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Abstract

This thesis investigate a complex real world job shop scheduling / rescheduling problem,

in which the presence of uncertainties and the occurrence ofdisruptions are tackled to

produce efficient and reliable solutions. New orders arriveevery day in the shop floor and

they have to be integrated in the existent schedule. Match-up algorithms are introduced to

collect the idle time on machines and accommodate these newly arriving orders. Their aim

is to obtain new schedules with good performance which are atthe same time highly sta-

ble, meaning that they resemble as closely as possible the initial schedule. Subsequently,

a novel approach that combines these algorithms with a fuzzyrobust scheduling system

is proposed. The goal is to associate an effective repairingmechanism with the produc-

tion of initial robust schedules that are able to facilitatethe accommodation of future

disruptions. Statistical analyses reveal that match-up algorithms are effective repairing

strategies for managing complex disruptions, in which highquality stable schedules are

delivered. Moreover, their combination with fuzzy robust scheduling has a positive effect

on responding to these disruptions leading to even more reliable solutions in a real world

dynamic and uncertain shop floor.

ii



Part of the work described in this thesis has been awarded forits contributions and also

been research topics of the following publications:

Journal Articles and Lecture Notes

P. Moratori, S. Petrovic, and J. Vázquez-Rodrı́guez. Match-up strategies for job shop

rescheduling. In N. Nguyen, L. Borzemski, A. Grzech, and M. Ali, editors,New Frontiers

in Applied Artificial Intelligence, Lecture Notes in Computer Science, volume 5027, pages

119–128. Springer-Verlag, 2008.

P. Moratori, S. Petrovic, and J. Vázquez-Rodrı́guez. Integrating rush orders into

existent schedules for a complex job shop.Applied Intelligence, 32(1):205–215, 2010.

P. Moratori, S. Petrovic, and J. Vázquez-Rodrı́guez. Match-up approaches for a dy-

namic scheduling problem.International Journal of Production Research, 50(1):261–

276, 2012.

P. Moratori, S. Petrovic, and J. Vázquez-Rodrı́guez. Robust fuzzy rescheduling for a

complex real world job shop problem. Journal paper currently in preparation.

Conference Papers

P. Moratori, S. Petrovic, and D. Petrovic. A match-up algorithm for job shop reschedul-

ing. InAnnual Operational Research Conference 49 (OR49), Edinburgh, UK, 4-6 Septem-

ber 2007.

P. Moratori, S. Petrovic, and J. Vázquez-Rodrı́guez. Hibridisation of fuzzy robust

scheduling with match-up approaches. In C. Antunes, D. Insua, and L. Dias, editors,

Proceedings of the 25th Mini-euro Conference Uncertainty and Robustness in Planning

and Decision Making, pages 1–7, Coimbra, Portugal, April 15-17 2010. ISBN 978-989-

95055-3-7.

� Award

The lecture notes paper “Match-up strategies for job shop rescheduling” was awarded

as the best paper at the 21st International Conference on Industrial, Engineering & Other

Applications of Applied Intelligent Systems, Wroclaw, Poland, June 18-20, 2008.



Acknowledgements

The support provided by the University of Nottingham, including the School of Computer

Science, International Office, Rutland Hall and Language Centre. Additionally, the En-

gineering and Physics Science Research Council through grant GR/R95319/01 and the

research partnership established with Sherwood Press Ltd -Nottingham, UK.

I would like to express my gratitude to both Federal University of Rio de Janeiro and

Federal University of Juiz de Fora for supporting my academic progression.

This work is dedicated to my beloved parents, all my family and my dear friends.

iv



Glossary

ANOVA Analysis of variance

BB Branch and bound algorithm

EDD Earliest due-date first

E Insertion of the new job at the end of the schedule

FCFS First come first served

GA Genetic algorithm

HP Highest priority first

LPT Longest processing time first

LRT Longest remaining processing time first

Makespan (Cmax) Completion of the latest operation on the shop floor

NP-hard problem Problem that cannot be solved in a polynomial time

Rescheduling Schedule rearrangement

RS Right shift rescheduling

SFT Same family together

SG Satisfaction grade

SPT Shortest processing time first

T Total rescheduling
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Chapter 1

Introduction

1.1 Background and Motivation

High productivity and low production costs are essential factors to describe successful

businesses. Research on production scheduling has been providing many approaches to

achieve this goal, in which optimisation models are proposed to allocate resources over-

time.

The traditional scheduling models only consider static anddeterministic future condi-

tions, in which a finite set of jobs with deterministic processing times have to be assigned

to a finite set of machines subject to certain constraints with the aim of minimising a

certain cost function. However, in the real world, the presence of uncertainties and the

frequent occurrence of disruptions inevitably require rescheduling of these allocations, in

which initial solutions have to be coupled with reliable andeffective repair mechanisms

that are able to adjust schedules to reasonably respond to circumstances that often arise

in the shop floor, such as the arrival of new jobs, machine breakdowns, rework of jobs,

due dates changing, among others. Consequently, research on rescheduling has been at-

tracting attention, in which new optimisation models and several techniques are proposed,

analysed and employed to manage dynamic and uncertain environments. These problems

are highlighted as dynamic because continuous rearrangements of current schedules are

required to restore their feasibility, controlling the presence of occurring disruptions [86].

1
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1.2 Overview of the Problem

A real world scheduling / rescheduling problem of a printingcompany, Sherwood Press -

Nottingham, UK is considered in this thesis, which is modelled as a job shop problem with

parallel machines, machine eligibility and sequence dependent setup times. The problem

is dynamic since new printing orders arrive every day in the shop floor, which requires

the generation of a reliable initial schedule and, more importantly, areschedulingprocess

to accommodate these newly arriving jobs. This problem is also defined as complex due

to its nature of being a NP-hard problem [91]. This problem istackled as a generalisation

of possible disruptions because new orders requirements are able to compromise not only

one, but many resources present in a shop floor. Consequently, the optimisation models

introduced in this thesis are suitable to be replicated to other similar contexts, such as

personnel scheduling and university timetabling.

1.3 Research Context

The research work present in this thesis is a build up on the investigation of the static

scheduling problem presented by Sherwood Press - Nottingham. The research group

has been tackling possible approaches to handle uncertainties that are present on this real

world production shop floor, such as variations on processing times, due-dates and release

times [32, 84, 85, 89]. The main aim of the group is to produce high quality performing

schedules even in uncertain environments.

A genetic algorithm was introduced [32], in which a multiplecriteria fitness function

is employed to deliver schedules with highPerformance, i.e. minimising simultaneously

the average weighted tardiness of jobs, the number of tardy jobs, the total setup time, the

total idle time of machines, and the total flow time. Uncertainties were managed using

fuzzy sets to represent the problem parameters and, consequently, fuzzy logic to handle

the required inferences, i.e. when a job has to be consideredtardy or not.

Techniques such as load balancing and lot-sizing are also applied, due to their effec-

tiveness on delivering good schedules [84,85]. The presence of parallel printing machines

allow jobs to be processed more quickly since the load balancing algorithm tries to evenly

distribute the processing of required jobs on them. On the other hand, a lot-sizing al-
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gorithm splits jobs into smaller lots aiming of attend possible customer demands, i.e. a

smaller lot is delivered first in order to attend the customerexpectations and the remaining

part is subsequently produced in a more convenient time for the company.

The encouragingPerformanceresults achieved for this static problem highlight the

good combination of the proposed genetic algorithm, fuzzy concepts and the use of load

balancing and lot-sizing [89]. These techniques are employed in this thesis to produce

initial schedules and to reallocate operations on rescheduling. Further investigation on

setting the fitness function is discussed in details in chapter 4 in order to appropriately

address the rescheduling issues.

1.4 Aims and Scope

The aim of this thesis is to investigate optimisation modelsand techniques to produce

reliable schedules under dynamic and uncertain environments. Solutions with high levels

of Performanceare expected, which are measured according to a certain costfunction,

while theStabilityis preserved by introducing as fewer changes as possible to the current

state of the shop floor. Firstly, this work argues that match-up algorithms are effective

repair methods to deliver high quality stable schedules when disruptions affect multiple

resources of a complex real world problem presented by a printing company in Notting-

ham, UK (hypothesisH1). Secondly, a new approach is proposed to combine match-up

algorithms with initial robust schedules, in order to investigate their interaction on cre-

ating reliable high quality stable schedules (hypothesisH2). Note that the term robust

defines schedules that aim to absorb occurring disruptions [35,59].

1.5 Methodology

Two types of analyses are carried out to accomplish the described goals. Chapters 2-3

provide an analysis of the literature, in which dynamic scheduling and fuzzy concepts

are investigated on managing the presence of uncertainties. Subsequently, chapters 4-6

describe data analysis of experiments that are done to validate the proposed hypothe-

ses: effectiveness of mach-up algorithms for reschedulinga complex real world problem
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(H1) and the positive effects when combining them with a fuzzy scheduling to produce

reliable solutions (H2). All results are statistically validated, in which an analysis of vari-

ance (ANOVA) reveals the significance of the investigated problem parameters and their

interactions, a pairwise comparison test using Bonferroni’s correction indicates which ap-

proaches deliver superior results, and average values highlight the overall behaviour of

each analysed strategy.

1.6 Structure of the Thesis

The remaining of this thesis is organised as in Figure 1.1. Chapters 2 and 3 presents the

background and related work in which the investigated problem is situated. A reschedul-

ing taxonomy is presented and match-up algorithms are highlighted as reasonable repair

methods in Chapter 2. Additionally, chapter 3 identifies theapplication of fuzzy logic con-

cepts as a suitable approach to help modelling possible uncertainties present in scheduling

/ rescheduling problems.

Both hypotheses are validated in the contribution chapters4-6. Firstly, the investigated

scheduling / rescheduling problem is discussed in detail and different match-up strategies

are introduced to control this complex real world dynamic problem, as presented in chap-

ter 4. A typical disruption that affect multiple available resources is tackled, in which new

rush orders arrive everyday in the shop floor. Note that theseorders define a set of jobs

that have to be processed as early as possible. Statistical analyses reveal that the proposed

strategies are effective repair methods to deliver high quality stable schedules (hypothesis

H1). Subsequently, chapter 5 investigate orders with different levels of urgency in which

the flexibility of the proposed strategies are verified underdifferent scenarios. This set

of jobs is identified as normal orders and the main goal is to generalise possible occur-

ring disruptions in order to emphasise the validity ofH1. Chapter 6 discusses a novel

approach that combines match-up rescheduling algorithms with robust fuzzy scheduling.

This fuzzy scheduling system inserts idle times on machinesbased on historical data. The

main aim is to produce initial robust schedules that are ableto facilitate the accommoda-

tion of the newly arriving jobs. Statistical analyses confirm that the proposed combination

has a positive effect on responding to disruptions leading to reliable high quality stable
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Figure 1.1: Structure of the Thesis.

schedules (hypothesisH2).

Finally, chapter 7 discusses and summarises the conclusions of this thesis and its pos-

sible future work.
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1.7 Contributions

The main contribution of this thesis is the introduction of match-up strategies to manage

uncertainties present in a complex dynamic real world job shop problem. Moreover, a

novel approach that combines these repairing strategies with initial robust schedules is

also discussed and validated.

The proposed approaches are described in the following chapters:

• Chapter 4 describes developed match-up algorithms for a real world problem pre-

sented by a printing company in Nottingham, UK, in which a typical disruption

affects multiple resources available in the shop floor, as in[69,70,73];

• Chapter 5 does a further investigation of match-up algorithms, in which improve-

ments are applied to the genetic algorithm responsible for optimising the job allo-

cations on machines. Additionally, a more general type of disruption is analysed in

order to check the flexibility of the proposed strategies under different scenarios, as

in [74];

• Finally, chapter 6 introduces a new approach to combine therepairing mechanism

provided by match-up strategies with the generation of initial robust schedules. A

fuzzy control system is designed to produce these schedules, in which historical

data from the investigated company provides information about good practices. The

aim is to facilitate the accommodation of future disruptions by inserting idle times

on machines and, consequently, produce more reliable and effective solutions, as

in [71,72];

The flexibility of the proposed approaches on managing disruptions in a complex real

world dynamic scenario highlights the suitability of replicating them to other similar con-

texts.

Shaded cells in Table 1.1 identify which approaches are investigated in this thesis.

The aim is to highlight the previously mentioned contributions within a rescheduling tax-

onomy [8,42,79,114].

The investigated scheduling / rescheduling problem has a high variability on arrival of

new jobs, which sets it as a dynamic environment. These arriving jobs often affect multi-
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Table 1.1: Investigated approaches within a rescheduling taxonomy

Environment

Static (finite set of jobs) Dynamic (infinite set of jobs) 

Deterministic 

(all information

is given) 

Stochastic

(some information

is uncertain) 

Cyclic production 

(no arrival

variability) 

Medium variability 

(some arrival

variability) 

High variability 

(high arrival 

variability) 

Approach 

Reactive Predictive (robust) Predictive-reactive 

Frequency 

Periodic Continuous Event-driven Hybrid 

Method

Schedule generation Schedule repair 

Nominal Robust Right / left-shift Complete Partial

ple resources and they are classified as important disruptions. As a result, a rescheduling

process has to be started whenever a new job is required to be processed (event-driven

frequency).

Firstly, initial schedules are generated only optimising the current state of the shop

floor (nominal generation), as in chapters 4-5. Subsequently, a newly proposed approach

generates schedules that aim to predict future disturbances (robust generation), as in chap-

ter 6. Match-up strategies are used as a repair method, modifying only required parts of

the current allocations (partial repair). This configurations set two explicit scheduling /

rescheduling approaches: (1) predictive-reactive, whichcreates a nominal schedule and

react when a disruption occurs and, (2) robust, which creates a robust schedule that helps

to absorb occurring disruptions during the repairing process.

The following chapter provides a more detailed discussion about these approaches and

all the remaining ones presented in Table 1.1, in which theirstrengths and limitations are

extensively discussed.



Chapter 2

Survey of Dynamic Scheduling -

Rescheduling

2.1 Introduction

This chapter presents a literature review of rescheduling algorithms, in which a taxonomy

of possible environments, approaches, frequency and methods is described and discussed.

The aim is to provide a guideline to understand related terminologies, applied strategies

and their limitations. This taxonomy is subsequently linked with match-up algorithms

and their possible combination with robust schedules, which are the main research topics

investigated in the following chapters of this thesis.

In a competitive world, high productivity and low production costs are very important

factors to guarantee successful businesses. Research on production scheduling has been

providing many approaches to achieve these factors, in which optimisation models are

proposed to allocate resources to jobs (tasks) over time. Literature on these models has

been mainly focused on the problem of generating efficient schedules under a given static

scenario. Typically, a fixed number of jobs with deterministic processing times have to

be assigned to a given number of machines minimising a certain cost function. However,

when the possibility of disruptions, and uncertainty in thebroad sense, is taken into ac-

count, such deterministic models, and their correspondingsolution approaches, have to

be coupled with repair mechanisms that adjust the initial schedule to respond to the new

circumstances that may arise from an unexpected event. The types of disruptions that may

8
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occur can be either (1) related to jobs, such as changes to production orders, including the

insertion [13, 17, 30, 93] and removal of jobs [89], rework [103], changes to processing

times and due dates [24, 52]; or (2) related to the shop floor, such as changes to man-

ufacturing resources, including substitution or breakdowns of machines [4, 67, 90, 115],

sickness of workers [106], tool unavailability [2, 12], delay or shortage on material sup-

ply [53, 97], etc. For all these cases, a rescheduling of the previously allocated jobs is

required in order to restore the feasibility of the scheduleand keep its optimal perfor-

mance results. More details about each step of this process are described in the remaining

sections of this chapter.

In order to understand the terminology present in the literature, some terms commonly

used by different researchers are described below:

• Rescheduling point: when a schedule is repaired;

• Rescheduling period: time between two consecutive rescheduling points;

• Rescheduling frequency: how many times a rescheduling process is required;

• Rescheduling horizon: selected allocations within a time horizon that must be

rescheduled;

• Scheduling nervousness: associated with the repairing times required during the

schedule execution;

• Scheduling stability: inverse of scheduling nervousness;

• Scheduling robustness: how much the repairing process does affect the schedule

performance.

Once values are given to these terms, it is possible to have anoverall idea about how a

rescheduling problem has been tackled. Moreover, the impact of this process is evaluated

using the following metrics to check the quality of the generated schedules:

• Performance: metric commonly used in scheduling and rescheduling problems, in

which tardiness, lateness, makespan, number of tardy jobs,setup times, idle times

and flow times of schedules are evaluated;
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• Stability: metric only used in rescheduling problems, which measuresthe differ-

ence between the initially planned schedule and the executed one. This metric

mostly check changes on start/end times of operations (timedeviation), sequence

of operations on machines (sequence deviation) and operations switching between

parallel resources (machine deviation). Note that this measure is not applicable to

check initial schedules due to the absence of changes;

• Efficiency: measures how quickly a disruption is managed;

• Cost: measures the computational burden, setup and transportation costs involved

during the process.

These metrics provide crucial information because they allow the selection of the most

appropriated rescheduling method to be applied to a specificproblem. Note that more

than one metric can be used to evaluate the quality of a generated schedule. In practice,

PerformanceandStabilityare the most commonly used metrics because they can give an

overall picture of the production process [1,21,90,93,116].

The remaining of this chapter is organised as follows. Section 2.2 introduces a taxon-

omy for rescheduling algorithms, in which possible environments, approaches, frequency

and methods are described. Section 2.3 discuss match-up algorithms, presenting their

current applications, limitations, possibilities and their possible combination with robust

schedules. Finally, sections 2.4 and 2.5 conclude this chapter.

2.2 Rescheduling Taxonomy

Research on rescheduling has been exploring the potential of optimisation models ap-

plied to dynamic contexts, in which expected and/or unexpected disruptions have to be

managed in order to guarantee the quality of the planned schedules. Several authors

have been investigating this rescheduling process appliedto different contexts such as

single machine problems [24, 35, 36, 58], flow shop [3, 22, 105, 120], job shop prob-

lems [13, 28, 33, 100] and the use of parallel machines [12, 18, 60, 103]. A taxonomy

for possible rescheduling approaches is shown in Table 2.1,based on features present in

these studies combined with literature reviews presented by [8,42,79,114].
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Table 2.1: Rescheduling taxonomy

Environment

Static (finite set of jobs) Dynamic (infinite set of jobs) 

Deterministic 

(all information

is given) 

Stochastic

(some information

is uncertain) 

Cyclic production 

(no arrival

variability) 

Medium variability 

(some arrival

variability) 

High variability 

(high arrival 

variability) 

Approach 

Reactive Predictive (robust) Predictive-reactive 

Frequency 

Periodic Continuous Event-driven Hybrid 

Method

Schedule generation Schedule repair 

Nominal Robust Right / left-shift Complete Partial

A scheduling / rescheduling problem is defined based on the following aspects: (1)

environment, which is related to the number of jobs that haveto be scheduled; (2) ap-

proach, to set how jobs are allocated; (3) frequency, which defines when to reschedule;

and (4) method, which describes how to generate and update the schedule. The following

subsections provide more detailed information for each of these aspects.

2.2.1 Rescheduling Environments

The rescheduling process may happen either in astatic environment, in which the number

of jobs is finite and known in advance, or in adynamic environment, in which jobs arrive

in the shop floor continuously. A job is used as reference to represent possible disruptions

because its requirements are able to compromise not only one, but many resources present

in a shop floor.

In the static case, one can differentiate betweenstatic-deterministic environments,

where there is no uncertainty in problem data [91], orstatic-stochastic environments, in

which processing times, due dates and other problem data aresubject to minor changes

[86]. Note that there is no rescheduling in static environments and the presence of un-

certainty in problem data does not require changes on planned schedules. These environ-
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ments define the category of classical scheduling problems.

In the dynamic case, the presence of unpredictability is mostly concerned with time

of the arrival of jobs. These environments reflect a better representation of real world

problems and they are classified asdynamic cyclic environments, in which jobs arrive in

the shop floor in regular and perfectly predictable intervals of time [11, 14, 15];dynamic

medium variability environments[21, 26, 47] which also have somehow predictable job

arrival patterns and consider some level of uncertainty in other problem parameters; and

dynamic high variability environments[27, 31] in which arrivals of jobs is highly unpre-

dictable and certain events, such as machine breakdowns andtools unavailability are also

taken into account.

Table 2.2 summarises relevant references for these environments considering different

types of disruption and proposed optimisation methods. Both GA and BB algorithms are

highlighted as commonly used techniques because they are able to approximate optimal

solutions for NP-hard problems within reasonable computation time [92,111]. Match-up

algorithms are also identified as common solving techniquesand a detailed discussion

about their application is presented in the following section of this chapter. Other promis-

ing method is the use of hyper-heuristics in dynamic environments, in which proposed

search techniques are able to select, combine, generate andadapt several simpler heuris-

tics to solve scheduling / rescheduling problems [16,37]. Note that no references are given

to static determinist problems because they belong to the group of classical scheduling

problems, in which disruptions are not taken into account.

2.2.2 Rescheduling Approaches

Approaches which deal with disturbances in the production shop can be classified into

three main groups: (1)reactivescheduling; (2)predictivescheduling; and (3)predictive-

reactivescheduling algorithms.

The main feature of reactive scheduling is that no initial schedules are generated and

real time control actions are applied to allocate the available resources over time. This

approach is also known as “online scheduling” given that it sets a passive method that

react to unforseen events as they occur. Dispatching rules [27, 33, 80], pull mechanisms

such as Kanban cards [44] and idling policies [19] are mostlyused to prioritise jobs that
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Table 2.2: Rescheduling relevant references

Environment Disruption Technique Reference

Static

Stochastic information
Machine breakdown Genetic algorithm [59]

Match-up algorithm [3]
Uncertain processing times, release and due-dates Branch and bound algorithm, fuzzy variables [105]

Genetic algorithm, fuzzy variables [32, 84, 85, 87, 88]

Dynamic

Cyclic production
Machine breakdown Match-up algorithm [11, 14, 15]

Medium variability
Machine breakdown Mathematical programming, expert system [26, 35, 36]

Branch and bound algorithm [67]
Fuzzy variables [21]
Genetic algorithm [47]

New jobs Genetic algorithm [93]

High variability
Machine breakdown Match-up algorithm [12, 116]

Branch and bound algorithm [61]
Genetic algorithm [90]
Heuristics [1]

Uncertain processing times, release and due-dates Simulation [24]
New jobs Heuristics [31]

Genetic algorithm [13]
Machine breakdown, new jobs and order cancelation Simulation [33]
Machine breakdown and quality control Knowledge-based system [103, 104]

Expert system [60]
Order changes Match-up algorithm [106]
Resource availability Tabu search [28]
Examination Timetabling Hyper-heuristics [16]

need to be processed next. These control actions can be combined with machine learning

techniques, which are useful to select the most appropriateresponse to a disruption based

on decision trees [6]. Alternatively, artificial neural networks can be used to predict an

adequate control action [7] and genetic algorithms can be applied to choose a population

of suitable actions [20]. A low computational burden is usually required for this approach.

However, aPerformancevalue is difficult to predict since no schedules are generated.

Figure 2.1 shows an example of control actions using dispatching rules. A single machine

problem with 5 jobs to be allocated is illustrated in Figure 2.1 (a), in which the rules

shortest processing time first (SPT), longest processing time first (LPT), first come first

served (FCFS) and earliest due-date first (EDD) are applied.The application of each rule

prioritises jobs that will be processed next. Note that these priorities have to be changed

if a new job arises in the shop floor, i.e. job 6 with release time r j = 0, due-dated j = 12

and processing timep j = 2 . All jobs are reconsidered because, hypothetically, the current

time is 0 and they all have been already released at this time.The updates are illustrated in

Figure 2.1 (b). The other described control actions follow the same pattern used here, in

which a rule gives directions about how to prioritise the allocation of jobs on the available

resources over time.
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        rj dj pj

1   0 21 5 

2     0 15 3 

3    0 5 4 

4  0 10 6 

5       0 6 1 

           

         

SPT 5 2 3 1 4   

LPT 4 1 3 2 5   

FCFS 1 2 3 4 5   

EDD 3 5 4 2 1

         

(a)

           

        rj dj pj

6      0 12 2 

           

         

SPT 5 6 2 3 1 4  

LPT 4 1 3 2 6 5  

FCFS 1 2 3 4 5 6  

EDD 3 5 6 4 2 1  

         

(b) 

Figure 2.1: Example of prioritising jobs using the following dispatching rules: shortest
processing time first (SPT), longest processing time first (LPT), first come first served
(FCFS) and earliest due-date first (EDD). Note that each job has a release timer j , due-
dated j and processing timep j . Initially, the priorities are set between (a) 5 jobs and,
subsequently, between (b) 6 jobs.

Predictive approaches, also known as “robust scheduling”,generate schedules with a

hope that it would be able to absorb any disruptions without compromising the schedule

Performance. Idle times are allocated on machines in such a way that future disturbances

can be accommodated. The main idea is to preserve the initially produced schedule in

order to avoid extra production costs. Genetic algorithms [47,59], fuzzy systems [10,21,

26, 28, 35, 36], branch and bound algorithms and simulated annealing [61, 62] have been

used as components of predictive scheduling systems. A robust schedule is presented in

Figure 2.2, in which idle times were inserted on available machines. For instance, a new

job 8 requires processing on machines M1 and M2, as in Figure 2.2 (a) and it can be

inserted in the current schedule without changing the current allocations, as in Figure 2.2

(b) and (c), respectively. As a matter of simplifying this example, the problem parameters

release time and due-dates are not considered.

Pure predictive and pure reactive approaches have their limitations. A pure predictive

approach can only absorb a limited number of disruptions, these of a relatively low mag-
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M1 1   5   

M2 2 3  6   

M3 4 7   

…        

(a)

        

M1 8      

M2   8     

M3        

…        

(b) 

        

M1 1 8 5   

M2 2 3 8 6

M3 4 7   

…        

(c)

Figure 2.2: Example of (a) a robust schedule, with (b) a new job requirements and its (c)
resultant schedule.

nitude, before requiring a complete reallocation of the jobs in the shop floor. A purely re-

active approach is concerned with keeping neither the schedulePerformancenor theSta-

bility and it often generates highly suboptimal schedules. Predictive-reactive approaches

are an alternative to overcome these drawbacks [8,114]. In predictive-reactive reschedul-

ing, an initial high quality schedule is constructed, and when a high impact disruption

occurs, it is modified using an appropriate repair method. This process is subdivided into

three phases: (1) planning - to delimitate the initial schedule; (2) controlling - to check

the production process; and (3) reacting - to set a response to unexpected events. Note

that all changes are done during the execution of the schedule. Genetic algorithms [93],

expert systems [106], simulation models [60], knowledge based models [103,104], heuris-

tics [31] and match-up strategies [3,12] have been used in predictive-reactive approaches.

They constitute the strategy that has been mostly used in practice for rescheduling real

world dynamic manufacturing problems [13]. Figure 2.3 (a) shows an initial schedule

produced to allocate 7 jobs on machines M1-M3. A new job 8 arises and this initial solu-

tion has to be changed to accommodate the new requirements and keep the feasibility of

the schedule, as in Figure 2.3 (b). Two different alternatives are shown in Figure 2.3 (c)
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M1 1   5   

M2 2 3  6   

M3 4 7   

…        

(a)

        

M1 8      

M2   8     

M3    8    

…        

(b) 

        

M1 1 8 5   

M2 2 3 8 6

M3 4  8 7

…        

(c)

        

M1 5 8  1  

M2 3  6 8 2

M3 4 7 8

…        

(d) 

Figure 2.3: Example of (a) a predictive-reactive schedule,with (b) a new job require-
ments, and its (c) resultant schedule with minor and (d) major changes on the initial
allocations.

and (d) to insert this new job, in which minor and major changes are done in the current

schedule, respectively. The most appropriated method is chosen based on requirements

of each problem. Further details about repair methods are discussed in subsection 2.2.4.

2.2.3 Rescheduling Frequency

Rescheduling approaches are also classified according to the frequency with which reschedul-

ing occurs. They are subdivided intoperiodic, continuous, event-drivenandhybrid ap-

proaches.

In periodic approaches, the rescheduling follows predefined time intervals [90, 93].

This means that the current schedule is kept unchanged, evenif a recent disruption has

occurred, until the next predefined rescheduling point is reached. In periodic approaches,
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schedules are changed relatively infrequently. Consequently, theStabilityof the schedule

is maintained, which makes these approaches popular in the industry [8]. The drawbacks,

however, are that thePerformanceof the schedule may deteriorate when the rescheduling

frequency is too low and the fact that it may be difficult to define appropriate reschedul-

ing points. Near optimalPerformancecan be obtained when one disruption occurs on a

regular basis, i.e. a certain group of jobs that has to be processed every month in a shop

floor.

In the continuous approach the schedule is modified whenevera new disruption oc-

curs, regardless of its relevance [23, 75]. Because of this,theStabilityof the shop floor

may be compromised when a large number of modifications, someof them unnecessary,

are done. Reactive and predictive-reactive scheduling, previously discussed in subsection

2.2.2, are usually associated with this approach due to their feature of low predictability.

Note that schedules with highPerformancecan be produced since a scheduling problem

can be continuously re-optimised at a price of a higher computational burden.

The event-driven approach modifies the schedule only when important event occur

[31,106]. This feature helps to overcome the drawbacks present in continuous approaches,

in which highly stable and good quality schedule are obtained. Note that the schedule

Stability may still be sacrificed when a large number of modifications isrequired. In

practice, this approach is usually combined with repair methods that control shop floor

Stability. More details about these methods are given in the followingsubsection.

The fourth type of approach, so-called hybrid, reschedulesat predefined points in

time and whenever a critical event occurs [28, 60, 90]. Critical events are set accordingly

to the scheduler preferences and they identify the disturbances that have to be tackled

during the schedule execution, such as machine breakdowns,rush orders, job cancellation,

priority changes, among others. This approach combines thegoodStabilityand the good

Performancefrom the periodic and event-driven approaches, respectively. Note that it is

possible to set alternative options mixing the other available approaches, i.e. periodic in

the first moment and continuous in the next period. The aim is to consider the specificity

of each scheduling problem to define the best rescheduling frequency.

Figure 2.4 illustrates a match between rescheduling frequencies and possible approaches.

Periodic rescheduling is usually done on robust schedules due to their high predictability
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Predictability

Approach

Frequency 

low medium high 

Continuous 

Predictive - reactive 

Predictive - reactive Robust Reactive

Event-driven Hybrid Periodic 

Figure 2.4: Match between rescheduling frequencies and possible approaches, based on
predictability of the produced schedules.

of upcoming events. Contrary, continuous approaches are frequently applied in reactive

schedules since a low predictability is presented by them. Event-driven approaches are

usually associated with predictive-reactive schedules because their low predictability are

often managed by applying some repair methods. Alternatively, a hybrid approach can

be applied to these schedules due to the possibility of a medium predictability, i.e. events

occurring on a regular basis coupled with other unexpected ones. In practice, good qual-

ity schedules are produced when the requirements of a scheduling problem are combined

with a moderate rescheduling frequency.

2.2.4 Rescheduling Methods

The rescheduling methods are subdivided into two independent phases: (1)schedule gen-

eration, which determines how an initial schedule is produced; and (2) schedule repair,

which establishes how a current schedule recovers from a disruption in order to restore its

feasibility.

The initial schedule may benominal, which is a schedule generated with the only fo-

cus on optimisingPerformance[60, 90]. The problem with nominal schedules is that

they are highly sensitive to the problem data, which means that if the problem data

changes, due to unpredictable circumstances, bothPerformanceandStabilityof the initial

schedule are usually badly deteriorated. Despite this problem, most of the literature on

scheduling is concerned with generating nominal schedules[91]. In practice, they have

to be combined with appropriate repair methods in order to deliver high quality sched-
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ules [70,73,74,116].

The initial schedule may also berobust[35], in which case it is generated with a pro-

tection against unforeseeable events. This protection takes the form of a certain amount

of idle time that is inserted on the machines, between jobs, whose purpose is to absorb a

number of disruptions without severely compromising bothPerformanceandStabilityof

the schedule. The main drawback with the generation of robust schedules lies in the dif-

ficulty of defining the size of the temporal protection; too much inserted time inevitably

deteriorates the schedulePerformance, too little and the protection is useless.

An example of a nominal and a robust schedule is shown in Figure 2.5 (a) and (b),

respectively. The nominal schedule only prioritises itsPerformance, in which no idle

times are inserted on machines and all required operations are processed as soon as pos-

sible in the shop floor. Contrary, the robust schedule allowsa certain level of flexibility

since idle times are present on both machines M1 and M2, whichaim to manage possi-

ble disruptions and keep a good quality stable schedule. Note that both schedules finish

the processing of their operations at the same time and the temporal protection present in

Figure 2.5 (b) does not compromise the schedulePerformance, since, hypothetically, the

makespan is used to check its quality.

The repair methods restore the feasibility of the schedule when disruptions occur in the

shop floor and they are subdivided intoright / left shift, completeandpartial rescheduling.

Basic methods such as right and left shift are commonly used in practice because they

produce stable schedules [1, 59, 67, 90]. When a disruption occurs, assigned operations

        

M1 1 5     

M2 2 3 6    

M3 4 7   

…        

(a)

        

M1 1   5   

M2 2 3  6   

M3 4 7   

…        

(b) 

Figure 2.5: Example of (a) a nominal and (b) a robust schedule.



2.2. Rescheduling Taxonomy 20

may be either postponed or executed in advance depending on the new requirements. For

instance, the insertion of a new job may require postponing,i.e. shifting to the right, a

number of operations, whereas the removal of an assigned jobmay cause other operations

to be shifted to the left. Such rules deliver stable schedules because the sequence of opera-

tions on machines is kept unchanged. However, thePerformanceis usually compromised

due to the absence of optimisation methods during the pushing and pulling processes.

An example of an initial schedule is presented in Figure 2.6 (a), in which a new job has

to be inserted at the highlightedrescheduling point. The new job requirements and the

resultant schedule applying right shift are shown in Figure2.6 (b) and (c), respectively.

Subsequently, job 4 is removed, in which the left shift method is applied. Note that only

job 7 is moved backward because job 8 sets a precedence constraint to execute its oper-

ations in a predefined sequence, as in Figure 2.6 (d). The schedulePerformancecan be

mainly affected because some jobs may become tardy after right shifting their allocations.

Similarly, tardy jobs that were allocated in the initial schedule are not rearranged to use

the extra space provided by the removal of some jobs, which may affect its overall quality.

The complete repair method, also known as “total rescheduling”, reallocates all the re-

maining operations present in the shop floor considering thenew requirements presented

by disruptions. This method often leads to highPerformancevalues because the same

scheduling problem is continuously optimised [13, 31, 93].As a result of these several

changes, a very lowStability is frequently associated with this method. In practice, total

rescheduling is usually avoided because it generates additional manufacturing costs re-

lated to the holding of raw material, machine setups, and others, and is computationally

expensive. A reasonable solution to use total reschedulingis to combine it with optimisa-

tion functions that aim to maximise bothPerformanceandStabilityduring the repairing

process [74]. Figure 2.7 (a) shows a schedule, in which a job has to be inserted at the

highlightedrescheduling point. The new job requirements is shown in Figure 2.7 (b).

The schedule is repaired and all the remaining operations after therescheduling pointare

reallocated to accommodate the requirements of the new job 16, as in Figure 2.7 (c).

In partial rescheduling, only those operations affected bydisruptions are reallocated.

The aim is to preserve as much as possible the current schedule since it hypothetically

sets an optimal solution. As a consequence, schedules are more stable than with to-
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M1 1   5   

M2 2 3  6   

M3 4 7   

…        

(a)

        

M1 8      

M2   8     

M3    8    

…        

(b) 

        

M1 1  8 5

M2 2 3  8 6

M3 4 7 8

…        

(c)

        

M1 1  8 5

M2 2 3  8 6

M3 7    8

…        

(d) 

rescheduling point 

Figure 2.6: Example of (a) an initial schedule, with (b) a newjob requirements, and its
(c) resultant schedule when job 8 is inserted using right shift and, subsequently, (d) the
removal of job 4 applying the left shit method.

tal rescheduling. Moreover, partial rescheduling often delivers schedules with similar

Performancevalues as with total rescheduling, hence their popularity in practice. Par-

tial rescheduling may use (1) match-up algorithms, in whichmodified schedules try to

match-up its optimal initial solution as soon as possible; (2) knowledge-based models, in

which the most constrained area of the scheduling problem isprioritised to be resolved

first; and (3) robust scheduling, in which minor changes may be required in order to use

idle times to absorb new disruptions. A general example is shown in Figure 2.8 (a), in

which the same job 16, introduced in the previous example, has to be integrated in the

current schedule at the highlightedrescheduling point. Note that only a part of the current

schedule has to be changed to insert this new job, i.e. shadedoperations. Consequently, a
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M1 1   5  8 11 13 

M2 2 3  6  9   14  

M3 4 7 10  12  15 

…              

(a)

              

M1 16            

M2   16           

M3    16          

…              

(b) 

              

M1 1   5 13 16 11 8

M2 2 3  6 14 9 16  

M3 4 7 12 10 15  16

…              

(c)

rescheduling point 

Figure 2.7: Example of (a) an initial schedule, with (b) a newjob requirements, and its
(c) resultant schedule when a complete repair method is applied.

              

M1 1   5 8 11 13 

M2 2 3  6 9  14  

M3 4 7 10  12  15 

…              

(a)

              

M1 1   5 16 8 11 13 

M2 2 3  6 9 16   14  

M3 4 7 10 1612  15 

…              

(b) 

rescheduling point 

Figure 2.8: Example of (a) an initial schedule and its (b) resultant allocations when a
partial repair method is applied.

more stable schedule is delivered in Figure 2.8 (b), when it is compared with a complete

reallocation previously shown in Figure 2.7 (c).

Figure 2.9 summarises the rescheduling methods matching both scheduling genera-

tion and repair with possible rescheduling approaches. Nominal schedules are associated
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Generation Approach Repair 

Right / left shift 

Complete 

Partial

Predictive - reactive 

Predictive 

Reactive 

Nominal 

Robust 

No schedule 

Figure 2.9: Match between generating schedules and possible approaches, together with
their applicable rescheduling repair methods.

with predictive-reactive approaches because the absence of disruption prediction always

requires some repair. Contrary, robust schedules are mostly applied with predictive ap-

proaches since they aim to absorb disruptions inserting idle times on machines. Note

that both nominal and robust schedules may use the same rescheduling repair methods

if the available idle times are not enough to accommodate therequirements of the new

disruptions. Consequently, all repair methods can be associated with either predictive or

predictive-reactive approaches. As a matter of completeness, reactive schedules do not

generate an initial solution, hence no repair has to be done.

2.3 Match-up Approaches

Match-up algorithms start with an initial schedule, and whenever a disruption occurs, a

time window within the schedule is defined, re-optimised taking into account the new

disruption(s), and put back into the initial schedule. Thisrepair is achieved by collecting

available idle times on machines and changing a part of the current allocations to accom-

modate the unexpected event(s). These algorithms are originally inspired by the “turnpike

theory” [66], in which an initial patch between two points has to be restored as soon as

possible, since it already defines an optimal solution.

Match-up algorithms may belong either to the class of predictive-reactive approaches

or to the class of predictive approaches depending on whether they start with an ini-

tial nominal schedule or a robust schedule, respectively. They also belong either to the
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class of continuous approaches or to the class of event-driven approaches, depending on

whether the rescheduling is triggered at every disruption or only after the occurrence of

what may be considered a relevant event. Additionally, match-up algorithms belong to the

class of partial repair methods since they only modify a partof the schedule when accom-

modating occurring disruptions. The match-up approaches proposed in this thesis initially

investigate predictive-reactive and event-driven approaches, since the initial schedule is a

nominal one and the rescheduling process is triggered when anew job enters the system.

Note that job arrivals are relevant disruptions because they often compromise multiple

resources in the shop floor. Further details are presented and discussed in chapters 4 and

5. Subsequently, predictive approaches are also investigated because their strategy of in-

serting idle times on machines could possibly contribute tothe effectiveness of match-up

approaches, as described in chapter 6.

Match-up approaches are attractive given that they are easyto conceptualise and

because they provide good results not only with respect to schedulePerformance, but

also Stability. Nevertheless their application has been limited only to a small variety

of problems, most of which are of a more theoretical than practical importance. For

instance, match-up algorithms have been used in predictive-reactive approaches to re-

pair single machine shop floors [11, 14, 15, 116] and single stage with parallel machine

shop floors [12]. Flow shop models have been considered in [3]and job shop problems

in [1, 97, 103, 104, 106]. A detailed description of these scheduling models can be found

in [91]. This thesis and its resultant papers in [70, 72–74] are the only attempts to use

match-up algorithms in a complex production shop floor whichincludes multiple criteria,

setup times and parallel machines.

An essential part of match-up approaches is the algorithm incharge of re-optimising

the rescheduling horizon. In most cases, re-optimisation algorithms have been relatively

simple scheduling heuristics; however, in [1,97,103,104,106,107] considerably complex

knowledge based systems have been investigated. In these systems, previously stored

knowledge, obtained after experience (training), is used to select a rescheduling strategy

which is expected to be appropriate for the current rescheduling problem. These methods

select the most constrained part of the schedule as the rescheduling horizon. An important

drawback of this is that constraint violations may propagate to a large part of the schedule,
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requiring multiple repairing iterations that compromise both PerformanceandStability

of the schedule. The investigation presented in this thesisand the research presented

by [116] are the only ones using genetic algorithms as re-optimisation engines of match-

up algorithms.

As previously mentioned, another important feature that may contribute to the match-

up approaches effectiveness is the algorithm in charge of generating its initial predictive

schedule. Robust scheduling has been mostly investigated in machine breakdowns prob-

lems, in which a single resource is usually compromised by disruptions on the shop floor.

These problems have been using fuzzy processing time and release time to manage tem-

poral uncertainties [21, 35]. Alternatively, branch and bound heuristics [61, 67], genetic

algorithms [47,59] and temporal protection based on historical data of the resources allo-

cation [26] have been used to produce schedules that aim to absorb occurring disruptions.

Jobs with changing processing times are investigated in [28], which also applies fuzzy

variables to set durations of operations. The research present in this thesis and its resul-

tant paper in [73] are the only applications of match-up algorithms with robust scheduling

to a complex real world job shop problem.

2.4 Discussion

All rescheduling features, presented in the previous sections, have their strengths and

limitations. For instance, static environments set desirable hypothetical problems because

all information is always given in advance, which allows an optimal schedule to be mostly

executed as initially planned. Unfortunately, real world situations are not that predictable

and unexpected events often occur in the shop floor, which usually require rescheduling.

These problems belong to the class of dynamic environments.

Different algorithms can be applied to manage uncertainty present in dynamic envi-

ronments. For instance, reactive approaches do not create aschedule and real time control

actions are applied to allocate the available resources over time. However, aPerformance

value is difficult to predict and the shop floor productivity can be easily affected. Alterna-

tively, predictive algorithms produce robust schedules, which aim to absorb some disrup-

tions using extra idle times that were inserted on machines during the schedule generation.



2.4. Discussion 26

The main issue presented by this approach is how to define the amount of this temporal

protection without affecting the overall quality of the schedules. Predictive-reactive algo-

rithms aim to overcome those drawbacks, in which an initial optimal schedule is produced

and it is subsequently changed when a disruption occurs. This approach, however, may

easily compromise the scheduleStabilityand an effective repair method, such aspartial

rescheduling, must be applied in order to produce a high quality and stablesolution. Note

that complete rescheduling and right / left shift usually generate suboptimal repaired so-

lutions, because they either optimise the schedulePerformanceor Stability, respectively.

The rescheduling frequency is also an important factor which controls the quality

schedules. Periodic approaches guarantee stable solutions, because the rescheduling is

done only at predefined rescheduling points. The main difficulty is to define these points

in order to avoid thePerformancebeing deteriorated. Contrary, a continuous approach

sets schedules with goodPerformanceand poorStabilitybecause a problem is continu-

ously optimised whenever a disruption occurs. Event-driven approaches aim to overcome

those drawbacks requiring rescheduling only when a critical event arises in the shop floor.

Alternatively, hybrid approaches can be applied to combinethe previously described op-

tions, i.e. rescheduling at predefined points and whenever an important event occurs. The

aim is to consider the specificity of each scheduling problemin order to define the best

rescheduling frequency.

In summary, a reasonable approach to manage real world problems is to consider pro-

duction scheduling as a dynamic environment, in which disruptions occur and a reschedul-

ing process may be required. Predictive-reactive and predictive approaches are suitable

strategies to model these problems wheneverPerformanceandStability are considered

to be relevant factors during the schedule execution. Moreover, event-driven or hybrid

approaches coupled with partial rescheduling are highlighted as good repairing methods

because they aim to deliver high quality and stable schedules.

This thesis and its resultant papers investigate a real world dynamic environment, in

which new jobs have to be integrated in a current schedule. This problem is a generali-

sation of possible disruptions because its requirements are able to compromise not only

one, but many resources present in a shop floor. A partial repair method called match-up

is responsible to accommodate these disruptions with the aim of keeping good schedule
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PerformanceandStability. This study represent the only attempts to employ match-up

algorithms in a complex production shop floor which includesmultiple criteria, setup

times and disruptions affecting multiple resources. Thesealgorithms are initially applied

following a combination of predictive-reactive and event-driven approaches, since initial

optimal schedules are changed when relevant disruptions enters on the system, i.e. the

arrival of new jobs. Subsequently, predictive approaches are also investigated because

their strategy of inserting idle times on machines could affect positively the rescheduling

process. More details about these investigations are discussed in the following chapters.

2.5 Summary

This chapter describes a literature review of reschedulingalgorithms, in which a tax-

onomy of possible environments, approaches, frequency andmethods is presented and

discussed. The aim is to provide a guideline to understand related terminologies, applied

strategies and their limitations. This taxonomy is subsequently linked with match-up algo-

rithms and their possible combination with robust schedules, which are the main research

topics investigated in the following chapters of this thesis.

A reasonable approach to manage real world problems is to consider production schedul-

ing as a dynamic environment, in which disruptions occur anda rescheduling process may

be required. Both predictive-reactive and predictive approaches are suitable strategies to

model these problems because they either re-optimise a current solution or try to absorb

unexpected events, respectively. Event-driven or hybrid approaches are suggested as good

rescheduling frequencies because they are able to prioritise only relevant disruptions, de-

livering high quality solutions. Match-up algorithms are recommended as repair methods

due to their ability to keep as much as possible an original optimal solution, which posi-

tively affect bothPerformanceandStabilityof schedules.

The match-up algorithms proposed in this thesis are combined either with predictive-

reactive or predictive approaches, at a event-driven frequency. Their application has been

limited only to a small variety of problems, most of which areof a more theoretical

than practical importance. The research present here and its resultant papers represent

the only attempts to employ match-up algorithms in a complexreal world shop floor
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which includes multiple criteria, setup times, parallel machines and disruptions affecting

multiple resources.

Fuzzy logic concepts are employed to manage the uncertainties that are present in the

analysed shop floor. The main aim is to control ongoing variations on processing times,

release and due-dates; and minimise possible effects of occurring disruptions. Conse-

quently, the following chapter provides an overview of fuzzy systems and their link with

scheduling / rescheduling problems.



Chapter 3

Fuzzy Systems and Scheduling

3.1 Introduction

This chapter describes an introduction to fuzzy systems, which represents an effective

means to manage uncertainties that are always present in real world problems. The aim is

to introduce their essential concepts and show an example how to create them. Addition-

ally, these concepts are linked with requirements usually present in scheduling problems,

such as uncertainty and flexibility for making decisions on dynamic problems. Further

investigation about applying these concepts to a real worldproblem is described in the

following chapters of this thesis.

The human being has the ability to handle complex processes on its daily routine,

which often involve approximate reasoning. The ways adopted by human operators to

manage such situations has also inaccurate sources, due to the fact that people commonly

use linguistic terms in their decision making, using words such as “high”, “low”, “very”,

“little”, among others.

The classical logic described by Aristotle, also known as standard logic, classifies ob-

jects in well-defined categories, in which “everything” hasto be or not to be “something”,

either now or in the future. Although this binary logic has the ability to solve an extraor-

dinary range of problems, it is necessary to fulfil remaininggaps that are not adequately

addressed by these traditional methods. Fuzzy logic concepts bring more flexibility to this

binary classifications, in which new “degrees of truth” are available between “yes” and

“no”. These degrees can be compared as shades of gray betweenblack and white, which

29
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gives a generalisation of the Aristotelian logic.

Important philosophers, such as Bertrand Russell and Albert Einstein, highlighted the

inability of standard logic to manage real world problems. The following thoughts are

attributed to Russell showing his position: “Every language is vague”, “All traditional

logic habitually assumes that precise symbols are being employed”. “Therefore, this is

not applicable to terrestrial life, but only to an imaginaryheavenly existence” and “...

you cannot imagine how it is vague until you try to do it accurately”. The following

statement is attributed to Einstein : “When the laws of mathematics refer to the reality,

they are not correct. But, when these laws are correct, they do not refer to the reality”. A

Polish mathematician called Jan Lukasiewicz developed a multi-valued logic in 1920 [63],

discussing mainly the law of contradiction, in which a statement such as “X and Y can

be and not be something at the same time” is perfectly plausible, in mathematical terms,

since the degrees of truth are not only bivalent as true and false.

But it was in 1965 that the fuzzy set theory was conceived by Professor Lotfi Zadeh

at the University of California, Berkeley. The aim was to introduce a more flexible logic,

called Fuzzy Logic, creating a method to translate verbal expressions (vague, imprecise

and/or qualitative) to tractable numerical values [118]. Professor Zadeh also formulated

the principle of incompatibility in 1973, stating that: “Asthe complexity of a system

increases, our ability to make accurate statements and thatare significant about this sys-

tem decreases until a threshold is reached, beyond which precision and significance (or

relevance) become almost mutually exclusive characteristics” [119]. Additionally, there

is an inconsistency between the human creativity and the possibilities offered by binary

machines. Therefore, the concepts presented by Zadeh eliminate those restrictions by

providing a mathematical tool for handling properly the vagueness present in real world.

Fuzzy logic systems were firstly explored in commercial market contexts due to the

resistance of scientists. However, they have been designedand enhanced in academic

contexts after their effectiveness has been proved [109]. The first commercial applications

were in the control area, both in process automation and supervision. Since then, there has

been an increasing use in various scientific fields such as classification, series forecasting,

data mining, planning and optimisation. Some successful examples are: speed control,

acceleration and braking of the trains in Sendai subway (Japan), ultra-fast chargers for
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NiCd battery of Bosh, smoke detectors Cerberus (Switzerland), image adjustments for

Sony Tvs, auto-focus video camera for Canon, Hitachi elevators optimisation, among

others [101]. Consequently, fuzzy logic represent a more realistic way to model real

world problems, allowing binary machines to work closely tohuman thinking, which is

inherently “fuzzy”.

The remaining of this chapter is organised as follows. Section 3.2 introduces the con-

cepts of fuzzy variables and sets. Section 3.3 describes howto set fuzzy rules and make

implications. Section 3.4 presents the structure of a general fuzzy controller. Section 3.5

combines the previous concepts describing a detailed example. Section 3.6 discusses the

application of fuzzy logic to scheduling problems. Finally, sections 3.7 and 3.8 conclude

this chapter.

3.2 Variables and Sets

The concept of membership of an element to a particular set iswell defined when classical

Aristotelian logic is used, which means that using the attribute of bivalence it is possible

to set a function to identify whether an element belongs or not to a specific group. For

example, given a setA in a universe of discourseX, the characteristic functionfA(x) = 1

defines whenx ∈ A and, consequently,fA(x) = 0 whenx /∈ A, wherex is an element of

the universe of discourseX.

However, there is a mismatch between the real world and such bivalent approach, i.e.

how to define correctly when a person isyoung, or when the weather ishot. In the real

world, everything is a matter of perspective and very strictdefinitions may certainly lead

to loss of information. Therefore, a multivalent approach is required to define gradations

between true and false, in which possibilities of interpretation are extended. The concepts

of fuzzy logic allow to capture such degrees of truth of statements, working with the

uncertainty and partial truth of natural phenomena in a systematic and accurate fashion

[101]. Consequently, the characteristic function can now be defined as a real number

belonging to the interval[0,1], eliminating the restriction of the values being described

as only 0 or 1. The membership functionµA(x) indicates the membership degree (or

compatibility) of an elementx to setA within the universe of discourseX, with:
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• µA(x) = 1 whenx is fully compatible withA;

• µA(x) = 0 whenx is completely incompatible withA;

• 0<µA(x)<1 whenx is partially compatible withA, assuming the valueµA(x).

Figure 3.1 shows a comparative example of the set “hot” usingthe boolean (a) and

the fuzzy (b) approaches. In the boolean approach, temperatures up to 25oC are not con-

sidered to be hot and this status abruptly changes to hot whenvalues exceed this point.

This definition is rather restrictive because there is no space for different perspectives re-

garding the feature temperature. On the other hand, the fuzzy approach sets that elements

with values greater than 20oC become part of the set “hot” with an increasing membership

degree, with its minimum and maximum value at 20oC and 25oC, respectively. This def-

inition brings flexibility to identify degrees of representativeness that a value can assume

within a certain set.

A representative fuzzy variable can be built when its universe of discourse is subdi-

vided into different fuzzy sets, in which each set has an identification label. Figure 3.2

shows a graphical representation of the fuzzy variabletemperaturewith these subdivi-

sions. The universe of discourse is delimited by temperatures with values between 0oC
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Figure 3.1: Comparative example of the set “hot” using the boolean (a) and the fuzzy (b)
approach for the variabletemperature
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and 50oC. The variabletemperatureis then subdivided into 3 fuzzy sets: cold, normal

and hot. Each set has an interval to describe the related feature, i.e. cold, normal and hot

have the following intervals[0,20], [15,25] and [20,50], respectively. Note that shapes

and position of each set within the universe of the discoursewill depend on the expert

preference, which takes into consideration the complexityof the model and the required

computational costs. In practice, simple functions, such as triangular, trapezoidal and

Gaussian, are the most commonly used to describe fuzzy sets because they simplify the

computation and produce good results. These sets quite often require some tuning before

becoming good representatives of a variable.

A temperature of 21oC is highlighted by a thin arrow in Figure 3.2. This temper-

ature belongs to both sets normal and hot with the following membership degrees 0.8

and 0.2, respectively. Consequently, the same elementx can simultaneously assume dif-

ferent membership degrees to different sets, which is represented byµA(x), in which

µnormal(21) = 0.8 andµhot(21) = 0.2. The flexibility is a important feature present in

fuzzy variables, because their labels are not necessarily exclusive. This kind of defini-

tion also allows the identification of elements that are morerepresentative of a general

idea of a specific set, i.e. as closer the valueµA(x) is to 1.0, the greater is the degree of

representativeness of the linguistic term applied.

Operations between fuzzy sets are calculated based on the applied membership func-

tions. According to Zadeh [118], the inclusion function forthe union U of two sets A

and B (U= A∪ B) is defined asµU(x) = max(µA(x),µB(x)), for an elementx within the

universe of discourseX. The intersection I between the same sets A and B (I = A∩ B) is

defined asµI(x) = min(µA(x),µB(x)) with x∈ X. Finally, the complement function C of a

set A isµC(x) = 1−µA(x)) with x∈ X. These configurations are equivalent to operations



3.2. Variables and Sets 34

described in the classical set theory, in which possible values are described between the

interval [0,1] and not only 0 or 1 anymore. Alternatively, other definitions for the union

and intersection operators has been investigated by other researchers [25,117].

Note that the “Law of Non-Contradiction” (A∩ ¬ A =∅) and the “Law of Exclusion”

(A ∪ ¬ A = E) are not included in the fuzzy approach. The classical logicwould identify

as a contradiction elements belonging to a set and its complement simultaneously. For

instance, a temperature would not be able to be part of the sets “not hot” and “hot” at the

same time. The fuzzy variabletemperatureis illustrated again in Figure 3.3 (a), in which

the intersection between the sets “not hot” and “hot” are notempty. Note that a day with a

temperature of 22.5oC is considered to be “hot” and “not hot” with the same membership

degree of 0.5 to both sets. Similarly, Figure 3.3 (b) shows that the union between these

sets does not cover the entire universe of discourse of variable temperature, which means

that there is an “uncertainty” factor for values between 20oC and 25oC.

3.2.1 Hedges

Fuzzy variables can have also their meaning intensified (or attenuated) by hedges, which

act like adverbs and adjectives to modify the meaning of nouns, such as the temperature
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Figure 3.3: Intersection (a) and union (b) between the fuzzysets “not hot” and “hot” for
the fuzzy variabletemperature
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today is “very” cold, and the water yesterday was “somewhat”cold. The main idea is to

intensify (or attenuate) membership functions in such a waythat fuzzy variable represen-

tatives assume higher (or smaller) values between the interval [0,1]. A graphical example

from the previous sentences are shown in Figure 3.4 (a) and (b), respectively.

Note that “very” cold defines a more concentrated representation for the variable

temperature, while “somewhat” cold sets a more dilated area for the variable water. A

temperature of 16oC is definitely a member of cold, but less of a member of “very” cold.

Similarly, the water at 18oC is a member of cold, but more a member of “somewhat” cold.

The modifier “very” will be used on Chapter 6 to describe a fuzzy variable of the

investigated scheduling problem.

3.3 Logical Implications and Inference Rules

Logical implications are commonly used by human beings to formulate connections be-

tween causes and effects, in which inference rules are consciously or unconsciously cre-

ated in the following format:i f (antecedents)then(consequents).
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Figure 3.4: Hedges “very” and “somewhat” applied to the fuzzy set cold from variables
temperatureandwater, respectively.
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These rules can combine several antecedents (premises) andconsequents (conclu-

sions) by using logical operators such as “and” and “or”. Thestructure of a fuzzy condi-

tional proposition is similar to the boolean logic, in whichsigns such as<, > and= can

be easily replaced by linguistic terms as “lower”, “larger”and “equivalent”. However, the

interpretation of a fuzzy rule is rather different when compared with a traditional rule.

In the boolean logic, a conclusion is inferred only if the statement of the antecedents

is considered to be true. For instance, a rule having only connectives “and” must have

all premises as positive to validate its conclusions. On theother hand, rules having only

connectives “or” must have at least one of its premises true to infer the conclusions.

In the fuzzy logic, the premises may take degrees of truth in an interval between com-

pletely false and entirely true. Therefore, evaluations ofthe antecedents can be analysed

through the operations defined by Lotfi Zadeh, in which the operatorsmaxandmin are

representations for the classical operators “or” as union and “and” as intersection, respec-

tively [118]. For instance, consider the rule “i f (a is A) and(b is B or c is C) then(d

is D)”, with the following degrees of inclusionµA(a) = 0.7, µB(b) = 0.3 andµC(c) =

0.5, then the assessment would generate the following resultµA(a)∩ (µB(b)∪µC(c)) =

min(0.7,max(0.3,0.5))= min(0.7,0.5)= 0.5. This result reflects the membership degree

of the conclusion D, i.e. the degree of relevance that the consequent has over the set D.

Note that multiples rules can be activated during the inference process. A more detailed

and graphical example is described in section 3.5.

It is important to highlight that several rule-based systems can be created based on

interviews with experts, which usually have a solid experience about the context of the

proposed application. Therefore, the freedom of a system designer to change the structure

of inference system is related with their understanding about the descriptions provided by

the specialist. On the other hand, much less adjusting time is expected for this type of

system, since the experience of the expert will be embedded in the rules, which often

contains the best performance.

The knowledge base of a controller contains the combinationof all inference rules,

which will perform all the desired control actions under specified conditions. Table 3.1

shows an example of inference rules applied to control the level of an air conditioner,

in which the input variablestemperatureandhumidityare combined to generate the ap-
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Table 3.1: Fuzzy rulesr i for the inputstemperatureandhumidityto decide the appropri-
atelevelof the fan

Fuzzy rulesr i

r1 r2 r3 r4 r5 r6

i f temperature low low medium medium high high
and humidity low high low high low high

then level very low low medium medium-high high very high

propriatelevel of the fan. For instance, a day with lowhumidityand hightemperature

activates the fuzzy ruler5, which sets the fan tolevel high. A more extensive discussion

about setting rules are presented in section 3.5.

It is important to have as many rules as necessary to map all combinations of input

variables in order to create a complete knowledge base, which triggers at least one rule

independently of the input. The consistency between rules are also essential since con-

tradictions and cyclic situations must be avoided [99]. Note that rules can have multiple

inputs and outputs. However, they do not accept the connective “or” in conclusions [48].

3.4 Fuzzy Systems

Computer science is based on the principle of bivalence, in which bits assume either value

0 or 1. Regular computational procedures do not have the ability to recognise linguistic

terms, which are commonly used in the human communication. The fuzzy logic concepts

aim to fulfill this gap setting degrees of truth for statements in such a way that machines

can successfully process such information.

There are many types of fuzzy systems presented in the literature. The most com-

monly used are the classic ones described by Mamdani [65] andLarsen [56]. Alterna-

tively, other approaches were proposed by Takagi-Sugeno [108] and Tsukamoto [113],

in which interpolation techniques are added to describe their models. These types are

discussed in details in section 3.4.3. All of them have the same basic representational

structure shown in Figure 3.5, which is an adaptation of the description present in [57].

Note that different systems may have different requirements depending on their specifica-

tion. Figure 3.5 shows a general model to identify how the information flows in a typical

fuzzy system. All inputs and outputs are crisp values and thefuzzy controller defines three
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Figure 3.5: Typical structure of a fuzzy controller

main processes in which the inputs are fuzzified, and then an inference procedure uses a

knowledge-base containing sets, operators and rules to generate a control action, and fi-

nally, the outputs are defuzzified. A brief description of each step and their associated

modules are described in the following subsections. Subsequently, section 3.5 presents a

complete example of the whole process.

3.4.1 Fuzzification Method

The fuzzification method evaluates all the input values and map them into fuzzy sets. In

other words, this process converts a crisp number into a fuzzy one in such a way that a

numerical number becomes an instance of a linguistic variable.

3.4.2 Knowledge Base

The knowledge base stores all the information about the setsand operators of the fuzzy

model, describing the universe of discourse of each variable, their membership functions

and their respective linguistic terms. Additionally, it has the inference rules, which are

responsible to configure a control strategy and its goals.

3.4.3 Inference Procedure

The inference procedure combine the system rules, described in the knowledge base, with

the input data transformed into fuzzy variables. As a result, control actions are regenerated
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based on the current state of the system, in which implication operators such asi f and

thenare applied. This process is described by the following steps, as in [99]:

1. Check the membership degrees of the inputs;

2. Determine an overall degree for each activated rule;

3. Determine a conclusion value, based on the membership degree of each activated

rule, which can be a crisp or a fuzzy number;

4. Combine all the values obtained by all activated rules in order to generate an output

with a global control action.

In a classical fuzzy model, the conclusion of each rule specifies a fuzzy set. Con-

sequently, it is necessary to apply an aggregation technique on the antecedent sets for

each rule in order to generate a consequent set. The following models will be described:

Mamdani, Larsen, Takagi-Sugeno and Tsukamoto.

In the Mamdani model, this aggregation is done by applying the operator “intersec-

tion” (minimum), in which the consequent is cut horizontally in the lower level of inclu-

sion activated by applied rules [65]. Figure 3.6 shows an example of two inputsx∗a and

x∗b simultaneously activating two fuzzy sets,A1–A2 andB1–B2, respectively. The com-

bination of antecedentsA1 andB1, andA2 andB2 generate the conclusionsC1 andC2,

respectively. Note that the consequent setsC1 andC2 were cut in the minimum degree

of inclusion of the antecedentsA1 andB1, andA2 andB2, respectively. The combina-

tion of the antecedentsA1 andB2, andA2 andB1 were not considered just as a matter of

simplifying this example.

In the Larsen model, this aggregation is done by the operator“product”, which has a

flattening effect on the consequents [56]. Figure 3.7 shows the same example previously

presented in Figure 3.6, but now using the Larsen approach. The inferences obtained in

C1 andC2 are results of a proportional reduction when the antecedentsA1 andB1, andA2

andB2 are combined, respectively.

Lets consider that the only generated consequents areC1 andC2, as shown in both

Figure 3.6 and Figure 3.7. The next step is to combine these consequents intoC′ by using
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the aggregation operator “union” (maximum), which are highlighted in the previously

mentioned Figures for both Mamdani and Larsen models.

In the fuzzy interpolation models, each consequent is givenby a monotonic function,

which is usually unique for each activated rule. These functions are generated using

training and validation samples, in which weights are adjusted in order to set control

actions. This process follows the same principle used by neural networks [96], in which

the use of historical data allows the prediction of expectedactions.

In the Takagi-Sugeno model, this function is a linear combination of inputs, in which

parameters are defined as a set of constants [108]. Figure 3.8illustrates this approach,

using the same example described for classical models. The antecedents aggregation is

done by applying the operator “intersection” (minimum) andeach activated rule defines
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Figure 3.8: Example of a Takagi-Sugeno interpolation model

a monotonic function. For instance, A1 with B1 activates therule y′1 = f1(x∗ax∗b) = d0+

d1x∗a+d2x∗b, in whichd0, d1 andd2 are weights for the monotonic function. Subsequently,

a crisp valuey′1 is obtained, sincex∗a andx∗b are substituted in the functionf1 together with

the previously defined constantsd0, d1 andd2. The same procedure is followed for the

second rule, in which A2 and B2 are combined.

In the Tsukamoto model, the function is usually nonlinear [113]. Figure 3.9 shows

this approach applied to the previous example. A reference to the minimum membership

degree is still applied, but the consequent is now set with a pre-defined function. As in

the Takagi-Sugeno model, crisp values are generated fory′1 andy′2 combining A1 and B1,

and A2 and B2, respectively.
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Note that each rule sets a consequent value when interpolation models are applied,

and consequently crisp conclusions are defined. An overall control action is then obtained

when a weighted average of these individual conclusions is calculated, i.e.y′1 andy′2, from

both Figures 3.8 and 3.9, where the weights are the membership degrees of the inputsx∗a

andx∗b [29].

3.4.4 Defuzzification Method

The defuzzification method is responsible to create a control action based on results pro-

vided by the inference procedure. In other words, it transforms the consequent fuzzy sets

into a “crisp” output value. Note that only classic fuzzy models require this procedure,

since mathematical functions used in interpolation modelsalready set accurate outputs.

The defuzzification methods most commonly used are described below:

• First maximum value: the curve generated by the consequentfuzzy sets is analysed

and the first point of maximum of this curve defines the output;

• Average between maximum values: same idea as the previous method, but all max-

imum values are considered and an average point among them iscalculated in order

to set the output;

• Centre of gravity: the area defined by the consequent fuzzy sets is evenly subdivided

by a centre point, which represents the required output.

The selection of the defuzzification method is done by takinginto consideration the

expected behaviour of the control system. For instance, both methods “first maximum”

and “average between maximum values” are not suitable to setmachine operation modes,

because abrupt changes will be often inferred by the system and these bumps could easily

damage the involved equipments. For this problem, the method “centre of gravity” would

be recommended, since the generated control actions are smoother.

There are other defuzzification methods, in which differentfactors, as speed and effi-

ciency, are considered [29,38,40,78,81,99]. Note that themost appropriated method for

a system depends on the specificity of each problem.
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3.5 Example

A classic problem of parking a truck [34, 50, 51] is describedin this section in order to

demonstrate the steps previously described in section 3.4.This illustrative example is

selected because it provides clear details about generating fuzzy inferences and, more

importantly, it is quite simple to be understood. Note that afuzzy scheduling example is

subsequently described in section 3.6.

The problem starts with a truck parked in a random position(x,y) with an angleφ

with the horizontal line. The pair(x,y) specifies the central position of the truck’s back

and the goal is to define control actions to allow the truck to reach the final parking

position(xf ,yf ) with angleφ = 90o, in which maneuvers are only made when the vehicle

is reversing. Figure 3.10 identifies the truck, in the position(x,y) with its respective angle

φ with the horizontal line, and the desired final parking position (xf ,yf ).

At each step of the simulation, the fuzzy system has to produce a rotation angleθ,

which updates the position of the steering wheel, allowing the truck to develop a patch

toward his goal on the position(xf ,yf ). The angleθ is initially set to zero, in which

wheels are considered to be parallel to the side of the vehicle. It is also assumed that

there is enough space for the truck to make several moves witha constant speedr. The

following equations describe the movement between the positions(x,y) and(x′,y′):

VIRTUAL AREA

Parking area (xf, yf)

Truck

(x, y)

Figure 3.10: Representation of a virtual area with the truckand its parking area
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
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





















φ′ = φ+θ

x′ = x+ r(cosφ′)

y′ = y+ r(sinφ′)

At each iteration, the fuzzy system is responsible to set theoutputθ based on the inputs

x andφ, as in Figure 3.11. Note that the parametery is not involved in the decision making

due to its effectiveness while using few parameters, as described in [51]. Subsequently,

the position of the wheels are updated, in which the current angle φ is incremented by

the newly generatedθ. Additionally, the overall position of the vehicle is updated, since

the speed parameterr is applied and a reversing movement is done at each step of the

simulation, respectively.

The universe of discourse of each variable is described by the intervals below, in which

positive and negative angles represent clockwise and counterclockwise rotations.



























0≤ x≤ 100

−90o≤ φ≤ 270o

−30o≤ θ≤ 30o

The three fuzzy variablesx, φ andθ are subdivided in the following linguistic sets:

• Positionx: LE (left), LC (left centre), CE (centre), RC (right centre)and RI (right);

• Angleφ: RB (right below), RU (right upper), RV (right vertical), VE(vertical), LV

(left vertical), LU (left upper) and LB (left below);

• Angle θ: NB (negative big), NM (negative medium), NS (negative small), ZE

(zero), PS (positive small), PM (positive medium) and PB (positive big).

The rule base, which represents the strategy to update the wheels of the truck, is

Fuzzy

truck

x

 

Figure 3.11: Fuzzy truck with the inputsx andφ, and the outputθ
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represented by the matrix shown in Table 3.2. The fuzzy sets from both inputsx andφ

are combined among themselves in order to define on each cell the possible outputs forθ.

For instance, row 4 and column 3 corresponds to the rulei f (x is CE) and(φ isVE) then

(θ is ZE), highlighted in bold in Table 3.2.

This control system is implemented as a classic Mamdani model, in which the operator

intersection (“min”) combines the antecedents of each ruleand the operator union (“max”)

generates the output set. The fuzzy sets for both inputs and output are graphically shown

in Figure 3.12. Details about shapes and intervals for each fuzzy set are described in Table

3.3 and a more extensive discussion about their design can befound in [34].

As an example of iteration, the inputsx= 68 andφ = 113o are used as current state

of the virtual world to generate the output angleθ, which will be responsible to update

Table 3.2: Fuzzy rules for the inputsx andφ to produce a rotation angleθ

.

x

LE LC CE RC RI

φ RB PS PM PM PB PB
RU NS OS PM PB PB
RV NM NS OS PM PB
VE NM NM ZE PM PM
LV NB NM NS NS PM
LU NB NB NM NS OS
LB NB NB NM NM NS

Table 3.3: Fuzzy sets, shapes and intervals defined for the fuzzy truck

Variable Fuzzy Set Shape Interval

x LE Trapezoidal [0 0 15 35]
LC Triangular [10 40 50]
CE Triangular [40 50 60]
RC Triangular [50 60 90]
RI Trapezoidal [65 85 100 100]

φ RB Triangular [-90 -30 0]
RU Triangular [-45 0 45]
RV Triangular [0 60 90]
VE Triangular [45 90 135]
LV Triangular [90 120 180]
LU Triangular [135 180 225]
LB Triangular [180 210 270]

θ NB Triangular [-30 -30 -15]
NM Triangular [-25 -15 -5]
NS Triangular [-15 -5 0]
ZE Triangular [-5 0 5]
PS Triangular [0 5 15]
PM Triangular [5 15 25]
PB Triangular [15 30 30]
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the steering wheel position. Note that each input parameterenables two fuzzy sets with

different degrees of membership, i.e.x = 68 activates RC and RI with degrees 0.7 and

0.2, respectively; andφ = 113o activates VE and LV with values 0.5 and 0.9, respectively,

as pointed out by the thin vertical arrows in Figure 3.12 (a) and (b). Consequently, four

different rules, highlighted by shaded cells in Table 3.2, will be responsible to deliver the
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outputθ, since they are a combination of the sets RI and RC with VE and LV.

Each rule has to be analysed, in which the operator intersection takes the minimum

degree of membership between the two activated sets. Equation 3.1 illustrates this opera-

tion, in which a resultant setB∗ is a combination of the input variablesx andφ with their

respective activated setsA1 andA2, over the setB of the output variableθ. Note that the

resultant setB∗ is not necessarily a specified fuzzy set, since it representsthe combination

of other sets.

µB∗(θ) = (µA1(x)∧µA2(φ))∧µB(θ) (3.1)

Each activated rule deliver the following results:

µPM∗(θ) = (µRC(x)∧µVE(φ))∧µB(θ) = (0.7∧0.5)∧µB(θ) = 0.5∧µB(θ)

µPS∗(θ) = (µRC(x)∧µLV(φ))∧µB(θ) = (0.7∧0.9)∧µB(θ) = 0.7∧µB(θ)

µPM∗(θ) = (µRI(x)∧µVE(φ))∧µB(θ) = (0.2∧0.5)∧µB(θ) = 0.2∧µB(θ)

µPM∗(θ) = (µRI(x)∧µLV(φ))∧µB(θ) = (0.2∧0.9)∧µB(θ) = 0.2∧µB(θ)

Subsequently, these rules are combined using the operator union, which takes a max-

imum value for each activated output set. Note that both PM and PS sets are activated for

the outputθ, but only the maximum one must be kept, as highlighted by the following

equations:

µPM∗(θ) = 0.5∧µB(θ)

µPS∗(θ) = 0.7∧µB(θ)

The interpretation of this example follows the same reasoning described in Figure 3.6

in section 3.4.3 for the Mamdani inference model. First, theinputsx andφ activate four

rules and their respective fuzzy sets. The operator intersection selects a minimum degree

of membership between the antecedents in order to generate adegree of membership

for the consequent, i.e. for the rulei f (x is RC) and (φ is VE) then (θ is PM) with
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µRC(x) = 0.7 andµRC(φ) = 0.5, the degreeµPM(θ) = 0.5 is calculated as a partial output.

This process is then repeated for each activated rule. Subsequently, the four calculated

output sets are combined using the operator union, which aggregates fuzzy sets with the

same label selecting its maximum degree of membership, i.e.three rules activate the same

output set PM asµPM(θ) = 0.5,µPM(θ) = 0.2,µPM(θ) = 0.2 and the degreeµPM(θ) = 0.5

is selected. Note that no aggregation was necessary for the remaining rule because only

one degree of membershipµPS(θ) = 0.7 is calculated for the output set PS. These results

are graphically shown in Figure 3.13.

A final outputθ is calculated transforming the obtained fuzzy area into a crisp number,

in which the defuzzification method “centre of gravity” is applied. The output value

θ = 9.7o is then inferred, since it subdivides the obtained area intotwo equal parts, as

highlighted in Figure 3.13.

New updated inputs are used at each step of the simulation, since the truck keeps

moving towards its goal. Note that this rule-based fuzzy control system is responsible

x 

µ µ µ

2
µ

x 

µ µ µ

1

minx = 68  =113o

x 

µ µ µ

3

x 

µ µ µ

4

max 

 = 9.7o

A1
1 1

B1

C2

1

1

1 1 1
RC RI VE LV PS  PM  

RC RI VE LV PS  PM  

A1
1 1

B1
1

RC RI VE LV PS  PM  

A1
1 1

B1
1

RC RI VE LV PS  PM  

PS  PM  

Figure 3.13: Inference procedure to calculate the outputθ based on the inputsx andφ
using a classic Mamdani model
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for generating successive decisions to park a truck into a specified parking area. Conse-

quently, this process has to be repeated until the moment that the goal is reached.

3.6 Fuzzy Scheduling

As previously mentioned in section 3.1, fuzzy logic concepts have been successfully ap-

plied to many industry contexts, providing a realistic way to model, control and opti-

mise real world problems. Their effectiveness on managing uncertainties and flexibility

on handling human thinking have been attracting the attention of many scheduling and

rescheduling researchers [41,64,110].

Different sources of uncertainty are present in schedulingproblems such as allocation

changes, delay on raw material delivery, last minute absence of employees, changing on

order details, order cancellations, new orders, machine breakdowns, unexpected main-

tenance, among others. For all these cases, it is necessary to create flexible optimisation

models which are able to minimise or even absorb the negativeeffects of such disruptions.

These problems has been mostly tackled by using fuzzy numbers to describe schedul-

ing parameters and constraints, such as release and processing times [5, 45, 112], due-

dates [43, 76, 77, 98], completion and setup times [55, 86], precedence constraints [46],

among others [83, 102]. Additionally, decision support systems using fuzzy control al-

low managing uncertainties based on historical data or expertise, i.e. how to split jobs

into smaller lots to guarantee customer satisfaction [85],how to combine dispatching

rules [39], how to optimise family assignments to reduce setup times [54], and so on.

Figure 3.14 (a)-(c) shows the scheduling parameters release r j , processing timep j and

due-dated j of a generic jobj using the fuzzy numbers̃r j , p̃ j and d̃ j , respectively. For

this example, both release and processing times have a triangular shape because, hypo-

thetically, changes often occur in raw material deliveriesand maintenances are required

during the processing of some operations. Consequently, triplets such as̃r 1
j , r̃ 2

j and r̃ 3
j

transforms the crisp parameterr j into a fuzzy onẽr j , in which r̃ 1
j andr̃ 3

j set a time win-

dow for the release and̃r 2
j is set asr j , since its crisp value is the best representative of

the original release time, i.e.µr̃ 2
j
= 1. The same pattern is followed to define the fuzzy

processing timẽp j . Note thatr̃ j andp̃ j will generate a fuzzy completion timẽC j , as in
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Figure 3.14: Fuzzy sets representing the scheduling parameters release (a), processing
time (b), due-date (c) and completion time (d)

Figure 3.14 (d). On the other hand, the due-dated̃ j have a trapezoidal shape, in which,

hypothetically, the originald j may be slightly extended without compromising the cus-

tomer satisfaction, i.e. a job with lower urgency. The parameter “a” extendsd j and the

membership grade linearly declines from 1 to 0, when the current time∈ [d j ,d j +a], as

illustrated in Figure 3.14 (c). There are several objectivefunctions to evaluate the quality
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of the schedule and some of them are discussed in the following chapters of this thesis.

As an example, the tardiness of the jobj can be defined as a crisp number within the

interval [0,1] when the intersection area ofC̃ j with d̃ j is divided byC̃ j [98]. Figure 3.15

illustrate the jobj meeting its due-dated j (a), partially meetingd j (b) and when the job

is considered to be tardy (c).

Figure 3.16 shows an example of a decision support system using fuzzy control de-

scribed by [82]. The three inputs, time of occurrenceTO, importance of efficiencyEF

and importance of stabilityST, define the current state of the shop floor and the output

determines the best rescheduling methodRei to be applied, which is left shift rescheduling

Re1 or rebuild a new schedule from scratchRe2. This problem is modelled as a modified

Sugeno type, in which inputs are represented by fuzzy sets and the output is a crisp action
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it is tardy (c) as proposed by [98]
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Fuzzy

rescheduling

TO
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Rei

Figure 3.16: Fuzzy rescheduling with the inputsTO, EF, ST, and the outputRei

with associated weights (more details can be found in [121]). Details about the inputs

fuzzy sets are presented in Figure 3.17. The combination of these three inputs generates

12 fuzzy rulesr i , as described in Table 3.4. Note that all rules simultaneously activate

both rescheduling methodsR1 andR2 with their respective weightsar andbr , which are

responsible to set their priorities. More details about tuningar andbr are discussed in [82].

The main idea is to useRe1 or Re2 when the priority is stability or efficiency, respectively.

The antecedents of the rules are combined using the operator“and” in which a degree

of match is calculated asαr = min(µTO,µEF,µST). Additionally, activation rates are cal-

culated for both rescheduling method asαR1 = ∑12
r=1arαr andαR2 = ∑12

r=1brαr . A crisp

decision is generated when the valuesαRe1 andαRe2 are compared, in which the larger

one defines the rescheduling method to be applied.Re1 is always preferred in cases of a

tie.

Surprisingly, most of the literature on scheduling has beenconsidering only static

problems, in which the previously mentioned disruptions has not been extensively inves-

tigated. Fuzzy logic is an effective approach to manage various types of uncertainties,

including the ones present in scheduling and rescheduling problems. The work present in

this thesis make use the strengths presented by fuzzy logic concepts applied to a dynamic

and complex real world job shop problem, in which uncertainties are often present in the

Table 3.4: Fuzzy rulesr i for the inputsTO, EF andST to decide between the rescheduling
methods left shiftRe1 or rebuild a new schedule from scratchRe2

Fuzzy rulesr i

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

i f TO early early early early middle middle middle middle late late late late
and EF low low high high low low high high low low high high
and ST low high low high low high low high low high low high

then a1Re1 a2Re1 a3Re1 a4Re1 a5Re1 a6Re1 a7Re1 a8Re1 a9Re1 a10Re1 a11Re1 a12Re1

b1Re2 b2Re2 b3Re2 b4Re2 b5Re2 b6Re2 b7Re2 b8Re2 b9Re2 b10Re2 b11Re2 b12Re2

with ar 0.3 1 0 0.5 0.4 1 0 0.5 1 1 0 1
br 0.7 0 1 0.5 0.6 0 1 0.5 0 0 1 0
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Figure 3.17: Fuzzy sets for the inputsTO, EF andST

shop floor. The aim is to produce reliable schedules, combining a robust fuzzy scheduling

system with match-up rescheduling algorithms when disruptions occur in the shop floor.

3.7 Discussion

Fuzzy logic concepts bring an effective approach to represent real world problems, since

they are able to manage uncertainties and create more flexible optimisation models. The

reasoning using fuzzy logic follows the same pattern of statements commonly used by

human beings, in which linguistic and vague terms are alwayspresent. The model design

is quick and few adjustments are expected, since rules are able to embed the knowledge

provided by experts.

The design of a fuzzy system to park a truck in a virtual area confirms the strengths
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previously mentioned. The vagueness present in the problemparameters, such as posi-

tions and angles of the truck, where easily represented by fuzzy sets and the designer

expertise allowed the definition of good representative rules to produce the expected con-

trol actions.

Several industry contexts have been successfully using fuzzy logic systems, including

home appliances, public transports, safety systems, amongothers. This effectiveness

has extending their application to academic areas, including research on scheduling and

rescheduling. The uncertainties in this areas can be mostlytacked using fuzzy numbers

to represent problem parameters and constraints, and fuzzydecision support systems to

generate control actions based on historical data or expertise.

Unfortunately, most of the literature on scheduling has been considering only static

problems and commonly present disruptions such as allocation changes, absences of em-

ployees, among others, has not been extensively investigated. The work present in this

thesis aim to use the strengths presented by fuzzy logic concepts applied to a dynamic

and complex real world job shop problem, in which uncertainties are often present in the

shop floor.

3.8 Summary

This chapter presents an introduction to fuzzy systems, which represents an effective strat-

egy to manage uncertainties that are always present in real world problems. Their essen-

tial concepts are described and an example is discussed in order to illustrate how to create

them step-by-step and also to identify the flow of information within these systems. A

classic problem of parking a truck using a Mamdani fuzzy control system is discussed,

in which the vagueness on the problem parameters are easily tackled by using fuzzy sets

and fuzzy rules.

The model design is quick and easy to understand, since the reasoning on fuzzy logic

follows the same pattern of human thinking, in which vague and linguistic terms are al-

ways present in decision making, having words such as “low”,“high”, among others.

Additionally, these systems usually require few adjustments on their design because their

rules are capable to embed the knowledge provided by expertsand/or information pro-
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vided by historical data.

This thesis aims to use the strengths presented by fuzzy logic concepts applied to

a dynamic and complex real world job shop problem, in which uncertainties are often

present in the shop floor. The following chapter describes this problem and the application

of fuzzy numbers to manage scheduling variables. Additionally, fuzzy scheduling systems

are presented in Chapter 6, in which their combination with mach-up algorithms are able

to produce reliable solutions.



Chapter 4

Match-up Strategies for a Complex

Real World Job Shop Problem

4.1 Introduction

This chapter investigates the problem of inserting newly arriving jobs into an existing

schedule of a real world manufacturer. These type of disruption occurs on a daily basis

and requires rescheduling. A number of match-up strategies, which collect the idle time

on machines of a current schedule for the insertion of new jobs, are proposed. Their aim

is to obtain new schedules with a good performance which are at the same time highly

stable, meaning that they resemble as closely as possible tothe initial schedule and avoid

additional production costs. Other rescheduling strategies such as “total rescheduling”,

“right shift” and “insertion in the end” deliver either goodperformance or stability, but not

both. Contrary, experimentations and statistical analysis reveal that the proposed match-

up strategies deliver high performing schedules with a highstability, validating hypothesis

1 from Chapter 1.

This chapter is concerned with the scheduling/rescheduling problem presented by

Sherwood Press - Nottingham, UK, which is a job shop problem with parallel machines,

machine eligibility and sequence dependent setup times. More details of these features

are described in the following section. The problem is dynamic since new jobs with dif-

ferent levels of urgency arrive everyday in the shop floor andthey have to be integrated

into the existent schedule. Typical arriving jobs are rush orders, which means that they

56
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have to be processed as early as possible on the current schedule. This type of disruption

is tackled first and the goal is to find appropriate rescheduling approaches to achieve high

quality schedules. Additionally, orders with different levels of urgency are investigated in

the following chapter in order to check the flexibility of these approaches under various

scenarios.

There are two important criteria to consider when evaluating a rescheduling strategy:

(1) thePerformanceof the resultant schedule, which is measured with the same objective

functions used to evaluate the initial schedule and (2) theStabilityof the resultant sched-

ule, which refers to how closely the new schedule resembles the initial one. Match-up

algorithms are concerned with both of these criteria, and are therefore appropriate for a

large variety of rescheduling problems, including the one present in Sherwood Press.

Match-up algorithms aim to maintain bothPerformanceandStability by modifying

only a part of the initial schedule when a disruption occurs.Their motivation is that

once having an initial optimum schedule the best is to returnto such optimum schedule

as quickly as possible after repairing it. In other words, the idea is to “match-up” the

disturbed schedule to the initial one, as quickly as possible. This goal is achieved by only

modifying the schedule within a defined rescheduling time window, keeping unchanged

the schedule before and after this interval. The research presented in this thesis and the

resultant papers in [69, 70, 73, 74] describe the only applications of match-up algorithms

to a complex real world job shop problem, which includes multiple criteria, setup times,

parallel machines and disruptions affecting multiple resources.

The remaining of this chapter is organised as follows. Section 4.2 introduces the

problem present in Sherwood Press and formally defines thePerformanceandStability

measures. Section 4.3 describes the match-up algorithm forrush orders. Section 4.4

presents the problem instances used to test the proposed algorithms, presents the results

of the experimentation including the adequate statisticaltests, and gives an analysis of

the problem parameters that have an effect on algorithm behaviour. Sections 4.5 and 4.6

conclude this chapter.



4.2. Problem Statement 58

4.2 Problem Statement

The job shop scheduling problem in Sherwood Press requires the allocation of a variable

number of jobs onto 18 machines, which are grouped into 7 workcentres for printing,

cutting, embossing / debossing, folding, card-inserting,gathering and finishing. Some

printing machines are identical and are treated as parallelmachines. Each jobj = 1, . . . ,n

is subject to precedence constraints, meaning that it has tovisit the required machines

following a predefined order. Possible routes on machines are shown in Figure 4.1. How-

ever, jobs are mostly processed by 3 to 5 machines in the shop floor and they follow one

of the routes given in Figure 4.2, as described in [87]. Each job j has a release timer j and

a due dated j which are the earliest time when jobj can start its processing and the time

when job j is required to be completed, respectively. The processing of job j on machine

i = 1, . . . ,18 is referred to as operationoi j and each operation requires a certain amount

of processing timepi j . Each job has also a priorityw j which indicates how strict its due

date is, i.e. jobs withw j = 1 must be completed by their due dated j , jobs withw j = 2 are

given two days tolerance period afterd j and jobs withw j = 3 are given up to one week

of tolerance. Each jobj has a familyf which identifies its colouring requirements. Setup

times are then considered when operations requiring different colours are processed one

after the other on printing machines.

The static version of the investigated problem is known as the job shop problem with

parallel machines, release times, job weights and sequencedependent setup times. The

scheduling problem of Sherwood Press, however, is not static but dynamic; every day a
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Figure 4.1: Possible machine routing for jobs
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Figure 4.2: Typical machine routing for jobs

number of new jobs arrive in the system and these have to be incorporated into the existing

schedule. These jobs are classified as complex disruptions because multiple resources are

usually affected, i.e. changing the allocation of operations on multiple machines. Newly

arriving jobs are of two types: “rush” orders, which have a high priority and must be

inserted as early as possible, and “normal” jobs, which havethe same priority as most

of the jobs. “Rush” orders are the most common disruption present in this job shop

scheduling problem and they are investigated first.

Rescheduling algorithms must produce schedules that include the newly arrived jobs

and are of a good quality with regards to thePer f ormancefunction and be as similar as

possible to the initial schedule, refereed here asStability. The rescheduling problem is,

then, a bi-objective problem in whichPerformanceandStability have to be maximised

simultaneously. Both measures are formally introduced next.

4.2.1 Performance

The Performancemeasure considers five scheduling objective functions thathave been

previously applied to Sherwood Press problem [32,84,85]: the average weighted tardiness

of jobs, the number of tardy jobs, the total setup time, the total idle time of machines and

the total flow time. Given a schedule, each of these functionsis evaluated and mapped

into a satisfaction grade within the[0,1] range. ThePer f ormancemeasure is the average

of the five satisfaction grades.

It is important to highlight that this multiple criteria decision making was originally

introduced by Fayad and Petrovic [32] using a genetic algorithm for the static version of

the problem presented by Sherwood Press. This thesis is a build on this work, in which

disruptions are now taken into account. As a matter of providing a self-content package, a

short description of satisfaction grades is presented next, while more details can be found
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in [86]. Additionally, a detailed discussion of multi-objective scheduling using GA is

described by Bagchi in [9].

Satisfaction gradesSGi , i = 1, . . . ,5, are applied to this job shop scheduling problem

because of two main reasons. First, they allow to handle simultaneously objective func-

tions that are measured in different units. Second, they enable the production manager to

express his/her preferences with respect to the objective functions by assigning weights

to the different objectives.

SG1 - Average Weighted Tardiness

In order to address the uncertainties inherent in real worldscheduling, the processing

times of jobs and due dates were modelled using fuzzy numbers. A crisp number is

mapped into a fuzzy number through a membership function. Note that the use of a

fuzzy processing time lead to a fuzzy completion time. Figure 4.3 (a) and (b) show the

membership functions for the processing timep j and a intersection between the due date

d j and completion timeCj of job j, respectively.
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An interval betweenp j −a and p j +a represent thep j uncertainties, when the pro-

cessing time is either early or late, respectively. The membership degree forp j is 1 when

the original crisp processing time is executed, and it declines linearly to 0 within the in-

terval for bothp j −a andp j +a. The same pattern is followed to set the completion time

Cj . Similarly, the uncertainties ofd j are set usingd j +b, which determines the flexibility

of a job on meeting its due dated j . Note that his flexibility is determined by the parameter

priority w j previously defined in section 4.2. For instance, the membership degree ford j

is 1 when the completion time of jobj ∈ [0,d j ], and it declines linearly to 0 when the

completion time is increasing within the interval[d j ,d j + b]. Both parameters “a” and

“b”are specified by the production manager. In this work “a” is 10% of the original pro-

cessing timep j , and “b” may take the value 0, 2 or 5 working days, depending on how

urgent a job is. In other words, his priorityw j .

A triangular membership function is used to represent both processing and completion

times because although a job is in theory executed and completed atp j andCj , respec-

tively, in practice it may be done within a time period “a” either before or after these

values. For the due date of jobs, the membership function is trapezoidal meaning that

jobs are desired to be completed between time 0 andd j , but there is a time window after

d j when jobs are still considered to be on time. Completions after d j +b are considered

late and the membership degree is 0.

A satisfaction grade on the job’s completion time is calculated to identify the tardiness

of a job j. This grade is obtained as the area described by the intersection of the due

date and completion time membership functions divided by the area described by the

membership function of the completion time [98], as previously seen in Chapter 3. In the

example from Figure 4.3, the satisfaction grade is calculated as the size of the shaded area

divided by the area of the triangle labelled “completion time”. The satisfaction grade of

the average weighted tardiness is calculated as the averageof the weighted satisfaction

grades of the completion times of all jobs.

A hypothetical resultant schedule is shown in Figure 4.4, inwhich 11 jobs are allo-

cated on available machines. Jobs are graphically represented by rectangles, and rectan-

gles with the same number mean that a job has more than one operation, i.e. job 3 have

2 operations represented by the rectangles on M3 and M4. Additionally, jobs are subject
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Machine 
                  

M1* 1 5       11 

M2*   2   6    10   

M3   3   7 9      

M4  4  3  8   9 

* parallel machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time 

Assumption:  

Only this jobs is tardy 

Figure 4.4: Example of a resultant schedule with 11 jobs, considering that only job 5 is
tardy

to precedence constraints, in which a sequence of operations is predefined when a jobj

has to be processed on more than one machine. Note that each operation of a jobj has to

be completed before the next one can be started. For instance, job 9 has to be processed

first on M3 and when the execution is completed its next operation can be started on M4.

Parallel machines are represented by M1 and M2. Suppose thatonly job 5 is tardy, i.e.

job 5 has a fuzzy completion timeC5 within the interval[5,9] and its due dated5 = 2 has

a tolerance “a” of 5 time units, as in Figure 4.5. A pointk between these two fuzzy sets

is then calculated as an intersection of two lines, i.e.k= (5.57,0.28). Subsequently, the

correspondent areas for the shaded triangle and the completion time membership func-

tion are 0.28 and 2, respectively. The resultant satisfaction grade for job 5 is 0.14, as the

shaded area is divided by completion time area. Since the other 10 non-tardy jobs have 1

as their satisfaction grade, the final average for weighted tardiness of jobs isSG1 = 0.92.

Note that for this hypothetical example all jobs have their satisfaction grade with weight

1, which means that they are equally important.

M
em

b
er

sh
ip

 

d
eg

re
e 

(µ
) 

Time

1

0

d5

2 7 5

C5

k

9

Figure 4.5: Intersection area between the fuzzy sets for completion timeC5 and the due
dated5 of job 5



4.2. Problem Statement 63

SG2 - Number of Tardy Jobs

A job j is considered to be tardy when its satisfaction grade for tardiness does not exceed

a certain thresholdλ. All jobs not achievingλ are counted. After investigating several

values, Fayad and Petrovic predefinedλ = 0.3 [32]. Consequently, job 5 previously pre-

sented is counted as tardy because its tardiness satisfaction grade 0.14 is smaller then

the predefinedλ. Note that again, job 5 is the only one considered to be tardy on this

hypothetical example.

The final satisfaction grade for number of tardy jobsSG2 is calculated from a decreas-

ing linear function, following the production manager preferences regarding a maximum

numberα of jobs allowed to be tardy. For instance, the schedule in Figure 4.4 has an

allowanceα = 20%, which means that 20% of all 11 jobs are accepted to be tardy, i.e. a

threshold of 2.2 is defined as shown in Figure 4.6. A maximum satisfaction of 1 is ob-

tained when none of the jobs are tardy, and a minimum of 0 occurs when the number of

tardy jobs is equal or exceeds this threshold value. Since only job 5 is tardy,SG2 = 0.45

is obtained from the delimitated linear function.

SG3 - Total Setup Time

Jobs having different colouring families may require setuptime between their operations

on printing machines. Additionally, these machines are initially cleaned before starting

the processing of any jobj. Suppose that M1 and M2 from Figure 4.7 are printing ma-

chines and jobsj = 1, . . . ,10 belong to the same colouring family. Therefore, job 11 is

the only one which needs a setup before its operation can be processed on M1. Setup

times are highlighted by shaded cells labelled by “S” in Figure 4.7. Note that this resul-

SG2

2.2

Tardy Jobs 
1 2 3 4 5 6 7

1

0

0.45

 = 20% of all jobs

Figure 4.6: Example of decreasing linear function to calculateSG2
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Machine 
                  

M1* S 1 5       S 11 

M2* S   2   6    10   

M3   3   7 9      

M4  4  3  8   9 

* parallel machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time 

Figure 4.7: Resultant schedule with 11 jobs and the requiredsetup times highlighted by
shaded cells labelled by “S” on the printing machines M1 and M2

tant schedule is the same one presented in Figure 4.4. A final satisfaction gradeSG3 is

obtained comparing the total setup time with a maximum valuefor setups, the latter refer-

ring to the situation when all operations on printing machines require setup times before

their processing. These values are mapped following the same idea of the decreasing lin-

ear function presented forSG2, in which a maximum satisfaction is obtained when none

setups are required, and a minimum value when all operationsdemand setups. Conse-

quently,SG3 = 0.5 is obtained for the schedule, since a maximum of 6 setup times is set

when all operations on printing machines require setup, while only 3 setups are required,

i.e. the processing of job 11 added to the initial cleaning ofM1 and M2.

SG4 - Total Idle Time

Idle times are present on machines when no jobs are being processed or setups are per-

formed. The blank spaces between operations and setups in Figure 4.4 represent idle

times occurring in the analysed schedule. The completion time of the last operation on

each machine defines a reference point to calculate idle periods. The sum of these com-

pletion times sets a maximum value for possible idle times. Adecreasing linear function

mapsSG4 within the interval[0,1], in which a maximum satisfaction is obtained when

no idle times are present, and a minimum value when all machines are idle. For instance,

M2, in Figure 4.4, have a total processing time, setup and idle of 7, 1 and 7 time units,

respectively. For all machines, the sum of completion timessets a maximum idle time of

63 units and an idle period of 22 time units, which results inSG4 = 0.34.
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SG5 - Total Flow Time

The flow time measures how long a jobj remains in the shop floor until its completion,

i.e. time window between its releaser j and completion timeCj . The total flow time

aggregates these measures for all jobs. The decreasing linear function forSG5, sets a

maximum satisfaction when flow time is equal to 0 present and minimum when all jobs

complete their operations atCmax. Note that flow time equals 0 means that all jobs are

being cancelled. Suppose that jobs 1-7 and 8-11 from Figure 4.4 have release time at 0

and 8 times units, respectively. Therefore,SG5 = 0.45, since the total and the maximum

flow times are∑11
j=1Cj − r j = 70 and∑11

j=1Cmax− r j = 155, respectively.

Once the satisfaction gradesSG1−SG5 have been calculated, an overallPerformance

of the schedule is defined as:

Per f ormance=
5

∑
i=1

SGi/5. (4.1)

Consequently, the resultant schedule from Figure 4.4 deliversPer f ormance= 0.53.

SGMake - Makespan

Alternatively, thePerformancemeasure may consider only one specific scheduling objec-

tive function depending on the rescheduling process. The makespan, previously defined

asCmax, is a criterion commonly used for job shop scheduling problems [1,90,106,116].

The production manager sets a thresholdψ of maximum acceptable makespan. Following

the same idea presented for satisfaction gradesSG2−SG5, a decreasing linear function

sets a maximum satisfaction when the makespan isnull and a minimum when the thresh-

old ψ is achieved. Note thatCmax= null is just a reference point, meaning that all jobs

have been cancelled in the shop floor. Suppose thatψ = 33 for the schedule in Figure 4.4.

Therefore,SGMake= 0.51, because the completion time of both jobs 9 and 11 leads to

Cmax= 17. This alternativePerformancemeasure is defined as:

Per f ormance= SGMake=Cmax/ψ. (4.2)

Details about preferences and decisions for appropriate scheduling and rescheduling

objective functions are formally discussed in section 4.4 and subsection 4.4.3.
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4.2.2 Stability

TheStabilityof a new schedule is measured with respect to an initial schedule using two

components,Sta1 andSta2, adapted from [1] and [95], respectively, to consider parallel

machines.

Sta1 - Sequence Deviation

The first Stability measure,Sta1, considers changes to the relative order of operations

in the initial and new schedule sequences. LetM be the number of machines in the

shop floor and letOi be the number of operations that have to be processed on machine

i = 1, . . . ,M. The following measure of sequence similarityRewardi ∈ [0,1] is assigned

to each machinei:

Rewardi =
Oi−1

∑
j=1

Rewardi j
Oi−1

, where

Rewardi j =























1 if operationj +1 remains successor

of operationj on machinei;

0 otherwise.

There are certain situations in parallel machine environments that require special treat-

ment in the calculation of theRewardi value. For instance, the case in which a machine is

in operation in the initial schedule and it becomes idle in the new schedule and the case in

which a machine is idle in the initial schedule and it has to process any number of jobs in

the new one, should be heavily penalised. On the contrary, the cases in which a machine

is idle in the initial schedule and it remains idle in the new one and when a machine has

assigned only one operation in the initial schedule and any numberN in the new one, have

to be highly rewarded. Therefore, the following four cases R1-R4 are considered in the

calculation ofRewardi:

R1 If machinei is empty and stays empty after rescheduling, thenRewardi = 1;

R2 If machinei has originally only one operation and in the new schedule anyother

numberN, thenRewardi = 1;
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R3 If machinei is empty and any number of operations are assigned to it in thenew

schedule, thenRewardi = 0;

R4 If machinei has N operations and becomes empty in the new schedule, then

Rewardi = 0.

In order to keep the sequence of operations on each machine asunchanged as possible,

the sum of the rewards of the machines has to be maximised. This firstStabilitymeasure

is defined as:

Sta1 =
1
M

M

∑
i=1

Rewardi. (4.3)

Suppose that the initial schedule present in Figure 4.8 (a) has a new job 11 to be

inserted. The resultant schedule is shown in Figure 4.8 (b).Note that jobs 6 and 10 were

initially allocated to M1, but they swap to the parallel machine M2 after the insertion of

this new job.Reward1 = 0, because no successor operationj +1 remains the same for

operationj on M1, i.e. operations 6, 5 and 10 are not successors anymore for 1, 6 and

5, respectively. Operation 5 is not considered to remain successor of operation 1 on M1

because only the immediate successor of each operation is considered.

M2 was originally with only one operation and the processingof jobs 6 and 10 does

not affect its original sequence, leading toReward2 = 1, as described in R2. Addition-

ally, no changes were made on both machines M3 and M4, which got Reward3 = 1 and

Reward4 = 1, respectively. The final measure for the sequence deviation of the resultant

schedule present in Figure 4.4 is thenSta1 = 0.75

Sta1 was defined at first as the mainStability measure for rescheduling because of

the nature of the job shop problem presented by Sherwood Press, which has sequence

dependent setup times. Afterwards, an additional measure was required,Sta2, because

time deviations could cause problems regarding raw material availability and/or personnel

allocation for operating machines.

Sta2 - Time Deviation

The secondStabilitycomponent,Sta2, considers the starting time deviation of operations

in the initial and the new schedule. Letstartj andstart′j be the starting time of jobj in the
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Machine 

Machine 

                  

M1*  1 6 5   10   

M2*    2              

M3   3   7 9      

M4  4  3  8   9 

* parallel machines

(a) 

                  

M1* 1 5       11 

M2*   2   6    10   

M3   3   7 9      

M4  4  3  8   9 

* parallel machines

(b) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time 

Figure 4.8: Example of (a) an initial schedule with 10 jobs and its (b) resultant schedule
after inserting a new job 11

initial and in the new schedule, respectively. Therefore,TSj = max

{

0,1−
|startj−start′j |

Cmax

}

,

TSj ∈ [0,1] measures the starting time deviation for each jobj. A maximum satisfaction is

obtained when no time deviation is present between those starting times, and a minimum

value when the absolute difference in starting times equalsthe length of the initial sched-

ule, i.e. its makespanCmax. Note thatTSJ defines a similar decreasing linear function as

described forSG2−SG5 andSGMake. The only difference is that all jobsj = 1, . . . ,N are

individually evaluated and, subsequently, theirTSj values are combined intoSta2 as:

Sta2 =
1
N

N

∑
j=1

TSj . (4.4)

OnceSta1 andSta2 have been calculated, an overallStabilitymeasure is can be cal-
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culated as:

Stability=
1
2
(Sta1+Sta2). (4.5)

The resultant schedule present in Figure 4.4 has starting time deviations only for jobs

5 and 6, which are 4 and 2 time units, respectively. Therefore, TS5 = 0.76 andTS6 = 0.88

are obtained, asTS5 = max
{

0,1− |8−4|
17

}

andTS6 = max
{

0,1− |4−6|
17

}

with Cmax= 17.

No time deviations for the other jobs lead to a maximum satisfactionTSj = 1. Note that

job 10 has changed from machine M1 to M2, but its initial starting time is kept, which

also results inTS10 = 1. Consequently, the final measure for the time deviation of the

resultant schedule isSta2 = 0.96, which leads to an overallStabilityof the schedule to be

0.79 as a result of the following calculation(1
2(0.75+0.96)).

4.3 Match-up Strategies for Rush Orders

This section introduces match-up strategies for the dynamic scheduling of rush orders.

More details about inserting jobs with different levels of urgency are formally discussed

in the following chapter.

Rush orders arrive everyday in the shop floor and they must be integrated into the

current schedule as early as possible in order to achieve a good customer satisfaction.

The pseudocode of the proposed match-up algorithm for rush orders is given in Figure

4.9. This match-up algorithm has three phases which are firstly outlined followed by

a detailed description. In the first phase, steps 1–2, the rescheduling horizon, within

which the operations of the new job will be accommodated, is defined. In the second

phase, steps 3–6, a new scheduling problem containing operations within the calculated

horizon and the new job are defined and solved. In the third phase, step 7, the newly

generated schedule is integrated into the original one, checking and repairing possible

overlaps between the unchanged part of the schedule and the newly generated partial

schedule. The proposed algorithm considers for rescheduling one job at a time. If two or

more jobs arrive simultaneously, priority is given to jobs with earlier due dates. If the due

dates are the same then the order of jobs is randomly decided.

In step 1 of the algorithm,initialStart denotes the time of the arrival of the new job
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Input : An initial scheduleS, a new jobj, initialStart

Output : A new schedule with jobj integrated

1. Let startPoint be the latest completion time among operations whose processing time is
crossed byinitialStart

2. Calculateendpointby collecting idle time on the machines required by the new job

3. LetO be the set of operations withinstartPointandendPoint, plus the operations of jobj

4. Update the release and due dates of jobs inO so that they lie withinstartPointandendPoint

5. Let operations inO define a new scheduling problemS′

6. SolveS′ using a genetic algorithm

7. IntegrateS′ into S, checking and removing overlaps

Figure 4.9: Pseudocode of the match-up algorithm for rush orders
             

M1*  12      

M2*  12     

M3        12    

M4          12 

…             

* parallel machines

(a)

                  

M1*  1 5        11 

M2*    2   6    10   

M3   3   7 9      

M4  4  3  8   9 

…                  

(b)

                  

M1*  1 5        11 

M2*    2   6    10   

M3   3   7 9      

M4  4  3  8   9 

…                  

(c)

initialStart 

startPoint

Figure 4.10: Example of a rush order arriving in the shop floor; (a) the new job processing
requirements, (b) the calculation ofinitialStart and (c) thestartPointdefinition.

j increased by 48 hours, as required by Sherwood Press settingno changes for this time

period in the shop floor.
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For example, Figure 4.10(a) shows, using a Gantt chart, the processing requirements

and precedence constraints defined for a new job 12. The first operation of this job has to

be processed either on machine M1 or machine M2, which are parallel machines. After

completing this execution, the next operation can be started on M3 and, subsequently, the

last one is processed on M4. The operations of the initial schedule that have started their

processing beforeinitialStart must be completed before the rescheduling process begins.

Therefore, all the operations that are being processed atinitialStart are collected. These

are the operations in Figure 4.10(b) that cross theinitialStart line, i.e. jobs 1, 3 and 4

on machines M1, M3 and M4, respectively. The operation with the highest completion

time among the collected operations determines thestartPoint. In Figure 4.10(c), this is

job 3 on M3. All the operations that can be completed beforestartPointwill resume their

processing in this example that is job 2 on M2.

In order to calculateendPointas in step 2, the algorithm collects idle times on the

machines that are required by the new job. Four different strategies FW1– FW4 collecting

idle times in a forward way are introduced, as illustrated with an example in Figure 4.11.

Suppose that a job consisting of two operations arrives in the shop floor. The new job

requires 4 and 2 processing time units on machines MA and MB, respectively, as in Figure

4.11(a). Four different strategies are introduced to collect idle times on machines:

FW1 Collect idle time on the required machines accumulatingenough time, not neces-

sarily as a single time window, until the collected idle timeequals the new job

processing requirements, as in Figure 4.11(b).

FW2 Collect idle time contained in a single time window, as inFigure 4.11(c).

FW3 As FW1, but considering the precedence constraints imposed on the operations of

the new job. Figure 4.11 (d) shows idle time being collected on machines MA and

MB. Note that the collection of time for the second operationon machine MB can

start only after the required idle times for the first operation has been collected on

machine MA.

FW4 As FW2, but considering the precedence constraints of the new job, as demonstrated

in Figure 4.11(e).
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MA        

MB          

…           

(a) 

            

MA  1  2   3  

MB  4  5    6   

…            

(b) 

            

MA  1  2  3

MB  4  5   6   

…            

(c) 

            

MA  1  2   2  

MB  4  5    6

…            

(d) 

            

MA  1  2  3

MB  4  5    6

…            

(e) 

Figure 4.11: Example of the collection of idle times; (a) thenew job requirements, (b)
idle time collection using strategy FW1, (b) FW2, (c) FW3 and(e) FW4.

Let Ci be the completion time of a new job on machinei; thenendPointis defined

as the maximum ofCi , i = 1, . . . ,M. Note that in the case of parallel machines, there

are two or more possible completion time values for the same operation. Just one of

these is considered for the calculation ofendPoint. Here either the earliest or the latest

of the completion times is used. In this way, 8 strategies aredefined: S1-S4 that collect

idle time using FW1-FW4, respectively, and consider the earliest completion time among

the parallel machines, and S5-S8 which collect idle times using FW1-FW4, respectively,

but consider the latest completion time. Consequently, S1–S4 is more likely to define

smaller rescheduling horizons than S5– S8. Figure 4.12(a) demonstrates the idle time

collection using strategy S1. Since the two accumulated times that extend the latest are

on machines M1 and M2, which are parallel machines, there aretwo options for the

definition ofendPoint. The first option, using S1, considers the earliest completion time,

as in Figure 4.12(b). The other option, using S5, uses the latest completion time, as in

Figure 4.12(c).
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M1*  1 5   11 

M2*    2   6  10 

M3   3  7 9      

M4  4  3  8   9 

…                  

(a)

                  

M1*  1 5        11 

M2*    2   6    10   

M3   3   7 9      

M4  4  3  8   9 

…                  

(b) 

                  

M1*  1 5        11 

M2*    2   6    10   

M3   3   7 9      

M4  4  3  8   9 

…                  

(c)

endPointstartPoint

Rescheduling

horizon

Rescheduling

horizon

endPoint startPoint

startPoint

Figure 4.12: Example of the calculation of the reschedulinghorizon; (a) the collection
of idle time on machines, (b) the calculation ofendPointusing strategy S1 and (c) the
calculation ofendPointusing strategy S5.

Once the rescheduling horizon has been calculated, a new scheduling problem is de-

fined. This problem requires the scheduling of the operations that lie within the reschedul-

ing horizon and the operations of the new job. LetO be the set of all these operations (step

3) and letro anddo be the release time and the due date of operationo∈O, respectively,

in the original schedule. In order to keep the operations inO within the rescheduling

horizon after rescheduling, the release times of the operations in O are set tornew
o =

max{ro,startPoint}, ∀o ∈ O, and the due dates are set todnew
o = min{do,endPoint},

∀o ∈ O, (step 4). In step 5, a new scheduling problem that considersthe operations in

O with their updated release and due dates and with the objective of maximising the qual-
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ity of the schedule is defined. A genetic algorithm (GA) is responsible to allocate jobs on

machines as described in [86]. Note that different quality measures presented in section

4.2 can be used as objective functions for rescheduling affected operationsO. More de-

tails and discussions about GA settings are presented in section 4.4 and subsection 4.4.3.

In the final phase (step 7), the initial partial schedule contained within the reschedul-

ing horizon is replaced by the new schedule generated in step6. It may be the case that the

completion times of one or more operations in the new schedule are out of the reschedul-

ing horizon. If this is the case, there is the possibility that such operations overlap with the

operations from the initial schedule that start after theendPoint. These cases are identi-

fied, and operations from the initial schedule are shifted tothe right as necessary in order

to restore feasibility. Suppose that S1 was used to set a rescheduling horizon for insert-

ing the new jobj presented in Figure 4.10(a). The resultant schedule is shown in Figure

4.13(a) and there is an overlap between operations 12 and 10 on M2, since operations of

the new job 12 were allocated outside of the rescheduling horizon. The schedule feasi-

bility is restored when operation 10 on M2 is shifted to the right for 2 time units, as in

Figure 4.13(b).

                     

M1*   1 5        11   

M2*     2  6 12 10     

M3    3   7 9    12 

M4   4  3  8   9 12 

…                     

(a) 

                     

M1*   1 5        11   

M2*     2  6 12 10   

M3    3   7 9    12 

M4   4  3  8   9 12 

…                     

(b) 

Rescheduling

horizon

Rescheduling

horizon

Figure 4.13: Example of overlapping between initial and thepartial schedule generated
by the rescheduling process; (a) the overlap between jobs 12and 10 on M2 and (b) the
feasibility restoration by right shifting the job 10 for 2 time units.
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4.4 Experiments on Real World Data

Data sets obtained from Sherwood Press are used to test thePerformanceandStabilityof

the developed match-up algorithm. The data of the production orders of several months

were used to produce schedules. In each instance, newly arriving jobs were randomly

generated taking into account three parameterssat, insTimeand jobSize.

The saturation,sat, is used as an indicator of the amount of idle time in the shop floor

and is calculated as the ratio between the makespan of the initial schedule and the sum of

processing times of all operations:

sat=
Cmax

∑n
i=1 ∑M

j=1 pi j

whereCmax is the length of the initial schedule (makespan) andpi j is the processing

time required by jobi, i = 1, . . . ,n on machinej, j = 1, . . . ,M. A largesatvalue indicates

a highly saturated schedule, i.e. with a small amount of idletime. Three months with dif-

ferent saturation levels were selected and used to generatethree instances. The saturation

levels for each considered month are 1.85, 2.37 and 3.67. These values correspond to low,

medium and high (i.e.sat∈{low, medium,high}) saturation levels, respectively.

The second parameter is the time of insertion of the new job,insTime∈{beginning,

middle, end}, where “beginning”, “middle” and “end” are equal to 10%, 50%and 80% of

the length of the schedule, respectively. The reason for considering theinsTimefollows

the observation that the workload of the shop varies at different points in the schedule. The

workload in the middle of the schedule, for instance, is often higher than the workload at

the beginning, which is higher than the workload at the end ofthe schedule.

The third parameter is the number of operations in the new job, jobSize∈ {1,2,3,4,5}.

The jobSizevalue serves as a good indicator of the magnitude of the disturbance of the

current schedule, which makes it an interesting parameter to investigate.

More details about characteristics of the experimental data is described in subsection

4.4.2.

Since there are three types of initial schedules of different saturation levels, and jobs

arrive at three different times and they are of five differentsizes, the total number of in-

stances is 3×3×5= 45. Arriving jobs are not kept in the schedule as the experimentation
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progresses, on the contrary, once a job has been integrated into an initial schedule and the

proper measures have been recorded, the job is removed, and the schedule is reset to its

initial state ready to accommodate the next arriving job.

Initial schedules, before any disruption occurs, are generated using the genetic algo-

rithm described in [86] with the objective of maximising thePerformancemeasure. Ten

different solutions are generated for eachsat instance and their results are graphically

presented in Figure 4.14. ThePerformancemeasure is calculated as an average between

satisfaction gradesSGi, i = 1, . . . 5, previously described in section 4.2. A best solution

is selected for each saturation level and subsequently theyare used as initial solutions to

insert new jobs in the scheduling problem. The aim is to investigate different scheduling

scenarios.

The arriving jobs were integrated into the initial schedules using rescheduling strate-

gies: S1−S8, total rescheduling (T), right shift rescheduling (RS) and insertion in the

end (E). In T, all operations afterfeasiblePointare rescheduled with a genetic algorithm.

In RS, the arriving job is integrated into the new schedule sothat it is completed before

its due date. The overlapping operations from the initial schedule, if any, are shifted to

the right as required. In E, the new job is inserted right after the completion of the last

operation of the initial schedule. ThePerformanceandStabilitymeasures were recorded

for each strategy, each type of instance and for each arriving job.

It is important to highlight that schedules are generated using the genetic algorithm

proposed by [86]. Their studies extensively investigate the static scheduling problem

highmediumlow

0,56

0,55

0,54

0,53

0,52

0,51

sat
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o
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Figure 4.14: Overall results obtained by initial solutionswith low, medium and high
saturation values, the x-axis shows the saturation categories; the y-axis shows the mean
(dot) and 95% confidence interval (vertical bars) of the achievedPerformance
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presented by Sherwood Press employing a GA to allocate jobs on machines [32,84,85,87].

More details are described in the following subsection. Note that this algorithm is also

applied on rescheduling to accommodate newly arriving jobs, as previously mentioned in

step 6 from Figure 4.9.

All algorithms were implemented in Visual C++. Testing was performed on a 2.16

GHz Centrino Duo PC with 1GB of RAM and running Windows XP. Results for different

types of orders are presented and analysed in subsection 4.4.3.

4.4.1 Genetic Algorithm for Scheduling

Genetic algorithm is a bio-inspired method commonly used inoptimisation problems [94].

It is based in natural evolution concepts, in which good solutions have a higher probability

to remain through subsequent generations. Operators such as crossover and mutation are

applied in order to explore the diversity of possible solutions. They have been employed

in several scheduling / rescheduling problems mainly because they are able to create near

optimal solutions for NP-hard problems [92, 111], as previously highlighted in Table 2.2

from Chapter 2.

The genetic algorithm mentioned in the previously subsection was specifically de-

signed, tested and tuned for the scheduling problem presented by Sherwood Press [86].

Their main components are described as follows:

• Chromosomes and population: Each chromosome contains two sub-chromosomes.

The first one represents the 18 available machines, and the second one has the

6 dispatching rules that are used for sequencing operationson the corresponding

machines. Several chromosomes are generated in order to create a population of

possible solutions;

• Initialisation : A random numberi = 1, . . . ,18 is assign to cells of the first sub-

chromosome, in such a way that each cell has a distinctivei. Subsequently, one

of the following 6 dispatching rules is selected to each cellof the second sub-

chromosome, in which repetitions are allowed: (1) EDD - Early Due Date First,

(2) SPT - Shortest Processing Time First, (3) LPT - Longest Processing Time First,

(4) LRT Longest Remaining Processing Time First, (5) HP Highest Priority First,
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(6) SFT - Same Family of Jobs Together. Note that the first fourrules are well-

established and widely used in the literature on job shop scheduling [91]. On the

other hand, the last two are tailored to Sherwood Press with the aim of reducing

the flow time of jobs of higher priority and scheduling group of jobs that belong to

the same printing family, respectively. A graphical representation of two initialised

chromosomes A and B is shown in Figure 4.15 (a);

Chromosome A (Parent)                  

Sub-chromosome 1: 

Machine
10 13 4 16 15 11 8 12 9 7 18 14 6 3 1 5 2 17

Sub_chromosome 2: 

Dispatching Rules
1 3 5 2 1 4 2 3 1 6 2 1 6 5 1 3 4 2 

                 

Chromosome B (Parent)                  

Sub-chromosome 1: 

Machine
1 2 5 16 3 8 18 7 10 6 9 12 13 4 11 14 17 15

Sub_chromosome 2: 

Dispatching Rules
5 2 6 3 1 2 4 3 6 5 1 4 6 3 4 2 1 5

                  

(a)

Chromosome C* (Child)                  

Sub-chromosome 1: 

Machine
10 13 4 16 3 8 18 7 10 6 9 12 13 4 11 14 17 15

Sub_chromosome 2: 

Dispatching Rules
1 3 5 2 1 2 4 3 6 5 1 4 6 3 4 2 1 5

                  

Chromosome D* (Child)                  

Sub-chromosome 1: 

Machine
1 2 5 16 15 11 8 12 9 7 18 14 6 3 1 5 2 17

Sub_chromosome 2: 

Dispatching Rules
5 2 6 3 1 4 2 3 1 6 2 1 6 5 1 3 4 2 

* unfeasible solutions                   

(b)

Chromosome C (Child)                  

Sub-chromosome 1: 

Machine
10 13 4 16 1 2 5 3 8 18 7 6 9 12 11 14 17 15

Sub_chromosome 2: 

Dispatching Rules
1 3 5 2 1 2 4 3 6 5 1 4 6 3 4 2 1 5

                  

Chromosome D (Child)                  

Sub-chromosome 1: 
Machine

1 2 5 16 10 13 4 15 11 8 12 9 7 18 14 6 3 17

Sub_chromosome 2: 
Dispatching Rules

5 2 6 3 1 4 2 3 1 6 2 1 6 5 1 3 4 2 

                  

(c)

Chromosome E (Child)                  

Sub-chromosome 1: 
Machine

17 13 4 16 15 11 8 12 9 7 18 14 6 3 1 5 2 10

Sub_chromosome 2: 
Dispatching Rules

1 6 5 2 1 4 2 3 1 3 2 1 6 5 1 3 4 2

                

(d)

Crossover

Mutation

Figure 4.15: Components of a genetic algorithm for scheduling, (a) chromosome ini-
tialisation, (b) crossover generating unfeasible solutions, (c) repaired solutions, and (d)
mutation.
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• Crossover: This operator combines genes from two parents chromosomesto gen-

erate a new offspring. A single point W is randomly chosen in order to swap genes

between parents. Figure 4.15 (b) shows an example of two offsprings being gen-

erated by swapping values on position 4 from both chromosomes present in Figure

4.15 (a). Unfortunately, infeasible solutions are generated in this example since rep-

etition of i values are present in the machine sub-chromosomes of both offsprings.

Consequently, a repair operation is required [9]. Child C has to be created by copy-

ing all values of the parent A up to position 4. Subsequently,the remaining cells

are filled by scanning parent B from left to right and enteringthe machine numbers

not already present. Child D is created in a similar way by reversing the roles of the

parents. Figure 4.15 (c) shows the feasible resultant children following this repair

mechanism. Note that no changes were required for the secondsub-chromosomes

and their orders remain the same in both Figures 4.15 (b) and (c);

• Mutation :A randomly chosen pair of genes exchange their positions ina sub-

chromosome. Mutation is applied independently in both sub-chromosomes. Figure

4.15 (d) illustrates a child D being generated from the mutation of parent A, in

which genes from positions 1-18 and 2-10 are exchanged from sub-chromosomes 1

and 2, respectively;

• Generations: Defines the number of iterations that the population of chromosomes

will be subject to the processes of crossover, mutation and selection;

• Fitness function: Evaluates the quality of a given schedule based on the solution

generated by its chromosome. The goal find a schedule with thehighest possible

fitness value among analysed generations. The expression 4.1 from section 4.2 is

employed to assess this measure;

• Selection: A roulette-wheel-selection technique is applied for selecting chromo-

somes that will survive through consecutive generations. Chromosomes with higher

fitness function values have a higher chance to be kept in the population of possible

solutions;

• Elitist Strategy: The chromosome with the highest fitness is always kept to the
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next generation.

A series of experiments were done by [32,86] to tune the GA parameters, in which the

population size and number of generations were set to 50 and 500, respectively, whereas

the crossover and mutation probabilities were set to 80% and30%, respectively.

4.4.2 Characteristics of the Experimental Data

The following items provides complementary information about the experimental data. It

is important to highlight that they are valid for all experiments investigated in this thesis.

• Load-balancing: All operations are evenly allocated between available parallel

machines in order to process the required jobs as quickly as possible. This fea-

ture belongs to a previous study investigated by [84] and it is implemented in the

scheduling algorithm;

• Lot-sizing: Some operations are eligible to be subdivided into smallerlots when

they require large processing times. The aim is to manage thecustomer satisfaction

delivering smaller lots in a shorter period of time. Again, this feature was originally

introduced by [85,86] and it is part of the scheduling process;

• Number of jobs: The number of jobs to be allocated varies between different

months in Sherwood Press. For instance the databases used toset sat ∈{low,

medium,high} has 39, 64 and 158 jobs, respectively. Note that a higher number

of jobs does not necessarily mean the definition of a higher saturation level, since

a schedule with small number of operations may require largeprocessing times on

machines;

• Duration of operations: As previously mentioned, some operations may have

longer processing times than the others. For instance they are eligible to require

2 hours on a printing machine, as well as 5 days in a row.

• Workload of the shop floor: Number of required items from all jobs are summed

up in order to define an overall workload of the shop floor, i.e.the three investigated

months definingsat∈{low, medium,high} have 3696356, 3955125 and 5120125



4.4. Experiments on Real World Data 81

items to be produced, respectively. This number is used as a parameter to make

decisions on lot-sizing.

Note that this items are described only as a reference to illustrate the data present in

the investigated scheduling problem and to identify the studies developed by Fayad and

Petrovic [84–86].

4.4.3 Rush Orders

Most of the jobs arriving in the shop floor of Sherwood Press are classified as rush orders,

because they must be integrated in the current schedule as soon as possible. These newly

arriving jobs are incorporated using the same genetic that was used to generate the initial

schedule, as described in [86]. The original fitness algorithm function, expression 4.1

from section 4.2, was kept unchanged because it delivers good Performanceresults and

the Stability of the schedule is maintained because only a part of the schedule must be

modified.

This section presents the results obtained by the differentrescheduling strategies as

well as the results of statistical analysis of the effects ofthe problem parameters and the

match-up strategies onPerformanceandStability. The results obtained by all strategies

are summarised in Table 4.1, which presents the average and standard deviation values for

PerformanceandStabilityattained by the investigated strategies for the instances grouped

according to the different problem parameter values. Note that each cell in Table 4.1 rep-

resent the average result of 10 times executing the rescheduling algorithm. Additionally,

the best strategies are highlighted in bold for each type of instance and numbers between

brackets show the number executions done for each instance.In general, the match-up

strategies (S1-S8) are superior to right shift (RS) and insertion in the end (E), and similar

results to total rescheduling (T), with respect toPerformance. As expected, RS and E de-

liver the most stable schedules. However, S1-S8 can be highlighted as superior to T with

respect toStability. Among the match-up strategies, S1-S4 seem to outperform strategies

S5-S8 in most groups of instances. These results will be statistically verified next.

A comparison betweenPerformanceandStabilityis presented in Figure 4.16, in which

a scatter plot shows the trade-offs between these evaluation metrics. Few samples have
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Table 4.1: Average and standard deviation values forPerformanceandStabilityobtained
by the rescheduling strategies for rush orders (larger vales are preferred)

Per f ormance- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.534 0.534 0.534 0.534 0.528 0.528 0.531 0.5310.538 0.528 0.510
(15) medium 0.519 0.521 0.526 0.526 0.521 0.521 0.519 0.519 0.523 0.523 0.481
(15) high 0.528 0.528 0.5280.529 0.496 0.505 0.500 0.498 0.518 0.513 0.519

jobSize (9) 1 0.534 0.534 0.534 0.5340.523 0.524 0.523 0.523 0.530 0.532 0.526
(9) 2 0.532 0.532 0.532 0.5320.518 0.521 0.519 0.519 0.523 0.529 0.516
(9) 3 0.529 0.529 0.530 0.530 0.516 0.519 0.518 0.5170.536 0.524 0.504
(9) 4 0.520 0.526 0.526 0.526 0.513 0.517 0.514 0.513 0.522 0.515 0.491
(9) 5 0.519 0.517 0.525 0.525 0.506 0.510 0.509 0.508 0.521 0.507 0.479

insTime (15) beginning 0.526 0.529 0.534 0.534 0.505 0.514 0.507 0.504 0.517 0.518 0.493
(15) middle 0.527 0.527 0.528 0.527 0.514 0.515 0.517 0.5170.537 0.521 0.493
(15) end 0.526 0.526 0.5260.527 0.526 0.526 0.526 0.526 0.526 0.526 0.525

(45) total average 0.527 0.528 0.5290.530 0.515 0.518 0.517 0.516 0.526 0.521 0.503
(45) standard deviation 0,005 0.005 0.0030.003 0.009 0.007 0.008 0.009 0.007 0.007 0.016

Stability- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.982 0.983 0.977 0.977 0.982 0.981 0.982 0.979 0.912 1.000 1.000
(15) medium 0.965 0.965 0.966 0.966 0.966 0.967 0.966 0.965 0.943 1.000 1.000
(15) high 0.991 0.991 0.990 0.993 0.961 0.954 0.958 0.958 0.878 1.000 1.000

jobSize (9) 1 0.998 0.998 0.998 0.998 0.978 0.978 0.977 0.977 0.8941.000 1.000
(9) 2 0.998 0.998 0.998 0.998 0.982 0.978 0.983 0.981 0.9391.000 1.000
(9) 3 0.990 0.990 0.989 0.989 0.986 0.982 0.987 0.987 0.9191.000 1.000
(9) 4 0.970 0.971 0.973 0.972 0.967 0.961 0.962 0.962 0.9111.000 1.000
(9) 5 0.941 0.942 0.932 0.936 0.935 0.938 0.935 0.930 0.8921.000 1.000

insTime (15) beginning 0.973 0.975 0.972 0.973 0.947 0.940 0.944 0.942 0.838 1.000 1.000
(15) middle 0.982 0.982 0.977 0.980 0.979 0.979 0.979 0.977 0.918 1.000 1.000
(15) end 0.984 0.983 0.984 0.983 0.983 0.983 0.983 0.983 0.977 1.000 1.000

(45) total average 0.979 0.980 0.978 0.979 0.970 0.967 0.9690.967 0.911 1.000 1.000
(45) standard deviation 0.016 0.016 0.018 0.017 0.016 0.0160.017 0.017 0.035 0.000 0.000

Performancevalues between 0.3 and 0.45 and they are considered outliers. Figure 4.16

shows that variations onStabilityare more expressive than the ones inPerformance, which

means that some rescheduling strategies can easily compromise theStabilityof schedules.

However, there is no indication that increasingStabilityhas positive or negative effects on

Performancevalues, or vice-versa, which means that, even with the presence of the two

conflicting criteria asPerformanceandStability, it is possible to achieve highly stable and

good quality schedules.

The statistical significance of the effects of problem parameters, match-up strategies,

and the interactions among them onPerformanceandStabilitywas investigated by means
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Figure 4.16: Trade-offs betweenPerformanceandStabilityfor rush orders

of the Analysis of Variance (ANOVA). The summary of the ANOVAis given in Table

4.2, where the individual effects of problem parameters andrescheduling strategy onPer-

formanceandStabilityare labelled “main effects”, whereas the combined effects of the

pairs of variables are labelled “interactions”. TheA∗B notation refers to the interaction

between parametersA andB. Values under the headingF value andP value are the value

of the Fisher statistic of the corresponding row effect, andthe probability of this value

being due to mere chance, respectively. Effects with aP value≤ 0.05 are considered to

be significant. Results from ANOVA test shows that all “main effects” and “interactions”

involving the parameter Strategy have influence on bothPerformanceandStabilityof the

schedule. Further discussions on these results are presented next.R2 measures the propor-

tion of the variation of the observations around the mean. The relatively largeR2 values

for both metrics,PerformanceandStability, is an indicator of a high variability on the

obtained results [68].

The fact that the effect on variability due toStrategyis significant implies that some

rescheduling strategies are better than the others. A pairwise comparison test using Bon-

Table 4.2: Results of the ANOVA test for rush orders
Per f ormance Stability
F value P value F value P value

Main effects
Strategy 13.56 ≤ 0.05 55.38 ≤ 0.05
sat 104.94 ≤ 0.05 7.92 ≤ 0.05
jobSize 25.47 ≤ 0.05 81.17 ≤ 0.05
insTime 18.24 ≤ 0.05 108.40 ≤ 0.05

Interactions
Strategy*sat 6.49 ≤ 0.05 8.06 ≤ 0.05
Strategy*jobSize 0.66 ≤ 0.05 2.15 ≤ 0.05
Strategy*insTime 5.86 ≤ 0.05 14.83 ≤ 0.05

R2 0.71 0.83
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ferroni’s correction [68] was carried out in order to identify which are those strategies

that deliver higherPerformanceandStabilityvalues. The results are given in Figure 4.17,

with comparisons ofPerformancebelow the diagonal, and above ofStability. Each field

in Figure 4.17 corresponds to the statistical test of the difference in means between the

corresponding row-column strategies. The conclusion of each test is indicated with one

of the following symbols: “←” which indicates that the strategy in the row is superior;

“↑” which indicates that the column strategy is superior; and “=” which indicates that the

strategies are non-distinguishable from each other. Additionally, thet statistic value and

the p value are given on the top right and bottom right of each field,respectively. Large

absolutet values and lowp values confirm that the means of the corresponding row-

column strategies are different, implying that one of them is superior. For example, the

test in row S3, column RS, indicates that S3 obtains, on average, higherStabilityvalues

than RS. This holds with at-test value of 5.70 and ap≤ 0.05.

Not surprisingly, RS and E deliver good values forStabilityand T forPerformance.

However, this is achieved at the price of poorStabilityfor T and poorPerformancefor RS

and E. Remarkably, the results obtained by the match-up strategies S1-S4 are statistically

non-distinguishable from T forPerformance, and strategies S1-S8 produce comparable

results from RS and E forStability. This result indicates that the newly introduced ap-

proaches posses the best attributes of the investigated rescheduling approaches, but do

not exhibit their weaknesses. Figure 4.18(a) and 4.18(b) show these results graphically

for PerformanceandStability, respectively, using 95% confidence interval plots. In each

plot, the dot indicates the average value on the whole set of instances obtained by the cor-

responding strategy in thex−axis. The vertical lines denote the 95% confidence interval

of the mean value. Statistical differences are immediatelydetected when there is no over-

lap between the confidence intervals of two or more strategies. According to the interval

plots in Figure 4.18(a) and Figure 4.18(b), strategies S1-S4 are the most competent with

respect to both,PerformanceandStability.

Strategies S5-S8 obtain, overall, lowPerformancevalues. In order to explain this be-

haviour, a correlation between thePerformanceand theDelaythat occur after reschedul-

ing was measured. TheDelay represents the length of the overlap time period of the

new schedule with the initial one after the rescheduling horizon. This is a consequence
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Figure 4.17: Mean pairwise comparisons ofPerformanceandStabilityfor rush orders
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Figure 4.18: Overall results obtained by each reschedulingstrategy; the x-axis shows the
strategy; the y-axis shows the mean (dot) and 95% confidence interval (vertical bars) of
Performance(a) andStabilityfor rush orders

of rescheduling jobs within the rescheduling horizon afterwhich some jobs are tardy

(i.e. they do not meet their due dates). The correlation between thePerformanceand the
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Delay, ρ =−0.42, indicates that high delays caused by the rescheduling process are asso-

ciated with lowPerformancevalues. This explains the lowPerformancevalues achieved

by strategies S5-S8 which, as shown in Figure 4.19(a), are the ones that lead to the largest

Delay values. On the other hand, S3 and S4, which seem to be the best performers ac-

cording to Figure 4.18(a), cause the smallest delays. Note that strategy E obtained low

Performancevalues even when it produces noDelayvalue. This situation occurs due to

a higher probability of the new jobs being tardy when they areinserted in the end of the

schedule. Additionally, match-up algorithms are relatively efficient since they took 10

seconds on average in the rescheduling process (see Figure 4.19(b)). This time is higher

than the one required by RS and E, but lower than the one required by the total reschedul-

ing. In any case, 10 seconds on average for the rescheduling of a one month production

schedule is fast enough for a printing company industry and certainly for many other real

world production shops.

Regarding the problem parameters, the ANOVA results in Table 4.2 shows thatsat,

jobSizeandinsTimehave a significant influence onPerformanceandStability. The nature

of these effects is illustrated with the 95% confidence interval plots in Figure 4.20. The

x-axis of plots (a)-(b), (c)-(d), and (e)-(f), measures the level ofsat, jobSizeandinsTime,

respectively. They-axis shows the average values ofPerformance, (a), (c), (e), andSta-

bility, (b), (d), (f) over all rescheduling strategies. In general, PerformanceandStability

values decrease when rescheduling is done on highly saturated schedules, rescheduling

occurs at the beginning or in the middle of the schedule, or when the arriving job requires
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Figure 4.19: Overall results obtained by each reschedulingstrategy onDelay (a) and
Running Time(b) for rush orders
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Figure 4.20: Main effects onPerformance(a), (c), (e) andStability (b), (d), (f) due to
Strategy (a)-(b),jobSize(c)-(d) andinsTime(e)-(f) for rush orders

many operations.

The ANOVA results, presented in Table 4.2, also identifies that all interactions of pa-

rameters involvingStrategyare significant. These type of interactions indicate that some

strategies are better at coping with certain problem conditions than others. That this is the

case can be verified by Table 4.1. The three interactions involving Strategywere analysed
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and it was observed that strategies S1-S4 are either similaror superior to strategies S5-S8

under any scenario. This seems to contradict the existence of any interaction. However,

the interactions exist because strategies S1-S4 are, undercertain conditions, remarkably

better than strategies S5-S8; under any other conditions they are only similar or slightly

better. Regarding theinsTime, for instance, S1-S4 are much preferred if the arriving job

is to be inserted at the beginning of the schedule. Under thisscenario, theDelay inserted

by the rescheduling algorithm will have a stronger effect than if rescheduling occurs at

the end of the schedule, and consequently strategies S1-S4 will be remarkably superior

to S5-S8. A similar reasoning explains why strategies S1-S4are also superior to S5-S8

when rescheduling occurs on highly saturated schedules (with highsatvalues). Addition-

ally, it was observed that strategies S1-S4 are superior to S5-S8 when the arriving jobs

have a small number of operations, 1 or 2. The number of operations to be inserted in

the current schedule is directly proportional to the lengthof the rescheduling horizon. If

the rescheduling horizon is relatively short, for example when inserting only one or two

operations, the calculation of theendPointperformed differently by S1-S8 has a higher

impact on the definition of the rescheduling horizon than if the rescheduling horizon is

already large due to the insertion of a large number of operations. In this way, the small

delay values obtained by S1-S4 lead to a better overallPerformanceandStability.

Given the results in Table 4.1 and the statistical analysis,it is confirmed that match-up

strategies are comparable to the right shift and insertion in the end strategies with respect

to Stability and as good as the total rescheduling strategy with respect to Performance.

The strategies S1-S4 seem to be slightly superior to the other match-up approaches and

deliver the most consistent results under different problem scenarios, as demonstrated by

Figure 4.18. The strategies S3 and S4 can also be highlightedfor possible incorporation

into the scheduling system of Sherwood Press, since they produce high values with re-

spect toPerformanceandStabilityand smallDelayandRunningTimevalues, as shown

in Figure 4.19.
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4.5 Discussion

Match-up strategies are proposed to insert rush orders in a complex real world job shop

scheduling/rescheduling problem, in which high performing and stable schedules are de-

livered in response to this typical disruption.

Statistical analysis reveal that, even with the presence ofthe two conflicting criteria

asPerformanceandStability, match-up strategies achieve high quality schedules under

different problem instances, which highlight their strengths regarding possible scenarios

tackled by Sherwood Press.

Match-up strategies S3 and S4 are candidates for possible incorporation into the schedul-

ing / rescheduling system for Sherwood Press, since they produce good values for both

PerformanceandStabilityat a reasonableRunningTime.

Note that initial schedules and rescheduling of affected operations are done with the

same five criteria fitness function described in [86], because goodPerformanceresults

are delivered, whileStability is maintained by match-up strategies requiring only partial

modifications on schedules. This feature is suitable to improvements and more detailed

discussions are presented in the next chapter.

4.6 Summary

This chapter investigates a real world job shop scheduling/rescheduling problem from

a printing company in Nottingham, UK. This problem is dynamic since new jobs with

different levels of urgency arrive everyday in the shop floorand they have to be integrated

into the existent schedule. Typical arriving jobs are rush orders, which means that they

have to be processed as early as possible in the current schedule. This type of disruption

is tackled first and the goal is to find appropriate rescheduling approaches to achieve high

quality schedules.

A match-up algorithm, which accommodates new rush orders byusing available idle

times on machines, is proposed. Additionally, quality measures are introduced in order

to identify good performing schedules. The motivation of the match-up algorithm is to

modify only a part of the initial schedule in such a way that bothStabilityandPerformance

of the shop floor are kept, avoiding additional production costs. Several strategies to
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define rescheduling horizons were proposed and compared with other strategies, including

total rescheduling, the right shift and insertion in the endof the schedule.

The obtained results were analysed and statistically validated. In summary, all match-

up strategies do obtain reasonable values for bothPerformanceandStabilityregardless of

the problem parameters. Strategies S1-S4 deliver better results because they set smaller

rescheduling horizons than S5-S8. It was observed that match-up strategies are statisti-

cally non-distinguishable from total rescheduling with respect toPerformanceand com-

parable to the right shift and “insertion in the end” with respect toStability. These encour-

aging results coupled with the fact that the proposed algorithms only take 10 seconds on

average to reschedule a one month schedule, indicate that the proposed match-up strate-

gies and particularly S1-S4 are adequate for the investigated and other similar production

shops.

The following chapter continues of the investigation of match-up strategies, in which

new improvements are proposed and the impact of other disruptions are investigated.



Chapter 5

Match-up Strategies for a Complex

Real World Job Shop Problem -

Improvements and Other Disruptions

5.1 Introduction

Encouraging results from the previous chapter show that match-up strategies deliver high

performing schedules with a high stability when the arriving jobs are rush orders. In

this chapter, a more general case, in which jobs may have different levels of urgency to

be processed, is investigated. This generalisation requires further considerations in the

algorithm design. Additionally, experimental results identify that match-up algorithms

are suitable for improvements, since the associated genetic algorithm fitness function is

able to control not only the schedulePerformance, but also itsStability. This chapter

emphasises the validity of hypothesis 1 described in Chapter 1.

The job shop scheduling problem presented by Sherwood Press- Nottingham, UK, is

investigated in this chapter and the goal is to check the flexibility of match-up strategies

under different types of disruption to achieve highly stable and good quality schedules.

The remaining of this chapter is organised as follows. Section 5.2 describes the match-

up algorithm for jobs with different levels of urgency, referred to as normal orders. Section

5.3 analyses the proposed improvements on the genetic algorithm, which includes a com-

parison between the original version and improved one. Additionally, normal orders are

91
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statistically analysed and their results are compared withthe ones presented by rush or-

ders, in order to identify strengths of the proposed strategies. Sections 5.4 and 5.5 discuss

and summarise the conclusions of this chapter.

5.2 Match-up Strategies for Normal Orders

This section introduces match-up strategies for the dynamic scheduling of normal orders.

This type of orders set jobs to be processed before their due-date and they have the same

priority of jobs already allocated in the current schedule.The pseudocode of the proposed

match-up algorithm for normal orders is given in Figure 5.1.This algorithm resemble the

previous one for rush orders, because they both define three phases: (1) the rescheduling

horizon definition, in steps 1–2; (2) the subproblem definition, in steps 3–6; and (3) the

integration of schedules in step 7. The main difference between them is the way how idle

times are collected on machines in step 2. Note that reference points, such asinitialStart,

startPointandendPoint, are renamed in order to properly illustrate the rationale of the

Input : An initial scheduleS, a new jobj with due dated j , initialPoint

Output : A new schedule with jobj integrated

1. LetfeasiblePointbe the latest completion time of operations whose processing time is crossed
by initialPoint.

2. CalculatelimitingPoint by collecting idle time starting from the due date of the new job d j in
a backwards fashion towards thefeasiblePoint.

i If limitingPoint≥ f easiblePoint

- Let therescheduling horizonbe the time window betweenlimitingPoint and the due
dated j .

ii Else

- RecalculatelimitingPoint by collecting idle times starting fromfeasiblePointin a
forwards direction towards the due dated j .

- Let the rescheduling horizonbe the time window betweenf easiblePoint and
limitingPoint.

3. LetO be the set of operations within therescheduling horizon, plus the operations of jobj.

4. Update the release time and due dates of jobs inO so as to lie within therescheduling horizon.

5. Let operations inO define a new scheduling problemS′.

6. SolveS′ using GA.

7. IntegrateS′ into Schecking and removing overlaps.

Figure 5.1: Pseudocode of the match-up algorithm for normalorders
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proposed algorithm.

Figure 5.2(a) shows a new example for step 1, in which a new job10 with due-date

d j has four operations subject to a precedence constraints. The first operation has to

be processed either on M1 or M2, and then, after completing this execution, the next

operation can be started on M3, and then on M4, and finally on M5. The company policy

of 48 hours of no changes is applied and operations already started at this point must

complete their processing before the rescheduling processcan start, which setinitialPoint

and f easiblePointrespectively, as highlighted in Figure 5.2(b) and Figure 5.2(c). This

example follows the same idea applied for rush orders, in which the completion time of

Job 2 on M2 setf easiblePoint.

ThelimitingPoint, which defines one of the boundaries of the rescheduling horizon, is

              

M1* 10        

M2* 10        

M3       10     

M4          10

M5            10

…              

* parallel machines

(a)

                  

M1* 1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4 4    6   9  

M5    5 3   6   7 

…                  

(b)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(c)

initialPoint

feasiblePoint

Figure 5.2: Example of a normal order arriving in the shop floor; (a) the new job process-
ing requirements, (b) the calculation ofinitialPoint and (c) thef easiblePointdefinition.
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calculated either in a “backwards” or in a “forwards” direction depending on whether or

not the amount of time betweenfeasiblePointand the due date of the new job,d j , is large

enough to accommodate the arriving job. If there is enough time to accommodate new

job j, then thelimitingPoint is calculated by collecting idle time in backwards direction

starting from timed j towards thef easiblePoint(step 2.i). Time is accumulated until it

can accommodate jobj and defines the point refereed aslimitingPoint. In this case, the

rescheduling horizon is defined by thelimitingPoint and the due dated j of job j. In the

second case, where there is not enough time between thef easiblePointandd j to contain

new job j, thelimitingPoint is calculated by accumulating idle time on machines, but this

time starting from thef easiblePointin a forwards direction towards the due date of job

j (step 2.ii). As in the first case, thelimitingPoint labels the point when enough time to

accommodate jobj has been accumulated and the rescheduling horizon is definedby the

f easiblePointand thelimitingPoint. Note that, in this case, the due date of jobj falls

somewhere in betweenf easiblePointand limitingPoint. The match-up algorithm first

tries to accumulate idle time in a backwards fashion, if thisfails, i.e. if the accumulated

time falls earlier than thef easiblePoint, then the idle time is accumulated in a forwards

fashion.

Four additional strategies BW1– BW4 are introduced for the accumulation of idle

times in a backwards fashion as illustrated with an example in Figure 5.3. Note that

this example follows the same idea of the one presented for rush orders in the previous

chapter, but idle times are collected from the due date of jobj. BW1– BW2 collect partial

and continuous time windows, respectively, as shown in Figure 5.3(b) and (c). On the

other hand, BW3– BW2 collect idle as BW1– BW2 but they also consider precedence

constraints imposed to the new job operations, as in Figure 5.3(d) and (e). Since idle

times are collected on parallel machines, BW1– BW4 are extended to S1– S8, in which

S1– S4 consider the latest time point and S5– S8 consider the earliest time point.

Figure 5.4(a) demonstrates idle times being collected for the new jobj present in Fig-

ure 5.2(a). Since the accumulated times are on machines M1 and M2, which are parallel

machines, there are two options for the definition oflimitingPoint. The first option, using

S1, is to consider the latest time point, as in Figure 5.4(b),in which a slightly smaller

rescheduling horizon is defined. The other option, usingS5, is to consider the earliest
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MA       

MB         

…          

(a) 

    

MA 1 3 5

MB 2 4 6

…    

(b) 

    

MA 1 3 5

MB 2 4 6 

…    

(c) 

    

MA 1 3 5

MB 2 4 6

…    

(d) 

    

MA 1 3 5

MB 2 4 6 

…    

(e) 

due-date 

due-date

due-date

due-date

Figure 5.3: Example of the collection of idle times; (a) the new job requirements, (b) idle
time collection using strategy BW1, (c) BW2, (d) BW3 and (e) BW4.

time point, as in Figure 5.4(c). The collection of idle timesis also illustrated in Figure

5.6. In this case, the job to be inserted requires one more unit of processing time on M1,

as in Figure 5.5(a). In this example the time accumulated in abackwards fashion using

S1 in Figure 5.5(c) andS5 in Figure 5.5(d), is insufficient to accommodate the new job

and thelimitingPoint is earlier than thef easiblePoint. In this case, time has to be accu-

mulated in a forward fashion, as illustrated in Figure 5.6(a). This can be done using any

of the strategiesS1−S8. For example, Figure 5.6(b) and Figure 5.6(c) show what the

rescheduling horizon would be ifS1 andS5 were used, respectively.

The remaining rescheduling actions, steps 3–7 from the algorithm in Figure 5.1, fol-

low the same pattern presented for rush orders in the previous chapter. In step 3, the set
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M1*  1  6  7   8 

M2*   2  8   

M3    3  2   9  7 6 

M4  4    6  9

M5    5 3   6   7 

…                  

(a)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(b)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(c)

due-

date dj

rescheduling

horizon

due-

date dj

limitingPoint

rescheduling

horizon

due-

date dj

limitingPoint

Figure 5.4: Example of the calculation of the rescheduling horizon; (a) the collection of
idle time on machines, (b) the backwards calculation oflimitingPoint using strategy S1
and (c) the backwards calculation oflimitingPoint using strategy S5.

O aggregates affected operations within the rescheduling horizon with new jobj. In step

4, both release time and due date of jobs inO are updated, in order to keep operations

within the rescheduling horizon. In steps 5–6, a new scheduling subproblemS′ is defined

and solved using the previously developed genetic algorithm. In step 7, the feasibility of

the schedule is verified, in which overlaps between the generated partial schedule and the

initial one are solved by shifting operations to the right when necessary.

The algorithm presented in Figure 5.1 is able to manage normal and rush orders, since
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M1*  10         

M2*  10         

M3        10     

M4           10   

M5             10

…               

* parallel machines

(a)

                  

M1*  1  6  7   8 

M2*  2  8   

M3    3  2   9  7 6 

M4  4    6  9  

M5    5 3   6   7 

…                  

(b)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(c)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(d)

due-

date dj

due-

date dj

limitingPoint

feasiblePoint

due-

date dj

limiting

Point

feasible

Point

Figure 5.5: Example of the calculation of the rescheduling horizon; (a) new jobj =
10 processing requirements, from those in Figure 5.2, extended by 1 time unit, (b) the
collection of idle time on machines from the due dated j , (c) the backwards calculation of
limitingPoint using strategyS1 and (d) the backwards calculation oflimitingPoint using
strategyS5.
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M1*  1  6  7  8 

M2*   2  8 

M3    3  2  9  7 6 

M4  4    6   9  

M5    5 3  6   7 

…                  

(a)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(b)

                  

M1*  1  6     7   8 

M2*   2      8   

M3    3  2    9  7 6 

M4  4    6   9  

M5    5 3   6   7 

…                  

(c)

feasiblePoint

limiting

Point

feasiblePoint

rescheduling

horizon

rescheduling

horizon

Figure 5.6: Example of the calculation of the rescheduling horizon; (a) the collection of
idle time on machines fromfeasiblePoint, (b) the forwards calculation oflimitingPoint
using strategyS1 and (c) the forwards calculation oflimitingPointusing strategyS5.

idle times are collected in both directions, backwards and forwards fashion. The only

additional requirement is that rush orders must necessarily pass through step 2.ii, which

sets idle times to be collected in a forward way. Consequently, a more general match-up

algorithm, which is able to manage both types of arriving orders, is shown in Figure 5.7.
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Input : An initial scheduleS, a new jobj with due dated j , initialPoint

Output : A new schedule with jobj integrated

1. LetfeasiblePointbe the latest completion time of operations whose processing time is crossed
by initialPoint.

2. CalculatelimitingPoint by collecting idle time starting from the due date of the new job d j in
a backwards fashion towards thefeasiblePoint.

i If limitingPoint≥ f easiblePointand new job j is a normal order

- Let therescheduling horizonbe the time window betweenlimitingPoint and the due
dated j .

ii Else

- RecalculatelimitingPoint by collecting idle times starting fromfeasiblePointin a
forwards direction towards the due dated j .

- Let the rescheduling horizonbe the time window betweenf easiblePoint and
limitingPoint.

3. LetO be the set of operations within therescheduling horizon, plus the operations of jobj.

4. Update the release time and due dates of jobs inO so as to lie within therescheduling horizon.

5. Let operations inO define a new scheduling problemS′.

6. SolveS′ using GA.

7. IntegrateS′ into Schecking and removing overlaps.

Figure 5.7: Pseudocode of the match-up algorithm for new orders

5.3 Experiments on Real World Data

Data sets obtained from Sherwood Press are used to test thePerformanceandStabilityof

the developed match-up algorithm shown in Figure 5.7. The data of the production orders

of several months were used to produce schedules. In each instance, newly arriving jobs

were randomly generated taking into account the same three parameters,sat, insTimeand

jobSize, defined in the previous chapter. The combination of these parameters sets again

a total of 45 analysed instances.

Initial schedules, previously selected for chapter 4, are used to here to insert the newly

arriving jobs. Match-up strategies S1-S8, total rescheduling (T), right shift rescheduling

(RS) and insertion in the end (E) are responsible again to integrate the new jobs into initial

schedules. BothPerformanceandStabilityare recorded for each strategy, each type of

instance for each arriving job.

Features as population size, number of generations, crossover and mutation rates for

the genetic algorithm were kept unchanged. Machine specifications, including hardware

and software, also remain the same.
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As mentioned in the previous chapter, improvements are proposed for the insertion of

rush orders. These results are analysed and statistically validated before the investigation

of normal orders. The following subsections formally discuss the obtained results.

5.3.1 Rush Orders - improved version

Results from experiments in chapter 4 show that there is a conflict betweenStabilityand

Performance, which means that schedules with a goodStabilityare typically poor regard-

ing Performance, and vice-versa. A certain level of conflict is, of course, natural, since

StabilityandPerformanceare two conflicting criteria. The applied fitness function was

optimising only thePerformanceduring the rescheduling process and reasonableStabil-

ity results were found due to match-up strategies modifying only a part of the schedule.

However, these results can be improved by optimising, instead of thePerformance, the

sum of themakespanand theStability measures, previously introduced asSGMake and

Stability, expressions 4.2 and 4.5, from the previous chapter, respectively. Whereas it is

natural to consider theStabilityduring rescheduling, the use of themakespanobjective

rather than thePer f ormanceis justified as follows.

ThePerformanceof schedules is negatively correlated with theDelay that they incur

after rescheduling. This means that by considering thePer f ormanceas fitness function

for rescheduling, the new schedules within the rescheduling horizon are of a good local

quality, but, once these are integrated into the initial schedule, theDelay incurred lessens

the Per f ormanceof the whole schedule. In order to minimise theseDelay values, it is

necessary that new schedules within the rescheduling horizon are as short as possible;

and this is achieved by minimising themakespan. Note that the proposed new settings

also impose a double control ofStability, since expression 4.5 is now part of the fitness

function and match-up strategies still modify only a part ofthe original schedule.

This subsection follows the same methodology used to analyse the original algorithm

for rush orders. First, a complete statistical analysis regardingPerformanceandStabil-

ity of this new version is investigated. Subsequently, a comparison between the original

algorithm and this improved version is presented in order tovalidate the expected im-

provements.

As expected, similar results on the statistical analysis are found, in which match-up
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algorithms are comparable to the right shift and insertion in the end strategies with respect

to Stability and as good as the total rescheduling strategy with respect to Performance.

More details about these results are discussed next.

The trade-offs betweenPerformanceand Stability are presented in Figure 5.8, in

which samples between 0.3 and 0.45 forPerformance, and between 0.7 and 0.9 forStabil-

ity are considered outliers. A more concentrated variation inStabilityis now observed due

to the new GA settings delivering highly stable schedules. Again, no positive or negative

effects onPerformanceis observed when theStability is increased, or vice-versa, which

means that stable and good quality schedules are still delivered.

Table 5.1 summarises average and standard deviation results forPerformanceandSta-

bility achieved by the investigated strategies for the different problem parameters. Each

cell has an average result of 10 times executing the rescheduling algorithm. Addition-

ally, the best strategies are highlighted in bold for each type of instance and numbers be-

tween brackets show the number executions done for each instance. Once again, match-up

strategies combine good features of T, RS and E, since they deliver good results for both

PerformanceandStability. They are comparable to the best results presented by T and E,

with respect toPerformanceandStability, respectively. Note that E now represents the

optimalStabilitybecause it keeps both sequence and time of current operations. Among

match strategies, S1-S4 outperform S5-S8 in most groups of instances. These results are

statistically verified next.

The summary of the ANOVA is given in Table 5.2. All “main effects” and “interac-

tions” involving the parameter Strategy have influences on bothPerformanceandStability
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Figure 5.8: Trade-offs betweenPerformanceand Stability for rush orders - improved
version
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Table 5.1: Average and standard deviation values forPerformanceandStabilityobtained
by the rescheduling strategies for rush orders - improved version

Per f ormance- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.533 0.533 0.533 0.532 0.532 0.532 0.531 0.5290.537 0.528 0.510
(15) medium 0.526 0.526 0.527 0.527 0.525 0.525 0.525 0.526 0.523 0.523 0.481
(15) high 0.525 0.527 0.528 0.528 0.513 0.512 0.523 0.5090.529 0.513 0.519

jobSize (9) 1 0.535 0.535 0.535 0.535 0.532 0.533 0.532 0.5320.539 0.532 0.526
(9) 2 0.531 0.532 0.532 0.533 0.528 0.526 0.530 0.525 0.529 0.529 0.516
(9) 3 0.529 0.529 0.529 0.5290.523 0.522 0.527 0.521 0.523 0.524 0.504
(9) 4 0.525 0.526 0.526 0.526 0.519 0.519 0.523 0.5170.531 0.515 0.491
(9) 5 0.521 0.523 0.523 0.522 0.515 0.516 0.519 0.5130.526 0.507 0.479

insTime (15) beginning 0.533 0.532 0.535 0.532 0.517 0.518 0.525 0.511 0.533 0.518 0.493
(15) middle 0.525 0.528 0.526 0.528 0.527 0.526 0.528 0.5280.530 0.521 0.493
(15) end 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.5260.525

(45) total average 0.528 0.529 0.529 0.529 0.523 0.523 0.5260.521 0.530 0.521 0.503
(45) standard deviation 0.004 0.004 0.004 0.004 0.006 0.0060.004 0.008 0.005 0.007 0.016

Stability- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.992 0.992 0.993 0.993 0.993 0.993 0.995 0.993 0.952 0.997 1.000
(15) medium 0.983 0.983 0.983 0.983 0.983 0.983 0.981 0.982 0.972 0.998 1.000
(15) high 0.995 0.995 0.995 0.995 0.987 0.986 0.982 0.981 0.920 0.998 1.000

jobSize (9) 1 0.998 0.998 0.998 0.998 0.992 0.992 0.992 0.990 0.942 0.999 1.000
(9) 2 0.996 0.997 0.996 0.996 0.993 0.992 0.990 0.991 0.956 0.998 1.000
(9) 3 0.996 0.996 0.996 0.996 0.994 0.995 0.991 0.991 0.953 0.997 1.000
(9) 4 0.985 0.985 0.986 0.986 0.985 0.984 0.981 0.981 0.952 0.997 1.000
(9) 5 0.975 0.976 0.976 0.976 0.975 0.974 0.975 0.972 0.937 0.996 1.000

insTime (15) beginning 0.990 0.991 0.991 0.990 0.983 0.982 0.982 0.981 0.909 0.995 1.000
(15) middle 0.990 0.990 0.990 0.991 0.990 0.990 0.985 0.985 0.949 0.998 1.000
(15) end 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.986 1.000 1.000

(45) total average 0.990 0.990 0.990 0.990 0.988 0.987 0.9860.985 0.948 0.997 1.000
(45) standard deviation 0.006 0.006 0.006 0.006 0.006 0.0060.006 0.006 0.020 0.0010.000

Table 5.2: Results of the ANOVA test for rush orders - improved version

Per f ormance Stability

F value P value F value P value

Main effects
Strategy 27.08 ≤ 0.05 85.48 ≤ 0.05
sat 47.61 ≤ 0.05 16.07 ≤ 0.05
jobSize 52.84 ≤ 0.05 48.62 ≤ 0.05
insTime 5.55 ≤ 0.05 42.39 ≤ 0.05

Interactions
Strategy*sat 9.43 ≤ 0.05 13.73 ≤ 0.05
Strategy*jobSize 1.96 ≤ 0.05 1.47 ≤ 0.05
Strategy*insTime 8.64 ≤ 0.05 19.33 ≤ 0.05

R2 0.74 0.84
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metrics. A high variability on results is confirmed by the relatively largeR2 values. More

details about ANOVA are discussed next. The Bonferroni’s correction for pairwise com-

parisons is carried out to identify strategies which deliver superior results. These compar-

isons are given in Figure 5.9 withPerformanceresults below the diagonal, and above for

Stability.

As expected, RS and E deliver goodStability and poorPerformance, while T has

poorStabilityand goodPerformance. Match-up strategies combine these good features,

since strategies S1-S4 are statistically non-distinguishable from T forPerformanceand

strategies S1-S8 produce comparable results to RS and E forStability. Note that S1-S4

still deliver betterPerformancethan S5-S8 because they set smaller rescheduling hori-

zons, which affect a fewer number of operations on the rescheduling process, avoiding

Stability
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Figure 5.9: Mean pairwise comparisons ofPerformanceandStability for rush orders -
improved version
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the presence of large delays. SimilarStability results are obtained among all match-up

strategies due to the applied new settings on the fitness function. These results are graph-

ically shown in Figure 5.10(a) and 5.10(b) forPerformanceandStability, respectively.

Note that theStabilitymeasure is now considering both sequence (Sta1) and time (Sta2)

deviations, as described by the expressions 4.3 and 4.4 fromchapter 4. Consequently, E

delivers superiorStabilityresults then RS, since E keeps the initial schedule intact, while

RS requires some time deviations. Figure 5.11(a) shows the expected larger delays de-

livered by S5-S8 and RS. Additionally, Figure 5.11(b) confirms that match-up strategies

are still efficient, since only 10 seconds are required on average to reschedule affected

operations.
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Figure 5.10: Overall results obtained by each reschedulingstrategy; the x-axis shows the
strategy; the y-axis shows the mean (dot) and 95% confidence interval (vertical bars) of
Performance(a) andStabilityfor rush orders - improved version
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Figure 5.11: Overall results obtained by each reschedulingstrategy onDelay (a) and
Running Time(b) for rush orders - improved version
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The parameterssat, jobSizeand insTimehave a significant influence on bothPer-

formanceand Stability over different applied rescheduling strategies, as shown by the

ANOVA test results in Table 5.2. These effects are illustrated in Figure 5.12. As expected,

PerformanceandStabilityvalues decrease when rescheduling is done on highly saturated

schedules, when the arriving job requires many operations,or when the rescheduling oc-

curs at the beginning or in the middle of the schedule.

The ANOVA results in Table 5.2 together with the averages present in Figure 5.10

identify that the interaction between problem parameters are significant, which indicates

that some strategies are better coping with certain conditions than others. Regardingsat

andinsTime, for instance, S1-S4 are much preferred when the rescheduling occurs either

on highly saturated schedules or at the beginning of schedules. Under these scenarios, the

Delayinserted by the rescheduling algorithm will have a strongereffect than if reschedul-

ing occurs at the end of the schedule or in less saturated schedules. RegardingjobSize,

S1-S4 still superior than S5-S8 when jobs with a small numberof operations are inserted,

because they define smaller rescheduling horizons and, consequently, smaller delay val-

ues, leading to a better overallPerformanceandStability.

Once again, match-up strategies leads to good quality schedules, which are highly sta-

ble as the right shift and insertion in the end strategies andas good as the total rescheduling

strategy with respect toPerformance. Strategies S1-S4 are slightly superior to the other

match-up approaches and deliver the most consistent results under different problem sce-

narios, as demonstrated by Table 5.1 and Figure 5.10.

5.3.2 Comparison between Rush Orders using the original GA and

the Improved Version

The improved version of the match-up algorithm so far have shown that it remains ef-

fective for inserting rush orders after statistical multi-comparison tests and analysis of

variance were carried out on the previous subsection. Figure 5.13 presents comparative

results between the original rescheduling algorithm introduced in chapter 4, which uses

only thePer f ormanceas the function to optimise during rescheduling (O), and thepro-

posed improved version, that uses the sum of the makespan andStability(I).
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The results obtained by the new version of the match-up algorithm (I) are remark-

ably superior to the earlier ones (O) with respect to bothPerformanceandStability. This

improvements are due to smallerDelayvalues being generated with the minimisation of

makespan and the effective control ofStability which is now integrated into the fitness

function. Figure 5.14 shows the overall reduction ofDelay values obtained by the im-
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Figure 5.12: Main effects onPerformance(a), (c), (e) andStability (b), (d), (f) due to
Strategy (a)-(b),jobSize(c)-(d) andinsTime(e)-(f) for rush orders - improved version
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Figure 5.13:PerformanceandStabilityvalues obtained with the original fitness function
(O) and the improved version (I)
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Figure 5.14:Delayvalues obtained with the original fitness function (O) and the improved
version (I)

proved version (I) compared with the original one (O) for allrescheduling strategies. The

negative correlation betweenDelay andPerformanceand the effectiveStability control

identify that the improved version of the match-up algorithm leads to schedules with bet-

ter quality results. Note that no considerable improvements in Performanceare observed

for S3-S4, since their produced delays were already small.

5.3.3 Normal Orders

Normal orders are more flexible disturbances because their insertion are based on the job

due-date, which gives a time window to make repair decisions.

This subsection follows the same methodology used to analyse the algorithm for rush

orders, in which a complete statistical analysis is carriedout to investigate bothPerfor-

manceandStabilityof the repaired schedules. Subsequently, a comparison between rush
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and normal orders is also presented in order to identify the strengths of the match-up algo-

rithm dealing with jobs with different levels of urgency. Note that the same settings of the

genetic algorithm previously used in Section 5.3.1 is applied in this experiment because

they deliver better overall results regarding all analysedmetrics.

Similar results on the statistical analysis are found, in which match-up algorithms are

comparable to the right shift and insertion in the end strategies with respect toStability

and as good as the total rescheduling strategy with respect to Performance. More details

regarding these results are discussed next.

The trade-offs betweenPerformanceand Stability are presented in Figure 5.15, in

which samples between 0.3 and 0.45 forPerformance, and between 0.7 and 0.9 forStabil-

ity are considered outliers. Again, a more concentrated variation onStability is observed

due to the GA settings still delivering highly stable schedules. As expected, no positive or

negative effects onPerformanceis observed when theStabilityis increased, or vice-versa,

which means that stable and good quality schedules are stilldelivered.

Each instance of the problem is executed 10 times and both average and standard

deviation results obtained by the investigated strategiesare shown in Table 5.3. Best

strategies are highlighted in bold for each analysed instance. Once again, S1-S8 combine

strengths of T, RS and E, delivering good quality stable schedules, which are similar to

T regardingPerformanceand comparable to RS and E regardingStability. Among match

strategies, S1-S4 outperform S5-S8 in some groups of instances and these results are

statistically verified next.

Table 5.4 shows the ANOVA results, in which all “main effects” and “interactions”

involving the parameter Strategy have influences onPerformanceandStability. A high
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Figure 5.15: Trade-offs betweenPerformanceandStabilityfor normal orders
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Table 5.3: Average and standard deviation values forPerformanceandStabilityobtained
by the rescheduling strategies for normal orders

Per f ormance- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.528 0.528 0.526 0.526 0.532 0.533 0.529 0.5290.540 0.524 0.510
(15) medium 0.518 0.517 0.511 0.512 0.517 0.518 0.520 0.5210.523 0.505 0.481
(15) high 0.512 0.513 0.526 0.526 0.513 0.514 0.522 0.511 0.512 0.512 0.519

jobSize (9) 1 0.524 0.524 0.526 0.526 0.521 0.524 0.525 0.5250.526 0.525 0.526
(9) 2 0.520 0.520 0.531 0.531 0.524 0.525 0.529 0.525 0.529 0.522 0.516
(9) 3 0.522 0.523 0.521 0.522 0.524 0.524 0.527 0.5210.529 0.517 0.504
(9) 4 0.518 0.519 0.517 0.518 0.521 0.5190.523 0.518 0.521 0.507 0.491
(9) 5 0.512 0.512 0.510 0.510 0.514 0.515 0.515 0.5120.520 0.496 0.479

insTime (15) beginning 0.526 0.520 0.526 0.5270.529 0.525 0.528 0.528 0.521 0.514 0.493
(15) middle 0.512 0.519 0.523 0.523 0.512 0.518 0.523 0.5110.525 0.513 0.493
(15) end 0.520 0.520 0.514 0.513 0.521 0.521 0.521 0.5210.528 0.513 0.525

(45) total average 0.519 0.520 0.521 0.521 0.521 0.521 0.5240.520 0.525 0.513 0.503
(45) standard deviation 0.006 0.005 0.007 0.007 0.006 0.0050.004 0.007 0.007 0.009 0.017

Stability- Rescheduling strategy

S1 S2 S3 S4 S5 S6 S7 S8 T RS E

sat (15) low 0.992 0.992 0.992 0.992 0.991 0.991 0.985 0.990 0.955 0.997 1.000
(15) medium 0.985 0.985 0.984 0.985 0.984 0.984 0.983 0.983 0.967 0.997 1.000
(15) high 0.986 0.993 0.994 0.994 0.977 0.989 0.979 0.981 0.846 0.998 1.000

jobSize (9) 1 0.988 0.996 0.998 0.998 0.987 0.995 0.989 0.995 0.906 0.999 1.000
(9) 2 0.994 0.997 0.998 0.998 0.994 0.996 0.994 0.989 0.932 0.999 1.000
(9) 3 0.997 0.997 0.996 0.997 0.994 0.991 0.985 0.989 0.939 0.997 1.000
(9) 4 0.986 0.986 0.986 0.986 0.978 0.985 0.981 0.977 0.925 0.997 1.000
(9) 5 0.973 0.973 0.974 0.972 0.967 0.975 0.962 0.973 0.913 0.995 1.000

insTime (15) beginning 0.991 0.991 0.990 0.990 0.990 0.990 0.986 0.989 0.925 0.995 1.000
(15) middle 0.980 0.987 0.989 0.988 0.972 0.984 0.972 0.976 0.922 0.998 1.000
(15) end 0.992 0.992 0.992 0.992 0.991 0.991 0.988 0.989 0.922 1.000 1.000

(45) total average 0.988 0.990 0.990 0.990 0.984 0.988 0.9820.984 0.923 0.997 1.000
(45) standard deviation 0.007 0.007 0.007 0.008 0.009 0.0060.009 0.007 0.031 0.0020.000

Table 5.4: Results of the ANOVA test for normal orders
Per f ormance Stability

F value P value F value P value

Main effects
Strategy 14.33 ≤ 0.05 169.44 ≤ 0.05
sat 90.99 ≤ 0.05 60.71 ≤ 0.05
jobSize 41.93 ≤ 0.05 55.91 ≤ 0.05
insTime 13.81 ≤ 0.05 21.34 ≤ 0.05

Interactions
Strategy*sat 8.29 ≤ 0.05 53.86 ≤ 0.05
Strategy*jobSize 2.09 ≤ 0.05 2.71 ≤ 0.05
Strategy*insTime 7.58 ≤ 0.05 1 ≤ 0.05

R2 0.73 0.90
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variability on results is confirmed by the relatively largeR2 values. Additionally, the

Bonferroni’s correction for pairwise comparisons is carried out to identify strategies with

superior results. These comparisons are given in Figure 5.16 with Performanceresults

below the diagonal, and above forStability.

Match-up strategies are still combining good features of T,RS and E, witout not ex-

hibit their weaknesses, since all strategies are now statistically non-distinguishable from

T for Performanceand as good as RS and E forStability. Note that, additionally, S2-S4

are statistically non-distinguishable from RS forStability. SimilarPerformanceandSta-

bility results are obtained among all match-up strategies due to the effective control of

Delayvalues by the GA fitness function. Note that the newly arriving jobs are inserted at

different parts of the schedule based on the requirements ofits due date. Consequently,

there is a higher chance of using idle times present in the current schedule, which has a

Stability
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Figure 5.16: Mean pairwise comparisons ofPerformanceandStabilityfor normal orders
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positive effect on the reduction of delays. S1-S4 are again highlighted as the ones with the

better overall results, as graphically shown in Figure 5.17(a) and 5.17(b) forPerformance

andStability, respectively. Additionally, theDelay values delivered by all rescheduling

strategies are presented in Figure 5.18. The running time parameter is not investigated

again since they always deliver similar results, with all match-up strategies delivering

reasonable execution times.

The ANOVA test results, present in Table 5.4, show that the parameterssat, jobSize

and insTimehave a significant influence on bothPerformanceand Stability over dif-

ferent rescheduling strategies. These effects are graphically illustrated in Figure 5.19.

As expected,PerformanceandStability values decrease when rescheduling is done on

highly saturated schedules, when the arriving job requiresmany operations, or when the

rescheduling happens in the middle of the schedule. Note that rush orders start collecting
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Figure 5.17: Overall results obtained by each reschedulingstrategy; the x-axis shows the
strategy; the y-axis shows the mean (dot) and 95% confidence interval (vertical bars) of
Performance(a) andStability(b) for normal orders
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Figure 5.18: Overall results obtained by each reschedulingstrategy onDelay for normal
orders
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Figure 5.19: Main effects onPerformance(a), (c), (e) andStability (b), (d), (f) due to
Strategy (a)-(b),jobSize(c)-(d) andinsTime(e)-(f) for normal orders

idle times as soon as they arrive in the shop floor, which leadsto higher saturation levels at

the beginning and in the middle of the schedules. Contrarily, normal order start collecting

idle times from due-dates, which mostly concentrate jobs inthe middle of the schedule.

The ANOVA test also identify that the interaction between strategy and other prob-

lem parameters are significant, which indicates that some strategies are better coping with
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certain conditions than others. Regardingsat andinsTime, for instance, S1-S4 are much

preferred when the rescheduling occurs either on highly saturated schedules or in the mid-

dle of schedules. Under these scenarios, theDelayinserted by the rescheduling algorithm

will have a stronger effect than if rescheduling occurs in less saturated schedules or at

the end of the schedule. RegardingjobSize, S1-S4 still superior than S5-S8 when jobs

with a small number of operations are inserted, because theydefine smaller rescheduling

horizons and, consequently, smaller delay values, leadingto a better overallPerformance

andStability.

All match-up strategies are producing good quality schedules even when more flexible

disturbances as normal orders occur in the shop floor. They still deliver highly stable

solutions as the right shift and insertion in the end strategies and goodPerformanceas the

total rescheduling. In general, Strategies S1-S4 are slightly superior to the other match-up

approaches and they deliver the most consistent results under different problem scenarios,

as shown in Table 5.3 and Figure 5.17.

5.3.4 Comparison between Rush and Normal Orders

Jobs arriving in Sherwood press shop floor are either classified as rush or normal orders.

It is expected to get superior results for normal ones due to its flexible nature, i.e. differ-

ent due-dates, which gives a larger time window to make repair decisions when compared

with rush ones. Rush orders (R) are analysed and their results for PerformanceandSta-

bility are compared with the ones obtained by normal orders (N) for each rescheduling

strategy, as shown in Figure 5.20 (a) and (b), respectively.

Surprisingly, rush orders achieve betterPerformanceresults because their due dates

are not predefined as they need to be integrated as early as possible in the current schedule,

which leads to good satisfaction grades regarding the tardiness of arriving jobs. Addition-

ally, rush orders achieve slightly better overall results for Stability due to the fact that

these disruptions are controlled as soon as they arrived in the shop floor, while regular

orders keep changing different parts of the schedule based on different due dates values

required by the newly arriving jobs.
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5.4 Discussion

Improvements on the genetic algorithm fitness function led to a more effective control of

bothPerformanceandStabilityof new schedules for the job shop scheduling/rescheduling

problem presented by Sherwood Press. This effect is a resultof an overall reduction of

Delayvalues obtained by the improved version compared with the original one described

in the previous chapter. Since the new settings bring remarkably superior results, they

were also applied in experiments for normal orders. Note that there is a double control of

Stability, since this feature is now part of the fitness function of the GA combined with

match-up changing only specific parts of the schedule.

Statistical multi-comparison tests and analysis of variance reveal that match-up strate-

gies are highly flexible to deal with complex disruptions, such as the ones which affects

multiple resources in a shop floor as the arrival of rush and normal orders. This gen-

eralisation confirms that match-up strategies deliver highly stable and good performing

schedules even when disruptions with different levels of urgency arises in the shop floor.

Match-up strategies S1-S4 remain highlighted as good candidates for possible incor-

poration into the scheduling/rescheduling system of Sherwood Press, since they produce

good values for bothPerformanceandStabilityunder different problem scenarios.
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Figure 5.20: Rush (R) versus normal orders(N) forPerformanceandStability
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5.5 Summary

This chapter presents further investigation of the real world job shop scheduling/rescheduling

problem presented by Sherwood Press, Nottingham, UK. A moregeneral case of disrup-

tion is investigated, in which newly arriving jobs have different levels of urgency to be

processed, referred here as normal orders. The main goal is to check the flexibility of

match-up strategies under different types of disruption toachieve highly stable and good

quality schedules.

Some design changes are proposed to adapt the original match-up algorithm to also

accommodate normal orders. The obtained results were analysed and statistically vali-

dated. Surprisingly, rush orders deliver better overall results because their due dates are

not predefined and the disruption is controlled as soon as they arrived in the shop floor.

Additionally, improvements on the genetic algorithm fitness function are proposed for

rescheduling affected operations. Remarkably superiorPerformanceandStabilityresults

are found because the minimisation of the makespan reduces the overlaps between initial

and new schedules, and the control ofStability soften changes on both sequence and

processing time of operations.

In summary, match-up strategies are effective to manage different types of complex

disruptions as the ones presented by Sherwood Press. They are able to combine the best

attributes of total rescheduling, right shift and “insertion in the end”, in which good per-

forming and highly stable schedules are delivered regardless of the problem parameters.

The next chapter investigates the combination of match-up strategies with a fuzzy

robust scheduling system. The aim is to analyse if they are complimentary, regarding the

use of idle times present on machines, to generate reliable schedules.



Chapter 6

Fuzzy approaches to robust job shop

rescheduling

6.1 Introduction

This chapter considers a complex real world job shop rescheduling problem, in which

jobs with different levels of urgency arrive every day in theshop floor and they need to

be integrated in the existent schedule. A fuzzy scheduling system for inserting idle times

on machines in order to produce initial robust schedules is developed; and a rescheduling

system which uses match-up approaches accommodates the newly arriving jobs. The

main goal is to investigate the quality of this combined system when the arriving jobs are

either normal orders or rush ones. The obtained results and statistical analysis validate

hypothesis 2 from Chapter 1, showing that a robust initial schedule combined with match-

up rescheduling lead to higher quality and more reliable schedules even when jobs with

different urgency levels arrive in a dynamic and uncertain shop floor.

The job shop scheduling problem presented by Sherwood Press- Nottingham, UK, is

investigated in this chapter. The core idea is to find an appropriate scheduling/rescheduling

approach to achieve a high quality schedule, regarding itsPerformanceandStability. The

goal is to generate a robust schedule by inserting idle timeson machines in order to re-

duce the negative effects of uncertainties that are presentin the shop floor. On the other

hand, match-up algorithms collect idle times on machines todefine arescheduling hori-

zon, which is a part of the original schedule that is going to be modified to accommodate

116
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the newly arriving jobs. These strategies are complementary because both of them work

with idle time control. The aim is to investigate possible effects of their combination.

Match-up algorithms have been only used for relatively simple scheduling problems.

For instance, single machine problems are considered in [11] and [15], single stage with

parallel machines problem in [12] and a match-up strategy coupled with a branch and

bound algorithm is used for a flow shop problem in [3]. Robust scheduling, on the other

hand, has been mostly investigated for machine breakdowns problems. For instance,

fuzzy processing time and release time have been used in [35]and [21], branch and bound

heuristics in [61] and [67], genetic algorithms in [47] and [59] and temporal protection

based on historical data of the resources in [26]. Jobs with changing processing times

are investigated in [28], which also applies fuzzy variables to set durations of operations.

The research presented in this chapter and the resultant paper in [72] describe the only

applications of match-up algorithms with robust scheduling to a complex real world job

shop problem.

The remaining of this chapter is organised as follows. In sections 6.2 and 6.3, two dif-

ferent fuzzy rule-based systems are proposed to insert idletimes on machines, in which

databases with jobs requirements from Sherwood Press are used as reference for expected

behaviour of the investigated shop floor. A comparison between these systems is also

presented in order to decide which of them is more appropriate to apply to the anal-

ysed scheduling/rescheduling problem. Sections 6.4 and 6.5 discuss and summarise the

conclusions of this chapter. Note that a discussion of match-up algorithms was already

presented in the previous chapters, which shown their encouraging results regarding both

PerformanceandStabilityof resultant schedules.

6.2 Fuzzy Rule-based System for Robust Scheduling

The proposed fuzzy rule-based systems mimic the productionmanager’s reasoning in

making an initial robust schedule, in which information about jobs requirements are used

as reference to insert idle times on machines. These extra idle times are inserted by

extending the original processing times of operations. An overview of this process is

described below.
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The proposed fuzzy systems decide for each operationoi j whether to extend its pro-

cessing time and how much to extend based on information on the workload of machines.

Figure 6.1 (a) shows an example of 12 jobs that must be allocated on available machines.

Each job has precedence constraints between operations. Note that jobs may have a dif-

ferent number of operations, i.e. jobs 1 and 2 have 2 and 3 operations, respectively.

Machines M1 and M2 are parallel machines. After deciding on the extension for each

operation, a schedule is generated using a genetic algorithm to optimise itsPerformance,

shown in Figure 6.1 (b). The extension of original processing times generated by the

fuzzy systems are highlighted in gray in Figure 6.1(b). In this resultant schedule, original

processing times are restored and finishing times of operations are updated, leaving idle

times on the machines and creating an initial robust solution, as shown in Figure 6.1 (c).

6.2.1 Fuzzy Rule-based System with Three Inputs

The first proposed fuzzy module has three antecedents and oneconsequent variable as

shown in Figure 6.2. Databases from Sherwood Press provide information about the

typical workload of machines in the shop floor. The main goal is to develop a system

which can identify busy machines and busy periods in the timehorizon.

The first antecedent,PO, is the total processing time of operations for each machine.

The second one,NO, is the total number of operations that are required to be processed on

a machine. They are both responsible to identify busy machines in the shop floor. Note

that the information provided byNO is also relevant because the investigated scheduling

problem considers setup time between operations. BothPO andNO are represented by

vectors, as shown in Figure 6.3 (a) and (b), respectively. M1can be highlighted as a busy

machine since it has a large value for bothPO andNO.

On the other hand, the third antecedent,PNO, checks the possible number of opera-

tions that can be processed each minute of the scheduling horizon. Note that each job

has a release and due-date time, defining a possible time window within which a job is

processed. All jobs considered together can have overlapping time windows andPNO

measures the maximum number of overlapping operations thatcan be processed each

minute of the scheduling horizon for each machine. For instance, lets consider only jobs

1 and 2 from Figure 6.1 (a). Hypothetically, they have the same release time and due-date,
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M1* 1 6 7 9

M2* 2 8

M3 3 2 10 11 6
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Figure 6.1: Original processing times of jobs following their precedence constraints (a),
schedule with extended processing times (b), and an initialrobust schedule (c)
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Fuzzy 1 

PO

NO

PNO

EO

Figure 6.2: Fuzzy Rule-based System with three inputs and one output

PO

M1 M2 … M8 M9 … M17 M18

18081 14828 … 2451 9297 … 8619 5523

(a)

NO

M1 M2 … M8 M9 … M17 M18

111 104 … 26 95 … 19 40

(b)

PNO

 M1 M2 … M8 M9 … M17 M18

1 13 9 … 5 8 … 5 2

… … … … … … … … …

20000 44 37 … 6 34 … 10 16

… … … … … … … … …

30000 0 4 … 11 4 … 2 2

… … … … … … … … …T
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47700 0 0 … 0 1 0 0

(c)

Figure 6.3: Example of data present in vectors of total processing time of operationsPO

(a) and total number of operationsNO (b), and in a matrix of total number of possible
operationsPNO (c)

predefined as 1 and 10, respectively. A matrix 10 x 5 is then defined to setPNO values

for each instant of the time horizon for each of the 5 available machines. Note that two

operations have to be processed on M5, i.e. one operation from each job. Consequently,

column M5 setPNO = 2 for the interval [1,10]. Similarly, M1-M3 setPNO = 1. Note
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that M4 havePNO = 0 because no operation has to be processed on this machine. The

results are illustrated in Figure 6.4. A typical schedulingproblem, however, set jobs with

different intervals between release times and due-dates. Thus, each line may set different

PNO values based on these intervals. Figure 6.3 (c) shows an example of PNO values

calculated for 18 machines within a time horizon of 47700 time units. An operation with

release time on 20000 requiring M1 can be highlighted as in a busy period because its

PNO has a relatively large value.

The consequent,EO, is the extension value which is going to be applied to an original

processing time of an operation. Extensions are generated within the interval [0,1], in

with ”0” means no extension and ”1” increases the processingtime a 100%. Note that

extensions can be weighted following decisions made by the production manager.

The three input variables are described by three fuzzy sets,i.e. Low, Medium and

High, whose membership functions are presented in Figure 6.5 (a), (b) and (c), respec-

tively; the output is described by 5 fuzzy sets, i.e. No (no extension), Small, Regular,

Large and Very Large, as in Figure 6.5 (d). Note that Very large has a more concentrated

representation of the fuzzy set large in order to intensify its meaning, as described in

Subsection 3.2.1 from Chapter 3.

PNO

M1 M2 M3 M4 M5

1 1 1 1 0 2

2 1 1 1 0 2

3 1 1 1 0 2

4 1 1 1 0 2

5 1 1 1 0 2

6 1 1 1 0 2

7 1 1 1 0 2

8 1 1 1 0 2

9 1 1 1 0 2

T
i
m
e
 
h
o
r
i
z
o
n
 

10 1 1 1 0 2

Figure 6.4:PNO calculation only for jobs 1 and 2 from Figure 6.1 (a), assuming that they
have the same release time and due-date, predefined as 1 and 10, respectively.
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The three input variables have the same shapes for their fuzzy sets Low, Medium and

High. Information present in databases provided by Sherwood Press are used to configure

them properly. The shapes for the outputEO follows the same pattern of the inputs,

defining the meaning of the linguistic terms Small, Regular and Large. However two

other fuzzy sets are required, in which no extensions are represented by the singleton set

No and a hedge define Very Large fuzzy set. Note that those setsare introduced because

it allows the fuzzy module to do a more refined decision on processing times extensions.

Details about shapes and intervals for each fuzzy set are described in Table 6.1

Fuzzy rules [49] are defined which mimic the production manager’s reasoning in mak-

ing a robust schedule, namely operations to be processed on a“busy” machine in a “busy”

period should be extended more than operations in a “less busy” part of the schedule.

Fuzzy rules are shown in Table 6.2 in which aMamdanistyle fuzzy inference is used [65].

Note thatEO generates “no” extension when all inputs variablesPO, NO andPNO have

“Low” values. As soon as the input variables assume larger values, there is an incremen-

tal decision to generate larger extensions, as it can be observed when subsequent rows (or

columns) from Table 6.2 are compared. Themin operator is used in the evaluation of the

premise of each rule. The defuzzification methodcenter of gravityis applied to generate

Table 6.1: Fuzzy sets shapes and intervals for fuzzy rule-based system with three inputs
Variable Fuzzy Set Shape Interval

PO Low Trapezoidal [0 0 2000 7000]
Medium Triangular [4000 8000 12000]
High Trapezoidal [10000 15000 20000 20000]

NO Low Trapezoidal [0 0 0 60]
Medium Triangular [40 70 100]
High Trapezoidal [80 110 200 200]

PNO Low Trapezoidal [0 0 10 30]
Medium Triangular [20 35 50]
High Trapezoidal [40 60 80 80]

EO No Singleton [0]
Small Trapezoidal [0 0 2 4]
Regular Triangular [2 4 6]
Large Trapezoidal [4 6 10 10]
Very Large Gauss [0.8 6.5 10 10]

Table 6.2: Fuzzy rules for fuzzy rule-based system with three inputs

NO = Low NO = Medium NO = High
PO PO PO

Low Medium High Low Medium High Low Medium High
Low No Small Regular Small Regular Large Regular Large Very Large

PNO Medium Small Small Regular Small Regular Large Regular Large Very Large
High Small Regular Large Regular Large Very Large Large Very Large Very Large
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a crisp decision about the extension of the operation, givenas percentage of its processing

time.

From the example previously shown in Figure 6.3, a job requiring processing time

on M1 with release date at 20000 has the following crisp numbers for the defined inputs,

PO = 18081,NO = 111 andPNO = 44, respectively. This numbers are converted into

fuzzy numbers activating the fuzzy sets “High” for both inputsPO andNO, and the fuzzy

sets “Medium” and “High” for the input variablePNO, as shown in Figure 6.6. Sub-

sequently, an output with “Very Large” extension is generated, because the inputs only

activate rules which have this decision, as shown in highlighted cells in Table 6.2. The

defuzzification methodcenter of gravitytransforms the activated area on the outputEO

into a crisp number, generating an extension of 0.73, which means that the job processing

time on M1 is going to be extended by 73%. Note that the production manager can add

weights to these decisions in such a way that a maximum acceptable value for extensions

is achieved.

6.2.2 Fuzzy Rule-based System with Two Inputs

The second proposed fuzzy module has two antecedents and oneconsequent variable as

shown in Figure 6.7. The main goal of this approach is to combine characteristics related

to machine workload in only one variable, in such a way that a smaller number of fuzzy

rules can be defined to identify busy machines and busy periods in the time horizon.

The first antecedent,Mac, combines two characteristics described in the previous

model, i.e.PO andNO, total processing time of operations and total number of operations

for each machine, respectively. Both characteristics are represented by vectors, as shown

in Figure 6.8 (a) and (b). These vectors are both sorted in an ascending order and each

machine receives a rank number within the interval [0,18] which identifies the workload

of each machine, i.e. M1 got 18 as a rank number for both characteristics, which means

that M1 is a busy machine. If different machines have the samenumber of operations or

total processing times, then the ties are broken randomly. Subsequently, an average vector

is defined to combine these two characteristics, as in Figure6.8 (c). Note that a final rank

number is set for each machine. If the average number is equalfor different machines, a

higher rank is given to the one with a larger number of operations because of the presence
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Figure 6.6: Fuzzy sets activated when a job requires processing time on M1 with release
date on 20000 minutes
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Fuzzy 2 

Mac

PNO

EO

Figure 6.7: Fuzzy Rule-based System with two inputs and one output

of setup time in this job shop scheduling problem, i.e. M17 and M18 got both 9 as their

rank and the tie is solved giving 8 to M17 and 9 to M18, due to thelarger number of

operations on M18.

The consequentPNO is also used in this second approach to identify busy periodsin

the time horizon, which is represented by a matrix, as in Figure 6.8 (d). An operation with

release time on 20000 requiring M1 is busier than another operation with release time on

30000 requiring M17, because itsPNO has a larger value. Additionally, the consequent,

EO, extends the processing times of operations following the same pattern presented in

the subsection 6.2.1.

The input variables are both described by three fuzzy sets, i.e. ”NotBusy”, ”Normal”

and ”Busy”, whose membership functions are presented in Figure 6.9 (a) and (b), respec-

tively; and the output is described by 3 fuzzy sets, i.e. No (no extension), Small and Large,

as in Figure 6.9 (c). The two input variables,Mac andPNO, have similar shapes for their

fuzzy sets. Several databases from Sherwood Press are used to set their size and shape

properly. The fuzzy sets for the outputEO has the linguistic terms ”No”, ”Small” and

”Large”. Details about shapes and intervals for each fuzzy set are described in Table 6.3.

The fuzzy rules defined for this second approach follows the same idea of the first

one, in which operations to be processed on a “busy” machine in a “busy” period should

be extended more than operations in a “less busy” environment. The defined rules are

shown in Table 6.4, in which aMamdanistyle fuzzy inference is used. Note that larger

Table 6.3: Fuzzy sets shapes and intervals for fuzzy rule-based system with two inputs
Variable Fuzzy Set Shape Interval

Mac NotBusy Trapezoidal [1 1 2 9]
Normal Triangular [5 10 15]
Busy Trapezoidal [14 17 18 18]

PNO NotBusy Trapezoidal [0 0 10 30]
Normal Triangular [20 35 50]
Busy Trapezoidal [40 60 80 80]

EO No Singleton [0]
Small Trapezoidal [0 0 3 6]
Large Trapezoidal [4 7 10 10]
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PO - Characteristic 1 

Machines M1 M2 … M8 M9 … M17 M18

PO 18081 14828 … 2451 9297 … 8619 5523

Sorted_PO 18 16 … 4 12 … 11 7

(a)

NO - Characteristic 2 

Machines M1 M2 … M8 M9 … M17 M18

NO 111 104 … 26 95 … 19 40

Sorted_NO 18 17 … 8 16 … 7 11

(b)

Mac - Average between characteristics 

Machines M1 M2 … M8 M9 … M17 M18

Average 18 16.5 … 6 14 … 9 9

Workload 18 16 … 6 14 … 8 9

(c)

PNO

 M1 M2 … M8 M9 … M17 M18

1 13 9 … 5 8 … 5 2

… … … … … … … … …

20000 44 37 … 6 34 … 10 16

… … … … … … … … …

30000 0 4 … 11 4 … 2 2
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47700 0 0 … 0 1 0 0

(d)

Figure 6.8: Example of data present in vectors of total processing time of operationsPO

- Characteristic 1 (a), total number of operationsNO (b) - Characteristic 2, Average of
characteristicsMac (c) and a matrix of total number of possible operationsPNO (d)
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Figure 6.9: Membership functions for the variables total processing time of operationsPO

(a), total number of operationsNO (b), total number of possible operationsPNO (c), and
extensionEO (d)

Table 6.4: Fuzzy rules for fuzzy rule-based system with two inputs
Mac

NotBusy Normal Busy
NotBusy No Small Small

PNO Normal Small Small Large
Busy Small Large Large
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extensions are generated whenMac andPNO have larger values. Themin operator is

used in the evaluation of the premise of each rule and the defuzzification methodcenter

of gravity is applied to generate a crisp decision about the extension of each operation.

From the example previously shown in Figure 6.8, a job requiring processing time on

M1 with release date on 20000 minutes has the following crispnumbers for the inputs,

Mac= 18, andPNO = 44, respectively. This numbers are converted into fuzzy numbers

activating the different fuzzy sets, “Busy” for the inputMac, and both “Busy” and “Nor-

mal” for the inputPNO, as shown in Figure 6.10. Subsequently, an output with “Large”

extension is generated,because both inputs only activate rules with this decision, as shown

in highlighted cells in Table 6.4. The defuzzification method center of gravitytransforms

the activated area on the outputEO into a crisp number, generating a decision 0.73 exten-

sion for this example. Note that this fuzzy rule-based system defines a smaller number of

rules when compared with the first approach. A comparison between results presented by

both of them are discussed in the following section.

6.2.3 Fuzzy Rule-based Systems Analysis

Data obtained from Sherwood Press are used to test the extensions generated by the previ-

ously described fuzzy rule-based systems. A set of 894 operation samples is evaluated, in

which individual decisions are generated for each sample based on release times and ma-

chine requirements. Both fuzzy system aim to mimic the production manager decisions

to create a initial robust schedule. The main differences between them are the number of

inputs and their rules, i.e. Fuzzy1 has 3 inputs and 27 rules (as shown in Figure 6.2 and

Table 6.2), and Fuzzy 2 has 2 inputs and 9 rules (as presented in Figure 6.7 and Table 6.4).

Results obtained by both systems are presented in Figure 6.11.

Fuzzy1 can be highlighted as a more suitable approach because it generates smaller

values for extensions than Fuzzy2, which avoids compromising thePerformance. Its

additional input variable allows a more refined decision, inwhich a larger number of

rules leads to realistic extensions. Additionally, the meaning ofPO andN0 are considered

in a systematic way instead of combining these characteristics using a simple average

vectorMac.

Some machines in the job shop problem have already a large amount of operations
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Figure 6.10: Fuzzy sets activated when a job requires processing time on M1 with release
date on 20000 minutes

to be processed. High extension levels, such as a 100%, couldcompromise too much

the Performanceof the schedule. In this way, a maximum processing time of 45 days

is defined,Pmax, and each machinei gets a weightwi for their decisions on operations’

extensions. Note that this maximum value is defined based on requirements of a typical

month in Sherwood Press. LetM be the number of machines in the shop floor andPOi

be thePO value for each machinei = 1, . . . M. The goal is to check whenPOi can be
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Figure 6.11: Comparison between Fuzzy1 and Fuzzy2

extended up to 100% without achievingPmax. The ratioRatioi =
Pmax−POi

POi
is calculated

for each machine. IfRatio> 1 thenwi = 1, since all the operations can be extended up to

100%. IfRatio< 1 thenwi = Ratio, since a weight will guarantee that extensions will not

surpass thePmax threshold. A comparison between the original Fuzzy1 and theweighted

approach, Fuzzy1M, is shown in Figure 6.12.

As expected, Fuzzy1M delivers smaller extensions for operations because it considers

already busy machines. This approach is selected to be used in the experiments because

smaller extensions avoid unwanted deterioration of the schedulePerformance.
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Figure 6.12: Comparison between Fuzzy1 and Fuzzy1M, which is a similar version with
a maximum extension weight for each machine
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6.3 Experiments on Real World Data

Data obtained from Sherwood Press are used to test thePerformanceand Stability of

the proposed fuzzy rule-based system for robust schedulingcombined with match-up al-

gorithms for rescheduling. In each instance, new arriving jobs are randomly generated

taking into account three parametersjobSize, insTimeandext. The first parameter is the

number of operations in the new job,jobSize∈ {1,2,3,4,5}. The jobSizevalue serves as a

good indicator of the magnitude of the disturbance of the current schedule, which makes

it an interesting parameter to investigate.

The second parameter is the time of insertion of the new job,insTime∈ {beginning,

middle, end} where “beginning”, “middle” and “end” refer to an insertionpoint equal to

10%, 50% or 80% of the makespan of the initial schedule, respectively. The reason for

considering theinsTimefollows the observation that the workload of the shop variesat

different points in the schedule. The workload in the middleof the schedule, for instance,

is often higher than the workload at the beginning, which is higher than the workload at

the end of the schedule. Note that the parametersat, previously investigated for match-

up approaches, is not applied in this experiment because theparameterinsTimealready

defines three different saturation levels, i.e.insTime∈ {beginning, middle, end} reflects

the same idea ofsat∈ {medium, high, low}.

The third parameter is the the extension level of operations, ext, which is used as

an indicator of the amount of idle times inserted on machines. A range of different ex-

tensions are investigated based on possible protection levels applied on Sherwood Press

shop floor. Two scenarios are investigated for this parameter. In the first scenario, the pro-

cessing times of all operations are equally extended by 0%, 20%, 30%, 40% and 100%,

denoted by E0, E2, E3, E4 and E10, respectively. In the secondscenario, the developed

fuzzy rule-based system is used to decide on the extension ofthe processing time of each

operation. Note that an upper bound for extensions generated by the fuzzy system are also

set to be 20%, 30%, 40% and 100%, while percentage of these bounds are determined by

the consequent variable. These are denoted by F2, F3, F4 and F10, respectively. All

extensions are subject toPmax threshold verification.

Figure 6.13 shows the average extension values applied to each analysedextapproach

using 95% confidence interval plots. Fuzzy extensions set smaller values because each
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Figure 6.13: Average extension values for eachextapproach

operation is individually analysed regarding the workloadof the required machine and,

consequently, F2, F3, F4 and F10 define smaller extensions than E2, E3, E4 and E10,

respectively. Note that E0 represents the original schedule, which has no extended opera-

tions.

Since there are jobs with five different sizes, arriving at three different times, and

nine possible extension levels, the total number of instances is 5×3×9 = 135. For the

purpose of experiments, arriving jobs are not kept in the schedule as the experimentation

progresses, on the contrary, once a job has been integrated into an initial schedule and the

proper measures have been recorded, the job is removed, and the schedule is reset to its

initial state ready to accommodate the next arriving job.

Initial schedules are generated using the GA, described in [86] with the objective of

maximising thePerformancemeasure. Ten solutions are created for eachext instance

and their results are shown in Figure 6.14. ThePerformancemeasure is an average of

satisfaction gradesSGi , i = 1, . . . 5, as previously described in Chapter 4.

As expected, E0 delivers the bestPerformanceresults for an initial schedule because

no extension is applied to operations. The pairs (Fx,Ex) with x ∈ {2,3,4,10} show that

the fuzzy approaches Fx achieve betterPerformanceresults than Ex, since each operation

is analysed individually, leading to extensions when they are appropriate. Consequently,

smaller extensions mostly lead to a betterPerformance. These results can be graphi-

cally observed in Figure 6.14. Smaller extensions produce schedules higher variability

on theirPerformanceresults because the schedule does not become over saturatedand,

consequently, different solutions can be generated.
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Schedules with the best initial solution for each extensionare selected and they are

subsequently used to insert the newly arriving jobs in the shop floor. Rescheduling strate-

gies such as total rescheduling, right shift and insertion in the end are not applied in this

experiment because they do not use the inserted idle times onmachines. For instance,

total rescheduling creates solutions from scratch and bothright shift and insertion in the

end insert new jobs without changing the sequence of operations.

PerformanceandStability values are recorded for each tested approach on each in-

stance of the problem. The obtained results for rush and normal orders are analysed and

statistically validated in the following subsections. Additionally, a comparison between

them is presented.

6.3.1 Rush Orders

New orders arrive everyday in the shop floor of Sherwood Pressand most of them must

be integrated in the current schedule as soon as possible. These orders are classified as

rush orders. More details about this rescheduling process is described in chapter 4. This

subsection presents the results obtained by the different extension levels,ext, as well as

the results of statistical analysis of the effects of the problem parameters onPerformance

andStability. Each instance of the problem is executed 10 times and both average and

standard deviation results achieved by the investigated extensionsext are given in Table

6.5. Extensions with the best results for each instance are highlighted in bold. In general,

fuzzy extensions are better than approaches using equally extended operations in most

groups of instances. Additionally, F2 delivers the bestPerformance, and F10-E10 produce
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Table 6.5: Average and standard deviation values forPerformanceandStabilityobtained
by the extension strategies for rush orders (larger vales are preferred)

Per f ormance- ext

E0 F2 E2 F3 E3 F4 E4 F10 E10

Strategy (15) S1 0.527 0.535 0.444 0.505 0.433 0.465 0.417 0.312 0.298
(15) S2 0.528 0.535 0.441 0.498 0.428 0.465 0.417 0.312 0.298
(15) S3 0.528 0.535 0.441 0.498 0.433 0.465 0.415 0.312 0.299
(15) S4 0.529 0.531 0.440 0.498 0.425 0.465 0.418 0.312 0.299
(15) S5 0.515 0.528 0.439 0.498 0.428 0.460 0.417 0.312 0.299
(15) S6 0.517 0.518 0.399 0.488 0.419 0.440 0.409 0.313 0.299
(15) S7 0.51 0.527 0.436 0.493 0.428 0.460 0.415 0.312 0.299
(15) S8 0.515 0.519 0.401 0.491 0.420 0.445 0.408 0.313 0.299

jobSize (27) 1 0.53 0.535 0.440 0.508 0.432 0.466 0.418 0.313 0.299
(27) 2 0.526 0.533 0.435 0.504 0.431 0.464 0.417 0.313 0.299
(27) 3 0.521 0.530 0.430 0.495 0.426 0.458 0.416 0.312 0.298
(27) 4 0.517 0.524 0.425 0.489 0.423 0.454 0.414 0.312 0.299
(27) 5 0.512 0.521 0.421 0.485 0.420 0.450 0.410 0.312 0.298

insTime (45) beginning 0.513 0.528 0.438 0.487 0.422 0.458 0.413 0.313 0.299
(45) middle 0.523 0.523 0.407 0.496 0.425 0.454 0.411 0.312 0.298
(45) end 0.528 0.535 0.445 0.506 0.433 0.463 0.420 0.313 0.299

(135) total average 0.521 0.529 0.430 0.496 0.427 0.458 0.415 0.312 0.299
(135) standard deviation 0.007 0.006 0.015 0.007 0.005 0.008 0.004 0.001 0.000

Stability- ext

E0 F2 E2 F3 E3 F4 E4 F10 E10

Strategy (15) S1 0.995 0.996 0.995 0.994 0.995 0.995 0.996 0.996 0.995
(15) S2 0.995 0.995 0.994 0.994 0.994 0.995 0.9940.996 0.995
(15) S3 0.995 0.996 0.995 0.994 0.994 0.995 0.995 0.996 0.995
(15) S4 0.995 0.994 0.994 0.994 0.994 0.995 0.9930.996 0.995
(15) S5 0.983 0.995 0.994 0.993 0.991 0.994 0.9950.996 0.995
(15) S6 0.984 0.981 0.979 0.981 0.982 0.985 0.986 0.9940.995
(15) S7 0.977 0.991 0.991 0.991 0.987 0.991 0.9930.996 0.995
(15) S8 0.979 0.980 0.979 0.979 0.978 0.983 0.985 0.9940.995

jobSize (27) 1 0.991 0.994 0.991 0.993 0.995 0.999 0.996 0.999 0.999
(27) 2 0.988 0.995 0.994 0.995 0.995 0.997 0.9960.999 0.999
(27) 3 0.991 0.993 0.994 0.992 0.990 0.994 0.9930.999 0.999
(27) 4 0.987 0.990 0.992 0.988 0.987 0.988 0.9890.994 0.993
(27) 5 0.983 0.984 0.981 0.982 0.979 0.98 0.985 0.985 0.984

insTime (45) beginning 0.979 0.990 0.992 0.990 0.992 0.992 0.9920.996 0.995
(45) middle 0.990 0.989 0.986 0.988 0.989 0.988 0.9910.996 0.995
(45) end 0.995 0.994 0.992 0.992 0.9870.996 0.994 0.994 0.995

(135) total average 0.988 0.991 0.990 0.990 0.989 0.992 0.992 0.995 0.995
(135) standard deviation 0.006 0.005 0.006 0.005 0.006 0.005 0.004 0.003 0.003

schedules with betterStability. These results are statistically verified next.

A comparison betweenPerformanceandStabilityis presented in Figure 6.15 in which

a scatter plot shows the trade-offs between these evaluation metrics. Few samples have

Stability values between 0.8 and 0.93 and they are considered outliers. Figure 6.15 shows
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Figure 6.15: Trade-offs betweenPerformanceandStabilityfor rush orders

that there is a more concentrated variation onStabilitywhen thePerformanceincreases,

which means that it may happen that increase ofPerformancealso compromiseStability.

However, there is no indication of increasingStabilityhaving positive or negative effects

onPerformancevalues.

An ANOVA test checks the statistical significance of the effects of problem parame-

ters, extension levelsext and the interactions among them onPerformanceandStability.

Results in Table 6.6 shows that all “main effects” and “interactions” influence bothPer-

formanceandStabilityof the schedule, since they achieveP values≤ 0.05. Additionally,

there is a higher variability onPerformanceresults as itsR2 value is larger than the one

achieved byStability.

A pairwise comparison test using Bonferroni’s correction is given in Figure 6.16 in

order to identify extensions that deliver higherPerformanceandStability. Comparisons

of Performanceare below the diagonal, and above forStability. These results combined

with the averages shown in Table 6.5 give an overall behaviour of the analysed extension

Table 6.6: Results of the ANOVA test for rush orders
Per f ormance Stability

F value P value F value P value

Main effects
Strategy 288.95 ≤ 0.05 501.05 ≤ 0.05
jobSize 356.64 ≤ 0.05 1074.31 ≤ 0.05
insTime 677.39 ≤ 0.05 147.9 ≤ 0.05
ext 55944.03 ≤ 0.05 147.14 ≤ 0.05

Interactions
Strategy*ext 39.56 ≤ 0.05 32.53 ≤ 0.05
jobSize*ext 16.4 ≤ 0.05 17.6 ≤ 0.05
insTime*ext 138.45 ≤ 0.05 112.49 ≤ 0.05

R2 0.97 0.57
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Figure 6.16: Mean pairwise comparisons ofPerformanceandStabilityfor rush orders

levels.

In general, a smaller extension leads to a higherPerformance, which can be seem

when the pairs (Fx,Ex), x∈ {2,3,4,10} are compared. Remarkably, F2 achieves superior

Performanceeven when compared with the original schedule E0, because its strategic

insertion of a small amount of idle times allows a better accommodation of the newly

arriving jobs. Equally extended operations compromise toomuch thePerformanceeven

when small extensions are generated, i.e. E2 and E3 comparedwith larger fuzzy exten-

sions F3 and F4, respectively.

On the other hand, higherStability values are achieved when larger extensions are
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applied at the price of poorPerformance. As expected, E10 and F10 deliver superior

Stabilityand poorPerformance. However, smaller extensions defined by Fx are able to

achieve similarStabilityto Ex, x∈{2,3,4,10}, which identify the strength of the proposed

fuzzy system. Additionally, F2 can be highlighted again since the obtained results are

statistically non-distinguishable to extensions up to 40%. This experiment achieved good

Stability results for all parameters because match-up algorithms also helped keeping the

scheduleStability. A summary of these results are graphically shown using 95% confi-

dence interval plots in Figure 6.17 (a) and (b) forPerformanceandStability, respectively.

These results indicate that the newly introduced fuzzy ruled-based system posses the best

attributes of the investigated extension approaches and overcome weaknesses, regarding

theirPerformance.

Regarding the problem parameters, the Table 6.6 identifies that Strategy,jobSizeand

insTimehave a significant influence onPerformanceandStability when extending the

processing times of operations. The nature of these effectsis illustrated with the 95%

confidence interval plots in Figure 6.18. Thex-axis of plots (a)-(b), (c)-(d), and (e)-(f),

measures the level of Strategy,jobSizeand insTime, respectively. They-axis shows the

average values ofPerformance, (a)(c)(e), andStability, (b)(d)(f), over different levels of

extensionext. In general,PerformanceandStabilityare superior by using S1-S4, when

the arriving job requires a fewer number of operations and when the rescheduling is done

in a less busy environment, i.e. at the end of the schedule.
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Figure 6.17: Overall results obtained by each extensionext; the x-axis shows the exten-
sion; the y-axis shows the mean (dot) and 95% confidence interval (vertical bars)Perfor-
manceandStabilityfor rush orders
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Figure 6.18: Main effects Strategy (a)-(b),jobSize(c)-(d) andinsTime(e)-(f) onPerfor-
mance(a), (c), (e) andStability(b), (d), (f) for rush orders

Table 6.6 also shows that all interactions of parameters aresignificant. Particularly

interesting are those interactions involvingext and any of the problem parameters. These

type of interactions indicate that some extensions are better at coping with certain problem

conditions than others. That this is the case can be verified by Table 6.5.

The three interactions involvingext were analysed. In general, large extensionsext
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lead to similarPerformanceandStability results independently of the applied match-up

strategy,jobSizeandinsTime. Schedules with a large amount of idle times, i.e.ext≥ 40%

as the results in columns 6-9 from Table 6.5, always set similar rescheduling horizons,

and consequently, similarPerformanceandStabilityfor all investigated instances. How-

ever, the interactions occur because small extensions forext are better combined with

strategies S1-S4, since they define smaller rescheduling horizons than S5-S8 and keep

goodPerformanceandStability; jobSizewith a smaller number of operations, i.e. 1 and

2 operations, because they make use of the inserted idle timewithout causing delays; and

insTimein less busy parts of the schedule, i.e. at end, again becausesmall rescheduling

horizons are defined and the quality of the schedule is maintained.

Given the results in Table 6.5 and the statistical analysis,it is possible to conclude

that the combination of fuzzy robust schedules with match-up algorithms for reschedul-

ing brings more flexibility in a dynamic and uncertain environment, in which the strategic

insertion of idle times on machines combined with minimal repair provided by match-

up algorithms can reasonably well respond to disturbances that occur on a daily basis

in Sherwood Press. The fuzzy extension F2 can be highlightedwith the most consistent

results under different problem scenarios, as demonstrated by Figure 6.18 and it can be

considered for possible incorporation into the scheduling/rescheduling system of Sher-

wood Press, since it produces good values with respect toPerformanceandStability, as

shown in Figure 6.17.

6.3.2 Normal Orders

Normal orders define jobs with different levels of urgency. They represent a more flexi-

ble disturbance because their insertion are based on the jobdue-date, which gives a time

window to make repair decisions. This subsection follows the same pattern of the statis-

tical analysis presented for rush orders. More details about rescheduling normal orders

is described in chapter 4. Table 6.7 summarises the obtainedaverage and standard de-

viation results forPerformanceandStability attained by the investigatedext levels for

the different problem parameters after 10 execution times.Best results for each instance

are highlighted in bold. As expected, fuzzy extensions are,in general, better than ap-

proaches using equally extended operations. Schedules with extension F2 have the best
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Table 6.7: Average and standard deviation values forPerformanceandStabilityobtained
by the extension strategies for normal orders (larger valesare preferred)

Per f ormance- ext

E0 F2 E2 F3 E3 F4 E4 F10 E10

Strategy (15) S1 0.513 0.530 0.433 0.497 0.428 0.459 0.414 0.312 0.299
(15) S2 0.522 0.525 0.433 0.489 0.424 0.454 0.404 0.312 0.299
(15) S3 0.525 0.529 0.437 0.499 0.426 0.459 0.415 0.312 0.299
(15) S4 0.524 0.529 0.431 0.499 0.426 0.460 0.413 0.312 0.299
(15) S5 0.509 0.528 0.434 0.496 0.428 0.460 0.416 0.312 0.299
(15) S6 0.515 0.520 0.424 0.487 0.423 0.449 0.404 0.313 0.300
(15) S7 0.506 0.527 0.433 0.493 0.425 0.459 0.412 0.312 0.299
(15) S8 0.511 0.516 0.429 0.482 0.419 0.422 0.404 0.312 0.300

jobSize (27) 1 0.525 0.534 0.445 0.504 0.432 0.462 0.418 0.313 0.300
(27) 2 0.520 0.531 0.439 0.501 0.431 0.461 0.415 0.313 0.300
(27) 3 0.516 0.527 0.433 0.492 0.427 0.457 0.411 0.312 0.299
(27) 4 0.511 0.521 0.427 0.487 0.420 0.444 0.407 0.312 0.299
(27) 5 0.506 0.514 0.413 0.480 0.414 0.439 0.400 0.311 0.298

insTime (45) beginning 0.514 0.522 0.425 0.484 0.422 0.451 0.404 0.312 0.299
(45) middle 0.506 0.524 0.431 0.487 0.423 0.449 0.405 0.312 0.298
(45) end 0.526 0.530 0.439 0.507 0.430 0.458 0.421 0.312 0.300

(135) total average 0.516 0.525 0.432 0.493 0.425 0.453 0.410 0.312 0.299
(135) standard deviation 0.007 0.006 0.007 0.008 0.005 0.011 0.006 0.001 0.001

Stability- ext

E0 F2 E2 F3 E3 F4 E4 F10 E10

Strategy (15) S1 0.988 0.994 0.993 0.994 0.993 0.994 0.9920.996 0.996
(15) S2 0.993 0.991 0.990 0.992 0.989 0.992 0.9890.996 0.996
(15) S3 0.994 0.994 0.992 0.994 0.992 0.993 0.9920.996 0.995
(15) S4 0.994 0.994 0.992 0.993 0.990 0.993 0.9920.996 0.995
(15) S5 0.980 0.991 0.990 0.993 0.992 0.990 0.9910.996 0.995
(15) S6 0.984 0.984 0.986 0.986 0.985 0.983 0.9830.995 0.995
(15) S7 0.977 0.990 0.988 0.990 0.989 0.988 0.9880.995 0.995
(15) S8 0.980 0.980 0.982 0.981 0.974 0.962 0.9760.995 0.995

jobSize (27) 1 0.987 0.994 0.996 0.994 0.994 0.998 0.9931.000 1.000
(27) 2 0.990 0.994 0.994 0.994 0.993 0.994 0.993 0.9991.000
(27) 3 0.991 0.993 0.993 0.994 0.989 0.991 0.9910.999 0.999
(27) 4 0.984 0.988 0.989 0.988 0.987 0.978 0.9860.995 0.993
(27) 5 0.979 0.979 0.974 0.981 0.977 0.974 0.9760.985 0.985

insTime (45) beginning 0.990 0.989 0.991 0.989 0.989 0.989 0.9910.996 0.995
(45) middle 0.973 0.985 0.986 0.988 0.983 0.985 0.9850.995 0.995
(45) end 0.995 0.995 0.991 0.994 0.992 0.986 0.987 0.995 0.995

(135) total average 0.986 0.990 0.989 0.990 0.988 0.987 0.988 0.995 0.995
(135) standard deviation 0.007 0.005 0.005 0.004 0.006 0.009 0.005 0.003 0.003

Performanceand a betterStabilityis delivered by schedules with extension F10 and E10.

Further discussions are presented next.

Figure 6.19 shows the trade-offs betweenPerformanceandStability, in which samples

between 0.8 and 0.9 on y-axis are outliers. A more concentrated variation onStability is
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Figure 6.19: Trade-offs betweenPerformanceandStabilityfor normal orders

again observed whenPerformanceincreases, i.e. higherPerformanceresults may com-

promiseStability. On the other hand, no positive or negative effects onPerformanceis

observed when theStabilityis increased.

Results of the ANOVA test for normal orders is shown in Table 6.8, in which all “main

effects” and “interactions” have influences on bothPerformanceandStability. A higher

variability of Performanceis observed compared withStabilitydue to its largeR2 value

of 0.97.

Figure 6.20 shows a pairwise comparison test using Bonferroni’s correction, in which

extensions with higherPerformanceandStabilityvalues can be identified. As expected,

higherPerformanceresults are delivered by schedules with smaller extensions, as ob-

served on pairs (Fx,Ex), x∈ {2,3,4,10}. F2 deliver again superiorPerformancethan E0,

due to its strategic insertion of idle times combined with match-up rescheduling algo-

rithms. Moreover, equally extended operations compromises too much thePerformance

even when small extensions are generated.

Table 6.8: Results of the ANOVA test for normal orders
Per f ormance Stability

F value P value F value P value

Main effects
Strategy 130.44 ≤ 0.05 346.16 ≤ 0.05
jobSize 669.02 ≤ 0.05 1278.59 ≤ 0.05
insTime 763.44 ≤ 0.05 453.63 ≤ 0.05
ext 52713.23 ≤ 0.05 184.74 ≤ 0.05

Interactions
Strategy*ext 26.84 ≤ 0.05 29.98 ≤ 0.05
jobSize*ext 24.45 ≤ 0.05 18.48 ≤ 0.05
insTime*ext 55.09 ≤ 0.05 116.33 ≤ 0.05

R2 0.97 0.58
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Figure 6.20: Mean pairwise comparisons ofPerformanceandStabilityfor normal orders

In general, the extensions Fx and Ex, x ∈ {2,3,4,10}, lead to superiorStability than

E0. The pairs (Fx,Ex) deliver similar stability, which shows a strength of the proposed

system regarding small extensions with reasonableStability. However, no relatively large

improvements onStabilityare observed with extensions up to 40%, which indicates that

the match-up algorithms already controls the scheduleStability in an effective way. Only

larger extensions, i.e. E10 and F10, achieved higherStability at the price of poorPer-

formance. Additionally, F2 can be highlighted again since the obtained results are sta-

tistically superior or non-distinguishable to extensionsup to 40%. Figure 6.21 (a) and

(b) shows the overall results forPerformanceandStability, respectively. These results
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Figure 6.21: Overall results obtained by each extensionext; the x-axis shows the exten-
sion; the y-axis shows the mean (dot) and 95% confidence interval (vertical bars)Perfor-
manceandStabilityfor normal orders

emphasises that the newly introduced fuzzy ruled-based system posses the best attributes

of the investigated extension approaches.

The parameters Strategy,jobSizeand insTimehave a significant influence on both

PerformanceandStabilityover different levels of extensionext. These effects are illus-

trated in Figure 6.22. As expected,PerformanceandStabilityare superior by using S1-S4,

when the arriving job requires one of two operations and whenthe rescheduling is done

at the end of the schedule.

The interactions between parameters are significant because small extensionsext are

better combined with strategies S1-S4, which usually set small rescheduling horizons;

jobSizewith a 1 or 2 number of operations, which cause no delays; andinsTimeat the

end of the schedule, because small rescheduling horizons are also defined. These combi-

nations deliver again good quality schedules.

Fuzzy robust schedules has been again successfully combined with match-up algo-

rithms to manage uncertainties present in a shop floor. The investigation of normal orders

is a generalisation of different types of jobs that may arisein Sherwood Press. Schedules

with fuzzy extension F2 are highlighted as the ones with the most consistent results under

different problem scenarios, as shown in Figure 6.22, sinceit produces high quality stable

schedules.
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Figure 6.22: Main effects Strategy (a)-(b),jobSize(c)-(d) andinsTime(e)-(f) onPerfor-
mance(a), (c), (e) andStability(b), (d), (f) for normal orders

6.3.3 Comparison between Rush and Normal Orders

Both rush (R) and normal (N) orders are typical disruptions arising on a daily basis in

Sherwood Press. TheirPerformanceandStabilityresults are compared in Figure 6.23 for

each extension levelextand for each match-up strategy S1-S8.

Performanceresults obtained by different match-up strategies and extension levels
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Figure 6.23: Rush (R) versus normal orders(N) forPerformance(a) and (c), andStability
(b) and (d), respectively

ext for rush and normal orders are quite similar, which indicates a good flexibility of the

proposed approaches for handling jobs with different levels of urgency.

Rush orders have no predefined due dates, and consequently, they deliver relatively

betterPerformanceresults. Moreover, theirStabilityis generally better because they have

to be aggregated as soon as possible, which avoids changing different parts of the schedule

as it is always done by normal orders.

6.4 Discussion

Given the results for different types of arriving jobs and the statistical analysis carried out,

it is possible to conclude that the combination of fuzzy robust schedules with match-up al-

gorithms for rescheduling brings more flexibility in a dynamic and uncertain environment,

in which the strategic insertion of idle times on machines combined with minimal repair
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provided by match-up algorithms can reasonably well respond to disturbances occurring

on Sherwood Press.

Effects on quality measures indicates that it is possible byextending jobs’ processing

times to protect the schedule without compromising itsPerformanceandStability. Note

that new orders usually compromise many resources in a shop floor and the improvements

provided by fuzzy robust schedules may also assist on managing other relatively simple

disturbances, such as operators doing late decisions, delays on raw material delivery and

requirements of additional clean ups on machines.

The fuzzy extension F2 is highlighted as the one with the mostconsistent results

under different problem scenarios and it is a candidate for possible incorporation into

the scheduling/rescheduling system of Sherwood Press, since it produces high quality

schedules with respect to bothPerformanceandStability.

6.5 Summary

A real world job shop scheduling/rescheduling problem is investigated in this chapter.

The problem is dynamic since orders with different levels ofurgency arrive every day in

the shop floor and they need to be integrated in the existent schedule, without compro-

mising itsPerformanceandStability. The proposed approach combines strengths of the

robust scheduling, regarding control of future disturbances, and match-up rescheduling

algorithms. These strategies are complementary because both of them work with idle

time control.

Two fuzzy rule-based systems are proposed to insert idle times on machines, in which

databases with jobs requirements from Sherwood Press are used as reference for expected

behaviour in the shop floor. A comparison between these systems is presented in order

to decide which among them is more appropriate to apply to this scheduling/rescheduling

problem. Experiments with schedules with different amountof idle times are carried out

in order to identify their possible effect on bothPerformanceandStability.

Two types of jobs arriving jobs are investigated, rush orders, which must be inserted

as early as possible into the current schedule, and normal orders, which set jobs with

different levels of urgency. The obtained results are analysed and statistically validated.
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Additionally, a comparison between them is presented.

In summary, initial robust schedules combined with match-up rescheduling lead to

higher quality and more reliable schedules even when jobs with different urgency levels

arrive in a dynamic and uncertain shop floor.

The following chapter presents the conclusions of the studies investigated in this the-

sis, highlighting their relevance, limitations and futurework.



Chapter 7

Conclusions

A real world job shop scheduling / rescheduling problem presented by a printing company

in Nottingham, UK is investigated in this thesis. This problem is dynamic in its nature

because unexpect events often occur on the shop floor. Typically, new orders arise on a

daily basis and current allocations have to be changed in order to integrate them. These

orders usually require processing time on different machines, and consequently, many

available resources are often compromised. Match-up algorithms are applied as repair

methods, because they are able to deliver stable and high quality schedules. These algo-

rithms are subsequently combined with initial robust schedules with the aim of facilitating

the accommodation of future disruptions and consequently producing more reliable and

effective solutions.

Background and related work are presented in chapter 2, in which the investigated

problem is situated within a rescheduling classification and match-up algorithms are high-

lighted as reasonable repair methods. Additionally, chapter 3 identifies the application

of fuzzy logic concepts as a suitable approach to help modelling possible uncertainties

present on a shop floor. The contributions of this thesis are described in chapters 4, 5

and 6. Chapter 4 discusses in detail the analysed scheduling/ rescheduling problem, in

which new match-up strategies are introduced to control a complex real world problem.

These strategies accommodate disruptions by using available idle times on machines and

consequently initial optimal solutions are kept unchangedas much as possible. Typical ar-

riving jobs are rush orders and they have to be processed as soon as possible on the shop

floor. This disruption is tackled first with the goal of checking the effectiveness of the

149
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proposed strategies on achieving stable and high quality schedules. As a matter of gen-

eralisation, orders with different levels of urgency are investigated in chapter 5 in which

the flexibility of the proposed strategies are verified underdifferent scenarios. Chapter

6 introduces a fuzzy scheduling approach for inserting idletimes on machines, in which

initial robust schedules are produced. The effects of combining this approach with match-

up approaches for rescheduling are analysed due to the fact that they both work with idle

time to manage disruptions.

7.1 Discussion

The application of match-up algorithms has been limited only to a small variety of prob-

lems, most of which are of a more theoretical than practical importance. This thesis and

its resultant papers represent the only attempts to employ such algorithms in a complex

real world shop floor which includes multiple criteria, setup times and disruptions affect-

ing multiple resources. Additionally, strengths of fuzzy logic concepts are highlighted

as a good approach on managing uncertainties present in realworld problems. Despite

of their success in solving many industry issues, research on fuzzy scheduling has been

mainly focused on static scheduling environments. Consequently, this thesis uses their

strengths applied to a dynamic complex job shop problem, in which fuzzy numbers are

used to represent scheduling parameters and a fuzzy controlsystem is combined with

match-up algorithms aiming to produce robust and reliable high stable schedules.

New match-up strategies are initially introduced to managea disruption that often oc-

curs in the investigated problem, in which rush orders have to be integrated in a current

schedule. Statistical multi-comparison tests and analysis of variance reveal that even with

the presence of the two conflicting criteriaPerformanceandStability these algorithms

produce high quality stable schedules on different probleminstances, which highlight

their strengths regarding possible scenarios tackled by the analysed printing company. It

was observed that match-up algorithms posses the best attributes of other rescheduling

strategies as “right shift”, “insertion in the end” and “total rescheduling”, but overcome

their weaknesses in managing eitherPerformanceor Stability. Note that the genetic al-

gorithm fitness function responsible to reschedule affected operations is identified as a
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limitation of the proposed approach. First, this function only optimisesPerformance,

while match-up strategies are responsible to keep goodStabilityby requiring partial mod-

ifications of schedules. Second, there is no explicit strategy to keep repaired allocations

within a same time window defined for rescheduling. Consequently, possible overlaps

between current and repaired schedules inevitably compromise the overall quality of pro-

duced solutions.

Further investigation of match-up strategies are done in order to check they behaviour

on repairing a more general case of disruption, in which newly arriving jobs have differ-

ent levels of urgency, referred as normal orders. Statistical analysis confirms that these

algorithms are highly flexible to deal with complex disruptions since they are able to de-

liver highly stable and good performing schedules even whendisruptions with different

levels of urgency arise in the shop floor. Additionally, improvements in the genetic algo-

rithm fitness function for reallocating affected operations have a more effective control of

bothPerformanceandStability. The new settings minimise the makespan, which reduces

the overlaps between initial and new schedules, and maximise Stability, which reduces

changes in both sequence and processing time of operations.Note that a double control

of Stabilityis employed since match-up algorithms are now coupled with the new settings

of the fitness function.

The use of idle times by match-up strategies indicates theirpotential to work cooper-

atively with initial robust schedules. A fuzzy scheduling system responsible for inserting

idle times on machines is then proposed, in which robust schedules are produced. As

a result, match-up algorithms are able to employ smaller changes in current schedules

since they have a higher availability of idle times on machines. Other heuristics for robust

scheduling are analysed; however they often compromise toomuch thePerformanceof

schedules. Statistical analysis confirms that their combination is effective in managing

both rush and normal orders, in which even more reliable highquality stable schedules

are delivered.

In summary, match-up rescheduling algorithms and their combination with initial ro-

bust schedules set flexible approaches to manage complex disruptions that affect multiple

resources in a dynamic and uncertain shop floor. These encouraging results highlight them

as good candidates for possible incorporation into the scheduling / rescheduling system
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of investigated printing company and other similar production shops. The remarkable

production of such good performing and highly stable schedules point up their relevance

to both scheduling and rescheduling research communities.

It is important to highlight that scheduling / reschedulingsolutions proposed by the

research group from the University of Nottingham have been used by Sherwood Press.

7.2 Limitations

The study presented in thesis has the following limitations:

• Match-up strategy selection: strategies have to be selected manually by the system

user;

• Job insertion: only one job can be inserted per time;

• Overlap control: the use of right-shift rescheduling to manage overlaps between

schedules is considered sub-optimal, since they may compromise the schedulePer-

formance;

• Rescheduling horizon: no strategies were implemented to prioritise the definition

of rescheduling horizons where more idle times are available;

• Scheduling / rescheduling solver: only genetic algorithms were considered to allo-

cate jobs on machines, while a comparison with different search methods would be

beneficial.

Possible extensions considering these items are describedin the following section.

7.3 Future work

The arrival of orders is considered as a generalisation of possible disruptions due to its

ability to affect multiple resources available in a shop floor. However, further investi-

gation into match-up algorithms and robust schedules can bedone to analyse the specific

effects generated by other types of disruptions, such as order changes, cancellation of jobs
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and requirements of rework when the product quality is not satisfactory. In addition, the

resources changes can also be considered, such as multiple machine breakdowns, unavail-

ability of raw materials, sickness of workers, among othersdepending on the specificity

of the investigated scheduling / rescheduling problem.

Rescheduling has been almost entirely focused on production scheduling. However,

the proposed ideas can be extended to other problem domains,such as personnel schedul-

ing and university timetabling to include disturbances like the absence of nurses, non-

availability of lecturers and rooms, etc.

The following approaches illustrate possible strategies to improve the current schedul-

ing / rescheduling system:

• Dynamic selection of a best match-up strategy: an optimisation model to dynami-

cally select the most appropriated match-up strategy amongS1-S8 aiming to deliver

a best schedule at a certain moment;

• Setting smaller rescheduling horizons: the collection of idle times could start at a

different rescheduling point. Figure 7.1 shows an example of a new job 20 requir-

ing processing on machines M1 (or M2, which is a parallel machine), M3 and M4.

The current time is highlighted by the variableinitialStart and the original match-

up algorithm set as a reschedulingstartPointthe latest point when already started

operations finish their processing, i.e. when the operation3 on M3 is completed,

as in Figure 7.1 (c). Note that there is no available idle timeat this time. Conse-

quently, a new approach would set asstartPointthe first available point which has

available idle times, as in Figure 7.1 (d). Subsequently, rescheduling horizons are

calculated for both approaches. Figure 7.2 (a)-(b) and (c)-(d) shows the original and

the new approach been employed, respectively, where match-up strategies S1 and

S5 are applied for each approach. Smaller rescheduling horizons are then defined

by the new approach, in which a smaller number of operations is affected during

the rescheduling process. Their possible impacts in bothPerformanceandStability

require further investigation.

• Insertion of multiple jobs per time: multiple rescheduling horizons could be defined

and a multi-agent system could be responsible to manage these sub-problems. Fig-
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Figure 7.1: Alternative approach to set rescheduling horizons; (a) new job requirements,
(b) current time represented byinitialStart, (c) original approach settingstartPointand
(d) new approach settingstartPoint

ure 7.3 shows an example in which jobs 20 and 21 must be accommodated in a

current schedule. Note that two independent rescheduling horizons are defined and

their possible effects require further analyses;

• Other optimisation methods for scheduling and rescheduling: compare the applica-

tion of match-up algorithms with other search methods such as simulated annealing,

tabu search, branch and bound algorithms and Pareto efficient solutions. Note that
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Figure 7.2: Setting smaller rescheduling horizons; (a)-(b) the calculation ofendPoint
using strategy S1 and S5 with the original approach, (c)-(d)the calculation ofendPoint
using strategy S1 and S5 with the new approach

genetic algorithms have been mainly used in this thesis because they previously pro-

vide encouraging results for the static scheduling problempresented by Sherwood

Press - Nottingham, UK;
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Figure 7.3: Setting multiple rescheduling horizons when inserting multiple jobs; (a) new
jobs requirements, (b) the calculation of two reschedulinghorizons

• Other optimisation techniques to restore the schedule feasibility : the previously

mentioned search methods can also be applied to control possible overlaps be-

tween initial and repaired schedules on rescheduling. Further comparisons with

these techniques would be significant to the research scope;

• Other approaches to insert idle times on machines: initial robust schedules can be

also produced using other data analysis models such as clustering, neural networks,

case-based reasoning and artificial intelligence agents. Acomparison with these

approaches would bring relevant discussions;

• Preventive maintenance scheduling: new “fake” jobs could be inserted as a preven-

tive strategy. These jobs would generate extra idle times onmachines, which could

be use to allocate the maintenance of the available resources. A study to investigate

their impact on disruptions such as machine breakdown and rework of jobs would

be beneficial to the scheduling / rescheduling community.
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