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Abstract

Pulse width modulation (PWM) inverters convert a direct current (DC) power supply

to an alternating current (AC) supply by means of high frequency switching between two DC

sources. Undesirable high-frequency components are generated in the frequency spectra of the

voltages and currents of PWM inverters. The high-frequency components are ultimately re-

moved from the input and output waveforms by filters. PWM inverters are used in a wide

variety of electrical devices, ranging from microwave ovens to the electrical parts of aircraft. In

many of these devices, minimising the size and weight of the electrical parts is important, and,

consequently, it is desirable to design efficient filters for PWM inverters. Identification of the

unwanted high-frequency components allows for optimal filter design.

In this thesis we use alternative methods to calculate the voltages and currents of PWM inverters.

Mathematical models are developed for several PWM inverter designs, and Fourier analysis of

the mathematical expressions for the currents and voltages allow us to determine frequency

spectra. The methods used in this thesis are shown to be more suitable to the calculation of

spectra for complex inverter designs, compared to conventional techniques. In particular, input

current spectra are calculated for PWM inverters that incorporate dead time and space vector

modulation (SVM) inverters for the first time here.
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1

Introduction

Conversion from a direct current (DC) power supply to an alternating current (AC) power supply

is required in many applications. For example, wind turbines and fuel cells generate DC power

supplies (see [91] and [82], respectively), but most household electrical devices require an AC

power supply [84].

An electrical device that converts a DC supply to an AC supply is called an inverter [92]. As

described in [49], in modern inverters, there are two DC sources of prescribed voltages. An AC

supply is generated by switching between the DC sources in the inverter at a high frequency.

In addition, switching between the two DC sources generates a voltage output that switches

between two prescribed voltages.

High-frequency inverter switching is achieved using semiconductor-based switches (such as tran-

sistors). The way the switches are operated in an inverter is known as a modulation strategy. The

aim of the modulation strategy is that the voltage output is generated with similar low-frequency

behaviour to a desired low-frequency signal wave. In this thesis we examine inverters that use

a modulation strategy known as pulse width modulation (PWM). Inverters using PWM have

excellent power efficiency, making PWM advantageous compared to other modulation strategies

(see [50] and the references therein). In addition, PWM can be designed so that the low-frequency

components of the voltage output approximate, and in some cases match, the signal wave.

Despite the advantages of PWM, considerable high-frequency distortion is generated in the

output voltage of PWM inverters (see [49], for example). In our analysis, voltage distortion is

any harmonic deviation of the voltage output from the desired signal wave. An example of an

inverter malfunction is if the voltage output is generated with large amounts of distortion [39].

Furthermore, undesirable high-frequency components are generated in the currents of PWM

inverters (see [31, 40], for a few examples). There are electrical problems associated with high-

frequency currents, such as electro-magnetic interference (EMI) [55]. Filtering out the high-

frequency components improves inverter performance (see [4], and the references therein) and

reduces EMI (see [59, 67], for example).
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Figure 1.1: Sample square-wave output of a PWM inverter.

In this thesis, we calculate frequency spectra for the voltages and currents of a wide variety of

PWM inverters. Knowledge of spectra informs effective filter design for the removal of high-

frequency components, without recourse to bulky, or weighty filters. Optimal filters are of

particular importance for electrical components of an aircraft, for example, where minimising

size and weight of the electrical parts of the aircraft reduces operating costs (by reducing fuel

consumption) [102].

1 Inverter Design

We now discuss the different inverter designs in this thesis following the accounts in [49]. In-

dustrial demands for efficient, high-voltage power supplies have led to extensive use of PWM

inverters to provide power. There are a multitude of inverter designs, and we examine three in

this thesis: single-phase inverters, two-phase inverters and three-phase inverters.

Before we detail the different inverter designs, we first describe the electronic components used

in inverter circuits. All inverter circuits are supplied by an upper DC source of a prescribed

voltage, and a lower DC source of a prescribed voltage (in this thesis, we non-dimensionalise

the supply voltage to be ±1). Semiconductor-based switches are used in inverter circuits to

switch between the DC sources and generate a square-wave output (illustrated in figure 1.1).

Additionally, the electrical impedance on the circuit is referred to as the load, and we discuss

the load further in section 1.1. Note that we assume that there is an insignificant voltage drop

across the semiconductor switches. If this assumption was not satisfied the inverter would suffer

from switching losses [37] (switching losses are not considered in this thesis).

By wiring semiconductor switches between an upper DC source and a lower DC source, a phase-

leg is produced. A phase-leg is illustrated in figure 1.2, where, in order to prevent a short circuit

of the input power supply, each semiconductor switch is open while the other is closed. In other

words, if S+ is open, S− is closed (similarly, if S− is open, S+ is closed). Phase-legs are the

fundamental building blocks of inverters.

– 2 –
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+1

−1

S

S

+

−

output

Figure 1.2: Circuit diagram of a phase-leg, where the upper DC source is denoted by +1, the

lower DC source by −1 and the semi-conductor switches are denoted S+ and S−. The AC output

is also illustrated.
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(c) Three-phase inverter.

Figure 1.3: Circuit diagrams for: (a) a single-phase inverter, (b) a two-phase inverter and (c)

a three-phase inverter. In (c), the part of the circuit labelled terminal can be wired in two ways,

as illustrated in figure 1.4.

In order for the phase-leg to generate an AC power supply, the circuit must be closed. A phase-leg

connected to a neutral point (a point held at 0V, such as an earth wire [84]) by a load is called a

single-phase inverter. The circuit diagram of a single-phase inverter is illustrated in figure 1.3(a),

where a load is connected between phase-leg a and neutral point d. High-frequency switching

between the two DC sources in a single-phase inverter using PWM generates a high-frequency

voltage output that switches between ±1.

Multi-phase inverters are produced by connecting phase-legs together with loads. In a multi-

phase inverter, each phase-leg generates a voltage output that is out of phase with the voltage

outputs generated by the other phase-legs. There are a wide range of multi-phase inverters, and in

this thesis we examine two types: two-phase and three-phase inverters, comprising, respectively,

two or three phase-legs that generate two or three output voltages. As documented in [62, 80, 95],

compared to single-phase inverters, two-phase and three-phase inverters are desirable because:

the voltages generated across the loads have reduced harmonic distortion; the input currents

have fewer high-frequency components; they operate at a lower switching frequency; and they

are better suited to high-voltage power supplies.

A two phase inverter is illustrated in figure 1.3(b), where a load is connected between phase-leg a

and phase-leg b. This type of inverter is sometimes known as a single-phase full-bridge inverter,

– 3 –
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Figure 1.4: Wiring designs for a three-phase inverter.

or an H-bridge inverter. H-bridge inverters are often found in robots, as they are capable of

running DC motors in two directions [110].

Three-phase inverters are commonly used for variable-frequency drive applications, which control

the speed of an AC motor by adjusting the frequency of the electrical power supply. Variable-

frequency drives are extensively used, for example in both water and gas supplies to save energy

by efficiently controlling motorised pumps to match pipeline demands [23]. A three-phase PWM

inverter is illustrated in figure 1.3(c), where each phase-leg is connected to a load in the part of the

circuit labelled "terminal". The terminal can be wired in two ways: in the "∆ configuration", or

in the "Y configuration". Both the ∆ and the Y wiring configurations are illustrated in figure 1.4.

In this thesis we predominantly examine the ∆ configuration (shown in figure 1.4(a)), where a

load is connected between each pair of phase-legs. The Y configuration is more complicated

to analyse because each load is connected to a floating point p, as illustrated in figure 1.4(b).

Sometimes the Y configuration is wired so that the floating point p is connected to a neutral

point, though the extra wiring increases the cost of the inverter [42]. The Y configuration is

equivalent to the ∆ configuration when all the load impedances are equal (see [44], for example).

1.1 Load Choice

In this thesis, the load on an inverter is composed of passive electrical components (resistors

and inductors). These passive electrical components filter the current waveforms, reducing or

amplifying the amplitude of some harmonics. Additionally, the electrical impedance determines

the relationship between the voltage drop across the load and the output current through the

load [52]. From this relationship we can directly evaluate the output currents from the output

voltages. Subsequently, because the input currents are functions of the output currents, we are

able to determine the input currents.

We now describe the passive electronic components examined in this thesis. All circuits have

a natural resistance to the current flow from the wire that is used to manufacture them. We

illustrate a circuit symbol of a resistor in figure 1.5(a). The voltage drop across a resistor

determines the current through the resistor by Ohm’s law (V = IR, where R is the resistance

measured in ohms) [38]. The circuit symbol of a pure inductor is shown in figure 1.5(b). Pure

– 4 –
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Figure 1.5: Circuit symbols of the passive electrical components that make up a load in a PWM

inverter.

v
in

(a) (b)

Figure 1.6: Circuit symbol of: (a) a transistor, and (b) a diode. The operation of the transistor

is controlled by a low voltage power supply, vin.

inductors are used in an inverter to resist changes to the current flow [81]. The voltage drop

across a pure inductor determines current through

V = L
dI

dt
,

where the inductance L is measured in henrys. Note that in this thesis we assume both R and

L are constants.

In this thesis, we examine inverters with series resistive-inductive (RL) loads. Inverters with

series RL loads are common, with examples of previous analysis in [31, 40, 94]. The voltage

drop across a series RL load and the current through the load are related by

V = IR+ L
dI

dt
.

We will also examine inverters with general output impedance.

1.2 Inverter Switch Control

In this thesis there are two models that describe the mechanics of the operation of the switches

in the inverter. In order to describe the two switching models, it is useful to examine a single

phase-leg of an inverter (shown in figure 1.2). We assume in this section that the phase-leg is

attached to a well defined output terminal.

The first switching model is analysed in chapters 2, 3, 4, 7 and 8. For this first model, we assume

that the switches operate instantaneously. Additionally, the two switches on each phase-leg are

assumed to operate in a complementary fashion. In other words, with reference to figure 1.2,

– 5 –
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S+ opens when S− closes (similarly, S+ closes when S− opens). This type of inverter switching

is well documented and analysed. For example, output voltages, output currents and input

currents have been determined in [49], [94] and [31], respectively. In practice, the operation of

the switches in an inverter is more complex than described by this model, however, and we also

model a more physical switching model.

In order to describe the second switching model, we first of all examine the composition of

the semiconductor switches in more detail. From [42], semiconductor switches used in inverters

comprise a transistor and a diode connected in parallel. Transistors are fundamental components

of most modern electronic devices (see [66], for example). As described in [6], a transistor has

three terminals, and, in an inverter, one is connected to an input, one to an output, and one is

connected to a low-voltage power supply (shown in figure 1.6(a)). The low-voltage supply to the

transistor controls when the transistor conducts between the input and output. More specifically,

when the oscillatory voltage output of the low-voltage supply is within certain thresholds, the

transistor will conduct. Diodes were first developed as rectifiers (electronic devices that convert

an AC power supply to a DC supply), and are self-operating semiconductor switches that allow

current to pass in one direction only [57]. A diode is illustrated in figure 1.6(b), and has two

terminals, one connected to an output and one to an input.

Because diodes are self operational, we can only control the transistors. Transistors do not switch

instantly, but have a transition phase [61]. Therefore, if the transistors on a phase-leg operate

simultaneously, there is a possibility that both transistors will conduct at the same time, which

will cause a short circuit of the input power supply. To avoid a short circuit, both transistors are

briefly open between switching transitions. The period of time when both transistors are open

is known as dead time [78]. The voltage output during dead time is dependent on the operation

of the diodes, and we discuss this further in chapter 5.

The second switching model incorporates dead time, and we examine inverters that incorporate

dead time in chapters 5 and 6. With this switching model, with reference to figure 1.2, we assume

that when one of the transistors of S+ or S− opens, there is a small delay before the transistor

on the other switch closes. Note that we assume that transistors switch instantaneously.

Mathematical models for inverters with dead time are more sophisticated than models for in-

verters without dead time, and are not as well documented. The output voltages of single-phase

inverters with dead time have been calculated, however, in [34]. Output voltages have also been

calculated in [111] and [27] (for two-phase and single-phase inverters, respectively), but these cal-

culations either contain approximations or give no immediate insight to the frequency spectrum.

In this thesis, we extend the results of [34] to the case of two-phase and three-phase inverters in

chapter 5. Input currents have never been calculated for inverters that incorporate dead time.

In chapter 6 of this thesis we address this, and calculate the input currents of a single-phase

inverter that incorporates dead time for the very first time.

– 6 –
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Figure 1.7: Sample square wave output from a PWM device, characterising a given signal wave

(a cosine wave).

2 PWM Methods

PWM is a high-frequency modulation strategy, made feasible by transistors, which can operate

at the required high frequencies. Furthermore, because transistors are mass produced at a

low cost (per transistor), PWM has become commonly used for regulating power supplies [15].

Mathematically, PWM generates a square wave that switches between two values at a high

frequency, modulating the width of the pulses (the length of time spent at each value) at a low

frequency. This low frequency is the frequency of the required signal wave. An example of a

PWM square wave is illustrated in figure 1.7, where the signal wave is also shown. Note that

the generated square wave tends to be positive (on average) when the signal wave is positive,

and negative otherwise. More specifically, the square wave is constructed to have low-frequency

components that provide a good approximation to the signal wave. In order to achieve this,

the switch times of the square wave are determined by samples of the signal wave. There are

two common sampling methods, known as uniform (or regular) sampling and natural sampling.

PWM inverters use both uniform and natural sampling.

Samples of the signal wave are taken at fixed intervals when using uniform sampling. The

switch times of the square wave are the times when the value of a given high-frequency carrier

wave is equal to the sampled value of the signal wave (shown in figure 1.8(a)). The regularity

of the sampling makes uniform sampling ideally suited to digital applications. This digital

compatibility, coupled with advances in digital solid-state electronics, has led to PWM devices

being predominantly uniformly sampled [66]. Therefore, in this thesis, we are most interested in

uniformly sampled PWM inverters. Note that, using uniform sampling, there is a delay between

the sampling of the signal wave and the switching of the square wave. This delay generates

tolerable low-frequency distortion in the PWM square wave output (see [49], for example).

We also briefly examine natural sampling in this thesis. Natural sampling is older than uniform

sampling, being an analogue modulation strategy, and was used as early as 1964 in a Sinclair

x-10 amplifier [3]. Using natural sampling, the times when the signal wave and the carrier wave

– 7 –
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Figure 1.8: Illustration of how the switch times of the square wave output of a PWM device are

determined by the signal wave the carrier wave, for uniform and natural sampling.

intersect are the switch times of the square wave, as illustrated in figure 1.8(b). PWM square

waves generated with natural sampling do not have any low-frequency distortion [49]. This

makes natural sampling well suited to modern (class-D) audio amplifiers [32, 112].

In this thesis, we also examine a specific type of PWM, known as space vector modulation (SVM).

SVM is limited to inverters with three or more phase-legs, and is shown in [20] to be advantageous

because SVM inverters generate lower current harmonics compared to standard PWM inverters.

Both natural and uniform sampling are used in SVM inverters, but, because SVM is better

suited to digital devices, uniform sampling is more common (see [114], for example).

Note that, in this thesis, we assume that for all PWM methods the carrier wave and the square

wave have identical amplitudes (as illustrated in figure 1.8). This assumption has been made in

previous studies, such as those in [49].

3 Identification of High-Frequency Components Generated

by PWM Inverters

In all the inverter designs discussed in section 1, use of PWM generates high-frequency com-

ponents in the output voltages, output currents and input currents. Note that high-frequency

components are also generated in the inputs and outputs of inverters by the load impedance.

Filters are used to remove unwanted frequency components from the voltages and the currents.

To design appropriate filters, we require knowledge of the undesirable high-frequency compo-

nents of the voltages and currents. The high-frequency components that require filtering are

identified from frequency spectra. Mathematical models that represent the inverter allow us to

obtain spectra for the voltages and currents.

In section 3.1, we discuss methods of determining frequency spectra for the voltage outputs (and

hence output currents) of several inverters. We review previous calculations of input current

– 8 –
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spectra in section 3.2. Finally, in section 3.3, we outline calculations of voltage and current

spectra in this thesis.

3.1 Calculations of Output Voltages and Currents

In this section, we explore the different methods used to find the output voltages of PWM invert-

ers in a form that tells us about their frequency spectrum. Output currents are straightforward

to determine, provided both the output voltage and the load are known (see [13], for example).

The most common technique used to find output voltages is Black’s method, first used by Harold

S. Black in [14]. This is an algebraically complex method that, through a partly geometrical

argument, derives a double Fourier series for the voltage output. Black’s method is the standard

engineering method, but is cumbersome, because each Fourier coefficient is determined by a

double integral. We instead use the Poisson re-summation method [31], which is more direct

and gets precisely the same results as Black’s method, but at a smaller analytical cost. There

are also a few other non-standard methods that have been employed by engineers, which we will

discuss briefly here.

The book by Holmes and Lipo [49] provides a comprehensive catalogue of frequency spectra for

the output voltages of several types of PWM inverter, and is a good reference for both simple

and complex calculations using Black’s method. In [49], they examine single-phase, two-phase

and three-phase inverters using both natural and uniform sampling, including a type of uniform

sampling known as asymmetrical uniform sampling, where the signal wave is sampled twice as

often as standard uniform sampling. Asymmetrical uniform sampling is shown to be advanta-

geous to standard uniform sampling, because of greater harmonic cancellation. Applications of

Black’s method by Bowes [17, 18] and Holmes [48] have been used to determine spectra for a

further range of PWM inverters using both natural and uniform sampling. Black’s method has

been used, more recently, in [83], to calculate spectra for PWM inverters that have signal waves

dependent on multiple frequencies. A comparison, in [46], for a naturally sampled single-phase

PWM inverter, shows that the analytical frequency spectrum generated using Black’s method is

virtually indistinguishable from a spectrum derived from experimental data.

Black’s method has also been used to calculate voltage spectra for more complex inverter designs.

Voltage spectra for a two-phase inverter that incorporates dead time have been calculated using

Black’s method in [111]. In this paper, to simplify the calculation, an approximation is made

to one of the integration bounds in the double Fourier integral necessitated by Black’s method.

This approximation accounts for the errors between their analytical and simulated results. Ad-

ditionally, Black’s method has been used to determine Fourier series expressions for the voltage

output of SVM inverters in [49, 77]. Studies (in [19], for example) have shown the agreement

between theoretical and experimental spectra for SVM inverters.

In this thesis, we mainly use the Poisson re-summation method. This method involves writing

the voltage output as a discrete switching function in the time domain, then taking a Fourier

transform. Use of the Poisson re-summation formula then allows us to identify a Fourier series

expression for the voltage output. An early version of this calculation is found in [32] for a
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simple type of PWM device: an audio amplifier. A more refined version of this calculation was

introduced in [33] to find spectra for a matrix power converter (a complex AC/AC PWM device).

This method is also used in [31] for single-phase and two-phase inverters. More recently, the

Poisson re-summation method has been used to calculate the output voltage of a single-phase

inverter that incorporates dead time in [34]. The advantage of the Poisson re-summation method

over Black’s method is that it is more direct, which makes complicated calculations (as carried

out here) feasible.

Even though Black’s method is the engineering standard, there have been several attempts

to develop more direct methods of determining output voltages. In [41], the voltage outputs

of PWM inverters are determined through the use of Kepler’s equation. Kepler’s equation is

typically used to describe the motion of planetary orbits (such as in [30]), but is used in [41] to

describe the switching instants of a naturally sampled three-phase inverter as infinite series of

Bessel functions, across a switching period, using Kapteyn series. Another method, used in [88]

and [99], describes the voltage output as a discrete switching function in the time domain before

taking a Fourier transform, similar to the Poisson re-summation method. To derive spectra, they

approximate the switch times of the inverter with Taylor series expansions. This method has also

been used in [27] for a single-phase inverter that incorporates dead time. In [27], expressions for

the voltage output are left in terms of switching times, however, and spectra are not provided.

Most recently, in [76], a method with similarities to the Poisson re-sumation method is used to

calculate the output voltage of a single-phase inverter. It is noted in this paper that Black’s

method can only be applied to PWM inverters with periodic signal waves, whereas a Fourier

transform method (such as the Poisson re-summation method) is not so rigid. We note that the

methods of [27, 41, 76, 88, 99] are difficult to generalise, and are mathematically over-complicated

compared to the Poisson re-summation method.

We have discussed several methods of finding frequency spectra for the voltage output of PWM

inverters, and observed that Black’s method is widely used by engineers. In particular, [17, 49]

contain comprehensive catalogues of frequency spectra for single-phase, two-phase and three-

phase PWM inverters using both natural and uniform sampling. Calculation of spectra for

inverters that incorporate dead time is, however, very difficult using Black’s method. The more

direct Poisson re-summation method makes complex calculation of spectra for inverters with

dead time possible, as shown in [34].

3.2 Input Current Calculations

We discuss the methods used to calculate input current spectra for PWM inverters in this section.

An inverter has two input currents, one drawn from the upper DC source and one drawn from

the lower. Calculating input currents is difficult, because they are complex switching functions,

that involve the output currents.

Inductors resist change in currents, therefore, for an inverter with a high inductance the output

currents appear sinusoidal. Therefore, in order to mitigate the difficulty of finding expressions

for the input currents, output currents have been approximated as sinusoidal in most analysis

– 10 –



CHAPTER 1. INTRODUCTION

so far [36, 70, 74, 106]. These papers model inverters with series RL loads. Approximating

output currents as sinusoidal leads to accurate mathematical models for the input currents only

in certain limiting cases. There has also been analysis for SVM with sinusoidal approximations

of the output currents in [60], which when compared to experimental data are found to have

acceptable error under very specific operating (highly inductive) conditions.

The direct method calculates input currents without making additional mathematical approxi-

mations. Using the direct method, a double Fourier series is derived for each input current. The

double Fourier series is determined by multiplying a Fourier series for the output currents with a

Fourier series that describes the switching of the input current. Both Fourier series approximate

discontinuous square waves, and converge slowly. Consequently, the double Fourier series for the

input current converges extremely slowly. The direct method is, however, a powerful technique of

finding accurate input current spectra, which is easily adaptable to most PWM inverter designs.

The direct method is used in [40] to determine input currents for a single-phase and a three-

phase inverter with a series RL load. Theoretical input current spectra determined by the direct

method were compared to experimental data and were found to agree in [94], and in [86]. The

direct method has also been applied to matrix converters in [71], which illustrates how effective

this method is, even for complicated PWM devices.

In order to avoid the problem of slow convergence, we use the single-sum method. Using the

single-sum method, the output currents are first determined as discrete switching functions in

the time domain. To obtain a discrete, time-dependent function for each input current, we then

multiply the output currents with a discrete time-dependent function that describes the switch-

ing of the input current. This expression for the input currents is evaluated over two separate

infinite sums, and careful rearranging of these sums allows us to compute one sum exactly, leav-

ing a single, discontinuous, function. A Fourier series approximating a single, discontinuous,

function converges much faster than the product of two Fourier series approximating discontin-

uous functions. Therefore, Fourier series for the input currents calculated using the single-sum

method converge much faster than those calculated using the direct method.

The single-sum method was first used to calculate input currents in [33] for a matrix converter

with a resistive-only load and a series RL load. In [31], input spectra are calculated for a

single-phase and a two-phase inverter with a series RL load.

So far, in the literature, there have been no calculations of the input currents for inverters that

incorporate dead time, or for SVM inverters (except with approximations in [60]).

3.3 Outline of Calculations in This Thesis

In order to set out the key ideas that will be fundamental to the Fourier analysis in this the-

sis, we begin by using Black’s method and the Poisson re-summation method to calculate the

output voltages for single-phase, two-phase and three-phase PWM inverters for natural and uni-

form sampling in chapter 2. While these are known results, it is the exposition of the more

direct Poisson re-summation method that is of greatest importance in this chapter (forming the

foundation of the calculations in all the following chapters).
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Following on from chapter 2, we calculate the input and output currents of single-phase, two-

phase and three-phase uniformly sampled PWM inverters with series RL loads in chapter 3, using

the single-sum method. In this chapter, we extend the work of [31], using the single-sum method

to calculate input currents for a three-phase inverter for the first time. These calculations

determine Fourier series for the input currents with Fourier coefficients that converge faster

than the Fourier coefficients for the input currents in [40] determined using the direct method.

The increased speed of convergence means that input current spectra are provided at a lower

numerical cost in chapter 3 than in [40]. Chapter 3 also presents a comparison of the single-sum

method and the direct method, to illustrate the relative merits of both methods.

In chapter 4, we build upon work in chapter 3 by calculating input currents for single-phase,

two-phase and three-phase PWM inverters with general output impedance using the single-sum

method. All previous calculations of input currents have been for specific output impedances,

and this chapter generalises these results. The single-sum method is algebraically involved,

and calculating input currents for PWM inverters with general output impedance increases the

algebraic complexity of the single-sum method. For this reason, in this thesis, we introduce the

single-sum method in chapter 3 for a specific impedance before calculations with general output

impedance in chapter 4.

We examine a more realistic inverter design in chapter 5: inverters that incorporate dead time.

The mathematical models that represent inverters with dead time are more sophisticated than

those in earlier chapters. To illustrate the main steps in the calculation of output voltages

for inverters with dead time, we begin by reviewing the calculation of the output voltage of a

single-phase inverter with dead time, as described in [34]. We then extend [34] and determine

the output voltages for the more complicated cases of two-phase and three-phase inverters with

dead time.

The effects of dead time on the input currents of PWM inverters have been investigated in the

time domain in [16, 24] by simulating the input current waveform, but the effects of dead time

on the frequency spectrum of the input currents have never been calculated before. We rectify

this in chapter 6, calculating input currents for a single-phase PWM inverter. Calculations are

presented for single-phase inverters with general output impedance, which are then developed

to determine spectra for inverters with series RL loads.

To illustrate that the Poisson re-summation method can be applied to other complex modula-

tion strategies, we calculate the output voltages of a three-phase SVM inverter in chapter 7.

Despite the fact that this chapter contains known results, it is evident that the Poisson re-

summation method significantly reduces the analytical cost of calculating the output voltages of

SVM inverters, by comparison with calculations using Black’s method in [49].

In chapter 8, we calculate the input currents of a three-phase SVM inverter with a series RL

load. This extends [60], where the input currents of SVM inverters are calculated for highly

inductive loads. Highly resistive loads are also important (see [71, 86], for example), and the

analysis in chapter 8 treats the case of highly resistive loads, amongst others (such as equally

resistive and inductive loads).
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Finally, in chapter 9, we summarise the results of this thesis, and suggest avenues for future

research.
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2

Voltage Spectra for PWM Inverters

1 Introduction

In this chapter we determine frequency spectra for the output voltages of several inverter designs.

Frequency spectra of the output voltages are used to quantify the deviation of the low-frequency

components from the intended signal wave, and to identify the high-frequency components, which

will ultimately be filtered out. We examine two methods of determining the frequency spectra of

PWM inverters here: Black’s method and the Poisson re-summation method. The presentation

of the newer method (the Poisson re-summation method) is of most importance here, since it is

the basis of our calculations in later chapters.

Black’s method is the most widely used method of determining frequency spectra, first used

in [14]. Black’s method uses a partly geometrical argument to derive a double Fourier series for

the voltage output, but is algebraically cumbersome. In [49] there is a comprehensive catalogue

of calculations using Black’s method to find the frequency spectra of several PWM inverters.

In fact there are many engineering papers (see [17, 18, 43, 48, 83], for example) that contain

calculations using Black’s method to find frequency spectra for a wide variety of switching

devices. Calculations using Black’s method have been shown to be accurate when compared

with simulated and experimental results (see [19, 46], for example).

The Poisson re-summation method is more direct than Black’s method, and avoids the calculation

of a double integral. We provide calculations using the Poisson re-summation method in this

chapter in order to illustrate the relative compactness of this method in comparison to Black’s

method. An early version of the Poisson re-summation method can be found in [32], with more

refined versions of the method in [31, 33].

1.1 Structure of Chapter

In section 2 we determine frequency spectra for a single-phase inverter using both the Poisson

re-summation method and Black’s method to demonstrate the relative merits of the separate
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Figure 2.1: High-frequency triangle carrier wave and low-frequency sinusoidal signal wave, where

M = 0.9, ωs = 1 and ωc = 21ωs.

approaches to calculating spectra to a practitioner. Two-phase and three-phase inverters are

discussed in section 3, and the voltages across the loads are determined. Finally, in section 4,

we sum up our conclusions.

2 Single-phase Inverter

In this section we examine a single-phase inverter (illustrated in figure 1.3(a)). Using PWM,

high-frequency modulation of the switches generates a voltage output, va(t), with low-frequency

components that closely approximate a low-frequency signal wave, sa(t). We define the signal

wave as

sa(t) = M cosωst, (2.1)

where |M | < 1 is the modulation index, or (constant) amplitude, and ωs is the frequency. In order

to determine the switch times of va(t), the signal wave is then sampled according to uniform

sampling, or natural sampling. In fact, uniform sampling is categorised into two further types:

symmetrical uniform sampling, and asymmetrical uniform sampling. The switch times of va(t)

are given as the times when the sampled values of sa(t) are equal to a carrier wave, w(t), which

in our analysis is given by

w(t) =

{

−1 + 4(t−mT )
T , for mT < t < (m+ 1

2 )T,

3− 4(t−mT )
T , for (m+ 1

2 )T < t < (m+ 1)T,
(2.2)

where m is any integer and T = 2π/ωc is the switching period (and ωc > ωs is the switching

frequency). In practice, the ratio between ωs and ωc can vary quite widely, and studies in [101]

examine the relationship between the ratio of switching and signal frequencies and the power

losses of an inverter. For low power devices, ωc ≫ ωs (for example, ωc = 100ωs), however, for

very high-volage devices ωc can be as low as 5 times ωs. The signal wave and the carrier wave

are illustrated in figure 2.1. Note that there are several types of carrier wave, but the one we
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Figure 2.2: Signal wave sa(t) and the discontinuous uniform signal wave su(t), where sa(t) is

given in (2.1), M = 0.9, ωs = 1 and ωc = 21ωs. Note that the length of each horizontal step in

su(t) is equal to the switching period T .

are choosing to examine generates a voltage output with the least high-frequency components

(see [49], for example).

We also note that in this thesis we assume that the signal and carrier waves are synchronised. If

the signal wave were at some constant phase angle to the carrier wave there is a phase-shift term

in the Fourier series of the voltage outputs (and consequently the input and output currents),

but the Fourier coefficients are not affected [49]. Since we are interested in frequency spectra in

this thesis, the assumption that the carrier and signal wave are synchronised does not affect our

results.

In section 2.1, we determine the frequency spectrum of the voltage output of a single-phase

PWM inverter with symmetrical uniform sampling using both Black’s method and the Poisson

re-summation method. Then, in section 2.2, we provide the frequency spectrum for a single-phase

PWM inverter using asymmetrical uniform sampling. Finally, we examine natural sampling in

section 2.3, using both Black’s method and the Poisson re-summation method to determine

frequency spectra for the voltage output of a naturally sampled single-phase PWM inverter.

2.1 Symmetrical Uniform Sampling

Symmetrical uniform sampling (normally referred to as uniform sampling) is associated with

digital devices, and is a more recently developed technique than natural sampling for generation

of PWM signals (see [87, 88], for example). The regularity of the sampling times makes uniform

sampling more suitable to digital inverters than natural sampling [49]. Uniform sampling incurs a

delay between sampling the reference wave and switching the inverter, however, which generates

low-frequency distortion in the voltage output [49].

The principle of uniform sampling is that the reference wave sa(t) is sampled at the start of

every switching period mT to determine s(mT ) for m = 0,±1,±2 . . ., and these sampled values

are used to define the uniform signal wave su(t) = sa(mT ) for mT < t < (m+1)T , as illustrated

– 16 –



CHAPTER 2. VOLTAGE SPECTRA FOR PWM INVERTERS

(along with sa(t)) in figure 2.2. The voltage output of a uniformly sampled PWM inverter is

described as

va(t) =

{

+1, if su(t) > w(t),

−1, if su(t) < w(t),

as shown in figure 2.3. During each switching period T there are two switching times, Aa
m and

Ba
m: t = Aa

m when the upward slope of w(t) crosses su(t); and t = Ba
m when the downward slope

of w(t) crosses su(t). Thus, we have an alternative definition for va(t), given by

va(t) =

{

−1, if Aa
m < t < Ba

m,

+1, if Ba
m < t < Aa

m+1,
(2.3)

where m is any integer and the switch times Aa
m and Ba

m are the times when su(t) = w(t), in

other words they are given explicitly as

Aa
m = mT +

T

4
(1 + sa(mT )), and Ba

m = mT +
T

4
(3− sa(mT )). (2.4)

We now determine the frequency spectrum of the voltage output of a uniformly sampled single-

phase PWM inverter using both the Poisson re-summation method in section 2.1.1 and Black’s

method in section 2.1.2. Comparison of sections 2.1.1 and 2.1.2, illustrate that, for inverters

that use symmetrical uniform sampling, calculation of the output voltage is more compact using

the Poisson re-summation method. We analyse the frequency spectrum of va(t) of a uniformly

sampled PWM inverter in section 2.1.3.

2.1.1 The Poisson Re-summation Method

Use of the Poisson re-summation method is fundamental to the calculations in this thesis. Pre-

viously, the Poisson re-summation method has been used to find spectra for single-phase and

two-phase inverters in [31], and to calculate spectra for a matrix converter in [33]. Although not

widely used, the Poisson re-summation method has many advantages, for example calculation

of a double integral is not required, unlike for Black’s method. The relative compactness of

calculations involved in the Poisson re-summation method is demonstrated by comparison with

the calculations using Black’s method in section 2.1.2.

In order to apply the Poisson re-summation method, we require an expression for va(t) as a

discrete switching function. To this end, we define a top-hat function ψ(t; t1, t2), given by

ψ(t; t1, t2) =

{

1, for t1 < t < t2,

0, otherwise,

and, for completeness, ψ(t; t1, t2) = 0 when t1 > t2. Therefore, we express va(t) as

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m) ≡ 1− 2f(t),

where the explicit switching times Aa
m and Ba

m are in (2.4), and f(t) is introduced to represent

the sum (for later convenience). We note that, in this thesis, the sum
∑

m is the sum over all

m from ∞ to −∞. This representation of va(t) is a discrete time-dependent switching function,

and gives no immediate insight to the frequency spectrum. The non-trivial components of the
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Figure 2.3: Illustration of how the switch times of the voltage output va(t) are determined using

uniformly sampled PWM, across a single switching period. Note that sa(t) is sampled at the start

of every switching period mT for m = 0,±1,±2 . . ., and this sampled value sa(mT ) is equal to

su(t) between mT and (m + 1)T . The voltage output va(t) is +1 when su(t) > w(t) and is −1

otherwise. The down-switching of va(t) occurs at t = Aa
m, when the upward slope of w(t) crosses

su(t). Similarly, the up-switching of va(t) occurs at t = Ba
m, when the downward slope of w(t)

crosses su(t).

spectrum reside in f(t). To determine the frequencies that contribute to f(t), we take a Fourier

transform of f(t), which gives

f̂(ω) =
∑

m

∫ ∞

−∞
ψ(t;Aa

m,Ba
m)e−iωt dt.

Although f̂(ω) is not integrable, it is locally integrable, and so it does have a Fourier transform

in the sense of a distribution. Therefore,

f̂(ω) =
∑

m

1

iω
(e−iωAa

m − e−iωBa
m),

when ω 6= 0. We now have a function in the frequency domain, but we want it in the time

domain in a form that shows the contributions at various frequencies. To this end we use the

Poisson re-summation formula, defined in [7] to be

∑

m

h(m) =
∑

m

∫ ∞

−∞
e2πimτh(τ) dτ.
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Note that h(τ) is a continuous integrable function, which satisfies,

|h(τ)|+ |ĥ(τ)| ≤ C(1 + |τ |)−1−δ,

for some C, δ > 0 and all τ [100].

In order to apply the Poisson re-summation formula, we define continuous functions whose

discrete samples give the switching times; such functions are

A(t) = t+
T

4
(1 + sa(t)), and B(t) = t+

T

4
(3− sa(t)).

Applying the Poisson re-summation formula to our Fourier transform f̂(ω) we determine, for

ω 6= 0,

f̂(ω) =
∑

m

∫ ∞

−∞

e2πimt/T

iωT

[

e−iωT (1+sa(t))/4 − e−iωT (3−sa(t))/4

]

e−iωt dt,

=
∑

m

∫ ∞

−∞

e2πimt/T

iωT

[

e−iωT/4e−iωMT cos ωst/4 − e−3iωT/4eiωMT cos ωst/4

]

e−iωt dt.

In order to interpret the e±iωMT cos ωst/4 terms, we consider the Jacobi-Anger expansion, which

tells us, from [109], that

eiz cos θ =
∑

n

inJn(z)einθ.

Therefore, from the Jacobi-Anger expansions of the e±iωMT cos ωst/4 terms, it follows that, for

ω 6= 0,

f̂(ω) =
∑

mn

∫ ∞

−∞

1

iωT
Jn

(

1
4ωMT

)

[

e−inπ/2e−iωT/4 − einπ/2e−3iωT/4

]

eiΩmnte−iωt dt+ C,

where C is a constant that arises because f̂(ω)has a δ-function singularity at ω = 0. We can

determine this constant directly, but instead treat the ω = 0 case in the following paragraph.

Therefore, it is straightforward to see that

f(t) =
∑

mn

1

iΩmnT
Jn

(

1
4ΩmnMT

)

[

e−inπ/2e−iΩmnT/4 − einπ/2e−3iΩmnT/4

]

eiΩmnt,

where the terms in the sum which correspond to Ωmn = 0 are omitted. Note that the only

non-zero contributions to the frequency spectrum of f(t) are frequencies of the form Ωmn =

mωc + nωs.

The contribution to the frequency spectrum of va(t) for non-zero Ωmn is contained in f(t). The

contribution to va(t) when Ωmn = 0 corresponds to the mean value of va(t). The mean value of

va(t) is the mean value of

1− 2
∑

m

ψ(t;Aa
m,Ba

m),

which is zero (see appendix A.1). This means that the voltage output is given by

va(t) =
∑

mn

amne
iΩmnt,

where

amn =







0, if Ωmn = 0,

2
iΩmnT Jn

(

1
4ΩmnMT

)

im+n

[

e−3πinωs/2ωc − (−1)m+ne−πinωs/2ωc

]

, if Ωmn 6= 0.
(2.5)
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This reproduces the output voltages calculated in [31, 49]. It is straightforward to see that

amn → 0 as m or n → ∞. Note that engineering texts, such as [49], derive real Fourier series,

rather than complex Fourier series as we have derived here. We demonstrate how to convert

between equivalent real and complex Fourier series in appendix B.

2.1.2 Black’s Method

Here we calculate the voltage output of a uniformly sampled single-phase PWM inverter using

Black’s method, for comparison with the Poisson re-summation method.

Black’s method is the primary technique used by engineers for finding frequency spectra of PWM

inverters [49]. Black’s method involves the derivation of a double Fourier series through a partly

geometrical argument. We begin by introducing a fast time-like variable, x, and a slow time-like

variable, y, in order to formulate a problem that has va(t) = A(x, y), where A(x, y) is 2π-periodic

in each of its arguments. It is easily verified, with reference to the the carrier wave w(t) and

signal wave sa(t), respectively, that

x = ωct, and y = ωst, (2.6)

are fast and slow time-like variables.

Now, from (2.3) and (2.4), we have

va(t) =

{

−1, if 2πn+ π
2 + πM

2 cosωsnT < ωct < 2πn+ 3π
2 − πM

2 cosωsnT,

+1, otherwise.

Therefore, in the interval nT < t < (n+ 1)T

va(t) = A′(x′, y′) =

{

−1, if 2πn+ π
2 + πM

2 cos y′ < x′ < 2πn+ 3π
2 − πM

2 cos y′,

+1, otherwise,

where

x′ = ωct, and y′ = ωsnT.

Note that

A′(x′ + 2π, y′) =















−1, if 2π(n+ 1) + π
2 + πM

2 cos y′ < x+ 2π′

< 2π(n+ 1) + 3π
2 − πM

2 cos y′,

+1, otherwise,

= A′(x′, y′),

A′(x′, y′ + 2π) =

{

−1, if 2πn+ π
2 + πM

2 cos(y′ + 2π) < x′ < 2πn+ 3π
2 − πM

2 cos(y′ + 2π),

+1, otherwise,

= A′(x′, y′).

Therefore A′(x′, y′) is 2π-periodic in x′ and y′, however, we do not want to write A′(x′, y′) as a

double Fourier series in x′ and y′, because y′ is a piecewise constant (meaning einy′

is difficult

to interpret). We want to write A′(x′, y′) as a function of x and y (given in (2.6)).
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It is obvious that x = x′, however how to write y′ in terms of x and y is more complicated. We

want to write y′ in such a way that for nT < t < (n+ 1)T , y′ = ωsnT . If we let

y′ = y − ωs

ωc
(x− 2πn),

such that

A′(x′, y′) = A(x, y) =

{

−1, if 2πn+ π
2 + πM

2 cos y′ < x < 2πn+ 3π
2 − πM

2 cos y′,

+1, otherwise,

then

A(x+ 2π, y) =















−1, if 2π(n+ 1) + π
2 + πM

2 cos(y − ωs

ωc
(x+ 2π − 2π(n+ 1))) < x+ 2π

< 2π(n+ 1) + 3π
2 − πM

2 cos(y − ωs

ωc
(x+ 2π − 2π(n+ 1))),

+1, otherwise,

=















−1, if 2πn+ π
2 + πM

2 cos(y − ωs

ωc
(x− 2πn)) < x

< 2πn+ 3π
2 − πM

2 cos(y − ωs

ωc
(x− 2πn)),

+1, otherwise,

= A(x, y),

A(x, y + 2π) =















−1, if 2πn+ π
2 + πM

2 cos(y + 2π − ωs

ωc
(x − 2πn)) < x

< 2πn+ 3π
2 − πM

2 cos(y + 2π − ωs

ωc
(x − 2πn)),

+1, otherwise,

= A(x, y).

Therefore A(x, y) is 2π-periodic in x and y, and we are able to write

A(x, y) =
∑

mn

Amne
i(mx+ny),

where

Amn =
1

4π2

∫ 2π

0

∫ 2π

0

A(x, y)e−i(mx+ny) dxdy. (2.7)

Unfortunately, it is not easy to directly evaluate these integrals, because the boundaries of the

regions in which A(x, y) = ±1 are given by implicit equations relating to x and y.

To evaluate the integral in (2.7) we transform the integral to one over x′ and y′. The boundaries

to the region of integration are

y = 0

0 ≤ x ≤ 2π

}

←→
{

y′ = −ωs

ωc
x′

0 ≤ x′ ≤ 2π

y = 2π

0 ≤ x′ ≤ 2π

}

←→
{

y′ = 2π − ωs

ωc
x

0 ≤ x′ ≤ 2π

x = 0

0 ≤ y ≤ 2π

}

←→
{

x′ = 0

0 ≤ y′ ≤ 2π

x = 2π

0 ≤ y ≤ 2π

}

←→
{

x′ = 2π

0 ≤ y′ ≤ 2π

Thus the domain of the integration is transformed from D = {(x, y) : 0 ≤ x, y ≤ 2π} in the

xy-plane (shown in figure 2.4(a)) to D′ = {(x′, y′) : 0 ≤ x′ ≤ 2π,−ωs

ωc
x′ ≤ y′ ≤ 2π − ωs

ωc
x′} in
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0

2π

2π

(a) Region D.

0

2π

2π

−w x/ws c

(b) Region D′.

Figure 2.4: Illustration of the two regions D = {(x, y) : 0 ≤ x, y ≤ 2π} and D′ = {(x′, y′) : 0 ≤
x′ ≤ 2π,−ωs

ωc
x′ ≤ y′ ≤ 2π − ωs

ωc
x′}.

the x′y′-plane (shown in figure 2.4(b)), and the Jacobian for this transformation is

∂(x, y)

∂(x′, y′)
=

∣

∣

∣

∣

∣

∂x
∂x′

∂x
∂y′

∂y
∂x′

∂y
∂y′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 0
ωc

ωs
1

∣

∣

∣

∣

∣

= 1.

Since A′(x′, y′) is 2π-periodic in y′, D′ can be replaced with D′′ = {(x′, y′) : 0 ≤ x′, y′ ≤ 2π}.
Therefore, from (2.7), we are able to evaluate, when mx+ ny 6= 0,

Amn =
1

4π2

∫ ∫

D

A(x, y)e−i(mx+ny) dxdy,

=
1

4π2

∫ ∫

D′

A′(x′, y′)e−i((m+nωs/ωc)x
′+ny′) ∂(x, y)

∂(x′, y′)
dx′ dy′,

=
1

4π2

∫ ∫

D′′

A′(x′, y′)e−i((m+nωs/ωc)x
′+ny′) dx′ dy′,

=
1

4π2

∫ 2π

0

e−iny′

[
∫ π/2+πM cos y′/2

0

e−i(m+nωs/ωc)x
′

dx′

−
∫ 3π/2−πM cos y′/2

π/2+πM cos y′/2

e−i(m+nωs/ωc)x
′

dx′

+

∫ 2π

3π/2−πM cos y′/2

e−i(m+nωs/ωc)x
′

dx′
]

dy′.

It follows from the Jacobi-Anger expansion [109] of some of the exponential terms in Amn, that,

when mx+ ny 6= 0,

Amn = −
∑

p

1

πiΩmnT

[

(−i)pe−iΩmnT/4 − ipe−3iΩmnT/4

]

Jp

(

1
4ΩmnMT

)

∫ 2π

0

e−i(n−p)y dy′,

where
∫ 2π

0

e−i(n−p)y dy′ =

{

2π, if n = p,

0, otherwise.

Therefore, when Ωmn 6= 0,

Amn =
2

iΩmnT
Jn

(

1
4ΩmnMT

)

im+n

[

e−3πinωs/2ωc − (−1)m+ne−πinωs/2ωc

]

,
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To evaluate the contribution to Amn when Ωmn = 0 we examine the mean value of Amn, which

is

Amn =
1

4π2

∫ 2π

0

∫ 2π

0

A(x′, y′) dx′ dy′ = 0.

Therefore the voltage output is

va(t) = A(x′, y′) =
∑

mn

amne
iΩmnt,

where amn is given in (2.5). This reproduces the formula we found using the Poisson re-

summation method.

The directness of the Poisson re-summation is apparent when we consider that to set up Black’s

method, for uniform sampling, in terms of the time-like variables given in (2.6) requires algebraic

(or geometric) verification of the periodicity of va(t) in x and y. Additionally, the Poisson re-

summation method does not require a double integral, such as in (2.7). Furthermore, to calculate

the double integral in (2.7), we require two transformations of the domain of the integral. Thus,

it is clear that the derivation of the voltage output of a uniformly sampled single-phase PWM

inverter requires much less analytical cost using the Poisson re-summation method than using

Black’s method.

2.1.3 Analysis of the Frequency Spectrum

The frequency spectrum of va(t) is the representation of va(t) in the frequency domain. In this

thesis, unless otherwise stated, we present the spectrum as the absolute value of the Fourier

coefficients (the amplitude) against the harmonic order, described mathematically as Ωmn/ωs =

mωc/ωs + n. We also plot frequency spectra that are determined by fast Fourier transforms

(FFTs) [65] of Matlab simulations of the voltage output waveform. These simulated results are

presented in order to check our analytical results are correct.

Similar to [49], we plot spectra where ωc = 21ωs. This ratio between the carrier and signal

frequency is suitable for certain inverter design (see [49], for example), and, for illustrative pur-

poses, it is small enough to make the key features of the spectrum easily identifiable. Although

we mainly present spectra for ωc = 21ωs, we draw more general conclusions about the spec-

tra from other numerical results (omitted to avoid an overabundance of similar spectra). The

convention of plotting spectra where ωc = 21ωs to illustrate our general conclusions is followed

throughout this thesis to allow for exact comparisons of spectra (where necessary). Note that

in this chapter we also present some spectra for ωc = 51ωs.

The simulated results are obtained in Matlab by defining time-dependent expressions for the

uniform signal wave, su(t), and the carrier wave, w(t). An indicator function, square(t), is then

defined to be +1 when su(t) > w(t), and 0 otherwise. We then take an FFT of 2 square(t) − 1

across a single signal period to determine the spectrum.

The frequency spectrum of a uniformly sampled single-phase PWM inverter is shown in figure 2.5,

along with simulated spectra to verify the accuracy of our analytical results. There are clusters

of peaks around each multiple of the carrier frequency ωc, with a dominant central peak only
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when m is odd, and two dominant central peaks when m is even. Similar to [49], we refer to

each cluster of peaks as a carrier group. More specifically, each carrier group is the contribution

to the spectrum for a single value of m. For example, for the voltage output va(t), the m = 1

carrier group is the contribution to the spectrum from a1n. In this chapter, the m = 0 carrier

group constitutes the low-frequency components of the spectrum. Similarly, the m 6= 0 carrier

groups constitute the high-frequency components of the spectrum.

The leading low-frequency contribution to the spectrum is at ωs, and the leading high-frequency

contribution to the spectrum is at ωc. This implies that the low-frequency behaviour of the

voltage output is approximating a sine wave with frequency ωs, in other words the low-frequency

behaviour is a good approximation of the desired signal wave. Low-frequency distortion is present

in the spectrum, as expected (see [49], for example). Similarly, the high-frequency behaviour is

approximating a sine wave with frequency ωc.

As the ratio ωc/ωs increases, the relative delay between the sampling of the signal wave and the

switching of the voltage output decreases. Therefore we expect there to be less low-frequency

distortion as ωc/ωs increases. From comparison of figures 2.5(a) and 2.5(c), as ωc/ωs increases,

the low-frequency distortion decreases (as predicted), and the magnitude of the peaks in the

spectrum decrease when m+ n is even. The decrease in magnitude when m+ n is even can be

explained from examination of (2.5). It is easily verified that as ωc/ωs → ∞, e−3πinωs/2ωc →
e−πinωs/2ωc , for small n. Therefore, it is straightforward to see that, from (2.5) (specifically the

e−3πinωs/2ωc−(−1)m+ne−πinωs/2ωc term), for fixed m and n (provided m+n is even and n 6= 0),

amn → 0 as ωc/ωs →∞.

Note that spectra plotted in [49], for example, are plotted for amplitudes of 10−4 and greater,

whereas we plot spectra for amplitudes of 10−5 and greater. Our spectra account for smaller am-

plitudes because we are plotting complex Fourier coefficients, rather than real Fourier coefficients

(see appendix B).

2.2 Asymmetrical Uniform Sampling

Asymmetrical uniform sampling is similar to uniform sampling, except that the signal wave

is sampled twice as often, with each sample being used to determine the subsequent switching

time. Therefore in each switching period two samples are taken, one at the start of the switching

period and one halfway through. The first and second sample determine the switch times Aa
m

and Ba
m, respectively, to be

Aa
m = mT +

T

4
(1 + sa(mT )), and Ba

m = mT +
T

4

(

3− sa

((

m+ 1
2

)

T
)

)

. (2.8)

Thus the voltage output is described as

va(t) =

{

+1, if Aa
m < t < Ba

m,

−1, otherwise.

We give brief accounts of the calculations for both the Poisson re-summation method and Black’s

method (in sections 2.2.1 and 2.2.2, respectively), as the details of the calculations are similar
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Figure 2.5: Frequency spectrum of the voltage output of a uniformly sampled PWM inverter,

where the x-axis is mωc/ωs + n, and the y-axis is the absolute value of the Fourier coefficients

amn (given in (2.5)). The parameter values are M = 0.9, ωc = 21ωs in (a) and (b), and

ωc = 51ωs in (c) and (d).

to those in section 2.1. We also analyse the frequency spectrum of va(t) for PWM inverters that

use symmetrical uniform sampling in section 2.2.3.

2.2.1 The Poisson Re-summation Method

Determining the voltage output of an inverter with asymmetrical uniform sampling is broadly

the same as for symmetrical uniform sampling, with minor algebraic differences. The voltage

output va(t) is defined, with switch times from (2.8), as

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m) ≡ 1− 2f(t).
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To calculate the non-trivial contribution to the frequency spectrum of va(t), we determine the

spectrum of f(t). Therefore, for ω 6= 0,

f̂(ω) = −2
∑

m

[

− 1

iω
e−iωt

]Ba
m

Aa
m

,

= 2
∑

m

1

iω
e−iωmT

(

e−iωT (3−M cos(ωs(m+1/2)T ))/4 − e−iωT (1+M cos ωsmT )/4

)

.

From the Jacobi-Anger expansions of the e−iωMT cos ωsmT/4 and eiωMT cos(ωs(m+1/2)T )/4 terms,

when ω 6= 0,

f̂(ω) =
∑

mn

2

iω
Jn

(

1
4ωMT

)

einωsmT e−inωsT/4(im+n − (−i)m+n)e−iωnT .

Poisson re-summing in m determines

f̂(ω) =
∑

mn

∫ ∞

−∞

2

iωT
Jn

(

1
4ωMT

)

(im+n − (−i)m+n)eiΩmpt−inωsT/4e−iωt dt.

Therefore

f(t) =
∑

mn

2

iΩmnT
Jn

(

1
4ΩmnMT

)

im+n(1 − (−1)m+n)eiΩmnt−inωsT/4,

where the terms in the sum that correspond to Ωmn = 0 are omitted. By the same logic as in

section 2.1.1, the contribution to va(t) when Ωmn = 0 corresponds to the mean value of va(t).

The mean value of va(t) is zero (see appendix A.1). Therefore the output voltage is given by

va(t) =
∑

mn

amne
iΩmnt−inωsT/4,

where

amn =







0, if Ωmn = 0
2

iΩmnT
Jn

(

1
4ΩmnMT

)

im+n(1− (−1)m+n), if Ωmn 6= 0.
(2.9)

Our Fourier coefficients agree with [49], except [49] omit the delay in the voltage output, probably

due to an implicit shift of their carrier wave by a quarter of a switching period.

2.2.2 Black’s Method

This calculation follows the structure of the calculation in section 2.1.2. Similar to symmetrical

uniform sampling we want to formulate a problem that has va(t) equal to a function that is

2π-periodic in each of its arguments. From (2.8) we write

va(t) =

{

−1, if nT + T
4 (1 +M cosωsnT ) < ωct < nT + T

4 (3−M cos(ωs(n+ 1
2 )T )),

+1, otherwise.

In the interval nT < t < (n+ 1)T ,

va(t) = A′
1(x

′, y′1)+A
′
2(x

′, y′2) =

{

−1, if 2πn+ π
2 + πM

2 cos y′1 < x′ < 2πn+ 3π
2 − πM

2 cos y′2,

+1, otherwise,
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where

A′
1(x

′, y′1) =















+1, 2πn < x′ < 2πn+ π
2 + πM

2 cos y′1,

−1, 2πn+ π
2 + πM

2 cos y′1 < x′ < 2π(n+ 1
2 ),

0, 2π(n+ 1
2 ) < x′ < 2π(n+ 1)

A′
2(x

′, y′2) =















0, 2πn < x′ < 2π(n+ 1
2 )

−1, 2π(n+ 1
2 ) < x′ < 2πn+ 3π

2 − πM
2 cos y′2,

+1, 2πn+ 3π
2 − πM

2 cos y′2 < x′ < 2π(n+ 1),

where

x′ = ωct, y′1 = ωsnT, and y′2 = ωs

(

n+
1

2

)

T.

It is straightforward to verify that A′
1(x

′, y′1) is 2π-periodic in x′ and y′1, and similarly A′
2(x

′, y′2)

is 2π-periodic in x′ and y′2. Both y′1 and y′2 are piecewise constants, meaning einy′

1 and einy′

2

are difficult to interpret. Therefore, in order to determine a double Fourier series for A′
1(x

′, y′1)

and A′
2(x

′, y′2), we first express them as functions of x and y (given in (2.6)). It is obvious that

x′ = x, and similarly to section 2.1.2 we define

y′1 = y − ωs

ωc
(x− 2πn), and y′2 = y − ωs

ωc
(x− 2π(n+ 1

2 )).

Therefore in the interval nT < t < (n+ 1)T ,

A1(x, y) =















+1, 2πn < x < 2πn+ π
2 + πM

2 cos(y − ωs

ωc
(x − 2πn)),

−1, 2πn+ π
2 + πM

2 cos(y − ωs

ωc
(x− 2πn)) < x < 2π(n+ 1

2 ),

0, 2π(n+ 1
2 ) < x < 2π(n+ 1)

A2(x, y) =















0, 2πn < x < 2π(n+ 1
2 )

−1, 2π(n+ 1
2 ) < x < 2πn+ 3π

2 − πM
2 cos(y − ωs

ωc
(x− 2π(n = 1

2 ))),

+1, 2πn+ 3π
2 − πM

2 cos(y − ωs

ωc
(x− 2π(n+ 1

2 ))) < x < 2π(n+ 1).

It is straightforward to verify that A1(x, y) and A2(x, y) are both 2π-periodic in x and y. There-

fore we have

A1(x, y) =
∑

mn

A1
mne

i(mx+ny),

where

A1
mn =

1

4π2

∫ 2π

0

∫ 2π

0

A1(x, y)e
−i(mx+ny) dxdy,

and similarly for A2(x, y) and A2
mn. Unfortunately we cannot directly evaluate these integrals,

because the limits of the integrals are given by implicit equations relating x and y. We now

transform the integral of A1
mn to one over x′ and y′1, and the integral of A2

mn to one over x′ and

y′2.

We first examine A1
mn, where we are changing the domain of integration from D = {(x, y) : 0 ≤

x, y ≤ 2π} in the xy-plane to D′
1 = {(x′, y′1) : 0 ≤ x′ ≤ 2π,−ωs

ωc
x ≤ y′1 ≤ 2π − ωs

ωc
x} in the

x′y′1-plane (D and D′
1 are illustrated in figure 2.4). Since A′

1(x
′, y′1) is 2π-periodic in y′1, then D′

1
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can be replaced with D′′
1 = {(x′, y′1) : 0 ≤ x′, y′1 ≤ 2π}. Therefore, since ∂(x, y)/∂(x′, y′1) = 1,

A1
mn =

1

4π2

∫ ∫

D

A1(x, y)e
−i(mx+ny) dxdy,

=







0, if Ωmn = 0

1

iΩmnT

[

1 + e−iΩmnT/2 − 2(−i)ne−iΩmnT/4Jn

(

1
4ΩmnMT

)

]

, otherwise.

For A2
mn, we change the domain of integration from D = {(x, y) : 0 ≤ x, y ≤ 2π} in the xy-plane

to D′
2 = {(x′, y′2) : 0 ≤ x′ ≤ 2π,−π − ωs

ωc
x ≤ y′2 ≤ π − ωs

ωc
x} in the x′y′2-plane. Since A′

2(x
′, y′2)

is 2π-periodic in x′ and y′2, then D′
2 can be replaced with D′′

2 = {(x′, y′2) : −π ≤ x′, y′2 ≤ π}.
Therefore, since ∂(x, y)/∂(x′, y′2) = 1, and similarly to A1

mn,

A2
mn =

1

4π2

∫ ∫

D

A2(x, y)e
−i(mx+ny) dxdy,

=







0, if Ωmn = 0

1

iΩmnT

[

2im+ne−inωsT/4Jn

(

1
4ΩmnMT

)

− einωsT/2(eiΩmnT/2 + 1)

]

, otherwise.

Therefore

va(t) =
∑

mn

(A1
mn +A2

mn)ei(mx+ny) ≡
∑

mn

amne
iΩmnte−inωsT/4,

where amn is given in (2.9).

Note that, by comparison of calculations in section 2.2.1 and 2.2.2, the algebraic complexity of

Black’s method is highlighted (compared to the Poisson re-summation method). Additionally,

Black’s method incurs further algebraic difficulty for asymmetrical uniform sampling than for

symmetrical uniform sampling (by comparison of sections 2.1.2 and 2.2.2). This is due to the fact

we are required to calculate two Fourier coefficients, rather than one, for asymmetrical uniform

sampling.

2.2.3 Analysis of the Frequency Spectrum

Frequency spectra plotted here are identical to those in [49], since we plot the absolute value

of the Fourier coefficients. We plot frequency spectra for va(t) of a PWM inverter that uses

asymmetrical uniform sampling in figure 2.6 for a range of ratios ωc/ωs. We also include sim-

ulated spectra, to verify the accuracy of our analytical results. Carrier groups in even m have

one dominant central peak, and carrier groups in odd m have two dominant central peaks. The

leading low-frequency contribution to the spectrum is at ωs, and the leading high-frequency

contribution to the spectrum is at ωc. Therefore, asymmetrical uniform sampling generates a

voltage output with low-frequency behaviour that provides a good approximation to the desired

signal wave.

Less distortion is generated using asymmetrical uniform sampling, compared to symmetrical

uniform sampling, as anticipated by [49], for example. This is a consequence of the signal wave

being sampled twice as often (compared to symmetrical uniform sampling). Mathematically, the

reduction in distortion is a consequence of the 1− (−1)m+n term, which means there is contri-

bution to the frequency spectrum only when m + n is odd. Similar to output voltage spectra
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Figure 2.6: Frequency spectrum of the voltage output of a PWM inverter using asymmetrical

uniform sampling, where M = 0.9. In (a) and (b), ωc = 21ωs, and in (c) and (d), ωc = 51ωs.

for inverters with symmetrical uniform sampling, the magnitude of the low-frequency distortion

decreases as ωc/ωs increases (from comparison of figures 2.8(a) and 2.8(b)). This is expected,

because the delay between the sampling of the signal wave, and the switching of the voltage out-

put decreases as ωc/ωs increases. The high-frequency distortion remains approximately constant

as ωc/ωs increases.

2.3 Natural Sampling

In a naturally sampled PWM inverter, switching occurs at the exact points when the signal

wave crosses the carrier wave. This instantaneous sampling and switching is what makes natural

sampling ideally suited to analogue application, but less suitable for digital implementation [87].

Another consequence of instantaneous sampling and switching is that inverters that use natural

sampling generate voltage outputs with insignificant low-frequency distortion [69].

We describe the voltage output va(t) as

va(t) =

{

+1, when sa(t) > w(t),

−1, when sa(t) < w(t),
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Figure 2.7: Illustration of how the switch times of the voltage output are determined using

naturally sampled PWM over a single switching period. We see that va(t) is +1 when sa(t) > w(t)

and −1 otherwise, with t = Aa
m, Ba

m when sa(t) and w(t) cross. The down-switching and up-

switching of the output va(t) (corresponding, respectively, to Aa
m and Ba

m) occur when the graphs

of sa(t) and w(t) intersect.

as illustrated in figure 2.7. Alternatively, we also define va(t) as

va(t) =

{

+1, if Aa
m < t < Ba

m,

−1, otherwise,
(2.10)

where the switching times are the times when sa(t) = w(t), and are defined implicitly to be

Aa
m = mT +

T

4
(1 + sa(Aa

m)), and Ba
m = mT +

T

4
(3− sa(Ba

m)). (2.11)

We now find the frequency spectrum of a naturally sampled single-phase PWM inverter using

both Black’s method in section 2.3.2, and the Poisson re-summation method in section 2.3.1.
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2.3.1 The Poisson Re-summation Method

We now use the Poisson re-summation method to determine a Fourier series for va(t). We express

va(t) as, from (2.10),

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m) ≡ 1− 2f(t),

where Aa
m and Ba

m are given in (2.11). For notational brevity, we determine the frequency

spectrum of f(t), because the non-trivial components of the spectrum of va(t) are contained

in f(t). Unlike uniform sampling, to determine the spectrum of f(t), we first use the Poisson

re-summation formula, rather than taking a Fourier transform. In order apply the Poisson re-

summation formula to f(t) we introduce functions t + α(t) and t + β(t) that when sampled

discretely give us Aa
m and Ba

m. To this end, similar to [99], we introduce functions defined

implicitly by

α(t) =
T

4
(1 + sa(t+ α(t))), and β(t) =

T

4
(3− sa(t+ β(t))).

Applying the Poisson re-summation to f(t) determines

f(t) =
1

T

∑

m

∫ ∞

−∞
e2πimτ/Tψ(t; τ + α(τ), τ + β(τ)) dτ.

Here τ is a time-like variable such that the top-hat function is non-zero only in the interval

τ + α(τ) < t < τ + β(τ), however, we need to re-write this interval in the form τ1 < τ < τ2

in order to determine the appropriate interval over which to integrate. Therefore we introduce

A(t) and B(t) such that

t = τ + α(τ) ⇐⇒ τ = t−A(t),

t = τ + β(τ) ⇐⇒ τ = t−B(t).

Thus

τ1 = t−B(t), and τ2 = t−A(t).

If we now consider τ such that τ = t−A(t), and equivalently t = τ + α(τ) we see that

A(t) = t− τ = α(τ) =
T

4
(1 + sa(τ + α(τ))) =

T

4
(1 + sa(t)),

and we have an explicit expression for A(t). Similarly we see that B(t) = T
4 (3 − sa(t)), and

hence our expression for f(t) becomes

f(t) =
1

T

∑

m

∫ t−A(t)

t−B(t)

e2πimτ/T dτ,

=
1

2
(1− sa(t)) +

∑

m 6=0

e2πimt/T

2πim
(e−2πimA(t)/T − e−2πimB(t)/T ).

From the Jacobi-Anger expansions [109] of some of the exponential terms in f(t), it is easily

verified that

f(t) =
1

2
(1− sa(t)) +

∑

m 6=0

∑

n

eiΩmnt

2πim
im+n(1− (−1)m+n)Jn

(

1
2mπM

)

,
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where the sum
∑

m 6=0 is the sum over all m from∞ to −∞ except m = 0. Therefore the voltage

output va(t) is given by

va(t) = sa(t) +
∑

mn

amne
iΩmnt, (2.12)

where

amn =







0, m = 0,
1

πim
Jn

(

1
2mπM

)

im+n(1− (−1)m+n), m 6= 0,
(2.13)

This reproduces the output voltages determined in [31, 49]. We note that, from (2.12) and (2.13),

the contribution to the spectrum of va(t) from the m = 0 carrier group is exactly the same as

the spectrum of the signal wave. In other words, naturally sampled PWM inverters generate no

low-frequency distortion in the spectrum of the output voltages (shown previously in [31, 49],

for example).

2.3.2 Black’s Method

Black’s method is most easily applied to natural sampling, as shown in [49]. We reproduce

the work of [49] here, and examine how determine the voltage output of a naturally sampled

single-phase PWM inverter using Black’s method. From the fast time-like variable, x, and slow

time-like variable, y, given in (2.6), coupled with the voltage output given in (2.10) (with switch

times in (2.11)), we express va(t) as

va(t) = A(x, y) =

{

+1, if 2πn+ π
2 + πM

2 cos y < x < 2πn+ 3π
2 − πM

2 cos y,

−1, otherwise.

Note that A(x, y) is 2π-periodic with respect to x and y.

Because of the periodicity of A(x, y) in x and y, we can write A(x, y) as a double Fourier series,

and rewriting x, y in terms of t from (2.6) determines a double Fourier series for va(t) = A(x, y).

In other words we want to find

A(x, y) =
∑

mn

Amne
i(mx+ny).

The coefficients Amn are determined by

Amn =
1

4π2

∫ 2π

0

∫ 2π

0

A(x, y)e−i(mx+ny) dxdy, (2.14)

=
1

4π2

∫ 2π

0

e−iny

[
∫ π/2+πM cos y/2

0

e−imx dx−
∫ 3π/2−πM cos y/2

π/2+πM cos y/2

e−imx dx

+

∫ 2π

3π/2−πM cos y/3

e−imx dx

]

dy.

= −
∑

p

1

2π2im
Jp

(

1
2mπM

)

(e−i(m+p)π/2 − ei(m+p)π/2)

∫ 2π

0

e−i(n−p)y dy.

Now
∫ 2π

0

e−i(n−p)y dy =

{

2π, if n = p,

0, otherwise.
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Therefore we find, for m 6= 0,

Amn =
1

πim
Jn

(

1
2mπM

)

im+n(1− (−1)m+n). (2.15)

When m = 0, (2.14) gives

A0n =
M

4π

∫ 2π

0

e−iny cos y dy =

{

M
2 , if n = ±1,

0, otherwise.

Therefore, the low-frequency contribution to the frequency spectrum from the m = 0 terms is

identical to the reference wave. In other words no low-frequency distortion is generated in the

voltage output of a naturally sampled PWM inverter. Thus the voltage output is

va(t) = A(x, y) = sa(t) +
∑

mn

amne
iΩmnt,

where, amn is given in (2.13).

Note that, for natural sampling, while Black’s method still requires the derivation of a double

integral, setting up the calculation is algebraically simpler than for uniform sampling. Fur-

thermore, unlike with uniform sampling, no changes to the integration bounds are required to

calculate the double integral. Therefore, it is clear that Black’s method is more straightforward

for the calculation of the voltage output of a naturally sampled single-phase inverter, compared

to a uniformly sampled single-phase inverter. It can also be argued that both Black’s method

and the Poisson re-summation method have advantages when calculating the voltage output

of naturally sampled inverters, because while Black’s method requires a double integral, deter-

mining the switch times of the inverter explicitly using the Poisson re-summation method is

algebraically complex.

2.3.3 Analysis of the Frequency Spectrum

The frequency spectrum of va(t) is plotted in figure 2.8, and, to verify our analytical results, we

also illustrate the simulated spectrum of va(t). The spectra in this section are identical to those

in [49]. We omit plots of the spectrum of va(t) for a range of ωc/ωs, because, from (2.13), the

Fourier coefficients amn are independent of ωc and ωs. Note that the low-frequency behaviour is

exactly the contribution from the signal wave, with peaks at ±ωs only. In other words, naturally

sampled PWM inverters generate voltage outputs with no low-frequency distortion.

Carrier groups with odd m have one dominant central peak, and carrier groups with even m

have two dominant central peaks. There are less high-frequency contributions to the spectrum,

compared to the spectrum shown in figure 2.5(a). This is a consequence of the signal wave being

sampled twice as often using natural sampling compared to uniform sampling. Specifically, there

is a contribution to the frequency spectrum only when m+ n is even, which is a consequence of

the 1− (−1)m+n term. In summary, naturally sampled PWM inverters generate voltage outputs

with no low-frequency distortion, and fewer high-frequency components compared to the voltage

output of inverters that use symmetrical uniform sampling.

– 33 –



CHAPTER 2. VOLTAGE SPECTRA FOR PWM INVERTERS

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(a) Analytical.

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(b) Simulated.

Figure 2.8: Frequency spectrum of the voltage output of a naturally sampled PWM inverter found

using Black’s method, where M = 0.9. In (a), ωc = 21ωs, and in (b), ωc = 51ωs.

+1

−1

ca b

Figure 2.9: Circuit diagram of a three-phase inverter wired in the ∆ configuration.

3 Two-phase and Three-phase Inverters

In this section we examine two-phase and three-phase inverters (specifically three-phase inverters

wired in the ∆ configuration). Two-phase and three-phase inverters are more widely used than

single-phase inverters, due to more desirable operating conditions and because they generate

less high-frequency components in the voltages and currents compared to single-phase inverters

(see [62, 80, 95], for example). A two-phase inverter is illustrated in figure 1.3(b), and a three-

phase inverter wired in the delta configuration is illustrated in figure 2.9.

Previously, when examining single-phase inverters, we were concerned with the voltage output

only. For two-phase and three-phase inverters, we are also interested in the load voltages (the

voltages across the loads). In a single-phase inverter, the load voltage is simply the output

voltage, but in two-phase and three-phase inverters the load voltage is the difference between

output voltages.

In section 3.1, we determine the output voltages of two-phase inverters, and load voltages of two-

phase inverters wired in series. The output voltages and load voltages of three-phase inverters

are determined in section 3.2. For illustrative purposes, we present voltage spectra for two-phase

– 34 –



CHAPTER 2. VOLTAGE SPECTRA FOR PWM INVERTERS

and three-phase inverters that use symmetrical uniform sampling in section 3.3.

3.1 Two-phase Inverters

A two-phase inverter has two voltage outputs, one from each phase-leg, and one load voltage.

The two phase-legs in a two-phase inverter are generated by signal waves that are π radians out

of phase from each other. Therefore, it is straightforward to see that the voltage outputs from

each phase-leg are given by

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m),

vb(t) = 1− 2
∑

m

ψ(t;Ab
m,Bb

m),

where the switch times Aa
m and Ba

m are given in (2.4), (2.8) or (2.11) for symmetrical uniform,

asymmetrical uniform or natural sampling, respectively. Furthermore, the switch times Ab
m and

Bb
m are defined similarly to (2.4), (2.8) or (2.11) for symmetrical uniform, asymmetrical uniform

or natural sampling, respectively, with signal wave sb(t) = M cos(ωst− π). It is easily verified,

from section 2, that the voltage outputs can be written as

va(t) =
∑

mn

amne
iΩmnt

vb(t) =
∑

mn

amne
iΩmnt(−1)n,

where the Fourier coefficients amn are given in (2.5) for symmetrical uniform sampling, (2.9)

for asymmetrical uniform sampling, and (2.13) for natural sampling. The load voltage vab(t)

of a two-phase inverter is the difference between the output voltages, in other words vab(t) =

va(t) − vb(t). Note that the notation ab denotes the load connection, which means the load is

connected between phase-leg a and phase-leg b. Therefore,

vab(t) =
∑

mn

vmne
iΩmnt, (3.1)

where vmn = amn(1 − (−1)n). Thus the Fourier coefficients for the voltage difference in a two-

phase inverter differ from the Fourier coefficients of the voltage outputs by the 1− (−1)n term.

This term indicates that there is only contribution to the frequency spectrum of the voltage

difference when n is odd; this conclusion holds for all sampling methods (as discussed in [49],

for example).

3.2 Three-phase Inverters

A three-phase inverter has three voltage outputs (one from each phase-leg) and three loads (thus,

three load voltages). The three phase-legs in a three-phase inverter are generated from signal

waves that are 2π/3 radians out of phase from each other, respectively. Therefore, we define the
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voltage outputs as discrete switching functions in the time domain to be

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m),

vb(t) = 1− 2
∑

m

ψ(t;Ab
m,Bb

m),

vc(t) = 1− 2
∑

m

ψ(t;Ac
m,Bc

m),

where the switch times Aa
m, Ba

m, Ab
m, Bb

m, and Ac
m, Bc

m, are given in (2.4), (2.8) or (2.11) for

symmetrical uniform, asymmetrical uniform or natural sampling, respectively, with respective

signal waves sa(t) (given in (2.1)), sb(t) = M cos(ωst − 2π/3) and sc(t) = M cos(ωst + 2π/3).

Therefore, it is easily verified from section 2, that the three voltage outputs are

va(t) =
∑

mn

amne
iΩmnt,

vb(t) =
∑

mn

amne
iΩmnte−2πin/3,

vc(t) =
∑

mn

amne
iΩmnte2πin/3,

where amn is given in (2.5), (2.9) or (2.13) for symmetrical uniform, asymmetrical uniform or

natural sampling, respectively. For a three-phase inverter wired in the ∆ configuration, it is

striaghtforward to see that, from figure 2.9, the load voltages are

vab(t) =
∑

mn

vmne
iΩmnt, (3.2)

vbc(t) =
∑

mn

vmne
iΩmnte−2πin/3, (3.3)

vca(t) =
∑

mn

vmne
iΩmnte2πin/3, (3.4)

where vmn = amn(1− e−2πin/3). Similarly, from appendix C, the load voltages of a three-phase

inverter wired in the Y configuration are

vap(t) =
∑

mn

vY
mne

iΩmnt,

vbp(t) =
∑

mn

vY
mne

iΩmnte−2πin/3,

vcp(t) =
∑

mn

vY
mne

iΩmnte2πin/3,

where vY
mn = amn(2− e−2πin/3− e2πin/3)/3. Note that the 1− e−2πin/3 or 2− e−2πin/3− e2πin/3

terms in the Fourier coefficients for the load voltages of three-phase inverters wired in the ∆ or

the Y configuration, respectively, signify that there is no contribution to the frequency spectrum

of any of the voltage differences when n is a multiple of 3, as expected (see [49], for example).

3.3 Spectra for Uniform Sampling

We calculated the frequency spectrum of the voltage output of a symmetrically uniformly sam-

pled single-phase PWM inverter using both the Poisson re-summation method and Black’s

– 36 –



CHAPTER 2. VOLTAGE SPECTRA FOR PWM INVERTERS

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(a) Analytical

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(b) Simulated.

Figure 2.10: Frequency spectrum of the load voltage a uniformly sampled two-phase PWM in-

verter wired in series, where M = 0.9 and ωc = 21ωs.

method in section 2.1, and we use the results of those calculations extensively here. In this

section, we omit spectra for the load voltages for a range of ratios ωc/ωs, because the effects on

the spectrum are similar to those shown in figure 2.5 (and described in section 2.1.3).

Because we plot the absolute value of the Fourier coefficients, frequency spectra for the voltage

outputs of uniformly sampled two-phase and three-phase inverters are shown in figure 2.5.

The frequency spectrum of the load voltage, vab(t), of a two-phase inverter is illustrated,

from (3.1) and (2.5), in figure 2.10. We also illustrate the spectrum of vab(t) from simulated

results as a check on the accuracy of our calculations. Furthermore, the spectra in figure 2.10

agree with those in [49]. As mentioned in section 3.1, vmn has an extra 1− einπ term compared

to amn, which means that there is contribution to the frequency spectrum of vab(t) only when

n is odd. Consequently, each carrier group has two dominant central peaks. Therefore, the

spectrum of vab(t) has less low-frequency distortion and less high-frequency components than

the spectrum of va(t) or vb(t).

In a three-phase inverter, there are three load voltages. Because we plot the absolute value of the

Fourier coefficients, the frequency spectra of all three load voltages are identical (provided the

loads are equal for a three-phase inverter wired in the Y configuration). From (3.2–3.4) and (2.5),

we illustrate the frequency spectrum of the load voltages of a three-phase inverter wired in the

∆ configuration in figure 2.11(a), which demonstrates our findings from section 3.2 that there is

no contribution to the frequency spectrum when n is a multiple of 3. The spectrum of the load

voltages of a three-phase inverter wired in the Y configuration, from (3.5–3.5) and (2.5) is shown

in figure 2.11(c), where again, as expected, there is no contribution to the spectrum when n is a

multiple of 3. We have plotted simulated spectra for the load voltages of three-phase inverters

wired in the ∆ and the Y configuration in figures 2.11(b) and 2.11(d), respectively, to check our

analytical results. Our spectra also agree with those in [49], for the load voltages of three-phase

inverters wired in the ∆ and the Y configuration.

In the spectra shown in figure 2.11, carrier groups with even m have two dominant central peaks,
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Figure 2.11: Frequency spectrum of the load voltages of uniformly sampled three-phase PWM

inverter, where M = 0.9 and ωc = 21ωs. In (a) and (b) we plot spectra for the ∆ configuration,

and in (c) and (d) we plot spectra for the Y configuration.

and carrier groups with odd m have two dominant peaks that occur at m ± 2n. Similar to a

two-phase inverter, the load voltages of a three-phase inverter have less low-frequency distortion

and less high-frequency components than the voltage outputs of a three-phase inverter.

4 Conclusions

In this chapter we have compared two methods of determining frequency spectra for PWM

inverters: Black’s method [14] and the Poisson re-summation method [31, 33]. Black’s method

requires the derivation of a double integral, which is algebraically costly, while the Poisson re-

summation method requires the derivation of one integral. We have also examined three different

types of PWM inverter, a single-phase inverter, a two-phase inverter and a three-phase inverter.

We derived frequency spectra for the voltage outputs of single-phase inverters for natural, sym-

metrical uniform and asymmetrical uniform sampling. We have performed calculations using

both the Poisson re-summation method and Black’s method, reproducing analysis in [31] and [49],
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respectively. The advantages of the directness of the Poisson re-summation method are most

clearly highlighted when calculating frequency spectra for uniformly sampled PWM inverters.

For natural sampling, however, due to the algebraic complexity of the Poisson re-summation

method, both Black’s method and the Poisson re-summation method have advantages. We have

also demonstrated that the load voltages of two-phase and three-phase inverters exhibit harmonic

cancellation, therefore requiring less filtering of high-frequency components, as shown previously

in [49].

The analytical results presented in this chapter have been validated by simulated spectra, from

the output voltage. The agreement between the analytical and simulated results is near absolute,

for all three sampling methods examined.

We demonstrate in the following chapters that the compactness of the Poisson re-summation

method allows for derivation of input current spectra. Prior calculations of input current spec-

tra, that do not use the Poisson re-summation method, are numerically costly (see [40], for

example), or involve approximations which limit the scope of the results (see [106], for example).

Additionally, calculations of voltage or current spectra for SVM inverters or PWM inverters

that incorporate dead time in the switching transitions are made feasible with the Poisson re-

summation method.
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Current Spectra for PWM Inverters

1 Introduction

In this chapter we derive frequency spectra for the input currents of several PWM inverters

using the single-sum method. We also derive spectra for the output currents. The input and

output currents of PWM inverters have complicated frequency spectra, that contain undesir-

able high-frequency components. Knowledge of the frequency spectra allows us to identify the

high-frequency components, thereby informing filter design. Even though this chapter contains

known results, Fourier coefficients for the input currents determined using the single-sum method

converge much faster than those determined previously using the direct method.

Provided the output voltages and the load are known, output currents are straightforward to

determine (see [13], for example). In this chapter, we use the output voltages (calculated in

chapter 2) to calculate the output currents of a single-phase, two-phase and three-phase inverter

with a series resistive-inductive (RL) load.

Calculating input currents is difficult, because the input currents are complicated switching

functions. The switching of the inverter has to be considered twice in order to calculate the input

currents. Previous calculations of the input currents have generally contained approximations

(see [36, 70, 74, 106], for example), and determine spectra for specific inverter designs (with highly

inductive loads). There are two methods that do not make approximations when calculating the

input currents: the direct method, which has been used in [40, 71, 86, 94], and the, more

sophisticated, Poisson re-summation method, which has been used in [31, 33].

In this chapter, we calculate the input currents of a three-phase inverter with a series RL load,

using the single-sum method. This work extends [31], and is an advance on the numerically

inefficient calculations of [40, 86] using the direct method. In order to illustrate the main steps

in the single-sum calculation, we first review the calculations in [31]. Calculations are also

provided using the direct method to calculate the input currents of a single-phase inverter in

order to provide a comparison between the single-sum and the direct methods.

40
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1.1 Structure of Chapter

In section 2 we determine the output and input currents of a single-phase inverter with a series

RL load using two methods. In section 2.2 we determine input currents using the direct method,

and use the single-sum method in section 2.3, comparing both methods in section 2.4. In section 3

the output and input currents are determined for a two-phase inverter with a series RL load.

The output and input currents of a three-phase inverter with a series RL load are determined in

section 4. Finally, in section 5, we summarise our conclusions.

2 Single-Phase Inverters

In this section we determine the input currents of a single-phase inverter with a series RL load

using the direct method of [40] and the single-sum method of [31]. Before calculating any current

spectra, we recall the voltage output of a single-phase inverter.

In this chapter we examine inverters that use uniform sampling. From section 2.1 of chapter 2,

we describe the output voltage va(t) of a single-phase inverter mathematically as

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m). (2.1)

In order to acquire desirable low-frequency behaviour, the switch times Aa
m and Ba

m are deter-

mined by samples of a low-frequency signal wave sa(t) = M cosωst, with amplitude |M | ≤ 1

and frequency ωs. The switch times, for uniform sampling, are

Aa
m = mT +

T

4

(

1 + sa(mT )

)

, and Ba
m = mT +

T

4

(

3− sa(mT )

)

, (2.2)

where m is any integer and T = 2π/ωc is the switching period, with switching frequency ωc > ωs.

It is easily verified, from section 2.1 of chapter 2, that the Fourier series for va(t) is given by

va(t) =
∑

mn

amne
iΩmnt,

where

amn =







0, if Ωmn = 0,

2
iΩmnT Jn

(

1
4ΩmnMT

)

[

ine−3iΩmnT/4 − (−i)ne−iΩmnT/4

]

, otherwise,
(2.3)

are the Fourier coefficients calculated in chapter 2.

Note that there is a modelling issue for the output currents (and hence the input currents),

in that there must be a slight delay in the switching of the inverter in order to avoid a short

circuit. In this chapter (and, indeed, chapters 4 and 8), we assume that these dead time delays

are negligible, and do not affect the input and output current spectra. There is an in-depth

discussion of the effects of dead time in section 1.1 of chapter 5.

We now calculate the output currents of a single-phase inverter with a series RL load in sec-

tion 2.1. In section 2.2 we calculate the input currents of a single-phase inverter using the direct
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method. In section 2.3 we calculate the input currents of a single-phase inverter using the single-

sum method. Then, in section 2.4, we compare the relative merits of the single-sum method and

the direct method. Finally, in section 2.5, we examine the spectrum of the input and output

currents.

2.1 Output Currents

It is straightforward to derive a Fourier series for the output currents. In this chapter we

examine inverters with series RL loads, because series RL loads are a good approximation to a

wide variety of loads used in practice (see [52], for example). Furthermore, series RL loads are

known to reduce high-frequency current components (see [79], for example). The voltage drop

across a series RL load is related to the current through the load by

vad(t) = Riad(t) + L
diad(t)

dt
, (2.4)

where the subscript notation ad denotes that the load is connected between phase-leg a and the

neutral point d (as illustrated in figure 1.3(a)). Therefore, we readily determine a Fourier series

for the output current, given by

iad(t) =
∑

mn

imne
iΩmnt, (2.5)

where

imn =
amn

R+ iΩmnL
, (2.6)

where amn is given in (2.3). Therefore, the Fourier coefficients for the output currents are easily

derived from the Fourier coefficients for the output voltages. It is not as easy to determine the

input currents, and we now examine two methods of determining input currents.

2.2 The Direct Method

In a single-phase inverter, there are two input currents: the input current drawn from the upper

DC source, and the input current drawn from the lower DC source. By Kirchhoff’s current

law [103], the upper input current I(t) (the input current drawn from the upper DC source) is

equal to the output current across the load iad(t) when the switch connected to the upper DC

source is closed, and the switch connected to the lower DC source is open. Similarly, I(t) = 0

when the switch connected to the lower DC source is closed, and the switch connected to the

upper DC source is open. In other words,

I(t) = iad(t)
∑

p

ψ(t;Ba
p ,Aa

p+1). (2.7)

Similarly, the lower input current I−(t) = iad(t) when the switch connected to the lower DC

source is closed (and the upper switch is open), and I−(t) = 0 when the switch connected to the

– 42 –



CHAPTER 3. CURRENT SPECTRA FOR PWM INVERTERS

upper DC source is closed (and the lower switch is open). Therefore

I−(t) = iad(t)
∑

p

ψ(t;Aa
p,Ba

p),

= iad(t)

[

1−
∑

p

ψ(t;Ba
p ,Aa

p+1)

]

,

= iad(t) − I(t).

As I−(t) can be written in terms of I(t) we derive only one of I(t) or I−(t). Here we calculate

I(t).

From (2.1), it is straightforward that

∑

p

ψ(t;Ba
p ,Aa

p+1) =
1

2
(1 + va(t)).

Consequently, the upper input current I(t) is

I(t) =
1

2
iad(t)(1 + a(t)) =

∑

mn

Imne
iΩmnt,

where,

Imn =
1

2

[

imn +
∑

pq

ipqam−pn−q

]

.

These Fourier coefficients reproduce those determined in [31, 40]. To evaluate each Fourier

coefficient Imn, we need to compute a double infinite sum that is approximating a square wave.

Square waves are discontinuous functions, and consequently the double sum converges slowly

(see [90], for example). This makes the direct method numerically inefficient.

2.3 The Single-sum Method

We now calculate the input currents of a single-phase inverter using the more sophisticated single-

sum method. The single-sum method is more algebraically involved than the direct method, but

is advantageous because the Fourier coefficients converge much faster than those of the direct

method [31].

In order to apply the single-sum method, we require an expression for the output currents as a

discrete switching function in the time domain. To this end, we derive the current response to

a single step voltage pulse. These current responses can then be superposed to give the whole

output current. We first write the output current as

iad(t) =
1

R

[

1− 2
∑

m

φ(t;Aa
m,Ba

m)

]

, (2.8)

where φ(t;Aa
m,Ba

m)/R is the current response to a single voltage pulse ψ(t;Aa
m,Ba

m), and Aa
m

and Ba
m are given in (2.2). Therefore, from (2.4),

φ(t;Aa
m,Ba

m) +
1

γ

d

dt
φ(t;Aa

m,Ba
m) = ψ(t;Aa

m,Ba
m),

– 43 –



CHAPTER 3. CURRENT SPECTRA FOR PWM INVERTERS

subject to φ(t;Aa
m,Ba

m) = 0 for t < Aa
m, where γ = R/L. It is easily verified that,

φ(t;Aa
m,Ba

m) =















0, if t < Aa
m,

1− e−γ(t−Aa
m), if Aa

m < t < Ba
m,

e−γ(t−Ba
m) − e−γ(t−Aa

m), if Ba
m < t.

Therefore, from (2.8), it is straightforward to see that

iad(t) =
1

R
(1 + 2fAB(t) + 2fA(t)− 2fB(t)), (2.9)

where

fAB(t) = −
∑

m

ψ(t;Aa
m,Ba

m), (2.10)

fA(t) =
∑

m

e−γ(t−Aa
m)ψ(t;Aa

m,∞), (2.11)

where fB(t) is defined similarly to fA(t).

From (2.7) and (2.9), we determine the input current drawn from the upper DC source of a

single-phase inverter as a discrete, time-dependent switching function, given by

I(t) =
1

R
(1 + 2fAB(t) + 2fA(t)− 2fB(t))

∑

p

ψ(t;Ba
p ,Aa

p+1),

= I0(t) + IAB(t) + IA−B(t).

We ultimately determine a Fourier series for I(t). In order to do this, we first determine a

Fourier series for each of I0(t), IAB(t) and IA−B(t) in turn. Key to the single-sum method is

evaluating one of the infinite sums in I0(t), IAB(t) and IA−B(t) exactly before conducting any

Fourier analysis. Once the sum has been evaluated, we follow a process similar to the Poisson

re-summation method, and take a Fourier transform to determine the frequency dependence,

and then use a Poisson re-summation formula to determine a Fourier series, thereby avoiding

having to invert the Fourier transform. Note that a process similar to Black’s method could be

used instead of the Poisson re-summation method, but the relative algebraic simplicity of the

Poisson re-summation method makes the calculations here feasible.

It is straightforward to see that

I0(t) =
1

R

∑

p

ψ(t;Ba
p ,Aa

p+1) =
1

2R
(1 + va(t)),

where the spectrum of va(t) is known, with Fourier coefficients in (2.3). From (2.10),

IAB(t) =
2

R
fAB(t)

∑

p

ψ(t;Ba
p ,Aa

p+1) = 0,

since there is no overlap between the intervals (Aa
m,Ba

m) and (Ba
p ,Aa

p+1). Examination of (2.11)

confirms that fA(t)ψ(t;Ba
p ,Aa

p+1) is non-zero only whenm ≤ p, and similarly for fB(t)ψ(t;Ba
p ,Aa

p+1).

Subsequently

IA−B(t) =
2

R

∑

p

p
∑

m=−∞

[

e−γ(t−Aa
m) − e−γ(t−Ba

m)

]

ψ(t;Ba
p ,Aa

p+1).
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It is straightforward to see that, from evaluation of Jacobi-Anger expansions [109],

eλAa
m = eλmT+λT/4

∑

n

(−i)nJn

(

1
4 iλMT

)

einωsmT ,

eλBa
m = eλmT+3λT/4

∑

n

inJn

(

1
4 iλMT

)

einωsmT .

Therefore we have

IA−B(t) =
2

R

∑

np

p
∑

m=−∞
e−γ(t−mT )e−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

einωsmTψ(t;Ba
p ,Aa

p+1).

We explicitly evaluate the geometric sum over m to be

p
∑

m=−∞
e(γ+inωs)mT =

e(γ+inωs)pT

1− e−(γ+inωs)T
.

Consequently,

IA−B(t) =
2

R

∑

np

e−γte−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

e(γ+inωs)pT

1− e−(γ+inωs)T
ψ(t;Ba

p ,Aa
p+1),

≡ 2

R

∑

n

e−3γT/4

1− e−(γ+inωs)T
Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

Fn(t).

We want to know which frequencies Fn(t) depends on. To this end we take a Fourier transform

of Fn(t), which gives

F̂n(ω) = −
∑

pq

1

γ + iω
e−i(ω−(n+q)ωs)pT e3γT/4Jq

(

1
4 (ω − iγ)MT

)

[

(−i)qe(−γ/2+i(qωs−5ω/4))T − iqe−3iωT/4

]

.

We now have an expression for Fn(t) in the frequency domain, but we want an expression in the

time domain. The Poisson re-summation formula allows us to identify a Fourier series for Fn(t).

Poisson re-summing in p we derive

F̂n(ω) = −
∑

pq

∫ ∞

−∞

eiΩp,n+qt

(γ + iω)T
e3γT/4Jq

(

1
4 (ω − iγ)MT

)

×
[

(−i)qe(−γ/2+i(qωs−5ω/4))T − iqe−3iωT/4

]

e−iωt dt.

Therefore we identify a Fourier series for Fn(t), given by

Fn(t) = −
∑

pq

eiΩp,n+qt

(γ + iΩp,n+q)T
e3γT/4Jq

(

1
4 (Ωp,n+q − iγ)MT

)

×
[

(−i)qe(−γ/2+i(qωs−5Ωp,n+q/4))T − iqe−3iΩp,n+qT/4

]

,

where Ωp,n+q are the only frequencies with a non-zero contribution to Fn(t). Therefore

IA−B(t) =
∑

mn

Jmne
iΩmnt,
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where

Jmn = − 2

R

∑

q

Jn−q

(

1
4 iγMT

)

Jq

(

1
4 (Ωmn − iγ)MT

)

(γ + iΩmn)(1 − e−(γ+i(n−q)ωs)T )T

(

(−i)n−qe−γT/2 − in−q

)

×
[

(−i)qe(−γ/2+i(qωs−5Ωmn/4))T − iqe−3iΩmnT/4

]

. (2.12)

Therefore the Fourier series for the input current drawn from the upper DC source of a single-

phase inverter with a series RL load is

I(t) =
1

2R
+
∑

mn

Imne
iΩmnt,

where

Imn =
amn

2R
+ Jmn, (2.13)

where amn is defined in (2.3), and Jmn is defined in (2.12). Note that to evaluate each Fourier

coefficient Imn, a single infinite sum must be computed. This is an improvement on the Fourier

coefficients determined using the direct method, where the evaluation of two infinite sums is

required for each Fourier coefficient. Furthermore, the single sum here converges much faster

than the double sum for the direct method (we discuss this further in section 2.4). While the

Fourier coefficients determined using the single-sum method converge faster than those derived

using the direct method, they are very complex functions, involving an infinite sum of Bessel

functions.

Finally, the lower input current is given by

I−(t) = − 1

2R
+
∑

mn

(imn − Imn)eiΩmnt,

where imn is given in (2.6). The Fourier series for upper and lower input currents derived in this

section agree with the Fourier series determined in [31].

2.4 Comparison of the Direct Method and the Single-sum Method

We have now calculated Fourier series for the input currents of a single-phase inverter using

both the direct and the single-sum method. In this section we illustrate that Fourier coefficients

derived using the single-sum method are more numerically efficient than those derived using the

direct method.

In section 2.2 we noted that for each Fourier coefficient in the Fourier series for I(t), determined

using the direct method, there are two infinite sums over p and q, and these sums converge

slowly because they are approximating a square wave (a discontinuous function). In fact, for

a Fourier coefficient to be converged to ten decimal places, we sum over approximately 400 p’s

and q’s. In addition to this, a single Fourier coefficient converged up to ten decimal places takes

54.3 seconds to compute in Matlab using the direct method.

For each Fourier coefficient calculated using the single-sum method there is one infinite sum

over q. Not only is this a reduction of sums to compute for each coefficient (compared to the
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direct method), the single sum also converges quickly. Summing over 21 q computes, in Matlab,

a Fourier coefficient in just 0.019 seconds that is converged to more than 15 decimal places.

Note that computations of the Fourier coefficients determined using the direct method and the

single-sum method were calculated on the same machine, in order to allow for direct comparison.

It is evident, by comparison of the calculations of section 2.2 and 2.3, that the single-sum method

is more algebraically involved than the direct method. This analytical cost, however, is greatly

outweighed by the speed of convergence of the Fourier coefficients calculated using the single-

sum method. Therefore plotting accurate spectra for the input currents has a low numerical cost

when the input currents have been calculated using the single-sum method.

2.5 Analysis of the Frequency Spectrum

In this section, we illustrate frequency spectra for the output current, iad(t), in section 2.5.1 and

spectra for the upper and lower inputs currents, I(t) and I−(t), respectively, in section 2.5.2. In

this chapter, we examine the effects on the spectra of the input and output currents for a range

of ratios γ. Because the Fourier coefficients for the input currents are scalar in R, we expect the

amplitude of the coefficients to decrease as R→∞. Therefore, in this thesis, to produce current

spectra for a range of γ’s, we fix R and vary L.

In the following sections we also include spectra generated by taking fast Fourier transforms of

simulations of the output or input current waveform. The results from the numerical simulations

were obtained using Matlab.

2.5.1 Output Currents

The frequency spectrum of iad(t) is illustrated in figure 3.1, along with spectra determined by

numerical simulations. There is near perfect agreement between our analytical and simulated

results. Furthermore, our spectra agree with those in [13, 40].

In the output current spectra, carrier groups with even m have two dominant central peaks, and

carrier groups with odd m have a single dominant central peak. The dominant low-frequency

contribution to the spectrum is at ωs, and the dominant high-frequency contribution to the

spectrum is at ωc. That means the output currents are generated with low-frequency behaviour

approximating the signal wave.

We now examine the effects on the spectrum as we vary γ. From comparison of figures 3.1(a)

and 3.1(c), as L→ 0, for fixed R, the amplitude of the high-frequency components asymptote to

the high-frequency components of the voltage output. This implies that as L→ 0 with R fixed,

the output current approximates the output voltage (scaled by R).

As L→∞, the amplitude of the high-frequency components in the spectrum of iad(t) decreases,

for fixed R (from comparison of figures 3.1(a) and 3.1(e)). Furthermore, as L→∞ and R fixed,

the non-dominant low-frequency components asymptote to zero. In other words, as L → ∞,

the peak at ωs in the frequency spectrum becomes increasingly dominant (for fixed R), and the

output current becomes a better approximation to the signal wave.
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(a) γ = 1, analytical.
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(b) γ = 1, simulated.
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(c) γ = 10, analytical.
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(d) γ = 10, simulated.
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(e) γ = 0.1, analytical.
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(f) γ = 0.1, simulated.

Figure 3.1: Frequency spectrum of the output current iad(t) of a single-phase inverter, where

M = 0.9, R = 1 and ωc = 21ωs. Furthermore, in (a) and (b), L = 1, in (c) and (d), L = 0.1

and in (e) and (f), L = 10.
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Note that we have omitted spectra for a range of ratios ωc/ωs here, this is because the effects

on the spectrum of iad(t) as ωc/ωs changes are similar to the effects on the spectrum of va(t)

(discussed in section 2.1.3 of chapter 2). In other words, the non-dominant low-frequency contri-

butions to the spectrum decrease in amplitude as ωc/ωs increases. Furthermore, contributions to

the spectrum that correspond to the even m+n terms decrease in magnitude as ωc/ωs increases.

2.5.2 Input Currents

The frequency spectra for both the input current drawn from the upper and the lower DC source

are illustrated in figure 3.2. We also illustrate simulated spectra in figure 3.2. The simulated

results agree with our analytical results. In addition to this, the spectra presented here agree

with those in [31, 40].

For both the upper input current and the lower input current, there is contribution to the

spectrum at 0. This is referred to as the DC component [40]. Components in the spectrum other

than the DC component are referred to as current ripple. Undesirable current ripple is caused

by the alternating output waveform [96].

The dominant low-frequency ripple component is at ωs, and the dominant high-frequency ripple

components are at ωc ± ωs and 2ωc. The magnitude of the dominant low-frequency ripple

components is similar to the magnitude of the DC component.

We have illustrated the frequency spectrum of the upper input current I(t) of a single-phase

inverter for a range of ratios γ in figure 3.3 to ascertain the effects of the load composition

on the spectrum of I(t). The accuracy of our analytical results has been verifed by simulated

results, also shown in figure 3.3. From comparison of figures 3.2(a) and 3.3(a), as L → 0 the

number of peaks in each carrier group increases, for fixed R. In other words, as L → 0 with

fixed R, there is more current ripple in the spectrum of the input currents. From figure 3.3(c),

as L→∞, carrier groups with odd m are dominated by a one central peak, and carrier groups

with even m are dominated by two central peaks (for fixed R). Furthermore, from comparison

of figures 3.3(a) and 3.3(c), the DC component for input currents with large γ dominates the

low-frequency components of the spectrum, but for small γ it does not. Therefore, as L → ∞
with fixed R, the DC component is suppressed. In other words, the peaks that dominate the

spectrum of I(t) are directly affected by γ.

As the ratio ωc/ωs increases, the low-frequency current ripple components in the spectrum of

I(t) decrease in magnitude. This holds for all γ.

Finally, we comment on the parameter values used to generate results in previous publications.

In [86] and [71], inverters are modelled with largely resistive series RL loads (in other words

γ is large). The output current spectra in these papers are similar to the spectrum shown

in figure 3.1(c), and the spectra for the input currents are similar to the spectrum shown in

figure 3.3(a). In [36, 70, 74, 106], however, inverters are modelled with highly inductive series

RL loads. The spectra presented in [36, 70, 74, 106] are similar to the spectra illustrated

figures 3.1(e) (for output currents) and 3.3(c) (for input currents).
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(a) I(t), analytical.
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(b) I(t), simulated.

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(c) I−(t), analytical.
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(d) I−(t), simulated.

Figure 3.2: Frequency spectra for the input current drawn from the upper DC source of a single-

phase inverter in (a) and (b), and for the input current drawn from the lower DC source in (c)

and (d). The parameter values are M = 0.9, ωc = 21ωs and γ = 1 (specifically, R = 1 and

L = 1).

3 Two-phase Inverters

A two-phase inverter has two phase-legs, with a load connected between them, as illustrated

in figure 1.3(b). The voltage across the load is the difference between the two voltage outputs

from either phase-leg. This voltage difference is used to calculate the output current, and,

subsequently the input currents. Here we calculate both the output current (in section 3.1) and

the input currents (in section 3.2) for a two-phase inverter with a series RL load.

3.1 Output Currents

The voltage difference across the load in a two-phase inverter is vab(t) = va(t)− vb(t). Thus, the

output current through the load satisfies

Riab(t) + L
diab(t)

dt
= vab(t). (3.1)
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(a) γ = 10, analytical.
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(b) γ = 10, simulated.
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(c) γ = 0.1, analytical.
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(d) γ = 0.1, simulated.

Figure 3.3: Frequency spectrum of the upper input current I(t) of a single-phase inverter, where

M = 0.9, R = 1 and ωc = 21ωs. Furthermore, in (a) and (b), L = 0.1, and in (c) and (d),

L = 10.

Because vab(t) = vad(t)− vbd(t), it is easily verified that

iab(t) =
∑

mn

(1− (−1)n)amn

R+ iΩmnL
eiΩmnt ≡

∑

mn

imne
iΩmnt.

The frequency spectrum of iab(t) is shown in figure 3.4. The frequency spectrum of iad(t)

obtained from FFTs of Matlab simulations of the output current waveform is also included, to

corroborate our analytical results. Similar to the spectrum of iad(t), the dominant low-frequency

contribution is at ωs. As predicted in [13] (for example), there is contribution to the frequency

spectrum only when n is odd, which is a consequence of the harmonic cancellation from taking

the difference between two currents. Mathematically, it is a consequence of the 1− (−1)n term.

We have omitted the inclusion of spectra for a range of ratios of γ, as the effects on iab(t) are

similar to those on iad(t), illustrated in figure 3.1 (and discussed in section 2.5.1).

In order to calculate the input currents of a two-phase inverter using the single-sum method, we

require expressions for the output currents as discrete, time-dependent switching functions. As

a result of iab(t) = iad(t) − ibd(t) (where iad(t) is given in (2.8), and ibd(t) is defined similarly),
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(a) Analytical.
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(b) Simulated.

Figure 3.4: Frequency spectrum of the output current iab(t) of a two-phase inverter, where M =

0.9, ωc = 21ωs and γ = 1 (specifically, R = 1 and L = 1).

the output current through the load is, from (2.9–2.11),

iab(t) = gAB(t) + gA(t)− gB(t), (3.2)

where

gAB(t) = − 2

R

∑

m

[

ψ(t;Aa
m,Ba

m)− ψ(t;Ab
m,Bb

m)

]

, (3.3)

gA(t) =
2

R

∑

m

[

e−γ(t−Aa
m)ψ(t;Aa

m,∞)− e−γ(t−Ab
m)ψ(t;Ab

m,∞)

]

, (3.4)

where Aa
m, Ba

m are given in (2.2), and Ab
m, Bb

m are defined similarly, with signal wave sb(t) =

M cos(ωst− π). Note that gB(t) is defined in a similar fashion to (3.4).

3.2 Input Currents

We begin by examining the upper input current I(t) of a two-phase inverter. From examination of

Kirchhoff’s current law [103], I(t) = 0 when the switches on either phase-leg are simultaneously

attached to either the upper or lower DC source. Similarly, I(t) = iab(t) when phase-leg a

is attached to the upper DC source and phase-leg b is attached to the lower DC source, and

I(t) = −iab(t) when phase-leg b is attached to the upper DC source and phase-leg a is attached

to the lower DC source. In other words,

I(t) = iab(t)
∑

p

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

. (3.5)

By a similar argument, the input current drawn from the lower DC source is

I−(t) = iab(t)
∑

p

[

ψ(t;Aa
p,Ba

p)− ψ(t;Ab
p,Bb

p)

]

,

= iab(t)

[(

1−
∑

p

ψ(t;Ba
p ,Aa

p+1)

)

−
(

1−
∑

p

ψ(t;Bb
p,Ab

p+1)

)]

,

= −I(t).

– 52 –



CHAPTER 3. CURRENT SPECTRA FOR PWM INVERTERS

Therefore, we calculate only one of the upper or the lower input currents. We choose to examine

the upper input current I(t).

The upper input current is, from (3.2–3.14),

I(t) =

[

gAB(t) + gA(t)− gB(t)

]

∑

p

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

= IAB(t) + IA−B(t),

where

IAB(t) = − 2

R

∑

mp

[

ψ(t;Aa
m,Ba

m)− ψ(t;Ab
m,Bb

m)

][

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

IA−B(t) =
2

R

∑

mp

[

e−γ(t−Aa
m)ψ(t;Aa

m,∞)− e−γ(t−Ab
m)ψ(t;Ab

m,∞)− e−γ(t−Ba
m)ψ(t;Ba

m,∞)

+e−γ(t−Bb
m)ψ(t;Bb

m,∞)

][

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

. (3.6)

We now calculate each of IAB(t) and IA−B(t) in turn.

3.2.1 IAB(t)

From examination of the functions ψ(t;Aa
m,Ba

m), ψ(t;Ab
m,Bb

m), ψ(t;Ba
p ,Aa

p+1) and ψ(t;Bb
p,Ab

p+1),

it is straightforward to see that the sum over p in IAB(t) can be evaluated directly to give

IAB(t) =
2

R

∑

m

[

ψ(t;Aa
m,Ab

m) + ψ(t;Ab
m,Aa

m) + ψ(t;Ba
m,Bb

m) + ψ(t;Bb
m,Ba

m)

]

.

The property ψ(t; t1, t2) = 0 when t2 < t1, allows us to write

IAB(t) =
2

R

∑

m

[

ψ(t; min(Aa
m,Ab

m),max(Aa
m,Ab

m)) + ψ(t; min(Ba
m,Bb

m),max(Ba
m,Bb

m))

]

.

Since sa(t) = cosωst and sb(t) = cos(ωst− π) = − cosωst, we introduce

s(t) = | cosωst|, (3.7)

such that

IAB(t) =
2

R

∑

m

[

ψ

(

t;mT +
T

4
(1 −Ms(mT )),mT +

T

4
(1 + s(mT ))

)

+ψ

(

t;mT +
T

4
(3−Ms(mT )),mT +

T

4
(3 + s(mT ))

)]

. (3.8)

We now take a Fourier transform of IAB(t), which gives, when ω 6= 0,

ÎAB(ω) = − 2

R

∑

m

1

iω
e−iωmT (e−iωT/4 + e−3iωT/4)(e−iωMTs(mT )/4 − eiωMTs(mT )/4).

We now determine a Fourier series for e−iωMTs(mT )/4 and eiωMTs(mT )/4.
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Fourier series for eizs(t)

From examination of the Jacobi-Anger expansion [109],

eizs(t) =
∑

n

Bn(z)einωst, (3.9)

where

Bn(z) =
ωs

2π

∫ 2π/ωs

0

eizs(t)e−inωst dt.

It is readily determined that

Bn(z) =

{

0, for n odd,

Jn(z) +
∑

p=±1,±3,...
2Jp(z)

πi(n−p) , for n even.
(3.10)

Note that the coefficient Bn(z) is equal to zero when n is odd, or equal to an infinite sum of

Bessel functions when n is even. We now return to our Fourier transform ÎAB(ω), giving the

Fourier transform in terms of the Fourier coefficients Bn(z).

When computing Bn(z) numerically (and for similar functions later in the thesis) in order to

produce spectra, we are required to truncate the infinite sum due to limits on processing power.

Therefore, we now briefly examine how quickly the sum over p in (3.10) converges. From cal-

culations in Matlab, truncating the sum over p to a dozen terms either side of 0 to produce

coefficients which are accurate up to 15 decimal places.

Fourier Transform

Therefore, when ω 6= 0, the Fourier transform ÎAB(ω) is

ÎAB(ω) =
2

R

∑

mn

1

iω
e−i(ω−nωs)mT (e−iωT/4 + e−3iωT/4)

[

Bn

(

1
4ωMT

)

−Bn

(

− 1
4ωMT

)

]

.

Noting that, for even n,

Bn (z)−Bn (−z) =
∑

p=±1,±3,...

4Jp (z)

πi(n− p) ,

and Poisson re-summing in m determines

ÎAB(ω) =
2

R

∑

m

∑

n=0,±2,±4,...

∫ ∞

−∞

e−iωt

iωT
eiΩmnt(e−iωT/4 + e−3iωT/4)

∑

p=±1,±3,...

4Jp

(

1
4ωMT

)

πi(n− p) dt.

Thus we have a Fourier series for IAB(t), given by

IAB(t) =
4M

πR
+
∑

m

∑

n=0,±2,±4,...

Imne
iΩmnt,

where

Imn =







0, if Ωmn = 0,

8
πΩmnRT (e−iωT/4 + e−3iωT/4)

∑

p=±1,±3,...

Jp

“

1
4ΩmnMT

”

p−n , otherwise,
(3.11)

and the constant term 4M/πR is the contribution to IAB(t) when Ωmn = 0, determined by

evaluating the mean value of (3.8) (similarly to the accounts in appendix A). Note that the

Fourier coefficients Imn are non-zero when n is even only.
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3.2.2 IA−B(t)

In order to determine a Fourier series for IA−B(t) we first split (3.6) into two parts:

IA−B(t) = I1(t) + I2(t),

where I1(t) and I2(t) are determined by consideration of the sum over m. If m ≤ p,

I1(t) =
2

R

∑

p

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

×
p
∑

m=−∞

(

e−γ(t−Aa
m) − e−γ(t−Ab

m) + e−γ(t−Bb
m) − e−γ(t−Ba

m)

)

.

When m > p,

ψ(t;Aa
m,∞)[ψ(t;Ba

p ,Aa
p+1)− ψ(t;Bb

p,Ab
p+1)] =

{

ψ(t;Aa
m,Ab

m), when p = m− 1,

0, otherwise,

for example. Therefore, I2(t), is non-zero when p = m− 1 only, in other words

I2(t) = −
∑

m

[

e−γ(t−Aa
m)ψ(t;Aa

m,Ab
m) + e−γ(t−Ab

m)ψ(t;Ab
m,Aa

m)

+e−γ(t−Ba
m)ψ(t;Bb

m,Ba
m) + e−γ(t−Bb

m)ψ(t;Ba
m,Bb

m)

]

,

which, by the property ψ(t; t1, t2) = 0 when t1 > t2, becomes

I2(t) = − 2

R

∑

m

[

e−γ(t−min(Aa
m,Ab

m))ψ(t; min(Aa
m,Ab

m),max(Aa
m,Ab

m))

+e−γ(t−max(Ba
m,Bb

m))ψ(t; min(Ba
m,Bb

m),max(Ba
m,Bb

m))

]

.

We now calculate a Fourier series for each of I1(t) and I2(t) in turn.

From the Jacobi-Anger expansions [109] of the exponential terms in I1(t),

I1(t) =
2

R

∑

p

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

×
p
∑

m=−∞
e−γ(t−mT )

∑

n

einωsmT e−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

(1− (−1)n).

We explicitly evaluate the geometric sum over m to give

I1(t) =
2

R

∑

p

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

×
∑

n

e−γt e(γ+inωs)pT

1− e−(γ+inωs)T
e−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

(1− (−1)n),

≡ 2

R

∑

np

e(γ+inωs)pT

1− e−(γ+inωs)T
e−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

(1− (−1)n)Fp(t).

The time dependence in I1(t) consists of a sum over p of terms

Fp(t) = e−γt

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

.
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Taking a Fourier transform of Fp(t) gives

F̂p(ω) = −e
−(γ+iω)pT

γ + iω

[

e−(γ+iω)(T+αa
p+1) − e−(γ+iω)(T+αb

p+1) + e−(γ+iω)βb
p+1 − e−(γ+iω)βa

p+1

]

,

= −e
−(γ+iω)pT

γ + iω

∑

q

eiqωspT (1− (−1)q)e3γT/4Jq

(

1
4 (ω − iγ)MT

)

×
[

(−i)qe(−γ/2+i(qωs−5ω/4))T − iqe−3iωT/4

]

.

Therefore

Î1(ω) = − 2

R

∑

npq

(1 − (−1)n)(1− (−1)q)

(γ + iω)(1− e−(γ+inωs)T )
ei(n+q)ωspTJn

(

1
4 iγMT

)

Jq

(

1
4 (ω − iγ)MT

)

×
[

(−i)ne−γT/2 − in
][

(−i)qe(−γ/2+i(qωs−5ω/4))T − iqe−3iωT/4

]

e−iωpT .

Poisson re-summing in p allows us to identify

I1(t) =
∑

m

∑

n=0,±2,±4,...

Jmne
iΩmnt,

where

Jmn = − 8

RT

∑

q=±1,±3,...

1

(γ + iΩmn)(1− e−(γ+i(n−q)ωs)T )

×Jn−q

(

1
4 iγMT

)

Jq

(

1
4 (Ωmn − iγ)MT

)

[

(−i)n−qe−γT/2 − in−q

]

×
[

(−i)qe(−γ/2+i(qωs−5Ωmn/4))T − iqe−3iΩmnT/4

]

. (3.12)

We now calculate a Fourier series for I2(t).

To begin with, we observe that, from (3.7),

min(Aa
m,Ab

m) = mT +
T

4
(1 −Ms(mT )), max(Aa

m,Ab
m) = mT +

T

4
(1 +Ms(mT )),

min(Ba
m,Bb

m) = mT +
T

4
(3 −Ms(mT )), and max(Ba

m,Bb
m) = mT +

T

4
(3 +Ms(mT )).

Taking a Fourier transform of I2(t) gives

Î2(ω) =
2

R

∑

m

e−iωmT

γ + iω

(

e−iωT/4

[

e−MT (2γ+iω)s(mT )/4 − eiωMTs(mT )/4

]

+e−3iωT/4

[

e−iωMTs(mT )/4 − eMT (2γ+iω)s(mT )/4

])

.

From (3.9), it is easily verified that

Î2(ω) =
2

R

∑

m

∑

n=0,±2,±4,...

e−iωmT

γ + iω

(

e−iωT/4

[

Bn

(

1
4 (2iγ − ω)MT

)

−Bn

(

1
4ωMT

)

]

+e−3iωT/4

[

Bn

(

− 1
4ωMT

)

−Bn

(

− 1
4 (2iγ − ω)MT

)

])

einωsmT ,

where Bp(z) is given in (3.10). Poisson re-summing in m allows us to identify a Fourier series

for I2(t), given by

I2(t) =
∑

m

∑

n=0,±2,±4,...

Kmne
iΩmnt,
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where

Kmn =
2

(γ + iΩmn)RT

(

e−iΩmnT/4

[

Bn

(

1
4 (2iγ − Ωmn)MT

)

−Bn

(

1
4ΩmnMT

)

]

+e−3iΩmnT/4

[

Bn

(

− 1
4ΩmnMT

)

−Bn

(

− 1
4 (2iγ − Ωmn)MT

)

])

. (3.13)

The Fourier coefficients Jmn and Kmn are complex functions that involve the sums and differ-

ences of Bessel functions. Despite the complexity of Jmn and Kmn, they are non-zero when n is

even only. We now combine the Fourier series for IAB(t) and IA−B(t) to derive a Fourier series

for I(t).

3.2.3 Fourier Series and Frequency Spectrum for the Input Current

The upper input current is given by

I(t) =
4M

πR
+
∑

mn

Pmne
iΩmnt, (3.14)

where

Pmn =

{

Imn + Jmn +Kmn, n even,

0, n odd,

where Imn, Jmn and Kmn are given in (3.11), (3.12) and (3.13), respectively. This reproduces

the Fourier series for the input current of a two-phase inverter determined in [31].

For some values of γ, the coefficients Pmn decay slowly with respect to n (for fixed m). This

means that the number of peaks in each carrier group increases. Consequently, for some ratios

of ωc/ωs (provided ωc/ωs ∈ Q), each peak in the frequency spectrum will have a contribution

from several carrier groups. Note that, if ωc/ωs is irrational, the contribution at each frequency

is unique, coming from a single Fourier coefficient.

Each peak in the frequency spectrum of I(t) has amplitude

∣

∣

∣

∣

∞
∑

k=−∞
Pm+k,n−ωck/ωs

∣

∣

∣

∣

,

for fixedm and n. The coefficients |Pm+k,n−ωck/ωs
| → 0 as k →∞, however, and in this thesis we

only plot contributions to the spectrum with magnitude 10−5 and greater. Therefore, in order

to reduce the numerical cost of plotting spectra for I(t), we identify an integer N for which

|Pm±N,n∓ωcN/ωs
| ≥ 10−5 and |Pm±(N+1),n∓ωc(N+1)/ωs

| < 10−5 for all m and n. From empirical

evidence, for the spectra plotted in this section, N = 3. Therefore, we plot the amplitude,

∣

∣

∣

∣

3
∑

k=−3

Pm+k,n−ωck/ωs

∣

∣

∣

∣

, (3.15)

against the harmonic number, Ωmn/ωs. Note that, from (3.15) and (3.14), if ωc is a multiple

of 2ωs, there is contribution to the frequency spectrum of I(t) only when the harmonic order is

even.

We now note that, previously, we described the low-frequency components of the spectrum as

those corresponding to the m = 0 carrier group, and described the high-frequency components
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as those corresponding to the carrier groups with m 6= 0. When plotting spectra where several

carrier groups contribute to each peak in the spectrum this definition is inadequate, because it

is not clear where the high-frequency and low-frequency components in the spectrum begin or

end. Therefore, similar to [69], we use an alternative convention for describing the high and low

frequency components of the spectrum: the low-frequency components of the spectrum are those

with harmonic order less than ωc/2ωs; the high-frequency components are those with harmonic

order greater than ωc/2ωs.

The frequency spectrum of I(t) is shown in figure 3.5 for a range of ratios γ. Note that, because

we plot the absolute values of the Fourier coefficients, the frequency spectrum for I−(t) is

identical to the spectrum of I(t) (because |I(t)| = |I−(t)|). The spectra plotted in this section

agree with those in [31], and, furthermore, we provide spectra determined from FFTs of Matlab

simulations of the input current waveform to verify the accuracy of our analytical results.

The agreement between the dominant contributions to the spectrum in the simulated and ana-

lytical spectra is near absolute. For the non-dominant contributions, however, the agreement is

not as good. In particular, as L → 0 (for R fixed), more errors appear between the simulated

and the analytical results.

The dominant low-frequency contribution to the spectra in figure 3.5 is the DC component, and

the dominant high-frequency contribution to the spectrum is at 2ωc. Note that the frequencies

with a dominant contribution to the spectrum are unaffected by γ.

We now examine how variation of γ affects the spectrum of I(t). From comparison of fig-

ures 3.5(a) and 3.5(c), as L→ 0, the number of peaks in each carrier group increases for fixed R

(and the Fourier coefficients Pmn decay more slowly with respect to n, for fixed m). Conversely,

as L→∞ (with R fixed), the number of peaks in each carrier group decreases (from comparison

of figures 3.5(a) and 3.5(e)). Thus, the number of peaks in each carrier group is affected by γ.

We also note that, for all γ, the low-frequency current ripple contributions to the spectrum of

I(t) asymptote to zero as the ratio ωc/ωs increases.

4 Three-Phase Inverters

We now calculate, for the first time using the single-sum method, the input currents of a three-

phase inverter wired in the ∆ configuration (shown in figure 2.9). This calculation is significantly

more difficult than the previous calculations, as there are three loads in a three-phase inverter,

all with different output currents that contribute to the input currents differently. We assume,

in this section, that all the load impedances are equal in a three-phase inverter.

We begin by calculating the output currents of a three-phase inverter with a series RL load in

section 4.1. In section 4.2 we calculate the input currents of a three-phase inverter with a series

RL load.
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(a) γ = 1, analytical.
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(b) γ = 10, simulated.
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(c) γ = 10, analytical.
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(d) γ = 10, simulated.
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(e) γ = 0.1, analytical.

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(f) γ = 0.1, simulated.

Figure 3.5: Frequency spectrum of the upper input current I(t) of a two-phase inverter, where

M = 0.9, R = 1 and ωc = 21ωs. Furthermore, in (a) and (b), L = 1, in (c) and (d), L = 0.1,

and in (e) and (f), L = 10.
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(b) Simulated.

Figure 3.6: Frequency spectrum of the output current iab(t) of a three-phase inverter, where

M = 0.9, ωc = 21ωs and γ = 1.

4.1 Output Currents

There are three loads in a three-phase inverter, and therefore there are three output currents.

Each of these output currents can be determined if the voltage difference across the load and the

load are known. The three voltage differences are vab(t) = va(t) − vb(t), vbc(t) = vb(t) − vc(t)

and vca(t) = vc(t)− va(t). Therefore, from (3.1), in a three-phase inverter with a series RL load,

the three output currents have Fourier series

iab(t) =
∑

mn
1−e−2πin/3

R+iΩmnL amne
iΩmnt ≡

∑

mn

imne
iΩmnt,

ibc(t) =
∑

mn

imne
−2πin/3eiΩmnt, and ica(t) =

∑

mn

imne
2πin/3eiΩmnt,

where amn is given in (2.3). All three output currents have identical frequency spectrum, il-

lustrated in figure 3.6. The dominant low-frequency contribution to the spectrum is at ωs, and

when n is a multiple of 3 there is no contribution to the spectrum, caused by taking the difference

between two currents, as expected (see [13, 40], for example). Mathematically, the harmonic

cancellation is a consequence of the 1− e−2πin/3 term. We have omitted spectra for the output

currents for a range of R/L because the effects on the spectrum are similar to those shown in

figure 3.1.

To apply the single-sum method we determine, for each output current, a discrete switching

function in the time domain. Since iab(t) = iad(t)− iad(t), we have, from (2.9),

iab(t) = gab
AB(t) + gab

A (t)− gab
B (t), (4.1)

where

gab
AB(t) = − 2

R

∑

m

[

ψ(t;Aa
m,Ba

m)− ψ(t;Ab
m,Bb

m)

]

, (4.2)

gab
A (t) =

2

R

∑

m

[

e−γ(t−Aa
m)ψ(t;Aa

m,∞)− e−γ(t−Ab
m)ψ(t;Ab

m,∞)

]

, (4.3)
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where Aa
m, Ba

m are given in (2.2), and Ab
m, Bb

m are defined similarly, with signal wave sb(t) =

M cos(ωs−2πn/3). Note gab
B (t) is defined similarly to (4.3). The other two input currents, ibc(t)

and ica(t), are defined similarly to (4.1).

4.2 Input Currents

In order to derive the input currents of a three-phase inverter as discrete switching functions

in the time domain, it is useful to examine the contribution to the input current from each

phase-leg, and then rearrange this expression in terms of the output currents.

To begin with we examine the contribution to the upper input current I(t) from phase-leg a,

which we term Ia(t). Figure 3.7 shows the currents flowing out of phase-leg a (iab(t) and iac(t))

and the input current Ia(t) flowing into phase-leg a from the upper DC source. By Kirchhoff’s

current law [103], if phase-leg a is connected to the upper DC-source then Ia(t) = iab(t)+ iac(t),

and if phase-leg a is connected to the lower DC source then Ia(t) = 0. In other words,

Ia(t) =

∞
∑

p=−∞

(

iab(t)− ica(t)

)

ψ(t;Ba
p ,Aa

p+1).

Note that the input current Ib(t) or Ic(t) flowing into phase-leg b or c, respectively, is defined

similarly to Ia(t). Therefore,

I(t) = Ia(t) + Ib(t) + Ic(t),

=

∞
∑

p=−∞

[(

iab(t)− ica(t)

)

ψ(t;Ba
p ,Aa

p+1) +

(

ibc(t)− iab(t)

)

ψ(t;Bb
p,Ab

p+1)

+

(

ica(t)− ibc(t)
)

ψ(t;Bc
p,Ac

p+1)

]

,

where Bc
p and Ac

p+1 are defined similarly to (2.2), with signal wave sc(t) = M cos(ωst+
2π
3 ). By

grouping together the output currents, we have an alternative expression for I(t),

I(t) = Iab(t) + Ibc(t) + Ica(t), (4.4)

where

Iab(t) = iab(t)

∞
∑

p=−∞

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

, (4.5)

and Ibc(t), Ica(t) are defined similarly. Note that, by a similar argument, the input current

drawn from the lower DC source is equal to −I(t). We now determine I(t), by examining each

of Iab(t), Ibc(t) and Ica(t) in turn.

We write Iab(t) as, from (4.1–4.3),

Iab(t) = Iab
AB(t) + Iab

A−B(t), (4.6)
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Figure 3.7: Diagram showing the currents flowing out of (iab(t) and iac(t)) phase-leg a, and the

currents flowing into (Ia(t)) phase-leg a from the upper DC source.

where

Iab
AB(t) = − 2

R

∑

mp

[

ψ(t;Aa
m,Ba

m)− ψ(t;Ab
m,Bb

m)

][

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

Iab
A−B(t) =

2

R

∑

mp

[

e−γ(t−Aa
m)ψ(t;Aa

m,∞)− e−γ(t−Ab
m)ψ(t;Ab

m,∞)− e−γ(t−Ba
m)ψ(t;Ba

m,∞)

+e−γ(t−Bb
m)ψ(t;Bb

m,∞)

][

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

. (4.7)

We now calculate each of Iab
AB(t) and Iab

A−B(t) in turn.

4.2.1 Iab
AB

(t)

It is straightforward to see that

Iab
AB(t) =

2

R

∑

m

(

ψ(t;Aa
m,Ab

m) + ψ(t;Ab
m,Aa

m) + ψ(t;Ba
m,Bb

m) + ψ(t;Bb
m,Ba

m)

)

Therefore, we have, by the property that ψ(t; t1, t2) = 0 when t1 > t2,

Iab
AB(t) =

2

R

∑

m

(

ψ(t; min(Aa
m,Ab

m),max(Aa
m,Ab

m)) + ψ(t; min(Ba
m,Bb

m),max(Ba
m,Bb

m))

)

.

We now introduce two functions δmin(t) and δmax(t):

δmin(t) = min{cosωst, cos(ωst− 2π/3)} =

{

cos
(

ωst− 2π
3

)

, − 2π
3 < ωst <

π
3 ,

cosωst,
π
3 < ωst <

4π
3 ,

(4.8)

δmax(t) = max{cosωst, cos(ωst− 2π/3)} =

{

cosωst, − 2π
3 < ωst <

π
3 ,

cos
(

ωst− 2π
3

)

, π
3 < ωst <

4π
3 .

(4.9)

Thus in terms of δmin(t) and δmax(t), we have

Iab
AB(t) =

2

R

∑

m

[

ψ

(

t;mT +
T

4
(1 +Mδmin(mT )),mT +

T

4
(1 +Mδmax(mT ))

)

+ψ

(

t;mT +
T

4
(3−Mδmax(mT )),mT +

T

4
(3−Mδmin(mT ))

)]

.(4.10)

Taking a Fourier transform gives, for ω 6= 0,

Îab
AB(ω) =

2

R

∑

m

(
∫ mT+ T

4
(1+Mδmax(mT ))

mT+ T
4
(1+Mδmin(mT ))

e−iωt dt+

∫ nT+ T
4

(3−Mδmin(mT ))

mT+ T
4

(3−Mδmax(mT ))

e−iωt dt

)

.
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Thus, for ω 6= 0, we have

Îab
AB(ω) =

2

R

∑

m

(−iω)−1e−iωmT

(

e−iωT/4(e−iωMTδmax(mT )/4 − e−iωMTδmin(mT )/4)

+e−3iωT/4(eiωMTδmin(mT )/4 − eiωMTδmax(mT )/4)

)

.

We now determine Fourier series for eiωMTδmin(t)/4 and eiωMTδmax(t)/4.

Fourier Series for eiλδmin(t) and eiλδmax(t)

Fourier series for eiλδmin(t) and eiλδmax(t) are given by,

eiλδmin(t) =
∑

n

C+
n (λ)einωst, eiλδmax(t) =

∑

n

C−
n (λ)einωst.

The Fourier coefficients are readily determined to be,

C±
n (λ) =

1

2
Jn (λ) (1 + e2πip/3)einπ/2

±
∑

p6=n

1

2πi(n− p)Jp (λ) (1− e2πip/3)e−i(n−p)π/3(1− e−i(n−p)π)eipπ/2. (4.11)

These Fourier coefficients are very complex functions, that are evaluated by taking an infinite

sum over Bessel functions. Consequently, the behaviour of C±
n (λ) is difficult to interpret.

Fourier Transform

We now return to the Fourier transform of Iab
AB(t). The Fourier transform Îab

AB(ω) is, from (4.11),

when ω 6= 0,

Îab
AB(ω) =

2

R

∑

mn

(−iω)−1e−iωmT+inωsmT

(

e−iωT/4

[

C−
n

(

− 1
4ωMT

)

− C+
n

(

− 1
4ωMT

)

]

+e−3iωT/4

[

C+
n

(

1
4ωMT

)

− C−
n

(

1
4ωMT

)

])

.

Poisson re-summing in m determines

Îab
AB(ω) =

2

R

∑

mn

∫ ∞

−∞
(−iωT )−1eiΩmnt

(

e−iωT/4

[

C−
n

(

− 1
4ωMT

)

− C+
n

(

− 1
4ωMT

)

]

+e−3iωT/4

[

C+
n

(

1
4ωMT

)

− C−
n

(

1
4ωMT

)

])

e−iωt dt.

Thus we have

Iab
AB(t) =

1

R
+
∑

mn

Iab
mne

iΩmnt,

where Ωmn = mωc + nωs and

Iab
mn =























0, if Ωmn = 0,

−2

iΩmnRT

(

e−iΩmnT/4

[

C−
n

(

− 1
4ΩmnMT

)

− C+
n

(

− 1
4ΩmnMT

)

]

otherwise.

+e−3iΩmnT/4

[

C+
n

(

1
4ΩmnMT

)

− C−
n

(

1
4ΩmnMT

)

])

,

(4.12)
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Note that the constant term 1/R is the contribution to Iab
AB(t) when Ωmn = 0, determined

by taking the average value of (4.10). The Fourier coefficient Iab
mn involves the differences of

Fourier coefficients C±
n (λ), which, as discussed previously, are complex functions. Therefore, the

behaviour of Iab
mn is even more complex, as each Fourier coefficient is evaluated by taking the

difference between infinite sums of Bessel functions.

4.2.2 Iab
A−B

(t)

We now write Iab
A−B(t) as

Iab
A−B(t) = Iab

1 (t) + Iab
2 (t),

where I1(t) and I2(t) are found from consideration of the sum over m. If m ≤ p,

Iab
1 (t) =

2

R

∑

p

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

×
p
∑

m=−∞

(

e−γ(t−Aa
m) − e−γ(t−Ab

m) + e−γ(t−Bb
m) − e−γ(t−Ba

m)

)

.

When m > p,

Iab
2 (t) = − 2

R

∑

m

[

e−γ(t−Aa
m)ψ(t;Aa

m,Ab
m) + e−γ(t−Ab

m)ψ(t;Ab
m,Aa

m)

+e−γ(t−Ba
m)ψ(t;Bb

m,Ba
m) + e−γ(t−Bb

m)ψ(t;Ba
m,Bb

m)

]

,

= − 2

R

∑

m

[

e−γ(t−min(Aa
m,Ab

m))ψ(t; min(Aa
m,Ab

m),max(Aa
m,Ab

m))

+e−γ(t−max(Ba
m,Bb

m))ψ(t; min(Ba
m,Bb

m),max(Ba
m,Bb

m))

]

.

We now calculate a Fourier series for each of Iab
1 (t) and Iab

2 (t) in turn.

By taking Jacobi-Anger expansions of the exponential terms in Iab
1 (t),

Iab
1 (t) =

2

R

∑

p

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

) p
∑

m=−∞
e−γ(t−mT )

×
∑

n

einωsmT e−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

(1− e−2πin/3).

We explicitly evaluate the geometric sum over n to give

Iab
1 (t) =

2

R

∑

np

e(γ+inωs)pT

1− e−(γ+inωs)T
e−3γT/4Jn

(

1
4 iγMT

)

[

(−i)ne−γT/2 − in
]

(1− e−2πin/3)F ab
p (t),

where

F ab
p (t) = e−γt

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

,

which are the time dependent terms of Iab
1 (t). We take a Fourier transform of F ab

p (t), which

gives

F̂ ab
p (ω) = −e

−(γ+iω)pT

γ + iω

∑

q

eiqωspT (1− e−2πiq/3)e3γT/4Jq

(

1
4 (ω − iγ)MT

)

×
[

(−i)qe(−γ/2+i(qωs−5ω/4))T − iqe−3iωT/4

]

.
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Therefore,

Îab
1 (ω) = − 2

R

∑

npq

(1 − e−2πin/3)(1− e−2πiq/3)

(γ + iω)(1− e−(γ+inωs)T )
ei(n+q)ωspTJn

(

1
4 iγMT

)

Jq

(

1
4 (ω − iγ)MT

)

×
[

(−i)ne−γT/2 − in
][

(−i)qe(−γ/2+i(qωs−5ω/4))T − iqe−3iωT/4

]

e−iωpT .

Poisson re-summing in p allows us to identify

Iab
1 (t) =

∑

mn

J ab
mne

iΩmnt,

where

J ab
mn = − 8

RT

∑

q

(1− e−2πiq/3)(1− e−2πir/3)

(γ + iΩmn)(1 − e−(γ+i(n−q)ωs)T )
Jq

(

1
4 iγMT

)

Jr

(

1
4 (Ωmn − iγ)MT

)

×
[

(−i)qe−γT/2 − iq
][

(−i)re(−γ/2+i(qωs−5Ωmn/4))T − ire−3iΩmnT/4

]

. (4.13)

We now calculate a Fourier series for Iab
2 (t).

Taking a Fourier transform of Iab
2 (t) gives

Îab
2 (ω) =

2

R

∑

m

1

γ + iω
e−iωmT

[

e−iωT/4e−iγMTδmin(mT )/4

(

e−(γ+iω)MTδmax(mT )/4

−e−(γ+iω)MTδmin(mT )/4

)

+ e−3iωT/4eγMTδmin(mT )/4

×
(

e(γ+iω)MTδmin(mT )/4 − e(γ+iω)MTδmax(mT )/4

)]

,

where δmin(t) and δmax(t) are given in (4.8) and (4.9), respectively. Therefore we have

Îab
2 (ω) =

2

R

∑

m

1

γ + iω
e−iωmT

[

e−iωT/4

(

eγMT (δmin(mT )−δmax(mT ))/4e−iωMTδmax(mT )/4

−e−iωMTδmin(mT )/4

)

+ e−3iωT/4

(

eiωδmin(mT )/4

−e−γMT (δmin(mT )−δmax(mT ))/4eiωMTδmax(mT )/4

)]

.

We now determine Fourier series for some of the exponential terms in Îab
2 (ω).

Fourier Series for ez(δmin(t)−δmax(t))

The Fourier series for ez(δmin(t)−δmax(t)) is given by,

ez(δmin(t)−δmax(t)) =
∑

n

Dn(z)einωst.

In order to determine the Fourier coefficients Dn(z) that are not expressed as the product of

Bessel functions, we require an alternative expression for δmin(t) − δmax(t). Now, from (4.8)
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and (4.9), we have

δmin(t)− δmax(t) =

{

cos
(

ωst− 2π
3

)

− cosωst, − 2π
3 < ωst <

π
3 ,

cosωst− cos
(

ωst− 2π
3

)

, π
3 < ωst <

4π
3 ,

=

{ √
3 cos

(

ωst− 5π
6

)

, − 2π
3 < ωst <

π
3 ,

−
√

3 cos
(

ωst− 5π
6

)

, π
3 < ωst <

4π
3 ,

= −
√

3

∣

∣

∣

∣

cos

(

ωst−
5π

6

) ∣

∣

∣

∣

.

Therefore,

Dn(z) =
ωs

2π

∫ 0

2π/ωs

e−
√

3z| cos(ωst−5π/6)|e−inωst dt,

=
ωs

2π

[
∫ π/3ωs

−2π/3ωs

e
√

3z cos(ωst−5π/6)e−inωst dt+

∫ 4π/3ωs

π/3ωs

e−
√

3z cos(ωst−5π/6)e−inωst dt

]

.

Taking Jacobi-Anger expansions of the exponential terms,

Dn(z) =
∑

q

ωs

2π
e−iqπ/3Jq(

√
3iz)

[

(−1)q

∫ π/3ωs

−2π/3ωs

e−i(n−q)ωst dt+

∫ 4π/3ωs

pi/3ωs

e−i(n−q)ωst dt

]

.

Now,

∫ π/3ωs

−2π/3ωs

e−i(n−q)ωst dt =











π

ωs
, if q = n,

e−i(n−q)π/3

i(n− q)ωs
(ei(n−q)π − 1), if q 6= n.

Therefore,

Dn(z) =











0, n odd,

e−iπn/3Jn(
√

3iz)−
∑

q=±1,±3,±5,...

2

iπ(n− q)e
−iπn/3Jq(

√
3iz), n even.

(4.14)

The Fourier ceofficient Dn(z) is a complex function. It is either equal to 0 when n is odd, or

equal to an infinite sum of Bessel functions when n is even.

Fourier Transform

The Fourier transform of Iab
2 (t) is, from (4.11) and (4.14),

Îab
2 (ω) =

2

R

∑

mn

einωsmT

γ + iω
e−iωmT

[

e−3iωT/4C+
n

(

1
4ωMT

)

− e−iωT/4C+
n

(

− 1
4ωMT

)

+
∑

p

eipωsmT

(

e−iωT/4C−
n

(

− 1
4ωMT

)

Dp

(

1
4γMT

)

−e−3iωT/4C−
n

(

1
4ωMT

)

Dp

(

− 1
4γMT

)

)]

,

Poisson re-summing in m allows us to identify a Fourier series for Iab
2 (t), given by

Iab
2 (t) =

∑

mn

Kab
mne

iΩmnt,
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where

Kab
mn =

2

(γ + iΩmn)RT

[

e−3iΩmnT/4C+
n

(

1
4ΩmnMT

)

− e−iΩmnT/4C+
n

(

− 1
4ΩmnMT

)

+
∑

p

(

e−iΩmnT/4C−
n−p

(

− 1
4ΩmnMT

)

Dp

(

1
4γMT

)

−e−3iΩmnT/4C−
n−p

(

1
4ΩmnMT

)

Dp

(

− 1
4γMT

)

)]

. (4.15)

The Fourier ceofficients Kab
mn are functions of C±

n (λ) and Dn(z), which are complicated functions

that invovle infinite sums of Bessel functions. Therefore, because Kab
mn involves an infinte sum

over multiples of C±
n (λ) and Dn(z), it’s behaviour is even more difficult to interpret than the

behaviour of C±
n (λ) or Dn(z). Although each Fourier coefficient Kab

mn involves two infinite sums

(one over p, and an additional one for each of C±
n (z) and Dp(z)), these sums converge quickly.

4.2.3 Fourier Series and Frequency Spectrum for the Input Current

We have now derived a Fourier series for Iab(t), which, from (4.6),

Iab(t) =
1

R
+
∑

mn

(Iab
mn + J ab

mn +Kab
mn)eiΩmnt, (4.16)

where Iab
mn, J ab

mn and Kab
mn are given in (4.12), (4.13) and (4.15), respectively. To establish a

Fourier series for I(t) we also require, from (4.4), Fourier series for Ibc(t) and Ica(t). There

is a simple relationship between the Fourier coefficients for Iab(t), Ibc(t) and Ica(t), which we

highlight using the direct method. It is straightforward that, from (4.5),

Iab(t) = 1
2 iab(t)(va(t)− vb(t)) =

∑

mn

Qmne
iΩmnt,

Ibc(t) =
∑

mn

Qmne
iΩmnte−2πin/3, and Ica(t) =

∑

mn

Qmne
iΩmnte2πin/3,

where

Qmn =
1

2

∑

pq

(1 − e−2πi(n−q)/3)(1 − e−2πiq/3)
am−p,n−qapq

R+ iΩmnL
,

where amn is given in (2.3). Consequently, from (4.16),

Ibc(t) =
1

R
+
∑

mn

(Iab
mn + J ab

mn +Kab
mn)eiΩmnte−2πin/3,

Ica(t) =
1

R
+
∑

mn

(Iab
mn + J ab

mn +Kab
mn)eiΩmnte2πin/3.

Therefore, from (4.4),

I(t) =
3

R
+
∑

mn

(1 + e−2πin/3 + e2πin/3)(Iab
mn + J ab

mn +Kab
mn)eiΩmnt,

=
3

R
+
∑

mn

Pmne
iΩmnt, (4.17)

where

Pmn =

{

3(Iab
mn + J ab

mn +Kab
mn), if mod (n, 3) = 0,

0, otherwise,
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(b) γ = 1, simulated.
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(c) γ = 10, analytical.
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(d) γ = 10, simulated.
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(e) γ = 0.1, analytical.
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(f) γ = 0.1, analytical.

Figure 3.8: Frequency spectrum of the upper input current I(t) of a three-phase inverter, where

M = 0.9, ωc = 21ωs and R = 1. Furthermore, in (a) and (b), L = 1, in (c) and (d), L = 0.1,

and in (e) and (f), L = 10.
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where Iab
mn, J ab

mn and Kab
mn are given in (4.12), (4.13) and (4.15), respectively.

Similar to the input currents of a two-phase inverter, the Fourier coefficients Pmn for the input

currents of a three-phase inverter decay slowly with respect to n (for fixed m). Therefore,

provided ωc/ωs ∈ Q, for certain ratios ωc/ωs, each peak in the spectrum of I(t) will have

contribution from several carrier groups. In order to ensure all contributions with magnitude

10−5 and greater are accounted for in our spectra, we plot the amplitude (given in (3.15)) against

the harmonic number (Ωmn/ωs) in this section.

The frequency spectrum of I(t) is illustrated in figure 3.8 for a range of ratios γ. Because we

plot the absolute value of the Fourier coefficients, the spectrum for the upper input current is

identical to the spectrum of the lower input current. Additionally, because ωc = 21ωs, it is

easily verified, from (4.17) and (3.15), that there is only contribution to the spectrum when

the harmonic order is a multiple of 3. When ωc is not a multiple of 3ωs, more frequencies

will contribute to the spectrum. Therefore, in a three-phase inverter, the input currents have

maximum harmonic cancellation when ωc is a multiple of 3ωs.

We also illustrate, in figure 3.8, frequency spectra generated by taking fast Fourier transforms

of simulations of the input current waveform. The agreement between the dominant peaks in

the simulated spectra and the analytical spectra is very good, but the agreement is not as good

for the non-dominant peaks. We note that our spectra agree with those in [40], generated using

the direct method.

From comparison of the spectra in figure 3.8, for all values of γ we examine, the leading low-

frequency contribution to the spectrum is the DC component, and the amplitude of this peak

increases as γ → ∞. Similarly, the leading high-frequency contribution to the spectrum is at

2ωc for the values of γ we have illustrated spectra for. We also note that the number of peaks

in each carrier group decreases as γ → 0. Finally, we note that, as the ratio ωc/ωs increases, the

non-dominant low-frequency contributions to the spectrum of I(t) asymptote to zero. We also

note that this is the case for all γ.

5 Conclusions

In this chapter we determined frequency spectra for the input currents a three-phase PWM

inverter using the single-sum method for the first time. Previously, the input currents have

been determined for three-phase inverters in [40, 86, 94] using the direct method. The direct

method is algebraically compact, but Fourier coefficients for the input currents determined using

the direct method converge slowly. The more sophisticated single-sum method is algebraically

complex, but determines Fourier coefficients that converge much faster than those derived using

the direct method. Therefore, the work in this chapter is an advance on previous calculations

in [40, 86, 94], as it reduces the numerical cost of plotting input current spectra.

We also determined the input currents for single-phase and two-phase inverters, reviewing the

calculations of [31]. In addition to the analysis in [31], we provided a comparison of the single-

sum method and the direct method when determining input current spectra for a single-phase
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inverter, demonstrating the numerical efficiency of the single-sum method.

The analytical results in this chapter have been corroborated by numerical simulations of the

inputs of single-phase, two-phase and three-phase inverters. Furthermore, our results agree with

those in [31, 40, 86, 94] for single-phase, two-phase and three-phase inverters.

During the course of our analysis, we demonstrated the known result that, for a two-phase

inverter, provided ωc is a multiple of 2ωs, there is only contribution to the spectrum when the

harmonic order is even. We also demonstrated, for a three-phase inverter, only harmonic orders

that are a multiple of 3 have a non-zero contribution to spectra of the input currents (provided

ωc is a multiple of 3ωs), as expected (see [40], for example).

In all previous analysis using the direct method [40, 86, 94] and using the single-sum method [31],

calculations of input currents have been for specific impedances. In the next chapter, we extend

our analysis by calculating input currents for PWM inverters with general output impedance.
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4

PWM Inverters With General Output

Impedance

1 Introduction

In this chapter we present calculations to determine frequency spectra for the input currents

of several PWM inverters with general output impedance Z(ω) using the single-sum method,

generalising prior calculations for specific output impedances. Examples of previous calculations

for specific impedances are in [13, 40, 86, 94] (using the direct method), and in [31, 33] (using

the single-sum method).

The calculations in this chapter will be of practical use when determining, analytically, the input

currents of PWM inverters with loads we have not examined in this thesis. More specifically,

time-consuming analysis will be avoided for future applications of the single-sum method to

inverters with loads that are not examined in this thesis.

In order to determine the input currents of an inverter with general output impedance Z(ω) using

the single-sum method, we first derive the output currents by examining the Fourier transform of

the current response generated by a single step pulse in the output voltage, and then superpose

these currents. Once the output currents have been determined, we then follow the single-sum

method (described in chapter 3 and [31, 33]) to determine the input currents for single-phase,

two-phase and three-phase PWM inverters with general output impedance Z(ω).

1.1 Structure of Chapter

In section 2 we derive expressions for the output current of a single phase-leg of a PWM inverter.

We first calculate the output current for an inverter with general output impedance Z(ω) in

section 2.1, then determine the current responses to a single voltage pulse for some specific loads

in section 2.2. Fourier series for the input current drawn from the upper DC source are derived

in section 3 for a range of inverters. Calculations are performed for single-phase inverters with

71



CHAPTER 4. PWM INVERTERS WITH GENERAL OUTPUT IMPEDANCE

time

BA
mm

am
p
li

tu
d
e

aa

+1

0

v (t)
a
m

Figure 4.1: A single voltage pulse va
m(t).

general output impedance Z(ω) in section 3.1, and then we calculate the input currents for

two-phase and three-phase inverters in section 3.2.

2 Output Currents

In this section we determine the output currents of a single-phase inverter by examining the

Fourier transform of the current response generated by a single step pulse in the output voltage

of the inverter, and then superpose these currents. This method has been used previously in [33].

In section 2.1 we calculate the output current for an inverter with general output impedance

Z(ω). Then, in section 2.2, we plot the current response to a single voltage pulse for a series RL

load.

2.1 Output Current with General Impedance

Here we calculate the output current of a single-phase PWM inverter with output impedance

Z(ω). A circuit diagram of a single-phase inverter is illustrated in figure 1.3(a), where the load

is connected between phase-leg a and a neutral point d.

We begin by calculating the current response to a single voltage pulse, generated by phase-leg a,

before summing these current responses to determine the full output current of a PWM inverter.

A single voltage pulse va
m(t) is shown in figure 4.1. We describe va

m(t) mathematically as

va
m(t) = ψ(t;Aa

m,Ba
m) =

{

+1, if Aa
m < t < Ba

m,

0, otherwise,

where, ψ(t;Aa
m,Ba

m) = 0 if Aa
m > Ba

m. The switch times Aa
m and Ba

m are determined by samples

of a low-frequency signal wave sa(t) = M cosωst, with amplitude |M | ≤ 1 and frequency ωs.

The switch times, for uniform sampling, are

Aa
m = mT +

T

4

(

1 + sa(mT )

)

, and Ba
m = mT +

T

4

(

3− sa(mT )

)

, (2.1)

wherem is any integer and T = 2π/ωc is the switching period, with switching frequency ωc ≫ ωs.

To determine the current response to va
m(t) we first take a Fourier transform of va

m(t), which is

v̂a
m(ω) =

1

iω
[e−iωAa

m − e−iωBa
m ].
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Figure 4.2: Contours in the complex plane

We assume the current is 0 before t = Aa
m. Therefore, for a load with general output impedance

Z(ω), the current response i(t) to va
m(t) has Fourier transform

ı̂(ω) =
v̂a

m(ω)

Z(ω)
.

Note that we assume that Z(ω) is a rational function, which is realistic for a discrete finite circuit

of resistors, inductors and capacitors, but is not true in general. An inverse Fourier transform

determines

i(t) =
1

2πi

∫ ∞

−∞

1

ωZ(ω)
(eiω(t−Aa

m) − eiω(t−Ba
m)) dω.

In order to evaluate this integral we use contour integration (see [1], for example). We consider

the integral along the contour Γr,ρ (shown in figure 4.2(a)); then

i(t) = lim
r→0, ρ→∞

1

2πi

∫

Γr,ρ

1

ωZ(ω)
(eiω(t−Aa

m) − eiω(t−Ba
m)) dω. (2.2)

We calculate the integral in (2.2) by closing the contour and applying Cauchy’s residue theorem.

The contour Γr,ρ can be closed in two ways: along C+
r,ρ as shown in figure 4.2(b), or along C−

r,ρ

as shown in figure 4.2(c).

The functions eiω(t−Aa
m) and eiω(t−Ba

m) are entire functions, so the only poles in the integrand

of (2.2) arise from 1/ωZ(ω). We denote the poles of 1/ωZ(ω) by ωj for j = 1, . . . , N . Note that

there is a pole at 0 in 1/ωZ(ω), unless Z(ω) has a singularity at 0. To ensure all the poles lie

within C+
r,ρ we choose the semi-circle of radius r to be below, rather than above, the real axis

(either choice makes no difference to the outcome of the integral). We also choose ρ large enough

and r small enough so that all the poles lie within C+
r,ρ.

We now split the integral in (2.2) into two separate parts,

i(t) = iA(t)− iB(t),

where

iA(t) = lim
r→0, ρ→∞

1

2πi

∫

Γr,ρ

eiω(t−Aa
m)

ωZ(ω)
dω,

and iB(t) is defined similarly. The choice of contour C±
r,ρ over which to evaluate iA(t) or iB(t) is

determined by our desire that the contribution to the integral from the large curved section of

C±
r,ρ tends to zero as ρ→∞ (for fixed r).

We now evaluate the integral iA(t), as described in [33]. There are two cases to consider: t < Aa
m

and t > Aa
m. In the two cases we close the contour in two different ways. When t < Aa

m we
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evaluate iA(t) along C−
r,ρ, and when t > Aa

m we evaluate iA(t) along C+
r,ρ. There are no poles

in C−
r,ρ, so when t < Aa

m, iA(t) = 0 by Cauchy’s residue theorem. In C+
r,ρ there are N poles,

therefore by Cauchy’s residue theorem, when t > Aa
m,

iA(t) = lim
ρ→∞

1

2πi

∫

C+
r,ρ

eiω(t−Aa
m)

ωZ(ω)
dω,

=
N
∑

j=1

Res

(

eiω(t−Aa
m)

ωZ(ω)
;ωj

)

,

=

N
∑

j=1

eiωj(t−Aa
m)

Z(ωj) + ωjZ ′(ωj)
.

Therefore

iA(t) =















0, if t < Aa
m,

N
∑

j=1

eiωj(t−Aa
m)

Z(ωj) + ωjZ ′(ωj)
, if t > Aa

m,

and iB(t) is defined similarly.

Thus, the current response to a single voltage pulse is

i(t) =



































0, if t < Aa
m,

N
∑

j=1

eiωj(t−Aa
m)

Z(ωj) + ωjZ ′(ωj)
, if Aa

m < t < Ba
m,

N
∑

j=1

eiωj(t−Aa
m) − eiωj(t−Ba

m)

Z(ωj) + ωjZ ′(ωj)
, if t > Ba

m.

(2.3)

The current response has three stages: before the up-switching at t = Aa
m of the voltage from 0

to +1; between the up-switching and the down-switching at t = Ba
m, from +1 to 0; and after the

down-switching. Before the up-switching there is no current flow. Both the up-switching and

the down-switching generate a current response (that decays in proportion to eiωjt).

The voltage output of a single-phase inverter, va(t), is described mathematically as an infinite

sum of voltage pulses. In other words

va(t) = 1− 2
∑

m

va
m(t).

The steady-state current response, after transients, to a unit voltage is equal to 1
Z(0) . Summing

the current responses to single voltage pulses va
n(t), the output current iad(t) is, from (2.3),

iad(t) =
1

Z(0)
− fA(t) + fB(t), (2.4)

where the subscript ad denotes the load connection, and

fA(t) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

m

eiωj(t−Aa
m)ψ(t;Aa

m,∞), (2.5)

and fB(t) is defined similarly. Note that the term fA(t) is the sum of current responses to the

down-switching from +1 to −1 of va(t) at the times t = Aa
m, and fB(t) is the sum of current

responses to the up-switching from −1 to +1 of va(t) at the times t = Ba
m.
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2.2 Current Responses for a Series RL Load

In this section we examine some of the physical attributes of the current response to a single

voltage pulse. To achieve this, we plot a number of current responses to single voltage pulses

using (2.3). To calculate the current response to a single voltage pulse we first determine the

poles of (2.2), which occur when ωZ(ω) = 0. Therefore for each load we examine in this section

we study Z(ω) before we plot the current response.

The voltage drop across a series RL load determines current in the frequency domain through

v̂(ω) =

[

R+ iωL

]

ı̂(ω) ≡ Z(ω)̂ı(ω).

Therefore, for an inverter with a series RL load ωZ(ω) = 0 when ω = 0 and when ω = iR/L ≡ iγ.
Thus, from (2.3),

i(t) =















0, if t < Aa
m,

1
R (1− e−γ(t−Aa

m)), if Aa
m < t < Ba

m,
1
R (e−γ(t−Ba

m) − e−γ(t−Aa
m)), if t > Ba

m.

Inductors generate a continuous current response (see [85], and the references therein). Current

initially exponentially decays towards 1/R as a response to the up-switching of the voltage pulse,

before exponentially decaying to 0 after the down-switching of the voltage pulse.

We illustrate, in figure 4.3, how the rates of decay are affected for a range of γ. Because the

magnitude of i(t) is scalar in R, we fix R and vary L to plot the current response for a range

of γ. In all of these figures the time variable has been scaled by the length of the voltage pulse

(Ba
m−Aa

m). In other words the current responses are plotted against τ = t
Ba

m−Aa
m

, rather than t.

It is straightforward to see that i(t)→ va
m(t)/R as γ →∞. In other words, current responses to

a voltage pulse through a highly-resistive series RL load approximate the discontinuous voltage

pulse (as predicted by [98], for example). As γ decreases, the rate of decay and the magnitude of

current response decreases. Thus it is easily verified that the current response to a voltage pulse

through a highly inductive load is resistant to change, and decays slowly, as expected (see [85],

for example).

3 Input Currents

In this section we determine the input currents of a single-phase, two-phase and three-phase

inverter with general output impedance Z(ω) using the output currents determined in section 2.

We calculate the input currents using the single-sum method of [31, 33], which we have used

previously, in chapter 3 of this thesis. In fact, the principal steps in the following calculations

are the same as in chapter 3, and we just highlight the main differences here.

In this section we use (2.4) and (2.5) to determine the upper input current (the input current

drawn from the upper DC source) of a single-phase, two-phase and three-phase inverter with

general output impedance Z(ω). We first find the input current of a single-phase inverter in

section 3.1, and then determine the input currents of two-phase and three-phase inverters in

section 3.2.
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Figure 4.3: Current response i(τ) to a single voltage pulse va
m(τ), where M = 0.9, R = 1 and

ωc = 21ωs. The dashed lines indicate when the voltage pulse switches from 0 to +1, and the

dot-dash line indicates when the voltage pulse changes from +1 to 0.

3.1 Single-phase Inverter

The following calculation deriving the upper input current of a single-phase inverter with output

impedance Z(ω) follows the structure of the calculation in section 2 of chapter 3 (where the

upper input current of a single-phase inverter with a series resistive-inductive load is derived).

A single-phase inverter is illustrated in figure 1.3(a). By Kirchhoff’s current law [103], the upper

input current I(t) (the input current drawn from the upper DC source) is equal to the output

current iad(t) (given in (2.4)) when the inverter switch is connected to the upper DC source,

and is zero otherwise. In other words,

I(t) = iad(t)
∑

p

ψ(t;Ba
p ,Aa

p+1),

where, from (2.4),

I(t) =

[

1

Z(0)
− fA(t) + fB(t)

]

∑

p

ψ(t;Ba
p ,Aa

p+1),

= I0(t) + IAB(t),
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where

I0(t) =
1

Z(0)

∑

p

ψ(t;Ba
p ,Aa

p+1), (3.1)

IAB(t) =

[

− fA(t) + fB(t)

]

∑

p

ψ(t;Ba
p ,Aa

p+1). (3.2)

Similarly the lower input current I−(t) (the input current drawn from the lower DC source) is

I−(t) = iad(t)− I(t).

Therefore we derive the upper input current I(t) only.

We now derive Fourier series for I0(t) and IAB(t). Noting that
∑

p ψ(t;Ba
p ,Aa

p+1) = 1
2 (1+va(t)),

we have, from (3.1),

I0(t) =
1

2Z(0)
(1 + va(t)),

where the spectrum of va(t) has been calculated previously (in chapter 2). Examination of (2.5)

indicates that fA(t)ψ(t;Ba
p ,Aa

p+1) is non-zero only whenm ≤ p (similarly for fB(t)ψ(t;Ba
p ,Aa

p+1)).

Therefore, from (3.2),

IAB(t) =

[

fB(t)− fA(t)

]

∑

p

ψ(t;Ba
p ,Aa

p+1),

=

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

p

p
∑

m=−∞

(

eiωj(t−Ba
m) − eiωj(t−Aa

m)

)

ψ(t;Ba
p ,Aa

p+1).

It follows from use of the Jacobi-Anger expansion [109] that

IAB(t) = −
N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

np

p
∑

m=−∞
eiωj(t−mT )e3iωjT/4Jn(1

4 iωjMT )

×[(−i)neiωjT/2 − in]einωsmTψ(t;Ba
p ,Aa

p+1),

= −
N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

n

e3iωjT/4

1− e−(−iωj+inωs)T
Jm(1

4 iωjMT )

×[(−i)neiωjT/2 − im]F j
n(t),

where

F j
n(t) =

∑

p

eiωjt+(−iωj+inωs)pTψ(t;Ba
p ,Aa

p+1).

The Fourier transform of F j
n(t) is given by

F̂ j
n(ω) =

∑

pq

1

iωj − iω
e−i(ω−(n+q)ωs)pT e−3iωjT/4Jq(

1
4 (ω − ωj)MT )

×
[

(−i)qei(ωj/2+qωs−5ω/4)T − iqe−3iωT/4

]

.

Poisson re-summing in p,

F̂ j
n(ω) =

∑

pq

∫ ∞

−∞

1

i(ωj − ω)T
e−3iωjT/4Jq(

1
4 (ω − ωj)MT )

[

(−i)qei(ωj/2+qωs−5ω/4)T − iqe−3iωT/4

]

eiΩp,n+qte−iωt dt.
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Figure 4.4: Diagram to show the contribution Iab(t) to the input current I(t) from the load

connected between phase-leg a and phase-leg b. The switch state of the two phase-legs determines

Iab(t). There are four possible combinations for the phase-legs: (a) phase-leg a attached to the

upper DC source and b to the lower (Iab(t) = iab(t)), (b) both attached to the lower DC rail

(Iab(t) = 0), (c) a attached to the lower and b attached to the upper (Iab(t) = −iab(t)), and (d)

both attached to the upper DC rail (Iab(t) = 0).

Therefore, we identify

I(t) =
1

2Z(0)
+
∑

mn

Imne
iΩmnt, (3.3)

where

Imn =
amn

2Z(0)
−

N
∑

j=1

2

(Z(ωj) + ωjZ ′(ωj))T

∑

q

Jn−q(
1
4 iωjMT )[(−i)n−qeiωjT/2 − in−q]

(iωj − iΩmn)(1 − ei(ωj−(n−q)ωs)T )

×Jq(
1
4 (Ωmn − ωj)MT )

[

(−i)qei(ωj/2+qωs−5Ωmn/4)T − iqe−3iΩmnT/4

]

, (3.4)

where

amn =
2

iΩmnT
Jn

(

1
4ΩmnMT

)

(

einπ/2−3iΩmnT/4 − e−inπ/2−iΩmnT/4

)

,

are the Fourier coefficients of the voltage output va(t) of a single-phase inverter (from chapter 2).

The Fourier series for the upper input current of a single-phase inverter given in (3.3) (with

coefficients in (3.4)) is given in terms of the general output impedance Z(ω). We can determine

input current spectra from (3.3) and (3.4) for specific output impedances without resorting to

lengthy calculations.

3.2 Two-phase and Three-phase Inverter

In a multi-phase inverter the upper input current is equal to minus the lower input current.

Therefore for any multi-phase inverter we derive one of the upper or lower input currents only.

In this section we derive the upper input current I(t) of a two-phase and a three-phase inverter.

Before we examine either a two-phase or three-phase inverter, we examine the contribution

Iab(t) to the upper input current I(t) from a load connected between two phase-legs, a and b.
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By Kirchhoff’s current law [103], Iab(t) is equal to plus or minus the output current iab(t) or zero

depending on the switch state of the two phase-legs, as illustrated in figure 4.4. In other words,

Iab(t) = 0 when phase-leg a and phase-leg b are simultaneously connected to either the upper

or the lower DC source. Similarly, Iab(t) = iab(t) if phase-leg a is connected to the upper DC

source and b to the lower, and Iab(t) = −iab(t) if a is connected to the lower and b to the upper.

Therefore the contribution to the input current from the load connected between phase-leg a

and phase-leg b is

Iab(t) = iab(t)
∑

p

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

where, from (2.4),

iab(t) = −gA(t) + gB(t),

and, from (2.5),

gA(t) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

m

[

eiωj(t−Aa
m)ψ(t;Aa

m,∞)− eiωj(t−Ab
m)ψ(t;Ab

m,∞)

]

,

and gB(t) is defined similarly. Note that Aa
m, Ba

m are defined in (2.1), and Ab
m, Bb

m are defined

similarly, with signal wave sb(t) = M cos(ωst+ φ), with phase φ 6= 0.

We now write Iab(t) as

Iab(t) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

mp

[

eiωj(t−Aa
m)ψ(t;Aa

m,∞)− eiωj(t−Ab
m)ψ(t;Ab

m,∞)

]

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

(

Ij
1(t) + Ij

2(t)

)

,

where Ij
1(t) and Ij

2(t) are found from consideration of the sum over m. If m ≤ p, it is easily

verified that

Ij
1(t) = −

∑

p

(

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

)

×
p
∑

m=−∞

(

eiωj(t−Aa
m) − eiωj(t−Ab

m) + eiωj(t−Bb
m) − eiωj(t−Ba

m)

)

.

When m > p,

ψ(t;Aa
m,∞)[ψ(t;Ba

p ,Aa
p+1)− ψ(t;Bb

p,Ab
p+1)] =

{

ψ(t;Aa
m,Ab

m), when p = m− 1,

0, otherwise,
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for example. Therefore, Ij
2(t), is non-zero when p = m− 1 only, in other words

Ij
2(t) =

∑

m

[

eiωj(t−Aa
m)ψ(t;Aa

m,Ab
m) + eiωj(t−Ab

m)ψ(t;Ab
m,Aa

m)

+eiωj(t−Ba
m)ψ(t;Bb

m,Ba
m) + eiωj(t−Bb

m)ψ(t;Ba
m,Bb

m)

]

,

=
∑

m

[

eiωj(t−min(Aa
m,Ab

m))ψ(t; min(Aa
m,Ab

m),max(Aa
m,Ab

m))

+eiωj(t−max(Ba
m,Bb

m))ψ(t; min(Ba
m,Bb

m),max(Ba
m,Bb

m))

]

.

We now determine Fourier series for each of Ij
1(t) and Ij

2(t) in turn.

We examine Ij
1(t) with use of the Jaocbi-Anger expansion [109]. From examination of this

expansion, it is easily verified that

Ij
1(t) = −

∑

np

eiωjtJn

(

1
4ωjMT

)

[

(−i)neiωjT/2 − in
][

1− einφ

]

×
[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

] p
∑

m=−∞
ei(nωs−ωj)mT .

= −
∑

n

e3iωjT/4

1− e−i(nωs−ωj)T
Jn

(

1
4ωjMT

)

[

(−i)neiωjT/2 − in
][

1− einφ

]

F j
n(t), (3.5)

where

F j
n(t) =

∑

p

eiωjt+i(nωs−ωj)pT

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

.

The Fourier transform of F j
n(t) is given by

F̂ j
n(ω) =

∑

pq

1

i(ωj − ω)
e−i(ω−(n+q)ωs)pT−3iωjT/4Jq

(

1
4 (ω − ωj)MT

)

[

1− eiqφ

]

×
[

(−i)qei(ωj/2+qωs−5ω/4)T − iqe−3iωT/4

]

.

We now use the Poisson re-summation formula to give

F̂ j
n(ω) =

∑

pq

∫ ∞

−∞

e−3iωjT/4

i(ωj − ω)T
Jq

(

1
4 (ω − ωj)MT

)

[

1− eiqφ

]

×
[

(−i)qei(ωj/2+qωs−5ω/4)T − iqe−3iωT/4

]

eiΩp,n+qte−iωt dt.

Thus, we identify a Fourier series for Ij
1(t), given by

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)
Ij
1(t) =

∑

mn

Imne
iΩmnt,

where

Imn =

N
∑

j=1

2

(Z(ωj) + ωjZ ′(ωj))T

∑

q

(1− ei(n−q)φ)(1− eiqφ)((−i)n−qeiωjT/2 − in−q)

(iΩmn − iωj)(1− ei(ωj−(n−q)ωs)T )

×Jn−q

(

1
4ωjMT

)

Jq

(

1
4 (Ωmn − ωj)MT

)

×((−i)qei(ωj/2+qωs−5Ωmn/4)T − iqe−3iΩmnT/4). (3.6)
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We now determine a Fourier series for Ij
2(t).

Taking a Fourier transform of Ij
2(t) determines

Îj
2(ω) =

∑

m

1

iωj − iω
e−iωmT

[

e−iωT/4e−iωjMTδmin(mT )/4

(

e(iωj−iω)MTδmax(mT )/4

−e(iωj−iω)MTδmin(mT )/4

)

+ e−3iωT/4eiωjMTδmin(mT )/4

×
(

e−(iωj−iω)MTδmin(mT )/4 − e−(iωj−iω)MTδmax(mT )/4

)]

,

where

δmin(t) = min

{

cosωst, cos(ωst+ φ)

}

=

{

cos(ωst+ φ), when − π − φ
2 < ωst < −φ

2

cosωst, when − φ
2 < ωst < π − φ

2 ,

δmax(t) = max

{

cosωst, cos(ωst+ φ)

}

=

{

cosωst, when − π − φ
2 < ωst < −φ

2

cos(ωst+ φ), when − φ
2 < ωst < π − φ

2 .

Therefore we have

Îj
2(ω) =

∑

m

1

iωj − iω
e−iωmT

[

e−iωT/4

(

e−iωjMT (δmin(mT )−δmax(mT ))/4e−iωMTδmax(mT )/4

−e−iωMTδmin(mT )/4

)

+ e−3iωT/4

(

eiωδmin(mT )/4

−eiωjMT (δmin(mT )−δmax(mT ))/4eiωMTδmax(mT )/4

)]

,

=
∑

mn

einωsmT

iωj − iω
e−iωmT

[

e−3iωT/4C+
n

(

1
4ωMT

)

− e−iωT/4C+
n

(

− 1
4ωMT

)

+
∑

p

eipωsmT

(

e−iωT/4C−
n

(

− 1
4ωMT

)

Dp

(

− 1
2 iωj sin φ

2MT
)

−e−3iωT/4C−
n

(

1
4ωMT

)

Dp

(

1
2 iωj sin φ

2MT
)

)]

,

where the functions C±
n (z) and Dp(z) are the coefficients in the following Fourier series:

eizδmin(t) =
∑

n

C+
n (z)einωst, eizδmax(t) =

∑

n

C−
n (z)einωst,

ez(δmin(t)−δmax(t)) =
∑

p

Dp

(

2i sin φ
2 z
)

eipωst.

It is easily verified that

C±
n (z) =

in

2
Jn(z)(1 + einφ)±

∑

q 6=n

Jq(z)

2πi(n− q)e
iqπ/2(1− eiqφ)(1− (−1)n−q)ei(n−q)φ/2,(3.7)

Dp(z) =











0, p odd,

e−iπp/3Jp(i
√

3z)−
∑

q=±1,±3,±5,...

2

πi(p− q)e
−iπp/3Jq(i

√
3z), p even.

(3.8)
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Poisson re-summing Îj
2(ω) in m allows us to identify

Ij
2(t) =

∑

mn

eiΩmnt

iωj − iω

[

e−3iΩmnT/4C+
n

(

1
4ΩmnMT

)

− e−iΩmnT/4C+
n

(

− 1
4ΩmnMT

)

+
∑

p

(

e−iΩmnT/4C−
n−p

(

− 1
4ΩmnMT

)

Dp

(

− 1
2 iωj sin φ

2MT
)

−e−3iΩmnT/4C−
n−p

(

1
4ΩmnMT

)

Dp

(

1
2 iωj sin φ

2MT
)

)]

.

Therefore,
N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)
Ij
2(t) =

∑

mn

Jmne
iΩmnt,

where

Jmn = −
N
∑

j=1

2

(Z(ωj) + ωjZ ′(ωj))(iΩmn − iωj)T

[

e−3iΩmnT/4C+
n

(

1
4ΩmnMT

)

−e−iΩmnT/4C+
n

(

− 1
4ΩmnMT

)

+
∑

p

(

e−iΩmnT/4C−
n−p

(

− 1
4ΩmnMT

)

(3.9)

×Dp

(

− 1
2 iωj sin φ

2MT
)

− e−3iΩmnT/4C−
n−p

(

1
4ΩmnMT

)

Dp

(

1
2 iωj sin φ

2MT
)

)]

.

Thus the contribution to the input current from the load connected between phase-leg a and

phase-leg d is

Iad(t) =
∑

mn

(Imn + Jmn)eiΩmnt,

where Imn and Jmn are defined in (3.6) and (3.9), respectively. We now use the Fourier co-

efficients and Fourier series for Iad(t) to determine a Fourier series for the input currents of

two-phase and three-phase inverters.

3.2.1 Two-phase inverter

We now determine the upper input current of a two-phase inverter with general output impedance,

using the calculations of the previous section (section 3.2). As illustrated in figure 1.3(b), there

is one load in a two-phase inverter, and it is connected between phase-leg a and phase-leg b. The

output current across the load in a two-phase inverter is, from (2.4),

iab(t) = −gA(t) + gB(t),

where, from (2.5),

gA(t) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

m

[

eiωj(t−Aa
m)ψ(t;Aa

m,∞)− eiωj(t−Ab
m)ψ(t;Ab

m,∞)

]

,

and gB(t) is defined similarly. Note that Aa
m, Ba

m are defined in (2.1), and Ab
m, Bb

m are defined

similarly, with signal wave sb(t) = M cos(ωst− π). Therefore I(t) is

I(t) = iab(t)
∑

p

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

=
∑

mn

Pmne
iΩmnt, (3.10)
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where

Pmn =

{

Imn + Jmn, n even,

0, n odd.

From (3.6),

Imn =

N
∑

j=1

8

(Z(ωj) + ωjZ ′(ωj))T

∑

q=±1,±3,±5,...

((−i)n−qeiωjT/2 − in−q)

(iΩmn − iωj)(1 − ei(ωj−(n−q)ωs)T )

×Jn−q

(

1
4ωjMT

)

Jq

(

1
4 (Ωmn − ωj)MT

)

×((−i)q+mei(ωj/2+qωs−5nωs/4)T − iq+me−3inωsT/4), (3.11)

and, from (3.9),

Jmn = −
N
∑

j=1

2

(Z(ωj) + ωjZ ′(ωj))(iΩmn − iωj)T

[

e−3iΩmnT/4C+
n

(

1
4ΩmnMT

)

−e−iΩmnT/4C+
n

(

− 1
4ΩmnMT

)

+
∑

p

(

e−iΩmnT/4C−
n−p

(

− 1
4ΩmnMT

)

×Dp

(

1
2 iωjMT

)

− e−3iΩmnT/4C−
n−p

(

1
4ΩmnMT

)

Dp

(

− 1
2 iωjMT

)

)]

,(3.12)

where, from (3.7),

C±
n (z) = inJn(z)±

∑

q=±1,±3,±5,...

2

πi(n− q) i
nJq(z), (3.13)

and Dp(z) is given in (3.8). Note that for a two-phase inverter, only multiples of the second

harmonic contribute to I(t). By symmetry, if both voltage outputs are shifted by half of the

phase of signal wave (π/ωs) the input current will be the same, which is why only multiples of

the second harmonic contribute to I(t).

3.2.2 Three-phase inverter

We now calculate the input currents of a three-phase inverter with general output impedance

using the calculations of section 3.2. Specifically we examine the input currents of a three-phase

inverter wired in the ∆ configuration, where a load is connected between each pair of phase-legs.

A three-phase inverter wired in the ∆ configuration is illustrated in figure 2.9.

In order to determine the input current I(t) of a three-phase inverter wired in the ∆ configuration,

we examine the contribution to the input current from each phase-leg. We begin by examining

the contribution of phase-leg a. Figure 3.7 shows the currents flowing out of phase-leg a (iab(t)

and iac(t)) and the input current Ia(t) flowing into phase-leg a. By Kirchhoff’s current law [103],

if phase-leg a is connected to the upper DC source then Ia(t) = iab(t) + iac(t), and if phase-leg

a is connected to the lower DC source then Ia(t) = 0. In other words,

Ia(t) =
∑

p

(

iab(t)− ica(t)

)

ψ(t;Ba
p ,Aa

p+1),

where Ba
p , Aa

p+1 are defined in (2.1). Note that the input current Ib(t) or Ic(t) flowing into
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phase-leg b or c, respectively, is defined similarly to Ia(t). Therefore,

I(t) = Ia(t) + Ib(t) + Ic(t),

=
∑

p

[(

iab(t)− ica(t)

)

ψ(t;Ba
p ,Aa

p+1) +

(

ibc(t)− iab(t)

)

ψ(t;Bb
p,Ab

p+1)

+

(

ica(t)− ibc(t)
)

ψ(t;Bc
p,Ac

p+1)

]

,

where Bb
p, Ab

p+1 and Bc
p, Ac

p+1 are defined similarly to (2.1), with respective signal waves sb(t) =

M cos(ωst − 2π
3 ) and sc(t) = M cos(ωst + 2π

3 ). By grouping together the output currents, we

have an alternative expression for I(t),

I(t) = Iab(t) + Ibc(t) + Ica(t),

where

Iab(t) = iab(t)
∑

p

[

ψ(t;Ba
p ,Aa

p+1)− ψ(t;Bb
p,Ab

p+1)

]

,

and Ibc(t), Ica(t) are defined similarly. The output current iab(t) is, from (2.4),

iab(t) = iaz(t)− ibz(t) = −gA(t) + gB(t),

where, from (2.5),

gA(t) =
N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

m

[

eiωj(t−Aa
m)ψ(t;Aa

m,∞)− eiωj(t−Ab
m)ψ(t;Ab

m,∞)

]

,

and gB(t) is defined similarly. Therefore, because of the symmetry of the signal waves sa(t),

sb(t) and sc(t), and with reference to section 4.2.3 of chapter 3,

I(t) = Iab(t) + Ibc(t) + Ica(t),

=
∑

mn

[

1 + e−2πin/3 + e2πin/3

]

(Imn + Jmn)eiΩmnt,

=
∑

mn

Pmne
iΩmnt, (3.14)

where

Pmn =

{

3(Imn + Jmn), if mod (n, 3) = 0,

0, otherwise.

The Fourier coefficients Imn and Jmn are, from (3.6) and (3.9), respectively,

Imn =

N
∑

j=1

2

(Z(ωj) + ωjZ ′(ωj))T

∑

q

(1 − e−2πi(n−q)/3)(1 − e2πiq/3)

(iΩmn − iωj)(1 − ei(ωj−(n−q)ωs)T )

×Jn−q

(

1
4ωjMT

)

Jq

(

1
4 (Ωmn − ωj)MT

)

[

(−i)q+mei(ωj/2+qωs−5nωs/4)T

−iq+me−3inωsT/4

]

((−i)n−qeiωjT/2 − in−q), (3.15)
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Jmn = −
N
∑

j=1

2

(Z(ωj) + ωjZ ′(ωj))(iΩmn − iωj)T

[

e−3iΩmnT/4C+
n

(

1
4ΩmnMT

)

−e−iΩmnT/4C+
n

(

− 1
4ΩmnMT

)

+
∑

p

(

e−iΩmnT/4C−
n−p

(

− 1
4ΩmnMT

)

(3.16)

×Dp

(√
3

4 iωjMT
)

− e−3iΩmnT/4C−
n−p

(

1
4ΩmnMT

)

Dp

(

−
√

3
4 iωjMT

)

)]

.

where, from (3.7),

C±
n (z) =

in

2
Jn(z)(1+e−2πin/3)±

∑

q 6=n

Jq(z)

2πi(n− q)e
iqπ/2(1−e2πiq/3)(1−(−1)n−q)ei(n−q)π/3, (3.17)

and Dp(z) is given in (3.8). Note that for I(t), only multiples of the third harmonic (multiples

of three of the signal frequency) contribute to the input currents of a three-phase inverter (as

observed in [40], for example). This harmonic cancellation is due to the 1 + e−2πin/3 + e2πin/3

term, which is a consequence of the fact that the input currents are the same if all three voltage

outputs are shifted by a third of the phase of the signal wave (2π/3ωs).

Because we plot the absolute value of the Fourier coefficients, the frequency spectrum of I(t) (the

input current drawn from the upper DC source) is identical to the spectrum of −I(t) (the input

current drawn from the lower DC source). In addition to this, frequency spectra for the input

currents of three-phase inverters wired in the ∆ and Y configurations are identical, with the

appropriate scaling, provided all load impedances are equal. This is because, from appendix C,

the Fourier coefficients for I(t) are three times the magnitude of the Fourier coefficients of IY (t)

(the input current drawn from the upper DC source of a three-phase inverter wired in the Y

configuration).

4 Conclusions

In this chapter we have calculated, using the single-sum method, Fourier series expressions for the

input currents for single-phase, two-phase and three-phase PWM inverters with general output

impedance. There are a wide range of input current calculations for specific loads in [31, 40, 94],

for example, whereas input currents have only been calculated for general output impedance

(in [33]) for a matrix converter. The calculations in this chapter are the first to determine

the input currents of PWM inverters with general output impedance. The calculations here

determine expressions for the input currents that can be specialised for any given load, thus

generalising previous calculations (in [31, 40, 94], for example) for specific loads.

The calculations in this chapter will be of interest to engineers who want to design efficient input

filters for inverters for a range of passive loads. Examples of passive loads not examined in this

thesis (because they are overly simplistic, or not as common) are resistive only loads (see [33], for

example), or series RLC loads (see [105, 107], for example). In practice, however, more work is

necessary to extract input current spectra for specific impedances (to inform filter design) from

expressions for the input currents calculated in this chapter. Specialising the expressions for the

input currents in this chapter to determine spectra for a specific impedance is significantly less
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time consuming than calculating input current spectra for each specific impedance individually,

however. Furthermore, all calculations in this chapter have been for the single-sum method,

which determines Fourier series for the input currents that converge much faster than Fourier

series for the input currents derived using the direct method.

This concludes our analysis of inverters without dead time. We next examine a more compre-

hensive mathematical model for inverters that incorporate dead time. Analytical calculation of

voltage and current spectra for inverters with dead time is limited, because the mathematical

models required to determine voltage and current spectra are more complex.
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5

Voltage Spectra for PWM Inverters With

Dead Time

1 Introduction

In this chapter we determine frequency spectra for the output voltages of more realistic inverter

models; inverters that incorporate dead time. In practice, the operation of the switches in

inverters with dead time is delayed in order to prevent a short circuit. The effects of dead

time on the voltage output were first examined in [45], and the dead time delays, although

slight, generate distortion in the frequency spectrum of the voltage output, as documented

in [25, 27, 29, 34, 64, 78, 93, 111], for example.

Various methods of compensating for the dead time effects on the voltage output are discussed

in [25, 29, 64, 93], for example. It is observed in [29] that it is not necessary to insert dead time

for every switching moment. In order to avoid unnecessary dead time, control algorithms are

examined that decide when to insert dead time in [25, 29, 93]. The control algorithms minimise

the dead time effects. In [64] a circuit with an output current feedback loop is discussed, and

shown to reduce the dead time effects. Output filters also reduce the dead time effects.

Knowledge of the frequency spectra of the voltage outputs allow us to identify the harmonic

components caused by dead time that require filtering. The mathematical models required

to determine spectra for inverters with dead time are more sophisticated than those we have

determined in previous chapters of this thesis. Most previous calculations of the output voltages

of inverters with dead time determine spectra for naturally sampled inverters only.

In [111], spectra are determined using Black’s method for a naturally sampled two-phase inverter

with dead time. In order to allow for calculation of spectra, an approximation is made to

one of the integration bounds of the double integral necessitated by Black’s method. This

approximation accounts for the difference in the analytical and simulated results they provide.

In [27], a Fourier series for the voltage output of a single-phase inverter is calculated, but
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+1

−1

i(t) S

S

+

−

output

Figure 5.1: A circuit diagram of a single phase-leg of an inverter. The semiconductor switches

are indicated by S+ and S−, and the output current, i(t), is also shown (here i(t) > 0, and flows

out of the phase-leg into the output terminal).

contains terms that involve the switching times (and therefore give no immediate insight to the

frequency spectrum). Spectra are provided for natural sampling, however, and this is achieved

by approximating the switching times by a Taylor series (similar to the method used in [99]).

Voltage outputs calculated with approximations are accurate only in certain, limiting cases.

In this chapter, we calculate, for the first time, frequency spectra for the voltage outputs of

two-phase and three-phase inverters with dead time. These calculations extend calculations

in [34], where the voltage output of a single-phase inverter with dead time is determined using

the single-sum method. We review the calculations of [34] here, as they form the basis of our

calculations of the voltage outputs of two-phase and three-phase inverters.

1.1 Dead Time

In order to explain dead time in more detail, it is useful to examine a single phase-leg of a PWM

inverter (illustrated in figure 5.1). More specifically, we examine the operation of each switch

in the phase-leg. The switches in the phase-leg comprise a transistor and a diode connected in

parallel. Ideally, the transistors of S+ or S− operate in a complementary fashion. In practice, the

transistors of S+ and S− do not switch simultaneously. This is because transistors do not switch

instantaneously, but have a transition stage [61]. When the transistors switch simultaneously,

there is a potential for short-circuiting of the input power supply during the switching between

±1. To avoid a short circuit, switch times of the transistors of S+ and S− are altered so that

both transistors are briefly open at the same time during switching transitions. The period of

time during which both transistors are open is known as dead time.

There are two methods used to alter the switch times of the transistors to insert dead time

(see [111], for example). To distinguish between the two methods, we introduce some new

terminology: delay-only switching, and delay-advance switching. In comparison to inverters

without dead time, for delay-only switching, the times when transistors close are delayed, and

the opening times of the transistors are the same. For delay-advance switching, the closing times

of the transistors are delayed, and the opening times of the transistors are advanced (compared

to inverters without dead time).
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A
m

a
A

m

a
B m

a
B m

a

DD D D

time

Delay−only

switching

Delay−advance

switching

Figure 5.2: Illustration of when, across a single switching period, dead time of length D (illus-

trated by the shaded grey areas) will affect the voltage output of a phase-leg when altering the

switch times of the transistors according to delay-only switching and delay-advance switching.

We also indicate, for reference, the switch times Aa
m and Ba

m of the voltage output of an inverter

that does not incorporate dead time.

We now discuss the voltage output during dead time. We illustrate, in figure 5.2, when insertion

of dead time into the switching transitions of a phase-leg affects the voltage output of the phase-

leg. We want to ensure that the voltage output during dead time is well defined (either ±1), as

an undefined output voltage is an example of an open circuit fault [35].

Because diodes allow current to pass in only one direction, the voltage output during dead time

depends upon the direction of current flow during the dead time. Examining figure 5.1, when

the output current is positive, it passes out of the phase-leg into the output terminal. When this

is the case, during dead time, current flow from the upper DC source is blocked by the diode of

S+ and current flow from the lower DC source passes through the diode of S−. Therefore, when

the output current is positive, the output voltage during dead time is −1. Similarly, when the

output current is negative, it passes from the output terminal into the phase-leg, and, during

dead time, current flow to the upper DC source passes through the diode of S+ and current flow

to the lower DC source is blocked by the diode of S−. Therefore, the voltage output during dead

time is +1 when the output current is negative.

We note at this point that because the high-frequency nature of the switching in an inverter leads

to high-frequency oscillations in the output voltages, this can, in turn, lead to high-frequency

oscillations in the output currents [63]. If the magnitude of these oscillations is large, the output

current can switch between positive and negative values at a high frequency. Determining the

output voltage during dead time is analytically difficult if the associated output current is rapidly

switching sign.

By Faraday’s law of electromagnetic induction [53], the rate of change of the current flowing

through an inductor is proportional to the voltage across the inductor, divided by the inductance.

Thus, as the inductance increases, the current response to a voltage decreases, and is less likely to

oscillate at a high frequency. In fact, inverters with highly inductive loads are preferable, as they

reduce high-frequency currents, which can cause problems such as electromagnetic interference

(see [59, 67], for example). Therefore, to simplify our analysis, we examine inverters with highly
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inductive loads. Note that we discuss what it means for a load to be highly inductive in section 2.1

of chapter 6.

1.2 Structure of the Chapter

In section 2 we calculate a Fourier series for the voltage output of a single-phase inverter that

incorporates dead time. Section 3 details the calculation of the voltage outputs of a two-phase

inverter that incorporates dead time. In section 4 we determine the voltage outputs of a three-

phase inverter. We summarise our conclusions in section 5.

2 Single-phase Inverter

Before calculating the voltage output of a single-phase inverter that incorporates dead time,

we recall the output voltage of a single-phase inverter without dead time. An inverter without

dead time is assumed to have instantaneous and simultaneous switching. In other words, with

reference to figure 5.3, at t = Aa
m, S+ opens, S− closes and the voltage output, va(t), switches

from +1 to −1. Similarly, at t = Ba
m, S+ closes, S− opens and va(t) switches from −1 to +1.

The switch times Aa
m and Ba

m are given by

Aa
m = mT +

T

4
(1 + sa(mT )), and Ba

m = mT +
T

4
(3− sa(mT )), (2.1)

where the signal wave sa(t) = M cosωst (with amplitude M and frequency ωs), m is any in-

teger and T = 2π/ωc is the switching period, with frequency ωc ≫ ωs. We describe va(t)

mathematically as

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m),

where ψ(t; t1, t2) = 1 when t1 < t2 and is zero otherwise. From this expression and (2.1), the

Poisson re-summation method determines, from chapter 2,

va(t) =
∑

mn

amne
iΩmnt,

where Ωmn = mωc + nωs and

amn =







0, if Ωmn = 0,

2
iΩmnT Jn

(

1
4ΩmnMT

)

[

ine−3iΩmnT/4 − (−i)ne−iΩmnT/4

]

, otherwise,
(2.2)

are the Fourier coefficients.

In order to determine the voltage output of a single-phase inverter that incorporates dead time,

we first determine the switch times of the voltage output in section 2.1. Using these switch times,

we then determine the voltage output in section 2.2. In section 2.3, we analyse the frequency

spectrum of the voltage output of a single-phase inverter that incorporates dead time.
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i   (t)ad

Figure 5.3: Circuit diagram of a single-phase inverter, where a load is connected between phase-

leg a and the neutral point d.

2.1 Inverter Switching With Dead Time

To determine the switch times of the voltage output va(t) of a single-phase inverter that in-

corporates dead time, we first make some definitions. The switch times of va(t) are indicated

by

A′
m, and B′

m,

where m ∈ Z. We recall that at t = A′
m, va(t) switches from +1 to −1, and at t = B′

m, va(t)

switches from −1 to +1. We assume that A′
m < B′

m and B′
m < A′

m+1. We also indicate the

length of the dead time by a constant D ∈ R.

During dead time, va(t) = +1 or −1, if iad(t) < 0 or> 0, respectively (see section 1.1). Therefore,

the switch times A′
m and B′

m depend on the polarity of iad(t). We now examine the polarity of

iad(t) in more detail.

2.1.1 Polarity of iad(t)

Because we examine inverters with highly inductive loads, it is reasonable to assume that iad(t) ≈
ilad(t), where ilad(t) = Z−1vl

ad(t), where Z is a differential operator determined by the load and

vl
ad(t) is the leading low-frequency contribution to the voltage across the load, given by

vl
ad(t) = vl

a(t) = a01e
iωst + a0,−1e

−iωst, (2.3)

where a01 and a0,−1 are given in (2.2). Note that we refer to ilad(t) as the idealised output

current. By taking Taylor series expansions of a01 and a0,−1 it is easily verified that

a01 = a0,−1 =
M

2
.

Therefore vl
ad(t) ≈ sa(t).

In this thesis, we assume that the load is composed of passive electrical components. Con-

sequently, ilad(t) will have different phase and amplitude to vl
ad(t), but the frequency, ωs, will

remain the same. Therefore, because vl
ad(t) ≈ sa(t), it is easily verified that ilad(t) ≈ sa(t−θ/ωs),

where θ is the phase-shift between vl
ad(t) and ilad(t). In order to define the switch times A′

m and
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Figure 5.4: Diagram to show how, across a single switching period, delay-only switching affects

the voltage output when ilad(t) > 0 and ilad(t) < 0. Dead time of length D, inserted by delay-only

switching, is illustrated by shaded areas. The voltage output va(t) switches from +1 to −1 at

t = A′
m, where A′

m = Aa
m if ilad(t) > 0 or A′

m = Aa
m +D if ilad(t) < 0. Similarly, va(t) switches

from −1 to +1 at t = B′
m, where B′

m = Ba
m +D if ilad(t) > 0 or t = B′

m = Ba
m if ilad(t) < 0.

B′
m, we introduce a function that indicates the polarity of ilad(t), given by

Ψ(t) =

{

+1, θ < ωst < θ + π,

−1, θ + π < ωst < θ + 2π.
(2.4)

We now determine the switch times A′
m and B′

m explicitly.

2.1.2 Switch Times of an Inverter With Dead Time

In view of section 1.1, and figure 5.4, when inserting dead time to the switching transitions of a

single-phase inverter according to delay-only switching, the switch times of va(t) are given by

A′
m =

{

Aa
m, if ilad(t) > 0,

Aa
m +D, if ilad(t) < 0,

and B′
m =

{

Ba
m +D, if ilad(t) > 0,

Ba
m, if ilad(t) < 0,

(2.5)

where Aa
m and Ba

m are given in (2.1). Similarly, with reference to figure 5.5, using delay-advance

switching, the switch times of va(t) are given by

A′
m =

{

Aa
m − D

2 , if ilad(t) > 0,

Aa
m + D

2 , if ilad(t) < 0,
and B′

m =

{

Ba
m + D

2 , if ilad(t) > 0,

Ba
m − D

2 , if ilad(t) < 0.
(2.6)

Therefore, from (2.4), (2.5) and (2.6),

A′
m = Aa

m +
D

2
(δ −Ψ(mT )), (2.7)

B′
m = Ba

m +
D

2
(δ + Ψ(mT )), (2.8)

where

δ =

{

1, for delay-only switching,

0, for delay-advance switching.
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Figure 5.5: Diagram to show how, across a single switching period, delay-advance switching

affects the voltage output when ilad(t) > 0 and ilad(t) < 0. Dead time of length D, inserted by

delay-only switching, is illustrated by shaded areas. The voltage output va(t) switches from +1

to −1 at t = A′
m, where A′

m = Aa
m − D/2 if ilad(t) > 0 or A′

m = Aa
m + D/2 if ilad(t) < 0.

Similarly, va(t) switches from −1 to +1 at t = B′
m, where B′

m = Ba
m + D/2 if ilad(t) > 0 or

t = B′
m = Ba

m −D/2 if ilad(t) < 0.

Note that, from (2.1), (2.7) and (2.8), the assumption that A′
m < B′

m and B′
m < A′

m+1 means

that D < T (1 −M)/2 in our analysis. In practice, D is usually a few percent of the switching

period T (see [25, 27, 29, 34, 64, 78, 93, 111], for example). In chapter 2 we noted that |M | < 1,

but in this chapter, to allow for D to be a few percent of the switching period, we must have

|M | ≤ 0.98.

2.2 Output Voltage of an Inverter Incorporating Dead Time

We now calculate the voltage output of a single-phase inverter using the Poisson re-summation

method following the approach of [34]. The voltage output va(t) of a single phase-leg of a PWM

inverter incorporating dead time is

va(t) = 1− 2
∑

m

ψ(t;A′
m,B′

m) ≡ 1− 2f(t), (2.9)

where the switch times A′
m and B′

m are given in (2.7) and (2.8). For slight notational brevity

we determine the frequency spectrum of f(t), rather than va(t). Taking a Fourier transform of

f(t), when ω 6= 0, gives

f̂(ω) =
∑

m

1

iω
(e−iωA′

m − e−iωB′

m).

In view of (2.1), (2.7), (2.8) and sa(t) = M cosωst, when ω 6= 0,

f̂(ω) =
∑

m

1

iω
e−iωmT e−iωDδ/2

(

e−iωT/4e−iω(MT cos ωsmT−2DΨ(mT ))/4

−e−3iωT/4eiω(MT cos ωsmT−2DΨ(mT ))/4

)

.

We now examine the Fourier series of some exponential terms in f̂(ω).
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2.2.1 Fourier Series for eiω(MT cos ωst−2DΨ(t))/4

Both cosωst and Ψ(t) have a period 2π/ωs. Therefore

eiω(MT cos ωst−2DΨ(t))/4 =
∑

n

Sn(ω,D)einωst,

where

Sn(ω,D) =
ωs

2π

∫ (2π+θ)/ωs

θ/ωs

eiω(MT cos ωst−2DΨ(t))/4e−inωst dt,

=
ωs

2π

[
∫ (π+θ)/ωs

θ/ωs

e−inωsteiωMT cos ωst/4e−iωD/2 dt

+

∫ (2π+θ)/ωs

(π+θ)/ωs

e−inωsteiωMT cos ωst/4eiωD/2 dt

]

.

Using the Jacobi-Anger expansion [109] we have

Sn(ω,D) =
ωs

2π

∑

q

iqJq

(

1
4ωMT

)

[

e−iωD/2

∫ (π+θ)/ωs

θ/ωs

e−i(n−q)ωst dt

+eiωD/2

∫ (2π+θ)/ωs

(π+θ)/ωs

e−i(n−q)ωst dt

]

,

=
in

2
Jn

(

1
4ωMT

)

(e−iωD/2 + eiωD/2)

+(e−iωD/2 − eiωD/2)
∑

q 6=n

e−i(n−q)θ

2πi(n− q) (1 − e−i(n−q)π)Jq

(

1
4ωMT

)

iq,

≡ inJn

(

1
4ωMT

)

cos
(

1
2ωD

)

− sin
(

1
2ωD

)

Rn(ω), (2.10)

where

Rn(ω) =
∑

q 6=n

iq

π(n− q)e
−i(n−q)θ(1− (−1)n−q)Jq

(

1
4ωMT

)

. (2.11)

We note that Rn(ω) is independent of D. Furthermore, from (2.10), Sn(ω, 0) = inJn(1
4ωMT ),

and is independent of Rn(ω). We now return to our Fourier transform f̂(ω).

2.2.2 Fourier Transform

In view of section 2.2.1, when ω 6= 0,

f̂(ω) =
∑

mn

1

iω
e−iωmT e−iωDδ/2Sn(ω,D)

[

e−iωT/4(−1)n − e−3iωT/4

]

einωsmT ,

where Sn(ω,D) is defined in (2.10). Poisson re-summing f̂(ω) in m, gives, when ω 6= 0,

f̂(ω) =
∑

mn

∫ ∞

−∞

1

iωT
e−iωDδ/2Sn(ω,D)

[

e−iωT/4(−1)n − e−3iωT/4

]

eiΩmnte−iωt dt.

Therefore,

f(t) =
∑

mn

1

iΩmnT
e−iΩmnDδ/2Sn(Ωmn, D)

[

e−iΩmnT/4(−1)n − e−3iΩmnT/4

]

eiΩmnt,
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Figure 5.6: Schematic plot, for fixed m, of the envelope of a′mn. There are three regimes in n:

for small n, large n, and a transition regime between large and small n. The parabola of the

small n regime and the slope of the large n regime are indicated by solid lines, with the slope of

the transition regime indicated by dot-dash lines. As D → 0 the position of the transition slope

is lowered, and the intersections with the small and large n regimes form, respectively, the start

and end of the transition regime (indicated by dotted lines). Note that the length of the transition

regime increases as D → 0.

where we the terms in the sum that correspond to Ωmn = 0 are omitted. The contribution to

the frequency spectrum of va(t) when Ωmn = 0 is the mean value of va(t), which is zero (see

appendix A.2). Therefore, the voltage output va(t) is

va(t) =
∑

mn

a′mne
iΩmnt,

where

a′mn =







0, if Ωmn = 0,

2

iΩmnT
e−iΩmnDδ/2Sn(Ωmn, D)

[

e−3iΩmnT/4 − e−iΩmnT/4(−1)n

]

if Ωmn 6= 0.

(2.12)

This reproduces the Fourier series for va(t) determined in [34]. It is easily verified, from (2.10)

and (2.12), that if D = 0, a′mn = amn. The Fourier coefficients amn (given in (2.2)) of va(t)

decay rapidly with respect to n, for fixed m (see [49], for example). Specifically, for fixed m, the

decay of amn, with respect to n, is, from Debye’s asymptotic expansion of Bessel functions of

the first kind [2], proportional to

amn ∼
en(tanh α−α)

Ωmn

√
2πn tanhα

,

where sechα = 1
4ωsMT . Similarly, from [49], amn decays rapidly in m, for fixed n.

We now examine a′mn when D 6= 0. Because the Fourier coefficients a′mn contain oscillatory

terms, for D 6= 0, to examine the decay rate of a′mn in n, for fixed m, we examine the envelope of

a′mn in n. The envelope of a′mn decays according to three regimes in n, as illustrated in figure 5.6.

The three regimes occur for small n, large n and a transition regime between the two. The small
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n regime is independent of D, and in this regime a′mn ≈ amn. The large n regime only occurs for

D 6= 0, and in this regime the rate of decay and the envelope of a′mn are independent of D. In the

large n regime, from (2.10) and (2.12), a′mn ≈ Ω−1
mnRn(Ωmn), where Rn(Ωmn) is given in (2.11).

In the transition regime, from (2.10) and (2.12), a′mn ≈ DRn(Ωmn). Therefore, as D → 0, the

amplitude of the envelope of a′mn in the transition regime decreases linearly. Additionally, the

n’s for which the transition regime begins and ends increase as D → 0.

2.3 Analysis of the Frequency Spectrum of va(t)

The Fourier coefficients a′mn decay slowly with respect to n (for fixed m) compared to the

coefficients amn, when D 6= 0. This means, provided ωc/ωs ∈ Q, that each carrier group

contributes to each peak in the spectrum of va(t) (for an inverter with dead time). Note that if

ωc/ωs is irrational, each Fourier coefficient has a unique contribution to the frequency spectrum.

In this thesis, we plot contributions to the spectrum with magnitude 10−5 and greater. Therefore,

for numerical purposes, we plot the amplitude,

∣

∣

∣

∣

N
∑

k=−N

a′m+k,n−ωck/ωs

∣

∣

∣

∣

, (2.13)

against the harmonic order, Ωmn/ωs, in the frequency spectra in this chapter. We truncate the

sum at N , where, for all m and n, |a′m±N,n∓ωcN/ωs
| ≥ 10−5 and |a′m±(N+1),n∓ωc(N+1)/ωs

| < 10−5

(as discussed in section 3.2.3 of chapter 3).

Previously, for a single-phase inverter without dead time, the decay of the coefficients amn

means that we truncate the sum of (2.13) at N = 0. Therefore, each peak in the spectrum

has a contribution from one carrier group, and we identify low-frequency components as those

corresponding to the m = 0 carrier group, and high-frequency components as the m 6= 0 carrier

groups.

When N 6= 0 we no longer have these definitions for high and low frequency components because

every peak in the frequency spectrum has a contribution from several carrier groups, and it

is not obvious where the low-frequency components end, and the high-frequency components

begin. Instead we identify low-frequency components of the spectrum as those corresponding

to harmonic orders less than ωc/2ωs. Similarly, the high-frequency components correspond to

harmonic orders greater than ωc/2ωs. This is the convention used in [69].

We now determine, by examination of a′mn (given in (2.12)), where to truncate the sum in (2.13)

to plot spectra for va(t) of inverters that incorporate dead time that are accurate up to O(10−5).

When D = 0, a′mn = amn, and, in this case, N = 0, and the spectra are identical to the spectra

for va(t) of inverters without dead time (illustrated in figure 2.5).

In keeping with previous chapters in this thesis and [49], we now plot spectra for va(t) when

ωc = 21ωs. We also set D = T/100. From empirical evidence, when ωc = 21ωs and D = T/100,

|a′mn| < 10−5 for |n| > 1000. Therefore, to plot accurate spectra, we truncate the sum of (2.13)

at N = 48. When N = 48, each peak in the spectrum takes 2.87s to compute using matlab.

Note that spectra for va(t) when δ = 0 are indistinguishable from spectra for va(t) when δ = 1.
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(a) D = T/100.

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

Harmonic order

A
m

pl
itu

de

(b) D = T/1000.
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(c) Without dead time.

Figure 5.7: Frequency spectra for the voltage output, va(t), of a single-phase inverter, where

M = 0.9, ωc = 21ωs, δ = 1 and θ = π/3.

Therefore, in this chapter, we produce spectra for δ = 1 only.

Figure 5.7(a) illustrates the spectrum of va(t) when ωc = 21ωs and D = T/100. The spectra

plotted here agree with those in [34]. Carrier groups with oddm have one dominant central peak,

and carrier groups with even m have two dominant central peaks. The leading low-frequency

contribution to the spectrum of va(t) occurs at ωs, and the leading high-frequency contribution

occurs at ωc. In other words, the dominant contributions to the spectrum of the voltage output

of an inverter with dead time are the same as the dominant contributions for an inverter without

dead time. This means that the dominant characteristics of the voltage output of a single-phase

inverter with dead time are the same as the dominant characteristics of a single-phase inverter

without dead time.

Dead time lasts, in this example, a few percent of the switching period, and, compared to

inverters without dead time, there are more visible contributions to the spectrum of va(t).

This is expected from previous analysis of dead time [25, 27, 29, 64, 78, 93, 111]. Any visible

contribution to the spectrum of va(t) that is present for inverters with dead time, but not present

for inverters without dead time is referred to as dead time distortion. The dead time distortion
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(a) ωc = 21ωs.

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

n

lo
g 10

|d
m

n/D
|

 

 

D=T/100
D=T/500
D=T/1000

(b) ωc = 101ωs.

Figure 5.8: Illustration to show the linearity of the dead time distortion of va(t) with respect to

D. The vertical axis is the absolute value of the Fourier coefficients of the dead time distortion

scaled by D. Here we show a section of the m = 0 carrier group for a range of values of D,

where M = 0.9, δ = 1 and θ = π/3.

is evidenced by comparison of the spectrum of va(t) with dead time (shown in figure 5.7(a)) with

the spectrum of va(t) without dead time (shown in figure 5.7(c)). We describe the dead time

distortion mathematically as

d(t) =
∑

mn

dmne
iΩmnt,

where dmn = amn − a′mn. The Fourier coefficients amn and a′mn are given in (2.2) and (2.12),

respectively.

We now examine the effects of varying D on the spectrum of va(t). When ωc = 21ωs and

D = T/1000, |a′mn| < 10−5 for n > 100 (from empirical evidence). Therefore, we truncate the

sums of (2.13) at N = 5 to plot an accurate spectrum. Each contribution to the spectrum of

va(t) takes 0.35s to compute in matlab. We illustrate the spectrum of va(t) when ωc = 21ωs and

D = T/1000 in figure 5.7(b). This spectrum is accurate up to O(10−5). Note that the frequencies

that have a dominant contribution to the spectrum are not affected by D. The amplitude of the

dead time distortion is reduced as D → 0, however, from comparison of figures 5.7(a) and 5.7(b).

We now examine the relationship between the amplitude of the dead time distortion and D.

As illustrated in figure 5.8(a), the magnitude of the Fourier coefficients, dmn, of the dead time

distortion is linear with respect to the length of the dead time D. In other words, dmn = O(D)

as D → 0. Consequently, as D → 0, the distortion in the output voltage generated by insertion

of dead time is reduced. From comparison of figures 5.8(a) and 5.8(b), the amplitude of dmn is

affected by the ratio ωc/ωs, but the ratio ωc/ωs does not affect the property dmn = O(D) as

D → 0.

Finally, we note that, as ωc/ωs increases, the numerical cost of plotting spectra decreases. For

example, when D = T/1000 and ωc = 101ωs, a
′
mn ≤ 10−5 for |n| > 200. Therefore, for each

peak in the spectrum, we only need to sum the contribution from the nearest 5 carrier groups
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Figure 5.9: Circuit diagram of a two-phase inverter, where a load is connected between phase-leg

a and phase-leg b. The current through the load, iab(t), is also illustrated here.

(we require a sum over the nearest 11 carrier groups when ωc = 21ωs and D = T/1000).

3 Two-phase Inverter

In this section we determine frequency spectra for the output voltages of a two-phase inverter

with dead time. This extends analysis in [34], where the voltage outputs of a single-phase inverter

with dead time were determined. There are two phase-legs in a two-phase inverter (illustrated in

figure 5.9), and each phase-leg, a and b, generates a voltage output, va(t) and vb(t), respectively.

Additionally, a single output current, iab(t), is generated through the load.

The switch times of va(t) are A′
m and B′

m. Similarly, the switch times of vb(t) are A′′
m and

B′′
m. In order to determine explicit definitions for A′

m, B′
m, A′′

m and B′′
m we examine the voltage

outputs during dead time. For both phase-legs, the output voltage during dead time depends

on the polarity of iab(t). Therefore, in order to calculate voltage spectra for va(t) and vb(t), we

determine the polarity of iab(t).

We assume that iab(t) ≈ ilab(t), where

ilab(t) = Z−1vl
ab(t) = Z−1(vl

a(t)− vl
b(t)).

From (2.3), vl
a(t) ≈ sa(t). Because the signal wave sb(t) is π radians out of phase with sa(t), it

is easily verified, from (2.3), that vl
b(t) ≈ −sa(t). Therefore, vl

ab(t) ≈ 2sa(t), and consequently

ilab(t) ≈ 2sa(t− θ/ωs).

Because the polarity of the ilab(t) is the same as the polarity of ilad(t) for a single-phase inverter,

from section 2.1, the switch times, A′
m and B′

m, of va(t) are given in (2.7) and (2.8), respectively.

Similarly, the switch times of vb(t) are given by

A′′
m = Ab

m +
D

2
(δ + Ψ(mT )),

B′′
m = Bb

m +
D

2
(δ −Ψ(mT )),

where Ab
m and Bb

m are defined similarly to (2.1), with signal wave sb(t) = M cos(ωst−π). Thus,
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(a) ωc = 21ωs.
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(b) ωc = 20ωs.

Figure 5.10: Frequency spectrum of the voltage difference across the load in a two-phase inverter

with dead time, where M = 0.9, D = T/100, θ = π
3 and δ = 1.

from section 2.2, va(t) and vb(t) of a two-phase inverter are

va(t) =
∑

mn

a′mne
iΩmnt, and vb(t) =

∑

mn

a′mn(−1)neiΩmnt,

where a′mn is given in (2.12). In addition to va(t) and vb(t), the spectrum for the load voltage

(the voltage difference across the load) vab(t) is also used for filter design. Noting that vab(t) =

va(t)− vb(t), we have

vab(t) =
∑

mn

a′mn(1− (−1)n)eiΩmnt ≡
∑

mn

vmne
iΩmnt.

Note that vmn is non-zero when n is odd.

3.1 Analysis of Frequency Spectra for a Two-phase Inverter

The frequency spectra of va(t) and vb(t) are identical, and are plotted in figure 5.7(a) (for

ωc = 21ωs and D = T/100). The frequency spectrum of vab(t) is shown in figure 5.10, where

we have plotted two spectra: one for ωc = 21ωs, and one for ωc = 20ωs. When ωc = 21ωs

and ωc = 20ωs, |vmn| < 10−5 for n > 1000. Therefore, in each of the spectra illustrated in

figure 5.10, from (2.13), the amplitude,

∣

∣

∣

∣

50
∑

k=−50

vm+k,n−ωck/ωs

∣

∣

∣

∣

, (3.1)

is plotted against against the harmonic order Ωmn/ωs, which ensures the spectra are accurate

up to O(10−5).

In figure 5.10, the leading low-frequency contribution to the spectrum is at ωs, and the leading

high-frequency contributions to the spectrum are at 2ωc ± ωs. From comparison of figures 5.10

and 2.10, considerable low-frequency and high-frequency distortion is generated in the spectrum

of the load voltage of a two-phase inverter that incorporates dead time compared to a two-phase
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Figure 5.11: Diagram of a three-phase inverter, where the loads are connected in the part of the

circuit labelled ‘terminal’. The terminal can be wired in two ways: the ∆ configuration and the

Y configuration, shown in figure 1.4.

inverter without dead time. The magnitude of the dead time distortion increases linearly as the

length of the dead time, D, increases.

We also note that, from figure 5.10(b), when ωc is an even multiple of ωs, there is contribution

to the spectrum only when the harmonic order is odd. This is because, when ωc is an even

multiple of ωs, from (3.1), contribution to the spectrum at odd frequencies comprise vmn in odd

n, and contribution to the spectrum at even frequencies comprises vmn in even n. Therefore, in

figure 5.10(b) (where ωc is an even multiple of ωs), contribution to the spectrum is non-zero for

odd frequencies only. Therefore, vab(t) has maximum harmonic cancellation when ωc is an even

multiple of ωs.

4 Three-phase Inverter

We now calculate spectra for the output voltages and load voltages of a three-phase inverter

with dead time for the first time. A three-phase inverter is illustrated in figure 5.11, where the

switches comprise a transistor and a diode connected in parallel.

A three-phase inverter generates three voltage outputs: va(t), vb(t) and vc(t). The voltage output

va(t) switches from +1 to −1 at t = A′
m, and switches from −1 to +1 at t = B′

m. Similarly, the

switch times of vb(t) are A′′
m and B′′

m, and the switch times of vc(t) are A′′′
m and B′′′

m. In order

to determine the switch times of va(t), vb(t) and vc(t), we examine what happens to each of the

voltage outputs during dead time.

For a three-phase inverter wired in the ∆ configuration, the output voltage, va(t), during dead

time, from Kirchhoff’s current law, depends on the polarity of ilab(t)+i
l
ac(t). It is straightforward

to see that

iab(t) + iac(t) = iad(t)− ibd(t) + iad(t)− icd(t),

= 2iad(t)− ibd(t)− icd(t).

When the loads are equal, as assumed here, the sum of the currents iad(t), ibd(t) and icd(t) is

zero, therefore

iab(t) + iac(t) = 3iad(t).
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Consequently, from section 2.1.1,

ilab(t) + ilac(t) = 3ilad(t) ≈ 3sa(t− θ/ωs).

Therefore, the polarity of ilab(t) + ilac(t) is the same as the polarity of iad(t) in a single-phase

inverter. Thus, from section 2.1, the switch times, A′
m and B′

m of va(t), are given in (2.7)

and (2.8), respectively. Through similar reasoning, the switch times of vb(t) are given by

A′
m = Ab

m +
D

2
(δ −Ψ(mT − 2π/3ωs)),

B′
m = Bb

m +
D

2
(δ + Ψ(mT − 2π/3ωs)),

where Ab
m and Bb

m are defined similarly to (2.1), with signal wave sb(t) = M cos(ωst − 2π/3).

Similarly, the switch times of vc(t) are given by

A′
m = Ac

m +
D

2
(δ −Ψ(mT + 2π/3ωs)),

B′
m = Bc

m +
D

2
(δ + Ψ(mT + 2π/3ωs)),

where Ac
m and Bc

m are defined similarly to (2.1), with signal wave sc(t) = M cos(ωst+ 2π/3).

The dead time effects on va(t) in a three-phase inverter wired in the Y configuration depend on

the polarity of ilap(t), which, from appendix C,

ilap(t) = 3ilad(t) ≈ 3sa(t− θ/ωs).

Similarly,

ilbp(t) ≈ 3sa(t− θ/ωs − 2π/3ωs), and ilcp(t) ≈ 3sa(t− θ/ωs + 2π/3ωs).

Therefore, the voltage outputs of a three-phase inverter wired in the Y configuration are identical

to the voltage outputs of a three-phase inverter wired in the ∆ configuration, provided all the

loads are equal.

Therefore, from section 2.2, it is easily verified that the three voltage outputs of a three-phase

inverter wired in either the ∆ or the Y configuration are given by

va(t) =
∑

mn

a′mne
iΩmnt, (4.1)

vb(t) =
∑

mn

a′mne
−2πin/3eiΩmnt, (4.2)

vc(t) =
∑

mn

a′mne
2πin/3eiΩmnt, (4.3)

where a′mn is defined in (2.12). We also determine the load voltages in a three-phase inverter

wired in the ∆ configuration to be

vab(t) =
∑

mn

vmne
iΩmnt,

vbc(t) =
∑

mn

vmne
−2πin/3eiΩmnt,

vca(t) =
∑

mn

vmne
2πin/3eiΩmnt.
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where vmn = a′mn(1− e−2πin/3). Similarly, from appendix C, the load voltages of a three-phase

inverter wired in the Y configuration are given by

vap(t) =
∑

mn

vY
mne

iΩmnt, vbp(t) =
∑

mn

vY
mne

−2πin/3eiΩmnt, vcp(t) =
∑

mn

vY
mne

2πin/3eiΩmnt,

where vY
mn = a′mn(2 − e−2πin/3 − e2πin/3)/3. Note that both vmn = 0 and vY

mn = 0 when n is a

multiple of 3, a consequence of the 1− e−2πin/3 or 2− e−2πin/3 − e2πin/3 term.

4.1 Analysis of Frequency Spectra for a Three-phase Inverter

The three voltage outputs of a three-phase inverter (wired in the ∆ or Y configuration) are given

in (4.1)–(4.3). The frequency spectrum of each of these output voltages is identical (illustrated

in figure 5.7(a), for ωc = 21ωs and D = T/100). The different wiring configurations affect the

spectra of the load voltages only.

For each wiring configuration there are three load voltages, and all three have an identical

frequency spectrum (provided the load impedances are equal). For both a three-phase inverter

wired in the ∆ configuration and the Y configuration, from (2.13), to plot accurate spectra for

the load voltages of inverters wired in the ∆ and the Y configurations, the amplitudes

∣

∣

∣

∣

48
∑

k=−48

vm+k,n−ωck/ωs

∣

∣

∣

∣

, (4.4)

are plotted against the harmonic order Ωmn/ωs. This ensures that the significant contributions

to the spectrum from each carrier group are accounted for.

It is easily verified, from (4.4) and because vmn = 0 when n is a multiple of 3, provided ωc is

a multiple of 3ωs, frequencies that are a multiple of 3 do not contribute to the spectra of the

load voltages of three-phase inverters wired in the ∆ or Y configurations. Therefore, the load

voltages have maximum harmonic cancellation when ωc is a multiple of 3ωs.

Because we are examining inverters with equal loads, the three load voltages have identical

spectra for three-phase inverters wired in the ∆ or Y configuration. We illustrate the spectra

of the load voltages for the ∆ and the Y configuration in figure 5.12 when ωc = 21ωs and D =

T/100. The leading low frequency contribution to the spectrum is at ωs in both figure 5.12(a)

and 5.12(b). There are several dominant high-frequency contributions to the spectrum, at ωc ±
2ωs and 2ωs ± ωs. The dead time, D, does not affect which frequencies have a dominant

contribution to the spectrum. Similar to a single-phase and two-phase inverter, the amplitude

of the dead time distortion is linear in D.

5 Conclusions

In this chapter we have calculated the output voltages of two-phase and three-phase inverters

that incorporate dead time, for the first time. We have also calculated the load voltages for

two-phase and three-phase inverters. We have calculated the output voltages using the Poisson
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(a) ∆ configuration.
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(b) Y configuration

Figure 5.12: Frequency spectra of voltage differences in a three-phase inverter, where M = 0.9,

ωc = 21ωs, D = T/100, θ = π
3 and δ = 1.

re-summation method, following the approach of [34], where the output voltage of a single-phase

inverter with dead time was calculated.

Previous calculations of the dead time effects on the voltage outputs of inverters are limited to a

few examples, such as [27, 111]. This is partly due to the analytical difficulty of applying Black’s

method to determine output voltages. Using Poisson re-summation, as done here and in [34],

makes calculation of the voltage outputs with dead time effects less complicated.

In this chapter, we have shown that the dead time effects on the voltage outputs of a single-

phase, two-phase and three-phase inverter are identical. Insertion of dead time generates low-

frequency distortion in the output voltages of single-phase, two-phase and three-phase inverters,

which has been shown previously by experimental and simulated spectra in [25, 27, 29, 34, 64,

78, 93, 111]. The amplitude of the distortion generated by insertion of dead time was found

to have a linear relationship with the length of the dead time. In multi-phase inverters, we

ascertained that the ratio ωc/ωs affects which frequencies contribute to frequency spectra for

the load voltages. Specifically, in a two-phase inverter, if ωc is an even multiple of ωs, only odd

frequencies contribute to the spectrum. Similarly, in a three-phase inverter, if ωc is a multiple

of 3ωs, frequencies that are a multiple of 3 do not contribute to the spectrum.

Input currents have never been calculated analytically for inverters with dead time. In the next

chapter we extend our analysis of inverters that incorporate dead time, and calculate the input

currents of a single-phase inverter with dead time for the first time.
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6

Current Spectra for PWM Inverters With

Dead Time

1 Introduction

The effects of dead time on the currents of PWM inverters is documented in [16, 24, 26, 97], for

example. These effects have never been calculated analytically, however, due to the algebraic

complexity of modelling a PWM inverter with dead time. In this chapter we address this issue,

and calculate, for the first time, the input current spectra for an inverter with dead time.

It is known that dead time generates components in the frequency spectrum of output currents

(see [26], for example). Consequently, because the input currents are functions of the output

currents, dead time also generates components in the spectrum of the input currents. Attempts

to quantify the dead time effects on the currents are limited, however. In [97] the output current

waveform of a two-phase inverter with dead time is simulated, and the spectrum is determined. It

was observed that dead time generates low-frequency components in the spectrum of the output

current. In [24] and [16] input current waveforms for three-phase PWM and SVM inverters were

simulated. Analysis was purely in the time domain, and negative spikes in the input current were

found to be caused by dead time (corroborated by experimental results in [16]). Theoretically,

it should be possible to determine spectra from the simulated waveforms in [16, 24].

In this chapter we calculate the input currents of a single-phase inverter with dead time using the

single-sum method of [31, 33]. We have also used the single-sum method previously in chapters 3

and 4 of this thesis.

1.1 Structure of Chapter

In section 2 we calculate the output currents of a single-phase inverter that incorporates dead

time. We initially present calculations to determine the input currents of a single-phase inverter

in section 3 for general output impedances. In section 4 we specialize the calculations of section 3
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to determine the input currents of a single-phase inverter for a specific load (namely a series

resistive-inductive (RL) load). In section 4 we also present and analyse input current spectra

for series RL loads. Finally, in section 5, we sum up our conclusions.

2 Output Currents

In this section we determine the output current of a single-phase inverter that incorporates dead

time (a single-phase inverter is illustrated in figure 5.3). Before determining the output current

of a single-phase inverter, we recall the output voltage.

The voltage output of a single-phase inverter is known (see [34] and chapter 5), and we use it

here to calculate a Fourier series for the output current. From section 2 of chapter 5, the voltage

output, va(t), is described, mathematically, as

va(t) = 1− 2
∑

m

ψ(t;A′
m,B′

m), (2.1)

where ψ(t; t1, t2) = 1 when t1 < t2 and is zero otherwise. The switch times A′
m and B′

m

are determined by samples of a low-frequency signal wave sa(t) = M cosωst (with amplitude

|M | ≤ 0.98, and frequency ωs). Here, the samples of the signal wave are taken at uniform

intervals to give

Aa
m = mT +

T

4
(1 + sa(mT )) +

D

2
(δ −Ψ(mT )),

Ba
m = mT +

T

4
(3− sa(mT )) +

D

2
(δ + Ψ(mT )), (2.2)

where m is any integer and T = 2π/ωc is the switching period (with frequency ωc ≫ ωs), D ≪ T

is the length of the dead time,

δ =

{

1, for delay-only dead time,

0, for delay-advance dead time.

and

Ψ(t) =

{

+1, if θ < ωst < θ + π,

−1, if θ + π < ωst < θ + 2π,

where θ is the phase shift between va(t) and the output current iad(t). The Fourier series for

va(t) was calculated in section 2.2 of chapter 5, and is given by

va(t) =
∑

mn

a′mne
iΩmnt,

where Ωmn = mωc + nωs. The Fourier coefficients are given by

a′mn =







0, if Ωmn = 0,

2

iΩmnT
e−iΩmnDδ/2Sn(Ωmn, D)

[

e−3iΩmnT/4 − e−iΩmnT/4(−1)n

]

, if Ωmn 6= 0,

(2.3)

where

Sn(Ωmn, D) = inJn

(

1
4ωMT

)

cos
(

1
2ΩmnD

)

− sin
(

1
2ΩmnD

)

Rn(Ωmn), (2.4)
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where

Rn(Ωmn) =
∑

q 6=n

iq

π(n− q)e
−i(n−q)θ(1− (−1)n−q)Jq

(

1
4ΩmnMT

)

.

The effects of dead time on the output voltages of an inverter are well documented; in particular,

insertion of dead time causes low-frequency distortion and can reduce the magnitude of the

output voltage (see [25, 29, 64, 78, 93], for example).

We now calculate the output current, iad(t), of a single-phase inverter with dead time. For an

inverter with general output impedance Z(ω), the voltage drop across the load is related to the

current through the load in the frequency domain by

v̂a(ω) = Z(ω)̂ıad(ω),

where Z(ω) is the output impedance, determined by the load. Therefore the output current is

iad(t) =
∑

mn

i′mne
iΩmnt,

where the subscript ad denotes the load connection, and

i′mn =
a′mn

Z(Ωmn)
, (2.5)

where a′mn is given in (2.3). Note that, because dead time generates significant low-frequency

distortion in the voltage outputs (see [34], for example), we expect to see significant low-frequency

distortion in the output currents. Furthermore, in [26] it is shown that dead time generates low-

frequency distortion in the output currents.

In order to apply the single-sum method, we require expressions for the output currents as

discrete switching functions in the time domain. To this end we follow the methodology of [33]

and determine an expressions for the output current by examining the current response to a

single voltage pulse. Following the calculations of section 2 of chapter 4, the output current of

a single-phase inverter with dead time is given by

iad(t) =
1

Z(0)
− fA(t) + fB(t), (2.6)

where

fA(t) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∞
∑

m=−∞
eiωj(t−A′

m)ψ(t;A′
m,∞), (2.7)

where ωj denote the zeros of ωZ(ω), for j = 1, . . . , N . We note that fB(t) is defined similarly to

fA(t).

2.1 Output Current Spectra for a Series RL load

In this section, we analyse the frequency spectrum of the output current of a single-phase inverter

with a series RL load. We first determine the specific output impedance Z(Ωmn) for a series RL

load before we plot spectra for the output current. We also plot, for comparison, spectra for the
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(c) γ = 0.1.

Figure 6.1: Illustration of the output current (solid lines) for a range of output impedances,

where M = 0.9, ωc = 21ωs and R = 1. Furthermore, in (a), L = 0.1, in (b), L = 1, and in (c),

L = 10. The idealised output current is indicated by dashed lines, and has been scaled to have

amplitude 0.9.

output current of a single-phase inverter without dead time (calculated in chapter 3). Note that

the spectra in this section can be determined trivially from the voltage spectra in [34].

The voltage drop across a series RL load determines current in the frequency domain through

v̂a(ω) =

[

R + iωL

]

ı̂ad(ω) ≡ Z(ω)̂ıad(ω). (2.8)

Therefore the output impedance, Z(Ωmn) = R+ iΩmnL, determines, from (2.5),

iad(t) =
∑

mn

i′mne
iΩmnt,

where,

i′mn =
a′mn

R+ iΩmnL
, (2.9)

and a′mn is given in 2.3. We now discuss some appropriate values of γ = R/L for the assumptions

that we have made in our model.
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2.1.1 Appropriate γ

In previous chapters we have chosen the parameter set γ = 10, 1 and 0.1 to illustrate the effects

of varying γ on current spectra. To remain consistent with previous chapters, and allow for

direct comparisons of spectra (where necessary), we want to use the same parameters wherever

possible. Our model for inverters with dead time assumes a highly inductive series RL load. For

some values of γ we have examined previously, the load is not highly inductive. We now examine

which values of γ are suitable for our dead time inverter model.

The voltage output during dead time is dependent of the polarity of the output current, so

to asses the suitability of γ we examine the polarity of the actual output current compared to

the polarity of our idealised output current. The idealised output current is the output current

generated by the dominant low-frequency components of the voltage output (see section 2.1.1 of

chapter 5). We illustrate the output current for a range of γ and the idealised output current in

figure 6.1. It is evident, from figure 6.1(a), that the polarity of the output current for γ = 10 is

nothing like the polarity of the idealised output current. Therefore, γ = 10 is not appropriate

for the assumptions made in our model. Figures 6.1(b) and 6.1(c) show a good match between

the polarity of the actual output current and the idealised output current. Consequently, γ = 1

or γ = 0.1 are appropriate parameter values for our model, and we will use these two values of

γ in the current spectra we present in this chapter.

2.1.2 Analysis of the Frequency Spectrum

We now analyse the frequency spectrum of the output current of a single-phase inverter with

dead time. The Fourier coefficients i′mn decay slowly with respect to n, for fixed m. Therefore,

every peak in the frequency spectrum of iad(t) has a contribution from several carrier groups,

provided ωc/ωs ∈ Q. In order to plot all the significant contributions from each carrier group to

the spectrum, in this section, we plot spectra with amplitude

∣

∣

∣

∣

29
∑

k=−29

i′m+k,n−ωck/ωs

∣

∣

∣

∣

,

against harmonic number Ωmn/ωs. The sum is truncated at ±29 because |i′m±29,n∓ωc29/ωs
| <

10−5 for all m and n.

We plot the spectrum of iad(t) in figure 6.2 for γ = 1 and γ = 0.1 (as discussed in section 2.1.1).

Note that, in this chapter, we omit current spectra for γ ≫ 1. This is because our mathematical

models for inverters with dead time assume highly inductive loads (small γ). In fact, from fig-

ure 6.2, the output current is well approximated by the low-frequency components. Specifically,

the dominant low-frequency contribution to the spectrum at ωs has amplitude at least ten times

greater than the next most dominant peak (at ωc) for the range of γ plotted here.

It is clear, from comparison of figures 6.2(a) and 6.2(b) and figures 6.2(c) and 6.2(d), that

dead time generates significant high and low frequency components in the spectrum of the

output voltage, compared to inverters without dead time. The presence of additional harmonic

components in the output currents generated by dead time is corroborated by the results in [97].
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(a) γ = 0.1 and θ = −π/2.
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(b) γ = 0.1, no dead time.
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(c) γ = 1 and θ = −π/6.
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(d) γ = 1, no dead time.

Figure 6.2: Frequency spectrum of the output current iad(t) of a single-phase inverter with a

series RL load, where M = 0.9, ωc = 21ωs, R = 1, D = T/100 and δ = 1. Additionally, in (a)

and (b), L = 10, and in (c) and (d), L = 1.

Dead time does not affect which frequencies have a dominant contribution to the spectrum, and

the leading low-frequency contribution to the spectrum is at ωs, and the leading high-frequency

contribution to the spectrum is at ωc. As L → ∞, for fixed R, the amplitude of the high-

frequency components in the spectrum is reduced (from comparison of figures 6.2(a) and 6.2(c)).

Furthermore, as L→∞ with R fixed, from comparison of figures 6.2(a) and 6.2(c), the amplitude

of the dead time distortion is reduced.

We define the dead time distortion of iad(t) mathematically as

d(t) =
∑

mn

dmne
iΩmnt, (2.10)

where

dmn = i′mn − imn,

where i′mn is given in (2.9), and imn is given in (2.6) of chapter 3. It is easily verified that

dmn = 0 when D = 0. When D 6= 0, the amplitude of the dead time distortion is linear in D,

in other words, d(t) = O(D) as D → 0, as illustrated in figure 6.3. Note that d(t) = O(D) as

D → 0 for all ratios ωc/ωs.
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Figure 6.3: Illustration to show the linearity of the dead time distortion of iad(t) with respect

to D. Here we show a section of the m = 0 carrier group for a range of values of D, where

M = 0.9, ωc = 21ωs, γ = 1 (specifically R = L = 1), θ = −π/6 and δ = 1.

3 Input Currents With General Output Impedance

In this section we calculate the input currents of a single-phase inverter with dead time and

general output impedance. We use the single-sum method of [31, 33] to calculate the input

currents of a single-phase inverter with dead time. This extends [34], where the output voltages

were calculated. Calculation of the input currents is significantly more difficult than calculation

of the output voltages. This is because calculation of the input currents requires a double

consideration of the switching of the inverter.

By Kirchhoff’s current law, the input current drawn from the upper DC source, I(t), is equal to

the output current, iad(t), when the inverter switch is connected to the upper DC source, and

is equal to zero when the inverter switch is connected to the lower DC source. In other words,

I(t) = iad(t)
∑

p

ψ(t;B′
p,A′

p+1), (3.1)

where B′
p and A′

p+1 are defined in (2.2). Through similar reasoning, the lower input current is

I−(t) = iad(t)− I(t). (3.2)

The output current iad(t) was readily determined from the output voltage (see section 2). There-

fore we only need to calculate one of I(t) or I−(t).

We choose to calculate I(t). From (3.1) and (2.6), we write the upper input current as

I(t) = I0(t) + IAB(t),

where

I0(t) =
1

Z(0)

∑

p

ψ(t;B′
p,A′

p+1),

IAB(t) = (−fA(t) + fB(t))
∑

p

ψ(t;B′
p,A′

p+1),
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where fA(t) and fB(t) are sum of current responses to the voltage switching from +1 to −1, or

from −1 to +1, respectively, and they are given in (2.7). We now calculate each of I0(t) and

IAB(t) in turn.

It is straightforward to see that

I0(t) =
1

2Z(0)
(1 + va(t)),

where the spectrum of va(t) is known (see chapter 5). From examination of IAB(t) and (2.7),

fA(t)ψ(t;Bp,Ap+1) is nonzero only when m ≤ p (similarly for fB(t)ψ(t;Bp,Ap+1)). Therefore

IAB(t) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

p

p
∑

m=−∞
eiωj(t−mT−Dδ/2)

×
[

e−iωjT/4e−iωj(MT cos ωsmT/4−DΨ(mT )/2)

−e−3iωjT/4eiωj(MT cos ωsmT/4−DΨ(mT )/2)

]

ψ(t;B′
p,A′

p+1).

From examination of the Jacobi-Anger expansion [109],

IAB(t) =
N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

np

f j
p (t)e−iωjDδ/2e−3iωjT/4

×Sn(ωj , D)

[

eiωjT/2(−1)n − 1

] p
∑

m=−∞
ei(−ωj+nωs)mT ,

where f j
p(t) = eiωjtψ(t;B′

p,A′
p+1), and Sn(z,D) is given in (2.4). The sum over m can be

evaluated explicitly to be

p
∑

m=−∞
ei(−ωj+nωs)mT =

ei(−ωj+nωs)pT

1− ei(ωj−nωs)T
.

We now examine f j
p (t), the components of IAB(t) that are dependent upon t. The Fourier

transform of f j
p(t) determines

f̂ j
p (ω) =

∑

q

1

i(ωj − ω)
ei(ωj−ω)(pT+Dδ/2)eiqωspT e3iωjT/4

×Sq((ωj − ω), D)

[

eiωjT/2−5iωT/4+iqωsT (−1)q − e−3iωT/4

]

,

where Sq(z,D) is given in (2.4). Therefore

ÎAB(ω) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

npq

ei(n+q)ωspT e−iω(pT+Dδ/2)

i(ωj − ω)(1 − ei(ωj−nωs)T )

×Sn(ωj , D)

[

eiωjT/2(−1)n −
]

Sq((ωj − ω), D)

×
[

eiωjT/2−5iωT/4+iqωsT (−1)q − e−3iωT/4

]

.
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The Poisson re-summation formula allows us to identify a Fourier series for IAB(t). Poisson

re-summing in p determines

ÎAB(ω) =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

mnq

∫ ∞

−∞

e−iωDδ/2eiΩm,n+qt

i(ωj − ω)(1− ei(ωj−nωs)T )T

Sn(ωj , D)

[

eiωjT/2(−1)n −
]

Sq((ωj − ω), D)

[

eiωjT/2−5iωT/4+iqωsT (−1)q − e−3iωT/4

]

e−iωt dt.

Therefore

IAB(t) =
∑

mn

J ′
mne

iΩmnt,

where

J ′
mn =

N
∑

j=1

2

Z(ωj) + ωjZ ′(ωj)

∑

q

e−iΩmnDδ/2

i(ωj − Ωmn)(1− ei(ωj−(n−q)ωs)T )T

Sn−q(ωj , D)

[

eiωjT/2(−1)n−q − 1

]

Sq((ωj − Ωmn), D)

×
[

ei(ωj/2−(5Ωmn/4−qωs))T (−1)q − e−3iΩmnT/4

]

. (3.3)

Therefore the upper input current is given by

I(t) =
1

2Z(0)
+
∑

mn

I ′mne
iΩmnt, (3.4)

where

I ′mn =
a′mn

2Z(0)
+ J ′

mn, (3.5)

It is easily verified, from (3.2), that the input current drawn from the lower DC source is

I−(t) = − 1

2Z(0)
+
∑

mn

(i′mn − I′mn)eiΩmnt.

We have now calculated a Fourier series for the input currents of a single-phase inverter with

dead time and general output impedance. We can determine expressions for specific output

impedances from the expressions in this section, without recourse to lengthy analytical calcula-

tions for each individual impedance.

4 Input currents for Series RL loads

In this section we determine frequency spectra for the input currents for single-phase inverters

with series RL loads using the calculations in section 3. Note that we have calculated output

current spectra for a series RL load in section 2.1.

We know from (2.8) that the output impedance of a series RL load is given by Z(ω) = R+ iωL.

Therefore, the zeros of ωZ(ω) occur when ω = 0 and when ω = iR/L ≡ iγ. Noting that

Z(0) = R and Z(iγ) + iγZ ′(iγ) = −R, we have, from (3.4),

I(t) =
1

2R
+
∑

mn

I ′mne
iΩmnt,
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(a) γ = 0.1 and θ = −π/2.
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(b) γ = 0.1, no dead time.
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(c) γ = 1 and θ = −π/6.
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(d) γ = 1, no dead time.

Figure 6.4: Frequency spectra of the input current I(t) of a single-phase inverter that incorporates

dead-time, with a series RL load, where M = 0.9, ωc = 21ωs, R = 1, D = T/100 and δ = 1.

Furthermore, in (a) and (b), L = 10 and, in (c) and (d), L = 1.

where, from (3.5) and (3.3),

I ′mn =
a′mn

2R
−
∑

q

2e−iΩmnδD/2

RT (γ + iΩmn)(1 − e−(γ+i(n−q)ωs)T )
Sn−q(iγ,D)

[

e−γT/2(−1)n−q − 1

]

×Sq((iγ − Ωmn), D)

[

e−(γ/2+i(5Ωmn/4−qωs))T (−1)q − e−3iΩmnT/4

]

. (4.1)

The coefficients Jmn decay slowly with respect to n (for fixed m).

Provided ωc/ωs ∈ Q, for some ratios ωc/ωs, several carrier groups will contribute to each peak

in the frequency spectrum of I(t). In order to account for all significant contributions to the

spectrum (contributions with magnitude ≥ 10−5), in this section we plot amplitude

∣

∣

∣

∣

25
∑

k=−25

I ′m+k,n−ωck/ωs

∣

∣

∣

∣

,

against the harmonic order Ωmn. We illustrate the spectrum of I(t) in figure 6.4 for a few

different values of γ.
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Figure 6.5: Illustration to show the relationship between the dead time ripple r(t) (given in (4.2))

and the dead time D. The vertical axis is the log (to the base 10) of the absolute value of the

Fourier coefficients of the dead time ripple scaled by D. Here we show the m = 0 carrier group

for a range of D, where M = 0.9, ωc = 21ωs, γ = 1 (specifically R = L = 1), θ = −π/3 and

δ = 1.

As expected (see [75], for example), there is a DC component in the spectrum of the input

currents. The dominant low-frequency ripple component is at ωs, and this is also the dominant

contribution to the spectrum of I(t). The dominant high-frequency ripple components are at

ωc ± ωs. Therefore, the dominant current ripple components are the same same for inverters

without dead time (by comparison of figures 6.4(a) and 6.4(b), and figures 6.4(c) and 6.4(d)).

In fact, for sufficiently small D, the dominant ripple contributions must be the same for the

input currents of inverters with and without dead time. For large and unrealistic D (see [78],

for example), the dominant contributions might not be the same for the input currents with and

without dead time.

It is evident, by comparison of figures 6.4(a) and 6.4(b), and figures 6.4(c) and 6.4(d), that

insertion of dead time generates additional current ripple in the spectrum of I(t) (as predicted

by [24] and [16], for example). We refer to the additional current ripple as dead time ripple.

Additionally, we describe the dead time ripple mathematically as

r(t) =
∑

mn

rmne
iΩmnt, (4.2)

where

rmn = I ′mn − Imn.

Note that I ′mn is given in (3.3), and Imn is given in (2.13) of chapter 3. Note that when D = 0,

rmn = 0 and there is no dead time ripple. When D 6= 0, rmn = O(D) as D → 0(as shown

in figure 6.5), and this property is independent of the ratio ωc/ωs. Because of the algebraic

complexity of the Fourier coefficients rmn, we will not be investigating the relationship between

rmn and D any further here.
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5 Conclusions

In this chapter we have determined the input currents of a single-phase inverter that incorporates

dead time for the first time. We have used the single-sum method of [31, 33] to calculate the

input currents. Our analysis ascertained that insertion of dead time generates low-frequency and

high-frequency current ripple in the frequency spectrum of the input currents. Furthermore, the

amplitude of the current ripple components has a linear relationship with the length of the dead

time. The analysis in this chapter provides a progressive expansion of the analysis in [34], where

the output voltage of a single-phase inverter with dead time were determined using the Poisson

re-summation method.

The reason that input currents have never been calculated for inverters that incorporate dead

time before is because mathematical models for inverters with dead time are significantly more

complex than those for inverters without dead time. The complex mathematical models make

it difficult to use Black’s method to calculate the output voltages of an inverter with dead time

without making approximations (see [111], for example). This means that the direct method

of [40] is difficult to apply to the calculation of input currents, as it relies on using expressions for

the output voltages. Black’s method and the direct method constitute the standard engineering

methods for calculation of output voltages and input currents, respectively.

In this chapter, we also provided calculations of the output current of a single-phase inverter

with dead time, which is readily determined from the output voltage (calculated in [34]). As

expected from [97], insertion of dead time generates distortion in the output current spectra,

which decreases linearly as the length of the dead time decreases. Furthermore, highly inductive

series RL loads have minimise the dead time distortion.
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7

Voltage Spectra for SVM Inverters

1 Introduction

Space vector modulation (SVM) is a complex type of PWM. In this chapter we determine the

voltage outputs of a SVM inverter, which extends our earlier treatment of a simpler PWM

method. The complicated frequency spectra of the voltage outputs of a SVM inverter are

calculated here using the Poisson re-summation method. While the spectra of the voltage outputs

are known, analysis using the Poisson re-summation is more tractable than previous analysis

using Black’s method. In addition to this, analysis using the Poisson re-summation method

identifies a course for prospective analysis using the single-sum method to calculate current

spectra.

Advances in inverter technology in the 1980s introduced a widely used PWM method, known as

SVM [51]. SVM is restricted to inverters with three or more phase-legs, and is ideally suited to

digital implementation (see [114], for example). In [20, 22, 50] SVM inverters are shown to be

advantageous due to reduced current harmonics (compared to standard PWM inverters), thus

reducing electromagnetic interference (EMI).

High and low frequency distortion is generated in the frequency spectra of the voltage outputs

of a SVM inverter. Black’s method has been used to compute Fourier series expressions for the

voltage output of a three-phase SVM inverter in [49, 77]. Additionally, papers such as [12, 19]

have shown the agreement between theoretical spectra and experimental data. Here we use the

Poisson re-summation of [31, 33] to calculate spectra for the voltage outputs of a three-phase

SVM inverter.

1.1 Structure of Chapter

In section 2 we discuss how SVM works, as the application of SVM is significantly different to

the previous PWM method examined in this thesis. We calculate the frequency spectra of the
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Sc
cvSa

av
Sb

bv

+1

−1

Figure 7.1: Circuit diagram of a simplistic three-phase inverter, where there are three semicon-

ductor based switches Sa, Sb and Sc. The output leg of each semiconductor switch is denoted Va,

Vb and Vc.

voltage outputs of a uniformly sampled three-phase SVM inverter in section 3 using the Poisson

re-summation method. In section 4, we discuss our conclusions.

2 SVM

We have already examined a three-phase inverter using one PWM technique, and here we ex-

amine a three-phase inverter that works using SVM. Similar to a three-phase inverter that uses

standard PWM, the low-frequency behaviour of each voltage output, va(t), vb(t) or vc(t), of a

three-phase SVM inverter is a good approximation to the reference wave

ra(t) = M cosωst, rb(t) = M cos(ωst− 2π/3), or rc(t) = M cos(ωst+ 2π/3),

respectively. Unlike standard PWM, for a SVM inverter these reference waves are not the signal

waves.

In this section we discuss the signal waves of a SVM inverter, both what they are and how they

are determined. In section 2.1, we begin by discussing space vectors, which are representations

of the switch combinations of an inverter in the complex plane. Then, in section 2.2, we discuss

how the space vectors are used to determine the signal waves.

2.1 Space Vectors

In order to determine the signal waves of a three-phase SVM inverter, we begin by examining the

switch state of the inverter. A simplistic three-phase inverter is illustrated in figure 7.1, where

each phase-leg has just one semiconductor based switch, Sa, Sb and Sc. We denote the position

of each switch by 0 or 1, where 0 indicates that the switch is attached to the lower DC source,

and the voltage output is −1. Similarly, 1 indicates that the switch is connected to the upper

DC source, and the voltage output is +1. The configuration in figure 7.1, for example, is [111].

For a three-phase inverter there are only eight possible switch combinations, given by

[111], [110], [101], [011], [100], [010], [001], [000].

We now follow the discussions in [49] to describe how to represent these switch combinations as

space vectors.
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i

ii
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v
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[100]

[110][010]

[011]

[001] [101]

[111],[000]

Figure 7.2: Representation of the eight switch combinations of a three-phase inverter as space

vectors.

Any output of a three-phase inverter can be described in the complex plane by a space vector.

The output space vector is given by the Clarke or Park transform (see [5, 21], for example),

which tells us that

vout =
2

3
(va(t) + vb(t)e

2πi/3 + vc(t)e
−2πi/3) = Meiωst.

From this identity, the eight switch combinations are described by

[111] 7→ 2

3
(1 + e2πi/3 + e−2πi/3) = 0,

[110] 7→ 2

3
(1 + e2πi/3 − e−2πi/3) =

2

3
+ i

1√
3

=
4

3
eiπ/3,

[101] 7→ 4

3
e−iπ/3,

[011] 7→ 4

3
,

[100] 7→ 4

3
,

[010] 7→ −4

3
e−iπ/3,

[001] 7→ −4

3
eiπ/3,

[000] 7→ 0.

Note that the space vectors for [111] and [000] are both 0. From [49], we refer to these two

space vectors as null space vectors. Similarly, the other six space vectors are called active space

vectors. We have plotted the space vectors that represent each switch combination in figure 7.2.

2.2 Signal Wave

We now discuss how the signal wave is determined from the space vectors given in section 2.1. In

order to do this, we begin by considering a target output space vector voltage vtar = Meiωst in

sector i. We can also express vtar as a sum of the two nearest active space vectors, and in sector

i these are the space vectors for [100] and [110] (illustrated in figure 7.2). In order to express

vtar in terms of the active space vectors we consider the duty cycle associated with each space

vector (the duty cycle is the time spent in the switch combination associated with each space

vector given as a fraction of the time period under consideration [49]). Let the duty cycles for

each space vector be d100 and d110.
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We have

vtar = Meiωst =
4

3
d100 +

4

3
eiπ/3d110.

Equating real and imaginary parts gives

d100 + d110 cos
π

3
=

3M

4
cosωst,

d110 sin
π

3
=

3M

4
sinωst.

Therefore,

d110 =
3M sinωst

4 sin π
3

=

√
3M

2
sinωst,

d100 =
3M

4 sin π
3

(

cosωst sin
π

3
− sinωst cos

π

3

)

=
3M sin

(

π
3 − ωst

)

4 sin π
3

=

√
3M

2
sin
(π

3
− ωst

)

.

Note that there is a constraint on these duty cycles:

d100 + d110 ≤ 1,

so that √
3M

2

(

sinωst+ sin
(π

3
− ωst

))

≤ 0,

√
3M sin

π

6
cos
(

ωst−
π

6

)

=

√
3M

2
cos
(

ωst−
π

6

)

≤ 1.

Hence we must have

M ≤ 2√
3
.

This condition is satisfied by the fact that the modulation index |M | ≤ 1 (from chapter 2).

We now consider the switching in sector i. We suppose the switching sequence

[111]→ [110]→ [100]→ [000]→ [100]→ [110]→ [111],

and, furthermore, that d111 = d000. This switching sequence is illustrated in figure 7.3. Because

the sum of the duty cycles is equal to 1, we have

d111 = d000 =
1

2
(1− d110 − d100),

=
1

2

(

1−
√

3M

2
cos
(

ωst−
π

6

)

)

.

Therefore, with reference to figure 7.1, the switch Sa switches from the upper DC source to the

lower DC source at time

t =

(

n+
1

2
(d111 + d110 + d100)

)

T,

= nT +
T

4

(

1 +

√
3M

2
cos
(

ωst−
π

6

)

)

,

where T = 2π/ωc is the switching period, with frequency ωc ≫ ωs. Similarly, Sa switches from

the lower DC source to the upper DC source at time

t =

(

n+ d000+
1

2
(d111 + d110 + d100)

)

T,

= nT +
T

4

(

3−
√

3M

2
cos
(

ωst−
π

6

)

)

.
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Figure 7.3: A plot to show the symmetry of the switching times across one switching period for

the three PWM waves va(t), vb(t) and vc(t), in the interval 0 ≤ ωsmT < π
3

We note that these are the switch times that would arise from PWM applied to a signal wave

√
3M

2
cos
(

ωst−
π

6

)

, for 0 ≤ ωst ≤
π

3
.

We now consider the switching of the inverter in sector ii.

In sector ii the switching sequence is

[111]→ [110]→ [010]→ [000]→ [010]→ [110]→ [111].

This switching sequence is shown in figure 7.4 for the voltage output va(t). Therefore, the switch

times of Sa are given by

t =

(

n+
1

2
(d111 + d110)

)

T,

=

(

n+
1

2

(

1

2
(1− d110 − d010) + d110

))

T,

=

(

n+
1

4
(1 + d110 − d010)

)

T,

= nT +
T

4

(

1 +

√
3M

2

(

sin

(

2π

3
− ωst

)

− sin
(

ωst−
π

3

)

)

)

,

= nT +
T

4

(

1 +
3M

2
cosωst

)

,

and

t = nT +
T

4

(

3− 3M

2
cosωst

)

.
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Figure 7.4: A plot to show the symmetry of the switching times across one switching period for

the three PWM waves va(t), vb(t) and vc(t), in the interval 0 ≤ ωsmT < π
3
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Figure 7.5: Illustration of the signal wave sa(t) for a SVM inverter, where M = 0.9 and ωs = 1.

This corresponds to PWM of a signal 3M
2 cosωst over the interval π/3 ≤ ωst ≤ 2π/3.

Following a similar process for the remaining four sectors we identify a piecewise 2π/ωs-periodic

signal wave, given by

sa(t) =















√
3M
2 cos

(

ωst−
π

6

)

, when 0 ≤ ωst ≤ π
3 and π ≤ ωst ≤ 4π

3 ,

3M
2 cosωst, when π

3 ≤ ωst ≤ 2π
3 and 4π

3 ≤ ωst ≤ 5π
3 ,√

3M
2 cos

(

ωst+
π

6

)

, when 2π
3 ≤ ωst ≤ π and 5π

3 ≤ ωst ≤ 2π.

(2.1)

The signal wave sa(t) is illustrated in figure 7.5. Thus, we think of va(t) as being determined

from PWM applied to the signal wave sa(t). Similarly, vb(t) and vc(t) are determined by PWM

applied to the signal waves sb(t) = sa(t− 2π/3ωs) and sc(t) = sa(t+ 2π/3ωs), respectively. We

have now identified the signal waves for a three-phase SVM inverter.

3 Voltage Outputs of SVM Inverters

We now calculate the voltage outputs, va(t), vb(t) and vc(t) of a SVM inverter using the Poisson

re-summation method. The voltage output va(t) of a SVM inverter is described mathematically

– 122 –



CHAPTER 7. VOLTAGE SPECTRA FOR SVM INVERTERS

as

va(t) = 1− 2
∑

m

ψ(t;Aa
m,Ba

m), (3.1)

where ψ(t; t1, t2) = 1 when t1 < t2, and is zero otherwise. The voltage outputs vb(t) and

vc(t) are defined similarly. Because SVM is more amenable to digital implementation, in this

chapter we examine inverters that use uniform sampling (which is also more suited to digital

implementation [66]). The switch times of va(t), for uniform sampling, are

Aa
m = mT +

T

4
(1 + sa(mT )), and Ba

m = mT +
T

4
(3− sa(mT )), (3.2)

where m is any integer and the signal wave sa(t) is given in (2.1). The switch times of vb(t)

and vc(t) are defined similarly, with respective signal waves sb(t) = sa(t − 2π/3ωs) and sc(t) =

sa(t+ 2π/3ωs).

We begin by calculating va(t). From (3.1),

va(t) ≡ 1− 2f(t),

where f(t) represents the sum over m. To calculate the spectrum of va(t), we initially determine

the spectrum of f(t). The Fourier transform of f(t) determines, when ω 6= 0,

f̂(ω) =
∑

m

1

iω
(e−iωAa

m − e−iωBa
m).

Therefore, from (3.2), when ω 6= 0,

f̂(ω) =
∑

m

e−iωnT

iω
(e−iωT/4e−iωTsa(mT )/4 − e−3iωT/4eiωTsa(mT )/4). (3.3)

We now determine Fourier series expression for the exponential terms e±iωTsa(mT )/4.

3.1 Fourier Series for eiωTsa(τ)/4

The signal wave sa(τ) is 2π/ωs-periodic, therefore,

eiωTsa(τ)/4 =
∑

n

Sn(ω)einωsτ ,

where

Sn(ω) =
ωs

2π

∫ 2π/ωs

0

eiωTsa(τ)/4e−inωsτ dτ,

=
ωs

2π

∫ π/ωs

−π/ωs

eiωTsa(τ)/4e−inωsτ dτ.

From (2.1), we have an alternative expression for Sn(ω)

Sn(ω) = ∫1 + ∫2 + ∫3,

where

∫1 =
ωs

2π

[
∫ π/3ωs

0

eiω
√

3MT cos(ωsτ−π/6)/8e−inωsτ dτ,

+

∫ 4π/ωs

π/ωs

eiω
√

3MT cos(ωsτ−π/6)/8e−inωsτ dτ

]

,
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∫2 =
ωs

2π

[
∫ 2π/3ωs

π/3ωs

eiω3MT cos ωsτ/8e−inωsτ dτ,

+

∫ 5π/3ωs

4π/3ωs

eiω3MT cos ωsτ/8e−inωsτ dτ

]

,

∫3 =
ωs

2π

[
∫ π/ωs

2π/3ωs

eiω
√

3MT cos(ωsτ+π/6)/8e−inωsτ dτ,

+

∫ 2π/ωs

5π/3ωs

eiω
√

3MT cos(ωsτ+π/6)/8e−inωsτ dτ

]

.

To evaluate these integrals, we use the Jacobi-Anger expansion [109]

eiz cos(θ−θ0) =
∑

p

Jp(z)e
ipθeip(π/2−θ0).

Hence,

eiω
√

3MT cos(ωsτ−π/6)/8 =
∑

p

Jp

(√
3

8
ωMT

)

eipωsτeπip/3,

eiω3MT cos ωsτ/8 =
∑

p

Jp

(

3

8
ωMT

)

eipωsτeπip/2,

eiω
√

3MT cos(ωsτ+π/6)/8 =
∑

p

Jp

(√
3

8
ωMT

)

eipωsτe2πip/3.

Therefore, we are able to re-write ∫1, ∫2 and ∫3 as

∫1 =
∑

p

Jp

(√
3

8
ωMT

)

eπip/3

[
∫ π/3ωs

0

e−i(n−p)ωsτ dτ

+

∫ 4π/3ωs

π/ωs

e−i(n−p)ωsτ dτ

]

, (3.4)

∫2 =
∑

p

Jp

(

3

8
ωMT

)

eπip/2

[
∫ 2π/3ωs

π/3ωs

e−i(n−p)ωsτ dτ +

∫ 5π/3ωs

4π/3ωs

e−i(n−p)ωsτ dτ

]

,

∫3 =
∑

p

Jp

(√
3

8
ωMT

)

e2πip/3

[
∫ π/ωs

2π/3ωs

e−i(n−p)ωsτ dτ +

∫ 2π/ωs

5π/3ωs

e−i(n−p)ωsτ dτ

]

.

After evaluation of the integral in (3.4), we have that

∫1 =
1

3
inJn

(√
3

8 ωMT
)

e−inπ/6 +
∑

p6=n

ip

2πi(n− p)Jp

(√
3

8 ωMT
)

e−ipπ/6

×(1 + e−i(n−p)π)(1 − e−i(n−p)π/3).

Finding similar expressions for ∫2 and ∫3, we determine

Sn(ω) =
in

3

[

Jn

(

3
8ωMT

)

+ Jn

(√
3

8 ωMT
)

(einπ/6 + e−inπ/6)

]

+
∑

p6=n

ip

2πi(n− p) (1 + e−i(n−p)π)(1 − e−i(n−p)π/3)

[

Jp

(

3
8ωMT

)

e−i(n−p)π/3

+Jp

(√
3

8 ωMT
)

e−ipπ/6

(

1 + e−2πin/3

)]

. (3.5)

The Fourier coefficients Sn(ω) are complex functions of ω, given in terms of sums and differences

of Bessel functions. Because of the complexity of Sn(ω), it is difficult to determine the rate of

decay of Sn(ω) with respect to n.
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3.2 Fourier Transform

From section 3.1 and (3.3), the Fourier transform f̂(ω) is given by, when ω 6= 0,

f̂(ω) =
∑

mn

e−iωmT

iω
einωsmTSn(ω)

(

e−iωT/4(−1)n − e−3iωT/4

)

,

where Sn(ω) is given in (3.5). Poisson re-summing in m determines, when ω 6= 0,

f̂(ω) =
∑

mn

∫ ∞

−∞

e−iωt

iωT
eiΩmntSn(ω)

(

e−iωT/4(−1)n − e−3iωT/4

)

dt.

Therefore, when Ωmn 6= 0,

f(t) =
∑

mn

1

iΩmnT
Sn(Ωmn)

(

e−iΩmnT/4(−1)n − e−3iΩmnT/4

)

eiΩmnt,

where the only frequencies that have a non-zero contribution to f(t) are given by Ωmn =

mωc + nωs. Therefore we have determined the contribution to va(t) for non-zero Ωmn, and

the contribution to va(t) when Ωmn = 0 corresponds to the mean value of va(t). The mean value

of va(t) is the mean value of

1− 2
∑

m

ψ(t;Aa
m,Ba

m),

which is zero (from appendix A.1). Therefore

va(t) =
∑

mn

amne
iΩmnt,

where

amn =







0, if Ωmn = 0,

2

iΩmnT
Sn(Ωmn)

(

e−iΩmnT/4(−1)n − e−3iΩmnT/4

)

, if Ωmn 6= 0.
(3.6)

By similar reasoning, the other two voltage outputs of a three-phase SVM inverter are given by

vb(t) =
∑

mn

amne
−2πin/3eiΩmnt, and vc(t) =

∑

mn

amne
2πin/3eiΩmnt,

where amn is given in (3.6). We note that the Fourier coefficients calculated in this chapter differ

to those in [49], because our Fourier coefficients have a 1/ΩmnT term, rather than a 1/mπ2 term.

Because the Fourier coefficients with m = 0 in [49] are not accounted for, it is not clear whether

the 1/mπ2 term is a typing or algebraic error.

We also calculate the voltage differences across the three loads in a three-phase SVM inverter.

In the ∆ configuration a load is connected between each pair of phase-legs (as illustrated in

figure 2.9), therefore,

vab(t) = va(t)− vb(t) =
∑

mn

amn(1− e−2πin/3)eiΩmnt ≡
∑

mn

vmne
iΩmnt,

vbc(t) =
∑

mn

vmne
−2πin/3eiΩmnt,

vca(t) =
∑

mn

vmne
2πin/3eiΩmnt.
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In the Y configuration, a load is connected between each phase-leg and a floating point p.

Therefore, the load voltages are, from appendix C,

vap(t) = va(t)− vp(t) =
∑

mn

1

3
amn(2− e−2πin/3 − e2πin/3)eiΩmnt ≡

∑

mn

vmne
iΩmnt,

vbp(t) =
∑

mn

vmne
−2πin/3eiΩmnt,

vcp(t) =
∑

mn

vmne
2πin/3eiΩmnt.

For both three-phase inverters wired in the ∆ and the Y configurations, vmn = 0 when n is a

multiple of 3, a consequence of the 1−e−2πin/3 or 2−e−2πin/3−e2πin/3 term. The load voltages

given here reproduce those calculated in [49].

3.3 Analysis of Frequency Spectra

Before we plot any spectra for the voltage outputs, we first discuss what we plot in the frequency

spectrum. Because the Fourier coefficients of the output voltages and load voltages decay slowly

with respect to n (for fixed m), for some ratios ωc/ωs, several carrier groups contribute to each

peak in the voltage spectra (provided ωc/ωs ∈ Q). To ensure we account for the contribution

from each carrier group, in the section we plot spectra with amplitude

|
25
∑

k=−25

am+k,n−ωck/ωs
|,

(and similarly for vmn) against harmonic number Ωmn. We truncate the sum at ±25 because,

from empirical evidence, |am±k,n∓ωck/ωs
| < 10−5 and |vm±k,n∓ωck/ωs

| < 10−5 for k > 25 for all

m and n, and we only plot contributions to the spectrum with amplitude greater than 10−5.

Note that, in this section we omit spectra for a range of ratios ωc/ωs. This is because the main

features of the spectrum of the voltage outputs or the loads voltages are the same for all ωc/ωs.

Because we plot the absolute value of the Fourier coefficients, the voltage outputs va(t), vb(t)

and vc(t) all have identical spectra. We plot the spectra of va(t), vb(t) and vc(t) in figure 7.6.

We include the frequency spectrum of va(t) from simulated results, to verify the accuracy of our

analytical results. Carrier groups with even m have a single dominant central peak, and carrier

groups with odd m have two dominant central peaks. The dominant low-frequency contribution

to the spectrum is at ωs, and the dominant high-frequency contribution to the spectrum is at

ωc. In other words, the dominant contribtuions to the spectrum for the voltage outputs of a

SVM inverter are the same as those for a standard PWM inverter. Therefore, the fundamental

behaviour of the voltage output of a SVM inverter is similar to the fundamental behaviour of

the voltage output of a standard PWM inverter. By comparison of figures 7.6(a) and 7.6(c), the

voltage output of a SVM inverter has significantly more high and low frequency components in

it’s spectrum, however, compared to the spectrum of the voltage output of a standard PWM

inverter.

The spectra of the load voltages of a three-phase SVM inverter wired in the ∆ and the Y

configuration are shown in figure 7.7, where simulated spectra are included (to verify the accuracy
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(a) SVM inverter, theoretical.
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(b) SVM inverter, simulated.
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(c) Standard PWM inverter.

Figure 7.6: Frequency spectrum of va(t), vb(t) and vc(t), where M = 0.9.

of our analytical results). Because ωc is a multiple of 3ωs, there is no contribution to the spectrum

when n is a multiple 3. The leading contribututions to the spectra of the load voltages of three-

phase SVM inverters are the same as the leading contributions to the spectra of the load voltages

of standard PWM inverters. SVM inverters generate load voltages with significantly more high

and low frequency components in their frequency spectra than the load voltages of standard

PWM inverters, however (from comparison of figures 7.7 and 2.11).

Note that, the analytical and simulated spectra in this chapter do not agree with the spectra

in [49]. As mentioned in section 3.2, the Fourier coefficients calculated in [49] might contain

errors. It is not obvious whether the possible errors in the Fourier coefficients have been carried

into the spectra in [49], or if there is another issue (perhaps the peaks in the spectrum are not

summed over enough carrier groups).

4 Conclusions

In this chapter we have determined frequency spectra for the voltage outputs and load voltages of

a three-phase SVM inverter. These spectra are known, having been previously calculated using
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(a) ∆ configuration, analytical
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(b) ∆ configuration, simulated
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(c) Y configuration, analytical
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(d) Y configuration, simulated

Figure 7.7: Frequency spectrum of the load voltages of a three-phase SVM inverter, where M =

0.9.

Black’s method in [49] and [77]. Black’s method is algebraically complex, as to calculate each

Fourier coefficient a double integral is required. In this chapter, however, we have used the, more

direct, Poisson re-summation method of [31, 33] to calculate spectra. It is evident, by comparison

of calculations in this chapter, and calculations in [49], that the Poisson re-summation method

reduces the algebraic complexity of calculating voltage spectra, thereby reducing the possibility

of errors in the calculation.

Our analytical results using the Poisson re-summation method have been substantiated with

Matlab simulations of the output voltages and load voltages of a three-phase SVM inverter. The

analytical and simulated results conform with each other, and our results agree with [19, 77].

Our simulated results do not agree with the analytical results in [49], however.

Significant high and low frequency components are generated in the voltage outputs of a three-

phase SVM inverter in comparison with a three-phase PWM inverter. It is claimed in [20, 22, 50],

however, that use of SVM reduces current harmonics (thus reducing EMI, for example). The

work in this chapter provides an introduction for calculations in the next chapter, where the

single-sum method is used to calculate current spectra to complement the experimental results

of [20, 22, 50].
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Current Spectra for SVM Inverters

1 Introduction

In this chapter we determine current spectra for SVM inverters. In particular, we calculate

input current spectra, which have only been calculated previously for SVM inverters with highly

inductive series resistive-inductive (RL) loads. Series RL loads are a good approximation to a

wide variety of loads, such as motor based loads (see [86], for example). The work in this chapter

extends analysis to a greater variety of loads (highly resistive series RL loads, for example, which

are widely studied [71, 86]).

The outputs of a wide variety of SVM inverters are well known analytically (see [19, 20, 22,

49, 50, 77, 89]). Analysis in [11, 20] has shown that inverters that use SVM generate output

currents with more desirable ripple components compared to inverters that use standard PWM

techniques. Consequently, the input currents of SVM inverters should have more desirable ripple

components than the input currents of inverters that use standard PWM techniques. Input

current spectra are not as well known, however.

There are a few example of simulated and analytical calculations of the input currents of SVM

inverters. Input current spectra have been calculated in [60] for inverters with highly inductive

series RL loads. The calculations in [60] are made feasible by approximating the output currents

as sinusoidal. Additionally, input current waveforms have been simulated in [47], and it should

be possible to determine spectra by taking fast Fourier transforms of the simulated waveforms.

Therefore, previous calculations are either limited to highly inductive series RL loads, or give

no immediate insight into the spectrum of the input currents. We address these issues in this

chapter.

1.1 Structure of Chapter

In section 2 we determine output current spectra using the output voltages determined in chap-

ter 7. We use the single-sum method of [31, 33] in section 3 to calculate the input currents of a
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three-phase SVM inverter with a series RL load. We summarise the findings of this chapter in

section 4.

2 Output Currents

The output currents of SVM inverters are well known in [11, 19, 20, 22, 49, 50, 77, 89]. We

calculate the input currents of a SVM inverter in the next section, and we reproduce the results

of [11, 20] here as an intermediate step.

To calculate output current spectra, we first recall the voltage outputs (determined in chapter 7).

The voltage outputs of a three-phase SVM inverter are described as

vo(t) = 1− 2
∑

m

ψ(t;Ao
m,Bo

m),

where o may represent any of the output phases, a, b, or c. The switch times of the voltage

outputs are, for uniform sampling,

Ao
m = mT +

T

4
(1 + so(mT )), and Bo

m = mT +
T

4
(3− so(mT )), (2.1)

where m is any integer, T = 2π/ωc is the switching period (and ωc the switching frequency),

and the signal wave so(t) is, from section 2.2 of chapter 7,

so(t) =















√
3M
2 cos

(

ωst+ φo −
π

6

)

, when 0 ≤ ωst+ φo ≤ π
3 and π ≤ ωst+ φo ≤ 4π

3 ,

3M
2 cos(ωst+ φo), when π

3 ≤ ωst+ φo ≤ 2π
3 and 4π

3 ≤ ωst+ φo ≤ 5π
3 ,√

3M
2 cos

(

ωst+ φo +
π

6

)

, when 2π
3 ≤ ωst+ φo ≤ π and 5π

3 ≤ ωst+ φo ≤ 2π,

with frequency ωs ≪ ωc, and phase φo (more specifically, φa = 0, φb = −2π/3 and φc = 2π/3).

Furthermore, we calculated, in section 3 of chapter 7, a Fourier series for the voltage outputs,

given by

vo(t) =
∑

mn

amne
iΩmnteinφo ,

where Ωmn = mωc + nωs, and

amn =
2

T
Qn(Ωmn).

We introduce Qn(ω) for later convenience, and it is defined as

Qn(ω) =
1

iω
Sn(ω)((−1)ne−iωT/4 − e−3iωT/4), (2.2)

where, from section 3.1 of chapter 7,

Sn(ω) =
in

3

[

Jn

(

3
8ωMT

)

+ Jn

(√
3

8 ωMT
)

(einπ/6 + e−inπ/6)

]

+
∑

p6=n

ip

2πi(n− p) (1 + e−i(n−p)π)(1 − e−i(n−p)π/3)

[

Jp

(

3
8ωMT

)

e−i(n−p)π/3

+Jp

(√
3

8 ωMT
)

e−ipπ/6

(

1 + e−2πin/3

)]

. (2.3)

We determine the output currents from these voltage outputs.
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In this chapter we examine inverters with series RL loads. As described in [52], in the frequency

domain

V̂ (ω) = Z(ω)Î(ω),

where, for a series RL load [38, 81],

Z(ω) = R+ iωL.

Therefore, for a three-phase SVM inverter wired in the ∆ configuration (illustrated in figure 2.9),

the three output currents are

iab(t) =
∑

mn

i∆mne
iΩmnt,

ibc(t) =
∑

mn

i∆mne
iΩmnte−2πin/3,

ica(t) =
∑

mn

i∆mne
iΩmnte2πin/3,

where

i∆mn =
(1− e−2πin/3)amn

R+ iΩmnL
.

Similarly, from appendix C, the output currents of a three-phase SVM inverter wired in the Y

configuration (illustrated in figure C.1) are given by

iap(t) =
∑

mn

iYmne
iΩmnt,

ibp(t) =
∑

mn

iYmne
iΩmnte−2πin/3,

icp(t) =
∑

mn

iYmne
iΩmnte2πin/3,

where

iYmn =
(2− e−2πin/3 − e2πin/3)amn

3(R+ iΩmnL)
.

Note that the 1− e−2πin/3 and 2− e−2πin/3 − e2πin/3 terms indicate, respectively, that i∆mn and

iYmn are zero when n is a multiple of 3. We now analyse the frequency spectrum of the output

currents of three-phase inverters wired in both the ∆ and the Y configuration.

The form of the spectrum for the output currents depends on whether ωc/ωs ∈ Q or not. If

ωc/ωs /∈ Q, each contribution to the spectrum at Ωmn is unique. If, however ωc/ωs ∈ Q,

multiple choices of m and n give rise to the same Ωmn. In this case we sum over all the possible

contributions to the spectrum at Ωmn. To ensure that all contributions to the spectrum with

magnitude equal to or greater than 10−5 are accounted for, we plot the amplitude

∣

∣

∣

∣

25
∑

k=−25

i∆m+k,n−ωck/ωs

∣

∣

∣

∣

,

(and similarly for iYmn) against the harmonic order Ωmn/ωs. We illustrate spectra for the output

currents of three-phase inverters wired in the ∆ and Y configuration in figure 8.1 for a range of

ratios γ = R/L. Note that, in figure 8.1, because ωc/ωs is a multiple of 3, there is no contribution

to the spectra for harmonic orders that are a multiple of 3.
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(a) ∆ configuration, γ = 1
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(b) Y configuration, γ = 1
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(c) ∆ configuration, γ = 10
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(d) Y configuration, γ = 10
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(e) ∆ configuration, γ = 0.1
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(f) Y configuration, γ = 0.1

Figure 8.1: Frequency spectrum of the output currents of a three-phase SVM inverter, where

M = 0.9, ωc = 21ωs and R = 1. Furthermore, in (a) and (b), L = 1, in (c) and (d), L = 0.1,

and in (e) and (f), L = 10.
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In this chapter we refer to high-frequency components as those with harmonic order greater than

ωc/2ωs, and low-frequency components as those with harmonic order less than ωc/2ωs. This

conforms to the precepts set out in [69].

It is evident, from comparison of figures 8.1(a), 8.1(c) and 8.1(e) with figures 8.1(b), 8.1(d)

and 8.1(f), that output current spectra for a three-phase inverter wired in the ∆ configuration

are similar to output current spectra of a three-phase inverter wired in the Y configuration.

Differences between output current spectra in the two configurations are limited to the non-

dominant contributions to the spectrum. The similarity between the ∆ and the Y configuration

is predicted in [54], for example.

As expected from [11, 20], the dominant low-frequency contribution to the spectrum of the

output currents is independent of γ, and occurs at ωs. Similarly, the dominant high-frequency

contributions to the spectrum occur at ωc ± 2ωs and at 2ωc ± ωs.

It was also observed in [11, 20] that as L → ∞ with fixed R, the non-dominant low-frequency

components and the high-frequency components in the current spectra asymptote to zero, and

we provide further evidence of this here. Furthermore, we have shown that as L → 0, for fixed

R, the output current spectra approximate the load voltage spectra (where the magnitude of

the peaks are scaled by R), as expected (see [11, 20], for example).

3 Input Currents

Although analysis of the input currents of SVM inverters with highly inductive series RL loads

has been carried out previously in [60], in practice inverters with highly resistive series RL loads

are important (see [71, 86], for example). In this section we extend analysis of input currents to

SVM inverters with highly resistive series RL loads.

All the calculations in this section are for three-phase SVM inverters wired in the ∆ configuration

with series RL loads. We also assume that all load impedances are equal. Provided all loads

are equal, the input current drawn from the upper DC source has identical frequency spectrum

to the input current drawn from the lower DC source (see [40], for example). Therefore, in this

section we calculate the upper input current only.

There are two commonly used methods for calculating the input currents: the direct method

of [40], and the single-sum method of [31, 33]. We have used both of these methods previously

in this thesis. As discussed in chapter 3 and [31], the direct method is algebraically simple

compared to the single-sum method, but determines Fourier series with Fourier coefficients that

converge slowly compared to coefficients determined using the single-sum method. Therefore, in

this section, we use the single-sum method to calculate the input currents.

So far in this chapter, calculations using the single-sum method have been predominantly in the

time domain. In [33], calculations using the single-sum method are performed largely in the

frequency domain. Therefore, to illustrate the versatility of the single-sum method we follow the

approach of [33] here. We begin by examining the input current generated by a single voltage

pulse, and then superpose these input current responses in section 3.1. Then, in section 3.2, we
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determine a Fourier series for the upper input current from the sum of input current responses.

Finally, in section 3.3, we plot input current spectra for a range of output impedances.

3.1 Input Current Generated by a Single Voltage Pulse

In this section we determine (in the frequency domain) the upper input current by considering

the input current generated by a single voltage pulse, and then superpose these input current

responses. As described in [33], we begin by considering the output current generated by a single

voltage pulse, and then examine the contribution to the input current from the output current

response. Superposing all possible input current contributions from output current responses to

a single voltage pulse will give the full input current.

A single voltage pulse is described as

vo
m(t) = ψ(t;Ao

m,Bo
m),

where o = a, b, c and the switch times Ao
m and Bo

m are given in (2.1). In the frequency domain,

this voltage pulse is

v̂o
m(ω) = ψ̂(ω;Ao

m,Bo
m) =

2

iω
[e−iωAa

m − e−iωBa
m ]. (3.1)

From [52], the corresponding output current is

ı̂om(ω) =
1

Z(ω)
v̂o

m(ω) =
1

Z(ω)
ψ̂(ω;Ao

m,Bo
m),

where Z(ω) = R+ iωL for a series RL load (see [38, 81], for example). Therefore, from section 2

of chapter 4, the output current response to a single voltage pulse vo
m(t) is

iom(t) =















0, if t < Ao
m,

1
R (1 − e−γ(t−Ao

m)), if Ao
m < t < Bo

m,
1
R (e−γ(t−Bo

m) − e−γ(t−Ao
m)), if t > Bo

m.

In other words, the output current response to a single voltage pulse switches on at t = Ao
m, is

driven to 1/R in the interval Ao
m < t < Bo

m, and decays to 0 for t > Bo
m.

If the upper input line connects to the output of phase-leg o during the interval Ao
p < t < Bo

p,

then the corresponding contribution to the upper input current is

Io
mp(t) = ψ(t;Ao

p,Bo
p)i

o
m(t).

By the convolution theorem [58], this contribution to the input current is given in the frequency

domain as

Îo
mp(ω) =

1

2π
ψ̂(ω;Ao

p,Bo
p)

(

1

Z(ω)
ψ̂(ω;Ao

m,Bo
m)

)

.

Writing the output impedance as

Z(ω) = iL(ω − iγ), where γ =
R

L
,

we have, from (3.1),

Îo
mp(ω) =

1

πi

∫ ∞

−∞

(e−i(ω−ω′)Aa
p − e−i(ω−ω′)Ba

p )(e−iω′Aa
m − e−iω′Ba

m)

Lω′(ω′ − ω)(ω′ − iγ) dω′. (3.2)
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Note that the only true pole in (3.2) is at ω′ = iγ. As in [33], (3.2) is evaluated using residue

calculus (more specifically, using contour integration and Cauchy’s residue theorem [1]).

There are three cases to consider for the integral in (3.2), which depend on where the intervals

[Ao
m,Bo

m] and [Ao
p,Bo

p] fall in relation to each other. As described in [33], the three cases are:

Case 1, [Ao
p,Bo

p] precedes [Ao
m,Bo

m], thus

Îo
mp(ω) = 0;

Case 2, [Ao
p,Bo

p] follows [Ao
m,Bo

m], thus

Îo
mp(ω) =

1

L
ψ̂(ω − iγ;Ao

p,Bo
p)ψ̂(iγ;Ao

m,Bo
m); (3.3)

Case 3, [Ao
p,Bo

p] coincides with [Ao
m,Bo

m], thus

Îo
mp(ω) =

1

R

(

ψ̂(ω;Ao
p,Bo

p)− eγAo
pψ̂(ω − iγ;Ao

p,Bo
p)

)

. (3.4)

We now obtain the upper input current by summing over all intervals [Ao
m,Bo

m] and [Ao
p,Bo

p] and

over the three outputs a, b and c. In other words,

Î(ω) =
∑

o=a,b,c

∑

mp

Îo
mp(ω).

From the discussion above, and noting that the summand is 0 if p < m,

Î(ω) = Îmm(ω) + Îm,m+r(ω), (3.5)

where

Îmm(ω) =
∑

o

∑

m

Îo
mm(ω), (3.6)

Îm,m+r(ω) =
∑

o

∑

m

∞
∑

r=1

Îo
m,m+r(ω). (3.7)

We now examine each of Îmm(ω) and Îm,m+r(ω) in order to determine a Fourier series for the

input current I(t).

3.2 Fourier Series

In the following analysis, we repeatedly encounter quantities of the form

ψ̂(ω;Ao
m,Bo

m) = e−iωmT
∑

n

Qo
n(ω)einωsmT ,

= e−iωmT
∑

n

Qn(ω)einωsmT einφo , (3.8)

where Qn(ω) is given in (2.2). We use this identity to interpret Îmm(ω) and Îm,m+r(ω).
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3.2.1 Îmm(ω)

The expression Îmm(ω) is the sum of all contributions to the input current from single voltage

pulses when the intervals [Ao
m,Bo

m] coincide with the intervals [Ao
p,Bo

p]. Therefore, from (3.6)

and (3.4), we have

Îmm(ω) = Î1(ω)− Î2(ω),

where

Î1(ω) =
1

R

∑

o

∑

m

ψ̂(ω;Ao
m,Bo

m), (3.9)

Î2(ω) =
1

R

∑

o

∑

m

eγAo
mψ̂(ω − iγ;Ao

m,Bo
m). (3.10)

Use of the identity in (3.8) allows us to identify an alternative expression for Î1(ω), which is,

from (3.9),

Î1(ω) =
1

R

∑

o

∑

mn

e−iωmTQn(ω)einωsmT einφo ,

From use of the Poisson re-summation formula, we have

Î1(ω) =
1

R

∑

o

∑

mn

Qn(ω)einφo

∫ ∞

−∞
e2πimτeiτT (−ω+nωs) dτ,

=
2π

R

∑

o

∑

mn

Qn(ω)einφoδ(2πm+ nωsT − ωT ),

=
2π

RT

∑

mn

Qn(ω)δ(ω − Ωmn)
∑

o

einφo .

The sum over phase-legs gives

∑

o

einφo = 1 + e−2πin/3 + e2πin/3, (3.11)

which is non-zero when n is a multiple of 3 only. Therefore,

Î1(ω) =
6π

RT

∑

mn

Q3n(ω)δ(ω − Ωm,3n).

We now examine Î2(ω) in more detail.

We start our analysis of Î2(ω) by noting that, from (2.1)

eγAo
m = eγmT eγT (1+so(mT ))/4.

Furthermore, from the analysis in section 3.1 of chapter 7,

eγAo
m = eγT/4eγmT

∑

n

(−1)nSn(iγ)einωsmT einφo ,

where Sn(ω) is given in (2.3). We also have, from (3.8),

ψ̂(ω − iγ;Ao
m,Bo

m) = e−iωmT e−γmT
∑

k

Qk(ω − iγ)eikωsmT eikφo .
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Thus, from (3.10),

Î2(ω) =
1

R

∑

o

∑

m

eγT/4e−iωmT
∑

n

(−1)nSn(iγ)
∑

k

Qk(ω − iγ)ei(n+k)ωsmT ei(n+k)φo ,

=
1

R

∑

o

∑

mnk

eγT/4(−1)kSk(iγ)Qn−k(ω − iγ)ei(nωs−ω)mT einφo .

Poisson re-summing in m determines

Î2(ω) =
2π

RT

∑

mn

δ(ω − Ωmn)

[

∑

k

eγT/4(−1)kSk(iγ)Qn−k(ω − iγ)
]

∑

o

einφo ,

and, from (3.11),

Î2(ω) =
6π

RT

∑

mn

δ(ω − Ωm,3n)

[

∑

k

eγT/4(−1)kSk(iγ)Q3n−k(ω − iγ)
]

.

Therefore,

Îmm(ω) =
6π

RT

∑

mn

δ(ω − Ωm,3n)

[

Q3n(ω)−
∑

k

eγT/4(−1)kSk(iγ)Q3n−k(ω − iγ)
]

. (3.12)

Note that the the δ(ω −Ωm,3n) term indicates that the only frequencies with a non-zero contri-

bution to Imm(t) are of the form Ωm,3n. We now examine Îm,m+r(ω).

3.2.2 Îm,m+r(ω)

The term Îm,m+r(ω) is the sum of all the contributions to the input current from single voltage

pulses when the interval [Ao
m,Bo

m] precedes the interval [Ao
p,Bo

p]. In this case, we have, from (3.7)

and (3.3),

Îm,m+r(ω) =
1

L

∑

o

∑

m

∞
∑

r=1

ψ̂(ω − iγ;Ao
m+r,Bo

m+r)ψ̂(iγ;Ao
m,Bo

m).

From (3.8),

Îm,m+r(ω) =
1

L

∑

o

∑

m

∞
∑

r=1

e−iωmT e−ir(ω−iγ)T
∑

np

Qn(ω − iγ)Qp(iγ)e
inωs(m+r)T

×eipωsmT ei(n+p)φo ,

=
1

L

∑

o

∑

mnp

∞
∑

r=1

e−i(ω−(n+p)ωs)mT e−i(ω−iγ−nωs)rTQn(ω − iγ)

×Qp(iγ)e
i(n+p)φo ,

=
1

L

∑

o

∑

mnp

e−i(ω−(n+p)ωs)mT

e−i(ω−iγ−nωs)T − 1
Qn(ω − iγ)Qp(iγ)e

i(n+p)φo ,

=
1

L

∑

o

∑

mnp

e−i(ω−nωs)mT

e−i(ω−iγ−pωs)T − 1
Qp(ω − iγ)Qn−p(iγ)

∑

o

einφo .

Applying the Poisson re-summation formula determines

Îm,m+r(ω) =
2π

LT

∑

mn

δ(ω − Ωmn)

[

∑

p

Qp(ω − iγ)Qn−p(iγ)

e−i(ω−iγ−pωs)T − 1

]

∑

o

einφo .
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Summing over o, we have, from (3.11),

Îm,m+r(ω) =
6π

LT

∑

mn

δ(ω − Ωm,3n)

[

∑

p

Qp(ω − iγ)Q3n−p(iγ)

e−i(ω−iγ−pωs)T − 1

]

.

As for Imm(t), the only frequencies with a non-zero contribution to Im,m+r(t) are of the form

Ωm,3n (as indicated by the δ(ω − Ωm,3n) term in Îm,m+r(ω)). We now combine our expressions

for Îm,m+r(ω) and Îmm(ω) to determine Î(ω).

3.2.3 I(t)

The Fourier transform of the input current drawn from the upper DC source is, from (3.5), and

sections 3.2.1 and 3.2.2,

Î(ω) =
6π

T

∑

mn

δ(ω − Ωm,3n)

[

1

R

(

Q3n(ω)−
∑

k

eγT/4(−1)kSk(iγ)Q3n−k(ω − iγ)
)

+
1

L

∑

p

Qp(ω − iγ)Q3n−p(iγ)

e−i(ω−iγ−pωs)T − 1

]

.

Note that the δ(ω−Ωm,3n) term indicates that the only frequencies with a non-zero contribution

to the input currents are of the form Ωm,3n. Therefore, the upper input current I(t) has Fourier

series

I(t) =
∑

mn

Im,3ne
iΩm,3nt,

where

Im,3n =
3

RT

[

Q3n(Ωm,3n)−
∑

k

eγT/4(−1)kSk(iγ)Q3n−k(Ωm,3n − iγ)

+γ
∑

p

Qp(Ωm,3n − iγ)Q3n−p(iγ)

e−i(Ωm,3n−p−iγ)T − 1

]

. (3.13)

The evaluation of each Fourier coefficient requires two separate infinite sums over k and p.

Furthermore, the Qn(ω) and Sn(ω) terms require a further infinite sum to be evaluated.

Finally, we note that it is trivial to determine further input currents from the upper input current

I(t) calculated in this section. For example, the input current drawn from the lower DC source

of a three-phase SVM inverter is equal to minus the upper input current (see [49], for example).

Similarly, the input currents of a three-phase inverter wired in the Y configuration are equal to

the input currents determined here, divided by three (see appendix C and [44], for example).

3.3 Analysis of the Frequency Spectrum

In this section we present frequency spectra for the upper input current of a three-phase SVM

inverter with a series RL load. Because the Fourier coefficients of I(t) decay slowly with respect

to n (for fixed m), when ωc/ωs ∈ Q multiple carrier groups contribute to each peak in the

frequency spectrum. We are interested in peaks with magnitude 10−5 and greater, therefore

each peak in the spectrum is a sum over Fourier coefficients, truncated so that all contributions
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Figure 8.2: Frequency spectrum of the input currents of a three-phase SVM inverter wired in the

∆ configuration, where M = 0.9, ωc = 21ωs and R = 1. Furthermore, in (a), L = 1, in (b),

L = 0.1, and in (c), L = 10.

with magnitude 10−5 and greater are accounted for. Thus, in the spectra in this section we plot

the amplitude
∣

∣

∣

∣

25
∑

k=−25

Im+k,n−ωck/ωs

∣

∣

∣

∣

,

where Imn is given in (3.13), against the harmonic order Ωmn/ωs. Because we plot spectra with

ωc = 21ωs (in other words ωc/3ωs ∈ Z) and, from (3.13), Imn is non-zero when n is a multiple

of 3 only, there is contribution to the spectra when the harmonic order is a multiple of 3 only.

If ωc/3ωs /∈ Z, there will be contributions at all harmonic orders. We illustrate the spectrum of

I(t) for a range of ratios γ in figure 8.2.

We now examine the effects of altering the impedances on the spectrum of I(t). For all γ, there

is a dominant DC component, as expected (see [75], for example). The DC component increases

in magnitude as L → ∞, for fixed R. Additionally, for all γ, the dominant low-frequency

ripple component is at 3ωs, and the dominant high-frequency ripple component is at ωc. As

L → 0, for fixed R, the current ripple components increase in magnitude, and the peak at ωc

becomes increasingly dominant. We also note that the number of peaks in each carrier group
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with magnitude 10−5 and greater decreases as L→∞, for fixed R.

4 Conclusions

In this chapter we have determined frequency spectra for the input current of three-phase SVM

inverters with series RL loads. This work extends [60], where spectra were determined for three-

phase SVM inverters with highly inductive series RL loads.

The reason calculation of input currents for SVM inverters is limited to [60] is because the math-

ematical models for SVM inverters are more complex than those for inverters that use standard

PWM techniques. In this chapter we have used the single-sum method of [31, 33] to calculate the

input currents, as it derives Fourier series for the input currents with coefficients that converge

faster than the Fourier coefficients calculated using the alternative direct method [40]. We have

also demonstrated the flexibility of the single-sum method in this chapter. Calculations using the

single-sum method are predominantly in the frequency domain here, similar to the calculations

in [33]. This is an alternative approach to the previous calculations using the single-sum method

in chapters 3, 4 and 6 and in [31].

We have calculated, using the single-sum method, closed form expressions for the input currents

of a three-phase inverter with a series RL load for the first time here, allowing for immediate

identification of the harmonic content of the input current waveform. We demonstrated, in this

chapter, that the amplitude of the current ripple components is reduced for series RL loads

where the inductance is greater than the resistance.
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Conclusions

In this thesis we have used alternative methods of Fourier analysis to those used in engineering

literature to calculate closed-form expressions for the currents and voltages of various PWM

inverters. Output voltages are well known (see [17–19, 31, 46, 48, 49, 77, 83, 111], for example),

but there are very few examples of input current calculations (see [31, 40], for example). Our

analysis fell into two main categories: use of the Poisson re-summation method to calculate

output voltages, and use of the single-sum method to calculate input currents. Both the Poisson

re-summation method and the single-sum method have been used previously in [31, 33], and they

are used in this thesis because they are better than the standard methods used in engineering

literature.

We demonstrated in chapter 2 that the Poisson re-summation method is more compact than the

conventional Black’s method [14], and determines identical results. The common method used to

calculate input currents is the direct method, used in [40, 71, 86, 94]. The direct method is more

straightforward than the algebraically complex single-sum method, but determines Fourier series

for the input currents that converge slowly in comparison to those found using the single-sum

method, as shown in chapter 3. Therefore, the algebraic complexity of the single-sum method

is advantageous, because a practitioner plotting input current spectra from Fourier coefficients

derived using the single-sum method will require less computational processing power than using

coefficients found using the direct method.

While the exposition of the Poisson re-summation method and the single-sum method is of great

importance in this thesis, the calculation of previously unknown (or approximated) spectra

for inverters with dead time or SVM inverters is more important. The voltages and currents of

inverters with dead time are generated with additional undesirable components in their spectrum,

compared to inverters without dead time (see [26, 34], for example). Analysis of the additional

components is limited. This is because the mathematical models for inverters with dead time

are more complex than those for inverters without dead time, and consequently deriving spectra

is more difficult. In particular, the voltage outputs of a two-phase PWM inverter with dead time

have only been calculated by making approximations that lead to errors in the voltage spectra
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in [111] previously. We have addressed this in this thesis, calculating the voltage outputs of

two-phase and three-phase PWM inverters with dead time for the first time. These calculations

are made feasible by the Poisson re-summation method. Furthermore, use of the single-sum

method has enabled us to calculate the input currents of a single-phase PWM inverter that

incorporates dead time for the very first time here. The input currents of SVM inverters have

only been calculated for inverters with highly inductive series resistive-inductive (RL) loads

previously [60]. We have addressed this issue in this thesis, extending analysis to a further range

of series RL loads.

We now discuss our analysis using the Poisson re-summation method, which we have used in

chapters 2, 5 and 7. Because the mathematical models for PWM inverters with dead time and

SVM inverters are complex, we first examined PWM inverters without dead time in chapter 2

as an intermediate step to introduce the Poisson re-summation method. The voltage outputs of

single-phase, two-phase and three-phase PWM inverters without dead time are well known using

Black’s method (see [49], for example). The relative compactness of the Poisson re-summation

method was demonstrated in chapter 2 of this thesis, where the voltage outputs of single-phase,

two-phase and three-phase PWM inverters were calculated using both the Poisson re-summation

method and Black’s method.

The theoretical results of chapter 2 have been verified with simulated spectra. The agreement

between analytical spectra calculated using the Poisson re-summation method, and spectra gen-

erated by taking fast Fourier transforms of simulated voltage output waveforms is very good.

The calculations of chapter 2 presented the key steps in the Poisson re-summation method,

which meant that the calculations in chapter 5 (where the Poisson re-summation method was

used to calculate output voltages for inverters with dead time) could be more direct. The voltage

outputs for single-phase PWM inverters with dead time have been calculated previously in [34]

using the Poisson re-summation method, but in practice two-phase and three-phase inverters

are more widely used (see [95], for example). Calculation of output voltages for two-phase and

three-phase PWM inverters with dead time is limited. In chapter 5 we rectified this, and used the

Poisson re-summation method to calculate, for the first time, the voltage outputs of two-phase

and three-phase PWM inverters that incorporate dead time.

The calculations in chapter 5 are analytically complex compared to the calculations of chap-

ters 2. Despite this complexity, however, the calculations are more compact using the Poisson

re-summation compared to the algebraically involved Black’s method (by comparison with cal-

culations in [111]).

SVM inverters are also widely used, but analysis of the voltage outputs is limited to a few exam-

ples in [19, 49, 77] because the mathematical models for SVM inverters are complex compared

to the mathematical models for standard PWM inverters. We demonstrated, in chapter 7, that

protracted calculations using Black’s method to determine the voltage outputs of a SVM inverter

without dead time in [49] are significantly reduced using the Poisson re-summation method. We

also derived spectra for the voltage outputs of a SVM inverter by taking fast Fourier transforms

of simulated output waveforms. The agreement between analytical and simulated spectra con-

firmed that our calculations of voltage spectra for a three-phase SVM inverter using the Poisson
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re-summation method are correct.

The output currents are readily determined from the output voltages, provided the load is known.

Therefore, from the voltage outputs calculated in chapters 2, 5 and 7 for a range of PWM and

SVM inverters, we have calculated the equivalent output currents in chapters 3, 6 and 8. While

these are valuable results, the calculation of input currents is of greater importance.

Calculation of input currents is difficult because input currents switch between the output cur-

rents in a complex way. There are two methods used to calculate the input currents: the direct

method [40], and the single-sum method [31]. In this thesis we mainly used the single-sum

method, because Fourier coefficients for the input currents derived using the single-sum method

converge quickly compared to coefficients derived using the direct method. The single-sum

method is more algebraically complex than the direct method, however.

Previously, analysis using the single-sum method has been used to determine input current

spectra for single-phase and two-phase inverters with series RL loads in [31]. In practice, analysis

of three-phase inverters is important (see [50], and the references within), and we analyse the

input currents of a three-phase inverter in chapter 3. Specifically, we calculated the input

currents of a three-phase PWM inverter with a series RL load using the single-sum method for

the first time. This substantially improves the results of [40, 86, 94], where the input currents

of a three-phase PWM inverter are derived using the direct method. We also reproduced the

results of [31] in chapter 3 to illustrate the key steps in the single-sum method. Furthermore,

we calculated input current spectra for a single-phase PWM inverter using the direct method

(reproducing calculations in [40]), in order to demonstrate the merits of both methods to a

practitioner. The accuracy of the analytical results in chapter 3 has been verified by comparison

with results generated by numerical simulations of the inputs of single-phase, two-phase and

three-phase PWM inverters.

In chapter 4, we calculated the input currents of single-phase, two-phase and three-phase PWM

inverters with general output impedance. This generalises the results of [31, 40, 86, 94]. Ad-

ditionally, spectra for input currents for PWM inverters with a specific output impedance can

be readily determined from the calculations of chapter 4. Therefore, time consuming analysis is

avoided for future applications of the single-sum method for loads not examined in this thesis.

In chapter 6 we used the single sum method to calculate input currents for a PWM inverter with

dead time, which built on simpler calculations in chapters 3 and 4 for PWM inverters without

dead time. Specifically, in chapter 6, we determined the input currents of a single-phase PWM

inverter with dead time for the first time. The dead time effects on the input currents was found

to have a complex relationship with the length of the dead time for inverters with series RL

loads. These results are important for the design of input filters for single-phase PWM inverters

with dead time. We note that the single-sum method could be extended to calculate the input

currents of two-phase and three-phase PWM inverters with dead time.

In chapter 8 we used the single-sum method to calculate input currents for three-phase SVM

inverters with series RL loads. So far, the input currents of SVM inverters have only been

calculated by approximating the output currents as sinusoidal (see [60], for example), and the
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analytical results are limited to highly inductive series RL loads. We have addressed this here,

and provided results for all series RL loads. It should also be possible to extend the calculations

of chapter 8 to incorporate other load types, such as resistive only or series resistive-inductive-

capacitive (RLC) loads (see [33, 105], for example).

There are a wide range of other PWM inverter designs that have not been considered in the

scope of our research. For these inverter designs, use of the Poisson re-summation method and

the single-sum method could potentially determine previously unknown spectra, or reduce the

algebraic complexity of previous calculations. For example, in [83], output voltage spectra for

a PWM inverter with a multiple-frequency signal wave are determined using Black’s method.

The Poisson re-summation method would significantly reduce the algebraic complexity of the

calculations in [83]. Furthermore, the single-sum method potentially allows for calculation of

input current spectra for the inverter designs discussed in [83]. There are also many multi-phase

PWM inverter designs that have not been examined in this thesis (we have examined two-phase

and three-phase PWM inverters). In [72, 73], there are a range of multi-phase PWM inverters for

which our methods could easily be applied to determine voltage spectra at a reduced analytical

cost, and determine input current spectra for the first time.

SVM inverters with dead time have not yet been examined analytically, even though they are

widely used [8, 108]. The effects of dead time on the output voltages of SVM inverters have been

documented in [68], and use of the Poisson re-summation method could potentially determine

voltage spectra to complement these findings. The effects of dead time on the input currents

of SVM inverters has been examined previously in [24], however, spectra for the input currents

have never been calculated analytically. It should be possible to apply the single-sum method

to SVM inverters with dead time in order to determine unknown input current spectra.

In this thesis, the voltages and currents of PWM inverters that incorporate dead time were all

determined with the assumption that the load is highly inductive, and with a limit on the length

of the dead time. While these assumptions are entirely reasonable, the results of our analysis are

limited to certain inverter designs. More analysis is required for PWM inverters that have highly

resistive series RL loads and resistive only loads, for example. Calculations are also required

that allow for longer dead time.

PWM is not only used to convert DC power supplies to AC supplies, it also has many other

applications. Thus, research using the Poisson re-summation and single-sum method has wider

applications. For example, PWM is used in high-fidelity audio amplifiers because naturally sam-

pled PWM does not generate low-frequency distortion, and the Poisson re-summation method

has been used to calculate spectra for class-D audio amplifiers (see [32], and, more recently, [113],

for example).

There are other fields that use PWM, where application of the Poisson re-summation method and

the single-sum method might be of interest. In [104] PWM is used in fibre optic communications

because it has the benefit of being able to mix digital and analogue signals with ease. PWM

devices have also been used to send neurological signals from the brain to muscles otherwise

unusable due to paralysis [28]. More recently, PWM has been integral to the design of tablet

PC’s [9, 10] and modern mobile phones [56]. This is because PWM devices have low power loss,
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and can efficiently use power from a limited battery supply.
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A

Average Values

1 Average Value of vx(t)

If we let I be the average value of vx(t), then

I = lim
r→∞

1

2r

∫ r

−r

vx(t) dt,

= lim
r→∞

1

2r

∫ r

−r

(

1− 2
∑

m

ψ(t;Ax
m,Bx

m)

)

dt,

whereAx
m and Bx

m are defined similarly to (2.4) of chapter 2, with signal wave sx(t) = M cos(ωst+

φ), for some phase φ. Therefore,

I = lim
N→∞

1

2NT

N−1
∑

m=−N

∫ (m+1)T

mT

(

1− 2
∑

n

ψ(t;Ax
n,Bx

n)

)

dt,

= lim
N→∞

1

2NT

N−1
∑

m=−N

∫ (m+1)T

mT

(

1− 2ψ(t;Ax
m,Bx

m)

)

dt,

= lim
N→∞

1

2NT

N−1
∑

m=−N

[

T + 2Ax
m − 2Bx

m

]

,

= lim
N→∞

1

2N

N−1
∑

m=−N

[

1− (1− sx(mT ))

]

,

= lim
N→∞

1

2N

N−1
∑

m=−N

sx(mT ). (A1-1)

Substituting in the expression for the signal wave, we have

N−1
∑

m=−N

sx(mT ) =

N−1
∑

m=−N

M cos(ωsmT + φ),

= M
sin(ωs(N − 1/2)T + φ) − sin(ωs(−N − 1/2)T + φ)

2 sin(ωsT/2)
, (A1-2)
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provided the denominator is not 0. Since sinωsT/2 = sinπωs/ωc is always non-zero in this

thesis because we assume that ωc > ωs (consequently ωs/ωc never takes an integer value), the

denominator will never be zero.

It is clear that equation (A1-2) is a real-valued bounded function in N . Therefore, from (A1-1),

in the limit N →∞, I = 0.

2 Average Value of vx(t) Incorporating Dead Time

Similar to the previous section, we let I be the average value of vx(t), then

I = lim
r→∞

1

2r

∫ r

−r

vx(t) dt,

= lim
r→∞

1

2r

∫ r

−r

(

1− 2
∑

m

ψ(t;A′
m,B′

m)

)

dt,

where A′
m and B′

m are defined similarly to (2.7) and (2.8) of chapter 5, respectively, with signal

wave sx(t) = M cos(ωst+ φ), for some phase φ. Therefore,

I = lim
N→∞

1

2NT

N−1
∑

m=−N

1

2NT

∫ (m+1)T

mT

(

1− 2ψ(t;A′
m,B′

m)

)

dt,

= lim
N→∞

1

2N

N−1
∑

m=−N

(M cosωsmT +DΨ(mT )),

From the previous section, we know that

lim
N→∞

1

2N

N−1
∑

m=−N

sx(mT ) = 0.

Therefore, we now examine

lim
N→∞

D

2N

N−1
∑

m=−N

Ψ(mT ).

Using the Poisson re-summation formula, we have

N−1
∑

m=−N

Ψ(mT ) =
1

T

N−1
∑

m=−N

∫ ∞

−∞
e2πimt/T Ψ(t) dt,

=
1

T

N−1
∑

m=−N

∫ ∞

−∞
eimωctΨ(t) dt.

The Fourier transform of a low-frequency function (Ψ(t)) at a high frequency (imωct) is equal

to zero. Thus we have

I = 0,

in other words, the average value of vx(t) is equal to zero.
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B

Converting Between Real and Complex

Fourier Series

In this thesis we derive complex Fourier series for all of our voltage outputs and input/output

currents. Engineering texts, such as [49], tend to have voltages and currents written in terms of

real Fourier series, so here we record the relationship between the coefficients in real and complex

Fourier series. In other words we document how to convert between a real-valued function

F (t) =
∑

mn

Fmne
iΩmnt, (B-1)

and

F (t) =
1

2
A00 +

∞
∑

m=1

(Am0 cosmωct+Bm0 sinmωct)

+

∞
∑

n=1

(A0n cosnωst+B0n sinnωst)

+
∞
∑

m=1

∑

n

′(Amn cosΩmnt+Bmn sin Ωmnt), (B-2)

where
∑

n
′ is the sum over all n from −∞ to ∞ except 0.

From the Fourier series written in (B-1) and (B-2) we have that (for m > 0, or m = 0 and n > 0)

FmnE
iΩmnt + F−m,−ne

iΩ−m,−nt = 2Re(Fmne
iΩmnt) = Amn cosΩmnt+Bmn sin Ωmnt.

It is evident from Fmn = F−m,−n that

2F−m,−n = 2Fmn = Amn − iBmn,

and 2F00 = A00. This concludes how to convert between equivalent real and complex Fourier

series.
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C

Equivalence of ∆ and Y Wiring

Configurations

In this appendix we illustrate the equivalence of the ∆ and the Y wiring configuration of a

three-phase inverter, following the accounts in [44]. For a three-phase inverter wired in the

Y configuration, each phase-leg is connected to a floating point p by a load, as illustrated in

figure C.1. By Kirchhoff’s current law, if phase-leg a is connected to the upper DC source, the

contribution to I(t) from phase-leg a is Ia(t) = iap(t), and if phase-leg a is connected to the

lower DC source, Ia(t) = 0. In other words,

Ia(t) = iap(t)
∑

m

ψ(t;Ba
m,Aa

m+1),

where Ba
m, Aa

m+1 are defined similarly to (2.4) of chapter 2 for PWM inverters, and similarly

to (3.2) of chapter 7 for SVM inverters. Note that the contributions to the input current Ib(t)

and Ic(t) from phase-leg b and c, respectively, are defined similarly to Ia(t). Therefore,

I(t) =
∑

m

[

iap(t)ψ(t;Ba
m,Aa

m+1) + ibp(t)ψ(t;Bb
m,Ab

m+1) + icp(t)ψ(t;Bc
m,Ac

m+1)

]

, (C-1)

where Bb
m, Ab

m+1 and Bc
m, Ac

m+1 are defined similarly to Ba
m, Aa

m+1.

+1

−1

ca b

p

Figure C.1: Circuit diagram of a three-phase inverter wired in the Y configuration.
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We now examine the output currents iap(t), ibp(t), and icp(t). Assuming that all load impedances

are equal we have, from [52],

va(t)− vp(t) = Ziap(t), vb(t)− vp(t) = Zibp(t), vc(t)− vp(t) = Zicp(t),

where Z is a differential operator, and vp(t) is the voltage of the floating point p. The sum of

all the output currents is zero, in other words

iap(t) + ibp(t) + icp(t) = 0.

Therefore

vp(t) =
1

3
(va(t) + vb(t) + vc(t)).

This means that the output current iap(t) can be written as

iap(t) = Z−1(va(t)− vp(t)),

= Z−1 1

3
(2va(t)− vb(t)− vc(t)).

The current generated by the voltage output va(t) is iad(t) = Z−1va(t) (similarly for vb(t) and

vc(t)). Therefore, the output current iap(t) is given by

iap(t) =
1

3
(2iad(t)− ibd(t)− icd(t)),

=
1

3
(iab(t)− ica(t)).

Similarly,

ibp(t) =
1

3
(ibc(t)− iab(t)), icp(t) =

1

3
(ica(t)− ibc(t)).

Substituting in these equations for iap(t), ibp(t) and icp(t) we have, from (C-1),

I(t) =
1

3
(Iab(t) + Ibc(t) + Ica(t)),

where Iab(t) is given in (4.5) of chapter 3, and Ibc(t), Ica(t) are defined similarly. Therefore,

from (4.4) of chapter 3, the input currents of a three-phase inverter wired in the Y configura-

tion are equal to a third of the input currents wired in the delta configuration, and thus have

equivalent frequency spectra (subject to the appropriate scaling). More generally, a three-phase

inverter wired in the ∆ configuration is equivalent to a three-phase inverter wired in the Y

configuration if the impedances are as those given in figure C.2.

We also note that, for a three-phase inverter wired in the Y configuration, the voltage differences

across the load are given by

vap(t) = va(t)− vp(t) = 1
3

∑

mn

amn(2− e−2πin/3 − e2πin/3)eiΩmn ≡
∑

mn

vmne
iΩmnt,

vbp(t) =
∑

mn

vmne
−2πin/3eiΩmnt, vcp(t) =

∑

mn

vmne
2πin/3eiΩmnt,

where amn are the Fourier coefficients of the voltage output va(t), calculated in chapter 2 for

PWM inverters without dead time, chapter 5 for PWM inverters with dead time and in chapter 7

for SVM inverters.
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Figure C.2: Circuit diagrams to illustrate the relationship between the load impedances of equiv-

alent ∆ and Y configurations.
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