the field theory model the spectrum of the tensions is very 

limited. Additionally, with Nambu-Goto there is more freedom in the choice of the 

intercommuting probability of cosmic superstrings because, unlike in field theory, it 

can be dealt by hand and it is not constrained by the equations. 

We will compare the field-theory and Nambu-Goto, evolution of two initial loop con- 

figurations which could be the result of two planar loops colliding. However, we must 

stress that they are not expected to be representative of loops in a cosmic superstring 

network. These are very specific configurations, but they still give us the opportu- 

nity to explore the properties of Y-junctions, including a new feature, their stability to 

decomposition into three new junctions, whose separation may grow significantly. 

The chapter is organised as follows: In Section 3.2, we discuss the Nambu-Goto 

method and describe our numerical technique, followed by a brief description of the 

U(J) x U(I) field theory model in Section 3.3. In Section 3.4 we compare our results 

for the two different approaches. We present our conclusions in Section 3.5. 
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3.2 Nambu-Goto approach 

3.2.1 Equations of motion 

In this section we set up the Nambu-Goto equations of motion for a string loop with 

J junctions in Minkowski spacetime, generalising the aforementioned CKS approach 

that described the dynamics of three straight semi-infinite strings meeting at a junction. 

Case of two junctions 

As a warm-up, we first set up the equations of motion for a loop with two junctions 

and three strings. The junctions are labelled by the index J= (A, B), and the position 

of the ith string (i = 0,1,2) with tension pi is parameterised as 

x(r, ai), (3.1) 

where -r and ori are the world-sheet coordinates (note that r is chosen to be the same 

for all three strings). The induced metric on the world-sheet for string i is 

Ii axlý' axiv Yab 
190, a gorb (3.2) 

where a, b= (-r, ai) and 71,,, is the 4-dimensional Minkowski metric. Below, a dot/dash 

denotes a derivative with respect to rlui respectively. The values of the world-sheet 

coordinate a at the junction are denoted by siJ and since we are not expecting siJ to t 

be constant, they are generally -r dependent. In the case of two junctions, we have the 

freedom to take o, to increase (or decrease) to a given junction for all three strings. 

Hence we can choose a to increase from junction A to junction B so that 

AB(, 
r). si i (3.3) 
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The positions of the junctions are 

VI Xý (7, S, (7-)) for all i. 
iti (3.4) 

In the absence of background fluxes and after dilaton stabilisation, the dynamics of 

a single infinite (p, q)-string in flat spacetime is given by the Dirac Born Infeld (DBI) 

action P III 

SDBI dT-daV/, IYab +A F,, bjý (3.5) 

where P= lqll(gA) is the tension of q coincident D-strings, A= 27ra', with a' the 

Regge-slope parameter, and g, is the perturbative string coupling. F,, b is the electro- 

magnetic tensor on the string world-sheet, and the electric flux density is the momen- 

turn conjugate to the electric field p= i9LDBI/19Fra. The dynamics of three semi- 

infinite (p, q) -strings meeting at a junction was discussed in [I III where it was shown 

that the resulting equations of motion are exactly equivalent to those obtained by using 

the Nambu-Goto action for each string, provided the ith string tension in the Nambu- 

Goto action is taken to be given by 

pi + 
(q, 

(3.6) 

and one imposes charge conservation at the junction 

Epi 
= () Z qi = 0. (3.7) 

ii 

Hence, we may assume that the dynamics of each individual segment of string is de- 

termined by the Narnbu-Goto action. 

in the conformal gauge 

Z-1=0; lyloi = 0, (3.8) 'y7'7' + yOli 
Ci 
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the Nambu-Goto action for the three strings of tensions pi joined by two junctions is 

d-r f dori [O(si'(-r) - ui)E)(-siA(-r) + ori) 

x 2] 

d7- fjýjl - [xý (, r, s (-r)) -X (3.9) 
f 

J=(A, B) i 

where pi is given in equation (3.6) and the four-vector Lagrange multipliers f4(r) 2P, 

impose the constraints given in Eq. (3.4). 

Varying the action (3.9) with respect to xP * i yields the usual equation of motion for a 

string in Minkowski space-time (away from the junction), namelY the wave equation 

I 
0 =* xp [aý(uj) + V(vi)], (3.10) 

where 

Ui = Oli + 7; Vi = ai - T. (3.11) 

From the conformal gauge conditions (3.8) the "left" and "right" movers satisfy 

12 o2 ai 1 2 

Furthermore, varying the action with respect to Xý", imposing the temporal gauge and i 

using the boundary conditions gives the energy conservation equation at each junction: 

PW1 + 112ý2 (3.13) j j 
tý3ý3 -'ý 

()' 

As the junction is moving, some of the strings will have >0 while others < 0. 

These represent growing/shrinking of the string not only in a-space, but also in real 

space. The rate of creation of one string must balance the disappearance of other(s). 

In order to study the evolution of the whole configuration, we need to determine the 

dynamics of the two junctions. It is important to note that, unless the configuration is 
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highly symmetric, we cannot determine its evolution using analytical methods, except 

at early times. That is because, once an outgoing wave from one junction has reached 

another junction, then the incoming waves cannot be taken directly from the initial 

conditions and the problem becomes non-linear. In general, numerical methods will 

be needed in order to solve the full system. 

Let us first consider junction B. The algebraic procedure to determine the outgoing 

waves a'-" as a function of the incoming waves b"' at junction B is very similar to the 2i 

one used in the case where three semi-infinite strings meet at a junction. The basic 

difference is that the strings are now finite, hence the incoming waves at junction B 

are the outgoing waves from junction A and vice versa. We can therefore write (for the 

outgoing waves of junction B) 

B /lU IB2 (Ai + 1)ai = b, "u(1 - ýj 1: pj (I - Ail) bý'ý, 
j 

k 

while the evolution of ýB is determined by i 

pj 

)A 
(i 

- CP (0) 

EM (I 
_ CB(t)) kk 

k 

where 

cB b' (VB b' (VB 
12233 

P2 1 
(A2 

- P3 )2, 

and cyclic permutations. At vertex A the procedure is similar, though the incoming 

I waves are now given by the ail. 
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Multiple Junctions 

When three semi-infinite strings meet at a junction, we can always arrange the coordi- 

nates oi such that they increase toward the junction on all three strings. However, this 

cannot be done generally, and it is essential to generalise the above equations for the 

case where there is a different orientation between the three strings at a junction. 

To do so we associate a further parameter with the 3 strings meeting at junction 

J. If 6ij = +1 then on string i, ai increases into the junction J. If, on the other hand, 

-I for string i then cri decreases into the junction. Note that if junctions J and 

are connected by string i then This sign difference introduces a slight 

complication in the governing equations. 

Let us work initially in the conformal gauge, without imposing the temporal gauge. 

This will enable us to derive the energy conservation equation directly from the action. 

The action for the whole string configuration can be written as 

IF 
- 

X12 -2 i 
j2 IIE)(6JISJ(, r) 

f dr f doi iii 

dr fj, ' f xý (7, sj (T)) 
- XP, zii 

(T) 

where J(i) implies that J takes on the values of the junctions at either end of string 

i (for semi-infinite strings it would take on just one value). The presence of the E) 

terms ensures contributions only for the allowed range of a values while the Lagrange 

multipliers f J, ' ensure that the strings are coincident at the junction locations X" PJ 

Varying the action with respect to Xj' for a single junction gives: 

Z fmj, i = 0, 
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where now i(J) implies that i takes on the indices of the strings that meet at junction 

J (in the J>2 case, different strings will meet at different junctions, while for J=2, 

the same three strings were meeting at both junctions). Then, varying the action with 

respect xi' for a single string yields, in general, ?i= xil", but at the junctions this 

becomes: 

tjj6ý (Xýl + ft, . 2% ij 

We now set the more restrictive gauge condition -yOO =1 (giving 7- =t and a as 

invariant length) while combining equations (3.18) and (3.19). This yields immediately 

the energy conservation expression as the M=0 equation: 

611j . Aj JAk (3.20) 2' 
piýi + 63 A3 i+ 

6k S, kj 0 

where i, j, k are the indices of the three strings meeting at junction J. Consider, for 

example, the simple case with three strings and two junctions, where we can always 

choose 6, j = 
621 = ý3j 

= +1. Now change the orientation of string 3. Then ý3 picks up 

a minus sign but so does 6j, so the energy conservation equation is unchanged. 3 

Another effect of the sign change relates to the identification of the waves along 

the string as "incoming" or "outgoing" from a junction. Away from any junction, the 

strings satisfy the usual wave equation 

: kj X 

with general solution 

(3.21) 

xi(t, 0, j) =1 [ai(ui) + bi(vi)]. (3.22) 2 

where ui = ori + t, vi = oi -t and the gauge conditions impose Jail = Jbil = 1. 

While in CKS ori always increased towards the junctions and the incoming waves were 
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always given by bi, in the multi-junction case outgoing waves at junction J become 

incoming waves at the junctions to which it is connected. 

In the new gauge and using the general solution of the wave equation in terms of 

right and left movers, the spatial equations become 

Defining 

and 

we can rewrite this as 

pjýjj [(l + Aj)aý + (I - ýj)b i 0. (3.23) 

+b'i(si - t) if ýj' = +1 
Zi = (3.24) 

-ai(si + t) if ýjj =-1. 

+aý(sj + t) if = +1 
Yj = (3.25) 

-b'i(si - t) if 6ij =-1. I 

E Pi [(l + 6ijýi)yi + (I - 6ijýi)zi] = 0. (3.26) 
ip) 

In addition the constraint that the three strings meet at the junction becomes: 

Aj = (1 + 6ijgij)Yi - (1 - 6ijAi)Zi. (3.27) 

Eliminating the outgoing waves Yj we find: 

(3.28) J)z 

Furthermore, eliminating X' from equations (3.27) and (3.28) we can solve for the 

unknown outgoing waves: 

Jýjj) -2 + 6i ýj )Yi = zi(i - 
6i 

. Ph(l - 6h'§h 
?2EJ 

J)Zh- (3.29) 
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Squaring these equations and using the gauge condition that lYil = lZil = 1, the 

equation for the time evolution of hij as a function of the incoming waves (along strings 

i, and k) at junction J becomes 

bjjýjj(t) =- 
mmi[l - CA01 (3.30) 

Ai Eh Mh I' - Chj(tT 

where h takes values (i, j, k) and the incoming waves are combined via: 

Cij(t) "": -- Zi ' Zký (3.31) 

plus cyclic permutations, and we have the definitions: p pi + pj + jik and Ali =- 

2 )2, 
plus cyclic permutations. Note that causality (JýCj I !ý 1) implies the Ai - 

(Aj - Pk 

triangle inequalities Mj > 0. 

3.2.2 Numerical Method 

Given an arbitrary initial configuration (xi (0, oj), ii (0, ori)), we aim to solve for the 

full loop evolution and hence (xi (t, oj), : ki (t, oj)) for all t>0. As we have already 

discussed, this calculation is often analytically intractable, except at early times. Thus, 

we will generally have to employ numerical methods. The numerical procedure is as 

follows: For every string i connecting two junctions, we work entirely with a' and b', 

reconstructing the closed string position x(t, aj) and velocity ic(t, oj) only a few times 

in the lifetime of the loop. The initial conditions fix aýj(orj) and bi(oj) between all the 

junctions. First we calculate the cý(t = 0), from which ýý(t = 0) is determined using zz 

equation (3-30). Then at time 6t, sij(6t), uiJ(6t) and vij(6t) can be calculated. The last IzI 

step is to extend the domain of definition of a'i(u) and b'i(v), which can be done with 

equation (3-29). The time loop then continues. 
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We will first study (both analytically and numerically) an initially static loop with 

three strings and two junctions, having a butterfly shape (see Fig. 3.1 ). Our simulation 

ends whenever the length of one string goes to zero, and hence when two junctions 

meet. The outcome of such a collision is not well understood for cosmic superstrings, 

and in any case is not included in the Nambu-Goto description described above. How- 

ever, the field theory simulations discussed in Section 3.3 can of course continue be- 

yond this time. 

3.3 Field Theory Approach 

While the Nambu-Goto formalism is quite easy to analyze numerically, it does not 

necessarily give a complete description of Y-junctions. For example, one might expect 

important interactions between the strings close to and at the junctions, and these are 

not included in the Nambu-Goto action. Thus, we also study the butterfly configuration 

using a field theory approach, which guarantees a more complete description of the 

physics of Y-junctions. We will use the U(I) x U(I) model of gauge strings [ 1171. This 

involves two Abelian Higgs models having Lagrangian density: 

Ic 
1 Fl,, F"' \1 (101 2 2)2 

44 

-I _F -- 
ý2 

(101 2 2)2 

4 1"J711" 4 

+K (101 2_ 
77 2) (JVý12 

_ V2). (3.32) 

The two Abelian Higgs models are only coupled via the potential term of equation 

(3.32). The model gives composite stable solutions (i. e. stable junctions) for a specific 

range of values of the parameter r,, which we discuss below. We follow the conventions 
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of [113,1171 and define the gauge covariant derivatives as: 

DmO = alO - ieA,, O, (3.33) 

'D,, O = o9jO - igB,, O, (3.34) 

while the anti-symmetric field strength tensors are given by: 

Fm,, = ajA, - aAm, (3.35) 

-Fmv = a,, B,, - aBti, (3.36) 

Finally, 77 and v are constants that set the energy-scales of the two halves of the model 

while Aj and r, are dimensionless coupling constants. 

For r, = 0, the two U(I)'s are uncoupled and each half of the model admits string 

solutions, which are characterised by the phase of 0 (V)) having an integer wind- 

ing 27rm (27m). When r. =ý 0 the U(I)'s are coupled and, as shown in [117], for 

0<K<1 /-'-x two parallel strings from each U(l) can bind to a composite string, 2V 
A1A2' 

reducing their energy. Hence one can have Y-junctions in this theory and their for- 

mation as a result of the collision of two infinite straight strings was studied in [ 1131. 

The numerical approach employed for the field-theory simulations follows [ 113], but 

with a very different set of initial conditions, namely the ones required for the butterfly 

configuration. These are described in Appendix A. 
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3.4 Results 

3.4.1 Analytic Nambu-Goto result for the butterfly configuration 

with two vertices 

Let us start by introducing the butterfly configuration with two junctions. The initial 

conditions are a straight string with tension /to (lying on the y axis) and two arcs of 

unit circles with equal tensions p, = P2 in the x-y plane. The strings are initially 

41 

Figure 3.1: The butterfly loop. 

A, 

static: this means ýj =0 or equivalently that the vector sum of tensions at the junction 

vanishes 

iij 0. (3.37) 

It is useful to introduce the angle -ý, and we find that for an initially static loop, it is 

cos -y =-R. I? = pol (2p 1) = r, where x is the distance of the wings' centres from 
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the straight string. We then have: 

xo (t = 0,0,0) = (0, oro, 0), lool < sin-y, 

xi(t = 0, a, ) = (-cos-ý + cos a,, sin o,,, O), I al I< -y, 

X2 (t ý 07 62) :: (COS 'Y - COS U2 , sin 0'2 1 
0) 

11 Cr2l < ^Y - (3.38) 

Following our conventions, we label the lower vertex as A and the upper one as B, 

so that ori increases towards junction B for all strings. Because of symmetry, it is 

sufficient to study one junction, say B. At t=0 we find 

11 ao =bo= (0,1,0), 

a, = b'l = (- sin al, cos or,, 

a2 =b2= (sin 0'2 ý COS Gr2 , 
0) (3.39) 

The energy conservation equation (3.13) implies that RAB = 0 -ABI and hence after 

integration we have: 

B (t) 
1 

(SB (t) SO = sin R- "Y) (3.40) 

Thus, we only need to determine 01(t). We have cl == C2 = COS(SBI - t) and co 

2(SB 
- t) -I and, letting A= t_ SB and using equation (3.30), we find 2 cos 11 

1-R 2 

1+ RcosA* 

Integrating the above equation, we get 

t sin 2 -y =- cos -y sin A+A- cos -y sin -y + -y. (3.42) 

Together with the definition of A and equation (3.40), we now have t, 8B and SB 01 

specified as functions of the variable A. 
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It is useful to note that, since the string 0 is simply stationary and on the y axis for 

all times, then the above t=0 result is valid for all t and the ordinarily difficult to 

handle emitted waves are simply the waves set by the initial conditions. 

3.4.2 Direct comparison of field theory and Nambu-Goto strings 

We wish to compare the field-theory and Nambu-Goto evolution of two initial loop 

configurations, which are variants of the butterfly loop. More specifically, we will 

consider two closely related but different initial conditions (see Fig. 3.2). The first is 

ýtl fli 

Figure 3.2: An example of a loop configuration with multiple junctions: the butterfly configu- 
ration with a central string of tension po and two arc strings of tension pl. The basic butterfly 

configuration has just two junctions, but we find that under certain situations these can decompose, 

as indicated by the magnified region, with a single junction splitting into three junctions that then 

continue to separate. 

the butterfly configuration studied above, consisting of three strings and two junctions. 

For both the Nambu-Goto and field-theory simulations, we use circular arcs with unit 

radius. For the field-theory case, we follow the standard parameter choice 2=A, = 

A2 = 2e 2= 2g2 and 0<K<1 in order for bound-states and Y-junctions to exist. We 

additionally set q=v so that there is complete symmetry between the two halves of 

the model. 

For the field-theory simulations, we consider two cases: 
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* Case 1: a (1,0) and a (0,1) string forming the "wings", with a (1,1) bound state 

string as the central segment. 

* Case 2: a (1, - 1) and a (1,1) string form the "wings", so that a (2,0) bound 

state string forms the central segment (Fig. 3.3). 

Figure 3.3: The 0 and ip fluxes present in the butterfly configuration for field theory simulations 
of case 2: (1,1) + (1, - 1) --4 (2,0). 

In the Nambu-Goto simulations, we defined the tension of the wings to be IL, and 

the tension of the central straight segment to be po. This choice greatly simplifies 

matters, especially when it comes to constructing initially static configurations of loops 

with junctions, which is a difficult task for both the Nambu-Goto and the field theory 

approach. When it comes to long straight strings which collide to form a junction, 

the situation is much simpler, and the study of such collisions of strings with equal 

and unequal tensions has shown good agreement between the field theory and CKS 

dynamics after junction formation [ 113]. In the field theory simulations, the string 

tensions are calculated [ 117] for a given coupling K and cannot be set by hand. Thus, 

in order to compare Nambu-Goto and field theory simulations, we first calculate the 

tensions for the field theory, and then we use the results as inputs in the Nambu-Goto 

code. Table 3.1 gives the string tensions for infinite straight strings (calculated via the 
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method of [ 1171) for r, = 0.8 and 0.95. From the definition of R=", the relevant 21il 

numerical values are also given in table 3.1 and we see that smaller R corresponds to 

more stable junction. In case 1, R is never very small since most of the energy stems 

from the covariant derivative term, which cannot be greatly reduced even by increasing 

K to its maximum value. A large binding energy exists in case 2 since it involves the 

cancellation of fluxes. Indeed, we see that for n=0.95, R=0.56, meaning that a 

(2,0) string is just slightly heavier than a (1, ± 1) string. 

K 0.80 0.95 
ti(,, O)/27r? 12 0.864 0.728 
it(,,, )/2, rn2 1.452 1.133 
IL(2, O) / 27rri 2 1.622 1.271 

R[(1,0) + (0,1) --+ (1,1)1 0.840 0.778 
R[(1,1) + (1, -1) ---> (2,0)] 0.559 0.561 

Table 3.1: The energy per unit length and the corresponding R values for K=0.8 and K=0.95. 

We start by presenting our Nambu-Goto results for the initial condition given by 

case I with K=0.8 (Fig. 3.4 left) and for the case of R=0.5, hence po = p, (Fig. 3.4 

right). Before discussing these results, it is useful to recall the initially static circular 

Narnbu-Goto loop of unit radius in Minkowski space-time (see Section 2.3.2). As we 

know, such a loop collapses to a point after a time t= 1ý - this is also the collapse 2 

time for those regions of the circular arcs on the butterfly wings that remain causally 

disconnected from the junctions. In the buttefly case, the wings are parts of unit circles 

and their length is determined by the initial conditions as 2(7r - cos-'(R)). Now, the 

wave equation tells us that information travels along the strings at the speed of light. 

This means that, by the collapse time, information about the presence of the junction 

will have travelled a length of7r/2 along the arcs. Hence, a length 7-2 cos- I (R) will 

remain unaffected by the presence of the junction, i. e. it will behave like a circular 



Evolution and Stability of cosmic string loops with Y-junctions 

t=0.53 t=0.8 

(::: e 
(D 

t=1.12 t=1.57 

<=>I- -: >1 

80 

Figure 3.41: Results using the Nambu-Goto method with tensions set to match afield theory (1,0)+ 
(0,1) - (1,1) case with K=0.8 (left plot), and all tensions equal (right plot). The later case 
corresponds to R=0.5 and includes a magnified region showing a kink. 

loop. We are therefore expecting that a fraction of the arcs will collapse to a point, 

reaching the speed of light, and yield a sharp kink in the string. Indeed, in the right 

panel of Fig. 3.4 the collapse time is t=1.57 ýý 7r/2 and a kink is formed when parts 

of the wings instantaneously collapse to a point. 

A direct comparison of field theory and Nambu-Goto results for the case I with 

0.8 is shown in Fig. 3.5, while that for case 2 with K=0.95 is shown in Fig. 3.6. 

As we can immediately see, the agreement is excellent. This allows us to extend the 

results for straight strings with kinks to strings with curvature. 

In order to perforrn a more detailed comparison, we plot in Fig. 3.7 the length of 

the central straight stnng as a function of time for the Nambu-Goto and field theory 

simulations. In the NG case, the length is just the difference between so (t) at the two 

junctions and, as we showed earlier, it can also be obtained analytically. Our results 

confirm that the agreement is excellent until the collapse time. In case 2 we observe 
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an initial departure, which is basically due to the (0,1) string trying to follow a less 

kinked route across the junction and therefore moving outwards from it, but then going 

too far and so undergoing a few low-level oscillations. 

Figure 3.5: The evolution of the butterfly configuration (1,0) + (0,1) ý (1,1) with K=0.8, 
shown at equally spaced time intervals: t=0.000,0.267,0.533,0.800,1.067, with larger configu- 
rations corresponding to earlier times. The field theory solution is shown as a bitmap, representing 
the cumulative projection of its energy density onto the plane, while the Nambu-Goto solution is 
shown as a solid black line. 

Figure 3.6: As in Fig. 3.5 but for K=0.95 and (1,1) + (1, - 1) - (2,0) . 
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Figure 3.7: The length of the central bridge string as a function of time for the analytic Nambu- 
Goto solution (thin), the numerical Nambu-Goto results (thick, dashed) and the field theoretic 
results (crosses). The collection of data with lower bridge lengths is for the (1,0) + (0,1) - (1,1) 
case with r. = 0.8 while higher bridge values correspond to (1,1) + (1, - 1) , (2,0) with K 
0.95. 

82 
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3.4.3 Stability of Y-junctions 

When the initial butterfly configuration consists of the case 2 scenario of (1,1) 

(1, -1) --+ (2,0), the field theory simulations show that the Y-junction can decom- 

pose, as illustrated in Fig. 3.8. 

(1, I) 
'T'ýftwmqol 
ý tj 1 

(0,1) 
P2 

p 
(1,0) 

P2 

Ay 

(2,0) 'j, go 

Figure 3.8: The decomposition of a (1,1) + (1, - (2,0) junction into three separate Y- 
junctions. 

Let us first try to explain why this decomposition occurs. As we know, the central 

(2,0) string is a bound state of a (1.1) and a (1, - 1) string. However, it can also 

be constructed from two (L 0) strings. Whether this decomposition will take place 

depends on the parameters of our U(I)xU(I) system. For our parameter choice K= 

0.8 and r, = 0.95, the ratio R "0 is approximately constant (see table 3.1, R 2pl 

0.56). On the other hand, the ratio IZ =" (where 112 is defined to be the tension of 2P2 

the (1,0) string) decreases from 0.86 to 0.78 with increasing K across that range. This 

means that, as K increases, P2 becomes larger relative to both po and p I, which stay in 

proportion to each other (as the R ratio stays constant). Hence, for the lower value of 

) and, as we see in Fig. 3.9, the K == 0.8 this decomposition involves a small ji, - 
(1, ()) 
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strings are formed and then grow in the time-scale of the simulation. 

Figure 3.9: The decomposition of the Y-junction as seen in the field theory simulations for (1,1) 
(1, - 1) - (2.0) with K=0.8. 

The results for K=0.95 have already been presented in Fig. 3.6. In that case, the 

(1,0) strings do again fon-n - the difference is that they do not grow, so the loop's 

evolution is identical to the one of the original butterfly loop. As we can see from 

Fig. 3.9, the final state for the K=0.8 case is very different: the central bridge has 

decomposed and peeled open. 

The question is if we can reproduce this phenomenon using the Nambu-Goto simu- 

lations - the answer is yes, but there is an important constraint: there is no way to get 

the decomposition dynamically using the NG approach. We have to start with appro- 

priate initial conditions. This is the second set of initial conditions shown in Fig. 3.2, 

that is adding an initial perturbation consisting of three strings with tension p-2, which 
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are all taken to be arcs of circles of size h, effectively the distance between the junc- 

tions (note that the free parameter h does not affect the general physical behaviour, if 

initially small - we will therefore use h=0.01). The Nambu-Goto evolution cor- 

responding to the K=0.8 field theory case 2 is shown in Fig. 3.10 (note that the 

three-string perturbation is so small at t=0 that it cannot be resolved by eye). How- 

ever, the snapshot at t=0.5 clearly shows the perturbation which is growing until the 

end of the simulation, where the central bridge collapses. In Fig. 3.11 we present a 
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Figure 3.10: Nambu-Goto evolution of the perturbed butterfly loop corresponding to the K=0.8 
field theory case of Fig. 3.9, using a perturbation parameter h=0.01 - the instability grows and 
the loop is unstable. 
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0.5 

0 

-0.5 

-1 

direct comparison between our Nambu-Goto and field theory results for the unstable 

configuration. The agreement is again very good throughout the evolution, and we 

can explain the small departures we see using very simple arguments. At very small 

times, we see that the field theory perturbation grows more quickly than the Nambu- 

0.50 
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Figure 3.11: Comparison between Nambu-Goto and field theoretic results for t--O, 0.0667.0.1333, 
and 1.3 1. Field theory results shown as a bitmap are from simulations with K=0.8 while the ten- 
sions in the Nambu-Goto case (solid black line) are set to match those derived from corresponding 
theoretic calculations for straight, infinite strings. [h=0.01 I 

Goto one. This happens because in the Nambu-Goto case we start with all junctions 

initially static, while in the field theory case the dynamical break-up happens very fast. 

Additionally, in the Nambu-Goto case we use circular arcs' to construct the initial 

perturbation, which is not expected to be a true represantion of the actual situation. 

However, with this choice we manage to model the physical string-junction system us- 

ing the Nambu-Goto approach, which cannot account for junction formation without 

additional input that min-&s the field-theory case just after string collision has occured. 

At the very end of the simulations (close to the collapse time) we also see a small dis- 

agreement. The field theory loop decays quicker and radiates strongly, which is of 

course expected, since the Nambu-Goto approach cannot account for the interactions 

between the strings. A similar Nambu-Goto evolution for K=0.95 shows that the 

'This choice is not unique. For example. we can also construct an initially static perturbation using 

straight lines. 
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(1,1) + (1, 
-1) --4 (2,0) junction is stable to the breakup of junctions, again agreeing 

with the results from field theory. 

The approximate matching of the critical value for n at which the growing decom- 

position occurs can be considered a success for the less computationally demanding 

Nambu-Goto approach. As we will show below, it also allows us to make a prediction 

based purely on the Nambu-Goto results as to when a junction will and will not be 

unstable to decomposition into multiple junctions. 

3.4.4 Stability of Y-junctions in the Nambu-Goto approach 

We will now study analytically the stability of the initial perturbation for small times. 

We will work with junction A, in Fig. 3.8, however the same analysis can be applied 

to any other junction. Let us start by introducing the initial equilibrium conditions for 

junction A,, which are defined in terms of the tensions po, p, and P2. The position of 

junction A, in or-space is 

A 
7r - cos 

00 
- h) 

2p, 

A S2 1 (0) = 71 =T- 'y - Ct, 

Al 7r 
S3 «» =P= ly - ce -- (3.43) 

where a= cos' '"' and h is the distance between junction A, (or AD and junction 292 

A3 in Fig. 3.8. As we will demonstrate, the behaviour of the perturbation depends on 

whether the angle 

7r 

-_ Cos-' cos-' (R - h) 
2 (3.44) 

is positive or negative. As we will show below, for a given pair of tensions ito and 

there is a critical tension P2 ý Perib for a small fixed perturbation size h, for which 
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0. Above and below this critical limit, we have two distinct regimes: one in which 

the perturbation grows, and one in which it collapses. We will now consider the two 

cases separately (note that we drop the index A, for simplicity). 

Case I: p<0 

The initial configuration comprises of three strings with tensions pi, P2 and 

b'l (t = 0, orl) = (sin or,, cos al, 

b12(t ý 01 0'2) -ý 
(_ Sin 0'21 COS 0'21 0), 

b13 (t 
--*"": 

0) Or3) : """: (- COS Oý3 , sin 0'3 1 
0) 

- (3.45) 

At a later time t the incoming waves at junction A are 

W, (t, si (t)) = (sin (8 1W-0, cos (8 1 (t) - t), 0), 

b12 (t 
1 82 M) 

= (- sin (S2 (t) - t) 
i COS (82 (t) 

- t) 
, 

b13(t, S3(t» (-COS(S3(t)- t), sin(S3 (t) 
- t), 0) 

- 

(3.46) 

Using a Taylor expansion around t=0 for si we get si(t) = si(O)+Ai t2+... (remember 

ýj =0 initially), and using the relations between the angles we find (to first order in 

ei = cos (2a + 2t), 

C2 ý- COS a, 

C3 ý- cos (a + 2t). (3.47) 

Using equation (3.30), linearising in t and with R= cos a= "I (which is always less 292 

than unity due to the triangle inequalities) we find 

= 
(2R - I) 

t. 1- 7Z2 (3.48) 
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Case 11: > 

The initial conditions can be written as 

b'l (t = 0, ori) = (sin or,, cos or,, 0) 1 

bl 2 
(t zý 0 

10'2) --'2 

bl3 (t == 0, os) = 

(- sinOý2 , 
COS t72 1 

0) 
1 

(- COS 63 ,- sin U3 ý 
0) 

- 

Following the same procedure we find 

2, 
ý7j - jZ2 

A, = -83 = -- 1+ 7z 
t. 

(3.49) 

(3.50) 

Having the analytic expressions for 9i for both cases, we can use equations (3.23) 

and (3.27) to obtain the corresponding expression for ýC: 

1: pj (1 - Aj) bj. 
Aj 

In order to study the motion of the vertex in real space, we define the angle 

tan«p) = (3.52) ( "ýy )- 
Since the expression for this angle is very complicated, one can take the limit in which 

the perturbation size h tends to zero, and also consider small deviations from the p=0 

case, either with positive or negative p. The critical tensiony2which leads to p=0 is 

obtained by setting (3.44) to zero and solving forA2, resulting in 

Pcrit --,: - 
Al (3.53) 

2 cos (cos- I (R - h) - 7r/2) 

Therefore, in the limit h --+ 0 and A2 = pit equation (3.5 1) reduces to 

2+ Vl-j-ý R -1+3R R 
.y+-- -j- t (3.54) 

X., + R2 R2(1 +v/T - R2- 2R2V _R2) 
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for p<0, and 

2 R2 2+R-2 R2 

X. -'R 2R4 e (3.55) 

for p>0. Notice that, as one should expect, in the critical tension limit IZ drops out 

from the expressions, and only R= "0 appears. For both cases (p >0 and < 2pi 

)ý,, is initially positive, so it is the y direction which changes. For p>0, the vertex A, 

moves with an initial angle of 

ir + tan-' 
(VT 

R 
R2 

(3.56) 

in the critical linlit G12 = pit), and bigger angles for A2 > p, it; therefore the per- 

turbation does not grow. In contrast, for p<0, the vertex A, moves away from the 

y-axis, with an initial angle of 

7r - tan-' 
(R 

(3.57) 1+ vý_l _-R2 

which is practically along the butterfly wing. In this case, the junctions separate ini- 

tially from each other and the butterfly configuration is unstable. 

It is insightful to visualise our results by plotting the evolution of the angle ý6 

(Fig. 3.12). The main result is the discontinuity in 0 when going from p>0 to 

< 0. Negative p corresponds to the arc AjA2 in Fig. 3.8 going from concave, as 

shown, to convex. Equivalently, the center of the circle from which the arc is formed 

moves from below the arc, as in the figure, to above it. This shows how the evolution 

of the splitting of the Y-junction in the original butterfly depends mainly on the initial 

local curvature of the strings involved. When p>0 (see Fig. 3.8), strings 2 and 3 

are "competing"in o-space while the butterfly wing (string 1) is not contributing much 

(note that for small times ýj =0 to first order in t). After some time and in real space, 
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Figure 3.12: Numerical (solid lines) and analytic (dashed red lines) evolution of the angle for 
junction Al, for two cases with p>0 and two with p<0; all close to the critical value p=0 
(blue lines are closer to the critical value). For p<0 (bottom curves) the Y-junction is said to 
be unstable, since vertex A moves along the butterfly wing until it reaches 180', and then it starts 
moving towards the centre of the big arc, as shown in Fig. 3.10. For p>0 (top curves), vertex 
A moves downwards, leading to a stable Y-junction. The analytic approximations are calculated 
using R=0.561 and equations (3.54) and (3.55), which are linear truncations (in time), and only 

ýAi (t) hold for small times since 111in - h. We choose h=0.01. 

the vertex A, moves downwards with an initial angle of 4ý ý: 7r + tan-'(v"I --R21R) 

(with the equality in the limit of p- 0) from the x-axis, as can be seen in Fig. 3.12. In 

this case the perturbation does not grow and, for a tension P2 big enough, it may even 

collapse faster than the central bridge does. However, for p<0 the local curvature is 

such that the strings of the triangular perturbation grow in o-space. In real space, ver- 

tex A, initially moves rapidly away from the y-axis and almost along the butterfly wing 

(string 1), which corresponds to an initial angle of ýo :! ý 7r - tan-'(R/(l - v/-I --R2) 

from the x-axis. In figures 3.10 and 3.12, one can see this initial evolution. Later in 

the evolution (when the angle reaches 7r), the segment A, A2 changes from convex to 

concave, and the vertex A, evolves like any other point on the big arc segment, hence 

moving towards the centre of the butterfly wing, as one can see in the last two plots of 

Fig. 3.10. Therefore, for p<0 the perturbation grows for some time (which depends 
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on how negative p initially is), implying the original butterfly Y-junction is unstable, 

leading to the criterion for stability based on simply obtaining the value for p. 

3.5 Discussion 

In this chapter, we have extended previous studies on the dynamics of cosmic strings 

to include the description of the situations one expects in cosmic superstring networks, 

namely, the formation of junctions when strings of different kind form bound states. 

We concentrated on a specific configuration and we centered our attention on the 

comparison of Nambu-Goto and field theory numerical simulations. The advantage 

of the Nambu-Goto, approach is its simplicity, both analytical and numerical. The re- 

duction in the degrees of freedom compared to field theory simulations allows for nu- 

merical computations with larger dynamic range. However, we know that the Nambu- 

Goto description breaks down when two strings cross, loops contract to a point, or 

when junctions collide. This is well established for the case of usual Abelian cos- 

mic strings, but algorithms have been developed (using feedback from the field theory 

results) which nevertheless allow the Nambu-Goto approach to be used to model the 

evolution of a cosmic string network. Establishing similar confidence for the case of 

cosmic strings with junctions is of crucial importance. In this work, we have been able 

to explore some aspects of the relationship between the two approaches. 

We saw that, when it comes to the general dynamics, the Nambu-Goto action mod- 

els very well the evolution of a configuration of strings with junctions. However, the 

field theory approach unravelled a new phenomenon, a new instability that could not 

be possibly seen using solely the Nambu-Goto method. We saw that a junction can in 
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fact break into three new junctions, hence the composite string unzips, changing com- 

pletely the dynamics and evolution of the loop. Studying our field theory model, we 

realized that for weakly-bound composites the junctions can cause the strings to unzip, 

causing the aforementioned instability. We also discovered that we can in fact model 

this using Nambu-Goto dynamics, provided that we use appropriate initial conditions, 

i. e. introducing a perturbation consisting of three initially tiny strings with equal ten- 

sions and letting the loop evolve. Remarkably, we could then predict when a junction 

would unzip or not, depending on a single parameter, the angle p. With this done the 

agreement between the two methods is remarkably good. 

Our chosen configuration is not, of course, representative of a cosmological net- 

work of cosmic superstrings. The key point here is that, given the feedback from field 

theory, we were able to understand and model the instability using the Nambu-Goto 

method. As we have already mentioned, the kinematic constraints derived using the 

NG approach have been checked with field theory results and the agreement is (gener- 

ally) good [112,113,144,145]. We therefore believe it will again be possible to per- 

form large-scale cosmological simulations of cosmic superstrings using the modified 

Nambu-Goto approach, in the same manner that it is possible to perform simulations 

of ordinary strings using the Nambu-Goto equations. 



Chapter 4 

Observational Signatures of Cosmic 

St 0 

nngs 

4.1 Introduction 

In this chapter, we will attempt to review the most important observational conse- 

quences of cosmic strings [5,61. We concentrate on strings whose interactions are 

primarily gravitational, determined by the value of GIL. We will present results and 

constraints from lensing, gravitational radiation, CMB and pulsar timing. 

When possible, we will extrapolate these results to cosmic superstrings. However, 

most of the work on the subject of cosmic superstrings has been more qualitative than 

quantitative, since the rich features of cosmic superstring networks cannot be fully im- 

plemented in the calculations. Recently, however, more systematic efforts to quantify 

the cosmological effects of cosmic superstrings have appeared in the literature - we 

will highlight them where appropriate. 
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4.2 Lensing 

95 

Let us start by studying the gravitational properties of a straight string lying along the 

z-axis [5]. The Poisson equation for the Newtonian gravitational potential 0 is 

V20 = 47rG(p + p., + py + p, ). (4.1) 

The string under consideration has an equation of state p, = -p, p.,, = py = 0. This 

gives V20=0. As a result, straight strings do not exert a gravitational force on any 

surrounding matter. This unusual property is a result of the string's tension, which acts 

as a negative gravitational source cancelling out the effect of the string's mass. 

Taking the zero-width approximation and assuming that the gravitational field of 

the string is sufficiently weak, we can linearise the Einstein equations and derive the 

space-time metric of a straight static string. We find [36] 

ds' = dt2 - 
dZ2 

- dr 2-r2 d02 (4.2) 

in cylindrical coordinates (r, 0, z). The metric has a Minkowskian form, which means 

that the spatial geometry around the string is locally Euclidean. However, this is not 

true globally, since the angle 0 does not vary in the full range 0<0< 27r, but in the 

smaller range 

0<0< 27r(l - 4GM). (4.3) 

The geometry is actually conical, with a global deficit angle 

A= 8irGp. (4.4) 

For a GUT string, we expect that Gp is of order 10-6 _ 10-7 
, and the deficit angle is 

few seconds of arc. 
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The string acts as a cylindrical lens (Fig. 4.1). If a light source (e. g. a galaxy) is 

behind it, the result of the string's conical geometry is to create double images with a 

typical angular separation of order A, similar magnitude, and no distortion 1146,1471. 

This feature is quite unique, as most classical lenses (ordinary compact matter) produce 

odd numbers of images with distortion. The presice formula for the angular separation 

Jce of the images is[ 146,147] 

6a = 
D1, 

A sin 0. 
Ds (4.5) 

where DI, is the normal distance of the source from the lens (the cosmic string), D, is 

the normal distance between the source and the observer, and 0 is the angle between 

the line of sight and the tangent to the string. Furthermore, observing in the vicinity of 

:> 
cs: ý: ý >- 

Figure 4.1: The lensing of a distant light source by a cosmic string (CS). 

a lensing effect due to a cosmic string should reveal an array of additional lensed pairs 

[1481 

our previous analysis is only valid for a straight, static string. In fact, as we have 

already discussed, there is a great deal of small scale structure (wiggliness) on the 

strings. An observer will not be able to resolve the small scale structure, but its effect 

can be quantified by an effective energy per unit length, U, which is larger than p. On 

the contrary, the effective tension T is reduced. Overall, we will have a UT = p'2 

equation of state [ 149,150]. Hence, there is a non-zero gravitational acceleration 

towards the string, proportional to U-T. In that case, the expression for the angular 
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separation becomes [ 1511 

6a = 
DI. 

87rGU sin 0. (4.6) T. - 

For straight strings with velocity v, the corresponding formula is [ 125,1261 

DI, 
ba = 81rGiiV/? (l+ fi. V)2 CI)s 20 (4.7) D 

where fi is the unit vector along the line of sight. The lensing effect of a string is 

enhanced by its motion. 

An observation suspected to be a signature of cosmic string lensing was reported in 

[ 1521. Unfortunately, further investigation proved that the observed object was actually 

a pair of interacting giant elliptical galaxies [ 124]. A recent paper 11531 investigated 

possible cosmic-string lensing candidates using imaging surveys. Their non-detection 

placed un upper limit on the cosmic string tension, Gli < 6.5.10-7 

Other suggested ways to detect cosmic strings are via microlensing or weak lensing. 

Microlensing occurs when the lens and the source are in relative motion. This leads 

to a measurable change of the apparent luminosity of the source over time, making 

microlensing a very useful method of detection when the image splitting is too small 

for astronomical measurements to resolve (i. e. when the lens mass is too low). A 

recent study [ 1271 investigated the possibility of detecting gravitational microlensing 

of distant quasars by cosmic strings. Their calculation showed that the expected event 

rate from long strings is very small, and the lensing time-scale too long. Furthermore, 

the small loops contributions do not seem to enhance the detectability. Even when 

the more optimistic estimations are made, CMB constraints significantly reduce the 

available parameter space. The weak lensing properties of cosmic strings were recently 

studied in 1154]. The authors found that no signal exists for straight strings, and a 
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small, difficult to detect signal is produced from strings with small scale- structure. 

Finally, the lensing effects due to strings binding together to form Y-shaped junc- 

tions were studied in [126,1551. In the case of a static junction of three coplanar 

strings, it was shown that an observer looking at a light source located behind the plane 

of the strings will see three identical images. In fact, the force balance condition at the 

junction, E fli = 0, leads to a similar balance condition for the angular separations, 

E 6a, = 0. allowing for the relative tensions of the strings to be determined. 

4.3 Gravitational Radiation 

4.3.1 The weak-field approximation 

We will briefly review the weak-field treatment of a gravitating cosmic string [5,491. 

For strings with energy scale q< mpl, the weak-field treatment is generally applica- 

ble, excluding the small regions around cusps and kinks. 

Using the weak-field approximation, the spacetime metric can be written as a small 

perturbation away from flat Minkowski space. That is 

gA, = 17,,, + hj, I ho,, < 11. (4.8) 

Linearizing in h,,, and using the harmonic gauge conditions 

at, 
(bu 

- 

L 

the Einstein equations take the form 

Ilhil, = -167rGSI,,, (4.9) 
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with 1: 1 -= 
a, 2 - V' the flat space d'Alembertian and S., 

The standard retarded solution to equation (4.9) is 

hjLv = -4G d 3XI, 
I 

ix 
- x1i (4.10) 

where t' is the retarded time t- Ix - x'j. This means that the source points (tl, xl) 

cover all points on the past light cone of the field point (t, x) for which S,,, :ý0 [491. 

Using equation (2.14) for the string's energy momentum tensor we find 158] 

hmv (t, x) =- 4GM 1 
Ix - r(, r, o, )l 

where F,, v = : ili, - x, 'ux'v +, qj,, x"xo,, n= (x - r(7-, or))/Ix - r(-r, a)l is the unit 

vector from the source point r to the field point x and7- =t- Ix 
- r(7-, (7) 1. If the 

source is a periodic loop with period T and length L, the time average of h,,,, over one 

oscillation is [581 

00 
(h, uv (x» 4GM fTIL Fgv(I»'0') 

-dodr. ix 
- r(7, o, ) i 

Note that equation (4.11) diverges if the string contains a cusp, where lil = 1, so that 

a cusp emits a thin pulse of gravitational energy in the direction of its motion. We will 

futher analyse the gravitational bursts from cusps (and kinks) in Section 4.3.4. Also 

note that, in most cases, the approximation n= x/lxl, r= jxj is used, since we are 

interested in the energy transmitted at large distances from the source. 

4.3.2 Gravitational Radiation from cosmic string loops 

We have already discussed that gravitational wave emission is the main energy loss 

mechanism for an oscillating macroscopic string loop. The gravitational radiation 
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power for an isolated string loop of length L can be estimated using the quadrapole 

formula [ 151 

P oc G 
(d )1 

(4.13) 

where D is the quadrupole moment. With D, ML 2, where M- jiL is the mass of 

the loop, and w- L- I the characteristic frequency, we find 

rGp 2, 
(4.14) 

where IF, the radiative efficiency coefficient, is a constant to be determined. Note that 

the power is independent of the size L of the loop. Then, the lifetime of the loop is 

given by 

ML 
T"-' 

P FG (4.15) 

However, the quadrupole formula cannot be trusted for relativistic sources, so we need 

to use the full relativistic fonnalism [5,6]. 

In the weak-field approximation, the power from an isolated periodic source can be 

calculated as [151 

p 
dQd ' P=k=Ep'=I: 

f 
dQ 

nn 

where 

dP Gw 21 
n Tt*ý (Wn, k)T"'(Wn, k) -- 

(Wn5 k) 12 

dQ 7r 2 
'T' 

is the radiation power per unit solid angle at frequency Wn = 27rn/T in the k-direction, 

IkI = w, T the oscillation period and 

f, T0 T" (w�, k) 
iT 

dte 
iln' 

1 

d3Xe-ik*'TI" (x, t) 
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is the Fourier transform of the energy-momentum tensor. 

The first studies of the radiated power from simple loops using the above formalism 

were performed in [831 and [611. In [831, the authors studied the gravitational radiation 

emission from the Kibble-Turok family of loop solutions, while [611 was devoted to 

the Burden solutions (see Section 2.3.2), for which the angular distribution of radiated 

power dP,, /dQ can be expressed analytically in terms of Besse] functions. Both studies 

found F- 100. A similar study, but for the cuspless kinked loops 1591, found I' , 

50 - 100. Note that, in some special cases, the power diverges due to the presence of 

persistent cusps. 

A more thorough numerical investigation was performed in [ 156]. The authors stud- 

ied the gravitational radiation power from cosmic string loops produced in a flat space 

numerical simulation of loop fragmentation. The gravitational radiation was found to 

be strongly peaked in the region r= 40 - 60. A numerical treatment in an expanding 

universe [741 produced very sin-fflar results, with (F) ,: zý 65. In Fig. 4.2 we present our 
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3 
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Figure 4.2: dP,, IdSl in the equatorial plane for the planar circular loop. The radiation falls slowly 
with increasing mode number n (c. f. with Fig. 3 in [741). 



Observational Signatures of Cosmic Strings 102 

results for the gravitational emission dP,, IdQ in the equatorial plane direction from an 

idealised' planar circular loop using a simple numerical algorithm. Our discrete cir- 

cular loop consists of 1000 points, and the numerical result is indistinguishable from 

the analytics (c. f. with Fig. 3 in [741). Finally, analytical and numerical work in 

[158,159,160] improved the previous results and showed the possible existence of a 

lower bound in the radiative efficiency of cosmic string loops, ý: -- 39 [1601. 

4.3.3 Gravitational Radiation from wiggly strings 

Using the weak field formalism, we can also estimate the power radiated from wiggly 

strings. In [161], the gravitational radiation from a helical string was studied. Letting 

+ t, v= or - t, the string's trajectory has the form xm = [t, ý' (a + b)], with 

a(u) cos(QU), sin(Qu), Vi --c2u] 

b(v) cos(Qv), - sin(Qv), V-1 
- Ov (4.20) 

IQ 
Q11 

where Q is the breathing frequency of the helix and the parameter c is its winding 

number per unit length (0 <c< 1). In the limit 0, the tra ectory is just a straight i 

line across the z-axis. The energy-momentum tensor for this trajectory is periodic in 

time with period 27rQ-l, and also periodic in z with period 27rQ- I v/1 
--, 

E2. Due to 

the symmetry of the problem, it is convenient to study the radiated power through a 

cylinder centered on the source and having a radius much larger than the size of the 

source. Then, the expression for the radiated power per unit angle per unit length 

'As we have already mentioned, a realistic circular loop would collapse to form a black hole 160]. 

For the calculation of the radiated power per unit solid angle in this situation, see [ 1571. 
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becomes f 1611 

103 

dP 1v 
12 

dzdO = 2G w 
IT, 

-,, (wn, k)T"'(Wn, k) -2 Tv GA)n, k) 
uj k,, 

where w= IkI, k= (k-L, k, ) and the energy flux is calculated in the k_L direction. 

Since there is no explicit dependence on the angle 0, the total power per unit length 

in the z-direction is found by multiplying the RHS of equation (4.21) with 27r. The 

energy per unit length k along the z-axis can be written as [ 1611 

A 

VFI --fl (4.22) 

For this reason, the radiated power diverges as f --- * 1. On the other hand, in the limit 

e --+ 0 the power vanishes, since the trajectory reduces to that of a static straight string. 

In [1611, the radiated power as a function of E was calculated numerically, finding 

an increasing power with increasing c. The radiated power for a given f: decreases 

with increasing frequency w, while the contribution from odd frequencies becomes 

less important with increasing c. For small c, almost all the power is emitted at the 

lowest even mode. Finally, the gravitational damping of the oscillations was found to 

be efficient for large-amplitude waves (f , 1). 

This work was later generalised in [162,1631. The general case can be treated as 

a straight string with small-amplitude transverse perturbations. The most important 

result is that both right- and left-moving modes are required to produce gravitational 

radiation. If all the travelling waves on the string move along one direction, the radia- 

tion power vanishes. 

it is interesting to note that, in a recent treatment of GW emission from strings at 

a stationary junction [ 1641, it was found that a purely left-moving wave, generated on 

one string leg, is partly reflected and transferred from the junction, resulting in the 
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necessary mixing of left- and right-moving modes. 

4.3.4 Gravitational Radiation from cusps and kinks 

The gravitational wave bursts (GWB) from cosmic string cusps and kinks were stud- 

ied in detail in 1128,1651. The scope of these papers was to assess whether conven- 

tional cosmic strings could be detectable from gravitational wave detectors such as 

LIGO/Advanced LIGO and LISA. 

The authors of [ 128,165] first calculate the logarithmic cusp waveform for a closed 

loop of length L: 

GML 
h` (f, n) -ý -(I f, -Lý /, 3 0 (0 .. (f) - 0). (4.23) 

Here, f=w,, 12g = 2m/L is the frequency, E)(x) is the step function (1 if x>0; 

0 if x< 0), 0 is the angle between the wave vector n and the cusp vector n", and 

0,,, ý-- (2 /L If 1)1/3 gives the opening angle of the cone where the GWB from the cusp 

is concentrated. As we can see, there is a very slow decay with the mode number 

, rnl-1/3. The analogous calculation for a kink revealed a IMI-2/3 dependence, so we 

expect stronger signals from cusps. 

In order to sum the individual contributions from a network of cosmic string loops 

in the Universe, the authors of [128,1651 consider the one-scale model, where the 

typical length and number density of loops are given by 

L -at, nL(t) , a-It-3, (4.24) 

where a- IFGp, with F- 50. The number of cusp events per unit spacetime volume 
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is then given by 

cnL 
M-' 

Ce-2t-4 v(t) - TT- - 2cP (4.25) 
L 

where P is the intercommuting probability (equal to unity for the usual cosmic strings 

in consideration), while c is the average number of cusps per loop period TL = L/2 - 

at/2. The waveform frequency is redshifted as f --ý (1 + z)f in an expanding universe, 

and also r must be transformed to the physical distance aor = (1 + z)DA(Z), where 

DA (Z) is the angular diameter distance at redshift z. The estimate for the rate of 

GWB's observed around frequency f coming from the spacetime volume in redshift 

interval dz is [ 1651 

dlý 
V(Z) 7ro, 2" (z)DA (Z)2 

dz. (4.26) (1 + z) (1 + z)H(z) 

The analogous result for kinks depends, of course, on the average number of kinks 

per loop and has a 0,, dependence, since the burst from kinks is emitted in a fan of 

directions of solid angle - 0.. instead of a cone of solid angle - 02, (cusps). 

Allowing for Gp to vary with an upper bound of 10-6, the authors of [ 128,1651 

found that, even if only 10% of the loops in a network have cusps (i. e. c=0.1), their 

GW bursts could be detectable from GW detectors such as LIGONIRGO and LISA, 

for a wide range of tensions 10" < Gy < 10-6 . Even if the cusp events are very 

few, LISA could potentially detect GW bursts from kinks. 

In a later paper [ 1661, the authors generalised the above treatment to include cosmic 

superstrings, i. e. strings with lower intercommuting probability P. Considering the 

range 10-3 <P<1 and taking c=1, they found that the signal is enhanced with 

decreasing p, going above the noise levels of LIGO/Advanced LIGO, and well above 

the noise levels of LISA, for a 10-13 < Gp < 10-6 range of tensions. Also allowing 
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the fractional loop-length parameter al]PGp to vary as 10-12 < a/FGp < 1, they 

find that their previous results are quite robust, as long as alFGp ý! 10-11 (a/FGli ý! 

10-7) in the case of LIGO (LISA). The general point is that a smaller reconnection 

probability enhances the detectability of cosmic superstrings (for a detailed analysis 

including the effects of late time acceleration and different loop distributions, see 1129, 

1671). 

The average number of cusps and kinks on cosmic string loops is still an open ques- 

tion, and their significance for GW emission has generated a fair amount of interest 

for the case of cosmic superstrings. In [1681, it was shown that pairs of FD-string 

junctions, such as may form after F-D intercommutation in a cosmic superstring net- 

work born at the end of brane inflation, generically contain cusps. More importantly, 

their properties may allow for extra channels of energy loss, in addition to the usual 

GW background. In [ 169,170,17 1 ], the authors studied cosmic string loops con- 

taining junctions, finding a much bigger number of large amplitude kinks than the 

one expected for standard loops (kink 'proliferation'). For strings with small tensions 

( ':: S 10- 12 ), a large number of kinks is allowed and the incoherent superposition of Gp 
ellý 

bursts ernitted at kink-kink encounters leads to a GW background that is bigger than 

the usual individual bursts from cusps and kinks. 

In [ 172,1731, the effect of extra dimensions on the GW signal from cusps was thor- 

oughly investigated. The main feature arising due to the motion of cosmic superstrings 

in the extra dimensions is the avoidance of an exact cusp, since the unit curves a' = 

will miss each other in the higher dimensional Kibble-Turok sphere. The authors gen- 

eralise the exact cusp to a "near cusp event". The beaming cone is narrowed, resulting 

in a decreased 0,,, value. The most important result is that the gravitational radiation 



Observational Signatures of Cosmic Strings 107 

signal is suppressed - the kinematics have a larger effect than the reduced intercom- 

mutation probability. Thus the bounds found in [1661 are relaxed. In a subsequent 

publication [ 1741, the effect of extra dimensions on the kink signal was studied. The 

main result is that the damping of the kink signal is not as significant, and the GWB's 

from kinks on cosmic superstrings are more likely to be detected by LIGO or LISA. 

4.4 Signatures and Constraints from CMB and pulsar 

timing 

4.4.1 The Cosmic Microwave Background and Inflation 

As we saw in Chapter 1, when the temperature of the Universe cooled down to about 

1 eV, electrons and nuclei joined to form neutral atoms and the Universe became trans- 

parent. The CMB photons that were emitted after that era scattered freely, and they are 

observed today as a blackbody spectrum with T=2.725 ± 0.001 K (1 a) [231. In the 

following, we will sketch the physics of the CMB 
, and see how today's observables 

are connected with the inflationary paradigm (see [175,176,177,178,179,1801 and 

references therein). 

Along a direction (line of sight) n= (0,0) on the sky, the temperature fluctuation 

can be expressed as an expansion in spherical harmonics 

T(n) = 
1: at,,, Yt,, (n), (4.27) 
im 

where the index f gives us the angular scale, with 0- 7r/f (i. e. large multipole mo- 

ments represent small angular scales). The coefficients at.. give us the size of the 
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irregularities on different scales, with the power spectrum defined by 

= Cj6jp6,,,,, (4.28) 

with isotropy implying that all m's are equivalent. We usually plot the quantity (AT)2 = 

f(i + 1)Cj/27r, which represents the power per logarithmic interval in f. 

The temperature of the CMB is astonishingly uniform across the sky, exhibiting 

only minute fluctuations at the 10-5 level, which have been analysed by the COBE 

[ 181 j and WMAP [ 14] satellites. In Fig. 4.3, we show the latest temperature power 

spectrum as measured by WMAP. Because the fluctuations are so small, we can use 
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Figure 4.3: The 7-year temperature (TT) power spectrum from WMAP. The curve is the ACDM 
mcdel best fit. 

linear perturbation theory to describe them. Considering a spatially flat background 

metric with linear scalar, vector and tensor perturbations, we can use the decomposi- 

tion theorem to treat them separately. Without a source term, the vector perturbations 

decay in an expanding background and can be neglected. For the scalar and tensor 

perturbations, we can write 

dS2 =a 
2(T) 1 (1 + 2T)d72 _ 

[(I 
- 2,1))Jij + hijldx'dxj 1, (4.29) 
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where the Newtonian-like potentials T and 1ý represent the density (scalar) perturba- 

tions, while the tranverse and trace-free hij describes the tensor perturbations (gravita- 

tional waves). For an isotropic energy-momentum tensor, we have 4D = T. We can now 

see how inflation comes into the picture - during the period of accelerated expansion, 

we have a generation of quantum fluctuations which are getting stretced to become 

classical superhorizon density perturbations. They can be expressed as spatially vary- 

ing quantum perturbations around the homogeneous background of the inflaton field. 

That is 

O(tl X) = OO(t) + bo(t, x). (4.30) 

After horizon re-entry, these fluctuations source the density perturbations which form 

the large-scale structure of the Universe via gravitational collapse. The variance of 

these fluctuations results in a power spectrum in Fourier space. Within the slow-roll 

approximation, we get [ 1821 

Ps(k) ;::: ý A, (k/ko )n. -l (4.31) 

for the scalar modes, and 

PT(k) , z-- At (klko)" (4.32) 

for the tensor modes, where ko is some pivot wavenumber. The amplitudes are given 

by As = ý-"-2 
, 
A, =- rA, = I&A, and the "spectral indices" are n, -I 4f + 2y, 

7r( 

nt -2e. Note that H is the Hubble parameter during inflation evaluated when 

ko aH, i. e. when the mode with physical wavenumber kola exits the horizon H-1. 

Through the e and q dependence, we deduce that the inflationary predictions for the 

power spectra basically rely upon the inflationary potential V(O) and its derivatives. It 
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is then evident that CMB observations of high precision are our best tool to constrain 

inflationary physics. 

At this point, let us just state the basic predictions of the inflationary paradigm, 

which established it as the primary candidate for the generation of the primordial in- 

homogeneities. The simplest inflationary models predict a flat geometry - we have 

already seen that this has been tested to a very high accuracy, 1%, by measuring the 

position of the first peak in the CMB [161. They also predict Gaussianity and near 

scale-invariance, namely n, c! ý 1, nt c-- 0 to first approximation. To be more precise, 

small deviations from scale invariance are predicted by the vast majority of inflationary 

models. The 7-year WMAP data give n, = 0.9603 ± 0.014 [121. In addition, inflation 

predicts primordial gravitational waves, the yet unobserved tensor modes. Denoting 

by r the ratio of the tensor to scalar spectra at some f, different inflationary models will 

lead to different predictions - this is again due to the V(O) dependence. The value of 

r is still difficult to constrain, but an upper limit combining WMAP5 and other data is 

found to be r<0.22 [183]. 

For completeness, we will now sketch the underlying physics behind the CMB spec- 

tra we observe today. Before and around recombination, which is our time of interest, 

we can approximate the photon-baryon plasma as a tightly coupled fluid. There is also 

dark matter, which of course interacts only gravitationally, and its perturbations grow 

as the Universe expands. For the photon-baryon fluid, there is a competition between 

gravitationally driven collapse, and a restoring pressure force. More specifically, the 

equation for the fractional temperature fluctuation E) in wavenumber space is [ 1841 

+ B)OI +k6k (I + B)T - [(I + B)(ý]', (4.33) 33 
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where c2= 1/3(l + B) is the photon-baryon sound speed and B= P'+II is the S P-y +P-y 

baryon inertia. Deconstructing this equation gives us almost all the information we 

need to understand the general form of the TT spectrum (4.3). 

Let us first ignore the effect of baryon inertia (i. e. take B= 0) and consider constant 

gravitational potentials. This gives 

O+C2 2E) 
sk (4.34) 

which is the simplest harmonic oscillator equation, with C2 = 8 1/3 for the photon- 

dominated fluid. With the initial conditions E)(0) and 60, the solution to equation 

(4.34) can be written as 

E)(0) cos(ks) + 
8(o) 

sin(ks), (4.35) kc, 

where s =-:: f c, d-r gives us the sound horizon. Using adiabatic initial conditions, which 

is the case for inflation, we have E)o =0 and at recombination time -r. we have 

E)(, r,, ) = E)(0) cos(ks. ). (4.36) 

We see that all wavelengths share the same starting phase - they are temporally co- 

herent. However, different k will result in different oscillation periods. Hence, at the 

last scattering surface different wavelengths will be "caught" at different phases. For 

example, for very large modes ks < 1, the perturbation is frozen into its initial condi- 

tions. On smaller scales, we will have oscillations caught at their maxima or minima 

at recombination, resulting to peaks in the power at k,, = n7r/s, where n is an integer. 

In addition, we will have modes which peak before reaching the recombination time 

- their amplitude will be very small at 7-,, and they will correspond to power spectrum 

troughs. 



Observational Signatures of Cosmic Strings 112 

Now let us include gravity. We have 

+ ck 2E) VT- 
(4.37) 3 

In a flat Universe and in the absense of pressure, (D and T are constant. Continuing 

neglecting the baryons, we can write cl = 1/3 and the new solution is 8 

[0 ej(-r) = [E) + IP](0) cos(ks). (4.38) 

Hence, (0 + T) is the effective temperature fluctuation we observe, with IP accounting 

for the energy loss of the photons when they overcome the gravitational potentials. In 

the large scale limit of equation (4.37) at recombination, we find 

(E) +1 Clrrec), (4.39) 3 

which is the so-called Sachs-Wolfe effect [1851. The shape of the CMB TT power 

spectrum at these scales is approximately flat and is known as the Sachs-Wolfe plateau. 

Adding baryons, we finally get the full version of equation (4.33). Considering the 

case of B= const, we can write 

[6 + (1 + B) T] (0) cos (ks) -B ýP, (4.40) 

where s= -r. IVF3-(1+ B). We thus get an increase in the amplitude, a shift of the 

zero-point and a frequency decrease. The baryons drag the fluid deeper into the po- 

tential wells. The zero point shift breaks the symmetry of the oscillations, and the 

baryons enhance only the compressional phase, i. e. every other peak (first, third etc. ). 

This general result is valid also for a time-variable B, but with an additional adiabatic 

damping effect. The specific peak positions and heights reflect the exact matter content 

of the Universe. The latest measurements give 002 = 0.02258, Qch2 = 0.1109 and 

PA == 0.73 [12], and the ACDM model is a perfect fit to the data (see Fig. 4.3). 
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After recombination, there is an additional contribution from the integrated Sachs- 

Wolfe effect taking into account the varying of the gravitational potentials. This con- 

tribution is a line integral of the form 0 4ýdr. At the smallest scales, the oscillations rec 

are heavily damped due to photon diffusion. This process is known as Silk damping 

[1861. Furthermore, the last scattering surface has a thickness, and averaging through 

it washes out anisotropy from small-scale fluctuations. Note that, in order to get an ac- 

curate description for the CMB spectra, we need to solve the Einstein equations simul- 

taneously with the Boltzmann equations for all radiation and matter particles present. 

This can be done numerically using publicly available codes, like CMBFAST [ 1871 or 

CAMB [1881. 

Another CMB observable which is becoming increasingly more important is CMB 

polarization. This is generated by Thomson scattering of photons by electrons, re- 

sulting to a scattered polarized light that reaches the observer. We can decompose 

the linear polarization pattern into a divergence part, the E-mode, and a curl part, the 

B-mode. We thus get 3 additional spectra, namely CtTE' CfEE' CtBB 
. Note that the 

B-mode spectrum can be sourced only by vector or tensor modes. This is extremely 

important: scalar modes only source E-modes, so the observation of a B-mode signal 

is a direct way of probing gravitational waves. 

4.4.2 CMB anisotropy from cosmic strings 

Now that we have a feel of the general features of the CMB spectra and their con- 

nection to the inflationary paradigm, let us return to cosmic strings. First, a historical 

note. Before the CMB data became available, strings were thought of as candidates 
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for generating the energy density inhomogeneities responsible for structure formation 

[581. More specificafly, the ratio bp1p for GUT strings is 

Lp 
- Gp - 10-6, 

p (4.41) 

which has the correct order of magnitude for seeding galaxy formation. Unfortunately, 

the data from WMAP showed an angular spectrum consisting of a series of peaks, 

while cosmic strings predict a pretty flat spectrum with a single, broad peak - note 

that this is hardly surprising, since the cosmic string generated fluctuations are not 

temporally coherent. 

However, a contribution from cosmic strings cannot be excluded, but is limited 

to less than 10% of the total CMB temperature anisotropy [121,189,190,191,192, 

193,194,1951. Although a network of cosmic strings cannot source the majority 

of the observed CMB TT spectrum, the CMB can be used to provide a distinctive 

signature of their existence through the B-mode polarization spectrum. That is because 

cosmic strings actively source scalar, tensor and vector perturbations, with the scalar 

and vector ones being of similar magnitude (see [ 196,197,198,199,200,201,202, 

2031 for work on the subject). 

The effect of a moving string on the CMB anisotropy was first studied in 12041. The 

authors showed that a moving string will produce a line discontinuity in the tempera- 

ture anisotropy maps. This anisotropy is given by 

Gp-y(v)v, T (4.42) 

where v is the transverse string velocity and -y(v) the corresponding Lorentz factor. 

The so-called Kaiser-Stebbins effect is due to the conical spacetime around the string. 

photons passing from the two sides of the string will be Doppler shifted, producing a 
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discontinuity separating a cold from a hot spot. However, this effect is quite difficult 

to detect - for a recent study, see [205). 

As we already stated, the most promising way to detect cosmic strings is via the 

B-mode polarization spectrum. To evaluate CMB temperature and polarization spectra 

sourced by cosmic string networks, we can use the publicly available code CMBACT 

[206,207], which is a modification of CMBFAST [ 187] to include anisotropies from 

active sources. 

In CMBACT, the string network is represented as a collection of uncorrelated string 

segments, an approximation proposed in [2081 and adapted for calculation of CMB 

spectra in [ 118,206,209]. In the unconnected segment model (USM), straight seg- 

ments of strings are produced at some early time and given random/uncorrelated ori- 

entations and velocities. At later times, a certain fraction of the number of segments 

decays in such a way as to match the number density given by a scaling model. The 

initial positions and orientations of the segments are drawn from uniform distributions, 

and the direction of the velocity is taken to be uniforrnly distributed in the plane per- 

pendicular to the string orientation (longitudinal velocities are neglected). 

In the default version of CMBACT, the key parameters of the segments - namely 

their length, rms velocity and number density - are modelled using the VOS equations 

described in Section 2.4. The USM does not explicitly follow the loop distribution, 

however the energy in the loops is effectively included as part of the covariant con- 

servation of the energy momentum of the scaling network. On their own, the straight 

string segments with open ends violate the energy conservation. To remedy this, CM- 

BACT enforces energy conservation by calculating the components Too and Tij (with 

i =ý4 j) of the energy momentum tensor and then using the covariant conservation equa- 
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,,, =0 to calculate Toi and Tij. Finally, the Einstein and Boltzmann codes are tion VAT 

integrated simulataneously. In Fig. 4.4 we show a typical CMB TT spectrum produced 

using CMBACT- The procedure one can follow to normalise to 10% of the total contri- 
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Figure 4A A typical CMB Tr power spectrum induced by a cosmic string network using CM- 
BACT. 

bution is very simple [2001. First note that the overall amplitude of the CMB angular 

spectra C,, is approximately determined by 

C, strings CX 
(GZ)2. 

Thus, we can define 

(4.43) 

2000 
CTT = 1)CTT E(2f + (4.44) 

t=2 

and adjust the free parameter of the code, namely Gp, to satisfy 

fs TT TT j (4.45) CtringslCiotal 0*1 
, 

Then, the adjusted value of Gp can be used to study the properties of the B-mode spec- 

trum. In [2001, this approach was used to investigate how the Macroscopic properties 

-0 -100 ''1'000 
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of a cosmic string network affect the B-mode induced spectra. The correlation length 

and the rms velocity of the main string type set the dominant momentum modes in 

the strings stress-energy, which determine the position of the main peak. Larger string 

correlation lengths will move the peaks in the TT and BB spectra to lower f. In addi- 

tion, the rms velocity also controls the position of the peak, although the dependence is 

non linear. The positions of the TT and BB peaks move to higher multipoles (smaller 

scales) for low and moderate velocities, but move to larger scales (lower f) for higher 

velocities. This non-trivial behaviour is a manifestation of the non-linear dependence 

of the string stress energy on string velocities. Also, larger values of v decrease the 

amount of BB power relative to TT power. The most important point is that, even 

with a marginal contribution to the TT spectrum (of the order of 1%), strings can be a 

prominent source of B mode polarization - that is, there is a predicted and observable 

systematic excess of B-mode power over what is expected from inflation [200]. 

4.4.3 Constraints on Gp from CMB and pulsar timing 

in a very recent publication f 1951, updated constraints on the cosmic string tension 

using CMB and pulsar timing were derived. The authors first showed that the USM 

can successfully describe CMB spectra obtained from Nambu-Goto and Abelian-Higgs 

simulations, provided that the network parameters obtained from each simulation are 

used as an input. 

They first derive upper bounds on Gp using the fact that the TT power spectrum 

produced by the string network must be limited to at most 10% contribution to the 
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total. For the Nambu-Goto simulations, the authors find 

Gp < 2.6 x 10-7, (4.46) 

and for the Abelian-Higgs simulations 

Gli < 6.4 x 10-7. (4.47) 

The gravitational wave emission from a cosmic string network, in particular from 

loop decay, would result in a stochastic GW background. Pulsar timing experiments 

place very strong constraints in the amount of this background that can be present in the 

Universe, using the fact that any gravitational waves which are propagating between us 

and a pulsar would disturb the photon trajectories causing fluctuations in the expected 

time of arrival of the observed pulses. In [ 1951, the authors use the formula [2 101 

Qgh 2=1.17 X 10-4 GIL ý2 ý2m 
(1 + 1.4x )3/2 

(4.48) 
rad x 

where Ugh 2 is the energy density in gravitational waves, x= a/ (IF Gp), a is the loop 

production size relative to the horizon, and Q,,, is the total matter density relative to the 

critical density. They use parameters measured from the Nambu simulations to give 

ýrad' (V2 ) and set Q. = 0.3, IF = 60. Imposing the limit Qgh 2<2x 10-8 
rad 

12111, they 

find 

Gp< 7x 10-7 (4.49) 

for a1(FGp < 1) and 

Gp <5x 10-"/a (4.50) 

for al(rGp > 1). We can easily see that the constraints coming from pulsar timing 

can potentially be stronger than the ones coming from CMB. However, the uncertain- 

ties in the pulsar timing method are large [ 195]. 
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4.5 Discussion 

119 

In this chapter, we gave a fairly representative review of the observational signatures 

of cosmic strings. Where possible, we also presented results from recent work on the 

analogous signatures from cosmic strings with junctions and/or cosmic superstrings. 

We paid special attention on the work on cusp/kink formation and gravitational wave 

bursts from cosmic superstrings. Further studies on the average number of cusps per 

loop oscillation and the characteristic loop size would boost this area of research, for 

both cos"c strings and superstrings. 

We also stressed that, arguably, the B-mode polarization is our best chance of prob- 

ing a cosmic string network. In the next chapter, we will investigate the CMB imprints 

of a cosmic superstring network. In order to determine the network's evolution, we 

will make use of the latest string-theory calculations for the intercommuting probabil- 

ities of cosmic superstrings, and we will incorporate them to an extension of the VOS 

model which includes the kinematic constraints for the formation of junctions. We will 

then use a modified version of CMBACT, in order to include a multi-tension network 

of different string types. 



Chapter 5 

Cosmological Implications of 

00 

multi-tension Cosmic Superstring 

Networks 

5.1 Introduction 

Although it has been established that a network of cosmic strings cannot source the ma- 

jority of the observed cosmic microwave background (CMB) temperature anisotropy 

[ 1181, the CMB can still provide a distinctive signature of their presence through the 

specific primordial B-mode polarization spectrum [196,197,198,199,200,201,202, 

2031. The spectrum generated by strings is different from the one generically produced 

from tensor modes arising in inflationary scenarios, and future probes of the B-mode 

should be able to reveal the presence of cosmic strings, even if strings contribute as 

I ittle as 0.1 V( to the CMB temperature anisotropy [ 199,200,201,202,203 1. 
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interest in cosmic strings has revived following the realisation that they can arise 

in superstring theory [45,461, for example in models of brane inflation 142,43,44, 

103,212,2131. Cosmic superstrings can have small tensions (10-12 ZGpZ10-7 I rý [45, 

46,107]), can be effectively stable over cosmological timescales, and can stretch over 

cosmological distances [104,106,2141. Hence, they can have interesting cosmolog- 

ical implications. Furthermore, their intercommutation probabilities can be signifi- 

cantly less than unity [46,105,135,1361 and, because of the charges present on them, 

they can zip together to form Y-junctions (trilinear vertices), leading to more compli- 

cated. networks than those usually considered in the case of 'standard' Abelian cosmic 

strings. Understanding the imprint of such additional network features on observables, 

such as CMB temperature and polarization, is a step that may lead to interesting new 

constraints on the basic parameters of the string theory, such as the string coupling g, 

and the fundamental string tension PF- 

Several approaches have been developed to model the evolution of cosmic string 

networks, and an interesting recent attempt to extend them to cosmic superstring net- 

works - which contain different types of string - is due to T'ye, Wasserman and Wyman 

[2151. Their model, based on the velocity-dependent one-scale model of Martins and 

Sbellard [79,801, describes the evolution of a multiple tension string network (MTSN) 

under the assumption that all types of strings have the same correlation length and 

root-mean-square (RMS) velocity. Studying the evolution of the number density of 

strings, they find that scaling is achieved when the energy associated to the formation 

of junctions is assumed to be radiated away. This model has been extended in 12161, 

where the authors assigned a different correlation length and velocity to each string 

type, and enforced energy conservation at each junction. Scaling is again achieved 
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(with different number densities), but not as generically as in [215]. 

In a complementary approach, a number of authors have studied the kinematics 

of cosmic string collisions [51,52,168]. When two Nambu-Goto (NG) strings (of 

generally different tensions) collide, rather than intercommuting in the standard way, 

they can form two junctions and a linking string of a third tension. Kinematically 

this can only occur if the relative orientation, velocity and string tensions lie in certain 

ranges. In [III], the authors extended their earlier studies to (p, q) -cosmic superstrings 

by modifying the NG equations to take into account the additional requirements of 

flux conservation. Once again the kinematic conditions required for the formation of 

Y-junctions were established, with results very similar to the ones obtained for NG 

strings. These kinematic constraints have been checked quite extensively with dynam- 

ical field theory simulations of strings collisions, and the agreement is (generally) good 

C 112,113,144,145,2171. In a recent publication [2181, they have been incorporated 

into the model of [216], giving the new conditions required for scaling. 

In the following, we will use the model of [218] to study the evolution of a cosmic 

superstring network for different values of the string coupling g" and different charges 

(p, q) on the strings. We find that in all cases the three lightest strings, i. e. the (1,0), 

(o, 1) and (1,1) strings, dominate the string number density. When the string coupling 

is large, g, , O(j), most of the network energy density is in the lightest (1,0) and 

(0,1) strings (respectively F- and D-strings), whose tensions are approximately equal 

- the contribution from the (1,1) FD-string is subdominant. At smaller values of 

gs ý 0(10-2), the (1,0) string becomes much lighter than both (0,1) and (1,1), 

and dominates the string number density. However, the rarer (0,1) and (1,1) strings 

dominate the energy density of the network at small couplings because of their much 
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larger tension. In either of the two limiting regimes, the energy density of the multi- 

tension network is effectively dominated by strings of one tension. 

With the scaling solutions to hand we then focus on the CMB imprints of these net- 

works, using a modified version of the publicly available code CMBACT [206,2071. 

In particular, we extend the Unconnected Segment Model (USM), first introduced in 

[ 118,2091, to describe the MTSN of [2181 and implement it in CMBACT to obtain the 

CMB temperature and polarization spectra. We find that for sufficiently large values 

of the parameter w, which is inversely proportional to the effective volume of the com- 

pactified dimensions, the two limiting regimes, one with the network energy dominated 

by light populous strings and the second with it dominated by rare heavy strings, can 

each produce distinctly different shapes of CMB spectra, especially for the B-mode 

polarization. In particular, for w-1, the position of the peak in the B-mode spectrum 

is at f -- 770 for g,, = 0.9 and at t ;: z: ý 610 for g, = 0.04. This allows for the exciting 

possibility that upcoming observations may not only constrain the overall contribution 

of strings, but in fact rule out certain values of the string coupling. Namely, the com- 

bination of the normalization and the peak position of the B-mode spectrum can point 

to a particular combination of g, and the fundamental string tension AF- 

It is common to report constraints on standard cosmic strings in terms of bounds 

on the single dimensionless string tension Gp. These bounds have an implicit as- 

sumption on the number density of strings corresponding to the usual Abelian Higgs 

rnodel strings with intercommutation probability P=1. However, in a more gen- 

eral situation of strings with lower intercommutation probabilities and, as is the case 

for cosmic superstrings, different tensions, each type of string will in principle have a 

different number density: the same fraction of CMB anisotropy can be sourced either 
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with many light strings or with a few heavy ones. In general, each type of observa- 

tional bound will constrain a different combination of the string tensions and densities 

(which, for cosmic superstrings, are derived from the fundamental string tension pF 

as well as g, ). In particular CME and pulsar bounds, which we discuss in Section 5.4, 

will lead to different shapes of bounding contours in the OIF, 9.9) parameter plane. We 

show that combining these two constraints can lead to complementary constraints on 

properties of superstrings. The position of the peak in the B-mode spectrum can be 

used to further eliminate a large region of the (AF 
i 9s) parameter space. 

In Section 5.2 we summarise the extended VOS model which describes multi- 

tension networks with junctions. We then present the scaling solutions for cosmic 

superstrings as a function of the string coupling g,,. In Section 5.3 we determine the 

temperature and B-mode spectra for these scaling solutions using a generalised ver- 

sion of CMBACT. Finally in Section 5.4 pulsar constraints on gravitational waves from 

string networks are discussed. We conclude in Section 5.5. 

5.2 Scaling of F-D superstring networks 

F-D superstrings provide an example of a network of strings with multiple tensions that 

can join each other at Y-shaped junctions. Letters F and D denote the type of quantized 

charge carried by strings - the F charge is identified with fundamental strings, while 

the D charge is carried by D-branes. A general (p, q) string has p quanta of F charge 

and q quanta of D charge [ 107,109,2191. 

In the following, we review the model developed in [216,2181, which describes 

a network of N different types of strings with junctions. We then customize the pa- 
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rameters of this model for the case of F-D superstrings paying particular attention to 

their dependence on the string coupling g,. While the exact values of the parameters 

are model-dependent, e. g. depend on the choice of the compactification manifold, we 

are able to identify general trends in their dependence on g, These trends, in turn, 

lead to two different scaling scenarios in the limits of large and small g, that may be 

distinguished observationally. 

5.2.1 The VOS model for single type string networks 

We introduced the VOS model for single type string networks in Section 2.4. The 

relevant equations are 

-2 
a(, + V2)p _ 

CVP 
(5.1) 

aL 

V2) -k 
it (i2 
-av) (5.2) 

where the constant ý represents the efficiency of loop formation, and k is the curva- 

ture parameter which indirectly encodes information about the small-scale structure 

on strings. It can be expressed as a function of the velocity [801; 

2 vf2- 1_ 8V6 

7r 

(1 

+ 8V6 (5.3) 

which incorporates the Virial condition v' < ý', observed in simulations in expanding 

background. The scaling solutions are 

k(k + 
(5.4) 4,3(l - 

k(l -, 3) 

ý3(k + e) (5.5) 

The relation between intercommutation probability and the loop chopping effi- 

ciency parameter ý is not fully understood at present. Nambu-Goto simulations of 
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strings interacting with a microphysical. probability P<1 suggest that E- PI/I in 

both the matter and radiation era [137]. A different dependence, a ý-- P11', was re- 

ported in [2201 based on a flat space simulation. In the subsequent sections we will 

take a to scale as the cubic root of the corresponding intercommutation probability. 

Such a weak dependence of e on P can be attributed to the presence of small scale 

structure on long strings, allowing for multiple chances of intercommutation when two 

string segments cross [ 137 1 

5.2.2 Evolution of multi-tension networks with junctions 

in order to describe the evolution of a multi-tention string network (MTSN) with junc- 

tions, we adopt the model developed in [216,2181. In this model, one solves for the 

energy densities and rms velocities of each string type using the following equations: 

Vp& d' 'DabPifi b(t) 
ýj = -2 

a(, + v2 )pi 
- 

I±uiPi iaViatlifta + 1: ab a (5.6) 
ai 

Li L2L? L2L2 
a, k aib, a<b ab 

ki 
b1 

Üab (tia + Ab - Mi) £ta 
üi == (1-v 2) 

-- 2ävi +a ab 
(t) Li2 1 

(5.7) Li ab Vi iii L2L 2 
b, a<b ab1 

Here pi is the tension of the ith type of string, and, in analogy to networks consisting 

of a single type of string, one defines a coffelation length Li through 

Ai 
Lj2 (5.8) 

As in the single string case, the coefficients ci in (5.6) quantify the efficiency with 

which self-interactions of strings of type i chop off closed loops, removing energy 

from the long string network of type i. The last two terms in equation (5.6) model 

the effect of collisions between strings of different types, leading to the formation of 
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new segments ending on 3-string junctions. More specifically, the penultimate ten'n 

describes the loss of energy, from network i, due to string segments of type i colliding 

with segments of type a and forming links of type k. Similarly, the last term models the 

energy gain in network i through collisions between different strings a and b, leading 

to the formation of a link of type i. The parameter d, ý, = djki, which we will discuss 

in more detail below, is essentially the probability with which strings of types i and 

interact and produce a type k segment. This parameter captures quantum interaction 

and volume effects [46,1051, as well as the kinematic constraints discussed in [5 1,111, 

112,2181. The average length of the links formed by this process at time t is denoted 

as & (t), whose explicit fonn will be given below (equation (5.19)). In equation (5.7), 13 

the coefficients ki are curvature parameters which indirectly encode information about 

the small-scale structure on strings. We will follow [801 and take them to depend on 

the rms velocities as 

ki =2 
vf2- 
7r 

(1+8vi6) 
(5.9) 

Finally, the parameters bi have been introduced in order to interpolate between the ab 

model of [2161 (where bý = dý), in which the energy liberated by the formation of 

junctions is redistributed in the network as kinetic energy, and a model analogous to 

that in [2151 (corresponding to b. b = 0), in which all of this energy is radiated away. i 

The most realistic situation is probably somewhere in between, with biab < dab9 so that 

fraction of the liberated energy is radiated away and the rest is redistributed. Finally, 

Vab is the magnitude of the relative velocity between strings of type a and b averaged 

, VrV-2--+--V-ý 
over all directions, that is Vab : ": a 
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5.2.3 Parameters for F-D cosmic superstring networks 

We have already seen that in cosmic superstring networks the tension of each string 

type is determined by the corresponding charges, (p, q), and the string coupling g,. In 

ten flat dimensions and for vanishing RR scalar, the tension of a (p, q) string is given 

by [ 107,109,2191 

2 AF VFp? g2 + q? 
98 , g" 

where AF is the tension of the lightest fundamental string (F-string) carrying charge 

(1,0). The D-string has a charge (0,1), while the strings carrying charges (p, q) with 

p, q>I can be thought of as bound states between p F-strings and q D-strings. There is 

an infinite hierarchy of such (p, q) bound states, but, as was found in [215,216,2181, 

the cosmological evolution of interacting networks of this type leads to solutions in 

which only the first few lightest strings dominate, so one can truncate the system at 

finite N. Here we will take N=7 so we only have seven different types of strings 

carrying charges (pi, qj) =- (p, q)i with 

I (p, q)i I= f(i, o), 1), (1,1), (2,1), (1,2), (3, l), (1,3)1, (i = 1,..., 7). (5.11) 

The parameters in equations (5.6-5.7) which will determine the scaling patterns 

of the cosmic superstring networks we consider are the self- and cross- interaction 

coefficients, ci and dk respectively. They are averaged network quantities that depend 13 

on the microphysical intercommuting probabilities of the corresponding interaction 

processes, which in turn can be modelled using string theory techniques [ 105,1351. 

Note that the cross- interaction coefficients A also depend on kinematic constraints on 13 

3-string junctions 151,111,1121. 
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We will first consider the microphysical intercommuting probability Pij for inter- 

actions between strings of types i, j. For processes involving at least one F-string, that 

is F-(p, q) interactions, this probability can be calculated perturbatively in string the- 

ory [ 105,135). The result is a function of the string coupling g,,, the relative velocity 

v and the angle 0 of the incoming strings. There is also a model-dependent volume 

factor which depends on the size of the compact extra dimensions, parameterized by a 

parameter w, and the amplitude of fluctuations of the string position fields. The latter 

depends on the string tension and, therefore, on the string coupling g,,. Let us write 

Pii (V, 0, W, g., ) =J ij (V, 0, g. ý)'Vii 

where Fij (v, 0, g., ) is the quantum interaction piece and Vij (w, g, ) the volume depen- 

dence. 

Let us discuss the volume-independent piece, Yij (v, 0, g,, ). As mentioned above, 

for interactions involving at least one F-string, we can use perturbative methods [ 105]. 

On the other hand, for interactions involving only D-strings or heavier composites, 

the process is non-perturbative and less understood. At present there are at least two 

approximate results, by Jackson, Jones & Polchinski [1051 (hereafter JJP) based on a 

worldsheet calculation, and by Hanany & Hashimoto [ 136] (hereafter HH) using a field 

theory approach. The two calculations are in good qualitative agreement, but there are 

quantitative differences reflecting the uncertainties arising from the currently incom- 

plete understanding of such non-perturbative processes. Nevertheless, these calcula- 

tions provide a basis for systematically computing the network coefficients in equations 

(5.6-5.7), and allow us to study the effect of these uncertainties on the macroscopic 

evolution of the networks'. As the available methods for calculating these processes 

We will discuss how network results depend on this and other uncertainties in section 5.2.4. 
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improve (for recent progress see [1351) such uncertainties will be eventually controlled. 

Here, we will use the results of JJP for the perturbative processes involving at least one 

F-string, and the result of HH for the non-perturbative D-D interactions. These have 

non-trivial dependencies on v and 0 and the relevant string charges p and q (for details 

see [105,136]), but there are a few key features with respect to their dependence on 

the string coupling g, which can be summarised: F-F string interactions scale with g2 ý4 9 

F-(p, q) interactions with q>1 scale with g,, and the non-perturbative D-D interac- 

tions scale with U119% where U is a number of order unity. For interactions between 

heavier composites, i. e. (p, q)-(p', q') with q, q' >1 and p, p' > 1, the amplitude is not 

known but it is understood that it is enhanced with respect to the D-D amplitude by the 

multiplicity qql of the relevant Chan-Paton states [ 105]. In addition, for small values of 

the coupling g, we can neglect the effect of the light perturbative F-strings so we will 

approximate the enhanced amplitude as F(p,, )(pl, ql) '-'ý 
1- (1 

- -FDD 
)qq. The detailed 

form of the factors Fij (v, 0, g,, ) we assume (including their full v, 0 dependence) is 

shown in table 5.1. 

Interaction (ij) Yu 

F-F 98 
v 

2+ (coo 0 vi- --V-7 r 

F-D - 98 8 sin 0 vv'l---v-T 
q2v2+ g, p-COSON/(-l-v2)(92 p2+q2)) 

F-(p, q) ,q>1 8 sin 0 v-ýI(-l -V2) (gs2p2 +q2) 

D-D min v "gE 
-e2 

T213(olv) 

exp 
4V(, 03/2 

e- 
4N 2/30/0 

210/403/4 98 

(p, q) - (p, q') , q, qf> -FDD 
) qq' 

Table 5.1: The coefficients Fij for different string interactions. 

We now turn our attention to the volume factors Vij (w, g,, ). These arise because 

the strings are moving in a higher-dimensional space so they can miss each other as 
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they cross, leading to an overall suppression on the amplitude that scales with the 

inverse of the volume of the extra dimensions. However, it has been argued 11051 

that this suppression effect may not be as important as originally anticipated [461, be- 

cause the string position fields are worldsheet scalars - not protected by any symmetry 

- and should therefore be stabilised at a minimum of a potential well (see however 

[ 173,221 ]), rather than explore the compact orthogonal dimensions. In this case, there 

is still a volume effect arising from the fact that strings are quantum objects whose 

positions fluctuate around the classical minimum, thus giving rise to an effective vol- 

ume that each string explores, which is, however, a small fraction of the total. The 

size of the fluctuations is determined by the mass of the string, so this effective volume 

depends on the type of string and on the coupling g, (for details see [ 1051). For F-F 

interactions, both strings have the same tension and fluctuate by the same amount, but 

for F-D interactions (and for small g, ) the fluctuation of the heavier D-string can be 

neglected, leading to a volume which is a factor of (ýF2)6 =8 smaller' than the cor- 

responding F-F volume. Finally, for D-D interactions the volume is approximately a 

factor g3 smaller than the F-F volume [ 1051. The overall volume suppression 8 

factor becomes unity when the effective string volume becomes equal to the minimum 

66string-scale volume" Vnin = (21r 2a')'. Thus, defining our model-dependent parame- 

ter w as 

Vrnin/VFF E (0,11 
1 

we have for the relevant suppression factors VFF : -- 1J)q VFD = rnin(8w, 1) and VI)I) = 

-3, < 1. Here, we generalise these volume factors for (p, q)- min(wgs 1) as long as q., < 

strings and for g, <1 in a phenomenological way so as to reproduce the above limits. 

2Note that 6 is the number of extra dimensions. 
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In particular, we assign a factor of (p2 + q2gs-2)3/4 to each (p, q)-string. We show the 

resulting Vij (w, g,. ) in table 5.2. This is simply a choice we make in order to be able to 

systematically calculate these suppressions for different string types, but is one which 

successfully reproduces the results of [105] in the appropriate limits. The dependence 

of our network scaling results on this choice will be discussed in section 5.2.4. We are 

thus left with a residual model-dependent variable w that we treat as an external tunable 

parameter like g,,. Note that the choice w ý-- 1 for this parameter (corresponding 

geometrically to a compactification very close to the string scale) makes Vij ý-- 1 for 

all strings, so the dependence of the intercommuting probability Pjj on the string type 

and g, is determined only by the quantum interaction Fij (v, 0, g,, ) in this case. 

interaction (ij) Vii 
F-F w 
F-D min(Wg, -3/2 8w, 1) 

min 
2gs-2)3/4W 

q 
_8u), 

1] 
D-D min(wg, 3,1) 

(p, q) - (p', q') , q, q' -> 
1 min 

ý[ (p2 + q2gs 2) (p/2 +q 12 98 2)]3/4 Ul, 
T 

Table 5.2: The coefficients Vij for different string interactions. 

For the macroscopic string networks we are interested in, string collisions happen 

perpetually as the network evolves, with a range of relative velocities and angles. We 

therefore average out the velocity and angle dependence of the microphysical probabil- 

ities Pij (v, 0, w, 9. ) -Fij 
(v, 0,9s) Vij (w, g, ) (see [218]). This yields the probabilities 

-p, j (w, g. ) which now depend only on our two free parameters vi and g,. 

The question now is how these probabilities are related to the network coefficients ci 

and A in the macroscopic evolution equations (5.6-5.7). As we already discussed, for 
zj 

self- interactions, numerical simulations of Nambu-Goto string networks with reduced 
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microphysical probabilities [ 1371, suggest that the effective (loop-chopping efficiency) 

coefficient a in equation (5.1) scales with the third root of the microphysical probability 

P. That is 

ci = 0.23 xpi . 1/3 
1 (5.14) 

where we have denoted Pij =- Pi and the number 0.23 is chosen so as to reproduce 

single network results for Pi = 1, A=0 in the radiation era. In the matter era, the S3 

corresponding proportionality constant is 0.18. For the crvss- interactions (i. e. with 

i =ý j) producing zipped configurations, there are at present no network simulations to 

compare to (for recent progress towards this direction see [ 1441) in order to determine 

the dependence of dý. on the microscopic probabilities Pip However, one may expect 23 

this dependence to be similar to the self-interaction case if these cross-interactions are 

initiated at a point (at which the incoming strings first cross) and then proceed by the 

zipping of the colliding strings, rather than exchange of partners. If that is the case, 

then one may expect the effect of small-scale- structure on the strings to enhance the 

interaction probability by increasing the number of encounters within one crossing 

time, much like in the case of self-interactions. Let us therefore define: 

dk Sk. i'j = dij ij 

with 

X p. 113 
,j 

dij jj (5.16) 

where r, is a constant of order unity that we set to 1. Note that the effect of a K, : , 54 1 will 

still be captured to some extent3 by our subsequent analysis, because this parameter 

3Since wE (0,11 it cannot account for KZ1. 
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is degenerate with w (refer to tables 5.1,5-2 and equation (5.12)), which we will vary 

as an external parmeter. At this point, we stress that the scaling (5.16) with Pij is an 

important model-dependent assumption, as it determines the values of the correlation 

length of the dominant strings in our model. This highlights the need for investigating 

numerical simulations of strings with junctions. 

The final ingredient that enters the systematic computation of the cross-interaction 

coefficients dil, is the factor Sý in equation (5.15). This describes the conditional 3 ij 

probability that the crossing of strings i and i produces a zipper of type k, given that 

strings i and j have interacted. The interaction is fully described by an additive and 

a subtractive channel, so, for each pair I i, i} -= 
I (pi, qj), (pj, qj) } there are on Iy two 

possibil ities for k; either k= (pi +pj, qj + qj) -= + or k= (pi - pj, qj - qj) -= -. Wh ich 

channel is followed is determined by energetic considerations based on the balance 

of string tensions at the 3-string junction. To a first approximation, the conditional 

probability that the additive or subtractive channel is followed is given by 11051: 

1T(p, pj g2 + qiqj a =A? 2+q? )112 (pj2g2 
pi, 

i == P(pqj), 
(pj, qj) =2( (pt ga 1, + qj2)1/2 

» 

which add to unity. Note, however, that there are kinematic constraints 151,52,111, 

1121 which must be satisfied for the junction to form. Reference [2181 showed how 

these microphysical constraints can be integrated over a distribution of velocities and 

angles in a string network to obtain the averaged network coefficients: 

7r/2 

-ü ij 
)2/or 2] 

E)(-ffl(v, 0» exp[(v v sin(0), jý2dod, ) 

where E)(-fg(v, 0)) is a step function imposing the kinematic constraints fg(v, 0) < 

0 [1 and a2 is the variance of the velocity distribution, assumed to be Gaussian 
V 

peaking on the relative scaling velocities Vij = (V? +V? )1/2 
. Note the direct dependence 23 



Cosmological Implications of multi-tension Cosmic Superstring Networks 135 

of these coefficients on the string tensions - and thus on the string coupling g, By P9 

comparison, the dependence on w is very weak and enters only indirectly through the 

scaling velocities in Aj. 

In our model, therefore, we shall replace the approximation (5.17) by the coeffi- 

cients Sk in (5.18), which take into account the kinematic constraints. It is important tj 

to note that due to the constraints being violated in part of the parameter (1), 0) space, 

one has S,, + S, -j < 1, in contrast to F,, + R. - =1 in (5.17). In table 5.3 we show 13 

these suppression coefficients for the three lightest string components (F-= 1, D-= 2, 

FD=-= 3) and for different values of the string coupling g, in the radiation era 4. The 

weak dependence of these coefficients on w practically makes no difference between 

their values at w=0.1 and w=1. 

ga 3 

g, = 0.04 0.180 0.293 0.950 
g', = 0.05 0.166 0.293 0.938 
g, = 0.1 0.117 0.302 0.881 

[0.1,11 g, = 0.2 0.071 0.312 0.790 
g, = 0.3 0.050 0.325 0.707 
g, = 0.5 0.033 0.354 0.590 
g� = 0.7 0.028 0.388 0.516 
gs = 0.9_ LO-026 0.424 0.462 

Table 5.3: The coefficients Sjkj for the three lightest string components (F= 1. D=- 2, FD=-. J) for 
1, in the radiation era. different values of the free parameters g. and 0.1 w, 

Putting all these factors together, the resulting coefficients ci and dý,., in the radiation 

era, for interactions between the lightest string components are shown in table 5.4 for 

the same values of g, and w as in table 5.3. In the matter era, the coefficients (. i 

are a factor 0.78 smaller, while the djIj coefficients only change through the velocity 

4There is a weak dependence of the coefficients Sý on the expansion law (matter vs radiation era) ii 

due to their dependence on the scaling string velocities. 
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dependence in equation (5-18). This change does not affect significantly the scaling 

values of the correlation lengths and velocities of the strings, and we can safely neglect 

it. The main difference with reference [218] is that, there, the coefficients dij were 

chosen independently as free parameters, while now they are systematically computed 

as described above and they depend only on g, and w, which are our free parameters 

here. 

w 98 1 Cl 1 C2 1 C3 1 ai2 1 (1T3 1 dý3 

g, = 0.04 0.02 0.13 0.13 0.05 0.08 0.55 

g', = 0.1 0.03 0.16 0.16 0.04 0.11 0.62 
w g� = 0.2 0.05 0.19 0.19 0.03 0.14 0.63 

g., = 0.3 0.07 0.20 0.20 0.03 0.16 0.61 
g, = 0.5 0.10 0.21 0.21 0.02 0.21 0.54 
g� = 0.7 0.12 0.22 0.22 0.02 0.26 0.49 
gý, = 0.9 0.15 0.22 0.22 0.02 0.31 0.45 

w 98 Cl 1 C2 1 C3 1 d12 1 d13 -- FAT231 

g, 0.04 0.01 0.13 0.13 0.05 0.07 0.55 
98 0.1 0.02 0.16 0.16 0.04 0.10 0.62 

w=0.1 g, 0.2 0.02 0.19 0.19 0.03 0.13 0.63 
g� 0.3 0.03 0.20 0.20 0.02 0.14 0.61 
g, 0.5 0.05 0.20 0.21 0.01 0.15 0.54 
gs = 0.7 0.06 0.15 0.22 0.01 0.17 0.39 
98 = 0.9 0.07 0.12 0.21 0.01 0.20 0.31 

Table 5.4: The coefficients ci and dk of equations (5.6-5.7) for the three lightest string components 23 

(F=- 1, D-= 2, FD=- 3) for different values of the free parameters g, and w. 

The average length f, ý, (t) of zippers produced at time t which appears in equations 

(5.6-5.7) is, in principle, model-dependent. However, for cosmic superstrings, which 

are not subject to topological conditions like for example in non-Abelian field theory 

strings, it can be taken to be [216,218] 

tk = 
Li Lj 

'i Tj + Lj (5.19) 

With this choice we are assuming that the produced zipper has a length which is smaller 

than - but close to - the smallest of the two correlation lengths of the colliding strings. 
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For simplicity we set the coefficients 0 to zero. In this way we concentrate on the ii 

effects coming from the junction terms in equation (5.6) and not from the extra terms 

in the velocity evolution equations (5-7). Note, however, that setting bk A we find 13 23 

that our results are insensitive to this choice, in agreement with [2181. 

Finally, in order to interpolate between the radiation and matter dominated eras, we 

follow the approach in [118,2061, accounting for the different probabilities for each 

string type. That is, 

c, + gac,,, 
X pil/3, (5.20) 1 +ga 

with c, = 0.23 (radiation) and c,,, = 0.18 (matter), g= 300 and a(-r) is normalised so 

that a=1 today. 

5.2.4 Scaling of F-D networks at large and small string couplings 

We have solved equations (5.6-5.7) numerically using the parameters computed in sec- 

tion 5.2.3 for different values of our external parameters g, and w. We find scaling 

solutions with all network components reaching approximately constant string num- 

ber densities and rms velocities during radiation and matter eras, as in [215,216,2181. 

The string number density per unit Hubble volume, i2 (t/Li)2, is dominated by the 

lightest three network components, namely the F, D and FD-strings, while all heavier 

components are suppressed and end up having negligible number densities. The RD 

and FD-strings also dominate the effect on the CMB observables or, more generally, 

any observable linearly related to the two point function of the string energy momen- 

tum tensor. It is useful to introduce the power spectrum density M, given by [ 1981 

i), 
1 
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which determines the amplitude of string induced power spectra. 

Fig. 5.1 shows the evolution of the rms velocity, number density and the power 

spectrum density for the three lightest strings for g, = 0.04 and g, = 0.9, with ill = 1. 

When g, is close to unity, the tensions of the F and D strings are comparable. As 

a result, their densities are similar, as shown in the panels on the right. When g, is 

decreased, the lighter F strings become more populous and thus dominate the number 

density of the network. However, the D strings become heavier at smaller and, 

despite being rare, can actually dominate the power spectrum density. This is evident 

from the g, = 0.04 case shown in the left panels of Fig. 5.1. We can therefore identify 

a transition in the power spectrum: At large string couplings, where the tensions of the 

F, D and FD strings are approximately equal, F strings dominate the power spectrum 

because they have the smallest correlation length. At small string couplings, the power 

spectrum is dominated by the heavy rare D strings. This transition appears to be a 

generic property of FD networks and is one of our key results. Reducing the volume 

parameter w to 0.1 results in an enhancement of the overall network number density 

is (since Pij oc Vij oc w), but the dependence of the network scaling patterns on q, 

remains the same. 

In Fig. 5.2, we plot the number and power spectrum densities of the three relevant 

strings at the time of last scattering vs g,, for two values of uy, in order to visualise 

the aforementioned transition. Reducing the value of the string coupling from g, ;: ý: I 1, 

initially reduces the contribution of D strings to Mt,, t,,, as they become more rare, but 

this trend quickly changes as we continue reducing g, and the D-strings become heavy 

JID ý-- gS 1, eventually dominating Mtt,,, in the case of w=1. For w=0.1, the power 

density AID increases with decreasing g,, but does not quite catch up with ýIF over the 
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range of string couplings we have studied numerically. Note, however, that the number 

density of F becomes a few orders of magnitude larger than that of D, meaning that the 

correlation length of F strings is very small. If their correlation length is smaller than 

the horizon size at last scattering, the F strings do not contribute significantly to the 

CMB polarization and, despite their lower power density, the B mode spectrum will in 

fact be dominated by D strings. We will return to this point in the next section. 

Having sketched this interesting trend in the dependence of network scaling patterns 

on g, let us see the way it emerges from the functional forms for MTSN parameters 

adopted in Section 5.2.3. At large string couplings (g, -4 1), the tensions of the F and 

D strings are comparable (AD :" 98 1AF ' AF), and so are their number and power 

spectrum densities. In particular, for w-I and g, 1, we have PF ` q2Vj < 

PD ,w so, in effect, one would observe a single effective network of tension 

AF ' AD, with a correlation length similar to that of ordinary cosmic strings, but 

with the extra property of frequently forming 3-string junctions. For small 7v, the 

situation would be similar, but with a smaller correlation length, and the appearance of 

3-junctions would be more rare since now PF , g. 2w ýý w << 1 is somewhat smaller 

than PD ' Wgs 3>w, so D-strings would be somewhat more rare. It should be noted, 

however, that at g, -1 the perturbative methods used to calculate VFF are not expected 

to be accurate. 

For small g,,, the difference between the tensions of F and D strings is large, and 

so is the difference in the corresponding coefficients ci, djý- (see table 5.4). As a result, 13 

the much lighter F strings dominate the network number density. The power spectrum 

density, however, is dominated by the less populous, but much heavier Qij) cx gN 

D strings which, being very massive, evolve practically independently of the light F- 
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Figure 5.1: Evolution of the rms velocity vi (top panels), number density ý -2 (tj, )2 ( middle 

panels), and the power spectrum density (ýI, g, )2 (bottom panels) of the three lightest network 
components: F-strings (solid black), D-strings (blue dash), and FID (red dot), at two representative 
values of the string coupling g, The panels in the left column are for g, = 0.04, those on the 
right are for g, = 0.9. All plots are for w=1. For g, - 1, the tensions of the F and 1) 
strings are comparable, as well as their densities. At smaller g., the lighter F strings dominate 
the number density, while the heavier and less numerous D strings dominate the power spectrum. 
The epochs of radiation-matter equality and last scattering are indicated with vertical lines. Of 
particular relevance for CMB is the correlation length of the string type that dominates the power 
spectrum density at the time of LS (see also Figs. 5.2 and 5.3). 
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Figure 5.2: Dependence of the string number (top panels) and power spectrum (bottom panels) 
densities at the time of last scattering on the value of the string coupling g, for ill =I (left) and 
w=0.1 (right), for the three lightest network components: F-strings (solid black), D-strings (blue 
dash) and FD-strings (red dot). 

string network. In addition, the zipping between F- and D-strings gives rise to FD 

cornposites with a tension practically equal to that of the heavy D strings. Again, 

we effectively have a single network of D-strings dominating the power spectrum, 

since the F-string component is unobservable due to its low tension. Further, unless 

33 the volume factors VDD OC W9, - in equation (5.12) approach unity while the 

non-perturbative factor iS -FDD 
<- 1. As a result, the network properties are similar to 

those of an ordinary field theory string network with ý ýý p ; ý-- 1. 
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Figure 5.3: The correlation length and the rms velocity at the time of last scattering (LS) as 
a function of the string coupling g,, for w=1 (left) and w=0.1 (right) for the three lightest 
network components: F-strings (solid black), D-strings (blue dash) and FD-strings (red dot). We 
show the string type(s) that dominate(s) the power spectrum at LS with oversized points. The 
horizontal line at ý=0.05 indicates the thickness of the LS surface. 

In the next section we study possible observable signals induced by these networks 

on the CMBR temperature and polarization power spectra. Before that, let us briefly 

comment on the importance of the interactions between the different string types for 

obtaining the above picture. Let us imagine a network of different string types without 

the junction terms dij in equation (5.6). Naively, one might think that each type of 

string would evolve independently, following the usual one-scale model, with different 

ci's given by equation (5.14). However, we would not be able to truncate such a net- 
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work to a finite number of string types. The interactions between the strings (p, q) and 

(P', q') favour the substractive over the additive channel, i. e. the preferred bound state 

is a (p - p', q- q') segment. This results in the suppression of the heavy string types. 

For the same reason, the hierarchy in the number density of the surviving three types 

is always in favour of the lighter species. 

The values of the correlation length (ýLS = L(tLS)/tLS) and the rms velocity 

of the string type that dominates the power spectrum density at the time of last scat- 

tering (LS) are particularly important. In Fig. 5.3 we show the dependence Of ýLs and 

VLS on gs. The fact that strings of substantially different correlation lengths dominate 

the spectra at different values of g,, means that their CMB spectra can have distinctly 

different shapes. This may allow us to use CMB spectra as a discriminant between 

these different types of limiting behaviour, potentially providing an invaluable tool for 

constraining the underlying string theory, in particular the string coupling g, We also 

note that, as seen in Fig. 5.3, there is only a minor difference in the values of scaling 

velocities of the dominant string types at different couplings. 

Finally, we comment on the significance of using the one-scale assumption to model 

the evolution of the network. To test the role of this assumption in setting the hierarchy 

of densities of different string types we have incorporated a second scale in our model, 

following the approach of [216], i. e. adding an extra scale t, common to all string 

types, and modifying appropriately the evolution equations for the correlation length 

and the velocity. We have concluded that the effect of the second scale is not large - 

the number densities of the strings do not significantly change and, most importantly, 

the hierarchy stays the same. Another potential concern, which is of relevance to the 

CMB predictions, is that the one-scale assumption equates the correlation length along 
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the strings with the interstring distance. This is only a reasonable approximation for 

networks with sufficiently large intercommutation probabilities (Pi Z 0.1). Hence, 01ý 

we do not consider values of w and g,, at which intercommutation probabilities of the 

dominant strings are too small. 

5.3 CMB temperature and B-mode spectra from FD 

strings 

5.3.1 Modelling CMB with CMBACT 

To evaluate CMB temperature and polarization spectra sourced by multi-tension string 

networks (MTSN) we modify the publicly available code CMBACT [206,2071 so as to 

allow for strings with multiple tensions whose scaling is modelled by equations (5.6) 

and (5.7). 

As we described in Section 4.4.2, CMBACT uses the unconnected segment model 

(USM) [ 118,206,208,209] to represent the cosmic string network. The length, rms 

velocity and number density are modelled using the VOS equations (2.46) and (2.47). 

We should emphasise that CMBACT is not a means for gaining new insight into the 

evolution of cosmic string networks. Instead, it is a tool for evaluating CMB spectra 

for given one-scale parameters, such as correlation length and rms velocity. In [ 1951, 

it was shown that CMB spectra obtained from field theoretical simulations of Abelian- 

Higgs (AH) strings 1120] are reproduced by CMBACT when the one-scale parameters 

measured in the simulation are used as input. Also, the CMB spectra obtained from 

the NG simulations of [86,1221 were compared to those from CMBACT with the 
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one-scale parameters measured in [861, finding a good agreement as well. The de- 

fault version of CMBACT uses the VOS model with parameters tuned to match NG 

simulations of [80,2221. 

The shapes of the string-induced CMB spectra are mainly determined by the large- 

scale properties of the string network, such as the correlation length and rms velocity. 

The overall normalization of the spectrum has a simple dependence on the string ten- 

sion p and ý= Llt [ 198,200] given by equation (5.2 1). The CMB temperature spectra 

(TT) receive a contribution from the LS surface, for which the relevant scale is ý at the 

time of LS. In addition, TT receives roughly equal contributions at each subsequent 

epoch (which is the mechanism by which strings can produce a scale-invariant TT 

spectrum on large scales) and hence the value of ý is approximately the value mea- 

sured during matter domination. CMB polarization, on the other hand, is sourced at 

the time of LS and thus the normalization of the B-mode spectrum is given by ýLS- 

In this work we generalise CMBACT to include uncorrelated segments of N differ- 

ent types. The lengths and rms velocities of each type are determined from equations 

(5.6) and (5-7). As in the single-tension case, the Toi and Tij components of the string 

stress-energy are determined from the the covariant conservation equation, which now 

takes the form 

vi, Z Tmi 
v=0. i=I 

(5.22) 

The overall amplitude of the CMB angular spectra Cj is approximately determined by 

N 
C, strings OC Altotal Ali (5.23) 

and the shapes of the spectra will be set by the correlation length and the rms velocity 

of the most dominant population of strings. 
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We should note that CMBACT has only been tested against simulations of single 

tension strings with no junctions and with an intercommutation probability of unity. 

However, as discussed in Section 5.2, the scaling solution of Fl) networks tends to 

fall into two categories depending on whether the string coupling is large or small. 

Namely, the energy density of the network is dominated by light populous strings for 

large values of g,,, and rare heavy strings at much smaller g, In either cases, the bulk 

of the anisotropy is seeded by a single type of strings. Moreover, the intercommutation 

probabilities of the dominant string species are 0.1 or larger implying at most a factor 

of 2 reduction in loop chopping efficiency ci. This justifies the use of CMBACT for 

modelling the CMB spectra from FD networks at least in the two limiting cases of 

large and small string couplings. 

5.3.2 The CMB spectra for scaling Fl) strings 

Before proceeding to discuss the CMB spectra sourced by FD strings, let us again stress 

that cosmic strings cannot contribute more than 10% of the total CMB temperature 

anisotropy [ 121,189,190,191,192,193,194,1951. To comply with this bound -5, we 

will adjust the fundamental (F-)string tension PF to be such that 

CTT ICtTTI 
8 ngs 0 tri ota (5.24) 

-'The current bound on the fraction of string sourced CMB temperature anisotropy is only weakly 

dependent on the detailed shape of the spectrum, so we can safely use the existing bound in our studies. 

As an example, let us note that the bound on global strings, which have a rather different form of the 

CMB spectrum from that of Abelian Higgs strings, is also approximately 10%. 
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where we follow conventions of [200] to define 

2000 
c7T = 1)CTT. 1: (2f + (5.25) 

t=2 

Even with a marginal contribution to the TT spectrum, strings can be a prominent 

source of B mode polarization. This is because strings, unlike inflation, are actively 

sourcing vector mode perturbations of magnitude comparable to the scalar perturba- 

tions 1196,197,198,200,201,2021. 

The dependence of the TT and BB power spectra on the correlation lengths and the 

rms velocities was extensively studied in [2001 and more recently in [ 1951. The overall 

amplitude of the spectrum is approximately given by equation (5.23). The correlation 

length and the rms velocity of the main string type set the dominant momentum modes 

in the strings stress-energy, which determine the position of the main peak. Larger 

string correlation lengths will move the peaks in the TT and BB Spectra to lower f. In 

addition, the rms velocity also controls the position of the peak, although the depen- 

dence is not linear. The positions of the TT and BB peaks move to higher multipoles 

(smaller scales) for low and moderate velocities, but move to larger scales (lower 0 

for higher velocities. This non-trivial behaviour is a manifestation of the non-linear 

dependence of the string stress energy on string velocities. Also, larger values of v 

decrease the amount of BB power relative to TT power. 

In Fig. 5.4 we show the TT and BB power spectra for two values of the string 

coupling g,, (solid black line for g, = 0.04, and dashed line for g, = 0.9). In Fig. 5.5 

we show the normalised total TT power spectra for g, = 0.04 (upper) and g, = 0.9 

(lower), including the individual scalar (S), vector (V) and tensor (T) contributions for 

each case. The scalar and vector contributions are of similar magnitude, as expected 
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in the case of cosmic strings. The spectra are normalised to give f, = 0.1 as described 

earlier, which translates into GPF -= 1.8 - 10`3 for g, = 0.04, and GAF = 2.1 - 10-' 

for g, 0.9. 
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Figuire 5.4: The normalised Tr (upper) and BB (lower) power spectra for g, = 0.04 (solid) and 
g, = 0.9 (dash) for w=1, normalised to give f, = 0.1. Note that the smaller string coupling 
leads to a discernible move in the peak of the BB spectra to smaller f. 

We can interpret the CMB spectra at different values of g,, in the context of the 

scaling behaviour of the different string types discussed in detail in Section 5.2. In the 
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Figure 5.5: The nonnalised TT power spectra for g, = 0.04 (upper) and g, = 0.9 (lower), 
including the individual scalar (S), vector (V) and tensor (T) contributions. 

same tension. Their correlation lengths and velocities are similar as well, with values 

close to those of ordinary strings. Hence, their contributions to the CMB spectra are 

comparable, whereas the contribution from the FD string is not as important. On the 

other hand, in the g, = 0.04 case, the F string is again light and populous, but the D 

string is 25 times heavier than the F string, and so is the FD string. Thus, despite being 

very rare, the D and FD strings dominate the CMB spectra. In addition, there is a small 

but non-negligible contribution from the heavier (2.1) string. 

0L 10 loo looo 10000 
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The lower panel in Fig. 5.4 clearly shows the impact of the changed hierarchy be- 

tween the three kinds of strings. The heavy D strings which dominate Mi for g, = 0.04 

have a larger correlation length, which translates into a BB peak at smaller t. This of- 

fers a tantalising possibility for probing for small string couplings in the CMB. 

In Fig. 5.6 we again show the B-type polarization spectrum predicted by our string 

models for a 10% and a 1% contribution to the total TT. We compare this to the contri- 

butions from gravitational lensing of the adiabatic E-mode polarization into B-mode. 

We see that, especially in the region of high f, there is a possible detection window, 

where the cosmic string signal would manifest itself as an excess over the expected 

lensing contribution. The Planck satellite may be able to see the excess if strings con- 

tribute at a level currently tolerated by data [2231, however, it is likely that Planck's TT, 

TE, and EE spectra will place tighter bounds on strings even without B-mode measure- 

ments. The science goals of the ground based experiments, such as the advanced stages 

of QUIET [2241 and POLARBEAR 12251, include accurate measurements of the BB 

spectrum from lensing. If these science goals are met, they should have the sensitivity 

to detect the excess due to strings at a level of f, , 10-3. If the string contribution 

is sufficiently large, one may be able to detect the main peak and thus rule out large 

or small values of g, based on the position of the peak. More studies are needed to 

determine the minimum value of f, for which a particular B-mode experiment will be 

able to detect the position of peak [2031. In principle, it may be possible to de-lense the 

B-mode polarization map, taking advantage of the fact that the B-mode due to lensing 

is a rotation of the E-mode, and hence E and B modes are highly correlated [226,227]. 

Some preliminary forecasts of expected constraints on cosmic strings from de-lensed 

B-modes were reported in [ 199,203] but more work is needed to understand feasibility 
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Figure 5.6: Upper: The B-type polarization spectra due to cosmic superstrings assuming a 10% 
contribution (f, = 0.1) are plotted with solid (g, = 0.04) and dashed (g, = 0.9) black lines. The 
expected CI BB spectra for E to B lensing (blue dot line) and from primordial gravitational waves 
assuming a tensor-to-scalar ratio of r=0.1 (magenta-dot-dash line) are shown for comparison. 
Lower: The magenta dot line is the lensing prediction, the black solid line is the sum of the string 
and lens-sourced B-mode power for g, = 0.9 for f, = 0.01. Strings manifest themselves via 
the systematic excess power at high-f over the lensing prediction. The sum of strings and lensing 
contributions is also plotted for f, = 0.1 for g, = 0.9 (red dash) and g, = 0.04 (green dot-dash). 
By measuring the location of the main peak on can rule out either the small or the large values of 
98. 
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Figure 5.7: The position of the peak of the BB spectrum as a function of the string coupling g, for 
w=I (upper) and w=0.1 (lower). 
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of measuring the position of the string induced peak from de-lensed polarization maps. 

In Fig. 5.7 we show the BB peak location as a function of g, ranging from 0.04 to 

0.9. For w=1, shown on the upper plot, we see that the position of the BB spectrum as 

a function of the string coupling g, is decreasing with decreasing g,. This is consistent 

with our earlier discussion for the behaviour of the power spectrum density, which 

starts being dominated by the F-strings and, after a transition, ends up being dominated 

by the heavy rare D-strings. Their correlation length increases with decreasing g, and 

the BB peak moves to smaller f. 

In the lower plot of Fig. 5.7, which considers the uý = 0.1 case, we also see that 

the BB peak position decreases with a decreasing g,. However, here it happens for 

somewhat different physical reasons. Namely (see Fig. 5.2), the power spectrum den- 

sity Mi in the more populous F-strings dominates through the whole range of g, we 

have considered. Yet it is again the D-string contribution that dominates the B-mode 

spectra. One might suggest that the explanation for this lays on the smallness of the 

for the F-strings. For ý ;ý0.05, the string correlation length is smaller than the 

thickness of the LS surface, and thus most of the power in that type of strings does 

not contribute to the B-mode. Only a small fraction of the total power in F strings 

contributes, that generated on larger scales, but it is much smaller than the contribution 

of the D strings. However, the important issue arising here is that when the ý of the 

dominant string becomes so small, the one-scale approximation is no longer reliable. 

This is a well-known problem, and further improvements for accurately calculating the 

CMB contributions from such strings must be performed in the future. 
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5.4 Combined constraints onPFand g, from CMB and 

Pulsar Timing 

As mentioned in the previous section, the amplitudes of CMB two-point correlations 

do not separately constrain the string tensions and their densities. Instead, they con- 

strain a combination of pi and & given by equation (5.23). In particular, they do not 

differentiate between dense networks of light strings and rare heavy strings. In the case 

of FD networks, the relative abundances of different types of strings are controlled by 

the string coupling g,, with the bound on CMB normalization leading to different val- 

ues Of PF for different values of g.,. Thus, the requirement that strings contribute no 

more than 10% of the total CMB TT power can be translated into a joint constraint on 

AF and g, shown with a solid black line in Fig. 5.8. 

The degeneracy between pi and ýj, or in the case of FD networks, between pF 

and g, can be partially broken if other types of observations become available. One 

example would be a measurement of the position of the string induced bump in BB. 

Based on the results in Section 5.3, if a peak is found at ýpeak -- 610 ± 50, that would 

rule out g,, > 0.1, while ýpeak ; zý 750 ± 50 would rule out g, < 0.3. In the future, more 

sophisticated simulations of CMB from MTSN based on specific compactifications 

can, in principle, make accurate predictions for the dependence of the BB peak position 

on 

Another way to reduce the degeneracy between AF and g, is to combine bounds 

from CMB with the bounds on gravity waves (GW) emitted by strings, such as those 

coming from pulsar timing experiments and direct GW searches by LIGO. The GW 

bounds constrain the energy density in strings approximately given by the combination 
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p/ý' for each type of strings. The fact that the functional dependences of the GW and 

CMB bounds on yj and & are different implies that by combining the two probes one 

can, in principle, reduce the degeneracy between PF and g,. 

To illustrate this point, we follow the procedure presented in [1951, where the au- 

thors calculated the bounds on the cosmic string tension from pulsar timing [2111 (note 

that they are stronger than the ones coming from LIGO). For a network of single type 

of string, the formula is [2 10] 

Qh2=1.17 x 10-4 Gp 
1- (Vr2ad) 

9 ý2 

( 

rad 

(1 + 1.4x )3/2 

(5.26) 
x 

where x= a/(rGp), a is the loop production size, and Q,,, is the total matter density 

relative to the critical density. They use parameters measured from the Nambu simu- 

2 lations to give &d, (v, 
ad) and set Q. = 0.3, r= 60. We generalise this formula to 

include the three types of string that dominate the density of the FD network, namely 

the (1,0) = F, the (0,1) =D and the (1,1) = FD string. Setting c=1 we write 

31- (V2 
i) )3/2 

Qgh 2=1.17 x 10-4 Gpi ýr2ad 
rad, (1 + 1.4xi 

(5.27) 
iQ.. 

) 

xi 

where i=1 corresponds to the F-string, i=2 to the D-string and i=3 to the FD 

string. Also, xi = a/(r Gpi), so we take the a and F parameters to be the same for all 

types of string. For a given value of g, we use the extended VOS model of Section 5.2 

to determine the values of &. With those in hand, given the bound Qgh 2<2x 10-8, 

which is the most reliable published limit [2111, we can use the relations 1ID "":: PF19s 

f-- -2L- 1 
and ILFD -` 11F V gs 2+I to find the bound on GPF. As in [ 1951 we consider two 

limiting cases of xi <I and xi >> 
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Case xi < 1: In this case, eq. (5.27) becomes 

2331- 
(Vr2l 

gh =-. 1.4 . 1.17 x 10-4 Gpi ý2 
ad, i) (5.28) 

2( rad , iQm 

)I 

so it is independent of a (as in [ 1951). The corresponding joint constraint on PF and 

is shown with red dotted line in Fig. 5.8. 

Case xi > 1: In this case, eq. (5.27) becomes 

31_ (V2 
i) Qgh 2=1.4 3/2 

. 1.17 x 10-4 Gpi 
ýr2a 

rad, 
x 

1/2. (5.29) 

ýdflm 

)ý 

As in [1951, substituting xi = al(FGpi) results in a I/a dependence Of AF. The 

corresponding joint constraint on AF and g, for a=0.001 is shown with a short-dash 

green line in Fig. 5.8. Note that the chosen value of a gives a bound of Gp <5- 10-1 

for a 'usual' cosmic string with Gad = 0.13 and v=0.65 11951. 

In the limit xi < 1, the bounds on PF are weaker than the ones coming from 

CMB. On the other hand, for xi >1 the bounds can be much stronger, because of the 

11ce dependence. However, the uncertainties in the upper bound on Qghl in this limit 

are much more severe [1951. Note that the shapes of the two pulsar bound curves in 

Fig. 5.8 for the two limits (xi <I and xi > 1) are different because the dependence 

on pi is different. 

Future probes of B-mode will be able to constrain cosmic strings down to 0.10/() 

contribution to TT, which translates into an order of magnitude tighter bound on AF- 

In the lower panel of Fig. 5.8 we show the corresponding expected bounds from CMB. 

In the context of specific brane inflation scenarios, the cosmic string based con- 

straints on g, and JIF would need to be considered in covariance with other predictions 

of brane inflation, such as the spectral index n, the tensor-to scalar ratio v and the 
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Figure 5.8: Upper: current bounds on PF and g, from CMB (solid-black line) and pulsars (short- 
dash-green and dot-red line). Lower: The forecasted bound on PF and g, from CMB based on 
future BB corresponding to 0.17c in strings (solid-black line) together with the bounds from pulsars 
for the case xi >1 with ct = 0.001 (short-dash-green line). Note that a measure peak of BB could 
exclude a huge region of the diagrams. 
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tensor index nT, as well as possible departures from Gaussianity in the distribution of 

the primordial fluctuations. We expect that such a comprehensive approach can lead 

to non-trivial constraints on details of brane inflation models, and more generally, the 

fundamental parameters of string theory. 

5.5 Conclusions 

Using the MTSN scaling model developed in [2181, we have studied the evolution 

of FD superstring networks, aiming to identify characteristic trends in their scaling 

properties at different values of the string coupling g,. Indeed, we demonstrated that 

the so-called power spectrum density, which controls the amplitude of the two-point 

function of the string stress-energy, is dominated by populous light F and D strings at 

as opposed to rare heavy D strings when g, is decreased. 

incorporating the MTSN scaling model in CMBACT, we were able to evaluate the 

contribution of the FD networks to the CMB temperature and polarization spectra. We 

found that the difference between the scaling patterns at high and low values of g, is 

manifested as a different position of the peak in the B-mode spectrum. In the one- 

scale model, the correlation length is equal to the average inter-string distance, which 

means that string networks of higher (lower) number density have smaller (larger) 

correlation lengths. The correlation lengths, along with the string velocities, determine 

the position of the peak. This points to the possibility of constraining g., with CMB, 

which would perhaps be the first opportunity to constrain this fundamental parameter 

of string theory with observations. 

Most observables, at least those that rely on averaged properties of string networks, 
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constrain a combination of the string tension p and their number density, determined 

by ý-'. Thus, in principle, it is quite hard to distinguish between the effect of many 

light strings vs a few heavy ones. Measuring a particular peak position in the B-mode 

spectrum would be one way to partially break this degeneracy, as we have discussed 

in this work. In addition, one can explore the fact that different observables constrain 

different combinations of p and ý. For instance, while the amplitude of the CMB spec- 

tra is determined by the energy density of strings is proportional to ji/ý2. we 

have shown how this difference can be explored in the case of FD networks to partially 

break the degeneracy between the fundamental string tension AF and the coupling g, 

by combining the CMB constraints with those from bounds on gravity waves (GW). 

The main trends we have identified in this work are largely independent of many of 

the details of the underlying string theory model, as well as the assumptions that went 

into the CMB calculation and the predictions for GW. However, we need to improve 

our understanding of the string interaction rates for different choices of g, and w, es- 

pecially in the non-perturbative regime. At very small string couplings, the density 

of the dominant species becomes so high that the one-scale approximation is almost 

guaranteed to break down. In such cases, a more sophisticated model is needed to 

properly describe the scaling of the network and its prediction for the CMB spectra. 

Whether it will be possible to measure a peak at high t in the B-mode spectrum is an- 

other interesting question which will depend strongly on the resolution and sensitivity 

of the experiments, as well as our ability to clean the contribution from weak lensing. 

The GW bounds on FD strings depend on the loop size distribution, which is not fully 

understood at present. 

Also, while in ail string models considered so far the B-mode from the ordinary 
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strings is sourced predominately by vector modes, the tensor modes (i. e. large scale 

GW) were never properly worked out (since it requires accounting for the backreac- 

tion). It is our hope that the potentially very exciting opportunity for testing fundamen- 

tal theory based on the general trends identified in this work will serve as additional 

motivation for pursuing the remaining open questions. 



Chapter 6 

Conclusions and Future Directions 

In this thesis, we took a journey through the physics of cosmic strings and superstrings 

with junctions. Cosmic strings are very generic, appearing in many field-theoretic 

models which exhibit spontaneous symmetry breaking. They also appear at the end 

of hybrid inflation in SUSY GUTs. Depending on the energy scale in which they 

have been formed they can have important astrophysical effects, which are mainly 

characterized by the value of the dimensionless parameter Gp, where G is Newton's 

constant and p is the string's tension. 

As we saw in Chapter 2, a cosmic string network formed in the early Universe would 

consist of a collection of infinite strings and closed loops, moving with relativistic 

velocities. These strings meet each other and exchange partners with a probability that 

approaches unity, or self-intesect forming closed loops which decay removing energy 

from the network. The network then evolves towards a scaling regime, where the 

correlation length and the distance between string segments scale with cosmic time. 

Numerical simulations agree that the scaling regime is reached, but there is still a 
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debate regarding important issues like the distribution of loops, the damping of wiggles 

through gravitational radiation, the class of non self-intersecting loops, the average 

number of cusps and kinks, and the energy loss via particle production (for a nice 

overview of this debate, see [941 and references therein). We hope that these issues 

will be soon resolved using a combination of analytical techniques and high resolution 

numerical simulations. 

Cosmic superstrings are even more exciting and complicated objects. The basic 

constituents are the F and D strings, which are products of brane inflation models 

with Gp in the range 10-11 _ 10-6. When these strings meet, they do not necessarily 

exchange partners. On the contrary, they have a reduced intercommuting probability. 

In the case of F-strings for example, the reconnection probability is of order g2, where 8 

is the string coupling. This means that it can be much smaller than unity. 

In this thesis (Chapters 2 and 4), we reviewed the dynamics and observational ef- 

fects of cosmic strings using the Nambu-Goto approximation, highliting recent progress 

on the corresponding properties of cosmic strings and superstrings with junctions. In 

Chapter 3, we extensively studied the evolution and stability of a cosmic string loop 

with junctions, comparing the Nambu-Goto method with a field theory model that 

allows composite vortices with corresponding Y-junctions. We showed that the two 

evolution methods agree until the collision time. In the field theory simulations, a 

new phenomenon occured, namely the unzipping of the composite vortices to produce 

new junctions. The string segments between the newly formed junctions can grow, 

destabilizing the configuration. We modelled this situation modifying the initial con- 

clitions in our Nambu-Goto algorithm, and the agreement with field theory was again 

very good. Our method and numerical code can evolve any loop with junctions - the 
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reason why we considered the specific configuration, which is highly symmetric, is 

the difficulty of constructing arbitrary loops with junctions. A possible way to tackle 

this problem is to try to numerically follow collisions of loops approaching each other 

with random velocities and decide on the outcome (junction formed or not) based on 

analytical estimates (see, for example, [2281). Another way to attack the problem of 

loop junction formation and evolution is by considering the leading order corrections to 

the Nambu-Goto effective action. The relevant formalism for a single string has been 

examined by several authors (see [229] and references therein). One starts from the 

four-dimensional field theoretic action and reduces it to a two-dimensional worldsheet 

integral, using an expansion in terms of r, r,, where r,, is the string thickness and r, a 

typical scale of the extrinsic curvature of the worldsheet. If we extend this fortnalism 

to the modified Nambu-Goto action for strings with junctions, the corrections to the 

action might be able to model the junction decomposition phenomena. 

In Chapter 5, we investigated the scaling patterns and CMB imprints of multi- 

tension cosmic superstring networks, building on previous work and incorporating the 

calculated probabilities for an F/D network using string theory methods. More specifi- 

cally, we investigated networks with different charges (p, q) on the strings and different 

string couplings g, allowing for the formation of junctions between strings of differ- 

ent tensions. We obtained solutions for the characteristic length scales and velocities 

associated with these networks, finding two distinct patterns depending on the value 

of g, The number density of the network is always dominated by the light F strings, 

but for small g,, the heavy and rare D strings can dominate the power spectrum density. 

This leads to a potentially observable signal in the B-mode polarization spectrum: the 

BB peak position is decreasing with decreasing g, We also derived upper bounds on 
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the value of the fundamental tension PF using CMB and pulsar timing constraints. 

We believe that our results presented in Chapter 5 can motivate further work towards 

several directions. First of all, numerical simulations for strings with junctions are 

needed to give us a better understanding for the dependence of the dij coefficients on 

the microscopic probabilities Pip Studies need to be performed for the quantitative 

understanding of the string interaction probabilities in the non-perturbative regime as 

a function of g, and w. We also need to construct a more sophisticated model in order 

to model the network's behaviour at small string couplings, since the smallness of the 

dominant correlation length means that the one-scale approximation breaks down. We 

can then make firmer predictions for the CMB spectra and especially the B-mode string 

induced signatures. Finally, it would be very profitable to include loops in our analysis 

and, in connection with our work in Chapter 3, we would ideally like to have loops 

with junctions as well. 

To conclude, we believe that our results are positively pointing to the direction of 

probing fundamental theories using cosmological observations. Of course, the open 

issues we have already stressed need to be addressed. We have recently entered an 

era of precision cosmology, and we hope that the upcoming observations will provide 

additional motivation for further research. 



Appendices 



Appendix A 

Field-Theory Initial Conditions 

We obtain the initial conditions required for the butterfly configuration by first setting 

up the appropriate windings in the scalar field and then applying a period of dissipa- 

tive evolution in order to relax the configuration to the minimum energy configuration. 

That is, during this period there is an extra terrn in each of the equations of motion that 

is proportional to the first time derivative of the corresponding field and so removes 

energy from the system. Additionally we fix the modulus of the scalar field in the 

region close to the desired centre lines since otherwise the configuration would sim- 

ply contract to a point during the dissipative evolution. We apply reflective boundary 

conditions throughout the simulation. 

The initial choice for the phases of the 0 field for a planar loop of (1,0) string is 

made as shown in Fig. A. 1. If a site is above the plane of the loop then it is given the 

phase 7/2, if it is below the plane then it is given 37r/2, while if it is in the plane of 

the loop then it is given either 7r if it is outside the loop or zero if it is within it. This 

ensures the correct winding structure of the field but it obviously yields artificially high 
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Figure A. I: The initial 0 phase choice for a planar (1,0) loop, ensuring a winding of 27r in the 
desired locations. 

gradients on the plane of the loop. The modulus of the scalar field is initially chosen 

so that the field lies on the vacuum manifold, except close to the string centre lines, as 

will be explained momentarily. During the dissipative evolution the gauge field, which 

is set to zero initially, quickly grows to counter these phases gradients, while the phase 

and modulus of 0 rapidly adjust themselves in order to minimize the energy. Obtaining 

a (0,1) loop can be achieved by simply swapping c, for ý5 in the above argument, while 

a (1,1) loop is obtained by setting up the phases appropriately in both fields. Higher 

winding numbers cannot be achieved by the direct application of the above approach 

and will be discussed below. 

The modulus of the scalar fields is set inside a tube around the string centre-line 

according to the solution for an infinite straight string. For a winding 27rm in the phase 

of 0 and 27n in the phase of ý0, this has the following form for small displacements r 
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from the string centre: 

O(r) ; zt; Cr', (A. 1) 

O(r) -- Dr'. (A. 2) 

The constants C and D, which depend on the choice of m and n cannot be found 

analytically, but are solved for using essentially the approach of Ref. 11171. Note that 

if m is finite but n is zero, then even though there is no winding in V,, its modulus is 

still less than v near the string as this lowers the total potential term energy. However, 

101 does remain finite as r-0. In principle we could fix 17ý1 close to the string in this 

case also, but we choose not to since it would not greatly aid the fixing of the string 

position and we wish to minimize the artificial restrictions enforced. 

The butterfly configuration illustrated in Fig. 3.3 can be constructed by the superpo- 

sition of a (1,1) loop and a (1, - 1) loop after a period of dissipation. Since the equations 

of motion are non-linear there is no precise means to do this, however a good approxi- 

mation is simply to sum the gauge fields from each loop A. ý- and A. - to give the total: P, 

All = A+ + A- 
A 141 (A. 3) 

where the + and - refer to each loop. Then for the scalar fields: 

0- (P+ 0- 
77 Tl (A. 4) 

results in a superposition of complex phases [68,132,134,2301. Furthermore, at 

distances far from any string set up in 0+ (such that the field is approximately constant 

and close to its vacuum) the form of 0 is essentially that found in 0-. Using these 

equations, the time derivatives must then superpose as: 

Ot Aj, = Ot A, +, + Ot A; 
, I (A. 5) 

Ilato = 0+(9to-+O-0f0+- (A. 6) 
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While the wings are largely unaffected by this process and remain close to the min- 

imum energy solution, a further period of dissipation is required to relax the central 

region, because of the significant interference between the two loops. For the case 

illustrated in Fig. 3.3 this includes the cancellation of the fluxes in 0 along the central 

string, which greatly reduces the energy per unit length of that segment. 
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