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Abstract

The complex environment of a living cell contains many molecules interact-
ing in a variety of ways. Examples include the physical interaction between
two proteins, or the biochemical interaction between an enzyme and its
substrate. A challenge of systems biology is to understand the network of
interactions between biological molecules, derived experimentally or com-
putationally. Sophisticated dynamic modelling approaches provide detailed
knowledge about single processes or individual pathways. However such
methods are far less tractable for holistic cellular models, which are instead
represented at the level of network topology.

Current network analysis packages tend to be standalone desktop tools
which rely on local resources and whose operations are not easily integrated
with other software and databases. A key contribution of this thesis is
an extensible toolkit of biological network construction and analysis opera-
tions, developed as web services. Web services are a distributed technology
that enable machine-to-machine interaction over a network, and promote
interoperability by allowing tools deployed on heterogeneous systems to
interface. A conceptual framework has been created, which is realised prac-
tically through the proposal of a common graph format to standardise net-
work data, and the investigation of open-source deployment technologies.
Workflows are a graph of web services, allowing analyses to be carried out
as part of a bigger software pipeline. They may be constructed using web
services within the toolkit together with those from other providers, and
can be saved, shared and reused, allowing biologists to construct their own
complex queries over various tools and datasets, or execute pre-constructed
workflows designed by expert bioinformaticians.

Biologically relevant results have been produced as a result of this approach.
One very interesting hypothesis has been generated regarding the regulation
of yeast glycolysis by a protein found to interact with seven glycolytic en-
zymes. This has implied a potentially novel regulatory mechanism whereby
the protein in question binds these enzymes to form an ‘energy production
unit’. Also of interest are workflows which identify termini (system inputs
and outputs), and cycles, which are crucial for acquiring a physiological
perspective on network behaviour.
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Chapter 1

Introduction

In the post-genomic era, biologists have increasingly turned to computational methods

for the management, analysis and dissemination of vast quantities of experimental data.

The field of network biology, which seeks to understand biological function through the

reactions and interactions between molecules, is one source of such data, and is the

focus of this work. Biological networks such as metabolic, gene regulatory, signalling

and protein-protein interaction may be assembled using the results of wet-lab and dry-

lab (in silico) experimentation (d’Alché-Buc and Schachter, 2005). Such networks may

be modelled and analysed using a graphical data structure, where a graph consists of a

set of nodes connected by a set of edges. Typically, in biological networks the nodes are

molecules and the edges are the biochemical or physical events between them (Newman,

2003).

There are currently a number of software tools for the analysis of biological net-

works, which accept user-generated data, as well as data extracted from relevant public

repositories (Xenarios and Eisenberg, 2001; Bauer-Mehren et al., 2009). While there are

ongoing efforts to standardise this data, problems such as database redundancy, non-

standard identifiers and formats, and lack of data provenance are serious issues (Birney

and Clamp, 2004). This thesis therefore presents a novel set of tools developed as web

services to address some of these points. Web services differ from traditional standalone

and client-server tools, in that they are designed to be accessed programmatically, and

have a public interface which allows tools, deployed on heterogeneous systems, to in-

terface. The benefits and drawbacks to this method of software delivery are discussed

in detail in Chapter 3, however an important advantage is that web services lend them-

selves to the development of computational workflows for the automated querying of

large datasets. Bioinformaticians often carry out manual workflows which entail the
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1.1 The aims of this research

transfer of data between different online and offline tools by cutting and pasting; a

brittle method with much scope for human error (Stein, 2002). The automation of in

silico processes seeks to remedy these shortcomings by introducing a workflow language

in which data, tools and the links between them can be shared and reused, thereby ex-

plicitly capturing experimental provenance.

Workflows can be thought of as structured questions, which in this work are used

to investigate the properties and features of intra-cellular networks, with a view to

extracting new biological insight into their structure and function.

1.1 The aims of this research

The overall aim of this work is to provide an extensible toolkit of tasks developed

as composable web services to facilitate research into cellular networks, supporting

recognised formats for pathway and network exchange, and enabling the automatic

querying of large datasets to serve as a launch pad for generating testable hypotheses.

A specific aim of this research is to critically explore the current state of the field

of biological network construction and analysis, by investigating software solutions de-

signed to query those networks, identifying their various advantages and drawbacks,

and exploring the public repositories that contain interaction data. Based on this eval-

uation, a further aim is to establish how an emerging software paradigm, web services,

can be leveraged to not only emulate the success of existing software, but address

the drawbacks, in order to create an open, freely-available toolkit. Making the rele-

vant functionality available as web services is a key objective, as they are themselves

the components of computational workflows. Another key objective is therefore the

creation of workflows that are designed to answer specific questions about holistic net-

works, pathways or individual network entities, comprising services developed by the

author as well as those created by other service providers. In doing so, the author aims

to show how a combination of open-source technologies can be used in conjunction

with freely-available relevant biological datasets to gain a novel perspective on complex

molecular networks.

1.2 Key contributions

The key contributions of this thesis are as follows:

1. Development of a framework to support the construction and analysis of biological

2



1.3 Thesis structure

networks. The framework proposes categories of relevant tasks which maximise

opportunities for composition and reuse.

(a) Proposal of the common graph format as a standard within the framework.

(b) Evaluation of common application architectures to enable suitable technol-

ogy recommendations.

2. Comparative evaluation of four service implementation technologies, with partic-

ular emphasis on how easily they are used by a bioinformatics service developer,

and their compatibility with the Taverna workflow enactment engine.

3. Web service development

(a) A toolkit of 68 web services developed by the author.

(b) Comprehensive documentation for each web service, comprising a detailed

description and example usage demonstrated via tutorial examples, to facil-

itate adoption of the services and to establish their place within the frame-

work.

4. Creation of a set of computational workflows to illustrate how the framework

guides the development of a range of queries (which demonstrate varying levels

of complexity) over interaction datasets. The workflows illustrate the application

of the framework to relevant biological problems.

1.3 Thesis structure

The thesis is organised as follows:

The current literature and background to the project are described in Chapter

2, which is divided into three parts to cover the separate aspects of this work. The

first is a detailed review of the study of biological networks, the second reviews current

software solutions for network analysis, while the third is a summary of distributed

computing solutions in bioinformatics.

Chapter 3 covers one of the major contributions of this work, that is, the frame-

work upon which the software is designed and built. The framework is initially con-

ceptual, but is later expanded to give technical recommendations for implementation.

These technical recommendations form the basis of the next three chapters.

3



1.3 Thesis structure

Chapter 4 recounts practical experience gained after deployment of a simple web

service, using four deployment technologies. The evaluation is based on framework rec-

ommendations, and concludes with a justification for the technology chosen to develop

web services for this work.

The web services developed for this work are catalogued in Chapter 5. The doc-

umentation is structured such that potential users are informed as to the exact nature

of each service, that is, what it does, the motivation for using it, and the situations in

which it is applicable, as well as example inputs and outputs and implementation de-

tails highlighting the author’s specific contribution. A minimal example demonstrating

the usage of each service is given in Appendix C.

Chapter 6 details the in silico experiments which may be carried out using web

services developed for this work, as well as those made available by external providers.

The workflows in this Chapter are developed using the Taverna workbench (Oinn et al.,

2004).

Chapter 7 describes conclusions and lessons learned throughout the course of

the project, as well as possible future work to extend the usefulness of the software

produced.

4



Chapter 2

Background

The scope of this thesis extends over several subject areas, so this chapter is divided into

three sections to put the goals of the project into context. The first section relates to

the study of biological networks of various types, including metabolic, gene regulatory

and protein-protein interaction. The second section provides a summary of several

network visualisation and analysis tools already available, including those provided as

standalone desktop tools, web-based tools, web services and programming libraries. The

final section is a discussion on distributed computing in bioinformatics, and the ways

in which data and tools are managed effectively. This chapter only briefly introduces

web services which are one of the fundamental technologies used in this work, as a more

detailed discussion appears in Chapter 3.

2.1 Biological networks

A network is a collection of objects and the symmetric or asymmetric relationships

between them. This concept can be applied to many real-world situations and networks

can be used to model such varied systems as the links between pages in the WWW

(World Wide Web), the physical connections between routers and computers that make

up the Internet, relationships between people in social networks and affiliated authors

in a citation network. With the increase in data generated from high-throughput ex-

periments, biological systems are also increasingly represented as networks (Junker and

Schreiber, 2008).

5



2.1 Biological networks

2.1.1 Complex networks and graph theory

The network approach to biology can be considered as being a branch of systems bi-

ology, which seeks to understand biological function through integrative rather than

reductionist approaches, as it is recognised that observed cell behaviours are rarely

attributed to one component acting alone. Though a wealth of information has been

gathered about certain individual biological components such as genes, proteins and

metabolites, it is the interactions between these components that serve to better char-

acterise biological systems (Kitano, 2002; Oltvai and Barabási, 2002; Han, 2008). Such

interactions are either established via experimental means, or may be computationally

inferred. As the quantity of data increases, so too do the number and size of inter-

action and reaction databases which make these data publicly available (Galperin and

Cochrane, 2009).

The mathematical field of Graph Theory has been used for many years to analyse

various types of real-world networks (Newman et al., 2006). Graph theory provides

a range of algorithms and data structures which may be applied to computational

representations of networks, whose results can lead to greater understanding of part or

all of the network’s functionality.

Formally, a graph G is a set of nodes connected by a set of edges (G = {N,E}).

Generally the terms “graph” and “network” are used interchangeably, though a graph

is more likely to refer to the abstract notion of a set as defined above, and a network is

the real instantiation of that graph, so for example the WWW is a network which can

be modelled using a graphical data structure. The nature of the nodes and edges and

what they represent for a given graph depend on the type of network being modelled.

In the case of biological networks, the nodes are usually cellular components such as

genes, proteins and metabolites and the edges denote interactions or reactions between

them. Edges may be directed or undirected to specify the direction, if any, of

reactions (for example an irreversible metabolic reaction would have a directed edge

from the substrate to the reaction identifier, and another directed edge to the product

of that reaction). Both nodes and edges may have related metadata to describe their

characteristics further.

Two properties which have been identified as being common to such varied networks

as the WWW and biological networks are their small-world and scale-free charac-

teristics (Newman, 2003). Within small-world networks, most nodes can be reached

from other nodes by traversing a relatively small number of edges. This is a network

property first established for social networks (Milgram, 1967), and for biological net-
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2.1 Biological networks

works implies that local perturbations can reach other parts of the network very quickly.

The degree or connectivity of a node is the number of edges adjacent to it, and for a

long time it was assumed that real-world networks had an even degree distribution,

which is the probability distribution of these degrees over the whole network (Gross and

Yellen, 2003). However a study carried out on the WWW (Barabási and Albert, 1999)

established that the degree distribution followed a power law, indicating a network

topology where relatively few of the nodes had a very large degree, termed network

hubs, while the vast majority of nodes had a low degree. The term scale-free refers

to this degree distribution, and implies that there is not a typical node degree which

characterises the whole network (Albert, 2005).

The position of a node in a biological network can therefore help to characterise

its function and importance to the network both locally and globally, and can have

applications such as drug discovery (Korcsmáros et al., 2007) and identification of

functional motifs (Alon, 2007).

2.1.2 Types of biological network

2.1.2.1 Metabolic networks

The metabolism of an organism consists of a set of enzymatic steps involving the biosyn-

thesis and breakdown of organic molecules. This system of interconnected pathways

is known as a metabolic network. Such networks tend to be modelled using directed

graphs, due to enzymatic reactions being either reversible or irreversible, with the

nodes as metabolites and the edges representing reactions converting substrates into

products (Choi, 2007). Some representations also include enzymes and/or reactions

themselves as separate nodes. In the post-sequencing era, enzyme activity is commonly

deduced via sequence comparison (Espadaler et al., 2008).

Statistical studies of the properties of large-scale metabolic networks have been

carried out. Jeong et al. (2000) carried out a systematic analysis of the metabolic

networks of 43 organisms, and found that the large-scale structure was identical for

all 43, and classified them as robust and error-tolerant networks. They also concluded

that the average path length for all the organisms was about the same. A path in

a network is a sequence of nodes where there exists an edge connecting one node to

the next, and the path length is the number of connecting edges. This work was then

extended by Ma and Zeng (2003b) who carried out a similar study, this time on 80 fully

sequenced genomes. Interestingly, though they removed hub metabolites and encoded

reversibility information for each reaction in the networks, they still found the same

7



2.1 Biological networks

large-scale structure as identified by Jeong et al.. However, they found a clear difference

in average path length between eukaryotes and archaea as compared to bacteria, in that

generally the average path lengh in bacterial networks was much shorter.

A large-scale study which focused on a single organism was carried out by Wagner

and Fell (2001). They performed a graph-theoretic analysis of the metabolic network

of the bacterium Escherichia coli, and found that this was a small-world graph whose

degree distribution followed a power law.

Horne et al. (2004) provided an alternative view of metabolic networks by con-

structing a reaction graph using data from the ENZYME database, in which enzymes

were nodes and metabolites were edges. The data from ENZYME were processed to

resolve synonyms, as well as remove hubs, which were deemed to give a less biologically

meaningful representation of metabolic connectivity. Analysis of the resulting network

revealed that despite deletion of hubs, the main component remained intact. It was

also found that certain components were not connected to this main component, owing

to the presence of generic names for metabolites. Biological networks are often sepa-

rated into disconnected components, owing to missing information or lack of synonym

resolution of molecule names.

Work has also been carried out regarding the evolution of metabolic pathways and

constituent enzymes. A study by Rison and Thornton (2002) found evidence to support

the ‘patchwork’ model of pathway evolution through the co-analysis of phylogeny and

metabolism. Another 2002 study, carried out by Alves, Chaleil and Sternberg, used

a network approach to analyse the global metabolic networks of a variety of species.

They found that the percentage of pairs of homologous enzymes less than three steps

away from each other in the network was significantly higher than would be expected,

had the network evolved randomly. More recently, Vitkup et al. (2006) found that the

structure and function of the Saccharomyces cerevisiae metabolic network influences

important evolutionary processes. For example, enzymes with a higher degree evolve

more slowly than those with a lower degree, and genes encoding enzymes with high

degree are more likely to retain duplicates in evolution.

2.1.2.2 Protein-protein interaction networks

Protein-protein interaction (PPI) networks are generally modelled as undirected graphs

whose nodes are proteins and whose edges are the physical interactions between pro-

teins (as opposed to chemical reactions between metabolites and enzymes) (Junker

and Schreiber, 2008). PPIs are vital to a cell as they govern many important func-
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2.1 Biological networks

tions (Nooren and Thornton, 2003). For example, signal transduction is a process by

which signals are transferred from the outside of the cell to the inside, and are then

propagated through it, leading to a number of cellular responses including changes

to metabolism, or activation or repression of transcription. The PPIs of signalling

molecules are responsible for starting a signalling cascade which leads to these re-

sponses. Protein complexes are another important class of PPIs, as a protein may be

activated or inhibited if and only if it is part of a functional complex. Such complexes

may be stable over time, but a protein may also take part in much briefer interac-

tions with other proteins in order to modify them, for example a protein kinase that

phosphorylates another protein.

PPIs are commonly detected using the yeast two-hybrid method (Fields and Song,

1989). This technique is based on the modular organisation of many transcription

factors (TFs). The DNA-binding domain (BD) of the TF is fused to a protein of

interest (the ‘bait’). The activation domain of the TF is fused to another protein (the

‘prey’). When the genes are transformed into a cell and expressed, two hybrid proteins

are produced. The bait binds to an upstream activating sequence (UAS) of a reporter

gene, and the prey binds the remaining transcriptional machinery. If the two proteins

bind each other, the transcriptional machinery will be brought into close proximity

with the UAS, and the reporter gene will be expressed.

Two large-scale yeast two-hybrid studies carried out by Uetz et al. (2000) and Ito

et al. (2001) identified 957 interactions between 1004 yeast proteins, and 4549 interac-

tions between 3278 proteins respectively. There was surprisingly little overlap between

the two datasets, so the Ito et al. study combined them to generate a single large inter-

action dataset which was queried for biologically interesting subnetworks. Eisenberg

et al. (2000) built on this idea by proposing the notion of “functional protein networks”,

with links between proteins predicted by both computational and experimental meth-

ods. The function of a protein has clasically been derived by focussing on its individual

action, however this view has been expanded to consider the protein’s function in the

context of interactions with other proteins.

Jeong et al. (2001) carried out the first large-scale graph-theoretic analysis of a PPI

network by assembling PPI data from both the Uetz et al. study and the Database of

Interacting Proteins (DIP, Salwinski et al., 2004). This analysis sought to establish a

link between the essentiality of a protein and its position in the overall network, which

in this instance was identified as having a scale-free topology. The network exhibited

tolerance towards random errors, whereas selective removal of the proteins with the

most number of connections increased the network diameter rapidly. It was then
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established that these high-degree proteins with more than fifteen links are more likely

to be essential than those with five links or fewer.

This study focussed on ranking proteins by their degree as a measure of their impor-

tance in the network, but in recent years, measurement of the betweenness centrality

of nodes has emerged as a more accurate predictor of protein essentiality (Newman,

2003). For a given node, the betweenness centrality is the proportion of shortest paths

between other nodes that it occurs on.

A study by Joy et al. (2005) assembled a yeast PPI network from data in DIP and the

Munich Information Center for Protein Sequences (MIPS, Mewes et al., 2002). Analysis

of this network uncovered the existance of proteins that exhibited high betweenness

centrality values, and were also hubs, an intuitive result as there are many proteins

connected to hubs, resulting in them appearing on many shortest paths between pairs

of proteins. However lower degree nodes displayed a greater amount of variation in their

betweenness scores, indicating that some of these may also be globally important, and

it was found that the essentiality of a protein is at least as dependent on its betweenness

centrality value as its degree. Gandhi et al. (2006) further refuted the findings of Jeong

et al. by establishing, using a much more comprehensive dataset for yeast knockouts,

that the lethality of a gene could not be confidently predicted on the basis of the degree

of the gene alone. More recently, Bader and Madduri (2007) corroborated the finding

that low-degree nodes show significant variation in betweenness values, for the human

PPI network comprising around 44,000 interactions between 18,000 proteins.

2.1.2.3 Gene regulatory networks

Regulation of gene expression is another important cellular process which may be rep-

resented as a network. Gene expression is a multi-step process starting with the tran-

scription of a gene to produce messenger RNA (mRNA). This mRNA is translated

into a protein which may undergo post-translational modification - the attaching of

various types of functional groups (such as phosphates, acetyl or methyl groups), or

tertiary structural changes (Polevoda and Sherman, 2003). It is the first part of this

process, transcriptional control, which is the most common means of gene regulation

and is modelled as a transcriptional regulatory network or gene regulatory network

(GRN). The other steps are assumed to occur and therefore do not require explicit

representation.

The components of a GRN may be detected using a number of experimental means,

however a commonly used technique is an electrophoretic mobility shift assay (EMSA,

10
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Garner and Revzin, 1981), which identifies DNA-protein binding. If a protein binds to

the promotor region of the DNA, the molecular weight will increase, which can then

be detected when the sample is run on polyacrylamide or agarose gel, as the speed

is determined by the size and charge of molecules. Transcriptomics data obtained

from high-throughput microarray experiments may also be used, but often represents

indirect effects and therefore should not be taken alone when determining the elements

of a GRN (Needham et al., 2009).

Transcriptional control affects the selection of genes to be transcribed and the rate

of transcription. A special class of protein known as transcription factors (TFs) bind to

a specific regulatory sequence of DNA, which either inhibits or facilitates the binding

of RNA polymerase to the regulatory sequence, known as the promoter (Ihmels et al.,

2004). GRNs dynamically regulate the level of expression of each gene by various meth-

ods, often incorporating dynamic feedback loops which also provide regulation of the

network architecture and output. GRNs are usually modelled using directed graphs,

with edges representing interactions between TFs and the genes they regulate. Brazh-

nik, de la Fuente and Mendes (2002) describe GRNs as phenomenological models which

are high-level starting points onto which details of proteins and metabolites can be

added to expand the network.

Various statistical studies of the properties of GRNs have been carried out, in S.

cerevisiae (Guelzim et al., 2002; Farkas et al., 2003) and E. coli (Shen-Orr et al., 2002).

These studies revealed that transcriptional networks also exhibit a scale-free topology,

and additionally contain certain network motifs (patterns of connected nodes) appear-

ing at frequencies much higher than in random networks, suggesting they have specific

functions in information processing.

2.1.3 Limitations on analyses

A number of parallels have been shown to exist between biological networks and other

real-world networks with regard to their large-scale structure. It is important to bear in

mind however that the amount of reaction and interaction data reported for organisms

is by no means complete, and so any comparisons made between biological networks

and, for example the Internet or social networks should not be pushed too far (?). The

experimental methods which produce biological networks are error-prone and result

in a high rate of false-positives, and so the results of any analyses must be examined

closely to determine their biological relevance (Qi and Ge, 2006).
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2.1.3.1 Integrated networks

The previous sections describe some types of biological network and discoveries made

with regard to their global structure. Dividing molecules and interactions in this way,

however, is a simplification of the real biological processes taking place in a cell. The

actual scenario is more akin to a ‘network of networks’ (Barabási and Oltvai, 2004).

Transcription factors activate genes, to produce proteins which participate in PPIs, are

transcription factors themselves, or are enzymes which transform substrate metabolites

into products, some of which alter transcription factor binding kinetics.

A number of studies have been carried out, which aim to reach more meaningful

biological conclusions based on the analysis of integrated networks. A key issue is the

identification of functional modules in such networks that are supported by interactions

of different types (Sharan and Ideker, 2006).

Work carried out by the previously-mentioned Shen-Orr et al. study revealed motifs

in networks comprising a single type of edge i.e. those between transcription factors and

the operons they regulate. Yeger-Lotem et al. (2004) extended this by constructing an

integrated S. cerevisiae network containing both transcriptional connections (a directed

edge from the TF to its target gene) and PPIs (an undirected edge connecting two

interacting proteins). Analysis of this network revealed several significant network

motifs containing two, three and four proteins. These motifs contain a mixture of

transcriptional edges and PPI edges. For example, one three-protein motif contains two

interacting transcription factors that co-regulate a third gene. Of the 63 statistically

significant network motifs made up of four proteins, only 6 could not be constructed

from a three-protein motif in combination with an extra node or another three-protein

motif. One particular four-protein motif of interest contains two transcription factors

that co-regulate genes, which may indicate patterns of overlapping regulation.

Kelley and Ideker (2005) studied the combination of synthetic lethal genetic in-

teractions (in which mutations in two non-essential genes are lethal when combined)

and physical interactions among proteins. Two structures of interest were searched for:

pairs of subnetworks of PPIs interconnected to each other by a dense pattern of genetic

interactions, and clusters enriched for both physical and genetic interactions. It was

found that the first structure was more prevalent, suggesting that genetic interactions

tend to span multiple physical regions of the network rather than occurring between

protein subunits within a single pathway.
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2.1.3.2 Temporal and spatial effects

Temporal and spatial factors also have important implications when analysing biological

networks, as not every interaction or reaction occurs at the same time, or within the

same cellular compartment.

The network of interacting genes and proteins is a dynamic system, evolving ac-

cording to fundamental laws of reaction, diffusion and transport (Tyson, 2007). Sophis-

ticated network modelling looks at the dynamic changes and quantitative effects of one

component upon another, but simulations of cellular behaviour using holistic models

require too much CPU time to be practical given current hardware. Whole-cell repre-

sentations at the level of network topology are far simpler. The results of analyses on

‘static’ network representations must therefore be examined closely to determine their

biological relevance. d’Alché-Buc and Schachter (2005) recognise that static topologi-

cal analyses are useful when applied to genome-scale networks, as they aim to identify

underlying biological mechanisms or design principles.

The view that quantitative network models yield more biologically accurate hy-

potheses regarding the structure and function of complex biological networks is sup-

ported in the literature (Strohman, 2002; Kharchenko et al., 2005; Blinov et al., 2008;

Gopalacharyulu et al., 2009). It remains the case, however, that large-scale data on

non-linear network dynamics are not yet available. The link between static structure

and dynamic behaviour must be made carefully, to lead to the successful prediction of

the functional characteristics of a network’s or pathway’s behaviour. Spatial informa-

tion is more common, especially for model organisms, but remains incomplete.

The importance of temporal and spatial factors is illustrated by a study carried out

by Han et al. (2004), in which two categories of protein hubs in the S. cerevisiae PPI

network were found: ‘party hubs’, which interact with most of their partners simulta-

neously, and ‘date’ hubs, which bind their partners at different times or locations. Date

hubs organise the network by connecting modules (functional groups) together, while

party hubs tend to function inside these modules.

2.2 Existing network analysis software

A variety of software tools to carry out biological network analysis tasks are currently

available. These tools can be divided into four categories: standalone or monolithic

software, client-server software, programming libraries and web services. A discussion

of some of the major tools in each category is presented here.
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2.2.1 Standalone software

Network visualisation and network analysis are two separate computational tasks that

are often, unsurprisingly, implemented alongside each other in software packages (Saraiya

et al., 2005). Bioinformatics applications benefit from attractive user interfaces that

appeal to non-expert computer users, and the ease of utilising such software is increased

by visually guiding the user through analyses (Tisdall, 2001). Network analysis tools

that are currently available, with very few exceptions, contain a strong visualisation

component (Suderman and Hallett, 2007). Holistic cellular models, in the main, tend

to be very large with potentially hundreds of thousands of nodes, and visualisation is

therefore a problematic issue in that a layout algorithm, however efficient, will usu-

ally produce complicated, densely-packed diagrams that are very difficult to interpret

usefully by humans. Figure 2.1 gives an example of this, and shows a globally re-

constructed human metabolic-network (Duarte et al., 2007) visualised using the yFiles

organic layout in the network analysis and visualisation package, Cytoscape (Shannon

et al., 2003).

Visualisation of such complex networks therefore presents significant challenges,

and is the subject of much ongoing work (Becker and Rojas, 2001; Han and Ju, 2003;

Li and Kurata, 2005; Kato et al., 2005). However as an effective layout cannot aid

the understanding of the features of the network alone, analysis algorithms commonly

borrowed from the field of Graph Theory should be applied to highlight features of

interest, some of which are described in Section 2.1.

The number of network visualisation and analysis tools has grown considerably in

the last few years, giving support to the notion that to better understand complex

cellular machinery, studies of networks of interactions should be carried out, as well

as those which seek to understand the function of individual cellular components. A

review carried out by Saraiya, North and Duca (2005) identified 16 software tools

for visualisation and analysis, though two years later Suderman and Hallett (2007)

identified over 35. Saraiya et al. emphasised visualisation over analysis though the

majority of the tools surveyed contained basic analysis functions as well, and this is also

true of the Suderman and Hallett review. Table 1 gives details of seven standalone tools,

comparing their visualisation and analysis capabilities, together with requirements,

integration with biological resources and other parameters. Network Workbench has

not yet been subject to peer review and is not specific to biological networks, but

has been included as a stable version is available for download, and it provides a large

number of graph-theoretic operations which can be applied to biological networks when

14



2.2 Existing network analysis software

Figure 2.1: Human metabolic network visualised using the yFiles organic layout in
Cytoscape. The network has 6390 nodes and 14731 edges. (a) An enlargement of one
part of the network. Diamond-shaped nodes are molecules either produced or consumed
by reactions, which are denoted by circles. A green line connecting a molecule to a
reaction indicates that the molecule is a substrate. A red line connecting a molecule
to a reaction indicates the molecule is a product. (b) and (c) are components which
are disconnected from the main subgraph. This may be due to gaps in the knowledge
regarding reactions and reactants, or synonyms which have been resolved incorrectly,
so the same molecule appears more than once under a different name. These issues
may also affect the accuracy of the main component.

represented in certain formats. VisANT is available as both a Java applet and Java

Web Start application, as well as a standalone tool.

From the perspective of a user, certain parameters used to describe the tools are

of particular importance or relevance. For example, the input and output formats

accepted and produced by a piece of software in effect dictate to the user how their

data should be represented if they wish to use the software to analyse or visualise their

network data. For this reason, packages such as Cytoscape, Patika and ProViz all

offer the advantage of accepting and producing standard file formats used to represent

network and pathway data (e.g. SBML, BioPax and PSI-MI). Various data repositories

offer the export of network data in some of these standard formats, allowing a user to
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Cytoscape VisANT Pajek Piana ProViz Osprey Network
Workbench

Network anal-
ysis

Via plugins.
Clusters, topo-
logical param-
eters, shortest
paths, expression
activated subnets

Shortest paths,
degree distri-
bution, highly
connected sub-
graphs, network
motifs, cycles

Shortest paths,
betweenness and
closeness central-
ities, clusters

Interaction dis-
tances, clustering

Subgraphs, clus-
tering

None Node degree,
clustering,
betweenness,
shortest paths,
connected com-
ponents

Language Java Java Delphi Python C++ Java Java, Fortran &
C

Import for-
mat(s)

SBML, BioPax,
Cytoscape SIF,
GML, XGMML,
PSI-MI

VisANT format Pajek format PSI-MI PSI-MI, Tulip
format

Osprey format,
custom format

GraphML, Net-
work Workbench
format, Pajek
format, XGMML

Export for-
mat(s)

XGMML, GML,
SIF, PSI-MI

VisANT format Pajek format Cytoscape SIF PSI-MI Osprey format GraphML, Net-
work Workbench
format, Pajek
format, XGMML

OS Cross-platform Linux, Windows Windows Linux, Mac OS X Linux Cross-platform
(different down-
load for each)

Cross-platform

Software
requirements

Java SE 5 or 6 may require in-
stallation of JRE

None Python Tulip, OpenGL,
LibXML2, qt,
glut, CURL

Java Java

Hardware re-
quirements

For large net-
works - as fast
a processor as
possible, 2GB+
RAM, high-end
graphics card

Not available Not available mySQL server re-
quires minimum
6GB disk space

Not available Pentium II 450
MHz CPU, 256
MB of memory,
70 MB disk space

Not available

Network types PPI, metabolic Gene regulatory,
metabolic

Biological, social,
genealogies

PPI PPI Gene regulatory,
PPI

Various biological
& social

Database inte-
gration

Data retrieval via
web services from
IntAct, NCBI
and Biomart

Predictome (in-
tegrates KEGG,
GO, MIPS,
BOND & HPRD)

None Uniprot, NCBI,
COG, SCOP,
GO, DIP

None BioGRID None

Reference Shannon et al.

(2003)
Hu et al. (2004) Batagelj and Mr-

var (1998)
Aragues et al.

(2006)
Iragne et al.

(2005)
Breitkreutz et al.

(2003)
NWB-Team

(2006)

Table 2.1: Summary of common standalone network visualisation and analyis software packages
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go straight from obtaining the data to submitting it to a software tool for analysis.

Proprietary formats such as those used by Osprey, VisANT and Pajek create an extra

step for the user as they must transform their data into the correct format in order to

take advantage of any functions offered by these tools. It may be the case that the user

has to write the conversion program themselves, introducing additional complexity.

Only being able to save the results of an analysis in the proprietary format of a specific

tool locks the user in further and limits them to the feature set of one tool.

One of the most important aspects of network software in the context of this project

is the implementation of graph-theoretic operations for biological network analysis. As

mentioned, visualisation is an important task but the size of networks means that it

is not always the most useful way to extract significant network features. Of the tools

surveyed, almost all provide analyses such as shortest-path calculations, centrality mea-

sures (degree, betweenness and closeness), clustering algorithms, cycle detection and

network diameter. The most complete solution in terms of graph-theoretic operations

is Network Workbench, however this suffers from the disadvantage of not being specif-

ically designed for biological networks, being aimed at physicists and social network

researchers as well, and therefore does not accept standard biological-network-exchange

file-formats as input.

Cytoscape, though designed for biological networks, provides network analysis func-

tionality via plugins. This functionality means that the user must install different plu-

gins depending on what analyses they require, as no one plugin provides all possible

graph-theoretic algorithms. Also, carrying out graph-theoretic analyses in Cytoscape

usually causes the results to be captured within the visualisation of the network; for

example the plugin ShortestPath allows for the selection of two nodes; if a shortest

path is found between them, the nodes along it are highlighted on the network diagram

itself. This is visually useful, and the highlighted nodes can be used to generate a sub-

network that has all the properties of the whole network, and can be further analysed.

Another plugin, NetworkAnalyzer (Assenov et al., 2008), provides a great many topo-

logical measures such as clustering coefficient, connected components, diameter, radius,

shortest paths and degree distribution among others; however all of these parameters

are calculated at once and there is no option to choose a single analysis at a time. This

means that the calculation is very time-consuming for large networks.

Of the nine tools, seven are completely or partly written in Java, and as this is a

platform-independent language, it allows users to execute the application on a variety

of platforms. Despite the flexibility offered by Java, from the developer’s perspective, it

may be necessary to provide a different version of the application for users on different
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platforms, for example, Osprey. In contrast Pajek and ProViz offer less flexibility, as

they may only be installed and executed on Windows and Linux respectively.

As well as the language a tool is written in, other requirements may need to be met

for it to run successfully. These take the form of software or hardware prerequisites,

and it is advantageous to have as few of these as possible, relieving a possibly non-

expert computer user of the task of correctly installing them. An example of a tool

with software prerequisites is PIANA, whose installation entails setting up a mySQL

database (with client and server), installation of several external Python modules and

creation and modification of environment variables. In contrast, Cytoscape does not

have any such software prerequisites, apart from the correct version of Java. However,

as a locally run standalone application the hardware requirements vary according to

the network size; for manipulation of larger networks the processor should be “as fast

as possible” as stated in the Cytoscape user manual, and there should be available

a minimum of 2GB of RAM. Additionally a high-end graphics card is required for

visualisation.

Data integration plays a very important role in the analysis of biological networks,

and a tool that provides access to various repositories of interaction data will allow

the user to analyse a more complete ‘picture’ of cellular interactions. VisANT for ex-

ample is based on the Predictome database (Mellor et al., 2002), which is a database

of predicted functional associations between genes and proteins in a variety of organ-

isms. Interaction data is deduced via both experimental and computational techniques,

and the user may access data from KEGG, GO, MIPS, BIND, HPRD and BIND. In

contrast, applications such as Network Workbench and ProViz take network files as

input and, once loaded, provide visualisation and analysis tasks and return results

without linking to external data sources. Cytoscape has implemented a Web Service

Client Manager from version 2.6.0, which enables the creation of plugins to access data

programmatically from IntAct, Pathway Commons, NCBI Entrez Gene and Biomart.

2.2.2 Web-based and other client-server tools

A web-based client such as PatikaWEB (Dogrusoz et al., 2006) provides a fully-featured

front-end in the form of a website, while the actual processing and analyses are carried

out on a remote machine, which returns results to the user via the website user-interface.

This application provides access to the Patika database, which integrates data from

Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD and Reactome, and supports

analyses such as discovery of feedback loops and subgraphs. The client can support
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import of data in BioPax format, and export in both BioPax and SBML.

Another method for delivering an application is via Java Web Start. This is a

framework that allows Java software to be started directly from the Internet using a

web browser, giving the advantage of automatically downloading and installing the ap-

propriate Java Runtime Environment (JRE) if the user does not have it already, thereby

overcoming compatibility problems caused by browser plugins and different versions of

the Java Virtual Machine (JVM). VisANT may also be run in this way, as well as

being available as on online Java applet. BiologicalNetworks (Baitaluk et al., 2006) is

another tool delivered via this method. It provides graph-theoretic analyses such as cy-

cle identification and topological measures such as average degree, average distance and

network diameter. Supported formats for input and output include SBML and PSI-MI

as well as its own BiologicalNetworks format. It can be used to study metabolic and

gene regulatory networks and integrates data from KEGG, BIND, TRANSFAC and

MIPS.

2.2.3 Web services

Recently a web services-based toolbox of network analysis functionality has been re-

leased by Brohée et al. (2008). The Network Analysis Tools (NeAT) software can be

accessed from the website1, and provides a selection of analysis tools, including shortest

path analyses, topology measures such as degree, closeness and betweenness centrali-

ties and clustering algorithms. This toolkit is very similar in concept to the software

provided through this work, however there are certain differences. The preferred client

is the website which is specifically designed to access the services. Programmatic access

to the tools is also provided through an interface description, which may be loaded into

the workflow enactment software Taverna, however the emphasis is on web-based client

access.

2.2.4 Programming libraries

Support for graph analyses is available through a number of programming libraries

for a variety of languages. Using these libraries generally calls for a level of expertise

much greater than that required for either standalone tools or web-based client-server

applications. They are used programmatically and while they may provide powerful

network-analysis functionality they are not a suitable option for non-expert program-

1http://rsat.ulb.ac.be/rsat/index_neat.html
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mers. Examples of such libraries include Graph1 for Perl, NetworkX2 (Hagberg et al.,

2008) for Python, the Boost Graph Library3 for C++ (with bindings for other lan-

guages) and Jung4 for Java.

2.3 Distributed computing solutions in bioinformatics

An ongoing issue in bioinformatics is that of data management: its storage, manipu-

lation and integration. High-throughput experiments generate vast amounts of infor-

mation which must be effectively handled if it is to yield new biological insights. Of

particular relevance is the issue of data integration. There are over a thousand public

and commercial databases (Galperin and Cochrane, 2009) which leads to one of the

most fundamental problems facing in silico research, which is that heterogeneous data

resources lack interoperability. Programmatic interfaces vary from resource to resource,

and are sometimes not provided at all. In the case of the latter, it is necessary to ‘cut

and paste’ data between web forms, or ‘screen-scrape’ - a brittle and unreliable method

as described by Stein (2002). Even the simplest analyses require biologists to handle

data from several repositories in various different formats. Ongoing standardisation

issues mean there is no single accepted requirement for how biological information

is stored, and tools and databases exist in many different database formats and are

represented by various legacy flat-file formats.

One attempt to minimise the problems associated with these issues is to employ

a web services model for data retrieval and analysis. A web service is defined for-

mally by the W3C as ‘a software system designed to support interoperable machine

to machine interaction over a network. It has an interface described in a machine-

processable format’5. Web services are a distributed technology, originally developed

by the e-business community as a solution to interoperability issues regarding data ex-

change, and crucially were designed to be platform- and language-independent. They

use standard Internet protocols, and offer the necessary architecture for flexible and

expandable integration of diverse scientific tools.

The functionality of web services may be built on further to address the aforemen-

tioned difficulties of manually performing a sequence of analyses by creating a software

pipeline, or computational workflow, which comprises a set of web services, chained

1http://search.cpan.org/~jhi/Graph-0.84/
2http://networkx.lanl.gov/
3http://www.boost.org/doc/libs/1_37_0/libs/graph/doc/index.html
4http://jung.sourceforge.net/
5http://www.w3.org/TR/ws-arch
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together to automate analyses. The output of one service becomes the input to the

next, with no intervention from the user. Workflows in bioinformatics are therefore

transformed into a fully automated graph of processes, starting with inputs provided

by the user and transformed by a sequence of web services into an end result. Chap-

ter 3 gives a more detailed description of the protocols underpinning the web services

specification and the mechanics of workflow execution.

Web services are by no means the first distributed solution to address the problems

of interoperability in bioinformatics. The Common Object Request Broker Architecture

(CORBA)1, defined by the Object Management Group (OMG), has been an established

standard since the early 1990s, and defines protocols which enable heterogeneous appli-

cations running on various platforms to interoperate, by ‘wrapping’ code into objects

such that it can be accessed by clients across a network. An Interface Definition Lan-

guage (IDL) describes the object’s interface in a language-independent fashion, allowing

communication between wrapped objects written in different languages.

In much the same way that web services are now being adopted with increasing fre-

quency by the bioinformatics community, in the mid- to late-nineties, CORBA was

in a similar position, and was hailed as a solution for linking heterogeneous data

resources (Barillot et al., 1999; Jungfer and Rodriguez-Tomé, 1998; Barillot et al.,

1996). Stevens and Miller (2000) reviewed the advantages of utilising CORBA as a

solution to the problems raised by the growing diversity of distributed resources, con-

cluding that it was a viable option for researchers.

An interesting case study follows the development of the European Molecular Biol-

ogy Laboratory (EMBL) nucleotide sequence database2 at the European Bioinformatics

Institute (EBI). Wang et al. (2000) describe using the CORBA programming interfaces

to the data stored in the EMBL database, as the existing use of flat-file formats for

storage and returning query results was inflexible. As a follow-up to this (Wang et al.,

2001), it was noted that CORBA was an incomplete solution to the problems that arose

from the flat-file format, namely that it was too complex for biologists to use, and was

often blocked by firewalls preventing effective use over the Internet. At the time, de-

mand grew for EMBL to distribute data using XML, giving rise to the XEMBL project.

The conclusion at this point was that CORBA together with XML was a successful

method for the accessing and distribution of EBML data, with the added advantage

that XML could be distributed over the Internet via SOAP, and pass through fire-

walls accordingly. Wang et al. (2002) released XEMBL as a web service, and eventually

1http://www.corba.org
2http://www.ebi.ac.uk/embl

21

http://www.corba.org
http://www.ebi.ac.uk/embl


2.3 Distributed computing solutions in bioinformatics

the CORBA interfaces were abandoned altogether, on the basis that communication

through firewalls was difficult. The lightweight nature and flexibility of web services

resulted in their being viewed as a superior solution (Pillai et al., 2005).

For completeness, alternative distributed technologies will also be discussed. An

alternative to CORBA was Microsoft’s Distributed Component Object Model (DCOM),

which has now been superseded by the Microsoft .NET framework. DCOM provided

a set of interfaces for enabling client objects to request services from server objects on

other computers in a network. The major disadvantage of these technologies is that

they are limited to the Microsoft platform, though server components can be written in

a variety of languages, for example Java or Visual Basic. As the trend in bioinformatics

is to develop open-source tools, proprietary formats have not been embraced, and there

has been little support for exposing code in such a manner.

Java RMI is yet another middleware solution which provides communication be-

tween clients and servers written in Java, though the platform-independent nature of

the language means RMI-based applications are able to run on a wide variety of plat-

forms. In an early comparison of the three technologies described, Gray (2004) high-

lights the fact that both Java RMI and CORBA have optimised connection protocols,

which have detailed rules, in comparison to the universal technologies such as HTTP

for transport and XML for textual representation of data. However, this increased

model of interoperability also results in some performance issues, as generating and

parsing XML documents is time-consuming and resource heavy, so sending and receiv-

ing SOAP messages may be slower than the analogous mechanisms in both Java RMI

and CORBA. Despite this, Gray noted that SOAP has seen significant improvements

to performance as compared to earlier studies carrying out similar comparisons.

A number of major data banks provide a web service interface to their data, for ex-

ample EMBL-EBI as mentioned, the DNA Data Bank of Japan (DDBJ, Tateno et al.,

2002), the Protein Data Bank of Japan (PDBJ, Standley et al., 2008) and the National

Centre for Biotechnology Information (NCBI)1. Additionally some smaller databases

such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG, Kanehisa et al., 2008)

and the Biomolecular Interaction Database (BIND, Alfarano et al., 2005) have created

web services that access their data. A list of biological web-service providers is main-

tained on the myGrid web site.2 This list by no means covers all available databases,

and in fact there are several important databases that do not currently have support for

web services, particularly some containing interaction data used to build up networks,

1http://www.ncbi.nlm.nih.gov/
2http://www.mygrid.org.uk/wiki/Mygrid/BiologicalWebServices
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such as BioGRID (Stark et al., 2006), DIP and the Molecular Interaction Database

(MINT, Chatr-aryamontri et al., 2007). This is a particular disadvantage of what is

a relatively new technology, and it is generally the case that a web-based front-end is

provided to access and download records.

2.4 Conclusion

This chapter has demonstrated that biological network analysis is a useful and impor-

tant approach in systems biology, to further our understanding of cellular networks

and the roles played by constituent molecules. A number of software tools have al-

ready been proposed and developed which effectively handle such networks, and aim to

provide biologists and bioinformaticians with a range of functionality, including graph-

theoretic algorithms for analyses, and links to external databases. On the subject of

data integration, it has been shown that the vast quantity of data generated from high-

throughput experiments can be effectively managed by distributed solutions. With

these conclusions in mind, the following chapter proposes a framework for a software

system for the construction and analysis of biological networks, initially a conceptual

overview, and then expanded to detail the practical realisation.

23



Chapter 3

A Framework for Network

Analysis Software

The aim of this chapter is to formalise the framework upon which the software sys-

tem for the construction and analysis of biological networks is built. The first section

describes the conceptual framework, which outlines the fundamental elements of the

system. The subsequent sections expand the conceptual framework to detail the practi-

cal realisation of framework elements, by providing suitable technical recommendations

for implementation.

3.1 Conceptual framework

The description of the conceptual framework is divided into two parts. The general

conceptual framework gives an overview in general terms of the elements in the system,

and how they are related to each other. These elements are then expanded in the

context of biological network construction and analysis.

3.1.1 General conceptual framework

The general conceptual framework consists of four elements:

• User

• Data

• Tasks

• Workflow
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3.1 Conceptual framework

Figure 3.1: General conceptual framework diagram. The user constructs a workflow
from a set of tasks available, by selecting those appropriate to achieving some end
result.

The four elements and the relationships between them are shown in Figure 3.1.

A user with some data to process has access to a ‘pool’ or set of tasks. Each task

manipulates data in some way, or may be combined with external data sources, and

the user may wish to make use of several such tasks to achieve an end result. The data

are passed through a particular user-defined subset of tasks, producing intermediate

output which is consumed by a subsequent task or tasks, until the final output is

returned. The collection of tasks to be executed is assembled into a workflow, that is,

a graph of interconnected tasks with ordering constraints.

3.1.2 Network-specific conceptual framework

The general conceptual framework is applied to the domain of biological network con-

struction and analysis, resulting in a network-specific conceptual framework. At this

stage the framework is independent of implementation details, and expands the ele-

ments data and tasks.

A central issue regarding data as part of the framework is the representation of

biological networks. There are a number of computational representations used to

record interactions and reactions between biological components. For example, holistic

models of metabolism for particular organisms may be represented using the XML-

based SBML format (Hucka et al., 2003) or in BioPAX format (Luciano, 2005). PPI
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data may be obtained in the standards proposed by the HUPO Proteomics Standard

Initiative (HUPO-PSI), either in an XML-based or tab-delimited format (Hermjakob

et al., 2004). Such formats contain a large amount of information which is surplus to

requirements when considering a network in terms of carrying out some graph-theoretic

analysis, for example the experimental origin of the data, or alternative molecule names.

The existence of various types of network data is a potential limitation when de-

signing and realising tasks, as each task may require tailoring to be compatible with

a particular format. A common graph format is therefore proposed, which describes a

network as a list of tab-delimited interacting pairs, with one pair per line. A line may

also contain a single node rather than a pair. The format is a minimal representation

of networks as it captures only the nodes in the network and their connections to each

other. For biological networks, nodes may be biological entities such as genes, proteins

or metabolites, or concepts such as reactions or events. Connections, or edges, may

represent physical bindings or biochemical interactions. The common graph format

is proposed to standardise data from different sources, removing the need to design

specific tasks to process heterogeneous data. A drawback to using the lowest common

denominator network is that any related metadata do not appear in the graph itself,

and may be lost altogether if not captured in a separate file.

Figure 3.2 demonstrates the common graph format representation of a toy network,

together with two possible corresponding network diagrams to visualise the network.

An important advantage of this format over those previously mentioned is a smaller file

size, enabling more efficient processing. For example, the SBML version of the Palsson

human metabolic-network discussed in Chapter 2 is 5.8 Mb, whereas the equivalent

common graph version is 433 kb. Another advantage is that the format is particularly

well suited for analysis using graph-theoretic algorithms, as to calculate topological

metrics for the whole network, localised areas of interest and individual nodes, requires

only the nodes and edges connecting them.

A drawback to this minimal approach, however, is that certain information about

the interactions and reactions is lost, which may enhance the biological significance of

results. To balance this, a task which converts a particular format into the common

graph format also produces other relevant output containing more detailed information

regarding the particular biological entities and their interconnections in the network.

These data are specific to each computational representation, and may be used later in

the workflow to improve the readability of results.

As well as data, the general framework describes a set of tasks available to the user.

In the context of biological network construction and analysis, this set is divided into
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Figure 3.2: Two toy networks to demonstrate the common graph format. (a) An
undirected network is represented using tab-delimited pairs of nodes, where the order
of the nodes is unimportant. This network contains four nodes and three edges. (b)
A directed network is also represented using tab-delimited pairs of nodes, however as
direction is encoded the order in which they appear on each line is important. There are
four directed edges, two of which connect the same pair of nodes in opposite directions.
Both networks contain a singleton node which appears in the common graph format on
its own line, and is represented in the network diagrams without any incident edges.
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four categories; data retrieval, data transformation, data analysis and output rendering:

• Data retrieval A data retrieval tasks accepts as input an identifier (e.g. for a

particular database) and returns a record or collection of records representing a

whole biological network, a subset (subgraph) of a network, or a pathway.

• Data transformation A data transformation task accepts as input network data

in some format and returns the same network in another format. In the context

of this framework, this produces data which is either suitable for analysis, or data

which is suitable for rendering.

• Data analysis A data analysis task accepts as input the common graph format

and returns the results of an analysis.

• Output formatting This category comprises two subcategories, output transfor-

mation and output rendering. An output transformation task accepts as input

data intended as the final result of a workflow, and transforms it to a format that

either makes it human-readable or suitable for further rendering. An optional

output rendering task may then follow this, and applies the appropriate renderer

to transformed data, again to make it easier to interpret.

The categories are proposed to facilitate the construction of workflows. Formalising

categories in this way enhances interoperability, as when tasks are realised in practice,

the correct order in which they should appear in a workflow is defined. This benefits

the user by preventing nonsensical scenarios being created and executed. Defining the

inputs and outputs to each type of task also enhances interoperability by indicating how

new tasks may work with the existing set. The categories also maximise reuse, as any

data analysis tasks need only be implemented once, and can be applied multiple times

to different networks which were originally represented using heterogeneous formats.

Tasks in the four categories are therefore responsible for routing data through a

workflow according to the order specified in this framework. This applies to tasks im-

plemented by the author for this work. However there may be a requirement to make

use of functionality offered by external developers, which also fits a framework category,

for example, an external data retrieval step. When accessing such functionality, addi-

tional generic tasks acting as a logical wrapper or interface may be utilised, to enable

relevant tasks to fit into the appropriate place in the framework. If an independently

developed task adopts different idioms of data representation, a particular ‘shim’ will

be required to facilitate the transfer of data between the categories (Hull et al., 2005).

28



3.1 Conceptual framework

Figure 3.3: Network-specific conceptual framework. Four categories are introduced to
divide tasks within the context of biological network analysis, shown in green. The
output from one category becomes the input to the next; inputs and outputs are shown
in red. Generic wrappers are sometimes required if a framework task from an external
source is used, and are necessary to ensure that data are routed correctly. The nature
of these generic tasks depends on the exact specification of both input and output data
for a particular framework task.

The examples in Chapter 6 contain instances of such generic wrappers used to achieve

this data transfer throughout workflows. Figure 3.3 illustrates the expanded concep-

tual framework to reflect the introduced categories, the data they accept as input and

produce as output as well as tasks for generic control.

There are two main classes of input which determine which framework categories

will be used. The first are database identifiers, which are used to retrieve a record

or collection of records, representing a biological network. The type of data retrieved

depends on the nature of the database. For example, the identifier ‘9606’ as input to the

IntAct PPI database retrieves all human protein interactions, the identifier ‘sce00010’

as input to the KEGG pathway database retrieves the yeast glycolysis/gluconeogenesis

pathway, and the identifier ‘REACT 578.1’ as input to the Reactome pathway database

retrieves the human apoptosis process. The second type of input is holistic network

data, for example SBML or PSI-MI files as described previously. Such data may be

produced by the user themselves, or downloaded from other sources (for example,
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Figure 3.4: Example inputs to the framework and how they are transformed by tasks
from the different categories, to create different workflows. The red arrow shows the
direction of data flow. In some cases a particular category may not be used however
the ordering of the categories remains consistent.

Reactome provides human reactions in SBML format1). Figure 3.4 gives three possible

workflows and the framework categories used.

3.2 Technical framework for tasks

There are several possible technologies within which tasks may be realised. Common

approaches in bioinformatics include single-tier (or monolithic) tools, client-server ar-

chitectures, and service-oriented architectures. Each approach influences how tasks are

implemented and made available to the user, and also the effectiveness of the overall

1http://www.reactome.org/download/index.html
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system (Bass et al., 2003).

A task in a monolithic application is a piece of code to carry out some function,

which has been tightly coupled with the graphical user interface (GUI). GUI elements

such as drop-down menus and icons provide the user with the means to access and

execute a particular task. This approach results in a single program which is self-

contained and independent. The tools, and therefore the tasks, are run locally, and can

only be accessed via the GUI.

Client-server implementations separate the application logic from the user interface,

for example, in a web-based tool. Here, the tasks reside on a server, while the client is

a website with a form, through which the user sends data to the server. The server can

then respond to requests, sending a response back to the client. Unlike the single-tier

model, the tasks and user interface are separated; however the tasks themselves are

still only accessible via a prescribed client. Several examples of network analysis tools

built both this way and as standalone tools were given in Chapter 2.

A service-oriented architecture, meanwhile, focuses on the development of tasks as

services or methods which are made available to users through a standard interface.

Services are created to be consumed by client applications whose only requirement is

the ability to process the standard interface description, without requiring knowledge

of the implementation details of the service (Arsanjani, 2004). Web services are one

particular technology which may be used to populate a service-oriented architecture.

The formal definition of a web service as given by the W3C is ‘a software system

designed to support interoperable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format’ 1. They are similar to the web-

based client-server tools in that data are sent and received between a client application

and a method residing elsewhere. The key difference is that web services have a public

interface which enables access via a greater variety of externally developed clients. They

can be thought of simply as callable routines made available over a network, which is the

commonest style of web-service use, particularly in the bioinformatics domain (Pagni

et al., 2008).

A service-oriented architecture, populated by web services, is the approach taken

to realise the tasks described in the network-specific conceptual framework. There are

various advantages offered by web services over monolithic and client-server systems.

Web services are located and executed remotely, and so a user is not limited to locally

available computing power. This also means the user is not responsible for installing,

updating and patching service software. A service-oriented architecture is characterised

1http://www.w3.org/TR/ws-gloss/
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by loosely-coupled components, leading to a low level of interdependency between tasks.

Tightly coupled components lead to a high level of interdependency, resulting in an

architecture which is harder to maintain and reuse.

A potential disadvantage of implementing tasks as web services middleware is that

they are designed to provide programmatic access to data and applications. This may

dissuade biologists more accustomed to the traditional GUI elements included in the

tools described in Chapter 2, from whom such middleware, if used, tends to be hidden.

Using a web service may require more expert knowledge, for example awareness of a

particular SOAP programming library. Remote invocation means that if a particular

web service is altered, the user is forced to accept the change even if they do not wish

to, and if a network connection should fail, for example due to faulty hardware, then

this will result in a web service becoming unusable.

Despite these drawbacks, implementing tasks as web services offers a much greater

degree of flexibility, as the public interface to a service enables a much wider range of

client applications to be constructed. As they are platform- and language-independent,

web services should theoretically be accessible by clients executed on heterogeneous

platforms, without modifications to the service code, leading to a greater degree of

code reuse. The biggest advantage offered over the single-tier and client-server ap-

proaches is that tasks as web services are much better suited for inclusion in automated

computational workflows.

Figure 3.5 illustrates the technical framework for tasks developed in this project.

At this stage, manual workflows are considered; automated workflows are discussed

in Section 3.3. A single web service may be created such that it corresponds to one

task, or may be composed of several tasks, depending on exactly how web services are

deployed. Details of various web service deployment technologies and the corresponding

implementation of tasks are discussed in greater detail in Chapter 4.

As per the network-specific framework proposed, web services can be grouped fur-

ther into four categories based on the functionality offered. Each web service may be

thought of as a component of a larger application, constructed by the user according

to certain ordering constraints. Furthermore, web services may be grouped accord-

ing to the individual or organisation responsible for creating and maintaining them.

Figure 3.5 also depicts these organisational groupings. These groupings have various

implications for a user of these services. Quality of service is an important consider-

ation for organisations, if they wish to increase the popularity of their services. This

includes ensuring that service discovery is maximised through suitable publication of

service location, and that reliability is high through assured delivery of data being sent
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Figure 3.5: Technical framework for tasks. Tasks are implemented as web services. Each
web service may correspond to a single task, or may contain several. Web services are
grouped by service provider or organisation. Data are sent and received to and from
a web service through web service clients. The details of the interaction between web
service and client are discussed in Section 2.3.1.

and received by service users and providers (this is of particular relevance when web

services operate over the Internet, which by its nature is dynamic and unpredictable).

An organisation may also wish to enforce security measures on their web services, by

only allowing access for a certain group of users, in which case authentication and data

encryption should be implemented. Performance is another issue, particularly for web

services which are designed to process large amounts of data. There may be multiple

instances of a particular service from various organisations, and so the user may wish

to find an instance which is geographically closer (though this does not necessarily

guarantee the best performance).

3.2.1 Web service protocols and standards

Web services are defined by a set of specifications that are used to implement, describe

and locate them. The core standards are the Service Oriented Architecture Protocol or

Simple Object Access Protocol (SOAP, Gudgin et al., 2007), Web Services Definition

Language (WSDL, Christensen et al., 2001) and Universal Description, Discovery and

Integration (UDDI, Clement et al., 2004). All three protocols are based on eXtensible
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Layer Name Description Protocols Used

Service Transport Responsible for transporting
messages between network ap-
plications

HTTP, SMTP, FTP

Messaging Responsible for encoding mes-
sages in XML format

XML-RPC, SOAP

Service Description Used to describe the public in-
terface to a specific web service

WSDL

Service Discovery Centralises services into a
common registry such that
network web services can pub-
lish their location and descrip-
tion, and makes it easy to dis-
cover what services are avail-
able

UDDI

Table 3.1: The Web Service Protocol Stack

Markup Language (XML, Bray et al., 2006), which is a platform-independent, general

purpose markup language with user-defined tags, designed to facilitate the sharing of

data between heterogeneous systems.

The web services protocol stack in Table 3.1 shows the four layers and related

protocols, while Figure 3.6 illustrates the relationship between the actors in the web

service model.

The steps involved in publishing and consuming a web service are as follows:

1. A service provider describes a web service using WSDL. The WSDL defines the

location of the service and the number of operations (i.e. tasks) exposed by the

service. The definition is published to a registry of services, which could use

UDDI or could be of another form.

2. A service requestor, i.e. the user (in this case a biologist or bioinformatician

seeking to carry out some network-analysis tasks) issues a query to the registry

to locate a web service, and the operations offered by it.

3. Part of the WSDL is passed to the service requester, describing the requests

expected by each operation and the responses returned from it.

4. The service requester uses this information to send a request, to the appropriate

operation.
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Figure 3.6: Communication over a network between service provider, service consumer
and registry in the web services model
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5. The operation carries out the request and sends a response back to the user.

Web services and the associated technologies and protocols may be described in

terms of the technical framework for tasks. WSDL is the public interface used to define

tasks, and is processable by a suitable client application. Data are passed between

a client and the task using SOAP; while this is an XML-based messaging protocol,

data are sent in whatever format a task understands. For example, the common graph

format is encapsulated in an XML message as text. While SOAP and WSDL have

endured as core web services standards, UDDI (a business-oriented protocol for service

discovery) is no longer used. In the bioinformatics domain, a more informal style of

registry is used, for example, websites listing the location of WSDL files.

3.3 Technical framework for workflows

An important element of the conceptual framework is the ability to construct workflows

of tasks. In silico experimentation may involve the use of a number of computational

tasks and access to databases made available by different providers. A record of the

stages involved is analogous to a protocol in wet-lab research. It has been demonstrated

in Section 3.2 that there are a number of ways that tasks may be made available to the

user, which influences the way in which workflows are realised.

Tasks implemented within all three of the technologies discussed may be used to

construct manual workflows. Manual workflows require constant interaction from the

user, as once input data are submitted to a particular type of task, it must be moni-

tored until the result is produced. The result is then exported and submitted to one

or more other tasks, which are similarly monitored, until the desired final output is

obtained. With the onus on the user to move data between different processing steps,

such workflows are labour-intensive and error-prone, and every stage should be man-

ually recorded if the in silico experiment is to be reproduced. Figure 3.7 shows an

example of a manual workflow, involving tasks implemented within web-based client-

server tools. Execution of the protocol involves not only the use of the tools themselves,

but intermediate data export and transfer into external files to store results.

A much more efficient approach is to consider workflows as computational entities,

created using tasks developed as part of a service-oriented architecture, which is the

recommendation of the technical framework for tasks described previously. Computa-

tional workflows are desirable as they enable automatic software pipeline construction

and execution, without the need for repeated user-intervention. One way this could
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Figure 3.7: An example of a manual in silico experiment, to help characterise a protein
by finding similar sequences using BLAST, and their associated Gene Ontology terms.
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be implemented in practice is to create a computer program written in a language

with web-service support. This would contain a series of web-service calls, with extra

code to handle data transfer and storage of intermediate results. A more sophisticated

approach is the utilisation of workflow management software, to handle the discovery,

invocation and execution of web services, and creation and enactment of workflows.

The most effective workflow software must be able to facilitate discovery of resources

and handle transfer of data between them.

Various open-source scientific workflow management packages are available, for ex-

ample Kepler (Altintas et al., 2005), Triana (Majithia et al., 2004) and Wildfire (Tang

et al., 2005). For this work, however, workflow design and enactment functionality are

provided by the Taverna workbench (Oinn et al., 2000). Taverna is developed as part

of the myGrid consortium (Stevens et al., 2003), an initiative that seeks to develop a

loosely-coupled, service-based suite of open-source middleware for bioinformatics. Tav-

erna was chosen for this project for a number of reasons: it is open-source and supported

by a very active development team who encourage input and feedback from the user

community. The Taverna user interface is designed to make the construction of work-

flows more accessible to those users who may not necessarily be expert programmers or

be familiar with web services. A variety of web-service styles are supported in Taverna,

from those described using the WSDL standard, to life-science-specific projects such as

BioMoby and Soaplab. Also, scheduling of processor execution in Taverna is simple:

processors are executed as soon as possible, relieving the user of the need to explicitly

define the control flow that determines order of execution.

The Taverna workbench may be freely downloaded for Windows, Mac and Linux

from the project homepage1. The version used throughout this work is 1.7, for the

Linux platform. Workflows in Taverna are described using the Simplified Conceptual

workflow language (Scufl), which is a high-level XML-based language. The components

of a Scufl workflow can be described in terms of the framework:

• Processors A processor is an individual step in a workflow, and is analogous to a

task as described in the network-specific conceptual framework, either belonging

to one of the categories, or responsible for generic control. There are a number

of different processor types which are used to present a common interface over

heterogeneous interfaces, and a complete list of processor types is given in Oinn

et al. (2004). Processors in Taverna are ‘scavenged’, for example, adding a WSDL

scavenger into Taverna results in all the port types and operations in this WSDL

1http://taverna.sourceforge.net/
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becoming visible. Each operation can now be added into the workflow as a WSDL

processor.

• Inputs and outputs Inputs and output data entities can be considered as being

source and sink processors, respectively. A source processor makes an input value

available on its virtual output port, and a sink processor receives a value from its

virtual input port. The values of inputs and outputs are the data described in

the network-specific conceptual framework.

• Data links A data link connects a source processor or output port of a processor

to a sink processor or input port of a processor. Figure 3.4 in the network-specific

conceptual framework illustrates the concept of linking the inputs and outputs of

a set of tasks to form a workflow through which data are passed.

• Coordination links A coordination link is used to provide additional constraints on

linked processors. For example, two processors may not have a data dependency,

but should still execute in a particular order. While this concept is not explicitly

defined in the framework, it is useful functionality which may be relevant for

certain workflows.

Figure 3.8 shows the three components of the software: the Available Processors

pane, the Advanced Model Explorer (AME) pane and the Workflow Diagram pane. The

user may add processors to the Available Processors pane by entering the endpoint of

a web service. As a workflow is constructed in the AME by adding processors, data

links, co-ordination links and inputs and outputs, a pictorial representation is produced

in the Workflow Diagram pane. The actual execution of a workflow is handled by the

FreeFluo enactment engine. This is a Java workflow-orchestration tool which supports

Scufl, though is language-independent. Figure 3.9 illustrates the technical framework

for workflows. A detailed Taverna tutorial, which covers the setting up and installation

of the software, as well as building and running a simple workflow, is available in

Appendix A.

Taverna implements two mechanisms which facilitate effective workflow construc-

tion. One is implicit iteration. Where a processor expects a single input, but is passed

a list of inputs, it iterates over each input, and produces a list of results, where each

corresponds to an input from the list submitted. Another useful mechanism is the abil-

ity to insert nested workflows into a workflow. Nested workflows are beneficial as they

enable commonly repeated sequences of processes to be saved and inserted into other

workflows, as and when required, analogous to subroutines or methods in a program.
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The network-specific conceptual framework described previously highlighted the

need for a common graph format to abstract over the various heterogeneous formats

for recording biological network data. An additional consideration relating to data as

part of the framework, is the availability of biological network and interaction data

from various public repositories. This may be through either a web service interface

compatible with Taverna, or simply downloadable files in a format which is suitable for

submission to the framework. Table 3.2 describes some of these databases.

3.4 Conclusion

The framework has been designed to promote reusability, extensibility and flexibil-

ity. Web services are highly reusable as they are self-contained computational routines

which may be used repeatedly in different workflows. The proposal of different cate-

gories of web service also contributes to reusability, for example, services in the data-

analysis category should be applied without modification to network data represented

in the common graph format. The Taverna client ensures that workflows themselves

are also highly reusable, as they may be saved, stored and distributed between inter-

ested scientists as required. The myExperiment initiative (De Roure and Goble, 2009)

enables users to download pre-constructed, annotated workflows, shared globally or

within research groups.

The latest version of Taverna to be released is 2.0, which introduces a redesign

of the interface and certain improvements in performance over Taverna 1.7. However

not all workflows developed in version 1.7 are compatible with the newer version, and

there remain a number of unresolved problems1. Therefore all workflow functionality

described in this chapter relates to version 1.7.

Extensibility is an important factor when designing software. The framework en-

ables this by providing network analysis tasks as web services, rather than as part of a

monolithic application or client-server tool: any interested individual may wish to add

functionality by writing their own web services to be combined with those that exist

already, in order to generate new workflows. Web services developed must therefore

have well-defined inputs and outputs, to facilitate the creation of extensions.

The framework demonstrates flexibility by allowing users to access network anal-

ysis functionality through their preferred type of client, by making a public interface

to the service available. The introduction of the sophisticated Taverna client extends

1http://www.mygrid.org.uk/tools/taverna/taverna-workbench/taverna-2-0/

taverna-2-0-documentation/taverna-2-0-issues/taverna-2-0-unresolved-problems/
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Data source Type of network
data

Web service interface (type: location) Export formats(s) Reference

BOND (Biomolecu-
lar Object Network
Databank)

PPI WSDL: http://soap.bind.ca/wsdl/bind.

wsdl

SIF, PSI-MI 2.5 Alfarano et al. (2005)

IntAct PPI WSDL: http://www.ebi.ac.uk/intact/

binary-search-ws/binarysearch?wsdl

PSI-MI 1.0, PSI-MI 2.5,
PSI-MI TAB

Kerrien et al. (2007)

MINT (Molecular IN-
Teraction database)

PPI Not available PSI-MI 2.5, PSI-MI
TAB, MINT tab-
delimited

Chatr-aryamontri et al.
(2007)

Reactome Metabolic, gene-
regulatory

WSDL: http://www.reactome.org:8080/

caBIOWebApp/services/caBIOService?wsdl

SBML, BioPax, Reac-
tome tab-delimited

Joshi-Tope et al. (2005)

BioModels Metabolic, gene-
regulatory, sig-
nalling

WSDL: http://www.ebi.ac.

uk/biomodels-main/services/

BioModelsWebServices?wsdl

SBML, BioPax Novère et al. (2006)

KEGG (Kyoto Ency-
clopedia of Genes and
Genomes)

Metabolic WSDL: http://soap.genome.jp/KEGG.wsdl KGML Ogata et al. (1999)

BioCyc Metabolic Not available SBML, BioPax, BioCyc
tab-delimited

Caspi et al. (2008)

MIPS MPact PPI WSDL: http://mips.gsf.de/proj/hobitws/
services/PsimiService?wsdl

PSI-MI 2.5 Güldener et al. (2006)

HPRD (Human Protein
Reference Database)

PPI Not available PSI-MI 2.5, HPRD tab-
delimited

Peri et al. (2004)

DIP (Database of Inter-
acting Proteins)

PPI Not available XIN, PSI-MI 2.5,
PSI-MI TAB, DIP
tab-delimited

Xenarios et al. (2000)

Table 3.2: A selection of biological network data repositories
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this flexibility by enabling the construction of complex queries over relevant tools and

databases. The interconnected tasks in a workflow may be available as local or re-

mote web services, potentially developed on heterogeneous platforms in geographically

diverse locations.

The framework is realised using two relatively new technologies, web services and

computational workflows via Taverna. There are potential limitations to these recom-

mendations: web service creation and access requires specialised programming knowl-

edge, and the concept of workflow construction may not be immediately accessible for

certain users. It has been suggested, however, that workflows are constructed by ex-

pert bioinformaticians who are familiar with the technologies involved, and enacted

by less expert users (Egglestone et al., 2005). These users may be able to evaluate

the biological significance of any results, and suggest modifications to the workflow

accordingly.

This chapter has established how tasks and workflows will be practically realised.

The following chapter recounts experience gained from deployment of tasks as web

services using four open-source deployment technologies. As the framework specifies

the exposing of computational tasks as web services, each technology will be evaluated

in terms of how exactly this is achieved, and also how Taverna uses a processor plugin

to make tasks deployed via each method available for use in automated workflows.
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(a) Available processors pane

(b) Advanced model explorer pane (c) Workflow diagram pane

Figure 3.8: The three components of the Taverna workbench. (a) Right-clicking on
Available Processors results in a drop-down menu in which the different scavengers
are displayed. Selecting one of these prompts the user to enter a location, or end-point,
of a web service, which if valid displays an expandable list of processors which can
be added to a workflow. (b) The components of a Scufl workflow are listed in the
Advanced Model Explorer; as they are added they appear in (c), the Diagram pane,
in the appropriate position. Processors are different colours depending on their type,
inputs and outputs are denoted by red and green triangles respectively, and data flow
is shown with arrows connecting workflow components. In this example, the green
processor denotes a standard SOAP service, and the purple processors are local Java
operations representing generic functionality, in this case XML splitters which aggregate
or split the inputs and outputs to a processor.
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3.4 Conclusion

Figure 3.9: Technical framework for workflows. The Taverna workbench uses processor
types to abstract over the different service interfaces, where each processor corresponds
to a task. A Scufl definition of a workflow defines a set of processors between which
data are passed, via the Freefluo engine. The user is therefore able to select from a
pool of processors and construct computational workflows through the workflow client,
which handles the discovery, orchestration and execution of the graph of tasks.
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Chapter 4

Technology Evaluation

4.1 Introduction

The framework in Chapter 3 recommended the use of web services (which ultimately

will be used in computational workflows), to implement tasks within the domain of

biological network construction and analysis. As a service provider, there are various

aspects of web service creation which influence the decision regarding which deployment

method to use. The aim of this chapter is to present the practical experience gained

from the evaluation of four web service deployment technologies. These technologies

were evaluated against a number of criteria and test cases, used to justify the final

choice used by the author to develop web services for this work.

All the technologies were evaluated under Linux (CentOS 5.3 64-bit).

4.2 Criteria and test cases for evaluation

The following criteria were applied to each deployment technology:

• Availability As web services themselves are based on open standards and proto-

cols, open source deployment packages are considered preferable. A review by

Stajich and Lapp (2006) concludes that there is a general trend in bioinformatics

towards open-source technologies, producing tools which can be “continuously

improved in their usefulness”, and that “freely available and modifiable open-

source software can serve as the foundation for building important applications,

analysis workflows and resources”.

• Installation While this procedure will usually only be performed once, the in-
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stallation process should be clearly described, together with a complete list of

hardware and software prerequisites, and any configuration which should be car-

ried out within the development environment.

• Support The technology should be backed up by robust support mechanisms, for

example, active user mailing lists and example code.

• Web service protocols supported As described in the previous chapter, web ser-

vices are defined by a set of open protocols. Adhering to these protocols ensures

a greater degree of interoperability between services developed using different

technologies.

The following test cases were applied to each deployment technology:

• Implementation of tasks as web services Two tasks were designed as part of a basic

Calculator service: add and subtract, which calculate the sum and difference of

two numbers respectively. This test case was designed to establish how tasks are

implemented within each deployment technology, and to highlight any drawbacks

and/or particular advantages.

• Invoking the service - built-in client Web service toolkits generally include support

for client- as well as server-side SOAP. If this is the case for the technology under

evaluation, the tasks in the Calculator service were first tested with the client

library. This test case was designed to check that the web service is correctly

handling and returning data.

• Invoking the service - Taverna client The framework specifies that the web ser-

vices created for this work should be discoverable from within the Taverna work-

bench, so that they may be used within automated workflows together with other

services. As previously discussed, a task in the framework is analogous to a Tav-

erna processor, therefore the tasks add and subtract must have a public interface

which is compatible with one of the processor types used in Taverna (e.g. WSDL).

4.3 Evaluation

4.3.1 SOAP::Lite

SOAP::Lite is a Perl module designed to be an interface to SOAP on both the client

and server side. It is currently maintained by Martin Kutter. The version tested here

is 0.71.
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Availability

The module is freely available from CPAN (http://search.cpan.org/~mkutter/SOAP-Lite-0.

710.08/).

Installation

As a root user, the module may be installed using the CPAN module, which also takes

care of the dependencies. If root access is unavailable, the module can be downloaded

as a .tar.gz file and installed in a specified directory using the PREFIX keyword. Full

details of this procedure are given in Appendix B.

A CGI-based SOAP server also requires the installation of a web server capable of

running Perl-based CGI scripts, such as the freely available Apache (http://httpd.

apache.org/).

Support

Links to mailing lists for developers and users are available from the module homepage,

http://www.soaplite.com/. This page also hosts a ‘SOAP cookbook’, which is a

comprehensive resource addressing various issues, and a user guide which is incomplete

but does contain several useful examples. The module suffers from relatively poor

documentation but the mailing list is reasonably active.

Web service protocols supported

SOAP and WSDL (though WSDL support is limited).

Implementation of tasks as web services

A SOAP::Lite CGI-based server consists of two components, the request handler and

dispatcher. The request handler contains the core application logic exposed as a web

service. It is simply a Perl module containing subroutines, each of which correspond to

the tasks described in the framework. For the Calculator service, the module contains

two subroutines, add and subtract.

The dispatcher is the part of the service directly exposed to the client invoking it. It

binds the SOAP request to the class specified. Dispatch may take one of the following

forms:

1. Static internal - the dispatcher and handler are located in the same script
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2. Static external - the handler is located outside the server (dispatcher) code, and

the Perl statement use lib points to the location of the module

3. Dynamic - a directory is specified in the dispatcher rather than the module name,

so that any module added to this directory becomes available for dispatch

The dispatcher should be located in the cgi-bin directory on the web server. Per-

missions should be set to make it executable, or service unavailable (503) errors will be

returned by the client. Once both the dispatcher and handler are placed in the correct

location within the web server, the web service is ready to be invoked.

Example code for the dispatcher and handler for the Calculator service can be seen

in Appendix B.

Invoking the service - built-in client

The SOAP::Lite toolkit has a client library. An example client for the Calculator

service, which accesses the add task, is shown in Listing 4.1.

#!/ usr / bin / p e r l −w

use SOAP : : L i t e ;

my @values = (10 ,5 ) ;

print SOAP : : L i t e
−> u r i ( ' http :// behemoth . mycib . ac . uk/Ca lcu la tor ' )
−> proxy ( ' http :// behemoth . mycib . ac . uk/ cg i / s i r i s h a / c a l c u l a t o r . c g i ' )
−> add ( @values )
−> r e s u l t ;

Listing 4.1: client.pl

The proxy is the actual address of the SOAP server, or dispatcher. The uri refers

to the namespace that the service responds to, and corresponds to the module name.

Each SOAP server can offer multiple services through one proxy location, so the uri is

used to identify a particular service. Values may then be passed to the individual web

service operations, or tasks, to be processed.

Invoking the service - Taverna client

SOAP-based communication between clients and services which are both written in Perl

is straightforward without the need for a structured definition of the service, as long as
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the client is aware of which types to send and receive from the SOAP server. However,

as Perl is dynamically typed, it is very hard to extract information from the code about

the types, number of parameters and return values of methods, if access is required by

a client written in a statically typed language. To enable communication between the

Taverna client and the Calculator example in SOAP::Lite therefore requires the creation

of a WSDL document describing the Calculator service, so that the operations add and

subtract may be scavenged and added to workflows.

SOAP::Lite does not support automatic WSDL generation, so the service provider

must generate this themselves. This may be done manually, but this is inadvisable

owing to the complexity of WSDL. For a large number of services this quickly becomes

very cumbersome. One solution is to use the Pod::WSDL module, freely available from

CPAN1. The version used for this example is 0.05. The module was used to generate

WSDL based on a Plain Old Documentation (POD) file which describes the subrou-

tines that constitute the application logic of the web service. The POD should directly

precede the subroutines. Appendix B contains a modified version of the original sub-

routine code for the Calculator service to demonstrate this, together with the generated

WSDL file.

The WSDL file, once made available on the WWW, can be scavenged from within

Taverna. Figure 4.1 shows the two new WSDL processors in the Available Processors

list, then used in a simple workflow.

4.3.2 Apache Axis

The Apache Axis toolkit is a Java web service framework consisting of an implemen-

tation of a SOAP server, a client library, and various utilities and APIs for generating

and deploying web services. The version tested here is 1.4.

Availability

Axis is freely available from the project homepage, http://ws.apache.org/axis/.

Installation

Axis is installed within a servlet container, such as the freely available Apache Tomcat

(http://tomcat.apache.org/). Once downloaded and extracted, the axis directory

from the distribution is copied into the webapps directory under Tomcat. Successful

installation can be checked by navigating to the Axis homepage in a web browser.

1http://search.cpan.org/dist/Pod-WSDL/
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Figure 4.1: WSDL for the SOAP::Lite Calculator service scavenged from within the
Taverna workbench. The add operation is used to create a simple workflow.

The URL takes the form http://<tomcat-host>:<tomcat-port>/axis/. This web

page is likely to initially report errors regarding missing components. In particular one

‘required’ component, Activation API, should be downloaded separately1 and placed in

the lib directory under the axis directory. Tomcat should be restarted for this change

to be recognised.

Two ‘optional’ JAR files, Mail API2 and XML Security3 may not be immediately

necessary, but may be downloaded and copied into lib as before, whenever required.

All the JAR files in lib must then be added to the AXISCLASSPATH environment

variable to ensure Java can locate the necessary files when carrying out deployment

activities and enabling client access.

Support

Support is available via a comprehensive user guide and active mailing list.

1http://java.sun.com/javase/technologies/desktop/javabeans/jaf/downloads/index.html
2http://java.sun.com/products/javamail/
3http://santuario.apache.org/
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Web service protocols supported

SOAP and WSDL.

Implementation of tasks as web services

The simplest approach to web service creation is to expose Java classes, by placing Java

source code in the root axis directory, and changing the extension from .java to .jws.

Axis automatically compiles the class and converts the SOAP calls correctly into Java

invocations of the service class. Tasks are therefore public Java methods of a class,

which are exposed as the operations of a web service. Appendix B contains the source

code for a .jws version of the Calculator example.

Once the source code is placed in the root axis directory, it should be possible

to navigate to the service location in a browser, using a URL which takes the form

http://<tomcat-host>:<tomcat-port>/axis/Calculator.jws.

While JWS services are a very convenient and fast way to expose Java code as a

web service, they are inflexible and offer limited functionality. Only source code can

be used for deployment, which is not ideal if the service provider only has access to a

compiled class. As the code is compiled at run-time, errors are not detected until after

deployment. Also, packages are not supported.

A more powerful approach that offers greater flexibility makes use of a Web Service

Deployment Descriptor (WSDD). The deployment descriptor contains metadata about

a web service that is to be made available to the Axis engine. An example WSDD for

the Calculator service is shown in Listing 4.2.

<deployment xmlns=”http :// xml . apache . org / ax i s /wsdd/”
xmlns : java=”http :// xml . apache . org / ax i s /wsdd/ prov ide r s / java ”>

<s e r v i c e name=”Calcu la tor ” p rov ide r=” java :RPC”>
<parameter name=”className” value=”Calcu la tor ”/>
<parameter name=”methodName” value=”∗”/>

</s e r v i c e>
</deployment>

Listing 4.2: deploy.wsdd

To use a WSDD, the Java source must be compiled, and the resulting class is given

as a parameter of the service (className) in the WSDD. Other parameters are available,

for example allowedMethods which tells the Axis engine which methods (i.e. tasks) in

the code to make available as operations of the service.
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The deployment is carried out using the AdminClient which is packaged with Axis.

The AdminClient is executed in a terminal as follows:

java -cp $AXISCLASSPATH org.apache.axis.client.AdminClient -lhttp://<tomcat-host>:\*<tomcat-port>

axis/services/AdminService deploy.wsdd

Successful deployment is indicated in the terminal with the <Admin>Done proce-

ssing</Admin> message. This can be tested by clicking the ‘Available Services’ link

displayed on the Axis homepage: the new Calculator service together with the avail-

able methods add and subtract will appear, as shown in Figure 4.2. It is important to

note that if the class file of the service is placed outside of the classes directory under

axis, then the appropriate package name must be specified in the Java source, otherwise

the Axis engine will be unable to locate the class.

Figure 4.2: The ‘Available Services’ links leads to a web page as shown in this figure.
The new Calculator service is listed along with the associated methods.

Invoking the service - built-in client

For services deployed using either the ‘drag and drop’ or deployment descriptor method,

WSDL is generated automatically by appending ?wsdl to the end of the unique service

URL associated with that service. Client libraries within Axis can be used to construct

clients that consume web services based on both their JWS endpoints or WSDL. Ap-

pendix B contains an example client to consume the WSDL for the Calculator service.
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Invoking the service - Taverna client

As described, the automatic generation of WSDL means that the service provider does

not need to do any further work to enable compatibility with Taverna. The WSDL

can be scavenged, making the WSDL processors add and subtract available for use in

workflows, as shown in Figure 4.3.

Figure 4.3: WSDL for the Apache Axis Calculator service scavenged within the Taverna
workbench. The subtract operation is used to create a simple workflow

4.3.3 Soaplab1

Soaplab (Senger et al., 2003) has been developed by Martin Senger, and is a mechanism

for web service development which wraps existing legacy applications as services. For

this work, the original release (Soaplab1) was evaluated, though it has since been

superseded by Soaplab2 (Senger et al., 2008).
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Availability

Soaplab1 is freely available from Sourceforge1 as a zipped package.

Installation

The prerequisites for installation are Perl, Java and Apache Axis (installed within

a servlet container such as Apache Tomcat, as previously described). The Soaplab1

package is unzipped to create the top-level directory analysis-interfaces. Installation

is carried out by running a Perl script, INSTALL.pl which is located in this directory.

This in an interactive installation process during which several environment variables

are set, including the directory in which Tomcat is located, the URL used to access

Tomcat and the location of the lib directory within Axis (so that Soaplab JAR files

can be copied there). The installation script also gives the option of adding directories

to the PATH, which is where applications should reside in order to be executed when

invoked as web services.

Support

The project homepage at http://soaplab.sourceforge.net/soaplab1/ contains a

comprehensive user guide with example code.

Web service protocols supported

SOAP and WSDL.

Implementation of tasks as web services

Tasks in Soaplab are individual executable programs which are each wrapped as a web

service, rather than operations collected together within a single web service. For the

Calculator example, two executable Perl scripts were created, each encoding function-

ality for the add and subtract tasks.

Development of services using Soaplab1 is a multi-step process. The first stage

involves the creation of metadata to describe the command line of the executable to

be wrapped as a service. These metadata are described using the Ajax Command

Definition (ACD) language, which originated as part of the EMBOSS project (Rice

et al., 2000). Two ACD files corresponding to the add and subtract programs were

1http://sourceforge.net/project/showfiles.php?group_id=104834&package_id=112781&

release_id=335757
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written and placed in the metadata directory, while the scripts themselves should be

placed in a location specified in the PATH (established during installation). Appendix

B shows the program code and corresponding ACD file for the add executable.

The ‘groups’ token in the ACD file is used to categorise and organise services. As

add and subtract are different separate services rather than separate operations of a

service, they are both assigned the group ‘Calculator’ to identify them.

The ACD is transformed into XML files used during deployment, by the acd2xml

tool. This is executed from the top-level Soaplab1 directory as follows:

./generator/acd2xml -d add subtract -l Applications.xml

The .acd extension is not required when the ACD files are passed as arguments to

the generator. The -l flag generates an XML file which lists all the executables to be

deployed, and is used by the AppLab server. Applications.xml is the default name for

this file, and is already specified in the run-AppLab-server script. If a different file name

is passed after the -l flag, it must be changed accordingly in run-AppLab-server.

The AppLab server is a Java application accessible using a CORBA interface, and

is responsible for communication with the underlying executables which are wrapped

as web services. Before any services are deployed, the AppLab server should be started

with the following command, executed from the top-level directory:

./run-AppLab-server

Execution of this command generates the files which are used by the Soaplab server

to communicate with the AppLab server, which uses a launcher (a set of Perl scripts)

to invoke the add and subtract executables.

The deployment itself may now proceed, by executing a script named deploy-web-

services. An example command to deploy services is as follows, and can be customised

using command line options:

./ws/deploy-web-services -a -d -j derived.jar

The -a flag ensures only AppLab services are deployed (rather than Gowlab services,

a sub-project of Soaplab that wraps websites as web services). The -d flag is used to

generate derived services which have strongly-typed methods, useful if the WSDL is

needed to access the service. The -j flag is always used in conjunction with -d, and is

followed by the name of a JAR file containing the generated derived services. During

execution of deploy-web-services, the service provider is prompted to restart Tomcat.

Successful completion of the process is indicated via messages in the terminal.

55



4.3 Evaluation

Invoking the service - built-in client

Soaplab1 does not provide a client library such as those provided by Axis and SOAP::Lite.

However a powerful Java command-line client, run-analysis-client, is included with the

distribution. This has a large number of command line options when invoking a par-

ticular service. The client is used as follows:

./run/run-analysis-client <find-arguments> [options] [inputs] [results]

A detailed description of the <find-arguments>, [options], [inputs] and [results]

flags are given by executing:

./run/run-analysis-client -h

An example execution of the client for the add service is as follows:

./run/run-analysis-client -e http://compute1.mycib.ac.uk:8080/axis/services -name

calculator.add int1 10 int2 5 -w -r

The -e flag specifies the location of the installation, -name the service name (which

takes the form [group.name]), and the argument names int1 and int2 correspond to

those specified in the ACD file. The -w flag specifies that the job be created, started

and run until completion (either successfully or unsuccessfully). The -r flag indicates

that results should be returned.

Invoking the service - Taverna client

As Soaplab1 services are deployed within the Apache Axis engine, it is possible to nav-

igate to the service location in a browser and view the automatically generated WSDL,

which is discoverable from within Taverna as previously demonstrated. However sup-

port for Soaplab1 is provided via the Soaplab1 scavenger, which enables the discovery

of a Soaplab installation via the URL of the Soaplab1 services. This takes the form

http://<tomcat-host>:<tomcat-port>/soaplab/services. Each Soaplab1 service

is available as a processor which may be used in a workflow.

4.3.4 Soaplab2

The premise of Soaplab2 remains the same as for Soaplab1, that is, the wrapping of

legacy applications to expose them as web services. Despite an almost complete internal

re-write, from the perspective of service users, interaction is very similar. There are

some key differences for service providers however, which are explained here.
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Availability

The software is freely available from Sourceforge1.

Installation

Installation and building (as well as deployment) is handled by the Apache Ant2 tool,

which should be version 1.6.5. or later. A servlet container such as Tomcat is also

required. Soaplab2 supports two protocols for deploying web services: the original

Apache Axis protocol (there is no need to separately download Axis as it is bundled

with Soaplab2), and the new protocol which uses Java API for XML Web Services

(JAX-WS)3.

Soaplab2 is downloaded as a zipped package, which when extracted creates the

top-level directory soaplab2. Before building, there are some configuration steps which

should be carried out, which are explained in detail in Appendix B.

Ant may now be used to build Soaplab2. If behind a firewall, the environment

variable ANT OPTS should be set as follows (when using bash):

export ANT OPTS="-Dhttp.proxyHost=<proxy-host> -Dhttp.proxyPort=<proxy-port>

The command ant install should be executed from within the top-level directory

to start the build process. Successful completion is indicated by a terminal message.

To test the build, executing ant jaxdeploy deploys a few testing services.

Support

The project homepage, http://soaplab.sourceforge.net/soaplab2/ has a compre-

hensive user guide.

Web service protocols supported

SOAP and WSDL.

Implementation of tasks as web services

As for Soaplab1, deployment of an executable as a web service requires an ACD file

describing the command line of the executable. The same scripts and ACD files from

Soaplab1 can be used to deploy the add and subtract services using Soaplab2, following

these steps:

1http://soaplab.cvs.sourceforge.net/soaplab/soaplab2/
2http://ant.apache.org/
3https://jax-ws.dev.java.net/
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• The ACD files are copied to the src/etc/acd/sowa directory under the soaplab2

directory

• The executables are copied to the run directory under the soaplab2 directory

• ant gen is executed to create Soaplab2 run-time XML metadata from the ACD

files

• ant jaxdeploy is executed to deploy the services to Tomcat using the JAX-WS

protocol. This copies all the relevant files (executables and metadata) to the

Tomcat container

• ant axis1deploy is executed to deploy the services to Tomcat using the Axis pro-

tocol

Invoking the service - built-in client

Soaplab2 is packaged with a Java client program run-cmdline-client which is very similar

to the run-analysis-client program in Soaplab1. This may be used to invoke a service

to check if the deployment was successful. The client is executed as follows, to call the

add web service:

./build/run/run-cmdline-client -name calculator.add int1 4 int2 5 -w -r sum

where -name and -w are as before, whereas the -r flag is followed by the output name

sum, so that only the output is returned instead of the full report:

Job ID: [calculator.add]_3c2efc54.11eee414f72._7ff5

sum

---

4

Another included client is the web-based Spinet tool which enables the discovery

and execution of web services through a web form. This is a very convenient way to test

the successful deployment of Soaplab2 services. Figure 4.4 shows the Spinet client with

the input form for the add service. The URL for the Spinet client takes the form http://

<tomcat-host>:<tomcat-port>/soaplab2/, and for each service automatically generates a

form labelled with the appropriate input, and a button to click which starts execution

of the service. The results are then viewable in another web page (as specified during

the configuration steps prior to building).
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Figure 4.4: The Spinet web client. Services are grouped according their category, and
the form listing inputs is revealed by clicking on the service name

Invoking the service - Taverna client

Soaplab2 services deployed using the Axis protocol can be scavenged from within Tav-

erna and used in workflows in exactly the same way as Soaplab1 services. Those

deployed using the JAX-WS protocol use a different scavenger, which is installed from

a plugin site as follows:

• Select Tools -> Plugin Manager -> Find New Plugins -> Add Plugin Site

• Enter the following in the site URL and give an appropriate name (e.g. soaplab2

plugin): http://soaplab.sourceforge.net/taverna-plugin/

• Close the Plugin Manager

• Restart Taverna

• After restart, right-clicking Available Processors will show a new option ‘Add

Soaplab scavenger (version 2)’
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The above steps apply to Taverna version 1.7. To ensure the plugin works correctly,

Java should be at least update 4 of version 6, and the Taverna2 plugin should be

disabled. The Soaplab2 services are scavenged and added to a workflow as shown in

Figure 4.5

Figure 4.5: The Soaplab2 installation is scavenged from within Taverna, and the ser-
vices in the ‘calculator’ group are available to be used as workflow processors. The add

service is used in a simple workflow.

4.3.5 BioMoby

BioMoby (Wilkinson and Links, 2002) is an open-source research project that aims to

generate an architecture of discovery and distribution of biological data through web

services. Data and services are decentralised, but the availability of these resources and

instructions for interacting with them are all located in a central registry called MOBY

Central.
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Availability

BioMoby is freely available for download from the project website, http://www.biomoby.

org/. There are two implementations, in Java and Perl, so prerequisites depend on the

language chosen. Both make use of technologies already described: the Java version

requires Apache Tomcat and Apache Axis, while the Perl version uses the SOAP::Lite

module. The Perl version is tested here, the code for which may be downloaded from

CPAN1.

For deployment, the module MOSES-MOBY should also be downloaded2 This Perl

extension enables the automatic generation of BioMoby web services.

A CGI-based SOAP server also requires the installation of a web server capable of

running Perl-based CGI scripts.

Installation

The MOBY and MOSES-MOBY modules are installed using CPAN, however during

installation a package management utility (for example, yum) must be used in tandem,

as CPAN is unable to correctly handle development headers and so reports errors when

installing certain module dependencies. This is not indicated in the MOBY documen-

tation. Once the MOSES-MOBY module is installed, it is configured by executing the

interactive moses-install script.

Support

Comprehensive user support is available from the project website, which includes a

number of examples and various tools for testing and exploration of the various con-

stituent parts of MOBY Central.

Web service protocols supported

SOAP and WSDL.

Implementation of tasks as web services

BioMoby comprises an Object Ontology, a Namespace Ontology and a Service Ontology.

Objects that a service can consume and produce are lightweight XML documents that

conform to BioMoby object descriptions. The XML representing an Object contains

1http://search.cpan.org/dist/MOBY/
2http://search.cpan.org/dist/MOSES-MOBY/
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three piece of information: the namespace, the ID within that namespace and the data

itself. An example of the simplest type of Object is as follows:

<Object namespace = ‘NCBI gi’ id = ‘163483’/>

Namespaces are domains of ID numbers. In the above example Genbank is identified

by the ‘NCBI gi’ namespace, and 163483 is the value representing an instance of this

namespace. The Object ontology enables the construction of more complex Objects,

containing three types of relationship: ISA (an inheritance relationship, indicating all

properties of the parent are present in the child), HASA (a container relationship with

cardinality 1) and HAS (a container relationship with cardinality 1 or more). The root

of the Object ontology is called ‘Object’, the base from which all BioMoby data must

inherit from. Also organised in a hierarchical fashion is the Service Ontology. The only

relationship currently supported is ISA (inheritance).

Each BioMoby web service corresponds to one task as described in the framework;

in this example the add task is deployed. The first deployment step uses a script to

register the service with the desired service registry, an example of which is given in

Appendix B.

MOSES-MOBY is then used to generate the skeleton code of the service, and is

executed as follows:

moses-generate-services.pl -v -c mycib.ac.uk simpleCalculatorAdd

The -v flag indicates verbose mode, and the -c flag generates a service implementa-

tion and a CGI dispatcher script. As the Perl implementation is based on SOAP::Lite,

the service implementation (request handler) and dispatcher work together as previ-

ously described. For the simpleCalculatorAdd service, these two generated files are

labelled simpleCalculatorAdd.pm and simpleCalculatorAdd.cgi respectively.

The CGI dispatcher is ready to be placed in the appropriate directory of the web

server, but the handler must be edited, to implement the application logic of the service.

Both of these scripts are given in Appendix B.

Invoking the service - built-in client

BioMoby contains a client library (MOBY-Client) including methods for communicat-

ing with MOBY services. For convenience, MOSES-MOBY also provides a testing

script which is executed as follows:

moses-testing-service.pl Service::simpleCalculatorAdd input.xml

‘input.xml’ contains MOBY XML data:

<moby:MOBY xmlns:moby="http://www.biomoby.org/moby">
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<moby:mobyContent>

<moby:mobyData moby:queryID="job_0">

<moby:Simple moby:articleName="int1">

<moby:String moby:id="" moby:namespace="">1</moby:String>

</moby:Simple>

<moby:Simple moby:articleName="int2">

<moby:String moby:id="" moby:namespace="">2</moby:String>

</moby:Simple>

</moby:mobyData>

</moby:mobyContent>

</moby:MOBY>

The output is as follows, showing the service has been implemented correctly and

is returning the expected data:

<moby:MOBY xmlns:moby="http://www.biomoby.org/moby">

<moby:mobyContent moby:authority="mycib.ac.uk">

<moby:mobyData moby:queryID="job_0">

<moby:Simple moby:articleName="sum">

<moby:String moby:id="" moby:namespace="">3</moby:String>

</moby:Simple>

</moby:mobyData>

</moby:mobyContent>

</moby:MOBY>

Invoking the service - Taverna client

Support for BioMoby is provided through the BioMoby scavenger, which enables a user

to specify the location of a BioMoby central registry. Services and datatypes are then

available as workflow processors in the Available Services window, and are organised

according to their registration authorities. Figure 4.6 shows the simpleCalculatorAdd

service discovered and used in a Taverna workflow.

4.4 Conclusion

Table 4.1 summarises the criteria and test cases applied to each deployment technology.

SOAP::Lite is a powerful module, implementing tasks as web service operations

through the creation of subroutines which are exposed using a dispatcher. The lack of
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C
o
n
c
lu
sio

n

SOAP::Lite Apache Axis Soaplab1 Soaplab2 BioMoby

Availability Freely available Freely available Freely available Freely available Freely available

Installation
Prerequisites Perl, web server to run

CGI scripts
Java, servlet container Perl, Java, Apache

Axis and a servlet con-
tainer

Perl, Java, Apache
Ant and a servlet con-
tainer

(Perl version) Perl,
web server to run
CGI scripts, BioMoby
modules from CPAN

Procedure Module dependencies
handled automatically
by CPANmodule, oth-
erwise require manual
installation

Copy axis directory
to Tomcat, add JARs
to AXISCLASSPATH
environment variable

Interactive installation
script

Ant handles build and
installation tasks

Some BioMoby depen-
dencies handled au-
tomatically by CPAN
module, also require
package manager

Support Incomplete documen-
tation, responsive
mailing list

Comprehensive docu-
mentation, responsive
mailing list

Fairly comprehen-
sive documentation,
responsive mailing list

Comprehensive docu-
mentation, responsive
mailing list

Incomplete documen-
tation, responsive
mailing list

Web service protocols
supported

SOAP, WSDL (lim-
ited)

SOAP, WSDL SOAP, WSDL SOAP, WSDL SOAP, WSDL

Implementation of
tasks in a web service

Task = Perl subrou-
tine exposed as a web
service operation

Task = Java method
exposed as a web ser-
vice operation

Task = executable
wrapped as a web
service

Task = executable
wrapped as a web
service

Task = Perl subrou-
tine exposed as a web
service

Invoking the service -
built-in client

Client library available Client library available No client library, but
command-line client
included

No client library, but
command-line client
included

Client library available

Invoking the service -
Taverna client

Extra work required:
generation of WSDL
using Pod::WSDL
module, WSDL
scavenger built into
Taverna

No further work re-
quired: WSDL au-
tomatically generated,
WSDL scavenger built
into Taverna

No further work re-
quired: Soaplab1 scav-
enger built into Tav-
erna

No further work re-
quired: Soaplab2 scav-
enger built into Tav-
erna

No further work re-
quired: BioMoby scav-
enger built into Tav-
erna

Table 4.1: Summary of web service deployment technology evaluation
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Figure 4.6: BioMoby services are used in Taverna workflows slightly differently to the
examples already shown. The inputs to the workflow, in this case labelled ‘int1’ and
‘int2’ are used to provide a value for each ‘String’ object. The ‘Parse Moby Data String’
processor is used to parse the output of the ‘simpleCalculatorAdd’ service, to retrieve
the desired part of the output and direct it to the ‘sum’ output of the workflow.

direct support from within Taverna renders this an impractical solution for this work,

however, as there is an extra step required to generate WSDL, and services can only

be developed in Perl.

Apache Axis services provide a solution to this issue through automatic WSDL

generation, however services can only be written in Java, limiting its usefulness when

wrapping methods from existing network analysis libraries, a limitation which can also

be applied to SOAP::Lite.

Soaplab and BioMoby are composite frameworks, as they build on pre-existing tech-

nologies. Soaplab1 uses Apache Axis and Tomcat, while Soaplab2 introduces JAX-WS.

The Perl version of BioMoby uses SOAP::Lite to handle the sending and receiving of

SOAP messages. Both of these therefore offer a richer functionality. BioMoby is a

relevant package as it focusses on biological and bioinformatics services, and very suc-

cessfully implements an object-driven registry query system through the use of the
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object and service ontologies. This enables the traversal of a diverse set of data and

tools, where each possible step is based on the data which the user is currently investi-

gating. The same drawback exists however as for Apache Axis and SOAP::Lite in that

services may only be implemented in a single language, either Java or Perl depending

on the version chosen.

Soaplab is therefore the preferred choice for web service development. The main

advantages are the flexibility it offers regarding the language the service is written

in, and the availability of a Soaplab scavenger in Taverna. While the initial set of

network construction and analysis services were deployed using Soaplab1, the release

of Soaplab2 offers further advantages, such as the introduction of the Spinet web-based

client, and the use of Apache Ant to build, install, generate metadata and deploy

services. The introduction of Ant results in a much smoother development process.

However the creation of ACD files is still relatively laborious and time-intensive. Each

service requires an individually written ACD descriptor, and the process is not currently

automated.

One particular advantage offered by Soaplab over the other technologies stems from

the use of ACD to describe the command-line of an executable which is to be wrapped

as a service: the datatypes “infile” and “outfile”. Inclusion of these datatypes to

describe input and output data for a web service results in two differently named

arguments. For example, the input ’int1’ generates the arguments ‘int1 direct data’

and ‘int1 url’. The former is equivalent to “pass by value” and the latter to “pass by

reference”. Supporting pass by reference in web services is an important requirement,

as for large data, processing time and overheads are significantly reduced, and ‘out

of memory’ errors may be avoided. This is particularly relevant with regard to the

framework, which specifies that holistic network data can be submitted to web services

for processing. Sending such data via SOAP may incur significant performance issues.

An advantage when using BioMoby is that the ontologies ensure that all the services

that can consume a particular piece of data are presented to the user. For example,

if they wish to query an NCBI gene identifier, then only the services which consume

this object type are accessible. This semantic discovery of resources facilitates the

’wandering through large data sets in a manner similar to the thought processes of

biologists’ (Wilkinson and Links, 2002). While Soaplab cannot match this semantic

functionality, the development of the framework introduces categories of services aimed

at helping the user construct meaningful queries. A further advantage to Soaplab is

that scripts may be developed as ‘normal’ and are only wrapped as web services at the

final stage. This not only benefits a bioinformatics service provider, but enables other
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members of a research group to contribute to the total set of web services developed,

simply by giving an executable to the service provider, who can generate metadata and

deploy it as a service. Development of BioMoby services is a more intensive process:

objects and the services that consume them should be designed according to a rigorous

API. To overcome this issue, MOSES-MOBY offers a way to generate skeleton code,

thereby automating parts of the process.

Apart from BioMoby, none of the technologies surveyed implement a registry for

service discovery. As previously stated, bioinformatics services tend to be made avail-

able in an informal fashion, rather than adhering to a formal protocol such as UDDI.

Two recent initiatives however seek to address the problem of how to make such web

services discoverable by the research community. The EMBRACE Registry (Pettifer

et al., 2009) is motivated by the fact that while services are becoming common, the

mechanisms for publishing them are less mature. It enables users to rank and anno-

tate services, which are monitored automatically according to test scripts supplied by

service providers. This allows other users to select the most appropriate service for

their particular task. BioCatalogue (Goble et al., 2009), currently in beta, seeks to

solve similar issues and also enables users to search, register, and annotate biological

web services. A key advantage however is the provision of APIs which can be used by

Taverna to programmatically access the registry of services.
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Chapter 5

Web Services Developed

5.1 Introduction

The aim of this chapter is to present comprehensive documentation of the web services

developed by the author. The services are listed in alphabetical order within their

assigned Soaplab2 groups. This is the order in which they appear when scavenged

and displayed in the Available Processors pane within the Taverna workbench. The

documentation is divided into three parts:

• The first part of the documentation is a summary table of all the web services

developed, with the following headings:

Soaplab2 group The Soaplab2 group names are assigned during development.

Service name

Framework category A web service belongs to one of the four framework cat-

egories described in Chapter 3: data retrieval, data transformation, data

analysis or output rendering. The category is important when considering

the order in which services are connected when creating workflows.

Implementation details All the web services documented in this chapter are

developed using Soaplab2 as described in Chapter 4. Two components are

required for each web service: the underlying executable program which

is the application logic of the web service, and the custom ACD file used

to describe the command line of the executable and generate the interface

description. The implementation of a web service may therefore by described

using one of the following:
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– (A) Executable written in Perl by the author; custom ACD file written

by the author

– (B)* Executable written in Python by the author using methods from

the Python package NetworkX (Hagberg et al., 2008); custom ACD file

written by the author

– (B)** Executable written in Perl by the author using methods from the

Perl module Graph1; custom ACD file written by the author

– (B)*** Executable written in Perl by the author, using the Bio::Network

package from the BioPerl suite of modules (Stajich et al., 2002); custom

ACD file written by the author

– (B)**** Executable written in Perl by the author using methods from

the Perl module XML::DOM2; custom ACD file written by the author

– (C) Executable not written by the author, custom ACD file written by

the author

• The second part of the documentation is a detailed description of each service.

The description is given in terms of the intent, motivation and applicability. This

is to ensure that the user is given a specific context in which the web service may

be used, to better inform a decision regarding the application of that service to

their particular problem.

• The third part of the documentation is given in Appendix C. Here, the names

of inputs and outputs for each web service are defined, together with a tutorial

example to demonstrate its practical applicability.

5.2 Web service design

The reasoning behind the design of analysis web services (in the groups analyse directed

and analyse undirected) was based on the literature on biological network construction

and analysis, and the operations carried out on holistic datasets that have resulted

in biologically meaningful observations. As such, graph-theoretic libraries in Perl and

Python were identified as providing a large number of algorithms between them, which

are applicable to the field, and therefore appropriate for inclusion in the toolkit of web

services. Data transformation web services were each designed specifically to process a

1http://search.cpan.org/~jhi/Graph/
2http://search.cpan.org/dist/XML-DOM/
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particular network representation standard. Data retrieval web services were designed

to access local copies of publically available interaction datasets, and therefore are an

example of how a relevant dataset may be leveraged by an expert bioinformatician.

Output rendering web services were designed based on the type and format of data

produced by analysis operations.
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5.3 Table of web services

Soaplab2 group Service name Framework

category

Implementation

analyse directed add edges directed Data analysis (B)*

get network diameter directed Data analysis (B)*

get network radius directed Data analysis (B)*

get sink nodes directed Data analysis (B)*

get source nodes directed Data analysis (B)*

get subgraph directed Data analysis (B)*

largest strongly connected

component directed

Data analysis (B)*

list strongly connected

components directed

Data analysis (B)*

node degree directed Data analysis (B)*

node in degree directed Data analysis (B)*

node out degree directed Data analysis (B)*

query adjacency matrix directed Data analysis (B)**

rank betweenness directed Data analysis (B)*

rank closeness directed Data analysis (B)*

rank degrees directed Data analysis (B)*

rank secondary degrees directed Data analysis (B)*

remove edges directed Data analysis (B)*

shortest path directed Data analysis (B)*

shortest path length directed Data analysis (B)*

size distribution strongly

connected components directed

Data analysis (B)*

total edges directed Data analysis (B)*

analyse misc compare two rankings Data analysis (A)

reverse adjacency list Data analysis (A)

analyse undirected add edges undirected Data analysis (B)*

cliques containing node undirected Data analysis (B)*

find cliques undirected Data analysis (B)*

get average clustering

coefficient undirected

Data analysis (B)*

get bridges undirected Data analysis (B)**

get clique by size undirected Data analysis (B)*

get cut nodes undirected Data analysis (B)**

get cyclic core Data analysis (B)*

get network diameter undirected Data analysis (B)*

get network radius undirected Data analysis (B)*

get subgraph undirected Data analysis (B)*
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Soaplab2 group

(cont.)

Service name (cont.) Framework

category

(cont.)

Implementation

(cont.)

largest connected component

undirected

Data analysis (B)*

list connected components

undirected

Data analysis (B)*

node clustering coefficient

undirected

Data analysis (B)*

node degree undirected Data analysis (B)*

query adjacency matrix undirected Data analysis (B)**

rank betweenness undirected Data analysis (B)*

rank closeness undirected Data analysis (B)*

rank clustering coefficients

undirected

Data analysis (B)*

rank degrees undirected Data analysis (B)*

rank secondary degrees undirected Data analysis (B)*

remove edges undirected Data analysis (B)*

remove nodes Data analysis (B)*

remove self loops undirected Data analysis (B)*

remove singleton nodes Data analysis (B)*

size distribution connected

components undirected

Data analysis (B)*

size of largest clique undirected Data analysis (B)*

total edges undirected Data analysis (B)*

total nodes Data analysis (B)*

render output common graph to dot directed Output transfor-

mation

(A)

common graph to dot undirected Output transfor-

mation

(A)

dot Output rendering (C)

format psi25 id list Output transfor-

mation

(A)

format sbml id list Output transfor-

mation

(A)

neato Output rendering (C)

retrieve query atpid Data retrieval (A)

query inferred Data retrieval (A)

transform common graph to sif Data transforma-

tion

(A)

psi25 to common graph Data transforma-

tion

(B)***
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Soaplab2 group

(cont.)

Service name (cont.) Framework

category

(cont.)

Implementation

(cont.)

psitab to common graph Data transforma-

tion

(A)

sbml to common graph Data transforma-

tion

(B)****

sif to common graph Data transforma-

tion

(A)

Table 5.1: List of the network construction and analysis web services deployed

5.4 Description of web services

5.4.1 Group: analyse directed

5.4.1.1 add edges directed

Intent The intention of this web service is to add a specified set of edges to a directed

network, and return the new network.

Motivation Edges in biological networks represent interactions or reactions between bi-

ological entities. Such relationships are established via experimental methods, or may

be computationally inferred. This web service enables the addition of novel edges by

the user, following manual inspection and curation, thus improving the overall quality

of the network model. The addition of edges which are known to be biologically accu-

rate ensures that any further analyses are more likely to return significant result.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network, and a list

of edges also represented using the common graph format. N.B. as directionality is

encoded, the order of a pair of nodes which constitutes an edge is important. Therefore

if the network contains a directed edge E1 connecting A to node B but the specified

edge for addition is E2 connecting node B to node A, then edge E2 is added as a new

edge.

5.4.1.2 get network diameter directed

Intent The intention of this web service is to calculate the diameter of a directed net-

work. The diameter is defined as the maximum eccentricity of any node in the network,

where the eccentricity of each node n is the greatest distance (path length, or number of

edges) between n and any other node. The diameter is therefore the distance between
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the two nodes which are furthest away from each other in the network.

Motivation Network diameter may be used as a measure of robustness, that is, how

resilient a network is when faced with nodes or edges are removed. In biological net-

works this could refer to the mutation or removal of genes due to disease. As such

networks tend to be scale-free (as discussed in Chapter 2), deletion of random nodes

are tolerated relatively well (i.e. diameter remains characteristically small), whereas

targeted removal of hub nodes results in a greatly increased network diameter.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network. The web

service can only return the diameter if the directed network is strongly connected,

that is, if there is path between every pair of nodes in the network. This web service

may be applied to a network which is not strongly connected, however an error will be

reported.

5.4.1.3 get network radius directed

Intent The intention of this web service is to calculate the radius of a directed network.

The radius is defined as the minimum eccentricity of any node in the network, where

the eccentricity of each node n is the greatest distance (path length, or number of

edges) between n and any other node.

Motivation The network radius may be used as a measure of robustness in the same

way as the network diameter (see: get network diameter directed)

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network. The web

service can only return the radius if the directed network is strongly connected. This

web service may be applied to a network which is not strongly connected, however an

error will be reported.

5.4.1.4 get sink nodes directed

Intent The intention of this web service is to calculate the list of sink nodes in a directed

network. A sink node is one which only has predecessors and no successors.

Motivation Obtaining a list of sink nodes for a directed biological network such as a

metabolic network indicates which molecules are the final product of a sequence of

reactions. This information can be used to check the completeness of a holistic model;

molecules may be present in the list which should themselves be part of further reac-

tions, but this information is missing from the network model.
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Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network. (N.B. if

the network contains singleton nodes, then these are returned as sink nodes. If the user

wishes to ignore these, they should apply the web service remove singleton nodes first).

5.4.1.5 get source nodes directed

Intent The intention of this web service is to calculate the list of source nodes in a

directed network. A source node is one which only has successors and no predecessors.

Motivation Obtaining a list of source nodes for a directed biological network such as a

metabolic indicates which molecules are the initial substrates of a sequence of reactions.

This information can be used to check the completeness of a holistic model; molecules

may be present in the list which should themselves be part of further reactions, but

this information is missing from the network model.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network. (N.B. if

the network contains singleton nodes, then these are returned as source nodes. If the

user wishes to ignore these, they should apply the web service remove singleton nodes

first).

5.4.1.6 get subgraph directed

Intent The intention of this web service is to extract a subgraph from a directed net-

work given a list of nodes in that network, where the subgraph comprises the nodes in

the list and any edges connecting them, in the common graph format.

Motivation A subgraph of a holistic biological network may represent a clique, motif

or component and so it is useful to isolate this subgraph in order to carry out further

analyses, which could help to determine the biological function a particular element of

the subgraph, or the function of the subgraph as a whole. Isolation of the subgraph in

the common graph format also enables the user to visualise the subgraph using services

from the render output group of web services.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network, and a list

of nodes which are part of the network.
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5.4.1.7 largest strongly connected component directed

Intent The intention of this web service is to return a list of the nodes in the largest

strongly connected component of a directed network. A strongly connected component

is a subgraph which there exists a path between every pair of nodes.

Motivation This web service is motivated by work carried out on strongly connected

components in metabolic networks by Ma and Zeng (2003a), and further expanded

(Csete and Doyle, 2004; Kitano, 2004; Palumbo et al., 2005). Ma and Zeng established

the biological significance of strongly connected components by showing that, for the

metabolic networks of 65 fully-sequenced organisms, there exists a ‘bow-tie’ structure.

This consists of one giant strong component (GSC), a product subset of metabolites, a

substrate subset of metabolites and and isolated subset. This GSC is the largest of the

strongly connected components, which Ma and Zeng established as being the core of a

metabolic network, and the most complex part. Isolation of this part of the network is

therefore useful for further study.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.8 list strongly connected components directed

Intent The intention of this web service is to calculate a list of the nodes in each strongly

connected component of a directed network.

Motivation The significance of strongly connected components in directed biological

networks is described above. A list of the strongly connected components of a network

may be used to establish which part of the network metabolites and reactions appear

in.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.9 node degree directed

Intent The intention of this web service is to calculate the degree of a node of interest

in a directed network. The degree is the number of edges incident to the node, both

directed towards the node and away from it.

Motivation As discussed in Chapter 2, the degree of a node in a biological network can

indicate its global importance, as those nodes with a higher degree, commonly termed

network ‘hubs’ are involved in more interactions and/or reactions, and so their removal

may disturb the network architecture more significantly than those with a lower degree.
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Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.10 node in degree directed

Intent The intention of this web service is to calculate the in-degree of a node of interest

in a directed network. The in-degree is the number of incoming edges to the node.

Motivation Metabolic networks are frequently represented as directed networks, so the

in-degree is a useful calculation for a given reaction identifier, to ascertain how many

metabolites are substrates of the reaction. The in-degree of a metabolite denotes how

many reactions produce it.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.11 node out degree directed

Intent The intention of this web service is to calculate the out-degree of a node of

interest in a directed network. The in-degree is the number of outgoing edges from the

node.

Motivation Metabolic networks are frequently represented as directed networks, so the

out-degree is a useful calculation for a given reaction identifier, to ascertain how many

metabolites are products of the reaction. The out-degree of a metabolite denotes how

many reactions consume it.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.12 query adjacency matrix directed

Intent The intention of this web service is to create the adjacency matrix of a directed

network, and query it with a node of interest. The rows and columns of an adjacency

matrix are labelled by nodes. Position (n1,n2) is a 1 if n1 and n2are adjacent, or 0 if

they are not. If there is a directed edge going from n1 to n2, then n1 is adjacent to n2,

but n2 is not adjacent to n1 (i.e. the matrix is not symmetric).

Motivation The construction of an adjacency matrix to represent a network is useful

as it enables the discovery of which nodes are direct neighbours of a node of interest.

While caclulation of the in- and out-degree of a metabolite in a directed metabolic

network shows how many enzymes and/or reactions it is a substrate or product of, the

adjacency matrix shows which elements it is connected to.
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Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.13 rank betweenness directed

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their betweenness centrality values, from highest to low-

est. For a given node, the betweenness centrality is the proportion of shortest paths

between other nodes that it occurs on.

Motivation As discussed in Chapter 2, betweenness centrality is a useful measure of

the global importance of a node in a biological network. The ranking of all the nodes

in the network can therefore be used to select potentially significant molecules in the

network for further study.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.14 rank closeness directed

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their closeness centrality values, from highest to lowest.

The closeness centrality of a given node is the mean shortest path length between the

node and all other nodes reachable from it.

Motivation Closeness centrality is an indication of how quickly information can be

transferred from a given node to all others in a network, and so in biological networks

a ranking of closeness centralities can show which nodes are important with regard to

transferring the effects of perturbations.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.15 rank degrees directed

Intent The intention of this web service is to generate a list of all the nodes in the net-

work, ranked according to their degree values (in-degree plus out-degree), from highest

to lowest.

Motivation As discussed in Chapter 2, the degree of a node in a biological network can

indicate its global importance, as those nodes with a higher degree (‘hubs’) are involved

in more interactions and/or reactions, and so their removal may disturb the network

architecture more significantly than those with low degree. A ranking of all the nodes
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in the network according to their degree can be used to select potentially significant

molecules for further study.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.16 rank secondary degrees directed

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their secondarydegree values from highest to lowest. The

secondary degree of a node is defined as the number of nodes reachable from it which

are two edges away.

Motivation If a node in a network has a high degree, then it may be possible to infer

that the node is globally important. However a node may have a low degree, but have a

high secondary degree, i.e. it is connected to a small number of immediate neighbours,

but they in turn are connected a large number of immediate neighbours. There may

therefore be a high impact on the network if such a node is removed. In a directed

network such as one representing metabolism, this could be an enzyme which catalyses

a reaction where there is exactly one substrate and one product, but these are the

products and substrates respectively of a large number of reactions.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.17 remove edges directed

Intent The intention of this web service is to remove a specified set of edges from a

directed network, and return the new network.

Motivation Edges in biological networks represent interactions or reactions between bi-

ological entities. Such relationships are established via experimental methods, or may

be computationally inferred. This web service enables the removal of those edges which

a user deems to be inaccurate, thus improving the overall quality of the network model.

The removal of edges which are known to be biologically accurate simulates the effect

of a mutation or deletion, and the overall effect on the network’s architecture and in-

tegrity.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network, and a

list of edges also represented using the common graph format. NB as directionality is

encoded, the order of a pair of nodes which constitutes an edge is important. Therefore
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if the network contains a directed edge E1 connecting A to node B but the specified

edge for removal is E2 connecting node B to node A then edge E1 will not be removed.

5.4.1.18 shortest path directed

Intent The intention of this web service is to calculate the nodes which appear on the

shortest path between two nodes of interest.

Motivation There are a number of established pathways in biological networks, for ex-

ample the metabolic pathways which when assembled for a particular organism result a

metabolic network. Such pathways convert a particular substrate into a final product,

and both ends of the pathway may be produced and consumed, or be intermediaries

in, other pathways. A shortest path analysis can therefore be used to establish if there

is redundancy built into such pathways, by identifying an alternative route between

two metabolites of interest. In directed networks, it is also useful to determine if the

shortest path from n1 to n2 also exists in the other direction, between n2 and n1.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.19 shortest path length directed

Intent The intention of this web service is to calculate the length of the shortest path

(i.e. number of edges) between two nodes of interest.

Motivation In a metabolic network, the length of the shortest path between two metabo-

lites denotes how many reactions separate them.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.20 size distribution strongly connected components directed

Intent The intention of this web services is to calculate the distribution of sizes (number

of nodes) of strongly connected components in a directed network.

Motivation As discussed, strongly connected components in directed biological networks

such as those representing metabolism have been shown to conform to a ‘bow-tie’ struc-

ture, that is, there is one giant strong component, containing the core of the network,

and many smaller strong components. This web service is therefore useful to establish

whether or not a GSC may exist, before further analyses relating to strongly connected

components are carried out.
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Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.1.21 total edges directed

Intent The intention of this web service is to calculate the total number of edges in a

directed network.

Motivation The total number of edges in a network indicates the number of interac-

tions and/or reactions in a biological network, and so is a useful statistical measure

especially when taken in conjunction with the total number of nodes in the network,

as a comparison of the two reveals if the network is sparsely or densely connected.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network. This

web service will count all the edges in the network, i.e. in a network where there is a

directed edge connecting node A to node B and another directed edge connecting B to

A then the total edges is 2. The user may apply the web service total edges undirected

if they wish to count such a relationship as one edge.

5.4.2 Group: analyse misc

5.4.2.1 compare two rankings

Intent The intention of this web service is to compare two lists of nodes, where each

is a ranked according to some topological metric. The number of nodes to compare

from each list is specified by the user, and the web service calculates those nodes which

appear on only one of the lists, and those which appear in both.

Motivation This web service is motivated by research carried out by Joy et al. (2005), Gandhi

et al. (2006) and Bader and Madduri (2007), discussed in Chapter 2. These studies

established that globally important molecules may not be characterised by their high

degree alone, and so a direct comparison between rankings of, for example, degree and

betweenness, may help to reveal which molecules play a significant role in the network.

Applicability This web service may be applied to two generated rankings of nodes for

the same network.

5.4.2.2 reverse adjacency list

Intent An adjacency list is a (usually unordered) list of nodes in a network, where each

node is itself followed by a list of the nodes adjacent to it. The intention of this web
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service is to process an adjacency list representation of a set of interactions (commonly

PPIs), and ‘reverse’ it, so that the nodes in each adjacency list themselves are listed,

and followed by a list of adjacent nodes.

Motivation Having established the interacting partners of a set of proteins of interest,

the reversal of the adjacency list representation reveals which of the interacting part-

ners interact with two or more of the proteins. For example, a set of enzymes along a

metabolic pathway may interact with a number of other proteins, including other en-

zymes. The reversal of these interactions therefore shows which of these other proteins

interact with multiple enzymes, having a potential regulatory effecct on the pathway.

Applicability This web service may be applied to an adjacency list representation of a

set of interactions, where each line is a node, followed by the interacting partners of

that node, separated by any whitespace character.

5.4.3 Group: analyse undirected

5.4.3.1 add edges undirected

Intent The intention of this web service is to add a specified set of edges to an undi-

rected network, and return the new network.

Motivation Edges in biological networks represent interactions or reactions between bi-

ological entities. Such relationships are established via experimental methods, or may

be computationally inferred. This web service enables the addition of novel edges by

the user, following manual inspection and curation, thus improving the overall quality

of the network model. The addition of edges which are known to be biologically accu-

rate ensures that any further analyses are more likely to return significant result.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network, and

a list of edges also represented using the common graph format. NB as directionality

is not encoded, the order of a pair of nodes which constitutes an edge is unimportant.

Therefore if the network contains an edge E1 connecting A to node B and the specified

edge for addition is E2 connecting node B to node A, then E2 ≡ E1 and E2 is not

added as a new edge.

5.4.3.2 cliques containing node undirected

Intent The intention of this web service is to generate a list of cliques containing a

node of interest. A clique is a subset of nodes in a network such that there is an edge

connecting all pairs of nodes in the subset.

82



5.4 Description of web services

Motivation In biological networks, a clique may be considered analogous to a (possibly

functional) complex, for example in a PPI network. The cliques that a particular pro-

tein belongs to may be studied further to determine if all members of the clique bind

at the same time, or under the same environmental conditions.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.3 find cliques undirected

Intent The intention of this web service is to generate a list of all the cliques in a

network.

Motivation As discussed, cliques may be analogous to (possibly functional) complexes.

For a holistic network such one containing all known PPIs in an organism, this is a

lengthy calculation, but provides a list which may be examined to reveal potentially

novel complexes. This is also useful if there is no particular protein of interest under

study, and the user wishes to query the whole network.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.4 get average clustering coefficient undirected

Intent The intention of this web service is to calculate the value of the average clus-

tering coefficient. The clustering coefficient of a single node quantifies how close the

node’s neighbours are to being a clique, and the average is calculated all the nodes in

the network.

Motivation The measure was introduced by Watts and Strogatz (1998) to determine

if a network exhibited the small-world property. Small-world networks exhibit a clus-

tering coefficient significantly higher than expected by random chance.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.5 get bridges undirected

Intent The intention of this web service is to return a list of bridges for an undirected

network.

Motivation A bridge is an edge in an undirected network, whose removal increases the

number of connected components. In biological networks, an edge is analogous to a re-

action or interaction between two entities, and so identification of bridges reveals which
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are the interactions whose repression or removal altogether would fracture the network

into components and result in possibly limiting communication between different parts

of the network, or have a fatal effect, equivalent to cell death.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.6 get clique by size undirected

Intent The intention of this web service is to generate a list of cliques of a given size

(i.e. containing a particular number of nodes) for a network.

Motivation In a large PPI network, there may be a great many smaller cliques con-

taining one, two or three proteins. Such cliques may not have any functional relevance,

so by specifying a clique size the user may investigate larger, more significant cliques

systematically.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.7 get cut nodes undirected

Intent The intention of this web service is to return a list of cut nodes (also known as

articulation points) for an undirected network.

Motivation A cut node is a node in an undirected network, whose removal increases

the number of connected components. In biological networks, cut nodes are elements of

the network whose repression (e.g. of gene expression) or removal altogether (e.g. gene

deletion) would fracture the network into components, and result in possibly limiting

communcation between different parts of the network, or have a fatal effect, equivalent

to cell death.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.8 get cyclic core

Intent The intention of this web service is to calculate for either a directed or undirected

network, the list of nodes which make up the cyclic core. The cyclic core is defined as

a subgraph of the network where every node is part of a cycle, where a cycle is a path

where the source and destination nodes are the same.

Motivation Identification of cycles, particularly those involving regulatory steps, is

crucial for acquiring a physiological perspective on network behaviour. This analysis
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returns all the cycles in a network, however these must be studied further to establish

novel feedback behaviour.

Applicability This web service may be applied to a network represented in the common

graph format, which the user wishes to interpret as a directed or undirected network.

5.4.3.9 get network diameter undirected

Intent The intention of this web service is to calculate the diameter of a network. The

diameter is defined as the maximum eccentricity of any node in the network, where the

eccentricity of each node n is the greatest distance (path length, or number of edges)

between n and any other node. The diameter is therefore the distance between the two

nodes which are furthest away from each other in the network.

Motivation Network diameter may be used as a measure of robustness, that is, how

resilient a network is when faced with nodes or edges are removed. In biological net-

works this could refer to the mutation or removal of genes due to disease. As such

networks tend to be scale-free (as discussed in Chapter 2), deletion of random nodes

are tolerated relatively well (i.e. diameter remains characteristically small), whereas

targeted removal of hub nodes results in a greatly increased network diameter.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.10 get network radius undirected

Intent The intention of this web service is to calculate the radius of network. The

radius is defined as the minimum eccentricity of any node in the network, where the

eccentricity of each node n is the greatest distance (path length, or number of edges)

between n and any other node.

Motivation The network radius may be used as a measure of robustness in the same

way as the network diameter (see: get network diameter undirected)

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.11 get subgraph undirected

Intent The intention of this web service is to extract a subgraph from an undirected

network given a list of nodes in that network, where the subgraph comprises the nodes

in the list and any edges connecting them.

Motivation A subgraph of a holistic biological network may represent a clique, motif
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or component and so it is useful to isolate this subgraph in order to carry out further

analyses, which could help to determine the biological function a particular element of

the subgraph, or the function of the subgraph as a whole. Isolation of the subgraph in

the common graph format also enables the user to visualise the subgraph using services

from the render output group of web services.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network, and a

list of nodes which are part of the network.

5.4.3.12 largest connected component undirected

Intent The intention of this web service is to calculate the largest connected component

of an undirected network. A connected component is a subgraph in which there exists

a path between all pairs of nodes in the network.

Motivation In undirected biological networks such as PPI networks, it is commonly

the case that there exist a number of connected components, some of which may be

very small. These are isolated from each other, i.e. there are no interactions (edges)

connecting the different components, which may be due to a number of reasons, such

as incomplete knowledge, or experimental or human errors. Calculations such as path

lengths, diameter and radius cannot be carried out on a network that consists of con-

nected components, so the largest of these, when isolated, is useful for further study.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.13 list connected components undirected

Intent The intention of this web service is to calculate a list of the nodes in each con-

nected component of an undirected network.

Motivation While the largest component of a network is useful to carry out certain

graph-theoretic analyses, a complete list of connected components enables the user to

pick out the parts which do not connect to the larger subgraphs, and potentially suggest

ways to improve the accuracy of the network by investigating why the smaller compo-

nents exist, and modifying the network model if real biological events are deemed to

be missing.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.
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5.4.3.14 node clustering coefficient undirected

Intent The intention of this web services is to calculate the clustering coefficient of a

particular node of interest, in an undirected network.

Motivation The clustering coefficient of a single node may be used to determine how

close the neighbourhood of the node is to forming a clique. In a PPI network, if a

protein has a high clustering coefficient then it is more likely to be part of a complex

of interacting proteins.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.15 node degree undirected

Intent The intention of this web service is to calculate the degree of a node of interest

in an undirected network. The degree is the number of edges incident to the node.

Motivation As discussed in Chapter 2, the degree of a node in a biological network

can indicate its global importance, as those nodes with a higher degree are involved

in more interactions and/or reactions, and so their removal may disturb the network

architecture more significantly than those with a lower degree.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.16 query adjacency matrix undirected

Intent The intention of this web service is to create the adjacency matrix of an directed

network, and query it with a node of interest. The rows and columns of an adjacency

matrix are labelled by nodes. Position (n1,n2) is a 1 if n1 and n2are adjacent, or 0 if

they are not. If there is an undirected edge going from n1 to n2, then n1 is adjacent to

n2, and n2 is also adjacent to n1 (i.e. the matrix is symmetric).

Motivation The construction of an adjacency matrix representation of a network is

useful as it enables the discovery of which nodes are direct neighbours of a node of

interest. In a PPI network it is often the case that proteins share a similar function to

their interaction partners.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.
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5.4.3.17 rank betweenness undirected

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their betweenness centrality values, from highest to low-

est. For a given node, the betweenness centrality is the proportion of shortest paths

between other nodes that it occurs on.

Motivation As discussed in Chapter 2, betweenness centrality is a useful measure of

the global importance of a node in a biological network. The ranking of all the nodes

in the network can therefore be used to select potentially significant molecules in the

network for further study.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.18 rank closeness undirected

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their closeness centrality values, from highest to lowest.

The closeness centrality of a given node is the mean shortest path length between the

node and all other nodes reachable from it.

Motivation Closeness centrality is an indication of how quickly information can be

transferred from a given node to all others in a network, and so in biological networks

a ranking of closeness centralities can show which nodes are important with regard to

transferring the effects of perturbations.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.19 rank clustering coefficients undirected

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their clustering coefficients, from highest to lowest.

Motivation By ranking all the clustering coefficients in, for example, a PPI network, it

is possible to establish which proteins show the greatest tendency to be part of cliques.

A protein with a high clustering coefficient is therefore more likely to be part of a

(possibly functional) complex.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.
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5.4.3.20 rank degrees undirected

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their degree values, from highest to lowest.

Motivation As discussed in Chapter 2, the degree of a node in a biological network can

indicate its global importance, as those nodes with a higher degree (‘hubs’) are involved

in more interactions and/or reactions, and so their removal may disturb the network

architecture more significantly than those with low degree.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.21 rank secondary degrees undirected

Intent The intention of this web service is to generate a list of all the nodes in the

network, ranked according to their secondarydegree values from highest to lowest.

Motivation If a node in a network has a high degree, then it may be possible to infer

that the node is globally important. However a node may have a low degree, but have a

high secondary degree, i.e. it is connected to a small number of immediate neighbours,

but they in turn are connected a large number of immediate neighbours. There may

therefore be a high impact on the network if such a node is removed. In an undirected

network such as a PPI network, such a protein may connect two hubs which in turn

are highly connected to other proteins, so removal affects the communication between

these two highly connected areas of the network.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.22 remove edges undirected

Intent The intention of this web service is to remove a specified set of edges from an

undirected network, and return the new network.

Motivation Edges in biological networks represent interactions or reactions between bi-

ological entities. Such relationships are established via experimental methods, or may

be computationally inferred. This web service enables the removal of those edges which

a user deems to be inaccurate, thus improving the overall quality of the network model.

The removal of edges which are known to be biologically accurate simulates the effect

of a mutation or deletion, and the overall effect on the network’s architecture and in-

tegrity.

Applicability This web service may be applied to a network represented using the com-
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mon graph format, which the user wishes to interpret as an undirected network, and

a list of edges also represented using the common graph format. NB as directionality

is not encoded, the order of a pair of nodes which constitutes an edge is unimportant.

Therefore if the network contains an edge E1 connecting A to node B and the specified

edge for removal connects node B to node A then then E2 ≡ E1 and E2 is removed

from the network.

5.4.3.23 remove nodes

Intent The intention of this web service is to remove a set of nodes from a directed or

undirected network, and return the new network.

Motivation Nodes in biological networks can represent molecules such as genes, proteins

or metabolites, or events such as reactions. Unlike edges (reactions and interactions)

the presence of a node in a biological network is likely to be accurate, however provid-

ing the facility to remove nodes enables the user to manipulate a network under study

to their liking. Removal of a node can represent a mutation or deletion and thus can

enhance understanding of the role played by specific nodes in the network.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed or undirected

network.

5.4.3.24 remove self loops undirected

Intent The intention of this web service is to remove the self loops (also known as self

edges) from an undirected network, and return the network and a list of the nodes (if

any) which are connected to themselves.

Motivation A self loop in an undirected network such as a PPI network implies a pro-

tein which interacts with itself, i.e. forms a dimer. While it is biologically accurate to

represent such an interaction, the presence of self loops can skew the results of some

graph-theoretic analyses. For example, a self edge increases the degree of a protein by

one.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.25 remove singleton nodes

Intent The intention of this web service is to remove singleton nodes from a network,

and return the new network, as well as a list of singletons removed. A singleton node
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is defined in both directed and undirected graphs as having a degree of zero, that is,

there are no edges incident to the node.

Motivation Singleton nodes are uncommon in networks such as PPI and metabolic, as

by their nature such networks define relationships between molecules, and a protein,

gene or metabolite is rarely experimentally recorded as existing in isolation, rather they

undergo interactions and reactions with other molecules. Nevertheless, singletons may

arise as a result of certain analysis operations such as the removal of nodes and edges,

or from transforming network data from one format to another, where a particular net-

work entity is not labelled with the database identifier used throughout. Their presence

may skew certain analyses, for example, singleton nodes appear in lists of both source

and sink nodes, and the subgraph which consists of a single node is both a clique and

a connected components.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed or undirected

network.

5.4.3.26 size distribution connected components undirected

Intent The intention of this web services is to calculate the distribution of sizes (number

of nodes) of connected components in an undirected network.

Motivation As discussed, undirected biological networks such as PPIs may contain sub-

graphs that do not connect to each other. The distribution of component size shows

how many nodes belong to components of different sizes, and can prompt the user to

investigate the biological reasons for the existence of such components.

Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.27 size of largest clique undirected

Intent The intention of this web service is to calculate the size (i.e. number of nodes)

in the largest clique of an undirected network.

Motivation Cliques are subgraphs of the network in which all nodes are connected to

all other nodes. In an undirected graph which represents a PPI network, the largest

clique may be biologically significant. A recent study (Lin et al., 2009) hypothesised

that since highly connected proteins are globally important, cliques may also be associ-

ated with essentiality. They found that the maximum (largest) clique in the yeast PPI

network contained an extremely high number of essential proteins (90%).
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Applicability This web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.28 total edges undirected

Intent The intention of this web service is to calculate the total number of edges in an

undirected network.

Motivation The total number of edges in a network indicates the number of interac-

tions and/or reactions in a biological network, and so is a useful statistical measure

especially when taken in conjunction with the total number of nodes in the network,

as a comparison of the two can reveal if the network is sparsely or densely connected.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as an undirected network.

5.4.3.29 total nodes

Intent The intention of this web service is to calculate the total number of nodes in a

directed or undirected network.

Motivation The total number of nodes in a network indicates the number of molecules,

for example proteins, genes or metabolites, in the network. For certain representations

of metabolic networks the total also includes the number of reactions. The total num-

ber of nodes is a useful statistical measure when taken in conjunction with the number

of edges, as a comparison of the two can reveal if the network is sparsely or densely

connected.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed or undirected

network.

5.4.4 Group: format output

5.4.4.1 common graph to dot directed

Intent The intention of this service is to prepare a directed network for visualisation,

using the DOT language.

Motivation The results of certain analyses produce subgraphs containing nodes of in-

terest (e.g. shortest path directed). Such subgraphs may more helpfully viewed as

network diagrams in order to better appreciate their connectivity, and to aid biological

interpretations. The dot and neato web services developed are tools which generate
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layout diagrams of networks, but can only process networks represented using the DOT

language.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as a directed network.

5.4.4.2 common graph to dot undirected

Intent The intention of this service is to prepare an undirected network for visualisa-

tion, using the DOT language.

Motivation The results of certain analyses produce subgraphs containing nodes of in-

terest (e.g. cliques containing node undirected). Such subgraphs may more helpfully

viewed as network diagrams in order to better appreciate their connectivity, and to aid

biological interpretations. The dot and neato web services developed are tools which

generate layout diagrams of networks, but can only process networks represented using

the DOT language.

Applicability The web service may be applied to a network represented using the com-

mon graph format, which the user wishes to interpret as anundirected network.

5.4.4.3 dot

Intent The intention of this web service is to process a directed or undirected network

represented using the DOT language, and generate a hierarchical layout diagram of the

network.

Motivation Visualisation of networks can be a useful aid to interpreting results. The

DOT language is highly configurable with many options for node and edge (for exam-

ple, different colours and styles) which can clarify and highlight certain parts of the

network. The dot executable processes DOT files to generate layout diagrams.

Applicability This web service can be applied to a network represented using the DOT

language. It is particularly useful when applied to biological pathways, as the hierar-

chical layout ensures edges are displayed in the same direction (e.g. from left to right,

or top to bottom).

5.4.4.4 format psi25 id list

Intent The intention of this web service is to convert a list of PSI-MI 2.5 protein

identifiers into a list of corresponding descriptive names.

Motivation The ‘id’ field of a PSI-MI protein is smaller than the ‘fullName’ field and so

more useful computationally when working with graph data structures and algorithms.
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However the ‘fullName’ field is more descriptive and so it is useful to format a list

containing an ‘id’ for each protein with its name, to give more information to a user

studying a list of results.

Applicability This web service may be applied to a list of protein identifiers from a

PSI-MI 2.5 network, as long as the user has access to a proteins file, which is generated

using the psi25 to common graph web service.

5.4.4.5 format sbml id list

Intent The intention of this web service is to convert a list of SBML identifiers into a

list of corresponding SBML names, for ‘species’ in the network (i.e. molecules such as

metabolites and proteins).

Motivation The ‘id’ field of an SBML species is smaller than the ‘name’ field and so

more useful computationally when working with graph data structures and algorithms.

However the ‘name’ field is more descriptive and so it is useful to format a list containing

an ‘id’ for each molecule with its name, to give more information to a user studying a

list of results.

Applicability This web service may be applied to a list of identifiers from the SBML

‘id’ field, as long as the user has access to a species file, which is generated using the

sbml to common graph web service.

5.4.4.6 neato

Intent The intention of this web service is to process a directed or undirected network

represented using the DOT language, and generate a spring-embedded layout diagram

of the network.

Motivation Visualisation of networks can be a useful aid to interpreting results. The

DOT language is highly configurable with many options for node and edge (for exam-

ple, different colours and styles) which can clarify and highlight certain parts of the

network. The neato executable processes DOT files to generate layout diagrams.

Applicability This web service can be applied to a network represented using the DOT

language. It is particularly useful when applied to subgraphs such as cliques or con-

nected components, as the spring-embedded layout ensures nodes and edges are at an

optimum distance from each other, with minimal crossing of edges.
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5.4.5 Group: retrieve

5.4.5.1 query atpid

Intent The intention of this web service is to query the Arabidopsis thaliana Protein

Interaction Database (AtPID, Cui et al., 2008) with an AGI code of a gene of interest,

to retrieve any interacting proteins.

Motivation AtPID contains around 24,500 PPIs, obtained by integrating several predic-

tion methods for protein-protein interactions. Seven computational methods are used,

including identifying orthologous interactions in other organisms, identifying proteins

with shared biological function (i.e. their Gene Ontology annotations) as being more

likely to interact, and co-expression matrices, which are used to identify interacting

proteins on the basis of their similar gene expression patterns. The provision of a web

service interface to this data enables users to query for interacting proteins, which may

then be used in further study, for example topological metrics and protein locality

within the network.

Applicability The web service may be applied to an A. thaliana AGI identifier.

5.4.5.2 query inferred

Intent The intention of this web service is to query an inferred interactome for A.

thaliana, developed by Geisler-Lee et al. (2007).

Motivation The inferred dataset contains almost 20,000 interactions between 3,617 A.

thaliana proteins, predicted from interacting orthologues in H. sapiens, C. melanogaster,

C. elegans and S. cerevisae. The provision of a web service interface to this data en-

ables users to query for interacting proteins, which may then be used in further study,

for example topological metrics and protein locality within the network.

Applicability The web service may be applied to an A. thaliana AGI identifier.

5.4.6 Group: transform

5.4.6.1 common graph to sif

Intent The intention of this web service is to convert a network represented using the

common graph format into the Simple Interaction Format (SIF).

Motivation The common graph format is suitable for submission to the data analysis

operations described in this chapter, however SIF is a format compatible with the

software package Cytoscape. Conversion to SIF therefore enables the user to take

advantage of functionality provided by Cytoscape that is not available as part of this
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web services toolkit, such as visualisation of a whole network in order to manipulate

individual node colours and other attributes.

Applicability The web service is applicable when the user wishes to analyse a network

represented using the common graph format.

5.4.6.2 psi25 to common graph

Intent The intention of this web service is to convert a network represented using the

PSI-MI Level 2.5 XML-based format to the common graph format, retaining all the

interactions and/or reactions in the network required for network analysis.

Motivation PSI-MI Level 2.5 format is used to represent PPI networks. The conversion

of this format to the common graph format prepares a network for submission to the

data analysis web services, and avoids the situation in which a custom set of analysis

tasks must be created for each format. A number of databases provide PPI to download

in this format, for example BIND, HPRD and DIP. The PSI-MI XML format is very

large compared to the common graph representation, and so the reduced file size enables

faster data transfer and analysis.

Applicability The web service is applicable when the user wishes to analyse a network

represented using the PSI-MI Level 2 format.

5.4.6.3 psitab to common graph

Intent The intention of this web service is to convert a network represented using the

PSI-MI tab-delimited format to the common graph format, retaining all the interac-

tions and/or reactions in the network required for network analysis.

Motivation PSI-MI tab-delimited format is used to represent PPI networks. The con-

version of this format to the common graph format prepares a network for submission

to the data analysis web services, and avoids the situation in which a custom set of

analysis tasks must be created for each format. A number of databases provide PPI

to download in this format, for example IntAct and MINT. The PSI-MI tab-delimited

format is very large compared to the common graph representation, and so the reduced

file size enables faster data transfer and analysis.

Applicability The web service is applicable when the user wishes to analyse a network

represented using the PSI-MI tab-delimited format.

96



5.4 Description of web services

5.4.6.4 sbml to common graph

Intent The intention of this web service is to convert a network represented using

the SBML Level 2 XML-based format to the common graph format, retaining all the

interactions and/or reactions in the network required for network analysis.

Motivation SBML Level 2 format is one of a number of formats used to represent

biological networks, commonly metabolic networks. The conversion of this format to

the common graph format prepares a network for submission to a number of data

analysis web services, and avoids the situation where a custom set of analysis tasks

must be created for each format. The SBML format is very large compared to the

common graph representation, and so the reduced file size enables faster data transfer

and analysis.

Applicability The web service is applicable when the user wishes to analyse a network

represented using the SBML Level 2 format.

5.4.6.5 sif to common graph

Intent The intention of this web service is to convert a network represented using SIF

to the common graph format, retaining all the interactions and/or reactions in the

network required for network analysis.

Motivation SIF is one of a number of formats used to represent biological networks.

The conversion of this format to the common graph format prepares a network for

submission to a number of data analysis web services, and avoids the situation where

a custom set of analysis tasks must be created for each format.

Applicability The web service is applicable when the user wishes to analyse a network

represented using SIF.
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Chapter 6

Biological Observations

The aim of this chapter is to describe computational workflows that are relevant to

biological research, created within the Taverna workbench. They use web services

developed for this work as well as those developed by external providers.

As discussed in Chapter 3, Taverna uses processor types to abstract over the differ-

ent service interfaces, meaning that workflows define a set of processors between which

data are passed. The framework defines categories which are used to guide workflow

creation, by specifying an order in which processors are linked together. Within the

context of network construction and analysis, the processors perform specific functions,

that is, one of either data retrieval, data transformation, data analysis, or output for-

matting. However there is sometimes also a need for generic control processors to be

included in a workflow, to ensure that data are routed correctly.

The construction of each workflow in this Chapter is therefore guided by the frame-

work developed in Chapter 3. For each workflow, the following are documented:

• The biological motivation for developing the workflow.

• The workflow description, which comprises a summary of the processors used and

the Taverna workflow diagram.

• A table of processors used in the workflow, giving the name of each processor and

it’s framework category, type and detailed description.

• An example input to the workflow.

• The interpretation of the result obtained.
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6.1 Holistic network analysis

6.1.1 Motivation

Various topological properties may be calculated for holistic networks. These properties

characterise the global structure of the network, and may be used as a starting point for

further investigation. As described in previously-mentioned studies, biological networks

of various types demonstrate a scale-free topology, and have a hierarchical structure,

leading to properties such as modularity, local clustering and a heterogeneous degree

distribution. This workflow may therefore be used to establish if a real network of

interactions derived through experimental means possesses these properties, and the

implications this has for its global structure.

6.1.2 Workflow description

The workflow begins with a data transformation step, which parses the human PPI

interactions obtained from the MINT database in the tab-delimited PSI-MI format,

and returns the same interactions in the common graph format. The resulting network

is then passed to 13 data analysis processors. These are all for undirected graphs, as

PPI networks encode binary interactions where directionality is not recorded. Most

of the results of these analysis operations are returned directly, however two output

formatting steps are applied to enable the visualisation of one result, the largest clique

in the network, as a layout diagram. The workflow diagram is shown in Figure 6.1

6.1.3 Table of workflow processors

The names of some Soaplab processors in this workflow have been contracted to make

the workflow diagram less cluttered. The full names of the processors used are given

in brackets.

Processor name Framework

category

Type Details

psi tab to common graph Data transforma-

tion

Soaplab processor See Appendix C

remove singleton nodes Data analysis Soaplab processor See Appendix C

list CC

(list connected components

undirected)

Data analysis Soaplab processor See Appendix C

DEG (rank degrees undirected) Data analysis Soaplab processor See Appendix C

FC (find cliques undirected) Data analysis Soaplab processor See Appendix C
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Processor name (cont.) Framework

category

(cont.)

Type (cont.) Details (cont.)

sizeCC

(size distribution connected

components undirected)

Data analysis Soaplab processor See Appendix C

LCC

(largest connected component

undirected)

Data analysis Soaplab processor See Appendix C

subLCC

(get subgraph undirected)

Data analysis Soaplab processor See Appendix C

DIA (get network diameter

undirected)

Data analysis Soaplab processor See Appendix C

EDGES (to-

tal edges undirected)

Data analysis Soaplab processor See Appendix C

NODES (total nodes) Data analysis Soaplab processor See Appendix C

SLC

(size largest clique undirected)

Data analysis Soaplab processor See Appendix C

CBS

(get clique by size undirected)

Data analysis Soaplab processor See Appendix C

subLClique

(get subgraph undirected)

Data analysis Soaplab processor See Appendix C

cg2dot (com-

mon graph to dot undirected)

Output transfor-

mation

Soaplab processor See Appendix C

neato Output rendering Soaplab processor See Appendix C

6.1.4 Input

Human PPIs from MINT in PSI-TAB format. The latest version is available from

the MINT FTP site at ftp://mint.bio.uniroma2.it/pub/release/MITAB/current.

This workflow was executed using the file “2009-04-14-mint-human.mitab25.txt” (April

2009 version).

6.1.5 Output interpretation

There are 10 outputs produced as a result of executing this workflow:

• list cc A list of the connected components in the network, separated by newline

characters

• diameter The diameter of the largest connected component

• cliques A list of the cliques in the network, separated by newline characters
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Workflow Outputs

Workflow Inputs

listCC

list_cc

CBS

subLClique

EDGES

total_edges

DEG

deg_ranking

FC

cliques

sizeCC

sizeCC

cg2dot

NODES

total_nodes

remove_singleton_nodes

SLC

subLCC

LCC

singletons

psitab_to_common_graph

neato

sizeLClique largest_clique

DIA

diameter

psitab_network

Figure 6.1: Topological metrics for a holistic PPI network

• deg ranking A list of all the proteins in the network, ranked by their degrees, from

highest to lowest

• largest clique The largest clique in the network rendered as a diagram

• total nodes The total number of proteins in the network

• total edges The total number of interactions in the network

• size CC The size distribution of the connected components in the network

• sizeLClique The number of proteins in the largest clique

• singles from psitab A list of singleton proteins in the network

The data transformation step converts the PSI-MI tab-delimited format to the

common graph format. If an interaction is recorded where at least one participant is

not represented using a Uniprot identifier, this protein is removed from the network.

This leads to a number of proteins existing in the network as singleton nodes, which

are removed as they have the potential to skew the results of downstream analyses.

The removed proteins are recorded in a separate workflow output.

The resulting network consists of 7170 proteins and 16110 interactions. The largest

connected component consists of 6592 proteins. Despite this relatively large size, the
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diameter of this component is 14, and as this is the greatest distance between all

pairs of proteins in the network, it implies the existence of proteins which are highly

connected. The list of connected components shows the isolated subgraphs in the

network. While the largest has been selected for further analysis here, any of the others

may be examined further to establish why they do not join up to the main component, or

indeed if they should at all. The list is useful when checking the biological completeness

of the PPI network.

The degree ranking reveals that the top twenty degrees range from 311 down to

89, a sharp drop-off. In fact, as expected for a large-scale network, there are a large

number of low-degree proteins, versus a relatively lower number of high-degree proteins.

The degree ranking may be used to investigate so-called protein hubs, or those proteins

which bind a large number of other proteins and therefore may be globally important.

The number of proteins in the largest clique is ten. While this clique was selected

for visualisation, the list of cliques generated may be used to select other potentially

interesting clique sizes. The largest clique has been rendered as a layout diagram (see

Figure 6.2). A clique in a PPI network is a set of proteins that all bind each other, and

a clique of this size may have a biologically significant role. The significance of this set

of bindings may depend on temporal factors, that is, whether the proteins bind each

other all at the same time, or if different proteins in the clique come together at different

times, perhaps under different conditions. To investigate this further, the annotations

for each protein were retrieved, and can be seen in Table 6.2 This is a biologically

meaningful clique, as it represents RNA polymerase II, a multi-protein complex whose

constituent proteins bind simultaneously, and attach to DNA in order to initiate tran-

scription and produce complementary RNA chains. Of the two non-RNA polymerase

proteins, Q92830 (general control of amino acid synthesis) is described in Uniprot as

functioning as histone acetyltransferase to promote transcriptional activity. Q9Y4A5

(transformation/transcription domain-associated protein) is an adapter protein which

is associated with histone acetyltransferase activity.

6.2 Cycle identification

6.2.1 Motivation

Identification of cycles in biological networks is crucial to acquire a physiological per-

spective on network behaviour. Cycles are sequences of interactions or reactions in a

cell which are used to reinforce certain cell-scale mechanisms: homeostasis, oscillation,
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Figure 6.2: Largest clique in the human PPI network retrieved from the MINT
database, rendered as a network layout diagram.

Uniprot identifier Recommended name

Q9UHV7 Mediator of RNA polymerase II transcription subunit 13
O75448 Mediator of RNA polymerase II transcription subunit 24
Q92830 General control of amino acid synthesis protein 5-like 2
Q9Y2X0 Mediator of RNA polymerase II transcription subunit 16
Q93074 Mediator of RNA polymerase II transcription subunit 12
Q9Y4A5 Transformation/transcription domain-associated protein
Q15648 Mediator of RNA polymerase II transcription subunit 1
Q9NVC6 Mediator of RNA polymerase II transcription subunit 17
O60244 Mediator of RNA polymerase II transcription subunit 14
Q9ULK4 Mediator of RNA polymerase II transcription subunit 23

Table 6.2: Annotations for members of the largest clique in the human PPI network
retrieved from MINT.

stress response and developmental growth. By reducing a network to its constituent

cycles, it is possible to deduce which, if any, cycles are regulating these cell-scale be-

haviours, and whether they are involved in positive or negative feedback.

6.2.2 Workflow description

The workflow commences with a data transformation step, to prepare the network

for analysis. In this example, an SBML model is transformed into a common graph

representation. Two analysis steps for directed networks are then applied, to obtain

the subgraph of the cyclic core of the network, again represented using the common
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graph format. The output formatting step format sbml id list is preceded and followed

by a number of generic shims to ensure that the SBML identifiers are converted to

the corresponding descriptive names. The two final output formatting processors are

applied to render the cyclic core of the network as a layout diagram. The workflow

diagram is shown in Figure 6.3.

6.2.3 Table of workflow processors

Processor name Framework

category

Type Details

sbml to common graph Data transforma-

tion

Soaplab processor See Appendix C

get cyclic core Data analysis Soaplab processor See Appendix C

get subgraph directed Data analysis Soaplab processor See Appendix C

split n/a - generic con-

trol

Local processor Splits the string

output from

get subgraph directed

into a list of strings

split1 n/a - generic con-

trol

Local processor Splits the string output

from split into a list of

strings

format sbml id list Output transfor-

mation

Soaplab processor See Appendix C

join tab n/a - generic con-

trol

Beanshell processor Beanshell script which

joins the string list output

from format sbml id list

using a tab character, to

form a string

merge n/a - generic con-

trol

Local processor Flattens the string list out-

put from join tab to a

string

common graph to dot

directed

Output transfor-

mation

Soaplab processor See Appendix C

neato Output rendering Soaplab processor See Appendix C

6.2.4 Input

SBML model of cholesterol metabolism from GeneNet (Ananko et al., 2005), down-

loaded from http://wwwmgs.bionet.nsc.ru/mgs/gnw/gn_model/List_of_Models_SBML.shtml. The

version used was model number six, “Cholesterol MODEL”.
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6.2.5 Output interpretation

The reduction of the model of cholesterol metabolism to its cyclic core, and subsequent

pictorial depiction enables the visualisation of cycles in the network. The layout dia-

gram generated as a result of running this workflow with the specified input is shown

in Figure 6.4. This example is a test case as the cycles in cholesterol metabolism are

well characterised, and owing to the relatively small size of the network, are suitable

for visualisation.

The regulatory edges and nodes involved are highlighted in the layout diagram. The

presence of cholesterol affects the formation of the sterol regulatory element binding

protein (SREBP1 in the diagram), through reaction1568. SREBP1 acts as a transcrip-

tion factor to stimulate the transcription of many genes, including HMG-CoA reductase

(Hs:HMGCR in the diagram), through reaction319. This is the rate-controlling enzyme

of the mevalonate pathway, and converts HMG-CoA to mevalonic acid. Cholesterol is

the final product of the pathway, and therefore regulates its own synthesis. In the pres-

ence of cholesterol, SREBP1 forms a complex with two other proteins: SREBP-cleavage

activating protein (SCAP) and Insig1. When cholesterol levels fall, Insig1 dissociates

from the SREBP-SCAP complex, which then migrates to the Golgi apparatus. SREBP

is then cleaved by two enzymes, and migrates to the nucleus, activating the expression

of HMG-CoA reductase, thereby initiating the production of more cholesterol. This is

an example of a negative feedback cycle leading to homeostasis.

6.3 Local networks

6.3.1 Motivation

Given a whole PPI network, and a particular protein of interest in that network, it is

often useful to isolate the local network around that protein. In this context the local

network refers to the set of proteins up to a specified number of edges away from that

network, as well as any interconnections between proteins in that set. A protein is

more likely to interact with another protein whose role it shares (Nabieva et al., 2005;

Sharan et al., 2007). Viewing a protein in the context of its local network, as well as

examining the topology of the local network, may shed further light on its metabolic

or regulatory role.
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6.3 Local networks

6.3.2 Workflow description

A data retrieval step is called, either once, twice or three times, depending on the size of

local network required. In this example, query atpid is called first on the query protein,

then twice more on the subsequent interacting proteins, to find all the proteins up to

three edges away from the query. A set of processors for generic control (Beanshells

and Local Processors) are used to manipulate the lists of proteins identified as being

in the local network, to ensure that all proteins are retained in the final list. Another

data retrieval step is a nested workflow which retrieves the GO terms for each protein.

The data are then passed through an analysis step, to return the subgraph comprising

the proteins in the local network. Two output formatting steps are applied to render

the local network as a layout diagram. The layout diagram is directed into one output,

while the list of proteins in the local network, and their associated GO terms are

directed into another output.

The main workflow diagram is shown in Figure 6.5. The workflow contains four

nested workflows, first edge, second edge and third edge which are all the same workflow,

and get GO for AGI. These workflows are shown in Figure 6.6.
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6.3 Local networks

Figure 6.3: Identification of cycles in a metabolic network model
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6.3 Local networks

Workflow Outputs

Workflow Inputs

first_edge

merge_first_interactors second_edge

concat1

merge third_edge

merge_second_interactors

concat2

split

remove_dups

get_GO_for_AGI

merge3

merge1

merge2

merge_third_interactors

GO_terms

get_subgraph_undirected

common_graph_to_dot_undirected

neato

local_network

query

Figure 6.5: Generation of the local network around a protein of interest in the AtPID
dataset

109

NEW_local_networks_3_edges.ps


6.3 Local networks

Workflow Outputs

Workflow Inputs

split

interactors

query_atpid

AGI

(a) Query the AtPID
database to retrieve in-
teracting proteins for a
given query protein

Workflow Outputs

Workflow Inputs

merge

merge1

join

GO_terms

Parse_Moby_Data_GO_Term

Locus2GoIDs

Object

id

(b) Retrieve Gene Ontology terms for A.
thaliana proteins using a BioMoby web
service

Figure 6.6: Nested workflows used in a workflow to generate a local network around an
A. thaliana protein in AtPID
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6.3 Local networks

6.3.3 Table of workflow processors

Table of processors for main workflow:

Processor name Framework

category

Type Details

first edge Data retrieval Nested workflow See following tables

second edge Data retrieval Nested workflow See following tables

third edge Data retrieval Nested workflow See following tables

get GO for AGI Data retrieval Nested workflow See following tables

merge first interactors n/a - generic con-

trol

Local processor Flattens the string list out-

put from first edge by one

level

merge n/a - generic con-

trol

Local processor Flattens the string list out-

put from second edge by

one level

merge second interactors n/a - generic con-

trol

Local processor Flattens the string list out-

put from merge by one

level

concat1 n/a - generic con-

trol

Beanshell Concatenates two

lists of proteins,

merge first interactors

and

merge second interactors

merge1 n/a - generic con-

trol

Local processor Flattens the string list out-

put from third edge by one

level

merge2 n/a - generic con-

trol

Local processor Flattens the string list out-

put from merge1 by one

level

merge third interactors n/a - generic con-

trol

Local processor Flattens the string list out-

put from merge2 by one

level

concat2 n/a - generic con-

trol

Beanshell Concatenates two lists

of proteins, concat1 and

merge third interactors

split n/a - generic con-

trol

Local processor Splits the string output

from concat2 into a list of

strings

remove dups n/a - generic con-

trol

Local processor Removes duplicate strings

from the list output of split

merge3 n/a - generic con-

trol

Local processor Flattens the string list out-

put from remove dups by

one level
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6.3 Local networks

Processor name (cont.) Framework

category

(cont.)

Type (cont.) Details (cont.)

get subgraph undirected Data analysis Soaplab processor See Appendix C

common graph to dot

undirected

Output transfor-

mation

Soaplab processor See Appendix C

neato Output rendering Soaplab processor see Appendix C

Table of processors for data retrieval workflow first edge (second edge and third edge

are identical, so the corresponding tables are not shown):

Processor name Framework

category

Type Details

query atpid Data retrieval Soaplab processor See Appendix C

split n/a - generic con-

trol

Local processor Splits the string output from

query atpid into a list of strings

Table of processors for data retrieval workflow get GO for AGI:

Processor name Framework

category

Type Details

Object n/a - generic con-

trol

BioMoby Object On-

tology node

Takes as input a “namespace”

and “id” to produce mobyData

Locus2GOIDs Data retrieval BioMoby processor BioMoby web service provided

by arabidopsis.org, accepts

output of Object and returns

corresponding GO terms

Parse Moby Data

GO Term

n/a - generic con-

trol

BioMoby parser Parses the output from Lo-

cus2GOIDs to enable extraction

of the required content

merge n/a - generic con-

trol

Local Processor Flattens the string

list output from

Parse Moby Data GO Term

by one level

merge1 n/a - generic con-

trol

Local processor Flattens the string list output

from merge by one level

join n/a - generic con-

trol

Beanshell processor Beanshell script to prefix the

query protein identifer to the

list of corresponding GO terms

6.3.4 Input

An AGI identifier corresponding to a protein of interest. For the example, the identifier

AT4G03460 is used. This protein contains ankyrin repeat domains. The GO molecular
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function is identified as ‘protein binding’, but the GO biological process and GO cellular

component are both unknown. The maximum number of edges away from the query

protein is set to 3. In practice, generating a network any larger than this is impractical,

as the small-world nature of the global network means that most of the network would

be returned.

6.3.5 Output interpretation

The two outputs of the workflow are shown in Figure 6.7 (layout diagram of local

network) and Table 6.7 (list of proteins in the local network, with associated GO

terms). As mentioned, there are no associated GO terms for the query AT4G03460,

along with nine other proteins in the local network. AT4G03460 interacts with nine

proteins directly. The GO terms for some of these proteins include ‘sulfate transport’,

‘membrane’, ‘integral to membrane’ and ‘protein amino acid phosphorylation’. One

protein that interacts with the query, ATG312520, is involved in a clique with 5 other

proteins. The GO terms associated with proteins in this clique strongly suggest a

functional module relating to sulfate transport across membranes, so the fact the query

is connected to this clique strengthens the assumption that its role is related.

Another area of interest in the local network is a second clique, not directly con-

nected to the query, but instead two edges from it, via AT1G03670. This clique

contains seven proteins, but there is only one protein with any annotation: the pro-

tein AT5G50390 is associated with ‘chloroplast’. Also connected to the query via

AT1G03670 is an area of the local network which is not a clique, but is richly anno-

tated. The annotations are not as unifying as the first clique discussed above, in fact

the only term that appears more than once is ‘protein amino acid phosphorylation’.

This is surprising, as across these eight interacting proteins, there are 22 terms in total,

with 21 distinct terms, implying a rather heterogeneous grouping of proteins. Another

collection of interacting proteins connected to the query indirectly do however share

many functional terms despite not being a clique. The gateway to this part of the

network is AT3G53810, and these proteins are involved in ‘protein amino acid phos-

phorylation’, ‘endomembrane system’ and ‘plasma membrane’. In fact so many of these

proteins share similar GO annotations that there may be some interactions occurring

which have not been computationally inferred or experimentally derived, but do in fact

exist.
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6.3 Local networks

AGI identifier Associated GO terms

AT1G03670 None

AT5G26710 cytoplasm; tRNA aminoacylation for protein translation;

glutamyl-tRNA aminoacylation; translation

AT5G60300 plasma membrane

AT3G45430 protein amino acid phosphorylation

AT5G39350 mitochondrion

AT3G12520 sulfate transport; transport; membrane; integral to mem-

brane

AT1G77990 sulfate transport; transport; membrane; integral to mem-

brane

AT3G04910 membrane

AT5G03730 None

AT5G46240 None

AT3G53810 protein amino acid phosphorylation; endomembrane sys-

tem

AT5G10180 membrane; integral to membrane

AT1G20230 None

AT3G12770 None

AT5G50390 chloroplast

AT3G14730 None

AT3G46790 None

AT3G24000 None

AT4G03460 None

AT4G02420 protein amino acid phosphorylation; endomembrane sys-

tem

AT3G55550 protein amino acid phosphorylation; plasma membrane

AT3G51895 sulfate transport; transporter activity; transport; mem-

brane; integral to membrane; secondary active sulfate

transmembrane transporter activity

AT3G15990 sulfate transport; transport; membrane; integral to mem-

brane

AT1G23090 sulfate transport; transport; membrane; integral to mem-

brane

AT5G13550 sulfate transport; transport; membrane; integral to mem-

brane

AT1G78000 membrane; integral to membrane

AT3G09790 cell wall; vacuole

AT3G45440 protein amino acid phosphorylation; endomembrane sys-

tem

AT5G67200 protein amino acid phosphorylation; ATP binding;

plasma membrane; plasma membrane; protein kinase ac-

tivity; protein binding
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6.3 Local networks

AGI identifier (cont.) Associated GO terms (cont.)

AT4G29050 protein amino acid phosphorylation; endomembrane sys-

tem

AT5G25150 regulation of transcription; transcription regulator activ-

ity; nucleus

AT3G55400 chloroplast

AT5G39960 GTP binding; intracellular

AT5G13520 zinc ion binding; binding; proteolysis; leukotriene biosyn-

thetic process; metallopeptidase activity

AT5G60310 protein amino acid phosphorylation; endomembrane sys-

tem

AT4G15720 None

AT3G22330 nucleic acid binding; helicase activity; ATP-dependent

helicase activity; ATP binding; cell wall; nucleolus

Table 6.7: List of proteins in the local network of AT4G03460 and their associated GO
terms
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AT4G15720

AT3G46790

AT5G50390

AT3G24000
AT3G14730

AT3G12770

AT1G20230

AT3G15990

AT5G13550 AT1G23090

AT5G10180

AT3G51895
AT3G12520

AT1G77990

AT4G03460

AT3G53810

AT3G04910

AT1G03670

AT5G03730

AT5G46240

AT3G55550

AT4G02420

AT5G67200

AT5G25150

AT4G29050

AT3G45440

AT5G39350AT5G60300

AT3G45430
AT5G60310

AT3G55400

AT3G22330

AT5G39960

AT5G13520

AT3G09790

AT5G26710

AT1G78000

Figure 6.7: Local network around the query A. thaliana protein AT4G03460. The dot
file produced by the workflow is modified to highlight subgraphs of note in the network.
The query protein is shown in red. The green proteins form a clique, for which there
is only one member, AT5G50390, with any annotation. The yellow proteins also form
a clique, whose members are annotated with several common GO terms, suggesting
this is a functional clique, relating to sulfate transport across membranes. The blue
proteins do not form a clique, but do share many similar GO terms.
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6.4 Source and sink metabolites in a network model of metabolism

6.4 Source and sink metabolites in a network model of

metabolism

6.4.1 Motivation

Source and sink nodes in a directed biological network such as one representing metabolism

are those which are at the start or end of enzymatic pathways, and are not themselves

produced or consumed, respectively. If a model of metabolism is complete and accu-

rate then the lists of sources and sinks should consist of only essential substrates and

fermentation products, respectively. Production of both lists is therefore a key stage of

model curation, to suggest reactions that are either erroneous, missing or incomplete.

We would also hope to see elements in both lists which are expected to be present.

6.4.2 Workflow description

The workflow starts with a data retrieval step, to obtain the SBML model for analysis

from the BioModels database. A data transformation step converts the SBML to the

common graph format, which is then submitted to two data analysis steps, to get a list

of the source and sink nodes. The nodes are then formatted so that SBML identifiers are

replaced with more meaningful names. The workflow diagram is shown in Figure 6.8.

6.4.3 Table of workflow processors

Processor name Framework

category

Type Details

get model by id Data retrieval WSDL processor Web service interface to

the BioModels reposi-

tory at the EBI

sbml to common graph Data transforma-

tion

Soaplab processor See Appendix C

get sink nodes directed Data analysis Soaplab processor See Appendix C

get source nodes directed Data analysis Soaplab processor See Appendix C

format sbml id list sinks Output transfor-

mation

Soaplab processor See Appendix C

format sbml id list sources Output transfor-

mation

Soaplab processor See Appendix C

6.4.4 Input

An SBML model of human metabolism, developed by Duarte et al. (2007). The layout

diagram for this network may be seen in Chapter 2 (Figure 2.1). The model has been de-
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Workflow Outputs

Workflow Inputs

getModelSBMLById

sbml_to_common_graph

get_source_nodes_directed

format_sbml_id_list_sources

sources

format_sbml_id_list_sinks

sinks

get_sink_nodes_directed

sbml_model_id

Figure 6.8: Identification of source and sink nodes in a metabolic network

posited in the BioModels repository at the EBI, with the identifier “MODEL6399676120”.

6.4.5 Output interpretation

Both lists of source and sink nodes are subject to errors caused by a number of issues.

Curation of a network model such as the one analysed may lead to the following:

• Specific reaction terms, to which generic terms for metabolites do not connect

• Generic reaction terms, to which specific terms for metabolites do not connect

• Macromolecule modification, to which terms for a specific part of a molecule do

not connect

• Non-enzymatic reactions, if not represented, result in terms which do not connect

• Reaction intermediates, if not represented, result in terms which do not connect

The results of the workflow give 112 source nodes and 161 sink nodes. The following

nodes have been highlighted to try to deduce the biological reasons for their appearance

in lists of sources and sinks. The full lists are available in Appendix D.
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6.4 Source and sink metabolites in a network model of metabolism

6.4.5.1 Source nodes

D-Proline C5H9NO2

This is a metabolite that is synthesised in microbes, but not humans. It is an example

of an external compound for which humans have a coping mechanism.

UMP C9H11N2O9P, CMP C9H12N3O8P, dTMP C10H13N2O8P, dAMP C10H12N5O6P, GMP C10H12N5O8P

These are all monophosphates, which are specific mononucleotides produced by a

generic reaction.

cocaine C17H21NO4

This is another example of an external compound humans are able to break down,

but would certainly not be considered an essential substrate. However as a reaction

equation exists for it, and it is not synthesised by humans, it appears as a source.

hydroxy alkyl chain C2H5OFULLR

This is an example of a generic metabolite term, produced by a specific reaction.

(13E)-11alpha-Hydroxy-9,15-dioxoprost-13-enoate C20H31O5, pregnenolone

sulfate C21H31O5S, Estrone 3-sulfate C18H21O5S, 17alpha-Hydroxypregnenolone C21H32O3

These metabolites have a role in steroid hormone biochemistry. They are further ex-

amples of enzymes included in the model with generic reaction terms. They have a role

in detoxifying compounds introduced through diet.

(R)-Pantothenate C9H16NO5

This is vitamin B5, and is an example of a genuine essential substrate, as it is needed to

form coenzyme-A and is vital for carbohydrate, protein and fat metabolism. Humans

can obtain it in small quantities from food, especially whole grains, eggs and legumes.

6.4.5.2 Sink nodes

dGTP C10H12N5O13P3, dATP C10H12N5O12P3, dCTP C9H12N3O13P3, dTTP C10H13N2O14P3

These are all DNA precursors. Interestingly, the node “DNA” appears in the list

of sources, owing to there being no reaction present in the model to represent DNA

synthesis. If this was introduced, then the precursors and DNA itself would be removed

from both lists. The following two irreversible reactions in the SBML include DNA:

• S-Adenosyl-L-methionine C15H23N6O5S + DNA C10H17O8PR2 -->

S-Adenosyl-L-homocysteine C14H20N6O5S + DNA 5-methylcytosine C11H19O8PR2 + H+ H

• DNA C10H17O8PR2 + Se-Adenosylselenomethionine C15H23N6O5Se -->

DNA 5-methylcytosine C11H19O8PR2 + H+ H + Se-Adenosylselenohomocysteine C14H20N6O5Se
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Ammonium H4N

This is an example of a non enzyme-mediated conversion not encoded in the model.

Ammonium is generated when ammonia forms covalent bonds with hydrogen ions.

Melanin C9H6NO4

This is an example of a genuine sink node. Melanin is a skin pigment which is syn-

thesised and deposited in skin cells in the epidermis. It protects DNA from ultraviolet

light, which has the potential to cause damage through mutation.

D-4’-Phosphopantothenate C9H15NO8P, Thiamin C12H17N4OS

These are examples of enzyme cofactors, which are needed to help enzymes perform

their biochemical activity. They appear in the list of sinks as the reactions they are

involved in list them as a “product” when the reality is that they bind an enzyme while

it is active, then are released when no longer required.

6.5 Annotating metabolic pathways with PPIs

6.5.1 Motivation

This workflow was developed to establish if, for a given metabolic pathway, any enzymes

in the pathway are mediated by PPIs, as this may be used to generate hypotheses about

the regulation of that pathway. The workflow accepts as input a KEGG pathway

identifier, and then retrieves the corresponding pathway and its constituent enzyme

identifiers. These are queried against a PPI resource (in this case IntAct) to discover

if any proteins interact with more than one of these pathway enzymes.

6.5.2 Workflow description

The first three steps in the workflow are data retrieval: first, to obtain all the genes

along a given pathway, second, to obtain the corresponding Uniprot protein identifiers

for these genes, and third, to query the IntAct database to find out which proteins

interact with enzymes along the pathway. A data transformation step is then applied

to each result from the IntAct database, to convert each one into the common graph

format. A data analysis step is then applied, to create the adjacency matrix of each

IntAct result, and query it with the pathway enzyme. For each enzyme, this then

produces an adjacency list representation, i.e. the enzyme followed by a list of the

proteins it interacts with. All the adjacency lists are then merged to create a single file,

which is then analysed using reverse adjacency list to discover which proteins interact

with which enzymes. A final output formatting step is applied to provide annotations
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for the proteins in this reversed adjacency list.

The main workflow diagram is shown in Figure 6.9. The expanded nested workflows

are shown in Figure 6.10 and Figure 6.11.

6.5.3 Table of workflow processors

Table of processors for main workflow:

Processor name Framework

category

Type Details

get genes by pathway Data retrieval WSDL Processor Web service interface to

the KEGG database

get uniprot id

from kegg gene

Data retrieval Nested workflow See following tables

query intact Data retrieval Nested workflow See following tables

psitab to common graph Data transforma-

tion

Nested workflow See following tables

query adjacency matrix

undirected

Data analysis Soaplab processor See Appendix C

merge n/a - generic con-

trol

Local processor Flattens the string

list output from

query adjacency

matrix undirected

by one level

remove blank lines

from file

Data analysis Soaplab processor See Appendix C

reverse adjacency list Data analysis Soaplab processor See Appendix C

split n/a - generic con-

trol

Local processor Splits the output from

reverse adjacency list

into a list of strings

extract n/a - generic con-

trol

Local processor Extracts the first 20

items from the results of

split

merge1 n/a - generic con-

trol

Local processor Flattens the string list

output from merge1 by

one level

format results Output transfor-

mation

Nested workflow See following tables

121



6.5 Annotating metabolic pathways with PPIs

Table of processors for data retrieval workflow get uniprot id from kegg gene:

Processor name Framework

category

Type Details

get link db by entry Data retrieval WSDL processor Web service interface to the

LinkDB database

returnXML n/a - generic con-

trol

Local processor Retrieves the internal data ele-

ments from the XML output of

get link db by entry

returnXML1 n/a - generic con-

trol

Local processor Retrieves the internal data ele-

ments from the XML output of

returnXML

split n/a - generic con-

trol

Local processor Splits the string output of re-

turnXML1 into a list of strings

extract n/a - generic con-

trol

Local processor Selects the required items from

the list output of split

merge n/a - generic con-

trol

Local processor Flattens the string list output

from extract by one level

merge1 n/a - generic con-

trol

Local processor Flattens the string list output

from merge by one level

Table of processors for data retrieval workflow query intact:

Processor name Framework

category

Type Details

infoRequestXML n/a - generic con-

trol

Local processor Presents the internal data ele-

ments for the XML input to pa-

rametersXML

parametersXML n/a - generic con-

trol

Local processor Presents the internal data ele-

ments for the XML input to get-

ByQuery

getByQuery Data retrieval WSDL Processor Web service interface to the In-

tAct database

parametersXML1 n/a - generic con-

trol

Local processor Retrieves the internal data ele-

ments from the XML output of

getByQuery

queryResponseXML n/a - generic con-

trol

Local processor Retrieves the internal data ele-

ments from the XML output of

parametersXML1

resultSetXML n/a - generic con-

trol

Local processor Retrieves the internal data ele-

ments from the XML output of

queryResponseXML
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Table of processors for data transformation workflow psitab to common graph:

Processor name Framework category Type Details

psitab to common graph Data transformation Soaplab processor See Appendix C

Table of processors for output transformation workflow format results:

Processor

name

Framework category Type Details

split n/a - generic control Local processor Splits the input to the workflow

into a list of strings

split1 n/a - generic control Local processor Splits the output of split into a

list of strings

split2 n/a - generic control Local processor Splits the output of split1 into a

list of strings

concat n/a - generic control Local processor Prefixes each output of split2

with the string “uniprotkb:”

get sp info Output formatting Nested workflow See following table

merge n/a - generic control Local processor Flattens the string list output

from get sp info by one level

add text n/a - generic control Local processor Beanshell to insert text to make

the output more readable

merge1 n/a - generic control Local processor Flattens the string list output

from add text by one level

Table of processors for output transformation workflow get sp info:

Processor name Framework category Type Details

fetchData Data retrieval WSDL processor Web service interface to

Dbfetch at the EBI

xpath n/a - generic control String constant XPath query string

xpath process n/a - generic control Local processor Retrieves text from

XML document given

the string in xpath

merge n/a - generic control Local processor Flattens the string

list output from

xpath process by one

level

join n/a - generic control Beanshell processor Beanshell script which

joins the string list out-

put from merge using a

tab character, to form a

string
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6.5.4 Input

The input to this workflow is a KEGG pathway identifier, in this case representing

glycolysis in S. cerevisiae (path:sce00010). Glycolysis lies at the heart of sugar and

amino acid metabolism, and energy supply.

6.5.5 Output interpretation

The full results of the workflow are shown in Appendix D. The set of interactions

retrieved was used to manually generate a network layout diagram using Cytoscape,

under the supervision of an experienced biochemist who examined the workflow results

to suggest potentially significant groups of interactions. The aim of the diagram was to

depict the local network around the enzymes which are part of the yeast glycolytic path-

way, as an enhancement of the text output generated by the workflow. The diagram is

shown in Figure 6.12. The glycolytic enzymes are shown in the order they appear along

the pathway, connected by dashed red lines. Proteins (nodes) are coloured according to

their role and the interactions (edges) are coloured according to the detection method.

Attribute files for the nodes and edges were used in conjunction with the VizMapper

tool in Cytoscape to colour nodes and edges appropriately. The diagram presents some

interesting hypotheses with regard to regulation of glycolysis.

The first part of the glycolytic pathway consumes energy (ATP): glucose is phos-

phorylated to produce glucose 6-phosphate, which is then rearranged to form fructose-

6-phosphate and phosphorylated again. The latter part of glycolysis is an “energy

production unit”, as the sequence of enzymatic reaction produce more ATP than is

consumed in the first part. It is remarkable how many proteins are interacting with

multiple enzymes. This probably has implications for energy supply but the details are

unclear at this stage. However, the protein YD161 YEAST is particularly interesting.

Of the 35 proteins to which, according to IntAct, it interacts, 7 are consecutive en-

zymes in the lower half of the glycolytic pathway (see Table 6.15). Since there are 6607

genes in yeast, the probability of YD161 YEAST interacting with one enzyme is 0.005.

Hence the probability of YD161 YEAST interacting with these 7 enzymes is 2.99−16.

Of the other YD161 YEAST interactors, twelve are ribosomal subunits, 4 are involved

in nucleic acid biology, 2 are involved in ATP synthase, 5 are heat-shock/proteosome-

related, and 4 are miscellaneous cytoplasmic enzymes. This leads to the hypothesis

that YD161 YEAST placing an energy production unit where it is required. There are

two possibilities for its mechanism of action:

• It binds all the glycolytic enzymes at the same time, thus facilitating the creation

124



6.5 Annotating metabolic pathways with PPIs

of the energy production unit by bringing together those enzymes needed in order

to quickly generate large amounts of ATP

• It binds the glycolytic enzymes one at a time, thus enabling their translocation

to different parts of the cell, depending on where they are needed

The observations have been shared with yeast biologists at the University of Not-

tingham, who are planning biophysical experiments to test these hypotheses.

Uniprot identifier Protein name

Glycolysis

ALF YEAST Fructose-bisphosphate aldolase

TPIS YEAST Triosephosphate isomerase

G3P3 YEAST Glyceraldehyde-3-phosphate dehydrogenase 3

PGK YEAST Phosphoglycerate kinase

PMG1 YEAST Mediator of RNA polymerase II transcription subunit 12

ENO2 YEAST Enolase 2

KPYK1 YEAST Pyruvate kinase 1

PDC1 YEAST Pyruvate decarboxylase isozyme 1

Ribosome

EF1A YEAST Elongation factor 1-alpha

EF2 YEAST Elongation factor 2

RS0A YEAST 40S ribosomal protein S0-A

RS0B YEAST 40S ribosomal protein S0-B

RS3 YEAST 40S ribosomal protein S3

RS11 YEAST 40S ribosomal protein S11

RL4A YEAST 60S ribosomal protein L4-A

RL4B YEAST 60S ribosomal protein L4-B

RL5 YEAST 60S ribosomal protein L5

RL7A YEAST 60S ribosomal protein L7-A

RL20 YEAST 60S ribosomal protein L20

RLA0 YEAST 60S acidic ribosomal protein P0

Nucleic acid biology

IF4A YEAST ATP-dependent RNA helicase eIF4A

BRR2 YEAST Pre-mRNA-splicing helicase BRR2

MCM5 YEAST Minichromosome maintenance protein 5 (ATPase)

IMB4 YEAST Importin subunit beta-4 (espec. of ribosomal proteins)

ATP synthase

VATA YEAST Vacuolar ATP synthase catalytic subunit A

VATB YEAST Vacuolar ATP synthase subunit B

Heat-shock/proteosome

HSP72 YEAST Heat shock protein SSA2

HSP60 YEAST Heat shock protein 60, mitochondrial

HSP75 YEAST Heat shock protein SSB1
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Uniprot identifier Protein name

HSC82 YEAST ATP-dependent molecular chaperone HSC82

RPN1 YEAST 26S proteasome regulatory subunit RPN1

Misc. cytoplasmic

ADH1 YEAST Alcohol dehydrogenase 1

MPG1 YEAST Mannose-1-phosphate guanyltransferase (also involved in cell-cycle pro-

gression)

PYR1 YEAST Protein URA1 (hydrolyses ATP to form carbamoyl aspartate)

IMDH3 YEAST Probable inosine-5’-monophosphate dehydrogenase IMD3

Table 6.15: Annotations for the 35 interacting proteins of YD161 YEAST, retrieved
from IntAct. The proteins are grouped according to their role.

Another interesting result is the protein FAR11 YEAST (gene name Far11) which

interacts with five of the nine glycolytic enzymes. The literature identifies Far11 as

being a membrane protein involved in pheromone-induced G1 cell cycle arrest (Kemp

and Sprague, 2003). From this analysis one can hypothesise that Far11 mediates cell

cycle arrest by binding some or all of the glycolytic enzymes, effectively removing them

from the cytoplasm. As glycolysis is a fundamental cellular process, its retardation

could potentially lead to cell cycle arrest. A schematic showing how this may occur in

the cell is shown in Figure 6.13.

6.6 Conclusion

This chapter has demonstrated how web services developed by the author can be com-

bined with those from other service providers to ask biologically relevant questions of

holistic interaction and reaction datasets, as well as of individual network entities. The

most interesting result has arisen from the annotation of the yeast metabolic pathway

with PPIs, in an unbiased and systematic fashion, as a potentially novel regulatory

mechanism was hypothesised. The automation of all the stages involved in this work-

flow was made possible by wrapping data retrieval, data transformation, data analysis

and output rendering operations as web services as per the recommendations of the

Framework developed in Chapter 3, and querying a freely-available PPI dataset whose

contents are also available through a web service interface.
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Workflow Outputs

Workflow Inputs

merge

remove_blank_lines_from_file

get_genes_by_pathway

get_uniprot_id_from_kegg_gene

query_intact

query_adjacency_matrix_undirected

psitab_to_common_graph

reverse_adjacency_list

split

format_results

formatted_result

extract

merge1

path_id

Figure 6.9: Annotation of metabolic pathways with PPIs
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Workflow Outputs

Workflow Inputs

merge1

swissprot_id

merge

split

extract

returnXML

returnXML1

get_linkdb_by_entry

kegg_gene_id

(a) Retrieve Uniprot iden-
tifier given a KEGG gene
identifier

Workflow Outputs

Workflow Inputs

parametersXML

getByQuery

queryResponseXML

resultSetXML

parametersXML1

infoRequestXML

mitab

query

(b) Query the IntAct database to re-
trieve interacting proteins for a given
query protein

Workflow Outputs

Workflow Inputs

psitab_to_common_graph

network

psitab

(c) Transform each PSI-MI
TAB file into the common
graph format

Figure 6.10: Nested workflows for (a) data retrieval and (b) data transformation, used
in a workflow to annotate metabolic pathways with PPIs
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get_sp_info

Workflow Outputs

Workflow Inputs

Workflow Outputs

Workflow Inputs

split

split1

split2

concat

query

merge

add_text

merge1

result

xpath

xpath_process

merge

join

data

fetchData

adjacency_results

Figure 6.11: Nested workflow for output formatting used in a workflow to annotate
metabolic pathways with PPIs
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Figure 6.12: Cytoscape layout diagram manually generated using the results from
the workflow to annotate metabolic pathways with PPIs, using the yeast glycolytic
pathway as input. The key for the diagram is as follows: [EDGES] blue represent
interactions which are computationally inferred, pink represent interactions obtained
using immunoprecipitation, green represent interactions obtained using tandem affinity
purification. [NODES] yellow nodes are glycolytic enzymes, pink nodes are membrane
proteins, green nodes are proteins related to nucleic acid biology, blue nodes are ribo-
somal proteins, purple nodes are proteins related to ATP synthase, white nodes are
cytoskeletal proteins.
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Figure 6.13: Schematic of cell showing possible role of Far11 in mediating pheromone-
induced cell-cycle arrest. (a) Glycolysis continuing as normal in the cell; the black
circles are enzymes and the arrows between them denote chemical reactions trans-
forming one substrate into a product with enzymes catalysing these reactions. (b) In
the presence of the pheromone, the membrane protein YNL127w binds the enzymes,
removing them from the cytoplasm and slows down or stop glycolysis
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Chapter 7

Conclusions

Bioinformatics research commonly involves files on the researcher’s local computer,

remote online databases and a set of analysis tools, both local and remote. As de-

scribed in Chapter 3, the sort of ‘manual’ workflows which result from the pipelining

of such entities are increasingly untenable. There are many stages where errors may

be introduced and then propagated throughout the workflow, for example, manually

transferring data from one application to another, converting files where appropriate,

and managing and understanding diverse software environments, such as desktop tools

and web browsers. Another issue is the growing quantity of data in public repositories;

the results of an in silico experiment may change when executed at a later date, and

so repeats are necessary to account for any novel data which may affect the outcome.

This thesis presents the development of a novel software system for the computa-

tional construction and analysis of biological network models, to overcome the above

issues. The development of a supporting framework is a key contribution of this work,

as it leads to the recommendation that tasks are implemented as web services, rather

than as part of the more traditional software architectures, for example standalone

and client-server (web-based). By proposing the development of a set of web services,

the framework promotes reuse, composability and extensibility. Web services are tasks

which may be executed remotely, via heterogeneous languages and platforms. They are

designed for machine-to-machine interaction, and are described using a standard inter-

face description, which is used to locate and invoke them. As such they are particularly

well-suited to use in computational workflows.

Interaction and reaction data are currently available from a number of repositories,

and in a variety of formats, and may be used to construct networks representing the

whole ‘interactome’ or a particular region of interest. The network approach seeks

to establish both the importance of single nodes or subsets of nodes within a holistic
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network, as well as to characterise the global structure. The approach taken in this

work is to examine relevant datasets at the level of network topology. This approach

does not take into account non-linear reaction dynamics or cellular compartments, as

these data are not complete for large-scale holistic models.

The workflows developed for this work are examples of how systematic queries

can be made over tools and repositories available on heterogeneous systems. As there

are ongoing issues of data quality and false-positives resulting from high-throughput

experiments, such as yeast two-hybrid to determine PPIs, the results of workflows

are used to suggest further refinements to an in silico experiment, or as a starting

hypothesis which is testable in a laboratory, rather than a final result. The framework

categories introduced have enabled the development of workflows in which services are

replaceable with others from the same category, depending on the biological question

being posed. For example, the workflow to investigate the global topological properties

of a holistic network may be modified by inserting a data retrieval step, if a web service

interface exists for some network data which the user wishes to analyse. Depending

on the format of this data retrieved, a different transformation step could be applied.

However the subsequent analysis and output formatting stages can remain the same.

Similarly, in the workflow to annotate a metabolic pathway with PPIs, the se-

quence of framework categories applied can remain the same, with modifications made

depending on the metabolic pathway under study. For yeast, the IntAct repository

was deemed a suitable source of PPIs, but for Arabidopsis a more specialised database

such as AtPID may be substituted in the appropriate place, for a greater number of

meaningful results. Identification of source and sink metabolites also calls for little

change to the workflow presented in the previous chapter. If the model is available

in a repository accessible through a web service, then this may be used instead of the

BioModels operations “getModelSBMLById”.

Identification of cycles was an important task to implement for this work. It was

created as a data analysis task which iteratively removes leaf nodes (i.e. those nodes

in a network with only one incident edge) until none remain, leaving behind just the

cycles in the network. The example given in Chapter 6 uses a known cycle in cholesterol

metabolism to demonstrate how this method can leave behind a physiologically impor-

tant and biologically relevant cycle. However the same method applied to a holistic

network leaves behind a slightly smaller, but still very complex network. As an exam-

ple, consider the Palsson human metabolic network used throughout this work. There

are a total of 6931 nodes and 19195 edges. The cyclic core contains 5059 nodes and

15980 edges, 73% and 83% of the total nodes and edges respectively. These percent-
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7.1 Limitations

ages are astonishingly high, and imply that cycles heavily dominate the topological

structure of such a network. There are however two important caveats regarding this

analysis. The first is that cycles may be left behind which are only true cycles in an

undirected network, but in a directed network such as one representing metabolism, the

combination of nodes and directed edges result in a ‘false’ cycle, an example of which is

given in Figure 7.1 The second is that reduction of a holistic metabolic network to its

‘cyclic core’ does not necessarily mean that every cycle contained within is of biological

significance. Visualisation also becomes an issue, as the layout diagram of the cyclic

core is as densely packed and difficult to interpret as the layout of the entire network.

A direct comparison of the original Palsson network and the cyclic core is available in

Appendix E.

Figure 7.1: A potential ‘cycle’ left behind in the cyclic core of a metabolic network. The
undirected version of this part of the network is a true graph-theoretic cycle, however
the directed version is not.

7.1 Limitations

The limitations on this work may be divided into two categories: those caused by the

specific computational approaches taken, and those caused by the systems approach to

the mechanisms of cellular interactions (see Table 7.1).

Limitations due to computational approach Limitations due to systems approach

Web services and workflows may not be easily acces-

sible to non-expert users

Data may be incomplete and/or biased
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7.1 Limitations

Limitations due to computational approach

(cont.)

Limitations due to systems approach

(cont.)

Execution of web services may incur large communi-

cation overheads

Lack of significant amount of spatial and tem-

poral data

Eventually the workflow may require manual inter-

vention

Table 7.1: Limitations on this work

As web services and workflows are novel technologies they are still more likely to

be used by expert bioinformaticians, who also develop them. Initiatives such as myEx-

periment enable pre-constructed workflows to be downloaded by interested researchers,

but if the techniques are to become more widely adopted, they should be marketed

effectively. In practice most research groups include individuals aware of specific tech-

nologies, and who are used as a resource by other group members. These ‘experts’ are

therefore more likely to construct workflows, to be executed by others. As previously

mentioned, a lot of bioinformatics research comprises repeated steps which scientists

already carry out, so their automation and subsequent capturing as provenance are

merits which should not be downplayed. With regard to the research carried out dur-

ing the course of this thesis, the existence of tools such as Cytoscape and others implies

that holistic network analysis is a relevant biological approach, and so the web services

presented here may be a suitable alternative to those already developed as part of more

traditional software architectures. A more detailed discussion on the relative merits of

workflows and standalone tools may be found in Gollapudi et al. (2009).

A major issue with web services is that sending large files such as those containing

interaction and reaction datasets over a network, may incur large computational over-

heads. While accessing remote computing power is an advantage from the perspective

of the user, actually sending the data to and from services increases network traffic and

may be detrimental to the performance of the web service, or workflow it is part of. One

solution to this is the method implemented in Soaplab, a “pass-by-reference” approach

rather than “pass-by-value”, discussed in Chapter 4. Another is to send data to a web

service as an attachment to a SOAP message. The W3C recommendation for Message

Transmission Optimisation Mechanism (MTOM, Gudgin et al. (2005)) is a method

to send binary data to and from web services more efficiently. A web service which is

MTOM-aware converts binary data to MIME data using an XML-binary Optimisation

Package (XOP). The binary form is much smaller than the XML equivalent.
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From a biological perspective, analysis of holistic intra-cellular networks carries two

limitations: firstly that data are biased and incomplete, and secondly that these data

commonly lack spatial and temporal annotations, i.e. where exactly a particular inter-

action takes place, and over what period of time. With regard to the first point, bias

influences datasets, for example “popular” proteins are investigated more thoroughly,

and so more interactions may be reported for these. The lack of spatial and temporal

data results in an interaction dataset which is not biologically accurate: the clique

detected in the first example in Chapter 5 (holistic network analysis of the human PPI

network in MINT) did in fact consist of proteins which all bind each other at the same

time, i.e. it is a functional module. However, other topological cliques may be reported,

but contain proteins binding at different times. Spatial information is however more

common, and is reported in a number of datasets.

As the examples given in Chapter 5 have demonstrated, in silico experiments carried

out on data which may not always be of the highest quality and accuracy eventually

require some manual curation once results are returned. The output formatting stage of

a workflow aims to present results in a readable fashion. In some cases this is sufficient to

draw biologically meaningful conclusions, for example in the workflow to identify source

and sink nodes in a metabolic network. Here, the list of sources and sinks are formatted

with meaningful names, which are then examined to detect interesting members of both

lists. However in the final example, the workflow to annotate metabolic pathways with

PPIs, the list of results is transformed into a layout diagram using Cytoscape, to take

advantage of the many layout options provided by Cytoscape’s VizMapper tool, in

order to present a biologically interesting final result. This particular stage was carried

out under the supervision of an experienced biochemist, who was able to pick out the

potentially significant PPIs and discard the rest, leading to a diagram which suggests

an exciting new perspective on regulation of yeast glycolysis.

7.2 Future Work

The following future developments may be carried out to build on this work:

7.2.1 Distributed workflows

To improve the efficiency of web service and workflow execution, a cluster of machines

running a workload management system such as Condor (Litzkow, 1987) could be

employed. When a web service is called, an intermediate step is carried out in which
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the input data is placed in a database. A file is generated to submit a job to the

cluster, so the machine which carries out the actual task accesses this database, and

sends the result back. Enabling the use of multiple machines in a cluster rather than

executing all services on a single machine is particularly useful in scenarios where large

data (such as holistic networks) is submitted to computationally intensive tasks (for

example graph-theoretic operations such as calculation of betweenness centralities).

7.2.2 Mixed networks

As integration methods improve and networks move towards being a more accurate

representation of the mechanics of cellular interactions, they may incorporate edges

which are both directional and undirectional. For example, extending the last example

in the Biological Observations chapter, the entire metabolism (directed reactions) could

be annotated with PPIs (undirected interactions). Currently the common graph format

does not explicitly capture directionality, and the onus is on the user to apply the

appropriate analytical steps (either directed or undirected) depending on their network

type. A combined network as described would therefore always be interpreted as a

directed network, with undirected edges reported in both ‘directions’ (i.e. if protein A

binds protein B, the common graph format would contain one line showing A → B, and

another showing B → A). An additional task would need to be implemented, which

produces these ‘mirror image’ edges, to enable appropriate analyses to be carried out.

7.2.3 Extension of the common graph format

The limitations of the common graph format have been discussed in detail in Chapter

3. It is a simplistic representation, as it records only the interacting components in

a network. A possible extension to the format would be the inclusion of metadata to

describe edges. For metabolic networks, this could include rate information and/or

compartmental data. Such changes to the format would require changes to be made to

other parts of the framework, for example new analytical tools which make use of the

extra information. This is closely related to the above discussion on mixed networks,

as the metadata in the common graph format is one way to keep track of the type of

edge, and ultimately will also be used when rendering meaningful output.
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7.2.4 Increasing exposure

To really test the usefulness of the web services and workflows developed by the author,

it is necessary to increase their exposure, through publication and effective dissemina-

tion. Target users could first be identified, for example, based on their use of similar

software such as Cytoscape. It is important to establish how useful the services are to

the wider research community, and in what context they are effective. At the present

time, the Soaplab2 installation which contains all the web services developed for this

project are hosted at the Multidisciplinary Centre for Integrative Biology at the Univer-

sity of Nottingham, where access is limited to the University of Nottingham computer

network. Steps have been taken, however, to publish the services such that they are

globally accessible, and it is expected that the services will be registered on the Bio-

Catalogue website, where they will be exposed to a large community of life-science

researchers. The workflows described in Chapter 6 may also then be uploaded to the

myExperiment workflow repository, to be downloaded, executed and modified by other

users.

7.3 Summary

The questions posed by the author, along with the observations documented have shown

how the combination of web service and workflow technologies aid discovery in the field

of network biology. As interaction and reaction repositories grow in size and complexity,

the tools to access and manipulate them will correspondingly have to become more

powerful, as demonstrated by the middleware developed for the research described

in this thesis. It is the opinion of the author that the traditional monolithic tools

developed by academic consortia will increasingly give way to a suite of distributed web

services. Sophisticated workflow management tools such as Taverna enable life science

researchers to discover and compose these services into complex queries over diverse

tools and datasets. The services presented here have challenged the established software

paradigms that have guided network analysis software to date, and have been developed

within a framework which enables the unbiased querying of publicly available data. Of

particular interest are the results of a workflow to annotate a metabolic pathway with

protein-protein interactions, in order to reveal potentially novel regulatory mechanisms.

These have produced a testable hypothesis generated solely through computational

methods, which if proved correct sheds new light on the biology of yeast metabolism.

Such insight is ultimately the biggest reward and vindicates the approach taken.
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Appendix A

Taverna tutorial

The following tutorial is intended as an introduction to using the Taverna workbench,
and covers the following topics: download, configuration, execution, and building and
running a simple workflow. The instructions are for Unix style operating systems,
though the workbench also runs under Windows and Mac OS.

A.1 Prerequisites

The following prerequisites are required in order for the workbench to run:

• Java5 (http://java.sun.com/j2se/1.5.0/)

• Graphviz (http://www.graphviz.org/) - Taverna requires the ‘dot’ executable
to render workflow diagrams (this is included with the Windows version)

A.2 Download

The workbench may be downloaded from the project website, http://www.mygrid.
org.uk/tools/taverna/taverna-1/taverna-download/. It is available as a ZIP file,
taverna-workbench-1.7.1.zip.

Once downloaded, the ZIP file should be extracted to create the directory taverna-1.7.1.

A.3 Configuration

Within the taverna-1.7.1 directory, there is a directory conf, which contains a file
mygrid.properties. The following configuration steps refer to this file.

Proxy configuration:

• mygrid.properties contains the following lines:
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A.4 Execution

# PROXY CONFIGURATION (user editable)

#----------------------------------------------------------------

# Use the properties below if your machine accesses the internet

# via a proxy server. Uncomment them by removing the leading ’#’

# and then modify to suit your installation.

#

#----------------------------------------------------------------

#

# http.proxyHost = <host>

# http.proxyPort = <port>

• The lines http.proxyHost = <host> and http.proxyPort = <port> should be uncom-
mented and <host> and <port> replaced with the relevant values. For example the
University of Nottingham proxy settings are as follows:

http.proxyHost = wwwcache.nottingham.ac.uk

http.proxyPort = 3128

• Optionally http.proxyUser = <user> and http.proxyPassword = <password> may be mod-
ified if the proxy requires authentication.

Locating the ‘dot’ executable:

• By default, Taverna looks for the ‘dot’ executable on the PATH. It is possible
to override this and explicitly supply a path to the executable by uncommenting
and editing the following line in mygrid.properties:

taverna.dotlocation = /usr/local/bin/dot

A.4 Execution

The Taverna workbench is run by executing runme.sh, which is in the taverna-1.7.1

directory, from within a terminal (the example given here uses bash):

bash-3.2$ ./taverna-1.7.1/runme.sh

Figure A.1 shows the workbench loaded and ready for workflow construction. The
Available Processors pane contains those processors defined in the configuration file
mygrid.properties, though new processors may be added as required.
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A.5 Building and running a simple workflow

Figure A.1: Taverna workbench

A.5 Building and running a simple workflow

The example workflow demonstrated here makes use of the BIND web service, which
can be used to retrieve data on PPIs in the Biomolecular Object Network Databank.
The web service is defined using a WSDL file, http://soap.bind.ca/wsdl/bind.wsdl.
The aim of the workflow is to retrieve all A. thaliana PPIs in Cytoscape SIF form. The
output of the workflow may be saved locally and viewed in Cytoscape, or may be used
as input to further web services and workflows.

1. Add a new WSDL scavenger by right-clicking on Available Processors and se-
lecting “Add new WSDL Scavenger...”. This will bring up a dialog box. Type
“http://soap.bind.ca/wsdl/bind.wsdl” here and click OK (Figure A.2).

2. The WSDL is added to the Available Processors list, and can be expanded by
clicking on the small circle to the left of the label. The WSDL processors available
are now visible (Figure A.3).

3. The “idSearch” processor is added to the workflow, by right-clicking on the pro-
cessor name, and selecting “Add to model”. The processor now appears in the
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A.5 Building and running a simple workflow

Figure A.2: Add the BIND WSDL to the list of Available Processors

Figure A.3: WSDL processor list expanded

Advanced Model Explorer (AME) pane, and also in the Workflow Diagram pane
(Figure A.4).

4. The “idSearch” processor has three input ports, “id”, “idType” and “return-
Type”. Each input port receives data, from workflow inputs in the AME. To
add these, right click on “Workflow inputs” and select “Create New Input”. In
the dialog box that appears, type a meaningful input name (in this case “id” to
match the name of the input port of the processor) and click OK (Figure A.5).

5. Repeat for the inputs “idType” and “returnType”. There should now be three
workflow inputs. As well as appearing in the AME, they appear in the Workflow
Diagram pane (Figure A.6).
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A.5 Building and running a simple workflow

Figure A.4: Add the “idSearch” processor in the AME

Figure A.5: Add workflow inputs

6. Now data links must be added between the workflow inputs, and the input ports of
the “idSearch” processor. To do this, right-click on the “id” workflow input. This
brings up a drop-down menu with a subheading “Processors”. The “idSearch”
processor is listed here. Clicking this reveals a further drop-down menu “Choose
an Input” which lists all three input ports to the “idSearch” processor. To create
a data link, select the “id” input port (Figure A.7).
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A.5 Building and running a simple workflow

Figure A.6: All workflow inputs added in the AME

Figure A.7: Add the first data link

7. Repeat the previous step for the workflow inputs “idType” and “returnType”.
The three data links are now visible in the AME, and in the Workflow Diagram
pane, connecting the workflow inputs to the input ports of the “idSearch” pro-
cessor (Figure A.8).

8. Now the workflow outputs must be added. The “idSearch” processor has an
output port called “searchResultBean”. This produces a complex data structure
which can be interrogated using an XML splitter. To add the XML splitter, right
click on the “searchResultBean” and select “Add XML splitter” from the menu
that appears (Figure A.9).

9. This adds the “searchResultBeanXML” processor to the workflow, with input
ports and output ports as before (Figure A.10).

10. For this workflow, we wish to access the interaction records. First of all a workflow
output should be created. This is done in a very similar way to creating workflow
inputs. Right-click on “Workflow outputs” and select “Create New Output”. In
the dialog box that appears, type a name for this output. In this example, we
will use “interactions” (Figure A.11).

11. At this stage, the workflow consists of three inputs, one output and two processors.
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A.5 Building and running a simple workflow

Figure A.8: All data links added in the AME

Figure A.9: Add an XML splitter

The processors are different colours depending on their type. Inputs are grouped
together and denoted by a red triangle, and outputs are grouped and denoted by
a green triangle (Figure A.12).

12. The final step in constructing the workflow is to create a data link between the
output port of the XML splitter processor and the workflow output “interactions”.
To do this, right click on the desired output port “records”. This brings up a
menu “Connect output ”records” to...”. From here it is possible to access a list
of workflow outputs, which in this case contains just one, “interactions”. Click
on “interactions” to create the data link (Figure A.13).

13. The workflow is now complete and ready to be run (Figure A.14).
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A.5 Building and running a simple workflow

Figure A.10: “searchResultBeanXML” processor added to the AME

Figure A.11: Add a workflow outputs

14. To run the workflow, click on the File menu and select “Run workflow...” (Fig-
ure A.15).

15. An input window will appear, with the three inputs listed together with a small
version of the workflow diagram (Figure A.16).

16. To populate each input with a value, click on the input name (e.g. “id”) and
then click the “New Input” button. Replace the text “Some input data goes
here” with the desired input. For this example, enter “3702” which is the A.
thaliana taxonimy identifier (Figure A.17).

17. Repeat for the remaining two inputs, “idType” and “returnType”. For this ex-
ample, enter “taxid” and “cytoscape” respectively. A complete list of possible
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A.5 Building and running a simple workflow

Figure A.12: Workflow output added in the AME

Figure A.13: Add a data link between an output port of “searchResultBeanXML” and
the workflow output

values for “idType” and “returnType” are available from http://soap.bind.

ca/. Execute the workflow by clicking the “Run workflow” button at the bottom
of the input window (Figure A.18).

18. The workflow enactor will appear, and lists processors and their statuses. During
workflow execution, the processors in the workflow graph diagram change colour
according to whether they are scheduled (grey), running (purple) or completed
(green) (Figure A.19).

19. When the workflow has successfully completely, the Results window is displayed,
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A.5 Building and running a simple workflow

Figure A.14: Completed workflow

Figure A.15: Run the workflow

which is divided into two halves. The left hand side lists result items, while
the right hand side displays the selected result items. The result of running
this workflow is a file in Cytoscape SIF format, containing all the A. thaliana
PPIs in BIND. The “Save to disk” button can be clicked to save to a local disk
(Figure A.20).
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A.5 Building and running a simple workflow

Figure A.16: Input window for the workflow

Figure A.17: Enter inputs to the workflow

20. The “Workflow metadata” tab in the AME has fields for workflow name, author
and description (Figure A.21).

21. If desired, the workflow itself can be saved to a local disk, as a Scufl file, by
selecting “Save workflow...” from the “File” menu. This file can then be reloaded
if the workflow needs to be run multiple times, or with a different set of inputs
(Figure A.22).

22. The same workflow can be used, for example, to retrieve all human PPIs (by
changing the taxonomy identifier to “9606”), or all interactions from a particular
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A.5 Building and running a simple workflow

Figure A.18: All workflow inputs entered

Figure A.19: Workflow enactor window showing workflow partially executed

publication (using the PubMed identifier) (Figure A.23).
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A.5 Building and running a simple workflow

Figure A.20: Workflow outputs displayed in Results window

Figure A.21: Editing workflow metadata
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A.5 Building and running a simple workflow

Figure A.22: Saving a workflow to disk

Figure A.23: Running the unaltered workflow with a different set of inputs: this work-
flow will retrieve all PPIs from the publication with PubMed identifier “9581554” and
return them in the PSI-MI 2.5 format
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Appendix B

Technology Evaluation examples

B.1 Installing Perl modules under Linux without root ac-

cess

Perl modules may be installed and accessed under the home directory. The following
steps illustrate this process:

1. Decide where to install the modules. Two directories are required under the home
directory: /lib and /bin. They will both be created automatically when the first
module is installed.

2. Download the module required and unpack it.

3. cd into the newly-created directory

4. Issue the following set of commands:

• % perl Makefile.PL PREFIX=/home/<username> \

INSTALLPRIVLIB=/home/<username>/lib/perl5 \

INSTALLSCRIPT=/home/<username>/bin \

INSTALLSITELIB=/home/<username>/lib/perl5/site_perl \

INSTALLBIN=/home/<username>/bin \

INSTALLMAN1DIR=/home/<username>/lib/perl5/man \

INSTALLMAN3DIR=/home/<username>/lib/perl5/man3

• % make

• % make test

• % make install

5. To allow Perl scripts access to locally installed modules, the lib module may be
used. Insert the following at the start of the Perl script:

• use lib qw(/home/<username>/lib/perl5/5.00503/

/home/<username>/lib/perl5/site_perl/5.005);
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B.2 SOAP::Lite: Calculator service

B.2 SOAP::Lite: Calculator service

#!/ usr / bin / p e r l

package Calcu la tor ;

sub add {
my ( $c la s s , $ in t1 , $ i n t2 ) = @ ;
my $sum = $ i n t1 + $ i n t2 ;
return ”$sum\n” ;

}

sub sub t rac t {
my ( $c la s s , $ in t1 , $ i n t2 ) = @ ;
my $ d i f f = $ i n t1 − $ i n t2 ;
return ” $ d i f f \n” ;

}

1 ;

Listing B.1: Calculator.pm (request handler)

Listing B.1 shows the web service operations add and subtract implemented as sub-
routines in a Perl module, Calculator.pm. This is the request handler. Every call to a
web service method passed from a client first contains the package name, followed by
any parameters passed in the method call. In the example this corresponds to ($class,
$int1, $int2). The dispatcher code for the Calculator service is shown in Listing B.2.

#!/ usr / bin / p e r l

use SOAP : : Transport : :HTTP;
use l i b ' /var /www/ cgi−bin / s i r i s h a ' ;

SOAP : : Transport : :HTTP: : CGI
−>d i sp a t ch t o ( ' Calcu la tor ' )
−>handle ;

Listing B.2: calculator.cgi (dispatcher)

B.3 SOAP::Lite: Calculator service, modified to include

POD

The modified Perl module for the Calculator service is shown in Listing B.3.
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B.4 SOAP::Lite: WSDL generated by Pod::WSDL

#!/ usr / bin / p e r l

package Calcu la tor ;

=begin WSDL

IN in t1 $ s t r i n g The f i r s t number
IN in t2 $ s t r i n g The second number
RETURN $ s t r i n g The sum of the two numbers

=end WSDL

sub add {
my ( $c la s s , $ in t1 , $ i n t2 ) = @ ;
my $sum = $ i n t1 + $ i n t2 ;
return ”$sum” ;

}

=begin WSDL

IN in t1 $ s t r i n g The f i r s t number
IN in t2 $ s t r i n g The second number
RETURN $ s t r i n g The d i f f e r e n c e o f the two numbers

=end WSDL

sub sub t rac t {
my ( $c la s s , $ in t1 , $ i n t2 ) = @ ;
my $ d i f f = $ i n t1 − $ i n t2 ;
return ” $ d i f f ” ;

}

1 ;

Listing B.3: Calculator.pm (modified to include POD)

B.4 SOAP::Lite: WSDL generated by Pod::WSDL

The WSDL is generated using the script in Listing B.4.

#!/ usr / bin / p e r l

use Pod : :WSDL;

use l i b ' / s e r v i c e s /www/ cg i / s i r i s h a ' ;

open (WSDL, ”>c a l c . wsdl ” ) | | die ” cou ld not open wsdl f i l e !\n” ;
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B.5 Apache Axis: Calculator service (.jws example)

my $pod = new Pod : :WSDL( source => ' Calcu la tor ' ,
l o c a t i o n => ' http :// behemoth . mycib . ac . uk/ cg i / s i r i s h a / c a l c u l a t o r .

c g i ' ,
p r e t ty => 1 ,
withDocumentation => 1) ;

print WSDL $pod−>WSDL;

Listing B.4: create-wsdl.pl

B.5 Apache Axis: Calculator service (.jws example)

Listing B.5 contains source code for a .jws version of the Calculator service.

pub l i c c l a s s Ca lcu la tor {
pub l i c int add( int i1 , int i 2 ) {

return i 1 + i2 ;
}

pub l i c int sub t rac t ( int i1 , int i 2 ) {
return i 1 − i 2 ;

}
}

Listing B.5: Calculator.jws

B.6 Apache Axis: Calculator client

Listing B.6 shows an Apache Axis client to consume the Calculator service. An exam-
ple execution of this client:
java -cp .:$AXISCLASSPATH samples.userguide.example2.CalcClient -p8080 add 5 3 which prints
out:
Got result : 8

import org . apache . ax i s . c l i e n t . Ca l l ;
import org . apache . ax i s . c l i e n t . S e r v i c e ;
import org . apache . ax i s . encoding .XMLType;
import org . apache . ax i s . u t i l s . Options ;

import javax . xml . rpc . ParameterMode ;
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B.7 BioMoby: Service registration

pub l i c c l a s s WsddClient
{
pub l i c s t a t i c void main ( S t r ing [ ] args ) throws Exception {
Options op t ion s = new Options ( args ) ;

S t r ing endpoint = ”http :// behemoth . mycib . ac . uk :8080/ ax i s / s e r v i c e s /
Ca lcu la tor ?wsdl ” ;

. . .
I n t e g e r i 1 = new In t eg e r ( args [ 1 ] ) ;
I n t e g e r i 2 = new In t eg e r ( args [ 2 ] ) ;

S e r v i c e s e r v i c e = new Se rv i c e ( ) ;
Ca l l c a l l = ( Ca l l ) s e r v i c e . c r e a t eCa l l ( ) ;
. . .
I n t e g e r r e t = ( I n t e g e r ) c a l l . invoke ( new Object [ ] { i1 , i 2 }) ;

System . out . p r i n t l n ( ”Got r e s u l t : ” + r e t ) ;
}

}

Listing B.6: CalcClient.java

B.7 BioMoby: Service registration

The Perl implementation provides the API for communicating with MOBY Central to
register the above. An example registration script for the simpleCalculatorAdd service
is shown in Listing B.7.

#!/ usr / bin / p e r l −w
use s t r i c t ;
use MOBY: : Cl i en t : : Centra l ;

# In s t a n t i a t e a c l i e n t to mobycentra l
my $m = MOBY: : Cl i en t : : Central−>new(

R eg i s t r i e s => { mobycentral => {
URL => ”http ://moby . ucalgary . ca/moby/MOBY−

Centra l . p l ” ,
URI => ”http ://moby . ucalgary . ca/MOBY/Centra l ” ,

} ,
}

) ;

# Serv i ce name
my $serviceName = ” simpleCalculatorAdd ” ;

# Serv i ce type
my $serv iceType = ”Tu to r i a l S e r v i c e ” ;
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B.7 BioMoby: Service registration

# URI o f s e r v i c e prov i der
my $authURI = ”mycib . ac . uk” ;

# E−mai l address o f s e r v i c e prov i der
my $email = ' s i r i sha@mycib . ac . uk ' ;

# URL to s e r v i c e CGI f i l e
my $URL = ”http :// l o c a l h o s t / cg i−bin / simpleCalculatorAdd . c g i ” ;

# Smal l s e r v i c e d e s c r i p t i o n
my $de s c r i p t i on = ”This s e r v i c e consumes two numbers and re tu rn s t h e i r

sum” ;

# Serv i ce inpu ts
my @input namespaces1 = ( ) ;
my @input namespaces2 = ( ) ;

my @input s imples1 = ( ' St r ing ' , \@input namespaces1 ) ;
my @input s imples2 = ( ' St r ing ' , \@input namespaces2 ) ;

my @inpu t a r t i c l e s 1 = ( ' i n t1 ' , \@input s imples1 ) ;
my @inpu t a r t i c l e s 2 = ( ' i n t2 ' , \@input s imples2 ) ;

my @a l l i npu t s = (\ @inpu t a r t i c l e s 1 , \@inpu t a r t i c l e s 2 ) ;

# Serv i ce ou tpu t s
my @output namespaces = ( ) ;
my @output simples = ( ' St r ing ' , \@output namespaces ) ;
my @ou tpu t a r t i c l e s = ( 'sum ' , \@output simples ) ;
my @al l ou tput s = (\ @ou tpu t a r t i c l e s ) ;

# Serv i ce r e g i s t r a t i o n
my $REG = $m−>r e g i s t e r S e r v i c e (

serviceName => $serviceName ,
serv iceType => $serviceType ,
authURI => $authURI ,
contactEmail => $email ,
d e s c r i p t i o n => $de s c r i p t i on ,
category => ” cg i ” ,
URL => $URL,
input => \@al l input s ,
output => \@al l outputs ,
secondary => undef ,

) ;

# Disp lay success or f a i l u r e o f r e g i s t r a t i o n
$REG−>su c c e s s ?print ” Success !\n” : print ” Fa i l u r e : ” ,$REG−>message , ”\n” ;

Listing B.7: moby-service-registration.pl
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B.8 BioMoby: Add service request handler

B.8 BioMoby: Add service request handler

Listing B.8 contains the application logic of the BioMoby web service. It is auto-
matically generated using MOSES-MOBY, but application logic itself must be entered
manually by the service provider.

package Se rv i c e : : s impleCalculatorAdd ;

use FindBin qw( $Bin ) ;
use l i b $Bin ;

use MOSES: :MOBY: : Base ;

# Dynamical ly load
BEGIN {

use MOSES: :MOBY: : Generators : : GenServ ices ;
new MOSES: :MOBY: : Generators : : GenServices−>load

( au thor i ty => 'mycib . ac . uk ' ,
s e rv i c e names => [ ' s impleCalculatorAdd ' ] ) ;

}

use vars qw( @ISA ) ;
@ISA = qw( uk : : ac : : mycib : : s impleCalculatorAddBase ) ;
use MOSES: :MOBY: : Package ;
use MOSES: :MOBY: : Se rv i c eExcep t ion ;
use s t r i c t ;

use MOSES: :MOBY: : Data : : S t r ing ;

my %val id namespaces = ( ) ;

# The p r o c e s s i t method i s c a l l e d f o r every j ob in the c l i e n t r e que s t
sub p r o c e s s i t {

my ( $ s e l f , $request , $response , $context ) = @ ;

# Perform op t i ona l namespace check ing f o r inpu ts to t h i s s e r v i c e
my $namespace1 = eval { $ in t1−>namespace } ;
my $namespace2 = eval { $ in t2−>namespace } ;

# Read inpu t data ( e va l to p ro t e c t a ga i n s t miss ing data )
my $ i n t1 = eval { $request−>i n t1 } ;
my $ i n t2 = eval { $request−>i n t2 } ;

# App l i ca t i on l o g i c
my $number1 = $ in t1−>value i f defined $ i n t1 ;
my $number2 = $ in t2−>value i f defined $ i n t2 ;

my $ t o t a l = $number1 + $number2 ;

# Response
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B.9 BioMoby: Add service dispatcher

my $sum = new MOSES: :MOBY: : Data : : S t r ing
(
value => $ to ta l , # TO BE EDITED
) ;

$response−>sum($sum) ;

}

1 ;
END

Listing B.8: simpleCalculatorAdd.pm

B.9 BioMoby: Add service dispatcher

Listing B.9 contains the code which dispatches requests to the appropriate service
module (i.e. BioMoby service), and is automatically generated using MOSES-MOBY.

use s t r i c t ;
use CGI ;
use CGI : : Carp qw( fata lsToBrowser ) ;

# Maximum s i z e o f POST f i e l d
$CGI : :POSTMAX=1024 ∗ 1024 ∗ 10 ;

use l i b ' /home/ s i r i s h a /Perl−MoSeS ' ;
use l i b ' /home/ s i r i s h a /Perl−MoSeS/ generated ' ;
use l i b ' /home/ s i r i s h a /Perl−MoSeS/ s e r v i c e s ' ;

# Require s e r v i c e module and add i t to ISA hi erarchy
use base ' Se rv i c e : : s impleCalculatorAdd ' ;

# Get the CGI v a r i a b l e
my $q = new CGI ;

# Get the data from the ' data ' parameter
my $data = $q−>param( ' data ' ) | | $q−>param( 'POSTDATA ' ) | | ”” ;

# Cal l the s e r v i c e
my $x = PACKAGE −>s impleCalculatorAdd ( $data ) ;

# Print the r e s u l t s
print $q−>header(−type=> ' t ex t /xml ' ) ;
print $x ;

# Overr ide the method in Serv i ce : : Serv iceBase
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B.10 Soaplab1: Web service and ACD definition

Figure B.1: The add Perl script on the left, together with the corresponding ACD file
used to describe the command line of the script, add.acd

sub f i n i s h ou t p u t {
my ( $ s e l f , $out package ) = @ ;
return $out package−>toXMLdocument−>t oS t r i n g (1) ;

}

Listing B.9: simpleCalculatorAdd.cgi

B.10 Soaplab1: Web service and ACD definition

Figure B.1 shows the ACD description and corresponding script for the add service. A
detailed summary of the ACD specification is given on the EMBOSS website1. The
Calculator example can be used to highlight important aspects of ACD file creation.
The ‘appl’ token specifies the name of the executable to be used. The ‘integer’ and
‘outfile’ tokens are among the many data types supported in ACD for input and output.
‘comment’ is a special attribute provided specifically for the Soaplab project, and is
used to specify command-line options, together with the keyword ‘qualifier’ which is
used to denote which flags are used to pass arguments to the script.

1http://emboss.sourceforge.net/developers/acd/
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B.11 Soaplab2: Configuration steps prior to building

B.11 Soaplab2: Configuration steps prior to building

After downloading and extracting the Soaplab2 distribution, it is necessary to first lo-
cate a file build.properties.template. This should be copied and renamed to build.properties,
and edited accordingly. There are a number of build-time properties in this file, however
of particular importance are the following:

# --------------------------------------------------------------------

# Pointer to your own templates of Soaplab configuration files

# --------------------------------------------------------------------

my.soaplab.properties = testing.soaplab.properties

#my.soaplab.client.properties = testing.soaplab.client.properties

#my.log4j.properties = testing.log4j.properties

# --------------------------------------------------------------------

# Full path to your Tomcat installation.

# --------------------------------------------------------------------

tomcat.home = /usr/share/tomcat5

# --- Where is your Tomcat listening

tomcat.port = 8080

tomcat.host = compute1.mycib.ac.uk

tomcat.home, tomcat.port and tomcat.host indicate the location of the Tomcat in-
stallation. my.soaplab.properties points to a file called, by default, testing.soaplab.

properties. This file contains Soaplab2 properties, which are given values based on the
local Soaplab2 installation. An example testing.soaplab.properties is given here:
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B.11 Soaplab2: Configuration steps prior to building

base.dir = /home/sirisha/Desktop/soaplab2

metadata.dir = /home/sirisha/Desktop/soaplab2/metadata/generated

applist = ${metadata.dir}/OtherApplications.xml

applist = ${metadata.dir}/GowlabApplications.xml

applist = ${metadata.dir}/EBIApplications.xml

runtime.dir = /home/sirisha/Desktop/soaplab2/_R_

working.dir = ${runtime.dir}/SANDBOX

results.dir = ${runtime.dir}/RESULTS

scripts.dir = @SCRIPTS_DIR@

addtopath.dir = ${scripts.dir}

#jobs.cleaning.interval = 60000

#jobs.timeout = 864000000

#services.cleaning.interval = 300000

###classic.helloworld.metadata.file = a/b/c

#ignore.heartbeat.events = false

#accept.any.exitcode

#synonym.sowa = org.soaplab.sowa.SowaJobFactory

# Accessing results by URLs:

# --------------------------

tomcat.host = compute1.mycib.ac.uk

tomcat.port = 8080

results.url = http://${tomcat.host}:${tomcat.port}/soaplab2/results

results.url.target.dir = /usr/share/tomcat5/webapps/soaplab2/results

#results.url.ignore
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Appendix C

Tutorial examples for web
services developed

This Appendix contains further documentation for each Soaplab2 web service described
in Chapter 5: inputs and outputs, and a tutorial example.

N.B. For Soaplab2 services there are two special outputs, report and detailed status

which are generated automatically for every service, and are therefore not explicitly
defined in the ACD file. This section of the documentation therefore only gives the
name and description of outputs of the web service, which are specified by the author
in the ACD file.

C.1 Group: analyse directed

Three toy networks A, B and C (Figure C.1) are used to demonstrate the usage of web
services in this category.

C.1.1 add edges directed

C.1.1.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

edgelist A list of edges represented in the common graph format
edgelist url URL pointing to edgelist

C.1.1.2 Outputs

new network Network with specified edges added
new network url URL pointing to new network
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C.1 Group: analyse directed

Figure C.1: Three directed networks. Network A is strongly connected, that is, there
exists a path between every pair of nodes in the network. Networks B and C are not
strongly connected.

C.1.1.3 Example

C.1.1.3.1 Input name: network

Network A.

C.1.1.3.2 Input name: edgelist

c a

C.1.1.3.3 Output name: new network

a b
b a
c a
c d
b c
e d
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C.1 Group: analyse directed

d e
d b

C.1.2 get network diameter directed

C.1.2.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.2.2 Outputs

diameter The diameter of the network
diameter url URL pointing to diameter

C.1.2.3 Example

C.1.2.3.1 Input name: network

Network A.

C.1.2.3.2 Output name: diameter

4

C.1.3 get network radius directed

C.1.3.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.3.2 Outputs

radius The radius of the network
radius url URL pointing to radius

C.1.3.3 Example

C.1.3.3.1 Input name: network

Network A.
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C.1 Group: analyse directed

C.1.3.3.2 Output name: radius

2

C.1.4 get sink nodes directed

C.1.4.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.4.2 Outputs

sinks List of sink nodes
sinks url URL pointing to sinks

C.1.4.3 Example

C.1.4.3.1 Input name: network

Network B.

C.1.4.3.2 Output name: sinks

a
e
f

C.1.5 get source nodes directed

C.1.5.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.5.2 Outputs

sources List of source nodes
sources url URL pointing to sources

C.1.5.3 Example

C.1.5.3.1 Input name: network

Network B.
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C.1 Group: analyse directed

C.1.5.3.2 Output name: sources

b
g

C.1.6 get subgraph directed

C.1.6.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

nodelist direct data List of nodes to appear in the subgraph
nodelist url URL pointing to nodelist direct data

C.1.6.2 Outputs

subgraph Subgraph represented in the common graph format
subgraph url URL pointing to subgraph

missing nodes A list of any nodes which do not appear in the subgraph
missing nodes url URL pointing to missing nodes

C.1.6.3 Example

C.1.6.3.1 Input name: network

Network A.

C.1.6.3.2 Input name: nodelist

a
b
c
e

C.1.6.3.3 Output name: subgraph

a b
b a
b c

181



C.1 Group: analyse directed

C.1.6.3.4 Output name: missing

e

C.1.7 largest strongly connected component directed

C.1.7.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.7.2 Outputs

largest strong component List of nodes in the largest strongly connected component
largest strong component url URL pointing to largest strong component

C.1.7.3 Example

C.1.7.3.1 Input name: network

Network C.

C.1.7.3.2 Output name: largest strong component

c
d
h

C.1.8 list strongly connected components directed

C.1.8.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.8.2 Outputs

list strong components List of nodes in each strongly connected component of the
network, separated by a newline character

list strong components url URL pointing to list strong components

C.1.8.3 Example

C.1.8.3.1 Input name: network

Network C.
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C.1 Group: analyse directed

C.1.8.3.2 Output name: list strong components

c
d
h

g
f

b

a

C.1.9 node degree directed

C.1.9.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.1.9.2 Outputs

degree Query node and its degree
degree url URL pointing to degree

C.1.9.3 Example

C.1.9.3.1 Input name: network

Network A.

C.1.9.3.2 Input name: node

b

C.1.9.3.3 Output name: degree

b 4
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C.1 Group: analyse directed

C.1.10 node in degree directed

C.1.10.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.1.10.2 Outputs

in degree Query node and its in-degree
in degree url URL pointing to in degree

C.1.10.3 Example

C.1.10.3.1 Input name: network

Network B.

C.1.10.3.2 Input name: node

d

C.1.10.3.3 Output name: in degree

d 2

C.1.11 node out degree directed

C.1.11.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.1.11.2 Outputs

out degree Query node and its out-degree
out degree url URL pointing to out degree

C.1.11.3 Example

C.1.11.3.1 Input name: network

Network B.

184



C.1 Group: analyse directed

C.1.11.3.2 Input name: node

g

C.1.11.3.3 Output name: out degree

g 1

C.1.12 query adjacency matrix directed

C.1.12.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.1.12.2 Outputs

adjacency Query node, followed by tab-delimited list of nodes adjacent to it
adjacency url URL pointing to adjacency

C.1.12.3 Example

C.1.12.3.1 Input name: network

Network B.

C.1.12.3.2 Input name: node

d

C.1.12.3.3 Output name: adjacency

d f e

C.1.13 rank betweenness directed

C.1.13.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data
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C.1 Group: analyse directed

C.1.13.2 Outputs

betweenness ranking List of nodes and associated betweenness centralities,
ranked from highest to lowest

betweenness ranking url URL pointing to betweenness ranking

C.1.13.3 Example

C.1.13.3.1 Input name: network

Network A.

C.1.13.3.2 Output name: betweenness ranking

b 0.666666666667
d 0.666666666667
c 0.333333333333
a 0 .0
e 0 .0

C.1.14 rank closeness directed

C.1.14.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.14.2 Outputs

closeness ranking List of nodes and associated closeness centralities,
ranked from highest to lowest

closeness ranking url URL pointing to closeness ranking

C.1.14.3 Example

C.1.14.3.1 Input name: network

Network A.

C.1.14.3.2 Output name: closeness ranking

d 0.666666666667
b 0.571428571429
c 0 .5
e 0.444444444444
a 0 .4
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C.1 Group: analyse directed

C.1.15 rank degrees directed

C.1.15.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.15.2 Outputs

degree ranking List of nodes and associated degrees, ranked from highest to
lowest

degree ranking url URL pointing to degree ranking

C.1.15.3 Example

C.1.15.3.1 Input name: network

Network A.

C.1.15.3.2 Output name: degree ranking

b 4
d 4
a 2
c 2
e 2

C.1.16 rank secondary degrees directed

C.1.16.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.16.2 Outputs

secondary degree ranking List of nodes and associated degrees, ranked from highest to
lowest

secondary degree ranking url URL pointing to secondary degree ranking

C.1.16.3 Example

C.1.16.3.1 Input name: network

Network A.
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C.1 Group: analyse directed

C.1.16.3.2 Output name: secondary degree ranking

c 2
d 2
a 1
b 1
e 1

C.1.17 remove edges directed

C.1.17.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

edgelist A list of edges represented in the common graph format
edgelist url URL pointing to edgelist

C.1.17.2 Outputs

new network Network with specified edges removed
new network url URL pointing to new network

C.1.17.3 Example

C.1.17.3.1 Input name: network

Network A.

C.1.17.3.2 Input name: edgelist

a b
d e
c d
b c

C.1.17.3.3 Output name: new network

b a
e d
d b
c
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C.1 Group: analyse directed

C.1.18 shortest path directed

C.1.18.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

source node First node in path
dest node Final node in path

C.1.18.2 Outputs

shortest path List of nodes along the shortest path between first node and
final node

shortest path url URL pointing to shortest path

C.1.18.3 Example

C.1.18.3.1 Input name: network

Network B.

C.1.18.3.2 Input name: source node

g

C.1.18.3.3 Input name: dest node

e

C.1.18.3.4 Output name: shortest path

g
c
d
e

C.1.19 shortest path length directed

C.1.19.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

source node First node in path
dest node Final node in path
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C.1 Group: analyse directed

C.1.19.2 Outputs

shortest path length Shortest path length between first node and final node
shortest path length url URL pointing to shortest path length

C.1.19.3 Example

C.1.19.3.1 Input name: network

Network B.

C.1.19.3.2 Input name: source node

g

C.1.19.3.3 Input name: dest node

e

C.1.19.3.4 Output name: shortest path

3

C.1.20 size distribution strongly connected components directed

C.1.20.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.20.2 Outputs

distribution Size distribution of strongly connected components
distribution url URL pointing to distribution

C.1.20.3 Example

C.1.20.3.1 Input name: network

Network C.
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C.2 Group: analyse misc

C.1.20.3.2 Output name: distribution

Component size Frequency
1 2
3 1
2 1

C.1.21 total edges directed

C.1.21.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.1.21.2 Outputs

total edges Number of edges in the network
total edges url URL pointing to total edges

C.1.21.3 Example

C.1.21.3.1 Input name: network

Network A.

C.1.21.3.2 Output name: total edges

7

C.2 Group: analyse misc

C.2.1 compare two rankings

C.2.1.1 Expected inputs

number to compare String giving the number of nodes (x) to compare from each
list; the top x nodes are compared

ranking1 direct data The first list of ranked nodes
ranking1 url A URL pointing to ranking1 direct data

ranking2 direct data The second list of ranked nodes
ranking2 url A URL pointing to ranking2 direct data
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C.2 Group: analyse misc

C.2.1.2 Outputs

both List of nodes which appear in both rankings
both url A URL pointing to both

ranking1 only List of nodes which only appear in the first ranking
ranking1 only url A URL pointing to ranking1 only

ranking2 only List of nodes which only appear in the second ranking
ranking2 only url A URL pointing to ranking2 only

C.2.1.3 Example

C.2.1.3.1 Input name: ranking1

d 0.010
b 0.008
e 0.005
f 0 .004
a 0.000
c 0.000

C.2.1.3.2 Input name: ranking2

c 15
b 12
e 11
a 10
d 4
f 2

C.2.1.3.3 Input name: number to compare

3

C.2.1.3.4 Output name: ranking1 only

d

C.2.1.3.5 Output name: ranking2 only
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C.3 Group: analyse undirected

e
b

C.2.1.3.6 Output name: both

c

C.2.2 reverse adjacency list

C.2.2.1 Expected inputs

adjacency direct data Adjacency list representation of interactions
adjacency url URL pointing to adjacency direct data

C.2.2.2 Outputs

reversed Reversed adjacency list representation of interactions
reversed url URL pointing to reversed

C.2.2.3 Example

C.2.2.3.1 Input name: adjacency

1 a b c
2 a b c d
3 a b d
4 d c

C.2.2.3.2 Output name: reversed

c 1 2 4
a 1 2 3
b 1 2 3
d 2 3 4

C.3 Group: analyse undirected

Two toy networks D and E (Figure C.2) are used to demonstrate the usage of web
services in this category.
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C.3 Group: analyse undirected

Figure C.2: Two undirected networks. Network D comprises one connected component.
Network E comprises four connected components, including a singleton node, j. The
singleton is connected to itself by a self loop.

C.3.1 add edges undirected

C.3.1.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

edgelist A list of edges represented in the common graph format
edgelist url URL pointing to edgelist

C.3.1.2 Outputs

new network Network with specified edges removed
new network url URL pointing to new network

C.3.1.3 Example

C.3.1.3.1 Input name: network

Network D.
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C.3 Group: analyse undirected

C.3.1.3.2 Input name: edgelist

a g

C.3.1.3.3 Output name: new network

a b
b c
c g
b d
c d
d f
a g
d e
b f

C.3.2 cliques containing node undirected

C.3.2.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node A query node of interest

C.3.2.2 Outputs

cliques containing node List of cliques of nodes, which contain the node of
interest

cliques containing node url URL pointing to cliques containing node

C.3.2.3 Example

C.3.2.3.1 Input name: network

Network D.

C.3.2.3.2 Input name: node

d
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C.3 Group: analyse undirected

C.3.2.3.3 Output name: cliques containing node

b
d
c

b
d
f

e
d

C.3.3 find cliques undirected

C.3.3.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.3.2 Outputs

cliques List of cliques, each of which is a list of the nodes contained within that
clique

cliques url URL pointing to cliques

C.3.3.3 Example

C.3.3.3.1 Input name: network

Network D.

C.3.3.3.2 Output name: cliques

b
d
c

b
d
f

b
a

e
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C.3 Group: analyse undirected

d

g
c

C.3.4 get average clustering coefficient undirected

C.3.4.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.4.2 Outputs

avg clustering Average clustering coefficient of the whole network
avg clustering url URL pointing to avg clustering

C.3.4.3 Example

C.3.4.3.1 Input name: network

Network D.

C.3.4.3.2 Output name: avg clustering

0.285714285714

C.3.5 get bridges undirected

C.3.5.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.5.2 Outputs

bridges List of bridge edges
brdges url URL pointing to bridges

C.3.5.3 Example

C.3.5.3.1 Input name: network

Network D.
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C.3 Group: analyse undirected

C.3.5.3.2 Output name: bridges

g c
a b
d e

C.3.6 get clique by size undirected

C.3.6.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

size A number denoting the clique size of interest

C.3.6.2 Outputs

cliques List of cliques of nodes, which contain the specified number of nodes
cliques url URL pointing to cliques

C.3.6.3 Example

C.3.6.3.1 Input name: network

Network D.

C.3.6.3.2 Input name: size

2

C.3.6.3.3 Output name: cliques

b
a

e
d

g
c
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C.3 Group: analyse undirected

C.3.7 get cut nodes undirected

C.3.7.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.7.2 Outputs

cut nodes List of cut nodes
cut nodes url URL pointing to cut nodes

C.3.7.3 Example

C.3.7.3.1 Input name: network

Network D.

C.3.7.3.2 Output name: cut nodes

c
b
d

C.3.8 get cyclic core

C.3.8.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.8.2 Outputs

cyclic nodes List of nodes in the cyclic core
cyclic nodes url URL pointing to cyclic nodes

C.3.8.3 Example

C.3.8.3.1 Input name: network

Network D.

C.3.8.3.2 Output name: cyclic nodes
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C.3 Group: analyse undirected

c
b
d
f

C.3.9 get network diameter undirected

C.3.9.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.9.2 Outputs

diameter The diameter of the network
diameter url URL pointing to diameter

C.3.9.3 Example

C.3.9.3.1 Input name: network

Network D.

C.3.9.3.2 Output name: diameter

3

C.3.10 get network radius undirected

C.3.10.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.10.2 Outputs

radius The radius of the network
radius url URL pointing to radius

C.3.10.3 Example

C.3.10.3.1 Input name: network

Network D.
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C.3 Group: analyse undirected

C.3.10.3.2 Output name: radius

2

C.3.11 get subgraph undirected

C.3.11.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

nodelist direct data List of nodes
nodelist url URL pointing to nodelist direct data

C.3.11.2 Outputs

subgraph Subgraph represented in the common graph format
subgraph url URL pointing to subgraph

missing nodes A list of any nodes which do not appear in the subgraph
missing nodes url URL pointing to missing nodes

C.3.11.3 Example

C.3.11.3.1 Input name: network

Network D.

C.3.11.3.2 Input name: nodelist

b
c
d
e

C.3.11.3.3 Output name: subgraph

b c
b d
c d
c g

C.3.11.3.4 Output name: missing

In this case, an empty list, as all the specified nodes are connected in the subgraph.
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C.3 Group: analyse undirected

C.3.12 largest connected component undirected

C.3.12.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.12.2 Outputs

largest component Largest component represented in the common graph format
largest component url URL pointing to largest component

C.3.12.3 Example

C.3.12.3.1 Input name: network

Network E.

C.3.12.3.2 Output name: largest component

i
h
g
f

C.3.13 list connected components undirected

C.3.13.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.13.2 Outputs

list components List of the nodes in each connected component of the net-
work

list components url URL pointing to list components

C.3.13.3 Example

C.3.13.3.1 Input name: network

Network E.
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C.3 Group: analyse undirected

C.3.13.3.2 Output name: list components

i
h
g
f

a
c
b

e
d

j

C.3.14 node clustering coefficient undirected

C.3.14.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.3.14.2 Outputs

clustering Clustering coefficient of query node
clustering url URL pointing to clustering

C.3.14.3 Example

C.3.14.3.1 Input name: network

Network D.

C.3.14.3.2 Input name: node

c

C.3.14.3.3 Output name: clustering

c 0.333333333333
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C.3 Group: analyse undirected

C.3.15 node degree undirected

C.3.15.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.3.15.2 Outputs

degree Query node and its degree
degree url URL pointing to degree

C.3.15.3 Example

C.3.15.3.1 Input name: network

Network E.

C.3.15.3.2 Input name: node

h

C.3.15.3.3 Output name: degree

h 2

C.3.16 query adjacency matrix undirected

C.3.16.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

node Query node of interest

C.3.16.2 Outputs

adjacency Query node, followed by tab-delimited list of nodes adjacent to it
adjacency url URL pointing to adjacency

C.3.16.3 Example

C.3.16.3.1 Input name: network

Network E.
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C.3.16.3.2 Input name: node

g

C.3.16.3.3 Output name: adjacency

g h f

C.3.17 rank betweenness undirected

C.3.17.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.17.2 Outputs

betweenness ranking List of nodes and associated betweenness centralities,
ranked from highest to lowest

betweenness ranking url URL pointing to betweenness ranking

C.3.17.3 Example

C.3.17.3.1 Input name: network

Network D.

C.3.17.3.2 Output name: betweenness ranking

b 0 .4
d 0 .4
c 0.333333333333
a 0 .0
e 0 .0
g 0 .0
f 0 .0

C.3.18 rank closeness undirected

C.3.18.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data
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C.3.18.2 Outputs

closeness ranking List of nodes and associated closeness centralities,
ranked from highest to lowest

closeness ranking url URL pointing to closeness ranking

C.3.18.3 Example

C.3.18.3.1 Input name: network

Network D.

C.3.18.3.2 Output name: closeness ranking

b 0 .75
d 0 .75
c 0.666666666667
f 0.545454545455
a 0.461538461538
e 0.461538461538
g 0.428571428571

C.3.19 rank clustering coefficients undirected

C.3.19.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.19.2 Outputs

clustering ranking List of nodes and associated clustering coefficients,
ranked from highest to lowest

clustering ranking url URL pointing to clustering ranking

C.3.19.3 Example

C.3.19.3.1 Input name: network

Network D.

C.3.19.3.2 Output name: clustering ranking
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f 1 . 0
c 0.333333333333
b 0.333333333333
d 0.333333333333
a 0 .0
e 0 .0
g 0 .0

C.3.20 rank degrees undirected

C.3.20.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.20.2 Outputs

degree ranking List of nodes and associated degrees, ranked from highest to
lowest

degree ranking url URL pointing to degree ranking

C.3.20.3 Example

C.3.20.3.1 Input name: network

Network D.

C.3.20.3.2 Output name: degree ranking

b 4
d 4
c 3
f 2
a 1
e 1
g 1

C.3.21 rank secondary degrees undirected

C.3.21.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data
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C.3.21.2 Outputs

secondary degree ranking List of nodes and associated degrees, ranked from highest to
lowest

secondary degree ranking url URL pointing to secondary degree ranking

C.3.21.3 Example

C.3.21.3.1 Input name: network

Network D.

C.3.21.3.2 Output name: secondary degree ranking

c 7
b 7
d 7
f 6
a 3
e 3
g 2

C.3.22 remove edges undirected

C.3.22.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

edgelist A list of edges represented in the common graph format
edgelist url URL pointing to edgelist

C.3.22.2 Outputs

new network Network with specified edges removed
new network url URL pointing to new network

C.3.22.3 Example

C.3.22.3.1 Input name: network

Network D.

C.3.22.3.2 Input name: edgelist

A list of edges to be removed:

208



C.3 Group: analyse undirected

a b
d e
c d

C.3.22.3.3 Output name: new network

c b
c g
b d
b f
d f
a
e

C.3.23 remove nodes

C.3.23.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

nodelist A list of nodes
nodelist url URL pointing to nodelist

C.3.23.2 Outputs

new network Network with specified nodes removed
new network url URL pointing to new network

C.3.23.3 Example

C.3.23.3.1 Input name: network

Network D.

C.3.23.3.2 Input name: nodelist

c
e
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C.3.23.3.3 Output name: new network

a b
b d
b f
d f
g

C.3.24 remove self loops undirected

C.3.24.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.24.2 Outputs

network self loops removed Network in common graph format, with no self loops
network self loops removed url URL pointing to network self loops removed

nodes with self loops List of network nodes with self loops
nodes with self loops url URL pointint to nodes with self loops

C.3.24.3 Example

C.3.24.3.1 Input name: network

Network E.

C.3.24.3.2 Output name: network self loops removed

a c
a b
c b
e d
g h
g f
i h
j

C.3.24.3.3 Output name: nodes with self loops

j
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C.3.25 remove singleton nodes

C.3.25.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.25.2 Outputs

network singletons removed Network in common graph format
network singletons removed url URL pointing to network singletons removed

singletons list List of singleton nodes which have been removed from
the network

singletons list url URL pointing to singletons list

C.3.25.3 Example

C.3.25.3.1 Input name: network

Network E.

C.3.25.3.2 Output name: network singletons removed

a b
b c
a c
d e
f g
g h
h i

C.3.25.3.3 Output name: singletons list

j

C.3.26 size distribution connected components undirected

C.3.26.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.26.2 Outputs

distribution Size distribution of connected components
distribution url URL pointing to distribution
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C.3.26.3 Example

C.3.26.3.1 Input name: network

Network E.

C.3.26.3.2 Output name: distribution

Component size Frequency
1 1
3 1
2 1
4 1

C.3.27 size of largest clique undirected

C.3.27.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.27.2 Outputs

largest clique size Number of nodes in largest clique
largest clique size url URL pointing to largest clique size

C.3.27.3 Example

C.3.27.3.1 Input name: network

Network D.

C.3.27.3.2 Output name: largest clique size

3

C.3.28 total edges undirected

C.3.28.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data
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C.3.28.2 Outputs

total edges Number of edges in the network
total edges url URL pointing to total edges

C.3.28.3 Example

C.3.28.3.1 Input name: network

Network E.

C.3.28.3.2 Output name: total edges

8

C.3.29 total nodes

C.3.29.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.3.29.2 Outputs

total nodes Number of nodes in the network
total nodes url URL pointing to total nodes

C.3.29.3 Example

C.3.29.3.1 Input name: network

Network E.

C.3.29.3.2 Output name: total nodes

10

C.4 Group: format output

C.4.1 common graph to dot directed

C.4.1.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data
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C.4.1.2 Outputs

dotfile Network represented using the DOT language
dotfile url URL pointing to dotfile

C.4.1.3 Example

C.4.1.3.1 Input name: network

a b
a c
b c
d b
c d
e c
e f
g e

C.4.1.3.2 Output name: dotfile

digraph G {
node [ s t y l e=f i l l e d ] ;
ove r lap=s c a l e ;
a −> b ;
a −> c ;
b −> c ;
d −> b ;
c −> d ;
e −> c ;
e −> f ;
g −> e ;
}

C.4.2 common graph to dot undirected

C.4.2.1 Expected inputs

network direct data Network represented in the common graph format
network url URL pointing to network direct data

C.4.2.2 Outputs

dotfile Network represented using the DOT language
dotfile url URL pointing to dotfile
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C.4.2.3 Example

C.4.2.3.1 Input name: network

a b
a c
b c
d b
c d
e c
e f
g e

C.4.2.3.2 Output name: dotfile

digraph G {
edge [ d i r=none ] ;
node [ s t y l e=f i l l e d ] ;
ove r lap=s c a l e ;
a −> b ;
a −> c ;
b −> c ;
d −> b ;
c −> d ;
e −> c ;
e −> f ;
g −> e ;
}

C.4.3 dot

C.4.3.1 Expected inputs

dotfile direct data Network represented in the DOT language
dotfile url URL pointing to dotfile direct data

library direct data A custom PostScript library file
library url A URL pointing to library direct data

format Image format (from the following list: canon, dot, fig, gd,
gif, hpgl, imap, jpg, mif, mp, pcl, pic, plain, png, ps, ps2,
svg, vrml, vtx, wbmp)

C.4.3.2 Outputs

resultgraph Network diagram rendered using hierarchical layout
resultgraph url URL pointing to resultgraph
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C.4.3.3 Example

C.4.3.3.1 Input name: dotfile

In this example, a directed network:

digraph G {
node [ s t y l e=f i l l e d ] ;
ove r lap=s c a l e ;
a −> b ;
a −> c ;
b −> c ;
d −> b ;
c −> d ;
e −> c ;
e −> f ;
g −> e ;
}

C.4.3.3.2 Input name: format

png

C.4.3.3.3 Output name: resultgraph
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C.4.4 format psi25 id list

C.4.4.1 Expected inputs

protein ids direct data List of protein ids
protein ids url URL pointing toprotein ids direct data

psi25 proteins file direct data PSI-MI 2.5 proteins file, as generated by
psi25 to common graph

psi25 proteins file url URL pointing topsi25 proteins file direct data

C.4.4.2 Outputs

protein names List of PSI-MI descriptive names
protein names url URL pointing to protein names

C.4.4.3 Example

C.4.4.3.1 Input name: protein ids

Q9Y631
Q99461
Q93009
Q8IX98

C.4.4.3.2 Input name: psi25 proteins file

In this example, the first five lines of the Viruses.psi25 from MINT:

Q9Y631 Transformation / t r a n s c r i p t i o n domain−a s s o c i a t ed prot e in Homo
sap ien s

Q99461 Mitogen−ac t i v a t ed prot e in k inase k inase k inase 5 Homo
sap ien s

Q4JQW5 ORF10 Human he rp e sv i r u s
Q93009 Ubiqu it in carboxyl−t e rmina l hydro la se 7 Homo sap ien s
P88918 ORF 28 Human he rp e sv i r u s
<snipped>

C.4.4.3.3 Output name: protein names

Transformation / t r a n s c r i p t i o n domain−a s s o c i a t ed prot e in
Mitogen−ac t i v a t ed prot e in k inase k inase k inase 5
Ubiqu it in carboxyl−t e rmina l hydro la se 7
SH3 domain−con ta in ing k inase−bind ing prot e in 1
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C.4.5 format sbml id list

C.4.5.1 Expected inputs

sbml ids direct data List of SBML ids
sbml ids url URL pointing tosbml ids direct data

sbml species file direct data SBML species file, as generated by sbml to common graph

sbml species file url URL pointing tosbml species file direct data

C.4.5.2 Outputs

sbml names List of SBML names
sbml names url URL pointing to sbml names

C.4.5.3 Example

C.4.5.3.1 Input name: sbml ids

ACP c
Lfmkynr c
Nacasp c
2kmb c

C.4.5.3.2 Input name: sbml species file

In this example the first five species in the Palsson human metabolic network:

ACP c a c y l c a r r i e r p r o t e i n NONE . . .
ACP m ac y l c a r r i e r p r o t e i n NONE . . .
Asn X Ser Thr b p r o t e i n l i n k e d a s p a r a g i n e r e s i d u e N g l y c o s y l a t i o n s i t e

. . .
Asn X Ser Thr l p r o t e i n l i n k e d a s p a r a g i n e r e s i d u e N g l y c o s y l a t i o n s i t e

. . .
Asn X Ser Thr r p r o t e i n l i n k e d a s p a r a g i n e r e s i d u e N g l y c o s y l a t i o n s i t e

. . .
<snipped>

C.4.5.3.3 Output name: sbml names

a c y l c a r r i e r p r o t e i n
L Formylkynurenine
N Acety l L aspar tat e
2 k e t o 4 me thy l t h i obu ty ra t e
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C.4.6 neato

C.4.6.1 Expected inputs

dotfile direct data Network represented in the DOT language
dotfile url URL pointing to dotfile direct data

library direct data A custom PostScript library file
library url A URL pointing to library direct data

format Image format (from the following list: canon, dot, fig, gd,
gif, hpgl, imap, jpg, mif, mp, pcl, pic, plain, png, ps, ps2,
svg, vrml, vtx, wbmp)

C.4.6.2 Outputs

resultgraph Network diagram rendered using spring-embedded layout
resultgraph url URL pointing to resultgraph

C.4.6.3 Example

C.4.6.3.1 Input name: dotfile

In this example, an undirected network:

digraph G {
edge [ d i r=none ] ;
node [ s t y l e=f i l l e d ] ;
ove r lap=s c a l e ;
a −> b ;
a −> c ;
b −> c ;
d −> b ;
c −> d ;
e −> c ;
e −> f ;
g −> e ;
}

C.4.6.3.2 Input name: format

png

219



C.5 Group: retrieve

C.4.6.3.3 Output name: resultgraph

C.5 Group: retrieve

C.5.1 query atpid

C.5.1.1 Expected inputs

query protein String representing an A. thaliana AGI identifier.

C.5.1.2 Outputs

atpid interactors List of proteins that interact with the query protein.
atpid interactors url URL pointing to atpid interactors

C.5.1.3 Example

C.5.1.3.1 Input name: query protein

AT2G01250

C.5.1.3.2 Output name: atpid interactors

AT2G44120
AT5G14520
AT1G80750
AT3G13580
AT4G01560
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C.5.2 query inferred

C.5.2.1 Expected inputs

query protein String representing an A. thaliana AGI identifier.

C.5.2.2 Outputs

inferred interactors List of proteins that interact with the query protein.
inferred interactors url URL pointing to inferred interactors

C.5.2.3 Example

C.5.2.3.1 Input name: query protein

AT2G01250

C.5.2.3.2 Output name: inferred interactors

AT5G14520
AT1G36730
AT5G15550
AT2G36930
AT1G21160
AT3G11964
AT1G03530
AT1G10170
AT1G10300
AT4G01560
AT2G18220
AT3G01610
AT2G39770
AT1G13160
AT3G16840
AT1G05520
AT4G38630
AT4G11820
AT4G26840
AT3G27530
AT4G17620
AT3G55620
AT1G06380
AT1G18830
AT3G55410
AT1G72440
AT3G13640
AT1G19910
AT4G26910
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C.6 Group: transform

Extracts from real biological networks are used to demonstrate applicability of web
services in this group.

C.6.1 common graph to sif

C.6.1.1 Expected inputs

common direct data Network represented in the common graph format
common url URL pointing to common direct data

relationship A string representing the relationship type between the enti-
ties in the network. Common types include pp to represent
PPI interactions, and pd to represent protein-DNA interac-
tions (e.g. binding of a TF upstream of a gene). A full list
of types is available from the Cytoscape website1.

C.6.1.2 Outputs

sif Network represented in SIF
sif url URL pointing to sif

C.6.1.3 Example

C.6.1.3.1 Input name: common

In this example, the first five interactions between proteins in the AtPID dataset:

AT2G01250 AT2G44120
AT5G07090 AT5G58420
AT4G16720 AT4G17390
AT5G10400 AT5G65360
AT5G10390 AT5G65360

C.6.1.3.2 Input name: relationship

A full list of possible interaction types is available from the Cytoscape website1:

1http://www.cytoscape.org/cgi-bin/moin.cgi/Cytoscape_User_Manual/Network_Formats
1http://www.cytoscape.org/cgi-bin/moin.cgi/Cytoscape_User_Manual/Network_Formats
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pp

C.6.1.3.3 Output name: sif

AT2G01250 pp AT2G44120
AT5G07090 pp AT5G58420
AT4G16720 pp AT4G17390
AT5G10400 pp AT5G65360
AT5G10390 pp AT5G65360

C.6.2 psi25 to common graph

C.6.2.1 Expected inputs

psi25 direct data Network represented in the PSI-MI Level 2 format
psi25 url URL pointing to psi25 direct data

C.6.2.2 Outputs

common Network represented in the common graph format
common url URL pointing to common

proteins Proteins file (full details of this file are given in the example below)
proteins url URL pointing to proteins

C.6.2.3 Example

C.6.2.3.1 Input name: psi25

In this example, the first interaction between human viral proteins in the Viruses-3.psi25.xml
dataset, available to download from the MINT FTP site1 (the example has been mod-
ified to show the relevant parts of the document):

<?xml v e r s i on=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>
<entrySet v e r s i on=”5” minorVersion=”3” l e v e l=”2”

x s i : schemaLocation=”net : s f : ps idev : mi http :// ps idev . s ou r c e f o r g e
. net /mi/ r e l 25 / s r c /MIF253 . xsd”

xmlns=”net : s f : ps idev : mi”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t an c e ”>

<entry>

1ftp://mint.bio.uniroma2.it/pub/release/psi/current/psi25/dataset/
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<sou rce r e l easeDate=”2009−04−16”>
<names>

<shortLabe l>MINT</shortLabe l>
<fullName>MINT, Dpt o f Biology , Un ive r s i ty o f Rome Tor

Vergata</fullName>
</names>
<xre f>

<primaryRef secondary=”mint” refTypeAc=”MI:0356 ”
refType=” i d e n t i t y ” id=”MI:0471 ” dbAc=”MI:0488 ” db=”
ps i−mi”/>

</xre f>
</source>
<exper imentList>

<!−− SNIPPED −−>
</exper imentList>
< i n t e r a c t o rL i s t>

< i n t e r a c t o r id=”6385 ”>
<!−− SNIPPED −−>
<xre f>

<primaryRef v e r s i on=”SP 46” refTypeAc=”MI:0356 ”
refType=” i d e n t i t y ” id=”Q9BUE7” dbAc=”MI:0486 ”
db=”uniprotkb ”/>

<!−− SNIPPED −−>
</xre f>
<!−− SNIPPED −−>

</ in t e r a c t o r>
< i n t e r a c t o r id=”6388 ”>

<!−− SNIPPED −−>
<xre f>

<primaryRef v e r s i on=”SP 61” refTypeAc=”MI:0356 ”
refType=” i d e n t i t y ” id=”Q71BI7” dbAc=”MI:0486 ”
db=”uniprotkb ”/>

<!−− SNIPPED −−>
</xre f>
<!−− SNIPPED −−>

</ in t e r a c t o r>
</ i n t e r a c t o rL i s t>
< i n t e r a c t i o nL i s t>

< i n t e r a c t i o n id=”6382 ”>
<names>

<shortLabe l>ve6−srtd1</shortLabe l>
</names>
<xre f>

<primaryRef refTypeAc=”MI:0356 ” refType=” i d e n t i t y ”
id=”MINT−73312” dbAc=”MI:0471 ” db=”mint”/>

</xre f>
<exper imentList>

<experimentRef >6383</ experimentRef>
</exper imentList>
<pa r t i c i p an tL i s t >

<pa r t i c i p an t id=”6384 ”>
<names>
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<shortLabe l>srtd1 human</shortLabe l>
</names>
<i n t e rac torRe f >6385</ in t e rac torRe f >
<!−− SNIPPED −−>

</par t i c ipan t >
<pa r t i c i p an t id=”6387 ”>

<names>
<shortLabe l>ve6 hpv16</shortLabe l>

</names>
<i n t e rac torRe f >6388</ in t e rac torRe f >

<!−− SNIPPED −−>
</par t i c ipan t >

</pa r t i c i p an tL i s t >
<!−− SNIPPED −−>

</ in t e r a c t i on>

<!−− SNIPPED −−>
</ i n t e r a c t i o nL i s t>

</entry>
</entrySet>

C.6.2.3.2 Output name: common

Q9BUE7 Q71BI7
O00530 Q14637
Q01860 P06438
Q9WMH0 Q9H4Z5
P06463 Q7Z5D1

C.6.2.3.3 Output name: proteins

A file containing information about proteins in the network, where the first column is
the protein accession, the second is the descriptive name, and the third is the organism:

P06790 Regulatory prot e in E2 Human pap i l l omav i ru s type 18
P04015 Regulatory prot e in E2 Human pap i l l omav i ru s type 11
Q9Y6K9 NF−kappa−B e s s e n t i a l modulator Homo sap ien s
Q15328 Transc r ip t ion f a c t o r E2F4 Homo sap ien s
Q9BUE7 SERTA domain−con ta in ing prot e in 1 Homo sap ien s
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C.6.3 psitab to common graph

C.6.3.1 Expected inputs

psitab direct data Network represented in the PSI-MI Level 2 format
psi25 url URL pointing to psitab direct data

C.6.3.2 Outputs

common Network represented in the common graph format
common url URL pointing to common

C.6.3.3 Example

C.6.3.3.1 Input name: psitab

In this example, the first five interactions from the DIP Mus musculus dataset, available
to download from the DIP website 1 (only the first two columns of each interaction
record are given here):

DIP−278N | uniprotkb : Q60520 DIP−951N | uniprotkb : Q9Y618 <snipped>
DIP−445N | uniprotkb : P46414 DIP−559N <snipped>
DIP−497N | uniprotkb : P43063 DIP−445N | uniprotkb : P46414 <snipped>
DIP−165N | uniprotkb : P15692 DIP−215N | uniprotkb : P35918 <snipped>
DIP−1084N | uniprotkb : P03995 DIP−1081N | uniprotkb : P04273 <snipped>

C.6.3.3.2 Output name: common

Q60520 Q9Y618
P46414
P43063 P46414
P15692 P35918
P03995 P04273

C.6.4 sbml to common graph

C.6.4.1 Expected inputs

sbml direct data Network represented in SBML format
sbml url URL pointing to sbml direct data

1http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=10090
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C.6.4.2 Outputs

common Network represented in the common graph format
common url URL pointing to common

species Species file (full details of this file are given in the example below)
species url URL pointing to species

reactions Reactions file (full details of this file are given in the example
below)

reactions url URL pointing to reactions

C.6.4.3 Example

C.6.4.3.1 Input name: sbml

In this example caprolactam degradation in E. coli :

<?xml v e r s i on=” 1 .0 ” encoding=”UTF−8”?>
<sbml xmlns=”http ://www. sbml . org /sbml/ l e v e l 2 ” v e r s i on=”1” l e v e l=”2”>

<model id=” eco00930 ” name=”eco00930 ”>
<l istOfCompartments>

<compartment id=” de f au l t ” name=” de f au l t ” />
<compartment id=”uVol” name=”uVol” out s id e=” de f au l t ” />

</listOfCompartments>
< l i s tO f S p e c i e s>

<s p e c i e s id=” E3 space 7 space 1 space minus ” name=”
3.7 .1 . − ” compartment=”uVol” in it ia lAmount=” 0 .0 ”>

</sp e c i e s>
<s p e c i e s id=” E2 space 6 space 1 space minus ” name=”

2.6 .1 . − ” compartment=”uVol” in it ia lAmount=” 0 .0 ”>
</sp e c i e s>
<s p e c i e s id=”Adipate space semialdehyde ” name=”Adipate

semialdehyde ” compartment=”uVol” in it ia lAmount=” 0 .0 ”>
</sp e c i e s>
<s p e c i e s id=” space 6 minus Aminohexanoate ” name=”6−

Aminohexanoate ” compartment=”uVol” in it ia lAmount=” 0 .0 ”>
</sp e c i e s>
<s p e c i e s id=”Cyclohexan minus 1 space 2 minus d ione ” name=

”Cyclohexan−1,2−dione” compartment=”uVol” in it ia lAmount
=” 0 .0 ”>

</sp e c i e s>
</ l i s tO f S p e c i e s>
<l i s tO fReac t i on s>

<r e a c t i on id=”R05507” name=”R05507” r e v e r s i b l e=” t rue”>
<l i s tO fReactan t s>

<sp e c i e sRe f e r en c e s p e c i e s=”
space 6 minus Aminohexanoate ”>

</spec i e sRe fe r ence >
</l i s tO fReactan t s>
<l i s tO fProduct s>
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<sp e c i e sRe f e r en c e s p e c i e s=”
Adipate space semialdehyde ”>

</spec i e sRe fe r ence >
</l i s tO fProduct s>
< l i s tO fMod i f i e r s >

<mod i f i e r Sp e c i e sRe f e r en c e s p e c i e s=”
E2 space 6 space 1 space minus ”/>

</l i s tO fMod i f i e r s >
</reac t ion>

<r e a c t i on id=”R05100” name=”R05100” r e v e r s i b l e=” t rue”>
<l i s tO fReactan t s>

<sp e c i e sRe f e r en c e s p e c i e s=”
Cyclohexan minus 1 space 2 minus d ione ”>

</spec i e sRe fe r ence >
</l i s tO fReactan t s>
<l i s tO fProduct s>

<sp e c i e sRe f e r en c e s p e c i e s=”
Adipate space semialdehyde ”>

</spec i e sRe fe r ence >
</l i s tO fProduct s>
< l i s tO fMod i f i e r s >

<mod i f i e r Sp e c i e sRe f e r en c e s p e c i e s=”
E3 space 7 space 1 space minus ”/>

</l i s tO fMod i f i e r s >
</reac t ion>

</l i s tO fReac t i on s>
</model>

</sbml>

C.6.4.3.2 Output name: common

space 6 minus Aminohexanoate R05507
R05507 space 6 minus Aminohexanoate
R05507 Adipate space semialdehyde
Adipate space semialdehyde R05507
E2 space 6 space 1 space minus R05507
Cyclohexan minus 1 space 2 minus d ione R05100
R05100 Cyclohexan minus 1 space 2 minus d ione
R05100 Adipate space semialdehyde
Adipate space semialdehyde R05100
E3 space 7 space 1 space minus R05100

C.6.4.3.3 Output name: reactions

A file containing information about reactions, where the first column is the reaction
identifier, the second is its name, the third indicates if it is reversible, and the fourth
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indicates if it is fast:

R05507 R05507 t rue f a l s e
R05100 R05100 t rue f a l s e

C.6.4.3.4 Output name: species

A file containing information about the species (in SBML this refers to molecules) in
the network, where the first column is the species identifier, the second is the name,
the third is the type, the fourth is the compartment, the fifth is the initial amount, the
sixth is the initial concentration, the seventh is the substance units, the eighth indicates
if it has only substance units, the ninth indicates if it has a boundary condition, the
tenth indicates the charge, and the eleventh indicates if it is contstant:

E3 space 7 . . . 3 .7 .1 . − NONE uVol 0 .0 NONE NONE f a l s e f a l s e NONE NONE
E2 space 6 . . . 2 .6 .1 . − NONE uVol 0 .0 NONE NONE f a l s e f a l s e NONE NONE
Adipate sp . . . Adipate semialdehyde NONE uVol 0 .0 NONE NONE f a l s e f a l s e

NONE NONE
space 6 m . . . 6−Aminohexanoate NONE uVol 0 .0 NONE NONE f a l s e f a l s e

NONE NONE
Cyclohexan . . . Cyclohexan−1,2−dione NONE uVol 0 .0 NONE NONE f a l s e f a l s e

NONE NONE
<snipped>

C.6.5 sif to common graph

C.6.5.1 Expected inputs

sif direct data Network represented in SIF
sif url URL pointing to sif direct data

C.6.5.2 Outputs

common Network represented in the common graph format
common url URL pointing to common

C.6.5.3 Example

C.6.5.3.1 Input name: sif

In this example, the first five interactions in the AtPID dataset:
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AT2G01250 pp AT2G44120
AT5G07090 pp AT5G58420
AT4G16720 pp AT4G17390
AT5G10400 pp AT5G65360
AT5G10390 pp AT5G65360

C.6.5.3.2 Output name: common

AT2G01250 AT2G44120
AT5G07090 AT5G58420
AT4G16720 AT4G17390
AT5G10400 AT5G65360
AT5G10390 AT5G65360
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Appendix D

Detailed workflow outputs

D.1 A workflow to identify source and sink metabolites

in a network model of metabolism

D.1.1 Source metabolites

androsterone glucuronide C25H38O8
ADPribose C15H21N5O14P2
Imidazole−4−acetaldehyde C5H6N2O
dTMP C10H13N2O8P
Isoc it rate C6H5O7
1−Phosphatidyl−1D−myo− i n o s i t o l 5−phosphate (Homo sap ien s )

C9H15O12P2FULLRCO2FULLR2CO2
L−Proline C5H9NO2
XTP C10H11N4O15P3
5−Hydroxykynurenine C10H12N2O4
Dihydroxyacetone phosphate C3H5O6P
GD3 (homo sap ien s ) C52H88N3O28FULLRCO
NMN C11H14N2O8P
1D−myo−I n o s i t o l 3 ,4 ,5 ,6− tetrakisphosphate C6H8O18P4
Proco l l agen L−lysine C7H14N3O2R2
3−Oxohexadecanoyl−CoA C37H60N7O18P3S
Nicot inamide adenine d inu c l e o t i d e phosphate − reduced C21H26N7O17P3
prote in−l i n k ed s e r i n e r e s i du e ( g lycosaminoglycan attachment s i t e ) XH
D−Lactaldehyde C3H6O2
P1 , P4−Bis (5 '−adenosy l ) tetraphosphate C20H24N10O19P4
Ubiquinone−10 C59H90O4
2−Oxoglutarate C5H4O5

N2−Acetyl−L−ornithine C7H14N2O3
N−Trimethyl−2−aminoethylphosphonate C5H13NO3P
(13E)−11alpha−Hydroxy−9,15− dioxoprost−13−enoate C20H31O5
Betaine aldehyde C5H12NO
R group 2 Coenzyme A homo sapiens XCO2C21H31N7O15P3S
prote in−l i n k ed s e r i n e or th reon ine r e s i du e (O−g l y c o s y l a t i o n s i t e ) XH
Malonyl−CoA C24H33N7O19P3S
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DNA C10H17O8PR2
trans−4−Hydroxy−L−proline C5H9NO3
ph o s p h a t i d y l i n o s i t o l (homo sap ien s ) C9H16O9PFULLRCO2FULLR2CO2
dGMP C10H12N5O7P
2−Phosphoglycolate C2H2O6P
g l y c op h o s p h a t i d y l i n o s i t o l (GPI)−anchored prot e in precursor XY
dCMP C9H12N3O7P
R group 1 Coenzyme A homo sapiens XCO2C21H31N7O15P3S
pregnenolone sulfate C21H31O5S
L−Carnosine C9H14N4O3
Trehalose C12H22O11
Hydroxypyruvate C3H3O4
( alpha−D−mannosyl )2−beta−D−mannosyl−N−acetylglucosamine C26H45NO21
3 ' ,5 '−Cyc l i c GMP C10H11N5O7P
I sopenteny l diphosphate C5H9O7P2
Hydroxymethylglutaryl−CoA C27H39N7O20P3S
Selenomethionine C5H11NO2Se
P e r i l l y l aldehyde C10H14O
P e r i l l y l aldehyde C10H14O
ADPglucose C16H23N5O15P2
UMP C9H11N2O9P
Nicot inat e D−ribonucleotide C11H12NO9P
dAMP C10H12N5O6P
D−Ornithine C5H13N2O2
3−Hydroxy−N6 ,N6 ,N6−t r imethy l−L−lysine C9H20N2O3

ADPmannose C16H23N5O15P2
N−Acetyl−L−glutamyl 5−phosphate C7H9NO8P
c i s−beta−D−Glucosyl−2−hydroxycinnamate C15H18O8
(R)−Pantothenate C9H16NO5
N−Methylputrescine C5H16N2
chitin C24H41N3O16
CMP C9H12N3O8P
trans−4−Hydroxycinnamate C9H7O3
3alpha−Hydroxy−5beta−androstan−17−one C19H30O2
Lanosterol C30H50O
R t o t a l Coenzyme A CO2FULLRC21H31N7O15P3S
D−Ribulose C5H10O5
(2−Aminoethyl ) phosphonate C2H7NO3P
Indole−3−acetaldehyde C10H9NO
D−Proline C5H9NO2
17alpha−Hydroxypregnenolone C21H32O3
c h o l e s t e r o l sulfate C27H45O4S
Ribitol C5H12O5
(S)−Methylmalonyl−CoA C25H35N7O19P3S
(S )−Methylmalonyl−CoA C25H35N7O19P3S
cAMP C10H11N5O6P
3−Hydroxypropionyl−CoA C24H36N7O18P3S
cocaine C17H21NO4
Estrone 3−sulfate C18H21O5S
5−Hydroxyindoleacetaldehyde C10H9NO2

n2m2nmasn (w/o pept ide l i n k age ) C58H97N5O41
Cholesterol C27H46O
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3alpha , 7 alpha ,12 alpha−Trihydroxy−5beta−cholestanoate C27H45O5
GT3 (homo sap ien s ) C63H104N4O36FULLRCO
3 '−AMP C10H12N5O7P

Lactose C12H22O11
D−Arginine C6H15N4O2
AMP C10H12N5O7P
L−Glutamate 5−semialdehyde C5H9NO3
L−Lactaldehyde C3H6O2
O−Phospho−L−homoserine C4H8NO6P
N4−Acetylaminobutanal C6H11NO2
1−Phosphatidyl−1D−myo− i n o s i t o l 4−phosphate (Homo sap ien s )

C9H15O12P2FULLRCO2FULLR2CO2
3−Oxooctadecanoyl−CoA C39H64N7O18P3S
3alpha , 7 alpha−Dihydroxy−5beta−cholestanate C27H45O4
Oxidized th ioredox in X
Dimethy la l ly l diphosphate C5H9O7P2
3−Oxohexacosyl−CoA C47H80N7O18P3S

GMP C10H12N5O8P
hydroxy a l k y l chain C2H5OFULLR
3−Oxododecanoyl−CoA C33H52N7O18P3S
3−Oxotetradecanoyl−CoA C35H56N7O18P3S
3−Oxodecanoyl−CoA C31H48N7O18P3S

D−glucurono−6,3− lactone C6H8O6
prote in−l i n k ed asparag ine r e s i du e (N−g l y c o s y l a t i o n s i t e ) XH
de−Fuc form of PA6 (w/o pept ide l i n k age ) C84H136N6O62
Dithiothreito l C4H10O2S2
Ca l c i t r o i c ac id (D3) C22H33O4
Maltotriose C18H32O16
Maltotriose C18H32O16
L−erythro−4−Hydroxyglutamate C5H8NO5
(R)−S−Lactoylglutathione C13H20N3O8S
beta−Aminopropion aldehyde C3H8NO
Propenoyl−CoA C24H34N7O17P3S

D.1.1.1 Sink metabolites

beta−1,4−mannose−N−acetylglucosamine C14H25NO11
androsterone glucuronide C25H38O8
Anthranilate C7H6NO2
13−c i s−retinoate C20H27O2

L−Xylonate C5H9O6
2−Hydroxyphenylacetate C8H7O3
t r i h e x o s y l ceramide (homo sap ien s ) C36H66NO17FULLRCO
Tetradecanoyl−CoA (n−C14 : 0CoA) C35H58N7O17P3S
Dihydroxyacetone C3H6O3
4−(2−Amino−3−hydroxyphenyl )−2,4−dioxobutanoate C10H8NO5
alpha−D−Ribose 5−phosphate C5H9O8P
3alpha , 7 alpha ,12 alpha−Trihydroxy−5beta−cho l e s tanoy l−CoA(S)

C48H76N7O20P3S
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Core 7 C16H27N2O10X
1−alpha ,24R,25−Trihydroxyvitamin D2 C28H44O4
Decanoyl−CoA (n−C10 : 0CoA) C31H50N7O17P3S
D−Glucarate C6H8O8
D−Glucarate C6H8O8
Reduced thioredoxin XH2
3alpha , 7 alpha−Dihydroxy−5beta−cho l e s t −24−enoyl−CoA C48H74N7O19P3S
prote in−l i n k ed s e r i n e r e s i du e ( g lycosaminoglycan attachment s i t e ) XH
12R−Hydroperoxyeicosatetraenoate C20H31O4
L−Homoserine C4H9NO3
1−a lk eny l 2−a c y l g l y c e r o l 3−phosphoethanolamine plasmalogen (homo

sap ien s ) C7H14O5NPFULLRFULLR2CO
(R)−Mevalonate C6H11O4
hydroxy nifedipine C17H18N2O7
(2) [ g lucose −1,3]−mannose ol igosacchar ide C18H32O16
Tetrahydrobiopterin C9H15N5O3
1−Pyrro l ine −2−carboxylate C5H6NO2
prote in−l i n k ed s e r i n e or th reon ine r e s i du e (O−g l y c o s y l a t i o n s i t e ) XH
Acetaldehyde C2H4O
r e t i n o y l CoA C41H58N7O17P3S
AMP C10H12N5O7P
trans−4−Hydroxy−L−proline C5H9NO3
dTTP C10H13N2O14P3
3 '−Phosphoadenylylselenate C10H11N5O13P2Se

w−hydroxyl a rach idon i c acid C20H31O3
ADPribose 2 '−phosphate C15H20N5O17P3
Spermine C10H30N4
15−Hydroperoxye i cosat e t raeno i c acid C20H31O4

Formyl−5−hydroxykynurenamine C10H13N2O3
Glycolate C2H3O3
Indole−3−acetate C10H8NO2
Indole−3−acetate C10H8NO2
deacy lated−g l y c op h o s p h a t i d y l i n o s i t o l (GPI)−anchored

protein C39H76N4O37P4FULLRCO2FULLR2CO2X
mannosyl−3−(phosphoethanolaminyl−mannosyl )−glucosaminy l−

acy lpho spha t i d y l i n o s i t o l −Prote in (M4A)
C61H116N4O43P4FULLRCO2FULLR2CO2X

Formaldehyde CH2O
N−Acetyl−L−glutamate 5−semialdehyde C7H10NO4
GlcNAc−alpha−1,4−Core 1 C22H37N2O15X
4−Trimethylammoniobutanal C7H16NO

Ammonium H4N
L−Threonate C4H7O5
4 ,8−Dihydroxyquinoline C9H7NO2
4−oxo−r e t ono i c acid C20H27O3
5−Amino−2−oxopentanoate C5H9NO3
Putrescine C4H14N2
13−c i s−oxo−r e t i n o i c acid C20H27O3

D−4 '−Phosphopantothenate C9H15NO8P
Core 5 C16H27N2O10X
dGTP C10H12N5O13P3
Pseudoecgonyl−CoA C30H46N8O18P3S
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Proco l l agen 5−hydroxy−L−lysine C6H14N2O3
dCTP C9H12N3O13P3
Hexadecanoate (n−C16 : 0 ) C16H31O2
c h o l e s t e r o l ester C27H45XCO2
1−Methylpyrrolinium C5H10N
pept ide sans ly s in e X
Deamino−NAD+ C21H24N6O15P2
Cob ( I I ) alamin C62H92CoN13O14P
4 hydroxy r e t i n o i c acid C20H27O3
Imidazole−4−acetate C5H5N2O2
Imidazole−4−acetate C5H5N2O2
Nicot inamide adenine d inu c l e o t i d e phosphate C21H25N7O17P3
Coenzyme A C21H32N7O16P3S
pho spha t i d y l i n o s i t o l −3,5−bisphosphate (Homo sap ien s )

C9H14O15P3FULLRCO2FULLR2CO2
deacy lated−(phosphoethanolaminyl−dimannosyl ) , ( phosphoethanolaminyl )−

mannosyl−glucosaminy l−
acylphosphatidylinositol C37H70N3O34P3FULLRCO2FULLR2CO2X

s i a l y l −Tn antigen C19H30N2O13X
ly sopho spha t i d i c ac id (homo sap ien s ) C3H6O5PFULLRCO2
de−Fuc , reduc ing GlcNAc removed , de−Sia form of PA6 (w/o pept ide

l i n k age ) C54H91N3O41
4 ,4− d imethy l cho l e s ta−8,14 ,24− trienol C29H46O
Phosphate HO4P
N−Formylanthranilate C8H6NO3
Dodecanoyl−CoA (n−C12 : 0CoA) C33H54N7O17P3S
1−Phosphatidyl−1D−myo− i n o s i t o l 3−phosphate (Homo sap ien s )

C9H15O12P2FULLRCO2FULLR2CO2
5−Guanidino−2−oxopentanoate C6H11N3O3

N−Methylserotonin C11H15N2O
Melanin C9H6NO4
6−Hydroxymelatonin C13H16N2O3

dTDP−L−rhamnose C16H24N2O15P2
Ethanolamine phosphate C2H7NO4P
Ubiquinol−10 C59H92O4
P e r i l l i c acid C10H13O2
P e r i l l i c acid C10H13O2
18 hydroxy arach idon ic acid C20H31O3

CMP−N−t r imethy l−2−aminoethylphosphonate C14H25N4O10P2
Formyl−N−ace ty l−5−methoxykynurenamine C13H16N2O4
pho spha t i d y l i n o s i t o l −3,4−bisphosphate (Homo sap ien s )

C9H14O15P3FULLRCO2FULLR2CO2
Selenophosphate H2O3PSe
glucose −1 ,2−(2) [ g lucose −1,3]−mannose ol igosacchar ide C24H42O21
Lipoate C8H14O2S2
g l y c op h o s p h a t i d y l i n o s i t o l (GPI) s i g n a l sequence (C−t e rmina l pept ide ) Y
Hexacosanoyl−CoA (n−C26 : 0CoA) C47H82N7O17P3S
Succinate C4H4O4
D−Ribulose 5−phosphate C5H9O8P
l i g n o c e r i c y l coenzyme A C45H78N7O17P3S
12 hydroxy arach idon ic acid C20H31O3
glucose −1,3−mannose ol igosaccharide C12H22O11
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4−Acetamidobutanoate C6H10NO3
L−lyxonate C5H9O6
Phylloquinone C31H46O2
phytanic acid C20H39O2
IMP C10H11N4O8P
t e t r a c o s a t e t r a e n oy l coenzyme A C45H70N7O17P3S
Creatinine C4H7N3O
3−Hydroxypropionyl−CoA C24H36N7O18P3S
3−Hydroxypropionyl−CoA C24H36N7O18P3S

CMP−2−aminoethylphosphonate C11H19N4O10P2
c i s −2−Hydroxy cinnamate C9H7O3
Deoxyadenosine C10H13N5O3
Deoxyguanosine C10H13N5O4
( (N−ace ty l−D−glucosaminy l )5−(alpha−D−mannosyl )2−beta−D−mannosyl−

d i a c e t y l c h i t o b i o s y l )−L−asparag ine ( p rot e in ) C74H122N7O50X
N−Acetyl−L−glutamate C7H9NO5
F1alpha C22H37N2O15X
Hexadecanal C16H32O
Thiamin C12H17N4OS
12−Hydroperoxyeicosa −5 ,8 ,10 ,14− tetraenoate C20H31O4
4−Hydroxy−2−oxoglutarate C5H4O6
nervony l coenzyme A C45H76N7O17P3S
clupanodonyl CoA C43H64N7O17P3S
5−Methoxyindoleacetate C11H10NO3
Thiocysteine C3H7NO2S2
Sul fate O4S
d i s i a l y l −T antigen C36H56N3O26X
Oxidized d ith iothre i to l C4H8O2S2
w hydroxy testosterone C19H28O3
Core 8 C14H24NO10X
1−alpha ,24R,25−Trihydroxyvitamin D3 C27H44O4
te t racosapenta enoy l coenzyme A, n−6 C45H68N7O17P3S
adren i c acid C22H35O2
DNA 5−methylcytosine C11H19O8PR2
( { [ ( mannosyl ) , ( phosphoethanolaminyl ) ]−dimannosyl } ,{

phosphoethanolaminyl })−mannosyl−glucosaminy l−
acy lpho spha t i d y l i n o s i t o l −Prote in (M4B)
C59H110N3O40P3FULLRCO2FULLR2CO2X

3 ,4−Dihydroxy−trans−cinnamate C9H7O4
Oxaloacetate C4H2O5
Gerany lgerany l diphosphate C20H33O7P2
4−Methylpentanal C6H12O
4−Acetamidobutanoate C6H10NO3
Deoxycytidine C9H13N3O4
5−Hydroxy−N−formylkynurenine C11H12N2O5
prote in−l i n k ed asparag ine r e s i du e (N−g l y c o s y l a t i o n s i t e ) XH
2−keto−3−deoxy−D−g ly ce ro−D−ga lac tonon ic acid C9H15O9
c a r d i o l i p i n (homo sap ien s ) C9H16O9P2FULLRCO2FULLR2CO2FULLRCO2FULLR2CO2
4−Hydroxy−2−qu in o l i n e c a rboxy l i c acid C10H6NO3
5−Hydroxyindoleacetate C10H8NO3
tet racosapenta enoy l coenzyme A, n−3 C45H68N7O17P3S
reduc ing GlcNAc removed form of n2m2nmasn (w/o pept ide ) C50H84N4O36
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GlcNAc−alpha−1,4−Core 2 C30H50N3O20X
L−Erythrulose C4H8O4
4 ,6−Dihydroxyquinoline C9H7NO2
17alpha−Hydroxyprogesterone C21H30O3

w−carboxy l euko t r i en e B4 C20H28O6
te t racosanoy l−CoA (n−C24 : 0CoA) C45H78N7O17P3S
dATP C10H12N5O12P3

D.2 A workflow to annotate metabolic pathways with PPIs

HSP72 YEAST Heat shock prot e in SSA2

i n t e r a c t s with

ODPB YEAST Pyruvate dehydrogenase E1 component subunit beta ,
mi tochondr ia l

PGK YEAST Phosphoglycerate k inase
ALDH5 YEAST Aldehyde dehydrogenase 5 , mi tochondr ia l
DLDH YEAST Dihydro l ipoy l dehydrogenase , mi tochondr ia l
ENO1 YEAST Enolase 1
G3P1 YEAST Glyceraldehyde−3−phosphate dehydrogenase 1
G3P2 YEAST Glyceraldehyde−3−phosphate dehydrogenase 2
PGM1 YEAST Phosphoglucomutase−1
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
ALDH2 YEAST Aldehyde dehydrogenase [NAD(P)+] 1
ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e

component o f pyruvate dehydrogenase complex , mi tochondr ia l

MPG1 YEAST Mannose−1−phosphate guany l t r an s f e r a s e

i n t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
THI3 YEAST Thiamine metabolism r egu l a t o ry prot e in THI3
ALDH5 YEAST Aldehyde dehydrogenase 5 , mi tochondr ia l
ODPA YEAST Pyruvate dehydrogenase E1 component subunit alpha ,

mi tochondr ia l
DLDH YEAST Dihydro l ipoy l dehydrogenase , mi tochondr ia l
PGM1 YEAST Phosphoglucomutase−1
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e

component o f pyruvate dehydrogenase complex , mi tochondr ia l
KPYK2 YEAST Pyruvate k inase 2
ALDH4 YEAST Potassium−ac t i v a t ed aldehyde dehydrogenase ,

mi tochondr ia l
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GCN5 YEAST Histone a c e t y l t r a n s f e r a s e GCN5

i n t e r a c t s with

PGK YEAST Phosphoglycerate k inase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
K6PF1 YEAST 6−phospho f ruc tok inase subunit alpha
ENO2 YEAST Enolase 2
G3P1 YEAST Glyceraldehyde−3−phosphate dehydrogenase 1
G3P2 YEAST Glyceraldehyde−3−phosphate dehydrogenase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
K6PF2 YEAST 6−phospho f ruc tok inase subunit beta
ADH2 YEAST Alcohol dehydrogenase 2

PYR1 YEAST Prote in URA1

i n t e r a c t s with

ODPB YEAST Pyruvate dehydrogenase E1 component subunit beta ,
mi tochondr ia l

THI3 YEAST Thiamine metabolism r egu l a t o ry prot e in THI3
ALDH5 YEAST Aldehyde dehydrogenase 5 , mi tochondr ia l
ODPA YEAST Pyruvate dehydrogenase E1 component subunit alpha ,

mi tochondr ia l
PGM1 YEAST Phosphoglucomutase−1
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e

component o f pyruvate dehydrogenase complex , mi tochondr ia l
KPYK2 YEAST Pyruvate k inase 2
ALDH4 YEAST Potassium−ac t i v a t ed aldehyde dehydrogenase ,

mi tochondr ia l

EF1A YEAST Elongat ion f a c t o r 1−alpha

i n t e r a c t s with

ODPB YEAST Pyruvate dehydrogenase E1 component subunit beta ,
mi tochondr ia l

THI3 YEAST Thiamine metabolism r egu l a t o ry prot e in THI3
ALDH5 YEAST Aldehyde dehydrogenase 5 , mi tochondr ia l
DLDH YEAST Dihydro l ipoy l dehydrogenase , mi tochondr ia l
G3P2 YEAST Glyceraldehyde−3−phosphate dehydrogenase 2
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
K6PF2 YEAST 6−phospho f ruc tok inase subunit beta
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ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e
component o f pyruvate dehydrogenase complex , mi tochondr ia l

KPYK2 YEAST Pyruvate k inase 2

YD161 YEAST UPF0661 TPR repeat−con ta in ing prot e in YDR161W

in t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
PGK YEAST Phosphoglycerate k inase
TPIS YEAST Triosephosphate isomerase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ENO2 YEAST Enolase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
PMG1 YEAST Phosphoglycerate mutase 1
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ADH1 YEAST Alcohol dehydrogenase 1

PSF2 YEAST DNA r e p l i c a t i o n complex GINS prot e in PSF2

i n t e r a c t s with

G6PI YEAST Glucose−6−phosphate isomerase
TPIS YEAST Triosephosphate isomerase
PDC6 YEAST Pyruvate decarboxy lase isozyme 3
K6PF1 YEAST 6−phospho f ruc tok inase subunit alpha
ENO1 YEAST Enolase 1
ALF YEAST Fructose−bisphosphate a l d o l a s e
PMG1 YEAST Phosphoglycerate mutase 1
KPYK2 YEAST Pyruvate k inase 2

TBB YEAST Tubulin beta chain

i n t e r a c t s with

THI3 YEAST Thiamine metabolism r egu l a t o ry prot e in THI3
ALDH5 YEAST Aldehyde dehydrogenase 5 , mi tochondr ia l
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
ALDH2 YEAST Aldehyde dehydrogenase [NAD(P)+] 1
ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e

component o f pyruvate dehydrogenase complex , mi tochondr ia l
KPYK2 YEAST Pyruvate k inase 2
ALDH4 YEAST Potassium−ac t i v a t ed aldehyde dehydrogenase ,

mi tochondr ia l

6PGD1 YEAST 6−phosphogluconate dehydrogenase , d ecarboxy la t ing 1
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i n t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
PGK YEAST Phosphoglycerate k inase
ENO1 YEAST Enolase 1
ENO2 YEAST Enolase 2
G3P1 YEAST Glyceraldehyde−3−phosphate dehydrogenase 1
ALF YEAST Fructose−bisphosphate a l d o l a s e
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ADH1 YEAST Alcohol dehydrogenase 1

EMP47 YEAST Prote in EMP47

i n t e r a c t s with

PGK YEAST Phosphoglycerate k inase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ENO2 YEAST Enolase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
PMG1 YEAST Phosphoglycerate mutase 1
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ADH1 YEAST Alcohol dehydrogenase 1

TVP23 YEAST Golgi apparatus membrane prot e in TVP23

i n t e r a c t s with

PGK YEAST Phosphoglycerate k inase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ENO2 YEAST Enolase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
PMG1 YEAST Phosphoglycerate mutase 1
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ADH1 YEAST Alcohol dehydrogenase 1

FAR11 YEAST Factor a r r e s t p rot e in 11

i n t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
TPIS YEAST Triosephosphate isomerase
ENO2 YEAST Enolase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
PMG1 YEAST Phosphoglycerate mutase 1
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ADH1 YEAST Alcohol dehydrogenase 1

LTE1 YEAST Guanine nu c l e o t i d e exchange f a c t o r LTE1
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i n t e r a c t s with

HXKGYEAST Glucokinase−1
PGK YEAST Phosphoglycerate k inase
TPIS YEAST Triosephosphate isomerase
DLDH YEAST Dihydro l ipoy l dehydrogenase , mi tochondr ia l
ENO1 YEAST Enolase 1
ENO2 YEAST Enolase 2
PDC1 YEAST Pyruvate decarboxy lase isozyme 1

TBA1 YEAST Tubulin alpha−1 chain

i n t e r a c t s with

ALDH5 YEAST Aldehyde dehydrogenase 5 , mi tochondr ia l
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
ALDH2 YEAST Aldehyde dehydrogenase [NAD(P)+] 1
ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e

component o f pyruvate dehydrogenase complex , mi tochondr ia l
KPYK2 YEAST Pyruvate k inase 2

DSN1 YEAST Kinetochore−a s s o c i a t ed prot e in DSN1

i n t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
G6PI YEAST Glucose−6−phosphate isomerase
TPIS YEAST Triosephosphate isomerase
K6PF1 YEAST 6−phospho f ruc tok inase subunit alpha
ENO1 YEAST Enolase 1
ALF YEAST Fructose−bisphosphate a l d o l a s e
PMG1 YEAST Phosphoglycerate mutase 1

NCE2 YEAST Non−c l a s s i c a l export p rot e in 2

i n t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
PGK YEAST Phosphoglycerate k inase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ENO2 YEAST Enolase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ADH1 YEAST Alcohol dehydrogenase 1
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HSP75 YEAST Heat shock prot e in SSB1

i n t e r a c t s with

ODPB YEAST Pyruvate dehydrogenase E1 component subunit beta ,
mi tochondr ia l

PGK YEAST Phosphoglycerate k inase
DLDH YEAST Dihydro l ipoy l dehydrogenase , mi tochondr ia l
ENO1 YEAST Enolase 1
ACS2 YEAST Acetyl−coenzyme A synthetase 2
ADH3 YEAST Alcohol dehydrogenase 3 , mi tochondr ia l
ALDH4 YEAST Potassium−ac t i v a t ed aldehyde dehydrogenase ,

mi tochondr ia l

YMB8 YEAST Uncharacter ized vacuolar membrane prot e in YML018C

i n t e r a c t s with

G6PI YEAST Glucose−6−phosphate isomerase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ENO2 YEAST Enolase 2
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ODP2 YEAST Dihyd ro l i p oy l l y s i n e−r e s i du e a c e t y l t r a n s f e r a s e

component o f pyruvate dehydrogenase complex , mi tochondr ia l
ADH1 YEAST Alcohol dehydrogenase 1

BUB2 YEAST Mitot i c check point p rot e in BUB2

i n t e r a c t s with

KPYK1 YEAST Pyruvate k inase 1
PGK YEAST Phosphoglycerate k inase
G3P3 YEAST Glyceraldehyde−3−phosphate dehydrogenase 3
ENO2 YEAST Enolase 2
ALF YEAST Fructose−bisphosphate a l d o l a s e
ADH1 YEAST Alcohol dehydrogenase 1

ALF YEAST Fructose−bisphosphate a l d o l a s e

i n t e r a c t s with

PGK YEAST Phosphoglycerate k inase
TPIS YEAST Triosephosphate isomerase
ENO2 YEAST Enolase 2
PMG1 YEAST Phosphoglycerate mutase 1
PDC1 YEAST Pyruvate decarboxy lase isozyme 1
ACS2 YEAST Acetyl−coenzyme A synthetase 2
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Appendix E

Cyclic cores

The following page shows two Palsson human metabolic network layouts, the original
layout (Figure E.1), and then the ‘cyclic’ core (Figure E.2). As discussed in the
Conclusion, a very large proportion of enzymes and metabolites are involved in at least
one cyclic process.

243



Figure E.1: The Palsson human network before cyclic core analysis, visualised using
the spring-embedded layout in Cytoscape. This diagram shows all nodes and edges.

Figure E.2: The Palsson human network after cyclic core analysis, visualised using the
spring-embedded layout in Cytoscape. This diagram contains only those nodes and
edges involved in at least one cycle.
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