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ABSTRACT 

The performance of woven fabric in many technical applications, such as airbags or 

reinforced composites, relates to fabric through-thickness permeability. A unified 

analytical model for woven fabric through-thickness permeability is proposed. It involves 

flow through gaps between yarns and within the yarns in terms of fabric porosity. The 

yarn permeability is a combination of flow along and transverse to unidirectional fibres. It 

is a function of fibre radius, fibre volume fraction, fibre array and crimp angle of 

interwoven yarns. The gap permeability is developed based on viscous and 

incompressible Hagen-Poiseuille flow in the gaps at low ܴ values. The gap is simplified 

as a smooth fluid channel at the centre with slowly varying circular cross-section. The 

shape of the channel is approximated by a parabolic function. Volumetric flow rate is 

formulated as a function of pressure drop and flow channel geometry for the gap. The gap 

permeability is calculated thereafter according to Darcy’s law.  

For a woven fabric subjected to a high pressure load, an energy-based model is developed 

to predict the fabric out-of-plane deformation using minimum energy theory and an 

isotropic assumption for woven fabric. The model can predict the fabric maximum 

displacement and corresponding deflected profile across a diameter given a pressure load. 

The fabric deflection can be used to obtain the fabric elongation (strain) which results in 

the change of gap size, yarn width, yarn shape and fabric thickness in loose fabric (clear 

gaps between yarns) and the change of fibre volume fraction and crimp angle in tight 

fabric (overlapping yarns). The deformed fabric permeability is calculated by the unified 

permeability model based on the assumptions of the variation of geometric factors with 

deformation.  

If a woven fabric is subjected to a high decreasing pressure drop by air discharge, the 

fabric permeability is obtained by fitting pressure history and corresponding flow velocity 

using the Forchheimer equation. A nonlinear relationship is found between the pressure 

and velocity where the corresponding permeability is also called the dynamic 

permeability. The high pressure causes the shape of flow streamlines to vary in the gap 

between yarns (viewed as a converging-diverging duct). This flow behaviour is modelled 
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by adding a non-Darcy term to Darcy’s law according to continuity theory and the 

Bernoulli equation. Therefore, a predictive Forchheimer equation is given for flow 

behaviour in a woven fabric based on the fabric geometry, structure and flow situation.  

The developed analytical models were verified by CFD simulations and experiments in 

this thesis. The comparisons showed good agreements. Sensitivity studies were conducted 

to understand the effects of geometric factors and mechanical properties on the fabric 

deformation and permeability. In this thesis, two pieces of equipment in particular were 

introduced for measuring the fabric dynamic permeability and fabric out-of-plane 

deformation. The measurements agreed well with their corresponding analytical 

predictions. Finally, the comparison of fabric deformation and non-Darcy flow showed 

the importance of fabric deformation in affecting the final fabric permeability.  
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NOMENCLATURE 

,ܣ ,ܣ  (݉) ௨ Area, area of gap, area of unit-cell (݉ଶ) ܽ Half yarn width (݉) ܽ′ Fabric radiusܣ

B Transducer for volumetric flow rate in permeability tester ܿ, ܿଵ, ܿଶ Unknown factors in Eqs.2.30, 5.2, etc. ݐݏ݊ܥ Constant in equation such as Eq.4.7 ܦ Flexural rigidity (ܰ݉) 

d, ݀ Tube diameter, hydraulic diameter (݉)   ܦ	 Diameter of particles (݉) ܦ,  (݉) ௪ Width of warp yarn, width of weft yarnܦ

E Young’s modulus (Pa) ܨԦ Force vector (N) ݂ Frictional factor 

G Shear modulus (Pa) ܪ Yarn height (m) ℎ Half distance of a pair of parallel plates (m) ݅ An arbitrary layer of a 3D woven fabric	݃ Acceleration due to gravity (m/s2)	ܭሬሬԦ , ࢋࡷ Permeability tensor, effective permeability (݉ଶ) ୄܭ,ܭ, ,ܭ Permeability, permeability perpendicular or parallel to fibres (݉ଶ) ∥ܭ  Fabric thickness (m) ݈ Thickness of a single fabric layer in a 3D woven fabric (m) ܮ ݇ Kozeny coefficient	(݉ଶ)	 Permeability for quadratic, hexagonal fibre arrangementsܭ

M Mach number ݉ Mass (kg) 

N Number of fabric layers in a 3D woven fabric ො݊ Normal direction ݊ Number of fibres in a yarn ܲ, ܲ௧ Pressure, atmospheric pressure (Pa) ∆ܲ Pressure drop or pressure loss (Pa) 
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ܳ Volumetric flow rate (m3/s) ܴ Throat radius in a converging-diverging flow channel (m) ܴ Reynolds number ܴ Fibre radius (m) ܴ௨ Universal gas constant (8.3145 ܭ)/ܬ ∙ 	 Radial position (m) ݎ ((݈݉
S Half length of a crimped yarn in a fabric unit-cell (݉) ܵ , ܵ௪ Spacing of warp yarns, spacing of weft yarns (m) ॻ Stress tensor (ܰ/݉ଶ) 

T Absolute temperature (℃) ݐ Time (s) ܷ, ܷ, ܷ∏ Bending energy, membrane strain energy, total energy (ܬ) ॽ Tank volume (m3) 

V Volume (m3)  

V Velocity (m/s)      ሬܸԦ Velocity vector ܸ Fibre volume fraction 

W Work done (W) ࢛ Superficial velocity (m/s) ݑ, ,ݒ ,ݔ Displacement components in ݓ ,ݕ ,′ݑ  directions (m) ݖ ,′ݒ ,ݔ Velocity components in ′ݓ ,ݕ ,ݔ direction (m) ݖ ௫ Maximum displacement inݓ directions (m/s) ݖ ,ݕ ,ݔ݀  Axial directions in Cartesian coordinates ݖ 	Ordinary and partial differential ݔ߲
 

Greek symbols ߙ Darcy coefficient in the Forchheimer equation (Eq.2.17) ߪ,  Shear strain ℒ Tortuosity ߛ Non-Darcy coefficient in the Forchheimer equation (Eq.2.17) ߚ  Stress and Normal stress (N/m2)ߪ
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  Hydraulic resistance, hydraulic resistance of a tube, hydraulicߞ ,௧ߞ ,ߞ

resistance of a pair of plates ߜ Micro element ߤ  Fluid viscosity (Pa∙  Fluid density (kg/m3) ߩ (ݏ

Ф, ߶ Areal porosity, volumetric porosity  ߰ A phase (air, fluid or solid) ߣ Shape factor of gap between yarns  ߥ Poisson’s ratio ̂ݐ Tangential direction ߝ Strain ߬ Shear stress (N/m2) ߠ Yarn crimp angle (°) Δ, ∇ Vectors of operation 

 

GLOSSARY 

CFD Computational fluid dynamics, using numerical methods to 

solve and analyze problems that involve fluid flows 

GCD  Gradual converging-diverging geometries 

Harness A part of a loom that raises and lowers the warp threads to create 

a shed 

HyperMesh  Software which meshes a flow channel geometry into many 

nodes and elements  

Micro-CT Micro-Computed Tomography, which can image the 3D internal 

structure of materials 

Permeability A measure of the ability of a porous material to transmit fluids 

SD Standard Derivation 

TexGen Software which models the geometry of a fabric 
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CHAPTER 1 

INTRODUCTION 

Permeability is a measure of the ability of a porous material to transmit fluids. It is an 

important property of technical textiles particularly in protective applications, such as auto 

and wearable airbags where even the low permeability of the fabric can extend the 

interactive time in impact. Limited permeability of parachute fabric can stabilise its 

descent, as shown in Fig.1.1.  

 

Figure 1-1 Fabric permeability in protective applications [1] 

Fabric permeability relates to its geometric structure strongly as well as to the path of 

streamlines for flow through the structure. Therefore, development of an analytical fabric 

permeability model requires a background of fluid mechanics and knowledge of 

mechanics of textile fabrics. 

1.1 BACKGROUND 

1.1.1 Definition of permeability 

Flow in porous media was first studied experimentally by Darcy in 1856 as noted by Mei 

[2]. By observing the flow of water through a bed of sand, Darcy deduced that the volume 
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of water running through the sand is proportional to the pressure drop. The resulting 

equation is the well known Darcy’s law: ܳ = ఓ ∆           (1-1) 

Where ܳ is the total volumetric discharge in unit time, ܣ is the cross sectional area of the 

porous medium, ∆ܲ/ܮ  is the pressure gradient, ߤ  is the fluid viscosity and ܭ  is the 

permeability of the porous medium, which has a dimension with m2 after deduction.  

Permeability arose from Darcy’s law where all the detailed microscopic interactions 

between the fluid and the porous medium were lumped into the permeability value. As 

such, it is a property of the porous medium. Its value depends on the geometry and the 

structure of the flow channels in the porous medium. The permeability as defined in 

Darcy’s law pertains to the steady flow of fluid in a saturated porous medium. Air 

permeability tests within low constant Reynolds number (ܴ, Appendix II) obey the law as 

the air is absolutely saturated in the porous medium.  

In the general case, permeability is a tensor and its components in three-dimensional space 

are written as: 

ሾܭሿ = ܭ௫௫ ௫௬ܭ ௬௫ܭ௫௭ܭ ௬௬ܭ ௭௫ܭ௬௭ܭ ௭௬ܭ  ௭௭         (1-2)ܭ

For a woven fabric, the permeability tensor is orthotropic where ܭ௫௬ = ,௬௫ܭ ௫௭ܭ ,௭௫ܭ= ௬௭ܭ = ௭௬ܭ , and there exists a principal coordinate system with a principle 

permeability tensor: 

ሾܭሿ = ܭଵ 0 00 ଶܭ 00 0  ଷ൩               (1-3)ܭ

Where ܭଵ and ܭଶ can be regarded as the in-plane permeabilities while ܭଷ is the through-

thickness permeability. For a textile, fluid always tries to find the easiest flow path, 

therefore, the gaps between yarns are the main flow channels and hence dominate the 
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permeability. Fluid flowing in three dimensions experience different resistance due to the 

anisotropic textile structure, and generally the values of ܭଵ, ܭଶ and ܭଷ are different.  

At a micro level for a yarn inside a textile, it has two permeabilities: along the fibre 

permeability (ܭ∥) and perpendicular to the fibre permeability (ୄܭ). As yarns in a woven 

fabric are undulating, the overall fabric permeability should involve the ܭ∥ and ୄܭ values 

along with the yarn crimp angle.  

In this thesis, through-thickness permeability of woven fabric is tested experimentally 

using a static permeability tester and a dynamic permeability tester, which are introduced 

in Chapter 3 and 4 in detail. The static permeability tester provides a low and constant 

pressure drop between fabric sides and the corresponding flow velocity is recorded as an 

average value. The static permeability is calculated by substituting the pressure drop and 

the velocity into Eq.1.1 with measured fabric thickness. The dynamic permeability tester 

uses a constant volume tank which gives a clamped fabric a high initial pressure drop, 

which falls as air flows through the fabric. The dynamic permeability is obtained by the 

transient pressure drop and air velocity. The experimental process to obtain the fabric 

through-thickness permeability can also be simulated by computational fluid dynamics 

(CFD), which gives a flow velocity based on a set pressure drop. The simulated 

permeabilities are obtained using the same theories as in the experimental approach.   

1.1.2 Textile fabrics 

A textile is a flexible material consisting of a network of bundles, natural or artificial 

fibres often referred to as threads or yarns. Yarn might be monofilament, a bundle of 

untwisted long filaments or produced by processes such as spinning raw short fibres of 

cotton, flax, wool, silk, or other material to produce long strands. Textiles are formed by 

weaving, knitting, crocheting, knotting or pressing fibres together. Most fabrics can bend 

and fold easily. Textile fabrics can be loose or tight depending on the amount of gaps in 

their structure. Therefore, textile fabrics are thin, flexible, porous sheet materials. They are 

used extensively in our daily lives and in mainly industries, for example medical textiles 

(e.g., implants), geo-textiles (reinforcement of embankments) and protective clothing (e.g., 

heat and radiation protection for fire fighter clothing, airbags for road vehicles, etc.).  
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(a), Geometry of textiles 

In this thesis, woven fabrics are studied. One-layer woven fabrics consist of generally two 

orthogonal series of yarns, referred to as warp and weft yarns, interlaced to form a self-

supporting textile architecture. 3D woven fabric usually contains warp and weft yarns as 

well as through-thickness yarns to bind them. A number of fabric structures are shown in 

Fig.1.2: 

     

                                 2D Plain weave                                       2D 2/1 Twill weave 

      

                                2D 5/3 Satin weave                                  3D Orthogonal weave 

Figure 1-2 Images of woven fabric architectures (generated by TexGen [3]) 

The simplest of interlacing patterns is the plain weave (such as the 2D plain weave in 

Fig.1.2). It is the most basic type of textile weave with the warp and weft aligned so they 

form a simple criss-cross pattern. Each weft thread crosses the warp threads by going over 

one, then under the next, and so on. More complex interlacing patterns for one-layer 

woven fabric can be categorised as twill, satin, crowfoot, rib, basket, herringbone, crepe, 
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etc. A twill weave (such as the 2/1 twill in Fig.1.2) is the second most basic weave that can 

be made on a simple loom. In a twill weave, each weft yarn floats across the warp yarns in 

a progression of interlacings to the right or left, forming a distinct diagonal line. The 

diagonal line is also known as a ‘wale’. A float is the portion of a yarn that crosses over 

two or more yarns from the opposite direction. Twill weave is often designated as a 

fraction, such as 2/1, in which the numerator indicates the number of harnesses that are 

raised when a weft yarn is inserted. A satin weave (such as the 5/3 satin weave in Fig.1.2) 

is characterized by four or more weft yarns floating over a warp yarn or vice versa, four or 

more warp yarns floating over a single weft yarn. The structure of a satin weave is not 

stable as the long floating yarns travel over other perpendicular yarns.  

The existence and the size of the gaps between yarns influence the fabric permeability 

significantly. Inside the yarn, the fibre arrangement is important in studying the fibres’ 

architecture and permeability at the micro scale. The fibres in a real yarn do not generally 

exhibit a uniform array. However, it can be said that one type of fibre arrangement 

accounts for the main portion in the yarn. Hexagonal and quadratic are two basic types of 

fibre arrays inside the yarn, as shown in Fig.1.3. After weaving, the yarns are compacted 

against each other. A real yarn cross-section was characterized by a microscope as shown 

in Fig.1.3, from which it is noted that the outside fibres of the yarn almost touch each other 

while more space exists around fibres inside the yarn. In this case, it is challenging to 

capture the permeability of real yarns in textiles. 

 

Figure 1-3 Cross-section of a polyester yarn in a woven fabric 

Hexagonal Quadratic 
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 (b), Textile deformation 

Subjected to load, textile fabrics are relatively easy to deform. Three main fabric 

deformation mechanisms are identified as the most common: in-plane shear, compaction 

and tension. They all can change the gap size and fabric thickness, leading to a change in 

fabric permeability. 

In-plane shear of textile relates to application of shear strain, which is a deformation of the 

textile in which parallel yarns slide past one another. Yarns in a woven fabric reach a 

locking angle [4] where adjacent yarns come into contact. There are two completely 

different mechanisms of the effect of shear on fabric permeability [5]. Firstly, the gaps 

between yarns reduce whilst yarns remain un-deformed which means the fibre volume 

fraction within the yarns does not change at the beginning of shear. Width and length of 

gap between yarns decrease while thickness is assumed constant. Secondly, when fabric is 

sheared until there is no gap remaining between yarns, yarns start to shear and compact. 

Yarns are compressed by neighbouring yarns and their width decreases if yarn height and 

fibre radius can be assumed constant. In this case, yarn fibre volume fraction increases 

during shear.  

Fabric compaction takes place when a fabric is under pressure load. During compaction 

gap dimensions reduce and yarn fibre volume fraction increases due to the decreasing of 

fabric thickness.  

When fabric is loaded out-of-plane, fabric is bent and stretched. The fabric experiences 

tension during the load. Tension can be in the warp or weft direction or in both directions 

at the same time. During tension yarns are stretched which decreases their width and 

increases yarn fibre volume fraction. This can increases the gap size. In addition, the fabric 

thickness might reduce during the tension. 

1.2 MOTIVATION 

With an increase of airbag application in passenger and body protection, such as vehicle 

airbags and wearable airbags for the aged persons [6, 7], the efficiency of airbag operation 

[8, 9] becomes an important requirement. The aims of the project were to 
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• Understand the fundamental flow behaviour in textile materials; 

• Analyze the structures of airbag fabrics and common clothing fabrics; test the air 

permeability of those fabrics when air transfers through them; develop an 

analytical model relating the air permeability to textile structure; 

• Simulate fabric behaviour in real airbag inflation; determine the effect of pressure 

drop on the fabric permeability;  

• Develop an analytical model to relate fabric deformation and corresponding 

permeability to pressure load; verify this by simulation and experiment; 

The original work focused on airbag fabric. Therefore through-thickness permeability is 

the main permeability discussed in this thesis.  

In Saldaeva’s thesis [10], the air permeabilities of several woven fabrics were measured 

under low pressure drops using an air permeability tester FX3300. The author plotted the 

relationship of pressure drop and fluid velocity for each fabric and found a linear 

relationship. With the application of Eq.1.1, the air permeability of each fabric was 

calculated experimentally. However, the gaps between the yarns in each fabric are 

different geometrically. One fixed structure of fabric has a constant permeability. 

Therefore what is the relationship of the fabric permeability with its structure, or the 

geometry of the flow channel inside the fabric? From observations of fabric structures by 

microscopy, it is noted that the yarns in tight fabrics are overlapping while the loose 

fabrics have clear gaps between yarns. In addition, the gaps between yarns in loose fabrics 

are not analogous to straight pipes. They are actually more like the gradually converging-

diverging tubes, depending on the geometry of the yarn cross-sections. If the geometries of 

the gaps or the fabrics are not deformable, there will be an obvious nonlinear relationship 

of pressure drop and fluid velocity when the fabric is under a series of high pressure drops. 

Therefore, what is the permeability under high pressure if the fabric structure is known?   

As airbag fabrics undergo very high pressure inflation, the fabrics are deformed when 

subjected to such high distributed loads, leading to new structures and geometries of flow 

channels. For instance, for a clamped loose fabric under a uniform distributed load, its 

thickness gets smaller while its gap between yarns can become larger due to its in-plane 
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tension. Therefore, how do we predict the change of fabric geometry under high pressure 

load? What is the relationship between pressure and permeability?  

1.3 OVERVIEW OF THESIS 

This thesis presents studies to predict through-thickness permeability of woven fabric. A 

unified analytical model has been systematically developed to predict the fabric static 

permeability. Dynamic permeability was tested experimentally. Fabric deformation and 

corresponding permeability were also modelled analytically. The objective was to 

understand the relationship between fluid flow and fabric structure. A wide range of 

woven fabrics were considered including tight fabrics and loose fabrics. Analytical 

permeability predictions for these fabrics were all compared with experimental data. In 

addition, the analytical predictions were compared with CFD (computational fluid 

dynamics) simulations. The structure of the thesis is outlined below. 

Chapter 2 firstly provides a literature review on analytical, numerical modelling and 

experimental investigation of static permeability of porous media. It presents the 

development of the models and the limitation of each model. Secondly, a review on 

dynamic permeability is presented, including experimental and computational work. This 

is followed by a review of fabric deformation under pressure load and the fundamental 

theory for fabric deformation. The fourth section reviews research on the nonlinear 

relationship of pressure and fluid velocity.  

Chapter 3 focuses on the development of an analytical model for through-thickness static 

permeability of woven fabric. For flow through gaps between yarns in a woven fabric, an 

analytical model is developed based on viscous and incompressible Hagen-Poiseuille flow. 

The flow is modelled through a unit cell of fabric with a smooth fluid channel at the centre 

with slowly varying cross-section. The channel geometry is determined by yarn spacing, 

yarn cross-section and fabric thickness. The shape of channel is approximately by a 

parabolic function. Volumetric flow rate is formulated as a function of pressure drop and 

flow channel geometry for woven fabric. The gap permeability is calculated thereafter 

according to Darcy’s law. The analytical model is verified by CFD simulations and 

experimental determination. This chapter then reviews analytical models for flow through 
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yarns in a woven fabric. A unified analytical model integrates the permeability equations 

for gaps between yarns and yarns in woven fabrics in terms of fabric porosity for through-

thickness permeability of any woven fabric. Through-thickness static permeability of 3D 

woven fabric is predicted based on one-layer of woven fabric structure. All predictions are 

verified by numerical simulation and experimental tests. 

Chapter 4 presents a definition of dynamic permeability and utilizes a reliable approach to 

measure and characterize dynamic permeability for woven fabrics. The experimental 

principle is based on the ideal gas law and the non-linear Forchheimer equation. Tight and 

loose fabrics are both tested for dynamic permeability, which is compared with their static 

permeability. Effects of increased number of fabric layers and initial pressure level are 

investigated. 

Chapter 5 contains two sections. An analytical model is developed to predict fabric 

deformation under high pressure load. The model is based on an energy approach 

including strain energy, bending energy and work done on the fabric. A vacuum-based 

device is designed to verify the analytical model experimentally. The second section 

analyzes the effects of fabric deformation on its through-thickness permeability based on a 

number of assumptions. The fabric permeability prediction in this case is also compared 

with experimental values of the dynamic permeability. 

Chapter 6 extends Darcy flow to non-Darcy flow, which analyzes the quantification of 

hydraulic resistance to laminar flow at high Reynolds number. The model uses a gradual 

converging-diverging flow channel. A nonlinear relationship between pressure and flow 

velocity is given by adding a non-Darcy term, which is based on continuity theory and the 

Bernoulli equation. The main features of the model are that the Darcy flow is a function of 

the fluid property and channel geometry while the non-Darcy flow depends on the channel 

geometry completely. The non-Darcy model for predicting the nonlinear relationship is 

verified by CFD simulations and experimental data. This nonlinear relationship is due to 

the gap geometry, which is compared with the fabric deformation effects in the last section.  

Chapter 7 gives an overall summary and conclusions of the present work and 

recommendations for future work.  



10 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

For a porous material, static permeability defines the ability to transmit permeating fluid at 

a constant pressure drop, while dynamic permeability concerns mass transport under 

transient pressure conditions. Static permeability, normally measured under low pressure 

drop (≤500Pa), is one of the primary properties for technical textiles used in fluid related 

applications such as textile composites processing, paper making, air and water filtration. 

Dynamic permeability is another important property for many technical textiles such as 

automotive airbags, wearable (landing) airbags and parachute fabrics. These fabrics are 

usually subjected to high initial pressure, for example, a car airbag fabric is subjected to 

200 KPa higher than atmospheric pressure. This may result in deformation of the fabric 

structure, leading to a change in the permeability.  

There are two kinds of woven fabric, loose fabric (clear gap between yarns) and tight 

fabric (overlapping yarns in fabric). For a loose fabric, the regular interwoven structure of 

woven fabric gives rise to arrays of fluid channels. These channels are in theory identical 

and repetitive. The geometry of each individual channel depends mainly on weave density, 

yarn shape and weave style. Fabric permeability is governed by these geometric 

parameters. For a tight fabric, fluid has to transfer through the yarns. Fibre radius, 

arrangement and volume fraction become the main geometric factors determining the yarn 

permeability. In addition, undulating yarn shape in woven fabric also affects the fabric 

permeability to some extent. A predictive model of permeability as a function of fabric 

structure is a desirable tool for optimum materials design [11]. 

For laminar flow, there are linear and nonlinear relationships of pressure drop and fluid 

velocity. The former relationship is defined as Darcy flow while the latter is referred to as 

non-Darcy flow. When pressure drop increases in a converging-diverging flow channel, 

the appearance of non-Darcy flow is due to the flow convective acceleration. In addition, 
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the fabric deformation under loading can change the fabric geometric dimensions, leading 

to a change in permeability. An analytical model to predict permeability as a function of 

fabric geometry and loading is required for understanding of the underlying mechanisms.  

2.2 DARCY FLOW IN POROUS MEDIA 

As introduced in Section 1.1.1, Eq.1.1 is an empirical equation describing the relationship 

of pressure gradient and volumetric flow rate. Early developments of Darcy’s law were 

spurred on by studies in hydrology and soil mechanics. The applications normally 

considered of granular beds (sand and rocks) or porous solids, which are assumed to be 

isotropic and homogeneous. Subsequently it was observed that directional variations of 

permeability can occur. For a macroscopically homogeneous piece of rock, the 

permeability is not the same across different cross-sectional faces [12]. In fibre composites 

engineering, most fibre preforms are heterogeneous materials and exhibit anisotropic flow 

behaviour. The theory of flow in anisotropic materials was developed particularly by 

Farrandon in 1948 and Liwiniszyn in 1950 [13], through which the full tensorial form of 

Darcy’s law (Eq.1.26) for anisotropic media was derived: 

࢛ = −ሬሬԦఓ ∇ܲ       (2-1) 

Where ࢛ is the superficial velocity, which is obtained in a macroscopic scale; ߤ is the fluid 

viscosity; ∇ܲ  is the pressure gradient and ܭሬሬԦ  is the permeability tensor of the porous 

medium.  

Research on the air permeability of textile materials began at the end of the 19th century 

when experimental methods for estimating the hygienic properties of materials for clothing 

began to be used [14]. The first studies of air permeability for fabrics conducted by Rubber 

[15] were based on Darcy’s law. Burschke and Advani[16] reported excellent agreement 

using experiment and numerical simulation for Newtonian fluid through a fibre network 

compared with Darcy’s law. However, Darcy’s law does not relate the structural 

parameters of porous materials to the value of permeability.   
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Kozeny and Carman [17] found a similar relation between pressure drop and flow velocity 

as in Darcy’s law separately, suggesting that the permeability is independently determined 

by material variables i.e. porosity (∅) and specific surface area (ܵ): 

ܭ = ∅య(ଵି∅)మௌమ            (2-2) 

Where ݇  is the Kozeny coefficient, ∅ is defined as the portion of total space inside a 

porous medium. This classical permeability-porosity equation was originally developed 

for granular beds consisting of ellipsoids. Further modification of the equation made it 

applicable in various fields subsequently [18, 19], such as fouled fibrous filters and 

adsorbents, and other composite porous media. However, one weakness of the Kozeny-

Carman equation was pointed out by Gutowski [20] when applied to composites 

manufacturing in that the model parameters are only coupled to the geometry through the 

variables on radius of fibre and that the detailed geometry dependence is lumped together 

into the model parameter which has to be determined experimentally. Published results 

also indicated that the parameter ݇ may vary with the fibre volume fraction for a given 

fabric [21].  

Gebart [22] developed an analytical model for predicting the permeability of fibre bundles, 

which simulated 2-D flow of a Newtonian fluid perpendicular to and parallel with 

unidirectional filaments. It can be considered analogous to flow within yarns in a fabric 

structure.  

 

 

Figure 2-1 Cross-section of idealized unidirectional fibres array: (a) quadratic and (b) hexagonal 

The author looked at two types of fibre arrays (quadratic and hexagonal) as shown in 

Fig.2.1 and derived two permeabilities: 

∥ܭ = ଼ோమ (ଵି)యమ                              (2-3a) 

(a) (b) 
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ୄܭ = ଵܥ ൬ටೌೣ − 1൰ఱమ ܴଶ             (2-3b) 

Where ܭ∥ and ୄܭ are permeability along and perpendicular to the fibres respectively, ܴ is 

the fibre radius and ܸ௫  is the possible maximum fibre volume fraction, ܥଵ and ܿ are 

constants which depend on the arrangement of fibres. Values for  ܥଵ, ܸ௫  and ܿ are  ଵଽగ√ଶ,  గସ 	and 57 respectively when fibre arrangement is quadratic and  
ଵଽగ√,  గଶ√ଷ  and 53 

respectively when it is hexagonal. This model is based on the assumption of circular fibre 

cross-section and the specified fibre arrangements. The predicted permeability had 

excellent agreement with experimental results only when the fibre radius in the analytical 

model was adjusted to match the permeability prediction to the experimental data for flow 

along the fibres. Based on Gebart’s work, Ngo [23] and Hakanson [24] both made micro-

scale permeability predictions for fibrous porous media. The former applied computational 

approximations while the latter mainly focused on analytical determination, both showing 

good agreement with experimental data for fibre bundle permeability.    

Phelan and Wise [25] studied transverse Stokes flow through an array of elliptical 

cylinders to determine the macroscopic permeability of unidirectional fabric. Each 

cylinder represents one yarn, which can be treated as a solid or porous material. From first 

principles a semi-analytical model based on lubrication analysis [22] was developed:  

ܭ = ଶೣ ଵ ೣಽೣషಽೣ              (2-4) 

Where ܮ௫ and ܮ௬ are half the length and width of the unit cell;  ݂ is an explicit function of 

the fluid domain geometry, tow porosity and tow permeability. The fluid domain geometry 

is governed by the tow packing arrangement as well as tow cross-sectional shape. The 

model showed that tow cross-sectional shape played an important role for the overall 

fabric permeability. A more elliptical tow shape had higher flow resistance along the 

major axis. One main assumption from this model was that the flow was unidirectional 

along the fluid channel axis by ignoring transverse flow velocity components. Using CFD 

analysis, the author indicated the assumption was valid since the pressure gradient was 

highest near the narrowest regions of the flow channel where the walls were almost 
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parallel. The model improves the permeability prediction by considering specific 

geometries [26]. However it is not directly applicable to woven fabric where the flow 

domain geometry is more complex.  

Kulichenko [27] developed an analytical model for through-thickness permeability of 

woven fabric, based on the Poiseuille and Weisbach-Darcy’s equations by simplifying the 

geometry of channels (gaps) in a fabric as a system of parallel capillaries like straight 

tubes as shown in Fig.2.2.   

 

 

Figure 2-2 Simplification of gaps between yarns as straight channels  

After analysis of the fabric geometry and fitting with experimental data, the predictive 

permeability is:   

ܭ = Фௗమ଼                  (2-5) 

Where ݀ is the hydraulic diameter of the pore, Ф is the porosity of fabric which can be 

calculated from Ф = ܣ ⁄௨ܣ  .௨ is the area of a unit cellܣ  is the area of a gap whileܣ ,

Three methods were suggested for measuring porosity and hydraulic diameter for Eq.2.5, 

but no method could predict the permeability accurately in comparison to experiments. 

The other problems in verification are that the samples used were nonwoven materials 

with no periodic unit cell. 

Zupin [28] predicted one-layer woven fabric air permeability also by using porosity 

parameters. The authors treated rectangular-shaped pores as circular ones, using hydraulic 

diameter of pores equal to four times the pore area divided by the pore perimeter. In 

addition, two other parameters were used for the prediction of air permeability: the number 

of macro pores and the total porosity of woven fabrics. The three selected parameters for 

air permeability prediction were used for multiple linear regressions, which were based on 

ܣ ௨ܣ
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experimental measurements. The high coefficient of correlation (R2) value of 0.94 

indicated the model explained variability in the air permeability to a large extent.  

To summarize up to this point, Kozeny developed an analytical equation containing a 

fitting coefficient for any porous medium; Gebart derived a set of equations describing 

flow along and perpendicular to unidirectional fibre arrays, assuming two idealized types 

of packing; Phelan gave a semi-analytical equation considering the tow shape in the fabric; 

Kulichenko’s model assumes the gaps inside the fabric are a system of parallel capillaries, 

which cannot be used to model textile fabrics accurately as this does not consider the 

curvature of yarn cross-sections. Zupin treated the rectangular-shaped gaps as circular 

ones in woven fabric by using hydraulic diameter, which is a useful reference for the 

development of an analytical model in this thesis.   

Other analytical models for permeability of fibre arrays have also been developed to relate 

fibre volume fraction ( ܸ) and geometric or empirical constants such as the maximum 

volume fraction ( ܸ௫) to the permeability of a periodic medium. Berdichevsky [29] used 

self-consistent method and finite element simulations to estimate the permeability of an 

aligned fibre bundle as shown in Fig.2.3a.  

 

 

 

 

1: fibre cross-section; 2: fluid region; 3: porous medium with permeability ܭ௭;  

4: fibre array with permeability ܭ௭ 

Figure 2-3 Schematic of (a) self-consistent method (Berdichevsky model) and (b) improved self-

consistent method (Cai model) 

Continuity theory and the integration of shear stress with the geometric boundary 

conditions in cylindrical coordinates gave formulae for both longitudinal and transverse 

permeabilities as a function of fibre volume fraction and fibre radius ( ܴ): 

(b) (a) 

1 

2 

2 

4 

3

ݎ



16 
 

∥ܭ = ோమ଼ ln ଵమ − ൫3 − ܸ൯൫1 − ܸ൯൨        (2-6a) 

ୄܭ = ோమ଼ ln ଵమ − ଵିమଵାమ൨                             (2-6b) 

Eqs.2.6 is derived for random fibre packing. Also it was shown that the permeability was 

not only related to the fibre volume fraction or porosity, but was also greatly influenced by 

the packing structure or micro-level disturbance. This methodology could be suited for 

different fibre packing structures, such as hollow hexagonal fibres packing. However, 

there was no comparison with experimental results. Later, Cai [30] improved the 

Berdichevsky model by assuming that an insertion (region ‘4’ in Fig.2.3b) consists of a 

circular section of fluid and a ring section of porous medium. This improvement can 

describe effectively the permeability of tight structures containing distributed voids. The 

insertion was placed in a homogeneous medium with an unknown permeability. It 

considered Stokes and Darcy flow for different regions. Boundary and interface conditions 

as well as two consistency conditions, including the total amount of the flow and the 

dissipation energy, were applied accordingly. This improved model captured the flow 

characteristics of a fibre bundle. In the transverse flow case, the gaps between 

neighbouring fibres governed the flow resistance. The derived expressions for the 

transverse permeability contained two variables, the average ܸ value and the maximum 

packing efficiency ( ܸ௫) as presented in Eq.2.7: 

ୄܭ = 0.229 ൬ ଵ.଼ଵସೌೣ − 1൰ቐ൬ଵିට ೌೣ⁄ ൰ ೌೣ⁄ ቑଶ.ହ         (2.7) 

The paper showed the predictions had good agreement with experimental data. However, 

the constants in Eq.2.7 are from curve fitting of experimental data. Eq.2.7 does not 

consider the fibre radius and arrangement apart from the fibre volume fraction.  

Bruschke and Advani [16, 31] studied fluid flow through regular arrays of cylinders. A 

closed form solution was developed by matching the analytical solution using the 
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lubrication approach, as shown in Fig.2.4, for low porosities and the analytical cell model 

solution for high porosities: 

                                                                                     

Figure 2-4 Schematic of the lubrication approach 

The model utilized the same methodology as the Gebart model, and integrated the 

permeability expressions with accurate results: 

ܭ = ோమଷ√ଷ (ଵିమ)మయ × (3݈ ୟ୰ୡ୲ୟ୬ቆටభశభషቇ√ଵିమ + మଶ + 1)ିଵ    where  ݈ଶ = ଶ√ଷగ         (2-8a) 

ܭ = ோమଷ (ଵିమ)మయ × (3݈ ୟ୰ୡ୲ୟ୬ቆටభశభషቇ√ଵିమ + మଶ + 1)ିଵ   where  ݈ଶ = ସగ              (2-8b) 

The results of the closed form solutions agreed well with the numerical solution obtained 

by solving the Stokes equations in quadratic and hexagonal arrangements of cylinders for 

Newtonian fluids. They assumed no-slip boundary conditions on the surface of the 

cylinder, symmetry conditions on the top and bottom surfaces and constant pressure 

boundary conditions on the left and right surfaces. Eq.2.8 can be used only for low 

porosities up to about 40%.  The cell model for high porosities, however, assumed that the 

disturbance in the fluid model by one cylinder does not affect the flow field of any of the 

surrounding cylinders. In addition, the packing configuration does not have any influence 

on this model. Hence, the model cannot predict the permeability over the full porosity 

range successfully.  

Westhuizen and Plessis [32] used phase-average Navier-Stokes equations to calculate the 

permeability of representative unit cells as shown in Fig.2.5. The cross-section of fibres 

was assumed square. The flow was assumed laminar. The model used an effective fibre 

Fibre 

Flow region 
ଵܲ ܲ
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volume fraction ( ܸ∗) for different arrangements of fibres based on the real fibre volume 

fraction for transverse permeability: 

ܭ = ܴଶ × గቀଵି∗ቁ൬ଵିට∗൰మଶସቀ∗ቁభ.ఱ            (2-9) 

Where ܸ∗ = 2.22( ܸ)ଶ − 1.22 ܸ + 0.56  when ܸ ≥ 0.5  and ܸ∗ = ܸ  when ܸ < 0.5 . A 

simple extension of the solution was proposed to account for the pinch-off effects during 

transverse flow through the fibre bed. 

 

 

 

 

Figure 2-5 Hypothetical representative unit-cell for a unidirectional fibre bed 

The model found reasonable agreement with solid rod experimental data for fibre volume 

fractions up to 60%. The model had a major deficiency for higher fibre volume fractions 

due to the assumption of square cross-section of fibres.  

Wang [33] developed a similar relation for an array of rectangular-packed fibres. This 

assumed slow viscous flow through the array, solved by the efficient method of Stokes 

equation expansion and domain decomposition. In the paper, the flow resistance was 

compared for quadratic arrays of square and circular fibres, showing that circular fibres 

had less flow drag. However, there was no comparison of transverse permeability to 

experimental data. 

Up to this point, modelling of viscous flow through fibre arrays and one-layer of woven 

fabric has been reviewed. As to 3D woven fabric, which is used as a reinforcement for 

composites due to its low weight and multilayer structure, permeability is an important 

property for composites manufacturing. However, an approach to observe the internal 

structure of 3D fabric is important in obtaining the geometric parameters to predict its 

Fibre

Flow 
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permeability. In the last decade, Micro-Computed Tomography (CT) has been popular in 

characterizing the 3D textile architecture [34-37]. Fig.2.6 gives cross-sections of two 3D 

woven fabrics obtained by the CT technique. 

     

Figure 2-6 Cross-sections of 3D woven fabrics obtained by CT scanning [38] 

Few researches have analysed 3D fabric permeability but several have studied multilayer 

fabric permeability. Mogavero [39] made an experimental investigation on the in-plane 

permeability of multi-layered textile preforms. The experimental data were compared with 

the effective permeability prediction: 

ഥܭ = ଵ ∑ ݈ܭேୀଵ        (2-10) 

Where ܭഥ is the effective permeability, ܭ is the in-plane permeability of each fabric layer, ݈ is the thickness of each fabric layer, L is the total thickness of the preform. It was found 

to be a reasonable estimate with errors from 14.2% to 23.8%. Chen [40] developed an 

effective through-thickness permeability of multilayer preforms with a homogenization 

method by considering interlayer continuity and coupling between in-layer and trans-layer 

flow. The author gave an equation for the through-thickness permeability: 

ഥܭ = ଵ∑ (/)/ಿసభ         (2-11) 

Then the author also developed an interface layer model as shown in Fig.2.7.  

ℒ = ୫୧୬	(ௌ,ௌశభ)ௌ            (2-12a) 

௧௬ܭ = ାశభℒమ	( ಼ା శభ಼శభ)        (2-12b) 
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(a)                             (b)                                (c) 

Figure 2-7 Effect of interlayer micro-geometry on through-thickness flow (a) straight 

channel, ℒ =1; (b) tortuous channel, ℒ >1; (c) non-interconnected, ℒ =∞. 

The effective out-of-plane permeability can be obtained for N-layers fabric:  

ഥܭ = ே	ೝೌೝଵା(ேିଵ)ℒమ	             (2-12c) 

The predictions showed good agreement with experimental results. Song [41] developed 

an analytical model for through-thickness permeability for multilayer fabrics by 

considering nesting and phase shifting when the preforms were laid up: 

ഥܭ = ᇱܭ ேேା௫భା⋯ା௫ಿషభ ܣ + ᇱ(1ܭ −  )         (2-13)ܣ

Where ܰ is the number of layers, ܭᇱ is the gap and nesting (Fig.2.7c) permeability, ܭᇱ is 

the permeability of fibre-filled region, ܣ is the area fraction of the channel. The author 

found the permeability was a function of number of layers and when the number was more 

than nine would possess the same permeability. Endruweit [38] developed an analytical 

model for through-thickness permeability of 3D woven fabric: 

ഥܭ = ఓగఒమమோర ୱ୧୬ఏସ           (2-14) 

Where ߣ is the form factor, ݊ is the filament count, ܴ is the fibre radius and ߠ is the angle 

of the pore axis and the binder in through-thickness tow direction. This analytical equation 

had a fitting parameter ߣ from the experimental data for a particular fabric and hence 

cannot predict the permeability directly.  

In a summary, an overall permeability of 3D woven fabric depends on its internal structure 

(Eq.2.13) or permeability of each fabric layer (Eq.2.11). Permeability of one-layer woven 

ܵ 	
ܵାଵ 

ܵ ݈݈ାଵ
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fabric is determined by the fabric geometric features, such as gap shape and fabric 

thickness. In a fibre bundle, tow permeability is a function of fibre radius and fibre volume 

fraction. However, the reviewed models did not consider either the shape of streamlines in 

the fabric gaps nor the flow transverse to the undulating yarns in a fabric. An analytical 

model is required for predicting the static permeability of woven fabrics based on 

geometric features without any fitting factors.  

2.3 NON-DARCY FLOW IN POROUS MEDIA 

When a creeping flow develops in a porous medium under a low pressure drop, it reveals a 

linear relationship between the pressure drop and the flow velocity. While the pressure 

drop increases, leading to a higher ܴ  value but still laminar, a non-linear relationship 

appears. This means Darcy’s law cannot be used for accurate flow analysis in this case. 

This was first proposed by Forchheimer in 1901 as noted by Skjetne [42] to give a high-

velocity correction to Darcy’s law with a power ݉ of velocity: 

− డడ = ܸߙ +                  (2-15)ܸߚ

Where	ߙ is called the Darcy coefficient, and m is close to 2. Forchheimer also proposed 

that the pressure loss could be expressed by a third order polynomial in velocity: 

− డడ = ܸߙ + ଶܸߚ +  ଷ      (2-16)ܸߜ

Based on a dimensional analysis by Green and Duwez [43], Cornell and Katz [44], the 

coefficients in Eq.2.15 with m = 2, can be separated as fluid and porous media parameters, 

resulting in what is today called the Forchheimer equation: 

−பபଡ଼ = Vߙ + βVଶ                    (2-17) 

Where	ߙ equals 
μ , β is a porous media parameter called the non-Darcy flow coefficient. 

Firdaouss [45] mentioned a non-linear correction to Darcy’s law as quadratic in terms of ܴ. The relationship between pressure gradient and flow velocity was divided into three 

parts depending on ܴ , i.e. Darcy region, Forchheimer region and turbulent region, as 
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shown in Fig.2.8. Experimental observations were used to review the critical ܴ value for 

the three zones. The general derivation in two and three dimensions was done in terms of 

porosity. 

 

 

 

 

 

Figure 2-8 Flow regions in a porous medium in terms of ܴ 

Kim [46] also defined the different flow regions in a porous medium in terms of ܴ. The 

critical ܴ value for the transition from Darcy (viscous dominant) to Forchheimer (inertia 

dominant) flow, was obtained by different researchers [47, 48] with values from 20 to 50.  

2.3.1 The Forchheimer equation in porous media 

Ergun [49] reviewed the parameters in the Forchheimer equation based on an experimental 

study of flow through granular beds and research by other workers. It was concluded that 

key factors were divided into four groups, (a) rate of fluid flow, (b) viscosity and density 

of the fluid, (c) closeness and orientation of packing and (d) size, shape and surface of the 

particles. The first two variables were related to fluid behaviour while the last two were 

parameters of porous media. Considering work by Reynolds [50], development of Kozeny 

equation [51], kinetic energy term compensated for the effect viscous energy losses [52-

54], Carman modification to Kozeny equation [55] and turbulent expression [56], the 

author concluded a nonlinear equation: 

∆ = ଵହ(ଵିФ)మ
Фయ ఓమ + 1.75 ଵିФ

Фయ ఘమ         (2-18) 

Darcy zone Forchheimer zone Turbulent zone 

∆ܲ 

ܴ  



23 
 

Where 
∆  is the pressure gradient, ܦ is the solid particle diameter, relating to the specific 

surface area ܵ, ܦ = ௌ.  Eq.2.18 is suited for nonlinear flow in a granular bed.  

Brasquet [57] used classical models and neural networks, and validated this with 

experimental data, for pressure drop through textile fabrics. The author reviewed briefly 

the development of nonlinear relationship of pressure drop and flow velocity based on the 

Eq.2.17. His analysis was based on a modified Ergun equation [49]. In order to compute 

two physical parameters, the tortuosity factor ℒ and the dynamic specific surface area ܵ, 

Kyan [58], Dullien [59] developed the equations:  

ℒ = (ఉమఈ ଶఓФయ(.ଽ଼ఘ)మ).ଶହ                         (2-19a)     

ܵ = (ఈయఉమ (.ଽ଼ఘ)మ(ଶఓ)య Фయ(ଵିФ)ర).ଶହ               (2-19b) 

Based on the research of Renaud [60], another nonlinear equation was developed: 

∆ = 2ℒଶܵߤଶ (ଵିФ)మ
Фయ ܸ + 0.0968ℒଷܵߩ ଵିФ

Фయ ܸଶ         (2-20) 

The application of Eq.2.20 is for particles of low thickness-to-side ratio (wood chips), 

while its drawback is time consuming calculations to determine the parameters (ߙ	&	ߚ in 

Eq.2.19). Belkacemi and Broadbent [61] separated the Forchheimer equation into three 

presume losses in the applications of stacking of fibres and woven yarns:  

∆ = ቀ∆ ቁ௩௦௨௦ + ቀ∆ ቁ௧ + ቀ∆ ቁௗ௧       (2-21) 

Where the first term is from viscous force, the second is from inertial force, the third is 

based on the transformation from Kyan’s model [58]. Innocentini [62] considered the 

influence of air compressibility on the permeability evaluation that gave a modification of 

the Forchheimer equation: 

భమିబమଶ = ఓ ܸ +  ଶ          (2-22)ܸߚ
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Where ଵܲ  is the fluid pressure at the entrance, ܲ  is the pressure at the exit, ܲ  is the 

average value of ଵܲ and ܲ. Eq.2.22 can only be used when M is greater than 0.3 [63]. 

Theoretically, some researchers derived the Forchheimer equation from the Navier-Stokes 

equation. Whitaker [64] used a volume averaging approach to derive Darcy’s law and the 

Forchheimer correction for a homogeneous porous medium. The work began from the 

Navier-Stokes equations and found the volume averaged momentum equation: 

< టܸ >	= 	− ఓഗ ∙ ቀߘ൫ టܲ൯ట − ట݃ቁߩ − ߚ ∙< టܸ >ଶ       (2-23) 

Where < టܸ >	 is the average superficial velocity in the ߰ (fluid) phase, which is shown 

in Fig.2.9, μట and ρట are the viscosity and density of the ߰ phase respectively, ݃ is the 

acceleration due to gravity. 

 
 

 

 

Figure 2-9 ߰ phase flow in a porous medium 

The Darcy’s law permeability ܭ  and the Forchheimer correction coefficient ߚ  were 

determined from closure problems, using a spatially periodic model of the porous medium. 

However, the author did not give the analytical expressions of ܭ and ߚ as functions of the 

geometric parameters of the porous medium.  

Chen [65] derived the Forchheimer equation via the theory of homogenization. The 

nonlinear correction to Darcy’s law was studied due to the inertial effects in Newtonian 

flow in rigid porous media. A general formula for this correction term was derived directly 

from the Navier-Stokes equations by homogenization: 

ߩ− < ൫ܬ టܸ൯ టܸ > టߤ+ < టܸ >= ట݃ߩ)ܭ − ∇୶ܲ)      (2-24) 

߰
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Where ܬ൫ టܸ൯ is the Forchheimer tensor which is a function of velocity ( టܸ). Unlike other 

studies (Mei [66]; Wodie [67]) based on a similar approach which suggested that for the 

nonlinear correction was cubic in velocity for isotropic media, this study showed the 

nonlinear correction was quadratic. The paper also gave examples to illustrate the 

quadratic correction, considering incompressible and compressible cases. The author 

proved the validity of the Forchheimer equation in theory but did not compare the 

analytical results with experimental data.  

Burcharth [68] discussed porous flow in a coarse granular medium with special concern 

given to the dependence of the flow resistance on the porosity. Steady state flow was 

derived from the Navier-Stokes equations. Alternative derivations based on dimensional 

analysis and a pipe analogy were discussed. For one dimensional steady flow, the author 

obtained:  

∆ = ′ߙ ቀФିଵ
Ф
ቁଶ ఓమ Ф+ ′ߚ ଵିФ

Ф

ଵ (Ф)ଶ         (2-25) 

Where ܦ is the granular diameter, ߙ′ depends on ܴ, the gradation and the grain shape. ߚ′ 
depends on the same parameters plus the relative surface roughness of the grains. Eq.2.25 

has the same style as Eq.2.18. It is also used for granular materials. The author discussed 

the parameters ߙ′	and	ߚ′ in Forchheimer flow and turbulent flow states, which were both 

expressed as functions of ܴ.  

Skjetne [69] modelled high-velocity flow in porous media with a multiple scale 

homogenization technique. The author developed momentum and mechanical energy 

theorems. In idealized porous media, inviscid flow in the pores and wall boundary layers 

give a pressure loss with a power of 1.5 in average velocity. The model had support from 

flow in simple model media (Meyer [70]; Smith [71]). In complex media the flow 

separated from the solid surface. Pressure loss effects of flow separation, wall and free 

shear layers, pressure drag, flow tube velocity and developing flow were discussed by 

using phenomenological arguments. The Forchheimer equation was said to be caused by 

the development of strong localized dissipation zones around the flow separation in the 

viscous boundary layer.  
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Moutsopoulos [72] derived approximate analytical solutions to the Forchheimer equation 

for non-steady-state, non-linear flows through porous media. The author demonstrated two 

characteristic regimes, first the hydraulic gradient is steep and subsequently the inertial 

terms are dominant. The explanation was the leading hydraulic behaviour by neglecting 

linear terms describing the viscous dissipation mechanisms. In the middle as the 

disturbance upstream propagated through the entire medium, the hydraulic gradient and 

subsequently the inertial effects become less important, which led to the Darcy solution. 

The influence of the inertia mechanisms in this regime was taken into account by 

computing higher order correction terms by perturbation analysis.  

A number of researchers tried to validate the Forchheimer form equation numerically and 

experimentally. Andrade [73] investigated the origin of the deviations from the classical 

Darcy’s law by numerical simulation of Navier-Stokes flow in a two dimensional 

disordered porous medium. The author applied the Forchheimer equation as a 

phenomenological model to correlate the variations of the friction factor for different 

porosities and flow conditions. The simulation showed that at sufficiently high ܴ values, 

when inertia becomes relevant, a transition from linear to nonlinear was observed. 

Innocentini [74] employed Ergun’s equation (Eq.2.18) to predict the permeability of 

ceramic foams. The author used image analysis to assess the effect of pore size for SiC-

Al2O3 ceramic foams with 30 to 75 pores per linear inch to estimate the cellular material 

permeability. The average pore sizes were used to calculate permeability constants (ߙ and ߩ/ߚ in Eq.2.15), which were compared to those experimentally obtained under water flow. 

The results showed that the pore diameter distribution was sensitive to the number of pore 

layers. The introduction of pore size obtained by image analysis into Ergun’s equations 

seems to give fair results to assess the permeability of ceramic foams. Apart from this, 

Sman [75] developed a model based on the Darcy-Forchheimer theory to describe airflow 

through a vented box packed with horticultural produce. The model could reproduce 

experimental data for pressure drop and the vent ratio of the box. Moreira [76] studied the 

permeability of ceramic foams with compressible and incompressible flows. The author 

investigated the influence of several structural parameters such as porosity, tortuosity, 

surface area and pore diameter, in predicting the permeability of ceramic foams. The 

experimental data were fitted to the Ergun-type correlation, and represented very well with 
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the permeability of the medium for all foams, fluids and operational range. The author also 

pointed out the pore diameter was the best structural parameter that represented the 

medium. 

In conclusion, nonlinear flow in porous media was modeled successfully using the Navier-

Stokes equation (Eqs.2.23, 2.24 & 2.25). Attempts were made to express the coefficients 

in the Forchheimer equation as functions of geometric parameters (Eqs 2.18 & 2.20) based 

on experimental data. Although a number of researchers predicted permeability of porous 

media successfully with the application of the derived Forchheimer equation such as 

Eq.2.18, no predictive models for nonlinear flow have been found for textile materials.  

2.3.2 Non-Darcy flow in converging-diverging channel 

When a creeping flow develops in a converging-diverging channel under a low pressure 

drop, the channel is filled with saturated fluid in laminar flow. When ܴ value is higher 

than a critical value (in laminar flow), the fluid flow separates from the expansion wall at 

the outlet. The separation goes towards to the throat with an increase in the ܴ value [63]. 

Theoretically the separation stagnates at the throat even when the ܴ value is higher than 

the critical value at the throat. The whole process results in nonlinear relationship of 

pressure drop and flow velocity at the entrance. The Forchheimer equation (Eq.2.17) can 

be employed to fit this relationship. 

In the Eq.2.17, the Darcy term (α) and the non-Darcy term (ߚ) can be regarded as the 

frictional and the local contributions to the pressure losses respectively. ߚ appears easily 

when the flow channel is converging and diverging, which is common for flow in a 

granular bed [49, 77] or rockfill [78].  

 

(a)                                          (b)                                                      (c) 

Figure 2-10 Flow channels of (a) abrupt expansion; (b) abrupt contraction; (c) gradual converging 

and diverging 
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When a Newtonian fluid flows in a converging-diverging channel, research on pressure 

loss begins from the abrupt changes of flow area as shown in Fig.2.10. Abdelall [79] 

investigated pressure losses caused by abrupt flow area expansion and contraction in small 

circular channels experimentally, using air and water at room temperature and near 

atmospheric pressure. The author found the total and irreversible pressure drops by 

applying one dimensional momentum and mechanical energy conservation equations. The 

expansion and contraction pressure losses were given by: 

∆ ܲ = ଵଶ 1)ߩ − భబ)ଶ భమଶ                         (2-26a) 

∆ ܲ = భమଶ (ቀ1 − ଵቁଶ + 1 − (భబ)ଶ)     (2-26b) 

Where ܣଵ is the inlet area and ܣ is the outlet area, ܥ is the contraction coefficient which 

is a function of area ratio and ܴ. Single-phase flow experiments showed the expansion 

and contraction loss coefficient were different for gas and liquid, and with the exception of 

the contraction loss coefficient for water they agreed reasonably with the predictions. The 

contraction loss coefficients for water were slightly larger than theoretical predictions. 

Astarita [80] reported an early experimental study for the case of a sharp-edged 

contraction flow channel, and experimental data showed that excess pressure drop was 

much larger than published predictions over the entire range of ܴ  values. Kfuri [81] 

studied non-Newtonian fluids flow in abrupt contraction piping systems and addressed the 

pressure losses resulting from wall friction, change in the flow direction and in the cross 

section of the duct. After numerical simulations, the author constructed equations for the 

friction loss coefficient as a function of ܴ  and the relevant dimensionless rheological 

parameter of the non-Newtonian fluid. Pinho [82] carried out a numerical investigation to 

study laminar non-Newtonian flow through an axisymmetric sudden expansion tube. The 

author found the local loss coefficient was a function of ܴ of the inlet pipe.  

Thauvin [83] developed a pore level network model to describe high velocity flow in the 

near well-bore region and to understand non-Darcy flow behaviour. The inputs to the 

model are parameters such as pore size distribution and fluid properties. The outputs are 

permeability, non-Darcy coefficient, tortuousity and porosity. The additional pressure 
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gradient term is found to be proportional to the square of the velocity in accordance with 

the Forchheimer equation. The correlation between the non-Darcy coefficient and other 

flow properties (ܭ,Ф	&	ܮ  ) is found to depend on geometric parameters. The author 

separated the pressure loss into viscous (∆ ௩ܲ ), bending (∆ ܲ ), expansion (∆ ܲ ) and 

contraction (∆ ܲ) pressure losses. The converging-diverging nature of the pores in porous 

media led to inertial pressure losses which are: 

∆ ܲ = ൬1 − ቀோோ್ቁଶ൰ ቀோோ್ቁଶ ఘమଶ                       (2-27a) 

∆ ܲ = (1.45 − 0.45 ቀோோ್ቁଶ − ቀோோ್ቁସ) ఘమଶ       (2-27b) 

Where ܴ௧ is the radius of the throat between the two bodies, ܴ is the body radius and ܸ is 

the average interstitial velocity in the throat. The author discussed the non-Darcy effect 

with ܴ . After experimental observation, it was found that the pressure gradient is 

proportional to the velocity for ܴ < 0.11. As the superficial velocity and thus ܴ increase, 

the relationship between the pressure gradient and velocity becomes nonlinear. At high	ܴ 

values, the pressure gradient is almost proportional to the square of the velocity. Based on 

this observation, Zeng [84] recommended a criterion based on the ܴ value for non-Darcy 

flow in porous media. After experimental determination for nitrogen flow in sandstone, the 

critical transition from Darcy flow to non-Darcy flow was suggested to be at ܴ=0.11.  

Singhal [85] investigated flow characteristics of low ܴ  value laminar flow through 

gradually expanding conical and planar diffusers as shown in Fig.2.11. 

 

 

Figure 2-11 Schematic of a nozzle-diffuser element 

The pressure loss coefficient for flow through a gradually expanding diffuser or a 

gradually contracting nozzle can be calculated by the continuity equation and the energy 

equation (Eq.II.18 and Eq.II.25 in Appendix II). The pressure loss coefficient (β) was: 

ܽ ܾ
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ߚ = ೌ ି್ೌ మ + (1 − ್మೌమ)        (2-28) 

As ܣ ∝ ݀ଶ, the expressions for β of conical (ߚ) and planar (ߚ) diffusers were: 

ߚ = ೌ ି್ೌ మ + (1 − ௗర್ௗరೌ)         (2-29a) 

ߚ = ೌ ି್ೌ మ + (1 − ௗమ್ௗమೌ)         (2-29b) 

Where ܲ	and	 ܲ, ܸ	and	 ܸ  are the static pressures and flow velocities at the cross-

sections a and b, ݀	and	݀ are the diameters at the cross-sections a and b. The model was 

verified by numerical simulations and experimental values, giving reasonable agreement 

between the predicted and the experimental results. However, the predictions for pressure 

loss were lower in general. 

Martin [86] carried out a numerical study of fluid flow around periodic cylinder arrays 

under laminar cross flow conditions, considering square and triangular arrays. The study 

showed the frictional losses followed Darcy’s law when ܴ is of the order of one, while 

significant non-Darcy effects were observed at higher ܴ . Qu [87, 88] investigated 

Newtonian flow development and pressure drop experimentally and computationally for 

single phase water flow in a rectangular micro-channel. The author also derived a 

nonlinear relationship of pressure loss and flow velocity, containing frictional, contraction 

and expansion pressure losses, which had the same style within Eq.2.28. The 

computational model showed very good predictions for the measured velocity field and 

pressure drop. Sidiropoulou [89] focused on the determination of the Forchheimer 

equation coefficients ߙ  and ߚ  for non-Darcy flow in a porous medium. The author 

evaluated theoretical equations and proposed empirical relations based on the investigation 

of available data in the literature. A suggestion was given that the coefficients ߙ and ߚ 

were not constants but depended on the flow velocity, i.e. the ܴ  value. There were 

deviations approximately 10% for the coefficient ߚ . A plausible explanation for the 

dependence of ߙ  and ߚ  on ܴ  was that the position for which the boundary layer 

separation occurred, and subsequently the characteristics of the recirculation zone, 

depended on ܴ  [90]. The paper reviewed Lao’s work [91] and demonstrated on a 
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macroscopic scale, the coefficient ߙ was related to energy losses in a straight pipe, i.e. 

Poiseuille’s law, and the inertial coefficient ߚ depended on minor losses induced at pipe 

junctions.  

In summary, the flow path in a porous medium might not be regular, such as in a ceramic 

material or a granular bed. However, flow in the gaps between yarns in a woven fabric will 

experience gradual converging-diverging channels. Reviews of non-Darcy flow in a 

sudden [79] or a conical [85] converging-diverging channel provide a useful reference for 

the development of a non-Darcy flow model in woven fabrics. Numerical simulation [86, 

87] and experimental studies [89] on the Darcy and non-Darcy coefficients provide insight 

to the developed model for textile fabrics.  

2.4 FABRIC DEFORMATION UNDER UNIFORM LOAD 

When a woven fabric is loaded, for example in airbag inflation, the fabric undergoes out-

of-plane deformation under a high pressure load. The load gives the fabric a change in 

geometry, especially the gap between yarns and yarn fibre volume fraction, which 

influence the fabric permeability significantly. Therefore, an approach to characterize and 

describe the fabric deformation under constant and transient pressures is required, based 

either on analytical modelling or experimental determination. The change of fabric 

geometric parameters such as gap size or yarn width is also required. 

During the airbag inflation, pressure drop through the airbag fabric is transient. This 

relates to the concept of dynamic permeability. This permeability is obtained during fabric 

deformation and transient pressure. A method to determine this fabric permeability is 

required in this work. 

2.4.1 Dynamic permeability tester 

The concept of a dynamic permeability tester has been introduced by several researchers. 

Partridge [92] reported a dynamic gas-permeability tester for air-bags commercially made 

by Textest Instruments as shown in Fig.2.12.  
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Figure 2-12 Schematic of a test apparatus [92] 

The dynamic tester was a table-mounted instrument which can produce a pressure load up 

to 200 KPa above atmospheric pressure. The gas was released through a high-speed valve 

and transported through a fabric test sample. The gas pressure and velocity were recorded 

by transducers. The experimental data indicated that the fabric structure and porosity had 

the greatest influence on the relationship of gas velocity and pressure. The apparatus could 

also measure the maximum displacement of the fabric using a laser. However, the author 

did not measure the deflection profile of the deformed fabric. 

Narayanan  [93] carried out dynamic permeability tests on airbag fabrics using a blister-

inflation apparatus. The fabric was held between two metal plates as a flat sheet as shown 

in Fig.2.13.  

 

 

 

 

 
Figure 2-13 Schematic diagram of Blister Inflation Apparatus [93] 

Fig.2.13 shows a diagram of the device, where ‘1’ is the tank containing high pressure 

compressed gas, ‘2’ and ‘4’ are the transducers that can determine the height of the fabric 

blister and the pressure in the tank, and the produced signals are sent to the computer ‘3’. 

When the air permeates through the fabric, the specimen is deflected to form a blister. The 

computer can calculate the height of the blister and the air tank pressure based on the 
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measured signals. The experimental data showed that an increased initial pressure would 

lead to an increase in the permeability. A tight fabric was less sensitive to the initial 

pressure change than a loose fabric.  

Wang [94] developed an approach based on an air shock tube to evaluate the dynamic 

permeability of airbag fabrics as shown in Fig.2.14.  

 

 

 

Figure 2-14 Schematic diagram of the shock tube equipment [95] 

Fig.2.14 shows the dynamic experimental device with a double-diaphragm. The driven 

section is 4.55 ݉ long and 40 ݉݉ in diameter. The pressure measurements between the 

fabric are performed with three transducers ܤଵ, ܤଶ and ܤଷ. The shock tube experiments are 

conducted to simulate airbag inflation. A plane air impulse is generated and impacted on 

the airbag fabric. The impulse is partially reflected back to the tube while the pressure 

increases at the front face leading to the air flow through the fabric. The permeability is 

determined by measuring the velocity of the reflected shock wave. The obtained dynamic 

permeability is lower than the static permeability for airbag fabrics.  

Bandara [96] designed an instrument to measure the fabric air permeability at initial 

pressures of up to 300 KPa. The procedure was shown to be repeatable and obtained a 

reliable relationship between pressure and time. All dynamic permeability tests in this 

thesis were carried out using this instrument, which is described in detail in Chapter 4.  

2.4.2 Mechanics of fabric deformation  

Whenever a fabric is under a constant pressure drop or a transient pressure impact, the 

fabric is subjected to a uniform load normal to its plane. It is important to consider the out-

of-plane fabric deformation under the uniform load. The deformation alters the fabric 

structure as well as other properties, such as permeability or moisture absorption. 

Technical textiles, applied in airbags or water filtration for instance, are usually subjected 
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to a normal load. The force can cause a deflected profile from a flat sheet. To study 

subsequent properties, it is desirable to develop a predictive model for fabric deformation 

as a function of pressure load. The maximum displacement and the deflected profile are 

the main features in verification of such a model [97, 98]. 

The textile stress-strain relationship is of critical importance during the deflection of the 

clamped fabric under pressure load. As is known, the mechanical properties of textile 

fabrics are nonlinear in general, for instance, the load-extension curves obtained by biaxial 

or uniaxial tensile testing are never straight lines. This non-linearity is caused primarily by 

the weave structure and secondly by the non-linearity stress-strain behavior of the warp 

and weft yarns as reported by Taylor [99]. More precisely, the tensile properties of woven 

fabrics also depend on the fibre properties, such as the diameter, the coefficient of friction, 

and the initial Young’s modulus. Kawabata investigated this relationship experimentally 

and developed an evaluation 

system (KES) and its theoretical basis [100-102], which covers uniaxial deformation, 

biaxial deformation and shear deformation. In the theories, both warp and weft yarns are 

assumed to be perfectly flexible. The author gave two diagrams in Fig.2.15, showing a 

single cotton yarn property and interaction of two cotton yarns. 

 

 

 

(a)                                                                   (b)    

Figure 2-15 Yarn-extension properties: (a) single yarn; (b) two cross-over yarns [100, 101] 

From Fig.2-15, a nonlinear relationship of force-extension appears when a single yarn is 

subjected to an axial force, which results from somewhat crimped fibres in the yarn; ܨ is 

the compression force of yarns to each other at the crossover, ߝ is the displacement of 

yarns relative to each other. For a fixed ߝ value, increased compression force can offer the 
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same displacement; when the yarns are under the same compression force, more 

displacement means a larger elongation.  

A number of analytical models were developed to interpret the fabric stress-strain curves 

[103-107]. Analytical models to predict this relationship can be verified by the Kawabata 

evaluation system (KES-FB1) [108]. In solid mechanics, generally, the slope of stress-

strain curve is equivalent to the Young’s modulus (ܧ). The ܧ values are normally affected 

by the compositions and structures of yarns in the textile [100, 101]. The Poisson’s ratio (ߥ) 

is another fundamental mechanical characteristic relating to the stress-strain relationship in 

the behaviour of fabric under uniform load. The ߥ  value first increases towards a 

maximum due to the rapid shrinkage of the sample in the transverse direction, and 

decreases thereafter when the crimp changes are exhausted, with yarn extension as the 

main deformation mechanism [109]. Lu [110] developed a method to determine ߥ values 

of woven fabrics based on biaxial extension and proved the values to be in the range of 0 

to 0.5. Hursa [111] measured a ߥ	value of woven fabrics with digital image correlation 

method based on the standard ISO 13934-1:1999. Three cotton woven fabrics were 

exposed to 1% strain on a tensile test machine. Testing was simultaneous with recording 

using a digital video camera. The video recordings were afterwards processed in a 

MATLAB program and the ߥ values determined according to the displacement in ݔ and ݕ 

axis directions. The results showed the ߥ values in the warp and weft directions were in the 

range of 0.2 to 0.5.  

The behaviour of a clamped fabric under high pressure load is somewhat similar to the 

draping process, where the fabric is generally forced over a fixed mould.  

 

 

 

 

  

Figure 2-16 Schematic of pin-jointed net model for circular clamped fabric: (a) Flat; (b) Deformed 
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Wang [112] utilized a pin-jointed net model to evaluate yarn slippage and how it is 

affected by the material properties. The results showed this can be ignored in the case of 

fabric under pressure load in the out-of-plane direction. The pin-jointed net model [112, 

113] is a good approach to interpret the deformation behaviour. Fig.2.16 shows the 

predominant properties in the areas of a circular fabric. The central part ‘A’ mainly has 

tension and compaction effects, the area ‘B’ exhibits shear and tension effects while the 

area ‘C’ exhibits bending, shear and extension effects [114, 115]. Tensile and shear 

deformation of yarns take place in the fabric plane, and undertake the majority of external 

loading. Thereafter yarn width and gap size vary to some extent [116, 117], giving rise to 

the variation of fabric permeability [118]. Hu [115] simulated the drape behaviour of a 

circular fabric sheet, which showed draping is typically a large displacement deformation. 

The maximum deflection is much larger than the fabric thickness. The mid-plane stretches 

and hence in-plane tensile stresses develop within the sheet and add considerable load 

resistance to it, which is not predicted by small-deflection bending theory. For such 

situations, large plate deflection theory can be employed to evaluate the behaviour of 

fabric under uniform load if the fabric can be approximated as a thin plate or membrane. 

The large-deflection theory of plates assumes that the deflections are no longer small in 

comparison with the thickness but are nevertheless small compared with the remaining 

sheet dimensions.  

Mathematical functions can be used to describe the deformed fabric configuration. For 

instance, Ugural [119] reported a set of expressions for the maximum deflection (ݓ௫) of 

a clamped circular plate (radius ܽ′) when subjected to a uniform load as shown in Fig.2.17: 

 

 

 

Figure 2-17 Clamped circular plate or membrane deformed by uniform load [119] 

The displacement of any point on the plate in in-plane and out-of-plane are assumed:  

ܽ′ ܽ′ 	௫ܲݓ ݎ
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ݓ = ௫(1ݓ − మᇲమ)ଶ                 (2-30a) ݑ = ′ܽ)ݎ − ଵܿ)(ݎ + ܿଶݎ)           (30-2b) 

Where ݑ  and ݓ  are the displacements in in-plane and out-of-plane directions, ݎ  is the 

radial position, ܿଵand	ܿଶ are unknown parameters depending on the boundary conditions. 

Eqs.2.30 is suitable for a continuous and rigid deformed sheet. The factors (ܿଵand	ܿଶ) in 

the equations (Eqs.2.30) should be derived for the deformed configuration. 

Lin [120] modelled the drape behaviour of a flexible textile composite loaded by its own 

weight, considering the deformation of an initially flat, stress-free square material sample 

of length 2ܾ. The sheet deforms under gravity into a curved shape. Fig.2.18 shows the 

geometry and the co-ordinate axes of the problem under investigation. The author assumed 

the following approximations for the displacements (ݑ,  :in three dimensions (ݓ	&	ݒ

ݑ = sin)ݔܿ ቀగ௫ ቁ + cos(గ௬ଶ))                (2-31a) 

ݒ = sin)ݕܿ ቀగ௬ ቁ + cos(గ௫ଶ))                 (2-31b) 

ݓ = ௫(ଵଶݓ cos ቀగ௫ଶቁ + ଵଶ cos(గ௬ଶ))      (2-31c) 

Where c is an unknown factor, ݓ௫ is the maximum displacement. 

  

 

 

 

 

Figure 2-18 The geometry and co-ordinate axes for draping of a square sheet [120] 

An energy method is employed frequently in the investigation of the large deflection of 

thin plates [121, 122]. The advantage of the energy-based approach is that it can 
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incorporate the material nonlinearity as well as geometric nonlinearities, which are 

characteristic features of fabric sheet mechanics problems. Lin assumed that the tensile 

energy (ܷ) of the plate consists of the energy of stretching (
ଵଶ∬( ௫ܰߝ௫ + ௬ܰߝ௬)  (ݕ݀ݔ݀

and the energy of shearing (
ଵଶ∬ ௫ܰ௬ߛ௫௬   :The definition is given by [119] .(ݕ݀ݔ݀

ܷ = ଵଶ∬( ௫ܰߝ௫ + ௬ܰߝ௬ + ௫ܰ௬ߛ௫௬)  (32-2)       ݕ݀ݔ݀

Where ௫ܰ , ௬ܰ  are normal forces per unit distance on ݔ  and ݕ  planes, ߝ௫, ௬ߝ  are normal 

strains in ݔ	and ݕ	directions, and ߛ௫௬ is shear strain in the ݕݔ plane. Bending energy (ܷ) 

is defined as [119]: 

ܷ = ଵଶ∬ ܦ ቄ(డమ௪డ௫మ + డమ௪డ௬మ)ଶ − (1 − (ߥ ቂడమ௪డ௫మ డమ௪డ௬మ − ( డమ௪డ௫డ௬)ଶቃቅ  (33-2)       ݕ݀ݔ݀

Where ܣ is the area of the plate surface, ݓ is the displacement in the out-of-plane direction, ߥ is the plate Poisson’s ratio, D is the flexural rigidity. When a fabric plate undergoes a 

normal load, the work done (ܹ) by the surface force ܲ per unit area on the fabric from the 

initial to the equilibrium state is expressed as: 

ܹ = ∬ ݓܲ  (34-2)        ݕ݀ݔ݀

Therefore the total deformation energy (ܷΠ) of the system is the sum of the bending 

energy, the membrane energy and the work done: ܷΠ = ܷ + ܷ +ܹ        (2-35) 

In which, ܷ relates bending strain energy, which concerns with out-of-plane deformation; ܷ links membrane strain energy to the fabric Young’s modulus, which concerns in-plane 

deformation; ܹ denotes the work done by the uniformly distributed pressure load. Then, 

application of the minimizing condition, 
డΠడ௪ೌೣ = 0, yields approximate expressions for 

the maximum deflection and out-of plane displacement of the sheet [119]. The 

mathematical predictions for maximum deflections had good agreement with predictions 

by finite element simulations. 
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Based on the energy minimization method, King [123] proposed a continuum constitutive 

model for predicting fabric mechanical behaviour in the planar direction. The approach 

relied on selection of a geometric model for the fabric weave, coupled with constitutive 

models for the yarn behaviour. The structural configuration was related to the macroscopic 

deformation. Finite element analysis and experimental findings showed good agreement 

with predictions for fabric in-plane loading. However, the model was not evaluated for 

fabric deformation under out-of-plane loading. 

2.5 CONCLUSIONS 

After review of relevant published work, it is noted that there has been much research on 

the permeability of porous media analytically, numerically and experimentally. However 

for one-layer or 3D woven fabrics, no model can predict the permeabilities accurately 

without fitting factors. When a Newtonian fluid flows through the gaps between yarns in a 

woven fabric with small ܴ, the gaps actually form a set of gradual converging-diverging 

flow channels, which cannot be regarded as straight tubes (the Kulichenko model). If the 

flow goes through the yarns, many models such as the Kozeny and the Gebart models have 

considered flow along and perpendicular to the fibre bundles with their existing limitations, 

for instance a fitting factor in the Kozeny model and a shape factor in the Gebart model. 

Moreover, in real textiles, yarns usually follow an undulating path, and no model considers 

this factor. Therefore, a unified permeability model for both gap flow (loose fabric) and 

yarn flow (tight fabric) is required. Fortunately, many reviewed methodologies, such as the 

lubrication approach, can be explored to develop permeability models for woven fabric.  

The Forchheimer equation in porous media has been reviewed. Many non-linear empirical 

equations of this style have been reviewed for different porous media, and some hints can 

be obtained for woven fabrics, which are often subjected to flow of high ܴ  so that a 

nonlinear relationship of pressure drop and fluid velocity appears. As no model can 

explain the fluid behaviour through the converging-diverging gaps in a woven fabric under 

high pressure, an analytical model is required to predict the Darcy coefficient as well as 

the non-Darcy coefficient in this situation. 
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When a woven fabric is subjected to a high pressure load, such as a fabric in airbag 

inflation, its original structure and permeability will be changed. As textile fabric is 

discontinuous and anisotropic, the energy approach (based on the reviewed previous work) 

can be used to model fabric deformation. As no model has been found for fabric 

permeability under pressure load, an analytical model is desired to predict the variation of 

geometric factors inside the woven fabric and its subsequent permeability under pressure 

load.  
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CHAPTER 3 

MODELLING OF FABRIC STATIC PERMEABILITY 

3.1 INTRODUCTION 

The main aim of developing the static permeability model for woven fabric is to predict 

the through-thickness permeability by taking into account different geometric factors such 

as fabric layers, yarn cross-section shape, fibre volume fraction, fibre arrangement etc. As 

stated in Chapter 1, static permeability can be obtained by Darcy’s law when fabrics are 

under small ܴ value and constant pressure drop by experiment. The analytical model is 

thereafter verified by the experimental data. An accurate predictive analytical model for 

fabric static permeability can help manufacturers to design fabrics with improved 

properties before extensive and expensive prototyping. Engineers can predict how fabric 

will behave under different conditions and modify the configuration to suit the specific 

application.  

This chapter develops a predictive through-thickness permeability model for different 

types of woven fabrics. It is a unified permeability model for one-layer of woven fabric 

considering flow through gaps between yarns and space inside yarns. The gap between 

yarns is assumed as a gradual converging-diverging flow channel for which all geometric 

factors can be obtained experimentally. The subsequent gap permeability is developed 

based on the lubrication approach analogous to the Gebart model [22]. The yarn 

permeability is, however, a combination of the Gebart model [22] and the Advani model 

[124], which describes flow through an undulating yarn including flow along and 

perpendicular to its fibres. Therefore, the model takes into account two structural 

components i.e. the gap between yarns and the porous yarns. With emphasis on flow 

channel geometry, characterization of fabric structure is critical to successful prediction. 

Permeability of 3D woven fabric is derived as a function of the permeability of each fabric 

layer. In this chapter, analytical models for one-layer and 3D woven fabrics are verified by 

numerical simulations and experimental tests.  
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3.2 STATIC PERMEABILITY OF ONE-LAYER OF WOVEN FABRIC 

 

Figure 3-1 Unit-cell of a 2D woven fabric 

A unit-cell for a 2D woven fabric is shown in Fig.3.1. The unit cell is the smallest 

geometry whose repetition at regular intervals in two dimensions produces the interwoven 

structure of a woven fabric. The green area in Fig.3.1 represents the gap between 

interwoven yarns, and other colours area represents yarn and yarn crossover regions in a 

fabric. If the gap does not exist, a fluid has to flow through the yarns completely, so that 

the fabric permeability (ܭ) is equivalent to the yarn permeability (ܭ௬). The Gebart model 

[22] shows the yarn permeability depends on the fibre radius ( ܴ ) and the yarn fibre 

volume fraction ( ܸ) when the yarn is made of unidirectional fibres, whilst the Advani 

model [124] indicates the yarn permeability relies on the yarn crimp angle (ߠ) which is the 

minimum angle of the yarn path and the flow direction. When the gap between yarns in the 

unit-cell appears and becomes larger, there will be a critical value where the permeability 

caused by the yarns equals to that given by the gap. The fabric permeability caused by the 

gap is called the gap permeability (ܭ). As the gap size increases, more flow will go 

through the gap.  

Suppose fluid flows through both the gap and the yarns in the unit-cell in Fig.3.1. ܭ, ܳ 

and ܣ are permeability, volumetric flow rate and area of the gap respectively (green area); ܭ௬, ܳ௬ and ܣ௬ are the equivalent properties for yarns respectively (other colours area). ܭ, ܳ and ܣ represent the equivalent fabric properties. According to Darcy’s law (Eq.1.1): 

ܳ = ିఓ ∆                                (3-1) 

ܳ = ܳ + ܳ௬                               (3-2) 
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ିఓ ∆ = ିఓ ∆ + ିఓ ∆               (3-3) 

Where ߤ is the fluid viscosity, 
∆  is the pressure gradient over the fabric thickness (ܮ). 

Suppose Ф =  is a two dimensional porosity based on the quotient of areas, then Eq.3.3 ݂ܣ݃ܣ

is simplified as:  ܭ = Фܭ + (1 − Ф)ܭ௬               (3-4) 

Eq.3.4 is a unified permeability equation for a one-layer of woven fabric. The geometric 

parameters in ܭ and ܭ௬ should be measured experimentally without any fitting factor. 

 

 

 

 

 

Figure 3-2 Schematic of relationship of three permeabilities: ܭ௬, ܭ and ܭ 

Fig.3.2 shows the relationship of three permeabilities (fabric permeability ܭ , yarn 

permeability ܭ௬  and gap permeability ܭ ) relative to the gap size in a woven fabric, 

assuming a constant ܭ௬ value. As the gap size increases, a crossover point appears when 

the ܭ  value is equivalent to the ܭ௬  value. The subsequent ܭ  value based on Eq.3.4 

increases dramatically with increasing gap size. This will be discussed in detail in the 

development of ܭ model.  
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3.3 ANALYTICAL MODELLING OF YARN AND GAP PERMEABILITIES 

3.3.1 Yarn permeability modelling 

Chapter 2 has given a brief description of the Gebart model [22], which has a set of 

equations describing fluid flow along and perpendicular to unidirectional fibres, as shown 

in Fig.3.3. The derivation of the Gebart model can be found in Appendix IV. 

          

Figure 3-3 Flow along and perpendicular to unidirectional fibres 

Here a list of equations from the Gebart model is given, showing flow along (ܭ∥) and 

perpendicular to (ୄܭ) unidirectional fibres with respect to quadratic (ܭ) and hexagonal 

 :fibre arrays (ܭ)

∥ܭ = ଼ோమହ (ଵି)యమ                            (3-5) 

∥ܭ = ଼ோమହଷ (ଵି)యమ                            (3-6) 

ୄܭ = ଵோమଽ√ଶగ (ටೌೣ − 1)ହ/ଶ         (3-7) 

ୄܭ = ଵோమଽ√గ (ටೌೣ − 1)ହ/ଶ          (3-8) 

Where ܸ is the yarn fibre volume fraction, which is defined as the cross-section area of all 

the fibres in a yarn divided by the yarn cross-section area; ܸ௫ is the maximum fibre 

Flow along fibres Flow perpendicular to fibres 
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volume fraction which is achieved when the fibres touch each other. The ܸ௫ value is 4/ߨ for quadratic fibre array and ߨ 2√3⁄  for hexagonal fibre array [22].  

When fluid flow along fibres, Gebart assumed flow in an approximate square tube for a 

quadratic fibre array and in an approximate triangular tube for a hexagonal fibre array, 

which is where the constants come from in Eq.3.5 with 57 and Eq.3.6 with 53. The 

constants in Eqs.3.7 and 3.8 are obtained by an approximation approach which can be 

referred to the Eq.IV.5 in Appendix IV.  

The derivation of the Advani model can be found in Appendix IV. Here this model can be 

used to describe the effective permeability of fluid flow at an angle (ߠ) towards a bundle 

of unidirectional fibres, as shown in Fig.3.4. It combines the parallel (ܭ∥ ) and the 

perpendicular (ୄܭ) permeabilities as a function of the angle ߠ.  

 

Figure 3-4 Newtonian fluid flow at an angle to a bundle of unidirectional fibres 

The equivalent permeability is: 

ࡷ = ∥ܭ 	cosଶ ߠ + ୄܭ sinଶ ߠ − ୱ୧୬మ ఏ ୡ୭ୱమ ఏ(఼ି∥	)మ∥ 	ୱ୧୬మ ఏା఼ ୡ୭ୱమ ఏ        (3-9) 

As to a fluid flow through interwoven yarns in a fabric, as shown in Fig.3.5, fibres in yarns 

are assumed to be continuous and regular arrangement, and have an angle θ to the flow. 

Fibres in the sections ab or bc in Fig.3.5 are assumed as straight with constant radius and ܸ value.  

 Flowߠ
direction 

Unidirectional fibres 
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Figure 3-5 Flow through interwoven yarns in a fabric 

Substitution of Eqs.3.5-8 into Eq.3.9 gives the final yarn permeability based on the fibre 

arrangement, ܭ௬ and ܭ௬for quadratic and hexagonal yarn permeabilities respectively. 

௬ܭ =
଼ோమହ (ଵି)యమ 	cosଶ ߠ + ଵோమଽ√ଶగ (ටೌೣ − 1)ହ/ଶ sinଶ ߠ − ୱ୧୬మ ఏ ୡ୭ୱమ ఏ(భలೃమవ√మഏ (ඨೇೌೣೇ ିଵ)ఱ/మିఴೃమఱళ (భషೇ)యೇమ 	)మ

ఴೃమఱళ (భషೇ)యೇమ 	ୱ୧୬మ ఏାభలೃమవ√మഏ (ඨೇೌೣೇ ିଵ)ఱ/మ ୡ୭ୱమ ఏ         

(3-10a) 

௬ܭ =
଼ோమହଷ (ଵି)యమ 	cosଶ ߠ + ଵோమଽ√గ (ටೌೣ − 1)ହ/ଶ sinଶ ߠ − ୱ୧୬మ ఏ ୡ୭ୱమ ఏ(భలೃమవ√లഏ (ඨೇೌೣೇ ିଵ)ఱ/మିఴೃమఱయ (భషೇ)యೇమ 	)మ

ఴೃమఱయ (భషೇ)యೇమ 	ୱ୧୬మ ఏାభలೃమవ√లഏ (ඨೇೌೣೇ ିଵ)ఱ/మ ୡ୭ୱమ ఏ          

(3-10b) 

3.3.2 Gap permeability modelling 

(a) Hypothesis 

Fluid: The Newtonian fluid (liquid or gas) considered in the model is assumed to be 

incompressible, with a constant viscosity and density. 

Flow conditions:  

(1) At the inlet, fluid is injected at a constant pressure ଵܲ, and the flow front pressure ଶܲ is 

ambient; 

Flow direction 

a 

ߠ b 

c 
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(2) Inertial terms and yarn motion are neglected; 

(3) The flow process is quasi-steady state; 

(4) The velocity of the fluid at the surface and inside of the yarns is assumed to be zero 

while at the centre-line of the channel it is maximum; 

(5) Fluid flow is considered in the direction perpendicular to the fabric. The transverse 

component of the velocity is negligible since the highest pressure gradient is near the 

narrowest region where the flow is almost parallel to the channel surface [125]. 

Fig.3.6 describes the unit-cell geometry in a plain woven fabric. ܦ௪ and ܦ are widths of 

weft and warp yarns respectively, while ܵ௪ and ܵ are the spacings of weft and warp yarns. 

One single flow channel in the unit-cell is then simplified as a smooth fluid channel with 

slowly varying circular cross-sections. 

                                           

 

Figure 3-6 Unit-cell of fabric and 3D simplified channel geometry 

The radius of the narrowest cross-section (ܴ) is calculated as half the hydraulic diameter 

of the rectangular channel cross-section in the real fabric [28, 126].  

ܴ = ൫ௌೕିೕ൯(ௌೢିೢ)ௌೕିೕାௌೢିೢ              (3-11) 

ܴ is the radius of the narrowest cross-section and ܽ is the distance from the narrowest 

channel surface to the boundary of the unit-cell, which is calculated from: 

ܽ = ௌೕௌೢௌೕାௌೢ − ܴ                (3-12) 

ܵ௪
ܦ௪ܦ  

ܵ ܴ	ܽ
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(b) Description of yarn cross-section 

                         

 

Figure 3-7 Cross-section of flow channel and curve fitting with parabola 

Fig.3.7a shows a side view of a flow channel formed by yarns. The channel surface 

curvature can be represented by a parabolic function as illustrated by Fig.3.7b, where the 

parabolic function matches well near the narrowest channel cross-section. This is the 

region most relevant for permeability prediction since the highest pressure drop occurs at 

this confined region. The parabolic function for yarn shape is assumed to be: 

ݕ = ௫మఒ            (3-13) 

Where ߣ is a parameter that determines the channel geometry.  

 

Figure 3-8 Effect of ߣ on yarn (and hence channel) shape 

Fig.3.8 shows yarn cross-sections with four different ߣ values. It is noted that the smaller 

the ߣ value, the sharper the central part of the parabolic curve. The parabolic function is 

chosen as it is easy to integrate to derive the analytical model in the next section. It is 

Thickness 
of yarn 

Height of 
parabola 

(a) (b) 
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noted in Fig.3.7b that the real yarn height and fabric thickness are smaller than the 

crossponding height of the parabolic curve formed at the boundary of the unit-cell. Hence 

the parabolic curve is truncated to match the fabric thickness. 

(c) Analytical model 

According to fluid dynamics theory and the assumptions above, the analytical model is 

from the Hagen-Poiseuille equation [127] which describes fluid flow through a long 

straight tube as shown in Fig.3.9a. 

ܳ = గర଼ఓ ௗௗ௫                        (3-14) 

Where ݎ is the radius of the tube and  
ௗௗ௫ is the pressure gradient.  

 

 

Figure 3-9 Laminar flow through: (a) straight channel and (b) curved channel 

Fig.3.9b shows the curved channel described in section (b). Here the length of the channel 

is equal to the fabric thickness (ܮ). For the varied cross-section, the form of Eq.3.14 is 

changed by integrating for a finite length ݀ݔ with a radius (ݔ)ݎ:  
 ݀ܲభమ = ଼ఓொగ න ௗ௫ర

ಽమିಽమ           (3-15)   

The channel radius varies depending on the distance along the ݔ axis: 

(a) (b) 

.ݍܧ 3.13

Fabric 

ܲ1 ܲ2 ܴ 
 ݎ

ܽ 

 ܮ

 2ܲ1ܲ ݎ
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ݎ = ܴ + ௫మߣ                (3-16) 

Eq.3.15 is transformed into Eq.3.17 with the radius substituted from Eq.3.16:  

 ݀ܲభమ = ଼ఓொగ  ௗ௫(ோାೣమೌߣ)ర
ಽమ

షಽమ
                  (3-17) 

So 

∆ܲ = ଼ఓொగ ோோరߣ√  ௗ )ೃ(ଵାೌߣ√ೣ ೃ)మ)రೌߣ√ೣ
ಽమ

షಽమ
            (3-18)  

Setting ऄ = ௫√ߣோ, then the integration in Eq.3.18 has the following solution: 

න ௗऄ(ଵାऄమ)ర
ಽమ√ೌߣೃషಽమ√ೌߣೃ = ହ଼ tanିଵ( ଶ√ߣோ) + ಽమ√ೌߣೃቈଵହ൬ ಽమరೌߣೃ൰మାరబಽమరೌߣೃାଷଷଶସ( ಽమరೌߣೃାଵ)య              (3-19) 

Therefore Eq.3.18 becomes 

∆ܲ = ଼ఓொగ ோோరߣ√ ቐହ଼ tanିଵ( ଶ√ߣோ) + ಽమ√ೌߣೃቈଵହ൬ ಽమరೌߣೃ൰మାరబಽమరೌߣೃାଷଷଶସ( ಽమరೌߣೃାଵ)య ቑ            (3-20) 

 

 

Figure 3-10 The bounded integral value in Eq.3.19  

ܮ ⁄ߣܴܽ√2

1൫1+
ऄଶ ൯ସ ⁄
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It is possible to simplify Eq.3.20. Fig.3.10 shows the value of the integral  
ଵ(ଵାऄమ)ర  with the 

limit value 
ଶ√ߣோ. If the limit value was 2, the integral value would be 0.9807; while if the 

limit was set to more than 3, the integration would be 0.9817. Therefore 5π/16 ≈0.98175 was used instead of the complicated expression 3.19.  Accordingly, a simplified 

expression is obtained:  

ܳ = ଶ∆ହఓ ோర√ߣோ                   (3-21) 

From Eq.3.21, the velocity of fluid flow through the centre of gap (ܸ ) and the gap 

permeability (ܭ) can be obtained as follows: 

ܸ = ଶ∆ହగఓ ோమ√ߣோ                    (3-22) 

ܭ = ଶோమହగ √ߣோ                   (3-23) 

3.4 VERFICATION BY CFD SIMULATION 

To simulate through-thickness permeability, Computational Fluid Dynamics (CFD) 

modeling has been chosen as a verification approach as shown in Fig.3.11. A bundle of 

unidirectional fibres and a unit-cell geometry of a woven fabric were created in TexGen [3] 

and meshed in HyperMesh [128]. CFX 11.0 [129] was chosen for permeability modeling 

involving three steps: create boundary conditions in CFX-Pre processor, run the simulation 

in CFX-Solver and analyze the modelling results in CFX-Post processor. 

 

 

 

 

Figure 3-11 Steps of CFD modeling approach 

TexGen 

Unit-cell Geometry 

HyperMesh 

Mesh Generation 

CFX-11.0 

Flow modelling 

CFX-Pre Processor 

Input boundary conditions 
CFX-Solver 

Model running 
CFX-Post processor 

View modelling results 
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3.4.1 An introduction to the software packages 

The Polymer Composites Research Group in The University of Nottingham has created a 

textile schema, named TexGen [130]. More information about the workings of TexGen 

can be found in thesis by Sherburn [131] and the paper by Robitaille et al. [132]. 

TexGen begins with vectors describing the path taken by the yarns within a unit-cell. 

These are then connected to create smoothed path lines, for which user-defined cross 

sections can be assigned individually to each path line to form yarn volumes. Finally, an 

analysis domain can be defined around the unit-cell. Fig.3.12 shows a working interface of 

TexGen, where four yarns in a unit-cell of woven fabric were created in the working 

window. Predefined types of yarn cross-sections available in TexGen are circles, ellipses, 

shapes produced using a generalized ellipse equation and lenticular shapes. It also allows 

the user to import self-defined yarn shapes. It is also possible to change such properties as 

weave pattern, yarn width, yarn spacing, and fabric thickness. There are a variety of output 

options including IGES and STEP files. The output geometry files are input into a mesh 

package called HyperMesh. 

 

Figure 3-12 Working interface of TexGen 



53 
 

 

Figure 3-13 Working interface of HyperMesh 

HyperMesh is a high-performance finite element pre-processor for major finite element 

solvers, allowing engineers to analyze design conditions in a highly interactive and visual 

environment. The input geometry can be meshed by two options: element feature angle 

and element size. The former means what shape of elements created. The latter shows the 

smaller value of the size leads to a higher number of meshed nodes and elements. Fig.3.13 

shows a working interface of HyperMesh when meshing a converging-diverging channel. 

The left bottom of the interface shows the number of nodes and elements created. After 

meshing is finished, the boundary surfaces are organized into different sets, for which 

boundary conditions will be defined in the following CFD simulation. The meshed 

components plus its body are exported as BDF files, which are imported into CFX-Pre as 

type files of Nastran(*). More information about HyperMesh can be found in its official 

webpage [128].  

A commercial CFD software package, CFX 11.0, marketed by ANSYS Inc. was used in 

this thesis [133]. It includes CFX Pre-processor, CFX Solver and CFX Post-processor.  
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Figure 3-14 Interface of CFX-Pre: setting of simulation conditions 

Fig.3.14 shows the working interface of CFX Pre-processor. A meshed converging-

diverging channel, for instance, is defined with its boundary conditions. The flow inlet and 

outlet of the channel require set pressure values and boundary types, such as ‘opening’ at 

the inlet and outlet which means they allow the fluid to cross the boundary surface in 

either direction. The interactive surface of fluid and solid is set as no slip wall, which 

means the flow velocity is zero at the surface. A material can be defined in the Materials 

module. After the material and boundary conditions are specified, and basic settings in 

Solver Control such as the number of iterations and the residual target which decide how 

long the CFX-Solver runs are defined, the next step is to run the solver until it reaches the 

set residual target or the number of iterations. 

Fig.3.15 shows the Solver running. Calculations are based on conservation of mass and the 

Navier-Stokes equations (Appendix II). Four colors of curves represent the root mean 

square (RMS) calculations for mass and moments in three directions. The RMS residual is 

a measure of how well the solution has converged and it can be obtained by plotting the 

residuals for each equation at the end of each timestep. When the analysis is complete, a 

dialog box appears to open the CFX Post-processor.   
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Figure 3-15 Interface of CFX-Solver: program running 

 

Figure 3-16 Interface of CFX-Post: results of simulation  

Fig.3.16 shows the results of simulation in the CFX-Post. In the left side panel, some tabs 

such as expressions and calculations can be used based on requirements. Here a number of 

results can be obtained, such as the mass flow rate in the channel, the fluid density and 
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viscosity, the ܴ value, the contours of pressure and the shape of streamlines in the flow 

channel, etc. The permeability is calculated by the obtained values based on Darcy’s law. 

3.4.2 Simulation for the Gebart model 

To verify the accuracy of the Gebart model, CFD simulations for three typical 

unidirectional fibre arrays have been performed. The geometric factors are listed in Table 

3-1, including one quadratic and two hexagonal fibre arrays.  

Table 3-1 Specifications of fibre arrays 

Geometry Fibre array 
Fibre radius 

(10-3݉) 

Fibre volume fraction ܸ 

G1 Quadratic 0.05 0.6488 

G2 Hexagonal 0.05 0.7065 

G3 Hexagonal 0.025 0.3925 

 

In HyperMesh, three geometries were all meshed with element size of 0.01, 0.006 and 

0.005. The element shape was set as tetrahedron for all geometries. In CFD-Pre, the inlet 

and outlet of flow channels were both set as ‘opening’, and the surface of the yarns were 

all set as ‘no slip wall’. For flow perpendicular to the fibres, the boundary walls along the 

flow direction were set as ‘free slip wall’, which means no frictional force exists between 

the flow and the wall. The two sides of walls perpendicular to the fibres had to be set as 

‘transitional periodic’ according to the assumptions of infinitely long fibres. For flow 

along the fibres, all the walls were set as ‘transitional periodic’. Water was chosen as the 

fluid in the simulation. The pressure drops for all the geometries were set at 1 Pa, ensuring 

laminar flow. The number of iterations was set as 5000 to ensure the analysis can reach the 

residual target of 1 × 10ିହ.  

Sensitivity study for the three geometries showed the appropriate element size was 0.006, 

as the permeability obtained by CFD was without significant difference compared with the 

element size of 0.005 while the latter took much more time for the simulation. A 

sensitivity study is described in detail is given for geometry G4 (Fig.3.18) in the next 
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section. With the element size of 0.006, comparisons between the simulations and the 

predictions based on the Gebart model are listed in Table 3-2: 

Table 3-2 Prediction of permeability from the Gebart model compared against CFD simulation 

Geometry 
 CFD ୄܭ

10-12 m2 

 Eq.3.7-8 ୄܭ

10-12 m2 

Error ୄܭ 

∥ܭ CFD 

10-10 m2 

 Eq.3.5-6 ∥ܭ

10-10 m2 

Error ܭ∥ 
G1 3.918 3.143 19.78% 0.4994 0.3611 27.69% 

G2 4.076 3.704 9.13% 0.2733 0.2028 25.79% 

G3 32.21 28.13 12.67% 3.4301 1.373 64.63% 

 

For fluid flow perpendicular to the fibres, comparisons in Table 3-2 prove that the Gebart 

model can predict the transverse permeability with reasonable accuracy. The difference 

between the predictions and the simulations are all within 20%. Moreover, the simulation 

values are all slightly larger than the predictions. One reason is the separation of 

streamlines from fibres as shown in Fig.3.17. As for fluid flow along fibres, the 

comparisons show that the simulation values are all larger than the corresponding 

predictions. The main reason for error is taking assumption of the constant c which equals 

57 for quadratic and 53 for hexagonal fibre arrays in the development of the Gebart model. 

It is noted that an increase of the ܸ value leads to a closer prediction, indicating that the 

model is only suitable for predicting the yarn permeability with high ܸ  values. 

Nonetheless, the Gebart model can be used for predicting the permeability of airbag 

fabrics as yarns generally have high ܸ values. This can be verified by CFD simulation as 

shown in Fig.7.1 in Chapter 7.  

Fig.3.17 shows the shape of streamlines inside the flow channel. The left hand figures 

show the fluid flow perpendicular to fibres while the right hand ones are for flow along 

fibres. Streamlines perpendicular to fibres are not always along the fibre surface in the 

diverging area even for a small ܴ value. This means fluid does not experience all the 

frictional force around the whole fibre, which indicates the permeability prediction 

decreases due to the full integration along the fibre surface at cross-section. The right hand 

figures show the streamlines are all along the fibre surfaces.  
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(a) 

(b) 

(c) 

Figure 3-17 Flow perpendicular to and along unidirectional fibres: (a) G1; (b) G2; (c) G3 

3.4.3 Simulation for the gap permeability model 

A number of hypothetical fabric unit-cells (like Fig.3.6) were analysed for the gap 

permeability. As described in Fig.3.11, the geometries were generated in TexGen and 

meshed in HyperMesh. In CFD simulation, steady state of flow with constant pressure 
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drop (1Pa) and residual target of 1 × 10ି were set. Specifications for the hypothetical 

unit-cells are listed in Table 3-3. The geometric factors (ܽ, ߣ	&	ܴ  ) were transferred 

according to Eqs.3.11-13.  

Table 3-3 Specifications of gradual converging-diverging flow channels 

Geometry ܽ (10-3 ݉) ܴ (10-3 3-10) ܮ (݉  ߣ (݉

G4 0.125 0.05 0.5 4 

G5 0.0625 0.03 0.5 16 

G6 0.125 0.03 1 16 

G7 0.125 0.05 1 16 

G8 0.125 0.05 2 64 

 

The number of meshed elements for each flow channel affects the accuracy of final results. 

It is also necessary to do a sensitivity study before confirmation of final permeability value. 

Herein G4 flow channel was chosen for the study as an example. The meshed element size 

was tried in HyperMesh as follows: 0.02, 0.01, 0.008, 0.006 and 0.005. The permeability 

was obtained according to Darcy’s law by the set pressure drop and the obtained flow 

velocity in CFX-Post. 

 

Figure 3-18 Mesh sensitivity study for flow channel G4 

Fig.3.18 shows that an increase in number of elements leads to a decrease of permeability. 

Theoretically the highest number of elements should be preferred in the simulation. 
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However, it takes longer to run the simulation. Fig.3.18 shows a minimal difference of 

permeabilities between 480000 and 776026 elements, therefore the former is preferred. 

The analytical predictions for each flow channel are calculated based on Eq.3.23 with the 

geometric parameters from Table 3-3. Comparison of CFD and analytical permeabilities is 

shown in Table 3-4. 

Table 3-4 Prediction of permeability (Eq.3.23) compared against CFD simulation 

Geometry 
K (10-9 m2) 

Eq.3.23 

K (10-9 m2) 

CFD 
Difference 

G4 1.003 0.940 -6.75% 

G5 0.331 0.335 1.16% 

G6 0.468 0.482 2.83% 

G7 1.007 1.007 0.00% 

G8 1.007 1.035 2.72% 

 

In Table 3-4, only the G4 flow channel has a relatively large difference between the two 

permeabilities. However, the analytical prediction was in the range of simulated 

permeability in the sensitivity study. Comparisons for other geometries show the CFD 

permeabilities are slightly higher than the analytical values. This shows the accuracy of the 

analytical model.  

3.5 EXPERIMENTAL VERFICATION 

3.5.1 Loose fabric (Ф ≠ 0 in Eq.3.4) 

 (a) Experimental approach 

Through-thickness air permeability was measured according to BS EN ISO 9237:1995 

[134]. The apparatus for the experiment is an air permeability tester FX 3300 as shown in 

Fig.3.19 [135]. The fabric is held by a clamp under a certain pressure. A suction fan forces 

the air to flow perpendicularly through the fabric and the flow is adjusted gradually until 

the required pressure drop is achieved across the test region. ܤ is a transducer that can 

determine the volumetric flow rate (݉ଷ/ݏ). This value divided by the specimen area 

(10	ܿ݉ଶ) gives the velocity of air flow. The pressure drop in the experiment for all fabrics 
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is set to 500 Pa, with an accuracy of at least 2%. Using the measured velocity, pressure 

drop and fabric thickness, permeability is calculated according to Darcy’s law.  

 

Figure 3-19 Sketch of air permeability tester FX3300 

Table 3-5 Fabric specifications [10] 

Fabric  Composition and Structure 

Average ܴ 

10-6 ݉ 

Yarn ܸ 

value 

ܮ
10-3 ݉ 

Yarn spacing 
10-3	݉ 

Yarn width 

10-3 ݉ 

Warp 
Sj 

Weft 
Sw 

Warp 
Dj 

Weft 
Dw 

U1 100%Cotton Plain 4.3 0.56 0.323 0.470 0.410 0.405 0.279 

U2 65/35 PET/Cotton Plain 5.4 0.58 0.319 0.223 0.331 0.184 0.202 

C1 
67PET/33Cotton 

Desized, scoured, bleached 
and mercerized 2/1twill 

5.9 0.56 0.419 0.340 0.480 0.310 0.310 

C2 
67PET/33Cotton 

Dyed, not finished 2/1twill 
5.9 0.63 0.425 0.330 0.532 0.300 0.430 

C3 67PET/33Cotton Finished 
2/1twill 

5.5 0.57 0.427 0.300 0.510 0.270 0.330 

C7 
67PET/33Cotton 

Desized, scoured, bleached 
and mercerized 2/1twill 

5.7 0.60 0.452 0.340 0.450 0.300 0.400 

C8 67PET/33Cotton Finished 
2/1twill 

5.7 0.61 0.455 0.340 0.430 0.300 0.350 

C9 
60Cotton/ 40PET 

Same process as C1, 2/2 twill 
5.6 0.67 0.560 0.356 0.520 0.332 0.450 

C10 
60Cotton/ 40PET Finished 

2/2twill 
5.7 0.56 0.610 0.342 0.446 0.313 0.380 

B 
Fabric Air 

Fan 

Clamp
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Nine fabrics with different weave styles and materials were investigated as listed in Table 

3-5. Each test was repeated three times with a fresh sample. Yarn cross-sections were cut 

using a laser beam razor blade and cross-section images were obtained using a ZEISS 

AxioScope A1 microscope. The images were used to measure the yarn spacing (ܵ௫) and 

yarn widths (ܦ௫), as well as the fibre radius ( ܴ) and yarn fibre volume fraction ( ܸ) which 

equals the total cross-sectional area of all fibres in a yarn divided by the yarn cross-

sectional area. The fabric thickness (ܮ) was measured using the Kawabata Evaluation 

System for Fabrics (KES-F) at a pressure of 0.05 KPa [136].  

(b) Curve fitting for channel geometry 

The exact flow channel geometry in a woven fabric can be obtained by measurement from 

microscopic images of fabric cross-sections. By using the free image analysis software 

Image-J [137], the outlines of yarn cross-sections were manually picked up by the 

Freehand selections function, and the enclosed areas were measured automatically. The 

geometric parameter (λ) was obtained by fitting the curvature of the flow channel with a 

parabolic equation in Excel, as shown in Fig.3.20.  

 

 

Figure 3-20 Determination of yarn cross-section (a) a cross-section of fabric ܥଵ; (b) 

channel formed by yarns and its math description 

Coordinates of the yarn cross-section were approximated by a second order polynomial 

using least square analysis. This allowed the ߣ value in Eq.3.13 to be determined directly. 

Measurements for ߣ values of other fabrics from Table 3-5 can be found in Appendix V. 

(a) 

Channel direction (݉ߤ) 

R
adius direction (݉ߤ

)

(b) 
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At least three yarns were characterised for each fabric. Hence all parameters in the gap 

permeability model can be determined experimentally from the fabric geometry.  

(c) Results and discussion 

Table 3-6 presents the values of geometric parameters for the unit-cells of nine fabrics 

from the experimental measurements and transformation Eqs.3.11-13. The obtained 

integral limit ( ଶ√ఒோ) in the fifth column of Table 3-6 indicates the error between the exact 

integral in Eq.3.19 and the approximate value 5π/16 is less than 2% for all fabrics except 

fabric U1, which can be proved by substituting the integral limit values into Fig.3.10 or 

Eq.3.19. The reason is that the throat radius of flow channel in fabric U1 is larger than the 

other fabrics while the thickness is smaller. This indicates the simplified Eq.3.21 might not 

be suitable for very loose and thin fabrics. 

Table 3-6 Geometric parameters for nine fabrics with air velocities and ܴ values at pressure drop 

of 500 Pa (± Standard Derivation) 

Fabric 
R 

10-3	݉ 

ܽ 

10-3	݉ 

 ߣ

measured 

ܴܽߣ√2ܮ θ 
V 

m/s 
ܴ 

U1 0.0434 0.1755 5.23 (±1.50) 0.809 40.82° 5.18 28.7 

U2 0.0299 0.1033 2.88 (±1.20) 1.690 75.89° 4.67 17.5 

C1 0.0255 0.1735 3.81 (±0.92) 1.614 46.22° 2.03 6.6 

C2 0.0232 0.1805 5.30 (±1.54) 1.427 53.24° 1.13 3.3 

C3 0.0257 0.1632 5.14 (±1.26) 1.454 59.62° 1.70 5.6 

C7 0.0222 0.1714 6.91 (±0.16) 1.393 54.78° 1.23 3.5 

C8 0.0267 0.1632 6.00 (±1.88) 1.408 65.73° 1.79 6.1 

C9 0.0179 0.1935 1.83 (±0.82) 3.520 67.10° 1.43 3.3 

C10 0.0201 0.1734 4.10 (±1.04) 2.548 72.24° 1.25 3.2 

Table 3-6 also shows the air velocity (V) through the narrowest cross-section where the 

maximum velocity occurs according to continuity theory [138]. The velocity is calculated 

by Eq.3.22 and it is used to check the state of the fluid according to the Reynolds number 

(ܴ) based on Eq.3.24.  
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ܴ݁ = ଶఘ∙∙ோఓ                 (3-24) 

It shows that the ܴ value for the flow through all fabrics is well below the critical value of 

2300 where flow turns from laminar to turbulent. This validates the assumption of laminar 

flow for the analytical model of the gap permeability. Based on the measured geometric 

parameters, the permeability for each fabric was calculated. Fig.3.21 compares the fabric 

permeability from the analytical model prediction (Eq.3.4) and the Kulichenko model 

prediction (Eq.2.5) with the experimental data.  

 

Figure 3-21 Prediction of permeability (Eq.3.4) compared against experimental data and the 

Kulichenko model (Eq.2.5) 

Fig.3.21 displays three permeability values for each fabric. The large error bars in the 

predictions (‘PRED’) are due to the measurements of shape factor (ߣ). Table 3-7 shows the 

contributions of the gap and the yarn permeabilities to the fabric permeability. Although 

porosity is lower than 6% for each fabric, the contribution of gap flow to the fabric 

permeability is always higher than 89%, indicating the importance of gap permeability in 

fabric permeability. The gap permeability (Eq.3.23) derived from Hagen-Poiseuille flow 

through the double curvature channel predicts the fabric permeability more accurately than 

the Kulichenko model (‘KULI’) when compared with the experimental data (‘EXPT’). 
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One of the reasons behind the accurate prediction is that the Hagen-Poiseuille flow 

assumption is generally accurate for flow through woven fabric, where the velocity 

component of laminar flow is only considered parallel to the channel axis. More 

importantly the geometry of the channel has a strong effect on the flow resistance. The 

current model includes this geometric influence by explicit flow integration over the 

channel geometry, using a parabolic function fitted to each fabric via microscopic analysis.  

Table 3-7 Comparison of the predicted yarn and gap permeabilities for nine fabrics 

Fabric Ф 

Mean ܭ௬ 

(Eq.3.10) 

10-13 m2 

Mean ܭ 

(Eq.3.23) 

10-10 m2 

Mean ܭ 

(Eq.3.4) 

10-12 m2 

(1 −Ф)݂ܭ/ݕܭ Ф݂ܭ/݃ܭ 

U1 3.93% 3.00 3.88 15.55 1.85% 98.15% 

U2 5.04% 2.21 3.85 19.62 1.07% 98.93% 

C1 1.64% 4.98 2.67 4.88 10.03% 89.97% 

C2 1.30% 1.99 1.96 2.73 7.19% 92.81% 

C3 1.85% 3.05 2.45 4.83 6.19% 93.81% 

C7 1.31% 2.55 1.75 2.55 9.87% 90.13% 

C8 1.98% 1.94 2.56 5.24 3.64% 96.36% 

C9 0.72% 0.89 2.87 2.15 4.10% 95.90% 

C10 1.08% 3.13 2.63 3.14 9.86% 90.14% 

Due to the variability in ߣ values, fabrics U1, U2, C2 and C8 have large error bars as shown 

in Fig.3.21. The difference between average predictions (Eq.3.4) and experimental data are 

in the range of 25% and 35% for fabrics U1, C2 and C3; while the difference for fabrics U2, 

C1 and C8 are in the range of 15% and 25%; the rest of fabrics have excellent agreement 

between predictions and experimental measurements (<15%). The predictions from the 

Kulichenko model give more than 70% errors for all the fabrics compared with 

experimental data. The Kulichenko model simulates the channels as a series of parallel 

straight tubes with constant cross-section and that is the reason for the underestimation of 

permeability values for all the fabrics. Therefore, fabric permeability is strongly influenced 

by the shape of the flow channel. It cannot be expressed by an empirical parameter to 
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account for the geometry. Hence the Kulichenko model fails to predict permeability for 

fabrics in general.  

(d) Sensitivity of fabric permeability to gap geometry 

The fabric permeability model (Eq.3.4) helps understand how the fabric structure 

especially the gap geometry influences the fabric permeability. There are four parameters 

in Eq.3.23 that directly relate to the prediction significantly, i.e. radius of flow channel (ܴ), 

half width of yarn (ܽ), shape factor of fabric flow channel (ߣ) and fabric thickness (ܮ). 

From Eq.3.4, the relationship between the permeability ܭ value and each parameter should 

be as follows:  ܭ ∝ ܽିଶ.ହ;      ܭ ∝ ܴଵ.ହ;      ܭ ∝ ܭ      ;.ହିߣ ∝  ;ܮ

The effects of each parameter on permeability are shown in Fig.3.22.  

 (a)  

(b) 
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    (c) 

(d) 

Figure 3-22 Relationship of permeability to each parameter 

It is noted that permeability would decrease with increasing radius of yarn or ߣ value, 

while the permeability increases with the other two parameters, gap radius or fabric 

thickness. An increase in the radius of yarn causes the size of the unit-cell to increase, 

which means the number of flow channels per unit area would decrease, therefore the 

permeability would decrease, as shown in Fig.3.22a. Permeability would increase as the 

channel cross-section is enlarged with increasing R as shown in Fig.3.22c. When ߣ  is 

increased, the increased channel curvature brings the surfaces closer and the channel 

becomes less open near the ends. The volume of the flow channel decreases, leading to 

less volumetric flow through the gap in unit time as shown in Fig.3.22b. By increasing 

fabric thickness, the volume of the flow channel and the cross-section of the flow inlet and 

outlet increase. As a result, the volume flow rate increases as shown in Fig.3.22d. The 
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parametric relationship between fabric geometry and fabric permeability helps understand 

the mechanics of flow resistance through fabric.  

3.5.2 Tight fabric (Ф = 0 in Eq.3.4) 

Two airbag fabrics, which are tight fabrics without gaps between yarns, were used to 

validate the yarn permeability model. Fabric cross-sections were cut using a laser beam 

razor blade and cross-section images were obtained using a ZEISS AxioScope A1 

microscope. The images were used to measure the filament radius ( ܴ) and yarn fibre 

volume fraction ( ܸ), which is the value of the total cross-sectional area of all fibres in a 

yarn divided by the cross-sectional area of the yarn. The fabric thickness (ܮ) was measured 

using the FAST-I (Fabric Assurance by Simple Testing) device developed by CSIRO 

[139]. A compaction pressure of 196 Pa was applied to the fabric during the measurement 

based on the FAST standard [139]. All the measurements were repeated three to five times 

and the data given represent average values. The specifications are listed in Table 3-8. 

Table 3-8 Specifications of two tight fabrics (± Standard Deviation) 

Fabric 
Composites and 

structure 

Mean fibre radius 
( ܴ) (10-6݉) 

Yarn fibre volume 
fraction ( ܸ) 

Thickness (L) 

(10-3݉) 

A1 100% Nylon Plain 10.6 (±0.2) 0.70 (±0.01) 0.34 (±0.01) 

A2 100% Nylon Plain 10.3 (±0.2) 0.68 (±0.01) 0.21 (±0.01) 

The fabric static permeability was obtained by a Shirley Air Permeability Tester at The 

University of Leeds. The air pressure drop can be set directly and its maximum can reach 

up to 300 Pa. The pressure gradient was the set value divided by the fabric thickness (in 

Table 3-8). The test area for the sample in this instrument is 5.07 cm2 (1 inch2) and airflow 

rate can be in the range of 0.1-350 cm3/s, these values can give the flow velocity. Each 

fabric was characterised five times using separate samples. Air permeability was 

calculated according to Eq.1.1 with the fluid viscosity (ܲܽ ·  .(ݏ

Fig.3.23 shows the cross-sections of the two fabrics. It is evident to observe the undulating 

shape of yarns inside the fabric. The warp and weft yarns are overlapping to each other, 
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demonstrating the tight fabric structure (Ф = 0). Pressure drop forces fluid through the 

yarns so that the fabric permeability is equal to the yarn permeability. The minimum angle 

of yarns with respect to the flow direction is 70° for both fabrics as measured by Image-J, 

and it is noted that the hexagonal fibre arrangement appears to be dominant. Therefore, 

Eq.3.10b was employed to predict the tight fabric permeability.  

 (a)     (b) 

Figure 3-23 Fabric cross-sections: (a) Fabric A1; (b) Fabric A2 

Table 3-9 Comparison of experimental permeability against predictions for two tight fabrics (± 

Standard Deviation) 

Fabric 
Expt	ܭ 

(10-13 m2) 

 Pred ∥ܭ
Eq.3.6 

(10-13 m2) 

 Pred ୄܭ
Eq.3.8 

(10-13 m2) 

Effective ܭ Pred 
Eq.3.10 

(10-13 m2) 

Difference 

Expt vs 
Eq.3.10 

A1 2.41 (±0.03) 9.35 1.84  2.03  16.18% 

A2 2.47 (±0.05) 11.35  2.31  2.54  2.76% 

Table 3-9 lists the comparisons of experimental permeability against their analytical 

predictions. The second column indicates the fabric permeability is a function of fibre 

radius, fibre volume fraction and flow direction. The comparisons show the accuracy of 

the analytical model for predicting the tight fabric permeability. The differences of the two 

permeabilities are both within 20%. It is noticed, Eqs.3.5-8 were developed for flow 

perpendicular to unidirectional fibres and Table 3-2 indicates these equations are suitable 
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for high ܸ values, therefore its combination with Eq.3.9 suits for the fabric permeability 

of real tight fabric structure (Ф = 0). 

3.6 PERMEABILITY MODELLING FOR 3D WOVEN FABRICS  

In contrast to films and foils, all textile fabrics have a 3D internal structure at the yarn and 

fibre level, frequently visible to the naked eye and always seen under a microscope. 

However, in practice most can be regarded as single-layer, planar 2D sheet materials. The 

term 3D fabric covers the following forms: multilayer hollow materials, solid planar 

materials and solid multilayer materials with an overall 3D shape [140]. The latter contains 

angle interlock and orthogonal fabrics. The structures of 3D fabrics were measured by the 

micro-CT technique, supplying basic measurements for prediction.  

3.6.1 Theoretical modeling 

 

 

 

 

 

 

Figure 3-24 Fluid flow through a 3D fabric (through-thickness permeability) 

A homogenization approach [141] was employed to simplify the 3D fabric structure, as 

shown in Fig.3.24, where ݅ means an arbitrary tow layer while ܰ is the total number of 

tow layers. According to Darcy’s law, a linear relationship between pressure gradient (
∆ ) 

and fluid velocity (ܸ) should apply for an arbitrary tow layer in a 3D woven fabric: 

∆ = − ఓ ܸ                              (3-25)  

 ଵܭ

ܭ  
 ேܭ

ߤ ܸ
∆ܲ,  ܮ

݈ଵ ∆ ଵܲ
݈ ∆ ܲ
݈ே ∆ ேܲ
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The total pressure drop ( ∆ܲ = ∑ ∆ ܲேୀଵ ) and thickness ( ܮ = ∑ ݈ேୀଵ ) define the 

permeability of 3D fabric:   

∑ ∆ ܲேୀଵ = −ఓ ∑ ݈ேୀଵ                 (3-26) 

The flow velocity is the same for the whole fabric according to continuity theory. Another 

relationship then exists, 

∆ܲ = ∑ ∆ ܲேୀଵ = ∑ܸߤ− ேୀଵ       (3-27) 

Eqs.3.26 & 3.27 give the through-thickness permeability of the 3D fabric: 

ܭ = ∑ ಼ಿసభ                                        (3-28) 

The fabric geometry can be measured experimentally, and the permeability of each layer 

can be calculated based on Eq.3.4 when ܭ௬ is assumed to be zero.  

3.6.2 Experimental verification 

(a) Experimental materials 

The measured dimensions for two 3D fabrics are listed in Table 3-10. Fabric 1 is an angle-

interlock woven fabric comprising 2 layers of warp tows, 3 layers of weft tows and 

binding yarns. The tows in the warp direction and the binders show almost rectangular 

cross-section while the weft tend to be lenticular, as depicted in Fig.3.25a. Fabric 2 is an 

orthogonal woven fabric comprising 6 layers of warp tows, 7 layers weft tows and binding 

yarns. The yarns have almost rectangular cross-section as shown in Fig.3.25b.  

(a) 

(b) 

Figure 3-25 Structures along warp and weft of two 3D woven fabrics (a) Fabric 1, (b) Fabric 2 
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Fig.3.25 shows the real internal geometry and structure of the two 3D fabrics [38] as listed 

in Table 3-10, which both consist of multiple-layers of warp and weft yarns and binding 

yarns. In Table 3-10, ܰ’ means the number of 3D woven fabrics used in the permeability 

measurements, ிܸ means the fibre volume fraction of the whole fabric. 

Table 3-10: Dimensions of fibre bundles (width ݓ, height ݈) and inter-bundle voids (width ݓ௩, 

height ݈௩), determined from digital analysis of CT micrographs [38] 

 Fibre bundles Inter-bundle voids 

wb (10-3 ݉) lb (10-3 ݉) wv (10-3	݉) lv (10-3 ݉) 

Fabric 1 

angle-interlock 

1.438 kg/m2 

N’=1, L=2 (10-3 ݉), ிܸ=0.41 

Warp 4.01 ±0.19 0.41 ±0.03 0.97 ±0.12 0.31 ±0.06  

Weft 3.16 ±0.19 0.38 ±0.04 0.49 ±0.20 0.34 ±0.04 

Binder 1.40 ±0.16 0.37 ±0.07   

N’=2, L=3.5 (10-3 ݉), ிܸ=0.47 

Warp 4.02 ±0.21 0.42 ±0.05 0.83 ±0.15 0.23 ±0.05 

Weft 3.29 ±0.20 0.45 ±0.07 0.42 ±0.20 0.30 ±0.05 

Binder 1.48 ±0.16 0.35 ±0.04   

Fabric 2 

Orthogonal 

4.775 kg/m2 

N’=1, L=5 (10-3 ݉), ிܸ=0.55 

Warp 1.81 ±0.06 0.38 ±0.02  0.31 ±0.05 0.38 ±0.02 

Weft 2.07 ±0.12 0.35 ±0.03 0.32 ±0.07 0.35 ±0.03 

Binder 0.62 ±0.06 0.15 ±0.03   

N’=1, L=4.6 (10-3 ݉), ிܸ=0.59 

Warp 1.77 ±0.08 0.40 ±0.03 0.29 ±0.04 0.40 ±0.03 

Weft 2.06 ±0.11 0.32 ±0.02 0.27 ±0.07 0.32 ±0.07 

Binder 0.73 ±0.17 0.15 0.06   

(b) Verification approach 

The through-thickness permeability was calculated according to Darcy’s law with 

measured constant flow rate and pressure drop in saturated unidirectional flow 

experiments (Fig.3.26a), using engine oil (ߤ ≈ 0.3	 ܲ ∙ ݏ  at 20ºC). A cylindrical flow 

channel was used with inner diameter 80 mm. The specimen thickness ܮ was measured 

using the same approach in Section 3.5.1a. The experimental error for the measurement of 
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permeability was estimated to be approximately 8% [142]. The analytical prediction was 

based on the specifications in Table 3-10. Permeability of each fabric layer was predicted 

according to the unified Eq.3.4. However, due to the results in Table 3-7, we can assume 

the yarn permeability is ignored compared with the gap permeability because the fluid 

always finds its easiest way to flow through, i.e. the existing gaps in the unit-cell. Unit-

cells of the two fabrics are marked in Fig.3.25 and Fig.3.26 b and c. Fig.3.26b shows that 

the unit-cell of the angle-interlock fabric has one binder yarn, one warp yarn and four weft 

yarns. 

 

(a)                                          (b)                                               (c) 

Figure 3-26 (a) Experimental instrument; (b) Unit-cell of Fabric 1; (c) Unit-cell of Fabric 2 

On the top surface layer, as for the bottom layer, there are four gaps formed by the binding 

yarn and weft yarns, plus two gaps between weft yarns, forming four triangular gaps. The 

bottom length of the triangular gap is the height of binding yarn and the sides are 

approximately equal to the width of a warp yarn. In the unit-cell of the middle layer, there 

is only one rectangular flow channel formed by warp and weft yarns assuming the other 

gap is completely blocked by the inclined binding yarn. The gap permeability here can be 

found according to Eq.3.23. Fig.3.25b and Fig.3.26c shows the structure of orthogonal 

fabric, which contains a straight gap along the binding yarn in a unit-cell in through-

thickness direction. Fig.3.25b shows the gaps between two fabric layers are blocked by the 

neighbor warp and weft yarns. The gap accounts for a very small proportion of the volume 

of the unit-cell but is the main channel for fluid flow. 

(c) Results and discussion 
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Through-thickness permeability was measured at different ிܸ 	values [38]. Each data point 

was based on four to seven repeats. This gave average values and standard deviations of 

the series of experiments. The analytical predictions were based on the average 

measurements in Table 3-10. Fig.3.27 shows the analytical predictions (Eq.3.28) accurate 

compared with the corresponding experimental results. 

 

Figure 3-27 Comparisons of analytical predictions and experimental data for through-thickness 

permeability of 3D fabrics 

Fabric 1 is a relatively loose fabric with higher through-thickness permeability due to 

smaller ிܸ  values. When ிܸ  is 0.41, the prediction value is 25.9×10-12 m2, close to the 

experimental mean value 23.5×10-12 m2, showing the assumption of the analytical model 

are reasonably accurate. For the higher ிܸ	at 0.47, the experimental data is a little larger 

than the prediction but they are also close to each other. Fabric 2 shows a similar situation. 

When ிܸ is 0.55, the mean experimental permeability is 10.3×10-12 m2 while the prediction 

is 11.5×10-12 m2.  

Fig.3.28 compares gap and yarn permeabilities in Fabric 2 to verify the assumption of the 

negligible yarn permeability. An increase in gap size or decrease in fibre volume fraction 

will give higher fabric permeability. Generally gap permeability is two or three orders of 

magnitude higher than yarn permeability in a fabric, and permeability along the fibres is 

one order higher than perpendicular to the fibres at the same ܸ value. The space around 
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the binder (Fabric 2) accounts for just 1% of the volume of the unit-cell, but its 

contribution to the unit-cell permeability is much higher than other regions. A calculation 

for Fabric 2 shows the permeability perpendicular to fibres is 0.23% of the gap 

permeability when ܸ is 0.67; while the permeability along the fibres is 2.59% of the gap 

permeability when ܸ is 0.60. Therefore flow through yarns (along or perpendicular to the 

fibres) offers little contribution to the 3D fabric permeability so that here yarns can be 

considered as solid in the permeability prediction. 

      

 

Figure 3-28 Gap (ܭ) and yarn (ܭ௬) permeabilities in 3D orthogonal woven fabric (Fabric 2) 
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3.7 CONCLUSIONS 

A unified static and through-thickness permeability model for one-layer of woven fabric 

 was proposed. It is a function of yarn and gap permeabilities with respect to the fabric (ܭ)

areal porosity (Φ). The yarn and gap permeaiblities depend on the fabric geometric factors 

completely, such as fibre radius and arrangement, yarn cross-section and fabric thickness.  

When Φ = 0, i.e. yarns in a woven fabric touch each other or are even overlapping, fluid 

has to flow through yarns completely. In this case, the fabric permeability equals the yarn 

permeability. The Gebart model gives the permeability for fluid flow along and 

perpendicular to unidirectional fibres. The Advani model considers fluid flow with an 

angle in an anisotropic fabric. The yarn permeability model developed in this chapter 

combines the Gebart model with the Advani model for predicting permeability of tight 

fabrics. It is based on geometric factors including fibre radius and arrangement, fibre 

volume fraction ( ܸ) and the minimal angle (θ) of yarn path and flow direction. CFD 

simulations showed the accuracy of perpendicular permeability prediction. However, for 

flow along fibres, the simulation showed the prediction agreed well for large ܸ values but 

poorly for small ܸ values. Two tight airbag fabrics were tested for their permeability. The 

experimental results showed the analytical model can predict the tight fabric permeability 

with a maximum error of 20%, indicating the yarn permeability model can be used for 

tight fabrics with high ܸ values. 

When Φ ≠ 0 , i.e. a loose woven fabric, a novel generic analytical model for gap 

permeability was developed. The key feature in the model is that a parabolic function was 

used within the Hagen-Poiseuille flow integration to capture the geometry of the flow 

channel formed by interwoven yarns. Different channel shapes in various fabrics can be 

represented by this with the parameter ߣ obtained from microscopic measurement. Five 

gradual converging-diverging flow channels were simulated for flow behaviour in CFD. 

After a sensitivity study, the calculated permeability is close to its analytical prediction. 

For nine woven fabrics, the model gave good predictions compared with experimental data 

for most fabrics. Predictions showed the gap permeability provide more than 89% 

contribution to the loose fabric permeability. The Kulichenko model, where a straight flow 
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channel is assumed, gives over 70% error in permeability prediction. It is believed that the 

inclusion of the geometry of the flow channel makes the gap permeaiblity model 

significantly more accurate than existing models. A parametric study shows the influence 

of four independent geometric variables relevant to fabric permeability.   

A through-thickness permeability model for 3D woven fabric was derived based on the 

permeability of each tow layer. The fabric structure was analyzed by the micro-CT 

technique. Equations of flow through gaps were developed. Predictions and experimental 

data were compared. The predictions showed good agreement with the experimental data, 

proving the model to be reasonably accurate. A sensitivity study showed that the most 

significant contribution to 3D fabric permeability was the gap between yarns. 
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CHAPTER 4 

ANALYSIS OF FABRIC DYNAMIC PERMEABILITY 

4.1 INTRODUCTION 

As described in Chapter 2, dynamic permeability of a porous material defines its ability to 

transmit permeating fluid under transient pressure conditions. Dynamic permeability is one 

of the most important properties for many technical textiles such as automotive airbags, 

wearable (landing) airbags and parachute fabrics. Usually these fabrics are subjected to 

high initial pressure – for example, car airbag fabric can be subjected to 200 KPa. This 

might result in deformation of the fabric structure, leading to a change in the permeability.  

This chapter identifies the physical differences between static and dynamic permeability of 

woven fabric. Deformation of the woven structure under high pressure has a significant 

effect on permeability. Different types of fabrics are studied to identify governing 

parameters for the permeability. The Forchheimer equation is used to describe the 

nonlinear relationship between pressure drop and flow velocity. Analytical models are 

adapted to predict permeability more accurately by considering several physical factors, in 

particular the initial and final deformed fabric structure.  

4.2 EXPERIMENTAL TECHNIQUES 

4.2.1 Design of the dynamic tester 

All dynamic permeability tests in this thesis were conducted at The University of Leeds. 

Fig.4.1 shows the basic construction of the dynamic permeability tester [96]. The tank is 

supplied with filtered dry air through a filter/drier F and an electrically controlled pressure 

regulator R. Valve V1 is used to stop the airflow into the tank once the tank is charged to 

the required pressure. The tank pressure and temperature are measured by a transducer G 

and a thermocouple S, respectively. The tank is connected to the test area through a valve 

V2. A fabric specimen is held between the lower clamp C1 and the upper (movable) clamp 

C2. Clamp C2 is controlled by an electric linear actuator which produces a clamping force 
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of 5 KN. The clamp provides a circular test area of 50 cm2. The pressure in the tank can be 

charged in a range of 5 KPa up to 300 KPa above atmospheric pressure. The tank volume 

is 40 litres and the working temperature range is from -10 to 100℃. 

 

Figure 4-1Basic construction of the dynamic permeability tester 

4.2.2 Experimental plan 

The experiments were aimed to establish: (a) the difference, if any, between static and 

dynamic permeability; (b) the effect of initial pressure on the fabric dynamic permeability; 

(c) the effect of the number of layers on the fabric permeability. 

Table 4-1 Specification of Fabric M (± Standard Deviation) 

Fabric 
Composition 
and structure 

Mean ܴ 

10-6 ݉ 
 ߣ

ܮ
10-3 ݉ 

Yarn spacing  

10-3 ݉ 

Yarn width 

10-3	݉ 

Warp Weft Warp Weft 

M 
Wire mono-

filament/plain  
25 

(±0.1) 

4.08 

(±0.80)
0.10 

(±0.01) 
0.10 

(±0.01)

0.10 

(±0.01) 

0.05 

(±0.01) 

0.05 

(±0.01)

 

Three fabrics were chosen as specimens in the experiments: a loose fabric (Fabric U2 in 

Table 3-5), a tight fabric (Fabric A1 in Table 3-8) and a wire mono-filament plain fabric 

(fabric M in Table 4-1). The yarns in fabric U2 are all made of 65% PET and 35% cotton 

staple fibres. The yarns are ‘Z’ spinning style from a ring spun system with twist of 858 
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per metre. The filament radius is calculated as the weighted mean value of PET and cotton 

fibre radii according to the blend ratio. The yarns in Fabric A1 are made of multi-filaments 

without any twist and the yarn is a circular mono-filament in Fabric M. Fabric geometric 

parameters of Fabric M, such as yarn spacing (distance between yarn centre lines) and 

filament radius ( ܴ) were obtained by top view under microscope (ZEISS AxioScope A1 

microscope). Yarn shape factor (ߣ in Eq.3.13) and fabric thickness (ܮ) were measured 

using a simulated fabric cross-section using TexGen, as shown in Appendix V.  

For the sake of comparison, the fabric static permeability for three fabrics was measured 

by the Shirley air permeability tester as mentioned in Section 3.5.2. Each fabric was 

measured five times using separate samples. 

4.3 OPERATING PRINCIPLE AND DATA ANALYSIS 

4.3.1 Operating principle of the dynamic permeability tester 

By applying the ideal gas law for air in the tank, 

 ܲॽ = ܴ݉௨ܶ      (4-1) ܲ  is the absolute pressure in the tank, ॽ  is the tank volume which is constant (40 ×10ିଷ݉ଷ), m is the mass of air in the tank at any time,  ܴ௨ is the universal gas constant 

divided by the air molar mass and ܶ is the absolute temperature of the air inside the tank. 

As air discharges through the fabric, the mass of air in the tank as well as the pressure 

gradually reduces. ܶ is assumed constant owing to the heat capacity of the tank and the 

standard laboratory environment. Differentiating Eq.4.1 by time t, gives:  

  ॽௗௗ௧ = ܴ௨ܶ ௗௗ௧       (4-2) 

By applying Eq.4.1 to the escaped air from the tank at normal atmospheric pressure:  

  Pୟ୲୫ॽ′ = ܴ௨Tୟ୲୫ ୢ୫ୢ୲      (4-3)  

Where ॽ′ (m3/s) is the free volumetric flow rate of air corresponding to the mass flow rate ݀݉/݀ݐ and Pୟ୲୫ is the (absolute) atmospheric pressure.  
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Eq.4.2 and Eq.4.3 give: 

ॽ′ = ॽೌ  ௗௗ௧            (4-4) 

The flux of air passes the fabric (discharge per unit area) ܸ (m/s) is:  ܸ = ॽ′         (4-5)  

ܣ  is the testing area. Therefore the relationship between the velocity of gas and the 

pressure gradient becomes:  

ܸ = ॽ౪ౣ ୢୢ୲        (4-6) 

 4.3.2 Data analysis 

(a) Curve fitting 

Raw data of pressure vs time are filtered using the following Eqs.4.7 & 4.8 to remove 

effects of electrical noise caused by pressure transducer during the experiment. The 

pressure history ܲ as a function of time ݐ is described by a polynomial equation which 

provides an excellent fit to the experimental measurement, giving a general form:  ܲ = ݐܽ + ିଵݐܾ + ଶݐ݉+⋯ + ݐ݊ +  (7-4)       ݐݏ݊ܥ

Where ܽ, ܾ, ⋯, ݉, ݊ and ݐݏ݊ܥ are established using a least squares technique. Then 

ௗௗ௧ = ିଵݐ݊ܽ + ܾ(݊ − ିଶݐ(1 + ⋯+ ݐ2݉ + ݊     (4-8) 

The pressure and the velocity can be calculated at any time according to the Eqs.4.6, 4.7 

and 4.8. A polynomial equation with a maximum order 6 was found to be accurate enough. 

The relationship of the pressure and the velocity can be fitted using the Forchheimer 

equation (Eq.2.17 in Chapter 2).  

(b) Analysis of experimental data 



82 
 

 

  

P = 0.038t6 - 0.4725t5 + 2.3521t4 - 6.8917t3 + 21.314t2 - 69.83t + 105.81
R² = 0.9997

P = 0.028t6 - 0.3134t5 + 1.38t4 - 4.0362t3 + 17.116t2 - 66.388t + 103.54
R² = 0.9998

P = 0.0875t6 - 1.025t5 + 4.6478t4 - 11.293t3 + 25.345t2 - 72.138t + 107.69
R² = 0.9997
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  Figure 4-2 Results of three fabrics with pressure variation over time and curve fitting for pressure 

versus corresponding velocity by the Forchheimer equation 

Fig.4.2 firstly shows the data for pressure history over time obtained directly from the 

experiment for the three fabrics. The data were fitted using least squares analysis for a 

maximum sixth order polynomial, Eq.4.7, which gives close approximation with 

correlation coefficients larger than 0.99. Fig.4.2 secondly shows the data of pressure 

versus corresponding velocity which were derived using the data of pressure over time and 
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Eqs.4.8 and 4.6. The graph gave a non-linear relationship of pressure and velocity. This 

was not suitable for linear regression using Darcy’s law. The Forchheimer equation 

(Eq.2.17) was used to approximate the pressure versus velocity. The fitting correlation 

coefficients (R2>0.99) show the approximation of pressure and velocity to be accurate. As 

the equipment needs time to release gas without clamped fabric (‘Empty’ curves in 

Fig.4.2), this should be considered when dealing with the dynamic permeability from the 

fitted equation. The dynamic permeability of the three fabrics is obtained from the 

coefficient of the first order in the fitted equation with the first order coefficient of the 

‘Empty’ curve fitted equation subtracted from it.  

4.4 RESULTS AND DISCUSSION 

4.4.1 Temperature effects  

 

Figure 4-3 Variation of temperature in the gas tank during gas discharge 

The whole process of air discharge is accompanied by temperature change as measured by 

a thermocouple (S in Fig.4.1) located inside the tank. The temperature drops at the initial 

discharging stage due to the expansion of compressed air known as the Joule–Thomson 

effect [143]. Gradually the temperature climbs back after heat exchange with the 

environment through the open valve V2. A maximum temperature change of 5℃ was 

typical for the three fabrics as shown in Fig.4.3, and this is considered negligible, since T 
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in Eq.4.2 is absolute temperature. This shows the assumption of a constant temperature in 

Eq.4.4 is reasonable. A constant gas viscosity of 1.83×10-5 Pa·s under room temperature is 

used given the minimal variation in temperature.  

4.4.2 Static and dynamic permeability 

Fabric permeability is sensitive to fabric structure. Structures of the three fabrics before 

the experiments are shown in Fig.4.4. It is noticeable that fabrics U2 and M have clear gaps 

between yarns while fabric A1 is a tight fabric with yarn overlap. 

 

Figure 4-4 Fabric structures (a) Fabric M; (b) Fabric U2; (c) Fabric A1 

The static permeability tests of fabric U2 and A1 were conducted at 100 Pa and fabric M 

was tested at 10 Pa due to its open structure, while the dynamic permeability tests were all 

conducted with an initial pressure of 100 KPa around. In the dynamic permeability tests, 

the maximum values for the average calculated air velocities (Eq.4.6) and the Reynolds 

numbers (ܴ) are listed in Table 4-2. 

Table 4-2 Maximum values of superficial air velocity and ܴ in the dynamic permeability tests 

Fabric V (m/s) ∅ ܴ (Eq.3.24) 

M 5.23 0.25 68.6 

U2 5.19 0.045 453.8 

A1 1.30 0.005 34.2 

 
Where V represents the maximum value of superficial air velocity, ∅ is the approximate 

volumetric porosity of the fabric. The calculated maximum ܴ values for the three fabrics 

M, U2 and A1 are all less than the critical value (2300) for turbulent flow, showing laminar 
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air flow in these fabrics during the dynamic permeability test. However, due to the open 

structure of fabric M, its ܴ value is much smaller than fabric U2. The experimental results 

for static and dynamic permeability are listed in Table 4-3.  

Table 4-3 Static, dynamic and analytical prediction for permeability for different fabrics 

 (± Standard Deviation) 

Fabric 

Measured static 

permeability  

10-12 m2 

Predicted static 

permeability  

10-12 m2 

Measured dynamic 

permeability  

10-12 m2 

Predicted dynamic 

permeability  

10-12 m2 

M 36.7 (±0.4) 39.4 (Eq.3.4) 35.3 (±1.65) 39.4 (Eq.3.4) 

U2 16.4 (±0.9) 19.6 (Eq.3.4) 31.8 (±1.33) 54.1 (Eq.3.4) 

A1 0.24 (±0.01) 0.20 (Eq.3.10)  0.12 (±0.01) 0.11 (Eq.3.10) 

 

Fabric M is a plain woven mesh of stainless steel mono-filament. Here we assume its 

rigidity allows no fabric deformation under high pressure. The experimental data in Table 

4-3 show its dynamic permeability is almost equal to its static permeability. This indicates 

that permeability is a constant material parameter regardless of pressure level within the 

flow state provided that no material deformation occurs. The metal mesh also validates the 

independent measurement from the dynamic permeability tester as it provides data in 

agreement with the widely accepted Shirley static permeability tester. The analytical 

predictions for fabric M were based on the Eq.3.4 and 3.23, using the geometric 

measurements as the input parameters from Table 4-1. The model describes accurately the 

geometry of the flow channel between yarns and therefore gives an accurate prediction for 

this fabric. 

The other two materials i.e. cotton/PET fabric U2 and nylon fabric A1 are likely to deform 

under high air pressure. Fig.4.5 gives the thickness of the two fabrics under different 

compaction pressures. The thickness was measured by the FAST-I (Fabric Assurance by 

Simple Testing) device by applying three different gauge pressures: 196 Pa, 1.96 KPa and 

9.81 KPa [139]. The curve fitting equation for the data was chosen as a power law as this 

was also for many previous textile compaction models [144]. 
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Figure 4-5 Thickness (ܮ) of Fabric U2 and A1 under different compaction pressures 

Fig.4.5 shows that the fabric thickness reduces when the pressure increases. There is a 

more dramatic change for cotton/PET fabric U2 than nylon fabric A1. The structure and/or 

the yarn fibre volume fraction ܸ  are likely to vary when the fabric thickness changes 

under high pressure, as discussed in the following sections.  

(a)Fabric U2 

Fabric U2 has clear gaps between yarns as shown in Fig.4.4b. The large spacing between 

yarns causes the majority of air to flow through these gaps, as shown in Table 3-7. A slight 

change of yarn spacing can alter the fabric permeability significantly according to Eq.3.23. 

The parameters required in the analytical Eq.3.23 such as yarn spacing, yarn width and 

fabric thickness can be measured directly from the fabric geometry. To measure the 

deformation that occurs during dynamic testing, it would be ideal to obtain these values 

when the fabric is under high pressure. This was not technically feasible with the apparatus 

used here. Therefore fabric parameters were measured under a microscope from fabric 

samples after the test. Fabric thickness is approximated by extrapolating the power law in 

Fig.4.5 according to the dynamic test pressure. The geometrical parameter ߣ is assumed 

from a simple relationship with fabric thickness (ܮ) (Eq.3.13): 
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ߣ = మమ        (4-9) 

Where ܽ is half of the yarn width. It is noted that Eq.4.9 is only an approximation for the 

relationship of ߣ and L when compared with Fig.3.9. However this can help to obtain an 

approximate shape factor from the thickness and the yarn width after the dynamic test. 

 

Figure 4-6 Fabric U2: (a) before dynamic test; (b) after dynamic test 

The microscopic images in Fig.4.6 show a visual change in yarn spacing and width for 

fabric U2 before and after the dynamic test. Measurement from the images provides a set of 

comparative values in Table 4-4, including the calculated thickness and shape factor.  

Table 4-4 Geometry change of Fabric U2 

Fabric U2 
Yarn spacing (10-3 ݉) Yarn width (10-3 ݉) Fabric thickness (݉ 3-10) ܮ 

Flow channel 

shape factor ߣ ܵ ܵ௪ ܦ  ௪ܦ 

Static 0.223 0.331 0.174 0.192 0.32 2.88 

Dynamic 0.220 0.353 0.166 0.198 0.13 0.47 

 

Based on the measured values in Table 4-4, the predicted dynamic permeability (Eq.3.4) 

was calculated as listed with the experimental result (Table 4-3). The prediction is larger 

than the experimental value due to the inaccurate prediction for two geometric factors ܮ 

and ߣ  based on the thickness fitting equation in Fig.4.5 and gap shape factor 

approximation under high pressure with Eq.4.9. However, Eq.3.4 can also be used for 

dynamic permeability prediction provided that fabric deformation is measured in the 

dynamic permeability test or if it can be predicted (as discussed in the next chapter).  The 

250 ݉ߤ 	݉ߤ	250
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analytical model offers insight to explain the difference between dynamic and static 

permeability. High pressure causes out-of-plane deformation, increasing the gap between 

yarns while decreasing the fabric thickness and the shape factor ߣ of flow channel due to 

the compaction at yarn crossovers. These changes explain why the fabric permeability is 

higher for the dynamic permeability test.  

(b) Fabric A1 

Fabric A1 is a tight airbag fabric with overlapping yarns with no clear spacing as seen in 

Fig.4.4c. Compared with the thickness reduction of 42% for fabric U2 as shown in Fig.4.5, 

Fabric A1 has a thickness change of only 10% from compaction pressure 196 Pa to 9.81 

KPa. This is due to the tight structure and high yarn ܸ	for this fabric. The space between 

fibres in yarns is the main flow channel for tight fabrics. Table 3-2 indicates that the 

Gebart model (Eqs.3.5-8) is suitable for tight fibre bundle permeability prediction. For 

fabric A1, the dynamic permeability decreases by almost half compared with the static 

permeability as shown in Table 4-3. This trend is opposite to the fabric U2 which shows a 

higher dynamic permeability. A similar experimental observation was found in the work of 

Wang [94] where fabrics became less permeable under high pressure air impulse.  

In the dynamic permeability test, the fabric was deflected and stretched by high pressure. 

As dynamic permeability is lower than static permeability, this indicates that gaps did not 

open between yarns in the dynamic test and the fabric became much tighter. The yarn fibre 

volume fraction ܸ becomes larger under high pressure when the fabric thickness reduces 

and fibre bundles are compacted together tightly. According to the hexagonal packing 

theory, the maximum achievable fibre volume fraction ( ܸ௫ ) is 0.907. The 

corresponding pressure is 1.8×1010 Pa, which is the upper bound of pressure for the fitting 

Eq.4.10. Assuming no other geometric deformation, yarn thickness reduction alone offers 

an increased fibre volume fraction ܸᇱ: 
ܸᇱ = ᇲ ܸ             (4-10) 

Where ܸ is the measured original yarn fibre volume fraction from microscopic analysis of 

un-deformed yarn cross section, ܮ is the original fabric thickness and ܮᇱ	is the thickness 
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under a high pressure extrapolated from the power law in Fig.4.5. This suggests a yarn ܸ 

increase from 0.70 to 0.75. Based on this method, the Gebart model would suggest static 

and dynamic permeabilities of 1.86×10-13 m2 and 0.82×10-13 m2, assuming flow transverse 

to the yarns only.  

 

Figure 4-7 Fabric A1 indicating yarn crimp and non-uniform fabric thickness 

As discussed in Sections 3.3.1 and 3.5.2, the Gebart model gives an under-estimated 

prediction compared with experimental results due to its development for unidirectional 

reinforcement. The model needs to be adapted here to account for the woven fabric 

structure such as fibre orientation due to yarn crimp and non-uniform fabric thickness due 

to lenticular yarn cross-section. Fig.4.7 shows the two features that should be considered 

for applying the Gebart model to woven fabric. Firstly the through-thickness flow path has 

an angle θ to fibre axis, where θ is the smallest value measured along the crimped yarn. 

Therefore, the Advani model (Eq.3.9) was employed to correct fabric permeability. The 

angle θ was measured using Image-J mentioned in Section 3.5.1 at 69.5o from an un-tested 

sample (representative of the geometry for static test) and 74.5o from a sample after the 

dynamic test. The predictions in Table 4-3 show the change in crimp angle increases the 

permeability by 15%, bringing it closer to the experimental values.  

Secondly, the fabric thickness varies across the sample as is clear in Fig.4.7. Hence there is 

non-uniform air flow through the fabric, and in particular the areas with maximum crimp 

are likely to exhibit lower resistance to flow than the yarn crossovers. This may explain 

why the predictions in Table 4-3 are still around 20% lower than experimental values. This 

θ

500 ݉ߤ
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effect is difficult to describe using a purely analytical approach, and it is likely that this 

can only be captured using a technique such as computational fluid dynamics.  

4.4.3 Effect of initial pressure on the fabric permeability 

 

Figure 4-8 Air discharge pressure history with different initial pressures for Fabric A1 

Fig.4.8 compares pressure history for different initial pressure levels in the dynamic test. 

The curve fitted polynomial equations provide a good fit over the region of interest for all 

tests. Fig.4.8 shows a higher initial pressure leads to a longer period of discharge. As 

shown and discussed for fabric A1 in Fig.4.2, a higher pressure has a higher corresponding 

fluid velocity but the relationship is nonlinear. The fitted equation for the relationship 

indicates pressure is a second order function of velocity. Following the data analysis with 

Eqs.4.6-8, the experimental data in Fig.4.8 gives the relationship of permeability with 

initial pressure in the test. 
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Figure 4-9 Initial permeabilities (K) with different initial pressures for Fabric A1 

Fig.4.9 gives three different initial permeability values along the pressure history. The 

initial permeability corresponds to pressure at an early discharge stage. As it is a small 

section of the entire pressure range, the initial pressure and the flow rate are assumed to 

follow Darcy’s law (Eq.1.1). From Fig.4.9, a decrease in initial pressure leads to an 

increased permeability, with the data tending towards the static permeability value 

(2.4	 × 10ିଵଷ	݉ଶ in Table 4-3) at low pressure. However, how the trend goes from low 

pressure to high pressure still needs further work based on this study. 

4.4.4 Effect of multiple fabric layers on the permeability 

Table 4-5 Static permeability (100 Pa) and dynamic permeability (100 KPa) of Fabric A1 with 

different number of layers 

Number of layers 
Static permeability  

10-12 m2 

Dynamic permeability  

10-12 m2 

1 0.24 (±0.01) 0.12 (±0.01) 

2 0.25 (±0.01) 0.20 (±0.02) 

3 0.27 (±0.01) 0.23 (±0.02) 

 

Table 4-5 gives experimental results for static and dynamic permeability of Fabric A1 with 

different numbers of layers. Each experiment was repeated five times. The standard 
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deviation of measurement is less than 5%. The experimental data show an increase in the 

number of fabric layers leads to a small increase in static permeability. The dynamic 

permeability is in general smaller than the corresponding static value.  

By increasing the number of fabric layers, the difference between the static and dynamic 

permeability is decreased, as the dynamic permeability increases with more layers. The 

reason might be a relatively smaller deformation for more fabric layers under the same 

initial pressure, as is shown in Fig.4.10. 

 
Figure 4-10 Schematic comparison of fabric deformation under the same pressure for different 

number of layers 

Fig.4.10 compares deformation for different numbers of fabric layers under the same 

uniform pressure load. According to Timoshenko’s large deflection plate and shell theory 

[145], Eq.4.11 is derived based on a Poisson’s ratio of 0.3 for qualitative comparison. The 

Poisson’s ratios for most fabrics are in the range of 0.2-0.5 [111]. It shows that the 

maximum displacement (ݓ௫) at the centre of solid thin plate is related to its thickness 

   :(ܮ)

௫ݓ = 0.704ܽ′ ቆටܲܽ′3ܮܧ ቇ         (4-11) 

Where ܲ  is the uniform pressure on the sample, ܽ′  is the sample radius, and ܧ  is the 

Young’s modulus. Here fabric is assumed to behave as a solid thin plate for simplicity. 

Thinner fabric samples will hence lead to larger deflection based on Eq.4.11. For airbag 

fabric A1, a single layer with the largest deflection causes yarn de-crimping and tensioning 

without introducing inter-yarn gaps. The contact force at yarn crossovers increases as a 

result, which acts to compress the yarns leading to an increase in yarn ܸ value, resulting 

in a reduced fabric permeability based on the Gebart model. 

P 

2 layers 1layer 3 layers
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4.5 CONCLUSIONS 

Dynamic permeability is obtained by discharging air with high initial pressure through 

woven fabrics. The transient pressure causes a fabric structural deformation. The 

behaviour is different from the static permeability test applying a constant small pressure 

drop. The Forchheimer equation, describing a nonlinear relationship between pressure and 

velocity, is used to analyze the dynamic experimental data. The experimental data for the 

metal mesh fabric show little difference between static and dynamic permeability, because 

the fabric structure was not changed under high pressure. This also validates the dynamic 

permeability test method compared with the widely accepted Shirley static permeability 

test. Most fabrics are less rigid and are prone to deformation during the dynamic 

permeability test. One example is a cotton/PET fabric with a loose structure, which is 

easily deformed under pressure. The dynamic permeability for this fabric is much higher 

than its static permeability. A trial analytical model shows that the increase in yarn spacing 

due to fabric deflection leads to the higher permeability. In contrast, a tight fabric such as a 

nylon airbag fabric had a lower dynamic permeability than its static value. The reason 

might be the high pressure applied to this fabric results in a higher yarn fibre volume 

fraction. Experiments also show that more fabric layers would have a larger dynamic 

permeability for tight fabric. It is proposed that this is due to reduced deflection which in 

turn causes less compaction at yarn crossovers and hence higher yarn permeability. The 

next chapter will attempt to predict the deformation that occurs during dynamic testing and 

to combine this with the analytical modelling approach to provide a fully predictive model 

for through-thickness permeability.   
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CHAPTER 5 

PERMEABILITY MODELLING OF DEFORMED TEXTILES UNDER 

HIGH PRESSURE LOAD 

5.1 INTRODUCTION 

It is important to model out-of-plane fabric deformation under high pressure load, as the 

alteration of fabric structure leads to a change in permeability as demonstrated in Chapter 

4. Technical textiles, for application in airbags for instance, are usually subjected to a 

normal pressure load. The load causes the fabric to deform, resulting in changes to 

geometric parameters such as yarn fibre volume fraction and gap size. Therefore, it is 

desirable to develop a predictive model of fabric deformation as a function of the load, as 

well as to predict the corresponding permeability of the deformed fabric.  

In the first part of this chapter, the energy method reviewed in Section 2.4.2 is employed to 

analyze the fabric deformation. Polar coordinates are utilized to derive the equations for a 

fully clamped circular fabric sheet. Expressions for describing the out-of-plane deflections 

and for the in-plane stretching of the deformed fabric are developed by considering the 

appropriate boundary conditions during deflection. Thereafter strain energy, bending 

energy and work done are introduced to the total potential energy of the system, from 

which the deflected shape is obtained by minimizing its total energy. The predictions for 

the deformed fabric profile and its maximum displacement are validated with experimental 

measurements.  

In the second part, based on the fabric deformation model, the effects of pressure load are 

taken into account on the geometric parameters for permeability prediction. Two fabrics 

(one tight and one loose fabric) are employed to make the verifications. Comparisons of 

experimental results with analytical predictions are performed at the end of the chapter. A 

sensitivity study for each geometric factor helps understanding of pressure load on fabric 

permeability. 
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5.2 MODELLING OF FABRIC DEFLECTION UNDER HIGH PRESSURE LOAD 

5.2.1 Development of analytical model 

The clamped fabric behaviour under uniform load is modelled by considering the 

deformation of an originally flat, stress-free circular fabric sample. Although a woven 

fabric is anisotropic, the out-of-plane deflection under high pressure is assumed 

axisymmetric. Polar coordinates are used in this particular deflection case. 

 

 

 

 

Figure 5-1 Schematic of geometry and polar coordinates for a deformed circular fabric 

Fig.5.1 shows a clamped circular fabric from top view and its deflection along a diameter 

under uniform load by side view. The origin of polar coordinates is placed at the centre of 

the fabric. The fabric edge is clamped by two annular plates, giving the fabric radius ܽ′. 
Letters ݎ and ݖ represent in-plane and out-of-plane directions. The boundary conditions in 

this case are:  ݎ = 0, ݑ = 0; ݎ = ܽ′, ݑ = 0;                           (5-1a) 

ݎ = ݓ,0 = ,௫ݓ ௗ௪ௗ = 0; ݎ = ܽ′, ݓ = 0;      (5-1b) 

Where ݑ  and ݓ  are the displacements in ݎ  and ݖ  direction respectively, ݓ௫  is the 

maximum displacement in ݖ direction. Due to the symmetric geometry and the distributed 

pressure, it can be concluded that ݓ is an even function of ݎ whereas ݑ is an odd function 

of ݎ. The requirements can be satisfied by taking the following trigonometric 

approximations for the displacements: 

′ܽ ݎܲ ௫ݓ ′ܽ	′ܽݖ
 ݎ
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ݑ = ܿ ∗ sin(గᇲ)             (5-2a) ݓ = ௫ݓ cos( గଶᇲ)	      (5-2b) 

Where ܿ  is an arbitrary constant. Note that the shape of Eqs.5.2 is different with the 

reviewed approximation Eq.2.30 which exhibits less gradual deflection near the edge of 

clamped area as will be discussed in Section 5.2.3b. The problem of determining the fabric 

deflection reduces to derivation of the coefficients ܿ and ݓ௫ in Eqs.5.2. The coefficients 

can be determined by the principle of virtual displacements. The energy method mentioned 

in Section 2.4.2 is employed. Three types of energy occur during deflection: bending 

energy ܷ, membrane strain energy ܷ	and work done ܹ. Firstly ܷ, which is important 

for a rigid and continuous sheet, herein has little contribution to the total deformation 

energy due to the flexible and discontinuous fabric structure. The expression in polar 

coordinate is transferred from Eq.2.33 as follows: 

ܷ = ୈଶ ∬ {ቀడమ௪డమ + ଵ డ௪డ + ଵమ డమ௪డఏమቁଶ − 2(1 − (ߥ డమ௪డమ ቀଵ డ௪డ + ଵమ డమ௪డఏమቁ + 2(1 − (ߥ ቀଵ డమ௪డడఏ − ଵమ డ௪డఏቁଶ}  (5-3)                                                                    ߠ݀ݎ݀ݎ

The Eq.5.3 can be reduced to a simple form due to the axisymmetric bending in this case: 

ܷ = Dߨ {ቀడమ௪డమ + ଵ డ௪డቁଶ − ଶ(ଵିఔ) ௗ௪ௗ డమ௪డమ }ᇲ  (4-5)         ݎ݀ݎ

Where D is the fabric flexural rigidity, which does not equal 
ாయଵଶ(ଵି௩మ) for fabric [120] (ܧ is 

the Young’s modulus of fabric, ܮ is the fabric thickness and v is the Poisson’s ratio of 

fabric) because the filaments in fabric bend relative to their own neutral axis rather than 

that of the fabric.  

Membrane strain energy plays a pivotal role in fabric deformation. It consists of stretching 

and shearing energy during the fabric deflection. A common expression is rewritten from 

Eq.2.32 in polar coordinates: 

ܷ = గாଵିఔమ  ଶߝ} + ఏଶߝ + ᇲݎ݀ݎ{ఏߝߝߥ2       (5-5) 
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Where ߝ, ߝఏ are the radial and tangential normal strains. The relationships of strains and 

displacements are:  

ߝ = ௗ௨ௗ + ଵଶ (డ௪ௗ)ଶ          (5-6a) ߝఏ = ௨                            (5-6b) 

By substitution of the values of the strains from Eqs.5.6 into the preceding equation, the 

expression of ܷ is obtained in the form:  

ܷ = గாଵିఔమ  {ቀௗ௨ௗቁଶ + ௗ௨ௗ ቀௗ௪ௗቁଶ + ௨మమ + ଶఔ௨ ௗ௨ௗ + ఔ௨ ቀௗ௪ௗቁଶ + ଵସ ቀௗ௪ௗቁସ}ݎ݀ݎᇲ      (5-7) 

Where the component expression (
గாଵିఔమ  ൬ଶఔ௨ ௗ௨ௗ + ఔ௨ ቀௗ௪ௗቁଶ൰′  represents shearing (ݎ݀ݎ

energy and the rest is tensile energy. Eq.5.7 is a simplified expression due to the thin 

axisymmetrically loaded circular shape.   

As the circular fabric is deflected in the out-of–plane direction, the work done ܹ caused 

by the pressure load can be obtained by integrating ܲݓ across the area of the fabric based 

on Eq.2.34: 

ܹ = ߨ2 ᇲݎ݀ݎܲݓ        (5-8) 

Therefore the potential energy function (ܷΠ) for the system contains the bending energy, 

the membrane strain energy and the work done: ܷΠ = ܷ + ܷ +ܹ       (5-9) 

In which, ܷ relates bending strain energy, which concerns out-of-plane deformation; ܷ 

links membrane strain energy to the fabric Young’s modulus, which concerns in-plane 

deformation; ܹ denotes the work done by the uniformly distributed pressure load.  

With the assumed deflected fabric shape (Eqs.5.2), the first order and second order of 

derivatives with respect to the fabric radius (ݎ) are: 
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ௗ௨ௗ = గᇲ cos గᇲ                      (5-10a) 

ௗ௪ௗ = −గ௪ೌೣଶᇲ sin గଶᇲ          (5-10b) 

ௗమ௪ௗమ = −గమ௪ೌೣସᇲమ cos గଶᇲ       (5-10c) 

By substituting Eq.5.10 into Eq.5.4 and Eq.5.7 then integrating over the clamped fabric, 

and integrating Eq. 5.8, the results are: 

ܷ = యୈ௪ೌೣమସᇲమ ( ఔగଶᇲ + ln గଶ)                                                                              (5-11a) 

ܷ = గாଵିఔమ (గమమସ − గ௪ೌೣమସᇲ − ௪ೌೣమగయଷଶᇲ + ఔగ௪ೌೣమଷᇲ + గమ௪ೌೣరସᇲమ + ଷగర௪ೌೣరଵଶସᇲమ + మଶ ln 2)                            

(5-11b) ܹ = 4(1 − ଶగ)ܲݓ௫ܽᇱଶ                                                                                  (5-11c) 

In Eq.5.11b, the condition 
డడ = 0 that can make ܷ a minimum leads to: 

ܿ = ቀଷగ௪ೌೣమିସఔగ௪ೌೣమଵଶᇲ + గయ௪ೌೣమଷଶᇲ ቁ / ቀగమଶ + ln 2ቁ                                          (5-12) 

Inserting Eq.5.12 and Eqs.5.11 into Eq.5.9 with a numerical calculation: 

ܷΠ = .ହଶାఔି.ଷఔమଵିఔమ ா௪ೌೣరᇲమ + (ଶ.଼ଷସସାଷ.଼ఔ)ୈ௪ೌೣమᇲమ −  ௫ܽᇱଶ         (5-13)ݓ1.4535ܲ

Then, application of the minimizing condition, 
డΠడ௪ೌೣ = 0, yields approximate expressions 

for the maximum deflection and out-of-plane displacement in the forms:  

௫ݓ ≅ ܽᇱ ∙ ටଵ.ସହଷହᇲா ∙ ଵିఔమଶ.଼ାସఔିଵ.ଶఔమయ
                                                          (5-14a) 

ݓ = ܽᇱ ∙ ටଵ.ସହଷହᇲா ∙ ଵିఔమଶ.଼ାସఔିଵ.ଶఔమయ ∙ cos( గଶᇲ)                                                (5-14b) 

It is noted that, here fabric has been viewed as a very thin ‘plate’ as the maximum 

deflection ݓ௫ is much greater than the fabric thickness. In this condition, the resistance 
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of the ‘plate’ to bending is negligible and the ‘plate’ can be considered as a flexible 

membrane. Hence the bending energy can be ignored compared with the strain energy in 

the calculation as approximated by Eq.5.14a. This will be verified by experimental data in 

Section 5.2.2b. 

5.2.2 Experimental verification 

The experimental verification for the analytical model in Section 5.2.1 contains two 

aspects: the maximum displacement and the deflected profile across the diameter. Here a 

novel experimental device is designed to validate the deformation model. 

(a) Design of the fabric deflection tester 

    

                                                                                           

(a)                                                             (b) 

Figure 5-2 Fabric deflection tester: (a) construction sketch; (b) real tester 

Fig.5.2 shows the design of the fabric deflection tester. In Fig.5.2a, a stress-free flat fabric 

sheet (ܾ’) is clamped by two plates (݁’) with six bolts (݃’). The fabric edge is sealed by a 

compressed rubber ring (’) in plates. The testing diameter of the fabric in this device is 

82	݉݉. A layer of cling film (a’) is in place to ensure the system is airtight. The size of the 

film is slightly greater than that of the fabric to avoid influence on fabric deformation. The 

air in the container (݂’) is pumped by a vacuum pump (݀’). There is a valve (ݒ’) that can 

control the vacuum level in the container. A vacuum pressure gauge (ܿ’) gives the pressure 

reading inside the sealed container. The device is designed to produce a vacuum pressure 

ℎ

	′ݒ

a′ ܾ’	

ܿ′	 ݀′

݁′
݂′

′′݃
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up to 100 ܽܲܭ. A steel ball with diameter of 4 mm is used to determine the place of 

maximum displacement. A ruler is placed on the top plate across a diameter parallel to the 

fabric warp, weft and 45° of warp/weft (bias) directions respectively. A vernier caliper is 

placed on the ruler perpendicularly and moved to determine the displacement of the 

deformed fabric. Each fabric deflection under a certain pressure load was repeated five 

times for the three directions (warp, weft and bias) with a fresh sample. Average fabric 

deflections for the repeats are given with standard deviations.  

 (b)Experimental materials 

Table 5-1 Fabric specifications before pressure load (± Standard Deviation) 

Fabric 
Composition and 

structure 
 10ିଷ݉ܮ

D10ିܰ݉ Yarn spacing  10ିଷ݉ 
Yarn width  10ିଷ݉ ܵ ܵ௪ ܦ ܦ௪ 

A1 100% Nylon plain 
0.34 (±0.01) 66.4 

0.53 

(±0.02) 

0.45 

(±0.01) 

0.45 

(±0.01) 

0.52 

(±0.01) 

U2 
PET65/Cotton35 

Plain 
0.32  (±0.01) 7.85 

0.22 

(±0.03) 

0.33 

(±0.01) 

0.18 

(±0.03) 

0.20 

(±0.03) 

The two fabrics used in the dynamic tests are listed in Table 5-1 for the verification of the 

deformation model. The methods of determination for the fabric thickness (ܮ), the yarn 

spacing and width can be found in Section 3.5.1. Fabric Young’s modulus (ܧ) and flexural 

rigidity (D) were both measured by Kawabata Evaluation System (ܵܧܭ) [146] at Unilever 

UK Central Resources. Two parameters were both tested using prepared samples with size 30ܿ݉ × 20ܿ݉. In KES, one side of fabric was gripped by two fixed grippers parallel to its 

warp or weft yarns while the other side was gripped by movable grippers. If the movable 

grippers stretched a fabric with an increasing load up to 4.9 N, the increased tensile stress 

(N/mm) and fabric strain (%) was recorded. Its slope divided by the fabric thickness 

(assumed constant) was the fabric E value with a unit Pa. If the movable grippers rotate 

around the fixed grippers with a fabric sample, a relationship of bending moment and 

fabric curvature was recorded as a closed curve. Slope of the first part of the curve is the ܦ 

value with a unit ܰ ∙ ݉݉.	
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(a) 

 

 (b) 

Figure 5-3 Tensile stress-strain and bending moment-curvature relationships of fabrics obtained by 

KES: (a) Fabric A1; (b) Fabric U2 

Fig.5.3 shows the relationships of tensile stress-strain and bending moment-curvature for 

Fabric A1 and U2 obtained by KES. For Fabric A1, the slope of tensile stress-strain is 

almost a constant when the strain is less than 10%. Then it shows nonlinear behavior as the 

strain increases. The slope keeps increasing for Fabric U2. The average values for warp 

and weft directions of initial Young’s modulus can be calculated as 247 MPa for fabric A1 

and 148 MPa for Fabric U2. The expression 
ாయଵଶ(ଵିఔమ) was calculated as 889 × 10ି	ܰ݉ for 

Fabric A1 and 444 × 10ି	ܰ݉ for Fabric U2 based on the measurements of ܧ and ܮ and 

an assumed Poisson’s ratio (v) value of 0.3 for both fabrics, which are much larger than 

the corresponding measured ܦ  values 66.4 × 10ି	ܰ݉  for Fabric A1 and 7.85 ×
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10ି	ܰ݉ for Fabric U2. This proves that the equation ܦ = ாయଵଶ(ଵିఔమ) for continuous solid 

plates does not apply for textile fabrics. 

An attempt was made to measure v values of the two fabrics using Digital Image 

Correlation (DIC) equipment according to Hursa’s approach [111], however the results 

showed both to be larger than 1 which is not considered physically realistic. In the 

following section, a number of Poisson’s ratios will be used to assess sensitivity.   

5.2.3 Results and discussion 

The analytical model treats single-layer woven fabric as a thin plate or membrane, using 

the energy minimisation approach to predict the maximum displacement and the deflected 

profile under a uniform pressure load. Comparisons between predictions and experimental 

measurements are presented, as well as a sensitivity study. 

(a) Maximum displacement 

The maximum displacement of fabric (ݓ௫) occurs at the centre under uniform loading. 

The prediction is based on Eq.5.14a, assuming three Poisson’s ratio (ߥ) values (0.2, 0.3 & 

0.4) in the range of woven fabric [110, 111]. The comparisons for the ݓ௫ value between 

predictions and experimental measurements are shown in Fig.5.4.  
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 (b) 

Figure 5-4 Maximum displacements for high pressure loads: (a) Fabric A1; (b) Fabric U2  

With a fixed Poisson’s ratio ߥ, the predicted ݓ௫ is proportional to the cubic root of the 

pressure load (ܲ ) according to Eq.5.14a. The experimental results in Fig.5.4 show a 

nonlinear relationship of ݓ௫ and ܲ which is close to the cubic root relationship between 

them in the prediction. The graphs also show that a smaller ߥ value can obtain a higher 

prediction of ݓ௫ , and the interval between ߥ = 0.2	and	0.3 is much less than that of 0.3	and	0.4, showing the relationship of ݓ௫  and ߥ values is nonlinear, which is also 

explained by Eq.5.14a. The comparisons show the ߥ value for Fabric A1 is close to 0.3 

while Fabric U2 is close to 0.2. In the graph, the ݓ௫ value for Fabric A1 is smaller than 

that for Fabric U2 at a same pressure load. The reason is a smaller stiffness for Fabric U2.  

(b) Deflection profile 

Fig.5.5 compares the experimental measurements of fabric deflection based on the average 

value for three directions along a diameter with the predictions based on Eq.5.14b (the 

curves ‘Membrane-Pred’ in Fig.5.5). The ‘Plate-Pred’ profile in Fig.5.5 is based on 

Eq.2.30 which assumes the displacement equations are polynomials. The fabric deflections 

in Fig.5.5 are both under the same uniform pressure of 100 KPa. Here the ߥ values for 

predictions are 0.3 for Fabric A1 and 0.2 for Fabric U2. The experimental results prove the 

approximations (Eq.5.2) for the fabric deflection are reasonable and more accurate than 

that from Eq.2.30.  
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 (a) 

 

(b) 

Figure 5-5 Comparison of experimental measurements against predictions of fabric deflection 

along the diameter: (a) Fabric A1; (b) Fabric U2 (Error bars represent standard derivation based on 

five repeats of tests at each point) 

The difference in the predictions between the Eq.2.30 and Eq.5.2 is mainly displayed in 

the deflected profile near the fabric edge. The prediction of Eq.2.30 show the vertical 

displacement declines slowly in this area due to the polynomial nature. Prediction of 

Eq.5.2 shows a steep deflection in contrast due to the cosine function, also as shown in the 

experimental image in Fig.5.6.  
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Figure 5-6 Deformation of fabric under high pressure load in experiment 

 

Figure 5-7 Deflection profiles of Fabric A1 under different pressure loads 

Fig.5.7 shows the deflected profiles of Fabric A1 along a diameter under different pressure 

loads. It is easier to deform at low pressure due to yarn crimp via the interwoven structure 

of the fabric. A greater pressure load achieves less increased displacement because the 

loading is now undertaken by yarns in the in-plane direction.  

Therefore, the deflected yarn length (ܮ௬) and the yarn strain (ߝ) for a fabric under high 

pressure load can be calculated by the following equations: 

௬ܮ 	=  ට1 + ൫݂ ᇲିᇲݎ൯ଶ݀(ݓ)′   (−ܽᇱ ≤ ݎ ≤ ܽᇱ)     (5-15) ߝ = 	ିଶᇲଶᇲ                     (5-16) 
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Where f’(w) is deflection (ݓ) differentiated with respect to radial position (ݎ). 

(c)Factors affecting the fabric deformation 

Yarns are crimped at an angle ߠ in woven fabric as shown in Fig.3.5 and 4.7. The change 

of the crimp angle reflects the fabric deformation subjected to a normal load. The angle ߠ 

increases as the pressure load is increased. Calculation for the angle ߠ is given by Fig.5.8, 

which shows a schematic of the variation of half a yarn crimp under a pressure load. The 

original half length of a yarn crimp (ܵ), its projection (ݏ) and the crimp angle (ߠ) in a unit 

cell are increased to ܵ’, ݏ’ and ߠ′, while the half fabric height (ܪ) is decreased to ܪ′.  
 

     

Figure 5-8 Schematic of the change of half a unit cell cross-section under pressure load 

Fig.5.8 shows a unit-cell for the fabric elongation. The deformed yarn height and the yarn 

length in Fig.5.8 are assumed to have the following relationships of their original values:  

′ܪ = ுଵାఌ                   (5-17) ݏ ′ = 1)ݏ +  (5-18)           (ߝ

The final crimp angle (ߠ′) can be calculated based on Eq.5.20:  

cot ߠ = ு௦                    (5-19) 

cot ′ߠ = ୡ୭୲ఏ(ଵାఌ)మ            (5-20)  

The relationship of crimp angle and pressure can be found from equations 5.14, 5.15, 5.16 

& 5.20. In fabric deformation, a larger Poisson’s ratio shows a relatively smaller variation 

of ߠ, as they all start from 70° (measured in Section 3.5.2) as shown in Fig.5.9.a. This also 

can be inferred from Fig.5.4.a. At the beginning of loading, the value of ߠ increases much 

ߠ ܵ θ
θ'

S
S’ H H’

s

s’ 
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more than at the following stage. This shows the distributed pressure alters the crimp 

structure and fabric thickness first, with yarn extension dominating afterwards.  

  (a) 

 (b) 

Figure 5-9 Effects of pressure load on crimping angle (Fabric A1): (a) ߥ; (b) ܧ 

The mean ܧ values for both warp and weft directions are employed to predict the fabric 

deformation. Fig.5.9.b shows a larger crimp angle caused by the smaller ܧ value under a 

constant pressure, as expected from the associated increase in deflection.  

70

70.5

71

71.5

72

72.5

73

0 0.2 0.4 0.6 0.8 1 1.2

C
ri

m
p 

an
gl

e 
(°

)

Pressure (105 Pa)

v=0.2

v=0.3

v=0.4

70

70.5

71

71.5

72

72.5

73

0 0.2 0.4 0.6 0.8 1 1.2

C
ri

m
p 

an
gl

e 
(°

)

Pressure (105 Pa)

E=150MPa

E=250MPa

E=350MPa



109 
 

 

 

Figure 5-10 Effects of ߥ and ܧ on the value of ݓ௫ for different pressure loads (Fabric A1) 

Fig.5.10 shows that the ݓ௫ value of Fabric A1 is decreased with increasing ߥ value or ܧ 

value. A larger ߥ means a smaller axial extension of the fabric with the same transverse 

strain; a greater ܧ indicates the fabric is harder to deform. Both factors lead to the decline 

in the maximum deflection.  

5.3 MODELLING OF FABRIC PERMEABILITY UNDER HIGH PRESSURE LOAD 

5.3.1 Development of the analytical model 

As mentioned in Section 5.2, a single layer of woven fabric is clamped by two annular 

plates hermetically. The fabric radius is ܽᇱ. The fabric is subjected to a uniform pressure 

load ܲ, as shown in Fig.5.1 and Fig.5.6. Based on Eqs.5.14, 5.15 and 5.16, the strain of the 
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yarn along a diameter can be obtained, assuming all yarns have the same strain during 

deformation. 

(a) Yarn permeability (Φ = .ݍܧ	݊݅	0 3.4) 

Yarns can slightly overlap in a tight fabric. Inter-yarn gaps are assumed never to appear 

even under the largest deformation (Φ ≡ 0). The yarn cross-section is supposed to be 

lenticular (see Fig.4.7) with width 2ܽ and height ܪ. The fibre radius and yarn width are 

assumed to be constant during the deformation, while the yarn height (ܪ) is reduced to ܪ’ 
in the deformation, as shown in Fig.5.11. 

 

 

 

Figure 5-11 Cross-section of a yarn before and after deformation 

The deformed yarn height (ܪ’) is smaller than the original height (ܪ), assuming the same 

relationship as Eq.5.17 with the yarn Poisson’s ratio 0.5: 

′ܪ = ுଵାఌ         (5-21) 

Where ߝ is the yarn strain defined by Eqs.5.15 and 5.16. Yarn fibre volume fraction is 

defined as the total area of fibre cross-sections divided by the area of yarn cross-section. 

Therefore, the original yarn fibre volume fraction ( ܸ) and the deformed yarn fibre volume 

fraction ( ܸ′) are: 

ܸ = ோమଶு                (5-22a) 

ܸ ′ = ோమଶு′               (5-22b) 

Where n is the number of the fibres in a yarn, ܴ is the fibre radius. Then the relationship 

of ܸ ′ and ܸ is: 

2ܽ
	ܪ

2ܽ
 ′ܪ
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ܸ′ = ܸ(1 +  (5-23)      (ߝ

The yarns crimp angle can be calculated from Eqs.5.16, 5.19 and 5.20. Substitution of the 

parameters ܸ ′ and ߠ′ into Eq.3.10 allows the permeability of the deformed tight fabric to 

be predicted theoretically. 

(b) Gap permeability (Φ ≠ .ݍܧ	݊݅	0 3.4) 

Along the fabric diameter, yarns are stretched under a strain (ߝ). The yarn cross-section is 

assumed elliptical (see Appendix V). The yarn width is assumed constant (as demonstrated 

in Table 4-4). The yarn height is assumed to decrease while the yarn length is increased. 

The deformed yarn cross-section area (ܣ′) is: 

′ܣ = ଵାఌ                (5-24) 

The yarn height (ܪ) is decreased: 

′ܪ = ுଵାఌ                (5-25) 

The deformed gap radius (ܴ′) between yarns is calculated as follows due to the stretched 

yarn length: ܴ′ = ܴ(1 +   (5-26)        (ߝ

The curvature or shape factor (ߣ) of the flow channel in Eq.3.13 relates to the fabric 

thickness: 

′ߣ = ߣ ቀᇲ ቁଶ = 1)ߣ +  ଶ           (5-27)ି(ߝ

Substitution of the parameters ܴ′, ܪ′ and ߣ′ into Eq.3.23 allows the permeability of the 

deformed loose fabric to be predicted by Eq.3.4 with new porosity theoretically. 
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5.3.2 Experimental verification 

Experimental materials were Fabric A1 and U2 as listed in Table 5-1. For fabric A1, its 

average fibre radius is 10.6(±0.2)×10-6 m, the fibre arrangement is hexagonal as shown in 

Fig.3.23, the yarn fibre volume fraction is 0.70 (±0.01) and the average Young’s modulus 

is 247 MPa. For the loose Fabric U2, its average shape factor is 2.88 (±1.20) and the mean 

Young’s modulus is 148 MPa obtained from Fig.5.3. Top views of the fabrics are shown 

in Fig.5.12: 

              

(a)                                                                         (b) 

Figure 5-12 Fabric structures (a) Fabric A1; (b) Fabric U2 

The fabric deformation was captured by measuring the maximum displacement (ݓ௫) 

and the deflection shape (ݓ) experimentally as introduced in Section 5.2. The fabric static 

permeability and dynamic permeability were tested by the Shirley air permeability tester 

(Section 3.5.2) and the Dynamic permeability tester (Section 4.2). The analytical 

predictions for fabric permeability under deformation were compared against the 

experimental results.  

5.3.3 Results and discussion 

(a) Yarn permeability (tight Fabric A1) 

Yarn crimp angle (θ) in Fig.5.9a can affect the fabric permeability. Another factor is yarn 

fibre volume fraction ( ܸ). Fig.5.13 shows that ܸ  is strongly influenced by pressure. An 

increase in pressure causes ܸ to increase. One reason might be the increased contact force 

250݉ߤ	250 ݉ߤ
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at yarn cross-overs, which pushes fibres together in a tigher bundle. Fig.5.13 also shows a 

smaller Poisson’s ratio (ߥ) causes yarns to exhibit a larger ܸ value.    

 

Figure 5-13 Effect of pressure load on ܸ 

 

Figure 5-14 Comparison of permeablity prediction with experimental data under different pressure 

loads 

Fig.5.14 compares the prediction (v=0.3) for the fabric permeaiblity with experimental 

results under different pressure loads. More details on experimental data processing can be 

found in Chapters 3 and 4. The average tested values from five samples were given in the 

graph consisting of one static (low pressure) and two dynamic permeabilities. The 

predictive model agrees with the experimental results very well. As shown in Fig.5.14, the 

permeability is decreasing with the increasing pressure load for tight fabric. The essential 
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reason is that the fibre volume fraction is increased due to the reduced yarn thickness by 

increasing pressure load on the fabric.  

(b) Gap permeability (loose Fabric U2) 

Table 5-1 offers yarn spacings and yarn widths, which can be translated into gap radius (ܴ) 

and half yarn width (ܽ) by Eqs.3.11 and 3.12. The geometric factors ܴ  and ܪ  are all 

affected by high pressure load based on Eqs.5.25 and 5.26.  Fabric deflection leads to an 

increase in the fabric surface area. Yarns tensioning causes an increase in the ܴ and a 

decrease in ܪ and ߣ. 

  

Figure 5-15 Effect of pressure load on ܴ 

The similarity of Fig.5.15 with Fig.5.13 is due to the same basis of the Eqs.5.15, 5.16, 5.23 

and 5.26. Fig.5.15 shows the effect of pressure load on the gap radius (ܴ ). ܴ  has a 

nonlinear relationship with pressure load, showing that an increase of the pressure load 

causes an increase of the ܴ value from Eq.5.26. Substituting Eq.5.26 and Eq.5.27 into 

Eq.3.23, the fabric thickness (ܮ) and the shape factor (ߣ) are eliminated. Therefore there is 

no need to compare the effects of pressure load on the values of two factors ܮ and ߣ. 

Fig.5.16 shows the permeability is increasing as the gap radius is enlarged when the 

pressure load on the fabric increases. In the prediction, yarn permeability was ignored. The 
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model (Eqs.5.25, 5.26, 5.27 & 3.4) predicts with reasonably accuracy the relationship of 

permeability and load in the tested pressure range.  

 

Figure 5-16 Comparison of permeablity (ܭ) prediction and experimental values under different 

pressure loads for Fabric U2 

When the pressure load increases to a large value, the model gives an underestimated 

prediction. The reason might be the limitation of Eq.3.23 as it was obtained based on 

Darcy’s law. The relationship of pressure and fluid velocity is nonlinear when the velocity 

reaches a particular range. The Forchheimer equation (Eq.2.17) should be used instead for 

flow prediction at this stage, as discussed in Chapter 6. 

 (c)Sensitivity study 

The current analytical model helps understand how the pressure load influences the fabric 

deflection and the corresponding permeability. As to the unified model (Eq.3.4) for fabric 

static permeability, fabric porosity (Φ ) and thickness (L) are the most important 

parameters influenced by pressure load, as shown by the fact that the permeability of 

Fabric U2 under high pressure load is increased due to the increase of Φ. Tight fabric 

permeability is reduced by decreasing fabric thickness. Fig.5.17 shows the critical values 

for the two parameters when increasing or decreasing the values will have opposite trends 

of fabric permeability under high pressure load, which mainly investigates the sensitivity 
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of two geometric parameters (Φ	and	ܮ ) to the fabric permeability when fixing other 

specifications of Fabric U2.  

(a) 

(b) 

Figure 5-17 Effects of (a) original fabric porosity (Φ) and (b) original fabric thickness (L) on the 

relationship of K and P (Fabric U2) 

Fig.5.17a shows the critical porosity is in the range of 0.5% and 0.6% which is much 

smaller than its original porosity 5.04% in Table 3-7. When the Φ value is higher than 

0.6%, fabric permeability gets larger under increased pressure load. When the Φ value is 
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lower than 0.5%, the trend of permeability is opposite. When the Φ value is 0.53% (critical 

value), increasing fabric thickness gives a larger fabric permeability under high pressure 

load as shown in Fig.5.17b. Apart from fabric porosity and thickness, fabric Young’s 

modulus (ܧ), Poisson’s ratio (v) and sample radius (ܽᇱ) also relate to the final fabric 

permeability. As the effect of v on the relationship of pressure and permeability has been 

investigated as shown in Fig.5.14 and Fig.5.16, the effects of ܧ and ܽᇱ on this relationship 

are discussed here.  

   

(a) 

 

 (b) 

Figure 5-18 Effect of E and ܽ′ on the relationship of ܭ and ܲ: (a) tight fabric; (b) loose fabric  

Fig.5.18a shows an increase of ܧ  value for tight fabric results in an increase of 

permeability value. The reason is that fabric deflection is decreased as the ܧ  value 

increases. Thereafter the yarn ܸ value decreases as discussed in Section 5.3.3a (Eq.5.23), 
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leading to a higher permeability. However, the increase of ܭ is nonlinear with the increase 

in ܧ. It also shows permeability is decreased with an increase of pressure load for a fixed ܧ value. In Fig.5.18b, loose fabric has the opposite trend compared to tight fabric. The gap 

radius is increased as E is decreased, leading to a larger fabric permeability value (Eq.3.23 

& 3.4).  

Fig.5.18 was also obtained by changing the sample radius (ܽ′) when other parameters are 

fixed. An increase of ܽ′ value will increase the maximum displacement (ݓ௫) of the 

deformed fabric (Eqs.5.14) and the fabric elongation rate (Eqs.5.15 & 5.16), influencing 

the final permeability. The permeability is decreased with increasing ܽ′ value as the ܸ 

value is increased for tight fabric. The difference of permeabilities between ܽ′ = 41	݉݉ 

and ܽ′ = 51	݉݉ is smaller than that of ܽ′ = 31	݉݉ and ܽ′ = 41	݉݉, indicating a lower 

effect of increasing ܽ′ on decreasing the fabric permeability. Fig.5.18b shows the loose 

fabric permeability is increased as its ܽ′ value increases. The reason might be that ܴ is 

getting larger relatively as the fabric is deformed more at a larger ܽ′ value. The difference 

of permeabilities between ܽ′ = 31݉݉  and ܽ′ = 41	݉݉  is smaller than that of ܽ′ =41	݉݉  and ܽ′ = 51	݉݉ , predicting an increase of fabric radius will cause the fabric 

permeability to increase further. 

5.4 CONCLUSIONS 

This chapter proposed predictive analytical models for the out-of-plane deformation of a 

woven fabric and its corresponding through-thickness permeability when it was under a 

high pressure load.  

In the model of fabric deformation, an energy-based approach was utilized, which 

consisted of bending energy, strain energy and work done by pressure. The fabric was 

assumed to behave like a thin membrane as the maximum deflection was many times 

larger than the fabric thickness. Minimization energy of the system was used to derive the 

relationship of maximum displacement (ݓ௫) and pressure load (P). Fabric deflected 

shape was characterized by the ݓ௫ and a cosine function of the fabric radius.   



119 
 

The model for predicting permeability was based on the accurate prediction of the fabric 

deformation. Also it relied on the accurate prediction of the static permeability (Eqs.3.4, 

3.10 & 3.23). The hypothesis was that the yarn width was invariable during the 

deformation. Yarn permeability was predicted by assuming the increased yarn fibre 

volume fraction and crimp angle due to the decreased yarn height. Gap permeability was 

predicted by assuming the increased gap radius due to the fabric deflection. Fabric 

thickness was reduced by the same amount as yarn height. Fabric shape factor was 

thereafter obtained based on the assumed equation 3.13 (Eq.5.27).  

Three experiments were used to verify the analytical models. Fabric out-of-plane 

deformation was measured by a fabric deflection tester, with loading applied by a vacuum 

pump. Fabric static permeability was determined by a Shirley air permeability tester while 

fabric dynamic permeability was tested by a dynamic permeability tester. The predictions 

of fabric deflection configurations (tight and loose fabrics) agree with the experimental 

measurements very well. The deflection causes the yarn fibre volume fraction to increase 

as well as the crimp angle, causing the permeability of tight fabric to decrease (Fig.5.14). 

In contrast, the deflection leads to the gap radius to increase, obtaining an increased 

permeability of loose fabric (Fig.5.16). The permeability predictions under high pressure 

load agree with the experimental values well. Sensitivity studies firstly investigate the 

critical fabric porosity and the critical fabric thickness where the increase or decrease of 

fabric permeability occurs during the fabric deformation, and secondly show the fabric 

properties, such as Young’s modulus, affect the fabric deformation, leading to an increase 

in tight fabric permeability and a decrease in loose fabric permeability with increasing 

modulus when the fabric is under the same pressure load. The model assists with 

understanding the factors affecting the fabric permeability when the fabric is under high 

pressure load, such as the change of airbag fabric permeability under inflation. The next 

chapter will attempt to understand fabric permeability as affected by its flow channel 

shape when the fabric is under high pressure drop.  
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CHAPTER 6 

MODELLING OF NON-DARCY FLOW IN TEXTILES 

6.1 INTRODUCTION 

Fabric permeability describes the fabric resistance to flow in a hydraulic environment. The 

relationship of pressure gradient and fluid velocity reflects a transfer from fluid potential 

energy to flow kinetic energy. In Section 2.2 and 2.3, Darcy’s law and the Forchheimer 

equation were reviewed, showing linear and nonlinear relationships respectively. Darcy’s 

law is a special case of the Forchheimer equation when the Reynolds number (ܴ) is so 

small that the term of second order of velocity can be ignored (typically ܴ <  (100	ݐ	10

[84-85]. Therefore, a critical ܴ  valule governs when to apply Darcy’s law or the 

Forchheimer equation such as a criterion for the critical ܴ proposed by Zeng [84]. The 

value of ܴ depends on the shape of the flow channel. This chapter takes into account two 

geometries simplified from a woven fabric: a gradual converging-diverging tube and a 

gradual converging-diverging pair of plates, which closely represent the inter-yarn gap in a 

loose fabric and the space between two parallel unidirectional fibres in a yarn.   

The coefficients in the Forchheimer equation are required to be quantified as a function of 

geometric parameters of the flow channel. The developed model is expected to predict the 

non-linear flow resistance based on flow channel geometry. Verification of the model is 

carried out by CFD simulations, experiments and published experimental data. The 

analysis also clarifies what is dominant in the nonlinear relationship of pressure and fluid 

velocity: fabric deformation or shape of flow channel. 

6.2 ANALYSIS OF NON-DARCY FLOW 

6.2.1 Hagen-Poiseuille flow in gradual converging-diverging channels 

For Newtonian fluids, the theory of fluid mechanics [63] gives closed-form solutions for 

Hagen-Poiseuille flow in a long straight tube (Eq.6.1) or between two infinitely-long 
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parallel plates (Eq.6.2), which describe the relationships of pressure gradient (
∆ௗ௫) and 

volumetric flow rate (ܳ) for laminar flow:  

ௗௗ௫ = ଼ఓொగర            (6-1) 

ௗௗ௫ = ଷఓொଶయ            (6-2) 

Where ߤ is the viscosity of the fluid, ݎ is the radius of the tube and	ℎ is the half distance of 

the plates. If the flow channel along the axis has varied cross-sections as shown in 

Fig.6.1.b and d, Eqs.6.1 and 6.2 should be modified according to the wall profile of the 

gradual converging-diverging (GCD) flow channels described by Eqs.6.3 and 6.4.  

 

Figure 6-1 GCD flow channels derived from straight flow channels: (a) a straight tube, (b) a varied 

cross-sectional tube, (c) a pair of parallel plates, (d) a GCD channel between fibres 

In Fig.6.1, ܴ is the throat radius of the flow channel, ܽ is the maximum curved depth to the 

original wall or the radius of the cylinder. Eqs.6.3 and 6.4 describe the channels: 

ݕ = ௫మఒ                  (6-3) ݔଶ + ଶݕ = ܽଶ       (6-4) 

Where the shape factor ߣ  in Eq.6.3 defines the curvature of the curved wall. In fluid 

mechanics, ܴ defines the flow state of fluid. When the ܴ value is small so that the flow 

follows the channel profile over its entire length, the area of the flow inlet is the same as 

Eq.6.4

 ݕ

 ݔ

Flow ܴ 
ܽ 

 ݕ

 ݔ

Flow

Flow

Flow

Eq.6.3 ܴ 
ܽ 

(a) (b) 

(c) (d) 
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the outlet area. The convective acceleration can be neglected as there is no loss of flow 

kinetic energy. Substitution of Eq.6.3 into Eq.6.1 then gives Eq.3.20 after integration, 

which describes flow rate in a GCD gap in a woven fabric; similarly, Eqs.6.2 and 6.4 

thereafter gives the Gebart model (Eqs.3.7 and 3.8) describing transverse flow between 

two parallel unidirectional fibres. 

Here an example is given for a more generalised case (Fig.6.2b) than the Gebart model 

(Fig.6.2a), which is an extension of circular cross-sectional fibres to lenticular or elliptical 

cross-sectional fibres. Hagen-Poiseuille flow is assumed through a pair of curved plates 

which are infinitely-long and symmetrical to the plane along the throat.  

               

Figure 6-2 Hagen-Poiseuille flow between (a) two fibres, (b) a pair of curved plates 

The curved wall profile along the flow direction in Fig.6.2 can be described by a parabolic 

equation 6.3. In Fig.6.2b, ܽ	and	ܴ are the same concepts as in Fig.6.1. The half height (ℎ) 

at the inlet and the outlet are the same with the value of ܽ + ܴ . The ℎ  value varies 

depending on the distance along the x axis:  

ℎ = ܴ + ௫మఒ        (6-5) 

Equation 6.2 is transformed into Eq.6.6 with the radius substituted from Eq.6.5:  

∆ܲ = ଷఓொଶ  ௗ௫(ோାೣమഊೌ)య
/ଶ

ି/ଶ           (6-6) 

Where L is the length of the flow channel. So 

Flow 

(a) (b) 

Flow 

Eq.6.3 
 ݔ

ݕ
ܴܽ
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∆ܲ = ଷఓொଶ √ఒோோయ  ௗ ೣ√ഊೌೃ(ଵା( ೣඥഊഁೌ)మ)య
ಽమ

షಽమ
          (6-7) 

Setting ऄ = ௫√ఒோ, then the integration in Eq.6.7 has the following solution: 

න ௗऄ(ଵାऄమ)య
ಽమ√ഊೌೃషಽమ√ഊೌೃ = ቂଵ଼ ቀऄ൫ଷऄమାହ൯(ऄమାଵ)మ + 3 tanିଵ ऄቁቃ ଶ√ఒோିଶ√ఒோ           (6-8) 

If the integral limit (
ଶ√ఒோ) value in Eq.6.8 was set to more than 3 (shown in Fig.3.10), the 

integration would approximately be 
ଷగ଼

. This was used instead of the complicated 

expression (6.8). Accordingly, Eq.6.7 was simplified significantly with the solution: 

∆ܲ = ଽగఓொଵ √ఒோோయ        (6-9) 

When ߣ = 2 in Eq.6.9, it equals to the Gebart model as Eq.IV.6a. Eq.3.21 and Eq.6.9 both 

show the linear relationship of pressure drop and volumetric flow rate. Combination with 

Darcy’s law (Eq.1.1), Eqs.3.21 and 6.9 can predict the permeability (ܭ) accurately for 

these geometries in textiles when ܴ is small.  

6.2.2 Non-Darcy flow from Navier-Stokes Equation 

The Navier-Stokes equation arises from applying Newton's second law to fluid motion, 

together with the assumption that the fluid stress is the sum of a diffusing viscous term 

(proportional to the gradient of velocity), plus a pressure term. It is a universal governing 

equation in fluid mechanics, which has been introduced in Appendix II-c in detail. For an 

incompressible Newtonian fluid it is given in Cartesian notation by: 

ߩ ቀడడ௧ + ܸ ∙ ∇ܸቁ = −∇ܲ + ଶܸ∇ߤ +  (10-6)            ܨ

Where 
డడ௧  is the unsteady acceleration, ܸ ∙ ∇ܸ  is the convective acceleration, ∇ܲ  is the 

pressure gradient, ߤ∇ଶܸ is the viscous force and ܨ is the other body force such as gravity. 

The function for the shape of streamlines is fixed when flow is under constant pressure 
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gradient at a steady state, assuming ܨ  is zero, for an arbitrary GCD flow channel, so 

Eq.6.10 can be simplified as: ߩ(ܸ ∙ ∇ܸ) = −∇ܲ +  ଶܸ           (6-11)∇ߤ

As GCD flow channels are axisymmetric, 2D coordinates can be used for the channels in 

Fig.6.1. The conditions for Eq.6.11 based on the geometries are: 

డడ௫ ≠ 0;		డడ௫ ≠ 0;	డమడ௬మ ≠ 0;  
Eq.6.11 is then expressed as: 

ܸ డడ௫ = − ଵఘ డడ௫ + ఓఘ డమడ௬మ                     (6-12) 

Where ܸ in Eq.6.12 is a symbol for the average velocity tensor. It has two components in 

directions ݔ and ݕ. Integrating Eq.6.12 along the ݔ axis: 

∆ܲ = ܸܸ݀ߩ− + ߤ  డమௗ௫డ௬మ           (6-13) 

Equation 6.13 shows two parts of the pressure loss. The first part is the local pressure loss 

depending on the channel geometry (Eq.6.14a), the appearance of it is from convective 

acceleration depending on the variation of flow streamlines. The second part is the 

frictional pressure loss based on the interaction of fluid and channel surface as well as the 

fluid internal frictional force (Eq.6.14b):  ∆ ଵܲ = ∆ (6-14a)          			ܸܸ݀ߩ− ଶܲ = ߤ  డమௗ௫డ௬మ                (6-14b) 

The two expressions in Eq.6.14 can be derived separately as they focus on linear and 

nonlinear flow velocity terms respectively. 

6.2.3 Analytical modelling of Non-Darcy flow 

When ܴ  of a fluid motion is very small, the fluid flows across the whole channel as 

shown in Fig.6.3a. This is frequently come across when considering continuity theory (see 
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Appendix II) and the Bernoulli equation for fluid flow in a nozzle or passed a circular 

object [63, 90]. The frictional pressure loss (Eq.6.14b) dominates the flow at this stage, 

because there is no loss of flow kinetic energy between the inlet and the outlet of the 

channel. A separation occurs between the flow and the diverging wall of the channel and it 

moves toward the channel throat when ܴ is increased. The separation point stays at the 

throat (Fig.6.3b) for a wide range of ܴ values until the flow becomes turbulent. The local 

pressure loss (Eq.6.14a) dominates the flow for these ܴ values, which will be discussed in 

Section 6.3. 

 

(a)                                                      (b)                                                   (c)             

Figure 6-3 Streamlines in the GCD flow channel 

As the flow velocity is a mean value in Eq.6.14a, it can be transferred to the value at the 

entrance of the channel for the sake of calculation. This also can be found in the analytical 

modelling of abrupt contraction cases [79, 83, 85, 147]. According to continuity theory 

(Eq.II.18) and the ideal Bernoulli equation (Eq.II.25) for the case of Fig.6.3b,  ܣଵ ଵܸ = ଶܣ ଶܸ                             (6-15) 

ଵܲ + ఘభమଶ = ଶܲ + ఘమమଶ                   (6-16) 

Where ܣଵ, ଵܸ and ଵܲ mean the inlet area, fluid velocity and pressure at the entrance of the 

flow channel while ܣଶ, ଶܸ and ଶܲ are the same at the throat. The local pressure loss (∆ ܲ) 
can be obtained by combining Eqs.6.15 and 6.16: 

∆ ܲ = ଵܲ − ଶܲ = ఘభమଶ ൬ቀభమቁଶ − 1൰          (6-17) 

In Fig.6.1b, the cross-section is circular, so Eq.6.17 can be expressed as: 

ܽ ܴ 

 ߣ
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∆ ܲ = ఘభమଶ ൬ቀାோோ ቁସ − 1൰        (6-18) 

In Fig.6.1d or Fig.6.2, the cross-section is parallel walls, so Eq.6.17 can be expressed as: 

∆ ܲ = ఘభమଶ ൬ቀାோோ ቁଶ − 1൰         (6-19)  

As for the frictional pressure loss, Eq.6.14b can be integrated based on detailed boundary 

conditions. The GCD tube and plates (Eqs.3.11 & 6.9) are merely two cases obtained 

using the integration of Eq.6.14b. Pipes, tubes, nozzles or diffusers all have frictional force 

components to the flow. For instance, the frictional factor for a straight tube based on the 

Hagen-Poisseuille equation (Eq.6.1) and the Dacry-Weisbach equation (6.20)  [63]: 

∆ܲ = ݂ ଶ ఘమଶ          (6-20) 

Where ݂ is the frictional factor, ݎ is the tube radius, ܮ is the tube length. Combination of 

Eq.6.1 and Eq.6.20 has the frictional pressure loss for a straight tube: 

∆ ܲ = ଷଶோ  ఘమଶ           (6-21) 

Where ܴ = ܸߩݎ2 ⁄ߤ . As to the GCD flow channels, similar processing can be done as for 

Eq.6.21. For the tube geometry like Fig.6.1b, Eq.3.21 can be rearranged into: 

∆ ܲ = ହఓగ(ାோ)మ√ఒோଶோర ଵܸ = ଵగ(ାோ)య√ఒோோరோ ఘభమଶ          (6-22) 

Where the definition of ܴ is: 

ܴ = ఘ(ோା)భఓ              (6-23) 

Eq.6.22 reflects that the frictional pressure potential can be transformed into a flow kinetic 

energy based on fluid property such as fluid viscosity and flow channel geometry such as 

curvature. The total pressure loss for this GCD tube is obtained by combining Eq.6.18 and 

Eq.6.22: 
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∆ܲ = ହఓగ(ାோ)మ√ఒோଶோర ଵܸ + {ቀାோோ ቁସ − 1} ఘభమଶ           (6-24a) 

The coefficient of hydraulic resistance (ߞ), defined as the ratio of the total pressure loss 

(potential energy) to kinetic energy [148], reflects the transformation ability of the two 

energies for a GCD flow channel. For a GCD tube, it is from Eq.6.24a: 

௧ߞ = ∆ܲ ఘభమଶ൘ = ଵగ(ାோ)య√ఒோோరோ + ቀାோோ ቁସ − 1         (6-24b) 

For a channel geometry like Fig.6.2, Eq.6.9 can be transformed into: 

∆ ܲ = ଽగఓ(ାோ)√ఒோ଼ோయ ଵܸ = ଽగ(ାோ)మ√ఒோ଼ோయோ ఘభమଶ           (6-25) 

Where ܴ is defined by Eq.6.23. Therefore the total pressure loss and the coefficient of 

hydraulic resistance for this GCD channel are:  

∆ܲ = ଽగఓ(ାோ)√ఒோ଼ோయ ଵܸ + {ቀାோோ ቁଶ − 1} ఘభమଶ            (6-26a) 

ߞ = ∆ܲ ఘభమଶ൘ = ଽగ(ାோ)మ√ఒோ଼ோయோ + ቀାோோ ቁଶ − 1         (6-26b) 

Both demonstrate a quadratic dependence of pressure drop on velocity, as described by the 

Forchheimer equation (Eq.2.17). Eqs.6.24 and 6.26 are suitable for a ܴ value larger than 

the critical value for flow separation at the throat region of the flow channel. A larger 

value of hydraulic resistance means a lower flow rate through the channel under the same 

pressure drop. 

6.2.4 Hydraulic resistance of woven fabric  

In a woven fabric, the gap between yarns in a unit cell forms a GCD flow tube. The fabric 

porosity (Ф) is defined as the cross-sectional area of the throat divided by the cross-

sectional area of the inlet (2D unit-cell geometry in Fig.3.1): 

Ф = 1(1+ܴܽ)2         (6-27) 
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The coefficient of hydraulic resistance for the GCD tube (ߞ௧) can be rewritten in terms of 

the porosity (Ф): 

௧ߞ = ଵగோ (ଵФ)ଵ.ହඨߣ(ටଵФ − 1) + ቀଵФቁଶ − 1         (6-28) 

Eq.6.28 shows a greater ߞ  value for flow through woven fabric with an increase in ߣ 

(equivalent to an increase in fabric thickness) if the fabric porosity and flow Reynolds 

number are fixed. For a pair of GCD plates or fibres, a similar transformation to the 

porosity (Ф) is: 

Ф = 11+ܴܽ        (6-29) 

The coefficient of the hydraulic resistance for the pair of curved plates (ߞ) or fibres can 

then be rewritten as: 

ߞ = ଵФమ { ଽగ଼ோ ටߣ ቀଵФ − 1ቁ + 1} − 1         (6-30)  

The effect of porosity on hydraulic resistance is shown in Fig.6.4. 
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 (a) 

(b) 

(c) 

Figure 6-4 Relationship of hydraulic resistance (a) α, (b) β, (c) total value with porosity 
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Fig.6.4 (a) and (b) give components of hydraulic resistance versus porosity in Eqs.6.28 and 

6.30, where hydraulic resistance (ߞఈ) for ߙ in the Forchheimer equation for a GCD tube is 

ଵగோ (ଵФ)ଵ.ହඨߣ(ටଵФ − 1) and for a pair of GCD plates or fibres is 
ଵФమ ଽగ଼ோ ටߣ ቀଵФ − 1ቁ while 

hydraulic resistance (ߞఉ) for ߚ in the Forchheimer equation for both geometries have the 

same value ቀଵФቁଶ − 1. Fig.6.4a gives a sensitivity study on ߞఈ  value based on specific 

geometric parameters, showing an increase of ܴ  leads to a decrease of ߞఈ  while an 

increase of ߣ causes ߞఈ to increase for both geometries at the same porosity. The values of ߞ  for ߙ  and ߚ  both decrease with an increase of porosity. Fig.6.4c assumes both GCD 

geometries have the same shape factor and ܴ value. It shows a significant drop in ߞ with 

an increase in Φ for both GCD geometries. A smaller Φ value gives a higher ߞ value, 

showing a lower flow rate caused by the curved channel walls. Woven fabrics generally 

have small Φ values (<6% for woven fabrics in Table 3-7), so the coefficient (ߞ) values are 

very large based on Fig.6.4c, which shows a great resistance to flow by fabric materials. 

6.3 VERIFICATION BY CFD SIMULATIONS 

6.3.1 Non-Darcy flow observed by CFD simulations 

Observation of Non-Darcy flow was performed by CFD simulation. A straight tube and a 

GCD tube were created in TexGen and meshed in HyperMesh. A detailed introduction for 

these software packages can be found in Section 3.4. The mesh element size was 0.005 for 

both geometries in HyperMesh as a sensitivity study showed that this size had an 

appropriate computing time with relatively accurate results. Their boundary conditions for 

the meshed geometries in CFX-Pre were set as inlet and outlet as transitional periodic, 

channel wall was set as non slip. Water at 25℃ is chosen as the fluid for all the 

simulations as water can be regarded as an incompressible fluid. Mass flow rate is 

obtained after the simulations. An increase of pressure drop between inlet and outlet gives 

the flow velocity to increase.  
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(a)                                                                          (b) 

Figure 6-5 Relationship of pressure drop and flow velocity for (a) a straight tube (ܮ = ݎ,1݉݉ =0.175݉݉); (b) a GCD tube (ܮ = 1݉݉, ܽ = 0.125݉݉, ܴ = 0.05݉݉, ߣ = 16 ) 

Fig.6.5 shows the relationship of pressure drop and fluid velocity at the inlet of flow 

channel for the two tubes. Flow streamlines are straight in the straight tube, giving rise to a 

linear relationship of pressure drop and flow velocity. The GCD channel walls divert the 

flow directions, leading to a convective acceleration and a nonlinear curve as shown in 

Fig.6.5b. In CFD simulation, it is discovered that the development of flow separation from 

the channel wall is the main cause of the nonlinear relationship. This observation helps to 

understand the variation of Darcy (ߙ) and non-Darcy (ߚ) coefficients in the Forchheimer 

equation (Eq.2.17) as shown in Fig.6.6: 

     

Figure 6-6 Variation of coefficients (in Eq.2.17) along the ܴ value and flow streamlines in A, B 

and C regions 
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When the flow channel geometry is fixed, a pressure drop gives a fluid velocity at the inlet 

of the channel. An increase in pressure drop results in an increase in flow velocity. The 

Forchheimer equation is used to fit this increasing relationship. The fitted coefficients in 

Eq.2.17 is plotted with ܴ in Fig.6.6, which shows three regions named as Darcy’s region 

‘A’, transitional region ‘B’ and Forchhermier region ‘C’. The right pictures in Fig.6.6 show 

the shapes of flow streamlines in CFD simulations for these three regions respectively. 

The flow goes along the walls and the Darcy coefficient dominates the flow in region ‘A’. 

In region ‘B’, as the separation moves towards to the throat, the size of the outlet flow 

becomes smaller, leading to a steep increase in the non-Darcy coefficient. Both 

coefficients should be constant in region ‘C’ theoretically (Eqs.6.24 & 6.26) as the 

separation stagnates at the throat with the increase of ܴ . However, the variation of 

coefficients (Fig.6.6) might reflect the limitation of the theoretical model. 

6.3.2 CFD simulations for GCD tubes 

The geometric features of the GCD tubes are characterized by the throat radius (ܴ), the 

curved depth of the tube surface (ܽ) and the shape factor (ߣ). Five tubes are simulated and 

their geometries at the mid-plane along the flow direction are shown in Fig.6.7:  

(a) 

(b) 

Figure 6-7 Five GCD tubes with different dimensions 
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The ߣ values for ‘t1’, ‘t2’ and ‘t3’ are 4, 16 and 64 respectively. The ܴ and ܽ values are 

same for the three tubes, which are 0.05 mm and 0.125 mm respectively. Tubes ‘t4’ and ‘t5’ 

have the same ߣ value which is 16, while the ܽ	value for ‘t4’ is 0.0625 mm and for ‘t5’ is 

0.125 mm. These two tubes have the same R value which is 0.03 mm. All the geometries 

have been meshed into 105 to 106 elements before they are analyzed. Their boundary 

conditions are the same as set in Section 6.3.1. Examples of ‘t1’ and ‘t2’ for the simulated 

shape of flow streamlines in three regions can be found in Appendix VI. 

Fig.6.8 compares the pressure drop from the CFD simulations and analytical predictions 

by Eq.6.24a based on the same velocities for the five GCD tubes respectively. The 

permeability and non-Darcy coefficients (ܭ	and	ߚ in Eq.2.17) are calculated by Eqs.3.23 

and 6.18, which are only functions of the tube geometries. The pressure is thereafter a 

polynomial function of fluid velocity with order 2. The ܴ values in Fig.6.8 show the flow 

is laminar for each tube. Generally, the analytical prediction agrees with the CFD 

simulation very well for all the five tubes. 

  
Figure 6-8 Pressure drop between CFD simulations and predictions (Eq.6.24a) for the five GCD 

tubes 
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Fig.6.8 indicates the prediction is more accurate with the increase of ܴ  and ߣ  or the 

decrease of ܽ as the best agreement between prediction and simulation occurs for the tubes 

t3 and t4, which both have larger	ߣ values and smaller ܽ values.  

 

Figure 6-9 Error of CFD simulation and prediction (Eq.6.24a) with ܴ for the five GCD tubes 

The maximum difference of pressure between CFD simulation and analytical prediction is 

in the transitional region (region ‘B’ in Fig.6.6), no more than 12% for all the geometries. 

The errors are all under 8% in the Darcy’s and Forchheimer regions, showing the 

analytical model is in good agreement with the CFD simulation as shown in Fig.6.9.  
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 (b) 

Figure 6-10 Fitting values of ߙ	&	ߚ in Eq.2.17 in CFD simulations and analytical predictions for 

tubes ‘t1’, ’t2’ and ’t3’ 

The parameters ߙ	݀݊ܽ	ߚ in the Forchheimer equation (∆ܲ = ܸߙ +  ଶ) are expected toܸߚ

decrease and increase respectively in the transitional region according to Eqs.6.24, as the 

flow separation goes towards to the throat area. This is confirmed by Fig.6.10. However, 

both parameters are expected as constants for a fixed geometry in the Forchheimer region, 

as in Eq.6.24a, the two parameters are defined by geometric factors ߙ = ହఓగ(ାோ)మ√ఒோଶோర 	and	ߚ = {ቀାோோ ቁସ − 1}, which are also shown as analytical predictions 

(‘Pred’ lines) in Fig.6.10. However, both the simulated parameters vary slightly after their 

maximum values as shown the curves in Fig.6.10. Tubes ‘t1’, ‘t2’ and ‘t3’ have the same ܴ  and ܽ  values but different λ values. A larger ߣ  leads to a larger ߙ  at the same ܴ . 

Theoretically, ߙ  is increased by the proportion of square root of ߣ . As is shown in 

Fig.6.10a, the ߙ value of ߣ = 64 is two times higher of ߣ = 16 and four times higher of ߣ = 4. Based on Eq.6.18, the ߚ value depends on the ܽ and ܴ values which are the same 

for the three tubes. Fig.6.10b shows the maximum ߚ  values are very similar in the 

Forchheimer region. The reason for the slight difference of ߚ values is still unknown at the 

moment. The ‘Pred’ lines in Fig.6.10 show good agreement between the analytical values 

and CFD simulations for the two parameters (ߙ	&	ߚ).  
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Fig.6.11 compares ߙ and ߚ values with varying ܴ for the change of the throat radius ܴ 

(Fig.6.11a) and the curve depth of channel ܽ (Fig.6.11b) when other geometric parameters 

are fixed. 

(a) 

(b) 

Figure 6-11 Fitting values of ߙ	&	ߚ in CFD and analytical prediction for: (a) tubes ‘t1’& ’t5’; (b) 

tubes ‘t4’ & ’t5’ 

The ߙ and  ߚ values are only compared in the Forchheimer region. Based on Eq.6.18, an 

increase in ܽ or a decrease in ܴ results in a higher ߚ. Eq.6.22 shows an increase in ܴ or a 

decrease in ܽ  leads to a decrease in ߙ . The analytical predictions based on Eqs.6.24a 

(‘Pred’ lines in Fig.6.10 and Fig.6.11) agree well with the CFD simulations (Curves in 

Fig.6.10 and Fig.6.11). 
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6.3.3 CFD simulations for GCD plates 

Flows in a pair of GCD plates can be viewed as a 2D constrained flow channel. The 

geometric features are also characterized by ܴ, ܽ and ߣ. Flows in four sets of plates are 

simulated by CFD with the cross-sections as shown in Fig.6.12. The GCD plates ‘p1’ and 

‘p2’ have the same ܽ and ܴ values which are 0.125 mm and 0.05 mm while ‘p1’ has ߣ 

value 4 and ‘p2’ is 16. The ܽ	and	ܴ values for ‘p3’ are 0.1	݉݉ and 0.05	݉݉ and its ߣ 

value is 25. Plate ‘p4’ has the same geometric factors as ‘p2’ except ܴ is 0.03݉݉.  

 

 

Figure 6-12 Four sets of GCD plates with different dimensions 

The meshed element size and minimum size are 0.007 mm3 and 0.002 mm3 respectively. 

The boundary condition normal to the flow was set ‘periodic’, the inlet and outlet were set 

‘opening’ and the GCD walls were set ‘no slip’. Water was also the simulated fluid for 

flow between the plates. For a GCD flow channel, a set of pressure drops gives a set of 

corresponding flow velocities at the inlet. The predicted pressures are calculated (Eq.6.26a) 

based on the velocities obtained in the CFD simulation. 
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Figure 6-13 Pressure drops between CFD simulations and predictions (Eq.6.26a) for the four sets 

of GCD plates 

 

Figure 6-14 Error between predicted pressure (Eq.6.26a) and simulated pressure from CFD with 

varying ܴ for the four sets of GCD plates 

Fig.6.13 compares the simulated and predicted pressures with varying ܴ for the four pairs 

of GCD plates. The curves for ‘p1’, ‘p2’ and ‘p3’, which have the same geometric values 

of ܴ  and ܽ  but different ߣ  values, are close to each other. This can be explained by 

Eqs.6.26. ‘p4’ has a smaller ܴ value, leading to a larger difference from other cases.  The 
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predictions agree well with the simulations with a maximum error of 15% as shown in 

Fig.6.14. 

 

 

Figure 6-15 Fitting values of ߙ	&	ߚ in CFD simulations and analytical predictions for the four sets 

of GCD plates 

The values of ߙ	and	ߚ  were obtained by fitting the simulation data with the equation ∆ܲ = ܸߙ +  value ߙ versus ܴ for the four geometries. The ߚ	and	ߙ ଶ. Fig.6.15 showsܸߚ

reflects the frictional contribution to the pressure loss. It is noted that ‘p2’ and ‘p3’ almost 

have the same value for all ܴ values. The calculations (Eq.6.25) based on the geometric 

parameters show the ߙ value is 1398.1 for ‘p2’ and 1339.8 for ‘p3’ as shown in Fig.6.15. 
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The top and bottom ߙ  values for ‘p4’ and ‘p1’ can be interpreted by the expression ଽఓగ଼ோ (ோ + 1)ටఒோ , where ߣ  values are 4 and 16 for ‘p1’ and ‘p4’ respectively. Fig.6.15 

shows reasonable agreements for ߙ  between analytical predictions (‘Pred’ lines) and 

corresponding simulated data (curves). 

GCD plates ‘p1’ and ‘p2’ have the same ܽ	and	ܴ values, corresponding to the same ߚ 

values in Fig.6.15. It is noted that ‘p1’ has a steeper transitional region than ‘p2’, showing 

a smaller ߣ value causes separation to take place more easily. The highest and lowest ߚ 

values can be explained by the expression {(1 + ோ)ଶ − 1} for ‘p4’ and ‘p3’ as they have 

different R values. Fig.6.15 shows a good agreement for ‘p4’ between prediction and 

simulation but lower predictions for ‘p1’, ‘p2’ and ‘p3’ than the simulated values.  

6.4 VALIDATION 

6.4.1 Experimental verification 

Fabric M (a wire monofilament) introduced in Chapter 4 was chosen as the experimental 

specimen. Its specifications are listed in Table 4-1. Fabric deformation can be ignored 

when it is subjected to a high pressure drop. In the experiments, the fabric was tested by a 

dynamic permeability tester for the pressures and discharge time, where the equipment 

was introduced in Chapter 4. The Forchheimer equation was used to fit the pressure and 

the corresponding velocity. The measured geometric parameters can predict the pressure 

based on the velocity according to Eq.6.24a. For the frictional pressure loss, the square 

cross-section is transformed into a circular cross-section for ease of integration (see 

Section 3.3.2). The measured geometry was simulated by CFD. In a handbook [148] which 

includes many Forchheimer style equations for different flow channel geometries based on 

experimental measurements, an empirical equation was introduced for the structure of 

Fabric M which is made of circular metal wire at high ܴ value: 

∆ܲ = {1.3(1 − Ф) + ቀଵФ − 1ቁଶ} ఘభమଶ             (6-31) 
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For this particular fabric, four sets of data are available in Fig.6.16 and Fig.6.17: 

predictions from the analytical model (‘Pred’ curve based on Eq.6.24), results from the 

CFD simulation (‘CFD’ curve), experimental test (‘EXPT’ curve) and the pressure loss 

prediction from the empirical equation (‘EMPL’ curve based on Eq.6.31). A comparison of 

these data is plotted. The comparisons show the analytical predictions agree with the CFD 

simulations for this square unit-cell with a maximum error of 20% between ܴ value of 

100 and 150, with other errors below 15%. 

 

Figure 6-16 Comparison of experimental results, CFD simulations and two predictions 

 

Figure 6-17 Comparison of pressures in Darcy region 
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In Fig.6.16, the experimental results show good agreement with the analytical predictions 

especially in Darcy’s region as shown in Fig.6.17, which mainly reflects the frictional 

pressure loss. When ܴ is in the Forchheimer region, local pressure loss dominates the 

flow and the experimental value is 18% lower than the prediction. The reason for the error 

in local pressure loss might due to the assumed lack of deformation when the fabric is 

under high pressures. In reality, a little increase in gap size can cause the non-Darcy 

coefficient to reduce ൬ቀோ + 1ቁସ − 1൰, leading to the experimental value being smaller. The 

analytical predictions agree with the empirical results very well especially at high ܴ 

numbers. The difference (Fig.6.17) of empirical predictions with other values shows its 

limitation in the Darcy region. 

6.4.2 Verification by published experimental data 

 

(a)                                                                  (b) 

Figure 6-18 Structures of tubes: (a) GC grid with rounded orifice edges; (b) GCD screens 

A handbook [148] introduces two geometries which are close to the converging-diverging 

flow channels in Fig.6.1. Fig.6.18a shows the flow in a grid with uniformly distributed 

converging tubes. The flow streamlines are the same as those in the GCD tube at high ܴ 

values theoretically. Idelchik [148] gave an empirical equation for hydraulic resistance 

fitted from experimental results for this geometry:   

௧ߞ = (ඥߞᇱ(1 − Ф).ହ + (1 − Ф))ଶ Фଶ⁄         (6-32a) ߞᇱ = 0.03 + 0.47 × 10ି.ோ/ௗ                      (6-32b) 

V2, A2 V1, A1 

V2, A2 V1, A1 ܴ݀
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Where ܴ  is the radius of the rounded edge, ݀ is the diameter of the throat. Fig.6.18b 

shows the flow in a two-plane screen made from bars of circular cross-section. The unit 

cell can be regarded as a GCD tube. Idelchik [148] gave an empirical equation for this 

geometry as follows: ߞ௧ = 1.28 × (1 − Ф) Фଶ⁄                  (6-33) 

 

Figure 6-19 Comparison of hydraulic resistance (ζ) for grid, screen and predictions (Eq.6.28) 

Fig.6.19 compares the hydraulic resistance for the grid and screen geometries with the 

analytical predictions (Eq.6.28). It is noted that the analytical model can predict the 

hydraulic resistance well for the GCD tubes in the screens, especially at small porosity. 

For the grid geometry, it agrees well with the analytical predictions at intermediate 

porosity but is relatively inaccurate for small and high porosities.   

6.5 NON-DARCY FLOW MODEL WITH FABRIC DEFORMATION  

Fabric deformation under high pressure load was discussed in Chapter 5. It gives a set of 

equations describing fabric deformation, elongation, predictions for variation of geometric 

factors and subsequent permeability. The variation of flow channel dimensions leads to a 

change in fabric permeability. Meanwhile, the high pressure drop might give rise to high 

flow velocity, affecting the fabric permeability due to the GCD shape of flow channel. In 
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reality, fabric undergoes deformation and high ܴ  value simultaneously. These two 

important factors determine the final fabric permeability. The question is which factor is 

dominant in the determination of fabric permeability.  

In this section, a loose fabric (Fabric U2) was tested by the dynamic permeability tester 

(the approach can be found in Section 4.2). The experiment gives a nonlinear relationship 

of pressure and flow velocity which is plotted as an ‘EXPT’ curve in Fig.6.20. In the 

analytical predictions, the fabric original geometric parameters were determined in the 

normal conditions as listed in Table 3-5 and the corresponding fabric static permeability 

was predicted based on Eq.3.4. Darcy’s law (Eq.1.1) was used to predict the pressure drop 

according to the predicted fabric permeability and experimental flow velocity in the 

dynamic test. This gives a plotted line ‘Darcy’ in Fig.6.20, where the pressure gradient 

depends on the geometric measurements under normal conditions. It suits the fabric 

permeability prediction under very small ܴ values.  

 

Figure 6-20 Comparisons of four pressure drops with corresponding velocities (Fabric U2) 

Apart from the experimental and Darcy prediction for the relationship of pressure and flow 

velocity, Fig.6.20 also gives two more curves for this relationship according to the fabric 

deformation model (see Section 5.2) and the Non-Darcy flow model (see Section 6.2.3). 

The measured fabric specifications in Table 3-5 can be used to plot a nonlinear 

relationship of pressure and flow velocity based on the Non-Darcy flow model (Eq.6.24a) 
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with no deformation concerned, the prediction is shown as the ‘NonDarcy’ curve in 

Fig.6.20. The deformation model (Eq.5.14) predicts new geometric parameters under high 

pressure load. Considering the fabric deformation, the Forchheimer equation with the new 

geometric parameters (Eqs.5.15, 5.16, 5.25-27) can predict a new nonlinear relationship as 

shown by the ‘NonDarcy Deformed’ curve in Fig.6.20, which is close to the experimental 

measurements as shown by the ‘EXPT’ curve in Fig.6.20. Fig.6.20 indicates the Non-

Darcy flow model differs with the Darcy flow model significantly when the ܴ  value 

reaches the Forchheimer region (‘C’ in Fig.6.6). The difference increases as the flow 

velocity is increasing. The Non-Darcy flow model only applies for a ‘rigid’ woven fabric 

where deformation can be ignored under high pressure load, as shown by accurate 

prediction in Fig.6.16. However, as to an easily-deformed fabric such as U2, the 

deformation model plays a vital role in predicting the fabric permeability as the gap 

geometry has been changed by the pressure load. The gap radius is increased, and the yarn 

shape factor and fabric thickness are changed by the deformation. For an increased gap 

size, the pressure required is smaller than the original value for the same flow velocity. 

Therefore, considering these factors, the deformation model draws the Non-Darcy flow 

prediction much closer to the experimental results as shown in Fig.6.20.  

6.6 CONCLUSIONS 

When a Newtonian fluid flows in a gradual converging-diverging channel, the curved 

inner surface diverts the flow. The channel is filled with fluid flow when ܴ value is less 

than a critical value. The flow equation is derived from the integration of the application of 

parabolic stream profiles in Poiseuille straight flow. The flow equation shows a linear 

relationship of pressure and flow velocity. When ܴ is increased, separation is observed 

from CFD simulation from the curved expansion wall. The convective acceleration should 

not be ignored in this case. The integration of Navier-Stokes equation shows the total 

pressure loss in the channel contains a linear velocity term (Darcy term) and velocity 

square term (non-Darcy term). Two pressure losses can be predicted based on the velocity 

at the channel inlet. The pressure loss consists of Darcy (frictional) and non-Darcy (local) 

parts. The former is a function of the channel geometry and fluid property while the latter 
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is derived from continuity theory and the Bernoulli equation, which depends on the 

channel geometry solely.  

The analytical model was validated by CFD simulations. The relationship of pressure and 

flow velocity was fitted by the Forchheimer equation, showing three regions (Darcy, 

transitional and Forchheimer regions) as ܴ increases. Five GCD tubes were simulated and 

compared with the analytical predictions (Eq.6.24), showing good agreement. A sharper 

curved channel would have a smaller critical ܴ number for the separation or transitional 

region, resulting in poorer agreement with the predictions. A sensitivity study showed an 

increase of throat radius or a decrease of curved depth would both obtain lower Darcy and 

non-Darcy coefficients. Four GCD plates were also simulated and compared with the 

analytical predictions (Eq.6.26), showing good agreement with each other with maximum 

difference of 15%. The geometry had the same effect on the hydraulic resistance with 

GCD tubes. Experimental verification on a wire monofilament woven fabric showed it 

agreed with the prediction within 20% error. Published experimental data showed good 

agreement with the predictions. Comparisons of hydraulic resistance against porosity for 

gradual converging grids and gradual converging-diverging screens showed the 

predictions agreed with the screens very well while good agreement with the grid was only 

obtained around intermediate porosities. 

The Darcy flow model shows a linear relationship of pressure and flow velocity. It fits the 

static permeability behaviour when flow is at low ܴ. The Non-Darcy flow model is based 

on the Darcy model by adding a Non-Darcy term, which is evident at high ܴ. This model 

applies for a high stiffness porous medium where the deformation can be ignored. A real 

fabric has evident deformation when it is subjected to a high pressure drop, which changes 

its flow channel dimensions. The deformation model can account for the effect of pressure 

on fabric deformation, predicting the real permeability under high pressure drop. This 

modifies the non-Darcy flow model so that it is much closer to the real fabric permeability. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 INTRODUCTION 

An interesting topic was proposed based on the experimental results of fabric through-

thickness permeability in Chapter 3, which is about analytical modeling of woven fabric 

permeability in specific applications, such as airbags for body protection. After the 

literature review, it was found gaps between yarns and within the yarns in a woven fabric 

have different fluid flow theories to model their permeabilities. The gap flow can be 

regarded as fluid flow through a gradual converging-diverging (GCD) flow channel while 

the yarn flow is simplified as a combination of fluid flow along and perpendicular to 

unidirectional fibres. The fabric permeability is a function of gap permeability and yarn 

permeability (Eq.3.4), which also depends on the flow state in terms of ܴ value.  

As is known, airbag fabric undergoes high pressure load in its inflation. This gives rise to a 

deformation to its geometry and structure, resulting in a change in permeability. 

Meanwhile, the high pressure drop may lead to a nonlinear relationship of pressure and 

flow velocity in the gap channel, nonetheless the flow is laminar. Therefore, in this thesis, 

fabric dynamic permeability was investigated experimentally. Also deformation modeling 

of one-layer of woven fabric under high pressure load and nonlinear flow through fabric 

gaps at high ܴ  values are extensions to the investigation of the fabric dynamic 

permeability. Moreover, the developed models were verified for their accuracy by 

simulation and experiment.  

This chapter summaries the developed models in the previous chapters, including their 

verification as well as their limitations. A number of suggestions for future work based on 

the work in this thesis are recommended in the final section.  

7.2 GENERAL SUMMARY AND CONCLUSIONS 

(1) Static gap permeability (ܭ	݅݊	ݍܧ. 3.4): 
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The Newtonian fluid considered in the model is assumed to be incompressible with 

constant viscosity and density due to low flow rates; the flow is laminar and the flow 

process is steady state; the flow inertial terms and yarn motion are neglected; the flow 

velocity at the surface and inside of the yarns is assumed to be zero while at the centre-line 

of the channel it is maximum; fluid flow is considered in the direction perpendicular to the 

fabric, the transverse component of the velocity is negligible because the highest pressure 

gradient is near the narrowest region where the flow is almost parallel to the channel 

surface. 

A circular cross-section of flow channel is transformed from the rectangular cross-section 

as a unit cell in a woven fabric by defining the hydraulic diameter. Four geometric 

parameters were used in deriving the analytical model: throat radius, half yarn width, 

fabric thickness and curvature of the flow channel. A parabolic equation is used to 

describe the GCD channel. Substitution of its radius into the Hagen-Poiseuille equation 

gives an expression relating pressure and flow rate (Eq.3.17). A permeability equation 

based on the four fabric geometric parameters is obtained by integrating and simplifying 

the formula, in which the four parameters are gap size, yarn width, yarn shape factor and 

fabric thickness. 

The gap permeability prediction was verified by CFD simulation and experiment. GCD 

flow channels were generated in TexGen and meshed in HyperMesh. Flow behaviour was 

simulated by CFD. The simulated permeability agreed with the corresponding prediction 

well. Nine one-layer loose woven fabrics were tested for their geometric parameters. Their 

permeabilities were measured by an air permeability tester. The comparisons showed the 

analytical model (Eq.3.4) gave good predictions against experimental permeabilities 

within 35% error for all fabrics. However, the Kulichenko model [27], which assumed 

fabric gaps as a set of straight tubes, gave errors of over 70% in permeability prediction. 

(2) Static yarn permeability (ܭ௬	݅݊	ݍܧ. 3.4): 

Combination of the Gebart and Advani models can predict permeability of a crimped yarn 

in a woven fabric in terms of the crimp angle, fibre radius, fibre arrangement and volume 

fraction. Three fibre arrays (different ܴ and ܸ values) were simulated for the axial and 
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transverse permeabilities by CFD. Comparisons of predictions and simulations showed the 

transverse model can predict permeability well with a maximum error of 20%. The axial 

model agrees with the simulation accurately at high ܸ values. Two airbag fabrics with 

high ܸ  were tested for their permeabilities in experiments. A comparison of the tested 

permeability and analytical prediction (Eq.3.10) showed agreement with errors of less than 

20%.  

(3) Static permeability of woven fabrics (ܭ): 

Based on the gap (ܭ) and yarn (ܭ௬) permeabilities, a unified model for one-layer of 

woven fabric (ܭ ) permeability was proposed in terms of porosity (Φ): ܭ = Фܭ +(1 − Ф)ܭ௬ . Calculations (Table 3-7) showed gap permeability dominates the fabric 

permeability for loose fabrics. 

A through-thickness permeability model for 3D woven fabric was derived based on the 

permeability of each fabric layer. Four 3D woven fabrics were measured for the 

permeability. The predictions showed good agreements with the experimental data. A 

sensitivity study showed that the most important contribution to the 3D fabric permeability 

was the gap permeability. 

(4) Dynamic permeability of woven fabrics: 

An air discharging tester was employed to obtain fabric dynamic permeability. The 

pressure history was recorded by transducers inside the tester. The operating principle was 

to expel the discharged gas at high pressure through the fabric into a chamber at 

atmospheric pressure. The pressure and velocity are fitted by the Forchheimer equation, 

with the fabric dynamic permeability acquired from the first order velocity coefficient. 

The high pressure causes fabric structural deformation, unlike the static test at a constant 

low pressure. Three fabrics were measured for their dynamic permeability: a loose metal 

fabric, a loose cotton fabric and a tight nylon fabric. The metal fabric was assumed to be 

without deformation under high pressure. The experimental data showed a slight 

difference between static and dynamic permeabilities. The loose and tight fabrics were 
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stretched under high pressure load. The dynamic permeability for loose fabric was higher 

while for tight fabric was lower than their static permeabilities. 

(5) Fabric deformation model: 

Airbag fabric is subjected to high pressure load when the airbag is inflated, leading to 

fabric deformation. A device was designed to imitate the deformation behaviour under 

high pressure. It utilized a vacuum pump to apply pressure to the fabric which was 

clamped at one side of it. The vacuum pump can supply different pressure drops, leading 

to different levels of fabric deformation. Two geometric parameters were tested manually 

in the experiment: the maximum displacement and the deflected profile across a diameter 

under the pressure load.  

Two trigonometric approximations (Eq.5.2) were assumed for the displacements involving 

two unknown coefficients. All derivations were conducted in polar coordinates for the 

circular fabric samples. Based on the large deflection plate theory, strain energy, bending 

energy and work done were added to calculate the total energy of the system, from which 

the deflection function was obtained by substitution of the differentiated approximations 

(Eq.5.10) into the total energy and minimizing it. Two expressions for displacement and 

deflected profile were developed involving pressure load, fabric dimensions and fabric 

mechanical properties. 

A tight and a loose fabric were analysed for their deformations under high pressure load. 

The analytical predictions agreed with the experimental measurements well for both 

maximum displacements and deflected profiles. A sensitivity study showed the fabric 

deformation was affected by sample radius and thickness, fabric Young’s modulus and 

Poisson’s ratio as expected.  

(6) Deformed fabric permeability: 

An analytical model was proposed for predicting the through-thickness permeability of 

woven fabric under high pressure load. The model was based on the accuracy of the static 

permeability and the fabric deflection predictions. Fabric deflection causes the yarn fibre 

volume fraction and the crimp angle to increase, leading to a decrease of tight fabric 
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permeability. In contrast, the deflection causes the gap radius to increase, resulting in an 

increase of loose fabric permeability. The permeability predictions agreed well with the 

experimental data. A sensitivity study showed the critical porosity and fabric thickness for 

fabric permeability to increase or decrease with an increase of pressure. An increase of 

fabric Young’s modulus or a decrease of fabric radius would cause the tight fabric 

permeability to increase and the loose fabric permeability to decrease when the fabric is 

under the same pressure.  

(7) Non-Darcy flow behaviour: 

When a Newtonian fluid flows in a GCD channel, the curved wall diverts the streamlines. 

Flow for the GCD channel follows the profile of the channel for small ܴ values. A linear 

relationship of pressure and flow velocity was obtained from the curved flow equation. 

When ܴ gets higher, separation of flow from the diverging wall occurs, giving the flow a 

convective acceleration.  

The Navier-Stokes equation shows the pressure loss in the flow channel contains a linear 

velocity term (Darcy term) and a velocity squared term (Non-Darcy term). For GCD 

channels, the pressure loss was predicted based on the inlet velocity in the channel. The 

Darcy term is a function of the channel geometry and fluid viscosity; the Non-Darcy term 

is derived from continuity theory and the ideal Bernoulli equation, which depends on the 

channel geometry completely. 

The developed Darcy and Non-Darcy terms were verified by CFD simulation. Five GCD 

tubes and four sets of GCD plates were generated and meshed. CFD simulations showed 

that pressure versus inlet velocity exhibited three regions with ܴ: Darcy, transitional and 

Forchheimer regions. The simulated results showed good agreement with the 

corresponding predictions. However, a sharper flow throat would have a smaller ܴ value 

for the transitional region and poorer agreement with the prediction. An increase of the 

throat radius (ܴ) or a decrease of the curved depth (ܽ) of wall would result in lower Darcy 

and Non-Darcy coefficients. 
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Non-Darcy flow permeability of a wire monofilament woven fabric was tested 

experimentally. The result showed good agreement with the prediction with around 15% 

error at high ܴ values. Published experimental data for hydraulic resistance showed good 

agreement with predictions for a GC grid with rounded orifice edges and a GCD screen. 

Comparisons of hydraulic resistance with porosity for the two GCD channels showed good 

agreement with corresponding predictions. The deformation model showed an important 

contribution to the fabric permeability when combined with the Non-Darcy flow model 

under high pressure, which showed good agreement with experimental data. 

7.3 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORK 

7.3.1 Modelling limitations 

Two limitations are identified so far: the assumption in the Gebart model for flow along 

fibres and the development of the gap permeability model. The identification would help 

understand the models more in physics and improve their applications in further field.  

(1) The Gebart model 

In Section 3.4.2, Table 3-2 shows inaccuracy of the Gebart model (Eq.3.5-6) when 

predicting flow behaviour along a bundle of unidirectional fibres. Gebart [22] gave a set of 

constant coefficients in the yarn permeability equation, c=53 for hexagonal fibre array and 

c=57 for quadratic fibre array. However, the assumption of constant coefficients was 

found only for a small range of fibre bundles with high fibre volume fractions ( ܸ). This is 

the reason for the accuracy of airbag fabric permeability prediction (Table 3-9) where the ܸ values are 0.7 around. However, for some cases such as cotton yarns with low ܸ values 

(less than 0.6 in Table 3-5), the Gebart model might not be accurate for these yarns 

permeability prediction. CFD simulation shows the coefficient varies and is a function of ܸ, as shown in Fig.7.1. However this function is yet unknown, which could be found from 

future work. 
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Figure 7.1 Relationship of coefficient (c in Eq.IV.14) and fibre volume fraction by CFD 

Fig.7.1 shows that the Gebart coefficient (c) varies significantly with ܸ value. It is evident 

to note a nonlinear function of the coefficient and ܸ. The simulated data shows that the 

constant 53 for hexagonal fibre array is in the range of ܸ value between 0.60 and 0.65, 

while 57 for quadratic fibre array in a higher range of ܸ value between 0.7 and 0.75. This 

does not affect the prediction for through-thickness permeability of woven fabrics 

significantly as the gap flow or the transverse flow dominates the permeability. 

Nonetheless, flow along fibres is important in in-plane permeability of some reinforcement 

materials, such as in the Resin Transfer Moulding (RTM) process in manufacturing 

composites.  

(2) The gap permeability (ܭ) model 

In Section 3.3.2, a limitation of the analytical model appears in the transformation from a 

rectangular cross-sectional gap in a unit-cell of woven fabric into a circular cross-sectional 

GCD flow channel, as shown in Fig.3.6. The Hagen-Poiseuille equation (Eq.3.14) shows a 

constant coefficient of ߨ 8⁄  for a circular tube between the pressure gradient and the flow 

rate; however, the coefficient varies in terms of the ratio of length and width in the 

rectangular gap [88, 149]. This should be considered with a variable factor for the ratio in 

the gap permeability equation (Eq.3.23). However, the good agreement between the 

current model prediction and experimental data (see Fig.3.21) shows that this is relatively 

unimportant for the current model. 
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(a)                                                        (b) 

Figure 7.2 (a) Current GCD flow channel, (b) theoretical GCD flow channel 

Another limitation in the development of the ܭ  model is the application of hydraulic 

diameter, which simplified the integration significantly. Nonetheless, it should be pointed 

out that the transformation from rectangular gap to circular gap by the definition of 

hydraulic diameter at the throat (‘R’ in Fig.7.2) might not be reasonable along the flow 

direction, as a GCD flow channel formed by one hydraulic diameter in addition to a 

measured yarn shape factor is not physically correct. However all transformations along 

the yarn height to hydraulic diameter (arbitrary position ‘r’ in Fig.7.2) mean that a 

different flow channel developed from accurate measurements of yarn width, yarn height 

and yarn shape factor as shown in Fig.7.2b. Although this is more reasonable and 

convincing, it is evident that this would require more work in the measurements and 

transformations (Eq.3.19) and would not be as simple as the current model.   

7.3.2 Recommendations for future work 

Apart from the limitations in Section 7.3.1, the following points will in general improve 

the work in future.  

• Static gap permeability (ܭ):  

An analytical gap permeability model could be developed for flow in a rectangular 

cross-sectional GCD gap. This can avoid the variable factor mentioned in the first 

paragraph in Section 7.3.1(2). Some work has been done which can be found in 

Appendix VII. Recommended future work for this model is to compare its prediction 

with the current model (Eq.3.23) as well as experimental data. 
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• Static yarn permeability (ܭ௬): 

Although a device is attractive to investigate flow behaviour transverse to or along 

yarns experimentally, the yarn twist and interwoven structure make this difficult. In 

simulation, TexGen cannot create a yarn containing fibres like a real yarn structure at 

the moment. However, numerical simulation is a promising method to simulate flow 

behaviour in yarns, which is recommended as a future work.  

• Dynamic permeability investigation:  

To predict fabric dynamic permeability accurately, fabric geometric dimensions should 

be measured during air discharge. A digital video camera with a microscope attachment 

is recommended mounted on the dynamic permeability tester (Fig.4.1). This will give 

exact dimensions of fabric during the dynamic test, such as fabric deflection and unit-

cell size under high pressure.  

• Fabric deformation model:  

(1)  Poisson’s ratio should be measured for woven fabrics in weft and warp directions.  

(2) Mesoscale (unit-cell) level fabric deformation under pressure load should be 

characterised, where shear, stretch and compression are considered respectively.  

(3) Fabric deformation should be modelled considering an anisotropic material 

analytically under high pressure load. 

• Non-Darcy flow model:  

(1) The reason for the maximum difference between prediction and simulation in the 

transitional region as shown in Fig.6.9 and Fig.6.14 should be studied. 

(2) The Non-Darcy flow model should be extended to other geometry applications, 

such as flow with high ܴ value in yarns, nozzles and diffusers.  
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Appendix II: Basic fluid mechanics 

Fluid mechanics deals with the behaviour of fluids at rest and in motion. Knowledge and 

understanding of the concepts and the basic principles of fluid mechanics are essential to 

analyze any system in which a fluid is the working medium, such as flow transport in 

permeable porous materials. 

(a), Fundamental concepts and definitions 

Fluid density (ߩ) is defined as mass (݉) per unit volume (܄). For an arbitrary point in a 

fluid, the density is defined as the limit when the volume of the point approaches zero,  

ߩ ≡ limఋ→ ఋఋ܄           (II-1)   

If we define a fluid particle as a small mass of fluid of fixed identity of volume ܄ߜ, then 

the velocity at the arbitrary point is defined as the instantaneous velocity of the fluid 

particle which, at a given instant, is passing the point. At a given instant the velocity field, ሬܸԦ, can be written in terms of its three scalar components. Denoting the components in the ݔ, ,′ݑ directions by ݖ and ݕ then ሬܸԦ ,′ݓ and ′ݒ = ଓ̂′ݑ + ଔ̂′ݒ + ′ݓ ݇           (II-2) 

In general, each of the components, ݑ′, ,ݔ will be a function of ′ݓ and ′ݒ ,ݕ  and time. If ݖ

the properties at every point in a flow field do not change with time, the flow is termed 

‘steady’. Stated mathematically for steady flow,   

డఘడ௧ = 0     or     ߩ = ,ݔ)ߩ ,ݕ  (II-3a)    (ݖ

డሬሬԦడ௧ = 0     or      ሬܸԦ = ሬܸԦ(ݔ, ,ݕ  (II-3b)   (ݖ

Thus, in steady flow, any property may vary from point to point in the field, but all 

properties remain constant with time at every point.  



169 
 

The concept of stress provides a convenient means to describe the manner in which forces 

acting on the boundaries of the medium are transmitted through the medium.  

 

 

 

Figure II-1 The concept of stress in a continuum 

Imagine any surface within a flowing fluid, consider a portion ܣߜԦ of the surface acted 

upon in the neighbourhood of a point. The orientation of ܣߜԦ is given by the unit vector ො݊ 
as shown in Fig.II.1. The vector ො݊ is the outwardly drawn unit normal with respect to the 

material acted upon. The force, ܨߜԦ, acting on ܣߜԦ can be resolved into two components, 

one normal to and the other tangential to the area. A normal stress ߪ and a shear stress ߬ 

are then defined as:  

ߪ = limఋ→ ఋிఋ          (II-4) 

߬ = limఋ→ ఋிఋ           (II-5) 

In the presence of a shear stress, fluids may be broadly classified according to the relation 

between the applied shear stress and the rate of deformation. Consider the behaviour of a 

fluid element between the two infinite plates shown in Fig. II.2. The upper plate moves at 

constant velocity, ݑ, under the influence of a constant applied force. 

 

 

Figure II-2 Deformation of a fluid element 

ො݊
ܣߜ

ܨߜ Ԧܨߜ
ݐ௧̂ܨߜ

ߠߜݕߜ ݐ + ݐݐߜ ;௫ܨ ݈ߜ′ݑ
 ݔ

ݕ
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The rate of deformation of the fluid during time interval ݐߜ  is given by the value ߠߜ 

divided by ݐߜ. The displacement, ݈ߜ, is given by ݑ′ ×  alternatively, for small angles, it ,ݐߜ

also equals to ݕߜ ×  ,which gives ,ߠߜ

ఋఏఋ௧ = ௨ᇲఋ௬           (II-6) 

Thus the fluid element of Fig.II.2 is subjected to shear stress ߬௬௫, and experiences a rate of 

deformation given by ݑᇱ/ݕߜ. Fluids in which shear stress is directly proportional to rate of 

deformation are ‘Newtonian fluids’. The term ‘non-Newtonian’ is used to classify all 

fluids in which shear stress is not directly proportional to shear rate. Most common fluids 

such as water, air and gasoline are Newtonian under normal conditions. For Newtonian 

fluids in one dimensional flow, we have: 

߬௬௫ = ߤ ௨ᇲఋ௬         (II-7) 

The constant of proportionality ߤ in Eq.II.7 is the absolute (or dynamic) viscosity. Flows 

with zero viscosity do not exist, all fluids possess viscosity. Consequently, viscous flows 

are of paramount importance in the study of continuum fluid mechanics. 

Viscous flow regimes are classified as laminar or turbulent on the basis of flow structure. 

In the laminar regime, flow structure is characterized by smooth motion in lamina, or 

layers. Flow structure in the turbulent regime is characterized by random fluid motions in 

addition to the mean motion. In a one-dimensional laminar flow, the shear stress is related 

to the velocity gradient by a simple relation (Eq.II.7), however, in turbulent flow there is 

no universal relationship between the stress and the mean velocity field, which must rely 

heavily on semi-empirical theories and on experimental data. 

Fluids in which variations in density are negligible are termed ‘incompressible’; when 

density variations within a flow are not negligible, the flow is called compressible. The 

most common example of compressible flow concerns the flow of gases, while the flow of 

liquids may frequently be treated as incompressible. Gas flows with negligible heat 

transfer also may be considered incompressible provided that the flow speeds are small 

relative to the speed of sound. The ratio of the flow speed to the local speed of sound, in 
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the gas is defined as the Mach number (ܯ). When ܯ is smaller than 0.3, the gas flows can 

be treated as incompressible as the maximum density variation is less than 5%.  

Flows completely bounded by solid surfaces are called internal flows. In the case of 

incompressible flow through a pipe, the nature of flow is determined by the value of a 

dimensionless parameter, the Reynolds number, ܴ = ߤ/ܸ݀ߩ , where ߩ  is the fluid 

density, ܸ is the average flow velocity, ݀ is the pipe diameter, and ߤ is the viscosity of 

the fluid. Pipe flow is laminar when ܴ ≤ 2300; it may be turbulent for larger values. Pipe 

laminar flow is one-dimensional flow. Sufficiently far from the pipe entrance, the 

boundary layer developing on the pipe wall reaches the pipe centreline and the flow 

becomes entirely viscous. The velocity profile shape no longer changes with increasing 

distance from the entrance, and the flow is fully developed.  

(b), Governing equations for fully developed flows 

An example is shown in Fig.II.3 for fully developed laminar flow in a pipe. It is easy to 

express in cylindrical coordinates. Since the flow is axisymmetric, the control volume will 

be a differential annulus, which has a length ݀ݔ and its thickness ݀ݎ.  

 

Figure II-3 Control volume for analysis of fully developed laminar flow in a pipe 

The pressure forces act on the left and right ends of the control volume and the shear 

forces act on the inner and outer cylindrical surfaces. If the pressure at the centre of the 

annular control volume is ܲ, then the pressure on the left and right ends are: 

(ܲ − డడ௫ ௗ௫ଶ ܲ)−    &    ݎ݀ݎߨ2( + డడ௫ ௗ௫ଶ     ݎ݀ݎߨ2(

ܴ Annular 
control 
volume

ݎ݀
 ݎ

ܲ, ߬௫ݎ݀ ݔ݀ ݔ ݎ 
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If the shear stress at the centre of the annular control volume is ߬௫, then the shear forces 

on the inner and outer cylinder surfaces are: 

−ቀ߬௫ − ௗఛೝೣௗ ௗଶ ቁ ݎ)ߨ2 − ௗଶ ቀ߬௫     &     ݎ݀( + ௗఛೝೣௗ ௗଶ ቁ ݎ)ߨ2 + ௗଶ  ݎ݀(

The sum of the x component of force acting on the control volume must be zero: 

−డడ௫ ݔ݀ݎ݀ݎߨ2 + ߬௫2ݔ݀ݎ݀ߨ + ௗఛೝೣௗ ݔ݀ݎ݀ݎߨ2 = 0           

Dividing this equation by 2ݔ݀ݎ݀ݎߨ and solving for ߲ܲ/߲ݔ gives: 

డడ௫ = ଵ ௗ(ఛೝೣ)ௗ                (II-8) 

Integration starts from Eq.II.8 which can be written as 

߬௫ = ଶ డడ௫ + భ      or      ߤ ௗ௨ᇲௗ = ଶ డడ௫ + భ   (from Eq. II.7) 

′ݑ = మସఓ ቀడడ௫ቁ + భఓ ln ݎ + ܿଶ        (II-9) 

The constants ܿଵ and ܿଶ need to be evaluated, however, boundary conditions give ݑ′ = 0 at ݎ = ܴ, which gives  ܿଵ = 0 and ܿଶ = − ோమସఓ ቀడడ௫ቁ. Then, Eq.II.9 becomes 

′ݑ = ଵସఓ ቀడడ௫ቁ ଶݎ) − ܴଶ)         (II-10) 

Eq.II.10 gives the velocity profile, which offers many additional features of the flow. The 

shear stress distribution and the volumetric flow rate (ܳ) are given by 

߬௫ = ߤ ௗ௨ᇲௗ = ଶ (డడ௫)             (II-11) 

ܳ =  ሬܸԦ Ԧܣ݀ =  ோݎ݀ݎߨ2′ݑ =  ( ଵସఓ ቀడడ௫ቁ ଶݎ) − ܴଶ))2ݎ݀ݎߨோ = −గோర଼ఓ (డడ௫)     (II-12) 

In fully developed flow, the pressure gradient is constant. Therefore, 
డడ௫ = మିభ = − ∆ . 

Substituting this into Eq.II.12 for Q gives laminar flow in a horizontal pipe: 
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ܳ = గோర଼ఓ ∆ = గௗరଵଶ଼ఓ ∆                (II-13) 

With the approach for derivation of fully developed flow in a straight horizontal pipe, the 

flow between infinite parallel plates also has a similar set of results. The plates are 

separated by distance ℎ. The flow direction is considered in ݔ direction and the plates 

infinite in the ݖ direction, with no variation of any fluid property. The flow is assumed to 

be steady and incompressible. The velocity expression between parallel plates is: 

′ݑ = మଶఓ ቀడడ௫ቁ ቆቀ௬ቁଶ − ቀ௬ቁቇ          (II-14) 

The shear stress distribution is: 

߬௬௫ = ℎ ቀడడ௫ቁ ቀ௬ − ଵଶቁ                    (II-15) 

The volumetric flow rate per depth (݈) in the ݖ direction is: 

ொ = − యଵଶఓ ቀడడ௫ቁ = య∆ଵଶఓ                   (II-16) 

(c), Constitutive equations in fluid mechanics 

Conservation of mass is a basic principle in fluid mechanics. In Cartesian coordinates, the 

control volume chosen is an infinitesimal cube with sides of length ݀ݔ,  A .ݖ݀	݀݊ܽ	ݕ݀

verbal statement of conservation of mass is: 

(Net rate of mass flux out through the control surface)+(Rate of change of mass inside the 

control volume)=0 

In Cartesian coordinates the differential equation for conservation of mass is: 

డఘ௨ᇲడ௫ + డఘ௩ᇲడ௬ + డఘ௪ᇲడ௭ + డఘడ௧ = 0            (II-17) 
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For incompressible flow (Eq. II-18), ߩ =  density is a function of neither space ;ݐ݊ܽݐݏ݊ܿ

coordinates nor time. For steady and compressible flow (Eq. II-19), fluid properties are 

independent of time. The continuity equation simplifies to: 

డ௨ᇲడ௫ + డ௩ᇲడ௬ + డ௪ᇲడ௭ = 0              (II-18) 

డఘ௨ᇲడ௫ + డఘ௩ᇲడ௬ + డఘ௪ᇲడ௭ = 0          (II-19) 

Interpretation for conservation of mass in physics, ߩሬܸԦܣ =  for incompressible ;ݐ݊ܽݐݏ݊ܿ

flow, the average velocity is smaller at larger area part of a channel. The velocity is larger 

at the throat of a flow channel apart from a case of ܯ = 1 when air flows through a nozzle. 

A momentum equation describing fluid motion can be obtained by applying Newton’s 

second law to a fluid element with mass ݀݉. The expression for the fluid element moving 

in a velocity field is: 

Ԧܨ݀ = ݀݉ ௗሬሬԦௗ௧ = ݀݉ ቀݑ′ డሬሬԦడ௫ + ′ݒ డሬሬԦడ௬ + ′ݓ డሬሬԦడ௭ + డሬሬԦడ௧ቁ        (II-20) 

Where 
ௗሬሬԦௗ௧  is commonly called the substantial derivative as it is computed for a particle of 

‘substance’. From Eq.II.20, a fluid particle moving in a flow field may undergo 

acceleration for either of two reasons. It may be accelerated because it is converted into a 

region of higher (or lower) velocity. For instance, in the steady flow through a nozzle, the 

velocity field is not a function of time, a fluid particle will accelerate as it moves through 

the nozzle. The particle is converted into a region of higher velocity. If a flow is unsteady 

a fluid particle will undergo an additional ‘local’ acceleration, the velocity field is a 

function of time. The physical significance of the terms in Eq.II.20 is: 

ௗሬሬԦௗ௧ = ′ݑ డሬሬԦడ௫ + ′ݒ డሬሬԦడ௬ + ′ݓ డሬሬԦడ௭ + డሬሬԦడ௧   
 

Total acceleration   
of a particle 

Convective 
acceleration 

Local 
acceleration 
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Forces are acting on the fluid element, including body force and surface forces (normal 

and shear forces). The general form of the equation of fluid motion per unit volume is: 

ߩ ௗሬሬԦௗ௧ = −∇ܲ + ∇ॻ + ݂        (II-21) 

Where ॻ is the stress tensor and f represents body forces (per unit volume) acting on the 

fluid and ∇ is the vector operator in Cartesian coordinates, given by 

∇= ଓ̂ డడ௫ + ଔ̂ డడ௬ + ݇ డడ௭            (II-22) 

For a Newtonian fluid the viscous stress (ॻ) is proportional to the rate of shearing strain 

(angular deformation rate). The stresses can be expressed in terms of velocity gradients 

and fluid properties in Cartesian coordinates. Then Eq.II.21 can be expressed as: 

ߩ ௗ௨ᇲௗ௧ = ௫݃ߩ − డడ௫ + డడ௫ ቆߤ ቀ2 డ௨ᇲడ௫ − ଶଷ ∇ ∙ ሬܸԦቁቇ + డడ௬ ቆߤ ቀడ௨ᇲడ௬ + డ௩ᇲడ௫ ቁቇ + డడ௭ ቆߤ ቀడ௨ᇲడ௬ + డ௩ᇲడ௫ ቁቇ  (II-23a) 

ߩ ௗ௩ᇲௗ௧ = ௬݃ߩ − డడ௬ + డడ௬ ቆߤ ቀ2 డ௩ᇲడ௬ − ଶଷ ∇ ∙ ሬܸԦቁቇ + డడ௫ ቆߤ ቀడ௨ᇲడ௬ + డ௩ᇲడ௫ ቁቇ + డడ௭ ቆߤ ቀడ௩ᇲడ௭ + డ௪ᇲడ௬ ቁቇ (II-23b) 

ߩ ௗ௪ᇲௗ௧ = ௭݃ߩ − డడ௭ + డడ௭ ቆߤ ቀ2 డ௪ᇲడ௭ − ଶଷ ∇ ∙ ሬܸԦቁቇ + డడ௫ ቆߤ ቀడ௪ᇲడ௫ + డ௨ᇲడ௭ ቁቇ + డడ௬ ቆߤ ቀడ௩ᇲడ௭ + డ௪ᇲడ௬ ቁቇ(II-23c) 

These equations of motion are called the Navier-Stokes equations. The equations are 

greatly simplified when applied to incompressible flow with constant viscosity. Under 

these conditions the equations reduce to: 

ߩ ቀడ௨ᇲడ௧ + ᇱݑ డ௨ᇲడ௫ + ′ݒ డ௨ᇲడ௬ + ′ݓ డ௨ᇲడ௭ ቁ = ௫݃ߩ − డడ௫ + ߤ ቀడమ௨ᇲడ௫మ + డమ௨ᇲడ௬మ + డమ௨ᇲడ௭మ ቁ      (II-24a) 

ߩ ቀడ௩ᇲడ௧ + ′ݑ డ௩ᇲడ௫ + ′ݒ డ௩ᇲడ௬ + ′ݓ డ௩ᇲడ௭ ቁ = ௬݃ߩ − డడ௬ + ߤ ቀడమ௩ᇲడ௫మ + డమ௩ᇲడ௬మ + డమ௩ᇲడ௭మ ቁ       (II-24b) 

ߩ ቀడ௪ᇲడ௧ + ′ݑ డ௪ᇲడ௫ + ′ݒ డ௪ᇲడ௬ + ᇱݓ డ௪ᇲడ௭ ቁ = ௭݃ߩ − డడ௭ + ߤ ቀడమ௪ᇲడ௫మ + డమ௪ᇲడ௬మ + డమ௪ᇲడ௭మ ቁ  (II-24c) 

In fluid dynamics, Bernoulli’s principle states that an increase in the speed of the fluid 

occurs simultaneously with a decrease in pressure or a decrease in the fluid’s potential 

energy. It can be derived from the principle of conservation of energy. In a steady flow, 
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this states that the sum of all forms of mechanical energy in a fluid along a streamline is 

the same at all points on that streamline. This requires the sum of kinetic energy and 

potential energy to remain constant:  

ఘ + మଶ + ݖ݃ =  (II-25)         ݐ݊ܽݐݏ݊ܿ

The restrictions for Eq.II.25 are (1) steady flow; (2) incompressible flow; (3) frictionless 

flow; (4) flow along a streamline. However, the Bernoulli equation is powerful because it 

relates pressure changes to velocity and elevation changes a streamline due to the gravity 

acceleration.  
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Appendix III: Mechanics of plate deformation  

In solid mechanics, in-plane deformation of a thin plate or a membrane [120] represented 

by a stress-strain (ߪ −  plot has three regions: elastic range, plastic range and fracture (ߝ

point [119]. The linear variation of stress-strain (elastic range) ends at the proportional 

limit called the yield point. The portion of the stress-strain curve extending from the yield 

point to the fracture is the plastic range. The plate deformation obeys Hooke’s law: ߪ =  Similarly, linear elasticity can be measured in a member .(N/m2 or Pa)ߪ has the units of ܧ ,is a dimensionless quantity ߝ is the modulus of elasticity or the Young’s modulus. Since ܧ (III-1)        ߝܧ

subjected to shear loading. Referring to Eq. III.1, relating shear stress ߬ and shear strain ߛ: ߬ =  is the shear modulus of elasticity or the modulus of rigidity. The ratio of the lateral ܩ (III-2)         ߛܩ

strain to the axial strain is constant and is known as Poisson’s ratio: 

ߥ = − ୪ୟ୲ୣ୰ୟ୪	ୱ୲୰ୟ୧୬ୟ୶୧ୟ୪	ୱ୲୰ୟ୧୬         (III-3) 

In the case of a three dimensional state of stress, stress and strain are related by the 

generalized Eq. III.1, valid for an isotropic homogeneous material: 

௫ߝ = ଵா ௫ߪ} − ௬ߪ൫ߥ + ௫௬ߛ              {௭൯ߪ = ఛೣீ             (III-4a)    ߝ௬ = ଵா ௬ߪ} − ௫ߪ)ߥ + ௫௭ߛ               {(௭ߪ = ఛೣீ               (III-4b) ߝ௭ = ଵா ௭ߪ} − ௬ߪ൫ߥ + ௭௬ߛ               {௫൯ߪ = ఛீ              (III-4c) 

The expression connecting ߥ ,ܧ and ܩ is: 

ܩ = ாଶ(ଵାఔ)           (III-5) 

The general strain energy (ܷ) of the plates in three dimensional is:  
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ܷ = ଵଶ∭{ߪ௫ߝ௫ + ௬ߝ௬ߪ + ௭ߝ௭ߪ + ߬௫௬ߛ௫௬ + ߬௫௭ߛ௫௭ + ߬௬௭ߛ௬௭}  (III-6)        ݖ݀ݕ݀ݔ݀

For a thin plate, substitution of ߝ௭ = ௫௭ߛ = ௬௭ߛ = 0  into Eqs.III.4 yields the following 

stress-strain relations: 

௫ߪ = ாଵିఔమ ௫ߝ) + ௬ߪ ௬)        (III-7a)ߝߥ = ாଵିఔమ ௬ߝ) + ௫)        (III-7b) ߬௫௬ߝߥ =  ௫௬                        (III-7c)ߛܩ

The corresponding strain energy can be simplified by: 

ܷ =∭ቀ ଵଶா ൫ߪ௫ଶ + ௬ଶߪ − ௬൯ߪ௫ߪߥ2 + ଵଶீ ߬௫௬ଶ ቁ  (III-8)            ݖ݀ݕ݀ݔ݀

An anisotropic plate displays direction-dependent properties. A simplest of anisotropic 

plate is orthotropic which differs properties in two mutually perpendicular directions. 

Eqs.III.7 is then represented by: ߪ௫ = ாೣଵିఔೣ௩ ௫ߝ) +  ௬)        (III-9a)ߝ௬ߥ

௬ߪ = ாଵିఔೣ௩ ௬ߝ) +  ௫)         (III-9b)ߝ௫ߥ

߬௫௬ =  ௫௬                             (III-9c)ߛܩ

Where ߥ௫, ,௫ܧ ௬ andߥ  ,௬ are the effective Poisson’s ratios and effective moduli of elasticityܧ

respectively. Subscripts ݔ and ݕ relate to the directions. The shear modulus of elasticity ܩ 

is the same for both isotropic and orthotropic materials.  
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Appendix IV: Derivation of the Gebart model and the Advani model  

1. Derivation of the Gebart model 

(a)Permeability for flow perpendicular to fibres [22] 

The perpendicular permeability (ୄܭ) model is derived from Newtonian fluid flow through 

two parallel plates: 

ܳ = −ଶయଷఓ ௗௗ௫        (IV-1) 

 

 

 

 

 

Figure IV-1 Sketch over the coordinate system and the half height channel [22] 

Fig.IV.1 shows a sketch of the half channel height in the analysis of the flow between two 

fibres, where the cross-section of fibre is assumed to be circular. The total pressure drop 

between two points ݅ and  at the entrance and the exit of the channel is: 

ܲ − ܲ = − ଷఓொଶ න ௗ௫య(௫)
        (IV-2) 

The half channel height ݎ needed in the integral is 

ݎ = ࢎ + ܴ ൬1 − ට1 − ௫మோమ൰          (IV-3) 

Which for ݔ ⋘ ܴ can be written as ݎ = ࢎ + ோଶ ௫మோమ              (IV-4) 

Eq.IV.4 can be interpreted as a second degree polynomial approximation of the geometry  

ࢎ2ݔ
ݕ

ܴ(ݔ)ݎ
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for circular fibres. Substitution of Eq.IV.4 in Eq.IV.2 and a simple change for the variables 

makes it possible to rewrite the integral so that Eq.IV.2 becomes: 

ܲ − ܲ = − ଷఓொଶ ඥଶோࢎࢎయ න ௗ௧(ଵା௧మ)య
ටమೃࢎටమೃࢎ

         (IV-5) 

The author stated that most of the contributions to the integral come from the narrow gap 

between the fibres if ࢎ/ ܴ ⋘ 1. Moreover, if the integral limits were taken as -2 to 2, the 

integration will be 1.178, slightly larger than the real value 1.170. Therefore, 38/ߨ ≈1.178 was used to substitute the integration in Eq.IV.5: 

∆ܲ = −ଽ√ଶగଵ ఓொோమ (  ோ)ିହ/ଶ         (IV-6)ࢎ

Based on the definition of Darcy’s law, the permeability ୄܭ  for the quadratic fibre 

arrangement can be identified from Eq.IV.6 as: 

ୄܭ = ଵோమଽ√ଶగ (  ோ)ିହ/ଶ                       (IV-7a)ࢎ

ୄܭ = ଵோమଽ√ଶగ ൬ටೌೣ − 1൰ହ/ଶ         (IV-7b) 

Where ܸ௫ is the maximum fibre volume fraction 4/ߨ when the fibres touch each other. 

For a hexagonal array, the distance of inlet width of the unit cell is √3/2 times higher than 

it in the quadratic arrangement, which gives the permeability (ୄܭ): 

ୄܭ = ଵோమଽ√గ (  ோ)ିହ/ଶ                       (IV-8a)ࢎ

ୄܭ = ଵோమଽ√గ ൬ටೌೣ − 1൰ହ/ଶ         (IV-8b) 

Where the ܸ௫ value for the hexagonal arrangement is ߨ 2√3⁄ . 

(b)Permeability for flow along fibres[22] 
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Analysis of permeability along unidirectional fibres (ܭ∥) starts from the frictional loss in a 

duct within which a Newtonian fluid flows with arbitrary cross-section. The duct formed 

in the space between the fibres, is usually expressed in terms of a frictional factor ݂ which 

can be derived analytically for many cross-sections (circular, triangular, quadratic, etc.) in 

laminar flows and can generally be expressed as: 

݂ = ோ = ∆ ଶఘమ                (IV-9) 

Where ܦ is the hydraulic diameter to be defined as four times the duct cross-sectional 

area ܣ’ divided by the wetted perimeter. ܣ’ is the part of the total cross-section through 

which fluid can flow, and differs from the area A used in the definition of Darcy’s law, 

which is the total cross-section area of the sample including solid fibres. The ratio of the 

two areas can be expressed in terms of fibre volume fraction: 

ᇱ = 1 − ܸ                (IV-10) 

Then the hydraulic diameter can be expressed as: 

ܦ = ଶோ(ଵି)            (IV-11) 

Where c is a dimensionless shape factor and ܴ is the Reynolds number. Substitution of 

Eq. IV.11 into Eq. IV.10 and identification of the permeability yields: 

∥ܭ = ଼ோమ (ଵି)యమ            (IV-12) 

Gebart computed (numerically) the value of the shape factor c for any fibre volume 

fraction both in the quadratic and the hexagonal cases and obtained ܿ = 53  for the 

hexagonal arrangement and ܿ = 57 for the quadratic arrangement, respectively. Eq. IV.12 

has the similar style with the Kozeny-Carman equation (Eq.2.2), where the shape factor c 

is related to the Kozeny constant as ܿ = 32݇.  

2. Derivation of the Advani model 
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When a fluid flows at an angle θ towards a bundle of unidirectional fibres, the flow is 

divided into two components: flow transverse to the fibres and along the fibres. As shown 

in Fig.IV.2, the components of the permeability tensor for the orientations are defined as 

follows: 

ࡷ = ቆ ௫௫ܭ cosଶ ߠ + ௬௬ܭ sinଶ ߠ ௫௫ܭ−) + (௬௬ܭ sin ߠ cos ௫௫ܭ−)ߠ + (௬௬ܭ sin ߠ cos ߠ ௫௫ܭ sinଶ ߠ + ௬௬ܭ cosଶ ߠ ቇ = ൬ܭ௫௫ᇱ ௬௫ᇱܭ௫௬ᇱܭ  ௬௬ᇱ൰   (IV-13)ܭ

 

  

 

 

 

Figure IV-2 Newtonian fluid flow at an angle to a bundle of unidirectional fibres  

Where ܭ௫௫ can be regarded as ܭ∥ and ܭ௬௬ is ୄܭ. These components of ࡷ may then be used 

to define the effective permeability, ࢋࡷ, measured in the one-dimensional flow: 

ࢋࡷ = ௫௫ᇱܭ + ௫௬ᇱܭ డ/డ௬ᇱడ/డ௫ᇱ                                                                              (IV-14) 

If one assumes that the flow velocity in the y direction, which is perpendicular to the flow 

direction, is zero, then 
డ/డ௬ᇱడ/డ௫ᇱ = −ೣᇲೣೣᇲ from Darcy’s law and: 

ࢋࡷ = ௫௫ᇱܭ − ೣᇲమೣೣᇲ = ௫௫ܭ cosଶ ߠ + ௬௬ܭ sinଶ ߠ − ୱ୧୬మ ఏ ୡ୭ୱమ ఏ(ିೣೣ)మೣೣ ୱ୧୬మ ఏା ୡ୭ୱమ ఏ        (IV-15) 

Eq. IV-16 can be written as: 

ࢋࡷ = ∥ܭ 	cosଶ ߠ + ୄܭ sinଶ ߠ − ୱ୧୬మ ఏ ୡ୭ୱమ ఏ(఼ି∥	)మ∥ 	ୱ୧୬మ ఏା఼ ୡ୭ୱమ ఏ                                       (IV-16) 

Where ߠ can be measured in the fabric cross-section using microscopic imaging. 

Unidirectional 
Fibres ݔ ݊݅ݐܿ݁ݎ݅݀ ݓ݈ܨ ݕ θ
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Appendix V: Measurement of shape factor for nine fabrics in Table 3-5 

U1: a=43 pixels, ߣ =5.23 (±1.50); θ=40.82° 

 

U2: a=94 pixels ߣ =2.88 (±1.20); θ=75.89° 

 

C1: a=50 pixels ߣ =3.81 (±0.92); θ=46.22° 
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C2: a=56 pixels ߣ =5.30 (±1.54); θ=53.24° 

 

C3: a=50 pixels ߣ =5.14 (±2.26); θ=59.62° 

 

C7: a=75 pixels ߣ =6.91 (±0.16); θ=54.78° 
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C8: a=92 pixels ߣ =6.00 (±1.88); θ=65.73° 

 

C9: a=64 pixels ߣ =1.83 (±0.82); θ=67.10° 

 

Fabric M: a=70 pixels ߣ =4.08 (±0.80); 
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Appendix VI: Variation of streamlines in GCD flow channels with pressure 

GCD Tube t1: 4=ࣅ, L=0.5 mm, R=0.05 mm, 0.125=ࢇ mm 

(1) Darcy region 

 
     1Pa                                        5Pa                                     10Pa 

(2) Transitional region 

 

   50Pa                                       100Pa                                      140Pa 

 

    175Pa                                     250Pa                                      350Pa 
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 500Pa                                       1000Pa                                    2000Pa 

(3) Forchheimer region 

 

      4000Pa                                       6000Pa                                      10000Pa 

 

GCD Tube t2: 16=ࣅ, L=1 mm, R=0.05 mm, 0.125=ࢇ mm 

(1) Darcy region 

 

1Pa                                                              10Pa                                                                   



188 
 

 

   25Pa                                                                50Pa 

(2) Transitional region 

 
100Pa                                                          200Pa 

 
300Pa                                                         500Pa 

 
  750Pa                                                       1000Pa 
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   1500Pa                                                       2000Pa 

(3) Forchheimer region 

 
        2500Pa                                                     3000Pa 

 
         4000Pa                                                       5000Pa 

 
          6000Pa                                                      7000Pa 
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Appendix VII: Analytical modelling for permeability of rectangular GCD gap  

                           

Fig.VII.1 Rectangular gap between yarns from a unit-cell of woven fabric 

Fig.VII.1 shows a rectangular unit-cell of woven fabric for flow through the gap, which 

has the dimensions of yarn spacing ( ܵ , ܵ௪), yarn width (ܦ,  .(ܮ) ௪) and fabric thicknessܦ

An analytical solution for Poiseuille flow through a rectangular duct over its dimensional 

range in Fig.VII.1 (−ܽ ≤ ݕ ≤ ܽ;	−ܾ ≤ ݖ ≤ ܾ) is: 

ܳ = ସయଷఓ ቀ− ௗௗ௫ቁ ቆ1 − ଵଽଶగఱ ∑ ୲ୟ୬୦ቀഏೌమ್ ቁఱୀଵ.ଷ.ହ⋯ ቇ        (VII-1) 

Where ܳ is the volumetric flow rate, ߤ is the fluid viscosity and ݀ܲ ⁄ݔ݀  is the pressure 

gradient. Two parabolic equations are used to describe the yarn cross-section: 

ܽ = ܽ + ௫మఒభ;    ܾ = ܾ + ௫మఒమ                                       (VII-2) 

Where ߣଵ  and ߣଶ  are yarn shape factors which can be measured by fitting equations 

referred to in Appendix V. Eq. VII.1 is transformed into Eq. VII.3 with the dimensions 

substituted from Eq. VII.2: 

ܳ = − ସ∆ଷఓ 
ۈۉ
ቀܽۇۈۈ + ௫మఒభቁ ቀܾ + ௫మఒమቁଷ − ଵଽଶ൬బାೣమഊమ൰రగఱ ∑ ୲ୟ୬୦൮ഏቆೌబశೣమഊభቇమቆ್బశೣమഊమቇ ൲ఱୀଵ.ଷ.ହ⋯

ۋی
ۊۋۋ
ିଵ
ಽరିಽర൚ݔ݀   (VII-3) 

ܵ 

ܵ௪
ܦܮ  

௪ܦ  

2ܽ 

2ܾ
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Where ܽ = ௌೕିೕଶ , ܾ = ௌೢିೢଶ . Based on Darcy’s law (Eq.1.1), the permeability of the 

rectangular duct can be obtained: 

ܭ = ସଷ ଵூ        (VII-4) 

Where ܣ = ܵܵ௪, and  

ܫ = 
ۈۉ
ቀܽ0ۇۈۈ + 1ቁߣ2ݔ ቀܾ0 + 2ቁ3ߣ2ݔ − 192൬ܾ0+2ߣ2ݔ൰45ߨ ∑ tanh൮݅ߨቆܽ0+1ߣ2ݔቇ2ቆܾ0+2ߣ2ݔቇ൲݅5݅=1.3.5⋯

ۋی
ۊۋۋ
−1
4ܮ−4ܮݔ݀        (VII-5) 

 

 

 

 

 

 


