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Abstract

This thesis investigate a complex real world job shop sclegliirescheduling problem,

in which the presence of uncertainties and the occurrencisafiptions are tackled to
produce efficient and reliable solutions. New orders amiery day in the shop floor and
they have to be integrated in the existent schedule. Mapcligorithms are introduced to
collect the idle time on machines and accommodate these/emling orders. Their aim

is to obtain new schedules with good performance which afgeasame time highly sta-
ble, meaning that they resemble as closely as possibleitied sthedule. Subsequently,
a novel approach that combines these algorithms with a fudayst scheduling system
is proposed. The goal is to associate an effective repameaghanism with the produc-
tion of initial robust schedules that are able to facilitdie accommodation of future
disruptions. Statistical analyses reveal that match-gprahms are effective repairing
strategies for managing complex disruptions, in which gghlity stable schedules are
delivered. Moreover, their combination with fuzzy robustteduling has a positive effect
on responding to these disruptions leading to even moralelisolutions in a real world

dynamic and uncertain shop floor.
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Glossary

ANOVA Analysis of variance

BB Branch and bound algorithm

EDD Earliest due-date first

E Insertion of the new job at the end of the schedule
FCFS First come first served

GA Genetic algorithm

HP Highest priority first

LPT Longest processing time first

LRT Longest remaining processing time first

MakespanCmnay Completion of the latest operation on the shop floor

NP-hard problem Problem that cannot be solved in a polynidima

Rescheduling Schedule rearrangement
RS Right shift rescheduling

SFT Same family together

SG Satisfaction grade

SPT Shortest processing time first
T Total rescheduling
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Chapter 1

Introduction

1.1 Background and Motivation

High productivity and low production costs are essentiatdes to describe successful
businesses. Research on production scheduling has begdipgomany approaches to
achieve this goal, in which optimisation models are propgdseallocate resources over-
time.

The traditional scheduling models only consider static @etérministic future condi-
tions, in which a finite set of jobs with deterministic prosesg times have to be assigned
to a finite set of machines subject to certain constraintk e aim of minimising a
certain cost function. However, in the real world, the pneseof uncertainties and the
frequent occurrence of disruptions inevitably requirehesluling of these allocations, in
which initial solutions have to be coupled with reliable aftkctive repair mechanisms
that are able to adjust schedules to reasonably responcctorgtances that often arise
in the shop floor, such as the arrival of new jobs, machinekoi@ans, rework of jobs,
due dates changing, among others. Consequently, researelscheduling has been at-
tracting attention, in which new optimisation models angesal techniques are proposed,
analysed and employed to manage dynamic and uncertaimaments. These problems
are highlighted as dynamic because continuous rearrangsraecurrent schedules are

required to restore their feasibility, controlling the geace of occurring disruptions [86].



1.2. Overview of the Problem 2

1.2 Overview of the Problem

A real world scheduling / rescheduling problem of a printoagnpany, Sherwood Press -
Nottingham, UK is considered in this thesis, which is moelgHls a job shop problem with
parallel machines, machine eligibility and sequence dégetsetup times. The problem
is dynamic since new printing orders arrive every day in thepsfloor, which requires
the generation of a reliable initial schedule and, more irtgmtly, areschedulingprocess
to accommodate these newly arriving jobs. This problemse dEefined as complex due
to its nature of being a NP-hard problem[91]. This probletackled as a generalisation
of possible disruptions because new orders requirememtde to compromise not only
one, but many resources present in a shop floor. Consequiirlgptimisation models
introduced in this thesis are suitable to be replicated b@mosimilar contexts, such as

personnel scheduling and university timetabling.

1.3 Research Context

The research work present in this thesis is a build up on thestigation of the static
scheduling problem presented by Sherwood Press - NottmghBhe research group
has been tackling possible approaches to handle uncetaihat are present on this real
world production shop floor, such as variations on procggaines, due-dates and release
times [32, 84, 85, 89]. The main aim of the group is to produgé lquality performing
schedules even in uncertain environments.

A genetic algorithm was introduced [32], in which a multipl&eria fitness function
is employed to deliver schedules with higarformancei.e. minimising simultaneously
the average weighted tardiness of jobs, the number of tatuly fhe total setup time, the
total idle time of machines, and the total flow time. Uncaertigis were managed using
fuzzy sets to represent the problem parameters and, coarstguduzzy logic to handle
the required inferences, i.e. when a job has to be considareg or not.

Techniques such as load balancing and lot-sizing are alsieedpdue to their effec-
tiveness on delivering good schedules|[84,85]. The presefgarallel printing machines
allow jobs to be processed more quickly since the load balgradgorithm tries to evenly

distribute the processing of required jobs on them. On therdband, a lot-sizing al-
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gorithm splits jobs into smaller lots aiming of attend pbssicustomer demands, i.e. a
smaller lot is delivered first in order to attend the custoexgrectations and the remaining
part is subsequently produced in a more convenient timénécompany.

The encouragindgPerformanceresults achieved for this static problem highlight the
good combination of the proposed genetic algorithm, fuzaycepts and the use of load
balancing and lot-sizing [89]. These techniques are engglog this thesis to produce
initial schedules and to reallocate operations on resdimgduFurther investigation on
setting the fitness function is discussed in details in avétin order to appropriately

address the rescheduling issues.

1.4 Aims and Scope

The aim of this thesis is to investigate optimisation moaeld techniques to produce
reliable schedules under dynamic and uncertain envirotsn8olutions with high levels

of Performanceare expected, which are measured according to a certairfusagion,
while theStabilityis preserved by introducing as fewer changes as possitie tourrent
state of the shop floor. Firstly, this work argues that matphalgorithms are effective
repair methods to deliver high quality stable schedulesnwdisruptions affect multiple
resources of a complex real world problem presented by dipgicompany in Notting-
ham, UK (hypothesi$il). Secondly, a new approach is proposed to combine match-up
algorithms with initial robust schedules, in order to invgste their interaction on cre-
ating reliable high quality stable schedules (hypothekdy. Note that the term robust

defines schedules that aim to absorb occurring disruptRHSP].

1.5 Methodology

Two types of analyses are carried out to accomplish the ibestgoals. Chaptefs[2-3
provide an analysis of the literature, in which dynamic sithieg and fuzzy concepts
are investigated on managing the presence of uncertairigssequently, chaptdrf 4-6
describe data analysis of experiments that are done toatalithe proposed hypothe-

ses: effectiveness of mach-up algorithms for reschedaliogmplex real world problem
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(H1) and the positive effects when combining them with a fuzzyeskling to produce
reliable solutionsKi2). All results are statistically validated, in which an aysas of vari-
ance (ANOVA) reveals the significance of the investigatezbfam parameters and their
interactions, a pairwise comparison test using Bonfels@oirrection indicates which ap-
proaches deliver superior results, and average valuesidghgithe overall behaviour of

each analysed strategy.

1.6 Structure of the Thesis

The remaining of this thesis is organised as in Figure 1.Jap&hd 2 and]3 presents the
background and related work in which the investigated gnobis situated. A reschedul-
ing taxonomy is presented and match-up algorithms are igigield as reasonable repair
methods in Chaptét 2. Additionally, chagtér 3 identifiesgpplication of fuzzy logic con-
cepts as a suitable approach to help modelling possibletanties present in scheduling
/ rescheduling problems.

Both hypotheses are validated in the contribution chafg@& sFirstly, the investigated
scheduling / rescheduling problem is discussed in detdild#iferent match-up strategies
are introduced to control this complex real world dynamiiqpem, as presented in chap-
ter[4. A typical disruption that affect multiple availabkspurces is tackled, in which new
rush orders arrive everyday in the shop floor. Note that tbeders define a set of jobs
that have to be processed as early as possible. Statistalgkas reveal that the proposed
strategies are effective repair methods to deliver highityustiable schedules (hypothesis
H1). Subsequently, chaptelr 5 investigate orders with diffelevels of urgency in which
the flexibility of the proposed strategies are verified undiferent scenarios. This set
of jobs is identified as normal orders and the main goal is teegaise possible occur-
ring disruptions in order to emphasise the validityHtif. Chaptef b discusses a novel
approach that combines match-up rescheduling algorithitsrabust fuzzy scheduling.
This fuzzy scheduling system inserts idle times on machiassd on historical data. The
main aim is to produce initial robust schedules that are &bfacilitate the accommoda-
tion of the newly arriving jobs. Statistical analyses canfthat the proposed combination

has a positive effect on responding to disruptions leadingeliable high quality stable
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Chapter 1
Introduction
Chapter 2 Chapter 3
F logi
Rescheduling taxonomy uzzé; oele
& > o . .
. their link with scheduling /
Match-up algorithms rescheduling problems
Background and related work
Chapter 4 Chapter 5
Match-up algorithms Match-up algorithms
to tackle to tackle
typical disruptions other disruptions
Chapter 6
Combination of
Match-up algorithms <
and fuzzy scheduling
Contributions
Chapter 7
Conclusions
Figure 1.1: Structure of the Thesis.
schedules (hypothedi?).

Finally, chaptefl7 discusses and summarises the conchusfdhis thesis and its pos-

sible future work.



1.7. Contributions 6

1.7 Contributions

The main contribution of this thesis is the introduction adtoh-up strategies to manage
uncertainties present in a complex dynamic real world jafpsproblem. Moreover, a
novel approach that combines these repairing strategigsimiiial robust schedules is
also discussed and validated.

The proposed approaches are described in the followingetsap

» Chaptei 4 describes developed match-up algorithms foalaaerld problem pre-
sented by a printing company in Nottingham, UK, in which ait¢gp disruption

affects multiple resources available in the shop floor, 469170| 73];

» Chaptei b does a further investigation of match-up algorg, in which improve-
ments are applied to the genetic algorithm responsibledtnusing the job allo-
cations on machines. Additionally, a more general type sfugition is analysed in
order to check the flexibility of the proposed strategiesanmtifferent scenarios, as
in [[74];

* Finally, chaptef 6 introduces a new approach to combinegpairing mechanism
provided by match-up strategies with the generation ofahibbust schedules. A
fuzzy control system is designed to produce these scheduleghich historical
data from the investigated company provides informatiauabood practices. The
aim is to facilitate the accommodation of future disrupsiday inserting idle times
on machines and, consequently, produce more reliable dectieé solutions, as
in [72,72];

The flexibility of the proposed approaches on managing gigvos in a complex real
world dynamic scenario highlights the suitability of regaliing them to other similar con-
texts.

Shaded cells in Table_1.1 identify which approaches arestigated in this thesis.
The aim is to highlight the previously mentioned contribas within a rescheduling tax-
onomy [8/42,79,114].

The investigated scheduling / rescheduling problem haglavariability on arrival of

new jobs, which sets it as a dynamic environment. Theseiagrjebs often affect multi-
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Table 1.1: Investigated approaches within a reschedudixgrtomy

Environment
Static (finite set of jobs) Dynamic (infinite set of jobs)
Deterministic Stochastic Cyclic production ~ Medium variability High variability
(all information (some information (no arrival (some arrival (high arrival
is given) is uncertain) variability) variability) variability)
Approach
Reactive Predictive (robust) Predictive-reactive
Frequency
Periodic Continuous Event-driven Hybrid
Method
Schedule generation Schedule repair
Nominal Robust Right / left-shift Complete Partial

ple resources and they are classified as important disngtis a result, a rescheduling
process has to be started whenever a new job is required toobegsed (event-driven
frequency).

Firstly, initial schedules are generated only optimising turrent state of the shop
floor (nominal generation), as in chaptelisl4-5. Subsequentiewly proposed approach
generates schedules that aim to predict future disturlsgnaieust generation), as in chap-
ter[@. Match-up strategies are used as a repair method, ymoglidnly required parts of
the current allocations (partial repair). This configurasi set two explicit scheduling /
rescheduling approaches: (1) predictive-reactive, whrelates a nominal schedule and
react when a disruption occurs and, (2) robust, which csemtebust schedule that helps
to absorb occurring disruptions during the repairing pssce

The following chapter provides a more detailed discussbmuathese approaches and
all the remaining ones presented in Tdblé 1.1, in which steémgths and limitations are

extensively discussed.



Chapter 2

Survey of Dynamic Scheduling -

Rescheduling

2.1 Introduction

This chapter presents a literature review of reschedulogyi@hms, in which a taxonomy
of possible environments, approaches, frequency and methalescribed and discussed.
The aim is to provide a guideline to understand related teofogies, applied strategies
and their limitations. This taxonomy is subsequently lehkeith match-up algorithms
and their possible combination with robust schedules, ware the main research topics
investigated in the following chapters of this thesis.

In a competitive world, high productivity and low produdatioosts are very important
factors to guarantee successful businesses. Researchducpon scheduling has been
providing many approaches to achieve these factors, inhvbytimisation models are
proposed to allocate resources to jobs (tasks) over tinterdture on these models has
been mainly focused on the problem of generating efficidgmdules under a given static
scenario. Typically, a fixed number of jobs with determigigtrocessing times have to
be assigned to a given number of machines minimising a oertat function. However,
when the possibility of disruptions, and uncertainty in biead sense, is taken into ac-
count, such deterministic models, and their corresponsdaigtion approaches, have to
be coupled with repair mechanisms that adjust the initiaédale to respond to the new
circumstances that may arise from an unexpected eventyphs of disruptions that may

8
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occur can be either (1) related to jobs, such as changesdagion orders, including the
insertion [13, 117, 30, 93] and removal of jobs [89], rewark3], changes to processing
times and due dates [24,/52]; or (2) related to the shop flamh &s changes to man-
ufacturing resources, including substitution or breakadewf machines |4, 617, 90, 115],
sickness of workers [106], tool unavailabilityl [2,/12], dglor shortage on material sup-
ply [53,197], etc. For all these cases, a rescheduling of theipusly allocated jobs is
required in order to restore the feasibility of the schedard keep its optimal perfor-
mance results. More details about each step of this proceskeacribed in the remaining
sections of this chapter.

In order to understand the terminology present in the liteega some terms commonly

used by different researchers are described below:

* Rescheduling pointvhen a schedule is repaired,;
» Rescheduling periadime between two consecutive rescheduling points;
» Rescheduling frequencliow many times a rescheduling process is required,;

» Rescheduling horizonselected allocations within a time horizon that must be

rescheduled;

» Scheduling nervousnesassociated with the repairing times required during the

schedule execution;
» Scheduling stabilityinverse of scheduling nervousness;

» Scheduling robustnessiow much the repairing process does affect the schedule

performance.

Once values are given to these terms, it is possible to haveeaall idea about how a
rescheduling problem has been tackled. Moreover, the ingddlis process is evaluated

using the following metrics to check the quality of the gexted schedules:

» Performance metric commonly used in scheduling and rescheduling prab| in
which tardiness, lateness, makespan, number of tardy $elsp times, idle times

and flow times of schedules are evaluated;
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 Stability. metric only used in rescheduling problems, which meastiresliffer-
ence between the initially planned schedule and the exgéaute. This metric
mostly check changes on start/end times of operations diene@tion), sequence
of operations on machines (sequence deviation) and opesativitching between
parallel resources (machine deviation). Note that thissmesis not applicable to

check initial schedules due to the absence of changes;
« Efficiency measures how quickly a disruption is managed,;

» Cost measures the computational burden, setup and trangpartatsts involved

during the process.

These metrics provide crucial information because theyatlhe selection of the most
appropriated rescheduling method to be applied to a spguibiclem. Note that more
than one metric can be used to evaluate the quality of a giexdesahedule. In practice,
Performanceand Stabilityare the most commonly used metrics because they can give an
overall picture of the production process [1,21/90,93]116

The remaining of this chapter is organised as follows. $afi2 introduces a taxon-
omy for rescheduling algorithms, in which possible envimemts, approaches, frequency
and methods are described. Secfiod 2.3 discuss match-aptlafgs, presenting their
current applications, limitations, possibilities andithgossible combination with robust

schedules. Finally, sections .4 2.5 conclude thistehap

2.2 Rescheduling Taxonomy

Research on rescheduling has been exploring the potemtggdtmnisation models ap-
plied to dynamic contexts, in which expected and/or unetquedisruptions have to be
managed in order to guarantee the quality of the planneddstd®e Several authors
have been investigating this rescheduling process appietifferent contexts such as
single machine problems [24,135,/36, 58], flow shop [3]22],1@8)], job shop prob-
lems [13] 28, 33, 100] and the use of parallel machines [160,3103]. A taxonomy
for possible rescheduling approaches is shown in Tableb2ded on features present in

these studies combined with literature reviews presengd8,d2/79,114].
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Table 2.1: Rescheduling taxonomy

Environment

Static (finite set of jobs) Dynamic (infinite set of jobs)
Deterministic Stochastic Cyclic production ~ Medium variability High variability
(all information (some information (no arrival (some arrival (high arrival
is given) is uncertain) variability) variability) variability)
Approach
Reactive Predictive (robust) Predictive-reactive
Frequency
Periodic Continuous Event-driven Hybrid
Method
Schedule generation Schedule repair
Nominal Robust Right / left-shift Complete Partial

A scheduling / rescheduling problem is defined based on theang aspects: (1)
environment, which is related to the number of jobs that lavee scheduled; (2) ap-
proach, to set how jobs are allocated; (3) frequency, whefinds when to reschedule;
and (4) method, which describes how to generate and updasekiedule. The following

subsections provide more detailed information for eaclne$é aspects.

2.2.1 Rescheduling Environments

The rescheduling process may happen eitherstagic environmenin which the number
of jobs is finite and known in advance, or irdgnamic environmenin which jobs arrive
in the shop floor continuously. A job is used as referencepoaisent possible disruptions
because its requirements are able to compromise not onJyoahmany resources present
in a shop floor.

In the static case, one can differentiate betwstatic-deterministic environments
where there is no uncertainty in problem data [91]static-stochastic environmenis
which processing times, due dates and other problem datsufject to minor changes
[86]. Note that there is no rescheduling in static environtee@and the presence of un-

certainty in problem data does not require changes on ptascieedules. These environ-
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ments define the category of classical scheduling problems.

In the dynamic case, the presence of unpredictability istipmosncerned with time
of the arrival of jobs. These environments reflect a bettpragentation of real world
problems and they are classifieddygiamic cyclic environments which jobs arrive in
the shop floor in regular and perfectly predictable inteswaltime [11, 14, 15]dynamic
medium variability environmen{21,[26/47] which also have somehow predictable job
arrival patterns and consider some level of uncertaintytheioproblem parameters; and
dynamic high variability environmenfg7,31] in which arrivals of jobs is highly unpre-
dictable and certain events, such as machine breakdowrtsalsdinavailability are also
taken into account.

Table[2.2 summarises relevant references for these emv@wots considering different
types of disruption and proposed optimisation methodsh B and BB algorithms are
highlighted as commonly used techniques because they Erécahbpproximate optimal
solutions for NP-hard problems within reasonable companatme [92| 111]. Match-up
algorithms are also identified as common solving techniqumesa detailed discussion
about their application is presented in the following satbf this chapter. Other promis-
ing method is the use of hyper-heuristics in dynamic envirents, in which proposed
search techniques are able to select, combine, generatalaptiseveral simpler heuris-
tics to solve scheduling / rescheduling problems[16, 3 GteNhat no references are given
to static determinist problems because they belong to thepgof classical scheduling

problems, in which disruptions are not taken into account.

2.2.2 Rescheduling Approaches

Approaches which deal with disturbances in the productlmpscan be classified into
three main groups: (Ieactivescheduling; (2predictivescheduling; and (3)redictive-
reactivescheduling algorithms.

The main feature of reactive scheduling is that no inititlestules are generated and
real time control actions are applied to allocate the alklaesources over time. This
approach is also known as “online scheduling” given thaets & passive method that
react to unforseen events as they occur. Dispatching rRIES8|80], pull mechanisms

such as Kanban cards [44] and idling policies [19] are mastld to prioritise jobs that
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Table 2.2: Rescheduling relevant references
Environment Disruption Technique Reference
Static
Stochastic information
Machine breakdown Genetic algorithm [59]
Match-up algorithm [B]
Uncertain processing times, release and due-dates Brawdboaind algorithm, fuzzy variables [105]
Genetic algorithm, fuzzy variables [82]34]185,/87, 88]
Dynamic
Cyclic production
Machine breakdown Match-up algorithm [L11[14, 15]

Medium variability

Machine breakdown Mathematical programming, expert syste [26[35136]
Branch and bound algorithm [67]
Fuzzy variables [21]
Genetic algorithm [47]

New jobs Genetic algorithm 93]

High variability

Machine breakdown Match-up algorithm [L2.116]
Branch and bound algorithm [61]
Genetic algorithm [90]
Heuristics [

Uncertain processing times, release and due-dates Siamulat [24]

New jobs Heuristics [B1)
Genetic algorithm [13]

Machine breakdown, new jobs and order cancelation Sinoulati B3]

Machine breakdown and quality control Knowledge-basetesys [1031104]
Expert system [60]

Order changes Match-up algorithm [106]

Resource availability Tabu search 28]

Examination Timetabling Hyper-heuristics [16]

need to be processed next. These control actions can bemeanith machine learning
techniques, which are useful to select the most appropeafonse to a disruption based
on decision trees [6]. Alternatively, artificial neural wetks can be used to predict an
adequate control action/[7] and genetic algorithms can péexpto choose a population
of suitable actions [20]. A low computational burden is Uguquired for this approach.
However, aPerformancevalue is difficult to predict since no schedules are gendrate
Figure 2.1 shows an example of control actions using disjragaules. A single machine
problem with 5 jobs to be allocated is illustrated in Fightd 2a), in which the rules
shortest processing time first (SPT), longest processing first (LPT), first come first
served (FCFS) and earliest due-date first (EDD) are applieé.application of each rule
prioritises jobs that will be processed next. Note thateh@sorities have to be changed
if a new job arises in the shop floor, i.e. job 6 with releasestiin= 0, due-datel; = 12
and processing timgj = 2 . All jobs are reconsidered because, hypothetically, tinesat
time is 0 and they all have been already released at this ilmeupdates are illustrated in
Figure[2.1 (b). The other described control actions follbes $ame pattern used here, in
which a rule gives directions about how to prioritise theedition of jobs on the available

resources over time.
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ry dj Py
0 21 5 SPT 52 314
0 15 3 LPT 41325
0 5 4 FCFS 12 3 45
| 4 | o0 10 6 EDD 35421
0 6 1
(2)
SPT 562314
r; d; p; IPT 413265
| 6 | 0 12 2 FCFS 1 2 3 45 6
EDD 356421
(b)

Figure 2.1. Example of prioritising jobs using the followidispatching rules: shortest
processing time first (SPT), longest processing time fir&tT(L. first come first served
(FCFS) and earliest due-date first (EDD). Note that each gsbahrelease timg, due-
dated; and processing time;. Initially, the priorities are set between (a) 5 jobs and,
subsequently, between (b) 6 jobs.

Predictive approaches, also known as “robust schedulgegierate schedules with a
hope that it would be able to absorb any disruptions withoatgromising the schedule
Performanceldle times are allocated on machines in such a way thatdutisturbances
can be accommodated. The main idea is to preserve thelinpidduced schedule in
order to avoid extra production costs. Genetic algorith#7s3$9], fuzzy systems [10, 21,
26/28| 35, 36], branch and bound algorithms and simulatadaimg [61, 62] have been
used as components of predictive scheduling systems. Ast@ohedule is presented in
Figure[2.2, in which idle times were inserted on availablehires. For instance, a new
job 8 requires processing on machines M1 and M2, as in Figix€ad and it can be
inserted in the current schedule without changing the atiakocations, as in Figute 2.2
(b) and (c), respectively. As a matter of simplifying thisexple, the problem parameters
release time and due-dates are not considered.

Pure predictive and pure reactive approaches have theiations. A pure predictive

approach can only absorb a limited number of disruptioresetof a relatively low mag-
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Figure 2.2: Example of (a) a robust schedule, with (b) a ndwrgguirements and its (c)
resultant schedule.

nitude, before requiring a complete reallocation of thesjmithe shop floor. A purely re-
active approach is concerned with keeping neither the stb@&arformancenor theSta-
bility and it often generates highly suboptimal schedules. Rregliceactive approaches
are an alternative to overcome these drawbacks [8, 114}eligtive-reactive reschedul-
ing, an initial high quality schedule is constructed, ancewla high impact disruption
occurs, it is modified using an appropriate repair methods ptocess is subdivided into
three phases: (1) planning - to delimitate the initial sehed(2) controlling - to check
the production process; and (3) reacting - to set a respanseexpected events. Note
that all changes are done during the execution of the sche@énetic algorithms [93],
expert systems [106], simulation models![60], knowledgaelbanodels [103,104], heuris-
tics [31] and match-up strategiés/[3] 12] have been usecenigive-reactive approaches.
They constitute the strategy that has been mostly used ctigeefor rescheduling real
world dynamic manufacturing problems [13]. Figlrel2.3 (apws an initial schedule
produced to allocate 7 jobs on machines M1-M3. A new job &arand this initial solu-
tion has to be changed to accommodate the new requiremeahtseap the feasibility of

the schedule, as in Figure 2.3 (b). Two different alterreegtimre shown in Figufe 2.3 (c)
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Figure 2.3: Example of (a) a predictive-reactive schedwi#) (b) a new job require-
ments, and its (c) resultant schedule with minor and (d) meianges on the initial
allocations.

and (d) to insert this new job, in which minor and major changes done in the current
schedule, respectively. The most appropriated methoddseshbased on requirements

of each problem. Further details about repair methods arugsed in subsectibn 2.2.4.

2.2.3 Rescheduling Frequency

Rescheduling approaches are also classified according tieetiuency with which reschedul-
ing occurs. They are subdivided inp@riodic continuous event-driverand hybrid ap-
proaches.

In periodic approaches, the rescheduling follows preddfiirae intervals([90, 93].
This means that the current schedule is kept unchanged,ifezerecent disruption has

occurred, until the next predefined rescheduling pointasihed. In periodic approaches,
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schedules are changed relatively infrequently. Consetyéme Stabilityof the schedule

is maintained, which makes these approaches popular indostry [8]. The drawbacks,
however, are that theerformanceof the schedule may deteriorate when the rescheduling
frequency is too low and the fact that it may be difficult to defappropriate reschedul-
ing points. Near optimaPerformancecan be obtained when one disruption occurs on a
regular basis, i.e. a certain group of jobs that has to beggs®xl every month in a shop
floor.

In the continuous approach the schedule is modified whereemeiv disruption oc-
curs, regardless of its relevan¢el[23, 75]. Because of tinesStability of the shop floor
may be compromised when a large number of modifications, sdrieem unnecessary,
are done. Reactive and predictive-reactive schedulimyjqusly discussed in subsection
[2.2.2, are usually associated with this approach due to fibegiure of low predictability.
Note that schedules with higPerformancecan be produced since a scheduling problem
can be continuously re-optimised at a price of a higher caatfmnal burden.

The event-driven approach modifies the schedule only whemoitant event occur
[31/106]. This feature helps to overcome the drawbackseptas continuous approaches,
in which highly stable and good quality schedule are obthindote that the schedule
Stability may still be sacrificed when a large number of modificationseguired. In
practice, this approach is usually combined with repairhoés$ that control shop floor
Stability. More details about these methods are given in the followirgsection.

The fourth type of approach, so-called hybrid, reschedategredefined points in
time and whenever a critical event occurs|[28/ 60, 90]. €altevents are set accordingly
to the scheduler preferences and they identify the dishodmthat have to be tackled
during the schedule execution, such as machine breakdowgtsprders, job cancellation,
priority changes, among others. This approach combinegdbdStabilityand the good
Performancedrom the periodic and event-driven approaches, respégtidote that it is
possible to set alternative options mixing the other atsglapproaches, i.e. periodic in
the first moment and continuous in the next period. The airo cohsider the specificity
of each scheduling problem to define the best rescheduleagiéncy.

Figure 2.4 illustrates a match between rescheduling frecjae and possible approaches.

Periodic rescheduling is usually done on robust schedulesaltheir high predictability
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| Continuous | [ Event-driven |[ Hybrid | Frequency
| ! | >
low medium high Predictability
| Reactive | | Predictive - reactive | | Robust |  Approach

| Predictive - reactive |

Figure 2.4: Match between rescheduling frequencies ansiflesapproaches, based on
predictability of the produced schedules.

of upcoming events. Contrary, continuous approaches aguiéntly applied in reactive
schedules since a low predictability is presented by thewen&driven approaches are
usually associated with predictive-reactive schedulesiige their low predictability are
often managed by applying some repair methods. Alterngtiaehybrid approach can
be applied to these schedules due to the possibility of aumegdredictability, i.e. events
occurring on a regular basis coupled with other unexpeated.oln practice, good qual-
ity schedules are produced when the requirements of a slthgg@uoblem are combined

with a moderate rescheduling frequency.

2.2.4 Rescheduling Methods

The rescheduling methods are subdivided into two indepamteases: (13chedule gen-
eration, which determines how an initial schedule is produced; &)d¢hedule repair
which establishes how a current schedule recovers frontaadisn in order to restore its
feasibility.

The initial schedule may beominal which is a schedule generated with the only fo-
cus on optimisingPerformance[60,/90]. The problem with nominal schedules is that
they are highly sensitive to the problem data, which meaas iththe problem data
changes, due to unpredictable circumstances, PettormanceindStabilityof the initial
schedule are usually badly deteriorated. Despite thislenopmost of the literature on
scheduling is concerned with generating nominal sched@lEs In practice, they have

to be combined with appropriate repair methods in order tivetehigh quality sched-
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ules [70.73,74,116].

The initial schedule may also bebust[35], in which case it is generated with a pro-
tection against unforeseeable events. This protectiagsttie form of a certain amount
of idle time that is inserted on the machines, between jobsse purpose is to absorb a
number of disruptions without severely compromising be¢informanceand Stability of
the schedule. The main drawback with the generation of tadmsedules lies in the dif-
ficulty of defining the size of the temporal protection; tooahunserted time inevitably
deteriorates the scheduferformancetoo little and the protection is useless.

An example of a nominal and a robust schedule is shown in E[@ (a) and (b),
respectively. The nominal schedule only prioritisesRe&sformance in which no idle
times are inserted on machines and all required operatiengracessed as soon as pos-
sible in the shop floor. Contrary, the robust schedule allawsrtain level of flexibility
since idle times are present on both machines M1 and M2, wdirahito manage possi-
ble disruptions and keep a good quality stable schedulee that both schedules finish
the processing of their operations at the same time and tiygaiel protection present in
Figure2.5 (b) does not compromise the sched@dormancesince, hypothetically, the
makespan is used to check its quality.

The repair methods restore the feasibility of the schedblendisruptions occur in the
shop floor and they are subdivided imight / left shift completeandpartial rescheduling.

Basic methods such as right and left shift are commonly usedactice because they

produce stable schedules([1]59,[67,90]. When a disruptoars, assigned operations
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Figure 2.5: Example of (a) a nominal and (b) a robust schedule
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may be either postponed or executed in advance dependitng oew requirements. For
instance, the insertion of a new job may require postponieg,shifting to the right, a
number of operations, whereas the removal of an assignedggirause other operations
to be shifted to the left. Such rules deliver stable schexldeause the sequence of opera-
tions on machines is kept unchanged. HoweverP#gréormances usually compromised
due to the absence of optimisation methods during the pgsma pulling processes.
An example of an initial schedule is presented in Fiquré a)6i6 which a new job has
to be inserted at the highlightedscheduling point The new job requirements and the
resultant schedule applying right shift are shown in Figgi& (b) and (c), respectively.
Subsequently, job 4 is removed, in which the left shift mdtisapplied. Note that only
job 7 is moved backward because job 8 sets a precedenceainhsirexecute its oper-
ations in a predefined sequence, as in Fiqure 2.6 (d). ThelskeHeerformancecan be
mainly affected because some jobs may become tardy aftersfigfting their allocations.
Similarly, tardy jobs that were allocated in the initial sdule are not rearranged to use
the extra space provided by the removal of some jobs, whighafiect its overall quality.

The complete repair method, also known as “total reschegilreallocates all the re-
maining operations present in the shop floor consideringyéwerequirements presented
by disruptions. This method often leads to higérformancevalues because the same
scheduling problem is continuously optimised![13,/31, 98% a result of these several
changes, a very loBtabilityis frequently associated with this method. In practicealtot
rescheduling is usually avoided because it generatesi@a@iimanufacturing costs re-
lated to the holding of raw material, machine setups, andrstland is computationally
expensive. A reasonable solution to use total reschedigdittgcombine it with optimisa-
tion functions that aim to maximise boBerformanceand Stability during the repairing
process([74]. Figure 2.7 (a) shows a schedule, in which a gsbtt be inserted at the
highlightedrescheduling point The new job requirements is shown in Figlrel 2.7 (b).
The schedule is repaired and all the remaining operatidasthaierescheduling poinare
reallocated to accommodate the requirements of the newgpaslin Figuré 2]7 (c).

In partial rescheduling, only those operations affectedibyuptions are reallocated.
The aim is to preserve as much as possible the current sehsithgle it hypothetically

sets an optimal solution. As a consequence, schedules awe stable than with to-
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Figure 2.6: Example of (a) an initial schedule, with (b) a njetw requirements, and its
(c) resultant schedule when job 8 is inserted using rigHt ahid, subsequently, (d) the
removal of job 4 applying the left shit method.

tal rescheduling. Moreover, partial rescheduling oftehvdes schedules with similar
Performancevalues as with total rescheduling, hence their populantpractice. Par-

tial rescheduling may use (1) match-up algorithms, in whiatdified schedules try to
match-up its optimal initial solution as soon as possil#t¢ khowledge-based models, in
which the most constrained area of the scheduling problgmidgsitised to be resolved
first; and (3) robust scheduling, in which minor changes maydguired in order to use
idle times to absorb new disruptions. A general example asvshin Figure 2.8 (a), in

which the same job 16, introduced in the previous example thde integrated in the
current schedule at the highlightexscheduling pointNote that only a part of the current

schedule has to be changed to insert this new job, i.e. sleggdtions. Consequently, a
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Figure 2.7: Example of (a) an initial schedule, with (b) a njetw requirements, and its
(c) resultant schedule when a complete repair method isegppl
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Figure 2.8: Example of (a) an initial schedule and its (bul@sit allocations when a
partial repair method is applied.

more stable schedule is delivered in Figluré 2.8 (b), whenébimpared with a complete
reallocation previously shown in Figure .7 (c).
Figure[2.9 summarises the rescheduling methods matchitigsisheduling genera-

tion and repair with possible rescheduling approaches. iNalrachedules are associated
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Generation Approach Repair
Noschedule | —» Reactive
| —> | R |
Nominal —» | Predictive - reactive Right / left shift
e
> — | Complete |
| Robust | —» | Predictive | T | Partial |
J

Figure 2.9: Match between generating schedules and pessiproaches, together with
their applicable rescheduling repair methods.

with predictive-reactive approaches because the absdmtisroption prediction always
requires some repair. Contrary, robust schedules are yregglied with predictive ap-
proaches since they aim to absorb disruptions insertirgytidies on machines. Note
that both nominal and robust schedules may use the samedediciy repair methods
if the available idle times are not enough to accommodatedbhairements of the new
disruptions. Consequently, all repair methods can be &dsdowith either predictive or
predictive-reactive approaches. As a matter of complsteneactive schedules do not

generate an initial solution, hence no repair has to be done.

2.3 Match-up Approaches

Match-up algorithms start with an initial schedule, and adaeer a disruption occurs, a
time window within the schedule is defined, re-optimisedrigknto account the new
disruption(s), and put back into the initial schedule. Treigair is achieved by collecting
available idle times on machines and changing a part of thewuallocations to accom-
modate the unexpected event(s). These algorithms ar@aifiginspired by the “turnpike
theory” [6€], in which an initial patch between two pointsshia be restored as soon as
possible, since it already defines an optimal solution.

Match-up algorithms may belong either to the class of ptegiaeactive approaches
or to the class of predictive approaches depending on whétleg start with an ini-

tial nominal schedule or a robust schedule, respectiveheyTalso belong either to the
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class of continuous approaches or to the class of evergrddpproaches, depending on
whether the rescheduling is triggered at every disruptioondy after the occurrence of
what may be considered a relevant event. Additionally, matz algorithms belong to the
class of partial repair methods since they only modify a p&ttie schedule when accom-
modating occurring disruptions. The match-up approachgsgsed in this thesis initially
investigate predictive-reactive and event-driven apghnea, since the initial schedule is a
nominal one and the rescheduling process is triggered winemwgob enters the system.
Note that job arrivals are relevant disruptions becausg tfiten compromise multiple
resources in the shop floor. Further details are presentédiacussed in chapters 4 and
B. Subsequently, predictive approaches are also invéstidgpecause their strategy of in-
serting idle times on machines could possibly contributiiaéoeffectiveness of match-up
approaches, as described in chappter 6.

Match-up approaches are attractive given that they are &aspnceptualise and
because they provide good results not only with respect hedidePerformance but
also Stability. Nevertheless their application has been limited only tonalsvariety
of problems, most of which are of a more theoretical than tpralcimportance. For
instance, match-up algorithms have been used in predictaetive approaches to re-
pair single machine shop flooris |11/14}/15,/116] and singlgestvith parallel machine
shop floors|[12]. Flow shop models have been considered iari8]job shop problems
in [1,197,103, 104, 106]. A detailed description of theseesithing models can be found
in [91]. This thesis and its resultant paperslin|[70,72—fé]the only attempts to use
match-up algorithms in a complex production shop floor wimdhudes multiple criteria,
setup times and parallel machines.

An essential part of match-up approaches is the algorithomamge of re-optimising
the rescheduling horizon. In most cases, re-optimisatigorghms have been relatively
simple scheduling heuristics; however,[in [1,97,/103|104,107] considerably complex
knowledge based systems have been investigated. In thesarsy previously stored
knowledge, obtained after experience (training), is usesktect a rescheduling strategy
which is expected to be appropriate for the current resdimegdproblem. These methods
select the most constrained part of the schedule as thesgislaing horizon. An important

drawback of this is that constraint violations may propagaia large part of the schedule,
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requiring multiple repairing iterations that compromisstbPerformanceand Stability

of the schedule. The investigation presented in this thesisthe research presented
by [11€] are the only ones using genetic algorithms as revogation engines of match-
up algorithms.

As previously mentioned, another important feature that owentribute to the match-
up approaches effectiveness is the algorithm in chargeradrgéing its initial predictive
schedule. Robust scheduling has been mostly investigateéchine breakdowns prob-
lems, in which a single resource is usually compromised byugtions on the shop floor.
These problems have been using fuzzy processing time agabkeetime to manage tem-
poral uncertainties [21, 35]. Alternatively, branch andibo heuristics [61, 67], genetic
algorithms|[47,509] and temporal protection based on histbdata of the resources allo-
cation [26] have been used to produce schedules that ainstwlabccurring disruptions.
Jobs with changing processing times are investigated i) {2Bich also applies fuzzy
variables to set durations of operations. The researclepras this thesis and its resul-
tant paper in[73] are the only applications of match-up atgms with robust scheduling

to a complex real world job shop problem.

2.4 Discussion

All rescheduling features, presented in the previous sestihave their strengths and
limitations. For instance, static environments set deterhypothetical problems because
all information is always given in advance, which allows atimal schedule to be mostly
executed as initially planned. Unfortunately, real woitda&tions are not that predictable
and unexpected events often occur in the shop floor, whichllysequire rescheduling.
These problems belong to the class of dynamic environments.

Different algorithms can be applied to manage uncertaingggnt in dynamic envi-
ronments. For instance, reactive approaches do not createdule and real time control
actions are applied to allocate the available resourcastiove. However, &erformance
value is difficult to predict and the shop floor productivigncbe easily affected. Alterna-
tively, predictive algorithms produce robust scheduldsictvaim to absorb some disrup-

tions using extra idle times that were inserted on machinaaglthe schedule generation.
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The main issue presented by this approach is how to definentbera of this temporal
protection without affecting the overall quality of the sclules. Predictive-reactive algo-
rithms aim to overcome those drawbacks, in which an inifiroal schedule is produced
and it is subsequently changed when a disruption occurss dgproach, however, may
easily compromise the sched@¢abilityand an effective repair method, suchpastial
reschedulingmust be applied in order to produce a high quality and stdilgion. Note
that complete rescheduling and right / left shift usuallpgr@ate suboptimal repaired so-
lutions, because they either optimise the scheBalformanceor Stability, respectively.

The rescheduling frequency is also an important factor witientrols the quality
schedules. Periodic approaches guarantee stable sslubecause the rescheduling is
done only at predefined rescheduling points. The main diffiési to define these points
in order to avoid thdPerformancebeing deteriorated. Contrary, a continuous approach
sets schedules with godeerformanceand poorStability because a problem is continu-
ously optimised whenever a disruption occurs. Event-draygproaches aim to overcome
those drawbacks requiring rescheduling only when a ctiéieant arises in the shop floor.
Alternatively, hybrid approaches can be applied to combueepreviously described op-
tions, i.e. rescheduling at predefined points and whenevenportant event occurs. The
aim is to consider the specificity of each scheduling prohlemrder to define the best
rescheduling frequency.

In summary, a reasonable approach to manage real worldgonsbé to consider pro-
duction scheduling as a dynamic environment, in which gisoms occur and a reschedul-
ing process may be required. Predictive-reactive and girediapproaches are suitable
strategies to model these problems when&®easformanceand Stability are considered
to be relevant factors during the schedule execution. Maeevent-driven or hybrid
approaches coupled with partial rescheduling are higtdjlas good repairing methods
because they aim to deliver high quality and stable schedule

This thesis and its resultant papers investigate a realdvaythamic environment, in
which new jobs have to be integrated in a current schedulé Aroblem is a generali-
sation of possible disruptions because its requirementslale to compromise not only
one, but many resources present in a shop floor. A partiairrephod called match-up

is responsible to accommodate these disruptions with theodkeeping good schedule
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Performanceand Stability. This study represent the only attempts to employ match-up
algorithms in a complex production shop floor which includesltiple criteria, setup
times and disruptions affecting multiple resources. Tlagerithms are initially applied
following a combination of predictive-reactive and evenitten approaches, since initial
optimal schedules are changed when relevant disrupticiesseon the system, i.e. the
arrival of new jobs. Subsequently, predictive approachiesaso investigated because
their strategy of inserting idle times on machines could@fpositively the rescheduling

process. More details about these investigations aresisdun the following chapters.

2.5 Summary

This chapter describes a literature review of rescheduiggrithms, in which a tax-
onomy of possible environments, approaches, frequencyrattods is presented and
discussed. The aim is to provide a guideline to understdateceterminologies, applied
strategies and their limitations. This taxonomy is subsetjy linked with match-up algo-
rithms and their possible combination with robust schesluidnich are the main research
topics investigated in the following chapters of this tlsesi

Areasonable approach to manage real world problems is d@rproduction schedul-
ing as a dynamic environment, in which disruptions occurarescheduling process may
be required. Both predictive-reactive and predictive apphes are suitable strategies to
model these problems because they either re-optimise antigolution or try to absorb
unexpected events, respectively. Event-driven or hylpp@aches are suggested as good
rescheduling frequencies because they are able to ps@atily relevant disruptions, de-
livering high quality solutions. Match-up algorithms aeseommended as repair methods
due to their ability to keep as much as possible an originahag solution, which posi-
tively affect bothPerformanceandStabilityof schedules.

The match-up algorithms proposed in this thesis are condleitber with predictive-
reactive or predictive approaches, at a event-driven &egu Their application has been
limited only to a small variety of problems, most of which area more theoretical
than practical importance. The research present here smdsitiltant papers represent

the only attempts to employ match-up algorithms in a compéat world shop floor
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which includes multiple criteria, setup times, parallelamiaes and disruptions affecting
multiple resources.

Fuzzy logic concepts are employed to manage the uncedsithtat are present in the
analysed shop floor. The main aim is to control ongoing vamaton processing times,
release and due-dates; and minimise possible effects ofrrireg disruptions. Conse-
guently, the following chapter provides an overview of fyaystems and their link with

scheduling / rescheduling problems.



Chapter 3

Fuzzy Systems and Scheduling

3.1 Introduction

This chapter describes an introduction to fuzzy systemsclwlepresents an effective
means to manage uncertainties that are always present imodd problems. The aimis

to introduce their essential concepts and show an examplédioreate them. Addition-

ally, these concepts are linked with requirements usuaéiggnt in scheduling problems,
such as uncertainty and flexibility for making decisions gmamic problems. Further
investigation about applying these concepts to a real wanddlem is described in the
following chapters of this thesis.

The human being has the ability to handle complex processets alaily routine,
which often involve approximate reasoning. The ways adbpte human operators to
manage such situations has also inaccurate sources, chesfawt that people commonly
use linguistic terms in their decision making, using wordestsas “high”, “low”, “very”,
“little”, among others.

The classical logic described by Aristotle, also known asdard logic, classifies ob-
jects in well-defined categories, in which “everything” ha®e or not to be “something”,
either now or in the future. Although this binary logic has #bility to solve an extraor-
dinary range of problems, it is necessary to fulfil remairgags that are not adequately
addressed by these traditional methods. Fuzzy logic casibeimg more flexibility to this
binary classifications, in which new “degrees of truth” avaimble between “yes” and

“no”. These degrees can be compared as shades of gray bdil@ekrand white, which

29
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gives a generalisation of the Aristotelian logic.

Important philosophers, such as Bertrand Russell and Ahastein, highlighted the
inability of standard logic to manage real world problem#$eTollowing thoughts are
attributed to Russell showing his position: “Every langeiag vague”, “All traditional
logic habitually assumes that precise symbols are beindomg’. “Therefore, this is
not applicable to terrestrial life, but only to an imagindrgavenly existence” and “...
you cannot imagine how it is vague until you try to do it actel@. The following
statement is attributed to Einstein : “When the laws of maihigcs refer to the reality,
they are not correct. But, when these laws are correct, theyotrefer to the reality”. A
Polish mathematician called Jan Lukasiewicz developedl-nalued logic in 1920([63],
discussing mainly the law of contradiction, in which a sta¢&t such as “X and Y can
be and not be something at the same time” is perfectly plejsibmathematical terms,
since the degrees of truth are not only bivalent as true dad.fa

But it was in 1965 that the fuzzy set theory was conceived loya3sor Lotfi Zadeh
at the University of California, Berkeley. The aim was taaaduce a more flexible logic,
called Fuzzy Logic, creating a method to translate verbptessions (vague, imprecise
and/or qualitative) to tractable numerical values [118pf@ssor Zadeh also formulated
the principle of incompatibility in 1973, stating that: “Ake complexity of a system
increases, our ability to make accurate statements anatbdaignificant about this sys-
tem decreases until a threshold is reached, beyond whidispme and significance (or
relevance) become almost mutually exclusive characiesiqi119]. Additionally, there
is an inconsistency between the human creativity and thsilmib8es offered by binary
machines. Therefore, the concepts presented by Zadematenihose restrictions by
providing a mathematical tool for handling properly the wagess present in real world.

Fuzzy logic systems were firstly explored in commercial readontexts due to the
resistance of scientists. However, they have been designédnhanced in academic
contexts after their effectiveness has been prdved [108.fifst commercial applications
were in the control area, both in process automation andgigpmn. Since then, there has
been an increasing use in various scientific fields such asifitation, series forecasting,
data mining, planning and optimisation. Some successfainges are: speed control,

acceleration and braking of the trains in Sendai subwayafdamltra-fast chargers for
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NiCd battery of Bosh, smoke detectors Cerberus (Switzdjlamage adjustments for
Sony Tvs, auto-focus video camera for Canon, Hitachi etegabptimisation, among
others [101]. Consequently, fuzzy logic represent a moadistec way to model real
world problems, allowing binary machines to work closelyjhtanan thinking, which is
inherently “fuzzy”.

The remaining of this chapter is organised as follows. 8af8i2 introduces the con-
cepts of fuzzy variables and sets. Section 3.3 describeddeet fuzzy rules and make
implications. Sectioh 314 presents the structure of a gefezzy controller. Section 3.5
combines the previous concepts describing a detailed dear8pctiori 3.6 discusses the
application of fuzzy logic to scheduling problems. Fina#lgction$ 3]7 and 3.8 conclude
this chapter.

3.2 Variables and Sets

The concept of membership of an element to a particular setlisiefined when classical
Aristotelian logic is used, which means that using thelaite of bivalence it is possible
to set a function to identify whether an element belongs ato@ specific group. For
example, given a sét in a universe of discoursg, the characteristic functiofp(x) = 1
defines whenx € A and, consequentlyfa(x) = 0 whenx ¢ A, wherex is an element of
the universe of discoursé.

However, there is a mismatch between the real world and swakeht approach, i.e.
how to define correctly when a persornyisung or when the weather isot In the real
world, everything is a matter of perspective and very sttéfinitions may certainly lead
to loss of information. Therefore, a multivalent approasheiquired to define gradations
between true and false, in which possibilities of intergtieh are extended. The concepts
of fuzzy logic allow to capture such degrees of truth of staats, working with the
uncertainty and partial truth of natural phenomena in aesgatic and accurate fashion
[101]. Consequently, the characteristic function can n@ndbfined as a real number
belonging to the intervdl0, 1], eliminating the restriction of the values being described
as only 0 or 1. The membership functipr(x) indicates the membership degree (or

compatibility) of an element to setA within the universe of discoursg, with:
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* pa(x) =1 whenxis fully compatible withA;
* pa(X) = 0 whenx is completely incompatible with,;

* O<pa(X)<1 whenx s partially compatible wittA, assuming the valuga(X).

Figure[3.1 shows a comparative example of the set “hot” uiergboolean (a) and
the fuzzy (b) approaches. In the boolean approach, temyesatip to 2%C are not con-
sidered to be hot and this status abruptly changes to hot wélers exceed this point.
This definition is rather restrictive because there is nasar different perspectives re-
garding the feature temperature. On the other hand, thg aroach sets that elements
with values greater than 2G become part of the set “hot” with an increasing membership
degree, with its minimum and maximum value aP@@nd 25C, respectively. This def-
inition brings flexibility to identify degrees of represativeness that a value can assume
within a certain set.

A representative fuzzy variable can be built when its urseeasf discourse is subdi-
vided into different fuzzy sets, in which each set has antifieation label. Figuré 312
shows a graphical representation of the fuzzy variddheperaturewith these subdivi-

sions. The universe of discourse is delimited by tempeeatuith values betweerfG

: A not hot hot
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(a)

A not hot hot

Membership
degree (p)
o
()]

i >
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Figure 3.1: Comparative example of the set “hot” using thel&an (a) and the fuzzy (b)
approach for the variabkemperature
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Figure 3.2: Fuzzy variableemperature

and 50C. The variableemperatures then subdivided into 3 fuzzy sets: cold, normal
and hot. Each set has an interval to describe the relatearéeate. cold, normal and hot
have the following interval§0, 20, [15,25] and[20,50], respectively. Note that shapes
and position of each set within the universe of the discounfledepend on the expert
preference, which takes into consideration the complexityye model and the required
computational costs. In practice, simple functions, sushriangular, trapezoidal and
Gaussian, are the most commonly used to describe fuzzy sedsife they simplify the
computation and produce good results. These sets quitereitgire some tuning before
becoming good representatives of a variable.

A temperature of 22C is highlighted by a thin arrow in Figufe 3.2. This temper-
ature belongs to both sets normal and hot with the followirembership degrees 0.8
and 0.2, respectively. Consequently, the same elemean simultaneously assume dif-
ferent membership degrees to different sets, which is septed bya(x), in which
Mnormal(21) = 0.8 andpnet(21) = 0.2. The flexibility is a important feature present in
fuzzy variables, because their labels are not necessaiglysve. This kind of defini-
tion also allows the identification of elements that are nrefesentative of a general
idea of a specific set, i.e. as closer the valyéx) is to 1.0, the greater is the degree of
representativeness of the linguistic term applied.

Operations between fuzzy sets are calculated based onphecamembership func-
tions. According to Zadeh [118], the inclusion function tbe union U of two sets A
and B (U= AU B) is defined asty (X) = max(pa(x), Us(X)), for an elemenk within the
universe of discours¥. The intersection | between the same sets A and B (I=B) is
defined agy (x) = min(pa(x), ps(X)) with x € X. Finally, the complement function C of a

set Alispc(X) = 1 —pa(Xx)) with x € X. These configurations are equivalent to operations
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described in the classical set theory, in which possiblaeshre described between the
interval [0,1] and not only O or 1 anymore. Alternativelyhet definitions for the union
and intersection operators has been investigated by athearchers [25,117].

Note that the “Law of Non-Contradiction” (A — A = @) and the “Law of Exclusion”
(A U—A =E)are notincluded in the fuzzy approach. The classical lagiald identify
as a contradiction elements belonging to a set and its conguiesimultaneously. For
instance, a temperature would not be able to be part of te€'rset hot” and “hot” at the
same time. The fuzzy variabtemperaturas illustrated again in Figufe 3.3 (a), in which
the intersection between the sets “not hot” and “hot” areamapty. Note that a day with a
temperature of 22% is considered to be “hot” and “not hot” with the same memihigrs
degree of 0.5 to both sets. Similarly, Figlrel3.3 (b) showas the union between these
sets does not cover the entire universe of discourse ofblatemperaturewhich means

that there is an “uncertainty” factor for values betweef@@nd 25C.

3.2.1 Hedges

Fuzzy variables can have also their meaning intensifiedt{enaated) by hedges, which

act like adverbs and adjectives to modify the meaning of spsach as the temperature

A not hot hot

1

Membership
degree ()
=
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>
0 20 225 25 temperature (°C)

(a)

not hot hot

Membership
degree (1)

0 20 225 25 temperature (°C)
(b)

Figure 3.3: Intersection (a) and union (b) between the fiegtg “not hot” and “hot” for
the fuzzy variabléemperature
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today is “very” cold, and the water yesterday was “somewhbatd. The main idea is to
intensify (or attenuate) membership functions in such athayfuzzy variable represen-
tatives assume higher (or smaller) values between thevaiti),1]. A graphical example
from the previous sentences are shown in Figure 3.4 (a) gnce@pectively.

Note that “very” cold defines a more concentrated represientdor the variable
temperaturewhile “somewhat” cold sets a more dilated area for the éeivater. A
temperature of 1%€C is definitely a member of cold, but less of a member of “veryttic
Similarly, the water at 18 is a member of cold, but more a member of “somewhat” cold.

The modifier “very” will be used on Chaptér 6 to describe a furariable of the

investigated scheduling problem.

3.3 Logical Implications and Inference Rules

Logical implications are commonly used by human beings tmtdate connections be-
tween causes and effects, in which inference rules are imarsdg or unconsciously cre-

ated in the following formatif (antecedentghen(consequents).
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o
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>
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e

(b)

Figure 3.4: Hedges “very” and “somewhat” applied to the fuget cold from variables
temperaturendwater, respectively.
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These rules can combine several antecedents (premisegjoasdquents (conclu-
sions) by using logical operators such as “and” and “or”. $tracture of a fuzzy condi-
tional proposition is similar to the boolean logic, in whisigns such as:, > and= can
be easily replaced by linguistic terms as “lower”, “largarid “equivalent”. However, the
interpretation of a fuzzy rule is rather different when carga with a traditional rule.

In the boolean logic, a conclusion is inferred only if thetestaent of the antecedents
is considered to be true. For instance, a rule having onlyedives “and” must have
all premises as positive to validate its conclusions. Orother hand, rules having only
connectives “or” must have at least one of its premises tuefér the conclusions.

In the fuzzy logic, the premises may take degrees of trutimiimeerval between com-
pletely false and entirely true. Therefore, evaluationghefantecedents can be analysed
through the operations defined by Lotfi Zadeh, in which ther@jpesmaxandmin are
representations for the classical operators “or” as unmeh‘and” as intersection, respec-
tively [118]. For instance, consider the rulgf “(ais A) and (b is B or c is C) then(d
is D)”, with the following degrees of inclusiopa(a) = 0.7, pug(b) = 0.3 andpc(c) =
0.5, then the assessment would generate the following rgs(a) N (us(b) Upc(c)) =
min(0.7,max0.3,0.5)) = min(0.7,0.5) = 0.5. This result reflects the membership degree
of the conclusion D, i.e. the degree of relevance that theegquent has over the set D.
Note that multiples rules can be activated during the imfeggprocess. A more detailed
and graphical example is described in secfion 3.5.

It is important to highlight that several rule-based systeran be created based on
interviews with experts, which usually have a solid expsreabout the context of the
proposed application. Therefore, the freedom of a systesigder to change the structure
of inference system is related with their understandingiatiee descriptions provided by
the specialist. On the other hand, much less adjusting snexpected for this type of
system, since the experience of the expert will be embedudlei rules, which often
contains the best performance.

The knowledge base of a controller contains the combinatfaadl inference rules,
which will perform all the desired control actions under @fied conditions. Table 3.1
shows an example of inference rules applied to control thel lef an air conditioner,

in which the input variableseemperatureandhumidityare combined to generate the ap-
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Table 3.1: Fuzzy rules for the inputsemperatureandhumidityto decide the appropri-
atelevel of the fan

Fuzzy rules;
r ro rs ra s e
if temperature  low low medium medium high  high
and humidity low high low high low high
then level very low low medium medium-high high very high

propriatelevel of the fan. For instance, a day with ldwmidityand hightemperature
activates the fuzzy rules, which sets the fan ttevel high. A more extensive discussion
about setting rules are presented in sedtioh 3.5.

It is important to have as many rules as necessary to map rabioations of input
variables in order to create a complete knowledge base hwihggers at least one rule
independently of the input. The consistency between ruleskso essential since con-
tradictions and cyclic situations must be avoided [99]. eNibiat rules can have multiple

inputs and outputs. However, they do not accept the corvegti” in conclusions([48].

3.4 Fuzzy Systems

Computer science is based on the principle of bivalencehinlmbits assume either value
0 or 1. Regular computational procedures do not have th@yatailrecognise linguistic
terms, which are commonly used in the human communicatibe.flizzy logic concepts
aim to fulfill this gap setting degrees of truth for statensantsuch a way that machines
can successfully process such information.

There are many types of fuzzy systems presented in thetiliteraThe most com-
monly used are the classic ones described by Mamdahi [65].areen [56]. Alterna-
tively, other approaches were proposed by Takagi-Suge®d®)| [dnd Tsukamota [113],
in which interpolation techniques are added to describe thedels. These types are
discussed in details in section 3)4.3. All of them have thraes@asic representational
structure shown in Figuie 3.5, which is an adaptation of #cdption present in [57].
Note that different systems may have different requiresidapending on their specifica-
tion. Figurd 3.5 shows a general model to identify how thermiation flows in a typical

fuzzy system. All inputs and outputs are crisp values anflthey controller defines three
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Fuzzy CONTROLER
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input Fuzzification | ______ > Inference  |_______ > Defuzzification output
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Figure 3.5: Typical structure of a fuzzy controller

main processes in which the inputs are fuzzified, and thenfaneince procedure uses a
knowledge-base containing sets, operators and rules &raena control action, and fi-

nally, the outputs are defuzzified. A brief description ofleatep and their associated
modules are described in the following subsections. Sulessty, sectioh 3]5 presents a

complete example of the whole process.

3.4.1 Fuzzification Method

The fuzzification method evaluates all the input values aag@ them into fuzzy sets. In
other words, this process converts a crisp number into ayfame in such a way that a

numerical number becomes an instance of a linguistic vigiab

3.4.2 Knowledge Base

The knowledge base stores all the information about thessetoperators of the fuzzy
model, describing the universe of discourse of each vajdbeir membership functions
and their respective linguistic terms. Additionally, itshéhe inference rules, which are

responsible to configure a control strategy and its goals.

3.4.3 Inference Procedure

The inference procedure combine the system rules, dedarltke knowledge base, with

the input data transformed into fuzzy variables. As a resalitrol actions are regenerated
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based on the current state of the system, in which implioatjgerators such a$ and

thenare applied. This process is described by the followingsstap in[[99]:

1. Check the membership degrees of the inputs;
2. Determine an overall degree for each activated rule;

3. Determine a conclusion value, based on the membershie&led each activated

rule, which can be a crisp or a fuzzy number;

4. Combine all the values obtained by all activated rulesdepto generate an output

with a global control action.

In a classical fuzzy model, the conclusion of each rule $jgsca fuzzy set. Con-
sequently, it is necessary to apply an aggregation teceniquthe antecedent sets for
each rule in order to generate a consequent set. The foljomvodels will be described:
Mamdani, Larsen, Takagi-Sugeno and Tsukamoto.

In the Mamdani model, this aggregation is done by applyirgdperator “intersec-
tion” (minimum), in which the consequent is cut horizongatfi the lower level of inclu-
sion activated by applied rules [65]. Figurel3.6 shows anmgta of two inputsc; and
X, simultaneously activating two fuzzy set&;—-A, andB;—By, respectively. The com-
bination of antecedent#; andB;, and A, and B, generate the conclusio® andC,,
respectively. Note that the consequent €&t@andC, were cut in the minimum degree
of inclusion of the antecedenfs andB;, andA, and By, respectively. The combina-
tion of the antecedents; andB,, andA,; andB; were not considered just as a matter of
simplifying this example.

In the Larsen model, this aggregation is done by the opetatoduct”, which has a
flattening effect on the consequernits|[56]. Fidure 3.7 shbesame example previously
presented in Figurle_3.6, but now using the Larsen approalb.inferences obtained in
C1 andC2 are results of a proportional reduction when the antededgrandB;, andA,
andB; are combined, respectively.

Lets consider that the only generated consequent€hm@ndC2, as shown in both

Figure[3.6 and Figurie_3.7. The next step is to combine thessecpients int€’ by using
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Figure 3.7: Example of a classic Larsen model

the aggregation operator “union” (maximum), which are hglited in the previously
mentioned Figures for both Mamdani and Larsen models.

In the fuzzy interpolation models, each consequent is gbyea monotonic function,
which is usually unique for each activated rule. These fonstare generated using
training and validation samples, in which weights are aeégisn order to set control
actions. This process follows the same principle used byah@etworks([96], in which
the use of historical data allows the prediction of expeetettbns.

In the Takagi-Sugeno model, this function is a linear coratom of inputs, in which
parameters are defined as a set of constants [108]. Higui#udiBates this approach,
using the same example described for classical models. fteeedents aggregation is

done by applying the operator “intersection” (minimum) a#th activated rule defines
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Figure 3.8: Example of a Takagi-Sugeno interpolation model

a monotonic function. For instance, Al with B1 activatesriie y; = f1(x;x}) = do+
d1x3 +d2xg, in whichdp, d; andd; are weights for the monotonic function. Subsequently,
a crisp valuey; is obtained, sincg;, andx;; are substituted in the functioi together with
the previously defined constardg, d; andd,. The same procedure is followed for the
second rule, in which A2 and B2 are combined.

In the Tsukamoto model, the function is usually nonlinédr3Jl Figure 3.9 shows
this approach applied to the previous example. A referemteet minimum membership
degree is still applied, but the consequent is now set witheadpfined function. As in
the Takagi-Sugeno model, crisp values are generated fordy’, combining Al and B1,
and A2 and B2, respectively.

“,1“ Al H1A Bl : “,1“ Cl
1
\ 1%
- A\ - : -
0 5 10 P
a I c
u A A2 i A B2 | 08 A CZ
1 1 I 1
1
I o,
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0 70 b ! ol :
I
X, * xp* min

Figure 3.9: Example of a Tsukamoto interpolation model
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Note that each rule sets a consequent value when interpolatodels are applied,
and consequently crisp conclusions are defined. An ovearattal action is then obtained
when a weighted average of these individual conclusioraléutated, i.ey; andys, from
both Figure$ 318 arld 3.9, where the weights are the mempetegrees of the inputg
andx; [29].

3.4.4 Defuzzification Method

The defuzzification method is responsible to create a cbatteon based on results pro-
vided by the inference procedure. In other words, it tramsfothe consequent fuzzy sets
into a “crisp” output value. Note that only classic fuzzy netglrequire this procedure,

since mathematical functions used in interpolation modektsady set accurate outputs.

The defuzzification methods most commonly used are desthbw:

 First maximum value: the curve generated by the conseduery sets is analysed

and the first point of maximum of this curve defines the output;

» Average between maximum values: same idea as the previeti®d) but all max-
imum values are considered and an average point among tleacudated in order

to set the output;

» Centre of gravity: the area defined by the consequent fuztgyisevenly subdivided

by a centre point, which represents the required output.

The selection of the defuzzification method is done by taking consideration the
expected behaviour of the control system. For instancéy im&thods “first maximum”
and “average between maximum values” are not suitable tnaehine operation modes,
because abrupt changes will be often inferred by the systeithese bumps could easily
damage the involved equipments. For this problem, the ndetentre of gravity” would
be recommended, since the generated control actions aseno

There are other defuzzification methods, in which diffefantors, as speed and effi-
ciency, are considered [29,38]40,[78/81,99]. Note thatrtbst appropriated method for

a system depends on the specificity of each problem.
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3.5 Example

A classic problem of parking a truck [34,/50,51] is descriloethis section in order to
demonstrate the steps previously described in seCtidn B illustrative example is
selected because it provides clear details about gengratizy inferences and, more
importantly, it is quite simple to be understood. Note thaizzy scheduling example is
subsequently described in section 3.6.

The problem starts with a truck parked in a random positioy) with an angleg
with the horizontal line. The paifx,y) specifies the central position of the truck’s back
and the goal is to define control actions to allow the truckdach the final parking
position(xs,ys) with angleg= 90°, in which maneuvers are only made when the vehicle
is reversing. Figure_3.10 identifies the truck, in the posifi,y) with its respective angle
@ with the horizontal line, and the desired final parking gositxs,ys).

At each step of the simulation, the fuzzy system has to p@dutation angl®,
which updates the position of the steering wheel, allowhgtruck to develop a patch
toward his goal on the positiofxs,ys). The anglef is initially set to zero, in which
wheels are considered to be parallel to the side of the \hiktlis also assumed that
there is enough space for the truck to make several movesawgtinstant speed The

following equations describe the movement between theiposi(x,y) and(X,y'):

VIRTUAL AREA

Parking area  (x; y))

Figure 3.10: Representation of a virtual area with the trat its parking area
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(

¢ =0+0
X = Xx+r(cosy)
Y =y+r(sing)

\

At each iteration, the fuzzy system is responsible to saebtieutd based on the inputs
xande, as in Figuré 3.11. Note that the parametirnot involved in the decision making
due to its effectiveness while using few parameters, asridbestcin [51]. Subsequently,
the position of the wheels are updated, in which the curragteap is incremented by
the newly generatefl. Additionally, the overall position of the vehicle is upddt since
the speed parameteris applied and a reversing movement is done at each step of the
simulation, respectively.

The universe of discourse of each variable is describeddtirvals below, in which

positive and negative angles represent clockwise and eotlatkwise rotations.

(

0<x< 100
—90° < p< 27C°

-30°<B<3°

\

The three fuzzy variables ¢ and@ are subdivided in the following linguistic sets:
 Positionx: LE (left), LC (left centre), CE (centre), RC (right centa)d RI (right);

» Angle ¢: RB (right below), RU (right upper), RV (right vertical), V&ertical), LV
(left vertical), LU (left upper) and LB (left below);

* Angle 8: NB (negative big), NM (negative medium), NS (negative dmalE
(zero), PS (positive small), PM (positive medium) and PBs(jie big).

The rule base, which represents the strategy to update tkelsvbf the truck, is

2— | Fuzy 0 ;
¢—> truck

Figure 3.11: Fuzzy truck with the inputsand¢, and the outpud
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represented by the matrix shown in Table] 3.2. The fuzzy seta both inputx and @
are combined among themselves in order to define on eaclnegibissible outputs fd.
For instance, row 4 and column 3 corresponds to theiful& is CE) and(@isVE) then
(6is ZE), highlighted in bold in Tablg 3] 2.

This control system is implemented as a classic Mamdani miodehich the operator
intersection (“min”) combines the antecedents of eachantkthe operator union (“max”)
generates the output set. The fuzzy sets for both inputs atpaditare graphically shown
in Figure[3.12. Details about shapes and intervals for eaxtyfset are described in Table
[3.3 and a more extensive discussion about their design coubd in [34].

As an example of iteration, the inputs= 68 andp= 113 are used as current state

of the virtual world to generate the output an@lewhich will be responsible to update

Table 3.2: Fuzzy rules for the inpuwtsand@to produce a rotation angée

X

LE LC CE RC RI

¢ RB PS PM PM PB PB
RU NS OS PM PB PB
RV NM NS OS PM PB
VE NM NM ZE PM PM
Lv NB NM NS NS PM
LU NB NB NM NS OS
LB NB NB NM NM NS

Table 3.3: Fuzzy sets, shapes and intervals defined for #zg tauck

Variable Fuzzy Set Shape Interval
X LE Trapezoidal [00 15 35]
LC Triangular ~ [10 40 50]
CE Triangular  [40 50 60]
RC Triangular  [50 60 90]
RI Trapezoidal [65 85 100 100]
[0] RB Triangular  [-90 -30 0]
RU Triangular  [-45 0 45]
RV Triangular [0 60 90]
VE Triangular  [45 90 135]
Lv Triangular  [90 120 180]
LU Triangular  [135 180 225]
LB Triangular  [180 210 270]
0 NB Triangular  [-30 -30 -15]
NM Triangular  [-25 -15-5]
NS Triangular  [-15-50]
ZE Triangular  [-505]
PS Triangular [0 5 15]
PM Triangular  [5 15 25]

PB Triangular  [15 30 30]
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the steering wheel position. Note that each input paranestables two fuzzy sets with
different degrees of membership, ixe= 68 activates RC and RI with degrees 0.7 and
0.2, respectively; angi= 113’ activates VE and LV with values 0.5 and 0.9, respectively,
as pointed out by the thin vertical arrows in Figlire 8.12 (& é). Consequently, four
different rules, highlighted by shaded cells in Tdble 3.8, lve responsible to deliver the

LE LC CE RC RI

0.7

Membership
degree (u)

S
©)

(=]

Membership
degree (u)

$=113°
(b)
NB NM NS ZE PS PM PB

Membership
degree (1)

(c)

Figure 3.12: Fuzzy sets for the inputand, and the outpud
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outputd, since they are a combination of the sets Rl and RC with VE ahd L

Each rule has to be analysed, in which the operator inteosetetkes the minimum
degree of membership between the two activated sets. Balifl illustrates this opera-
tion, in which a resultant s&" is a combination of the input variablesand with their
respective activated setd andA2, over the seB of the output variabl®. Note that the
resultant seB* is not necessarily a specified fuzzy set, since it represeatsombination

of other sets.

Me+ (6) = (Ma1(X) A Ha2(9)) A He(0) (3.1)

Each activated rule deliver the following results:

Subsequently, these rules are combined using the operator, which takes a max-
imum value for each activated output set. Note that both P§/IR® sets are activated for
the outputd, but only the maximum one must be kept, as highlighted by éflewing

equations:

e (8) = 0.5 ig(6)
Hes (8) = 0.7 A g(6)

The interpretation of this example follows the same reawpdescribed in Figurie 3.6
in sectior .3.4.3 for the Mamdani inference model. First,itipitsx and @ activate four
rules and their respective fuzzy sets. The operator intBoseselects a minimum degree
of membership between the antecedents in order to genemddgrae of membership

for the consequent, i.e. for the ruié (x is RC) and (¢ is VE) then (8 is PM) with
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Hrc(X) = 0.7 andprc(@) = 0.5, the degre@pv(0) = 0.5 is calculated as a partial output.
This process is then repeated for each activated rule. §ubsdy, the four calculated
output sets are combined using the operator union, whicheggtes fuzzy sets with the
same label selecting its maximum degree of membershighree rules activate the same
output set PM agpm(0) = 0.5, ppm(0) = 0.2, upm(0) = 0.2 and the degregem(6) = 0.5
is selected. Note that no aggregation was necessary foethaiming rule because only
one degree of memberships(8) = 0.7 is calculated for the output set PS. These results
are graphically shown in Figure 3]13.

A final output@ is calculated transforming the obtained fuzzy area intesperumber,
in which the defuzzification method “centre of gravity” isphied. The output value
B = 9.7° is then inferred, since it subdivides the obtained areatintbequal parts, as
highlighted in Figuré 3.13.

New updated inputs are used at each step of the simulatioce $ihe truck keeps

moving towards its goal. Note that this rule-based fuzzytwdrsystem is responsible

PS PM

8

LA RC n oA LV
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I
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Figure 3.13: Inference procedure to calculate the oufpsed on the inputs and @
using a classic Mamdani model
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for generating successive decisions to park a truck intaeaied parking area. Conse-

guently, this process has to be repeated until the momenithgoal is reached.

3.6 Fuzzy Scheduling

As previously mentioned in section 8.1, fuzzy logic consdmve been successfully ap-
plied to many industry contexts, providing a realistic waymodel, control and opti-
mise real world problems. Their effectiveness on managmgetainties and flexibility
on handling human thinking have been attracting the atieraf many scheduling and
rescheduling researchers [41],64,/110].

Different sources of uncertainty are present in schedydmo@plems such as allocation
changes, delay on raw material delivery, last minute alssehemployees, changing on
order details, order cancellations, new orders, machieakalowns, unexpected main-
tenance, among others. For all these cases, it is necessamate flexible optimisation
models which are able to minimise or even absorb the negeffieets of such disruptions.
These problems has been mostly tackled by using fuzzy nuntbedescribe schedul-
ing parameters and constraints, such as release and pnacésses [5] 45, 112], due-
dates([43, 76, 717, 98], completion and setup times/[55, 8@cqgrence constraints [46],
among others [§3, 102]. Additionally, decision supporttegss using fuzzy control al-
low managing uncertainties based on historical data orréigpei.e. how to split jobs
into smaller lots to guarantee customer satisfaction [86]y to combine dispatching
rules [39], how to optimise family assignments to reduceémes|[54], and so on.

Figure[3.14 (a)-(c) shows the scheduling parameters etggsrocessing timg; and
due-dated; of a generic jobj using the fuzzy numbeis, p; andaj, respectively. For
this example, both release and processing times have gut@nshape because, hypo-
thetically, changes often occur in raw material deliveaad maintenances are required
during the processing of some operations. Consequenfiets such aijl, sz aLndFj3
transforms the crisp parametgrinto a fuzzy on€j, in Which?j1 andfj3 set a time win-
dow for the release ar‘fo]2 is set agj, since its crisp value is the best representative of
the original release time, i.qusz = 1. The same pattern is followed to define the fuzzy

processing tim@;. Note thatfj andp; will generate a fuzzy completion tirréj, asin
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Figure 3.14: Fuzzy sets representing the scheduling paeasneelease (a), processing
time (b), due-date (c) and completion time (d)

(e}

Figure[3.14 (d). On the other hand, the due-cﬂs}tbave a trapezoidal shape, in which,
hypothetically, the originatl; may be slightly extended without compromising the cus-
tomer satisfaction, i.e. a job with lower urgency. The pagten‘a’ extendsd; and the
membership grade linearly declines from 1 to 0, when theecuiime< [d;j,d; +aJ, as

illustrated in Figuré 3.14 (c). There are several objediivetions to evaluate the quality
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of the schedule and some of them are discussed in the follpghapters of this thesis.
As an example, the tardiness of the jplzan be defined as a crisp number within the
interval [0,1] when the intersection area(bjf with a,- is divided byéj [98]. Figurel3.1b
illustrate the jobj meeting its due-datd; (a), partially meetingl; (b) and when the job
is considered to be tardy (c).

Figure[3.16 shows an example of a decision support systemg fiszzy control de-
scribed by[[82]. The three inputs, time of occurredd®, importance of efficiencyF
and importance of stabilit$s T, define the current state of the shop floor and the output
determines the best rescheduling metRado be applied, which is left shift rescheduling
Re or rebuild a new schedule from scratRl. This problem is modelled as a modified

Sugeno type, in which inputs are represented by fuzzy setth@output is a crisp action

A completion time due date
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degree (u)

e}

Time
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Time
(b)
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Figure 3.15: A generic jop meeting its due-data; (a), partially meetingl; (b) and when
itis tardy (c) as proposed by [98]
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T0

EF > Fuzzy Re; ;
ST rescheduling
2

Figure 3.16: Fuzzy rescheduling with the inptlit®, EF, ST, and the outpuRg

with associated weights (more details can be found in!/[12Dgtails about the inputs
fuzzy sets are presented in Figlre 3.17. The combinatiohasfet three inputs generates
12 fuzzy rulesrj, as described in Table_3.4. Note that all rules simultangaddivate
both rescheduling methodd andR; with their respective weights andb;, which are
responsible to set their priorities. More details abouirtga, andb;, are discussed in[82].
The main idea is to udRe, or Re when the priority is stability or efficiency, respectively.
The antecedents of the rules are combined using the opéeattdt in which a degree
of match is calculated as = min(pro, Mer, UsT). Additionally, activation rates are cal-
culated for both rescheduling methodaag = ¥12,a:a, andag, = 12, bray. A crisp
decision is generated when the valugg, andogre are compared, in which the larger
one defines the rescheduling method to be appll.is always preferred in cases of a
tie.

Surprisingly, most of the literature on scheduling has beamsidering only static
problems, in which the previously mentioned disruptions hat been extensively inves-
tigated. Fuzzy logic is an effective approach to manageouartypes of uncertainties,
including the ones present in scheduling and reschedutivlgjgms. The work present in
this thesis make use the strengths presented by fuzzy logmepts applied to a dynamic

and complex real world job shop problem, in which uncertagare often present in the

Table 3.4: Fuzzy rules for the inputsT O, EF andSTto decide between the rescheduling
methods left shifRe, or rebuild a new schedule from scratel

Fuzzy rules;

r r2 r3 4 s e r7 s ] f10 r1 r12

if TO early early early early middle middle middle middle late elat late late
and EF low low high  high  low low high high low low high high
and ST low high  low high  low high low high low high low high

then aRe aRe aRe aRe asRe asRe asRe agRer agRe ajoRe a31Re  apRe
bRe pRe bsRe bsRe bsRe bsRe  b7Re;  bsRe  boRe bipRe biiRe  bioRe
with &, 0.3 1 0 0.5 0.4 1 0 0.5 1 1 0 1

br 0.7 0 1 0.5 0.6 0 1 0.5 0 0 1 0
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Figure 3.17: Fuzzy sets for the inpti©, EF andST

shop floor. The aim is to produce reliable schedules, comgiairobust fuzzy scheduling

system with match-up rescheduling algorithms when disoaptoccur in the shop floor.

3.7 Discussion

Fuzzy logic concepts bring an effective approach to reptasal world problems, since
they are able to manage uncertainties and create more #eghimisation models. The
reasoning using fuzzy logic follows the same pattern ofestents commonly used by
human beings, in which linguistic and vague terms are alyagsent. The model design
is quick and few adjustments are expected, since rules é&d@bmbed the knowledge
provided by experts.

The design of a fuzzy system to park a truck in a virtual aredicuos the strengths
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previously mentioned. The vagueness present in the prop&ameters, such as posi-
tions and angles of the truck, where easily represented igyfgets and the designer
expertise allowed the definition of good representativestb produce the expected con-
trol actions.

Several industry contexts have been successfully usireyflogic systems, including
home appliances, public transports, safety systems, arativegs. This effectiveness
has extending their application to academic areas, inotutesearch on scheduling and
rescheduling. The uncertainties in this areas can be mttked using fuzzy numbers
to represent problem parameters and constraints, and tlezagion support systems to
generate control actions based on historical data or agpert

Unfortunately, most of the literature on scheduling hasbesnsidering only static
problems and commonly present disruptions such as altotalianges, absences of em-
ployees, among others, has not been extensively investigdthe work present in this
thesis aim to use the strengths presented by fuzzy logicepea@pplied to a dynamic
and complex real world job shop problem, in which uncertagéare often present in the

shop floor.

3.8 Summary

This chapter presents an introduction to fuzzy systems;hwiepresents an effective strat-
egy to manage uncertainties that are always present in & ywroblems. Their essen-

tial concepts are described and an example is discussedentorillustrate how to create

them step-by-step and also to identify the flow of informatwithin these systems. A

classic problem of parking a truck using a Mamdani fuzzy cargystem is discussed,

in which the vagueness on the problem parameters are easkiet by using fuzzy sets

and fuzzy rules.

The model design is quick and easy to understand, sinceaksemag on fuzzy logic
follows the same pattern of human thinking, in which vague lmguistic terms are al-
ways present in decision making, having words such as “IdtMgh”, among others.
Additionally, these systems usually require few adjustimen their design because their

rules are capable to embed the knowledge provided by exged®r information pro-
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vided by historical data.

This thesis aims to use the strengths presented by fuzzg tmgicepts applied to
a dynamic and complex real world job shop problem, in whichentainties are often
present in the shop floor. The following chapter describisstoblem and the application
of fuzzy numbers to manage scheduling variables. Additigrfazzy scheduling systems
are presented in Chapter 6, in which their combination wititimup algorithms are able

to produce reliable solutions.



Chapter 4

Match-up Strategies for a Complex

Real World Job Shop Problem

4.1 Introduction

This chapter investigates the problem of inserting newhviag jobs into an existing
schedule of a real world manufacturer. These type of digynpiccurs on a daily basis
and requires rescheduling. A number of match-up strategieish collect the idle time
on machines of a current schedule for the insertion of new, jate proposed. Their aim
is to obtain new schedules with a good performance which tatleeassame time highly
stable, meaning that they resemble as closely as possithie toitial schedule and avoid
additional production costs. Other rescheduling strateguch as “total rescheduling”,
“right shift” and “insertion in the end” deliver either goperformance or stability, but not
both. Contrary, experimentations and statistical analysreal that the proposed match-
up strategies deliver high performing schedules with a bighility, validating hypothesis
1 from Chapter1l.

This chapter is concerned with the scheduling/reschegiypioblem presented by
Sherwood Press - Nottingham, UK, which is a job shop probletin parallel machines,
machine eligibility and sequence dependent setup timese Metails of these features
are described in the following section. The problem is dyiwasince new jobs with dif-
ferent levels of urgency arrive everyday in the shop floor i@y have to be integrated
into the existent schedule. Typical arriving jobs are rustecs, which means that they

56
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have to be processed as early as possible on the currenuseh&tis type of disruption
is tackled first and the goal is to find appropriate reschadwpproaches to achieve high
guality schedules. Additionally, orders with differenédds of urgency are investigated in
the following chapter in order to check the flexibility of #eeapproaches under various
scenarios.

There are two important criteria to consider when evalgggimescheduling strategy:
(1) thePerformanceof the resultant schedule, which is measured with the sajeetble
functions used to evaluate the initial schedule and (2Btability of the resultant sched-
ule, which refers to how closely the new schedule resemblesnitial one. Match-up
algorithms are concerned with both of these criteria, aedlarefore appropriate for a
large variety of rescheduling problems, including the oresent in Sherwood Press.

Match-up algorithms aim to maintain boBerformanceand Stability by modifying
only a part of the initial schedule when a disruption occuf$eir motivation is that
once having an initial optimum schedule the best is to retorsuch optimum schedule
as quickly as possible after repairing it. In other wordg idhea is to “match-up” the
disturbed schedule to the initial one, as quickly as possibhis goal is achieved by only
modifying the schedule within a defined rescheduling timedeiv, keeping unchanged
the schedule before and after this interval. The researetepted in this thesis and the
resultant papers in [69, 70,73, 74] describe the only apptios of match-up algorithms
to a complex real world job shop problem, which includes iplétcriteria, setup times,
parallel machines and disruptions affecting multiple veses.

The remaining of this chapter is organised as follows. $ad4.2 introduces the
problem present in Sherwood Press and formally define®én®rmanceand Stability
measures. Sectidn 4.3 describes the match-up algorithmuébr orders. Section 4.4
presents the problem instances used to test the proposwitiaigs, presents the results
of the experimentation including the adequate statistiestis, and gives an analysis of
the problem parameters that have an effect on algorithmviilma Section§ 415 arid 4.6

conclude this chapter.
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4.2 Problem Statement

The job shop scheduling problem in Sherwood Press requnessliocation of a variable
number of jobs onto 18 machines, which are grouped into 7 werkres for printing,
cutting, embossing / debossing, folding, card-inserto@thering and finishing. Some
printing machines are identical and are treated as pam#ehines. Each jop=1,...,n
is subject to precedence constraints, meaning that it hasitathe required machines
following a predefined order. Possible routes on machireskown in Figuré 411. How-
ever, jobs are mostly processed by 3 to 5 machines in the sthapaihd they follow one
of the routes given in Figuie 4.2, as described in [87]. Eablj has a release tintg and
a due datel; which are the earliest time when jglcan start its processing and the time
when jobj is required to be completed, respectively. The procesdifgho on machine
i=1,...,18 is referred to as operatiap and each operation requires a certain amount
of processing timgpij. Each job has also a priority; which indicates how strict its due
date is, i.e. jobs withv; = 1 must be completed by their due dd{ejobs withw; = 2 are
given two days tolerance period aftyrand jobs withw; = 3 are given up to one week
of tolerance. Each jolp has a familyf which identifies its colouring requirements. Setup
times are then considered when operations requiring dritecolours are processed one
after the other on printing machines.

The static version of the investigated problem is known agdb shop problem with
parallel machines, release times, job weights and sequismeEndent setup times. The

scheduling problem of Sherwood Press, however, is notdtatidynamic; every day a

card-
inserting

embossing ?

< [oating -+ eboring Prozr
X embossing [—»| cutting % p card- %

debossing inserting

v

Figure 4.1: Possible machine routing for jobs
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embossing
Pl debossing |

printing |—>| cutting | | folding |—>| finishing

R embossing |—»| cutting

debossing

4

Figure 4.2: Typical machine routing for jobs

number of new jobs arrive in the system and these have to bgiorated into the existing
schedule. These jobs are classified as complex disruptem@ise multiple resources are
usually affected, i.e. changing the allocation of operaion multiple machines. Newly
arriving jobs are of two types: “rush” orders, which have ghhpriority and must be
inserted as early as possible, and “normal” jobs, which hiagesame priority as most
of the jobs. “Rush” orders are the most common disruptiorsgmein this job shop
scheduling problem and they are investigated first.

Rescheduling algorithms must produce schedules thatdadhe newly arrived jobs
and are of a good quality with regards to #er formancdunction and be as similar as
possible to the initial schedule, refereed her&tability. The rescheduling problem is,
then, a bi-objective problem in whidPerformanceand Stability have to be maximised

simultaneously. Both measures are formally introduced.nex

4.2.1 Performance

The Performancemeasure considers five scheduling objective functionstihaé been
previously applied to Sherwood Press problem([32,84, 8] aiverage weighted tardiness
of jobs, the number of tardy jobs, the total setup time, thal idle time of machines and
the total flow time. Given a schedule, each of these functisevaluated and mapped
into a satisfaction grade within th@, 1] range. ThdPer formancemeasure is the average
of the five satisfaction grades.

It is important to highlight that this multiple criteria dsmn making was originally
introduced by Fayad and Petrovic [32] using a genetic algarior the static version of
the problem presented by Sherwood Press. This thesis idcadsuthis work, in which
disruptions are now taken into account. As a matter of piogid self-content package, a

short description of satisfaction grades is presented md¥ke more details can be found
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in [86]. Additionally, a detailed discussion of multi-oljéeve scheduling using GA is
described by Bagchi in[9].

Satisfaction gradeSG, i =1,...,5, are applied to this job shop scheduling problem
because of two main reasons. First, they allow to handlelsmeously objective func-
tions that are measured in different units. Second, thellerthe production manager to
express his/her preferences with respect to the objeativetibns by assigning weights

to the different objectives.

SG - Average Weighted Tardiness

In order to address the uncertainties inherent in real wselieduling, the processing
times of jobs and due dates were modelled using fuzzy numb&rsrisp number is
mapped into a fuzzy number through a membership functionte Nwat the use of a
fuzzy processing time lead to a fuzzy completion time. Fegdu3 (a) and (b) show the
membership functions for the processing tipjeand a intersection between the due date

dj and completion tim€; of job j, respectively.

A

processing time

o

Membership
degree (p)

O

Time

>

completion time

p—

due date

Membership
degree (p)

H 5 >
d; di+b Time
G-a G Gra

(b)

Figure 4.3: Example of (a) membership functions for the pssing timep; and (b) a
intersection between the due da{eand completion tim€; of job j

S
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An interval betweemp; —a and p; + a represent thep; uncertainties, when the pro-
cessing time is either early or late, respectively. The mastiip degree fop; is 1 when
the original crisp processing time is executed, and it degliinearly to O within the in-
terval for bothp; —a andpj +a. The same pattern is followed to set the completion time
Cj. Similarly, the uncertainties afj are set usingl; +- b, which determines the flexibility
of a job on meeting its due dadk. Note that his flexibility is determined by the parameter
priority w; previously defined in sectidn 4.2. For instance, the menhijecegree fod;
is 1 when the completion time of jop e [0,d;], and it declines linearly to O when the
completion time is increasing within the interalj,d; + b]. Both parametersd” and
“b"are specified by the production manager. In this waki$ 10% of the original pro-
cessing timepj, and ‘b” may take the value O, 2 or 5 working days, depending on how
urgent a job is. In other words, his priority;.

A triangular membership function is used to represent baibgssing and completion
times because although a job is in theory executed and ctedpdép; andCj, respec-
tively, in practice it may be done within a time period’“either before or after these
values. For the due date of jobs, the membership functioraperoidal meaning that
jobs are desired to be completed between time Ocandut there is a time window after
d; when jobs are still considered to be on time. Completiorer aft+ b are considered
late and the membership degree is 0.

A satisfaction grade on the job’s completion time is caltaddo identify the tardiness
of a job j. This grade is obtained as the area described by the intensexf the due
date and completion time membership functions divided leyatea described by the
membership function of the completion time [98], as presigiseen in Chaptér 3. In the
example from Figure 413, the satisfaction grade is caledlas the size of the shaded area
divided by the area of the triangle labelled “completiondimThe satisfaction grade of
the average weighted tardiness is calculated as the avefdge weighted satisfaction
grades of the completion times of all jobs.

A hypothetical resultant schedule is shown in Figure 4.4ylch 11 jobs are allo-
cated on available machines. Jobs are graphically repgesbéy rectangles, and rectan-
gles with the same number mean that a job has more than onatiopei.e. job 3 have

2 operations represented by the rectangles on M3 and M4 .tiaddily, jobs are subject
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Machine 4 Assumption:
Only this jobs is tardy

s | [T ] 5
M2 6 |
3 7 [ o ]

we | 2 ] [3] (8] [ 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

* parallel machines

Time

Figure 4.4: Example of a resultant schedule with 11 jobssict@ning that only job 5 is
tardy

to precedence constraints, in which a sequence of opesas@redefined when a jop
has to be processed on more than one machine. Note that eaxetiop of a jobj has to
be completed before the next one can be started. For instaic@ has to be processed
first on M3 and when the execution is completed its next operaian be started on M4.
Parallel machines are represented by M1 and M2. Supposerthajob 5 is tardy, i.e.
job 5 has a fuzzy completion tin®@®; within the interval[5,9] and its due datds = 2 has

a tolerance &” of 5 time units, as in Figure_ 4.5. A poitktbetween these two fuzzy sets
is then calculated as an intersection of two lines,k.e= (5.57,0.28). Subsequently, the
correspondent areas for the shaded triangle and the coamptehe membership func-
tion are 0.28 and 2, respectively. The resultant satisfagrade for job 5 is 0.14, as the
shaded area is divided by completion time area. Since ther @thnon-tardy jobs have 1
as their satisfaction grade, the final average for weighastiriess of jobs iISG = 0.92.
Note that for this hypothetical example all jobs have thatrsfaction grade with weight

1, which means that they are equally important.

A

o

d5 C5

Membership
degree (u)

: : >

=)

Figure 4.5: Intersection area between the fuzzy sets foptetion timeCs and the due
dateds of job 5
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SG - Number of Tardy Jobs

Ajob j is considered to be tardy when its satisfaction grade folinass does not exceed
a certain threshold. All jobs not achieving\ are counted. After investigating several
values, Fayad and Petrovic predefined 0.3 [32]. Consequently, job 5 previously pre-
sented is counted as tardy because its tardiness savsfaptide (L4 is smaller then
the predefined\.. Note that again, job 5 is the only one considered to be tardthis
hypothetical example.

The final satisfaction grade for number of tardy jJ&% is calculated from a decreas-
ing linear function, following the production manager @mehces regarding a maximum
numbera of jobs allowed to be tardy. For instance, the schedule inreigl.4 has an
allowancea = 20%, which means that 20% of all 11 jobs are accepted to by, taed a
threshold of 2.2 is defined as shown in Figurg 4.6. A maximutisfsation of 1 is ob-
tained when none of the jobs are tardy, and a minimum of O soshen the number of
tardy jobs is equal or exceeds this threshold value. Sinbejoin 5 is tardy,SG = 0.45

is obtained from the delimitated linear function.

S - Total Setup Time

Jobs having different colouring families may require sdtoye between their operations
on printing machines. Additionally, these machines argailly cleaned before starting
the processing of any joh Suppose that M1 and M2 from Figure 4.7 are printing ma-
chines and jobg = 1,...,10 belong to the same colouring family. Therefore, job 11 is
the only one which needs a setup before its operation candzegsed on M1. Setup

times are highlighted by shaded cells labelled by “S” in Féjd. 7. Note that this resul-

045f

i\ @ =20% of all jobs
f T3 1 T T T T >
0 12 3 4 56 Tardy Jobs

Figure 4.6: Example of decreasing linear function to caleb&
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Machine‘
M1 * | 1 | 5 | o] 11 |
vz [1] | 6 |
M3 L7 1 9 |
M4 4 | 3] [8] | 9 |

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 .
me
* parallel machines

Figure 4.7: Resultant schedule with 11 jobs and the requietap times highlighted by
shaded cells labelled by “S” on the printing machines M1 ar&l M

tant schedule is the same one presented in Figufe 4.4. A fitiafaction gradé&SG is
obtained comparing the total setup time with a maximum vldusetups, the latter refer-
ring to the situation when all operations on printing maekinequire setup times before
their processing. These values are mapped following the saé@a of the decreasing lin-
ear function presented f@&, in which a maximum satisfaction is obtained when none
setups are required, and a minimum value when all operatensand setups. Conse-
guently,SG = 0.5 is obtained for the schedule, since a maximum of 6 setupstisnget
when all operations on printing machines require setupleadnly 3 setups are required,

i.e. the processing of job 11 added to the initial cleaninlylafand M2.

SG - Total Idle Time

Idle times are present on machines when no jobs are beingssed or setups are per-
formed. The blank spaces between operations and setupguneH.4 represent idle
times occurring in the analysed schedule. The completroe tf the last operation on
each machine defines a reference point to calculate idlegseriThe sum of these com-
pletion times sets a maximum value for possible idle timesleAreasing linear function
mapsSG within the interval[0, 1], in which a maximum satisfaction is obtained when
no idle times are present, and a minimum value when all mashare idle. For instance,
M2, in Figure[4.4, have a total processing time, setup araafll7, 1 and 7 time units,
respectively. For all machines, the sum of completion tisets a maximum idle time of

63 units and an idle period of 22 time units, which resultS{@& = 0.34.
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SG; - Total Flow Time

The flow time measures how long a jplsemains in the shop floor until its completion,
i.e. time window between its releasg and completion timeC;. The total flow time
aggregates these measures for all jobs. The decreasirgy fungction forSG;, sets a
maximum satisfaction when flow time is equal to 0 present amdnmum when all jobs
complete their operations @tax Note that flow time equals 0 means that all jobs are
being cancelled. Suppose that jobs 1-7 and 8-11 from Flgdréave release time at 0
and 8 times units, respectively. TherefoB€s = 0.45, since the total and the maximum
flow times arey i1, Cj —rj = 70 andy j2; Cmax—fj = 155, respectively.

Once the satisfaction grad8§&; — SG; have been calculated, an ovedrformance

of the schedule is defined as:

5
Per formance= ZSG/S. 4.2)
i=

Consequently, the resultant schedule from Figure 4.4 elsiRer formance= 0.53.

SGuake - Makespan

Alternatively, thePerformanceneasure may consider only one specific scheduling objec-
tive function depending on the rescheduling process. Theesgan, previously defined
asCmax IS a criterion commonly used for job shop scheduling pnoisi¢l /90, 106, 116].
The production manager sets a threshplof maximum acceptable makespan. Following
the same idea presented for satisfaction gr&@s— SG;, a decreasing linear function
sets a maximum satisfaction when the makespanlisand a minimum when the thresh-
old | is achieved. Note thdl,ax = null is just a reference point, meaning that all jobs
have been cancelled in the shop floor. SupposalthaB3 for the schedule in Figute 4.4.
Therefore,SGyake = 0.51, because the completion time of both jobs 9 and 11 leads to

Cmax= 17. This alternativ®erformancemeasure is defined as:

Per formance= SGyake = Cmax/ - 4.2)

Details about preferences and decisions for appropridtedsding and rescheduling

objective functions are formally discussed in secfion 4d subsection 4.4.3.
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4.2.2 Stability

The Stabilityof a new schedule is measured with respect to an initial adbeding two
componentsSta andStg, adapted from[]1] and [95], respectively, to consider paral

machines.

Sta - Sequence Deviation

The first Stability measure Sta, considers changes to the relative order of operations
in the initial and new schedule sequences. Mebe the number of machines in the
shop floor and le©; be the number of operations that have to be processed on meachi
i=1,...,M. The following measure of sequence similafgward < [0, 1] is assigned

to each machine

91 Rewarg

Reward =
jzl O-1

, where

1 if operationj+ 1 remains successor

Rewardlj = of operationj on machine;
0 otherwise

There are certain situations in parallel machine envirartsihat require special treat-
ment in the calculation of thRewardg value. For instance, the case in which a machine is
in operation in the initial schedule and it becomes idle artbw schedule and the case in
which a machine is idle in the initial schedule and it has tcpss any number of jobs in
the new one, should be heavily penalised. On the contragydkes in which a machine
is idle in the initial schedule and it remains idle in the neve@nd when a machine has
assigned only one operation in the initial schedule and anylaerN in the new one, have
to be highly rewarded. Therefore, the following four casésH are considered in the

calculation ofReward:

R1 If maching is empty and stays empty after rescheduling, tRewarg = 1;

R2 If machinei has originally only one operation and in the new schedulechgr

numbem, thenRewardg = 1;
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R3 If machinei is empty and any number of operations are assigned to it in¢e

schedule, theRewarg = 0;

R4 If machinei hasN operations and becomes empty in the new schedule, then

Rewarg = 0.

In order to keep the sequence of operations on each machimelanged as possible,
the sum of the rewards of the machines has to be maximised fif$tiStabilitymeasure

is defined as:

1 M
Sta = v ZReward. (4.3)
i=

Suppose that the initial schedule present in Figuré 4.8 #4a)ehnew job 11 to be
inserted. The resultant schedule is shown in Figure 4.8\b)e that jobs 6 and 10 were
initially allocated to M1, but they swap to the parallel mexehM2 after the insertion of
this new job. Reward = 0, because no successor operatjenl remains the same for
operationj on M1, i.e. operations 6, 5 and 10 are not successors anymiofe 6 and
5, respectively. Operation 5 is not considered to remaicesgor of operation 1 on M1
because only the immediate successor of each operationsgleoed.

M2 was originally with only one operation and the processihgbs 6 and 10 does
not affect its original sequence, leadingReward = 1, as described in R2. Addition-
ally, no changes were made on both machines M3 and M4, whicRgearg = 1 and
Reward = 1, respectively. The final measure for the sequence deniafithe resultant
schedule present in Figure 4.4 is tHéta = 0.75

Sta was defined at first as the ma8tability measure for rescheduling because of
the nature of the job shop problem presented by Sherwood,Rrdsch has sequence
dependent setup times. Afterwards, an additional measasergquiredSta, because
time deviations could cause problems regarding raw matesrglability and/or personnel

allocation for operating machines.

Sta - Time Deviation

The secondbtabilitycomponentSta, considers the starting time deviation of operations

in the initial and the new schedule. Lstart; andstartj be the starting time of jolpin the
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Machine A
T I I
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* parallel machines
(a)
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M4 L 4 | 3] [8] | 9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 g
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Figure 4.8: Example of (a) an initial schedule with 10 jobd &@a (b) resultant schedule
after inserting a new job 11

initial and in the new schedule, respectively. Thereforg, = max{o, 1- Istar —start| } :

Cm ax

TS €[0,1] measures the starting time deviation for eachjjol maximum satisfaction is
obtained when no time deviation is present between thosingtéimes, and a minimum
value when the absolute difference in starting times edhaltength of the initial sched-
ule, i.e. its makespa@max. Note thatT § defines a similar decreasing linear function as
described foSG — SG andSGyake The only difference is that all jobs=1,...,N are

individually evaluated and, subsequently, the$ values are combined intg as:

Sty =

Zl =

N
5 TS. (4.9)
=1

OnceStg andStg have been calculated, an over@thbilitymeasure is can be cal-
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culated as:

Stability= 1(St8g_+st@) (4.5)

The resultant schedule present in Figure 4.4 has startimgydieviations only for jobs
5 and 6, which are 4 and 2 time units, respectively. Therefioge= 0.76 andT S = 0.88
are obtained, a§ S = max{O 1- |8 4‘ } andT S = max{o 1- |4 6‘ } with Chax=17.
No time deviations for the other jobs lead to a maximum satisfnT S = 1. Note that
job 10 has changed from machine M1 to M2, but its initial startime is kept, which
also results inT S o = 1. Consequently, the final measure for the time deviatiorhef t
resultant schedule Btg = 0.96, which leads to an overdlitabilityof the schedule to be
0.79 as a result of the following calculati¢g(0.75+ 0.96)).

4.3 Match-up Strategies for Rush Orders

This section introduces match-up strategies for the dyoacheduling of rush orders.
More details about inserting jobs with different levels ofency are formally discussed
in the following chapter.

Rush orders arrive everyday in the shop floor and they mushtegrated into the
current schedule as early as possible in order to achieveod gastomer satisfaction.
The pseudocode of the proposed match-up algorithm for rudér® is given in Figure
4.9. This match-up algorithm has three phases which ardyfostlined followed by
a detailed description. In the first phase, steps 1-2, theheesiling horizon, within
which the operations of the new job will be accommodated eifsnéd. In the second
phase, steps 3—6, a new scheduling problem containing tapesavithin the calculated
horizon and the new job are defined and solved. In the thirgghstep 7, the newly
generated schedule is integrated into the original one;ckthg and repairing possible
overlaps between the unchanged part of the schedule andetily generated partial
schedule. The proposed algorithm considers for rescheglahe job at a time. If two or
more jobs arrive simultaneously, priority is given to jobhshaearlier due dates. If the due
dates are the same then the order of jobs is randomly decided.

In step 1 of the algorithmipitialStart denotes the time of the arrival of the new job
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Input: An initial scheduleS, a new jobj, initialStart
Output: A new schedule with jol integrated

1. Let startPoint be the latest completion time among operations whose Bgesime ig
crossed bynitial Start

. Calculateend pointby collecting idle time on the machines required by the new jo

. LetO be the set of operations withstartPointandendPoint plus the operations of jop

. Update the release and due dates of jolf3 o that they lie withirstartPointandend Point
. Let operations if® define a new scheduling problegh

. SolveS using a genetic algorithm

N o oA WDN

. IntegrateS into S, checking and removing overlaps

Figure 4.9: Pseudocode of the match-up algorithm for rudersr

M1* 12 |
we+ [T
M3
4
* parallel machines
(a)
:
wix [ 1 5|
2 2] [ e |
M3 [3 71 9 ]
wae [ 4 J[3][e] [ 9o |
initialStart
(b)
1 ]
mix [T ] 15 ]
M2+ (R
M3 [ '3 [ 7] 9 |
we [ 4 J][3] [e] [ 9 ]
L
startPoint:
(©)

Figure 4.10: Example of a rush order arriving in the shop fl¢@rthe new job processing
requirements, (b) the calculationioitialStart and (c) thestartPointdefinition.

J increased by 48 hours, as required by Sherwood Press settioganges for this time

period in the shop floor.
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For example, Figure 4.10(a) shows, using a Gantt chart, ri@epsing requirements
and precedence constraints defined for a new job 12. The fiesation of this job has to
be processed either on machine M1 or machine M2, which aalg@lamachines. After
completing this execution, the next operation can be staneM3 and, subsequently, the
last one is processed on M4. The operations of the initis¢dcle that have started their
processing beformitial Start must be completed before the rescheduling process begins.
Therefore, all the operations that are being processett @i Start are collected. These
are the operations in Figure 4110(b) that crossitiitgal Start line, i.e. jobs 1, 3 and 4
on machines M1, M3 and M4, respectively. The operation with ighest completion
time among the collected operations determinesstaetPoint In Figure[4.10(c), this is
job 3 on M3. All the operations that can be completed be$bagt Pointwill resume their
processing in this example that is job 2 on M2.

In order to calculateendPointas in step 2, the algorithm collects idle times on the
machines that are required by the new job. Four differeategies FW1—- FW4 collecting
idle times in a forward way are introduced, as illustratethwin example in Figurie 4.111.
Suppose that a job consisting of two operations arrives enstiop floor. The new job
requires 4 and 2 processing time units on machines MA and BHpactively, as in Figure

4.11(a). Four different strategies are introduced to coilfie times on machines:

FW1 Collect idle time on the required machines accumulagingugh time, not neces-
sarily as a single time window, until the collected idle timguals the new job

processing requirements, as in Figure 4.11(b).
FW2 Collectidle time contained in a single time window, agigurel4.11(c).

FW3 As FW1, but considering the precedence constraintsseghon the operations of
the new job. Figure 4.11 (d) shows idle time being collectednachines MA and
MB. Note that the collection of time for the second operatbmrmachine MB can
start only after the required idle times for the first openathas been collected on

machine MA.

FW4 As FW2, but considering the precedence constraintseafelv job, as demonstrated
in Figure[4.11(e).
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Figure 4.11: Example of the collection of idle times; (a) tiev job requirements, (b)
idle time collection using strategy FW1, (b) FW2, (c) FW3 daejlFW4.

Let C; be the completion time of a new job on machinehenendPointis defined
as the maximum o€, i = 1,...,M. Note that in the case of parallel machines, there
are two or more possible completion time values for the sapegation. Just one of
these is considered for the calculationesfdPoint Here either the earliest or the latest
of the completion times is used. In this way, 8 strategiedafmed: S1-S4 that collect
idle time using FW1-FW4, respectively, and consider théestrcompletion time among
the parallel machines, and S5-S8 which collect idle timasguBW1-FW4, respectively,
but consider the latest completion time. Consequently,$tlis more likely to define
smaller rescheduling horizons than S5—-S8. Fidurel 4.1ajotstrates the idle time
collection using strategy S1. Since the two accumulateddithat extend the latest are
on machines M1 and M2, which are parallel machines, thereavaweoptions for the
definition ofendPoint The first option, using S1, considers the earliest conpidime,
as in Figurd_4.72(b). The other option, using S5, uses tlsti@bmpletion time, as in
Figure[4.12(c).
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Figure 4.12: Example of the calculation of the reschedulingzon; (a) the collection
of idle time on machines, (b) the calculation@idPointusing strategy S1 and (c) the
calculation ofendPointusing strategy S5.

Once the rescheduling horizon has been calculated, a nedglaing problem is de-
fined. This problem requires the scheduling of the operatibat lie within the reschedul-
ing horizon and the operations of the new job. Odie the set of all these operations (step
3) and letr, andd, be the release time and the due date of operatior©, respectively,
in the original schedule. In order to keep the operation® iwithin the rescheduling
horizon after rescheduling, the release times of the opastn O are set tor{V =
max{ro, startPoint}, Yo € O, and the due dates are setd¢f" = min{d,, endPoint,

Yo € O, (step 4). In step 5, a new scheduling problem that consitiereperations in

O with their updated release and due dates and with the olgemitmaximising the qual-
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ity of the schedule is defined. A genetic algorithm (GA) igo@ssible to allocate jobs on
machines as described in [86]. Note that different qualigasures presented in section
4.2 can be used as objective functions for reschedulingtafieoperation®. More de-
tails and discussions about GA settings are presentedtiosgcd and subsection 4.4.3.

In the final phase (step 7), the initial partial schedule awred within the reschedul-
ing horizon is replaced by the new schedule generated iréstémay be the case that the
completion times of one or more operations in the new scleeahd out of the reschedul-
ing horizon. If thisis the case, there is the possibilityt fech operations overlap with the
operations from the initial schedule that start afterehePoint These cases are identi-
fied, and operations from the initial schedule are shiftetthéoright as necessary in order
to restore feasibility. Suppose that S1 was used to set aedaling horizon for insert-
ing the new jobj presented in Figulle 4.110(a). The resultant schedule isshowigure
4.13(a) and there is an overlap between operations 12 and M2psince operations of
the new job 12 were allocated outside of the reschedulingdor The schedule feasi-
bility is restored when operation 10 on M2 is shifted to thghtifor 2 time units, as in
Figurel4.1B(b).

1
|
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u3 E (71 5 ]|
we o [e ] [3] [2] [ o el
1 1
!
Rescheduling
horizon
(a)
| |
M1~ L 1]
M2 ] :
M3 [ 3 [7 ] 9 11
we 4 ] [ 3] [8] [ o  Jem
1 1
— !
Rescheduling
horizon

(b)

Figure 4.13: Example of overlapping between initial andghetial schedule generated
by the rescheduling process; (a) the overlap between jolzsd2.0 on M2 and (b) the
feasibility restoration by right shifting the job 10 for 2rte units.
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4.4 Experiments on Real World Data

Data sets obtained from Sherwood Press are used to td2¢tfeemanceandStability of
the developed match-up algorithm. The data of the produaiders of several months
were used to produce schedules. In each instance, newlyngriobs were randomly
generated taking into account three parametatsnsTimeand jobSize

The saturationsat, is used as an indicator of the amount of idle time in the shugy fl
and is calculated as the ratio between the makespan of tied sthedule and the sum of

processing times of all operations:

— CmaX
Sit1 Z'jvlzl Pij

whereCnax is the length of the initial schedule (makespan) ands the processing

sat

time required by job, i =1,...,non maching, j=1,...,M. Alargesatvalue indicates
a highly saturated schedule, i.e. with a small amount oftidie. Three months with dif-
ferent saturation levels were selected and used to gerterateinstances. The saturation
levels for each considered month are 1.85, 2.37 and 3.6 &eN&ues correspond to low,
medium and high (i.esat € {low, medium,high) saturation levels, respectively.

The second parameter is the time of insertion of the newijadT;imec{beginning,
middle, end, where “beginning”, “middle” and “end” are equal to 10%, 5@%d 80% of
the length of the schedule, respectively. The reason fosidening thensTimefollows
the observation that the workload of the shop varies atréiffepoints in the schedule. The
workload in the middle of the schedule, for instance, isroftgher than the workload at
the beginning, which is higher than the workload at the enth@eschedule.

The third parameter is the number of operations in the newjiSizec {1,2,3,4,5.
The jobSizevalue serves as a good indicator of the magnitude of therbistce of the
current schedule, which makes it an interesting parameieréstigate.

More details about characteristics of the experimenta datlescribed in subsection
4.4.2.

Since there are three types of initial schedules of diffesaturation levels, and jobs
arrive at three different times and they are of five differges, the total number of in-

stancesis & 3x 5=45. Arriving jobs are not kept in the schedule as the expartateon
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progresses, on the contrary, once a job has been integnaweah initial schedule and the
proper measures have been recorded, the job is removedhasdtiedule is reset to its
initial state ready to accommodate the next arriving job.

Initial schedules, before any disruption occurs, are gerdrusing the genetic algo-
rithm described in[86] with the objective of maximising tRerformancemeasure. Ten
different solutions are generated for eadt instance and their results are graphically
presented in Figule 4.114. TiRerformancemeasure is calculated as an average between
satisfaction gradeSG, i = 1,... 5, previously described in sectidn_4.2. A best solution
is selected for each saturation level and subsequentlyateeysed as initial solutions to
insert new jobs in the scheduling problem. The aim is to itigate different scheduling
scenarios.

The arriving jobs were integrated into the initial scheguiging rescheduling strate-
gies: S1 — S8, total rescheduling (T), right shift rescheduling (RS¥ ansertion in the
end (E). In T, all operations aftéeasiblePointare rescheduled with a genetic algorithm.
In RS, the arriving job is integrated into the new scheduléhs it is completed before
its due date. The overlapping operations from the initikesiule, if any, are shifted to
the right as required. In E, the new job is inserted rightratte completion of the last
operation of the initial schedule. ThRerformanceandStabilitymeasures were recorded
for each strategy, each type of instance and for each agrjoin

It is important to highlight that schedules are generatedguthe genetic algorithm

proposed by[[86]. Their studies extensively investigate static scheduling problem

Q 0,56
g
0,55
L]
8 o054 .
k ®
\g 0,53+
P d
0,51 —
low medium high
sat

Figure 4.14: Overall results obtained by initial solutiomgh low, medium and high
saturation values, the x-axis shows the saturation caesgydhe y-axis shows the mean
(dot) and 95% confidence interval (vertical bars) of the eadilPerformance
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presented by Sherwood Press employing a GA to allocate jobsachines [32,84,85,87].
More details are described in the following subsection. eNbat this algorithm is also
applied on rescheduling to accommodate newly arriving,jabgreviously mentioned in
step 6 from Figuré&4]9.

All algorithms were implemented in Visual C++. Testing wasfprmed on a 2.16
GHz Centrino Duo PC with 1GB of RAM and running Windows XP. Riéesfor different

types of orders are presented and analysed in subsgéctiGn 4.4

4.4.1 Genetic Algorithm for Scheduling

Genetic algorithm is a bio-inspired method commonly usexpiimisation problems [94].
Itis based in natural evolution concepts, in which goodsohs have a higher probability
to remain through subsequent generations. Operators sumbssover and mutation are
applied in order to explore the diversity of possible salns. They have been employed
in several scheduling / rescheduling problems mainly b&e#ey are able to create near
optimal solutions for NP-hard problems [92, 111], as praslg highlighted in Table 212
from Chapte[ .

The genetic algorithm mentioned in the previously subsactvas specifically de-
signed, tested and tuned for the scheduling problem preddiyt Sherwood Press [86].

Their main components are described as follows:

» Chromosomes and population Each chromosome contains two sub-chromosomes.
The first one represents the 18 available machines, and tomd@ne has the
6 dispatching rules that are used for sequencing operatioriee corresponding
machines. Several chromosomes are generated in orderai® @gopulation of

possible solutions;

* Initialisation : A random number = 1,...,18 is assign to cells of the first sub-
chromosome, in such a way that each cell has a distinctiubsequently, one
of the following 6 dispatching rules is selected to each oélthe second sub-
chromosome, in which repetitions are allowed: (1) EDD - ¥£&uUe Date First,
(2) SPT - Shortest Processing Time First, (3) LPT - Longest&ssing Time First,
(4) LRT Longest Remaining Processing Time First, (5) HP tdggtPriority First,
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(6) SFT - Same Family of Jobs Together. Note that the first fales are well-
established and widely used in the literature on job shopduing [91]. On the
other hand, the last two are tailored to Sherwood Press Wwéhatm of reducing
the flow time of jobs of higher priority and scheduling groupais that belong to
the same printing family, respectively. A graphical repraation of two initialised

chromosomes A and B is shown in Figire 4.15 (a);
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Figure 4.15: Components of a genetic algorithm for schedul{a) chromosome ini-
tialisation, (b) crossover generating unfeasible sohgjdc) repaired solutions, and (d)
mutation.
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» Crossover. This operator combines genes from two parents chromostorgen-
erate a new offspring. A single point W is randomly chosenrareoto swap genes
between parents. Figure 4115 (b) shows an example of twpraffss being gen-
erated by swapping values on position 4 from both chromosgresent in Figure
[4.15 (a). Unfortunately, infeasible solutions are gereatat this example since rep-
etition of i values are present in the machine sub-chromosomes of dsfiriof)s.
Consequently, a repair operation is requited [9]. Child € flobe created by copy-
ing all values of the parent A up to position 4. Subsequetttly,remaining cells
are filled by scanning parent B from left to right and entetimg machine numbers
not already present. Child D is created in a similar way bgrewmg the roles of the
parents. Figure 4.15 (c) shows the feasible resultantm@milébllowing this repair
mechanism. Note that no changes were required for the sexdindhromosomes
and their orders remain the same in both Figlres 4.15 (b)@nd (

» Mutation:A randomly chosen pair of genes exchange their positions sub-
chromosome. Mutation is applied independently in both dutmmosomes. Figure
4.15 (d) illustrates a child D being generated from the momabf parent A, in
which genes from positions 1-18 and 2-10 are exchanged futirtsromosomes 1

and 2, respectively;

» Generations Defines the number of iterations that the population of ctasomes

will be subject to the processes of crossover, mutation aletson;

Fitness function Evaluates the quality of a given schedule based on theisolut
generated by its chromosome. The goal find a schedule withitfest possible
fitness value among analysed generations. The exprésdidrom sectioni 4.2 is

employed to assess this measure;

Selection A roulette-wheel-selection technique is applied for sttegy chromo-
somes that will survive through consecutive generatiomso@osomes with higher
fitness function values have a higher chance to be kept indpelation of possible

solutions;

Elitist Strategy: The chromosome with the highest fitness is always kept to the
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next generation.

A series of experiments were done by![32,86] to tune the GArpaters, in which the
population size and number of generations were set to 50 @ddéspectively, whereas

the crossover and mutation probabilities were set to 80%386a46, respectively.

4.4.2 Characteristics of the Experimental Data

The following items provides complementary informatiomatthe experimental data. It

is important to highlight that they are valid for all expeants investigated in this thesis.

» Load-balancing: All operations are evenly allocated between availablelper
machines in order to process the required jobs as quicklyoasilpe. This fea-
ture belongs to a previous study investigated by [84] and iimiplemented in the

scheduling algorithm;

 Lot-sizing: Some operations are eligible to be subdivided into smédksrwhen
they require large processing times. The aim is to manageugtemer satisfaction
delivering smaller lots in a shorter period of time. Agahistfeature was originally

introduced by![85, 86] and it is part of the scheduling preces

* Number of jobs: The number of jobs to be allocated varies between different
months in Sherwood Press. For instance the databases used sat <{low,
medium,high has 39, 64 and 158 jobs, respectively. Note that a higher rBumb
of jobs does not necessarily mean the definition of a highterat#on level, since
a schedule with small number of operations may require largeessing times on

machines;

» Duration of operations: As previously mentioned, some operations may have
longer processing times than the others. For instance tteeglagible to require

2 hours on a printing machine, as well as 5 days in a row.

» Workload of the shop floor: Number of required items from all jobs are summed
up in order to define an overall workload of the shop floor,the.three investigated
months definingsat €{low, medium,high have 3696356, 3955125 and 5120125
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items to be produced, respectively. This number is used asaneter to make

decisions on lot-sizing.

Note that this items are described only as a reference tgtndlte the data present in
the investigated scheduling problem and to identify thelistideveloped by Fayad and
Petrovic [84+86].

4.4.3 Rush Orders

Most of the jobs arriving in the shop floor of Sherwood Pressctassified as rush orders,
because they must be integrated in the current schedul@assgossible. These newly
arriving jobs are incorporated using the same genetic thatuged to generate the initial
schedule, as described in_[86]. The original fitness algorifunction, expression 4.1
from section 4.2, was kept unchanged because it deliverd Bedormanceesults and
the Stability of the schedule is maintained because only a part of the athedust be
modified.

This section presents the results obtained by the differestheduling strategies as
well as the results of statistical analysis of the effectthefproblem parameters and the
match-up strategies dPerformanceand Stability. The results obtained by all strategies
are summarised in Tadle 4.1, which presents the averageamthsd deviation values for
PerformanceandStabilityattained by the investigated strategies for the instanwesgpgd
according to the different problem parameter values. Nwedach cell in Table 4.1 rep-
resent the average result of 10 times executing the resthgdulgorithm. Additionally,
the best strategies are highlighted in bold for each typesibince and numbers between
brackets show the number executions done for each instangeneral, the match-up
strategies (S1-S8) are superior to right shift (RS) andriwsein the end (E), and similar
results to total rescheduling (T), with respecPerformance As expected, RS and E de-
liver the most stable schedules. However, S1-S8 can beigiget as superior to T with
respect tdStability. Among the match-up strategies, S1-S4 seem to outperfoategtes
S5-S8 in most groups of instances. These results will besstatly verified next.

A comparison betweeRerformancendStabilityis presented in Figufe 4.116, in which

a scatter plot shows the trade-offs between these evatuaigirics. Few samples have
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Table 4.1: Average and standard deviation value$&formanceand Stability obtained
by the rescheduling strategies for rush orders (larges\aie preferred)

Per formance Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.534 0.534 0.534 0.534 0.528 0.528 0.531 0.581538 0.528 0.510
(15) medium 0.519 0.5210.526 0.526 0.521 0.521 0.519 0.519 0.523 0.523 0.481
(15) high 0.528 0.528 0.5280.529 0.496 0.505 0.500 0.498 0.518 0.513 0.519
jobSize (9)1 0.534 0.534 0.534 0.5340.523 0.524 0.523 0.523 0.530 0.532 0.526
9)2 0.532 0.532 0.532 0.5320.518 0.521 0.519 0.519 0.523 0.529 0.516
9)3 0.529 0.529 0.530 0.530 0.516 0.519 0.518 0.50/36 0.524 0.504
9) 4 0.520 0.526 0.526 0.526 0.513 0.517 0.514 0.513 0.522 0.515 0.491
9)5 0.519 0.517 0.525 0.525 0.506 0.510 0.509 0.508 0.521 0.507 0.479
insTime (15) beginning 0.526 0.5290.534 0.534 0.505 0.514 0.507 0.504 0.517 0.518 0.493
(15) middle 0.527 0.527 0.528 0.527 0.514 0.515 0.517 0.5@637 0.521 0.493
(15) end 0.526 0.526 0.5260.527 0.526 0.526 0.526 0.526 0.526 0.526 0.525
(45) total average 0.527 0.528 0.529.530 0.515 0.518 0.517 0.516 0.526 0.521 0.503

(45) standard deviation 0,005 0.005 0.008.003 0.009 0.007 0.008 0.009 0.007 0.007 0.016

Stability- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.982 0.983 0.977 0.977 0.982 0.981 0.982 0.979 2.91.000 1.000
(15) medium 0.965 0.965 0.966 0.966 0.966 0.967 0.966 0.969430 1.000 1.000
(15) high 0.991 0.991 0.990 0.993 0.961 0.954 0.958 0.958780.81.000 1.000
jobSize (9)1 0.998 0.998 0.998 0.998 0.978 0.978 0.977 0.977 0.86400 1.000
9) 2 0.998 0.998 0.998 0.998 0.982 0.978 0.983 0.981 0.9B900 1.000
9)3 0.990 0.990 0.989 0.989 0.986 0.982 0.987 0.987 0.91.900 1.000
9) 4 0.970 0.971 0973 0.972 0.967 0.961 0.962 0.962 0.91.000 1.000
9)5 0.941 0942 0.932 0.936 0.935 0.938 0.935 0.930 0.86200 1.000
insTime (15) beginning 0.973 0.975 0.972 0.973 0.947 0.940 0.944420.90.838 1.000 1.000
(15) middle 0.982 0.982 0.977 0.980 0.979 0.979 0.979 0.97818 1.000 1.000
(15) end 0.984 0.983 0.984 0.983 0.983 0.983 0.983 0.983 70.97000 1.000
(45) total average 0.979 0.980 0.978 0.979 0.970 0.967 0.96967 0.911 1.000 1.000
(45) standard deviation 0.016 0.016 0.018 0.017 0.016 0.01617 0.017 0.035 0.000 0.000

Performancevalues between 0.3 and 0.45 and they are considered outfigngre[4.16
shows that variations databilityare more expressive than the oneBénformancewhich
means that some rescheduling strategies can easily corngarthmaStabilityof schedules.
However, there is no indication that increasBitgbilityhas positive or negative effects on
Performancevalues, or vice-versa, which means that, even with the poesef the two
conflicting criteria a®erformancendStability, it is possible to achieve highly stable and
good quality schedules.

The statistical significance of the effects of problem pagtars, match-up strategies,

and the interactions among themBerformancendStabilitywas investigated by means
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Figure 4.16: Trade-offs betwe&rrformanceandStabilityfor rush orders

of the Analysis of Variance (ANOVA). The summary of the ANOWA given in Table
4.2, where the individual effects of problem parametersrasdheduling strategy dPer-
formanceand Stability are labelled “main effects”, whereas the combined effetth®
pairs of variables are labelled “interactions”. TAe B notation refers to the interaction
between parametefsandB. Values under the headirkgvalue andP value are the value
of the Fisher statistic of the corresponding row effect, tvelprobability of this value
being due to mere chance, respectively. Effects wikhvalue < 0.05 are considered to
be significant. Results from ANOVA test shows that all “maffeets” and “interactions”
involving the parameter Strategy have influence on IRettiormanceandStabilityof the
schedule. Further discussions on these results are peesantt.R> measures the propor-
tion of the variation of the observations around the meare Efatively largeR? values
for both metrics,Performanceand Stability, is an indicator of a high variability on the
obtained results [68].

The fact that the effect on variability due 8irategyis significant implies that some

rescheduling strategies are better than the others. A g&momparison test using Bon-

Table 4.2: Results of the ANOVA test for rush orders

Per formance Stability
F value P value F value P value
Main effects
Strategy 13.56 <0.05 55.38 <0.05
sat 104.94 <0.05 7.92 <0.05
jobSize 25.47 <0.05 81.17 <0.05
insTime 18.24 <0.05 108.40 <0.05
Interactions
Strategysat 6.49 <0.05 8.06 <0.05
StrategyjobSize 0.66 <0.05 2.15 <0.05
StrategyfnsTime 5.86 <0.05 14.83 <0.05

R2 0.71 0.83
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ferroni’s correction([68] was carried out in order to idéptivhich are those strategies
that deliver highePerformanceandStabilityvalues. The results are given in Figlre 4.17,
with comparisons oPerformancebelow the diagonal, and above $fability. Each field

in Figure[4.1V corresponds to the statistical test of thieifice in means between the
corresponding row-column strategies. The conclusion ol éast is indicated with one
of the following symbols: ¢ which indicates that the strategy in the row is superior;
“1” which indicates that the column strategy is superior; ant\hich indicates that the
strategies are non-distinguishable from each other. Aaiditly, thet statistic value and
the p value are given on the top right and bottom right of each fieddpectively. Large
absolutet values and lowp values confirm that the means of the corresponding row-
column strategies are different, implying that one of themsuperior. For example, the
test in row S3, column RS, indicates that S3 obtains, on geelr@gherStability values
than RS. This holds with &test value of 5.70 and p.< 0.05.

Not surprisingly, RS and E deliver good values &tabilityand T forPerformance
However, this is achieved at the price of p&abilityfor T and pooiPerformancdor RS
and E. Remarkably, the results obtained by the match-ugegies S1-S4 are statistically
non-distinguishable from T foPerformance and strategies S1-S8 produce comparable
results from RS and E fdBtability. This result indicates that the newly introduced ap-
proaches posses the best attributes of the investigatedeshsling approaches, but do
not exhibit their weaknesses. Figlre 4.18(a) landl4.18(@vghese results graphically
for PerformanceandStability, respectively, using 95% confidence interval plots. In each
plot, the dot indicates the average value on the whole settdmnces obtained by the cor-
responding strategy in the-axis. The vertical lines denote the 95% confidence interval
of the mean value. Statistical differences are immediatetgcted when there is no over-
lap between the confidence intervals of two or more strasediecording to the interval
plots in Figuré 4.18(a) and Figure 4118(b), strategies $&® the most competent with
respect to bothPerformanceandStability.

Strategies S5-S8 obtain, overall, I®®@rformancevalues. In order to explain this be-
haviour, a correlation between tRerformanceand theDelaythat occur after reschedul-
ing was measured. ThBelay represents the length of the overlap time period of the

new schedule with the initial one after the reschedulingdoor. This is a consequence
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Figure 4.18: Overall results obtained by each reschedslirsgegy; the x-axis shows the
strategy; the y-axis shows the mean (dot) and 95% confidenersal (vertical bars) of
Performancga) andStabilityfor rush orders

of rescheduling jobs within the rescheduling horizon aftérich some jobs are tardy

(i.e. they do not meet their due dates). The correlation eetwhePerformanceand the



4.4. Experiments on Real World Data 86

Delay, p = —0.42, indicates that high delays caused by the reschedulougps are asso-
ciated with lowPerformancevalues. This explains the loRerformanceralues achieved
by strategies S5-S8 which, as shown in Figurel4.19(a), areribs that lead to the largest
Delayvalues. On the other hand, S3 and S4, which seem to be the dréstnpers ac-
cording to Figuré 4.18(a), cause the smallest delays. Nhatiestrategy E obtained low
Performancevalues even when it produces Belayvalue. This situation occurs due to
a higher probability of the new jobs being tardy when theyiaserted in the end of the
schedule. Additionally, match-up algorithms are reldsivefficient since they took 10
seconds on average in the rescheduling process (see Eig@@). This time is higher
than the one required by RS and E, but lower than the one exfjoy the total reschedul-
ing. In any case, 10 seconds on average for the rescheddlagree month production
schedule is fast enough for a printing company industry amnthmly for many other real
world production shops.

Regarding the problem parameters, the ANOVA results indid? shows thasat,
jobSizeandinsTimehave a significant influence derformanceandStability. The nature
of these effects is illustrated with the 95% confidence irgteplots in Figuré 4.20. The
x-axis of plots (a)-(b), (c)-(d), and (e)-(f), measures #heel ofsat, jobSizeandinsTime
respectively. Theg-axis shows the average valuesRarformance(a), (c), (e), andbta-
bility, (b), (d), (f) over all rescheduling strategies. In gendpPalformanceand Stability
values decrease when rescheduling is done on highly satiusahedules, rescheduling

occurs at the beginning or in the middle of the schedule, @mthe arriving job requires
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Figure 4.19: Overall results obtained by each reschedudiraegy onDelay (a) and
Running Timeb) for rush orders
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Figure 4.20: Main effects oRerformance(a), (c), (e) andstability (b), (d), (f) due to
Strategy (a)-(b)jobSize(c)-(d) andinsTime(e)-(f) for rush orders

many operations.

The ANOVA results, presented in Taljle 4.2, also identifies &il interactions of pa-
rameters involvingstrategyare significant. These type of interactions indicate thateso
strategies are better at coping with certain problem carditthan others. That this is the

case can be verified by Taldle ¥.1. The three interaction$vimgpStrategywere analysed
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and it was observed that strategies S1-S4 are either sioniarperior to strategies S5-S8
under any scenario. This seems to contradict the existefren@ydnteraction. However,
the interactions exist because strategies S1-S4 are, nadam conditions, remarkably
better than strategies S5-S8; under any other conditia@ysdbe only similar or slightly
better. Regarding thesTime for instance, S1-S4 are much preferred if the arriving job
is to be inserted at the beginning of the schedule. Undesti@sario, th®elayinserted
by the rescheduling algorithm will have a stronger effeeinthf rescheduling occurs at
the end of the schedule, and consequently strategies SliHSgewemarkably superior
to S5-S8. A similar reasoning explains why strategies Sk®4also superior to S5-S8
when rescheduling occurs on highly saturated schedulés (nghsatvalues). Addition-
ally, it was observed that strategies S1-S4 are superiobi8&when the arriving jobs
have a small number of operations, 1 or 2. The number of dpasato be inserted in
the current schedule is directly proportional to the ler@ftthe rescheduling horizon. If
the rescheduling horizon is relatively short, for examplewinserting only one or two
operations, the calculation of tlendPointperformed differently by S1-S8 has a higher
impact on the definition of the rescheduling horizon tharhé tescheduling horizon is
already large due to the insertion of a large number of oarat In this way, the small
delay values obtained by S1-S4 lead to a better ovBeafbrmanceandStability.

Given the results in Table 4.1 and the statistical analitsssconfirmed that match-up
strategies are comparable to the right shift and insertidghe end strategies with respect
to Stabilityand as good as the total rescheduling strategy with respétrformance
The strategies S1-S4 seem to be slightly superior to the ata&ch-up approaches and
deliver the most consistent results under different proldeenarios, as demonstrated by
Figurel4.18. The strategies S3 and S4 can also be highlidttexbssible incorporation
into the scheduling system of Sherwood Press, since thelupeohigh values with re-
spect toPerformanceand Stabilityand smallDelay and RunningTimevalues, as shown
in Figure[4.19.
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4.5 Discussion

Match-up strategies are proposed to insert rush orders amglex real world job shop
scheduling/rescheduling problem, in which high perforgrimd stable schedules are de-
livered in response to this typical disruption.

Statistical analysis reveal that, even with the presendaefwo conflicting criteria
as Performanceand Stability, match-up strategies achieve high quality schedules under
different problem instances, which highlight their strérggregarding possible scenarios
tackled by Sherwood Press.

Match-up strategies S3 and S4 are candidates for possadagioration into the schedul-
ing / rescheduling system for Sherwood Press, since theyupeogood values for both
PerformanceandStabilityat a reasonabl@unningTime

Note that initial schedules and rescheduling of affectegrajons are done with the
same five criteria fitness function described!in| [86], beeaysodPerformanceresults
are delivered, whilé&tabilityis maintained by match-up strategies requiring only plrtia
modifications on schedules. This feature is suitable to avgments and more detailed

discussions are presented in the next chapter.

4.6 Summary

This chapter investigates a real world job shop schedubksgheduling problem from
a printing company in Nottingham, UK. This problem is dynarsince new jobs with
different levels of urgency arrive everyday in the shop flaod they have to be integrated
into the existent schedule. Typical arriving jobs are ruskecs, which means that they
have to be processed as early as possible in the currentuidehdthis type of disruption
is tackled first and the goal is to find appropriate reschedwdpproaches to achieve high
guality schedules.

A match-up algorithm, which accommodates new rush orderssbyg available idle
times on machines, is proposed. Additionally, quality nuees are introduced in order
to identify good performing schedules. The motivation ad thatch-up algorithm is to
modify only a part of the initial schedule in such a way thatiftabilityandPerformance

of the shop floor are kept, avoiding additional productiostso Several strategies to
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define rescheduling horizons were proposed and comparkathigr strategies, including
total rescheduling, the right shift and insertion in the ehthe schedule.

The obtained results were analysed and statistically atdatl In summary, all match-
up strategies do obtain reasonable values for BetformanceandStabilityregardless of
the problem parameters. Strategies S1-S4 deliver beteltsebecause they set smaller
rescheduling horizons than S5-S8. It was observed thathmagicstrategies are statisti-
cally non-distinguishable from total rescheduling witkpect toPerformanceand com-
parable to the right shift and “insertion in the end” withpest toStability. These encour-
aging results coupled with the fact that the proposed algos only take 10 seconds on
average to reschedule a one month schedule, indicate thptadposed match-up strate-
gies and particularly S1-S4 are adequate for the investigatd other similar production
shops.

The following chapter continues of the investigation of amatip strategies, in which

new improvements are proposed and the impact of other disngoare investigated.



Chapter 5

Match-up Strategies for a Complex
Real World Job Shop Problem -

Improvements and Other Disruptions

5.1 Introduction

Encouraging results from the previous chapter show thatimap strategies deliver high
performing schedules with a high stability when the argyvjobs are rush orders. In
this chapter, a more general case, in which jobs may havereift levels of urgency to
be processed, is investigated. This generalisation regjfirther considerations in the
algorithm design. Additionally, experimental resultsntgy that match-up algorithms
are suitable for improvements, since the associated gealgirithm fitness function is
able to control not only the scheduRerformance but also itsStability. This chapter
emphasises the validity of hypothesis 1 described in Cnibte

The job shop scheduling problem presented by Sherwood Pihstsingham, UK, is
investigated in this chapter and the goal is to check thelfiktyi of match-up strategies
under different types of disruption to achieve highly stedohd good quality schedules.

The remaining of this chapter is organised as follows. $adi2 describes the match-
up algorithm for jobs with different levels of urgency, refed to as normal orders. Section
analyses the proposed improvements on the genetigthlgowhich includes a com-
parison between the original version and improved one. thatthlly, normal orders are

91
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statistically analysed and their results are compared thgtones presented by rush or-
ders, in order to identify strengths of the proposed stiate@ections 514 and®.5 discuss

and summarise the conclusions of this chapter.

5.2 Match-up Strategies for Normal Orders

This section introduces match-up strategies for the dyaasheduling of normal orders.
This type of orders set jobs to be processed before theiddteeand they have the same
priority of jobs already allocated in the current schediilee pseudocode of the proposed
match-up algorithm for normal orders is given in Figurd F-his algorithm resemble the
previous one for rush orders, because they both define tihaesep: (1) the rescheduling
horizon definition, in steps 1-2; (2) the subproblem debnitiin steps 3—6; and (3) the
integration of schedules in step 7. The main difference betwhem is the way how idle
times are collected on machines in step 2. Note that refengaints, such asitialStart,

startPointandendPoint are renamed in order to properly illustrate the rationdlthe

Input: An initial scheduleS, a new jobj with due dated;, initial Point
Output: A new schedule with job integrated

1. LetfeasiblePoinbe the latest completion time of operations whose procgsire is crossed
by initialPoint.

2. CalculatdimitingPoint by collecting idle time starting from the due date of the netvd; in
a backwards fashion towards tfemsiblePoint

i If limitingPoint > feasiblePoint
- Lettherescheduling horizobe the time window betwedimmitingPoint and the due
dated;.

i Else
- RecalculatdimitingPoint by collecting idle times starting frorfeasiblePointin a
forwards direction towards the due dale

- Let the rescheduling horizorbe the time window betweereasiblePointand
limitingPoint.

. LetO be the set of operations within thescheduling horizorplus the operations of jop
. Update the release time and due dates of jolsda as to lie within theescheduling horizaon
. Let operations if© define a new scheduling problegh
. SolveS using GA.

. IntegrateS into Schecking and removing overlaps.

N o o b~ W

Figure 5.1: Pseudocode of the match-up algorithm for noorders
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proposed algorithm.

Figure[5.2(a) shows a new example for step 1, in which a newl{btvith due-date
d; has four operations subject to a precedence constraints. fifsh operation has to
be processed either on M1 or M2, and then, after completirggekecution, the next
operation can be started on M3, and then on M4, and finally onTW& company policy
of 48 hours of no changes is applied and operations alreadliedtat this point must
complete their processing before the rescheduling praaasstart, which senitial Point
and feasiblePointrespectively, as highlighted in Figure b.2(b) and FiquiZ&. This
example follows the same idea applied for rush orders, irclwthe completion time of
Job 2 on M2 sefeasiblePoint

ThelimitingPoint, which defines one of the boundaries of the reschedulingbioris

M1* i) \
vz + [
3
a
s
* parallel machines
(a)
mix [ ] [ 6] L7 ] [8]
wer 2]
wso 2] [o] [7 [ 6]
14 L e | [ o |
M5 s [s] [e | [7]
initialPoint!
(b)
mic | 0 | [ B ] L7 1 [s8]
mex [ 2 |
M3 (o] [7 [¢6]
ma [ ] [ 6 | [ 9 ]
M5 L s T3] L[e | [7]
|
feasiblePoint:
()

Figure 5.2: Example of a normal order arriving in the shoprfl¢a) the new job process-
ing requirements, (b) the calculationiaftialPoint and (c) thef easiblePointdefinition.
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calculated either in a “backwards” or in a “forwards” direct depending on whether or
not the amount of time betwedeasiblePointand the due date of the new jal, is large
enough to accommodate the arriving job. If there is enougile tio accommodate new
job j, then thelimitingPointis calculated by collecting idle time in backwards diregtio
starting from timed; towards thefeasiblePoint(step 2.i). Time is accumulated until it
can accommodate jopand defines the point refereedlasitingPoint. In this case, the
rescheduling horizon is defined by thenitingPoint and the due datd; of job j. In the
second case, where there is not enough time betweefetsiblePointandd;j to contain
new jobj, thelimitingPointis calculated by accumulating idle time on machines, bt thi
time starting from thef easiblePointin a forwards direction towards the due date of job
j (step 2.ii). As in the first case, thenitingPoint labels the point when enough time to
accommodate jolp has been accumulated and the rescheduling horizon is désyridae
feasiblePointand thelimitingPoint. Note that, in this case, the due date of jpfalls
somewhere in betweefeasiblePointand limitingPoint. The match-up algorithm first
tries to accumulate idle time in a backwards fashion, if thits, i.e. if the accumulated
time falls earlier than théeasiblePoint then the idle time is accumulated in a forwards
fashion.

Four additional strategies BW1-BW4 are introduced for theuanulation of idle
times in a backwards fashion as illustrated with an examplEigure[5.B. Note that
this example follows the same idea of the one presented &br ouders in the previous
chapter, but idle times are collected from the due date of jJ&W1—-BW2 collect partial
and continuous time windows, respectively, as shown in feigu3(b) and (c). On the
other hand, BW3-BW?2 collect idle as BW1-BW?2 but they alsosider precedence
constraints imposed to the new job operations, as in Figl@pand (e). Since idle
times are collected on parallel machines, BW1-BW4 are ee@ro S1—- S8, in which
S1-S4 consider the latest time point and S5— S8 consideathest time point.

Figurel5.4(a) demonstrates idle times being collectedhenew jobj present in Fig-
ure[5.2(a). Since the accumulated times are on machines MManwhich are parallel
machines, there are two options for the definitiofimitingPoint. The first option, using
S1, is to consider the latest time point, as in Fidure 5.4(byyhich a slightly smaller

rescheduling horizon is defined. The other option, u§hgis to consider the earliest
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Figure 5.3: Example of the collection of idle times; (a) teswjob requirements, (b) idle
time collection using strategy BW1, (c) BW2, (d) BW3 and (&y8.

time point, as in Figure 5l4(c). The collection of idle timssalso illustrated in Figure
£.6. In this case, the job to be inserted requires one motetiprocessing time on M1,
as in Figuré 5J55(a). In this example the time accumulatedbackwards fashion using
S1 in Figurel5.6(c) andb in Figure[5.5(d), is insufficient to accommodate the new job
and thelimitingPoint is earlier than thd easiblePoint In this case, time has to be accu-
mulated in a forward fashion, as illustrated in Figure 5.6{#his can be done using any
of the strategie$l — S8. For example, Figurie 5.6(b) and Figlire]5.6(c) show what the
rescheduling horizon would be 1l andSb were used, respectively.

The remaining rescheduling actions, steps 3—7 from theighgo in Figure[5.1, fol-

low the same pattern presented for rush orders in the prevbbapter. In step 3, the set
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Figure 5.4: Example of the calculation of the rescheduliogZon; (a) the collection of
idle time on machines, (b) the backwards calculatiotiraftingPoint using strategy S1
and (c) the backwards calculationlohitingPoint using strategy S5.

O aggregates affected operations within the reschedulingdrowith new jobj. In step

4, both release time and due date of job©imre updated, in order to keep operations
within the rescheduling horizon. In steps 5-6, a new scliegisubproblens is defined
and solved using the previously developed genetic alguritim step 7, the feasibility of
the schedule is verified, in which overlaps between the géeépartial schedule and the
initial one are solved by shifting operations to the rightenimecessary.

The algorithm presented in Figure b.1 is able to manage n@mnaerush orders, since
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Figure 5.5: Example of the calculation of the reschedulingzon; (a) new jobj =
10 processing requirements, from those in Fiduré 5.2, eeiiy 1 time unit, (b) the
collection of idle time on machines from the due dajg(c) the backwards calculation of
limitingPoint using strategysl and (d) the backwards calculationlohitingPoint using

strategysb.
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Figure 5.6: Example of the calculation of the rescheduliogzon; (a) the collection of
idle time on machines frorfeasiblePoint (b) the forwards calculation dimitingPoint
using strategyl and (c) the forwards calculation linitingPoint using strategyss.

idle times are collected in both directions, backwards amwd/idrds fashion. The only
additional requirement is that rush orders must neceggaass through step 2.ii, which
sets idle times to be collected in a forward way. Consequeatinore general match-up

algorithm, which is able to manage both types of arrivingeosdis shown in Figurle 5.7.
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Input: An initial scheduleS, a new jobj with due dated;, initial Point
Output: A new schedule with job integrated

1. LetfeasiblePoinbe the latest completion time of operations whose procgssire is crossed
by initialPoint.
2. CalculatdimitingPoint by collecting idle time starting from the due date of the netvd; in
a backwards fashion towards tfeasiblePoint
i If limitingPoint > feasiblePointand new job j is a normal order
- Let therescheduling horizobe the time window betwedmitingPoint and the due
dated;.
i Else
- RecalculatdimitingPoint by collecting idle times starting frorfeasiblePointin a
forwards direction towards the due dale

- Let the rescheduling horizorbe the time window betweerfeasiblePointand
limitingPoint.

. LetO be the set of operations within thescheduling horizomplus the operations of jop
. Update the release time and due dates of jolisgn as to lie within theescheduling horizarn
. Let operations if© define a new scheduling problegn
. SolveS using GA.

. IntegrateS into Schecking and removing overlaps.

~N O 0o~ W

Figure 5.7: Pseudocode of the match-up algorithm for newrsrd
5.3 Experiments on Real World Data

Data sets obtained from Sherwood Press are used to td2ttfeemanceandStability of
the developed match-up algorithm shown in Figuré 5.7. The ofethe production orders
of several months were used to produce schedules. In eaemaes newly arriving jobs
were randomly generated taking into account the same tlareeneterssat, insTimeand
jobSize defined in the previous chapter. The combination of thesgnpeters sets again
a total of 45 analysed instances.

Initial schedules, previously selected for chapter 4, aaslio here to insert the newly
arriving jobs. Match-up strategies S1-S8, total reschadyll), right shift rescheduling
(RS) and insertion in the end (E) are responsible again ¢égrate the new jobs into initial
schedules. BotlPerformanceand Stability are recorded for each strategy, each type of
instance for each arriving job.

Features as population size, number of generations, arisand mutation rates for
the genetic algorithm were kept unchanged. Machine spatidits, including hardware

and software, also remain the same.
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As mentioned in the previous chapter, improvements aregsegbfor the insertion of
rush orders. These results are analysed and statisti@itiated before the investigation

of normal orders. The following subsections formally dissthe obtained results.

5.3.1 Rush Orders - improved version

Results from experiments in chaptér 4 show that there is #HicometweenStabilityand
Performancewhich means that schedules with a g&idbilityare typically poor regard-
ing Performanceand vice-versa. A certain level of conflict is, of coursetunal, since
Stability and Performanceare two conflicting criteria. The applied fitness functionswa
optimising only thePerformanceaduring the rescheduling process and reasondtasil-
ity results were found due to match-up strategies modifying arpart of the schedule.
However, these results can be improved by optimising, atstd thePerformancethe
sum of themakesparand theStability measures, previously introduced $&yake and
Stability, expressions 4.2 and 4.5, from the previous chapter, régplgc Whereas it is
natural to consider th8tabilityduring rescheduling, the use of theakesparobjective
rather than thé&er f ormancaes justified as follows.

The Performanceof schedules is negatively correlated with thelaythat they incur
after rescheduling. This means that by consideringRdref ormanceas fitness function
for rescheduling, the new schedules within the reschegulorizon are of a good local
quality, but, once these are integrated into the initiaksicthe, theDelayincurred lessens
the Per formanceof the whole schedule. In order to minimise th&&lay values, it is
necessary that new schedules within the reschedulingdroare as short as possible;
and this is achieved by minimising tlmeakespan Note that the proposed new settings
also impose a double control 8tability, since expressidn 4.5 is now part of the fithess
function and match-up strategies still modify only a partie original schedule.

This subsection follows the same methodology used to am#éhesoriginal algorithm
for rush orders. First, a complete statistical analysiamigg Performanceand Stabil-
ity of this new version is investigated. Subsequently, a coispabetween the original
algorithm and this improved version is presented in orderaicdate the expected im-
provements.

As expected, similar results on the statistical analysesfannd, in which match-up
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algorithms are comparable to the right shift and insertithe end strategies with respect
to Stabilityand as good as the total rescheduling strategy with respétrformance
More details about these results are discussed next.

The trade-offs betweeRerformanceand Stability are presented in Figufe 5.8, in
which samples between 0.3 and 0.45Rerformanceand between 0.7 and 0.9 fBtabil-
ity are considered outliers. A more concentrated variati@tamilityis now observed due
to the new GA settings delivering highly stable schedulegaiA, no positive or negative
effects onPerformances observed when th8tabilityis increased, or vice-versa, which
means that stable and good quality schedules are stilleteliv

Table[5.1 summarises average and standard deviationsé&sPerformanceandSta-
bility achieved by the investigated strategies for the differenblem parameters. Each
cell has an average result of 10 times executing the resthgdlgorithm. Addition-
ally, the best strategies are highlighted in bold for eagte tyf instance and numbers be-
tween brackets show the number executions done for eaemnoestOnce again, match-up
strategies combine good features of T, RS and E, since thegdgood results for both
PerformanceandStability. They are comparable to the best results presented by T and E,
with respect taPerformanceand Stability, respectively. Note that E now represents the
optimal Stabilitybecause it keeps both sequence and time of current opesathomong
match strategies, S1-S4 outperform S5-S8 in most groupsstdnces. These results are
statistically verified next.

The summary of the ANOVA is given in Table 5.2. All “main eftstand “interac-

tions” involving the parameter Strategy have influencesaih BerformancendStability

e
0.95- et L. e
.b ° b4 o‘
S 090 A
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KQ 0.85- . . .
4'3 0.80- °
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Figure 5.8: Trade-offs betwedPerformanceand Stability for rush orders - improved
version
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Table 5.1: Average and standard deviation value$&formanceand Stability obtained
by the rescheduling strategies for rush orders - improvesioe

Per formance Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat

jobSize

insTime

(15) low 0.533 0.533 0.533 0.532 0532 0532 0531 0.58%37 0.528 0.510
(15) medium 0.526 0.5260.527 0.527 0.525 0.525 0.525 0.526 0.523 0.523 0.481
(15) high 0.525 0.527 0.528 0.528 0513 0512 0523 0.50%29 0.513 0.519
9) 1 0.535 0.535 0.535 0.535 0.532 0.533 0.532 0.58539 0.532 0.526
9) 2 0.531 0.532 0.5320.533 0.528 0.526 0.530 0.525 0.529 0529 0.516
9) 3 0529 0.529 0.529 0.5290.523 0.522 0.527 0.521 0.523 0.524 0.504
(9) 4 0.525 0.526 0.526 0.526 0.519 0519 0523 050531 0.515 0.491
9) 5 0.521 0523 0.523 0522 0515 0516 0.519 0.50526 0.507 0.479
(15) beginning 0533 0.5320.535 0.532 0517 0.518 0.525 0.511 0.533 0.518 0.493
(15) middle 0.525 0.528 0.526 0.528 0.527 0.526 0.528 0.52%30 0.521 0.493
(15) end 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.52625

(45) total average
(45) standard deviation

0.528 0.529 0.529 0.529 0.523 0.523 0.82621 0.530 0.521 0.503
0.004 0.004 0.004 0.004 0.006 0.0m604 0.008 0.005 0.007 0.016

Stability- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat

jobSize

insTime

(15) low 0.992 0.992 0.993 0.993 0.993 0.993 0.995 0.993 2.98.997 1.000
(15) medium 0.983 0.983 0.983 0.983 0.983 0.983 0.981 0.982720 0.998 1.000
(15) high 0.995 0.995 0.995 0.995 0.987 0.986 0.982 0.981200.90.998 1.000
91 0.998 0.998 0.998 0.998 0.992 0.992 0.992 0.990 0.942990.1.000
9) 2 0.996 0.997 0.996 0.996 0.993 0.992 0.990 0.991 0.956980.1.000
9)3 0.996 0.996 0.996 0.996 0.994 0.995 0.991 0.991 0.959970.1.000
9) 4 0.985 0.985 0.986 0.986 0.985 0.984 0.981 0.981 0.952970.1.000
9)5 0.975 0976 0976 0.976 0.975 0.974 0.975 0.972 0.939960.1.000
(15) beginning 0.990 0.991 0.991 0.990 0.983 0.982 0.982810.90.909 0.995 1.000
(15) middle 0.990 0.990 0.990 0.991 0.990 0.990 0.985 0.983490 0.998 1.000
(15) end 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 60.98000 1.000

(45) total average
(45) standard deviation

0.990 0.990 0.990 0.990 0.988 0.987 0.98685 0.948 0.997 1.000
0.006 0.006 0.006 0.006 0.006 0.0m606 0.006 0.020 0.0010.000

Table 5.2: Results of the ANOVA test for rush orders - impibversion

Per formance Stability
F value P value F value P value
Main effects
Strategy 27.08 <0.05 85.48 <0.05
sat 47.61 <0.05 16.07 <0.05
jobSize 52.84 <0.05 48.62 <0.05
insTime 5.55 <0.05 42.39 <0.05
Interactions
Strategysat 9.43 <0.05 13.73 <0.05
StrategyjobSize 1.96 <0.05 1.47 <0.05
StrategyfnsTime 8.64 <0.05 19.33 <0.05
R? 0.74 0.84
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metrics. A high variability on results is confirmed by theatelely largeR? values. More
details about ANOVA are discussed next. The Bonferroniisexion for pairwise com-
parisons is carried out to identify strategies which delsugerior results. These compar-
isons are given in Figufe 5.9 witPerformanceesults below the diagonal, and above for
Stability.

As expected, RS and E deliver go&tiability and poorPerformance while T has
poor Stabilityand goodPerformance Match-up strategies combine these good features,
since strategies S1-S4 are statistically non-distingokhfrom T forPerformanceand
strategies S1-S8 produce comparable results to RS and &dbility. Note that S1-S4
still deliver betterPerformancethan S5-S8 because they set smaller rescheduling hori-

zons, which affect a fewer number of operations on the rekdhy process, avoiding

Stability
S1 S2 S3 S4 S5 S6 S7 S8 T RS E

0.07 0.11 -1.31 -1.49 231 272 2270 3.90 527
S1 - = = = = = « T 0

1.00 1.00 1.00 1.00 1.00 036 <0.05 <0.05 <0.05

0.03 0.07 -1.35 -1.54 235 277 2275 3.86 523
S2 | = = = = = = = « T 0

1.00

S3

sS4

S5

S6

Performance

S7

S8

RS

Figure 5.9: Mean pairwise comparisonsReérformanceand Stability for rush orders -
improved version
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the presence of large delays. Simittability results are obtained among all match-up
strategies due to the applied new settings on the fithestidand hese results are graph-
ically shown in Figuré 5.10(a) arid 5110(b) fBerformanceand Stability, respectively.
Note that theStability measure is now considering both sequer&te and time Sta)
deviations, as described by the expressions 4.3 and 4.4dnapiei 4. Consequently, E
delivers superio&tabilityresults then RS, since E keeps the initial schedule intddtew
RS requires some time deviations. Figure 5.11(a) showsxpected larger delays de-
livered by S5-S8 and RS. Additionally, Figure 5.11(b) canfirthat match-up strategies

are still efficient, since only 10 seconds are required omagesto reschedule affected

operations.
Q) | 1.00 s °®
80'53E§§§ ; {' 0.997§§§§§§§E
0 o0.52] } } % { 3 0.98;
E E 0.97+
a 0.51 5 0.96
't W) o.95;
Q 059
Q 0.94

o4 o093

S1 S2 S3 S4 S5 S6 S7 S8 T RS E S1 S2 S3 S4 S5 S6 S7 S8 T RS E
Strategy Strategy
(a) (b)

Figure 5.10: Overall results obtained by each reschedsliragegy; the x-axis shows the
strategy; the y-axis shows the mean (dot) and 95% confidener/al (vertical bars) of
Performancga) andStabilityfor rush orders - improved version
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S1 S2 S3 S4 S5 S6 S7 S8 T RS E S1 S2 S3 S4 S5 S6 S7 S8 T RS E
Strategy Strategy
(a) (b)

Figure 5.11: Overall results obtained by each reschedudirefegy onDelay (a) and
Running Timeb) for rush orders - improved version
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The parametersat, jobSizeandinsTimehave a significant influence on boBer-
formanceand Stability over different applied rescheduling strategies, as showthé
ANOVA test results in Table 5l2. These effects are illugilah Figuré 5.12. As expected,
PerformanceandStabilityvalues decrease when rescheduling is done on highly sadurat
schedules, when the arriving job requires many operatmmshen the rescheduling oc-
curs at the beginning or in the middle of the schedule.

The ANOVA results in Tablé 512 together with the averagesgme in Figuré 5.10
identify that the interaction between problem parameterssmgnificant, which indicates
that some strategies are better coping with certain camditihan others. Regardisgt
andinsTime for instance, S1-S4 are much preferred when the rescimgdadicurs either
on highly saturated schedules or at the beginning of sckedulnder these scenarios, the
Delayinserted by the rescheduling algorithm will have a strorgiect than if reschedul-
ing occurs at the end of the schedule or in less saturatedislgse RegardingobSize
S1-S4 still superior than S5-S8 when jobs with a small nurobeperations are inserted,
because they define smaller rescheduling horizons andegoastly, smaller delay val-
ues, leading to a better over&rformanceandStability.

Once again, match-up strategies leads to good quality s&sdvhich are highly sta-
ble as the right shift and insertion in the end strategiesaargbod as the total rescheduling
strategy with respect tBerformance Strategies S1-S4 are slightly superior to the other
match-up approaches and deliver the most consistentseswuder different problem sce-
narios, as demonstrated by Tablel 5.1 and Figur€ 5.10.

5.3.2 Comparison between Rush Orders using the original GArd

the Improved Version

The improved version of the match-up algorithm so far havawshthat it remains ef-
fective for inserting rush orders after statistical melimparison tests and analysis of
variance were carried out on the previous subsection. EfU3 presents comparative
results between the original rescheduling algorithm ohticed in chaptdr]4, which uses
only thePer formanceas the function to optimise during rescheduling (O), andpttoe

posed improved version, that uses the sum of the makespastahiity(1).
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The results obtained by the new version of the match-up #lhgor(l) are remark-
ably superior to the earlier ones (O) with respect to BformanceandStability. This
improvements are due to smallBelayvalues being generated with the minimisation of
makespan and the effective control $tability which is now integrated into the fitness

function. Figurd 5.14 shows the overall reductionDxlay values obtained by the im-
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Figure 5.12: Main effects oRerformancega), (c), (e) andstability (b), (d), (f) due to
Strategy (a)-(b)jobSize(c)-(d) andinsTime(e)-(f) for rush orders - improved version
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Figure 5.13:PerformanceandStabilityvalues obtained with the original fitness function
(O) and the improved version (1)
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Figure 5.14 Delayvalues obtained with the original fitness function (O) arelithproved
version (1)

proved version (I) compared with the original one (O) forraicheduling strategies. The
negative correlation betweddelay and Performanceand the effectiveStability control
identify that the improved version of the match-up algantleads to schedules with bet-
ter quality results. Note that no considerable improveman®Performancere observed

for S3-S4, since their produced delays were already small.

5.3.3 Normal Orders

Normal orders are more flexible disturbances because tisartion are based on the job
due-date, which gives a time window to make repair decisions

This subsection follows the same methodology used to aa#hesalgorithm for rush
orders, in which a complete statistical analysis is caraetto investigate botRerfor-

manceand Stability of the repaired schedules. Subsequently, a comparisorebetimsh
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and normal orders is also presented in order to identifytitemgths of the match-up algo-
rithm dealing with jobs with different levels of urgency. tédhat the same settings of the
genetic algorithm previously used in Section 5.3.1 is aubin this experiment because
they deliver better overall results regarding all analysedrics.

Similar results on the statistical analysis are found, imclwimatch-up algorithms are
comparable to the right shift and insertion in the end sgiagewith respect t&tability
and as good as the total rescheduling strategy with resp@etrtormance More details
regarding these results are discussed next.

The trade-offs betweeRerformanceand Stability are presented in Figute 5]15, in
which samples between 0.3 and 0.45Rerformanceand between 0.7 and 0.9 fBtabil-
ity are considered outliers. Again, a more concentrated vamian Stabilityis observed
due to the GA settings still delivering highly stable scHeduAs expected, no positive or
negative effects oRerformancas observed when th®tabilityis increased, or vice-versa,
which means that stable and good quality schedules arealidered.

Each instance of the problem is executed 10 times and botlageeand standard
deviation results obtained by the investigated strategiesshown in Tablé 5.3. Best
strategies are highlighted in bold for each analysed ingta®nce again, S1-S8 combine
strengths of T, RS and E, delivering good quality stable dales, which are similar to
T regardingPerformanceand comparable to RS and E regard8tgbility. Among match
strategies, S1-S4 outperform S5-S8 in some groups of iossaand these results are
statistically verified next.

Table[5.4 shows the ANOVA results, in which all “main effécéd “interactions”

involving the parameter Strategy have influenced?erformanceand Stability. A high

1.00 ° ° o oo

0.95- - ...,. .
g 0.90- ° °
X . s
K 085 o, o
E 0.80
(’) 0.75
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0.50 0.55 0.“10 0.215 0.‘50 0."55 0.‘60
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Figure 5.15: Trade-offs betwe&erformanceandStabilityfor normal orders
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Table 5.3: Average and standard deviation value$&formanceand Stability obtained
by the rescheduling strategies for normal orders

Per formance Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E
sat (15) low 0.528 0.528 0.526 0.526 0.532 0.533 0.529 0.52%40 0.524 0.510
(15) medium 0.518 0.517 0.511 0.512 0.517 0.518 0.520 0.52%23 0.505 0.481
(15) high 0.512 0.513 0.526 0.526 0.513 0.514 0.522 0.511 0.512 0.512 0.519
jobSize (9)1 0.524 0.524 0.526 0.526 0.521 0.524 0.525 0.5250.526 0.525 0.526
9)2 0.520 0.520 0.531 0.531 0.524 0.525 0.529 0.525 0.529 0.522 0.516
9)3 0.522 0.523 0.521 0.522 0.524 0.524 0.527 0.5P1529 0.517 0.504
9)4 0.518 0.519 0.517 0.518 0.521 0.519.523 0.518 0.521 0.507 0.491
9)5 0.512 0.512 0.510 0.510 0.514 0.515 0.515 0.50520 0.496 0.479
insTime (15) beginning 0.526 0.520 0.526 0.52D.529 0.525 0.528 0.528 0.521 0.514 0.493
(15) middle 0.512 0.519 0.523 0.523 0.512 0.518 0.523 0.50625 0.513 0.493
(15) end 0.520 0.520 0.514 0.513 0.521 0.521 0.521 0.52528 0.513 0.525
(45) total average 0.519 0.520 0.521 0.521 0.521 0.521 0.52820 0.525 0.513 0.503
(45) standard deviation 0.006 0.005 0.007 0.007 0.006 0.0w04 0.007 0.007 0.009 0.017

Stability- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.992 0.992 0.992 0.992 0.991 0.991 0.985 0.990 5.98.997 1.000
(15) medium 0.985 0.985 0.984 0.985 0.984 0.984 0.983 0.989670 0.997 1.000

(15) high 0.986 0.993 0.994 0.994 0.977 0.989 0.979 0.981460.80.998 1.000

jobSize (9)1 0.988 0.996 0.998 0.998 0.987 0.995 0.989 0.995 0.906990.1.000
9) 2 0.994 0.997 0.998 0.998 0.994 0.996 0.994 0.989 0.932990.1.000

9)3 0.997 0.997 0.996 0.997 0.994 0.991 0.985 0.989 0.939970.1.000

9) 4 0.986 0.986 0.986 0.986 0.978 0.985 0.981 0.977 0.928970.1.000

9)5 0.973 0.973 0974 0.972 0.967 0.975 0.962 0.973 0.919950.1.000
insTime (15) beginning 0.991 0.991 0.990 0.990 0.990 0.990 0.98689.90.925 0.995 1.000
(15) middle 0.980 0.987 0.989 0.988 0.972 0.984 0.972 0.978220 0.998 1.000

(15) end 0.992 0.992 0.992 0.992 0.991 0.991 0.988 0.989 20.92000 1.000

(45) total average
(45) standard deviation

0.988 0.990 0.990 0.990 0.984 0.988 0.98284 0.923 0.997 1.000
0.007 0.007 0.007 0.008 0.009 0.0m609 0.007 0.031 0.0020.000

Table 5.4: Results of the ANOVA test for normal orders

Per formance Stability
F value P value F value P value
Main effects
Strategy 14.33 <0.05 169.44 <0.05
sat 90.99 <0.05 60.71 <0.05
jobSize 41.93 <0.05 55.91 <0.05
insTime 13.81 <0.05 21.34 <0.05
Interactions
Strategysat 8.29 <0.05 53.86 <0.05
StrategyjobSize 2.09 <0.05 2.71 <0.05
StrategyfnsTime 7.58 <0.05 1 <0.05
R? 0.73 0.90
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variability on results is confirmed by the relatively lar§é values. Additionally, the
Bonferroni’s correction for pairwise comparisons is cadrout to identify strategies with
superior results. These comparisons are given in Figu®@ Wwith Performanceresults
below the diagonal, and above fBtability.

Match-up strategies are still combining good features d®3,and E, witout not ex-
hibit their weaknesses, since all strategies are now statily non-distinguishable from
T for Performanceand as good as RS and E fetability. Note that, additionally, S2-S4
are statistically non-distinguishable from RS ftability. Similar PerformanceandSta-
bility results are obtained among all match-up strategies duesteftactive control of
Delayvalues by the GA fitness function. Note that the newly argyjmbs are inserted at
different parts of the schedule based on the requirements dtie date. Consequently,

there is a higher chance of using idle times present in theesuschedule, which has a

Stability
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Figure 5.16: Mean pairwise comparisondRefrformanceandStabilityfor normal orders



5.3. Experiments on Real World Data 111

positive effect on the reduction of delays. S1-S4 are agaginlighted as the ones with the
better overall results, as graphically shown in Figurel@al@nd 5.1l7(b) foPerformance
and Stability, respectively. Additionally, th®elay values delivered by all rescheduling
strategies are presented in Figlre 5.18. The running timempeter is not investigated
again since they always deliver similar results, with alltchaup strategies delivering
reasonable execution times.

The ANOVA test results, present in Taldle]5.4, show that thampaterssat, jobSize
andinsTimehave a significant influence on boBerformanceand Stability over dif-
ferent rescheduling strategies. These effects are grphitustrated in Figuré 5.19.
As expectedPerformanceand Stability values decrease when rescheduling is done on
highly saturated schedules, when the arriving job requirasy operations, or when the

rescheduling happens in the middle of the schedule. Noteukh orders start collecting

Q) 0.53 1.00 e ©
9 % } 0.98 $ 22l : ¢ $ )
Sombptrdtly -
& S
E } :E 0.96
0.51
a E 0.94
T &
&) 0.50 | 0.92.
o4 o0l
S1 S2 S3 S4 S5 S6 S7 S8 T RS E S1 S2 S3 S4 S5 S6 S7 S8 T RS E
Strategy Strategy
(a) (b)

Figure 5.17: Overall results obtained by each reschedslirsgegy; the x-axis shows the
strategy; the y-axis shows the mean (dot) and 95% confidenersal (vertical bars) of
Performancga) andStability (b) for normal orders
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Figure 5.18: Overall results obtained by each reschedsliradegy orDelay for normal
orders
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Figure 5.19: Main effects oRerformance(a), (c), (e) andstability (b), (d), (f) due to
Strategy (a)-(b)jobSize(c)-(d) andinsTime(e)-(f) for normal orders

idle times as soon as they arrive in the shop floor, which leatggher saturation levels at

the beginning and in the middle of the schedules. Contrardymal order start collecting

idle times from due-dates, which mostly concentrate jolieénmiddle of the schedule.
The ANOVA test also identify that the interaction betweeratggy and other prob-

lem parameters are significant, which indicates that sorategiies are better coping with
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certain conditions than others. RegardgagandinsTime for instance, S1-S4 are much
preferred when the rescheduling occurs either on highlyratgd schedules or in the mid-
dle of schedules. Under these scenarios[tekayinserted by the rescheduling algorithm
will have a stronger effect than if rescheduling occurs sslsaturated schedules or at
the end of the schedule. RegardijabSize S1-S4 still superior than S5-S8 when jobs
with a small number of operations are inserted, becausediiye smaller rescheduling
horizons and, consequently, smaller delay values, leddiagetter overalPerformance
andStability.

All match-up strategies are producing good quality scheslalen when more flexible
disturbances as normal orders occur in the shop floor. Thiéylsliver highly stable
solutions as the right shift and insertion in the end stiategnd goodPerformances the
total rescheduling. In general, Strategies S1-S4 aretslighperior to the other match-up
approaches and they deliver the most consistent resules difterent problem scenarios,
as shown in Table 5.3 and Figure 5.17.

5.3.4 Comparison between Rush and Normal Orders

Jobs arriving in Sherwood press shop floor are either cladsa rush or normal orders.
It is expected to get superior results for normal ones dutstibexible nature, i.e. differ-
ent due-dates, which gives a larger time window to make rejggisions when compared
with rush ones. Rush orders (R) are analysed and their sesulPerformanceand Sta-
bility are compared with the ones obtained by normal orders (N)doh eescheduling
strategy, as shown in Figure 5120 (a) and (b), respectively.

Surprisingly, rush orders achieve betRarformanceresults because their due dates
are not predefined as they need to be integrated as earlysiblpas the current schedule,
which leads to good satisfaction grades regarding thertesdiof arriving jobs. Addition-
ally, rush orders achieve slightly better overall resudts Stability due to the fact that
these disruptions are controlled as soon as they arriveldeirstiop floor, while regular
orders keep changing different parts of the schedule basetifferent due dates values

required by the newly arriving jobs.
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5.4 Discussion

Improvements on the genetic algorithm fitness function ¢ed more effective control of
bothPerformancendStabilityof new schedules for the job shop scheduling/rescheduling
problem presented by Sherwood Press. This effect is a refsait overall reduction of
Delayvalues obtained by the improved version compared with tiggnal one described
in the previous chapter. Since the new settings bring reaidyksuperior results, they
were also applied in experiments for normal orders. Notettiee is a double control of
Stability, since this feature is now part of the fithess function of the @mbined with
match-up changing only specific parts of the schedule.

Statistical multi-comparison tests and analysis of vageneveal that match-up strate-
gies are highly flexible to deal with complex disruptions;sas the ones which affects
multiple resources in a shop floor as the arrival of rush anthaborders. This gen-
eralisation confirms that match-up strategies deliver Ilgigkable and good performing
schedules even when disruptions with different levels géuocy arises in the shop floor.

Match-up strategies S1-S4 remain highlighted as good datek for possible incor-
poration into the scheduling/rescheduling system of Shed\Press, since they produce

good values for botPerformanceandStabilityunder different problem scenarios.

1.004 [
Q 0.53 o1 46 86 & e
: “H}Hw}}ﬂ o TS
g %2 } } % } } :i 0.961
S st } r
Q Q] 0.94
S &
Qq: 0.501 0.92.
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Job RN RN RN RN RN RN RN RN RN RN RN Job RN RN RN RN RN RN RN RN RN RN RN
Strategy S1 S2 S3 S4 S5 S6 S7 S8 T RS E Strategy S1 S2 S3 S4 S5 S6 S7 S8 T RS E
(a) (b)

Figure 5.20: Rush (R) versus normal orders(N)PerformanceandStability



5.5. Summary 115

5.5 Summary

This chapter presents further investigation of the reala\job shop scheduling/rescheduling
problem presented by Sherwood Press, Nottingham, UK. A meneral case of disrup-
tion is investigated, in which newly arriving jobs have diént levels of urgency to be
processed, referred here as normal orders. The main gaalciseck the flexibility of
match-up strategies under different types of disruptioadtmieve highly stable and good
quality schedules.

Some design changes are proposed to adapt the original qmatalyorithm to also
accommodate normal orders. The obtained results were sathhnd statistically vali-
dated. Surprisingly, rush orders deliver better overaluhs because their due dates are
not predefined and the disruption is controlled as soon gsatiiered in the shop floor.

Additionally, improvements on the genetic algorithm fitnésnction are proposed for
rescheduling affected operations. Remarkably sup@ediormanceand Stabilityresults
are found because the minimisation of the makespan redoeesérlaps between initial
and new schedules, and the controlSifbility soften changes on both sequence and
processing time of operations.

In summary, match-up strategies are effective to manaderelift types of complex
disruptions as the ones presented by Sherwood Press. Téaplarto combine the best
attributes of total rescheduling, right shift and “insertin the end”, in which good per-
forming and highly stable schedules are delivered regssdiéthe problem parameters.

The next chapter investigates the combination of matchtrgiegjies with a fuzzy
robust scheduling system. The aim is to analyse if they amgptimentary, regarding the

use of idle times present on machines, to generate reliahkdsiles.



Chapter 6

Fuzzy approaches to robust job shop

rescheduling

6.1 Introduction

This chapter considers a complex real world job shop resdimegdproblem, in which
jobs with different levels of urgency arrive every day in gtep floor and they need to
be integrated in the existent schedule. A fuzzy schedulystesn for inserting idle times
on machines in order to produce initial robust schedulesveldped; and a rescheduling
system which uses match-up approaches accommodates the areming jobs. The
main goal is to investigate the quality of this combined systvhen the arriving jobs are
either normal orders or rush ones. The obtained results tatidtsal analysis validate
hypothesis 2 from Chaptel 1, showing that a robust initiaésicile combined with match-
up rescheduling lead to higher quality and more reliableedales even when jobs with
different urgency levels arrive in a dynamic and uncertaipsfloor.

The job shop scheduling problem presented by Sherwood Pihstsingham, UK, is
investigated in this chapter. The core idea s to find an gppate scheduling/rescheduling
approach to achieve a high quality schedule, regardir@gittormanceandStability. The
goal is to generate a robust schedule by inserting idle tiomesiachines in order to re-
duce the negative effects of uncertainties that are praesehe shop floor. On the other
hand, match-up algorithms collect idle times on machinegefone arescheduling hori-
zon which is a part of the original schedule that is going to belified to accommodate

116
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the newly arriving jobs. These strategies are complemgiacause both of them work
with idle time control. The aim is to investigate possiblieefs of their combination.

Match-up algorithms have been only used for relatively sengeheduling problems.
For instance, single machine problems are considered jrafid [15], single stage with
parallel machines problem in [12] and a match-up strategyleal with a branch and
bound algorithm is used for a flow shop problemlih [3]. Robasiesluling, on the other
hand, has been mostly investigated for machine breakdowoidgms. For instance,
fuzzy processing time and release time have been used iaf85R1], branch and bound
heuristics in[[61] and [67], genetic algorithms in [47] ai®] and temporal protection
based on historical data of the resources In [26]. Jobs wie#inging processing times
are investigated in [28], which also applies fuzzy varialiteset durations of operations.
The research presented in this chapter and the resultaat paj¥2] describe the only
applications of match-up algorithms with robust schedytma complex real world job
shop problem.

The remaining of this chapter is organised as follows. Inises6.2 and 6]3, two dif-
ferent fuzzy rule-based systems are proposed to insertimdés on machines, in which
databases with jobs requirements from Sherwood Pressedleagseference for expected
behaviour of the investigated shop floor. A comparison betwthese systems is also
presented in order to decide which of them is more appraptiatapply to the anal-
ysed scheduling/rescheduling problem. Sections 6.4 @idiscuss and summarise the
conclusions of this chapter. Note that a discussion of mafchlgorithms was already
presented in the previous chapters, which shown their @agmg results regarding both

PerformanceandStability of resultant schedules.

6.2 Fuzzy Rule-based System for Robust Scheduling

The proposed fuzzy rule-based systems mimic the productianager’s reasoning in
making an initial robust schedule, in which information abbs requirements are used
as reference to insert idle times on machines. These eXgaiides are inserted by
extending the original processing times of operations. &enrdgew of this process is

described below.
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The proposed fuzzy systems decide for each operatjowhether to extend its pro-
cessing time and how much to extend based on informationeowdinkload of machines.
Figurel6.1 (a) shows an example of 12 jobs that must be a#ldaat available machines.
Each job has precedence constraints between operatioms.tiNd jobs may have a dif-
ferent number of operations, i.e. jobs 1 and 2 have 2 and 3abpes, respectively.
Machines M1 and M2 are parallel machines. After decidinglmnéxtension for each
operation, a schedule is generated using a genetic algotitloptimise itPerformance
shown in Figuré 6]1 (b). The extension of original proceggimes generated by the
fuzzy systems are highlighted in gray in Figlrel 6.1(b). s tesultant schedule, original
processing times are restored and finishing times of opamare updated, leaving idle

times on the machines and creating an initial robust sailutie shown in Figurle 8.1 (c).

6.2.1 Fuzzy Rule-based System with Three Inputs

The first proposed fuzzy module has three antecedents andomsequent variable as
shown in Figurd 6]2. Databases from Sherwood Press promfdeniation about the
typical workload of machines in the shop floor. The main gealoi develop a system
which can identify busy machines and busy periods in the tioreon.

The first antecedenEp, is the total processing time of operations for each machine
The second oné\p, is the total number of operations that are required to begaged on
a machine. They are both responsible to identify busy mashimthe shop floor. Note
that the information provided bio is also relevant because the investigated scheduling
problem considers setup time between operations. Bgtand Np are represented by
vectors, as shown in Figure 6.3 (a) and (b), respectivelychtibe highlighted as a busy
machine since it has a large value for bBthandNo.

On the other hand, the third antecedd?ity, checks the possible number of opera-
tions that can be processed each minute of the schedulimgohorNote that each job
has a release and due-date time, defining a possible timewindhin which a job is
processed. All jobs considered together can have overiggpne windows andPNop
measures the maximum number of overlapping operationsctratbe processed each
minute of the scheduling horizon for each machine. For ms#alets consider only jobs

1 and 2 from Figure 611 (a). Hypothetically, they have thesastease time and due-date,
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Figure 6.1: Original processing times of jobs followingith@ecedence constraints (a),
schedule with extended processing times (b), and an in@tialst schedule (c)
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P
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No—> Fuzzy 1 L}
PN, <

Figure 6.2: Fuzzy Rule-based System with three inputs ardatput

Po
M1 M2 M8 M9 M17  M18
18081(14828| .. | 2451|9297 | .. |8619 | 5523
(a)
No
M1 M2 M8 M9 M17  M18
111 | 104 26 95 19 40
(b)
PN,
M1 M2 M8 M9 M17  M18
1 13 9 5 8 5 2
]
(0]
N 20000 | 44 37 6 34 10 16
4
0
<
g 30000 0 4 11 4 2 2
(3
47700 | O 0 0 1 0 0
(c)

Figure 6.3: Example of data present in vectors of total gsicg time of operationy
(a) and total number of operatiohg (b), and in a matrix of total number of possible
operation®No (c)

predefined as 1 and 10, respectively. A matrix 10 x 5 is themeéefio sePNy values
for each instant of the time horizon for each of the 5 avadabhchines. Note that two
operations have to be processed on M5, i.e. one operationdexh job. Consequently,
column M5 setPNy = 2 for the interval [1,10]. Similarly, M1-M3 sé®Np = 1. Note
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that M4 havePNp = 0 because no operation has to be processed on this machiee. Th
results are illustrated in Figure 6.4. A typical schedulimgblem, however, set jobs with
different intervals between release times and due-datass, each line may set different
PNp values based on these intervals. Figure 6.3 (c) shows anpearhPNo values
calculated for 18 machines within a time horizon of 47700etmnits. An operation with
release time on 20000 requiring M1 can be highlighted as insy Iperiod because its
PNo has a relatively large value.

The consequenEp, is the extension value which is going to be applied to animaig
processing time of an operation. Extensions are generatathwhe interval [0,1], in
with "0” means no extension and "1” increases the processing a 100%. Note that
extensions can be weighted following decisions made by tbéyction manager.

The three input variables are described by three fuzzy setsl.ow, Medium and
High, whose membership functions are presented in Figli€ag, (b) and (c), respec-
tively; the output is described by 5 fuzzy sets, i.e. No (nteegion), Small, Regular,
Large and Very Large, as in Figure 6.5 (d). Note that Veryddrgs a more concentrated
representation of the fuzzy set large in order to intenggymeaning, as described in
Subsection 3.211 from Chapfér 3.

PN,
M1 M2 M3 M4 M5
1 1 1 1 0 2
2 1 1 1 0 2
3 1 1 1 0 2
g
o 4 1 1 1 0 2
-5
4 5 1 1 1 0 2
2
6 1 1 1 0 2
g
a7 1 1 1 0 2
3
8 1 1 1 0 2
9 1 1 1 0 2
10| 1 1 1 0 2

Figure 6.4:PNg calculation only for jobs 1 and 2 from Figure 5.1 (a), assuptirat they
have the same release time and due-date, predefined as 1,andddttively.
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The three input variables have the same shapes for they &etg Low, Medium and
High. Information present in databases provided by ShedviRvess are used to configure
them properly. The shapes for the outfitg follows the same pattern of the inputs,
defining the meaning of the linguistic terms Small, Regulad &arge. However two
other fuzzy sets are required, in which no extensions aresepted by the singleton set
No and a hedge define Very Large fuzzy set. Note that thosesetatroduced because
it allows the fuzzy module to do a more refined decision on @semg times extensions.
Details about shapes and intervals for each fuzzy set aceided in Table 6.1

Fuzzy rules[[49] are defined which mimic the production ma&anageasoning in mak-
ing a robust schedule, namely operations to be processetbosyd machine in a “busy”
period should be extended more than operations in a “lesg’ Imast of the schedule.
Fuzzy rules are shown in Taljle 6.2 in whicMamdanistyle fuzzy inference is used [65].
Note thatEp generates “no” extension when all inputs varialdles No and PNp have
“Low” values. As soon as the input variables assume largelegathere is an incremen-
tal decision to generate larger extensions, as it can beaaserhen subsequent rows (or
columns) from Tablé 612 are compared. Thim operator is used in the evaluation of the

premise of each rule. The defuzzification metloedter of gravityis applied to generate

Table 6.1: Fuzzy sets shapes and intervals for fuzzy rusedbaystem with three inputs

Variable | Fuzzy Set | Shape Interval
Po Low Trapezoidal | [0 0 2000 7000]
Medium Triangular [4000 8000 12000]
High Trapezoidal | [10000 15000 20000 20000]
No Low Trapezoidal | [00 0 60]
Medium Triangular [40 70 100]
High Trapezoidal | [80 110 200 200]
PNo Low Trapezoidal | [00 10 30]
Medium Triangular [20 35 50]
High Trapezoidal | [40 60 80 80]
Eo No Singleton [0]
Small Trapezoidal | [00 2 4]
Regular Triangular [246]
Large Trapezoidal | [4 6 10 10]
Very Large | Gauss [0.8 6.5 10 10]

Table 6.2: Fuzzy rules for fuzzy rule-based system withehnguts

No = Low No = Medium No = High
Po Po Po
Low Medium High Low Medium High Low Medium High
Low No Small Regular | Small Regular Large Regular Large Very Large

PNo  Medium | Small Small Regular | Small Regular Large Regular Large Very Large
High Small | Regular Large | Regular | Large Very Large | Large | VeryLarge | Very Large
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a crisp decision about the extension of the operation, gaggrercentage of its processing
time.

From the example previously shown in Figlre|6.3, a job réggiprocessing time
on M1 with release date at 20000 has the following crisp nusfme the defined inputs,
Po = 18081,Npo = 111 andPNp = 44, respectively. This numbers are converted into
fuzzy numbers activating the fuzzy sets “High” for both itgBo andNp, and the fuzzy
sets “Medium” and “High” for the input variabl®No, as shown in Figure 6.6. Sub-
sequently, an output with “Very Large” extension is genedatbecause the inputs only
activate rules which have this decision, as shown in higitéid cells in Tablé 6]12. The
defuzzification methodenter of gravitytransforms the activated area on the outpgt
into a crisp number, generating an extension of 0.73, whieama that the job processing
time on M1 is going to be extended by 73%. Note that the pradachanager can add
weights to these decisions in such a way that a maximum aaigleptalue for extensions

is achieved.

6.2.2 Fuzzy Rule-based System with Two Inputs

The second proposed fuzzy module has two antecedents ar@bosequent variable as
shown in Figuré 6]7. The main goal of this approach is to cambharacteristics related
to machine workload in only one variable, in such a way thanaler number of fuzzy
rules can be defined to identify busy machines and busy penithe time horizon.

The first antecedentylac, combines two characteristics described in the previous
model, i.e.Po andNp, total processing time of operations and total number ofatpens
for each machine, respectively. Both characteristicsgpeesented by vectors, as shown
in Figure[6.8 (a) and (b). These vectors are both sorted irse@naing order and each
machine receives a rank number within the interval [0, 18icWidentifies the workload
of each machine, i.e. M1 got 18 as a rank number for both ctersiics, which means
that M1 is a busy machine. If different machines have the sauneber of operations or
total processing times, then the ties are broken randomlys&juently, an average vector
is defined to combine these two characteristics, as in Fig@réc). Note that a final rank
number is set for each machine. If the average number is égudifferent machines, a

higher rank is given to the one with a larger number of openatbecause of the presence
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Mac >
PN, | Fuzzy 2 L}

Figure 6.7: Fuzzy Rule-based System with two inputs and oitygud

of setup time in this job shop scheduling problem, i.e. M1d@ B8 got both 9 as their
rank and the tie is solved giving 8 to M17 and 9 to M18, due tolénger number of
operations on M18.

The consequerRNp is also used in this second approach to identify busy pefiods
the time horizon, which is represented by a matrix, as infei@ud (d). An operation with
release time on 20000 requiring M1 is busier than anotheratipa with release time on
30000 requiring M17, because PNy has a larger value. Additionally, the consequent,
Eo, extends the processing times of operations following #raespattern presented in
the subsection 6.2.1.

The input variables are both described by three fuzzy sets;NlotBusy”, "Normal”
and "Busy”, whose membership functions are presented iarEi§.9 (a) and (b), respec-
tively; and the output is described by 3 fuzzy sets, i.e. Nogiktension), Small and Large,
as in Figuré 69 (c). The two input variablédac andPNp, have similar shapes for their
fuzzy sets. Several databases from Sherwood Press areausetitheir size and shape
properly. The fuzzy sets for the outpbp has the linguistic terms "No”, "Small” and
"Large”. Details about shapes and intervals for each fuetyaee described in Talle 6.3.

The fuzzy rules defined for this second approach follows #mesidea of the first
one, in which operations to be processed on a “busy” machiae'busy” period should
be extended more than operations in a “less busy” envirohmEme defined rules are

shown in Tablé 6J4, in which Blamdanistyle fuzzy inference is used. Note that larger

Table 6.3: Fuzzy sets shapes and intervals for fuzzy rudedbaystem with two inputs

Variable | Fuzzy Set| Shape Interval

Mac NotBusy | Trapezoidal | [1129]
Normal Triangular [510 15]
Busy Trapezoidal | [14 17 18 18]

PNo NotBusy | Trapezoidal | [00 10 30]
Normal Triangular [20 35 50]
Busy Trapezoidal | [40 60 80 80]

Eo No Singleton [0]
Small Trapezoidal | [00 3 6]
Large Trapezoidal | [4 7 10 10]
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Sorted P,

Machines
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Sorted N,

Machines
Average

Workload

20000

30000

Time horizon

47700

P, — Characteristic 1

M1 M2 M8 M9 M17 M18
18081|14828 2451 | 9297 8619 | 5523
18 16 4 12 11 7
(a)

N, — Characteristic 2
M1 M2 M8 M9 M17 M18
111 104 26 95 19 40
18 17 8 16 7 11
(b)

Mac - Average between characteristics

M1 M2 M8 M9 M17 M18
18 16.5 6 14 9 9
18 16 ) 14 8 9
(c)
PN,
M1 M2 M8 M9 M17 M18
13 9 5 8 5 2
44 37 6 34 10 16
0 4 11 4 2 2
0 0 0 1 0 0
(d)

Figure 6.8: Example of data present in vectors of total gsicg time of operationRy
- Characteristic 1 (a), total number of operatidws (b) - Characteristic 2, Average of
characteristicdlac (c) and a matrix of total number of possible operati®ing (d)
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Table 6.4: Fuzzy rules for fuzzy rule-based system with twais

Mac
NotBusy | Normal | Busy
NotBusy | No Small Small
PNo  Normal Small Small Large
Busy Small Large Large
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extensions are generated whiglac and PNy have larger values. Theain operator is
used in the evaluation of the premise of each rule and thezdiéftation methodenter
of gravityis applied to generate a crisp decision about the extengieaah operation.
From the example previously shown in Figlrel 6.8, a job réagiprocessing time on
M1 with release date on 20000 minutes has the following anismbers for the inputs,
Mac = 18, andPNp = 44, respectively. This numbers are converted into fuzzylmensn
activating the different fuzzy sets, “Busy” for the ingdtac, and both “Busy” and “Nor-
mal” for the inputPNo, as shown in Figure 6.10. Subsequently, an output with “&arg
extension is generated,because both inputs only actwigtewith this decision, as shown
in highlighted cells in Table 614. The defuzzification meatloenter of gravitytransforms
the activated area on the outits into a crisp number, generating a decision 0.73 exten-
sion for this example. Note that this fuzzy rule-based systefines a smaller number of
rules when compared with the first approach. A comparisondet results presented by

both of them are discussed in the following section.

6.2.3 Fuzzy Rule-based Systems Analysis

Data obtained from Sherwood Press are used to test the extsigenerated by the previ-
ously described fuzzy rule-based systems. A set of 894 tpersamples is evaluated, in
which individual decisions are generated for each sam@edan release times and ma-
chine requirements. Both fuzzy system aim to mimic the pctidn manager decisions
to create a initial robust schedule. The main differencéwéen them are the number of
inputs and their rules, i.e. Fuzzyl has 3 inputs and 27 ralesliown in Figure 6.2 and
Table6.2), and Fuzzy 2 has 2 inputs and 9 rules (as presenfeglird 6.7 and Table8.4).
Results obtained by both systems are presented in Higutie 6.1

Fuzzyl can be highlighted as a more suitable approach bedagenerates smaller
values for extensions than Fuzzy2, which avoids compraomisine Performance Its
additional input variable allows a more refined decisionwimch a larger number of
rules leads to realistic extensions. Additionally, the mieg of Po andNg are considered
in a systematic way instead of combining these charaatevissing a simple average
vectorMac.

Some machines in the job shop problem have already a largerdmboperations
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Figure 6.10: Fuzzy sets activated when a job requires psotgime on M1 with release
date on 20000 minutes

to be processed. High extension levels, such as a 100%, couigromise too much
the Performanceof the schedule. In this way, a maximum processing time of &gsd
is defined,Pnax and each machiniegets a weightv; for their decisions on operations’
extensions. Note that this maximum value is defined baseeéaquirements of a typical
month in Sherwood Press. Lkt be the number of machines in the shop floor &ad

be thePo value for each machine= 1,... M. The goal is to check wheRo, can be
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Figure 6.11: Comparison between Fuzzyl and Fuzzy?2

extended up to 100% without achievilgax. The ratioRatiq = P’“]DLoipoi is calculated
for each machine. IRatio> 1 thenw; = 1, since all the operations can be extended up to
100%. IfRatio< 1 thenw; = Ratiq, since a weight will guarantee that extensions will not
surpass th®yax threshold. A comparison between the original Fuzzyl andvwighted
approach, Fuzzyl1M, is shown in Figure 8.12.

As expected, Fuzzy1lM delivers smaller extensions for dersibecause it considers
already busy machines. This approach is selected to be ngbd experiments because

smaller extensions avoid unwanted deterioration of thedglePerformance
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Figure 6.12: Comparison between Fuzzyl and Fuzzyl1lM, wisiehsimilar version with
a maximum extension weight for each machine
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6.3 Experiments on Real World Data

Data obtained from Sherwood Press are used to tesPéhfiermanceand Stability of
the proposed fuzzy rule-based system for robust schedodinpined with match-up al-
gorithms for rescheduling. In each instance, new arrivotzgsjare randomly generated
taking into account three parametgobSize insTimeandext The first parameter is the
number of operations in the new jojobSizes {1,2,3,4,5. The jobSizevalue serves as a
good indicator of the magnitude of the disturbance of thesnurschedule, which makes
it an interesting parameter to investigate.

The second parameter is the time of insertion of the newif;imec {beginning,
middle, end where “beginning”, “middle” and “end” refer to an insertipoint equal to
10%, 50% or 80% of the makespan of the initial schedule, cts@dy. The reason for
considering thensTimefollows the observation that the workload of the shop vaaies
different points in the schedule. The workload in the miduflthe schedule, for instance,
is often higher than the workload at the beginning, whichighér than the workload at
the end of the schedule. Note that the paramsagrpreviously investigated for match-
up approaches, is not applied in this experiment becauseatfaaneteinsTimealready
defines three different saturation levels, irsTimec {beginning, middle, endreflects
the same idea cfate {medium, high, low}.

The third parameter is the the extension level of operatierts which is used as
an indicator of the amount of idle times inserted on machifesange of different ex-
tensions are investigated based on possible protecti@mslapplied on Sherwood Press
shop floor. Two scenarios are investigated for this paramietéhe first scenario, the pro-
cessing times of all operations are equally extended by @%, 30%, 40% and 100%,
denoted by EO, E2, E3, E4 and E10, respectively. In the sesosmhrio, the developed
fuzzy rule-based system is used to decide on the extensibie @rocessing time of each
operation. Note that an upper bound for extensions gerneogtthe fuzzy system are also
set to be 20%, 30%, 40% and 100%, while percentage of theselb@ue determined by
the consequent variable. These are denoted by F2, F3, F4ldhddéSpectively. All
extensions are subject Ryax threshold verification.

Figurel6.18 shows the average extension values applieaoeeelyse@xtapproach

using 95% confidence interval plots. Fuzzy extensions satlenvalues because each
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Figure 6.13: Average extension values for eaxtapproach

operation is individually analysed regarding the workladdhe required machine and,

consequently, F2, F3, F4 and F10 define smaller extensi@amsER, E3, E4 and E10,

respectively. Note that EO represents the original scleeaich has no extended opera-
tions.

Since there are jobs with five different sizes, arriving ae¢hdifferent times, and
nine possible extension levels, the total number of ingame 5x 3 x 9 = 135. For the
purpose of experiments, arriving jobs are not kept in theduale as the experimentation
progresses, on the contrary, once a job has been integraweahi initial schedule and the
proper measures have been recorded, the job is removedhasdtiedule is reset to its
initial state ready to accommodate the next arriving job.

Initial schedules are generated using the GA, describe86hvith the objective of
maximising thePerformancemeasure. Ten solutions are created for eadhinstance
and their results are shown in Figlre 6.14. Peformancemeasure is an average of
satisfaction gradeSG, i = 1,... 5, as previously described in Chagdiér 4.

As expected, EO delivers the bé&¥rformanceesults for an initial schedule because
no extension is applied to operations. The pairsEk) with x € {2,3,4,1Q show that
the fuzzy approaches<@chieve bettePerformanceesults than E since each operation
is analysed individually, leading to extensions when theyappropriate. Consequently,
smaller extensions mostly lead to a betRarformance These results can be graphi-
cally observed in Figuré_6.14. Smaller extensions prodebedules higher variability
on theirPerformanceesults because the schedule does not become over satanated

consequently, different solutions can be generated.



6.3. Experiments on Real World Data 134

0,55

8 }

S 050

g 0,45 }

\ 0,40

Q ’
't 0,35 } } } +

Q

Q. 030 [y 3

EO F2 E2 F3 E3 F4 E4 F10 E10

Figure 6.14: Overall results obtained by initial solutiafier applying the extensions EO,
F2,E2, F3, E3, F4, E4, F10 and E10

Schedules with the best initial solution for each extensionselected and they are
subsequently used to insert the newly arriving jobs in tlepdloor. Rescheduling strate-
gies such as total rescheduling, right shift and insertiotihvé end are not applied in this
experiment because they do not use the inserted idle tim@sachines. For instance,
total rescheduling creates solutions from scratch and tgii shift and insertion in the
end insert new jobs without changing the sequence of opesati

Performanceand Stability values are recorded for each tested approach on each in-
stance of the problem. The obtained results for rush and alavrders are analysed and
statistically validated in the following subsections. Awthally, a comparison between

them is presented.

6.3.1 Rush Orders

New orders arrive everyday in the shop floor of Sherwood Paadsmost of them must
be integrated in the current schedule as soon as possibéseTdrders are classified as
rush orders. More details about this rescheduling prosededcribed in chaptéf 4. This
subsection presents the results obtained by the diffes¢anhsion levelsext, as well as
the results of statistical analysis of the effects of thébfgm parameters oerformance
and Stability. Each instance of the problem is executed 10 times and betfage and
standard deviation results achieved by the investigategheionsext are given in Table
[6.5. Extensions with the best results for each instanceighdigthted in bold. In general,
fuzzy extensions are better than approaches using equdaénded operations in most

groups of instances. Additionally, F2 delivers the B#sformanceand F10-E10 produce
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Table 6.5: Average and standard deviation value$&formanceand Stability obtained
by the extension strategies for rush orders (larger vakepaferred)

Per formance ext

EO F2 E2 F3 E3 F4 E4 F10 E10
Strategy ~ (15) S1 0.527 0.535 0.444 0505 0433 0465 0417 0.312 0.298
(15) s2 0.528 0.535 0.441 0.498 0.428 0.465 0417 0.312 0.298
(15) s3 0.528 0535 0441 0498 0433 0465 0415 0312 0.299
(15) s4 0.529 0.531 0.440 0.498 0425 0.465 0418 0.312 0.299
(15) S5 0.515 0.528 0.439 0.498 0.428 0.460 0417 0.312 0.299
(15) s6 0.517 0518 0.399 0.488 0.419 0.440 0409 0.313 0.299
(15) s7 051 0527 0.436 0.493 0428 0460 0415 0.312 0.299
(15) s8 0.515 0519 0401 0491 0420 0.445 0408 0.313 0.299
jobSize (27)1 053 0535 0.440 0508 0432 0466 0418 0.313 0.299
272 0.526 0533 0.435 0504 0431 0464 0417 0.313 0.299
273 0.521 0530 0.430 0495 0426 0458 0416 0.312 0.298
274 0.517 0524 0.425 0489 0423 0454 0414 0.312 0.299
(27)5 0.512 0521 0.421 0485 0420 0450 0.410 0.312 0.298
insTime  (45) beginning 0.513 0.528 0.438 0.487 0422 0.458 0.413 0.313 0.299
(45) middle 0.523 0523 0.407 0.496 0425 0.454 0411 0.312 0.298
(45) end 0.528 0.535 0.445 0506 0.433 0463 0420 0.313 0.299
(135) total average 0.521 0.529 0430 0.496 0.427 0.458 0415 0.312 0.299
(135) standard deviation 0.007 0.006 0.015 0.007 0.005 0.008 0.004 0.001 0.000
Stability- ext
EO F2 E2 F3 E3 F4 E4 F10 E10
Strategy  (15) S1 0.995 0.996 0.995 0.994 0.995 0.995 0.996 0.996 0.995
(15) s2 0995 0.995 0.994 0994 0.994 0.995 0.9940.996 0.995
(15) s3 0.995 0.996 0.995 0.994 0.994 0.995 0.9950.996 0.995
(15) s4 0995 0.994 0994 0994 0.994 0.995 0.998.996 0.995
(15) S5 0983 0.995 0.994 0993 0.991 0.994 0.999.996 0.995
(15) s6 0984 0.981 0979 0981 0.982 0.985 0.986 0.994.995
(15) s7 0.977 0.991 0.991 0991 0.987 0.991 0.998.996 0.995
(15) s8 0979 0.980 0.979 0979 0.978 0.983 0.985 0.994.995
jobSize (27)1 0.991 0.994 0.991 0.993 0.9950.999 0.996 0.999 0.999
272 0.988 0.995 0.994 0995 0.995 0.997 0.999.999 0.999
273 0.991 0.993 0.994 0.992 0.990 0.994 0.993.999 0.999
(27) 4 0.987 0.990 0.992 0988 0.987 0.988 0.989.994 0.993
(275 0983 0.984 0981 0982 0.979 0.98 0.985 0.985 0.984
insTime  (45) beginning 0.979 0.990 0.992 0990 0.992 0.992 0.992.996 0.995
(45) middle 0990 0.989 0.986 0988 0.989 0.988 0.99D.996 0.995
(45) end 0.995 0.994 0992 0.992 0.9870.996 0.994 0.994 0.995
(135) total average 0.988 0.991 0.990 0.990 0.989 0.992 20.99.995 0.995
(135) standard deviation 0.006 0.005 0.006 0.005 0.006 50.000.004 0.003 0.003

schedules with betteé3tability. These results are statistically verified next.
A comparison betweeRerformanceandStabilityis presented in Figute 6.15 in which
a scatter plot shows the trade-offs between these evatuatgtrics. Few samples have

Stability values between 0.8 and 0.93 and they are consideriiers. Figuré 6.15 shows
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Figure 6.15: Trade-offs betwe&erformanceandStabilityfor rush orders

that there is a more concentrated variationStability when thePerformanceancreases,
which means that it may happen that increasBesformancealso compromis&tability.
However, there is no indication of increasiStpbility having positive or negative effects
on Performancevalues.

An ANOVA test checks the statistical significance of the etfeof problem parame-
ters, extension levelsxt and the interactions among them Barformanceand Stability.
Results in Tablé 616 shows that all “main effects” and “iatgions” influence botiPer-
formanceandStabilityof the schedule, since they achidv@alues< 0.05. Additionally,
there is a higher variability oRerformanceesults as it&R? value is larger than the one
achieved bystability.

A pairwise comparison test using Bonferroni's correctisrgiven in Figuré 6.16 in
order to identify extensions that deliver highHeerformanceand Stability,. Comparisons
of Performanceare below the diagonal, and above &tability. These results combined

with the averages shown in Talble}6.5 give an overall behawbthe analysed extension

Table 6.6: Results of the ANOVA test for rush orders

Per formance Stability
F value P value F value P value
Main effects
Strategy 288.95 <0.05 501.05 <0.05
jobSize 356.64 <0.05 1074.31 <0.05
insTime 677.39 <0.05 147.9 <0.05
ext 55944.03 <0.05 147.14 <0.05
Interactions
Strategy®ext 39.56 <0.05 32.53 <0.05
jobSizeext 16.4 <0.05 17.6 <0.05
insTimé ext 138.45 <0.05 112.49 <0.05

R2 0.97 0.57
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Figure 6.16: Mean pairwise comparisondRefrformanceandStabilityfor rush orders

levels.

In general, a smaller extension leads to a higherformance which can be seem
when the pairs (KEX), x € {2,3,4,1Q are compared. Remarkably, F2 achieves superior
Performanceeven when compared with the original schedule EO, becasssrdtegic
insertion of a small amount of idle times allows a better amemdation of the newly
arriving jobs. Equally extended operations compromisentoich thePerformancesven
when small extensions are generated, i.e. E2 and E3 compétethrger fuzzy exten-
sions F3 and F4, respectively.

On the other hand, highé&tability values are achieved when larger extensions are



6.3. Experiments on Real World Data 138

applied at the price of podPerformance As expected, E10 and F10 deliver superior
Stabilityand poorPerformance However, smaller extensions defined bydfe able to
achieve similaStabilityto Ex, x €{2,3,4,1¢, which identify the strength of the proposed
fuzzy system. Additionally, F2 can be highlighted agaircsithe obtained results are
statistically non-distinguishable to extensions up to 40¥is experiment achieved good
Stabilityresults for all parameters because match-up algorithnosheiped keeping the
scheduleStability. A summary of these results are graphically shown using 9684i-c
dence interval plots in Figufe 6]17 (a) and (b) RerformanceandStability, respectively.
These results indicate that the newly introduced fuzzyddased system posses the best
attributes of the investigated extension approaches aaetome weaknesses, regarding
their Performance

Regarding the problem parameters, the Table 6.6 identifa&sStrategyjobSizeand
insTimehave a significant influence dPerformanceand Stability when extending the
processing times of operations. The nature of these effeclisistrated with the 95%
confidence interval plots in Figufe 6]18. Tkeaxis of plots (a)-(b), (c)-(d), and (e)-(f),
measures the level of StrateggpbSizeandinsTime respectively. Thg-axis shows the
average values d®erformance(a)(c)(e), andstability, (b)(d)(f), over different levels of
extensiorext. In general Performanceand Stability are superior by using S1-S4, when
the arriving job requires a fewer number of operations andmthe rescheduling is done

in a less busy environment, i.e. at the end of the schedule.
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Figure 6.17: Overall results obtained by each extensiinthe x-axis shows the exten-
sion; the y-axis shows the mean (dot) and 95% confidencevait@rertical barsPerfor-
manceandStabilityfor rush orders
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Figure 6.18: Main effects Strategy (a)-(hpbSize(c)-(d) andinsTime(e)-(f) on Perfor-
mance(a), (c), (e) andstability (b), (d), (f) for rush orders

Table[6.6 also shows that all interactions of parametersigraficant. Particularly
interesting are those interactions involviext and any of the problem parameters. These
type of interactions indicate that some extensions areib&ttoping with certain problem
conditions than others. That this is the case can be verificihble [6.5.

The three interactions involvingxt were analysed. In general, large extensiexis
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lead to similarPerformanceand Stability results independently of the applied match-up
strategy,jobSizeandinsTime Schedules with a large amount of idle times, @&> 40%
as the results in columns 6-9 from Taklle 16.5, always set aiméscheduling horizons,
and consequently, similderformanceand Stabilityfor all investigated instances. How-
ever, the interactions occur because small extensionextoasre better combined with
strategies S1-S4, since they define smaller reschedulingadns than S5-S8 and keep
goodPerformanceand Stability, jobSizewith a smaller number of operations, i.e. 1 and
2 operations, because they make use of the inserted idlexitheut causing delays; and
insTimein less busy parts of the schedule, i.e. at end, again besaueskrescheduling
horizons are defined and the quality of the schedule is magda

Given the results in Table_ 6.5 and the statistical analysis, possible to conclude
that the combination of fuzzy robust schedules with mafglaigorithms for reschedul-
ing brings more flexibility in a dynamic and uncertain enuineent, in which the strategic
insertion of idle times on machines combined with minimalaie provided by match-
up algorithms can reasonably well respond to disturbarta&sdccur on a daily basis
in Sherwood Press. The fuzzy extension F2 can be highlighiidthe most consistent
results under different problem scenarios, as demondttatd-igure 6.1B and it can be
considered for possible incorporation into the schedilesgheduling system of Sher-
wood Press, since it produces good values with respdeetimrmanceandStability, as
shown in Figuré 6.17.

6.3.2 Normal Orders

Normal orders define jobs with different levels of urgenciey represent a more flexi-
ble disturbance because their insertion are based on thauploate, which gives a time
window to make repair decisions. This subsection follovesgsame pattern of the statis-
tical analysis presented for rush orders. More details afEacheduling normal orders
is described in chaptét 4. Table 6.7 summarises the obtaverdge and standard de-
viation results forPerformanceand Stability attained by the investigateskt levels for

the different problem parameters after 10 execution tirBest results for each instance
are highlighted in bold. As expected, fuzzy extensions exrgeneral, better than ap-

proaches using equally extended operations. Schedulbsxténsion F2 have the best
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Table 6.7: Average and standard deviation value$&formanceand Stability obtained
by the extension strategies for normal orders (larger \aiepreferred)

Per formance ext

EO F2 E2 F3 E3 F4 E4 F10 E10
Strategy ~ (15) S1 0.513 0.530 0.433 0497 0428 0459 0414 0.312 0.299
(15) s2 0.522 0525 0433 0489 0424 0454 0404 0312 0.299
(15) s3 0.525 0529 0437 0499 0426 0459 0415 0312 0.299
(15) s4 0.524 0529 0431 0499 0426 0460 0413 0.312 0.299
(15) S5 0.509 0.528 0.434 0.496 0.428 0.460 0416 0.312 0.299
(15) s6 0.515 0.520 0.424 0487 0.423 0.449 0404 0.313 0.300
(15) s7 0.506 0.527 0.433 0.493 0425 0459 0412 0.312 0.299
(15) s8 0.511 0516 0429 0482 0419 0422 0404 0312 0.300
jobSize (27)1 0.525 0534 0.445 0504 0432 0462 0418 0.313 0.300
272 0.520 0531 0.439 0501 0431 0461 0415 0.313 0.300
(27) 3 0.516 0.527 0.433 0492 0427 0457 0411 0.312 0.299
274 0.511 0.521 0.427 0487 0420 0.444 0.407 0.312 0.299
(275 0.506 0.514 0.413 0480 0414 0439 0400 0.311 0.298
insTime  (45) beginning 0.514 0.522 0.425 0.484 0422 0451 0.404 0.312 0.299
(45) middle 0.506 0.524 0431 0487 0423 0449 0405 0.312 0.298
(45) end 0.526 0.530 0.439 0507 0430 0458 0421 0.312 0.300
(135) total average 0.516 0.525 0.432 0.493 0425 0.453 0410 0.312 0.299
(135) standard deviation 0.007 0.006 0.007 0.008 0.005 0.011 0.006 0.001 0.001
Stability- ext
EO F2 E2 F3 E3 F4 E4 F10 E10
Strategy  (15) S1 0.988 0.994 0.993 0994 0.993 0.994 0.992996 0.996
(15) s2 0.993 0.991 0.990 0992 0.989 0.992 0.989.996 0.996
(15) s3 0.994 0.994 0.992 0.994 0.992 0.993 0.99D2.996 0.995
(15) s4 0.994 0.994 0992 0993 0.990 0.993 0.99D2.996 0.995
(15) S5 0980 0.991 0.990 0.993 0.992 0.990 0.99D.996 0.995
(15) s6 0984 0.984 0.986 0986 0.985 0.983 0.98®.995 0.995
(15) s7 0.977 0.990 0.988 0.990 0.989 0.988 0.98®.995 0.995
(15) s8 0980 0.980 0.982 0981 0.974 0.962 0.97®.995 0.995
jobSize (27)1 0.987 0.994 0.996 0.994 0.994 0.998 0.993.000 1.000
(27) 2 0.990 0.994 0994 0994 0.993 0.994 0.993 0.992.000
273 0.991 0.993 0.993 0.994 0.989 0.991 0.99D.999 0.999
(27) 4 0.984 0.988 0.989 0988 0.987 0.978 0.98®.995 0.993
(275 0979 0.979 0974 0981 0.977 0.974 0.97®.985 0.985
insTime  (45) beginning 0.990 0989 0.991 0989 0.989 0.989 0.990.996 0.995
(45) middle 0973 0.985 0.986 0988 0.983 0.985 0.98®.995 0.995
(45) end 0.995 0.995 0.991 0994 0.992 0.986 0.987 0.995 0.995
(135) total average 0.986 0.990 0.989 0.990 0.988 0.987 80.99.995 0.995
(135) standard deviation 0.007 0.005 0.005 0.004 0.006 90.000.005 0.003 0.003

Performanceand a betteBtabilityis delivered by schedules with extension F10 and E10.
Further discussions are presented next.
Figure 6.19 shows the trade-offs betwé&amformanceandStability, in which samples

between 0.8 and 0.9 on y-axis are outliers. A more concetradriation orStabilityis
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Figure 6.19: Trade-offs betwe&rrformanceandStabilityfor normal orders

again observed whePerformancdncreases, i.e. highderformanceesults may com-
promiseStability. On the other hand, no positive or negative effectderformances
observed when th8tabilityis increased.

Results of the ANOVA test for normal orders is shown in Tab® & which all “main
effects” and “interactions” have influences on b&drformanceand Stability. A higher
variability of Performances observed compared wittability due to its largeR? value
of 0.97.

Figurel6.20 shows a pairwise comparison test using Bonfesrcorrection, in which
extensions with highelPerformanceand Stability values can be identified. As expected,
higher Performanceresults are delivered by schedules with smaller extensias®b-
served on pairs (EEx), x € {2,3,4,1¢. F2 deliver again superid®erformancehan EO,
due to its strategic insertion of idle times combined withtechaup rescheduling algo-
rithms. Moreover, equally extended operations comprosiise much thé*erformance

even when small extensions are generated.

Table 6.8: Results of the ANOVA test for normal orders

Per formance Stability
F value P value F value P value
Main effects
Strategy 130.44 <0.05 346.16 <0.05
jobSize 669.02 <0.05 1278.59 <0.05
insTime 763.44 <0.05 453.63 <0.05
ext 52713.23 <0.05 184.74 <0.05
Interactions
Strategy®ext 26.84 <0.05 29.98 <0.05
jobSizé&ext 24.45 <0.05 18.48 <0.05
insTimé ext 55.09 <0.05 116.33 <0.05

R2 0.97 0.58
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Figure 6.20: Mean pairwise comparisondRefrformanceandStabilityfor normal orders

In general, the extensionx@&nd E, x € {2,3,4,1Q, lead to superioBtability than
EO. The pairs (K EX) deliver similar stability, which shows a strength of th@posed
system regarding small extensions with reason8bddility. However, no relatively large
improvements oistabilityare observed with extensions up to 40%, which indicates that
the match-up algorithms already controls the sche8tadilityin an effective way. Only
larger extensions, i.e. E10 and F10, achieved hi@ability at the price of pooPer-
formance Additionally, F2 can be highlighted again since the oladimesults are sta-
tistically superior or non-distinguishable to extensiampsto 40%. Figuré 6.21 (a) and

(b) shows the overall results féterformanceand Stability, respectively. These results
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Figure 6.21: Overall results obtained by each extensiinthe x-axis shows the exten-
sion; the y-axis shows the mean (dot) and 95% confidencevait@rertical barsPerfor-
manceandStabilityfor normal orders

emphasises that the newly introduced fuzzy ruled-baseddrsysosses the best attributes
of the investigated extension approaches.

The parameters StrategyobSizeandinsTimehave a significant influence on both
Performanceand Stability over different levels of extensioext. These effects are illus-
trated in Figuré 6.22. As expectdebrformancendStabilityare superior by using S1-S4,
when the arriving job requires one of two operations and wherrescheduling is done
at the end of the schedule.

The interactions between parameters are significant becamall extensionext are
better combined with strategies S1-S4, which usually setllsrascheduling horizons;
jobSizewith a 1 or 2 number of operations, which cause no delays;irgitimeat the
end of the schedule, because small rescheduling horizeredsar defined. These combi-
nations deliver again good quality schedules.

Fuzzy robust schedules has been again successfully codnliitie match-up algo-
rithms to manage uncertainties present in a shop floor. Mesiimgation of normal orders
is a generalisation of different types of jobs that may anseherwood Press. Schedules
with fuzzy extension F2 are highlighted as the ones with thstroonsistent results under
different problem scenarios, as shown in Fidure6.22, sirre@duces high quality stable

schedules.
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Figure 6.22: Main effects Strategy (a)-(hpbSize(c)-(d) andinsTime(e)-(f) onPerfor-
mance(a), (c), (e) andstability (b), (d), (f) for normal orders

6.3.3 Comparison between Rush and Normal Orders

Both rush (R) and normal (N) orders are typical disruptionsigg on a daily basis in
Sherwood Press. TheherformanceandStabilityresults are compared in Figlire 6.23 for
each extension leveixtand for each match-up strategy S1-S8.

Performanceresults obtained by different match-up strategies andnskia levels
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ext for rush and normal orders are quite similar, which indisaeood flexibility of the
proposed approaches for handling jobs with different eeélurgency.

Rush orders have no predefined due dates, and consequieeyiyjdliver relatively
betterPerformanceesults. Moreover, theBtabilityis generally better because they have
to be aggregated as soon as possible, which avoids chaniffergit parts of the schedule

as it is always done by normal orders.

6.4 Discussion

Given the results for different types of arriving jobs and ¢hatistical analysis carried out,
itis possible to conclude that the combination of fuzzy silmechedules with match-up al-
gorithms for rescheduling brings more flexibility in a dynamnd uncertain environment,

in which the strategic insertion of idle times on machinesibmed with minimal repair
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provided by match-up algorithms can reasonably well redgordisturbances occurring
on Sherwood Press.

Effects on quality measures indicates that it is possiblextgnding jobs’ processing
times to protect the schedule without compromisingPgsformanceand Stability. Note
that new orders usually compromise many resources in a shangihd the improvements
provided by fuzzy robust schedules may also assist on magagher relatively simple
disturbances, such as operators doing late decisiong;sdeteraw material delivery and
requirements of additional clean ups on machines.

The fuzzy extension F2 is highlighted as the one with the ngossistent results
under different problem scenarios and it is a candidate éssible incorporation into
the scheduling/rescheduling system of Sherwood Pressg #irproduces high quality

schedules with respect to bdBerformanceandStability.

6.5 Summary

A real world job shop scheduling/rescheduling problem igestigated in this chapter.
The problem is dynamic since orders with different levelsi@fency arrive every day in
the shop floor and they need to be integrated in the existéedsite, without compro-
mising itsPerformanceand Stability. The proposed approach combines strengths of the
robust scheduling, regarding control of future disturEmand match-up rescheduling
algorithms. These strategies are complementary becaubeobthem work with idle
time control.

Two fuzzy rule-based systems are proposed to insert idlestiom machines, in which
databases with jobs requirements from Sherwood Pressedleagseference for expected
behaviour in the shop floor. A comparison between these mgste presented in order
to decide which among them is more appropriate to apply sodtheduling/rescheduling
problem. Experiments with schedules with different amaifntlle times are carried out
in order to identify their possible effect on bdBerformanceandStability.

Two types of jobs arriving jobs are investigated, rush asdethich must be inserted
as early as possible into the current schedule, and norrdafrgrwhich set jobs with

different levels of urgency. The obtained results are awlyand statistically validated.
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Additionally, a comparison between them is presented.

In summary, initial robust schedules combined with matphrescheduling lead to
higher quality and more reliable schedules even when jobs different urgency levels
arrive in a dynamic and uncertain shop floor.

The following chapter presents the conclusions of the stuthivestigated in this the-

sis, highlighting their relevance, limitations and futwerk.



Chapter 7

Conclusions

A real world job shop scheduling / rescheduling problem@nésd by a printing company
in Nottingham, UK is investigated in this thesis. This perhlis dynamic in its nature
because unexpect events often occur on the shop floor. Tiypicew orders arise on a
daily basis and current allocations have to be changed ier dodintegrate them. These
orders usually require processing time on different maehirand consequently, many
available resources are often compromised. Match-up ithigas are applied as repair
methods, because they are able to deliver stable and higditycgenedules. These algo-
rithms are subsequently combined with initial robust sciesiwith the aim of facilitating
the accommodation of future disruptions and consequendiglyring more reliable and
effective solutions.

Background and related work are presented in chapter 2, iohvthe investigated
problem is situated within a rescheduling classificatioth @@tch-up algorithms are high-
lighted as reasonable repair methods. Additionally, atrdBtidentifies the application
of fuzzy logic concepts as a suitable approach to help miodegtiossible uncertainties
present on a shop floor. The contributions of this thesis aseribed in chaptefd 4] 5
and[6. Chaptdrl4 discusses in detail the analysed scheduisgheduling problem, in
which new match-up strategies are introduced to controlnaptex real world problem.
These strategies accommodate disruptions by using akeitib times on machines and
consequently initial optimal solutions are kept uncharggenhuch as possible. Typical ar-
riving jobs are rush orders and they have to be processedasasqossible on the shop

floor. This disruption is tackled first with the goal of chewgithe effectiveness of the

149
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proposed strategies on achieving stable and high qualigddes. As a matter of gen-
eralisation, orders with different levels of urgency areestigated in chaptét 5 in which
the flexibility of the proposed strategies are verified urdiferent scenarios. Chapter
introduces a fuzzy scheduling approach for insertingtidhes on machines, in which
initial robust schedules are produced. The effects of cambithis approach with match-
up approaches for rescheduling are analysed due to then&dhey both work with idle

time to manage disruptions.

7.1 Discussion

The application of match-up algorithms has been limiteqy ¢mla small variety of prob-
lems, most of which are of a more theoretical than practiogdrtance. This thesis and
its resultant papers represent the only attempts to empicly algorithms in a complex
real world shop floor which includes multiple criteria, getimes and disruptions affect-
ing multiple resources. Additionally, strengths of fuzogic concepts are highlighted
as a good approach on managing uncertainties present iwoela problems. Despite
of their success in solving many industry issues, reseancluzzy scheduling has been
mainly focused on static scheduling environments. Corseltyy this thesis uses their
strengths applied to a dynamic complex job shop problem,hichvfuzzy numbers are
used to represent scheduling parameters and a fuzzy cayst#dm is combined with
match-up algorithms aiming to produce robust and relialglh ktable schedules.

New match-up strategies are initially introduced to maredesruption that often oc-
curs in the investigated problem, in which rush orders haveetintegrated in a current
schedule. Statistical multi-comparison tests and amabfsrariance reveal that even with
the presence of the two conflicting critefferformanceand Stability these algorithms
produce high quality stable schedules on different probiestances, which highlight
their strengths regarding possible scenarios tackled dwamtialysed printing company. It
was observed that match-up algorithms posses the beswu#diof other rescheduling
strategies as “right shift”, “insertion in the end” and ‘@btescheduling”, but overcome
their weaknesses in managing eitferformanceor Stability. Note that the genetic al-

gorithm fitness function responsible to reschedule aftecigerations is identified as a
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limitation of the proposed approach. First, this functiafyooptimisesPerformance
while match-up strategies are responsible to keep &talilityby requiring partial mod-
ifications of schedules. Second, there is no explicit Sgsate keep repaired allocations
within a same time window defined for rescheduling. Consetiyepossible overlaps
between current and repaired schedules inevitably comipeoiine overall quality of pro-
duced solutions.

Further investigation of match-up strategies are donederao check they behaviour
on repairing a more general case of disruption, in which p@sdiving jobs have differ-
ent levels of urgency, referred as normal orders. Statiséinalysis confirms that these
algorithms are highly flexible to deal with complex disrapis since they are able to de-
liver highly stable and good performing schedules even wdisruptions with different
levels of urgency arise in the shop floor. Additionally, impements in the genetic algo-
rithm fitness function for reallocating affected operatitvave a more effective control of
bothPerformanceandStability. The new settings minimise the makespan, which reduces
the overlaps between initial and new schedules, and magigtability, which reduces
changes in both sequence and processing time of operatfimts.that a double control
of Stabilityis employed since match-up algorithms are now coupled \wgmew settings
of the fitness function.

The use of idle times by match-up strategies indicates pguential to work cooper-
atively with initial robust schedules. A fuzzy schedulingt®m responsible for inserting
idle times on machines is then proposed, in which robustdidhe are produced. As
a result, match-up algorithms are able to employ smallengés in current schedules
since they have a higher availability of idle times on maekirOther heuristics for robust
scheduling are analysed; however they often compromisentozh thePerformanceof
schedules. Statistical analysis confirms that their coathon is effective in managing
both rush and normal orders, in which even more reliable higgiity stable schedules
are delivered.

In summary, match-up rescheduling algorithms and theirlsoation with initial ro-
bust schedules set flexible approaches to manage comptaptiiss that affect multiple
resources in a dynamic and uncertain shop floor. These eagiogiresults highlight them

as good candidates for possible incorporation into thedsdhreg / rescheduling system
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of investigated printing company and other similar producishops. The remarkable
production of such good performing and highly stable sclesdpioint up their relevance
to both scheduling and rescheduling research communities.

It is important to highlight that scheduling / reschedulswutions proposed by the

research group from the University of Nottingham have bessdly Sherwood Press.

7.2 Limitations
The study presented in thesis has the following limitations

» Match-up strategy selectiostrategies have to be selected manually by the system

user;
» Job insertion only one job can be inserted per time;

* Overlap control the use of right-shift rescheduling to manage overlaps/éen
schedules is considered sub-optimal, since they may campedhe scheduleer-

formance

» Rescheduling horizomo strategies were implemented to prioritise the definitio

of rescheduling horizons where more idle times are avalabl

» Scheduling / rescheduling solveanly genetic algorithms were considered to allo-
cate jobs on machines, while a comparison with differentcdemethods would be

beneficial.

Possible extensions considering these items are desaniltieel following section.

7.3 Future work

The arrival of orders is considered as a generalisation s$ipte disruptions due to its
ability to affect multiple resources available in a shop floblowever, further investi-
gation into match-up algorithms and robust schedules calobe to analyse the specific

effects generated by other types of disruptions, such as chdinges, cancellation of jobs
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and requirements of rework when the product quality is nbsfetory. In addition, the
resources changes can also be considered, such as mubigtéra breakdowns, unavail-
ability of raw materials, sickness of workers, among otliEgending on the specificity
of the investigated scheduling / rescheduling problem.

Rescheduling has been almost entirely focused on produstibeduling. However,
the proposed ideas can be extended to other problem doreagisas personnel schedul-
ing and university timetabling to include disturbancee ltke absence of nurses, non-
availability of lecturers and rooms, etc.

The following approaches illustrate possible strategiesiprove the current schedul-

ing / rescheduling system:

» Dynamic selection of a best match-up strategy optimisation model to dynami-
cally select the most appropriated match-up strategy arBang8 aiming to deliver

a best schedule at a certain moment;

» Setting smaller rescheduling horizortte collection of idle times could start at a
different rescheduling point. Figure ¥.1 shows an exampkerew job 20 requir-
ing processing on machines M1 (or M2, which is a parallel nregh M3 and M4.
The current time is highlighted by the varialtatialStart and the original match-
up algorithm set as a reschedulisigrtPointthe latest point when already started
operations finish their processing, i.e. when the opera&ion M3 is completed,
as in Figuré_7]1 (c). Note that there is no available idle tahthis time. Conse-
guently, a new approach would setsdaartPointthe first available point which has
available idle times, as in Figure 7.1 (d). Subsequentichreduling horizons are
calculated for both approaches. Figurd 7.2 (a)-(b) an¢dc3hows the original and
the new approach been employed, respectively, where nugtatrategies S1 and
S5 are applied for each approach. Smaller reschedulingdrwiare then defined
by the new approach, in which a smaller number of operatisradfected during
the rescheduling process. Their possible impacts in Betformanceand Stability

require further investigation.

* Insertion of multiple jobs per timenmultiple rescheduling horizons could be defined

and a multi-agent system could be responsible to manage slussproblems. Fig-
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Figure 7.1: Alternative approach to set rescheduling lomisz (a) new job requirements,
(b) current time represented lyitialStart, (c) original approach settingtartPointand
(d) new approach settirgjartPoint

ure[7.3 shows an example in which jobs 20 and 21 must be accdatetin a
current schedule. Note that two independent reschedubtingdns are defined and

their possible effects require further analyses;

» Other optimisation methods for scheduling and rescheduompare the applica-
tion of match-up algorithms with other search methods sedimaulated annealing,

tabu search, branch and bound algorithms and Pareto effgoértions. Note that
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Figure 7.2: Setting smaller rescheduling horizons; (3)tle calculation ofendPoint
using strategy S1 and S5 with the original approach, (c}Hd)calculation oendPoint
using strategy S1 and S5 with the new approach

genetic algorithms have been mainly used in this thesisusediey previously pro-
vide encouraging results for the static scheduling prolpeesented by Sherwood

Press - Nottingham, UK;



7.3. Future work 156

M1* 20 M1*
ve+  (ECIN M2
M3 M3
M4 20] M4
* parallel machines * parallel machines
(a)

1 1 1
wr 1 ] s
M2 * [2]5]7] 10 16 |
M3 [ 3 T e [m] 14 [

(o T12[ 13 Wk [15 | 18 [19]
1 1 1
1 1 1

:<—>'4—>'

Rescheduling Rescheduling
horizon 1 horizon 2

(b)

Figure 7.3: Setting multiple rescheduling horizons wheserting multiple jobs; (a) new
jobs requirements, (b) the calculation of two reschedutiogzons

» Other optimisation techniques to restore the scheduleilféag: the previously
mentioned search methods can also be applied to controibpmsserlaps be-
tween initial and repaired schedules on rescheduling. hEutomparisons with

these techniques would be significant to the research scope;

» Other approaches to insert idle times on machinagial robust schedules can be
also produced using other data analysis models such asmhgstneural networks,
case-based reasoning and artificial intelligence agentsomyparison with these

approaches would bring relevant discussions;

» Preventive maintenance schedutimgw “fake” jobs could be inserted as a preven-
tive strategy. These jobs would generate extra idle timasachines, which could
be use to allocate the maintenance of the available resaukcgtudy to investigate
their impact on disruptions such as machine breakdown amorkeof jobs would

be beneficial to the scheduling / rescheduling community.
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