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ABSTRACT

In cancer, neoplastic cells can develop resistance to a variety of drugs, even to

those drugs that cells have never come across. This makes the cancer therapy even

more demanding and challenging, as clinicians have to take into consideration that

the heavy medication they administer to the patients can be ineffective. This phe-

nomenon acts as a motivation to explore the mechanisms behind molecular transport

across the cell membrane. Using cancer cells and fluorescent dyes, we can detect

experimentally whether a dye molecule can enter the cell. The most important

aim of this research work is to detect whether there is a link between physical pa-

rameters of the cell, like the membrane charge density and the ionic accumulation,

and the molecule’s transport. We then build a mathematical model to explain and

predict what happens during the experimental procedure. Our experiments show

that the dye’s crossing is influenced by alteration of the membrane potential. In de-

tails, when the difference in potential across the membrane increases, then more dye

molecules cross the membrane. Using our mathematical approach, we approximate

the dye crossing the cell membrane via competition between diffusion and electro-

static forces. In that way, we are able to predict a molecule’s movement from the

outside to the inside of the cell when the potential, the distribution of ions and the

electrostatic properties of the membrane are known. Furthermore, it is possible to

predict the transport time of the molecule as well as its distribution in the vicinity

of the membrane area.
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1 Introduction

This is an introductory chapter that contains a literature review covering every

aspect of this work featured in the thesis. The initiative of this work was multidrug

resistance which is described in section 1.1. Section 1.2 is dedicated to cell biology

and electrostatic modelling. In section 1.2.1 basic knowledge on cell biology is

outlined, followed by a brief timeline on the modelling of electrostatics (section

1.2.2) which underpins theory described in Chapter 3. Section 1.3 describes the

biology behind the experimental techniques described in Chapter 2, combined with

results from similar experiments. The final section of the introduction (1.4) presents

information about stochastic modelling in biological systems.

1.1 Multidrug resistance

According to NHS records, cancer is a major health issue in the UK, since “one

in three people will be diagnosed with cancer in their lifetime, one in four will die

of cancer”(http://www.nhs.uk). The situation becomes complicated since four out

of ten human tumours develop drug resistance [82]. In the United States alone,

drug–resistant tumours result in 500,000 deaths per year [82]. This observation is

supported by numerous reports [5, 10, 12, 19, 23, 28, 29, 34, 37, 40, 44, 47, 48, 49,

50, 51, 55, 59, 66, 67, 75, 82, 83, 91, 93, 94, 95] which suggest that some types of

neoplastic cells resist known chemotherapeutic drugs.

Patients during the post–surgical period or their in–hospital stay have a high

risk of suffering from infections. One of the most frequent and serious infections

is MRSA (Methicillin Resistant Staphylococcus Aureus). MRSA affects more than

300 out of 1,000,000 people [65], while 20 per cent of these cases prove fatal. The

drugs used against MRSA have limited effect, making prevention the best treatment

[65].
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Resistance to drugs is also found in malaria parasites against antimalarials, in

bacteria against a broad spectrum of antibiotics, even in plant cells against herbicides

[7, 34, 47, 57, 67, 68, 71, 82, 91]. All these examples are part of a phenomenon known

as Multidrug Resistance (MDR). MDR is a frequent problem, since it is common to

a large group of prokaryotic and eukaryotic cells [47].

MDR motivates the work presented here. According to published theoretical and

experimental work [5, 6, 7, 10, 19, 25, 29, 34, 36, 40, 48, 50, 51, 54, 55, 57, 67, 75, 76,

77, 78, 81, 82, 83, 85, 91, 93, 92, 94, 95], MDR is suspected to be connected (directly

or indirectly is yet to be identify) to the membrane potential, the intracellular pH

and the lipid distribution of affected cells.

Our goal is to identify the relationship between membrane potential, membrane

charge and pH for a single cell and to understand the pathway of a molecule from

outside the cell to the inside when subjected to different membrane potentials. We

pursue this using a combination of experimental and theoretical approaches.

1.2 Cell biology and electrostatic modelling

1.2.1 Biology of the cell

The cell is the basic unit for all biological organisms. It contains vital information

and provides substances for the survival of the organism. Because of its importance,

the cell needs protection from the surrounding environment. This role is performed

by the cell membrane. The membrane acts as a physical boundary separating the

cell from its environment. The membrane is selectively permeable, allowing the

crossing of certain molecules. This works in two ways, when the membrane functions

properly; only the molecules that the cell needs are able to cross the membrane,

while toxic compounds remain outside. Moreover the membrane is responsible for

the communication of the cell with other cells [39].
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Figure 1: Part of the phospholipid bilayer as described in the Fluid Mosaic Model [98], where

the circles represent the hydrophilic part of the phospholipids, the lines between the circles the

lipophilic part of the phospholipids and the large structures the proteins.
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Most cell membranes consist of a double bilayer of phospholipids with embedded

proteins (Figure 1). This lipid bilayer is a continuous structure. The outer part of

the bilayer, which contacts water, is ionic. The core of the bilayer is hydrophobic

[39]. The membrane core is normally free of charge, whereas the outer parts of the

membrane have charged phospholipids with an overall negative charge density of

around 0.05 C/m2 [11]. The volume, size and charge of phospholipids, along with

their distribution on either side of the bilayer, have an effect on the shape of the

membrane because of electrostatic repulsion and attraction forces [90].

On the other hand, proteins are arranged discontinuously at the membrane. They

can either bind to the membrane or cross the membrane. In some cases, proteins

are freely soluble in the cytoplasm [39]. The thickness of the membrane varies but

its average value is 7.5 nm [39]. The membrane structure is interrupted by pores.

Some pores are filled with water, while others are lined with proteins and allow the

crossing of specific compounds [39]. The latter are called “channels” [90].

Inside and outside the cell, there is a dilute aqueous solution of salts, especially

containing sodium chloride (NaCl) and potassium chloride (KCl), which can be

found dissociated into Na+, K+ and Cl− ions. The membrane prevents the free flow

of these ions in or out of the cell. Ions can cross the membrane when subjected to

diffusive and electrical forces. The different values of concentrations create a poten-

tial difference across the membrane. For this reason, the cell membrane is usually

modelled as a capacitor in parallel with an ionic current, using basic electrostatic

models [39] (Figure 2).

The membrane is a complicated biological system in terms of electrostatics be-

cause of its ability to self–regulate and re–establish equilibrium. For these reasons,

we use basic electrostatic equations to approximate the cellular mechanisms. These

equations are described in the following sections.
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Figure 2: Capacitor-Resistor Model of the Membrane [39]
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1.2.2 Basic principles of electrostatics

Research in electrostatics dates back to the 19th century. In 1800, Volta experi-

mented on an electrode–electrolyte interface and managed to produce an electrical

potential and thus to study direct current electricity [104]. Twenty–six years later,

Ohm decided to change the Voltaic battery and, by experimenting on his new bat-

tery, he discovered the electrostatic law that bears his name [63]. It was not until

1834 that Faraday introduced the term “electrode” to describe the metallic plate

used in electrostatic experiments [17]. In 1871, Varley [103] was the first to measure

the capacitance of an interface while eight years later Helmholtz [33] was the first

to model the electrode–electrolyte interface. He proposed [33] that a double layer

of charge exists at the interface (Figure 3). This layer would be able to act as a

charged capacitor, separating charges on either side of the membrane [33]. Nernst

[61] and Brunner [8, 9] studied the problem of steady conductivity between parallel

flat electrodes.

Gouy in 1910 suggested that the excess charge in the solution near an electrode

can be viewed as a capacitance [30]. Both Gouy [30] and Chapman [13] suggested

how a layer of charge may be smeared uniformly over a planar surface immersed in

an electrolyte solution. Note that we use the term “Gouy–Chapman model” when

referring to the model based on a set of advection–diffusion equations (also termed

the Nernst–Planck equations, see equation (1) below), one for each ion species, cou-

pled to the Poisson equation (equation 2) for the electric potential [80]. This model

suggests that the total amount of charge is balanced out mostly by the distribution

of counterions (ions of the opposite sign of the electrode) and less by the reduction of

co–ions (ions of the same sign with the electrode) [88]. This results in non–negligible

errors when assuming an asymmetrical electrolyte (the number of one ion species is

larger than the other) to be symmetric (the number of anions equals the number of

cations).

In 1924, Stern [101] realized that modelling electrolyte ions as point charges
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was unsatisfactory. Thus, he introduced the Stern layer (Figure 3) between the

inner and the outer planes that Helmholtz had introduced in this own model [33].

In the Helmholtz planes the charge and the potential distribution are assumed to

increase linearly as we approach the membrane from its outer part. There is also

a diffusion layer further from the electrode where the Gouy–Chapman model is

applied. The “compact” layers (Helmholtz planes) can be found within a molecular

distance of the surface, whereas the “diffuse” part (Gouy–Chapman) is extended

into the solution at the scale of screening length (Figure 3). Physically the compact

layer is intended to describe ions (at the outer Helmholtz plane) where solution

molecules are in contact with the surface, although specifically absorbed ions may

be also included [3]. Zimmerman (1930) experimented on, and provided proofs on,

the effect of electrolyte concentration on the capacitance and the resistance of the

electrode–electrolyte interface [110]. This work was followed by a model presented

by Murdock and Zimmerman [60]. Later, Grahame refined the “Stern” model for

the capacitance of the compact layer by performing his own experiments [31].

We now present the basic equations of the Gouy–Chapman model for an elec-

trolyte containing a cation and an anion species, between two parallel and planar

electrodes which are located x∗ = ±L [80]. Note that x∗ is the axis perpendicular

to the planar electrodes, whereas 2L is the distance between them. At the surface

of the capacitor, a reaction takes place where one or both ion species are produced

and/or consumed. The Nernst–Planck expression for the ions is

∂C±

∂t
= −D±

(
∂C±

∂x∗
± F

RT
C±

∂φ∗

∂x∗

)
(1)

where ± stand for the cation and the anion respectively, C± for the concentration,

t for time, D± for the diffusion coefficient of the ions, φ∗ for the electric potential,

F for the Faraday constant, R for the ideal gas constant and T for the absolute

temperature.

The Poisson equation for the electric potential is described as

−ε∗ d

dx∗

(
dφ∗

dx∗

)
= ze

(
C+ − C−

)
(2)
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Figure 3: Gouy–Chapman model of the solid–electrolyte interface describing the potential vs. the

distance from the wall of the capacitor. The inner Helmholtz plane consists of non hydrated ions,

while the outer Helmholtz plane consists of hydrated counterions only. The diffuse layer starts

from the outer Helmholtz layer. The Stern layer is found between the two Helmholtz planes [89].
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where ε∗ is the electric permittivity and ze the ionic valence.

The Nernst–Einstein relation has been used in (1) as

D± = RTu± , (3)

where u± stands for the mobility of the ion. In the steady state case, there is no

ionic flux,

−D±
(
∂C±

∂x∗
± F

RT
C±

∂φ∗

∂x∗

)
= 0 . (4)

At large distances from the electrodes, the concentrations of ions reach a constant

value

C+ → C∞+ , (5)

C− → C∞− . (6)

where C∞+ ,C∞− are the concentrations for the cation and the anion respectively

at the far fields, meaning really far from the membrane layers.

Depending on the assumptions used for this set of equations, various authors

have derived analytical equations for simple cases and numerical approximations for

more complex models[2, 11, 21, 20, 24, 52, 56, 64, 79, 84, 88, 96, 97].

As stated in section 1.2.1, the cell membrane resembles a capacitor (Figure 2).

Most membrane models use a Poisson equation to describe the attraction of coun-

terions to the membrane surface coupled to a Boltzmann equation to describe the

attraction and repulsion forces between electrolyte ions and surface charges. To

describe the ionic distribution in the electrolyte solution we use the Nernst equation

[24, 52, 79, 97]. The models use different approaches depending on whether the di-

electric constant of the electrolyte is uniform or not [2, 11, 39], whether the charges

on the membrane are uniformly smeared over the planar membrane [2, 11, 20, 21, 56]

or whether the ions in the electrolyte are point charges [2, 11, 56].

The most widely known model is the Gouy–Chapman model (1,2). For the cell

membrane case, we assume that the membrane charges are smeared uniformly over
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Figure 4: Schematic figure of the membrane where 2α is the width of the membrane[79], where

the upper part is the inside of the cell and the lower part is the extracellular environment.

the membrane surface, the electrolyte solution is a structureless medium with a con-

stant dielectric coefficient and the ions in the electrolyte solution are point charges

[56]. It is the simplest possible model for the electrolyte solution but it works as

documented by experimental data [56, 99].

For an electrolyte solution with an anion and a cation species near the cell mem-

brane, we use equation (1), combined with equation (2) for the potential distribution.

This section provided a brief literature for the cell electrostatics. In the next

section, we will present information about the mechanisms and the chemicals of the

experiments, conducted as part of this study.

1.3 Experimental techniques and findings on membrane potential alter-

ations

We are interested in understanding the way dyes accumulate within the cell. Mea-

suring the membrane potential by using molecular probes is a rather common ex-

periment. There are numerous studies measuring membrane potential in different

kinds of cells [4, 15, 16, 18, 19, 26, 27, 36, 41, 43, 45, 51, 53, 72, 105, 109]. All these

experiments conclude that increased fluorescence intensity of the dye results from
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increased intracellular accumulation of the dye which is enhanced by the depolar-

ization of the membrane.

Because of the ability of the cell membrane to serve as a barrier, the crossing

of molecules via the membrane is described as either active or passive. By active,

we refer to an energy–driven process, whereas passive crossing is energy–free as

a direct effect of molecules’ movement [39] (relying only on thermal fluctuations

driving Brownian motion). Adding valinomycin in the cell environment is a passive

way of promoting potassium ions crossing the cell membrane [15, 16, 25, 35, 36, 39,

100, 105, 106].

Valinomycin (Val) is a selective carrier for potassium ions produced by the bac-

terium Streptomyces fulvissimes. It is a circular molecule of molecular weight 1111.3

with six oxygen atoms on the inside to which a potassium ion binds. Figure 5 rep-

resents the structure of valinomycin.

To explain why valinomycin is selective to potassium ions rather than sodium

ions, we note that both ions are in a water–based environment. Both ions, because

of their positive charge, attract water molecules forming a protective shell around

the cations. When the cations meet valinomycin, they interact with the six inte-

rior oxygen atoms which replace the water molecules of hydration. The fact that

sodium is smaller than potassium hinters the interaction between sodium and all

six oxygen atoms of valinomycin, whereas potassium is able to form a complex with

valinomycin more easily. The interior of this complex is polar whereas the exterior

surface is hydrophobic. This specific structure allows the molecule to enter the oily

core of the membrane. When the complex encounters the membrane surface, the

potassium separates from the complex. In other words, valinomycin enhances the

flux of potassium cations depending on their concentration gradient [16, 35, 100].

Dye molecules are used to detect changes of the membrane potential [4, 15, 18,

27, 36, 41, 42, 43, 45, 46, 51, 53, 72, 105, 109]. In terms of experiments, membrane

potential stands for the potential difference between the intra– and extra– cellular
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Figure 5: Complex of potassium–valinomycin, The ring represents the valinomycin carrier, while

the O stand for the oxygen atoms that are on the inside of the carrier and K+ is an potassium ion

[35].
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aqueous phase. Membrane potential dyes are divided into two categories (slow or

fast) based on the speed, size and mechanism of potential–dependent optical changes

[4, 15, 27, 41, 45, 72, 105, 109].

Slow dyes, also known as “redistribution” or “Nernstian” dyes, respond to mem-

brane potential changes in seconds, are permeant and work by a mechanism involving

potential–dependent redistribution of the dye between the medium and the inside of

the cell, organelle or vesicle [4, 45, 72, 105]. In other words, slow dyes monitor mem-

brane potential by moving across the membrane until they reach equilibrium. All

slow dyes are membrane–permeable cationic or anionic fluorochromes with charge

delocalized over the whole fluorochrome structure. This charge delocalization is un-

doubtedly a prerequisite for the high membrane permeability. The dye permeability

can be modulated by structural features which influence its hydrophobicity [105].

Slow dyes include carbocyanines, oxonols and rhodamine derivatives.

Fast–response dyes respond to membrane potential changes in less than millisec-

onds. So far they have been used in numerous experiments. However there are

certain limitations. They produce a rather modest signal for most fluorescent sen-

sors, so it is necessary to synthesize more sensitive potential probes. Also, because

of the intense illumination they exhibit, many cells could be damaged. This damage

is often a result from the interaction of excited dye molecules with oxygen to form

single oxygens, which in turn leads to the production of free radicals that react with

the membrane components [4, 72, 105].

In order to fully understand and model experimental conditions, we use stochastic

equations due to the noise and the “vulnerability” of the system to changes. The

literature for this approach is described in the next section.
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1.4 Stochastic models of biological systems

Many scientists [14, 22, 58, 62, 73, 86, 87, 107] use stochastic equations to model

biological systems with noise. There are several significant similarities between

biological processes and stochastic theory that allow the use of this approach.

An important consideration is Brownian motion [102]. A Brownian particle in a

fluid environment performs a lot of small and uncorrelated jumps [102]. In macro-

scopic terms, it is not the movement of one Brownian particle that we observe but

rather the average distribution of Brownian particles, provided that the particles

do not interact with one another. These average features vary in ways that can be

described by simple laws [102].

A molecule performing Brownian motion can be subject to two different move-

ments; the one is guided by a concentration gradient and the other one is based on

a field introduced by an external force [86, 87]. The concentration–guided motion

gives a certain direction to the system, while the stochastic process affects the speed

which the system requires to achieve the final state [87].

A Brownian particle is described by a Fokker-Planck equation

∂P

∂t
= − ∂

∂x∗

[
F (x∗)

Mγ
P

]
+D

∂2P

∂x∗2
, (7)

where P (x∗, t) is the probability density of the molecule to be found in given position

x∗ at time t , F (x∗) is the force applied to the molecule, M is the molecular weight

of the particle, D the diffusion coefficient of the molecule and γ the drag coefficient

[102], when the variables of the system are continuous [87]. Note that Pdx is the

probability of the dye being found in the interval (x∗, x∗ + dx∗).

Several cases of biological systems that have been treated with Fokker–Planck

equation are brain activity [108], neural oscillators [38], enzymic cycles [87] and cell

migration [86].

In section 4.2 we will use the Fokker–Planck equation to simulate the movement
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of a molecule from outside of the cell to the inside. Next, we will present the outline

of our work, plus a list of our aims.

1.5 Aims of the present work

In the next chapters, we will describe the experiments (Chapter 2), which we combine

with the mathematical interpretation of the biology (Chapter 3) and we are able to

produce a theoretical model (Chapter 4) for predicting the distribution of molecules

within a cell domain based on altering extracellular conditions.

Researching on MDR has triggered many questions about the way molecules,

larger than ions, cross the membrane. Differences between drug–sensitive and rug–

resistant cells in physical parameters, such as intracellular pH, membrane potential

and lipid distribution on the membrane, suggest to researchers possible investiga-

tion areas. In our work, we focus on how a molecule can be distributed near the

membrane when different concentrations of ions or different potential values apply.

Moreover, we are interested in what happens when the hydrogen concentration (in

other words, pH) is altered as pH is a useful and common parameter for biological

experiments and procedures. To sum up, this work is aiming in defining the relation

between molecule transport, potential alterations, different ionic concentrations and

pH variation. This work will offer a start for a further examination of the links

of MDR with the physical properties of the cell. The next section describes the

experimental techniques and main results.
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2 Experimental materials, methods and results

2.1 Introduction

In this chapter we focus on the experiments supporting this work. These experiments

were performed by the writer to underline the interdisciplinarity of the Marie Curie

Project that funded the studies. We used cells from a cancer cell line and altered

their membrane potential by using chemicals to alter the potassium concentration

inside the cell. These experiments were performed in order to check whether an

alteration in the extracellular environment of the cell could affect the distribution

of a potential sensitive dye. The data from the experiments generally confirm this

hypothesis and allow its use in a generalized model.

2.2 Methods

2.2.1 Materials

Bis–(1,3–dibutylbarbituric acid)–trimethine oxonol (DiSBAC4(3)) and valinomycin

(Val) were purchased from Invitrogen and were used without any further purifica-

tion. Sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2),

magnesium chloride (MgCl2), glucose (C6H12O6) and 4–(2–hydroexylethyl)–1–

piperazineethanesulfonic acid (HEPES) were supplied by the stock of the School of

Veterinary Medicine and Science, University of Nottingham, where the experiments

took place. A continuous drug-sensitive erythroleukemia cell line (K562) was pro-

vided by Dr C. Rauch. For cell culture, we used Roswell Park Memorial Institute

media (RPMI) containing L-Glutamine and 25 mM of HEPES. We also purchased

Phosphate Buffered Saline (PBS) from Invitrogen that was used during the cell

preparation.
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Potassium Solutions Potassium Concentrations

SK1 4.5 mM

SK2 12 mM

SK3 50 mM

SK4 100 mM

SK5 164.5 mM

Table 1: SKi solutions with different potassium concentrations

2.2.2 Cell culture

K562 cells were grown in a solution of RPMI. They were stored in a continuous

culture incubator at 37 ◦C and 5 % of CO2 . They were passaged regularly to

prevent them from forming aggregates and from coming in contact with the walls

of the flask. They were handled in a vacuum and sterile hood in order to decrease

the chances of contamination.

2.2.3 Preparation of solutions

Buffer solutions (labelled SK1 to SK5) were imposed as extracellular medium to

the cells. We prepared five different buffer solutions with different concentrations of

potassium (Table 1) and sodium chloride by keeping the overall amount of cations

and anions constant in all solutions. Besides sodium and potassium chloride, we

also added calcium chloride (0.11099 g in 500 mL of buffer solution) and magnesium

chloride (0.04761 g in 500 mL of buffer solution), as well as glucose ( 0.9008 g in

500 mL of buffer solution) and HEPES (1.19155 g in 500 mL of buffer solution).

All solutions were water–based. Valinomycin solution was prepared by diluting 25

mg of valinomycin powder in 3 mL of anhydrous dimethyl sulfoxide (DMSO). The

dye solution was prepared by dissolving 1 mg of DiSBAC4(3) powder in 608 µL of

Dimethyl Sulfoxide (DMSO).
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2.2.4 Cell preparation

The procedure described below was performed five times, each time with a different

buffer solution. For each buffer solution we repeated the procedures twice to avoid

statistical errors. We will describe the procedure for one buffer solution, i.e. SKi

(Table 1), i =1,...5 , as the same procedure was followed for the rest of the buffer

solutions.

We used 350 mL of cells in culture medium and divided them in seven tubes,

each one containing 50 mL of cell culture. After centrifugation at 1200 rpm for 10

minutes in culture medium, the remaining pellets were transfered in smaller tubes

(eppendorfs) shortly after the supernatant liquid was disposed. The cells were double

washed in 1 mL of PBS, centrifuged for 30 seconds at 7.5 g and resuspended in 1

mL of PBS.

Each eppendorf containing cells was then labelled individually to supply a back-

ground sample, a control sample, a sample for measuring the effects of DMSO as

the dye’s solvent and the remaining four samples were used to check the effects of

different amounts of valinomycin (1, 5, 10, 50 µg ). Cells were then incubated for 20

minutes, followed by centrifugation at 1.2 rpm for 10 minutes, at the end of which

PBS was washed away. In all eppendorfs we introduced 1 mL of SKi, except in the

case of the background sample where we added 1 mL of PBS. Cell solutions were

then transfered on a 96–well plate where 1 mL of cell solution was divided in five

wells.

2.2.5 Measuring fluorescence

Fluorescence intensity signals were obtained with a fluorometer (FLUOSTAR) con-

nected to a DELL computer. The 96–well plate was loaded in the cavity of the

fluometer and DiSBAC4(3) was injected after 2 minutes of fluorescence activity.

The temperature remained constant throughout the entire duration of the measure-
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Sample Label Signal Composition

sample 1 control signal-background signal

sample 2 DMSO effect signal-background signal

sample 3 SKi+Val1 signal-background signal

sample 4 SKi+Val5 signal-background signal

sample 5 SKi+Val10 signal-background signal

sample 6 SKi+Val50 signal-background signal

Table 2: Signal labels for samples, where SKi stands for a buffer solution, Val1 for 1 µg of added

valinomycin solution per 1 mL of sample, Val5 for 5 µg of added valinomycin solution per 1 mL of

sample, Val10 for 10 µg of added valinomycin solution per 1 mL of sample and Val50 for 50 µg of

added valinomycin solution per 1 mL of sample.

ment. Cell suspensions were shaken regularly in order to prevent cells from sticking

on the bottom of the well. The excitation filter was set at 485 nm and the emission

filter at 590 nm.

2.3 Experimental results

Figures 6-10 show the measurements of fluorescence intensity for SK1–SK5 respec-

tively. In order to be able to compare parameters, we have substracted the back-

ground noise; the label of the samples is as described in Table 2.

In Figure 6, adding DMSO results in an increase of the fluorescent intensity

signal compared to that of the control sample. This might be because the DMSO

can destroy parts of the membrane when added in relatively large concentrations in

the cell environment. So, if that’s the case here, the dye would cross the membrane

far more easily and thus the intensity signal increases. In the case of SK1 as a buffer

solution, the potassium concentration is smaller in the extracellular area (4.5 mM

compared to 140 mM inside the cell according to literature [1]). When adding a

small amount of valinomycin (1 µg per mL), the signal seems smaller compared to

the control one at first. In detail, when we add valinomycin we allow potassium

ions to cross the membrane more easily which in this case causes potassium ions to
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Figure 6: Fraction of fluorescence intensity signal when using SK1 with the samples being ex-

plained in table 2, where the red dots represent data from sample 1, green from sample 2, purple

from sample 3, light blue from sample 4, orange from sample 5 and black from sample 6. The

intensity signal is normalised by the intensity signal of the background sample, to avoid noise due

to temporary conditions.
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Figure 7: Fluorescence intensity signal when using SK2 with the samples being explained in table

2, where the red dots represent data from sample 1, green from sample 2, purple from sample 3,

light blue from sample 4, orange from sample 5 and black from sample 6. The intensity signal

is normalised by the intensity signal of the background sample, to avoid noise due to temporary

conditions.
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Figure 8: Fluorescence intensity signal when using SK3 with the samples being explained in table

2, where the red dots represent data from sample 1, green from sample 2, purple from sample 3,

light blue from sample 4, orange from sample 5 and black from sample 6. The intensity signal

is normalised by the intensity signal of the background sample, to avoid noise due to temporary

conditions.
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Figure 9: Fluorescence intensity signal when using SK4 with the samples being explained in table

2, where the red dots represent data from sample 1, green from sample 2, purple from sample 3,

light blue from sample 4, orange from sample 5 and black from sample 6. The intensity signal

is normalised by the intensity signal of the background sample, to avoid noise due to temporary

conditions.
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Figure 10: Fluorescence intensity signal when using SK5 with the samples being explained in table

2, where the red dots represent data from sample 1, green from sample 2, purple from sample 3,

light blue from sample 4, orange from sample 5 and black from sample 6. The intensity signal

is normalised by the intensity signal of the background sample, to avoid noise due to temporary

conditions.
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leave the cell. This tendency will make the crossing of dye molecules more difficult

because of the electroneutrality disturbance. So, the signal will drop. However after

some time, the absolute value of the signal from sample 3 is larger than the absolute

value from sample 2 which may be caused by a higher rate of diffusion of the dye.

Then, as we increase the amount of valinomycin added in the system, the signal

gradually drops with the lowest signal being emitted by the sample with the largest

amount of valinomycin.

In Figure 7, the extracellular concentration of potassium is closer to the concen-

tration of potassium inside the cell, but still smaller. In this case due to unexpected

laboratory conditions (the cells continue to duplicate throughout the day, plus the

experimental error occurred when adding the chemicals) during the procedure, the

graphs are not as straightforward as the rest of the graphs. But, generally, the sam-

ple with the lowest amount of valinomycin exhibits a higher signal than the sample

with the highest amount of valinomycin added.

In Figure 8, the concentration of extracellular potassium ions increases further,

so the tendency of potassium ions to cross the membrane from inside of the cell

to the outside is expected to be slow down because of the smaller concentration

gradient. The same trends as in Figure 6 confirm that the addition of Valinomycin

to the system results in decrease of signal.

Figure 9 is a perfect example of the curves we are expecting from the experiment.

The line from sample 2 is above the curve from sample 1. At the same time, adding

valinomycin results in lower slopes for the curves from samples 3 to 6.

In Figure 10, the extracellular potassium concentration is larger than the con-

centration of the cation intracellularly. The valinomycin addition does not seem to

result in as large changes as figures 6–9. Actually in this case, trends of the curves

as described before are followed after a period of time when mechanisms of the cell

begin to restore equilibrium and electroneutrality inside the cell. This is obvious,

because up to approximately 500 seconds the curves for all samples are close to
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Sample Label SK1 SK2 SK3 SK4 SK5

sample 1 3.8918 2.2646 4.413 3.6328 7.9603

sample 2 5.9865 2.7248 6.4282 6.1079 11.158

sample 3 4.7807 3.371 5.6168 3.0008 6.5549

sample 4 3.8181 1.4677 4.526 2.286 4.5173

sample 5 3.6189 1.8712 2.9825 2.1119 4.2398

sample 6 2.7138 1.6337 2.321 1.3814 2.2567

Table 3: Dimensionless slope values from linear approximation of the curves from Figures 6-10.

each other. In particular, the curve of sample 2 has lower signal values than the

curve of sample 1. This fact is contradictive to the theory already mentioned, but

is explained with the idea of equilibrium restoration.

Although the different laboratory conditions during the experiments (different

amount of cells per mL throughout the day due to mitosis, difference in concentra-

tion of chemicals due to the inability of tools to handle small amounts of chemicals)

do not allow direct comparison between different experiments, for almost every buffer

solution it is obvious that the rate of signal decreases as valinomycin increases (Ta-

ble 3). In terms of biology this means that the potential difference between the

far fields increases as the intracellular potential becomes more negative. So, these

results confirm the hypothesis that by adding valinomycin we are able to change the

potential in the vicinity of the membrane.

In order to evaluate data from the experiments, we add a linear approximation

to all curves of Figures 6–10. From this approach, we get the slopes presented in

table 3. By normalising these slopes for each solution by the slope of the control

signal for the same buffer solution, we get Figure 11.

Because of different laboratory conditions during these experiments, we are un-

able to compare them directly. However, if we take a look at table 3, there are

similarities, for example as soon as we add valinomycin the signal increases compare

to the signal without valinomycin (sample 1 from table 3). Plus, the more valino-
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Figure 11: Normalised slopes from buffer solutions SKi versus amount of valinomycin in µ g, where

the dark blue line represents the data for solution SK1, the red line for SK2, the light green line

for SK3, the purple line for SK4 and the light blue line for SK5.
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mycin we add, the less signal we obtain, which corresponds to literature findings

where valinomycin allows potassium ions to freely cross the membrane out of the

cell [4, 16, 27]. This motion does not allow the negatively charged dye molecules to

diffuse so easily across the membrane, and thus we have less signal measured.

2.4 Conclusions

Our experiments have shown that the more valinomycin is added, the less amount of

dye inserts the cell. As described in section 2.3, the addition of valinomycin decreases

the intracellular concentration of potassium ions and the potential distribution inside

the cell. The decrease of potassium distribution inside the cell in its turn decreases

the crossing of charged molecules from outside to inside.

In quantifying the curves from Figures 6–10, we get the slopes for each curve

that represents data. Figure 11 represents the slopes for each signal for valinomycin

normalized by the slope for the control vs the amount of valinomycin added. From

this figure we get an indirect way of quantifying the flux of potassium ions from the

intracellular to the extracellular area, plus a way of quantifying the alterations of

the potential inside the cell.

For example, an addition of 4 µg more valinomycin (from 1 to 5 µg) in an en-

vironment of 100 mM of potassium results in a approximate 25% decrease of the

signal value (values from table 3), which would mean a 25% drop in the distribution

of the dye inside the cell. If the rest of the procedures, such as potassium–potential

relationship and potential–dye relationship, are proportional then we should expect

an alteration of order of 25% of the potential inside the cell (the potential becomes

more negative) and a 25% increase in the efflux of potassium ions.
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3 Modelling the electrostatic properties of a single cell as a

response to pH changes

The following model is formulated based on an electrolyte consisted of sodium,

potassium, hydrogen and chloride ions. Although during the experimental part we

didn’t take into consideration the effect of possible pH alterations, we decided to

examine in the mathematical modelling if protons have an effect in the potential

distribution near the membrane.

Our goal is to derive a simplified model of the electrochemical behavior near the

cell membrane. In order to simplify the model, we assume that the membrane is

planar, occupying the region |x∗| < α∗, as illustrated in Figure 4.

Assuming one–dimensional distributions for the ion concentrations, e.g. when the

flux of ions and the electric field are transverse to the membrane (Figure 4), and zero

flux at steady state approach, we get the following equation for ionic concentration,

from equation (1)

−D±
(

dC±

dx∗
± F

RT
C±

dφ∗

dx∗

)
= 0 , (8)

where x∗ is the axis perpendicular to the membrane.

We take into consideration only sodium (Na), potassium (K), chloride (Cl) and

hydrogen ions (H); the first three ions because of their high concentration in the elec-

trolyte solution compared to other ions and hydrogen ions because of the potential

link to pH (pH = − log10 [H]).

For every species we have a Nernst–Planck equation,
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−DNa+

(
d[Na]

dx∗
+

F

RT
[Na]

dφ∗

dx∗

)
= 0 , (9)

−DK+

(
d[K]

dx∗
+

F

RT
[K]

dφ∗

dx∗

)
= 0 , (10)

−DH+

(
d[H]

dx∗
+

F

RT
[H]

dφ∗

dx∗

)
= 0 , (11)

−DCl−

(
d[Cl]

dx∗
− F

RT
[Cl]

dφ∗

dx∗

)
= 0 . (12)

The potential distribution is described by Poisson’s equation

d

dx∗

[
ε∗ (x∗)

dφ∗

dx∗

]
= −f ∗+δ (x∗ − α∗)− f ∗−δ (x∗ + α∗)

+ F ([Cl]− [Na]− [K]− [H]) (1 +H (x∗ − α∗)−H (x∗ + α∗)) , (13)

where f ∗+, f
∗
− stand for the surface charge density on the inner and outer membrane

respectively, ε∗ (x∗) for the electrical permittivity, α∗ is half the membrane’s length

(Figure 4) and H (x∗) the Heaviside function.

The electric permittivity is non–uniform, being given by

ε∗ (x∗) = ε∗out if |x∗| > α∗ , (14)

ε∗ (x∗) = ε∗m if |x∗| < α∗ , (15)

where ε∗out stands for the permittivity in the bulk solution and ε∗m the permittivity

in the membrane.

We now introduce conditions for the far fields. We assume that both the potential

and the ionic concentrations reach a constant value. Moreover, there is electroneu-
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trality at the far fields. In the intracellular area, as x∗ →∞,

φ∗ → φ∗∞ , (16)

[Na]→ [Na]∞ , (17)

[K]→ [K]∞ , (18)

[H]→ [H]∞ , (19)

[Cl]→ [Na]∞ + [K]∞ + [H]∞ , (20)

where φ∗∞ is the potential value when x∗ →∞, [Na]∞ the concentration of sodium

ions when x∗ → ∞, [K]∞ the concentration of potassium cations at the far field

inside the cell and [H]∞ the concentration of hydrogen ions when x∗ → ∞. In the

extracellular area, as x∗ → −∞ ,

φ∗ → φ∗−∞ , (21)

[Na]→ [Na]−∞ , (22)

[K]→ [K]−∞ , (23)

[H]→ [H]−∞ , (24)

[Cl]→ [Na]−∞ + [K]−∞ + [H]−∞ . (25)

where φ∗−∞ the value for the far field potential, [Na]−∞ the value for sodium cations

concentration when x∗ → −∞ , [K]−∞ the concentration for potassium ions when

x∗ → −∞ , [H]−∞ the concentration for hydrogen cations when x∗ → −∞ .

On either side of the membrane, we assume no jump in the potential. In other

words,

φ∗|x∗=α∗+ = φ∗|x∗=α∗− , (26)

φ∗|x∗=−α∗+ = φ∗|x∗=−α∗− . (27)

Furthermore, we integrate equation (13) to relate the electric field to the surface

charge density

ε∗out

dφ∗

dx∗
|x∗=α∗+ − ε∗m

dφ∗

dx∗
|x∗=α∗− = −f ∗+ , (28)

ε∗m
dφ∗

dx∗
|x∗=−α∗+ − ε∗out

dφ∗

dx∗
|x∗=−α∗− = −f ∗− . (29)
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According to the “Fluid Mosaic Model of the Membrane” [98], there are two

different kinds of phospholipids for mammalian cells; negatively charged and neutral

ones (uncharged). The charged phospholipids are responsible for the surface charge

density of the membrane leaflets. At the same time, charged phospholipids are able

to interact with hydrogen ions that are circulating free in the bulk area, creating a

shielding effect for the membrane charge density.

The same equations and calculations apply for both membrane leaflets, so from

now on, instead of using different notations we use ± where + stands for the inner

leaflet of the membrane and – for the outer leaflet of the membrane. We assume that

there is a fixed quantity of phospholipids in each leaflet (meaning that phospholids

are neither dectroyed nor produced). Then, in an attempt to simplify calculations,

we assume that the rate of the reaction between protons (hydrogen ions) and charged

molecules is proportional to the concentration of protons times the concentration of

charged molecules. Plus, we assume that only hydrogen ions close enough to the

membrane can take part in the reaction.

The reaction of phospholipids and hydrogen ions is chemically described as

PL−± + H+
k∗f

k∗b ⇀↽PLH± , (30)

a reaction that we assume to be in, where PL± are the phospholipids that are

negatively charged (−) on the leaflets (±), H± the hydrogen ions near the leaflet

and PLH± the phospholipids already bound to hydrogen ions on the leaflet. k∗f and

k∗b are the kinetic constants for the forward and the backward reaction respectively.

Ntotal
±

is the number of phospholipids on the membrane. NNC
±

is the number of

non–charged phospholipids on the membrane. N−
±

is the number of phospholipids

that are negatively charged on the membrane. NH
±

is the number of phospholipids of

the membrane that were charged but have interacted with hydrogen ions. Assuming

that the total number of phospholipids is conserved,

Ntotal
±

= NNC
±

+N−
±

+NH
±
. (31)
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Taking into consideration that the surface concentration equals the number of

molecules divided by the surface area, a different form of equation (31) concerning

the conservation of phospholipids is[
PLtotal
±
]

=
[
PLNC
±
]

+
[
PL−±

]
+ [PLH±] , (32)

Let p± be the fraction of charged phospholipids,

p± =

[
PL−±

][
PLtotal
±
] , (33)

and pH± the fraction of phospholipids having already interacted with protons,

pH± =
[PLH±][
PLtotal
±
] . (34)

The fraction of non–charged phospholipids is β±

β± =
NPLNC

±

NPLtotal
±

, (35)

which in terms of surface concentration is formulated as[
PLNC
±
]

= β±
[
PLtotal
±
]
. (36)

For the reaction (30), we assume first order kinetics, as mentioned earlier. This is

mathematically translated into

d [PLH±]

dt
= k∗f

[
PL−±

]
[H]x∗=±α∗± − k

∗
b [PLH±] . (37)

Moreover, we assume steady state, so

d [PLH±]

dt
= 0 , (38)

which results in

[PLH±] = k∗
[
PL−±

]
[H]x∗=±α∗± , (39)

where

k∗ =
k∗f
k∗b

. (40)

The total concentration of phospholipids (equation 32) has now the following

form [
PLtotal
±
]

= β±
[
PLtotal
±
]

+ p±
[
PLtotal
±
]

+ pH±
[
PLtotal
±
]
, (41)
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which is simplified to

1 = β± + p± + pH± . (42)

By solving the equations (39), (41) and(42) we get

p± =
1− β±

1 + k∗ [H]x∗=±α∗±
, (43)

pH± =
1− β±

1 + k∗ [H]x∗=±α∗±
k∗ [H]x∗=±α∗± , (44)

[
PL−±

]
=

1− β±
1 + k∗ [H]x∗=±α∗±

[
PLtotal
±
]
, (45)

[PLH±] =
1− β±

1 + k∗ [H]x∗=±α∗±
k∗ [H]x∗=±α∗±

[
PLtotal
±
]
, (46)[

PLtotal
±
]

= β±
[
PLtotal
±
]
. (47)

The surface charge density is proportional to the concentration of charged phos-

pholipids

f ∗± = QNAv

[
PL−±

]
, (48)

and is otherwise expressed as

f ∗± = ψ±f± , (49)

where

ψ± = (1− β±)QNAv[PLtotal
± ] , (50)

f± =
1

1 + k∗[H]x∗=±α∗
. (51)

3.1 Nondimensionalization

We non–dimensionalize the equations described in the previous section by scaling

lengths on α∗, the membrane half–length, and the potential on the thermal voltage

RT/F , so that
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x∗ = α∗x , φ∗ =
RT

F
φ . (52)

We also non–dimensionalize the ionic concentrations using the potassium con-

centration at the far field inside the cell ([K]∞) for sodium, potassium and chloride

ions and the hydrogen concentration at the far field ([H]∞) for protons

[Na] = [K]∞N, [K] = [K]∞K, [Cl] = [K]∞C, [H] = [H]∞H. (53)

Likewise we write

ε∗ (x∗) = ε∗outε (x) . (54)

The dimensional equations for the concentrations (9)-(12) in |x| > 1 become

dN

dx
+N

dφ

dx
= 0 , (55)

dK

dx
+K

dφ

dx
= 0 , (56)

dH

dx
+H

dφ

dx
= 0 , (57)

dC

dx
− C dφ

dx
= 0 . (58)

The Poisson equation for the potential (13) becomes

d

dx

[
ε (x)

dφ

dx

]
= −µ+f+δ (x− 1)− µ−f−δ (x+ 1)

+ µ (C −N −K) (1 +H (x− 1)−H (x+ 1)) (59)

where

µ± =
ψ±α

∗F

εoutRT
, µ =

α∗2F 2

ε∗out

[K∞], (60)

f± =
1

1 + kHH|x=±1

, kH = k∗[H∞]. (61)

From table 4, it is obvious that [H]∞/[K∞] << 1. That is why there is no hydrogen

contribution in equation (59).
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The electric permittivity conditions are also changed into

ε (x) = 1 if |x| > 1 , (62)

ε (x) = εm if |x| < 1 . (63)

where εm = ε∗m/ε
∗
out is the dimensionless permittivity of the membrane.

Far inside the cell, the boundary conditions are

φ→ φ∞ , (64)

N → N∞ , (65)

K → 1 , (66)

H → 1 , (67)

C → N∞ + 1 , (68)

where φ∞ = Fφ∗∞/RT and N∞ = [Na]∞/[K]∞ .Far outside the cell the conditions

are

φ→ φ−∞ , (69)

N → N−∞ , (70)

K → K−∞ , (71)

H → H−∞ , (72)

C → N−∞ +K−∞ , (73)

where φ−∞ = Fφ∗∞/RT , N−∞ = [Na]−∞/[K]∞ , K−∞ = [K]−∞/[K]∞ and H−∞ =

[H]−∞/[H]∞ .

On either side of the membrane, the jump conditions (26)–(29) in dimensionless

form are

φx=1+ = φx=1− , (74)

φx=−1+ = φx=−1− , (75)

dφ

dx
|x=1+ − εm

dφ

dx
|x=1− = −µ+f+, (76)

εm
dφ

dx
|x=−1+ − dφ

dx
|x=−1− = −µ−f−. (77)
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3.2 Linearization

For a first approach to the non–linear solution of our system, we introduce a number

of ˜ parameters in order to linearize the equations governing the ion concentration

in the bulk solutions at the steady state case.

∆ denotes a relatively small difference in the far field potentials

∆ = φ∞ − φ−∞ . (78)

The ionic concentrations are formulated based on far field concentrations and the

∆ parameter

N = N−∞ + ∆N−∞Ñ , (79)

K = K−∞ + ∆K−∞K̃ , (80)

H = H−∞ + ∆H−∞H̃ , (81)

C = (N−∞ +K−∞) + ∆ (N−∞ +K−∞) C̃ . (82)

The potential is linearized relative to the potential at the far field outside the cell

φ = φ−∞ + ∆φ̃ . (83)

The surface charge density on both membrane sides follows the same approach

f± = ∆f̃± . (84)

Equations (55)-(58) are now

dÑ

dx
+

dφ̃

dx
= 0 , (85)

dK̃

dx
+

dφ̃

dx
= 0 , (86)

dH̃

dx
+

dφ̃

dx
= 0 , (87)

dC̃

dx
− dφ̃

dx
= 0 . (88)
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The equation (59) for the potential distribution is

d

dx

[
ε (x)

dφ̃

dx

]
= −µ+f̃+δ (x− 1)− µ−f̃−δ (x+ 1)

+ µ
[
(N−∞ +K−∞) C̃ −N−∞Ñ −K−∞K̃

]
(1 +H (x− 1)−H (x+ 1)) (89)

We also transform the boundary conditions for both the intracellular and the

extracellular region. In detail, inside the cell, x→∞, (64)–(68) are

φ̃→ 1 , (90)

Ñ → N∞ −N−∞
∆N−∞

, (91)

K̃ → 1−K−∞
∆K−∞

, (92)

H̃ → 1−H−∞
∆H−∞

, (93)

C̃ → (N∞ + 1)− (N−∞ +K−∞)

∆ (N−∞ +K−∞)
, (94)

while as x→ −∞, (69)-(73) turn into

φ̃→ 0 , (95)

Ñ → 0 , (96)

K̃ → 0 , (97)

H̃ → 0 , (98)

C̃ → 0 . (99)

All the˜have to be order unity in order for the linearisation to be appropriate.

The jump conditions (74)-(77) on either side of the membrane still hold as

φ̃|x=1+ = φ̃|x=1− , (100)

φ̃|x=−1+ = φ̃|x=−1− , (101)

dφ̃

dx
|x=1+ − εm

dφ̃

dx
|x=1− = −µ+f̃+ , (102)

εm
dφ̃

dx
|x=−1+ − dφ̃

dx
|x=−1− = −µ−f̃− . (103)
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The general solution for the ionic equations (85)-(88) is given as

Ñ = −φ̃+ c±1 , (104)

K̃ = −φ̃+ c±2 , (105)

H̃ = −φ̃+ c±3 , (106)

C̃ = φ̃+ c±4 , (107)

where c±1 , c±2 , c±3 , c±4 are constants,

For the intracellular area, the constants are

c+
1 =

N∞ + (∆− 1)N−∞
∆N−∞

, (108)

c+
2 =

1 + (∆− 1)K−∞
∆K−∞

, (109)

c+
3 =

1 + (∆− 1)H−∞
∆H−∞

, (110)

c+
4 =

(N∞ + 1)− (∆ + 1) (N−∞ +K−∞)

∆ (N−∞ +K−∞)
, (111)

while outside of the cell, they all equal to zero,

c−1 = 0 , c−2 = 0 , c−3 = 0 , c−4 = 0 . (112)

We then solve (89) for the potential distribution , using conditions (90) and (95)

for the potential in the far fields, which results in the following equations

φ̃ = A exp
[
−x
√

2µ (N−∞ +K−∞)
]

+ 1 when x > 1 , (113)

φ̃ = Bx+D when |x| < 1 , (114)

φ̃ = E exp
[
x
√

2µ (N−∞ +K−∞)
]

when x < −1 . (115)

Taking into consideration the jump conditions (100)–(103), we get the values for

A ,B ,D ,E parameters

A =
1

2

[
µ+f̃+ − µ−f̃− +

√
2µ (N−∞ +K−∞)

εm +
√

2µ (N−∞ +K−∞)
+

µ+f̃+ + µ−f̃−√
2µ (N−∞ +K−∞)

− 1

]
exp

[√
2µ (N−∞ +K−∞)

]
, (116)
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Parameters Values and Dimensions Bibliography

[K]∞ 140 mM [1]

[Na]∞ 5 mM [1]

[H]∞ 10−7.2 M [83]

[K]−∞ 5 mM [1]

[Na]−∞ 140 mM [1]

[H]−∞ 10−7.4 M [83]

ε∗out 10−10 A*s/V*m [69]

ε∗in 10−10 A*s/V*m [69]

ε∗m 0.025 10−10 A*s/V*m [70]

β± 0.7 [90]

[PLtotal
± ] 10−5 mol/m2 [90]

R 8.314 J/mol*K [69]

F 9.65*104 J/mol*K [69]

T 310 K [69]

α∗ 5 nm [90]

Q -1.6*10 −19 C/atom [69]

NAv 6.023*1023 atoms/mol [69]

k∗ 6.5 [74]

Table 4: Dimensional Parameters. Note that k∗ is assumed to be order kAc which is the value for

ATP energy requirement, the unit for all energy requirements at the cellular level [74].

B =
µ+f̃+ − µ−f̃− +

√
2µ (N−∞ +K−∞)

2
[√

2µ (N−∞ +K−∞) + εm

] , (117)

D =
1

2

[
µ+f̃ + µ−f̃√

2µ (N−∞ +K−∞)

]
+ 1 , (118)

E = −1

2

[
µ+f̃+ +

√
2µ (N−∞ +K−∞)

εm

− µ+f̃+ + µ−f̃−√
2µ (N−∞ +K−∞)

− 1

]
exp

[√
2µ (N−∞ +K−∞)

]
. (119)

We then plot the potential distribution throughout the cell versus the x-axis

(Figure 12) and the ionic distribution (Figure 13). We are using parameters of table
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Dimensionless Parameters Values

N∞ 0.99

K∞ 1

H∞ 1

N−∞ 1

K−∞ 0.98

H−∞ 0.99

εout 1

εm 0.025

β± 0.7

f± 0.001

φ∞ 0.01

φ−∞ 0

kH 6.5 ∗ 10−8

Table 5: Dimensionless parameters used for linearization. These parameters are calculated to be

consistent with the linearization assumption.

5.

3.3 Non linear solutions

Because in nature, the concentration of ions differ from inside to outside of the

cell, the linearized approach is not accurate enough when we want to calculate the

potential distribution accurately. For that, we proceed in solving equations (55)–

(58) explicitly. In order to determine the equation for the distribution of electric

potential across the membrane, φ (x), and the distribution of sodium, potassium,

hydrogen and chloride ions, N (x), K (x), H (x), C (x) respectively, we solve (55)
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Figure 12: Linearized potential using values from table 5.
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Figure 13: Linearized ionic concentrations using values from table 5, where the black solid lines

represent the chloride distribution, the black dotted lines the sodium, the black dashed–dotted

lines the potassium and the red dashed–dotted lines the hydrogen.
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to (58) to obtain, when |x| > 1 ,

N(x) = exp
(
−φ(x) + c±1

)
, (120)

K(x) = exp
(
−φ(x) + c±2

)
, (121)

H(x) = exp
(
−φ(x) + c±3

)
, (122)

C(x) = exp
(
φ(x) + c±4

)
. (123)

Applying the boundary conditions gives

N = N±∞ exp (−φ+ φ±∞) , (124)

K = K±∞ exp (−φ+ φ±∞) , (125)

H = H±∞ exp (−φ+ φ±∞) , (126)

C = (N±∞ +K±∞) exp (φ− φ±∞) , (127)

while the expression for the electric potential is given by

d

dx

(
dφ

dx

)
= µ (C −N −K) . (128)

Introducing (120)–(123) gives

d2φ

dx2
= µ (N±∞ +K±∞) [exp (φ− φ±∞)− exp (−φ+ φ±∞)] . (129)

By multiplying with dφ
dx

dφ

dx

d2φ

dx2
= µ (N±∞ +K±∞) [exp (φ− φ±∞)− exp (−φ+ φ±∞)]

dφ

dx
, (130)

which can be viewed also as

d

dx

[
1

2

(
dφ

dx

)2
]

= µ (N±∞ +K±∞)
d

dx
[exp (φ− φ±∞) + exp (−φ+ φ±∞)] . (131)

By integrating and stating F as the integration constant, we get

1

2

(
dφ

dx

)2

= µ (N±∞ +K±∞) [exp (φ− φ±∞) + exp (−φ+ φ±∞)] + F . (132)

Because of boundary conditions (φ→ φ±∞), we calculate F as

F = −2µ (N±∞ +K±∞) . (133)
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So, we have

1

2

(
dφ

dx

)2

= µ (N±∞ +K±∞) [exp (φ− φ±∞) + exp (−φ+ φ±∞)]−2µ (N±∞ +K±∞) ,

(134)

which is simplified to

1

2

(
dφ

dx

)2

= µ (N±∞ +K±∞)

[
exp

(
φ− φ±∞

2

)
− exp

(
−φ+ φ±∞

2

)]2

. (135)

Thus

1√
2

dφ

dx
= ±

√
µ (N±∞ +K±∞)

[
exp

(
φ− φ±∞

2

)
− exp

(
−φ+ φ±∞

2

)]
, (136)

i.e.
dφ

dx
= ±2

√
2µ (N±∞ +K±∞) sinh

(
φ− φ±∞

2

)
, (137)

which can be changed into

dφ

dx
= ±4

√
2µ (N±∞ +K±∞)

tanh
(
φ−φ±∞

4

)
sech2

(
φ−φ±∞

4

) . (138)

Separating variables results in

∫ sech2
(
φ−φ±∞

4

)
tanh

(
φ−φ±∞

4

) dφ = ±4

∫ √
2µ (N±∞ +K±∞)dx+ Constant , (139)

which leads to the solution

φ = φ±∞ + 4 tanh−1 exp
[
±
√

2µ (N±∞ +K±∞)x+G±

]
. (140)

From the boundary conditions, we can determine the sign of the term within the

exponential, giving

φ = φ±∞ + 4 tanh−1 exp
[
∓x
√

2µ (N±∞K±∞) +G±

]
. (141)

In the meantime, we have to take into account the potential distribution within

the membrane, |x| < 1 ,
d2φ

dx2
= 0 , (142)
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so that

φ = ux+ w (143)

where u, w are integration constants.

We still have the jump conditions which will help us to determine integration

constants G±, u, w. However, this system cannot be solved analytically because

of its complexity. Numerical solutions are shown in figure 14. Using the same

parameters as in the linearized form of the model (figure 12), we get the same shape

for the potential distribution across the membrane. The only difference lies in the

potential values near the outer leaflet of the membrane. This is because the relation

between repulsion and attraction forces is more complicated.

3.4 Results of electrostatic modelling

First of all, from equation (61) we see that as hydrogen concentration increases,

the surface charge density decreases. However, from table 5, kH is much small

than unity, while H±1 is order unity, so the term kHH|x=±1 is smaller than unity.

As a result, the surface charge density is not affected by proton alterations. So,

we have shown that the pH has a negligible effect on the surface charge density.

From equation (59) the potential will remain constant no matter the increase or the

decrease in hydrogen ion concentration.

Then we have described the potential distribution within our are of interest, which

includes the cell and the surrounding electrolyte solution. We have two different

forms:

• a linearized potential, based on analytical approximations and calculations, and

• a non–linear potential, based on numerical solutions.

Using the potassium concentrations from the experiments (Chapter 2) combined
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Figure 14: Non–linear potential distribution with the values from table 5.
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Figure 15: Linearised potential distribution when the extracellular potassium concentration ranges

from 4.5mM to 164.5 mM, from table 1, and using parameters from table 5.

with the equations for the linearized potential distribution (equations 113–119) as

a simple approach, we get the following five graphs for the potential distribution

In figure 15 the far field values are kept constant, while the potential distribution

within the membrane preserves the same shape but different values. In detail, the

more potassium we add in the extracellular environment, the potential reaches a

more negative value within the membrane. When using potassium concentration

different than the one found in nature (table 4), the ratio between the two dominant

cations (sodium and potassium) is changed. As the total amount of potassium

increases the ratio of sodium versus potassium decreases, so the potential well is

getting deeper, because there are fewer cations surrounding the membrane. This is

consistent with figure 12 if one knows that the signal intensity is proportional to

the dye distribution within the cell. In other words, the transport of the dye across
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the membrane depends on the potential distribution within the well which in turn

depends on the extracellular potassium concentration. The larger the gap between

the potential outside the membrane and the potential within the membrane will

allow more dye molecules to cross the outer layer of the membrane.
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4 Modelling the experimental results

In this chapter, we aim to combine the experimental results (chapter 2) with the

modelling description (chapter 3). In section 4.1, we use a model for describing

the valinomycin mechanism and its effect in the experimental procedure. In section

4.2, using Fokker–Planck approach, we determine the distribution of the probability

density of the dye, near the cellular membrane. This distribution serves as an

indirect evaluation of the signal exhibit by the dye when it fluorescents.

4.1 Valinomycin modelling

To describe the transport of valinomycin across the membrane we adapt the glucose–

transporter model[39] by assuming that valinomycin follows a basic transport model

d[V Ki]

dt
= k[V Ke]− k[V Ki] + k+[Ki][Vi]− k−[V Ki] , (144)

d[V Ke]

dt
= k[V Ki]− k[V Ke] + k+[Ke][Ve]− k−[V Ke] , (145)

d[Vi]

dt
= k[Ve]− k[Vi] + k−[V Ki]− k+[Ki][Vi] , (146)

d[Ve]

dt
= k[Vi]− k[Ve] + k+[V Ke]− k+[Ke][Ve] , (147)

where V Ki stands for the potassium-valinomycin complex on the inner leaflet of the

membrane, V Ke for the potassium-valinomycin complex on the outer leaflet of the

membrane, Ki for the potassium ions inside the cell, Ke for the potassium ions out-

side the cell, Vi for free valinomycin on the inner leaflet of the membrane and Ve for

free valinomycin on the outer leaflet of the membrane. Note that the membrane

is assumed to consist of two phospholific parts (figure 1), also know as leaflets. In

figure 16, the upper straight line represents the outer leaflet of the membrane, while

the lower straight line is the inner leaflet. [ ] represents the concentration of the sub-

stance within the brackets. Note that the concentration is per unit area when we are

referring to valinomycin either free or bound to potassium while the concentration

of potassium is per unit volume. k is the transport rate of valinomycin molecules
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Figure 16: Schematic model of how valinomycin crosses the membrane

across the membrane, k+ is the association rate constant and k− is the dissocia-

tion rate constant of the following reaction that forms the potassium–valinomycin

complex

V +K+ ⇀↽ VK+ . (148)

Valinomycin remains bound to the membrane at all times whereas free potassium

ions are located in the bulk solution close to the membrane. According to [100],

k = 2× 104 s−1 , k+ = 5× 104 s−1 and k− = 5× 105 M−1s−1 .

The law of mass conservation applies for valinomycin, so equations (144)–(147)

satisfy the following equation as well

[V Ke] + [V Ki] + [Ve] + [Vi] = [Vtotal] (149)

where [Vtotal] is the total amount of valinomycin concentration either in a complex

or in a free form, both on the inner and the outer leaflet of the membrane.
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Parameters Values and Dimensions Source

k 2×104s−1 [100]

k− 5×104s−1 [100]

k+ 5×105M−1s−1 [100]

[Vtotal](×1018mol/cell) 8.99, 44.99, 89.9, 449.9 Experiments

[Ki]0 140 mM [1]

[Ke](mM) 4.5, 12, 50, 100, 164.5 Experiments

rcell 7.5× 10−6m [32]

Vcell 1.77× 10−15m3 Volume of a sphere with radius rcell

Table 6: Dimensional Parameters

The flux of molecules across the membrane is composed of a component from the

outside to the transporter

Jon = k+[Ke][Ve]− k−[V Ke] (150)

and a component from the transporter to inside the cell

Joff = k−[V Ki]− k+[Ki][Vi] . (151)

In the steady state case, the flux from the transporter to inside the cell equals

the flux outside to the transporter (Jon = Joff = J)

J = k−[V Ki]− k+[Ki][Vi] = k+[Ke][Ve]− k−[V Ke] . (152)

The system of equations (144)–(147) has five unknown parameters, so a fifth

equation is needed to fully solve the system. A conservation equation for potassium

ions is required. While the extracellular potassium concentration remains constant,

the concentration of potassium ions inside the cell is driven by the flux

d[Ki]Vcell
dt

= JScell , (153)

where Vcell is the cell volume and Scell is the membrane surface area.

At t = 0 , we assume that all valinomycin is located on the outer leaflet of the

membrane [Ve]0 = [Vtotal] , [Vi]0 = 0 , [V Ke]0 = 0 , [V Ki]0 = 0 . The cytosolic
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Parameters Values Equation

K 0.1 K = k−/k+

κ 0.4 κ = Kd/K

Ke 0.045, 0.12, 0.5, 1, 1.645 Ke = [Ke]/K

λ 0.001[Vtotal] Table 6

Table 7: Dimensionless parameters for the cycle of valinomycin

potassium concentration is 140 mM, a typical value for mammalian cell lines. The

extracellular potassium concentration varies as shown in table 6.

We now solve the system of equations (144)–(147) plus equation (153). In order to

nondimensionalise and solve this system, we introduce the parameters K =
k−
k+

. We

also introduce the nondimensional parameters V Ki =
[V Ki]

[Vtotal]
, V Ke =

[V Ke]

[Vtotal]
, Vi =

[Vi]

[Vtotal]
, Ve =

[Ve]

[Vtotal]
, Ki =

[Ki]

K
, Ke =

[Ke]

K
, κ =

k

k−
and t =

τ

k
. The variable for

the non–dimensionalisation of time is the time needed for a molecule of valinomycin

to cross the membrane.

The nondimensionalised system of equations is

dV Ki

dτ
= (V Ke − V Ki) +

1

κ
(KiVi − V Ki) , (154)

dV Ke

dτ
= (V Ki − V Ke) +

1

κ
(KeVe − V Ke) , (155)

dVi
dτ

= (Ve − Vi) +
1

κ
(V Ki −KiVi) , (156)

dVe
dτ

= (Vi − Ve) +
1

κ
(V Ke −KeVe) , (157)

dKi

dτ
= λ (V Ki −KiVi) , (158)

where λ =
k+Scell
kVcell

[Vtotal] , with the initial conditions Ve0 = 1 , Vi0 = 0 , V Ke0 =

0 , V Ki0 = 0 , Ki0 = 1.4 . The rest of the dimensionless parameters are cited in

table 7.

As shown from the figure 17 the different forms of valinomycin quickly reach

a plateau for the concentrations. The time needed is approximately 0.05 seconds.

Then a dynamic equilibrium is established where the concentration of each form
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Figure 17: Schematic model of how valinomycin crosses the membrane, when we add 1

mug valinomycin and 4.5 mM of potassium in the extracellular area.
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Figure 18: Schematic model of how valinomycin crosses the membrane, when we add 5

µg valinomycin and 4.5 mM of potassium in the extracellular area.

remain the same, but there is still conversion form one form to the other.

We present here figures 18–20 where the only difference is the amount of vali-

nomycin added, while the extracellular potassium concentration remains the same.

The difference lies in the time needed for the system to reach equilibrium. In detail,

the more valinomycin we add, the less time is needed for the plateau to occur.

4.2 Potential modelling

As stated in section 1.4, we use the Fokker–Planck equation (equation 7) to describe

the probability of a particle being situated in a given position x at a certain time

t when the particle moves under the influence of a force. In our case, we have a x–

dependent electrostatic force, created by the distribution of potential at the cellular
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Figure 19: Schematic model of how valinomycin crosses the membrane, when we add 10

µg valinomycin and 4.5 mM of potassium in the extracellular area.
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Figure 20: Schematic model of how valinomycin crosses the membrane, when we add 50

µg valinomycin and 4.5 mM of potassium in the extracellular area.
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level,

F (x∗) = −qdφ∗

dx∗
. (159)

Note that φ∗ stands for the dimensional potential. We have calculated the di-

mensionless potential distribution in Chapter 3. Using the previous notations for

non–dimensionalization (section 3.1) for the variables and introducing

t = t∗τ , (160)

as the time needed for the dye to cross the membrane, the Fokker–Planck equation

has the following dimensionless form

∂P

∂τ
=

qRTt∗

a∗2FMγ

∂

∂x

[
dφ

dx
P

]
+
Dt∗

α∗2
∂2P

∂x2
. (161)

This can be written as

∂P

∂τ
= ρF

∂

∂x

[
dφ

dx
P

]
+ ρD

∂2P

∂x2
, (162)

where

ρF =
qRTt∗

α∗2FMγ
, (163)

ρD =
Dt∗

α∗2
. (164)

The parameters (ρF and ρD ) are dimensionless. We set ρD to unity to find a value

for t∗.

Using parameters from table 5, introducing the molecular weight of the dye

(548.77) and calculating the diffusion coefficientD from the Appendix (4.4*10−10 m2/s),

we can solve the equation (165) in Matlab with

P0 =
1

2

[
1 + cos

[π
2

(x+ 7)
]]

when|x| < 20 (165)

as initial condition (t = 0) and assuming no flux limits in the far fields (at distance

ten times further than the membrane length). P0 is set to approximate an initial

peak of the dye in the extracellular area, which stands for the injection of the dye

during the experiment.
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Figure 21: Distribution of the dye when ρF = ρD

Figure 22: Distribution of the dye when ρF = 10ρD

Figure 23: Distribution of the dye when ρF = 0.1ρD
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Figure 24: Distribution integrals versus time, where the red starred line stands for the dye distri-

bution inside the cell and the blue squared line for the distribution outside the cell.

Figure 24 shows the mass distribution inside the cell versus time after integrating

the values of figure 21. Note that the dye distribution outside the cell is decreased

at the same rate as the distribution inside the cell increases. After some time, they

both reach an equilibrium state. In the whole time, the sum of both lines remains

constant.

4.3 Conclusions from modelling the experimental procedures

4.3.1 Modelling valinomycin

It is obvious from the graphs in figures 17–20, that the system of valinomycin quickly

reaches equilibrium. The addition of valinomycin affects the time needed for equilib-

rium in the way that the more valinomycin we add for certain amount of potassium

concentration, the faster the system reaches equilibrium.
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Figure 25: Distribution of the dye when the extracellular potassium concentration is 5 mM

4.3.2 Potential modelling

From figures 21–23 it is obvious that the diffusion term and the potential term in

the Fokker–Planck equation (165), both have an effect on the distribution of the

dye molecule across the membrane. When these terms are of the same order, then

we have figure 21. When this order changes, we can get from pure diffusion effect

(Figure 22) to a more dominant electric filed in the area of the membrane (Figure

23). In figure 23, the dye has less chance to be closer to the membrane. This is why

we see a large area of empty space near the membrane. But once the molecule gets

inside, it tends to pile up away from the membrane, due to repulsive forces from the

membrane surface charge.

In the figures 25-28, we use the Fokker–Planck equation to simulate the dye

distribution when we add different amount of potassium ions outside the cell.
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Figure 26: Distribution of the dye when the extracellular potassium concentration is 12 mM
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Figure 27: Distribution of the dye when the extracellular potassium concentration is 50 mM
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Figure 28: Distribution of the dye when the extracellular potassium concentration is 100 mM
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5 CONCLUSIONS

In section 2, we described the experimental procedures performed. From these ex-

periments, we concluded that the dye’s motion can be affected by the addition of

different amounts of valinomycin. Adding more valinomycin in the cellular envi-

ronment means that the flux of potassium ions through the membrane is increased,

altering the membrane potential at the same time. In other words, alterations in the

membrane potential have a direct effect in the distribution of the dye. In general,

this would mean that by altering the membrane potential, we are able to control

the amount of foreign molecules getting inside the cell.

In the electrostatic part, we were able to predict the distribution of the potential

inside and outside of the cell. Plus, according to our calculations we concluded that

the pH of the cell does not affect the membrane potential, at least in a direct way.

If there is a less direct way, there is still to be identify.

We also found that valinomycin reaches equilibrium approximately in 0.5 second,

which is less than the incubation time we used in the experimental procedure. After

the period of 0.5 second, there is a dynamic equilibrium in the system. This means

that there is still conversion from the free form of valinomycin to the complex form,

but the concentrations remain the same.

From chapter 4, we concluded that the valinomycin complex and free ion system

comes to equilibrium relatively quickly, so no incubation period before the measure-

ment of fluorescence is essential. As for the equations describing the probability of

the dye to cross the membrane we can use the experimental data to simulate the

distribution of the dye in the membrane vicinity. As the extracellular potassium

concentration increases the distribution of the dye is decreases. In other words,

the dye struggles more to cross the membrane. This is because the potential well

within the membrane is getting deeper and the potassium transport is getting more

difficult.
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The mass conservation graphs present a theoretical prediction of what happens

in the vicinity of the membrane during the experiment. The mass outside the cell

starts to decrease, whereas the mass inside the cell increases as the time increases.

This means that once the dye gets cross the obstacle of the potential well within

the membrane, it is distributed within the cell. Actually, the shape of figure shape

looks like the shape of curves from the experimental figures 6–10. However, in the

experimental data presentation, the mass of the dye inside the cell does not reach an

equilibrium within the measurement time. This can be due to experimental condi-

tions such as inability of the machine to properly detect changes in the fluorescence

of the signal.

To conclude, we were able to demonstrate and explain an experimental procedure

both physically (Chapter 2) and mathematically (Chapter 4), and by using simple

mathematical approximations (Chapters 3 and 4), we predicted the distribution of a

molecule in the cell when this molecule is introduced in the extracellular environment

and is subjected to electrostatic forces. This prediction is close enough to the data

driven by the experiments.
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Substance Molecular Weight D(cm2/s)

hydrogen 1 4.5 10−5

oxygen 32 2.1 10−5

carbon dioxide 48 1.92 10−5

glucose 192 6.60 10−6

insulin 5734 2.10 10−6

cytochrome c 13370 1.14 10−6

myoglobin 16900 5.1 10−7

serum albumin 66500 6.03 10−7

hemoglobin 64500 6.9 10−7

catalase 247500 4.1 10−7

urease 482700 3.46 10−7

fibrinogen 330000 1.97 10−7

myosin 524800 1.05 10−5

tobacco mosaic virus 40590000 5.3 10−8

Table 8: Molecular weight of certain substances and their diffusion coefficients [39]

APPENDIX

There is no literature for the diffusion coefficient of DiSBAC4(3). We can only

find the diffusion coefficients for a limit number of biological substances [39]. From

plotting these values (Table 8) in respect to their molecular weight, we get figure

30 where we see that the values for the diffusion coefficient

y = 7210.2x−0.442 (166)

where x stands for the molecular weight of the molecule and y for the diffusion

coefficient in cm2/s. The exact value of the diffusion coefficient equals to 10−8 of y .

For DiSBAC4(3), the molecular weight is 548.77 and by using the equation (166)

we get the diffusion coefficient 443.75*10−12 m2/s.
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Figure 29: Diffusion coefficients vs molecular weight of substances in Table 8[39]
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[43] Z. Krasznai, T. Márián, H. Izumi, S. Damjanovich, L. Balkay, L. Trón, and

M. Morisawa. Membrane hyperpolarization removes inactivation of ca2+ chan-

nels, leading to ca2+ influx and subsequent initiation of sperm motility in the

common carp. Proceedings of the National Academy of Sciences, 97(5):2052–

2057, 2000.

[44] R. Krishna and L.D. Mayer. Multidrug resistance (MDR) in cancer:: Mech-

anisms, reversal using modulators of MDR and the role of MDR modulators

in influencing the pharmacokinetics of anticancer drugs. European Journal of

Pharmaceutical Sciences, 11(4):265–283, 2000.

[45] A. Kuznetsov, V.P. Bindokas, J.D. Marks, and L.H. Philipson. Fret-based volt-

age probes for confocal imaging: membrane potential oscillations throughout

pancreatic islets. American Journal of Physiology-Cell Physiology, 289(1):224–

229, 2005.

[46] J. Lacroix, M. Poet, L. Huc, V. Morello, N. Djerbi, M. Ragno, M. Rissel,

X. Tekpli, P. Gounon, D. Lagadic-Gossmann, and L. Counillon. Kinetic anal-

ysis of the regulation of the na+/h+ exchanger nhe-1 by osmotic shocks. Bio-

chemistry, 47(51):13674–13685, 2008.

79



[47] H. Lage. ABC-transporters: implications on drug resistance from microor-

ganisms to human cancers. International journal of antimicrobial agents,

22(3):188–199, 2003.

[48] A.K. Larsen, A.E. Escargueil, and A. Skladanowski. Resistance mechanisms

associated with altered intracellular distribution of anticancer agents. Phar-

macology & Therapeutics, 85(3):217–229, 2000.

[49] D. Lautier, Y. Canitrot, R.G. Deeley, and S.P.C. Cole. Multidrug resistance

mediated by the multidrug resistance protein (MRP) gene. Biochemical phar-

macology, 52(7):967–977, 1996.

[50] X. Liang and Y. Huang. Physical state changes of membrane lipids in human

lung adenocarcinoma a549 cells and their resistance to cisplatin. The Interna-

tional Journal of Biochemistry & Cell Biology, 34(10):1248–1255, 2002.

[51] X.J. Liang, J.J. Yin, J.W. Zhou, P.C. Wang, B. Taylor, C. Cardarelli,

M. Kozar, R. Forte, A. Aszalos, and M.M. Gottesman. Changes in biophysical

parameters of plasma membranes influence cisplatin resistance of sensitive and

resistant epidermal carcinoma cells. Experimental cell research, 293(2):283–

291, 2004.

[52] A.D. MacGillivray. Nernst–planck equations and the electroneutrality

and donnan equilibrium assumptions. The Journal of Chemical Physics,

48(7):2903–2907, 1968.

[53] M. Mandala, G. Serck-Hanssen, G. Martino, and K.B. Helle. The fluorescent

cationic dye rhodamine 6g as a probe for membrane potential in bovine aortic

endothelial cells. Analytical biochemistry, 274(1):1–6, 1999.

[54] C. Martin, G. Berridge, P. Mistry, C. Higgins, P. Charlton, and R. Callaghan.

Drug Binding Sites on P-Glycoprotein Are Altered by ATP Binding Prior to

Nucleotide Hydrolysis. Biochemistry, 39:11901–11906, 2000.

[55] R. Mart́ınez-Zaguilán, N. Raghunand, R.M. Lynch, W. Bellamy, G.M. Mar-

tinez, B. Rojas, D. Smith, W.S. Dalton, and R.J. Gillies. pH and drug

80



resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in

drug-resistant human breast carcinoma cell lines. Biochemical pharmacology,

57(9):1037–1046, 1999.

[56] S. McLaughlin. The electrostatic properties of membranes. Annual review of

biophysics and biophysical chemistry, 18(1):113–136, 1989.

[57] S. McLaughlin and M. Eisenberg. Antibiotics and membrane biology. Annual

Review of Biophysics and Bioengineering, 4(1):335–366, 1975.

[58] K. Mouri and T. Shimokawa. The fokker-planck approach for the cooperative

molecular motor model with finite number of motors. Biosystems, 93(1-2):58–

67, 2008.

[59] E. Munteanu, M. Verdier, F. Grandjean-Forestier, C. Stenger, C. Jayat-

Vignoles, S. Huet, J. Robert, and M.H. Ratinaud. Mitochondrial localization

and activity of p-glycoprotein in doxorubicin-resistant k562 cells. Biochemical

pharmacology, 71(8):1162–1174, 2006.

[60] C.C. Murdock and E.E. Zimmerman. Polarization impedance at low frequen-

cies. Physics, 7(6):211–219, 1936.

[61] W. Nernst. Theorie der reaktionsgeschwindigkeit in heterogenen systemen.

Zeitschrift fr Physikalische Chemie, 47(1):52–55, 1904.

[62] T. Ohira and Y. Sato. Resonance with noise and delay. Physical Review

Letters, 82(14):2811–2815, 1999.

[63] G.S. Ohm. Bestimmung des Gesetzes, nach welchem Metalle die Contaktelek-

tricität leiten: Nebst einem Entwurfe zur einer Theorie des Voltaischen Appa-

rates und des Schweiggerschen Multiplicators. Journal für Chemie und Physik,

1826.

[64] H. Ohshima and S. Ohki. Donnan potential and surface potential of a charged

membrane. Biophysical journal, 47(5):673–678, 1985.

81



[65] M. Otto. Looking toward basic science for potential drug discovery targets

against community-associated MRSA. Medicinal Research Reviews, 30(1):1–

22, 2010.

[66] Z. Ouar, R. Lacave, M. Bens, and A. Vandewalle. Mechanisms of altered se-

questration and efflux of chemotherapeutic drugs by multidrug-resistant cells.

Cell biology and toxicology, 15(2):91–100, 1999.

[67] I.T. Paulsen, M.H. Brown, and R.A. Skurray. Proton-dependent multidrug

efflux systems. Microbiological Reviews, 60(4):575–608, 1996.

[68] S.A. Peel. The abc transporter genes of plasmodium falciparum and drug

resistance. Drug Resistance Updates, 4(1):66–74, 2001.

[69] R. Perry and D. Green. Perrys Chemical Engineers Handbook (7th edn.)

McGraw-Hill. New York, USA, 1998.

[70] R. Phillips, J. Kondev, J. Theriot, N. Orme, and H. Garcia. Physical biology

of the cell. Garland Science, 2009.

[71] L.J.V. Piddock. Multidrug-resistance efflux pumps? not just for resistance.

Nature Reviews Microbiology, 4(8):629–636, 2006.
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