
1006594205

1111111 I

Real-time guarantees in high-level agent
programming languages

by

Konstantin Vikhorev, MSc

Faculty of Science

School of Computer Science

THE UNIVERSITY OF NOTTINGHAM

Nottingham

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

The University of

Nottingham

JULY 2011

i

Abstract

In the thesis we present a new approach to providing soft real-time guarantees for

Belief-Desire-Intention (BDI) agents. We analyse real-time guarantees for BDI agents

and show how these can be achieved within a generic BDI programming framework.

As an illustration of our approach, we develop a new agent architecture, called

AgentSpeak(RT), and its associated programming language, which allows the de­

velopment of real-time BDI agents. AgentSpeak(RT) extends AgentSpeak(L) [28]

intentions with deadlines which specify the time by which the agent should respond

to an event, and priorities which specify the relative importance of responding to

a particular event. The AgentSpeak(RT) interpreter commits to a priority-maximal

set of intentions: a set of intentions that is maximally feasible while preferring higher

priority intentions. Real-time tasks can be freely mixed with tasks for which no

deadline and/or priority has been specified, and if no deadlines and priorities are

specified, the behavior of the agent defaults to that of a non real-time BDI agent. We

perform a detailed case study of the use of AgentSpeak(RT) to demonstrate its advan­

tages. This case study involves the development of an intelligent control system for a

simple model of a nuclear power plant. We also prove some properties of the AgentS­

peak{RT) architecture such as guaranteed reactivity delay of the AgentSpeak{RT)

interpreter and probabilistic guarantees of successful execution of intentions by their

deadlines.

We extend the AgentSpeak{RT) architecture to allow the parallel execution of in­

tentions. We present a multitasking approach to the parallel execution of intentions

in the AgentSpeak(RT) architecture. We demonstrate advantages of parallel execu­

tion of intentions in AgentSpeak{RT) by showing how it improves behaviour of the

intelligent control system for the nuclear power plant. We prove real-time guarantees

of the extended AgentSpeak{RT} architecture.

ii

We present a characterisation of real-time task environments for an agent, and

describe how it relates to AgentSpeak{RT) execution time profiles for a plan and an

action. We also show a relationship between the estimated execution time of a plan

in a particular environment and the syntactic complexity of an agent program.

Acknowledgments

I would like to take this opportunity to acknowledge the guidance, advice, im­

parting of knowledge, feedback and immense level of support provided to me by my

PhD supervisors:

• Dr. Brian Logan from the School of Computer Science at the University of

Nottingham, and

• Dr. Natasha Alechina from the School of Computer Science at the University

of Nottingham.

I deeply appreciate the financial support provided by the University of Nottingham

and The Engineering and Physical Sciences Research Council (EPSRC) during my

studies. Also I would like to acknowledge and single out a number of people for their

advice, feedback and support over the course of my PhD:

• Dr. Peer-Olaf Siebers from the Intelligent Modelling & Analysis Research

Group (IMA) at the University of Nottingham for his advice, suggestions, in­

terest in my research, and his confidence in me.

• Mrs Christine Fletcher from the School of Computer Science at the University

of Nottingham for her contributions as a Postgraduate Research Administrator.

I would like to acknowledge my post-graduate colleagues that are members of the

Agents Lab at the University of Nottingham. In particular, I would like to thank

my colleague Julian Zappala who provided me helpful comments and advices on the

thesis.

iv

Finally, but definitely not least I would like to acknowledge the support of my

family: father Sergey Vikhorev, mother Galina Vikhoreva, younger brother Alexey

Vikhorev, and two sisters Irina and Natasha who stuck by me and provided me with

encouragement to keep on going.

Contents

Abstract

Acknowledgments

Table of Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction

1.1 Intelligent Agents

1.2 The Problem of Real-Time Agency

1.3 Aims and Objectives

1.4 Thesis Structure ...

2 Real-Time BDI agents

2.1 BDI Model

2.2 Real-time Guarantees.

2.3 Summary

iii

viii

x

xi

xii

1

2

4

6

6

9

9

11

14

CONTENTS vi

3 Literature Review 15

3.1 Introduction 15

3.2 Embedded Real-Time Control 16

3.2.1 Procedural Reasoning System 17

3.2.2 JAM .. 27

3.2.3 SPARK 28

3.2.4 Soft Real-Time Architecture and AgentSpeak(XL) . 30

3.3 Cooperative Real-Time Control 34

3.3.1 ROACS 36

3.3.2 SIMBA 37

3.4 Summary ... 39

4 Changes to the BDI Architecture 41

4.1 Enhanced BOI Model Specifications. 42

4.2 Changes to the BOI Execution Cycle 43

4.3 ARTS 43

4.3.1 Facts. 44

4.3.2 Goals. 45

4.3.3 Plans. 46

4.3.4 Primitive Actions 50

4.3.5 Interpreter . 50

4.3.6 Conclusion. 52

4.4 Summary 52

5 AgentSpeak(RT): A Real-Time Agent Programming Language 54

5.1 Introduction . . . 54

5.2 Beliefs and Goals 56

CONTENTS

5.3 Events

5.4 Plans.

5.4.1 Plan

5.4.2 Primitive Actions

5.4.3 Execution Time Profile .

5.5 Intentions ...

5.6 The Interpreter

5.7 A Case Study: Nuclear Power Plant .

5.8 Summary

6 AgentSpeak(RT) Properties

6.1 Proof of Real-time Guarantees.

6.2 Dynamic Environments

vii

57

59

60

62

63

65

66

70

78

80

80

84

6.2.1 Probability of Scheduling an Intention 86

6.2.2 Probability of an Intention Displacement 88

6.2.3 Probability of the Successful Execution of an Intention 89

6.3 Summary

7 AgentSpeak(RT) with Parallel Execution of Intentions

7.1 Shared Resources .

7.2 Plan-Resource Tree

7.3 Multitasking Reasoning.

7.3.1 The AgentSpeakMT (RT) Scheduler

7.3.2 The AgentSpeakMT (RT) Interpreter.

7.3.3 Atomic Intentions.

7.4 Example......

7.5 Real-Time Agency

90

91

92

94

98

99

104

105

106

111

CONTENTS

7.6 Dynamic Environments.

7.7 Summary

8 AgentSpeak(RT) Environment Characterisation

8.1 Classification of real-time task environments

8.2 Accuracy of the Execution Time Estimation

8.3 Summary

9 Conclusions and Future Work

9.1 Conclusions

9.1.1 Contributions

9.1.2 Possible Applications .

9.1.3 Limitations

9.2 Future Work. . . .

9.3 List of Dissemination

Bibliography

A AgentSpeak(RT): Implementation

A.1 Overview

A.2 AgentSpeak(RT) BNF Grammar

A.3 Primitive Actions

A.3.1 User-defined Actions

A.3.2 Internal Primitive Actions

A.4 The Interpreter

A.5 AgentSpeak(RT) Interface

viii

114

118

119

119

123

129

130

130

130

133

136

136

138

145

146

146

149

150

150

152

154

156

List of Figures

1.1 Agent and environment .

3.1 The PRS Interpreter . .

3.2 An Example of an Act plot.

3.3 A Sample Intention Graph Summary

3.4 T lEMS Task Structure example . .

3.5 Design-To-Criteria task scheduling

3.6 AgentSpeak(L) Interpreter

3.7 Soft Real-Time Agent Architecture

3.8 ROACS architecture

3.9 SIMBA architecture

4.1 The ARTS Interpreter

5.1 An AgentSpeak(RT) agent

5.2 An execution time profile.

5.3 An AgentSpeak(RT) agent interpreter.

5.4 A Nuclear Power Plant scheme

5.5 "Full diagnostics" plan's execution time profile.

5.6 "Water control" plan's execution time profile. .

2

18

21

25

31

32

33

35

36

38

51

56

64

66

71

75

75

LIST OF FIGURES

5.7 "Power control" plan's execution time profile

5.8 "Emergency protection" plan's execution time profile

7.1 A goal-plan tree structure

7.2 Plan-Resource Trees ...

8.1 Difficulty of real-time task environments

8.2 Confidence of real-time task environments

8.3 Error of real-time task environments

9.1 Mars Exploration Rover

A.1 The AgentSpeak(RT) interface.

x

77

77

95

98

120

122

123

133

156

List of Tables

3.1 SPARK Basic Task Expressions . . . 29

3.2 SPARK Compound Task Expressions 29

5.1 BNF for AgentSpeak(RT) beliefs and goals . 58

5.2 Types of events. 58

5.3 BNF for AgentSpeak(RT) plans 62

7.1 BNF for AgentSpeakMT(RT) plans 93

List of Algorithms

2.1 The BOI Interpreter 11

5.1 AgentSpeak{RT) Scheduling Algorithm . 69

7.1 AgentSpeakMT (RT) Scheduling Algorithm (Part 1) 101

7.2 AgentSpeakMT (RT) Scheduling Algorithm (Part 2) 102

7.3 AgentSpeakMT (RT) Scheduling Algorithm (Part 3) 103

7.4 AgentSpeakMT (RT) Scheduling Algorithm (Intermediate Case) . 107

A.1 AgentSpeak(RT) Interpreter Cycle 155

Chapter 1

Introduction

"There is a popular cliche . .. which says that you cannot get out of com­

puters any more than you have put in ... , that computers can only do

exactly what you tell them to, and that therefore computers are never cre­

ative. This cliche is true only in a crushingly trivial sense, the same sense

in which Shakespeare never wrote anything except what his first school

teacher taught him to write - words."

Richard Dawkins, "The Blind Watchmaker", 1997

The design of computer systems that are capable of performing high-level manage­

ment of user tasks, in complex dynamic environments, is very important in real-life

commercial applications. Such computer systems includes high-level control of un­

manned vehicles (e.g., Unmanned Arial Vehicles (UAV), Unmanned Surface Vehicles

(USV), etc.), power plant control, telecommunications, financial and business pro­

cesses, aircraft control, etc. New abstract mechanisms are required in order to spec­

ify, design, verify and implement these kinds of computer systems. One abstraction

mechanism that is increasingly becoming accepted is the notion of intelligent agents:

1.1 Intelligent Agents 2

software systems that act independently of dire t external control for an undefined

amount of time.

1.1 Intelligent Agents

Research into agent systems has yielded an extensive body of work in terms of both

theoretical results and practical models and syst ms, and is still ongoing. While the

term 'intelligent agent' or simply 'agent' is widely used by people working in clos ly

related areas such as Engineering, Computer Science, Biology, and many others, th re

is no cl ar and universal definition of the 'agent'.

Agent

Figure 1.1: Agent and environment

For the purposes of this thesis, we define an agent as a hardware or software-based

computer system situated in some environment. The agent is able to observe its

environment via sensors. It reasons about changes in the environment, and performs

actions via actuators in order to modify its environment. The view on the agent is

shown in Figure 1.1. The agent environment can be physical (the physical world in

case of robots) or software (graphical user interface, the Internet, etc.). While the

agent can perform actions that change the environment, it has only partial control

1.1 Intelligent Agents 3

over it.

Wooldridge and Jennings [43] distinguish weak and strong notions of agency,

which describes properties of the agent. Their weak notion of agency defines an

agent as a computer system that has following properties:

autonomy : the agent operates without direct human control over its actions and

internal state;

social ability : the agent interacts with other agents and possibly with human

operators using some communication language or interface e.g., they cooperate

and coordinate their activities in order to accomplish their goals;

reactivity : the agent perceives the environment and responds in a timely fashion

to changes that occur in it;

pro-activeness: the agent does not only respond to the environment changes, it

is also able to exhibit goal-directed behaviour.

Agents as defined by the weak notion of agency can be implemented using standard

programming techniques. The strong notion characterises the agent as a computer

system which has the properties identified above and is either conceptualised or im­

plemented using concepts that are usually applied to humans. It is very common in

AI to characterise an agent using mentalistic notions such as knowledge, belief, desire,

intention, and obligations. Also use of AI techniques such as learning or planning is

mandatory attribute of the strong notion of the agent.

An agent is implemented and executed within a software framework called the

agent architecture. An agent program is often implemented using a high level agent

programming language associated with the agent architecture. The agent structure

in that case consists of the agent architecture and the agent program:

1.2 The Problem of Real-Time Agency 4

agent = agent architecture + agent program.

There are several software models for programming agents. One commonly used agent

software model of human-like agent reasoning is the 'Belief-Desire-Intention'(BDI)

model [8]. The behaviour of a BDI agent is described using the notions of beliefs,

desires and intentions.

1.2 The Problem of Real-Time Agency

The design of agent systems which can operate effectively in a dynamic environ­

ment is a major challenge for multiagent research. The reasoning processes implicit

in many agent architectures can require significant time to execute, with the result

that the environment may change while the agent makes a decision about which ac­

tivity to pursue. Thus a decision made by the agent may be 'wrong' (e.g., incorrect,

sub-optimal, or simply irrelevant) if it is not made in a timely manner. An agent in

such an environment is real-time in the sense that correctness of the system depends

not only on the response produced but the time at which it is produced.

In a real-time environment, the events to which the agent must respond should

be characterized by a deadline, e.g., the time by which a goal must be achieved or

the agent must respond to a change in its beliefs about the environment. In such

an environment, a rational agent should not adopt an intention which it believes

cannot be successfully executed by its deadline or continue to execute an intention

after its deadline. For example, an agent should not adopt an intention of writing a

research proposal which must be submitted by 4pm on Friday if there is insufficient

time to write the proposal. Also, if the agent is unable to respond to all events by

their deadlines, it should adopt intentions for the highest priority events which are

feasible.

1.2 The Problem of Real-Time Agency 5

A number of agent architectures and platforms have been proposed for the devel­

opment of agent systems which must operate in highly dynamic environments. For

example, the Procedural Reasoning System (PRS) [15] and PRS-like systems, e.g.,

PRS-CL [26], JAM [18], SPARK [25] have features such as metalevel reasoning which

facilitate the development of agents for real time environments. However, to provide

real time guarantees, these systems have to be programmed for each particular task

environment-there are no general methods or tools which allow the agent developer

to specify that a particular goal should be achieved by a specified time or that an

action should be performed within a particular interval of an event occurring.

Other architectures such as the Soft Real-Time Agent Architecture (SRTA) [37]

and AgentSpeak(XL) [3] implement high-level agent frameworks with built-in real­

time capabilities. However, although they allow the specification of time constraints

and complex interactions between tasks, these agent architectures do not offer guar­

antees regarding the successful execution of tasks.

We now can introduce a statement of the thesis.

Thesis Statement. High-level declarative agent programming languages based

on the BD! paradigm have been the focus of considerable research in the multi-agent

system community. However, while such languages provide powerful abstractions to

facilitate the programming of complex patterns of agent interaction, they fail to cap­

ture a key element of agency, namely the ability to respond to changes in the agent's

environment in a timely manner. The thesis will explore ways of adding soft real-time

guarantees to high-level declarative agent programming languages such as AgentSpeak

{28} and PRS {15}. This will involve developing ways to more precisely specify the

execution cycle of such languages and enhancing BD! model specifications.

1.3 Aims and Objectives 6

1.3 Aims and Objectives

The aim of the thesis is to develop a new approach to providing soft real-time

guarantees for Belief-Desire-Intention (BDI) agents that can be applied to a wide

range of BDI-based agent programming languages.

The objectives of the thesis are:

1. to define what is meant by real-time guarantees for BDI agents and propose

modifications to a generic BDI architecture to support real-time BDI agents;

2. to design and implement a BDI architecture which allows the development of

real-time agents;

3. to prove real-time properties of that architecture, including guaranteed reactiv­

ity delay of the architecture and probabilistic guarantees of successful execution

of intentions by their deadlines;

4. to characterise real-time task environments for an agent and to analyse their

influence on the behaviour of an agent.

1.4 Thesis Structure

In this section we provide an overview of the thesis structure.

Chapter 2. Real-Time BDI agents. This chapter reviews the BDI agent model.

Also the chapter presents the analysis of real-time guarantees for BDI agents

and how these can be achieved within a BDI programming framework.

Chapter 3. Literature review. This chapter discusses different agent architec­

tures, which can operate in a dynamic environment. The chapter distinguish

1.4 Thesis Structure 7

two types of agent architectures: the one with embedded real-time control and

the one with cooperative real-time control. Furthermore the chapter evaluates

the ability of each agent architecture to satisfy required real-time constraints.

Chapter 4. Changes to the BDI Architecture. This chapter explains the

changes that must be made to a generic BDI architecture to implement a real­

time BDI agent. The chapter distinguishes two types of changes: additional

information about goals and plans to support real-time guarantees, and the

extension of the BDI execution cycle to ensure that the agent's cycle time is

bounded and the agent accomplishes a priority-maximal set of intentions with

a specified level of confidence.

Chapter 5. AgentSpeak(RT): A Real-Time Agent Programming Language.

This chapter presents AgentSpeak(RT), a programming language for real-time

BDI agents. The chapter presents the syntax of AgentSpeak(RT) and describes

the execution cycle of the AgentSpeak(RT) architecture. It also presents the

example AgentSpeak(RT) agent program for control of a nuclear power plant.

Chapter 6. AgentSpeak(RT) Properties. This chapter gives the proof of guar­

anteed reaction time of the AgentSpeak(RT) interpreter and probabilistic guar­

antees of successful execution of intentions, i.e., an AgentSpeak(RT) agent is a

real-time BDI agent. Also it presents a simple model of the 'difficulty' of the

agent's task environment, and describes how to determine a probability that an

intention of given priority will not be displaced from the schedule and will be

executed by its deadline.

Chapter 7. AgentSpeak(RT) with Parallel Execution of Intentions. This

chapter presents a multitasking approach to parallel execution of intentions in

1.4 Thesis Structure 8

the AgentSpeak(RT) architecture. The chapter discusses proofs of the real-time

properties of the extended AgentSpeak(RT) architecture and presents an ex­

tended model of the environment 'difficulty' which allows parallel execution of

intentions. The probability that in the extended model of a dynamic environ­

ment a scheduled intention of given priority will be successfully completed by

its deadline is derived. Finally we demonstrate advantages of parallel execution

of intentions in AgentSpeak(RT) by showing how it improves the behaviour of

the example intelligent agent from Chapter 5.

Chapter 8. AgentSpeak(RT) Environment Characterisation. This chapter

presents a characterisation of real-time task environments for an agent, and

describes their implementation in AgentSpeak(RT). The chapter also describes

a relationship between the estimated execution time of a plan in a particular

environment and the syntactic complexity of agent programs.

Chapter 9. Conclusions and Future Work. This chapter provides a discussion

and summary of the research including an evaluation of potential application

domains. The major contributions and limitations of the work are described

as well as outlining the areas and directions in which this research could be

extended.

Chapter 2

Real-Time BDI agents

In this chapter we review the Belief-Desire-Intention (BDI) model for program­

ming intelligent agents. We present analysis of real-time guarantees for BDI agents

and demonstrate how these can be achieved within a BDI programming framework.

2.1 BDI Model

One commonly used agent software model is the Belief-Desire-Intention model

in which an agent's behaviour is described using the notions of beliefs, desires and

intentions. The origins of the model lie in the philosophy theory of human-like rea­

soning introduced by Michael Bratman [8]. Most well-known agent architectures like

the Procedural Reasoning System (PRS) [15], AgentSpeak(L) [28], Jason [5], JAM

[18], 3APL [17], 2APL [11], etc. are based on the BDI model.

The components of the BDI model can be briefly described as follows:

• Beliefs represent the informational model of the agent's world. Beliefs can

also include inference rules and ground facts, which are updated by an agent's

sensors. Rules are usually not updated by the sensors. The term belief is used,

2.1 BDI Model 10

rather than knowledge, because an agent's beliefs may not necessarily be true

and can be changed in the future. Usually beliefs are represented as standard

first-order predicates .

• Desires (or goals) represent states which the agent wishes to bring about. Goals

may be consistent or inconsistent. Goals are inconsistent if they are mutually

exclusive (Le., achieving one implies not achieving another). Otherwise, the

goals are consistent.

There are two aspects of goals [42J: declamtive (i.e., goal-to-be) which describes

a desired state; and proceduml (i.e., goal-to-do) describes a set of plans for

achieving the goal.

• Intentions represent the agent's choice of particular courses of action i.e., plans,

that is, desires which the agent has chosen to pursue in the current situation.

Plans specify sequences of actions and subgoals an agent can use to achieve its

goals given its beliefs.

The BDI model also incorporates another component - an input events queue. An

event is a trigger for reactive activity by the agent. An event may update a belief base

state, trigger plans or establish a new goal. There are two types of events: external,

which are generated from outside and received by sensors, and internal, which are

generated by the agent program.

A generic BDI architecture has been developed without much attention to rea­

soning time constraints. However the reasoning process implicit in BDI agent archi­

tectures can require significant time to execute, with the result that the environment

may change while the agent makes a decision about which activity to pursue. Thus

a decision made by the agent may be wrong (incorrect, sub-optimal, or simply irrel­

evant) if it is not made in a timely manner. This fact represents a gap that current

2.2 Real-time Guarantees 11

Algorithm 2.1 The BDI Interpreter [29]

1. initialize state of the agent

2. repeat

2.1 update events using its sensors;

2.2 deliberate over new events and choose a course of action (or plans) to fulfill

them;

2.3 update the intention structure by these plans

2.4 execute an intention

3. end repeat

research is trying to address. Below, we provide a definition of real-time guarantees

for a BDI agent.

2.2 Real-time Guarantees

Real-world intelligent systems perceive their environments and affect them through

execution of actions. The environment imposes real-time constraints on such systems,

which operate on this environment, i.e., the system has to have a bounded response

time. For example, a post delivery robot moving in building corridors needs to re­

spond quickly enough to avoid collisions with obstacles.

In real-time programming a distinction is made between hard real-time and soft

real-time systems. In the context of agent systems, hard real-time means that the

agent must process its inputs (Le., facts and goals) and produce a response within a

specified time. For an agent system, which provides hard real-time guarantees, there

2.2 Real-time Guarantees 12

is therefore a strict upper bound on the time to process incoming information and

produce a response.

In soft real-time, the agent may not produce a response within the specified time

in all cases, i.e., timeliness constraints may be violated under load and fault conditions

without critical consequences l . For BDI agents, a relevant notion of 'response' is the

adoption and successful execution of an intention i.e., the achievement of a high-level

goal or responding to a change in the agent's environment.

We assume that each of the agent's intentions is associated with a (possibly in­

finite) deadline which specifies the time by which the goal should be achieved or

a change in the agent's environment responded to, and an expected execution time

(which depends on the agent's plan to achieve the goal or respond to the event and

the state of the agent's environment). A set of intentions which can all be achieved

by their deadlines is termed feasible. Which sets of intentions are feasible will depend

on the speed at which the environment changes, the capabilities of the agent, etc.

In general, it may not be possible to achieve every goal or respond to every change

in the agent's environment by the relevant deadline. In such situations, it is frequently

more important to achieve some goals than others. For example, an agent should not

adopt an intention of writing a research proposal, which must be submitted by 4pm

on Friday if there is insufficient time to write the proposal. We therefore assume that

each goal is associated with a priority which specifies the importance of achieving

the goal. We define a priority-maximal set of intentions as a maximally feasible

lSome computer systems (for example, real-time video) utilise a stricter notion of real-time

guarantees, where the precise time at which a response is produced matters [10], [131. Hard real­

time for this type of system requires a response at an exact time rather than before a deadline,

and soft real-time means that the response time lies within a defined uncertainty range around the

required time.

2.2 Real-time Guarantees 13

set of intentions which contains high priority intentions in preference to low priority

intentions (a precise definition is given in Chapter 6.1).

In soft real time applications, occasional failure to execute an intention successfully

is acceptable. We assume that the degree of "softness" of a task environment can

be characterised by a confidence level 0: which is the the probability that intentions

complete by their deadlines in a static environment2 . A low value of 0: indicates a

task environment in which failures can be tolerated. If 0: = 1 and all tasks can be

scheduled and never displaced by other high priority tasks then a task environment

is hard real-time, i.e., all intentions must execute successfully by their deadlines.

For an agent to be real-time it must offer certain guarantees. Its cycle time and

hence its reaction time (the time required for the agent to become aware of changes in

its environment) must be bounded. It must commit to the "right" set of intentions,

taking into account their priority and deadlines, and must schedule and execute its

intentions so as to ensure their successful execution with (at least) some probability.

Finally, it must update its set of intentions appropriately as its beliefs and goals

change over time.

Thus we define a real-time BD! agent as an agent with following properties: 1)

the time required to execute a single cycle of the agent interpreter (and hence the

reactivity delay of the agent) is bounded by some constant; 2) the agent commits to

and, with probability 0:, accomplishes a priority-maximal set of intentions.

2For simplicity, we assume that 0: is the same for all intentions; however, the real time guarantees

we prove in Chapter 6 still hold if 0: is different for different events.

2.3 Summary 14

2.3 Summary

In this chapter, we have reviewed a generic BDI architecture and developed a

notion of 'real-time' appropriate to a BDI agent. In the next two chapters we will

look at existing agent architectures designed for real-time applications (Chapter 3)

and outline the changes necessary for BDI architecture to implement a real-time BD!

agent (Chapter 4).

Chapter 3

Literature Review

3.1 Introduction

In this chapter, several different agent architectures are discussed. Well-known

BDI agent languages, such as PRS-CL [26], Jason [6], JIAC [20], 2APL [11], etc. pro­

vide powerful facilities for complex agent programming. Some of these architectures

have several features, such as metalevel reasoning, time-outs, and plan repair rules

allow agents, which are situated in dynamic real-time environments, meet real-time

demands, in a limited number of applications. However these agent architectures

have only partial or limited support of time-critical agent behaviour.

For example, 2APL programming language allows the user to define optional time­

out parameters for the basic actions, which can be used to define the time at which

an action should be considered to have failed. Such time-outs can be used to establish

a bound on the maximum execution time of simple plans consisting of basic actions.

2APL also provides constructs to implement reasoning rules: planning goal rules,

procedural rules and plan repair rules for plans. 2APL architecture is built on top of

the Jade platform. The JADE platform and other similar architectures like Jadex,

3.2 Embedded Real-Time Control 16

JACK, JIAC, etc. leave the full implementation of real-time support to an agent

developer i.e., the agent has to be manually programmed using the Java language.

The purpose of this chapter is to provide background information on different

agent architectures which can operate in complex dynamic environments. In this

chapter we discuss two types of agent architectures: those with embedded real-time

control e.g., PHS and its descendants (Sections 3.2.1--3.2.3), SRTA (Section 3.2.4)

and those with cooperative real-time control e.g., ROACS and SIMBA (Section 3.3.1

and 3.3.2).

Below, we describe these agent architectures in details. While all of them provide

facilities for implementing complex agent systems, we have identified several features

that may guarantee time-limited behaviour of a particular agent. Finally, we evalu­

ate the ability of other well-known agent architectures to satisfy required real-time

constraints in highly dynamic environments.

3.2 Embedded Real-Time Control

In this section, we review agent architectures with embedded real-time control.

These architectures implement real-time capabilities using techniques and features

from Artificial Intelligence (AI). Procedural Reasoning System (PRS) [15] and its de­

scendants e.g., JAM, SPARK (Sections 3.2.1-3.2.3) are agent architectures in which

the real-time control which has to be individually programmed for a particular appli­

cation. In the other hand, Soft Real-Time Architecture (SRTA) and AgentSpeak(XL}

(Section 3.2.4) are embedded real-time agent architectures with built-in real-time ca­

pabilities.

3.2 Embedded Real-Time Control 17

3.2.1 Procedural Reasoning System

The PRS (Procedural Reasoning System) was originally developed by Georgeff

and Lansky [15]. The most recent version of PRS (PRS-CL) was developed by Myers

[26]. In contrast to the original PRS, PRS-CL employs a representation of actions

called Acts, rather than the Knowledge Areas (KAs). Act utilises as the input lan­

guage for procedural knowledge in PRS-eL, however the KA representation is still

used internally. The Act syntax supports certain capabilities not possible with KAs,

such as required resources for the duration of the Act, properties of the Act, etc.

PRS's architecture consists of four components:

1. a database containing current facts (beliefs) about the world,

2. a set of current goals,

3. a set of plans, called Acts, and

4. an intentions graph (intention structure).

PRS connects these four components via an interpreter, which manipulates them

to select and execute appropriate Acts, based on the system's facts (beliefs) and goals.

The PRS interpreter operates as follows: (1) at any particular time certain goals

are posted and certain events occur that add corresponding facts to the system's

database; (2) these changes in the system's goals and facts trigger a set of applicable

Acts; (3) one or more of these applicable Acts will be chosen and placed on the

intention graph; (4) PRS selects a task (intention) from the set of eligible intentions

and (5) executes one step of that task. The result of the execution is either (6) the

performance of a primitive action in the world, (7) the establishment of a new subgoal

3.2 Embedded R eal-Time Control

New Facts and Goals ® T~'OtInew~/.Of'_
Pos/'Ubgoa/OfflJCl (!) r--"~L.--:...-------J---'" Act Library

Porform Ii'
BCIIon ~

Act Execution
Cue:

(TEST (

Cuc:

18

External
World (ACHIEVF(po.<iloon I,,,,.! apcn))

ModifY inlOIl/ions ®

.o\CIUE\·E
(pMklan aa-.. ln ope_.,

ACT I

"'''"'''

Intention Graph

Figure 3.1: The PRS Interpreter [26)

Inl..xJ ''''' Act

or the conclusion of some new fact, or (8) a modification to the intention graph itself.

After that the interpreter begins a new cycle.

PRS agents may operate in highly dynamic real-time environments. PRS contains

several tools to support the development of real-time agent-based applications. PRS

supports a priority differentiation of intentions that allows the agent to perform more

important tasks first. In addition, PRS supports metalevel reasoning and planning

[14], and allows the specification of time windows on individual Act activity [27] i.e.,

earliest and latest start times, earliest and latest finish times, and minimum and

maximum durations. All of these features are discussed in turn below.

3.2 Embedded Real-Time Control 19

Beliefs and Goals

Beliefs (or facts) represent the agent's information about its environment e.g.,

sensory information, information about other agents, etc. Beliefs are represented as

first-order predicates.

A database (i.e., an agent's beliefs base) contains the agent's current beliefs. In

addition the database may contain metalevel facts (or meta-facts), which describe

the internal state of agent. Metalevel facts are used for describing the agent's current

goals, intentions and Acts, which the agent may adopt. Metalevel facts are very

important for developing various control strategies for PRS.

A goal is a state the agent wishes to bring about. The PRS supports several goal

types:

• ACHIEVE goals specify a state of the world, which should be achieved;

• ACHIEVE-BY goals are similar to achieve goals, but which should be ac­

complished by a restricted set of Acts;

• TEST goals specify a formula or formulae that must be true in the current

database;

• USE-RESOURCE goals specify a set of resources (i.e., a physical or virtual

component of limited availability within an agent) required by an Act, which

must be available for the Act to be executed;

• WAIT-UNTIL goals make the agent waits until a given condition is true;

• REQUIRE-UNTIL goals specify that the agent should maintain a goal until

certain condition is satisfied;

• CONCLUDE goals add information to the database;

3.2 Embedded Real-Time Control 20

• RETRACT goals retract information from the database.

The developer can also define meta-level goals which characterise the internal

behaviour of an agent.

Acts

Acts (Le., Plans) are sequences of actions, subgoals and complex syntax constructs

that an agent can perform to achieve one or more of its intentions.

Each PRS-CL Act consists of two main parts:

1. a plot, which describes steps of the procedure to achieve an objective in a given

situation (represented as plan schema or graph) and

2. an environment, which includes the triggering conditions which specify when

the Act can be applied and information about the Act e.g., Name of the Act,

Comments and Properties of Act.

The plot of the Act is a directed graph whose nodes represent actions to be

executed, and whose arcs define a partial temporal order of execution. The plot has

a single start node, but may have multiple terminal nodes, which have no outgoing

arcs.

Multiple branches from a single node represent nondeterministic choice among

several activities for achieving a goal. The PRS interpreter executes individual suc­

cessor nodes of the split node and ignores all other branches from this node. If the

goal expression on its choice is satisfiable, then it will continue executing that branch.

Overwise, it will try to satisfy another node. If the split node has no successors that

can be satisfied, then the split node is said to fail. Loops are represented by connect­

ing the outgoing arc of one node to an ancestor node in the graph. Figure 3.2 presents

3.2 Embedded Real-Time Control

DEPLOY ·AIRFORCE

c..
(ACHI(II£ (DEPloveoAlR 1 AIRFIELD 2 (No-n .. c 1))

-(TeST
tANO 'l.OCATEOAtR 1 lOCATION '.

(NEARAIAFIELO 1 LOCATION 11
(NEAR SEAPORT • LOCATION 11
(PARTITKlN-FORCE AR 1 CARGQ8YAtR 1
CARGOIIYSEA.11

(TRANSIT -APPROVAl. AJRflEL011
(TRANSIf -APPROVAl. SEAPORT 21
(NEAR SEAPORT 2 AIIIFELD n
(AOUTE-AlOC AiRfiELD 1 AlRFf£LO.2
AIRLOC 11
(Roure.sLOC SEAPORT 1 SEAPORT 2 SEMOC 1111

-(Ten
(AND (NOT (a AJRfIELD Z AIRFELO '11

(NOT (a SEAPORT 1 SEAPORT 21111

-.... _:
«(f.UTHOIIIf<G-SYSTe" SIPE..!I (ClASS OP£JIAfOR»

.,
f,Ot:...v1I'"
"~AlIllI.OCATlON.ll
(--. ... 111

(CC*CLllIIe
(AMI>
(LOCAnDAn1.1 ""'~LD.J:)
(NOT
(l,.OCAT8) CAJIO(MtVAA.1 AIIFJeLD..J),

(NOT
1l0001!:D CAAOOBVUA,t AIRFieLD.,,,.,

Figure 3.2: An Example of an Act plot [27]

21

an example Act for deploying an air force to a particular location. The environment

conditions are displayed on the left side of the screen and the plot nodes on the right

side.

The environment of the Act consists of six slots:

Name is an unique symbolic identifier of the Act.

Comment is a string for notes.

Cue indicates the purpose of the Act and is used to index and choose Acts for

possible execution. The Cue can contain either an ACHIEVE, TEST or CON­

CLUDE goal. An ACHIEVE goal means that the Act is used to achieve some

condition. A TEST goal means that the Act is used to actively test some con-

3.2 Embedded Real-Time Control 22

dition. A CONCL UDE goal indicates that the Act will be chosen for a possible

execution when a certain belief is added to the database.

Precondition specifies conditions that must be satisfied for the Act to be appli­

cable. This slot can contain both ACHIEVE and TEST goal expressions. An

(ACHIEVE G) expression in this slot means that the agent must currently have

a goal G for the Act to be applicable. An (TEST P) expression in this slot

means that P must be true for the Act to be applicable.

Setting specifies additional triggering conditions (Le., ACHIEVE and TEST goal

expressions). This slot has the same functionality as the Precondition slot and

is used to separate out those conditions that relate to instantiating variables

(Le., replacing the variables with a referring expression).

Resources specifies resources that are required for the duration of the Act. Only

USE-RESOURCE goals can be used for this slot. A resource in PRS is a

non-sharable object. Resources will be unavailable for use by other Acts until

execution of the Act is finished.

Properties consists of a list of property/value pairs. The list of Properties is

usually used to reorder the intention graph.

The Properties slot is very important for time-critical applications. It allows the

agent programmer to specify various properties of the Act. An optional property of

the Act is its priority. The priority is a value, which describes the relative importance

of the Act. This property is used for meta-reasoning about choosing among multiple

applicable Acts. For example, a user may implement a meta-Act, which intends

applicable Acts with the highest priority for each goal; otherwise, an Act is selected

randomly.

3.2 Embedded Real-Time Control 23

In addition, PRS-CL [27] provides a wide range of temporal relationships between

two plot nodes within an Act using both the Time-Constraints property in the

environment Property slot and the Orderings attribute of plot nodes. User may

define a relation for a plot node in terms of Allen relations (which define possible

relations between time intervals) [1], such as starts, overlaps, before, meets,

during, finishes, equals. For example a plot node has the relationship before or

meets with its successor plot node.

Also Acts allow the specification of time windows on individual plot nodes. The

Time-Window attribute provides absolute temporal constraints on the execution time

of the node, in terms of the earliest and latest start times (startO and startl),

earliest and latest end times (endO and endl), and minimum and maximum durations

(min and max).

This attribute for a plot node can be expressed as follows

(Time-Window startO startl endO endl min max).

The start and end times are either numbers, or one of the values inf (infinity), neginf

(negative infinity), eps (epsilon), or negeps (negative epsilon). The maximum and

minimum duration must be greater than zero.

These temporal reasoning properties provide powerful abstraction for an agent

programmer to implement complex interactions of actions within the Act and time­

bounded reactivity, which is required in highly dynamic environments. However a

value of each Ordering or Time-Constraints property has to be set by the developer

or a meta-procedure in each particular case.

Acts in PRS are used not only for dealing with the environment, but also can be

used to manipulate the facts, goals, and intentions of a PRS agent. Such Acts are

called metalevel Acts (see Section 3.2.1 for details).

3.2 Embedded Real-Time Control 24

Intentions

The intention structure contains all Acts that have been chosen for immediate or

later execution in response to some posted goals or facts. Each intention consists of

some initial Act together with all the "sub-Acts" being applied to satisfy the subgoals

of the original Act, and can be viewed as a tree or a graph, where successive layers

in the tree correspond to levels of subgoal within the Acts.

Information about each intention consists of (1) the purpose of the intention (goal

or fact), (2) the priority of the intention, which describes their relative importance for

execution stage (by default 0) and (3) the current state of the intention. The intention

can have one of three possible states: 1)Normal means that this intention is eligible

for execution; 2)Sleeping means that the intention is suspended and is awaiting for

some activation condition; 3)Awake is similar to the Normal state, except that when

there is more than one intention eligible for execution, the most recently awoken

intention is given priority.

The set of intentions is stored in a structure called the intention graph. The

intentions in an intention graph are partially ordered, with possibly multiple least

elements, called roots. Intentions which are earlier in the ordering must be either

realised or dropped (and thus disappear from the intention graph) before intentions

appearing later in the ordering can be executed. This precedence ordering allows pri­

oritized execution of intentions. The priority of an intention has to be set manually by

accessing the priority slot of the intention class while intending an Act. Alternatively,

an agent developer may define a metalevel procedure (i.e., meta-Act) to reorder the

intention graph.

Figure 3.3 displays an ASCII representation of an intention graph, which was gen­

erated for deploying an airforce. The intention graph contains three root intentions,

3.2 Embedded Real-Time Control

** INTENTION GRAPH **

*(ACHIEVE (DEPLOYED Transport-Al London

*(ACHIEVE (DEPLOYED Transport-A2 Belfast

25

500» Priority: 2 State: (N)

500» Priority: 1 State: (N)

*(ACHIEVE (DEPLOYED Transport-A3 Farnhorough 500» Priority: 0 State: (N)

Figure 3.3: A Sample Intention Graph Summary

each with a different priority. The intention for deploy Transport-AI in London has

highest priority and will be executed first.

Metalevel reasoning

The most powerful feature of PRS is a metalevel reasoning, which can be used to

handle highly dynamic environments. Metalevel and baselevel Acts have the same

structure, but differ in their area of application. Metalevel Acts are used to modify

the internal structures of an agent (e.g., intention structure, plan choice process etc.)

using metalevel facts, goals and predefined functions.

In each execution, the agent's interpreter posts several meta-facts, such as the

set of applicable acts (SOAK), the set of fact-invoked and goal-invoked applicable

acts (FACT- INVOKED -KAS and GOAL-INVOKED -KAS), failed goals (FAILED-GOAL),

etc. These facts start a self-reflection cycle (or applicability testing cycle), which

includes the following steps: (1) trigger one or more applicable meta-Acts, and (2)

conclude a new meta-fact about the set of Acts applicable and possible other meta­

facts about world. The system continuously reflects on itself until there are no new

applicable Acts. When the system reaches this state, one or more applicable Acts

from those applicable at the previous reflection cycle will be chosen randomly. The

agent developer can therefore define very complex agent behaviour with several levels

of reasoning. Typically, metalevel reasoning is used to:

3.2 Embedded Real-Time Control 26

1. Reason about multiple applicable Acts in a single interpreter cycle. Using meta­

Acts, a developer can change default choice process and intend Acts for a goals

based on the Act priority, time availability, cost measure or other properties in

order to provide best outcome.

2. Prioritize an agent's intentions. Assigning priority values to an agent's inten­

tions allows execution of agent's tasks based on the priority order.

3. Implement scheduling strategies. PRS metalevel procedures can also reorder

the intention graph based on intention priorities, plan properties etc. to ensure

reactivity.

4. Failure handling. Using metalevel capabilities, a failed task can be resubmitted

or killed if it is no longer appropriate.

New intentions without metalevel reasoning are inserted as a new root intention

and removed when completed. However, metalevel Acts may change this ordering

based on the task priorities, time availability and so on. These metalevel capabilities

can be used to provide real-time guarantees for an agent operating in a dynamic

environment, but have to be programmed individually for each particular application.

The ideas underlying PRS have been used as a basis for the implementation of

various BDI agent languages. One well-known direct descendant of PRS is AgentS­

peak(L), which can be viewed as a simplified variant of PRS [28]. AgentSpeak(L)

and other more recent systems, such as JAM [18], SPARK [25], ARTS [36] are briefly

described below.

3.2 Embedded Real-Time Control 27

3.2.2 JAM

JAM [18J is a BD! agent architecture and a Java implementation of PRS, which

also combines ideas from the Structured Circuit Semantics (SCS) architecture [21J

and Act plan interlingua [27, 41J. Like PRS, the JAM agent architecture provides

procedural knowledge representation and a metalevel.

A JAM agent is composed of five main components: a world model, a plan library,

an interpreter and an observer. The world model is a database, which contains the

agent's current beliefs. Beliefs are represented as first-order predicates.

JAM supports three types of goals: ACHIEVE, PERFORM, and MAINTAIN. An ACHIEVE

goal specifies a desire to achieve a certain state. For ACHIEVE goals, the interpreter

checks whether the goal has been already achieved. In contrast to ACHIEVE goals,

PERFORM goals are not checked to see if the goal has been achieved already. A

MAINTAIN goal is a goal that must be posted again if it is accomplished. In ad­

dition, the agent programmer may specify utility of a goal, which is either a fixed

numeric value or specified as an utility function.

JAM plans define a procedural specification for reacting to a goal or to changes

in the environment. JAM supports both goal-driven and belief-driven plans. JAM

plan applicability is constrained to two types of conditions: a precondition, which

specifies conditions that must be true before plan execution, and a context, conditions

that must be true before and during plan execution. The plan body can contain

simple actions (e.g., user-defined primitive actions) and complex constructs (e.g.,

loops, deterministic and non-deterministic choice). JAM also supports constructs

such as DO ... WHILE (loop with postcondition), WHILE (loop with precondition) OR

(do any in order), AND (do all in order), DO_ALL (do all randomly), DO_ANY (do any

randomly), WHEN (conditional execution) etc.

3.2 Embedded Real-Time Control 28

In addition, each plan may include an explicitly or implicitly defined utility, which

is used for reasoning about alternative plans, i.e., to select the best alternative plan

in a given situation. The plan utility is either a fixed numeric value or a utility

function. The utility of an intention is a combination of the goal's utility and the

utility of an instantiated plan for this goal. The JAM agent dynamically switches

between its intentions as utilities change, and it always executes the intention with

highest utility. The default utility value for an intention is 0.0. However plan and

goal utility values are independent from each other, so it can be very hard to predict

the execution order of intentions.

Another difference from PRS is the availability of an observer procedure. The

observer is an optional declarative procedure, which is executed between each action

in a plan. The observer is implemented as a plan body. The observer procedure

allows an agent developer to control the execution of actions. However, the observer

procedure cannot be complex, because it is executed very frequently.

Also JAM does not support time-constraints and ordering properties and provides

limited support for metalevel reasoning: a developer may only define a metalevel

procedure to reason about multiple applicable plans.

3.2.3 SPARK

SPARK [25] is a multi-agent architecture developed at the Artificial Intelligence

Center of SRI International. SPARK is a Belief Desire Intention (BDI) Agent frame­

work, which incorporates theoretical ideas from the PRS family of agent languages.

It supports reasoning techniques for a procedure validation, automated synthesis,

and repair. SPARK includes an expressive well-defined procedure language with a

wide range of control structures, introspection capabilities, a metalevel control and

3.2 Embedded Real-Time Control 29

advisability techniques that support high-level user directability. It also extends PRS

in including a well-defined failure mechanism.

A SPARK agent consists of a knowledge base (i.e., belief base), a library of pro­

cedures (i.e., plan library), a set of intentions and an executor (Le., interpreter). In

comparison to PRS-CL, SPARK supports two types of agent tasks (i.e., goals): basic

(Table 3.1) and compound (Table 3.2).

[noop:]

[fail:]

[conclude: ¢]

[retract: ¢]

[do: a]

[achieve: ¢ 1

Do nothing.

Fail.

Add fact ¢ to the knowledge base.

Remove facts matching ¢ from the knowledge base.

Perform the action a.

Attempt to make ¢ true.

Table 3.1: SPARK Basic Task Expressions [25]

[seq: 71 72]

[parallel: 71 72 1

[if: ¢ 71 72]

[try: 771 72 1

[wait: ¢ 7]

[while: ¢ 71 72]

Execute 71 and then 72.

Execute 71 and 72 in parallel.

If ¢ is true, execute 71 otherwise execute 72.

If 7 succeeds, execute 71 otherwise execute 72.

Wait until ¢ is true, then execute 7.

Repeat 71 until ¢ has no solution then execute 72.

Table 3.2: SPARK Compound Task Expressions [25]

SPARK supports metalevel control of the agent execution. Metalevel reasoning

can be used for 1) logging of information about the agent's state and progress of

execution; 2) handling the failure of tasks; 3) customizing the default procedure

selection mechanism. SPARK also provides a set of predicates and actions to allow

3.2 Embedded Real-Time Control 30

access an agent's intention structure. These functions and actions can be used to

re-order the intention structure and to implement different scheduling strategies.

A unique feature of SPARK is support for agent directability through user spec­

ified guidance. The guidance is a set of declarative polices and it is used to restrict

or enable agent activities. SPARK allows an agent programmer to define two types

of guidance: stmtegy preference, i.e., recommendations on how an agent should ac­

complish tasks, and adjustable autonomy, i.e., recommendations that allow the user

to control the degree of agent autonomy. The guidance can be dynamically asserted,

retracted and modified depending on the agent programmer preferences. Guidance

provides the agent programmer with a way of adjusting agent behaviour for differ­

ent application including real-time applications. It is implemented using metalevel

procedures, which test properties associated with tasks, procedures, and actions.

3.2.4 Soft Real-Time Architecture and AgentSpeak(XL)

Perhaps the work most similar to the topic of this thesis are architectures such

as the Soft Real-Time Agent Architecture (SRTA) [37] and AgentSpeak(XL) [3]. In

comparison to PRS, these architectures provide built-in real-time capabilities and use

the T ./EMS (Task Analysis, Environment Modelling, and Simulation) framework [12]

together with Design-To-Criteria scheduling [38] to schedule intentions.

T ./EMS model and DTC scheduler

T ./EMS provides a high-level framework for specifying the expected quality, cost

and duration of methods (actions) and relationships between tasks (plans). Methods

and tasks can have deadlines, and T ./EMS assumes the availability of probability

distributions over expected execution times (and quality and costs).

3.2 Embedded Real-Time Control

I Edmund's-Reviews
0(2% 0)(98% 10)
C (100%0)
0(50% 120)(25% 130)

(25% 140)

I Ileraud's-Test-Drive
o (20% 0) (80% 17)
C(100%0)
o (40% 240)(60% 300)

max 0
IL,. G_e_t-....;U_R_L..I~ enahTes
o (5% 0) (95% 00(1)
C (100% 0)
o (50% 30)(50% 60)

Issue-Request
0(100%24)
C (100% $9.95)
o (50% 240)(50% 260)

Sublask ~13Iion <® Q _ Qual~y
, C-Coot

,EnablesNLE I-IDeO_,on

"'

I Intclichoice I
0(100% 17)
C (100% $4.95)
o (50% 480)(50% 560)

I Edmund's-Price~uide I
o (5% 0) (95% 12)
C(1OO%0)
0(50% 120)(25% 130)(25% 14)

F igure 3.4: TJEMS Task Structure example [38]

31

Design-to-Criteria (DTC) decides which tasks to perform, how to perform them,

and the order in which they should be performed, to satisfy hard constraints (e.g.,

deadlines) and to maximise the agent's objective function (Quality Accumulation

Function) using a criteria specification metaphor, called importance sliders. These

importance sliders allow the relative importance of quality, cost, and duration to

be defined in terms of raw goodness, thresholds and limits, certainty, and certainty

thresholds parameters. Importance sliders are set for each application.

T JEMS allows the specification of complex interactions between tasks, and DTC

can produce schedules that allow interleaved or parallel execution of tasks. However,

the view of 'real-time' used in these systems is different from that taken in Chapter

2. Deadlines are not hard (tasks still have value after their deadline) and no attempt

is made to offer probabilistic guarantees regarding the successful execution of tasks.

3.2 Embedded Real-Time Control

Create .ll8mativ .. : Generate recursively from the leaves to the root. At each
node, use aiteria-directed·focusing to avoid generating and propagating all
possible alternatives.

Schedule Building ~ ______ :-----:----:--::-----:.L...----:----:----:-----:--:-:-----:----:-_:----,
& IntpfOvement Chose an alternative for .cheduling: Use criteria-<lirected focusing to select
Ph... an alternative from the root-level alternative set.

Build schedule from alternative: Use heuristic decision making to cope with
combinatorics, and reason about constraints, to build end to end schedule from
the unordered melhods contained the altemative.

No Critique schedule: Employ heuristic elTO(
>---~ correction to suggest ways to improve upon most

recently generated schedule (adds to set of
candidate alternatives).

Execute schedule, monitor, replan, and reschedule as necessary.

Figure 3.5: Design-To-Criteria task scheduling [38]

AgentSpeak(L)

32

AgentSpeak(L) is an abstract agent programming language introduced by Rao

in [28]. The agent language is based on restricted first-order logic with events and

actions.

The AgentSpeak(L) architecture consists of five main components: a belief base,

a set of events, a plan library, an intention structure, and an interpreter (see Figure

3.6).

AgentSpeak(L) differs from PRS in following significant respects:

• Syntax. In contrast to PRS AgentSpeak(L) has a simpler syntax. It distin­

guishes two types of goals: achievement (Le., describes a state that an agent

wants to achieve) and test (Le., determines whether the associated predicate is

true). AgentSpeak(L) plans consists of only primitive actions and subgoals.

3.2 Embedded Real-Time Control

ApatSpnk(L) Apat
,....-.....;;;.IeIIefI=_--t Beller ________________ -,

PIa.
Llbral'1

Figure 3.6: AgentSpeak(L) Interpreter [24]

I.=,
I
I

33

• Real-time capabilities. AgentSpeak(L) does not explicitly support met­

alevel reasoning (it can be implemented through selection functions). The

absence of meta-level reasoning and the ability to assign priority and dead­

lines for agent's events make it difficult to develop of AgentSpeak(L) agents for

real-time applications.

However, its simple and well-defined structure makes it possible to develop exten-

sions.

3.3 Cooperative Real-Time Control 34

AgentSpeak(XL)

AgentSpeak(XL) [3] is an extension of the well known AgentSpeak(L) language.

The AgentSpeak(XL) framework extends AgentSpeak(L) by incorporating the T lEMS

(Task Analysis, Environment Modelling, and Simulation) framework [12] and DTC

(Design-To-Criteria) scheduling [38] to schedule intentions.

SRTA: Soft Real-Time Agent Architecture

SRTA (Soft Real-Time Agent Architecture) [37] provides facilities to support the

to develop agent systems development of soft real-time requirements. This architec­

ture consists of a Problem Solver, a TlEMS library, DTC and Partial Order Scheduler,

Execution and Learning modules (see Figure 3.7).

The SRTA scheduler includes conflict resolution, task merging and resource mod­

elling modules. The conflict resolution module reasons about mutually exclusive tasks

and determines the best way to resolve conflicts. The task resolution module allows

the scheduler to combine several tasks within an existing schedule. Finally, the con­

flict resolution module is used to ensure that resource constraints are satisfied for

each agent task. A Problem Solver is responsible for translating high-level goals into

T lEMS tasks and handling task failures. The learning component of SRTA is used

to monitor task execution and update the task template library when new trends are

observed. It should be noted that although DTC can be used in an 'anytime' fashion,

neither SRTA or AgentSpeak(XL) execute in bounded time.

3.3 Cooperative Real-Time Control

Agent architectures based on the cooperative real-time control approach consist of

both intelligent and real-time control parts. This type of architecture is often called

3.3 Cooperative Real-Time Control

lW u lIu"'

Gael U •• racterillln

FI .. dS I.

T AEIIS Llbr."

TAUIS

hi .. ",

AnyIImeIP
e-tlon Module

Figure 3.7: Soft Real-Time Agent Architecture [37]

35

hybrid. A wide range of designs have been proposed, differing only in complexity of

the processing available on AI and real-time subsystems, and the communication

between these subsystems. Hybrid agent architectures such as ROACS [16] and

SIMBA [9] consist of an AI subsystem and a low-level control subsystem connected

by a communication interface. Such systems attempt to improve responsiveness by

separating the 'real-time' aspects of the architecture from the high-level control.

3.3 Cooperative Real-Time Control 36

3.3.1 ROACS

ROACS (Real-time Open-Architecture Control System) [16] is a hybrid agent

architecture, developed for the flexible control of industrial robots. ROACS is capable

of handling tasks with uncertainties. The communication between the AI and real-

time subsystems is based on a client-server communication model. ROACS was

implemented as vertical hierarchy control system with information data feedback at

every level. Figure 3.8 shows the ROACS architecture.

KnowIIdge
a..furTnk --+- Intelligent Tuk Control

Operdon

ImpeUnc ••
other..,...

c __

+
om. Proc:nUtg & PdI PIIInning
I~

Poelllon, etc.
htpoin ..

i +
FIIWrtng lind

~
Estlnulllon

PIIth PIIInning
c
0

I I'roIKtion

t

U
low-l.evel U ActuMion
Sensing 110 ~

t ~
Proc_ (Robot, End.£tr.do" ObjKt,.nd

EnvlrOtlmenl,

Figure 3.8: ROACS architecture [16]

The intelligent subsystem is responsible for deciding which task to perform based

on informational feedback and agent knowledge. The real-time subsystem in turn

executes these chosen tasks. ROACS tasks are executed in priority order. ROACS

3.3 Cooperative Real-Time Control 37

also allows specification of motion restrictions for a task to restrict default agent

motions, and specification of a task set to enforce execution order of some sequential

motion commands.

However, the ROACS architecture has several drawbacks: it does not support

timely execution of tasks and is highly dependent on the hardware configuration and

communication between intelligent and real-time subsystems.

3.3.2 SIMBA

SIMBA [9] is a multi-agent platform for the development of real-time systems.

SIMBA incorporates a set of real-time ARTIS agents [7], and a special Manager

Platform agent (MPA). The SIMBA architecture is shown in Figure 3.9. An ARTIS

agent is an extension of the blackboard modell, which is adapted to work in real­

time environments. The SIMBA architecture can also include case-based planning

BDI (eBP-BDI) agents, which are specialized in generating optimum plans for ARTIS

agents. Agents in the SIMBA platform communicate through UDP lIP protocol.

The intelligent part of an ARTIS agent is made up of a set of sensors and effectors,

which provide the interaction between the agent and its environment, a set of beliefs,

and set of behaviours. The behaviour of the ARTIS agent is determined by a set of in­

agents, which periodically perform a specific task. Each in-agent solves a particular

subproblem, which is a part of the entire problem. An in-agent may use results

obtained by other in-agents. ARTIS distinguishes two types of in-agents: critical,

which requires time-limited response, and non-critical, which allows anytime response.

It is possible to define a deadline and a period. An in-agent consists of reflex and real-

IThe blackboard architectural model, where a common knowledge base, the "blackboard", is

iteratively updated by a diverse group of specialist knowledge sources, starting with a problem

specification and ending with a solution.

3.3 Cooperative Real-Time Control 38

time delib rative lay rs. The reflex layer produces a minimum quality response and

real-time deliberative layer attempts to improve this response. Non-critical ag nts

only have the real-time deliberative layer.

A control part in ARTIS agent provid s real-tim execution of in-agents in a

particular hardware and allows in-agents to satisfy temporal requirements for in­

agents. Different exe ution criteria for two in-agent layers must be specified by the

d veloper.

-~
1

ARTIS AGEHT

-~~
t

l-tlve-J

ARnSAGENT

OF

AMS

SIMBA PLATFORM

Figure 3.9: SIMBA architecture [9]

ARTIS agents together with CBP-BDI agents, which generate plans for ARTIS

agent, allow the development of agent systems for real-time applications. However

the SIMBA platform does not support real-time communication between agents or

communication within ARTIS agents i.e., it is not guaranteed to receive the packets

reliably and on time.

3.4 Summary 39

It should be noted that SIMBA agents on the one hand contain two subsystems:

intelligent subsystem and control module, as ROACS agents, but on the other hand

both subsystems are capable of providing real-time behaviour of the agent. Thus, the

SIMBA platform can be categorised as an agent architecture with both cooperative

and embedded real-time control.

While such agent architectures with cooperative approach to real-time guaran­

tees can simplify the development of agents for real-time environments, they provide

limited high-level support for managing the timely execution of tasks as an agent de­

veloper has to deal with the problem of real-time communication and synchronization

between an intelligent and a control parts of an agent.

3.4 Summary

In this chapter, a number of agent architectures for a time critical environment

have been introduced. These architectures were divided in two categories: architec­

tures with embedded real-time control and architectures with cooperative real-time

control. The embedded real-time agent architectures are architectures with built-in

real-time capabilities e.g., SRTA, AgentSpeak(XL), and architectures which has to

be individually programmed e.g., PRS. These architectures provide a powerful ab­

straction for developing real-time agent systems, but they either must be tuned for

a particular application, or can be applied only to a limited number of applications.

Agent architectures based on the cooperative approach couple intelligent and real­

time subsystems e.g., ROACS and SIMBA. However while such systems can simplify

the development of agents for real-time environments, they provide limited high-level

support for specifying the tasks themselves.

In the next chapter we outline the changes necessary to a BDI architecture to

3.4 Summary 40

implement a real-time BD! agent. The proposed method allows any BDI agent to

meet real-time constraints.

Chapter 4

Changes to the BDI Architecture

In this chapter we explain changes that must be made to a BDI architecture to

implement a real-time BD! agent. We assume a simple generic BDI architecture in

which an agent has beliefs and goals, and selects plans (sequences of subgoals and

primitive actions) in order to achieve its goals or in response to new beliefs. Once

the agent has adopted a plan it becomes an intention, and at each cycle the agent

executes a single step of one of its current intentions. To implement real-time BDI

agents within such an architecture, two main changes are required: we must extend

the BDI model to include additional information about events and plans to support

real-time guarantees, and we need to change the BDI execution cycle to ensure that

the agent's cycle time is bounded and that, with probability Q, a priority-maximal

set of intentions is successfully executed by their deadlines. We consider each of these

changes in turn below.

4.1 Extending the BDI Model 42

4.1 Extending the BDI Model

As discussed in Chapter 3, in order to provide real-time guarantees, each top-level

event must be associated with a deadline which specifies the time by which the agent

should respond to an event. We assume that the deadline for an event is specified

when the event is generated by a user (or another agent), and is expressed as a real

time value in some appropriate units (milliseconds, minutes, hours etc.). By default,

the plan selected to respond a top-level event (and its subgoals and subplans) inherit

the deadline of the top-level event.

Each top-level event is also associated with a priority which specify the relative

importance of responding to a particular event. The priority of a top-level event

determines the priority of the corresponding intention. The subgoals generated by

an intention inherit the priority of the intention.

Each plan is also associated with a dumtion, an estimate of the real time necessary

to execute the plan. The expected execution time for an action or plan ¢ at confidence

level a is given by et(¢, a). We assume that execution times increase monotonically

with a, i.e., in general, to have higher confidence that a plan will complete successfully,

we need to allow more time for the plan to execute.

Each plan may be optionally associated with a plan priority or a plan cost which

specifies the relative utility or a cost of the plan execution. The plan priority or the

cost can be used to choose between multiple applicable plans for a goal or a belief.

The most natural and easiest way for solving this problem is to choose the plan that

takes less time than others.

4.2 Changes to the BDI Execution Cycle 43

4.2 Changes to the BDI Execution Cycle

We assume that the internal operations of the agent-adding or deleting a belief

or goal, selecting a plan, adopting an intention, selecting an intention to execute

and executing a single step of the intention -- require time bounded by the size of

the agent's program and its beliefs and goals. Adding or deleting a belief or goal,

adopting an intention, and executing a single step of an intention can be assumed to

take constant time. However selecting a plan and intention to execute are intractable

in the general case, and it is necessary to approximate the choices of an unbounded

agent to limit the agent's cycle time.

To bound the time necessary to select an intention to execute at the current

cycle, the agent utilises a scheduling algorithm which gives preference to high-priority

intentions. The set of candidate intentions are processed in order of descending

priority. A candidate intention is added to the schedule if it can be inserted in the

schedule in deadline order while meeting its own and all currently scheduled deadlines.

If the estimated remaining execution time for the intention or any of its sub-plans is

greater than the time to remaining to the deadline of the intention, the intention is

dropped. This gives a non-empty priority-maximal set of intentions provided at least

one intention is feasible. There is a wide range of scheduling algorithms in scheduling

theory which have polynomial complexity. Finally, the interpreter selects the first

intention from the computed schedule and executes one step of that intention.

4.3 ARTS

Initially the approach was used to implemented ARTS (Agent Real-Time Sys­

tem) [36], an implementation of a real-time BDI agent architecture. ARTS is an

4.3 ARTS 44

agent programming framework for agents with soft real-time guarantees. The syn­

tax and execution semantics of ARTS is based of PRS-CL and JAM, augmented

with information about deadlines, priorities, and changes to the interpreter to imple­

ment time-bounded priority driven plan selection and deadline monotonic intention

scheduling. ARTS is implemented in Java, and the current prototype implementa­

tion includes the core ARTS language, and implementations of some basic primitive

actions. Additional user-defined primitive actions can be added using a Java API. In

the interests of brevity, we do not discuss the meta-level features of ARTS.

An ARTS agent consists of five main components: a database, a goal stack, a

plan library, an intention structure, and an interpreter. The database contains the

agent's current beliefs (facts). The goal stack is a set of goals to be realised. The plan

library contains a set of plans which can be used to achieve agent's goals or react to

particular situations. The intention structure contains plans that have been chosen to

achieve goals or respond to facts. The interpreter is the main component of the agent.

It manipulates the agent's database, goal stack, plan library and intention structure

and reasons about which plan to select based on the agent's beliefs and goals to create

and execute intentions. Changes to the agent's environment or posting of new goals

invokes reasoning to search for plans that might be applied to the current situation.

The ARTS interpreter selects one plan from the list of applicable plans, intends and

schedules it, and executes the next step of first intention in the computed schedule.

4.3.1 Facts

The database of an ARTS agent contains facts (beliefs) that represent the state

of the agent and its environment. Facts may represent information about percepts,

4.3 ARTS

messages from other agents, derived information, etc.

fact ,,- ground_wJJ

ground_term_exp

value

ground-function_exp

pred_name ground_term_exp· "i" I "(NOT" ground_wJJ ")"

"(AND" ground_wJJ+ ")" I "(OR" ground_wJJ+ ")"

value I ground_function_exp

integer I float I string

"(" fun_name ground_term_exp+ ")"

where pred_name, and fun_name name predicates and functions respectively.

4.3.2 Goals

45

ARTS distinguishes two categories of goals: top-level goals and subgoals. ARTS

supports two top-level goal operators: ACHIEVE and CONCLUDE. (ARTS does not cur­

rently support maintenance goals.) An ACHIEVE goal specifies that the agent desires

to achieve a particular goal state. A CONCLUDE goal inserts a certain fact into the

database. Goal states and facts are specified as ground wffs. For top-level ACHIEVE

goals a priority and deadline may also be specified.

The form of top-level goals is given by:

goal

achieve_goal

conclude_goal

by

noLby

achieve_goal I conclude_goal

"ACHIEVE" ground_wJJ [":PRIORITY" p] [":DEADLINE" d]

[by I noLby] "i"

"CONCLUDE" ground_wJJ [by I noLby] "i"

":BY" plan_name+

":NOT_BY" plan_name+

where p and d are non-negative integer values and plan_name is the name of a plan.

The :PRIORITY and :DEADLINE fields of an ACHIEVE top-level goal are optional: if they

4.3 ARTS 46

are omitted the default priority is zero and the default deadline is infinity!.

The developer can specify one or more top-level goals for the agent as part of the

agent's program using the keyword "GOALS:". For example:

GOALS:

ACHIEVE PrepareLecture agents 10 1 : PRIORITY 9 :DEADLINE 50;

ACHIEVE HaveLunch :PRIORITY 7 :DEADLINE 40;

ACHIEVE BorrowBook R&N :PRIORITY 2 :DEADLINE 30;

Subgoals are goals generated within plans. ARTS has the following subgoals

operators:

ACHIEVE C

CONCLUDE F

TEST C

RETRACT F

WAIT C

achieve condition C

add fact F to the database

test for the condition C

retract fact F from database

wait until condition C is true

In contrast to top-level goals, the deadline and priority of ACHIEVE subgoals are

inherited from the plan containing the subgoal.

4.3.3 Plans

Plans define a procedural specification for achieving a goal. In specifying plans

we distinguish between plan trigger variables and plan body variables. Plan trigger

variables are free variables appearing in the cue, precondition and context fields,

while plan body variables are variables appearing in the body of the plan. Plan

trigger variables must be ground when the plan is selected, while binding of plan

body variables can be deferred to the execution of the corresponding plan step. The

agent's plan library is introduced by the keyword "PLANS:" followed by a list of plans

1 Tasks with a deadline of infinity will be processed after any task with a specified deadline.

4.3 ARTS 47

of the form:

Name is an unique symbolic identifier of the plan.

Documentation is an optional field which is used to store a descriptive text string.

Cue specifies the purpose of the plan and is used to select the plan for possible

execution. The Cue field can contain either an ACHIEVE or CONCLUDE goal. A

ACHIEVE goal in the Cue field means that the plan may be used to achieve

some condition, while a CONCLUDE goal means that the plan may be chosen for

possible execution when a fact is added to the database.

Precondition specifies conditions that must be satisfied for plan to be applicable.

This field is optional and can contain both ACHIEVE and TEST goal expressions.

An ACHIEVE G precondition means that the system must currently have G as a

goal in order for the plan to be applicable, while a TEST C precondition means

that C must be true for the plan to be applicable.

Context defines additional conditions (i.e. ACHIEVE and TEST goal expressions)

on plan execution. This field is optional and has similar functionality to the

Precondition field, but in contrast to the precondition it must be satisfied before

and during plan execution. As in JAM, this significantly increases the reactivitv
, "

of the agent.

Body defines a sequence of simple activities, I.e., primitive actions, addition and

deletion of goals and facts, and complex constructs (e.g. loops, (non)deterministic

choice, etc, see below.

Priority specifies the relative utility of the plan. The plan priority is used to choose

between the applicable plans for a particular goal. The priority field is optional

4.3 ARTS 48

and allows the specification of either a constant priority or an expression which

allows the calculation of the plan priority as function of variables appearing in

the plan trigger. The default priority value is O.

Deadline specifies a deadline for the plan. The deadline field is optional and allows

programmer to advance the deadline inherited from the triggering goal. The

deadline can be specified as a constant value or an expression which allows

the calculation of the plan deadline as function of variables appearing in the

plan trigger. If the specified plan deadline is earlier than the deadline for this

intention it becomes the deadline for the intention during the execution of

the plan (i.e., it effectively advances the deadline for this intention during the

execution of the plan). If the specified deadline is later than the deadline for

the intention, the plan deadline is ignored.

ARTS, like JAM, supports standard programming constructs such as DO ... WHILE

(loop with postcondition), WHILE (loop with precondition), choice constructs specified

by OR (do any in order), AND (do all in order), DO_ALL (do all randomly), DO_ANY (do

any randomly), WHEN (conditional execution), and ASSIGN (assignment to plan body

variables) .

The BNF for plans is given by:

plan .. - "PLAN: {" p_name [p_doc] p_cue [p_precond] [p_cont] ..

p_body [p_pr] [p_dl] [p_attr] "}"

p_name .. - "NAME:" string";"

p_doc .. - "DOCUMENTATION:" [string] ";" ..

p_cue .. - "CUE:" p_goaLexp ";" ..

p_precond .. - "PRECONDITION:" p_cond* "." .. ,

p_cont .. - "CONTEXT:" p_cond* ";" ..

4.3 ARTS

p_body

p_pr

p_dl

body_seq

body_elem

activity

b_and

b_or

b_parallel

b_do_all

b_do_any

b_do_while

b_while

b_when

p_goaLexp

p_cond

subgoal

subgoaLop

prim_act

misc_act

wJJ

value

variable

.. -..

.. -..

.. -..

.. -..

.. -..

.. -..

.. -..

..

.. -..

.. -..

.. -

.. -..

..

-..

.. -

.. -..

-..

.. -..

.. -

.. -

.. -..

"BODY:" body_elem*

"PRIORITY":" trigger_exp ";"

"DEADLINE":" trigger-exp ";"

"{" body_elem* "}"

activity I b_and I b_or I b_parallel I b_do_all

I b_do_any I b_do_while I b_while I b_when

"AND:" body_seq+ ";"

"OR:" body_seq+ ";"

"PARALLEL:" body_seq+ ";"

"DO:" body_seq "WHILE:" p_cond";"

"WHILE:" p_cond body_seq ";"

"WHEN:" p_cond body_seq ";"

"ACHIEVE" wJJ I "CONCLUDE" wJJ

"ACHIEVE" wJJ I "TEST" wJJ

subgoaLop wJJ";"

"ACHIEVE" I "CONCLUDE" I "TEST" I "RETRACT" I "WAIT"

"EXECUTE:" ground..function_exp [":TIMEOUT" ground_term_exp]

"ASSIGN:" ground_term_exp term_exp

pred_name term_exp* ";" I "(NOT" wJJ ")"

"(AND" wJJ+ ")" I "(OR" wJJ+ ")"

value I variable I function_exp

integer I float I string

49

4.3 ARTS 50

where pred_name, fun_name and var_name name predicates, function~ and variables

respectively.

4.3.4 Primitive Actions

Subgoal operators are implemented directly by the ARTS interpreter. Other prim­

itive actions are implemented as Java methods. Each primitive action referenced in a

plan body must have Java code which implements the necessary functionality. ARTS

supports two mechanisms for defining primitive actions: writing a class which imple­

ments the PrimitiveAction interface, and direct invocation of methods in existing

legacy Java code. Primitive actions are executed by using an EXECUTE action.

In contrast to PRS-CL and JAM, ARTS allows the agent programmer to specify

a timeout for each primitive action by using the TIMEOUT keyword. The timeout

specifies the maximum amount of real time required to perform the action. Actions

which do not complete by their timeout are assumed to have failed. For example:

EXECUTE move-to $x $y : TIMEOUT 50

If a primitive action times out, the intention containing the action is removed

from the intention structure.

4.3.5 Interpreter

The ARTS interpreter repeatedly executes the activities shown in Figure 4.1:

1. New goals are added to the goal stack and facts corresponding to CONCLUDE

goals and external events are added to the database.

4.3 ARTS 51

t

New Goals & Fads
Plan Library

F!t t I ACHIEVEC I
® ~ I~"·"""I n4

Plan 31
Task ExIlQJIion ® ""'"2 I

~
Plan' -

I Na_: Plan I

D~
Database DocuMelltatlotl: ••

External I Aclionl I Cue: ACHIEVE C

World Scheduling algorilhm
Body:
Parallel:

r----L, II I Goall: Action I: I
...LJ ~ I Facll}:
i; Pncoadltloll:

JL Coatut: Condl;Cond2;
PrIority: 10; - Deadline:

® EJ--B ® I I ~I - T~levclg""l B 0
Intantlon Ilructure

Figure 4.1: The ARTS Interpreter [36]

2. The precondition and context expressions of plans with a cue matching a goal

on the goal stack are evaluated against the database to determine if the plan

is applicable in the current situation. Goals and plans are matched in priority

order. For ACHIEVE goals, the interpreter checks to see whether the goal has

already been accomplished before trying to invoke a plan.

3. The resulting set of applicable plans are added to the set of candidate intentions.

4. Intentions are scheduled according to their deadline and priority value as de­

scribed in Section 4.2. Intentions which are not schedulable, i.e., their minimum

remaining execution time is greater than the time remaining to their deadline,

are either dropped or have their priority reduced to zero2 .

5. Finally, the interpreter selects the first intention from the computed schedule

and executes the one step of that intention. The result of the execution can be

2This choice is currently determined by a global flag, rather than per goal.

4.4 Summary 52

(5a) execution of a primitive action or (5b) the posting of a new subgoal or the

conclusion of some new fact.

If no new beliefs and goals were added at the current cycle, steps 1-4 can be skipped.

4.3.6 Conclusion

ARTS is intended for the development of agent-based applications such as robot

control or stock trading, where decisions must be made in a timely manner. ARTS

is influenced by the PRS family architectures, such as PRS-CL and JAM. However,

unlike previous PRS-like architectures, ARTS includes a duration estimation algo­

rithm, priority driven plan selection and a deadline monotonic intention scheduling

algorithm. These features enable an ARTS agent to produce an intention schedule

which achieves a priority-maximal set of goals by their deadlines. While the resulting

schedule may not contain the greatest number of high-priority tasks, it is computable

in bounded time, and we believe that the kind of "optimistic bounded rationality"

implemented by the ARTS architecture provides a simple, predictable framework for

agent developers, facilitating the development of agents which can execute tasks to

deadlines while providing timely responses to events in a dynamic environment.

However, complex agent behaviour and expressive syntax constructs, provided by

this framework, require a lot of additional information about an agent environment

and do not admit formal definitions or proofs of real-time properties.

4.4 Summary

In this chapter we proposed an approach that allows any BDI agent architecture to

operate on real-time environment. In comparison to metalevel control used in PRS­

like agent systems, the proposed approach provides a simple way for the development

4.4 Summary 53

of real-time BDI agents without significant additional adjustment. In the next chap­

ter, we present a new simple and predictable agent framework AgentSpeak(RT) for

the development of soft real-time agents.

Chapter 5

AgentSpeak(RT): A Real-Time

Agent Programming Language

In this chapter we present AgentSpeak(RT), a programming language for real­

time BDI agents. AgentSpeak(RT) extends AgentSpeak(L) with deadlines and pri­

orities, and, given the estimated execution time of plans, schedules intentions so as

to achieve a priority-maximal set of intentions by their deadlines with a specified

level of confidence. We also present the syntax of AgentSpeak(RT) and describe the

execution cycle of the AgentSpeak(RT) architecture. Finally we show an example

AgentSpeak(RT) agent program for an intelligent control of a nuclear power plant.

5.1 Introduction

AgentSpeak(RT) is a framework for developing soft real-time agents which can

perform complex tasks in real-time environments in which external events (goals

and changes in the agent's beliefs about its environment) may be associated with a

deadline and/or a priority. The agent responds to events by adopting and executing

5.1 Introduction 55

intentions. A developer can specify a required level of confidence for the successful

execution of intentions in terms of a probability, 0:, and the agent schedules its inten­

tions so as to ensure that the probability that intentions complete by their deadlines is

at least 0: 1. If not all intentions can be executed with the required level of confidence,

the agent favours intentions triggered by high priority events.

The syntax and semantics of AgentSpeak(RT) is based on AgentSpeak(L) [28].

The current version of AgentSpeak(RT) is implemented in Java, and the current

prototype implementation includes the core language described below and imple­

mentations of some basic external actions. Additional user-defined actions can be

added using a Java API (for more details about AgentSpeak(RT) implementation see

Appendix A).

AgentSpeak(RT) contains variables, constants, function symbols, predicate sym­

bols, action symbols, connectives and punctuation symbols. In addition to the stan­

dard logical connectives Bt, I and not, we use - and + (for belief addition and removal

events), ! (for achievement goals), ? (for test goals), ; (for sequential composition)

and <- (for plans). We assume standard definitions of terms, literals, ground literals,

and free and bound occurrences of variables.

To illustrate the syntax of AgentSpeak(RT) we use a simple running example of

an agent which removes litter from a parking lot. Each evening, the agent is given

a set of goals to achieve, each of which specifies the removal of a particular item of

litter from particular parking space. In addition, the agent may detect additional

litter while moving around the lot. There is a deadline for the removal of litter e.g.,

before the barrier is opened in the morning (we assume the agent can't cope with

parking cars), and it is more important to remove some types of litter (e.g., broken

1 For simplicity, we assume that a is the same for all intentions; however the real time guarantees

we prove in Chapter 6 still hold if a is different for different events.

5.2 Beliefs and Goals

Belief
Bue

aeliefs

Events

percepts

Environment

Figure 5.1: An AgentSpeak(RT) agent

glass) than others (e.g., paper).

56

Actions

The AgentSpeak(RT) architecture (see Figure 5.1) consists of five main compo-

nents: a belief base, a set of events, a plan library, an intention structure, and an

interpreter. We describe each of these in turn below.

5.2 Beliefs and Goals

The belief base contains beliefs that represent the state of the agent and its

environment, e.g., sensory input, information about other agents, etc. Beliefs are

represented as ground literals or conjunctions of ground literals. For example, the

5.3 Events

agent may believe that it is in spacel and there is some litter in space2:

at(robot,space1)

litter(paper,space2)

57

A belief atom or its negation is referred to as a belief literal. A ground belief atom is

called a base belief, and the agent's belief base is a conjunction of base beliefs.

A goal is a state the agent wishes to bring about or a query to be evaluated.

An achievement goal, written ! g(t 1 , ... , tn) where it, ... , tn are terms, and g is a

predicate, specifies that the agent wishes to achieve a state in which g(t 1, ... , tn) is

a true belief. A test goal, written ?g(t1 , .. . , tn), specifies that the agent wishes to

determine if g(tb ... , tn) is a true belief. For example, the goals

! remove (paper ,space2)

?parked(X,space2)

indicate that the agent wants to remove the paper in space2, and determine if there

is a car parked in space2.

As in Prolog, constants are written in lower case and variables in upper case, and

all negations must be ground when evaluated. AgentSpeak(RT) currently supports

string, integer and floating point constants.

Table 5.1 shows the BNF of goals and beliefs for the AgentSpeak(RT) language,

where p and f are respectively a predicate and a functor symbols; VAR is a variable

name. We will describe a BNF for AgentSpeak(RT) plans below in the Table 5.3.

5.3 Events

Changes in the agent's beliefs or the acquisition of new achievement goals give

rise to events. An addition event, denoted by +, indicates the addition of a belief

5.3 Events 58

goal .. - " ! "liteml I"?" liteml ..

belief .. - liteml

belief-base .. - (belief ".")* ..

liteml .. - ["not"] atomic-formula

atomic-formula .. - p ["(" term-list ")"] ..

term-list .. - term ("," term)* ..

term .. - constant I variable I function

constant .. - number I string ..

number .. - integer I float

variable .. - VAR ..

function .. f "e' term-list ")"

Table 5.1: BNF for AgentSpeak(RT) beliefs and goals

or an achievement goal. A deletion event, denoted by -, indicates the retraction of

a belief!. We distinguish between internal and external events. An external event is

one originating outside the agent while internal events result from the execution of

the agent's program.

Notation

+liteml[deadline, priority]

-liteml [deadline, priority]

+! liteml [dead line, priority]

Description

Belief addition

Belief deletion

Achieve-goal addition

Table 5.2: Types of events.

As in AgentSpeak(L) all belief change events are external (originating in the

agent's environment), while goal change events may be external (goals originating

2In the interests of consistency with the original AgentSpeak(L) [28] semantics, we do not consider

goal deletion events.

5.4 Plans 59

from a user) or internal (subgoals generated by the agent's program in response to

an external event).

To allow the specification of real-time tasks, external events may optionally specify

a deadline and a priority. A deadline specifies the time by which a goal should be

achieved or the agent should respond to a change in its beliefs expre&'ied as a real

time value in some appropriate units, e.g, a user may specify a deadline for a goal as

"4pm on Friday". Deadlines in AgentSpeak(RT) are hard - it is assumed that there

is no value in achieving a goal or responding to a belief change after the deadline has

passed. A priority (a non-negative integer value, with larger values taken to indicate

higher priority) specifies the relative importance of achieving the goal or responding

to a belief change. For example, the events

+!remove(paper,space2) [8am,10]

+litter(glass,spacel) [8am,20]

indicates the acquisition of a goal to remove some paper from space2 with deadline

8am and priority 10, and a new belief that there is broken glass in spacel; note that

responding to the broken glass has higher priority than the goal to remove paper from

spacel. By default, the deadline is equal to infinity and the priority is equal to zero.

5.4 Plans

Plans specify sequences of actions and subgoals an agent can use to achieve its

goals or respond to changes in its beliefs.

Each AgentSpeak(RT) plan specification consists of two parts:

1. a plan, which contains the name of the plan, a triggering condition, a context,

and the body of the plan (see Section 5.4.1);

5.4 Plans 60

2. an execution time profile, which specifies the expected execution time of the

plan at confidence level Q. The execution time profile is specified in a separate

file, i.e., it is not part of the syntax of a plan (see Section 5.4.3).

5.4.1 Plan

A plan consists of four parts: the plan name, the triggering event, the belief

context, and the body. The head of a plan consists of a name which uniquely identifies

the plan, the triggering event which specifies the kind of event the plan can be used

to respond to i.e., its invocation condition, and the belief context which specifies the

beliefs that must be true for the plan to be applicable.

Name. The name is a string that uniquely identifies plan. In contrast to AgentS­

peak(L) the plan name in AgentSpeak(RT) is a required slot. It allows the

agent to associate the corresponding execution time profile to the plan. We will

explain the execution time profile of the plan in Section 5.4.3.

Triggering event. The triggering event defines the purpose of the plan. There are

two types of changes in an agent's mental attitudes: changes in beliefs which

refer to information about its state and states of other agents, and changes in

the agent's goals. The triggering event slot can contain an achieve goal or a

belief change event. An achieve goal event shows that the plan can be used to

fulfill some condition. The belief change indicates that the plan can be used to

react to the environment changes. The list of triggering events are presented

in Table 5.2. A plan whose triggering event slot contains an achieve goal event

is called goal-invoked, while a plan whose triggering event slot contains belief

change event is called belief-invoked.

5.4 Plans 61

Context. The plan context specifies constraints which have to be satisfied for the

plan to be applicable (a plan is applicable if its belief context is true).

Body. The body of a plan specifies a sequence of actions and (sub)goals to respond

to the triggering event. Actions are the basic operations an agent can perform

to change its environment in order to achieve its goals. Actions are denoted by

action symbols and are written a(tl' ... ,tn) where a is an action symbol and

t1 , ••• ,tn are the (ground) terms given as arguments to the action.

Plans may also contain achievement and test (sub)goals that need to be accom­

plished in order to handle a particular event successfully. Achievement subgoals

allow an agent to choose a course of actions as part of a larger plan on the basis

of its current beliefs3 . An achievement subgoal ! g(t 1, ... ,tn) gives rise to an

internal goal addition event +! g(t 1, . .. ,tn) which may in turn trigger subplans

at the next execution cycle. Test goals are evaluated against the agent's belief

base, possibly binding variables in the plan.

For example, the plan

+litter(L,S) : at(robot,S) t not parked(C,S) <­

pickup(L); move(trashcan); deposit(L).

causes the agent to remove litter from the parking space the agent is in if there is no

car parked in the space.

The BNF for AgentSpeak(RT) plans is given in Table 5.3, where a is an action

symbol.

3Note that while plan patterns can be used to implement declarative goals [19], we consider only

procedural goals at the moment.

5.4 Plans

plan-spec

time-profile

plan

plan-name

event

context

body

step

goal

action

plan time-profile

"time-profile" "." number"," number"," number

"@" plan-name event [":" context] "<-" body"."

string

"+" ["!"] literal I "-" literal

true I literal ("&:" literal)*

true I step ("j" step)*

action I goal

" ! "literal I "?" literal

["."]a ["(" term-list ")"]

Table 5.3: BNF for AgentSpeak(RT) plans

5.4.2 Primitive Actions

62

Primitive actions are the basic operations an agent can perform to change its

environment in order to achieve its goals. Performing an action typically results in

changes in the agent's beliefs when the action's effects on the environment are sensed

at subsequent cycles of the interpreter. We distinguish user-defined primitive actions

and internal actions.

User-defined Actions

User-defined primitive actions are implemented as Java methods. AgentSpeak(RT)

supports two mechanisms for defining primitive actions: writing a class which imple­

ments the ExternalAction interface, and direct invocation of methods in existing

legacy Java code. Each primitive action returns a boolean value. The TRUE value

indicates successful completion of an action. The FALSE value indicates failure of the

action. An example of primitive action implementation is shown in Section A.3.1.

5.4 Plans 63

Internal Actions

As in Jason, internal actions are distinguished from user-defined primitive actions

by having a '.' character at the beginning of the action name. Internal actions form

part of the AgentSpeak(RT) implementation, and realise basic operations which are

key to the operation of the agent. For example, the . send action is used for inter­

agent communication; . print action permits output to the standard output device;

. exec allows the agent to execute an external program; . gettime returns the current

time in ms etc. The full list of internal actions is presented in the Section A.3.2. The

internal action

.print("Performing next action").

5.4.3 Execution Time Profile

In order to determine whether a plan can achieve a goal by a deadline with a

given level of confidence, each action and plan has an associated execution time profile

which specifies the probability that the action or plan will terminate successfully as

a function of execution time. We assume that plans can be arbitrarily interleaved,

and the estimated execution time of a plan is independent of any other plans the

agent is currently executing. The expected execution time for an action or plan ¢ at

confidence level a is given by et(¢, a). Figure 5.2 shows an example of the execution

time profile.

We assume that expected execution times increase monotonically with a, i.e., in

general, to have higher confidence that a plan will complete successfully, we need to

allow more time for the plan to execute. The shape of the execution time profile will

typically be influenced by the (assumed) characteristics of the environment in which

the agent will operate; for example, the probability of a plan to move to a location

5.4 Plans

Confidence
level a

1 =--..--.... - - - --

tmslC

Figure 5.2: An execution time profile

Execution
time t.

64

terminating successfully within a given time may be lower in environments with many

obstacles than in environments with fewer obstacles. Execution time profiles can be

derived from an analysis of the agent's actions, plans and environment, or using

automated techniques, e.g., stochastic simulation.

In the simple case of plans consisting of a sequence of actions, the execution

time profile for the plan can be computed from the execution time profiles of its

constituent actions. However, for plans that contain subgoals, the execution time

profile will depend on the relative frequency with which the possible plans for a

subgoal are selected in the agent's task environment.

The execution time profile te for an action or plan ¢ in AgentSpeak(RT) is specified

as a power function with three parameters: k, p, O!max. Equation 5.1 represents a

generic time profile. An agent developer can specify an execution time profile for a

5.5 Intentions 65

plan or an action by varying the parameters.

- - { (;f O'(te) - 1(</>, te , k, p, O'max) -

O'max

(5.1)

where te is expected execution time of an action or plan </>.

The parameter k is a positive number, which defines the inflection of the execution

time profile curve. The parameter p is a positive number, which allows to scale the

profile curve along the execution time axis. The parameter O'max is a maximal possible

confidence level in a particular agent environment.

5.5 Intentions

The intention structure contains plans that have been chosen to achieve top-level

goals or to respond to changes in the agent's beliefs. Plans triggered by changes

in beliefs or the acquisition of an external (top-level) achievement goal give rise to

new intentions. Plans triggered by the processing of an achievement subgoal in an

already intended plan are pushed onto the intention containing the subgoal. Each

intention consists of a stack of partially executed plans, a set of substitutions for

plan variables, and a deadline and a priority. The set of variable substitutions for

each plan in an intention results from matching the belief context of the plan and

any test goals it contains against the agent's belief base. Also achievement goals can

instantiate variables. The deadline and priority of an intention are determined by

the triggering event of the root plan.

5.6 The Interpret er 66

5.6 The Interpreter

The interpreter (Figure 5.3) is the main component of the agent. It manipulates

the agent 's belief base, event queue and intention structure, deliberates about which

plan to select in response to goal and belief change events, and schedules and executes

intentions.

CD AgentSpeak(RT)
EJdIltnllI
Even ..

I Events l- E"."..

Internal
Events

r' \i ® Plan
I ~ Beliefs I

Bellm ~ Library

-- base
8 - Execute Environment - Intention !'l' Action

-~ l Scheduling

J
~' , '" algorithm Applicable

j~ EDF~
Plana

Selected ,,'7 Intsnllon ® ®

[r6D~~ '--

Figure 5.3: An AgentSpeak(RT) agent interpreter

The agent's state is a t uple (B , E , J) consisting of a set of base beliefs B , a set of

events E, and an (ordered) set of intentions I. We can formalize the execution of the

interpreter as a function which computes the new state of the agent and the executed

action based on its current state and its inputs at the current cycle

((B' , E', 1'), a) = exec(sched(opt(evt((B , E, I) , P, G))))

where P is a set of percepts, G is a set of goal addition events, B', E' , l' are the

updated belief, event and intention sets, and a is an action.

5.6 The Interpreter 67

The function evt generates a set of events based on the agent's percepts and

(external) goal addition events. It updates the belief base B with the percepts in P

to give an updated belief base B' and a set of belief addition and removal events E p ,

and returns a new state (B', E1 = E U Ep U G, I).

The second function, opt, takes (B', E1, I) as input and returns a pair ((B', 0,11),0).

In contrast to AgentSpeak(L) which processes a single event at each interpreter cy­

cle, to ensure reactivity AgentSpeak(RT) iterates through E1 and for each event

e E E1 generates a set of relevant applicable plans Oe. A plan is relevant if its trig­

gering event can be unified with e and applicable if its belief context is true in B'.

o = {So(Oe) leE E1 } where So is a partial function which returns an appropriate

plan for each event (it is not defined if Oe is empty). If the event was triggered by

a subgoal of an existing intention, failure to find a relevant applicable plan for the

subgoal aborts the intention which posted the sub goal (hence the change from I to

11)'

The third function, sched, takes ((B', 0, It), 0) as input and returns (B', 0, 12)'

For each element in 0, it either pushes the plan on top of the existing intention in 11

that generated the internal triggering event, or creates a new intention T and adds

it to a set IE. 12 is the result of applying the scheduling algorithm (see below) to

11 U IE. The scheduling algorithm returns a set of feasible intentions in deadline order

(earliest first).

Finally, exec takes (B',0,12) as input and returns a pair ((B',E',1'),a), where I'

is the result of executing the first intention in the schedule 12 , E' contains any internal

goal addition event generated by executing the intention, and a is the action executed

(or null if no action was executed). Executing an intention involves executing the

first goal or action of the body of the topmost plan in the stack of partially executed

plans which forms the intention. Executing an achievement goal adds a corresponding

5.6 The Interpreter 68

internal goal addition event to E' and removes the achievement goal from the body

of the plan. Executing a test goal involves finding a unifying substitution for the

goal and the agent's base beliefs. If a substitution is found, the test goal is removed

from the body of the plan and the substitution is applied to the rest of the body of

plan. If no such substitution exists, the test goal is not removed and may be retried

at the next cycle. Executing an action results in the invocation of the corresponding

Java code. If the action completes within its expected execution time et{a, a), it is

removed from the body of the plan. Actions which time out are not removed and

may be retried at the next cycle4 . The executed action is returned as a.

The scheduling algorithm is shown below (Algorithm 5.1). The set of candidate

intentions is processed in descending order of priority. A candidate intention is added

to the schedule if it can be inserted into the schedule in deadline order while meeting

its own and all currently scheduled deadlines. A set of intentions T1, ... , Tn is feasible if

there exists a schedule where each intention is executed before its deadline. To check

whether a schedule exists for a set of intentions ordered earliest deadline first, it

suffices to check that for every scheduled intention Ti: ~j:"Oi et{Tj, a) - eX{Tj) ~ dh)

where ex{ Tj) is the time Tj has spent executing up to this point, and d{ Ti) is the

deadline for Ti. That is, the sum of expected remaining execution time of intentions

scheduled earlier than Ti including Ti itself is less that the deadline of Ti. A set of

tasks is feasible iff they can be scheduled earliest deadline first [22]. Intentions which

are not feasible in the context of the current schedule or which have exceeded their

expected execution time are dropped5 .

4 Allowing test goals and actions to be retried is not critical, but means that successful execution

of intentions is less dependent on precise characterization of the execution time profile of actions.

5The real time guarantees we prove in Chapter 6 still hold in some circumstances if intentions

that exceed their expected execution time are not dropped, but it complicates the presentation.

The basic idea is that an intention T which has exceeded its expected execution time has its priority

5.6 The Interpreter

Algorithm 5.1 AgentSpeak(RT) Scheduling Algorithm
function SCHEDULE(I)

n := SlzEOF(I)

[: array of intentions[n] := {0 ... 0n }

for all TEl in descending order of priority do

[': array of intentions[n] := {0 .. . 0n }

j:= 1

i := 1

while f[i] i- null & i ~ n do

if d(f[i]) ~ d(T) then

['[i] := f[i]

j := j + 1

else

['[i + 1] := f[i]

end if

i := i + 1

end while

r'U] := T

if [' is feasible then

[:= ['

end if

end for

return [

end function

69

reduced to O. T will only be scheduled if, after scheduling all higher priority intentions, there is

sufficient slack in the schedule to execute at least one step in T before its deadline. Given sufficient

slack in the schedule, T can therefore still complete successfully. It will however be dropped if it

5.7 A Case Study: Nuclear Power Plant 70

The scheduler returns a set of intentions which is 'maximally feasible' (no more

intentions can be added to the schedule if the scheduled intentions are to remain

feasible at the specified confidence level) and moreover, intentions which are dropped

are incompatible with some scheduled higher priority intention(s). Scheduling in

AgentSpeak(RT) is pre-emptive in that the adoption of a new high-priority intention

Ti may prevent previously scheduled intentions with priority lower than i (including

the currently executing intention) being added to the new schedule.

Note that if deadlines and priorities are not specified for external events (and hence

d = oo,p = 0 for all intentions), et(¢,a) = 00 for all ¢,O ~ a ~ 1, the behaviour of

an AgentSpeak(RT) agent defaults to that of a non real-time BDI agent.

5.7 A Case Study: Nuclear Power Plant

In this section we use a simple case study to demonstrate the advantages of

AgentSpeak(RT). A nuclear power plant produces electrical energy for consumers.

Power plant operators are often overwhelmed by the need to process a large amount

of incoming information in limited time. In order to help the operators an intelligent

agent can be used. The real-time intelligent agent monitors the plant feed water

systems, which supply hot water to a steam generator, and the reactor tempera­

ture. Furthermore, the agent is able to perform a diagnostics of all plant systems.

One example of such a system is the Advanced Plant Analysis and Control System

(APACS) framework [39, 40]. APACS was designed as a generic agent framework

to help power plant operators notice and diagnose failures in continuous processes.

In this case study we provide an AgentSpeak(RT) version of an intelligent control

system for a nuclear power station.

exceeds its deadline.

5.7 A Case Study: Nuclear Power Plant

system for a nuclear power station.

Contentment Structure

71

• Generator

.......... - .. ----- To. basin or
awa ~lng
lower

Figure 5.4: A Nuclear Power Plant scheme

The operation of a nuclear power plant with pressurized water reactors is shown

in Figure 5.4. Energy released inside the Reactor propagates to a heat carrier. Then

the heat carrier enters in the Steam Generator. The heat boils water and creates

steam to turn a Turbine. As the Turbine spins, the Generator turns and its magnetic

field produces electricity. At the end the steam enters a Condenser. It is cooled from

water from a reservoir.

The agent provides the required electric power by monitoring the behaviour of

the steam pressure and controlling the temperature of the carrier. The agent also

handles unexpected situations i.e. abrupt change in workload, faults etc.

We intend to demonstrate how an AgentSpeak(RT) agent can be u ed to control

a simplified model of the nuclear power station and show how to specify soft real-time

requirements.

At the beginning of the working hift (at 6am) , the nuclear plant operator gives

5.7 A Case Study: Nuclear Power Plant 72

the agent three tasks: performing the power plant's systems diagnostics which is

scheduled to run at 6am every morning, increasing the feed water level, and increasing

power production by 7am. He sets the required confidence level Q equal to 0.9.

However, during operation the plant experiences unexpected electric short circuit in

the main power line.

Each task has a different priority, deadline and execution time. We will describe

each of them in turn below. Before we discuss primitive actions and plans, we need to

present the initial belief base. The initial belief base contains information about the

current state of the power plant's parameters, such as the power level of the plant,

the temperature of the heat carrier, steam pressure, etc. A snapshot of belief base

and goals is presented below.

Goals:

!diagnostics [6.50am, 4].

!set-water-level(85) [6.55am, 10].

!set-power-level(92) [6.56am, 10].

Beliefs:

full-diagnostics.

water-level(60).

water-level-setpoint(85).

steam-pressure(6).

water-volume(50).

temperature(320).

power-level(50).

//required type of diagnostics

//level of feed water[%]

//setpoint of water level[%]

//steam pressure[MPa]

//volume of the water in the steam

/ / generator [%]

//heating carrier temperature [CO]

//current power level of the plant [%]

5.7 A Case Study: Nuclear Power Plant 73

status(power-line,ok) Iistatus of the main power line

status(reactor,ok). Iistatus of the reactor

status(turbines,ok). Iistatus of the turbines

status(steam-generator,ok). Iistatus of the steam-generator

status(elec-generator,ok). Iistatus of the electric-generator

status(feed-water-pump,ok). Iistatus of the feed water pump

status(cond-water-pump,ok). Iistatus of the condenser water pump

short-circuit [6.05am, 25]. II short circuit of main line event

There are several primitive actions available for the agent. These actions allow

the agent to control the behaviour of the station.

check.

check(X) is a primitive action which allows the agent to check the status of

the nuclear power station's subsystems e.g., the reactor, turbines, the steam

generator, pumps etc.

change-water-level.

change-water-level(X) is a primitive action which changes the level of feed

water using pumps. X is the desired level of feed water.

change-power-level.

change-power-level(X) is a primitive action which allows the agent to control

the reactor's power. This action controls the nuclear reaction inside the reactor

using control rods etc. X is the desired power level.

emergency-stop.

emergency-stop is a primitive action which runs emergency procedures to stop

the reactor, the steam generator, turbines and pumps.

5.7 A Case Study: Nuclear Power Plant 74

reset-plant.

reset-plant is a primitive action which resets all plant's systems after emer­

gency stop.

Below, we give simple plans for dealing with the various tasks that the agent has

to perform. The agent has two plans for diagnostics of the plant systems. The agent

is able to perform a full diagnostics, which requires testing of all systems, and an

express diagnostics which is used for testing only the main systems.

Plans:

~full-diagnostics

+!diagnostics : full-diagnostics <­

check(reactor);

check(power-line);

check(turbines);

check(steam-generator);

check(elec-generator);

check(feed-water-pump);

check(cond-water-pump).

~express-diagnostics

+!diagnostics : express-diagnostics <­

check(reactor);

check(turbines);

check(steam-generator);

check(elec-generator).

These plans are triggered by a + ! diagnost ics goal event, and depending on the

belief context ether the full diagnostics plan or the express diagnostics plan would

5.7 A Case Study: Nuclear Power Plant 75

be chosen for that task. As we can see, in the current example, the AgentSpeak(RT)

agent is asked to perform full diagnostics of the nuclear power station. The execution

time of the plan, in that case, is equal to 45 minutes (see Figure 5.5).

ConfIdence
..... 0

1.0
0.9

o
45 60

ExecUion
time t.. min

Figure 5.5: "FUll diagnostics" plan's

execution time profile (k=O.35, p=60,

a max=l)

Canftdence
leYeIo

1.0
0.9

o 5 8

Execution
lime t.. min

Figure 5.6: "Water control" plan's

execution time profile (k=O.23, p=8,

a max=l)

Recall that the level of feed water is critical. In fact if the level drops below a

certain threshold i.e., water-level-setpoint, the station would not be able to pro­

vide the required steam pressure. The agent has to change the level of the feedwater

periodically.

<Dwater-control

+!set-water-level(L) water-level (60) <-

change-water-level(L).

<Dnorm-water-level

+!norm-water-level : water-level-setpoint(L) <-

change-water-level(L).

5.7 A Case Study: Nuclear Power Plant 76

In the current scenario, the agent has to manually change the water level from 60%

to 90% of the full volume using plan water-control. Also the agent may normalise

the level of feed water according a water level threshold i.e., water-level-setpoint.

The execution time of the plan, in that case, is equal to 5 minutes (see Figure 5.6).

Plans power-contro! and emergency-protection below control the power pro­

duced by the nuclear power plant. It should be noted that the demand for power

changes during the day; consequently, the power level of the nuclear station has to be

changed accordingly. The plan power-contro! triggered by the event +! set-power­

!evel executes the action change-power-!evel to change the reactor's power level.

The execution time of the plan, in that case, is equal to 2 minutes (see Figure 5.7).

COpower-control

+!set-power-level(K) : true <­

change-power-level(K).

COemergency-protection

+short-circuit : true <­

?power-level(P)

emergency-stop;

!set-power-level(O);

.print("Main line power cut");

reset-plant;

!set-power-level(P).

Moreover, the emergency protection plan executes emergency stop procedures

to slow down the nuclear reaction and the steam generation, the power level is set

on minimum and then restarts the plant. This plan also includes an internal action

. print to inform the operator about the short circuit in the main line. The execution

5.7 A Case Study: Nuclear Power Plant 77

time of the plan, in that case, is equal to 5 minutes (see Figure 5.8).

ConfIdenCe
level a

1.0
0.9

o 2 3.5

Figure 5.7: "Power control" plan's

execution time profile (k=O.2, p=3.5,

Ctmax =l)

ConftdenCe
level a

1.0
0.9

o 5

EX8CUIIon
time t.. min

Figure 5.8: "Emergency protection"

plan's execution time profile (k=4.5,

p=5.1, Ctmax =l)

The agent's events are matched against the plan library. The plans full-diagnostics,

water-control and power-control are executable and (individually) feasible and

added to the set of candidate intentions. At 6am the unexpected short circuit of

the main line event happens. This event triggers the plan emergency-protection

to handle the emergency. As explained above (see Section 5.5), plans inherit their

deadline and priority values from the top-level triggering event.

The +short-circui t event is extremely important at the current moment, and

the agent has to be focused on it. Consequently, its intention has the highest priority

(25), whereas the intentions to set power level and feed water level have medium

priority (10). The intention to perform the diagnostics has the lowest priority (4).

The scheduling algorithm (see Algorithm 5.1) then attempts to schedule the candidate

intentions in decreasing order of importance.

The intention that corresponds to the +short-circui t event is therefore inserted

into the schedule, which is initialised to empty. The intentions to increase water and

5.8 Summary 18

power level have same priority and are scheduled for execution in deadline order.

However the agent is unable to complete the diagnostics by deadline because of the

emergency, i.e., the intention diagnostics is infeasible. It can't be inserted in the

schedule in deadline order together with other three intentions, and is dropped. It

is important to note that the tasks will be executed one by one in earliest deadline

order, which is why high priority intentions are executed first. Once the sched­

ule has been computed, the interpreter executes one step of the first task, i.e., the

?power-level(P) action, and starts a new cycle.

Assuming there are no belief or goal change events, at the next cycle the inter­

preter executes next step of the intention, i.e., the emergency-stop action and so on.

In the same way, the AgentSpeak(RT) agent deals with the other tasks.

5.8 Summary

In this chapter we have presented AgentSpeak(RT), a real-time BDI agent pro­

gramming language based on AgentSpeak(L). AgentSpeak(RT) extends AgentSpeak

intentions with deadlines which specify the time by which the agent should respond

to an event, and priorities which specify the relative importance of responding to a

particular event. The AgentSpeak(RT) architecture provides a flexible framework for

the development of real-time BDI agents. An AgentSpeak(RT) agent will pursue a

priority-maximal set of intentions which can be achieved by their deadlines with a

specified confidence level. If not all intentions can be achieved by their deadlines, the

agent prefers intentions with greater priority.

By varying the level of confidence, the agent developer can control the degree of

'optimism' the agent adopts when determining the time required to complete a task

in a given environment. Higher levels of confidence will typically result in the agent

5.8 Summary 79

allowing more time to complete a task, and cause fewer tasks to be scheduled in a

given period of time. As tasks are scheduled in priority order, increasing the level

of confidence required also has the effect of causing the agent to focus more on high

priority tasks at the expense of lower priority tasks which might be achievable given

a more optimistic view of execution time.

If no deadlines or priorities are specified, the behaviour of the agent defaults to

that of a non real-time BDI agent. Real-time tasks can be freely mixed with tasks

for which no deadline and/or priority has been specified by the developer or user.

Tasks without deadlines will be processed after any task with a specified deadline,

and for tasks with the same deadline, the agent will prefer tasks of higher priority.

An example AgentSpeak(RT) agent program for the intelligent control of a nuclear

power plant was also described.

In the next chapter we will discuss the real-time properties of an AgentSpeak(RT)

agent and prove them.

Chapter 6

AgentSpeak(RT) Properties

In this chapter we show that an AgentSpeak(RT) agent is a real-time BDI agent

in the sense defined in Chapter 2. Specifically we prove a number of properties of

AgentSpeak(RT), including that the reactivity delay of an AgentSpeak(RT) agent is

bounded, that it commits to a priority-maximal set of intentions, and that in a static

environment its intentions will complete successfully by their deadlines with specified

confidence. We also develop a model of the 'difficulty' of the agent's environment,

and show how it can be used to determine the priority of intentions which will execute

successfully by their deadlines with specified confidence.

6.1 Proof of Real-time Guarantees

In this section we show that under certain assumptions (which we believe are

reasonable for real-time applications), the time required to execute a single cycle of

the AgentSpeak(RT) interpreter (and hence the reactivity of the agent) is bounded.

We also show that an AgentSpeak(RT) agent commits to a priority-maximal set of

intentions, and that, given a fixed schedule, the probability that an intention will

6.1 Proof of Real-time Guarantees 81

complete successfully by its deadline is a.

We make the following assumptions about the agent's program and task environ­

ment:

1. the set of possible beliefs has a fixed maximal size (for example, the set of

possible beliefs can be restricted to the set of ground instances of any atomic

formula appearing in a belief context or a test goal for a finite set of constants);

2. the set of possible goals has a fixed maximal size (for example, the set of pos­

sible goals can be limited to the set of ground instances of any atomic formula

appearing in an achievement goal for a finite set of constants);

3. the maximal possible interval between the arrival time and deadline of any event

(with deadline < 00) is a constant dmax ;

4. the minimal expected execution time for any plan is a constant tmin ; and

5. there is a maximal expected execution time, t max , for any action in the agent

program (i.e., tmax = max(et(a, a)) for any action a at the specified a).

Theorem 1. If the sets of possible beliefs and goals, the maximal expected action

execution time and the maximal distance to deadline have a fixed maximal size, and

the minimal plan execution time has a fixed minimal size, then the time required to

execute a single cycle of the AgentSpeak(RT) interpreter is bounded by a constant 8c

(sum of time bounds for the interpreter cycle steps).

Proof. We have formalised the execution cycle in Section 5.6. The time required to

compute evt depends on the size of the sets P and C. If the set of all possible beliefs

is limited to a fixed finite set of ground belief atoms (assumption 1 above), then the

number of possible percepts IFI is bounded by a constant (assuming that the agent's

percepts are limited to changes in its beliefs).

6.1 Proof of Real-time Guarantees 82

If the set of all possible agent goals is similarly limited (assumption 2), then the

number of possible goals IGI is also bounded by a constant. This means that lEI and

lEI are also bounded by a constant at all stages of the cycle.

The time required to compute opt is bounded if lEI is bounded. Computing the

set of applicable plans for each event involves evaluating the belief context of each

plan whose trigger matches the event against the agent's beliefs. Assuming that

returning the set of plans which match an event is a constant time operation and

matching the belief context of a plan against the agent's beliefs is bounded by a

polynomial in IBI, if lEI is bounded, then the time required to compute opt is also

bounded by a constant.

The complexity of sched is 0(1112). In the worst case, when priority varies with

deadline and intentions are inserted into the schedule in order of decreasing dead­

lines, then the feasibility of each new intention involves checking the feasibility of

all currently scheduled intentions. III is bounded if the maximal possible interval

between the arrival time and deadline of any event is a constant d max (assumption

3), and the minimal expected execution time for any plan is a constant tmin (assump­

tion 4). Then the maximal possible number of schedulable intentions is bounded by

dmax/tmin.

By assumption 5, the maximum action expected execution time for an action and

hence the time to compute exec is bounded by a constant t max . D

By the reactivity delay of an agent we mean the time the system takes to recognize

and respond to an external event [14] (i.e., the time from the arrival of the event to

the selection of a plan for the event).

Theorem 2. Given the assumptions 1 - 5 above and Theorem 1, the reactivity delay

of an AgentSpeak(RT) agent is bounded.

6.1 Proof of Real-time Guarantees 83

Proof. The maximum reactivity delay is for an event which arrives just after the

evaluation of evt begins, which is guaranteed to be responded to by the end of the

next agent cycle. Since the agent's cycle is bounded by 8c , the maximum reactivity

delay is hence bounded by 28c . o

We now show that an AgentSpeak{RT) agent commits to a priority-maximal set

of intentions.

Definition 1. Consider a set of intentions I. A set f <;: I is a priority-maximal set

of intentions (with respect to I) if:

1. f is feasible;

2. Vr E I such that r rt f: {r} U f is infeasible;

3. Vr E I such that r tt f, either {r} is infeasible, or 3f' ~ f: the minimal

priority of an intention in f' is greater or equal to the priority of r p(r) and

f' U {r} is infeasible.

Intuitively, this definition describes a subset of I which is 'maximally feasible' (no

more intentions from I can be added if the intentions are to remain feasible at the

specified confidence level) and moreover, intentions in 1\ r are incompatible with

some subset of f which contains intention(s) of the same or higher priority. Observe

that if all intentions in I have a unique priority, then there is only one priority­

maximal subset of r, containing the maximal number of highest priority intentions

which are jointly feasible l
.

1 In general, a priority-maximal set of intentions is not guaranteed to contain the largest number

of high priority intentions. For example, if S = {Tl' T2, T3, T4}, where p(Td = p(T2) = p(T3) = 2,

p(T4) = 1, and it is possible to schedule either Tl and T4 together, or T2 and T3 together, both sets

{ Tl, T4} and {T2' T3} will be priority-maximal sets (but, for example, {TIl will not be). Computing

6.2 Dynamic Environments 84

Theorem 3. Given a partially ordered set of intentions I = {Tl' T2, ... ,Tn}, where

p(Ti) ~ p(Tj) for i < j, the AgentSpeak(RT) scheduling algorithm generates a priority­

maximal set of intentions r ~ I.

Proof. Note that the AgentSpeak(RT) scheduling algorithm generates a sequence of

sets starting with r 0 = 0, and sets C to be r i-I U {Td, Ti E I if r i-I U {Td is feasible

in deadline order, or r i - 1 otherwise. The last set r n is r.

By construction, r is a feasible set of intentions. r is also clearly a maximally

feasible subset of I: there is no TEl such that T tJ. rand r U {T} is feasible. To

prove that it is priority-maximal, let Ti E I, {Td feasible, and Tj tJ. r. We need to

show that Tj is incompatible with some subset of r which contains only intentions

of the same or higher priority than p(Ti). Since the intentions are added to r in

descending order of priority, when Tj is considered and found incompatible with C-l,

p(Tj) ::; min({p(T') : T' E ri-d). o

Theorem 4. The probability that an intention T will execute successfully in a static

environment is equal to Q.

Proof. Immediate, from the fact that the execution time profiles of plans give us the

estimate of duration of the task with the probability Q. 0

6.2 Dynamic Environments

The guarantees in the previous section are for a static environment - they consider

only the probability that a scheduled intention completes successfully or aborts. They

do not consider cases where a scheduled intention is dropped as a result of the arrival

of a higher priority task.

the set containing the largest number of highest priority intentions is a hard combinatorial problem,

which can not be solved by a real-time scheduler.

6.2 Dynamic Environments 85

In this section, we develop a simple model of task arrival which can be used

to characterise the 'difficulty' of an agent's task environment. Later we show how

this model can be used to determine the priority of intentions which can be reliably

scheduled, and to estimate the probability that a scheduled intention of a given

priority will be displaced from the schedule by the arrival of an intention of higher

priority and the probability the task will be executed by its deadline.

We characterise the task environment in terms of the average arrival rate and

time available for the execution of intentions of a given priority. Let 7'j be the average

triggering rate of intentions of priority i (expressed as the number of triggering events

I unit time), and ai the average time available for their execution, i.e., the difference

between the intention's deadline and the time at which it was triggered. For example,

if each external achievement goal has a distinct priority level, ri and ai correspond to

the arrival rate and average time to achieve that particular type of goal. We assume

that ai ~ ti where ti is the average execution time of intentions of priority i at the

specified confidence level, i.e., that deadlines advance the time at which intentions

are triggered such that intentions are always individually feasible on average. ti can

be computed from the execution time profiles of the plans in the agent's plan library.

Clearly, the larger ri and the smaller the difference between ai and t i , the more

difficult the agent's environment. The larger the value of ri, the lager the number

of intentions the agent must execute in a given period of time; the smaller the value

of ai - t i , the less time there is to accommodate intentions of priority less than i.

In general, the probability that an intention of priority j will be unschedulable is an

increasing function of ri and decreases with ai - ti for all i > j.

According to Little's law [23], in the worst case, when the schedule is full and

intentions complete their execution just before their deadlines, the long term average

6.2 Dynamic Environments 86

number of intentions of priority i in the agent's schedule is given by

(6.1)

The amount of uncommitted or 'slack' time unused by intentions of priority i in

such a schedule is Si = Ai x (ai - ti). We assume that 8i ~ 0 for all i given an

otherwise empty schedule, i.e., that the average arrival rate and time available for

execution of intentions of each priority level are feasible for the agent. For intentions

of priority i - 1 to be reliably scheduled, the total time required for their execution,

Ai-l x t i - 1 , must be less than 8i. If the maximum priority of any intention is m, then

the time available to schedule intentions of priority j is

m

8j+l = Am X am - L Ak X tk
k=j+l

(6.2)

Hence intentions of priority j < m are typically unschedulable if 8j+l « Aj x t j .

For given values of Ti, ai and t i , we can therefore determine the priorities of intentions

which can be typically scheduled.

6.2.1 Probability of Scheduling an Intention

We can estimate the probability that the intention T of priority j is scheduled,

F (Tj), using the dynamic model above. The slack, which can be assigned for inten­

tions of particular priority j is given by Equation 6.2.

For a new intention of priority j to be schedulable, there must be at least tj slack

in the schedule at priority level j, i.e., 8j ~ t j . The amount of slack at priority level j

in the schedule depends on the number of intentions in the schedule at priority levels

j, ... ,m. (A new intention of priority j can displace already scheduled intentions

with priority < j but not already scheduled intentions of priority j or higher.) Any

currently scheduled intentions of priority i, j ~ i ~ m, must have arrived in the last ai

6.2 Dynamic Environments 87

time units, i.e., between -ai and now. The number of intentions of each priority level

j, . .. ,m arriving between times -aj, .. . , -am and now can be represented as a vector

(iJ, ... , I m) where Ii for i E {j, ... , m} is the number of intentions of priority i which

arrived within the last -ai. Thus, for an intention of priority j to be schedulable,

the following must hold:

m-l

t j ~ I m x (am - tm) - L Ii X ti
i=j

Let the set of vectors satisfying this condition be

m-l

F ={(Jj, ... ,Im): Imx(am-tm)-LIixti~tj}
i=j

(6.3)

The probability that an intention of priority j is schedulable, Fj , is then the

probability that at most the number of intentions of each priority level specified by

one such sequence of arrivals occurs. If the arrival of triggering events is a Poisson

process2 , the probability that at most Ii intentions are added to the schedule in time

ai is given by

That is, the probability that exactly 0 or 1 or 2 or ... or Ii intentions are added to

the schedule in an interval of length ai. The probability that at most the number of

intentions of each priority level specified by one such sequence occurs is then

(6.4)

2Poisson process is one of the most important models used in queueing theory. It allows to

determine the probability of a number of events occurring in a fixed period of time if these events

occur with a known average rate and independently of the time since the last event.

6.2 Dynamic Environments 88

6.2.2 Probability of an Intention Displacement

We can also determine the probability that a scheduled intention of priority j

(assumed to be reliably schedulable) is displaced from the schedule by the arrival of

a higher priority intention. If the uncommitted time at priority m, Sm, is sufficient

to schedule the expected number of intentions of priority m -1, then for an intention

of priority m -1 to be displaced from the schedule, U m = r sm-dtm 1 intentions must

be added to the schedule during time am-I' The expected number of priority m

intentions arriving in time am-l is Am = rmam-l. If the arrival of intentions is a

Poisson process, the probability that at least Urn intentions are added to the schedule

in time am-l is given by

That is, 1- the probability that exactly 0 or 1 or 2 or ... or Um-l events arrive in an

interval of length am-I.

In general, for a scheduled intention of priority j < m to be displaced, sufficient

intentions of priority> j, with total execution time> Sj, must arrive within a time

interval aj.

A set of intentions with priorities j+ 1, j+2 ... , m sufficient to displace an intention

of priority j can be represented as a vector (Uj+l, ... , um) where Ui E {j + 1, ... , m}

is the number of intentions of priority i that arrive within aj. To displace an intention

of priority j such vectors must satisfy a number of conditions. First, the number of

intentions of each priority must be feasible given Sj. Second, the combined execution

time of all intentions in the set must be greater than S j. Third, that the combined

execution time of the intentions should exceed Sj by at most the least execution time

of any intention in the set. That is, all possible sequences of intentions of priority> j

which have combined execution time "just greater" than Sj. Let the set of vectors

6.2 Dynamic Environments 89

satisfying the conditions be

The probability that an intention of priority j is displaced, U(Tj), is then the

probability that at least the number of intentions of each priority level specified by

one such sequence occurs:

II (6.5)

,",u;-l e-A.,Xx
where U(Ui) = 1 - L..-x=o ~ as above.

For different applications and priority level~, different probabilities of displacement

may be appropriate. If, for the intended application, Uj is deemed to be too high,

the agent developer must either reduce the average triggering rate of intentions of

priority> j or increase ai - ti for i ~ j, e.g., by reducing the execution time of the

agent's plans.

6.2.3 Probability of the Successful Execution of an Intention

In this section we show how to compute the probability that a task that has been

given to the agent will be completed by its deadline. The probability that an intention

T of priority j will be executed by its deadline, depends on 3 probabilities: 1) the

probability that the intention will be reliably scheduled, 2) the probability that the

intention is not displaced by intentions of priority> j; and 3) the probability that

the intention will execute successfully in a static environment.

We have already derived the probability that the intention T of priority j will be

displaced U(Tj) in the previous section (see Equation 6.5). Therefore the probability

6.3 Summary 90

that intention Tj will not be displaced is equal to 1 - U (Tj). The probability that

intention Tj will be scheduled is given by Equation 6.4. Also recall that the probability

that the intention Tj should complete successfully before its deadline is, in fact, the

confidence level a.

The probability that an AgentSpeak(RT) agent will execute an intention T of

priority j to completion is the probability that the intention will be scheduled, will

not be displaced by higher priority intentions, and will execute successfully, as follows:

(6.6)

For given values of rj, aj and t j , we can determine the probability that an intention

of priority j related to a goal achievement or a belief change event will be executed

by its deadline. In the nuclear power plant example, for a given rate of changes to

the volume of feed water and the time it takes to execute the agent's plans to change

the water level, we can determine the probability that a goal to change the level of

feed water will be executed by the deadline.

6.3 Summary

In this chapter we have stated and proved real-time properties of an AgentS­

peak(RT) agent, such as guaranteed reaction time ofthe AgentSpeak(RT) interpreter

and probabilistic guarantees of successful execution of intentions. We have also devel­

oped a simple model of the 'dynamism' of the agent's environment, and shown how it

can be used to determine the priority of intentions that can be reliably scheduled, and

the probability that a scheduled intention of given priority will be completed by its

deadline. In the next chapter we intend to show how to extend the AgentSpeak(RT)

architecture to allow parallel execution of intentions.

Chapter 7

AgentSpeak(RT) with Parallel

Execution of Intentions

A major advantage of BDI-based agents is their ability to pursue multiple inten­

tions in parallel. While it offers real-time guarantees, the AgentSpeak(RT) architec­

ture described in Chapter 5 executes intentions sequentially, i.e., one intention at a

time. In this chapter we present a multitasking approach to the parallel execution of

intentions in the AgentSpeak(RT) architecture. The parallel execution of intentions

allows the agent to pursue multiple goals at the same time. We also prove real­

time properties of AgentSpeakMT (RT), a multitasking version of AgentSpeak(RT)

architecture, and demonstrate the advantages of parallel execution of intentions in

AgentSpeak(RT) by showing how it improves the behaviour of the example intelligent

control system for a nuclear power station from Chapter 5.

7.1 Shared Resources 92

7.1 Shared Resources

The problem with parallel execution of intentions is that there can be undesirable

interactions between plans. Possible interactions between plans are defined in terms

of shared resources. We define a resource as a physical or virtual component of

limited availability within an agent. Each agent has a finite set of shared resources

res!, reS2, ... ,resn which are used during its operation. A shared resource may be

physical, e.g., picking up litter may require the use of a gripper, or logical, e.g., a

mutual exclusion requirement that incompatible actions are not executed at the same

time.

Executing an action requires exclusive access to zero or more of the shared re­

sources res!, reS2, . .. , resn , and the set of resources required to execute a plan is the

union of the resources required to execute each of its actions. The set of resources

required to execute an action (and hence a plan) forms part of the specification of

the action for a particular hardware or software agent platform.

Shared resources can be used by only one plan at a time, and are assumed to

be reusable: after the plan has been executed the resource becomes available for

the execution of other plans. If two plans require the same shared resource, the

execution of the intentions containing the plans must be serialised, as explained

below. Only intentions that do not have resource conflicts may execute concur­

rently. In AgentSpeakMT (RT) a developer can specify a required level of confidence

for the successful execution of intentions in terms of two probabilities, (): and f3. An

AgentSpeakMT (RT) agent should schedule an intention so as to ensure that the prob­

ability that it does not compete for resources with other agent's intentions is at least

(3. If not all intentions can be executed with the required level of confidence due

to lack of time or resource conflicts, the agent favours intentions responding to high

7.1 Shared Resources

priority events.

plan-spec

time-profile

resource-profile

plan

plan-name

event

context

resources

resource

body

step

action

term-list

term

.. -..

.. -

.. -

.. -..

.. -

.. -..

.. -..

.. -..

.. -

.. -..

plan time-profile resource-profile

"time-profile" ":" number"," number"," number

* "resource-profile" ":" (resource"," number";")

"@" plan-name event [":" context] [": :" resources]

"<-" body"."

string

"+" ["!"] literal I "-" liteml

true I liteml ("&:" liteml)*

resource ("," resource) *

r ["(" term-list ")"]

true I step ("i" step)*

action I goal

["."]a ["(" term-list ")"]

term ("," term) *

constant I variable I function

Table 7.1: BNF for AgentSpeakMT(RT) plans

93

Recall that each action and plan has an associated execution time profile which

specifies the probability that the action or plan will terminate successfully a." a func­

tion of execution time (See Chapter 5). In order to determine if plans can execute

concurrently, each plan is also associated with an execution resource profile which

specifies the probability that the plan will require each of the agent's shared re­

sources res}, res2, ... ,resn . The BNF for AgentSpeakMT (RT) plans is given in Table

7.1.

7.2 Plan-Resource Tree 94

7.2 Plan-Resource Tree

Execution resource profiles can be derived from an analysis of the agent's actions,

plans and environment, or using automated techniques, e.g., stochastic simulation.

One way to analyse the relation between agent's resources, actions and plans, and to

determine the probability that a particular resource will be required by the execution

of an intention is to use a 'Plan-Resource Thee'. A plan-resource tree (PRT) is a

modification of a goal-plan tree (GPT) [35].

A GPT is a bipartite directed graph, connecting goals or subgoals with plans

and plans with subgoals. Thangarajah et al. introduced goal-plan trees in [35] as a

way to represent the interaction between plans and goals in BOI agent programming

languages. For a plan in the tree to be accomplished, all of its subgoals must be

achieved. However, to achieve a (sub)goal only one of its relevant plans needs to

be accomplished. Each tree node (i.e., a goal or plan) is associated with summary

information about required resources. Thangarajah et al. consider both reusable and

consumable resources. Reusable resources can only be used by one plan at a time, and

after the plan has been executed, the resources become available for the execution of

other plans, e.g., CPU, communication channel. In contrast, consumable resources

are those which can only be used once and are consumed by the execution of a plan,

e.g., time, energy.

An example of a goal-plan tree (without resource summary) is shown in Figure

7.1. The agent has two top-level goals G l and C 2. There are three alternative plans

Ph, Pl2 and Pl3 for achieving goal Cl . Each plan has different resource requirements

R l , R2 and R 3 · Plans Pi l and Pi3 have subgoals SGll and SG12 and so on. In order

to achieve the top-level goals G l and C 2 only one of their alternative plans has to be

accomplished.

7.2 Plan-Resource Tree 95

Figure 7.1: A goal-plan tree structure

Resources are not attached to each individual action, rather a resource summary

is specified for a plan, which includes resource requirements of the subgoals and

actions in the plan body. The resource requirements for a goal are combined resource

requirements of all relevant plans for this goal. The summary resource requirements

for each top-level goal are generated using the GPT, summing up the requirements

starting at the leaves. The resource summary consists of a set of necessary resources

(i.e., minimum resource requirements) and a set of possible resources (i.e., maximum

resource requirements).

The resulting resource summary is used to determine resource conflicts, so they

can be avoided by choosing alternative plans or appropriately scheduling plan execu­

tion. An algorithm is provided to determine whether an agent can adopt a new goal

with respect to its existing set of goals. The initial GPT and summary information

for each goal type are generated at compile time, and identified resource conflicts are

monitored at runtime in order to avoid them.

Negative interactions between goals such as competition for resources can in result

failure of the goals. On the other hand positive interactions between goals allow the

agent to take advantage of situations where goals may have common subgoals. In

[34, 33], Thangarajah et al. explored mechanisms for identifying potential common

7.2 Plan-Resource Tree 96

subgoals and interference between the goals. They also presented mechanisms for

scheduling to take advantage of the positive interactions and to avoid interference

between goals. The positive and negative interaction between goals are identified

by generating definite and potential effects of (sub)goals and plans to achieve the

goals. The effects of executing a plan are the effects of executing the actions within

the plan represented as logical conditions. As before effects summaries are derived

by propagating the effects of plans and (sub)goals up the goal-plan tree. These

summaries are used to reason about merging plans and avoiding interference between

them.

In [32] Thangarajah et al. reported the evaluation of the costs and the benefits

of reasoning about resource requirements as presented in [35]. The results show

an increase in the number of goals successfully achieved and a small increase in

computational costs. However as a goal-plan tree grows, the amount of summary

information could potentially grow exponentially, which in case of large problems

would significantly increase computational costs and afect the overall performance of

the agent.

Shaw and Bordini in [30] mapped GPTs to Petri nets to avoid the need for sum­

mary information. The Petri-net based technique solved the problem of summary

information growth and can be used to reason about both positive and negative in­

teraction between goals. In the Petri net, goals and plans are represented by a series

of places and transitions. Goals are linked to the relevant plans. Plans and subgoals

are nested within each other, similarly to the CPT.

In [31]' Shaw and Bordini provided mechanisms for reasoning about agent re­

sources being combined with reasoning for positive and negative interactions between

the goals combining various types of G PT techniques. Whilst the Petri net approach

allows to avoid the use of summary information when reasoning about positive and

7.2 Plan-Resource Tree 97

negative interaction between goals, this approach does not work when reasoning about

resources. For reasoning about resources a compact form of summary information

is used. The summary information of a GPT is used in two ways: 1) to store the

summary of all resource requirements and to decide if a goal can be adopted based on

existing resource availability; and, 2) where a goal or subgoal has several applicable

plans, to provide summary information just for the subtrees. The summary informa­

tion at the root of the tree gives the minimum and maximum resource requirements

for each goal. The Petri-net is used to keep a summary information for current goals,

and checks if there are sufficient resources available to adopt a new goal. The exper­

imental results show a significant increase in the number of goals achieved with little

additional reasoning cost.

While the proposed CPT techniques allow an agent to resolve resource conflicts

between goals, the summary information requires exponential time to generate. More­

over, the view of resources used in these techniques is different from that considered

in this section, in that the probability that a plan would require a shared resource is

not considered.

Our approach determines an execution resource profile (i.e., probabilistic resource

requirements) for each plan using a CPT-like structure, and does not require to

update the summary information in runtime. For each resource we need to determine

the probability that it will be required by an intention: we can compute this by

turning the goal-plan tree into plan-resource tree (PRT) structure (see Figure 7.2)

which represents the relationship between plans and the resources they require.

A PRT is also a bipartite directed graph, but in contrast to a CPT, it con­

nects plans with resources required by the corresponding plans and resources with

(sub)plans. PRTs also represent the probability that a sub-plan will be chosen for a

sub-goal within a plan. Obviously, the probability that a plan will require each of the

7.3 Multitasking Reasoning 98

Figure 7.2: Plan-Resource Trees

shared resources required by each of the actions in the plan is 1. However for plans

which contain subgoals, the execution resource profiles will depend on the relative

frequency with which the alternative plans for a subgoal are selected in the agent's

task environment.

We can determine a execution resource profile for each plan using the corre-

sponding plan-resource tree structure (PRT). The tree is traversed from root to

leaves, calculating the resource requirements and corresponding probabilities. For

a plan Pii with the corresponding PRT if a shared resource flu is used by possible

(sub)plans Pi j to Pik of Pii then the probability that Ru is required by Pii is equal

to 1- n (1 - Pi,n), where Pi,n is the probability that the (sub)plan Pin will be se-
n=j .. k

lected. For example, plan Pi3 in Figure 7.2 is associated with the execution resource

profile: (R}, P33 ; R2 , P32 ; R3 , 1; R4 , P31 ; R5 , 0;). An agent's PRT can be computed

offline and only needs to be computed once.

7.3 Multitasking Reasoning

In contrast to AgentSpeak(RT), the AgentSpeakMT(RT) scheduling algorithm

allows an agent to execute several intentions apparently simultaneously. In the case

7.3 Multitasking Reasoning 99

of an agent with a single CPU, it can only execute one step of any intention at a

time, which means that the agent must switch from one intention to another. Hence,

if the agent is able to switch between the tasks frequently enough, i.e., if the duration

of the single agent's execution cycle is small, then the impression of parallelism is

achieved.

The AgentSpeakMT (RT) interpreter is similar to the interpreter of AgentSpeak(RT)

(see Section 5.6), however the function sched and the function exec are different.

7.3.1 The AgentSpeakMT(RT) Scheduler

An AgentSpeakMT (RT) schedule is a set of partially overlapping intentions T1,

... , Tn- The scheduling algorithm has to distinguish between intentions that can be

scheduled sequentially and intentions that can be scheduled concurrently.

A set of intentions is a set of pairs {(s}, Td, ... , (Sn, Tn)} where Si is the time at

which intention Ti will next execute. A schedule is feasible if each intention will com­

plete execution before its deadline with a probability 0: and with a probability of re­

source conflict less than 1-,8. More precisely, a set of intentions {(S1' T1), ... , (Sn, Tn)}

is feasible if

1. for each scheduled intention (Si' Ti):

Si + et(Ti' 0:) - eX(Ti) ::; dh), (7.1)

where exh) is the time Ti has spent executing up to this point, and dh) is the

deadline for Ti;

2. the probability that there is no resource conflict with intentions {(Sj, Tj) I Si <

Sj + et(Tj, a) 1\ Sj < Si + et(Ti, a)} which are already scheduled and execute

7.3 Multitasking Reasoning 100

concurrently with Tj is at least {3:

n nn (1- P(Tj,resu) x P(Tj,resu)) ~ (3, (7.2)
Tj u=l

where P(Ti, res u) is the probability that execution of intention Ti will require

the shared resource resu .

The scheduling algorithm is shown in Algorithm 7.1 . 7.3. The set S contains all

feasible partial schedules (initially a single empty schedule). The set of candidate

intentions is processed in descending order of priority. A candidate intention Tj is

added to a partial schedule from S if it can be assigned a start time Sj such that the

probability of the intention completing successfully before its deadline is at least Q:

and where the probability that there are no resource conflicts with currently scheduled

intentions is at least {3. Each candidate intention Tj is initially assigned a start time of

'now', and then an attempt is made to schedule Tj at the cycle immediately after the

expected end time of each currently scheduled intention. These steps are repeated

for rest of partial schedules in S.

The scheduling algorithm tries out all possible combinations of parallel and se­

quential scheduling and determines all feasible start times for the intention Tj and

updates the set S accordingly. Intentions, which are not feasible in the context of

any of the current partial schedules, are dropped. When all candidate intentions

have been processed, the scheduler returns the first feasible instance of the schedule.

The resulting schedule is 'maximally feasible' (no more intentions can be added to

the schedule if the scheduled intentions are to remain feasible at the specified execu-

tion time and resource conflict confidence levels) and moreover, intentions which are

dropped are incompatible with some scheduled higher priority intention(s).

Theorem 5. The Algorithm 7.1- 7.3 worse-case complexity O(n· en).

7.3 Multitasking Reasoning

Algorithm 7.1 AgentSpeakMT(RT) Scheduling Algorithm (Part 1)
function SCHEDULE(I)

S := {0}

for all rEI in descending order of priority do

S':= 0

for all rES do

s := naw

S' := S' U {SCHEDULE-SERIES(S, r, rn

for all (s',r') E r do

s := s'

S' := S' U {SCHEDULE-PARALLEL(s, r, r)}

s:= s' +et(r',o) - ex{r') + 6c

S' := S' U {SCHEDULE-SERIES(S, r, r)}

end for

end for

if S' -I 0 then

S :=S'

end if

end for

return jirst(S)

end function

function SCHEDULE-PARALLEL(S, r, r)

if FEASIBLE(r U {(s, r)}) then

return rU{(s,r)}

else

return 0

end if

end function

101

Proof. In the worst case, when priority varies with deadline and intentions can be

inserted into the schedule in any order (Le., in parallel or in sequence), then the

7.3 Multitasking Reasoning

Algorithm 7.2 AgentSpeakMT(RT) Scheduling Algorithm (Part 2)
function SCHEDULE-SERIES(S, r, r)

r':= 0

for all (s', r') Erda

if s' < s then

r' := r' U {(s',r')}

else

s' := s' + et(r,a) - ex(r) + 8c

f':= r'u{(s',r')}

end if

end for

if FEASIBLE(f' U {(s, r)}) then

return r' U {(s, r)}

else

return 0

end if

end function

102

feasibility of each new intention involves checking the feasibility of all possible partial

schedules of intentions. A number of all possible partial schedules is defined by an

ordered Bell number. Hence, the Algorithm 7.1 - 7.3 has a worse-case complexity

O(FI/1)' where Fn is a Fubini number or an ordered Bell number, given by

(7.3)

Berend and Tassa in [2] established the following weak bound for the Bell numbers:

Fn < (O.792n)n
In (n + 1)

We can transform the right side of the Equation 7.4 as follows:

I
· O.792n 1· (0.792n)'
1m < 1m ~~--~~

n~oo In (n + 1) n-too (In (n + 1))'
. 0.792

hm --1-- < lim n.
n-too n-too

n+l

(7.4)

(7.5)

7.3 Multitasking Reasoning

Algorithm 7.3 AgentSpeakMT(RT) Scheduling Algorithm (Part 3)
function FEASIBLE(r)

for all (s, r) Erda

if s + et(r, 0) - ex(r) > d(r) then

return false

end if

p:= 1

for all (s', r') E r \ {(s, r)} do

if s < s' + et(r',o) /\ s' < s + et(r,o) then

for k from 1 to n do

p:= p x (1- P(r,resk) x P(r',resk))

if p < f3 then

return false

end if

end for

end if

end for

end for

return true

end function

103

Then combining Equation 7.4 and 7.5, we can derive the following bound on

ordered Bell numbers:

The complexity of the scheduling algorithm is then O(en 'lnn) (or O(n· en)). 0

The logarithmic growth is the inverse of exponential growth and is very slow,

hence the algorithm complexity is higher than exponentials, but it is lower than

double exponential i.e., en < en ·lnn < en2 . The complexity of the algorithm is very

high for a real-time system. However in the special case of one resource, which is

7.3 Multitasking Reasoning 104

used with probability 0 or 1, the schedule can be computed in polynomial time. We

will consider this special case below.

7.3.2 The AgentSpeakMT(RT) Interpreter

After scheduling, an AgentSpeak(RT) agent starts executing intentions with start

time s = now. The execution of an intention differs from the single-tasking version

of AgentSpeak(RT). Each intention can be in one of two states: executing and exe­

cutable. An intention is executable if the first step in the topmost plan in the stack

of partially executed plans that forms the intention is a goal or an action which is

not currently executing (i.e., the action has either completed executing or has yet

to begin execution). If the first step in an executable intention is an action which

has completed execution, the completed action is removed. If the completed action

was the last step in a plan, the completed plan is popped from the stack of partially

executed plans that forms the intention and any shared resources required solely for

the execution of the plan are released. Execution then proceeds from the next step of

the topmost plan in the intention. Executing an executable intention involves execut­

ing the first goal or action of the body of the topmost plan in the stack of partially

executed plans which forms the intention. Executing an achievement goal adds a

corresponding internal goal addition event and removes the achievement goal from

the body of the plan. Executing a test goal involves finding a unifying substitution

for the goal and the agents base beliefs. If a substitution is found, the test goal is

removed from the body of the plan and the substitution is applied to rest of the

body of plan. If no such substitution exists, the intention is dropped and removed

from the schedule. Executing an action results in the invocation of the Java code

that implements the action and changes the state of the intention from executable to

7.3 Multitasking Reasoning 105

executing. We assume that action execution is performed in a separate thread, and

execution of the AgentSpeakMT (RT) interpreter resumes immediately after initiating

the action.

7.3.3 Atomic Intentions

In this section we consider the special case of an agent with only one shared

resource which is used by each plan with probability 0 or 1, i.e., for all T: P(T, res) =

o or 1. In this case there are some intentions that can be scheduled in parallel with

other intentions at S = now, and some intentions that must be scheduled in series

(Le., atomic intentions).

A schedule {(SI,Tl), ... ,(Sn,Tn)} is feasible if each intention will complete ex­

ecution before its deadline with probability a. More precisely, a set of intentions

{(Sl, Tl)' .. . , (Sn, Tn)} is feasible if

1. for each scheduled intention (Si, Ti)

(7.7)

2. the probability that there is no resource conflict with intentions {(Sj,Tj) I Si <

Sj + et(Tj, a) 1\ Sj < Si + et(Ti, a)} which are already scheduled and execute

concurrently with Ti is equal to 1:

II (1- P(Ti,res) x P(Tj,res)) = 1. (7.8)

The scheduling algorithm is shown in Algorithm 7.4. The set of candidate in-

tentions is processed in descending order of priority. A candidate intention T, which

requires shared resource (i.e., P(T, res) = 1) is added to the schedule if it can be

inserted into the schedule in deadline order while meeting its own and all currently

7.4 Example 106

scheduled deadlines. On the other hand, a candidate intention that does not require

the resource (i.e., P(T, res) = 0) is scheduled at s = now. Intentions which are not

feasible in the context of the current schedule arc dropped. The resulting schedule

is computed in polynomial time (in fact, quadratic time) in the size of the set I,

and will be priority-maximal (no more intentions can be added to the schedule if

the scheduled intentions are to remain feasible at the specified confidence level) and

intentions which are dropped are incompatible with some scheduled higher priority

intention (s).

Single resource multitasking in AgentSpeak(RT) is similar to capabilities provided

by atomic plans in Jason [6] and 2APL [11]. An atomic plan is a plan which should

be executed ensuring that its execution is not interleaved with the execution of the

goals and actions of other plans of the same agent. The resulting AgentSpeakMT (RT)

agent system is more expressive than Jason and 2APL in one sense, as Jason and

2APL cannot run non-atomic plans in parallel with an atomic one. However, it is

less expressive in another sense, as in Jason and 2APL a non-atomic plan can have

an atomic subplan.

7.4 Example

In this section we demonstrate the advantages of AgentSpeakMT (RT) over AgentS­

peak(RT) by showing how it improves the behaviour of the intelligent agent that we

developed to control a nuclear power plant in Chapter 5.

Recall that the agent performs diagnostics, provides the required electric power

level, maintains the plant's parameters, and handles unexpected situations. The

agent has access to seven power plant resources: the reactor of the power plant

reSl, turbines reS2, the main power line reS3, the steam generator reS4, the electric

7.4 Example

Algorithm 7.4 AgentSpeakMT(RT) Scheduling Algorithm (Intermediate Case)
function SCHEDULE(I)

r. := 0

rp:= 0

for all rEI in descending order of priority do

if P{r, res) = 0 then

if r p U {(now, r)} is feasible then

r p = r p u { (now, r)}

end if

else

s = now

r: = 0

for all (s', T') E r. do

if d{T') .::; d{T) then

r~ := r~ U {{S',T')}

s := s' + et{T',a) - eX{T')

else

s' := s' + et{r, a) - eX{T)

r~ : = r~ U {(s' , T')}

end if

end for

if r~ U {{S,T)} is feasible then

r. = r~ u {{S,T)}

end if

end if

end for

ret urn r pUr.
end function

107

generator res5, the feed water pump reS6, and the condenser water pump reS7. Note

that the execution time profile of the plans is the same as before.

7.4 Example 108

The agent has two plans for diagnostics of the power plant's systems. The

full-diagnostics plan requires all seven resources for execution, while the express­

diagnostics plan requires access only to the reactor, turbines, steam generator, and

the electric generator. Hence the execution resource profiles associated with plans

full-diagnostics and expreSS-diagnostics are (reSt, 1; res2,1; res3, 1; res4, 1;

reS5, 1; reS6, 1; reS7, 1) and (resl, 1; reS2, 1; reS3, 0; res4, 1; res5, 1; res6, 0; reS7, 0).

Plans:

Qfull-diagnostics

+!diagnostics : full-diagnostics

:: resl,res2,res3,res4,res5,res6,res7 <­

check(reactor)j

check(power-line)j

check(turbines)j

check(steam-generator)j

check(elec-generator)j

check(feed-water-pump)j

check(cond-water-pump).

~express-diagnostics

+!diagnostics : express-diagnostics

:: resl;res2;res4;res5 <­

check(reactor)j

check(turbines);

check(steam-generator);

check(elec-generator).

In order to change the water level, the agent has to run the feed water pump.

7.4 Example 109

The water control plans therefore require only resource res6 (feed water pump) for

their execution, i.e., the execution resource profile is (res!, 0; res2,0; res3,0; res4,0;

res5,0; reS6, 1; res7'0).

(Qwater-control

+!set-water-levelCL) water-level(60)

:: res6 <­

change-water-level(L).

(Qnorm-water-level

+!norm-water-level water-level-setpoint(L)

:: res6 <­

change-water-level(L).

However changing the power level of the power plant involves control of the re­

actor, the steam generator, the electric generator, and the condenser water pump.

The power-control plan therefore requires resources res!, reS4, reS5, r£'87, i.f'., the

execution resource profile is (resl, 1; reS2, 0; res3,0; res4, 1; reS5, 1; reS6, 0; res7, 1).

«Ipower-control

+!set-power-level(K) : true

:: resl; res4; res5; res7 <­

change-power-level(K).

Finally the emergency protection plan that executes emergency stop procedures

will obviously need to control all power plan's systems. As a result, the plan requires

all resources for its execution, i.e., the execution resource profile is (res!, 1; res2, 1;

reS3, 1; reS4, 1; res5, 1; res6, 1; res7, 1).

«Iemergency-protection

7.4 Example

+short-circuit : true

:: resl;res2;res3;res4;res5;res6;res7 <­

?power-level(P)

emergency-stop;

!set-power-level(O);

.print("Main line power cut");

reset-plant;

!set-power-level(P).

110

As in the previous example (see Section 5.7) the AgentSpeakMT (RT) agent has to

handle four events: a perform diagnostics +! diagnostics goal, a change feed water

level +! set-water-level goal, a change power production +! set-power-level goal,

and a short circuit event +short-circui t. Events are matched against the plan

library. Plans full-diagnostics, water-control, power-control and emergency­

protection are executable and (individually) feasible. They are added to the set of

candidate intentions. Recall that the intention that corresponds to +short-circuit

event, has the highest priority (25), whereas the intentions to set power level and feed

water level have medium priority (10), and the intention to perform the diagnostics

has the lowest priority (4).

The scheduling algorithm (Algorithm 7.1-7.3) attempts to schedule the candi­

date intentions in descending order of priority. As previously, the intention that

corresponds to the +short-circui t event is inserted into the schedule, which is cur­

rently empty. The intention to increase water level cannot be scheduled in parallel

with the short-circuit intention due to the resource conflicts. Although it can be

scheduled sequentially in deadline order.

In contrast to the previous example (Section 5.7), the algorithm schedules the

intention to change the power level in parallel with the intention to increase the

7.5 Real-Time Agency 111

water level. The intention diagnostics has a resource conflict with the scheduled

intentions and cannot be scheduled in parallel with them. However, the agent is now

able to schedule it sequentially in deadline order.

We can see that, compared to previous example, the agent now can increase the

water level and change the power level at the same time, and complete diagnostics

by the deadline.

7.5 Real-Time Agency

In this section we show that under certain assumptions, an AgentSpeakMT (RT)

agent provides real-time guarantees (which we believe are reasonable for real-time

applications and discuss them below). We prove that the time required to execute a

single cycle of the AgentSpeakMT(RT) interpreter (and hence the reactivity delay of

the agent) is bounded. We also show that an AgentSpeakMT(RT) agent commits to

a priority-maximal set of intentions, and that, given a fixed schedule, the probability

that an intention will complete successfully by its deadline is Q and the probability

that there will be no resource conflict with other scheduled intentions is at least {3.

We make the following assumptions about the agent's program and task environ­

ment:

1. the set of possible beliefs has a fixed maximal size (for example, the set of

possible beliefs can be restricted to the set of ground instances of any literal

appearing in a belief context or a test goal for a finite set of constants);

2. the set of possible goals has a fixed maximal size (for example, the set of pos­

sible goals can be limited to the set of ground instances of any atomic formula

appearing in an achievement goal for a finite set of constants);

7.5 Real-Time Agency 112

3. the maximal possible deadline of any event is a constant dmax (relative to the

current time);

4. the minimal expected execution time for any plan is a constant tmin ;

5. there is a maximal expected execution time, tmax , for any action in the agent

program (i.e., tmax = max(et(a, 0)) for any action a at the specified 0);

6. the time required to execute a single cycle of the interpreter is small relative

to the minimal expected execution time of any action in the agent's program 1,

and

7. there is a minimal probability Pmin that a plan requires at least one shared

resource.

Theorem 6. If the sets of possible beliefs and goals, the maximal expected action

execution time and the maximal deadline have a fixed maximal size, and the minimal

plan execution time has a fixed minimal size and the minimal probability that a plan

requires at least one shared resource has a fixed minimal value, then the time required

to execute a single cycle of the AgentSpeafi!v1T (RT) interpreter is bounded by a constant

t5c ·

Proof. Recall that the current interpreter is similar to the single-tasking version, but

functions shed and exec are different.

As already mentioned in Section 7.3 the complexity of the scheduling algorithm is

0(111' elll). III is bounded if the maximal possible deadline of any event is a constant

dmax (assumption 3), the minimal expected execution time for any plan is a constant

IThe minimal expected execution time of any agent action has to be at least double that of the

time required to execute a single interpreter cycle. Otherwise the agent will not be able to execute

intentions concurrently.

7.5 Real-Time Agency 113

tmin (assumption 4) and the minimal probability that a plan requires at least one

resource is a constant Pmin (assumption 7). Then the maximal possible number of

schedulable intentions is bounded by dmax/tmin x n x (1 - (3)/(1 - P;'in)' where n

is the number of shared resources. If we assume that the time required to add an

achievement goal to the set of events, evaluate a goal query, and initiate the execution

of an action are bounded by a constant, then the time to compute exec is bounded

by a constant.

As evt and opt are unchanged, the time required to execute a single cycle of the

AgentSpeakMT (RT) interpreter is therefore bounded by a constant 6c . 0

It therefore follows that the reactivity delay of an AgentSpeakMT (RT) agent (the

time required for an agent to recognise or become aware of changes in its environment)

is also bounded.

Theorem 7. The reactivity delay of an AgentSpeaJ!vlT (RT) agent is bounded.

Proof. Similarly to single-tasking AgentSpeak(RT), the maximum reactivity delay is

for an event which arrives just after the evaluation of evt begins, and is bounded by

o

Next we prove that the multitasking scheduling algorithm returns a priority­

maximal set of intentions (as defined in Chapter 6).

Theorem 8. Given a partially ordered set of intentions I = {T1, T2, ... ,Tn}, where

p(Ti) ~ p(Tj) for i < j, the scheduling algorithm generates a priority-maximal set of

intentions r ~ I.

Proof. We can see that, as for the single-tasking version, the scheduling algorithm

generates a sequence of sets starting with ro,o = 0,50 = {0} and for all sets f\,j E 5i ,

e,j = r i - 1,jU{(Si, Tin, Ti E I if r i- 1,jU{(Si, Tin is feasible, otherwise 5i = 5i- 1. The

7.6 Dynamic Environments 114

set r n,l E Sn is r. By construction, r is a feasible set of intentions. r is also clearly

a maximally feasible subset of I: there is no TEl such that T (j. rand r u {T}

is feasible. To prove that it is priority-maximal, let Ti E I, {(Si,Ti)} be feasible,

and (Si' Ti) (j. r. We need to show that Ti is incompatible with some subset of r,

which contains only intentions of the same or higher priority than p(Ti). Since the

intentions are added to r in descending order of priority, when Ti is considered and

found incompatible with ri~l,j, p(Ti) :::; min({p(T') : T' E ri~l,j}). D

Theorem 9. The probability that an intention T will be executed by its deadline

successfully in a static environment is equal to 0:.

Proof. From the fact that (1) oe is small relative to the minimal expected execution

time of any action in the agent's program (assumption 6), and (2) the execution time

profiles of the plans provides us the estimate of duration of task with probability 0:,

an intention T will complete execution before its deadline in a static environment

with a probability 0:. D

Theorem 10. The probability that the will be no resource conflict between an inten­

tion T and another scheduled intention in a static environment is ~ /3.

Proof. Immediate, from the feasibility requirement in the scheduling algorithm. The

start time of an intention T is chosen such that the probability that the intentions with

which T executes concurrently will not require any of the shared resources required

by T is at least /3. D

7.6 Dynamic Environments

We can modify the model of the 'difficulty' of the agent's environment from Sec­

tion 6.2 to incorporate parallel execution of intentions, in order to prove that the

7.6 Dynamic Environments 115

AgentSpeakMT (RT) architecture with multitasking provides real-time guarantees for

a dynamic environment. We show how this model can be used to determine the

priority of intentions which can be reliably scheduled in an environment of specified

difficulty, and to estimate the probability that an intention of given priority will not

be displaced from the schedule by the arrival of an intention of higher priority.

Recall that we characterise a task environment in terms of the average arrival rate

and time available for the execution of intentions of a given priority. Let intentions

of priority i be associated with an average triggering rate Ti, and an average time

available for their execution ai, such that ai ~ ti where ti is the average execution

time of intentions of priority i at the specified confidence level 0::. We assume that the

amount of uncommitted or 'slack' time unused by intentions of priority i is 8i ~ 0 for

all i given and otherwise empty schedule. We also a'isume that intentions of prior­

ity i are associated with an execution resource profile (P(Ti, TeSt), ... , P(Ti' resn)).

We assume that intentions with the same priority level have the same resource re­

quirements and cannot be executed concurrently with each other. In contrast to

the previous model of the 'difficulty' of the agent's environment, intentions may be

scheduled concurrently with other intentions, and as a result, it may be possible to

execute more intentions by their deadlines with probability 0'.

In the worst case the schedule is full, intentions complete their execution just

before their deadlines, and the probability f3 that an intention does not compete for

resources with other scheduled intentions is equal to 1. The probability that a can­

didate intention of priority i will be schedulable is equal to a probability that the

intention can be scheduled either in series (as in single-tasking version of AgentS­

peak(RT)) or in parallel with other intentions of priority > i. As these are disjoint

alternatives, we can consider these probabilities separately. We have derived the

probability that the intention T of priority i will be scheduled serially Fs in Chapter

7.6 Dynamic Environments 116

6 (see Equation (6.4)).

For intentions of priority i to be concurrently schedulable there must no resource

conflicts with intentions of priority greater than i. If the maximum priority of any

intention is m, then the probability Fp(Ti) that the intention Tj will be schedulable in

parallel with intentions of priority j > i, is given by

n

Fp(Ti) = II II (1 - P(Tj, res,,) x P(Tj, res,,)) (7.9)
Tj u=1

We now can determine the probability F(Tj) that the intention Tj is schedulable.

Assuming the arrival of intentions is a Poisson process2
, the probability that Tj is

schedulable, Fh), is given by

(7.1O)

We can also determine probability U(Tj) that a scheduled intention of priority i

is displaced from the schedule by the arrival of a higher priority intention.

Recall that in the case of the single-tasking version of AgentSpeak(RT), for a

scheduled intention of priority i < m to be displaced, sufficient intentions of priority

> i, with total execution time> Sj , must arrive within a time interval aj (Chapter

6). For multi-tasking execution we also have to take into account fact that intentions

of priority i may be scheduled concurrently with other intentions of priority> i, and

as a result may not be displaced by the arrival of these intentions. A set of intentions

with priorities i + 1, i + 2 ... ,m sufficient to displace an intention of priority i can

be represented as a vector (Uj+l, . .. ,urn) where Uj E {i + 1, ... ,m} is the number of

intentions of priority i which arrive within aj. To displace an intention of priority i

such vectors must satisfy a number of conditions:

2Poisson process is one of the most important models used in queueing theory. It allows to

determine the probability of a number of events occurring in a fixed period of time if these events

occur with a known average rate and independently of the time since the last event.

7.6 Dynamic Environments 117

1. the number of intentions of each priority must be feru>ible given 8i;

2. the combined execution time of all intentions in the set must be greater than

3. the combined execution time of the intentions should exceed Si by at most the

least execution time of any intention in the set;

In general, a scheduled intention Ti of priority i < m will be displaced if the

uncommitted time Si is less than total execution time of an arrived sequence of

intentions of priority> i, and Ti can't be scheduled in parallel with these intentions

and each other.

The probahility that an intention of priority i is displaced, U (Ti), is the probability

that at least the number of intentions of each priority level specified by one such

sequence occurs. We can extend Equation 6.5 to the AgentSpeakMT (RT) agent, the

probability, U(Ti), is then

where U(Ui) = (1 - L:~~~1 e-:;-x j) is the joint probability that at least Ui intentions

are added to the schedule in time ai, where Ai is an average number of intentions of

priority i.

The probability that an AgentSpeakMT (RT) agent will execute an intention of

priority j to completion is then

(7.12)

For given values of Ti, ai and t i , we can therefore determine the probability that

an intention of given priority will not be scheduled, or will be displaced from the

schedule by a higher priority intention before it can complete successfully.

7.7 Summary 118

7.7 Summary

In this chapter we have described how we can extend the AgentSpeak(RT) archi­

tecture to allow the parallel execution of intentions. We have discussed the multi­

tasking approach for parallel execution of intentions and proved real-time properties

in that case. We have also extended a model of the 'dynamism' of the agent's envi­

ronment by allowing parallel execution of intentions, and shown how it can be used

to determine the priority of intentions which can be reliably scheduled, and estimated

the probability that a scheduled intention of given priority will be successfully ex­

ecuted by its deadline. In the next chapter we will discuss the characterisation of

real-time task environments.

Chapter 8

AgentSpeak(RT) Environment

Characterisation

In this chapter we present a characterisation of real-time task environments for

an agent, and describe how it relates to AgentSpeak(RT) execution time profiles for a

plan and an action. We also explore the relationship between the estimation accuracy

of the execution time of a plan and the syntactic complexity of the agent program.

8.1 Classification of real-time task environments

In this Section we describe an environment characterisation related to the esti­

mated execution time of a single action or a plan. The range of different task envi­

ronments for a real-time agent is obviously very wide. We identify a small number

of dimensions on which real-time task environments can be categorised and describe

typical execution time profile for each dimension. Recall that the execution time pro­

file is a function of execution time which specifies the probability that the action or

the plan will terminate successfully, and in AgentSpeak(RT) it is specified as a power

8.1 Classification of real-time task environments 120

function with three parameters k, p, O!max as follows

where te is the execution time of a plan; the parameter k defines the inflection of the

execution time profile curve, p is a scale parameter, and O!max is the maximal possible

level of confidence in a particular agent environment.

There are three dimensions which can be used to categorise a real-time task envi-

ronment for an agent: difficulty, confidence and error. These dimensions in AgentS-

. peak(RT) are determined by parameters of the execution time profile above: k, p,

O!max·

Confidence Easy
level a

tmax

Certain

Execution
timet"

Figure 8.1: Difficulty of real-time task environments

Difficulty. The difficulty of an environment is determined by the maximum execu­

tion time of an action or a plan tmax (i.e., the time required to complete an

action or a plan with O!max confidence) in the environment and the type of the

execution time profile (Le., shape of the execution time profile). The maximum

execution time of the execution time profile f<t>(t e , k, p, O!max) is defined by the

8.1 Classification of real-time task environments 121

parameter p, and the type of the profile is defined by the parameter k. We

can distinguish four types of the real-time agent environment based on this

dimension: easy, neutral, hard, certain. If an agent can successfully complete

an intention before its deadline with high confidence level and relatively short

execution time, then the environment is called 'easy'. An 'easy' environment is

described by the function IcP with 0 < k < 1. On the other hand an environ­

ment is called 'hard' if an agent has to spend a significant amount of time to

successfully accomplish an intention. A 'hard' environment is described by the

function I", with k > 1. For example, an empty corridor can be considered as

easy real-time task environment for a delivery robot, because it is very likely

that it can successfully complete a delivery. A crowded corridor with many

obstacles is a hard environment for the same agent because it has to spend

significantly more time to successfully complete a task. 'Neutral' real-time task

environments are characterised by linear dependence of the confidence level

and the execution time. Neutral environments are specified by the function IcP

with k = 1. Another real-time task environment type is a 'certain' environment,

where an agent can successfully complete an intention with the maximum prob­

ability and spending only a fixed amount of time. This kind of environments is

characterised by the function I", with very large values of parameter k (in ideal

case k -+ 00). The maximum execution time of an action or a plan t max = P

in an environment is also a very important parameter of the environment's dif­

ficulty. In environments characterised by a small value of p, it takes less time

to successfully execute an action (with a given level of confidence) than in an

environment where p is large. Profiles for all described types of environment

are presented in Figure 8.1.

8.1 Classification of real-time task environments

Confidence
level a

1

Fully

-----------~ Partially
confident

Execution
time t.

Figure 8.2: Confidence of real-time task environments

122

Confidence. If the maximum possible confidence level O'max for an environment is

equal to 1, then we say that a real-time task environment is fully confident, oth­

erwise it is partially confident. In principle, an agent can achieve its goals with

any required level of confidence in a fully confident environment. If the envi­

ronment is partially confident, then an agent can't guarantee that an intention

will be successfully completed by the deadline with probability more than a max

(see Fig. 8.2). For example, flipping a fair coin is clearly a partially confident

environment, while walking from one place to another is fully confident.

Error. Estimation error is another important characteristic of a real-time task envi­

ronment. If the agent developer has full information about the agent's environ­

ment, he can accurately estimate the execution time profile and its parameters

k, p, amax . On the other hand if the agent developer has only partial knowl­

edge about environment then the estimated execution time profile will have

some deviation C f from real execution time profile i.e., fest (te, kest, pest, a~~x) =

freal(t e , k, p, O'max) + cf (See Figure 8.3). Therefore the parameters k, p, O'max

of the estimated execution time profile will have measurement errors i.e., kest =

8.2 Accuracy of Execution Time Estimation 123

k + est - + est - + Th d d Ck, P - pCP' (Xmax - llmax COt· ese errors Ck, cP' COt epen on our

knowledge about the environment.

Confidence
level a

1

/
I

Estimated

-~~~-
/

/
I

/

/

/'
,/

,/

/'
/'

Real

Execution
time t.

Figure 8.3: Error of real-time task environments

8.2 Accuracy of Execution Time Estimation

In the previous section, we have described how we can categorise real-time task

environments. We have shown that estimating the execution time of a plan depends

on the type of the real-time task environment. In this Section we will investigate how

the syntactic complexity of an agent program (i.e., availability of subgoals, loops,

etc.) influences the expected execution time a plan. We also show how to compute

the estimation error for an agent program of a different syntactic complexity.

Intuitively we can say the higher syntactic complexity of an agent program, the

greater the estimation error in the plan execution time and the less certain we can

be regarding the execution time of the plan.

As noted above, in many cases an agent developer will be unable to obtain precise

execution time profiles for an agent's actions (al' a2, . ..), and the execution times

for actions will include estimation errors (c(ad, c(a2), ...) (e.g., te(al) = 5 ± 0.5).

8.2 Accuracy of the Execution Time Estimation 124

If we assume a simple agent programming language, which allows only sequences of

primitive actions within a plan, e.g., 7r = {ai, a2, ... , an}, then the expected execution

time te (7r) of a plan 7r is equal to

n n

{8.1}
i=1 i=1

That is, the estimation error for the execution time of the plan 7r is equal to

the sum of estimation errors c(ai) for each action ai in the plan. Assuming that all

actions have equal estimation errors c(a) we can determine the estimation error for

the plan 7r as follows
n

c(7r) = I::C(ai) = n· c(a). (8.2)
i=1

Although the expected execution time of the plan deviates from the real execu­

tion time, for relatively small estimation errors c(ai) we can determine the expected

execution time of a plan with high confidence. However, this agent language can be

used to solve only very simple tasks.

If the agent programming language supports test subgoals and actions {i.e., the

agent's plan has a general form as follows 7r = {al,"" ak, ?gk+l, ak+2,"" ar, ?Yr+l,

ar+2,' .. , an}, then the expected execution time te (7r) of the plan 7r will also depend

on the result of evaluating the test goals ?gk+l, ?gr+l, Obviously if one test goal

fails during execution then the execution time of the plan 7r will be less than if the

goal succeeds. This means that the expected execution time t e (7r) depends on the

probabilities <P(?gk) that test goals ?gk do not fail during their execution.

The expected execution time te (7r) including an estimation error c(7r) of the plan

8.2 Accuracy of the Execution Time Estimation

n is as follows

t.(tr) ~ et(tr, 0) ± £(tr) = (t et(a" 0) ± t £(a,)) . (I - ,,(?gk+tl)+

+ (t. el(a" 0) ± t. d a,)) . (I - "(?9".») x "(?9k") + ...

125

... + (tet(a"o) ± t£(a,)) . U ,,(?gj) ±£,(tr) (8.3)

or

te(n) = et(n, a) ± c(n) =

.~s [(t. et(a" 0) ± t. £(a;)) . (I - ,,(?g,)) g ,,(?g,) 1 ± e,(tr) (8.4)

where S = is}, S2, ... } are the indices of the test goals in the plan and c<p(n) is the

estimation error caused by uncertainty of test goals

We can see that the total estimation error of the plan execution time in that case

is nonlinear and strongly depends on the results of evaluating the tests.

Let's assume again for simplicity that all actions ai have equal estimation error

c(a) and all tests goals? gk have equal probability 'P(? g) of being successfully executed,

then the estimation error of the plan n duration has the following general form

e(tr) ~ b· e(a) + (I - [~C;(I - ,,(?g)),,'(?g) + ,,"("'g) l) (8.5)

11-1

b = L [(1 - 'P(g))'Pi(g). (Si+l - 1)] + n· 'P1I(g),
i=O

8.2 Accuracy of the Execution Time Estimation 126

s,
L: et(aj, a)
j=l where Ci = n is a constant which equals to the ratio of the sum of the
L: et(aj, a)
j=l

execution time of each action before the test goal ?gs, to the total execution time of

all actions in the plan 7f, and 1/ is the number of test goals within the plan 7f.

However if an agent programming language supports achieve goals and primitive

actions in plans, then the estimation error in the expected execution time of a plan

depends on the estimation errors in expected execution times of plans 7fj invoked

by subgoals in 7f. Let the number of plans to achieve a subgoal !gk be nk, and the

probability that 'subplan' 7fj will be triggered by a goal !gk be P(!gk,7fj).

Then the expected execution time of a plan 7f = {ai, ... , ak, !gk+1, ... , ar, ... , an}

is given by

k k

te(7f) = et(7f, a) ± C(7f) = L: et(ai, a) ± L: E(ai) + te(!gk+d + ...
i=l i=l

n n

... + L ct(ai, a) ± L E(ai) (8.6)
i=r i=r

where

Assuming, that the execution time of any action in the plan can be estimated

with equal estimation error c(a), each subgoal !gk has same number of related plans

nk and all plans are equally likely (i.e., have the same probability P = ...L) to be
nk

8.2 Accuracy of the Execution Time Estimation

chosen to accomplishing the subgoal, the estimation error c(7r) is given by

nk

c(7r) = n· c(a) + J-L' p. Lc(1I'j) + J-L' (1 - (}. P) =
j=l

where

max et(1I'j, Q)
1 <:::;j <:::;nk

J-L is the number of subgoals within plan 7r.

127

(8.7)

Recall that modern programming languages like AgentSpeak(L), etc., allow both

achieve and test goals together with primitive actions. Hence we can now combine

equations (8.4), (8.6) and determine how the expected execution time of a plan 11',

written in a AgentSpeak(L)-like agent programming language, depends on the avail-

ability of primitive actions, achieve and test goals. Assuming that the general form

of the plan is 11' = {al,"" ak, !gk+l,"" an ?gr+l, ar+2,.'" an} the execution time

is described by the following equation

t,(n) ~ ct(n, a) ± e(n) ~ v~s [((~et(a" a) + V'~'j et(!g" a)) ±

± (~o(a,) + v,~,/(!g,))) x (1 - ,,(79,,)) II ,,(? g,)] ± OM'(n) (8.8)

L: [(t et(ai I !gi, Q)) . (1 - 'P(?gsJ) If 'P(?gl)]

()
_ '<IsJES 1-1 1-81

casl 11' - 1 - n

L: et(aj I !gil Q)
i=l

The estimation error for the plan 7r is given by following equation

Ern) = b· (o(a) + o(!g)) + (1 - [~C;(1- ,,(7g)),,'(7g) + ,,'(7g) l) (8.9)

8.2 Accuracy of Execution Time Estimation

where
Si

L: et(aj I !gj, a)
* j=l

Ci = =--n------

L: et(aj I !gj, a)
j=l

128

Although the estimation error (Equation 8.9) for AgentSpeak(L)-like agent lan­

guages is higher than the estimation error for the simple agent language case (Equa­

tion 8.2), a high confidence in the estimated execution time of a plan can still be

achieved with small estimation errors c(ai) by careful utilization of test and achieve

goals (e.g., by minimising the use of test goals and related plans for each achieve goal

within an agent program).

Further complication of the language syntax by adding loops (like in PRS and

2/3APL) may significantly increase the estimation error. These syntax structures may

include different combination of tests and subgoals, hence the resulting estimation

error is equal to the estimation error for combinations of subgoals and tests. Also the

agent developer has to estimate the probability that a particular loop will successfully

terminate as a function of execution time (i.e., it requires execution time profile).

However it is very hard to accurately compute this profile, especially in case when

the end condition is some event. This means that the estimation error for a plan may

become unacceptably high. The consequences of the high estimation error are that

an agent may be unable to schedule some of the feasible intentions, as the expected

execution time of an intention can be significantly higher than the real execution

time, and unable to complete intentions, which are 'false-feasible' (i.e., intentions

that are infeasible, are considered to be feasible because of the estimation error).

There is a trade-off in real-time agent systems between the estimation accuracy of

the estimated execution time of an intention and the syntactic complexity of the agent

program. An agent developer should carefully choose of the syntactic complexity of

8.3 Summary 129

an agent program keeping in mind the fact that it may affect the estimation accuracy

of the execution time of an agent intention.

8.3 Summary

In this chapter we have presented a characterisation of real-time agent environ­

ments, and shown how different classes of environment affect AgentSpeak(RT) ex­

ecution time profiles for plans and primitive actions. We have also shown how the

estimation accuracy for the expected execution time of a plan depends on the syn­

tactic complexity of an agent program (Le., what syntax constructs are allowed in

the agent language).

Chapter 9

Conclusions and Future Work

"The main lesson of thirty-five years of AI research is that the hard prob­

lems are easy and the easy problems are hard. The mental abilities of a

four-year-old that we take for granted - recognizing a face, lifting a pencil,

walking across a room, answering a question - in fact solve some of the

hardest engineering problems ever conceived . .. "

Steven Pinker

9.1 Conclusions

9.1.1 Contributions

This thesis looked at the problem of real-time guarantees in 'Belief-Desire-Intention'

high-level declarative agent programming languages. We have reviewed existing agent

architectures in Chapter 3. These architectures have several features and tools such

as metalevel reasoning, time-outs, and plan repair rules, which allow agents situated

in dynamic real-time environments to meet real-time constraints. However program-

9.1 Conclusions 131

ming real-time BDI agents in these BDI languages is hard as they have to be adjusted

for every particular application. This is the problem that this research is trying to

address.

We have provided a definition of what it means for BDI agents to operate in real­

time, or to satisfy real-time guarantees in Chapter 2. We have defined a real-time

BD! agent as one which schedules the execution of its intentions so as to respond

to events by their deadlines; if not all events can be processed by their deadlines,

the agent favours intentions responding to high priority events. For a real-time BDI

agent, correctness of the agent's program depends not only on the actions the agent

performs but also on the time at which it performs them.

The AgentSpeak(RT) architecture presented in Chapter 5 provides a flexible

framework for the development of real-time BDI agents. An AgentSpeak(RT) agent

pursues a priority-maximal set of intentions which can be achieved by their dead­

lines with a specified confidence level. If not all intentions can be achieved by their

deadlines, the agent prefers intentions with greater priority.

By varying the level of confidence, the developer can control the degree of 'opti­

mism' the agent adopts when determining the time required to complete a task in

a given environment. Higher levels of confidence will typically result in the agent

allowing more time to complete a task, and cause fewer tasks to be scheduled in a

given period of time. As tasks are scheduled in priority order, increasing the level

of confidence required also has the effect of causing the agent to focus more on high

priority tasks at the expense of lower priority tasks which might be achievable given

a more optimistic view of execution time. If deadlines and priorities are not specified

for top-level goals or belief invoked plans, the behaviour of the agent defaults to that

of a non real-time BDI agent. Real-time goals and tasks triggered by changes in the

agent's beliefs can be freely mixed with tasks for which no deadline and/or priority

9.1 Conclusions 132

has been specified by the developer or user. Tasks without deadlines will be processed

after any task with a specified deadline, and for tasks with the same deadline, the

agent will prefer tasks of higher priority.

In Chapter 6 we proved that the guaranteed reaction time of the AgentSpeak(RT)

interpreter is bounded and we proved probabilistic guarantees of successful execution

of intentions in a static environment. We have developed a simple model of the

'difficulty' of the agent's environment, and showed how this model can be used to

determine the priority of intentions which can be reliably scheduled in an environment

of specified difficulty, and to estimate the probability that a scheduled intention of

a given priority will be displaced from the schedule by the arrival of an intention of

higher priority and will be accomplished by the specified deadline.

In Chapter 7 we have extended the AgentSpeak(RT) architecture to allow the

parallel execution of intentions through multitasking and showed that the real-time

properties of the AgentSpeak(RT) architecture still hold nnder parallel execution of

intentions. The AgentSpeakMT (RT) scheduling algorithm is unlikely to be feasible

for more than a small number of resources and/or intentions. However the special

case in which there is a single resource is tractable. This case is similar to the

notion of "atomic plans" found in other BDI-based agent programming languages,

and greatly extends the applicability of AgentSpeak(RT). We have extended the

model of the 'difficulty' of the real-time environment by allowing parallel execution

of intentions and used it to derive a probability that in a dynamic environment a

scheduled intention of a given priority will be successfully executed by its deadline.

Finally, we have listed a number of dimensions along which task environments

can be categorised, and described typical execution time profiles for each dimension.

We have also described a relationship between the estimated execution time of plans

in an agent's environment and the syntactic complexity of agent programs.

9.1 Conclusions 133

9.1.2 Possible Applications

While the focus in this thesis is to provid real-time guarant es for a generic

BDI agent we can identify a number of potential application domains. The are of

application of real-time BDI agent systems is very wide and includ s managem nt and

control of air traffic syst ms, high-level robotic control, telecommunications, busine s

proc sses, financial systems etc. The exampl of a high-level intelligent ontrol sy t m

for a nuclear power plant was pr s nted in Chapt r 5. We consider some application

domains blow.

High-Level Robotic Control

A high-level robotic control system allows a robot to perform u r tasks in en­

vironments without continuous human guidanc (i.e. , it allow a robot to op rate

autonomously) . High-l vel intelligent control is widely used in military, indu trial

and airspace system, such as UAVs, Mars rov r , autopilots etc.

Figure 9.1: Mars Exploration Rover

One example of autonomous robotic system i a Mars exploration rov r. The

Mars rover in Fig. 9.1 is a six-wheeled, olar-powered robot. Due to the distance

9.1 Conclusions 134

communication with the Earth base is only possible few times a day. Therefore, real­

time intelligent control is required to image, navigate, sample, find the position of

the sun, return to the lander, etc.

In each communication session the agent is given a set of goals to achieve, each of

which specifies either navigation to a specific location or collection of samples. Also

the agent perceives the environment in order to detect rover position, obstacles etc.

There is a deadline for each event provided by mission duration, planets position, daily

energy limitations, and priorities are assigned to events based on the importance of

the requested operation, e.g., safety of the rover is more important than any mission

task. The agent, for example, may have following events

+ !navigate (rover, space2) [6pm,10]

+battery(rover, 20) [lpm,20]

indicates the acquisition of a goal to navigate the rover to space2 with deadline 6pm

and priority 10, and a new belief that the battery level is 20%; it should be noted

that placing itself in sunny positions has higher priority than the goal to navigate the

rover to space2.

Once the agent receives the required tasks, it checks the current position and

status of its subsystems, and navigates to the required location. If the deadline for a

task has passed, the agent drops it.

Financial and Business Systems

The significant increase of acquiring and utilising financial monitoring systems in

today's financial institutions such as risk management systems, trading systems etc.

The serious challenge is that these systems need to process a big amount of different

financial information in real-time. We believe that real-time intelligent agents are well

9.1 Conclusions 135

suited to dealing with the problem of monitoring and processing dynamic information

in a financial sector.

Consider, for example, a trading agent which buys commodities in an marketplace.

The agent receives requests from clients to bid on their behalf, and notifications of

goods for sale which the agent may also bid for on its own behalf. The market

operates as a series of concurrent first-price sealed-bid auctions of short duration in

which sellers offer goods for sale.

The trading agent responds to two kinds of events: requests from clients to make a

specified bid on their behalf in a particular auction, and notifications of new auctions

where the agent may decide to bid on its own behalf. The deadline of an event is the

deadline for bids for the corresponding auction, and priorities are assigned to events

based on the importance of the client (for client requests) and the type good sold in

the auction (for auction notifications). The agent's primary role is as a broker, so

the priority of auction notification events is lower than that of client requests. For

example, the events

+!bid(client2, a102, price2)[1010, 15]

+auction(a201, good1) [1060, 10]

indicates the acquisition of a goal to bid price2 on behalf of client2 in auction a102

with deadline 1010 and priority 15, and a new belief that goodl is being offered in

auction a201, with deadline 1060 and priority 10.

When the agent receives a request to bid in an auction, it checks that the request­

ing agent is a client and that the client has sufficient credit before making the bid.

When it receives notification of a new auction, the agent may decide to bid on its

own account. Determining what price it should offer depends on the type of good

offered for sale. Once the deadline for an auction has passed, the market determines

9.2 Future Work 136

the highest bid and notifies successful agents of their purchase and remaining credit

level.

9.1.3 Limitations

The research presented in this thesis has a number of limitations where there is

room for improvement.

The main limitation of the AgentSpeak(RT) agent framework is that the perfor­

mance of the agent depends on the accuracy of execution time profiles for each plan.

High estimation errors may cause unexpected agent behaviour (e.g., agent may be

either unable to schedule some of the intentions, which are feasible and schedula­

ble, or unable to complete intentions, which are 'false-feasible') and affect real-time

guarantees.

Although the AgentSpeak(RT) architecture provides flexible predictable frame­

work, the expressive power of the agent language syntax is limited. The language

does not allow internal belief addition (i.e., originated from inside the agent's plan)

nor goal deletion events.

Moreover the AgentSpeak(RT) language does not support if-tests and loops syntax

structures as additional information is required. However conditionals and loops can

be simulated in AgentSpeak using subgoals and plans.

9.2 Future Work

There are many ways in which this research can be extended. However, there are

four specific areas which at this stage show significant promise. These include:

Handling Intention Failures. In the thesis we have assumed that a failed intention

would be dropped and removed from an agent's intention structure. However,

9.2 Future Work 137

in many cases more flexible approaches to plan failure are required. In future

work we plan to investigate alternative approaches to handling plan failure.

Scheduling Enhancement. The current AgentSpeak(RT) scheduling algorithm (Al­

gorithm 5.1) distinguishes between agent's tasks only based on priority, dead­

line, and execution time. However these criteria may not be enough for some

applications, such as e-commerce, logistics etc. The agent ha.<; to reason about

the trade-offs of different courses of actions in these applications. It would

be interesting to try to extend the current scheduling algorithm to handle one

extra criterion, e.g., the expected cost of plan and action execution.

Environment Classification. In this thesis we have identified a very small num­

ber of dimensions along which real-time task environments can be classified in

Chapter 8. However, the range of different types of real-time task environments

is obviously very high. We plan to provide explicit classification of real-time

task environments.

Real-Time MAS. The AgentSpeak(RT) agent described in this thesis was largely

stand-alone. While the single agent can normally operate in a real-time environ­

ment, the AgentSpeak(RT) architecture can not provide real-time guarantees

for a multi-agent system (MAS). MAS is composed of multiple intelligent agents

which interact to achieve common goals (team goals) or to achieve personal goals

(individual goals). In both cases the real-time grantees for these goals depends

on time critical behaviour of each individual agent (i.e., the agent has to be

real-time) and real-time interaction between these agents. We aim to define

real-time guarantees for a multi-agent system and develop real-time protocols

for interaction between agents as part of future work.

9.3 List of Dissemination 138

9.3 List of Dissemination

All original contributions of the thesis are listed below.

• The ARTS Real- Time Agent Architecture. We presented a new BDI archi­

tecture, ARTS, which allows the development of agents that guarantee (soft)

real-time performance. ARTS extends ideas from PRS and JAM to include

goals and plans which have deadlines and priorities, and schedules intentions so

as to achieve a priority-maximal set of intentions by their deadlines. The pa­

per has been published in the Lecture Notes in Computer Science: Languages,

Methodologies, and Development Tools for Multi-Agent Systems [36].

• Agent programming with priorities and deadlines. We presented AgentSpeak(RT),

a real-time BDI agent programming language based on AgentSpeak(L). AgentS­

peak(RT) extends AgentSpeak intentions with deadlines and priorities. The

AgentSpeak(RT) interpreter commits to a priority-maximal set of intentions.

We prove real-time properties of the language. The paper has been accepted

in Proceedings of the Tenth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS'll).

• AgentSpeak(RT): a Real- Time Agent Programming Language. We presented

a multitasking approach to the parallel execution of intentions in the AgentS­

peak(RT) architecture. We also proved real-time properties of AgentSpeakMT (RT),

a multitasking version of AgentSpeak(RT) architecture. The paper is being pre­

pared for submission in Proceedings of the Journal of Autonomous Agents and

Multi-Agent Systems (JAAMAS).

Bibliography

[1] J. F. Allen. Maintaining Knowledge About Temporal Intervals. Communications

of the ACM, 26(11):832-843, November 1983.

[2] D. Berend and T. Tassa. Improved bounds on bell numbers and on moments of

sums of random variables. Probability and Mathematical Statistics, 1, 2010.

[3] R. Bordini, A. Bazzan, R. de, O. Jannone, D. Basso, R. Vicari, and V. Lesser.

AgentSpeak(XL): Efficient Intention Selection in BDI Agents via Decision­

Theoretic Task Scheduling. In Proceedings of the first international joint con­

ference on Autonomous agents and multiagent systems AAMAS'02, pages 1294--

1302, New York, NY, USA, 2002. ACM.

[4] R. Bordini, J. Hubner, and M. Wooldridge. Programming Multi-agent Systems

in AgentSpeak using Jason. Wiley, 2007.

[5] R. H. Bordini and J. F. Hubner. BDI Agent Programming in AgentSpeak Using

Jason. Lecture Notes in Computer Science, 1:143-164,2006.

[6] R. H. Bordini, J. F. Hubner, and R. Vieira. Multi-agent programming: lan­

guages, platforms and applications, chapter Jason and the Golden Fleece of

agent-oriented programming, pages 3-37. Multiagent Systems, Artificial So­

cieties, and Simulated Organizations. Springer, New Yor, USA, 2005.

BIBLIOGRAPHY 140

[7] V. Botti, C. Carrascosa, V. Julian, J. Soler, and I. Computacin. The ARTIS

Agent Architecture: Modelling Agents in Hard Real-Time Environments. In

Proceedings of the 9th European Workshop on Modelling Autonomous Agents in

a Multi-Agent World (MAAMAW99), pages 63 76. Springer-Verlag, 1999.

[8] M. Bratman. Two faces of intention. The Philosophical Review, 93(3):375-405,

July 1984.

[9] C. Carrascosa, J. Bajo, V. Julian, J. M. Corchado, and V. Botti. Hybrid multi­

agent architecture as a real-time problem-solving model. Exped Systems Appli­

cations, 34(1) :2-17, 2008.

[10] J. Chakareski, J. Apostolopoulos, and B. Girod. Low-complexity rate-distortion

optimized video streaming. In Proceedings of the International Conference on

Image Processing (ICIP), volume 3, pages 2055--2058, Oct. 2004.

[11] M. Dastani, D. Hobo, and J.-J. C. Meyer. Practical Extensions in Agent Pro­

gramming Languages. In Proceedings of the 6th International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS '07), pages 1--3, New

York, NY, USA, 2007. ACM.

[12] K. S. Decker and V. R. Lesser. Quantitative modeling of complex environments.

International Journal of Intelligent Systems in Accounting, Finance and Man­

agement, 2:215234, 1993.

[13] S. G. Deshpande. High quality video streaming using content-awareadaptive

frame scheduling with explicit deadlineadjustment. In MM '08: Proceeding of the

16th ACM international conference on Multimedia, pages 777-780, New York,

NY, USA, 2008. ACM.

BIBLIOGRAPHY 141

[14] M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reason­

ing system. In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence (/JCAI89)), Detroit, Michigan, 1989.

[15] M. P. Georgeff and A. 1. Lansky. Procedural Knowledge. In Proceedings of the

IEEE (Special Issue on Knowledge Representation), volume 74, pages 1383-1398.

IEEE Press, 1986.

[16] J. S. Gu and C. W. de Silva. Development and implementation of a real-time

open-architecture control system for industrial robot systems. Engineering Ap­

plications of Artificial Intelligence, 17(5) :469 - 483, 2004.

[17] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent

programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357

401, 1999.

[18] M. J. Huber. JAM: A BDI-theoretic mobile agent architecture. In Proceedings

of The Third International Conference on Autonomous Agents, pages 236-243,

Seattle, WA, 1999.

[19] J. F. Hubner, R. H. Bordini, and M. Wooldridge. Programming declarative

goals using plan patterns. In M. Baldoni and U. Endriss, editors, Declarative

Agent Languages and Technologies IV, 4th International Workshop, DALT 2006,

Hakodate, Japan, May 8, 2006, Selected, Revised and Invited Papers, volume

4327 of Lecture Notes in Computer Science, pages 123-140. Springer, 2006.

[20] T. Konnerth, B. Hirsch, and S. Albayrak. Jadl - an agent description language

for smart agents. In M. Baldoni and U. Endriss, editors, DALT, volume 4327 of

Lecture Notes in Computer Science, pages 141-155. Springer, 2006.

BIBLIOGRAPHY 142

[21] J. Lee and E. H. Durfee. Structured circuit semantics for reactive plan execution

systems. In Proceedings of the twelfth national confer-ence on Artificial Intel­

ligence (A AA I'94) , volume 2, pages 1232-1237, Menlo Park, CA, USA, 1994.

American Association for Artificial Intelligence.

[22] J. Y-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling

of periodic, real-time tasks. Performance Evaluation, 2(4):237--250, December

1982.

[23] J. D. C. Little. A proof of the queueing formula L =). W. Operations Research,

9:383-387, 1961.

[24] R. Machado and R. Bordini. Running AgentSpeak(L) Agents on SIM_AGENT.

In J.-J. Meyer and M. Tambe, editors, Intelligent Agents VIII Proceedings of the

Eighth International Workshop on Agent Theories, Architectur-es, and Languages

(ATAL-2001), Lecture Notes in Artificial Intelligence, pages 158 - 174, Seattle,

WA, August 2002. Springer-Verlag.

[25] D. Morley and K. Myers. The SPARK Agent Framework. In Proc. of the Thir-d

Int. Joint Conf. on Autonomous Agents and Multi Agent Systems (AAMAS-04),

pages 712-719, New York, NY, July 2004.

[26] K. L. Myers. PRS-CL: A Procedural Reasoning System. User's Guide. SRI

International, Center, Menlo Park, CA, March 2001.

[27] K. L. Myers and D. E. Wilkins. The Act Formalism. Technical report, SRI

International Artificial Intelligence Center, Menlo Park, CA, September 1997.

BIBLIOGRAPHY 143

[28] A. Rao. AgentSpeak(L): BDI Agents speak out in a logical computable language.

In Proceedings of the 7th European workshop on Modelling autonomous agents

in a multi-agent world, pages 42-55, 1996.

[29] A. S. Rao and M. P. Georgeff. BDI-agents: From Theory to Practice. In Pro­

ceedings of the First Inti. Conference on Multiagent Systems (ICMAS'95), San

Francisco, 1995.

[30] P. Shaw and R. Bordini. Towards alternative approaches to reasoning about

goals. In Proceedings of Declarative agent languages and technologies V: 5th

international workshop (DALT 2007), volume 4897/2008, pages 104--121, Hon­

olulu, HI, USA, May 14 2007. Springer-Verlag New York Inc, Springer.

[31] P. H. Shaw, B. Farwer, and R. H. Bordini. Theoretical and experimental re­

sults on the goal-plan tree problem. In AAMAS '08: Proceedings of the 7th

international joint conference on Autonomous agents and multiagent systems,

pages 1379-1382, Richland, SC, 2008. International Foundation for Autonomous

Agents and Multiagent Systems.

[32] J. Thangarajah and L. Padgham. An empirical evaluation of reasoning about

resource conflicts. In Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS '04), pages 1298-1299,

Washington, DC, USA, 2004. IEEE Computer Society.

[33] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting & avoiding interfer­

ence between goals in intelligent agents. In Proceedings of the 18th international

joint conference on Artificial intelligence (IJCAI'03), pages 721-726, San Fran­

cisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 144

[34] J. Thangarajah, 1. Padgham, and M. Winikoff. Detecting & exploiting positive

goal interaction in intelligent agents. In Proceedings of the second international

joint conference on Autonomous agents and multiagent systems (AAMAS '03),

pages 401-408, New York, NY, USA, 2003. ACM.

[35] J. Thangarajah, M. Winikoff, 1. Padgham, and K. Fischer. Avoiding resource

conflicts in intelligent agents. In Proceedings of the 15th European Conference

on Artifical Intelligence 2002 (ECAI 2002), pages 18-22. lOS Press, 2002.

[36] K. Vikhorev, N. Alechina, and B. Logan. The ARTS Real-Time Agent Architec­

ture. In M. Dastani, A. EI Fallah Segrouchni, J. Leite, and P. Torroni, editors,

Languages, Methodologies, and Development Tools for Multi-Agent Systems, vol­

ume 6039 of Lecture Notes in Computer Science, pages 1 -15. Springer Berlin /

Heidelberg, Thrin, Italy, September 2010.

[37] R. Vincent, B. Horling, V. Lesser, and T. Wagner. Implementing soft real-time

agent control. In Proceedings of the fifth international conference on Autonomous

agents (AGENTS '01), pages 355-362, New York, NY, USA, 2001. ACM.

[38] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directed Heuristic Task Schedul­

ing. International Journal of Approximate Reasoning, 19:91 -118, Jyly 1998.

[39] H. Wang and C. Wang. APACS: a Multi-Agent System with Repository Support.

Knowledge-Based Systems, 9(5):329 - 337, 1996.

[40] H. Wang and C. Wang. Intelligent agents in the nuclear industry. Computer,

30(11):28 -31, November 1997.

BIBLIOGRAPHY 145

[41] D. E. Wilkins and K. L. Myers. A common knowledge representation for plan

generation and reactive execution. Journal of Logic and Computation, 5(6):731-

761, 1995.

[42] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & pro­

cedural goals in intelligent agent systems. In D. Fcnsel, F. Giunchiglia, D. L.

McGuinness, and M.-A. Williams, editors, In Proceedings of the Eighth Inter­

national Conference on Principles of Knowledge Representation and Reasoning

(KR2002), pages 470-481, Toulouse, France, April 2002. Morgan Kaufmann.

[43] M. Wooldrige and N. Jennings. Intelligent agents: Theory and Practice. Knowl­

edge Engineering Review, 10(2):1-62, June 1995.

Appendix A

AgentSpeak(RT): Implementation

In this chapter we discuss specific implementation details of the AgentSpeak(RT)

architecture. Specifically we present a complete AgentSpeak(RT) language BNF. Also

we show the interpreter code and present a GUI for the agent language interpreter.

A.I Overview

AgentSpeak(RT) is an intelligent agent architecture that combines the best as­

pects of several leading-edge agent theories and intelligent agent frameworks. AgentS­

peak(RT) is influenced by: Belief-Desire-Intention(BDI) theories [8], Procedural Rea­

soning System (PRS) [15], SRI International's PRS-CL [26]' The Act Formalism [27],

JAM [18], Jason [6], etc.

The AgentSpeak(RT) implementation is based on the JAM source code. We have

implemented AgentSpeak(RT) in Java; the current prototype implementation in­

cludes the core language described above and implementations of some basic actions.

Additional user-defined actions can be added using a Java API. Actions are imple­

mented as Java methods. AgentSpeak(RT) supports two mechanisms for defining

A.l Overview 147

primitive actions: writing a class which implements the ExternalAction interface,

and direct invocation of methods in existing Java legacy code.

A.I0verview 148

A.2 AgentSpeak(RT) BNF Grammar 149

A.2 AgentSpeak(RT) BNF Grammar

agent

belief-base

init-goals

plans

goal

belief

plan-spec

plan

plan-name

event

context

body

step

action

time-profile

resource-profile

resources

resource

function

literal

atomic-formula

term-list

term

constant

number

variable

belief-base init-goals plans

(belief"·")*

(goal".")*

(plan)*

" ! "literal I "?" literal

literal

plan time-profile [resource-profile]

"@" plan-name event [":" context] [": :" resources]

"<-" body"."

string

"+" ["!"] literal I "-" literal

true I literal ("&" literal)*

true I step (";" step)*

action I goal

["."]a ["(" term-list ")"]

"time-profile" "." number"," number"," number

"resource-profile" "." (resource"," number";")*

resource ("," resource) *
r ["(" term-list ")"]

f "(" term-list ")"

["not"] atomic-formula

p ["(" term-list ")"]

term ("," term)*

constant I variable I function

integer I float I string

integer I float

VAR

A.3 Primitive Actions 150

where p, f, a, and r are respectively a predicate, a functor, an action and a

resource symbols; VAR is a variable name.

A.3 Primitive Actions

Primitive actions are the basic operations an agent can perform to change its

environment in order to achieve its goals. AgentSpeak(RT) distribution contains

several internal primitive actions, but agent developers can specify additional func­

tionality using the ExternalAction interface. We will cover each of these two types

of primitive actions in more detail below.

A.3.1 User-defined Actions

User-defined primitive actions are implemented as Java methods. AgentSpeak(RT)

supports two mechanisms for defining primitive actions: writing a Java class which

implements the ExternalAction interface, and direct invocation of methods in ex­

isting legacy Java code.

The ExternalAction interface has a following form:

public interface ExternalAction

{

}

public Boolean execute(String name, ExpList args,

Binding binding, Goal currentGoal);

The execute method's arguments are:

name is a string which specifies the primitive action name,

A.3 Primitive Actions 151

args is a list of arguments of the primitive action passed to it from the agent's plan,

binding is a structure which holds the plan variable bindings associated with the

passed-in arguments,

currentGoal is a field which holds the goal of the plan which is invoking this primitive

action.

An agent developer has full access to all arguments of the primitive action using

the arys and binding arguments. Each primitive action returns a boolean value. The

TRUE value indicates successful completion of an action. The FALSE value indicates

failure of the action.

For example, the action change-water-level (L) will cause the agent to change

the feed water level for the reactor.

II

II Change a level of feeding water.

II

public Boolean execute(String name, ExpList args,

{

Binding binding, Goal currentGoal)

if (args.getSize() != 1) {

System.err.println("Invalid number of arguments: II + args.getSize() +

+" to function" + name);

return FALSE;

}

float ini t-vol

float des-vol

= get Vol 0 ; II get current water volume

= args .popO;

A.3 Primitive Actions

}

II Technical implementation

try {

}

while (des-vol !~ getVol(»{

if (des-vol < init-vol)

}

pump.runO; II normal mode

else if (des-vol > init-vol)

pump.rev(); II reverse mode

pump. stopO ;

return TRUE;

catch (Exception e) {

System.err.println("AgentSpea.k(RT)::Cannot run pump II + e);

return FALSE;

}

A.3.2 Internal Primitive Actions

152

This section describes predefined internal primitive actions available in the AgentS­

peak(RT) distribution .

. drop-intention removes an intention I from an intention structure .

. drop-intention(literal: I).

Example:. drop-intention (remove (paper. space2)): removes the intention

that was triggered by the "! remove (paper, space2)" event .

. drop-alI-intentions removes aU intentions from an agent'8 intention structure .

. drop-aU-intentions.

A.3 Primitive Actions

Example: . drop-all-intentions .

. exec execute external program .

. exec(String commandString),

where commandString is a string containing an executable program.

Example: . exec("C: \Program Files\Skype\Phone\Skype.exe") .

. fail causes plan failure .

.fail.

Example: . fail.

153

.getAPL gets a description of the list of all applicable plans in an interpreter

cycle .

. getAPLplans.

Example: . getAPLplans .

. getCurrentIntention returns the description of the current intention .

. getCurrentlntention.

Example: .getCurrentlntention .

. getTime gets the current time .

. getTime(int T).

Example: . getTime (Time) .

. print permits output to the standard output device (i.e., System.out) .

. print(Term* M).

The input for this action is a list of any valid terms.

Example: .print("Performing next action") .

. printBeliefs prints agent's belief base.

A.4 The Interpreter

· print Beliefs.

Example: . printBelief s .

. printIntentions prints agent's intention structure.

· printlntentions.

Example: . print Intent ions .

. send sends a message to an agent .

. send(Term-list receiver, String ilf, Term* message)

154

The input arguments are the receiver of the message, the illocutionary force of

the message, and message content.

Example: . send (agent 1, tell, apple (red)) .

. succeed makes the plan finish successfully .

. succeed.

Example: . succeed .

. wait suspends the intention for the specified time.

· wait(Integer T).

Example: .wait(58).

A.4 The Interpreter

We have discussed the reasoning cycle of AgentSpeak(RT) in Chapter 5. This

Section describes the interpreter code. The interpreter code is shown in Algorithm

A.I.

The schedule function takes the set of intention I and returns the schedule for

an agent. The functions head and body return the head and body of an intended

A.4 The Interpreter

Algorithm A.1 AgentSpeak(RT) Interpreter Cycle
B,E:=B,EuP,G

for all (e, r) E E do

0. : = {71"8 I 8 is an applicable uniller for e and plan 7I"}

71"8 := So(O.)

If 7r8 oF 0 and T f/ I then

1:= lu",8

else If 71"8 oF 0 Bnd rEI then

I := (J \ r) U push(7r8a, T) where a is an mgu for 71"8 and r

else If 71"8 = 0 and rEI then

I := 1\ T

end If

end for

I := SCHEDULE(/)

If I oF 0 then

r := first(I), 7r := pop(r)

If first (bodY(7I"» = !g(t\, ... , tn) then

push(head(7I") t- rest(bodY(7I"», r}

E = {(+!g(h, ... , tn),r)}

else If first (body (7r» = ?g(tl, .. ·' tn) then

If ?9(tl, ... , tn)8 is an answer substitution then

push(head(7r)8 t- rest(bodY(7I"»8, r)

else

push(7I", r)

end If

else If first (body (7r» = a(It, ... , tn) then

If execute(a(t\, ... , tn), et(a(tl, ... , tn), 0» then

push(head(",} t- rest(bodY(7r», T)

else

push(7r, r)

end If

end If

end If

155

plan, and first and rest are used to return the first and all but the first elements of

a sequence. The function push takes a plan (and any substitution) and an intention

and pushes the plan onto the top of the intention. The function pop removes and

A.5 AgentSpeak(RT) Interface 156

returns the topmost plan of an intention. The function execute takes an a tion and an

expected execution time, and executes the action for at most the xpect d ex cut ion

time. It returns true if the action completes successfully within its expected ex cution

time; otherwise it returns false.

A.5 AgentSpeak(RT) Interface

In general, AgentSpeak(RT) is run using a graphical interface that i layered on

top of thejEdit text editor. jEdit is a cross platform programmer's text ditor written

in Java that is customizabl with plugins. Ag ntSpeak(RT) plugin is bas d on the

Jason platform plugin [4]. The interfa e is depi ted in Figure A.I.

.,· . .. u .. # '" U", .
a' ''U.,,-;;'-.\·# •• .t.:. ~ '·I
aC "t1'H'kJ " , ·u t:", .
al "&.1oc't,:", -,.eJ.. ..) . a,", iJ", "T.,.L.t"I.

clur ("'UcU"j
cl ... '· U· ••

L ,.'!.., ,.

• Goa '~kJ .. 1.1 k: 00. l Uck! 011 '1'_ .-
I

~~" ~(~
DUCputU II .-c-ea .~ utec,ntu h_a C.\ItOCI_ata and "t~'IurY\ •

tlOIt.tS,.. ... (.. T) ' .. Me Yua.1.o. D.U (II D~C' ZOO9J'
~.d"""(U1 def1A1t.1DD ,arM .\Cc ... f.u.

1.1 - 1.

Figure A.l: The AgentSpeak(RT) interface

The interface is divided into several graphical areas. Each area pr ents differ nt

A.5 AgentSpeak(RT) Interface 157

kinds of information which is used to control and interact with the AgentSpeak(RT)

agent. The largest area in the AgentSpeak(RT) interface is the agent program area

which is used by user to program an agent, primitive actions or environments. This

area has syntax highlighting and multiple tabs. The AgentSpeak(RT) plugin provides

templates for an agent program, a primitive action and an environment.

The left side area represents a Structure Browser. This area displays the name

of the agent program and its structure: initial beliefs and goals, plan names etc. It

facilitates navigation in the agent program.

The control area at the bottom of the program area provides instruments to run

and to debug an agent. In addition, it allows adding agents, environment and internal

actions to the project, and displays error messages.

	546491_001
	546491_002
	546491_003
	546491_004
	546491_005
	546491_006
	546491_007
	546491_008
	546491_009
	546491_010
	546491_011
	546491_012
	546491_013
	546491_014
	546491_015
	546491_016
	546491_017
	546491_018
	546491_019
	546491_020
	546491_021
	546491_022
	546491_023
	546491_024
	546491_025
	546491_026
	546491_027
	546491_028
	546491_029
	546491_030
	546491_031
	546491_032
	546491_033
	546491_034
	546491_035
	546491_036
	546491_037
	546491_038
	546491_039
	546491_040
	546491_041
	546491_042
	546491_043
	546491_044
	546491_045
	546491_046
	546491_047
	546491_048
	546491_049
	546491_050
	546491_051
	546491_052
	546491_053
	546491_054
	546491_055
	546491_056
	546491_057
	546491_058
	546491_059
	546491_060
	546491_061
	546491_062
	546491_063
	546491_064
	546491_065
	546491_066
	546491_067
	546491_068
	546491_069
	546491_070
	546491_071
	546491_072
	546491_073
	546491_074
	546491_075
	546491_076
	546491_077
	546491_078
	546491_079
	546491_080
	546491_081
	546491_082
	546491_083
	546491_084
	546491_085
	546491_086
	546491_087
	546491_088
	546491_089
	546491_090
	546491_091
	546491_092
	546491_093
	546491_094
	546491_095
	546491_096
	546491_097
	546491_098
	546491_099
	546491_100
	546491_101
	546491_102
	546491_103
	546491_104
	546491_105
	546491_106
	546491_107
	546491_108
	546491_109
	546491_110
	546491_111
	546491_112
	546491_113
	546491_114
	546491_115
	546491_116
	546491_117
	546491_118
	546491_119
	546491_120
	546491_121
	546491_122
	546491_123
	546491_124
	546491_125
	546491_126
	546491_127
	546491_128
	546491_129
	546491_130
	546491_131
	546491_132
	546491_133
	546491_134
	546491_135
	546491_136
	546491_137
	546491_138
	546491_139
	546491_140
	546491_141
	546491_142
	546491_143
	546491_144
	546491_145
	546491_146
	546491_147
	546491_148
	546491_149
	546491_150
	546491_151
	546491_152
	546491_153
	546491_154
	546491_155
	546491_156
	546491_157
	546491_158
	546491_159
	546491_160
	546491_161
	546491_162
	546491_163
	546491_164
	546491_165
	546491_166
	546491_167
	546491_168
	546491_169
	546491_170

