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ABSTRACT 

A human observer is able to recognise and describe most parts of an object by 

its contour, if this is properly traced and reflects the shape of the object itself. 

With a machine vision system this recognition task has been approached using 

a similar technique. This prompted the development of many diverse edge 

detection algorithms. 

The work described in this thesis is based on the visual observation that edge 
maps produced by different algorithms, as the image degrades. display 

different properties of the original image. Our proposed objective is to try and 
improve the edge map through the arbitration between edge maps produced by 

diverse (in nature, approach and performance) edge detection algorithms. As 

image processing tools are repetitively applied to similar images we believe 

the objective can be achieved by a learning process based on sample images. 

It is shown that such an approach is feasible, using an artificial neural network 

to perform the arbitration. This is taught from sets extracted from sample 

images. The arbitration system is implemented upon a parallel processing 

platform. The performance of the system is presented through examples of 

diverse types of image. Comparisons with a neural network edge detector (also 

developed within this thesis) and conventional edge detectors show that the 

proposed system presents significant advantages. 
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1 INTRODUCTION 

"The real question is not whether 
machines think but whether men do" 
(B. F. Skinnev, Contingencies of 
Reinforcement) 

1.1 Preamble 

The aim of this chapter is to introduce general issues concerning edge 
detection and to provide a brief overview of the need for and the description of 

the work to be presented within this thesis. The following section presents an 
introduction to the problem of image processing, an analysis of edge detection 

and it's importance. Section 1.3 explains the importance of the research in 

edge detection and what is new and novel about the approach presented. Next. 

in section 1.4 the objective and tasks of the work are described. Finally the 

layout of the remainder of this thesis is presented. 

1.2 Digital Image Processing and Computer Vision 

Digital image processing is an area that has seen great development in recent 

years. It is an area which is supported by a broad range of disciplines, where 

signal processing and software engineering are among the most important. 

Digital image processing applications tend to substitute or complement an 

increasing range of activities. Applications such as automatic visual 

inspection, optical character recognition. object identification . etc.. are 
increasingly common. 

I 



Chapter 1 Introduction 

Digital image processing studies the processing of digital images, i. e., images 

that have been converted into a digital format and consist of a matrix of points 

representing the intensities of some function at that point. The main objectives 

are related to the image improvement for human understanding and 'the 

processing of scene data for autonomous machine perception' [48]. 

This later task normally comprises a number of steps. The initial processing 

step is the segmentation of the image into meaningful regions, in order to 

distinguish and separate various components. From this division, objects can 

then be identified by their shape or from other features. This task usually starts 

with the detection of the limits of the objects, commonly designated as edges. 

Effectively a human observer is able to recognise and describe most parts of 

an object by its contour. if this is properly traced and reflects the shape of the 

object itself. In a machine vision system this recognition task has been 

approached using a similar technique, with the difference being that a 

computer system does not have other information than that which is built into 

the program. The success of such a recognition method is directly related to 

the quality of the marked edges. 

Under 'engineered' conditions. e. g. backlighting, edges are easily and 

correctly marked. However, under normal conditions where high contrast and 

sharp image are not achievable. detecting edges become difficult. Effectively. 

as contrast decreases the difficulty of marking borders increases. This is also 

the case when the amount of noise present in the image increase, which is 

'endemic' in some applications such as x-rays. Common images. e. g. from 

interior scenes. although containing only small amounts of noise, present 

uneven illumination conditions. This diminishes contrast which affects the 

relative intensity of edges and thus complicates their classification. Finally. 



Chapter 1 Introduction 

image blur due to imperfections in focus and lens manufacture smoothes the 

discontinuities that are typical from edges and thus once again makes the edges 

difficult to detect. 

These problems prompted the development of edge detection algorithms 

which, to a certain degree of success, are able to cope with the above adverse 

conditions. Under suitable conditions most of the edge detection algorithms 

produce clear and well defined edge maps, from which objects within the 

image are easily identified. However, the produced edge maps degrade as the 

image conditions degrade. 

The work described in this thesis is based on the visual observation that edge 

maps produced by different algorithms, as the image degrades, display 

different properties of the original image. Not only misplacements of the shape 

occur, spurious features appear and edge widths differ from algorithm to 

algorithm. It may be hypothesised that edge maps produced by different 

algorithms complement each other. Thus it may be possible to override some 

of the vagueness by comparison between different edge maps. 

Our proposal is to try and improve the edge map through the arbitration 

between edge maps produced by diverse ( in nature, approach and 

performance) , edge detection algorithms. 

1.3 Objectives 

Our main objective, is to investigate the feasibility of an arbitration system for 

generalised edge detection in images. Similar approaches where the 

information from diverse methods is fused into one map have not been 

3 



Chapter 1 Introduction 

reported before. The development will be carried out in successive steps, 

starting with the selection of edge detection algorithms that form a suitable 

basis to test the feasibility of such an approach. This will be followed by the 

development of the system and its testing on various images. This involves 

several stages in defining images and in the selection of suitable images to test 

the hypothesis. 

Neural networks are well known for their ability to arbitrate between different 

inputs. Another objective of the research is to investigate neural networks for 

generalised edge detection so that the advantages or disadvantages of the 

arbitration system can be assessed. 

The development of the arbitration strategy is another goal of the research. 
The definition of suitable edge detector tuples. the strategy to implement them, 

and as neural networks are used, the research of suitable learning sets are 

stages that are also considered. 

Finally, a comparison criteria that allows for the assessment of the developed 

technique. in comparison to others, is also needs defined. 

1.4 Outlook 

The structure of this thesis is as follows: 

Chapter Two starts with a discussion on the concept of an edge. Effectively 

this concept of an 'edge' lacks an objective definition. In the edge detection 

literature several different edge concepts are described, sometimes even 

mixed in the same reference. Some apparent failures of edge detection 

4 
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algorithms are due more to a misunderstanding of the concept of an edge 

rather than to a failure of the algorithms themselves. There then follows a 
literature review of edge detection algorithms and a comparisons between their 

performance drawn. Finally, a literature review on neural networks is 

presented. 

Chapter Three presents the mathematical background used for the 
development of the analysis technique described within this thesis. It presents 

the mathematical theorems that prove that such an approach is feasible. 

Chapter Four describes the implementation of the core system upon a parallel 

processing platform so as to maintain computational competitiveness in 

practical applications. A review of basic concepts in parallel processing is 

followed by the description of the test performed in search of the most 

efficient paradigm. 

Chapter Five consists of two parts. In the first, examples of edge detection 

techniques and their performance are presented. The selection of suitable 
images upon which to carry out the tests is performed and the different edge 
detection operators performance on such images analysed. The second part 

describes the development of a neural network for edge detection. Examples of 

the performance of the solutions are presented along with the tests performed 
during the development of the neural network edge detector. 

Chapter Six presents the arbitration strategy and the development of a system 

to perform it. Several examples are presented. and comparisons between the 

arbitrated edge maps and the techniques used to obtain the edge maps are 
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carried out. Finally, the solutions are compared to the neural network edge 

detector, and the advantages of the approach being researched presented. 

Finally, in Chapter Seven conclusions are drawn. The advantages and 

disadvantages of the technique being researched are described. Proposals for 

further work suggested by the researched techniques are also presented. 

6 



2 EDGE DETECTION REVIEW 

A complete survey of edge detectors is 
not a simple task, and can even be 
confusing. (I. Abdou) 

2.1 Introduction 

Edge detection is a very common topic within the literature on image 

processing . Although it is not a recent research field it still originates several 

papers every year. The number of approaches to the problem is great, covering 

almost all mathematical fields known. However, the complexity of the 

problem and its ill defined nature means that there are still many problems 

associated with the field. Through this chapter we will review the different 

approaches. However, before such an extensive work is carried out, basic 

image processing concepts will be analysed. 

2.2 Image Processing 

Image processing dates back to the beginning of the century. when the 

problems that arose due to the transmission of an image down a cable where 

reported upon [48]. In more recent years. digital computers have allowed for 

an increase in the number of applications of image processing. Image 

processing applications are common in medicine, biological sciences. 

archaeology, surveying. manufacturing processes, robotics. etc. Vision, which 

7 
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is one of our senses, is probably the sense which provides us with more 
information then any other about the outside world. 

When analysing images it should be kept in mind which part of the 

information is within the image, and which part is overlaid from our 

perception system. Indeed, in some situations we perceive details that are 

extrapolated from our knowledge about the objects within the scene, and thus. 

added from information that are external to the image. Thus it is very difficult 

to quantify some features within the image. 

2.3 Edge detection objectives 

The interest inCdigital image processing came from two principal application 

areas: improvement of pictorial information and processing of scene data for 
1utonomous robot classification within autonomous machine perceptioi. In the 

second area. where the most primordial motivation of this thesis is based and 

in which edge detection is used. 
Lhe first processing steps are the identification 

of meaningful areas within the picture. This process is called segmentati@. It 

represents an important early stage in image analysis and image identification. 

Segmentation is a grouping process in which the components of a group are 

similar in regard to some feature or set of features. Given a definition of 

"uniformity", segmentation is a partitioning of the picture into connected 

subsets. each of which is uniform. but such that no union of adjacent subsets is 

uniform [129). There are two complementary approaches to the problem of 

segmenting images and isolating objects - boundary detection and region 

growing. Edge oriented methods generally lead to incomplete segmentation. 

the resulting contours may have gaps or there may be additional erroneous 

edge elements within the area. The results can be converted into complete 
image segmentation by suitable post processing methods. such as contour 

8 
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following and edge elimination. Region growing is a process that starts from 

some suitable initial pixels and using iterations neighbouring pixels with 

similar properties are assigned, step by step, to sub regions. A suitable basis 

for this type of segmentation could be a thresholding process. 

1iarr's Theory of Vision [106][108] starts from the construction of the 'raw 

primal sketch' in which changes in intensity are made explicit and from where 

edges are then extracteJ Also Artificial Intelligence approaches to vision used 

a frame description of objects, from which and through the use of reasoning 

systems objects could be identified. There are other systems where edge 

detection is used, as a basic tool, in visual inspection systems for quality 

control. 

2.4 What is an edge? 

There is no universal definition of an edge. As the main purpose of defining 

edges is segmentation or measurement of the objects within an image, edges 

should represent the limits of the objects within the image. An edge is 

generally stipulated as the result of any sharp alteration in the characteristics of 

the image. 

The intensity of reflected light is a function of the angle of the surface to the 
direction of the incident light. This Leeds to a smooth variation of the light 

intensity reflected across the surface as its orientation to the direction of the 

light source changes, which can not be considered as an edge. Also shadows 

give sharp changes in the brightness within an image of a smooth and flat 

surface. This does not represent the limit of an object. In the other extreme, 

such as in the case of technical drawing, where there are thin lines drawn, 

where no discontinuity on the represented object exists, but which are 

9 
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important for the understanding of the shape of an object. The relation 
between edges and grey level discontinuities is not clear, and a decision can 

only be made where an understanding of the image exists (which, in some 

way, is the ultimate goal of the whole image processing process). As Vicky 

Bruce [14] states 

"Clearly, there is a relationship between the places in an 

image where light intensity and spectral composition change, 

and the places in the surroundings where one surface or 

object ends and another begins, but this relation is by no 

means a simple one. There are a number of reasons why we 

can not assume that every intensity or spectral change in an 
image specifies the edge of an object or surface in the world" 
(Bruce, op. cit, page 91) 

Several definitions of edges have been proposed by different authors. Italics 

highlight the vagueness that the authors included in their proposed definitions. 
Sonka et al [156] proposed it as 

pixels where this function (brightness) changes abruptly' 
(op cit., page 76) 

Pratt [1 37] 

"Local discontinuities in image luminance from one level to 

another are called luminance edges. (... ) The definition of a 
luminance edge is limited to image amplitude discontinuities 

between reasonably smooth regions" (op. cit: , page 491) 

Rosenfeld and Kak [ 145 ] 

"An edge: the grey level is relatively consistent in each of two 

adjacent, extensive regions, and changes abruptly as the 

border between the regions is crossed" (op. cit., page 84) 

10 
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Gonzalez [49] 

"... an edge as the boundary between two regions with 

relatively distinct grey-level properties" (op. cit, page 334) 

From the above definitions the words printed in italic should be retained as 

none of the authors give a precise meaning to each of these words. As Blicher 

stated: 

"Everyone agrees that a perfect step function should give an 

edge, but there has been no adequate criterion put forth to 

classify any other function as edge, no-edge" (Op cit., page 

4) 

Perhaps the most adequate definition was that given by A. Blicher (Op. cit. ): 

"Edges, it seems, are a lot like obscenity, for as Mr Justice 

Potter Stewart wrote of obscenity [Jacobelis vs. Ohio 1964], 

he may not be able to define it, But I know it when I see it. 

(Op. cit., page 4) 

Effectively there are many well known paradoxes in which an edge or contour 

is clearly seen where none physically exists. This is due to the characteristics 

of our perception capabilities, and our tendency to group similar information. 

as described in Gestalt's approaches to perception [98] or to infer edges from 

the context [87] of the image. 

Kak's and Pratt's definitions include fine and low contrasted textures or small 

-rev level gradients in the image. There are many examples of such types of 

textures such as newspaper images and the images presented within this thesis 

as the printer used. although of a high resolution (600 dpi). still prints dithered 

images. instead of grey level images. However, a clear distinction between 

11 
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texture and grey level areas are not presented by any of the above cited 

authors. 

The alternative is to accept that (every discontinuity in the grey level of an 

image represents an ed 
j However, even this definition can not be accepted 

without restrictions, as for instance noise present in the image produces local 

discontinuities in the grey level of images which can not be accepted as edges. 

If such a definition is accepted without restrictions none of the algorithms 

presented mark false edges or wrong edges. They just mark their own 

definition of discontinuity, and thus their own definition of an edge. 

The weakness and limitations of the concept can be shown through an image 

with two areas. Between them grey levels present a linear varying discontinuity 

from 0 to S. Lets assume that the two areas present a linear varying grey level 

with the ranges [0 .. n] and [0 .. n+S] respectively, and such that n/x «S. A 

schematic three-dimensional graph of such an image is presented in figure 1. 

n+5 

Figure 1: Grey level 3D plot of an image which consists of two distinct areas 

In an image defined like this the edge, as the discontinuity between the two 

surfaces, will be marked by the same operators with a different extension 

12 
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depending of the value of the parameter n, although the discontinuity itself is 

independent from it. 

All the above definitions include some ambiguity in the definition of an edge. 
Effectively it will be only known at the end of processing, when segmentation 
has been performed, where the edges are. An edge is a subjective entity, as 
defined by Blicher. As this author said "The term 'edge' has been fairly abused 

and we will continue that tradition here". (Blicher, op. cit) 

Edges appear with several profiles, where the most common are step edges. 
However ramp edges and roof edges (figure 2) are also common. 

ZZý 
Zý /\ 

step edges ramp edges roof edges 

Figure 2: Common models for edge profiles 

Edges also appear with several shapes. like curves or straight lines. The most 
common shape in our environment is vertical or horizontal straight lines 

(although this can not be transposed to image processing as a correct 

perspective will be very difficult to obtain). Some particular scenes (for 

instance blood cells) do not have straight edges at all. So a particular edge 

shape can not be assumed a priori. All these shapes have associated with them 

some quantity of noise. inherent to the acquisition process. These problems 

can be seen in figure 4. which is a three dimensional plot of the image from 
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the C key of the keyboard image in figure ?. 
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tý 

Figure 3: Image of a keyboard 

In particular the grey level variation in the C print (clearly visible in the middle 

as a re-entrance, which is darker than the key) is not abrupt. 

ýü 
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, 6( , 70 
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Figure 4: Three dimensional plot of the 
image from the C key of the computer keyboard 

With the known exception of some images used in robotics ( which are 

acquired with very high contrast, upon which binary thresholding is carried 

out), all images from real scenes have a small amount of noise. This can also 
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be originated from external sources to the acquisition system, e. g. 

electromagnetic interference. 

2.5 What is Edge detection? 

1dge 
detection is the process of extracting the edges from a digitised picture . 

It is generally assumed as the process of extracting the grey level 

discontinuities of an image, independent of their origýiW 

Several techniques exist, such as sharpening or crispening, which are designed 

to increase the visibility of general low contrast edges. These often lead to an 

increased perception of detail. Such techniques were not used in the work 

reported in this thesis. 

2.6 What is an edge detector? 

The definition of an edge detector is not generally accepted. Indeed Sobel 

masks can be classified as an edge detector or an edge enhancement filter. The 

main difference arises from the requirements for the edge detection output, 

whether it be a decision or, a likelihood measure. We will assume a wider 

definition of 'edge detector' based on two pictures. The first, designated as 

image A, is the picture of the scene being analysed. The second, designated as 

image B, consists of points or lines, marking the localisation of the edges of the 

first image. An edge detector, is the operator that allows us to pass or 

transform image A into image B. Following this definition and using the initial 

example, the Sobel masks, albeit the core, are part of the operator that allows 

such a transformation. Thus, an ' edge detector can be the result from the 

composition, of several filters. As an example, an edge detector can be 

composed of an edge enhancement operator and a decision operator. In general 
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the process of extracting the edges from an image usually follows three. steps. 

First noise is removed using a low ass fiIter. This step is sometimes imbibed 

in the edge enhancement or measurement of the discontinuity. The next step is 

to analyse (orsonxolute) the image with some operatorthat gives as its output 

some measure of the "ed iness" of the pixels or neighbouring pixels. Finally 

from this assessment it must be decided which edges are relevant, or what 

pixels are accepted as part of an edge. This can be done by simply 

thresholding�the output of the operator (which means that an edge is a 

discontinuity greater then something, and that certain edges will vanish), using 

a local threshold of the output as its average value could vary from place to 

place. Finally, an algorithm is applied that links the edges or limits the marked 

edges to some particular kind of shape. Some authors add line thinning , which 

is assumed as a post processing stage. Noise removal is considered a pre 

processing stage unless implicitly included in the edge enhancement operator. 

2.7 Solicited characteristics of an edge detector 

An edge detector (or the edge enhancement operator) should present 

characteristics that allow for the correct interpretation of an edge and 

preferably alleviate the task performed by any subsequent modules. 

Amplitude response variance to edge orientation - Preferably an 
edge detection scheme must be isotropic. and have an invariant 
response with edge orientation. It facilitates thresholding definition. 
otherwise a simple threshold gives origin to broken edges. where 
they do not exist. If the threshold is set too low, a width variation in 
the detected edge appears. This is related with the following 
characteristic. 

Rapidly declining edge gradient response as the detector mask 
moves away from the centre of the edge. This factor is associated 
with precision and localisation. 
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Resolution - Responses due to near edges should be clearly distinct 
and should not interfere with one another. However, the notion of 
near edges is subjective to the user. 

Good localisation - Marked edges should be in the true position, 
This particular property could be fundamental in some applications. 
For a segmentation process it may be better to have all the edges 
with a small bias than a few edges in the correct place. 

Robustness or noise insensibility - Some images are inherently 
noisy (e. g. X-rays). This is due to the characteristics of the objects 
being analysed, which impose the use of low intensity radiation 
[43]. All images obtained from sensors have, at least, a small 
amount of noise. The image acquisition process could also have 
noise superimposed from several other sources (electromagnetic 
interference, for instance). An edge detector process should be 
insensitive to the noise or at least not alter its performance with 
small variations of the noise level. 

Robustness to Blurring -It is virtually impossible to guarantee the 
absolute focusing of the image (due to optical effects). The edges 
that appear in an image from a real scene are not perfect and do not 
follow exactly the mathematical model used. An edge detector must 
have a range of acceptance of data with which it can deal. The 
problem of blurring is also included in the edge definitions presented 
and leaves open to the user the extent to which an edge is still an 
edge. 

Sensitivity - The amplitude of an edge could vary with illumination 
characteristics. Some of the edges in a real scene can be lost, due to 
several factors, such as poor contrast. A good edge detector must 
mark the edges independently of the contrast between the objects. 
However, the presence of noise and the need for a threshold can 
limit this. 

Computational load - The time for running an algorithm could 
determine its practical use. This factor is application, hardware and 
software dependent. Also total storage requirements should be kept 
to the minimum. 
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It can be said that the most important characteristics of an edge detector are 

accuracy, sensibility, precision and isotropy. 

However these characteristics could be conflicting and some concessions may 

have to be made. 

2.8 Important edge map features 

The objective of edge detection is to detect edges. So the main objectives 

should be to evaluate the results rather than the operators thernselves. 
Important characteristics of an edge are: 

Shape - The line obtained should reflect as accurately as possible 
the shape of the phenomena that originates it. 

Position - The detected edge should be in the correct position. 

Thickness - The detected edge should be as thin as possible (ideally 
1 pixel wide), for localisation and following algorithms. 

Coherence - The detected edge should be a continuous and 
preferably uniform line, to facilitate analysis. 

According to Hall [1]: 

"Edge images created for scene matching must be capable 

of meeting the following requirements: (i) retain salient 
edges of the objects to be matched, (ii) be relatively free of 
spurious edges extracted from the background and (iii) 

tolerate minor geometric misregistration" (op. cit. page 505). 
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In general it is difficult to define which are the salient edges within a scene 

and they must be decided upon based on the application goals. 
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2.9 A review of edge detection techniques 

2.9.1 Introduction 

(Edges 
are assumed as discontinuities in the grey level of the image. The 

easiest way to discover these discontinuities is to shift the image in two 

perpendicular directions and subtract the resulting images from the original. 

Each of the difference images will have a value zero at all points which have 

the same grey level as the neighbour in the shift direction and the difference 

value otherwisee If noise is present in the image, all the image will have a non 

zero value. We must now define a threshold between the values resulting from 

the noise and the values resulting from the discontinuities. This process is 

clear if the range of the values are not overlapping, but this is not the general 

case. This technique, empirical as stated here, will be referred to later in a 

more formal way (it is equivalent to the Roberts mask). It is referred to here 

because it contains the main parts of the algorithms and could reveal the main 

weakness of the different algorithms. These are noise sensitivity and a limit to 

the smallest detectable discontinuity imposed by the noise present. 

Im PIm EEM EM Rzt 
Pre-pro- Edge Decision , 

Post- 
cessing Enhancement Criteria Processing 

Edge Detection Block 

-------- ------ --- 
EEM - Edge Enhanced Map 

Im- Image 
EM - Edge Map 

P[m- Pre-processed Image 
- Refined Edge Map REM 

8: gure 5: Edge detection scheme 
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Figure 5 shows a generalised edge detection scheme. An edge detection 

algorithm usually contains two main parts, performed sequentially: an edge 

enhancement filter and a decision process. In the first part, af lter is applied to 

the picture to enhance the discontinuities of the image (which is also called an 

edge detect by some authors). This picture will be called an edge enhanced 

picture. To this intermediate image, containing the candidate points, some 

decision criteria is applied to select the correct points. At this stage we will 

obtain an image containing only the edges (which will be called an 'edge 

map'). 

This two part scheme is not always explicit. In a large number of the 

algorithms the two parts can be combined producing different properties. Thus 

different approaches to edge enhancement will be described separately to the 
different approaches for decision making. 

To these two main steps could be added a previous smoothing or enhancement 

step [187]. The smoothing step has the function of noise filtering or 

regularization of the solution. Although it is usually carried out using a low 

pass filter, this smoothing step could be implemented using different methods 
(anisotropic diffusion, for instance). The smoothing step is in some cases 

absorbed by the filter or mask itself [17][107]. Indeed some common masks 

can be seen as a composition of smoothing and enhancement masks [59]. The 

existence of this step is criticised by some authors [57] . and considered an 
important pre-processing step by others [170] , 

due to the resulting blurring of 

the edges caused by the smoothing filter 
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A post-processing step is added by some authors, to improve the edge 

enhanced map. This is needed due to gaps in the edge map or artificial features 

created by the algorithms (usually due to the noise present). This is normally 

achieved through thinning the edges, testing their continuity and hence filling 

existing gaps, removing created edges etc. [181] [92] [1541. 

It is difficult to associate edge detection techniques due to the multiple 

mathematical supports used and the different approaches in which a particular 

technique can be included. Effectively is not only different edge models that 

are assumed by the different techniques, as sometimes a different edge concept 

is subjacent to the method proposed. Several criteria could be used to group 

different techniques together. For instance, the Roberts operator could be 

considered an empirical technique, a derivative technique (as stated by Roberts 

[140]), or as a Hueckel type operator (using the sum of the absolute values, as 

stated by Rosenfeld [143]). 

In the following pages edge detectors are classified according to the approach 

adopted. First the generic underlying idea is described. Next a more concise 
description of how this basic idea was implemented is presented. 

2.9.2 Filtering 

There are a number of methods that can be considered as distinct 

implementations of a filtering approach. 
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2.9.2.1 Derivative approaches 

CIt is a direct consequence of the definition that edges correspond to areas with 

a high value of the first derivative. The most basic approach is to take a 

derivative of the picture, and consider as edges the points where the derivative 

value reaches a maximum or exceeds a given threshold. As derivatives 

enhance the edge these methods are sometimes referred to as enhancement / 

threshold techniques. This approach has various problems. Firstly as the 

derivative is a high pass filter it amplifies the noise in the image. Secondly it 

needs the use of a threshold which is not always clear. Thirdly the localisation 

effect, if a simple threshold is performed edges can be marked with a variable 

width with the consequent loss of precision. Fourth, due to the blurring edges 

are marked with variable widths. 

The maximum derivative is obtained in the gradient direction, defined as: 

VF(x, y)= 
(ax)2 

F(ýFi2 
cTS J (1) 

where VF(. r, y) is the gradient for the grey level function of the image F in the 
pixel (x, y) and x and are the directional derivatives in the x and y 
directions respectively. 

For a digital picture. first differences are used instead of the partial derivatives. 

The partial derivatives are then calculated by 

t =(x. v) =J(c. y) -J(-1. ý") (? ) 
Xr(x, y) =J(r. y) -J(r. t -1) (3) 
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To measure the central differences at the same point, the differences are 

measured over the 45° and 135° diagonal and are calculated by 

(e+, )(x, y) =J(x+ 1, y+ 1) -j(x, y) (4) 
(A1)(x, y) =1(x+ l, y+ 1)-j(x, y) (5) 

this is equivalent to the image being convoluted with the following masks: 

I001 
01 -1 0 

The result can be computed by the square root of the sum of the squares as in 

the gradient. This operator is known as the Roberts gradient operator[140]. ̀ 

To avoid the computational complexity of the square root, it can be replaced 
by the sum of the absolute values or by the maximum of both values. Each of 

these forms present a slightly different behaviour. A comparison by Abdou 

and Pratt [2) will be referred to later. 

This filter has a fast execution speed, due to the small amount of operations. It 

is one of the most precise. due to the small window used (2x2). Uncertainty of 

the position of the edge pixel exists due to the even size of the square used. It 

also presents a remarkable noise sensitivity. 

The partial derivatives in the x and y directions could be estimated in a 3x3 

window using differences centred on the point P(x. y). These formulae are 

known as the Sobel Operators and are probably the most widely referred to 

This corresponds to the technique described earlier. with shifts in the 135° and 2250 
directions. 
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edge enhancement scheme. They are defined by the x and y components of the 

derivative as 

S, = (JAx+ I, y-1)+2Jix+ I, y)+Jtx+ I, y+ 1)] - [«x- I, y-1)+2fx- 1, y)+Ax-1, y+ 1)] 

(7) 

Sy = [ax- l, y+ 1)+2Ax, y+ 1)+, J(x+ 1, y+ 1)]-[/(x- l, y-])+2fix, y-1)+J(x+ l, y-1)] 

(8) 

The result can be computed by the square root of the sum of the squares as in 

the Roberts operator. 

These correspond to image convolution with the following masks 

12110 -I 
00020 -2 (9) 

-1-2-1 1 0-1 

The Sobel operator is slower due to the larger number of operations 

performed. It also less sensitive to noise as it can be considered as the 

composition of a smoothing and a highpass filter. 

A different set of masks Evas proposed by Prewitt [1 38]: 

1II 10 -I 
00010 -1 

-i -1 -1 10 -I 

2.9.2.2 General case 

(10) 

A large set of masks have been proposed [137] for edge detection. From the 

collection of convolution masks it can be assumed that any kind of vertical and 
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horizontal difference pattern or mask will give an edge enhancement operator. 

It is enough that the convolution originates a null (or small) value in the 

absence of a discontinuity, and otherwise a strong response, preferably 

proportional to the value of the discontinuity. This is generally true and these 

operators will present properties that differ between them. 

One example of a non square mask is presented by Adhami [3]. He describes a 

cyclic ring of integers modulus 7 that have edge detection properties. This 

mask forms a 2x3 matrix. 

The weighting coefficients and size of the mask will determine the frequency 

characteristics of the filter. In general it can be said that the larger the mask the 

more robust to noise it will be. It also requires more computations and will be 

less sensitive to fine details. This has lead to the suggestion of using composite 

approaches [128] [13] and Scale Space approaches [100][10l]. 

The majority of masks presented so far have a square shape. Generally, the 

shape nearest to a square or circle will give better isotropy but less sensitivity 

to particular edge orientations. One way to improve the sensitivity to particular 

orientations or characteristics is to change to a rectangular, cross, or other 

shape. A long and narrow mask will present different noise sensitivity and 

detection characteristics in different directions. Examples of such masks are 

present in Hales operators (from [ 131 ]). 

Davies [30] states that masks that have the same size but different coefficients 

correspond to different filters and thus will have different frequency responses. 

Thus masks are not interchangeable but. depending on the characteristics of 
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the signal and noise. application dependent. The choice of a particular mask 

should be related to a particular noise model [157]. 

2.9.2.3 Zero Crossings 

One 
of the problems of the above approach is that a simple threshold will give i 

11 thick edges and include more values than just the maximum. The criteria for 

the maximum could be incorporated in the edge detector. Since the maximum 

of the first derivative is a zero of the second derivatives, the second derivative 

can be used to detect the maximum. The edges are located now in the zero 

crossings of the second derivative. This could be done using the Laplacian 

operator, defined as: 

Lapj(x, y) =V 2f(x, y) Z+ af 
aX EY- 

(11) 

Common masks employed to calculate the digital Laplacian are shown below 

010 
1 -4 1 (12 ) 
010 

111 
1 -8 1 (13) 

L1 11 

When the image is noise free the zero crossings of the Laplacian of the image 

gives a very good edge map. 

The main disadvantages of this type of filter are the bias that in some 

situations exists between the zero crossings and the position of the edges and. 
in the case of a noisy image, the creation of phantom edges. [116] [39]. 
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A variation to this approach, suggested by Marr and Hildreth [108] uses the 

Laplacian of the Gaussian (LoG) as a way of reducing the noise sensitivity. 

They argue that this filter is the optimal trade-off between conflicting 
localisation requirements, corresponding to the spatial and frequency domains. 

arr and Hildreth first convolute the image with a Gaussian function. The 

Laplacian of this image is taken and edges marked at the resulting Zero 

Crossings The commutative and associative property of the convolution 

permits the order of the operations to be changed and is the same as 

convoluting the image with the Laplacian of the Gaussian function. QThe 

resulting filter is defined by 

(V21(r)-r"``(1-2p2)e2p2 
(14) 

where p is the standard deviation of the Gaussian used and r the distance to the 

centre of the Gaussian. J 

This filter is separable which reduces its computational complexity [ 174]. 

Haralick [58] [59] also detects the zero-crossings from the Second Directional 

derivatives obtained from a facet model. The facet model principle states that 

the image can be thought of as an underlying continuous or piecewise 

continuous grey level intensity surface. This can be understood as a smoothing 

step. The Roberts and Prewitt operators can be easily derived from a facet 

model fitted to the image. 

Zhou, Venkateswar and Chellappa [190] represent the pixel in a local window 

by a 2D auto-regressive model whose parameters are recursively estimated. 
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Due to the modelling assumption the directional derivatives are a function of 

the parameters estimated. This method includes a global dependence in the 

sense that the estimated parameters include information prior to the position 

being processed in the raster scanning model. Also the derivatives are 

computed locally and thus the method can be termed as a local method. 

2.9.2.4 Template Matching 

A different approach, Template Matching, gives results which have 

similarities to the algorithms described so far. In the template matching 

approach the image is locally matched with a set of templates. The templates 

represent ideal edges with different orientations. The template producing the 

highest correlation determines the edge magnitude at that point and the edge 

orientation is assumed to be that of the corresponding template. This approach 

was due to Prewitt [138]. Her masks are obtained by rotating a kernel, 

originating a set of 8 templates corresponding to the 4 orthogonal directions 

and the 4 diagonal directions. Since the negation of a mask is also a mask. 

computation will only need to be done for half of the masks. The Kernel 

proposed is 

I11 
1 -2 1 

-1 -1 -l 
(15) 

Different sets of masks have also been proposed by Pretivitt [138] and Kirsch 

[84], 

553111 

-3 0 -3 -3 03 
-3 -3 -3 -3 

(16) 
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Robinson [141], Nevatia and Babu [122] ( who use a set of 5x5 compass 

template masks) and Meer [112] . 

Frei and Chen [42] proposed a different approach. They use nine mutually 

orthogonal masks. Since each mask is linearly independent from each of the 

others, they form a space within which we can define a projection criteria. The 

criteria of acceptability of an edge from the absolute value to the projection in 

the space is defined by the masks. They argue that this will allow more fine 

edges to be detected. 

1 J 1 
Wý= 0 0 0 

-1 -J" -1 
0 -1 J 

W3 =1 0 -1 
-ý 1 0 

0 1 0 
WS = -1 0 -1 

0 1 0 

1 -2 1 
W7 = -2 4 -2 

1 -2 1 
111 

W9= 111 
111 

1 0 -1 
W2 J 0-ý12 

1 0 -1 
-1 0 

W4 = -1 01 
0 1 -i 
-1 01 

W6= 0 00 

1 

1 0-1 

-2 1 -2 
W8= 1 41 

-2 1 -2 

(17) 
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Some mask can be defined by continuous functions. An examples of such a 

mask was that proposed by Argyle[5]: 

le e-r. k2 

x>0 
Arg(x)= inr: (18) 

Zn K= 
x<0 

Macleoad[104] presents a different function, consisting of the difference of 

two inverted exponential functions weighted by a third exponential. Abdou 

[1], uses a lOx10 mask to reduce computational complexity of the above 
formulae. 

Kadar [79] uses Latin Squares for the mask definition. An ordinary Latin 

Square can be defined as a square array of (typically but not essentially) 
integers, such that each integer appears once only in each row and column. 

Patton [128) proposes the Rule Based Composite Gradient Edge Operator 

(RBCGEO) which interprets and integrates the responses of three operators 

each designed to extract edge information at a specific spatial resolution. 

Three weighted templates (3x3,5x5, and 7x7) are used.: rule based system is 

used to derive the magnitude. direction and confidence of the edge from the 

responses of the templates. This method was latter developed by Brazakovic. 

[13] 

WVeschsler and Kidode[181] define a different edge operator that can gather its 

data from windows of different size and shape. The edge enhancement step is 
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also a difference scheme followed by thresholding, thinning and noise 

removal. 

2.9.2.5 Optimal filter approaches 

Another approach defines the optimal shape of the filter that maximises a 

given criteria. The first operator following this approach was developed by 

Canny, [18] [17] in 1983. 

Canny's maximises the following criteria: good detection, good localisation 

and only one response to a single edge. The filters obtained are defined by a 

set of six parameters, and are of the general form 

C(x)=e '(a isinwx+a 2cos(ox)+e -°"°(a 3sinwx+a acoswx) (19) 

where al to a4, a and w are constants obtained by an optimisation process 

relative to the optimal criteria defined. For step edges the filter obtained was 

very similar to the first derivative of the Gaussian. Canny to avoid the 

computational complexity of his solution. uses the first derivative of the 

gaussian which scores 80% of the performance of the optimal filter. This more 

effective filter is usually referred to as the "Canny operator". A slightly refined 

version. using a more complex way to compute the derivative, of this operator 
due to Fleck [161] is described in Appendix A as it was implemented as 
described in chapter five. 

Spacek [158] formed a performance measure combining all three of Canny's 

quantitative measures in order to simplify Canny's equations. 
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A different optimal filter was obtained by Deriche [34] [33] . Using Canny's 

criteria, he allows the filter to be of infinite size and obtained a function of the 

form 

E(x) = -e-lx 1 sin (ox (20) 

and derived the solution as an Infinite Impulse Response filter which allows a 

recursive implementation. This filter is quicker then the ones defined by 

Canny, and, as for Fleck's filter, a detailed description is in Appendix A. 

Modestino and Fries [116], Sarkar [147] and Manickam [105] also proposed 

recursive filters. 

Castan et al [19] shows that the optimal edge detection filter for high SNR, 

good localisation, precision and uniqueness of the maximum is a symmetric 

exponential filter. The filter obtained is 

f (. r) =ab Ix I with a= -I Zb A 0< b< 1 (21) 

where a and b are constants. 

Barlaud et al [7] uses a Recursive biOrthogonal Wavelet Transform to 

compute optimal edge detection filters which yields multiresolution analysis. 

Petrou and Kittler [134] extended Spacek's work and derived optimal filters 

for ramp edges of various slopes. 
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2.9.2.6 Mathematical Morphology 

Mathematical morphology is a mathematical field which was formalised in the 

eighties by Serra [149]. Morphological edge detection was introduced by Lee 

et at [97] 
.A generalisation of this was proposed by Yoo [185]. It has been 

used for ridge detection by Hertz [65] . An application for medical imaging is 

described by Peng et at [132] 
. 

2.9.2.7 Median filtering 

Median filters were proposed for edge detection by Pitas [136] and Bolon [11]. 

A combination of a median filter and a linear filter is described by Neuvo 

[120] . 

2.9.2.8 Other filtering approaches 

Amini [4] models the picture as the output of a two dimensional all pole causal 

sequence with a Quarter Plane and Non-Symmetrical Half Plane support 

regions. The estimated parameters are used to approximate the 2nd directional 

derivative. Auto regressive models are also used by Zhou et al [190]. 

Other filtering techniques have been proposed as Gabor wavelets odd 
functions [113] , the E filter [146] . Linear Model [81] , Stack filters [185] or 
adaptive FIR filters [57]. 

2.9.2.9 Decision criteria 

Most of the above methods give as the result an edge enhanced map. which 

has assigned to each point in the image a value characterising its "edginess". 
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A criteria for the acceptance of the point as an edge must be defined. The 

quality of the resulting edge map is dependent of this decision criteria. 

The most widely mentioned and simple decision method is to establish a 

single threshold. All points with a higher value than the threshold are accepted 

as edges, otherwise they are marked as non-edges. The main role performed by 

the threshold is the selection of the most 'abrupt' discontinuities. This selection 

allows the points that result from small local variations, namely due to noise, 

to be discarded. This threshold is easy to establish if the amplitude of the 

edges are quite different from the average values that result from the 

processing of the noise. In this case, the histogram of the edge enhanced image 

will present a clear bi-modal characteristic and the selection is clearly made 

by the minimum value between the two maxima. This criteria gives thick 

edges. A simple threshold will always provoke a conflict between the number 

of assigned edges and the thickness of the edges. A simple criteria will also 
limit the sensitivity of the operator, as soft edges will be rejected along with 

the noise induced points[96]. 

Some of these problems can be solved by the use of the maximum within the 

lines marked in the edge enhanced map. This criteria is known as non-maxima 

supression [142]. Also a double threshold can be used. In this case two 

thresholds values are defined, say. t, o,,, and t,,, with. t, 0W<t�pp. 
All the points 

greater than t,,, which belong to a curve that contains at least one point greater 

than t.,, are marked as edge points. This criteria is used. for instance. to select 

the strongest zero crossings by Canny [17] and FIeck, to select the most 

significant edges avoiding the spurious lines resulting from the noise[38]. 
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edge as being a true edge, and P(TE1AE), giving a true edge of being an 

assigned edge. The best threshold is the one that minimises the difference 

between these two values. 

This criterion however presents some disadvantages considering that we must 
(i) known "a priori" the position and localisation of the edges, and, (ii) we 

must compute that criteria for all the edges, which is time consuming. This 

method, although proposed as a threshold criteria has been used, as a 

comparison criteria by some authors [157]. Another method is the one used 
by Fleck, where the thresholds are fixed as multiples of the standard deviation 

of the processed image in edge free areas. Although requiring the definition of 

an edge free area, this criteria is more easily implemented than the previous 
one. 

2.9.3 Model fitting 

The most representative edge profile is the step form. an ideal edge can be 

assumed as a step discontinuity in a particular region of the image. Another 

approach is based on the idea of how closely this model fits a given image 

neighbourhood, decisions then being made according to the quality of the fit. 

This approach was proposed by Hueckel [72]. Hueckel used a step edge 
defined in a co-ordinate system that lies in the centre of a window. He used a 

window with a circular shape. and typically consisting of 72 points (to 

minimise the errors due to the radius quantification). The method fits a step 

function to a window and according to the fitting result decides if it is 

acceptable or not. This implementation of the approach is computationally 

expensive due to the need to calculate Fourier series of some of the functions. 
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A computationally lighter approach was defined by O'Gorman [124]. He used 

Walsh functions instead of the Fourier series for the expansion of some 

intermediate functions. This implementation is also described in detail in 

Appendix A. Mer6 and Vass' [114] looked to Hueckel's operator as a template 

matching method and reduced it to 2 matching patterns. Nevatia (121] used a 

subset of the Hueckel basis. Hummel [73] generalised Hueckel's results using 

a different expansion. 

A different edge model. in which a monotone varying edge can be defined, 

was used by Shaw [152]. This can be optimally matched for an image signal 

within an operator window of dimensions NxN. Wahl went on to derive the 

general case in 1976 [177]. 

2.9.4 Stochastic and statistical related methods 

To decide where an edge of a given orientation exists in a window, one can 

bisect the window at that orientation thus creating two sub-regions, calculate 

the appropriate features and decide as to the presence of an edge based on 

some selected threshold. Yakimovsky used this approach [183] . 
The decision 

concerning the exact location of the edge was left to a region grower. This is 

one of the nearest approaches to some of the definitions presented at the 

beginning of the chapter. However, examples by Vernon[174] show a 

relatively poor performance. 

Amlan Kundu [93] described a method where step and linear edges are 

detected as a statistical classification problem. based on two characteristics: 

Near and around the step and linear edges. the pixel. when classified into two 
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nearly equal groups, displays markedly different average intensity values and 

the member of each group show strong spatial correlation. 

Bovik and Amunson[12] use median comparisons instead of average values. 

2.9.5 Residual analysis 

After the smoothing operation, the difference between the result and the 

original image has the characteristics of noise in areas away from features. 

This can be used for feature detection and has been used by Chen. Lee and 
Pavlidis [23]. A cost minimisation approach is used by Tan [166] . 

2.9.6 Neural networks 

Neural networks can be used for edge detection or as edge improvement 

systems. Sinchak [155] proposes the use of an Artificial Neural Network to 

improve edge measurement in noisy images. It is used to adjust the edge 

measurement based on the neighbouring edges. 

Neural networks are used by Spreeuwers[159]. A 49-8.1 two layer feed 

forward neural network is trained with examples of edge and non-edge 

patterns using the back propagation learning rule. Kerr[83] proposed a method 

for training standard feed forward back propagation networks using fuzzy 

label vectors. The neural network is used as an edge enhancement operator 

which is thresholded when defuzzifying occurs. Results presented show that 

the neural network can be successfully trained and subsequently operated as an 
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edge detector that is as least as good as the Sobel and Canny operators. The 

training phase is completely independent of any real image and is done with a 

basis set of 256 binary windows as the input. 

Terry et al [167] gives a simple method for the edge detection training 

problem. Not only can Neural Networks be trained to detect edges, they can 

also be designed from scratch without the prior necessity of training. 

Comparisons between both cases are presented. A neural network using 

multi-state ADALINESZ is presented by Paik [126]. 

2.9.7 Other approaches 

Several different approaches are possible using distinct smoothing techniques. 

such as anisotropic diffusion[123]. Anisotropic Diffusion operates by 

repeatedly filtering the image function with a smoothing kernel of small 

support. thereby producing a sequence of diffused image functions of 

successively lower resolution. In order to retain the strength and correct 

location of edges, the "smoothing power" of the filter kernel is made to depend 

(inversely) of the magnitude of the image function gradient in a heuristic 

fashion. At some stage in the iteration filtering process remarkably impressive 

edges can be extracted by post-processing the diffused image function with a 

rudimentary local edge detector. 

Adaptive linear neurons 
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2.9.8 Global methods 

The main criticism made about the above techniques is that the context of the 

edge or the scene information is not used. Although some techniques related 

the points in a neighbourhood with the other points in the image, global 

information is not present in any of them. Several methods have been 

proposed that include the whole image, instead of focusing the attention in 

small areas or windows. 

Kelly [82] used heuristic planning for finding the edges in a picture, based on 

the edges of a smaller and less detailed version of the original. 

Montanari [I I7] proposes a method which embeds the properties of a curve in 

a figure of merit. A dynamic programming technique is then used to determine 

the optimal curve in the picture with respect to the given figure of merit. 

Martelli [110] reduces the problem to the search of an optimal path in a graph. 

using the A* algorithm. The structure of the graph is determined by the 

properties which the edge must have. In 1976 [109] he presented different 

work where the properties of an edge are contained in the figure of merit and 

the problem becomes the problem of minimising the given figure of merit. 

Griffith [51] describes a system of programs for the detection of straight line 

edges in simple scenes. The program goal is to locate all the edges in scenes 

consisting of prismatic solids and to make fundamental use of problem 
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reduction techniques and a priori information derived from an explicit model 

of the situation or problem under consideration. 

Eberlein [37] tried iterative methods for the edge detection. An iterative 

method to detect edges in a one dimensional signal is presented by Chen and 
Medioni [22]. The results can be combined in two orthogonal directions to 

give a two-dimensional edge map. A similar approach was done by Tewfik 

(168]. 

Zhou [189] presents an AI structural approach based on the intuition as to the 

characteristics of an edge. Where an edge should be at the place where the 

grey level of the picture has great change and which has a long but narrow 

shape, i. e. it uses both grey level and structural information from the picture. 
The approach consists of several steps. First, the input image P(i: j) is 

transformed into a so-called edge image D(ij). This can be carried out using a 

number of operators such as the Robert's operator. The second step transforms 

this image into the form of a labelled tree. Edges are then extracted reducing to 

the main branches. 

2.9.9 Assessment of edge detection techniques 

According to Vernon, 

"One point where there is a definite consensus in the 

computer vision community is that it is difficult quantitatively 

to evaluate and compare edge detection performance"'. 

' Automatic Visual Inspection and Robot Vision. page 106. Prentice Hall 1991 
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An empirical assessment is sufficient for the majority of applications. It is, 

however, desirable to have, "even if only to provide a rough guide to the 

relative performance of the detectors in particular circumstances" [174] a 

quantitative evaluation. However, as Pratt states 

"The only performance measure of ultimate importance is 

how well edge detector markings match with the visual 

perception of object boundaries" (W. K. Pratt, op. cit. page 

543). 

Effectively a human observer is able to discern and evaluate the quality of the 

response of the edge detectors by observation as a human observer is able to 

recognise objects and trace their boundaries. However similar situations are 

not easily discernible by a human observer. Effectively a human observer will 
be able to evaluate the shape and definition of the edges produced. but will 
have difficulty in grading similar situations. The problem is not only a direct 

consequence of the multiplicity and fuzziness of edge definitions, presented in 

the beginning of the chapter, but a consequence of the gap between the 
definition and objectives. 

However, single properties can be measured allowing for a more reliable and 

accurate assessment. The following section will revise several criteria 

proposed and comparison performed. 
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2.9.10 Comparisons between edge detection algorithms 

Several studies have been carried out into the comparison and assessment of 

edge detectors. Unfortunately, in the majority of cases, results from a 

particular figure of merit are only known for the methods that were presented 

by the author who proposed it. 

Some edge detection 'figures of merit' have been proposed. However, they do 

not fully test all the aspects of the edge detection techniques. The figures of 

merit proposed are limited and can not be recognised as a method for the 

grading of edge detection algorithms. None of the proposed measures are able 

to characterise the edge shape. 

Fram and Deutsch (41 1 have studied the effects of noise on various edge 
detector schemes. They used 36x36 test images divided into 3 vertical zones. 
in which they assign random selected grey levels to the exterior ones. 

Pratt [137] uses a square array of pixels with a vertically oriented ramp edge at 
its centre. The edge parameters and noise level can be varied to generate test 

edges that are then processed by an edge detector to produce binary edge 

maps. The figure of merit is: 

F 
maxi/1. /e) I+ad=(U) (22) 

where I1 and I, are the number of ideal and actual edge points. d(i) is the pixel 
distance of the ith detected edge and a=1/9 a scaling constant to provide a 
relative penalty between smeared edges and dislocated edges. This figure of 

merit, probably one of the most common. has been criticised as it does not 
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reflect directly the characteristics of real edges. It also requires, in order to be 

representative of the behaviour of the edge, the detector to be used over 
several images with different contrasts and orientations. 

Abdou and Pratt [2] [137] compare edge enhancement / thresholding 

techniques (Differential e template matching, and threshold decision), with 

regard to several characteristics (sensitivity, amplitude response, etc. ). They 

define an idealised luminance edge as a plane ramp discontinuity. The ideal 

edge is described by its cartesian pixel co-ordinate, orientation angle, base 

amplitude, contrast, and slope. 

Bryant and Bouldin [15] proposed two means for numerically evaluating edge 
detectors, designated as relative and absolute grading. Relative grading 
involves comparing an edge operator output to the consensus decision of the 

other operators. Absolute grading compares any operator to a manually 
constructed key for a target scene. It can be thought of as a measure of a real 
operator and an ideal operator. A common method of computing this similarity 
is to determine a correlation measure. 

Kitchen and Rosenfeld [86] used local edge coherence. The measure is based 

on the continuation and thinness of the edges. The measure is defined as 

E= yC+(1 -y)T (23) 

where c and T are respectively the continuation and thinness measures. and y 
is a scaling constant. This criteria does not need a reference picture. as most of 
the figures of merit proposed by others authors. 
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Peli and Malah[131] show several performance measures, quantitative and 

qualitative (Type of contour, single or double edge, distortion). The algorithms 

considered are the Roberts algorithm, Hale's operators and the Rosenfeld 

Algorithm. One conclusion is that sometimes the Pratt figure of merit rating 

does not provide sufficient information about the performance of the edge 

detector tested. 

Haralick [61 1 compares several edge detectors, namely Marr, Prewitt and the 

Directional derivative based on the facet model. Comparisons are carried out 

using the average and the probabilities P(AEITE) and P(TEIAE). 

Delp and Chu [32] present results with Pratt's and Kitchen's figure of merit. 

The spatial operators are used to generate an edge strength and direction maps. 
To these maps are applied a contour tracing algorithm. The most relevant 

aspect is the SNR insensibility of the Haralick second directional derivative 

operator (which uses 11x11 masks) to Pratt's figure of merit. Also the poor 

score obtained by Marr's zero crossing operator is quite remarkable. 

Sousa [1571 uses a generated checkerboard image with several levels of added 

white noise. The figure of merit is the same as that presented by Haralick. 

Van der Heyden [66] proposes the use of grey tone test images, accompanied 
by binary reference images and a new figure of merit. Unfortunately he does 

not present extensive application results. 
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De Micheli [115] analyses two aspects of edge detection: accuracy of 

localisation and sensitivity to noise. The aim is to establish the best scheme for 

edge detection of usual indoor scenes. Two basic conclusions are presented: 

They think that a gradient scheme is superior to a zero-crossing scheme and 

given the amount of noise present in typical indoor images the exact shape of 

the filter used to regularise differentiation is not critical. 

Kitchen and Malin [85] calculate, for a unit step edge, the gradient magnitude 

and direction reported by various simple differential edge operators as a 

function of the edge's actual orientation and offset with respect to the pixel 

grid. 

Amini [4] presents a comparison between parametric and non-parametric edge 
detectors using step edges and an image of squares with gaussian noise. 

Bernsen [8] considers an edge detector as the sum of the component 

edge-strength computations, edge localisation and derivative computation. He 

uses a modified version of the Haralick test. For test images a checkerboard 
image is used for objective comparisons and a surface mounted device is used 
for subjective comparison. 

Fleck [39] presents a study on artificial features typically produced by Canny's, 

Marr's and Boie-Cox's Algorithms. 

Venkatesh and Kitchen [173] classify different kinds of error that can occur in 

edge detection and then develop measures for quantifying these errors. The 
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four error types defined are: False negatives, false positive, Multiple detection 

and Localisation error. 

However, as it was stated by Pratt, the 'performance measure of ultimate 
importance' is the visual analysis and such comparisons are presented by 

Bernsen [8] using a surface mounted device image, Pratt[137] using an image 

of several peppers, and Vernon [174] using an image of a set of wires. 

2.9.11 Discussion 

One question that always arises is "Is there a best edge detection algorithm? ". 

For the majority of images, that present very low levels of noise and blurring, 

there are no sparkling differences in the edges detected by the different 

algorithms. They simply mark different edges. 

A large number of edge detection algorithms have been proposed and every 

year new algorithms are being proposed. Some of the questions that arise from 

the definition of an edge have been presented. They were followed by a review 

of proposed edge detection algorithms and comparison that have been 

described in the literature. The remainder of this chapter is concerned with the 

topic that forms the basis of the proposed approach to solve some of the 

problems associated with edge detection, namely the use of artificial neural 

networks. 
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2.10 Artificial Neural Networks 

2.10.1 Introduction 

Neural networks have been a research topic for nearly half a century. They 

were first developed as a model of the human brain, with the purpose of 

modelling and understanding the principles on which the human brain works. 

Another reason was the wish to build machines that are capable of performing 

complex tasks. Neural networks are models for cognitive tasks. One of the first 

neural networks, known as the perceptron, was developed as a simplified 

model of the biological models of processing sensory information, or 

perception systems [119]. Although some limitations of the 'perceptron' 

slowed the development of neural networks for several years the definition of 

an effective learning rule for complex perceptrons expanded their application 

areas. 

Neural networks terminology is based on the nervous system. Basically the 

nervous system is composed of neurons, which are the main cells from which 

nerves and the brain are made. These cells develop extensions. called dendrites 

and axons, which allow them to send and receive information from and to 

other neurons or muscles, by the joints, called synapses. Artificial neural 

networks, consist of independent 'cells', called neurons or nodes. which 

exchange information from and to other neurons by links, the synapses. of 

variable strength, or synaptic strength. 

Using a less biological approach. artificial neural networks are, as defined by 

Müller. [ 119] 
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'directed graph with the following properties: 

1- a state variable n, is associated with each node i 

2- a real value weight w, k associated with each link (ik) 

between two nodes i and k 

3- A real valued bias v, associated with each node i 

4- A transfer function f, (nk, w; k,, (k: 0- t)) , is defined for 

each node i, which determines the state of the node as a 

function of its bias, of the weights of the incoming links, and 

of the states of the nodes connected to it by these links. ' 

(op. cit. , page 12) 

The most common transfer function is a sigmoidal function, which usually 
takes the following form 

SY(x) ° j+e-n (24) 

This function is plotted in figure 6 It is plotted as Sig(x, y) to allow a direct 

comparison with figure 13. A linear approximation, 

-1 x<-l 
L(x) =x -1<x(1 (25) 

+1 x> 1 

or a hard threshold 

-1 x <-l 
thr(x) = 0.5 -1 <x<1 (26) 

1 x> 1 

can also be used. The later is usually associated to pattern recognition 

applications. where a binary response is required. The linear approximation is 

used either with binary or continuous data and its principal advantage arises 
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from its computational simplicity. This function can be used in different stages 

of the development of a neural network application. 

I 
o. 8 
o. 6 
o .4 02 

0 

Figure 6: Sigmoidal function Sig(x, y) 

The main difference between artificial neural networks and traditional 

methods. resides in their development. Artificial neural networks basically 

reproduce functions on the basis of their measured behaviour. Their main 

advantage and uniqueness arises from the way in which that relation is 

produced. Artificial neural networks are not programmed but taught. They 

learn from 'experience' and are able to adapt themselves in order to reproduce 

the relation between the input and output sets of data! 

LLearning can be performed on an unsupervised or supervised basis. An 

unsupervised learning process requires only input vectors to train the network. 

During the training the network weights are adjusted in an ordered way 

according to some defined figure of meet. In a supervised learning process. 

input/output pairs are presented to the network. and. according to a defined 

law. they will change their own weights in order to be able to reproduce the 

correct output vector when an input vector is presented. 
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Although still having some relatively undefined aspects of development. 

neural networks have been applied successfully to a wide range of problems. 

such as pattern recognition [175] [28] [176] and automatic control [179]. 

Several network structures, none perfect. have been proposed by different 

authors. These are reviewed in the next sections. 

2.10.2 Unsupervised Neural Networks 

The most described unsupervised artificial neural network is the Kohonen [89] 

Self Organising Map (SOM). It mimics some of the organising properties of 

the brain neurons. It is particularly useful for real world applications, where no 

'a priori' knowledge is known about the organisation of the input data. It is 

trained through sequential presentation of continous-valued input vectors. 

without any specification regarding an output. It consists of a set of input 

nodes, connected to all output layer nodes. which , 
in turn, are locally 

interconnected. The weights of the links between input and output nodes are 

initially set to small random values. It also requires the definition of the 

neighbourhood of each node, which slowly decreases during the learning 

process. Once a suitable number of input vectors has been presented. weights 

will specify cluster centres that sample the input space. As a consequence. the 

weights will be organised in such a way that close nodes will be sensitive to 

similar inputs. 
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2.10.3 Supervised networks 

2.10.3.1 Hopfield Net 

The first supervised network to be described is the binary Hopfield Net[71] 

[31 ]. Its most common application has been within the context of associative 

or content addressable memories. An information storage device is called an 

associative memory if it allows for recalling of information through a partial 

knowledge of its contents, but without knowing its storage location. Another 

application of the Hopfield network consists in its use as an auto-associative 

memory. When a set of patterns has been learnt, if a noisy or incompletely 

defined example its presented, it can recover the initial pattern. 

The basic structure of a Hopfield network is presented in figure 7. It consists 

of a single layer of processing units. Each unit has a binary activity value or 

state. All processing units are fully interconnected by directional links. In the 

updating procedure each neuron is set to the signal of the weighted sum of its 

inputs. The weights are previously calculated, using a given set of equations. It 

allows the addition or subtraction of patterns from the defined set, after the 

definition of the network without recalculating the full set of weights to be 

remembered The updating process could be performed in sequence. and 

repeated until a stable state is attained. Although not being a stability 

necessary condition. mathematical analysis shows that the network is able to 

attain a stable state once the weights of coupled links are equal. 

Hopfield networks have significant limitations since at times they evoke 

spurious states that were not included in the original learning set. The number 

of spurious states could be reduced by an adequate unlearning 

process. (69]. Another of the limitations arises from the small number of 
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patterns stored, typically in the order of 10% of the number of neurons [69] 

[179]. 

Hopfield networks can be generalised if the deterministic evolution law is 

replaced by a stochastic law. In this case, instead of binary values, the network 

will give the probability associated with the response taking one of the values 

±1. This type of network is commonly designated as a 'stochastic neural 

network [119]. A further generalisation are Boltzmann machines which also 

have hidden layers of neurons and form a general computing machine. Due to 

the stochastic behaviour of these networks, convergence to the same solution 

could not be achieved. particularly if there is more than one valid solution to 

the problem. 

Outputs 

Inputs 

Figure 7: Hopfield Network 

2.10.3.2 Hamming Nets 

Another type of network is the Hamming net [99] 
.. 
They implement an 

optimum classifier. which is the Hamming distance. The Hamming distance is 

53 



Chapter 2 Edge Detection Review 

the number of bits in the input that do not match the corresponding exemplar 
bits when the signal is sent through a binary symmetric channel. 

outputs 

Inputs 

Figure e: Hamming Network 

Figure 8 represents schematically a Hamming Network. This type of network 
is a mixed network with two subnets, the first of which has a perceptron like 

structure (see section 2.10.3.3) with two fully interconnected layers. In this net 

the weights and thresholds are set in such a way that the outputs in the middle , 
layers are equal to N minus the hamming distance to the N patterns used. The 

second subnet has the function of determining the maximum of these scores. 

The Hamming net has some advantages over the Hopfield net. It implements 

the optimum error classifier when bit errors are random and independent. 

Hence allowing for equivalent or better performance than that achieved using 

the Hopfield net [99]. It also requires fewer connections than the Hopfield net. 

Another advantage of the Hamming Net is that it does not suffer from spurious 

output patterns, unlike the Hoptield networks. 
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2.10.3.3 'Perceptron' 

Cerceptrons are an example of feed forward layered neural networks, where 
information flows in one direction between several distinct layers of neurons. 

The output of each neuron, represented in figure 9, is a function of the multiple 

inputs that it can accept. The simplest case, usually called 'single layer 

perceptron', consists of two neuron layers fully interconnected, designated by 

input and output layers, and from which the first only accepts inputs without 

processing them. The perceptron described is adequate for simple 

classification problems. 

Inputs 
output 

T) 

f() - Transfer function 

Figure 9-Basic perceptron unit 

This limitation has been largely overcome with the introduction of an effective 

learning rule for a multi-layer case. This includes one or more hidden layers 

between the input and output layers as represented in figure 10 . 
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:: pure 10: Multi-layer Perceptron 

This was a major step in the history of artificial neural networks. Today. this 

learning rule, known as backpropagation (or one of its variations), is the most 

common neural network training method. In fact. according to Wasserman 

[179], it covers more than 85% of published applications. Indeed back 

propagation is suitable for almost all applications as long as input/output pairs 

can be defined. 

Backpropagation is a mixed blessing. There are at least three arbitrary 

coefficients for which no rule. even approximate. is known and given an 

unfortunate choice could cause the convergence to slow or even stop. This 

phenomena is usually referred to as 'paralysis'. It also presents lone training 

times. While in theory training need only be done once. system development 

inevitably requires a certain amount of iterative optimisation. particularly 

when selecting the appropriate features from the data set. 
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Figure 10: Mult1-layer Perceptron 

This was a major step in the history of artificial neural networks. Today, this 

learning rule, known as backpropagation (or one of its variations), is the most 

common neural network training method. In fact, according to Wasserman 

[179], it covers more than 85% of published applications. Indeed back 

propagation is suitable for almost all applications as long as input/output pairs 

can be defined. 

Backpropagation is a mixed blessing. There are at least three arbitrary 

coefficients for which no rule. even approximate. is known and given an 

unfortunate choice could cause the convergence to slow or even stop. This 

phenomena is usually referred to as 'paralysis'. It also presents long training 

times. While in theory training need only be done once. system development 

inevitably requires a certain amount of iterative optimisation. particularly 

when selecting the appropriate features from the data set. 
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Back propagation, despite all its problems, remains a highly effective 

paradigm. In difficult applications, where the input/output relationships are 

non-linear and/or involve high order correlation among the data, it will 

produce accurate results. The main disadvantage is its slow training , although 

in comparison to RBF networks presented next, it could be partially redeemed 

by its more efficient computation at application time. 

2.10.3.4 RBF networks 

In very recent years a wide range of similar paradigms have been developed. 

These can be grouped under the generic name of basis functions techniques. 
Among them the radial basis function paradigm is the most used [179]. 

lo, x1 h() 

X2 hO r 

Figure 11: RBF Network 

output 

Figure I1 presents such a network. The basic hidden neuron shape is shown in 

figure 12. 
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Ua 

h(x) 

Figure 12: RBF basic neuron 

The inputs are applied to all neurons in the hidden layers. Each hidden layer 

neuron computes the following exponential function: 

Iv? 

hr =e aoi- (27) 

where 

Dl (28) 

and ui is the weight vector of hidden layer neuron i. A two dimensional plot of 
this function is shown in figure 13. 

This network requires a hidden layer neuron for each training vector. The 

output neuron produces the linear weighted summation of these. The output 

will only give a relevant response to an input over a range of values called the 

receptive field of the neuron, the size of which is determined by the value of a 
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Figure 13: RBF transfer function 

The location of the centres of the receptive fields is a critical issue and there 

are many alternatives for their determination. A centre and radius 

corresponding to each hidden layer of neurons could be located at each input 

vector in the training set. Because training vectors tend to occur in clusters this 

method will, in general. result in more hidden lavers neurons than necessary. 

The result would be long training times and slow operation during reference. 

due to the large amount of computation required. Once the centres and sigmas 

have been chosen, the output layer weight can be optimised by supervised 

training. 

Basis function networks train rapidly. since training is only used as a tine 

tuning, and part of the information is presented in a partially ordered form. 

Also they do not exhibit the training pathologies present in the 

backpropagation algorithm. They have one major disadvantage. After training 

they are generally slower to use, requiring more computation to perform a 

classification or function approximation. They also require a substantial 

portion of the training set to be involved in their operation. 
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2.10.4 Practical considerations 

EThe following discussion assumes that a neural solution had already been 

chosen. It will be centred on the most common algorithm, multi-layer 

perceptron neural networks and backpropagation learning laws, although a 

substantial part of it is applicable to other systems] 

The first main problem regards the selection of the type of network to be 

applied. The characteristics of the data provides an indication as to what type 

of network is best suited to the problem. Also the knowledge of the subject 

will contribute greatly to this decision, as the objectives will determine 

whether to use supervised or unsupervised learning. In some applications the 

objective of the network is to reproduce a relation between input and output 

states. This will impose a supervised learning strategy. An intensive 

application suggests the use of the backpropagation algorithm. Also the tools 

available could determine a preference as to one of the paradigms. 

Once the paradigm has been selected than several other parameters have to be 

taken into account. A network topology needs to be defined, particularly with 

regard to the number of hidden layers and their size. All practical 

considerations on cost. manageability, storage, implementation, etc.. will point 

to the selection of the smallest network provided the network is capable of 

performing the required task. Despite this. one must consider that small 

networks can not learn to an acceptable accuracy. A large network would 

certainly be easier to teach and is capable of learning more patterns. although a 

large training set could be required to define all that a complex network can 

learn. A pragmatic approach to this problem could consist of the selection of a 

small network which will be increased until a network that ensures an 
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adequate accuracy is obtained. This approach can be particularly worthwhile 

if speed and cost are important factors. If accuracy is important then an 

exhaustive search of the best solution is suggested. 

Another important disadvantage is that a large network could learn too much. 
Not only the main and relevant characteristics of the learning set, but also 

particularities of the training set, hence becoming an associative memory with 
little generalisation capabilities. A critical goal during training is to find a 

network large enough to learn the application but small enough to give 

adequate generalisation [54]. 

The number of layers to use is another parameter that has to be defined. 

Although the limitations of some configurations are known, there is no clear 

way of defining 'a priori' the optimal number of layers. Lippman [99] proposed 

a gradation of capabilities of classification for backpropagation neural 

networks, which has since been proven not to be true [47] [90] 
. 

One of the 

advantages of neural networks is that they can still be used when the number 

of 'data clusters' are unknown or ill defined. Also, there are theorems that show 

that 2 layer backpropagation networks with an infinite number of neurons are 

universal approximations[62] [75], but these are of little practical use as the 

number of hidden nodes requires could be very large. 

A few other choices need to be made. As an extremisation algorithm it will 

start from a random position. which is determined by the weights of the 

training set. The only constraint is that they are non zero values, otherwise the 

system will be unable to evolve, due to the multiplicative nature of the 

equations involved. The main rule is to initialise weights in the ranee 
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although some authors argue that training will be faster if the range is reduced 

to [-0.3,0.3] [37]. 

In addition to the above set of decisions, there are a few coefficients that need 

to be fixed. For these there is no rule known (except the range [0,1]). An 

example is the learning rate and the momentum coefficient. The values for the 

learning rate are usually in the range [0.25,0.75] [31], although some authors 
had successfully used values outside this range [37]. A momentum term needs 

also to be specified. This can be adjusted during the learning phase, initially 

using a large value to allow the system to approach the minima neighbourhood 

quickly and then using a smaller value to allow for fine tuning. A similar 

procedure could be implemented at later stages to force the solution to 

binarize. [ 119] 

The next factor to define is the training set. Although a full training set is 

desirable. and if learnt will produce a robust network, it is not always possible 

to obtain. Nonetheless the definition of the learning set is one of the key 

factors for the success of the application [55J. The training set should be as 

large as possible and balanced over the whole range of values. When it is not 

possible to obtain a full training set then a sometimes almost blind. search 

could be used. 

Finally it must be decided what should be taught and for how long. Some 

neural networks reach a stable state after a number of iterations. Others just 

approach a solution as for continuous functions. and a decision must be made 

as when to stop training. In the case of classification it is considered successful 

when 100% of the patterns are correctly detected. 
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A common technique is to train until the network gives 90 to 95% correct 

responses, or it reaches a defined neighbourhood of the intended goal. This 

neighbourhood is usually defined by the error function used. In pattern 

recognition applications a similar criteria cannot be always accepted as a 

sufficient condition for success. as it could be highly affected by the type of 

patterns unlearnt. The whole process will be defective if the most common 

pattern to be presented was unlearnt. 

The power of any pattern recognition technique resides in its ability to deal 

with noise or distortion. A high recall factor does not necessarily mean that a 

robust solution was obtained. 

Artificial neural networks are capable of performing complex decisions. Yet, 

their development often consists of extensive work, requiring several training 

sessions until an acceptable solution is obtained. Although an apparently 

straightforward tool. neural networks still leave a substantial part of the system 

development to the experience of the user. As Philip Wasserman [ 179] states 

"(... ) unlike other engineering discipline, there is no complete, 

rigorous body of science to support design decisions. 

Nevertheless, by a combination of heuristics, experience and 

whatever science is available, workable neural systems are 

being produced and applied with good effect' (P. 

Wasserman, op. cit., page 242]. 
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2.11 Conclusion 

Edge detection is one initial step in many image processing applications. 

Through this chapter proposed edge detection algorithms have been described, 

followed by a description of comparisons performed between them. Several 

artificial neural networks paradigms have been described and issues related to 

the development of neural applications analysed. 

In the next chapter a new solution to edge detection is presented. The solution 

suggested is based on neural network arbitration between edge maps produced 

by different edge detectors, as they produce different edge maps. The 

mathematical results which show that such an approach is feasible will be 

stated. as will the formal mathematical description of the method used. 
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3A NOVEL APPROACH TO 
EDGE DETECTION 

'Dictor sapienti sat est'"4 
Plautus 

3.1 Introduction 

In the last chapter different approaches to edge detection were described as 

were several Neural Network paradigms. Within the current chapter a novel 

approach is suggested to the problem of edge detection and correct edge 

location identification. This being the application of multi layer perceptrons to 

the arbitration of edges obtained from different edge detection techniques. The 

suggested solution will be discussed and some assumptions or practical 

hypothesis that could arise described. This chapter is included to show that the 

approach being suggested is feasible and is soluble by a neural network, for the 

cases that are presented in the following chapters. The mathematical theorems 

that support the work and show that such an architecture is feasible are also 

described within this chapter. The mapping problem and one of neural network 

implementation is highlighted. Finally the back propagation training algorithm 

for the multi layer perceptron is presented in detail. 

4 What's been said is enough for anyone with sense 
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3.2 Neural Networks and Pattern Recognition 

Recognition problems usually take into account a set of measurements or 

features and consider them as a point in an dimensional feature space. Various 

algorithms can then be applied to divide this feature space into compartments, 

which will be used in the classification. A significant problem is the boundary 

placement in the feature space so as to allow for the decision regions to be 

correctly formed. The underlying assumption is that points that belong to the 

same class tend to cluster. The complexity and extension of the domain do not 

allow this regions to be formed by a simple mapping, thus requiring the use of 

more complex techniques to perform the boundary placement. Neural 

Networks are the selected tool, as they are able to overcome the fuzziness and 

misdefinition of the mapping to be performed. 

Conceptually, the problem is clear to define. It is required to identify an 

operator, which maps a relation between the domain and the objective sets. 

The domain is defined as subsets of the edge maps, extracted and operated 

upon to produce a value identifying the existence or non-existence of an edge. 

These subsets are defined as a vector resulting from successively aligning the 

rows of square window of the image, extracted from each of the edge maps 

used. The output is assumed as a binary value stating the fact that the central 

points is or is not an edge. In practice the problem is not so clearly defined, 

due to a lack of clarity in the definition of an edge and due to the fact that the 

relation can not be defined as a map due to the nature of the image. 
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3.3 Arbitration 

As stated earlier the objective of edge detection is to produce from an image an 

associated image where all the edges and only the edges are marked. For the 

purpose of the following text let us assume that for every image A the 

associated edge map exists, which itself is an image, and is designated by EA. 

Several approaches, described earlier, have been developed to define a function 

such that 

EA = T(A) (29) 

which maps the relation 4 between the image A and their corresponding edge 

map EA. 

These different approaches will be referred to as q A, (RB, ..., (P� , which , when 

applied to the image I, will produce images containing the edge maps 

(Da, Da, ..., 0� respectively, such that (DA = (DA = (PA (I) . 

The objective is to search for an operator co,, which instead of accepting the 
image I as an argument, accepts an ordered set of processed images 

1jä, (D',..., (I as argument, such that 

fiB, 
..., 

N 

(30) 
(Ai (qA (1), (pB (l), ... (pN(l)) 

will produce a better approximation of EA than each of the arguments 
0A «'ä' """! b by themselves. 

The operator co should not process the whole image in a global way, as none 
of the functions (pi process the image in a global way. As referred to in chapter 

two some of the operators are defined as a convolution between the image and 
a local operator or mask. Lets designate the raster scan operator as O( ). This 

operator just repeats over the whole image, row by row, the function in the 
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argument. Using this operator, some of the operators referred to in chapter two 

could be defined as 

ýpº = i3(M(x. y)) (31) 

where M(x, y) stands for a mask or local operator, which operates over a 

limited area of the image 

The same strategy could be applied in the definition of the function w;, as 
co; = *(Xi). Rewriting equation (30) as: 

n_ $(xt((DAxy+ CDBxyp ..., (DNxy+ )) (32) 

where xj is the function looked for, and which is able to perform the arbitration 
between corresponding small areas in edge detection maps. This form will also 

allow, in some cases, to imbed the arbitration process in the system without the 

necessity of generating intermediate pictures. Or, in other words, instead of 

n: -- $(xi(*(Mn)plXMa)9... 
t15(Mtv))) (33) 

it can be generated as 

= 13(xi (Mn, Ma, ..., MN)) (34) 

The form (34), if the functions MA, MB, ..., MN allow, is able to permit a more 

efficient implementation of the operator and is preferable to the form (33) and 

will be researched. This is due to several practical reasons. Firstly to allow the 

use of operators which do not assume the form (31) (e. g.. Deriche, see [33] 

[34] ). Secondly in the development phase, several networks will be tested over 

the same tuple of images. This allows for rapid development, avoiding the need 

to repetitively apply the same operator on the same image. 
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The arbitration operator Xi accepts as input the vectors constructed from 

corresponding windows of the image. Assuming a non commutative operator, 

and thus ordered arguments, the domain will be the reunion of the contra 
domains of each of the partial operators. This fact does not limit the scope of 

the operator being defined. Assuming the arbitration process works over a 
square window of wxw pixels, then the domain space for the operator Xi will 
have the dimension D=nw2. Windows will be restricted to odd values 
(w=3,5,7,... ), so that they can be centred on one pixel of the image array. 

The function Xi will accept a limited range of values, since it will operate over 
quantified images. The edge maps are restricted to the usual range {0... 255} by 

normalisation. This normalisation is performed to maintain the results within 

the range of values common in the image processing hardware. This 

normalisation is also performed as it limits the input to the arbitration system. 

The neural network addresses the problem of the approximate implementation 

from a bounded subset D of an dimensional Euclidean space to a bounded 

subset f(D) of am dimensional Euclidean space, through the use of 
input/output samples (ip,, op, ), (ip2, op2), ..., (ipP op. ).... such that opk f(ipk). 

The existence of a simpler network was stated by R Hecht- Nielsen as the 

'Kolmogorov Mapping Neural Network Existence Theorem' (op. cit, pp 122): 

"Given any continuous function f: [0,1]" -' 911", 8x) =y, f 

can be implemented exactly by a3 layer feed forward neural 

network having n fanout processing elements In the first 

layer, (2n+1) elements In the middle layer, and m processing 

elements in the top layer" 

The fact that the theorem is stated for an input defined in the unitary cube does 

not induce any other problem than the need for normalisation of the input 
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vectors. As the arbitration domain is by construction limited, it will suffice to 

normalise it by its upper boundary (255), for the function xr to be under the 

conditions of the theorem. This function is assumed as continuous. The 

theorem proves the existence of such a network. Unfortunately it does not 

suggest how it could be implemented, as Hecht Nielsen states. Although 

several authors assume that Neural Networks with 2 hidden layers are 

universal approximators, as stated by Vera Kurkova [94], the existence of a 

simpler network was stated by R Hecht Nielsen (op cit., pp 133): 

"Given any e >0, and any Lz function f: [0,1]" -4 91 there 

exists a three layer back propagation network that can 

approximate f to within e mean square error accuracy" 

L, is a function where each of the fs co-ordinates are square integrable on the 

unit cube. This functional space includes the continuous functions. and 

includes all discontinuous functions that are piecewise continuous on a finite 

number of subsets of [0,1 ]" (idem). 

This result suggests that a neural network is able to approximate the required 

operator function. Even if the function is assumed as discontinuous, the 

number of discontinuities is limited, due to the space quantification that results 

from the normalisation procedures. Although stating only the existence of an 

approximation it is enough for the purpose of the research presented. 

In many practical applications more than one hidden layer is often essential. as 
if a simple layer was used the number of neurons would be impractical. As 

Hecht Nielsen states that to obtain the above result: 
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"(... ) provide the confidence that comes from knowing that an 

appropriate backpropagation architecture must exist' (op. cit, 

pp . 133) 

When using actual configurations and learning laws some limitations of the 

mapping capabilities of these types of networks are described [47] [90]. 

3.4 Structure of a multi layer perceptron 

The term multi-layer perceptron is used where one or more hidden layers 

exists. The basic example is presented in figure 14. This presents a two layer 

perceptron network which contains two layers of weighted connections. 

between the input and the output. Each slab of neurons is defined by a vector 

which defines the geometry of the network. In this case the vectors are defined 

as I(i), H(h) and 0(o) for the three slabs going from the input (I) to the output 

(0). The weights are defined by the matrices Wh; and Woh, where the indexes 

are indicated in reverse order. These weighted matrices have the dimensions 

W,,; [H. I) and Woh[O. H] respectively. 
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i 

Figure 14: Perceptron structure 

Each neuron contains a value, designated as its activation function. The 

dimension of the input vector I is equal to the dimension of the input pattern 

(plus 1 if a bias is used). Similarly, the dimension of the output vector 0 is the 

dimension of the output pattern. If a bias neuron is used, the input and hidden 

layer will have an extra term, being in this case the coupling matrices of 

dimensions Wh; [H, I+I] and Wah[O, H+1] respectively. This term will allow a 

non null output for a null input. This extra neuron is assumed to always have 

an activation value of +l and thus will affect all neurons in the following layer 

only by the value of the weighted connection. 

3.5 Forward Step 

In the case of the forward pass learning phase a number of patterns are 

presented to the network. The nodes in the input layer only receive the patterns 

that are presented to the network and act as a buffer without performing any 
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processing function. Each node of the following layer is a weighted sum of the 

node values of the previous layers operated on by a function F( ). Assuming 

that a pattern P[i], with dimension I, is presented to the network, the value of 

each node in the hidden layer is defined by 

H(h) = Fh('E Wh, I, + WhJ) = Fh(± Wh11i) (35) 

where I; is a completed input vector, with I[I]=+1. 

The calculations for the following layers are identical and the same rule is 

applied 

0= F°( E1 TV°hHh + W011) = F°(E WV°hHh) (36) 
! r-0 H=0 

In the remaining text a bias term is denoted by *. 

The function F() is designated as the node threshold or transfer function. 

Usually the same transfer function is used for both layers, with Fh = F°. This 
function must be non decreasing and differentiable. The sigmoid function 

defined in (37) is the most common choice 

S 
I+e"" 1 (37) 

Where r is the slope of the function. usually set to one. The calculations of the 
following layers are identical and the same rule is applied. 
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3.6 Learning Objective 

Consider a given multi layer perceptron and a respective learning set 

LP = 
(I 

P, Op) . For each realisation of the neural network weights, a vector of 

actual outputs is produced 

Oa = N(w) xIp (38) 

The learning objective is to solve this equation in order to find N(w), allowing 

the definition of a weight set WL such that 

Op = 0Q(WL) =N(WL) X lp (39) 

As an algebraic solution is not known, an iterative solution was proposed by 

[145] as the minimisation of the function 

E(w) = 2115P 
- Öa(w)II (40) 

Among the different techniques for minimising a function of 9, back 

propagation is based on a steepest descent technique. 

The underlying idea of a steepest descendent technique is to move from the 

current position in space, in the best direction, to one with a smaller error. This 

learning rule was extended to the form known as the Generalised Delta Rule 

[145] and allowed for the development of a learning rule for multi-layer 

perceptrons. 

3.7 Backward pass 

The back propagation algorithm is based on the generalised delta rule. In the 
forward step, described previously, the calculations are performed starting 
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from the input layer, through every other layer until the output is obtained. 
From a feed forward pass, the error between the actual and the desired output 
is calculated. In the backward pass this error is propagated through the 

network in order to change the weights in a suitable way. 

The error term 6 is for a generic node given by (updating from pass k to k+1) 

8ö+1 = O0(1- Oo)(Op - On) (41) 

and for the hidden nodes 

pH 5k+1 =J (Hh) ö lVhibh 
(42) 

= HhO - Hh) 
jý 

1Vh, 6k 

The terms of the form X(1-X) are a more efficient form of the derivative f of 

the sigmoidal function. which should be used as the transfer function during 

the learning phase. 

The weight matrices are updated from the output to the hidden layer using 

Whö1 =w 0+Tj80Oo (43) 

and 

WVh Wh+TTShHh (44) 

The learning constant ri is predetermined for the system. 

Some authors add a momentum factor which has been shown to increase the 

convergence characteristics. given by 

nrý = a(dtvJ) (45) 
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and is proportional to the weight change in the previous iteration. The weight 

update equations being written as 

wjöl =wpo+lg8oOo+a4wVpo 

and 

(46) 

wkh' =Wk +ijShHh+aLtv,,, (47) 

3.8 Convergence criteria 

The backpropagation algorithm is an iterative process and as such it will 

continue indefinitely getting successively closer to the desired extreme. 
However, as the step is a fraction of the distance, it never reaches the extreme, 
but. can go as close as desired. 

The parameter used to perform the minimisation is the error term, calculated at 

the beginning of the backward pass in the learning process. The error term 

used is the mean square error (calculated over the full set of p training 

patterns), which for a network with k output nodes is 

EP =pp IOPrt - Dart) (48) 

being the coefficient :P usually omitted. 

However. in our case this parameter is not meaningful. as the main objective is 

for the patterns to be learnt and not the minimisation itself. Thus the counting 

of the patterns learnt is a better measure of the success of the learning phase. 
The best pattern recalling factor does not always correspond to the minimum 

average squared error. The fact that the error is decreasing, iteration after 
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iteration, does not imply that the number of patterns being learnt is increasing. 

Although a more robust solution is achieved and to some extent should be 

allowed, it will be meaningless to allow the learning phase to continue 

indefinitely. Due to these reasons, the number of correctly recalled patterns is 

also monitored. This value is more significant as a monitoring criteria, since it 

measures more accurately the objectives of the learning phase. 

3.9 Conclusions 

In this chapter the application of multi-layer perceptrons to the arbitration 

problem was discussed and some assumptions or practical hypothesis that 

could arise described. Nest, the mathematical theorems which support the 

work being carried out were presented. Finally the back propagation training 

algorithm for the multi layer perceptron was presented in detail. 

The next chapter describes the implementation upon a parallel processing 

platform of the algorithm presented in this chapter. The main parallel 

processing paradigms are presented first, followed by several experiments that 

were performed. Finally comparisons of different implementations are 

performed and conclusions drawn as to the best implementation solution. 
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Parallelism is the norm; Purely 

sequential problem solving is the 
anomalous restriction (Carriero [201, 

page 1) 

4.1 Introduction 

In the previous chapter the approach being researched was presented. as were 

mathematical results which show that such an approach is feasible. The neural 

network paradigm chosen was presented in detail, together with the equations 

used for the algorithm being developed. 

In the current chapter the implementation of the system upon a parallel 

processing platform will be described. The system described consists of a set 

of transputers, where the computational load is spread between them. 

However, the algorithm spreading has an adverse effect. as an extra load is 

introduced due to the necessary communication management. This requires 

algorithm efficiency monitoring throughout the development steps of the 

parallel system. 

This chapter has the following structure: Initially an optimal solution for the 

neural network implementation upon the transputer network is investigated 

and evaluated. In section 2 the transputer and some of the basic paradigms for 
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parallel processing are described. From these basic paradigms the most 

promising is chosen for the implementation of the neural network. The tests 

performed to assess its validity and advantages are described in section 3. In 

section 4 the results obtained are discussed. A second implementation 

paradigm, which leads to the final system. is next to be presented and 
discussed. 

4.2 Parallel processing - transputer approach 

The most common computing architecture used is sequential and is usually 

referred to by the acronym SISD. for Single Instruction Single Data. Although 

sequential computers are acquiring higher performance daily, parallel 

processing architecture can offer higher performance when implementing 

inherently parallel algorithms. 

Although a general parallel processing architecture classification does not 

exist, the architecture grouping due to MJ Flynn [40] is usually cited in the 

literature. Flynn classifies computer architecture in four classes. One of them, 

is the traditional sequential architecture. the SISD machines. Flynn's 

classification resides in the parallel nature of the machine. The second 

classification is designated as the SIMD architecture (Single Instruction 

Multiple Data). The third as the MISD (Multiple Instruction Single Data) 

architecture. For this architecture different processes can be performed at the 

same time, on the same data. The final architecture is the MIMD (Multiple 

Instruction Multiple Data) architecture. This consists a set of processors 

executing different programs, on different data, with the possibility of 

changing information between them. This is the most powerful. general and 

versatile case of Flynn's classes. It includes all the other classes as it is 

possible to implement the others classes using such a system. An example of 
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such a machine is a transputers network. A transputer can act as a conventional 

computer. or several transputers can be connected together to form a truly 

parallel system allowing for a wide choice of algorithm implementation. 

4.2.1 Transputers 

The transputer is a single-chip processor with is own central processing unit 

and memory. It also has the ability to exchange data with other transputers or 

devices. It allows the development of a truly parallel network of processing 

elements. which can be configured to suit the purposes in an optimal way. 
Each transputer has four communication channels and includes internal 

hardware support for parallelism. This allows a variety of parallel 

architecture's to be built and a wide range of options for program design. 

The allowable architecture is limited by the number of physical connections 

allowed. Some examples are presented in Figure 15. For the work reported in 

this thesis a further limitation exists, as the network is mounted on a TMB 166 

transputer board. For this board one link of the first transputer is connected to 

a switch controller. The use of this type of board allows for versatile hardware 

configuration. Although it originates an additional constraint on the network 

topology it allows for alterations to the network configuration. Thus several 

architecture can be implemented. This is done using the Network 

Configuration Software (NCSTM) provided by the manufacturer. The network 

used in this work is composed of a variable number of T8 transputers as most 

of the algorithms work on real values. However. a system could be 

implemented using a T4 network. by suitably changing the range of values so 

Transtec 
lnmos TM 
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as to allow for integer arithmetic. 

4.2.1.1 Transputer applications development 

Throughout this work the transputers were programmed in Occam', which is a 

language specially designed for them. There are other languages available, 

such as 3L Pascal or 3L Parallel C, however the Occam structure is very 

efficient to run on a transputer network. 

Figure 15 : Some basic transputer architectures 

4.2.1.2 User Interface 

The transputers are initialised through aC program. which boots and loads the 

executable code. This program was downloaded from the host computer onto 

the TMB 16 board transputers. where it is used to perform the main 

calculations while the host PC provides the graphical interface. as the 

Inmos TM 
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transputer board does not provide any graphical capabilities. This procedure 

also allows the use of the storage and retrieval functions of the C compiler. 

Acquisition, display, storage and retrieval of images, are done through this 

interface, as occasionally is some auxiliary processing. The storage and 

retrieval of the neural networks data is also done through the C program. Also 

the image display was done through the C interface, which can access the 

trident chip, allowing for the display of 64 grey levels', or alternatively, the 16 

grey levels provided by the VGA display. The display follows the access 

procedures described by Stevens [160] All the transputer code described 

throughout this thesis has a companion C program for the user interface. 

Communications are done using a set of procedures listed in the INMOS Data 

sheet for the B008 board [171]. These, along with the procedures to directly 

access a frame grabber [135] are the only library routines used through the 

work. 

4.2.2 Concurrency vs. Parallelism 

Concurrency and Parallelism. although similar concepts. should be defined 

precisely. When refering to programs running in parallel we mean that the 

programs run on different hardware, and thus they do not interfere with each 

other except when some communication is performed. 

Alternatively a processor can execute simultaneously any number of 

processes. Thus processes share the processor time. This is referred to as 'time 

slicing'. since the processor consecutively allocates a slice of time to each of 

the processes. A concurrent [111] program is defined as a program which has 

` Although it allows 2: 6 colours, each of the RGB components allows 64 intensities, 
and thus the number of grey levels possible to display are 64. 
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all the characteristics for parallel processing, but is processed on an alternate 

basis, giving the CPUs attention to different processes successively. This time 

sharing is done by a built in scheduler. The scheduler operates in such a way 

that inactive processes do not consume any processor time. In general a 

concurrent program runs slower then a corresponding sequential version due to 

the scheduler's overhead. Thus it is best to avoid the use of concurrent 

processes in a program, except when strictly necessary. This is also true when 

related to the mapping of several processes on a transputer network. The 

preferred procedure is to map different processes over different transputers, 

which truly work in parallel. However, to optimise the allocation of resources, 

the use of concurrent processes could be good practice, since it will maintain 

the versatility of the software while minimising the hardware costs involved. 

4.2.3 Communication model 

Another important notion when implementing algorithms on transputers. is the 

communication model used. Transputers communicate using channels. which 

are associated to a protocol. Communications in Occam are synchronised. A 

program will wait during a communication process until the data is sent or 

received by the other communicating process. Communications act as time 

regulators and can be detrimental to the performance of the program. since 

they can originate dead times due to careless disposition of communications. It 

is important to accurately position the communications between parallel / 

concurrent processes so as to obtain high program efficiency. 

It is also important that processes do not stop the program whilst waiting to 

receive (or send) values simultaneously. This is known as 'dead lock'. In the 

algorithms being implemented, this situation will not exist since the 
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communication sequence is predictable and adheres to a strict sequence. 

Communications are also time consuming and thus should be kept to a 

minimum. Also, the passing of values should be done in blocks. This will 

allow for the efficient use of the transputer communications protocol, thus 

reducing the data transfer time. 

4.2.4 The configuration of a transputer network . 

The transputer programs were developed using the Occam Toolkit and 
Transputer Development System (TDS)9. Occam allows for the transputer 

network to be configured at the hardware or software level, thus allowing for 

the definition of virtual nodes. This allows for a more versatile program 

structure. since independent programs can be allocated to the same transputer. 

Also, the whole system could be adapted to changes in the transputer network 

without changing the software or the logical network used. 

4.3 Fundamental Parallel Paradigms 

4.3.1 Introduction 

When programming a network of transputers. a large degree of freedom exists 

in the implementation of algorithms. In a sequential computer the 

permutations of single independent processes does not. in the majority of 

cases affect the performance. This is not so for a parallel processing system. 

The best performance will be achieved by the maximum use of the processors. 

Transputer Development System, Inmos Inc. 
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thus process allocation will play a crucial role in the implementation 

efficiency. Another key fact is that, if the number of elements in the network is 

incremented then the total processing time is decreased. at the same time the 

cost will increase. There will always exist an optimum value for the ratio of 

speed / cost, which will be more application dependent than algorithm 
dependent. 

The following subsections will briefly refer to some common paradigms for 

distributing processes over several processors. For each approach, the best 

suited type of algorithms will be included. 

4.3,1.1 Task or data parallelism 

An early classification of computer programs divided them into two 

categories, (i) the ones which carried out many operations on a very small 

amount of data and (ii) the ones that do not carry out many operations but 

process a very large amount of data. However, as with all classifications there 

are exceptions. This classification will allow for the investigation of the two 

basic paradigms. The core of the question is which is more efficient. to split, 

the data or the task? 

GH 

Sequencial case 
ate.. 

Sequence 

Parallel case 

Figure 16: Task Parallelism 
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In the first case, 'computation bigger then data' type of algorithms, results are 

usually obtained by the combination of several independent processes, applied 

to the same data, which in many cases can be performed independently. 

The sequential solution is to perform processes one after the other without any 

pre-defined order (see Figure 16). The natural parallel solution is to divide the 

algorithm into the different independent blocks, and to allocate each block to a 
different processor. Then join the results at the end. The time reduction is 

dependent on the number of parallel processes and their length. 

Communications have not yet been considered . 

The second case, 'data bigger then computations', a small number of 

calculations are successively applied to a large number of data sets. A typical 

case is a convolution operator. a category in which a large number of edge 

detection filters are included. Taking as an example the Roberts edge operator 

(the mean square version). Then two multiplication. three additions / 

subtraction and a square root are applied to sets of 65 thousand points. 

(assuming a 2562 image). The obvious approach is to split the data over 

several processors executing the same algorithm and collect the results in the 

required order (see Figure 17). Data parallelism is a natural approach to 

parallel processing for many image processing algorithms. It is used when the 

same operation is performed successively over independent sets of data. In the 

case of a convolution filter the data set is split over N,,,,, transputers. allowing 

a reduction in the processing time T, 
eq to 

r. ý, ýýt�ý rýý (49) 

where TC,,, d is the time consumed in the division of the image over the several 
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processors. 

GGG 

Sequuencºcase , 
ý-ý 

EJ 

Parallel ca: 

Figure 17: data parallelism 

These two topologies are designated as MISD and SIMD architecture's. 

respectively. 

4.3.1.2 A process farmer 

Frequently an intermediate situation between these two cases exist. Some 

condition. sparse over the data, could in a random way increase the computing 

time of one of the processes. and thus unbalance the system. The solution is to 

spread the algorithm over an adequate number of several processors and feed 

the data to the processors, as they became free. This correspond to a 

combination of the previous cases. 

4.3.1.3 A pipeline 

An important group of algorithms. such as recursive algorithms, are not suited 

to any of the implementation cases referred to so far. Some algorithms. 

performed over an extensive series of values, must be sequentially performed 
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due to the fact that at step n+l, information is required which has been 

calculated during step n. As soon as this information is known step n+l could 

start, even if all of step n has not been completed. Thus partially overlapping 

the current sequence with is predecessor can be carried out. An example is 

schematically represented in Figure 18. The temporal sequence of the different 

processes is shown processing a sequence of data items. In this case, three 

independent sub-processes are concatenated. After the initial data has been 

through the system the data throughput will be the execution time of the 

slowest sub-process. 

J'®ý® proc A 

proc B 

Iýý4 proc c 

Figure 18: Time sequence of a process with 3 steps in a three processor pipeline 

4.3.2 Efficiency and Granularity 

The advantages of the distribution of a program over several processors is a 

compromise between the reduction in execution time. due to the slicing of the 

algorithm. and the increase in communication time. This factor is usual 

referred to as granularity. The minimum time an algorithm can be reduced to 

by a parallel processing system is bounded by the communications time. 

Quite often the advantages of the use of one of the paradigms are not always 

clear and the difference between a parallel and a sequential process distributed 

by several processors could be so small as the change of a PAR by a SEQ 

construct in one of the programs. As an example. consider the pipeline shown 
in Figure 19. The first processor (A) acts as a controlling system and buffers 
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the communications with the host computer. The core task in each of the 

processors is irrelevant for the discussion. and is assumed to run without 
interference of the communications sequence. Processor A, sends values to 

processor B and receives the results from processor C. The program running in 

processor A has four actions : 

al - Receive data from host 
a2 - Send data to B 

a3 - Receive results from processor C 
a4 - Send results to host 

Process B and C, receive values from the previous processor, processes them 

and send them on. This structure is advantageous where values are presented 

sequentially, as seen in Figure 18. In this situation when process C is 

processing the nth data. process B is already processing the (n+l)th data point. 

and so on. Due to the synchronism in communications, if sub - processes a2 

and a3 are performed sequentially then the system will work sequentially. 

Process A. will stop in sub-process a3, waiting for the results. Process B will 

be waiting for process A to send new values, but process A is stopped in 

sub-process a3 waiting to receive values from process C. Only after process C 

had finished will process A return to process a2 and is then able to send a new 

set of values to process B. At this time process C is waiting for the results of 

process B and thus, the overlapping processing time is null. The advantages of 

the pipeline. are only obtained if processes a2 and a3 are performed in parallel. 

so that process B can feed at the same time as Process C is unloaded. and 

without any interference. 
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FAI 711 o 
Figure 19: Basic pipeline structures 

It is important to check during developing the architecture that the increase in 

speed obtained by the different allocations maximises the use of the available 

resources. 

The relationship between the duration and the number of processors is not 

linear, due to the communication term. In addition, there are other factors that 

can affect the optimisation time of parallel programs. For this reason it is 

strongly advisable to access continuously the improvements achieved by the 

parallelisation process in order to maximise the system performance. 

Through this work the performance of the parallel implementation will be 

compared to the sequential solution. This comparison is carried out upon the 

same implementation so that other factors do not interfere whilst the 

comparisons are being made. Also. the intermediate allocations will be tested. 

This procedure is useful so as to easily locate critical length paths of the 

system performance 

90 



Chapter 4 System Implementation 

4.4 Neural Network Implementation 

4.4.1 Pipeline implementation of a Multi-Layer Perceptron 

The input patterns to the neural network are vectors extracted from different 

edge maps concatenated. During the learning process the extraction and 

concatenation process are implemented separately. However, it will be 

impractical for the application itself to implement them separately as it is time 

consuming and the amount of intermediate data generated increases 

unnecessarily. The first process (process A in Figure 19) receives the images 

from the host computer and generates the vectors that become the input values 

to the network. To this process was initially allocated one physical transputer 

(M) as in Figure 20. The process sends, concurrently, the vector for the next 

process and waits for the results to be presented by the last process. Another 

transputer was initially allocated to each of the other two processes (processes 

H). These two processes are identical so as to allow for the addition of layers 

by interposition of the same program. The communications are performed in a 

ring. 
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Figure 20: Process allocation on 1,2 and 3 transputers 

Due to the unbalanced size of the networks used. the processing time due to 

one of the layers could override the other processes execution times. In this 

case some of the remaining transputers will be superfluous and could be 

allocated to different jobs. The different allocations tested. are represented in 

Figure 20 and computing times obtained are shown in TABLE I. These values 

refer to the time taken. in seconds, to compute 9 lines for two images of a 

diverse nature (A and B). 
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TABLE I 
Execution Times on a Pipeline implementation 

Network Size 

Configuration 18.2.1 18.20.1 50.25.1 50.50.1 

Transputers Processes A B A B A B A B 

I 1 15 10 116 70 =tip I)2 500 339 

3 17 12 119 85 291 176 572 345 

2 0+12 II 8 91 65 223 135 444 267 

2 01+2 15 9 113 79 285 170 447 270 

2 02+1 11 9 92 67 225 137 561 335 

3 3 9 6 97 61 218 130 436 259 

Time ratios are shown in Figure 21. They are calculated as the time taken by 

the algorithm to run on the number of transputers divided by the time on a 

single transputer. Process allocation follows the sequence in TABLE 1. 
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Figure 21: Allocation time ratios for the pipeline implementation 

From the graph it can be seen that the allocation over three transputers is the 

most efficient choice. Another interesting point is that although ratios of 1/3 

could be expected they were not obtained. This is due to the communication 

time used to propagate values between processes. Optimisation of the 

93 



Chapter 4 System Implementation 

processing time for layers is next to be considered. 

4.4.2 Layer processing 

With the exception of the master process (M) each process implements a laver 

of the network, as represented in Figure 20. Each H process comprises four 

main actions: 

1- Receive vector 
2- Multiply the coupling matrix by the vector 
3- Calculate sigmoidal of each element 
4- Send vector to the next layer 

From these the two most computationally intensive actions, that can be split 

over more then one transputer. are the matrix multiplication and the 

calculation of the sigmoidal function for each of the elements. These are the 

areas where distribution could reduce the processing time. 

For this purposes. the transputer network was increased to the network shown 
in Figure 22. The mapping of the neural network on the transputer array is 

again done in layers and implemented as a pipeline. 
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Figure 22: Transputer network 

The structure used allows a pipeline implementation of the network using the 
internal ring (R, 1.0,2.0). or the external ring (R, 1.0,1.1,1.2,2.1,2.2.2.0). It 

also allows for each layer to be mapped on a set of transputers, dividing 

ý. 

Figure 24: Process structure 

between them the coupling matrices and multiplication procedures. resulting 
in a speed up in computation time. This has been done for both layers using 3 

transputers for each of the H processes. From Figure 22 the pipeline, runs 
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between R, 1.0 and 2.0. The layer processing H is split between another 2 

transputers. 1.1 and 1.2 for the first layer, and 2.1 and 2.2 for the second layer. 

Transputers 1.0 and 2.0 run the same program as the program loaded on 

transputers 1.1,1.2,2.1 and 2.2. 
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FiSr,:: e 23: Allocation of processes on 7,5,4,2,2,2.1, and 3 transputers 

Experiments were conducted again for the different possible mappings, 

through the use of the seven transputers and for several network sizes. as 

shown in Figure 23 
. Here M is master process. and a partial Hidden layer 

process is designated by H'. This process is complemented by two parallel 
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processes designated as w. Process allocation is shown for each of the cases 

with the communication rings used. TABLE II shows the increment in time 

ratio, between the time used to compute x lines with n transputers and a single 

transputer running concurrent processes. 

TABLE II 
Efficiency allocation up to 7 transputers 

Process f\lluLahion 

size Imago AI A2a Alb A2c A3 A4 AS A7 

18-20-1 A I 11.61 0.56 0.83 0.5 0. ') 0.30 

18-20-1 B I 0.69 0.54 0.77 0.54 0.46 0.46 0.46 

50-25-1 B 1 0.78 0.75 0.96 0.75 0.49 0.48 0.48 

1 
0.9 

t. 0.8 

R 0.7 
g 0.6 
W 0.5 

0.4 
0.3 

Alocation 

F-A+-B 

Figure 25: Time ratio allocation up to 7 transputers 

From Figure 25 it is visible that the increment in computing speed is not 

proportional to the resources used. It is also clear that between 4 and 7 

transputers no increase in performance resulted. This is due to the smaller size 

of the second layer used in all networks, since the output of all networks, is l 

node (omitted in the legend). 

This shows clearly that a different allocation of resources is needed. In fact, 

the time used by the processes in pipeline extremities, should be smaller than 

the time for the middle layer. The alternative, is to reallocate resources from 
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this process, in favour of the middle layer. This can be done by allocating 

transputer 2.1 and 2.2 to the first layer, making a ring of 5 transputers to share 

the matrix multiplication. 

This configuration is presented in the following section 

4.4.3 Cross architecture 

The structure described in this section is the reinforcement of the resources 

allocated to the first laver. We will refer to this structure as a cross, due to the 

shape of the schematic diagram. All four transputers that do not belong to the 

inner ring are allocated to the middle layer. The system works in this case 
based on a pipeline in the inner ring, with the four remaining transputers 

allocated to the first layer (Figure 26). 

", ýRý 

Figure 26% Process structure is cross architecture 

The splitting of the main matrix multiplication could be done between the 

different workers by lines (li) or columns (co), depending on the relative 
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dimensions of the lines and columns. Two different node allocation schemes, 

where the matrices are split by lines between the transputers, are shown as li 

and li' in Figure 27. These correspond to different transputer loads on the inner 

ring. Time ratios obtained are shown in Figure 27 and are related to the full 

pipeline on one transputer. 
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Figure 27: Time ratios for different allocation of lines between processes on 7 
transputers 

Although in the previous cases the best choice was independent of the size of 

the network, at this stage fine tuning is necessary to obtain the best 

performance. 

To confirm the validity of the results, the program was altered to allow for 

Neural Nets having continuously increased sizes. Although these networks do 

not correspond to any solution, the time consumed to process several lines will 

be independent of the networks. Results are shown in Figure 28. 

The first case is for a 50 input neural network, which corresponds to a 52 CO) 

window working over two images. The values presented are the time in 

"' This short form is used through the text as square windows are used. 
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seconds to output 9 lines of an image. It is clearly visible that with the 

exception of the very small networks, the column splitting option will be the 

best choice. This is due to the fact that it allows more efficient distribution of 

calculations, since the sigmoid function could also be distributed over the 

network used. It also highlights the fact that, in this case, the time consumed is 

not proportional to the size of the hidden layer. This is due simply to the 

allocation system used. Instead of an equal load, the system allocates n/w 

columns to each of the w workers, and the remaining to the main one. In this 

case 5 transputers are used which explains the period observed in the graph. 
Similar results are obtained for a smaller network. 
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Figure 28: Processing time for different hidden layer sizes for the different 
allocations tested (Neural network with 18 input neurons and 1 output neuron) 

4.4.3.1 Analysis 

In this section the testing of several architectures, for the distribution of a 

neural network over several transputers, with emphasis on size is presented. 

When splitting a simple algorithm over several parallel or concurrent 

processes an extra computational load due to the communications and 

spreading of the data will exist. This slows down the performance of the 
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concurrent version. The relation to the cheaper solution of 1 process on 1 

transputer reveals that the economy obtained is substantial, the best results 

obtained being about 40%. The different results, related to the 1/1 solution, are 

presented in Figure 29. 
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Figure 29: Time ratios related to one process 
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For the smallest network (18-2-1) , the last mapping of the multiplication by 

columns in a 5-1 transputer structure appears a little strange, in that the parallel 

solution is less efficient than the sequential implementation running on similar 

processors. This is due to the system that is used to assign columns to the 

different processors. Indeed, in this particular case we have the sequential 

solution, since all columns are allocated to the first transputer. Extra work is 

carried out due to the spreading of, in this particular case, meaningless vectors 

across the communication rings. 

In this section we explored the capabilities of the pipeline implementation of 

the Multi Layer Perceptron. Although a general solution was pursued, the 

results obtained do not fulfil our expetactions. This is due to the amount of 
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values that are continuously flowing through the pipeline, which deteriorates 

the performance. Effectively, for each point in the image we are propagating 

intermediate real values, which is a time consuming activity. Although, the 

number of values could be reduced, a different strategy should be used. 

4.5 Data Parallelism 

In this section a data parallelism approach to the mapping problem is explored. 

The parallelism is developed to the arbitration process, being the learning 

performed in a sequential system prior to the test of the solution. In this 

implementation each of the processors runs the full sequential program (which 

is more efficient than concurrent ones), with the same neural network, with 

each of the processors processing a subset of the image. This approach will 

allow a simplified strategy for the implementation of a complete system, since 

most of the edge detection algorithms are very suitable for a data parallelism 

implementation. 

PC 

Wa 
Q 

-Ew 

W W W W 

Figure 30 : Process structure for Data Parallelism 

4.5.1 Structure Of A Data Parallelism Program 

In the preceding section, the aim was to spread tasks over several processors, 

102 



Chapter 4 System Implementation 

in order to reduce the time used to perform the overall task. The aim now is to 

reduce the size of the overall task, spreading over several processors the data 

to be processed (Figure 30). This is accomplished by dividing the image into 

an appropriate number of sections, which are processed independently. These 

are chosen as consecutive stripes, allowing for the minimisation of 

communications time when dividing the image over the seven processors. The 

convolution nature of the algorithms used allows the processors to perform 

completely independent jobs, if they respect the condition that a margin is 

included in the image sections. The same algorithm is executed on each 

processor. In addition to the sequential program, procedures must be added to 

propagate the neural network coefficients and the images through the complete 

set of processors. The number of lines to be processed by each of the workers 

should be evenly distributed over the appropriate set of processors. 

4.5.2 Implementation 

The communications procedures spread equal values over all processors in a 

linear way. All communications are done in the first and last sections of the 

algorithms. The network structure is the same as used before. The 

communications are implemented as a ring, to minimise the number of 

programs used. The first transputer communicates with the C interface. It 

sends data to the second transputer and receives back data from the last. As 

before, such a structure simplifies the expansion of the network. 

TABLE III shows the times obtained using this system on 7 processors, and 

the corresponding time ratios obtained are presented in TABLE IV. To obtain 

these values, the same images and networks were used as before, although all 

values are now with reference to a full size image (256 x 256 pixels). 
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TABLE III 
Comparison of execution times (seconds) 

Network Size 

18-2-I 18-20-I 50-25-1 50-50-1 

Single Process' 246.4 2, Ü3X., 1 -1,300.8 8,422.4 

Data Parallelism 47 436 820 1,347.58 

Pipeline" 156.8 672 1,635.2 3,180.8 
* V: d list'xlril lawd Irum 9 lines 

** IJcm 

TABLE IV 

Comparison for Relative time ratios on 7 processors 
(related to 1 processor) 

Network Size 

18-2-I 18-20-1 50-25-1 50-50-1 

Data 0.19 0.21 0.19 0.16 

Pipeline 0.64 0.33 0.38 0.38 

The values obtained show that better performance is achieved using the data 

parallelism approach rather than the pipeline approach. Both systems use 

exactly the same hardware. The data parallelism technique is used for the 

simulations within the remainder of this thesis. 

4.6 Conclusion 

In this chapter several architectures have been tested as to their effectiveness 
for the implementation of the Neural Network arbitrator. Firstly the transputer 

and the basic parallel processing paradigms were described. Next the 

implementation, following the natural pipeline structure, of a multi layer 

perceptron neural network and the allocation resources were investigated. 

Finally, the implementation was restricted to the problem being researched, 
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and the suitability of a data parallelism implementation investigated. 

Measures were taken of the efficiency of the various implementations. 

The next chapter, will describe the behaviour of several edge detection 

techniques. Their performance, on diverse images, will be presented, and their 

behaviour and limitations characterised. In the second part of the next chapter, 

the development of a neural network for edge detection is described. The 

procedure followed is presented along with the tests performed. The 

performance of the operator developed is compared with the other described 

methods . 
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5 PERFORMANCE COMPARISON 
BETWEEN VARIOUS EDGE 
DETECTORS 

"Naturae enim non imperator, nisi 
parendo"" 
Francis Bacon 

5.1 Introduction 

In the previous chapter the implementation of a neural network system upon a 

parallel processing platform was described. Main parallel processing 

paradigms were considered, with regard to the algorithm to be implemented 

and a best implementation decided upon. 

In this chapter some examples of edge detection techniques are presented and 

their performance evaluated. The objectives are twofold. Firstly, to act as a 

comparison standard for both the neural edge detector and for the neural 

arbitrator. Secondly, to allow a selection criterion to be defined between 

different edge detection schemes that will be used for the arbitration schemes 

presented in the next chapter. Properties of each method are emphasised and 

comparisons drawn between them. The methods implemented are briefly 

described (appendix A contains a full description of the implementation). The 

criteria and method used to train neural networks for edge detection are 

Nature cannot be ordered about except by obeying her 
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presented, along with examples of their performance. The motivations for the 

options assumed along with examples are presented. Experiments performed 

to evaluate the solutions obtained are also presented. 

5.2 Performance comparison of various edge detectors 

5.2.1 Introduction 

The first part of the work to be carried out was the implementation of edge 

enhancement operators. suitable for inclusion in the arbitration scheme to be 

developed later. These were implemented in Occam. as procedures supported 

by aC interface. and were similar to the ones used for the neural network 

implementation. 

5.2.2 Images 

All the tests presented were carried out on standardised images of fixed size 

and containing 256 grey levels. The image size was chosen in order to 

preserve a suitable amount of detail without making them impractical to use 

due to their size and memory requirements. Although a smaller size image 

would make processing easier and save on storage. minimising problems with 

disk space that regularly appeared, the visual contents would be lost due to 

their scarcity of detail. The images used provide a common base to the 

experiments performed. and permit direct comparisons between any of the 

results presented. It is expected that this will minimise the appearing or 

disappearing of features, in the processed images. due to the sampling. 

resizing or contrast corrections performed by the printing system used. 
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The images are stored and manipulated as raw format files. They are 

transferred to a TIFF12 uncompressed format by the addition of a suitable 

header [139]. These images are then converted to a compressed format in order 

to save storage space. Apart from this, images are presented without further 

processing, unless explicitly mentioned. The majority of the pictures are 

presented negated to give more clarity and to save on toner. This inversion 

uses a linear look up table where white corresponds to the value 0 and black to 

the value 255. 

To process the image border several artifices are used (rotation, reflection. 

filling, extrapolation, etc. ) requiring the extension of the image size in order to 

accommodate the algorithm requirements. Except for the cases where the 

exterior border could be extrapolated from the image, the processing generates 

discontinuities in the border of the image. These could originate transient 

effects in the border vicinity, thus they are not processed. 

'' Tagged Image File Format 
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Figure 31 : Lenna Image 

Figure 32: Girl Image 
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Figure 33: Squares image 

Figure 34: Band A 
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5.2.3 Image type 

5.2.3.1 Image Selection 

The selection of images capable of showing the performance of edge detection 

techniques is not a straightforward task. This selection is also highly 

dependent on the objectives or particular features that are required to be 

characterised. Several types of image are suitable candidates for the envisaged 

task, all presenting good and adverse characteristics. An image can easily be 

selected if some particular objective to the analysis is required. The selection 

of an 'average' typical image, if possible, is not an easy task. The basic images 

that can be used are artificial images. Examples of such images are the steps of 

different grey level amplitude and orientation as used by Pratt in the definition 

of his figure of merit (see section 2.1, [137]). Although these could be 

generalised for squares or circles of different amplitude in order to widen the 

edge orientations covered, they will lack some of the adverse features that are 

present in some real images. Their biggest advantage however is the fact that 

they can be used as patterns, since they are completely defined, as the edge 

position and shape are known. If the images are simple enough position errors 

can be easily computed. as error direction in marked edges can be 

unmistakably defined. This is, probably, the reason why line steps are used in 

Pratt's figure of merit. An example of such an image is shown in Figure 35, 

consisting of a single vertical step edge. If a bias in the edge position is 

introduced. by an edge detector, then this is measurable in the horizontal 

direction. To these pictures a small amount of noise could be added. or the 

image could be blurred. However, such images are unable to reflect some 

common problems present in real images, such as the behaviour of the edge 

detector when applied to more elaborate shapes. 
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This problem can be overcome by the use of more elaborated images. 

However, the simplicity when computing the edge bias would be lost. Images 

with more elaborate characteristics are used throughout the thesis (Figure 34, 

Figure 90, Figure 112). These image, which we will call Band A, Band B, and 

degraded Band A, are artificially generated. They consist of a stripe with a 

randomly varying radius and a randomly varying grey level slope. Figure 112 

is a degraded version of Band A, blurred, and with added noise. 

These images have a background grey level of 128. In all of them the stripe 

covers a wide range of grey levels with a reasonable distribution. Figure 36 

presents the histogram of Band A, with the background points attenuated, in 

order to enhance its shape. Band A and Band B form a pair of images which 

have an important role in this work, as they act as learning and testing patterns 

for the neural networks to be used later. 

Some images have acquired a standard status due to their wide general use. 

Examples of these images are presented in Figure 31 and Figure 32, referred 

to, respectively as Lenna, and Girl. They are complex and thus it is difficult to 

perform any quantitative comparisons. Also, due to the non existence of an 

edge map, other than that produced by an operator, an absolute grading is not 

achievable by the use of such images. However, the use of such images allows 

for a rough comparison with published results. These comparisons can not be 

accepted directly and without limitations, since different image sizes or 
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auxiliary processing, not always completely specified, will affect the results 

and performance. 
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Figure 36: Histogram for Band A 

A fourth image (Figure 33), also artificially generated. consist of squares over 

a background which has a grey level of 128. This image is intended to work as 

a gauge for different conditions, in terms of contrast and robustness to noise. 
The squares have eight grey shades ranging from black to white, from top to 
bottom, and the amount of noise varies from left to right by an amount 

proportional to the positional index. This image was preferred to the 

checkerboard image, used by several authors [61] [157] as it allows a wider 

range of contrasts between squares and background. and also allows the 

characterisation of edge positions. 

However the final and most authoritative comparison should be drawn from 

the images to which the different methods will be applied. These images will 

contain all different imaging effects, favourable or unfavourable. to the same 

extent that the method or methods used are going to encounter in their 

particular application. It is intended that a general purpose tool is developed 

and thus a 'classical' set of images were chosen for the tests. To avoid errors 

that could arise from the interpretation of a particular image. more then one 
image is presented for each method. 
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5.2.3.2 Comparison criteria 

The definition of a comparison criteria is dependent of the objectives. Our 

objective is the selection of sets of algorithms to be later used in the arbitration 

process. Different algorithms generate edge maps which are distinct enough to 

evaluate the differences between them. As a consequence of the different edge 

concepts cited in chapter 2, there is an inability to define the concept of 

important edges in a general context. Edges are perceived by observation thus 

the first comparison criteria is visual. Indeed, as we are able to understand the 

image and the 'objects' represented, it is an easy task to mark and evaluate, 

although subjectively, the completeness and quality of an edge map. This is 

the 'only performance measure of ultimate importance' according to W. K. 

Pratt ((1371). The fact that we are able to identify the objects presented in an 

edge map through our ability to evaluate the shape of the produced edges. 

makes this type of analyse more significant than a statistical technique, that 

does not take the shape into account. Although some quantitative criteria 

related to a particular feature is useful for an accurate grading, of edge maps or 

edge detection schemes, when adopting a general purpose approach they are 

insufficient. As a general purpose tool is intended, the first comparison criteria 

will be visual. However, it is important to easily distinguish differences in the 

edge maps produced by the different edge detection algorithms. This process 

involves the operation on a pixel to pixel basis. Common operations 

performed are (for two images I.,, and Iß 
, and where w is a weighting factor. 

with 0<w<l ): 

Subtraction: (! a(x, y)-IB(. IB(. -128 (50) 

The shift is done to allow positive and negative values to be displayed with 

opposite tones. Pixels with equal values in both images will appear as middle 

grey (128) in the subtracted image. 

Blending: 11(x. y)xIV +le(x. y)x(1-w) (51) 
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The weighting factor iv used is 1/3. This process is used for binary images 

which are defined with grey levels of 0 and 255. In this case common points 

reach a grey level of 255 and non common points, grey levels of (1/3)*255 and 
(2/3)x255, respectively for the first and second images. The resulting image 

could be enhanced by the use of false colours to distinguish small differences. 

The value of 255 is obtained by thresholding, as binary images are usually 

stored with an intermediate grey level (128). The reason for choosing an 

intermediate value is related to the display of the images on the screen. If a 

high value was chosen then lines would be displayed with a very high level of 

intensity, which results in smearing and loss of definition. 

A third method uses the addition of images: 

Addition: ax IA(x, y) +bx IB(x, y) (52) 

where the constants a and b are chosen in order to increase the contrast of the 

resultant image. An operation ('lighter')" that selects the brighter pixel : 

Lighter: max (Iq (X, y), la(x, y)) (53) 

However, some of the images obtained are very similar and difficult to grade 

or select just by visual analysis. Thus, as an aid, some measurements are 

carried out. These are done by counting the number of selected pixels 

according to an explicit criteria. which is particular to each of the images used. 

This criteria is based on the particular features. within the image, which reflect 

the performance of each of the edge algorithms being tested. Thus a particular 
feature is characterised and a figure of merit defined. 

" For a direct Look Up Table. i. e.. linear increasing values from black =0 to white 
=255 
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These values however do not take into account some important features of the 

edge maps (e. g. continuity, edge shape) and thus are used as a complement to 

the other methods. In the cases where the objective value is unambiguous the 

measures are normalised using that value. In the bands images a subtraction 

between the processed image and the reference edge image is done. This 

operation produces three types of values, negative, null and positive, 

corresponding respectively to categories where points are wrongly marked 

(W), correctly marked (C) and missed (M) in the edge map being analysed. 

The number of pixels in these categories are counted. As an uncertainty of the 

edge position could remain, a second reference image is sometimes used 

which is an enlargement of the thickness of the reference edge (3 points), 

referred to as an 'extended' image throughout the text. This map is produced by 

replacing each pixel in the edge reference map by a square of three by three 

pixels centred on the same position. As the values C, M and W have different 

ranges they are normalised by the length of the line used, using the ratio ()/r, 

where r is the number of points in the image used as the reference and () 

expresses the substitution parameter. This ratio is used so that values from the 

images can be compared on an equal basis. These parameters can however be 

misleading even in a normalised form, as a fully marked image will have all 

edge points correctly marked and a blank image will not show wrongly 

marked points. To avoid this problem other ratios are defined , designated as 

edge quality (EQ) and edge map quality (MQ) as follows 

EO = 1; 
ýc (54) 

MQ = u"ýc.. tý (55) 
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The map quality coefficient measures the number of marked points over the 

overall image related to the reference image. The missed points are included 

so operators that mark a small number of correct edge points are penalised. 

The edge quality coefficient refers only to the marked edges. TABLE V, A 

and B, represents reciprocal measurements, for Band A (Figure 34) and Band 

B (Figure 90 ) and can be used as a reference for optimal values in each of the 

cases. In Table V the number of points counted are also presented in a 

normalised form, where they are divided by the number of points that 

constitute the reference line. 

TABLE V-A 
Reference Values for Band A Edge Map Evaluation 

Reference Values 

Band A 
Map Ext 

W C M EQ MQ W C M EQ MQ 

P 0 1,323 0 1 1 0 1,323 2,811 1 0.32 
Map P/T 0 l 0 0 0.03 10.68 

P 2,811 1.323 0 0.32 0.32 10 4,1341 0 11 
Ext P/T 2,015 1 0 0 10 

. ABLE V-B 
Reference values fcr Band a Edge Map Evaluation 

Reference Values 

Band B 
Map i Ext 

tVC M ý EQ MQ ýW CIM EQ (%1Q 

P01.6221 0 1 10I 1.622 3.337 1 0.33 
Map P/T 011 0 0 10.33 10.67 

P 13,337 11.6231 0 1 0.33 0.33 0 4,9591 0 11 
Ext i P/T 12.06 11 0 0 1! 0 
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In the case of the squares image it is possible to define precisely the position 

of the edges without a reference picture and as it covers a wider range of 

conditions it allows for the algorithm response to be measured in a more 

meaningful way. 

The squares image is divided into the 64 squares. Each one corresponding to a 

different contrast and average noise quantity combination. For each of the 

squares the points in a neighbourhood from the correct position (±1 pixel in 

the direction normal to the edge) , the marked points inside the square and the 

points marked outside the square are counted. As the points outside the square 

have the same grey level the value obtained reflects the behaviour of the edge 

detector due to the noise only. 

The non edge values inside and outside, are normalised by their maximum 

values, 240 and 720 respectively. The edge values are normalised by the 

precise length of the line measured in pixels (64). Optimal values are 0 for the 

outside area, 1 for the line and 0 for the inside area respectively. Values for the 

line coefficient greater than one reflects the width of the line. The maximum 

values attainable are different from the values above as neighbouring pixels 

are not counted twice. These are shown in TABLE VI. 

TABLE VI 
Reference values for the Squares image 

I Line Inside Outside 
Optimal I00 

Real 3 0.77 0.9 

For some of the methods investigated. details from the girl image are 

measured. In these cases a small area of the image. surrounding the detail, is 
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measured or the detail highlighted by changing the colour of the marked points 
These are then counted from the histogram of the image. 

5.2.3 Methods Implemented 

From the extensive set of algorithms presented in chapter 2a selection of 

which to implement must be made. To facilitate this choice a number of 
books were utilised to catalogue widely used algorithms. These are 

summarised in TABLE VII. The practical problem of implementing and 

evaluating all the algorithms that have been proposed in the literature is 

beyond the scope of this work thus the choice of the most common used 

algorithm types was felt to be eminently sensible. 

TABLE VII 
Edge Detection Method Algorithm Selection 

E 

erators L_ O _= r u >. p 
nz_ tC c Cl ne 

s 
Ref z r. _ oe 1 

_<v Books 
XXX xxx 

a xX X X 
cmun xXX X X 
fý XXX X XX XX 
uf1Ld eL C :1 x ý, r /ý 
UII JCi! Xx xx xxx 

Tested to ® 13 ® ®® 11 ä 

x Cited Cl Implemented 0 Similar algorithm implemented 

Classical local operators are preferred to ensure their practical usefulness. The 

selection is done with the purpose of covering different approaches. Widely 

cited methods were chosen to be implemented. It is assumed that the selection 

performed by each of the particular authors is based on criteria of 

performance. usefulness and representativeness of each particular approach. 
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They were also selected according to their implementation characteristics and 

similar approaches to the ones described are implemented, if they seemed 

more promising than the cited one. The Hueckel operator was one such case 

and it was replaced by the algorithm proposed by O'Gormann, which due to 

the use of square windows and Walsh functions seems to be more 

computationally efficient. A similar method to the one used by Canny, 

suggested by Deriche. was implemented as it allows for a recursive 

implementation. The complete and detailed description of the implementations 

are presented in Appendix A. The different methods implemented will be 

discussed in the next sections. 

5.2.5 Derivative approaches 

The first choice was to select the most natural approach. since edges are grey 

level changes the simplest way of detecting them is to measure the local 

gradient of the image. Of the algorithms presented in chapter 2 the Roberts, 

Sobel and Prewitt operators were chosen. as they are simple and 

computationally light. The localisation properties are a direct consequence of 

the definition and threshold used. They are able to mark the maximum of the 

derivative but require a search of the maximum in order to obtain a thin edge. 

as it is marked proportionally to the slope. The Roberts operator has an 

intrinsic half pixel error corresponding to the uncertainty in the centre pixel 

covered by the mask. The main disadvantage of this type of operator resides in 

the lack of robustness. due to the high pass frequency characteristic of the 

differential operator. Another practical limitation appears as a direct 
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consequence of this fact. As the edge selection is performed as a threshold 

process, the weakest edges are discarded together with the noise in the edge 

map. 

The selected images processed by these methods are shown in Figure 37 

through Figure 48. 
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Figure 37: Lenna processed by the Roberts Operator 
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0-9201, 
Figure 38: Girl processed by the Roberts Operator 
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Figure 39 : Squares processed by the Roberts operator 
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Figure 40: Band A processed by the Roberts Operator 

Figure 41: Lenna processed by the Sobel Operator 
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Figure 42: Girl processed by the Sobel Operator 
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Figure 43: Squares processed by the Sobel operator 
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Figure 44: Band A image processed by the Sobel operator 

Figure 45: Lenna image processed by the Prewitt operator 
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Figure 46: Girl image processed by the Pr witt operator 
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Figure 47: Squares processed by the Prewitt Operator 
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Figure 48: Band A processed by the Prewitt Operator 

5.2.6 Templates 

An operator which uses a formal distinct approach and which has a similar 

form to the derivative approaches implemented is the one proposed by Frei 

and Chen. Although formally distinct, it uses a set of convolution masks and a 

more elaborate threshold. Both complete and short forms of the technique 

were implemented, without any relevant difference between the results being 

noticed. The short version is used as it is more computationally efficient. The 

output of the short implementation of the Frei and Chen operator when applied 

to the selected image is shown in figure 49 through Figure 52. 
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Figure 50: Girl processed by the Frei and Chen Operator 
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Figure 49: Lenna processed by the Frei and Chen Operator 
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Q C1 0 0 0 Q Q Q 
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Figure 51: Squares image processed by the Frei and Chen Operator 

Figure 52: Band A processed by the Frei and Chen Operator 
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5.2.7 Second Order derivatives 

The second group of methods investigated are the zero-crossing and optimal 

approaches methods. They have several advantages over the previous group, 

namely that they mark edges more completely and thinner. The main 

advantage resides in the production of one line thick edges. The edges 

produced form closed contours in most instances. Their main disadvantage is 

the fact that they produce a large number of residuals, due to their frequency 

response. An example of such operators is the Laplacian. It marks one pixel 

wide closed contours if no noise is present in the image, otherwise the amount 

of features originated by the noise makes the image useless. 

This fact makes the Laplacian an inappropriate operator unless some form of 

smoothing is performed beforehand. In the case of the Laplacian of the 

Gaussian, or the related Marr and Hildreth operators, smoothing is 

incorporated in the filter itself. Although the problem of marked spurious 

features is partially solved, a bias in the edge position appears due to, and 

proportional to, the amount of smoothing performed. Two related variants 

were preferred and thus were also implemented. These correspond to optimal 
filters, and are the Canny and Deriche operators. They are quicker to execute. 

whilst maintaining some of the same characteristics. in the produced edge 

maps, as the LoG operators. 

Figure 53 through Figure 62 shows the selected images processed by these 

algorithms. 
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Figure 53: Lenna image processed by the 

Zero Crossings of the Laplacian of the Gaussian 
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Figure 54 : Girl image processed by the 
Zero Crossings of the Laplacian 
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Figure 55: Lenna image processed by the Canny operator 
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Figure 56: Girl image processed by the Canny operator 
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Figure 57: Squares image processed by the Canny operator 

Figure 58: Band A image processed by the Canny operator 
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Figure 59: Lenna image processed by the Deriche operator 
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Figure 60: Girl image processed by the Deriche operator 
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Figure 61: Squares image processed by the Deriche operator 
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Figure 62: Band A image processed by the Deriche operator 
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5.2.8 Surface Fit 

A third group of algorithms, known as surface fit, are also commonly cited. 

These fit a step to a window in the image. The first example was the Hueckel 

edge detector operator. A later version of such an operator was proposed by 

O'Gormann. The later was the operator that was implemented. The results of 

the application of the operator to the selected images are presented in Figure 

63 through Figure 66. It was found to be the only operator which consistently 

marked all the edges in an image. Unfortunately, it also marks grey level 

ramps as edges, and the amount of points marked largely exceeds the number 

of expected edges in a common image. However, if the grey level gradients are 

small, it was found to be the method that presents the best amplitude 

invariance resulting in edges being marked from very low contrast images. 

Figure 63: Lerina image processed by the O'Gormann Operator 
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Figure 64: Girl image processed by the O'Gormann Operator 

Figure 65: Squares image processed by the O'Gorman Operator 
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Figure 66: Band A image processed by the O'Gormann operator 

5.3 Comparison 

For all the techniques investigated objects are recognisable in the majority of 

cases The major differences between the techniques resides in their noise 

handling capabilities. A comparison between figures 37 to 66 shows a 

remarkable similarity between the different techniques. Indeed it is difficult to 

discover a line which was missed by any of the techniques except for the 

Roberts operator where the apparent poor performance is mainly due to the 

low contrast of the produced image. A simple change in the Grey level look up 

table will reveal the remaining lines (see Figure 67). 
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Figure 67: Lenna image processed by the Roberts operator 

with enhanced contrast. 

However edges are marked with different intensity by the different algorithms. 

Examples of the phenomenon can be seen in the white column on the left in 

the Lenna image (detail A, see Figure 68), in the hat band (detail B), the 

window in the Girl image (detail C, see Figure 69) or the scarf (detail D). 

Particular attention is given to detail E. Although it is not clear if it is a 

background feature, or if it has another source (such as a reflection), it has a 

clear defined shape and it is situated in a non homogeneous background. 
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Figure 68: Highlighted details for Lenna image 

Figure 69: Highlighted details for Girl image 

The range of intensities in the edge detection maps leaves a choice as to the 

threshold value, with a compromise between missed and spurious points to be 

considered. In the selection of edges it is usually argued that 'the most 

relevant' edges should be chosen, where these should be the 'higher contrast' 

edges. 
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Figure 70 presents detail E for some of the methods tested. The detail is 

extracted from the produced images, and consists of a matrix of 16x 16 pixels. 

None of the implemented algorithms mark the detail with a uniform grey level. 

However, this can be achieved by the application of a suitable threshold. 

ain = C; m,, vom; 
chn = Frei and Chen A gondim 
dv. r = Deiche athm 

= Frei and Chen /MEpnthrn 
p _ Pte satt iJg nthrn 
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Figure 70: Circles details for the implemented algorithms 

The threshold used was based on a visual criteria, as the histogram does not 

give a clear criteria with these types of maps. The histogram of these images 

presents a monotone decrease in the number of pixels marked by the different 

grey levels without giving a clue as to a suitable value for the threshold. The 

threshold value was chosen in order to obtain the greatest continuity of the 

edges without including a large amount of points that are originated by the 

noise in the original picture. In the case of the Sobel and Prewitt operators. a 

second threshold was used, chosen to obtain images that have a similar 

number of points marked as the Canny edge map. 

141 



Chapter 5 Performance comparison between various edge detectors 

TABLE VIII 
Number of Marked Points for Girl's Detail E 

Method Threshold Points marked Circle points 
% marked 

Roberts 205 7 16 

Sobel 219 20 53 

128 8 31 

Prewitt 186 20 52 

128 8 32 

Frei 200 10 >49' 

Canny 255 18 21 

Deriche 255 5 13 

O'Gormann" -- -- 
* Unbounded area 
" Virtually indistinguishable( almost all points marked) 

TABLE VIII presents the count of the number of points that form detail E, the 

small circle on the left of the girl, together with the value of the threshold and 

percentage of the points marked in the whole image, for the algorithms 

considered. 

Similar problems arise in the comparison of the squares images. These 

however, due to the homogeneity of the surfaces, present a smaller number of 

grey levels in the edge enhanced maps. Squares will be named by row 1 to 8. 

from top to bottom. and the columns A to H from left to right as shown in 

Figure 71. 
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A  

Figure 71: Labelling for squares image 

The following table presents in a short form the main features of the squares 

images: 

TABLE IX 
Evaluation for Squares Image Edge Maps 

[afror rhrachnldina) 

Method 
Line 

Width 
Missed 

columns 
(complete) 

Missed 

columns 
(partial) 

Missed 
rows 

(complete) 

Missed 
rows 

(partiel) 

Square 
Line Width 

(Average in 

Pixels) 

Square 
Line Width 

(Relative) 

Roberts >1 -- >A 5 4 78.8 1.23 

Sobel >1 -- >B -- 4,5,6 120 1.88 

Prewitt >1 -- >C -- 5 114.45 1.79 

Frei >1 -- >A 5 4 108.8 1.7 

Canny 1-I -- >E -- 5(>E) 60.25 0.94 

Deriche 1-R -- >A 5(? ) 4,5 31.28 0.49 

O'Gorm. 1/3 -- >C -- 5(>C) 143.98 2.25 
Notes: 1-irregular >- After 

... 
R-regular 

A comparison from the squares images presented shows remarkable 

differences between the different algorithm's robustness to noise handling. 

These can be seen from the images presented and from TABLE IX which 

enumerates the main differences. 
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The differences in the width marked can be seen directly from the edge 

enhanced maps. However, the threshold of the edge enhanced maps will mark 
these differences clearly. TABLE IX was rewritten, based on threshold maps, 

as TABLE X. 

TABLE X 

Evaluation for Squares Image Edge Maps 
(After thresholding) 

Method 
Thre- 
shold 

marked 
(%) 

missed 
rows 

missed 
columns 

complete partial complete partial 
128 2 5 4 AtoC CtoH 

Roberts 222 2 5 4 to 6 -- all 
238 18 5 1 to 8 -- all 

Sobel 128 10 4 to 6 3 to 7 -- all 
177 20 4 to 5 3 to 7 -- all 
128 9 4 to 5 -- -- all 

Prewitt 176 10 5 4 -- all 
214 20 5 -- -- all 
128 3 2 to 8 -- -- all I 

Frei 200 10 4 to 7 1* -- all 
240 21 5 1 to 3* -- all 

Canny' 128 10 all all all all 
219 10 -- 5 A. >E 

Deriche 128 3 3 to 7 -- -- all 
234 l0 5 4 -- all 
`44 19 5 4 -- >B 

O'Gormann" 42 10 -- 5 "- >D 
84 20 -- 5 >E 
128 37 --** 5** --". . -** 

Notes: -III defined shape *. All square marked >" After " 
--Missing comers "'- virtually 

indistinguishable 

The Frei and Chen Operator produces remarkable steady lines. however it does 

miss some of the low contrast features. 
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TABLE XI presents measures performed over the squares image for the 

different thresholds considered. These are written together with the resulting 

percentage of pixels above the threshold value. The average values of the 

edges marked are presented as the ratio between the average (! t) marked edge 

size and the correct edge (16 points) , and the standard deviation (a) of the 

values obtained. The average and standard deviation are calculated from the 

values measured in each 32 x32 sub-image containing one square. Results for 

the number of marked points inside and outside the squares are also presented. 

Zero crossing operators have the advantage that the width of the marked edge 

is I pixel. It is remarkable how low the standard deviation is for the Canny 

operator when a high threshold is used. Another advantage of the zero crossing 

operators is that they mark even the poorest contrast features. Low contrast 

details in the image are clearly marked by the Canny operator, although some 

effort is necessary to identify them, as there are a number of spurious lines 

created which relate to the noise handling. This fact is also reflected in the low 

standard deviations exhibited. These seem to be mainly due to variations in the 

shape of the squares rather than to variations in the number of marked edges. 

The Deriche operator produces a stronger separation between strong and weak 

edges. This fact is reflected by an almost complete row missed by the Deriche 

operator. even without thresholding. and reflects the highest standard deviation 

exhibited. 
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TABLE XI 
Square Image Measures 

Lines Inside Outside 
Method thr % 9a 9a Ra 

128 2 0.26 0.27 0 0 0 0 
Roberts 222 2 1.18 0.51 0.02 0.03 0.02 0.03 

238 18 1.42 0.47 0.08 0.1 0.09 0.11 
Sobel 128 10 1.29 0.78 0 0.01 0.01 0.01 

177 20 1.63 0.66 0.07 0.09 0.08 0.11 

128 9 1.47 0.3 0 0 0 0 
Prewitt 176 10 1.7 0.65 0 0.01 0 0.01 

214 20 1.91 0.53 0.07 0.1 0.1 0.12 

128 3 0.21 0.52 0.1 0.05 0 0 
Frei 200 10 1.01 0.95 0.06 0.19 0 0 

240 21 1.87 0.67 0.18 0.28 0.03 0.06 

Canny' 128 10 0.5 0.11 0.04 0.03 0.1 0.04 

219 10 0.84 0.07 0.08 0.04 0.2 0.03 

Deriche 128 3 0.35 0.45 0 0 0 0 

234 10 0.93 0.32 0.03 0,04 0.03 0.04 

244 19 1.05 0.2 0.1 0.1 0.14 0.12 

O'Gormann 42 10 0.87 ' 0.16 0.03 0.02 0.06 1 0.01 
++ 84 20 1.16 0.13 0.11 0.03 0.17 0.02 

128 1 37 1.77 1 0.19 0.24 0.04 0.32 0.03 
Notes: "' defined shape thr - threshold value . k' - Average 

Missing comers %- pixel percentage over ihr cr - standard deviation 

The O'Gormann operator is unique in two aspects. Firstly it marks all points 

even in the case of very low contrast. Like the Canny operator it produces a 

good average line with a small standard deviation. Secondly it marks every 

slope as an edge. For a threshold of 128 the number of points that are not in 

the line area is larger than any of the other methods. This can be clearly seen 
in the girl image which is very dark compared to the images produced by the 

other methods. In the Band A image, the right extreme is missed by the 

majority of the algorithms (it is even doubtful if an edge exist there). It is 

however registered by the O'Gormann operator. The strength of the tendency 

of The O'Gormann operator to mark varying grey level areas with a small 
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slope can be seen by the average tone in which O'Gormann processed pictures 

are printed. As in all pictures so far, edges are marked as black points. In 

O'Gormann maps the white lines produced are effectively the unmarked 

points. 

TABLE XII presents measures obtained over the Band A image. From the 

Table the different performances of the different edge detectors implemented 

can clearly be seen, as can their inability to mark perfect edges. 

TABLE XII 

Band A Edge Map Evaluation 

ratio ()/correct: 
Method Thr Wrong Correct Missed 

EQ MQ 

128 0.11 0.08 0.93 0.42 0.07 
Roberts 222 0.7 0.38 0.62 0.35 0.22 

238 0.94 0.45 0.55 0.32 0.23 

Sobel 128 0.52 0.57 0.43 0.52 0.38 

177 0.77 0.77 0.23 0.5 0.44 

128 0.69 0.71 0.3 0.51 0.42 
Prewitt 176 0.94 0.85 0.15 0.47 0.44 

214 1.59 0.94 0.58 0.37 0.3 

128 0.05 0.19 0.81 0.79 0.18 
Frei 200 0.65 0.59 0.41 0.48 0.36 

240 1.72 0.93 0.07 0.35 0.34 

Canny 128 0.82 0.18 0.28 0.18 0.14 

219 0.49 0.3 0.7 0.38 0.2 

128 0.07 0.05 0.95 0.42 0.05 
Deriche 234 0.62 0.31 0.69 0.33 0.19 

244 0.79 0.35 0.65 0.31 0.2 

42 0.88 0.31 0.69 0.26 0.16 
O'Gormann 84 1.52 0.59 0.41 0.28 0.23 

128 2.01 0.8 0.2 0.28 0.27 

Notes: Thr - theshold value EQ - Edge Quality MQ - Map Quality 
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5.4 Discussion 

In this section several edge detection schemes have been described and 

examples of processed images by these techniques presented. Images produced 

are the direct output of the edge detection algorithms, before thresholding, or 

any other decision process. These will be used in subsequent work. As there 

are many different imaging conditions it is not possible to state that one 

particular edge detector is optimal for any particular image type. 

The presented images show that the proposed goal of neural network 

arbitration may be achievable. Effectively a more correct, and complete. set of 

edges could be traced by comparison of the several edge maps. The 

incomplete edges could be closed by an observer. In some cases this could be 

done through extrapolating the lines present. In other cases it could be done 

using knowledge of the objects represented. Neither of these methods is 

possible using a local approach. 

Figure 72 through Figure 83 shows thresholded versions of some of the 

presented images (Girl. Figure 32 and Lenna. Figure 31). The values in 

brackets show the percentage of marked points. 
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Figure 72: Gir1 image processed by the Roberts operator 
and thresholded at 205 (7%) 

Figure 73: Girl image processed by the Sobel operator 

and thresnolded at 219 (20t) 
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Figure 74: Girl age processed by the Prewitt operator 
and thresholded at 136 (20%) 

149 



Chapter 5 Performance comparison between various edge detectors 

'. 'r 

Figure 75: Girl image processed by the Deriche operator 

and thresholded at 255 (5%) 

Figure '6: Girl image processed by the Canny operator 

and thresholded at 254 (18%) 
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Figure 77: G: r image processed by the Frei and e`. en operator 

and thresholded at 200 
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. -f 

Figure 78: Lenna image processed by 
the Roberts operator (th=227) 

Figure 79: Lenna image processed by 

the Sobel operator (th=200) 

saure Ro: Ler a image processed by 
t^e Prewitt ocerator (th=200) 
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Figure 81: Lenna image processed by 

the Frei operator (th=232) 

Figure 82: Lenna image processed by 

the Canny operator (th=254) 

figure 83: Lenna image processed b,.,, the 

O'Gormann operator (th=28) 
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5.5 Artificial Neural Networks for Edge Detection 

5.5.1 Introduction 

Within this section a neural network is applied to edge detection. This is 

carried out for two purposes. Firstly to act as a comparison for the approach to 

be presented in the next chapter. Secondly as an aid for the strategy 

development used for the arbitration system to be described in the next 

chapter. The edge detection case is simpler to test, as the resulting solutions 

are of smaller dimension than the ones that will be necessary for the arbitration 

case. Both cases were developed in parallel in order to maintain the 

compatibility of the systems used. However they will be described separately 

due to their own particularities. 

Multi-layer perceptrons are used throughout the work, as they are one of the 

most widely used networks [179], exhibit high efficiency, and are good at 

pattern recognition [119] [161] [184], e. g. edge detection problems (155] [83] 

[167]. 

The topology of the neural network is ill-defined and needs to be specified. 

This is a difficult task as many of the parameters can not be analytically 

defined. Another core problem is the selection of the learning set. In this 

section the assumptions made in selecting the network are described. 

5.5.2 Topology 

A three layer multi-layer perceptron was chosen, since it is the smallest 
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configuration which can be accepted as an approximation system capable of 

forming arbitrary decision regions [75]. The number of input parameters is 

fixed by the size of the windows used. These are used as odd values, to avoid 

indecision in the position of the edge, as the windows are centred on a pixel. 

The number of output nodes per decision was fixed to one, corresponding to 

the classification of edge or non-edge. The number of output neurons could 

easily be increased if advantage was taken of the parallel implementation. 

However, it would undoubtedly alter the conditions under which the 

comparisons could be performed. 

5.5.3 Window Size 

Another problem is in deciding upon the size of the window. The options as to 

the size of the window, as isotropy is envisaged, is exactly the same as those 

used in edge detection filters. This is due to the implementation facility, speed 

and co-ordinate system used. Square windows were selected, containing an 

odd number of pixels. These correspond to the smallest integer values (3x3. 

5x5,7x7) as usual for filters. The different windows deal with different 

amounts of information. It is evident that the larger windows will be slower. 

However it is expected that, as they deal with more information they will also 

be more powerful and perform more efficiently than smaller windows. 

5.5.4 Parameters 

A selection of the learning parameters was initially performed and the chosen 
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values maintained constant throughout the work. This was done in order to 

restrict the number of variables in the process. Comparisons are not performed 

since they are outside the scope of the work. Initial parameters were chosen 

based on cited values in the literature [119] [145] . Nearby values were tested 

but did not shown any improvement. 

For the learning phase, parameters were fixed as 

epsilon C=1 
momentum constant cc= 0.05 

learning constant 1=0.9 

TABLE XIII 

5.5.5 Learning 

Several hypothesis for the definition of a learning set were considered. The 

simplest used an artificially generated set of vectors that correspond to what 

was traditionally understood as an edge. The second is to take a number of 

sample images, which contain more complex patterns, and take the training set 

from these. For these training sets two methods for obtaining the data from the 

training images were considered. The next two sections deal with the two 

different training sets and the methods for obtaining the data. 

5.5.5.1 Training data through vector generation 

Several hypothesis for the definition of a learning set were considered. The 
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first one, the simplest, is to generate artificially a set of vectors that correspond 

to standard situations that are unequivocally understood as edges or non-edges. 

These allow a controlled distribution of the edges, but hardly represent all the 

types of edges that will be present in a real image. Edges were generated as 

step edges, with different amplitudes and different orientations. 

Figure 84 : Generated learning set 

Examples of such sets are represented in Figure 84 
. 

The upper half constitute 

the edges subset, where a step edge is generated and rotated over itself by 360 

degrees. This figure could then be scaled to give different step amplitudes. The 

lower half, which is the non-edge subset, is composed of points, having 

different spacing (the lines are simply aliases), which could also be scaled to 

cover different intensities. 
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AF rriri 

Figure 85: An example result from the first networks tested (, -x5xl) 

Figure 86: An example result from the first networks tested (72xnx1) 

From this picture windows of several sizes can be extracted, as the positions 

are known, and the position will contain the information of which patterns 
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could be interpreted as edges or non-edges. Two examples of the performance 

of such a networks are presented in Figure 85 and Figure 86. In these cases the 

networks were a 52x5x1 and a 72x8x1 multi-layer perceptron type 

Networks trained with such a training set, as shown in figure 84, presented 

poor performance. Not only are the marked edges quite thick, but also the 

response varies according to the grey level. This system could be improved 

through the inclusion in the edge model of more information to force the 

solution to shrink the edge size, such as non centred edge patterns. 

5.5.5.2 Training data through image scanning 

A more elaborate solution is to generate images, containing more complex 

patterns, from which the patterns can be collected. This can be done using 

sample images. Image processing systems are normally applied to similar 

images which contain common characteristics, not only due to the objects, but 

also due to the distortion repetitiveness of the acquisition system. However, 

this solution has some disadvantages during the development stage. Correct 

edges are sometimes difficult to trace, due to the blurring from the acquisition 

device. This procedure will require the use of a screen pen or similar device, 

which allows for more movement co-ordination than that allowed by a mouse 

for drawing. to input the edge positions. Due to image blur edge tracing turns 

out to be a difficult task. as the shape and position is lost when small areas of 

the image are zoomed in on. A mixed solution was implemented. where from 

generated images samples were collected and used both for the learning phase 

and for the evaluation of the solution obtained. The process for collecting the 
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training data is shown in Figure 87 

Sample images are shown in Figure 88 and Figure 90 
, with reference edges 

traced in Figure 89 and Figure 91 respectively. A full image or a reduced 

version of the image, is scanned, from left to right and from top to bottom to 

select the area of interest. 

j 

Select 
region 

of interest 

Colect 
data 

Figure 87: Process for collecting data 

The area of interest is then scanned a second time to extract the patterns. 

which are stored in a file. This file contains vectors which correspond to edge 

and non-edge patterns. 
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Figure 88: Band A 

Figure 89: Band A- Reference Edges 
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Ce? 
Figure 90 : Band B 

0, 

--- 
Figure 91: Band B- Reference edges 

These sets were reduced through the use of sequential sampling of the images. 

The image generation process is not sequential and thus patterns collected 
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sequentially appear as virtually random. This procedure decreases the problem 

size and thus allows for smaller learning times. However, the trained networks 

presented a poor performance. Edges marked by the networks, taught using 

reduced learning sets, appear in some areas as regularly spaced dots, which 

clearly reflect the spacing from the learning set. These gaps were successively 

reduced, and finally eliminated when the full reduced image was used. The 

networks referred to throughout this chapter operated on a reduced image 

(128x128) and without any form of sampling. 

Several networks were taught with the image presented in Figure 90 . TABLE 

XIV presents the learning rates obtained by these networks. The size of the 

learning set used is presented for each hidden node number tried, the recalling 
factor achieved and the iteration at which it was obtained. 

The neural networks, which will be referred to in the remainder of this chapter. 

were taught with complete sets of patterns extracted from reduced versions of 

the images shown in Figure 88 and Figure 90. The obtained networks were 

then tested on images which are similar in nature, (Figure 88 or Figure 90 ) 

and on images that are not similar (Figure 31: Lenna. Figure 32 : Girl, and 
Figure 33: Squares). 

The processed images are presented prior to the hard limiter. This allows for 

the assessment of the real performance of the network. Measures presented 

are carried out for thresholded images at 128. as this corresponds to the middle 

value of the sigmoid used. 
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TABLE XIV 
Final values obtained with a full learning set extracted from a reduced Hand 8 

image 

Window Size Learning Set Size 
3x3 Final Values 2,255 

HidNod WP RCD % @ RMS 
10 114 2,141 94.94 5,000 0.05 

20 75 2,180 96.67 5,000 0.03 
30 65 2,190 97.12 5,000 0.03 

40 80 2,175 96.45 5,450 0.03 

50 73 2,182 96.76 5,000 0.03 
WP - Number of wronely recalled patterns ti) - iterations for convergence 

RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

1 
TABLE XIV -A 

Window Size Learning Set Size 

5x5 Final Values 2,255 

Hid Nod WP RCD % @ RMS 

10 63 2,192 97.21 3,050 0.03 

25 31 2,224 98.63 3.500 0.01 

30 21 2,234 99.07 5,050 0,01 

40 35 2,220 98.45 6.450 0.02 

50 41 2.214 98.18 1.700 0.02 
\\ P- Number of wronely recalled patterns 
RCD - Number of correctly recalled patterns 

a- iterations For convergence 

RMS - Root mean square error at convergence 

TABLE XIV -8 

Window Size Learning Set Size 
7x7 Final Values 2.255 

Hid Nod WP RCD °'o (4) RMS 
10 40 2.215 
15 33 2.2 22 
25 _2 2.233 

30 -'0 2.225 
40 _5 2.230 
50 13 2.237 
60 15 2.240 
70 I3 2.237 
90 1 18 2.237 

%VP - Number of wrongly recalled patterns 
RCD - Number of corrective recalled patterns 

98 23 S. uuu U. us 

98.54 5.000 0.01 
99.02 5.000 0.01 

98.67 5.000 0.01 
98.89 2.450 I 0.01 
99.2 5.000 0.01 

99.33 5.000 0.01 
99.2 5.000 0.01 
99.2 1 5.000 0.01 

t) - Iterations for convergence 

RMMS - Root mean square error at convergence 

TABLE XIV -C 
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TABLE XV 
Performance of neural network edge detectors on the Band images 

after training on a full training set of Band 8 

Window Hidden Band A Image Band B Image 
Si: e 

I 
Nodes EQ MQ EQ MQ 

10 0.86 0.23 0.95 0.27 

20 0.85 0.31 0.89 0.33 

3x3 30 0.82 0.29 0.9 0.35 

40 0.87 0.34 0.9 0.36 

50 0.86 0.26 0.9 0.31 
EQ -Edge Quality MQ - Map Quality 

TABLE XV -A 

Window Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

10 0.49 0.27 0.53 0.27 

25 0.74 0.33 0.77 0.36 

5x5 30 0.5 0.31 0.59 0.35 

40 0.62 0.34 0.72 0.37 

50 0.56 0.34 0.7 0.37 
EQ -Edge Quality MQ - Map Quality 

TABLE XV -B 

Window t Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

10 0.57 0.21 0,61 0.26 

15 0.43 0.25 0,49 0.28 

25 0.56 0.27 0.63 0.28 

30 0.49 0.22 0.66 0.56 

40 
7x7 

0.5 0? 9 0.61 0.32 

50 0.35 0.22 0.48 0.28 

60 0.57 0.3 0.58 0.3 

-0 0.55 0.31 0.52 0.31 

40 0.44 0.23 0.56 0.31 
EQ -Edge Quality %IQ " Map Quality 

TABLE XV -A 
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TABLE XVI 
Performance of neural network edge detectors on the Squares Image 

after training on a full training set of Band B 

Window Hidden Lines Inside Outside 
Si=e Nodes 

a A a a 
10 ' 0.31 0.24 0 0 0 0 

20 2.61 0.62 0.51 0.3 0.92 0.02 

3x3 30 0.41 0.29 0 0 0.01 0.01 

40 0.4 0.27 0.01 0.02 0 0 

50 0.29 0.24 0.01 0.03 0.01 0.02 
Q- Average value a- Standard deviation 

Window Hidden Lines Inside Outside 
Si_e Nodes 4 a 9 a k a 

10 0.31 0.28 0.14 0.23 0 0 

25 0.38 0.18 0.02 0.07 0 0 

5x5 30 0.51 0.26 0.24 0.23 0.01 0.01 

40 0.38 0.24 0.08 0.02 '0 0 

50 0.4 0.19 0.13 0.22 10 0 
F- Averaee value a- Standard deviation 

TABLE XVI -B 

Window Hidden ; Lines Inside Outside 
Si: e Nodes 

a Q aR a 
10 0.3 0.27 0.14 0.24 0 0 

15 0.45 0.27 0.17 0.19 0.01 0.01 

25 0.44 0.31 0.12 0.18 0 0 

30 0.51 0.27 0.23 0.23 0.01 0.02 

40 0.36 0.29 0.17 0.02 0 0 

7x7 50 0.46 0.25 0.38 0.2 V0 0 

60 0.43 0.24 0.08 0.09 !0 0 

70 0.56 0.31 0,27 0.2 0 0 

90 0.53 0.29 0.21 0.22 0 0 

- A%eraee value a- Standard deviation 

TABLE XVT -C 
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The results obtained for the bands images are better than those using the 

conventional edge detection schemes with values of MQ in the order of 25%, 

presented in TABLE XII, for the edge detection schemes whilst values in the 

range of 27% to 37% were obtained for the neural network detectors. 

Differences for the EQ figure of merit are more impressive, with values in the 

order of 40% for the edge detection schemes whilst values in the range of 50% 

to 90% were obtained for the neural network detectors 

5.5.5.3 Training data through reduced image scanning 

In the case of the previous learning sets the vectors that contain only pixels 
from the background turn out to be larger than the number of other patterns. 
As this could affect the teaming or make the teaming process long, a second 

set of networks were taught. In this case windows which only contain the 
background points are discarded, with the exception of the first window as at 
least one background point is important to the learning process. When this 

value was missed some networks marked areas with a constant grey level as 
edges. This behaviour can still be observed in some of the solutions presented. 
Several networks were investigated, corresponding to different network hidden 

layer sizes and different learning vectors. The size of the learning sets used are 
shown in the final value tables. It is important to note that, as the mask size 
increases, the number of patterns that 'touch' an edge pattern increases. The 
increase of the learning sets does not mean that more edges exist. It simply 
means that there are more possible non-edge patterns and thus the relation 
between the edge and non-edge patterns decreases with the size of the mask. 

Final values for the more representative networks taught with the reduced 

learning set are presented in TABLE XVII. TABLE XVIII and TABLE XIX 

which presents their performance over the bands and squares images 

respectively. 
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TABLE XVII 

Final values obtained with a reduced learning set 
extracted from a reduced Sand 8 image 

Window Size Learning Set Size 

3x3 Final Values 1,412 

HidNod WP R CD % @ RMS 

10 131 1,281 90.72 3,250 0.09 

15 120 1,292 91.5 5,000 0.07 

20 96 1,316 93.2 3,250 0.07 

WP - Number of wrongly recalled patterns ©- Iterations for convergence 
RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XVII -A 

Window Size Learning Set Size 

5x5 Final Values 1,702 

HidNod WP RCD % @ RMS 

20 35 1,667 97.94 5,000 0.02 

25 35 1,667 97.94 1,550 0.02 

30 21 1.681 98.77 6.650 0.01 
\VP - Number of wrongly recalled patterns ©- Iterations for convergence 

RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XVII -B 

Window Size Learning Set Size 

70 Final Values 1,811 

HidNod MVP RCD % "il R. MS 

10 301 1.781 98.34 2.500 0.02 

30 161 1.795 99.12 2.500 0.01 
WP -Number of wrongly recalled patterns t- Iterations for convergence 

RCD -'Number of correctly recalled patterns RMS - Root mean square error at convergence 
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TABLE XVIII 
Performance of the neural network edge detector for the Bands Image 

after training on a reduced training set of Band B 

Window Hidden Band A Image Band B Image 
Si: e Nodes EQ MQ EQ MQ 

10 0.88 0.21 0.93 0.25 

3 3 
15 0.85 0.27 0.9 0.31 

x 
20 0.88 0.28 0.89 0.33 

EQ -Edge Quality MQ - Map Quality 

TABLE XVIII -A 

Window Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

20 0.39 0.24 0.47 0.28 

5 
25 

5 
0.61 0.27 0.69 0.32 

x 
30 0.42 0.27 0.5 0.31 

EQ -Edge Quality MQ " Map Quality 

TABLE XVIII -B 

Window i Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

10 1 0.57 0.21 0.61 0.26 
7 :0I0.57 0.24 1 0.61 0.3 

EQ -Edge Quality %IQ -Map Quality 

. ABLE XVIII -C 
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TABLE XIX 
Performance of the neural network edge detectors on the Squares Image 

after training on a reduced training set of Band B 

Window Hidden Lines Inside Outside 
Size Nodes R ß Q R c 

10 0.22 0.25 0 0 0 0 
3x3 15 0.33 0.27 0.01 0.04 0 0 

20 0.41 0.3 0.03 0.08 0 0.01 
Q- Average value a- Standara aeviauon 

TABLE XIX -A 

Window Hidden Lines Inside Outside 
Size Nodes a e a R a 

20 0.34 0.19 0.2 0.24 0.01 0.01 
5x5 25 0.38 0.21 0.03 0.05 0 0.01 

30 0.47 1 0.26 0.29 0.23 0 0.01 

Q- Average value a" Standara aviation 

TABLE XIX -8 

Window Hidden Lines Inside Outside 
Size Nodes ( Q R Q a 

10 0.33 0.23 0.04 0.06 0 0.01 
7x7 30 j 0.31 1 0.2 0.09 0.16 0 0 

i- Average value a- standard deviation 

TABLE XIX -C 

5.5.5.4 Convergence criteria 

One traditional problem. during the learning phase. is the decision of when to 

stop teaching. The size of the learning set does not allow for the inclusion of a 

control set due to the lack of memory. Thus it is not possible to evaluate the 

capabilities of the actual solution on a different set. The alternative would be 
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to constantly use the hard disk as auxiliary memory. This would make the 
learning process extremely slow. In the first instance the program was 

developed on a single transputer TRAM situated on a TMB 16 board within a 
PC. This was useful for the development on small networks. However for 

larger networks the much larger learning times made the system impractical. 

This prompted the program to be transferred to the main University VAX 

system. Even here, some of the solutions presented learning times that gave 

problems with the use of batch queues. Some of the solutions presented were 

taught in successive runs on-line over several nights. 

The mean square error is monitored during the learning phase. The fact that 

this error decreases during the learning phase does not mean that a better 

solution was being achieved. After an initial strong learning phase, the mean 

square error gets smaller and smaller without any decrement in the number of 

wrongly classified patterns. In fact, after a certain number of iterations. the 

mean square error does not reflect the number of patterns learnt. This is due to 

the fact that as the output values get successively closer to the interval 

extremes the measured error decreases independently of an improvement in 

the learning rate. Figure 92 through Figure 94 show the evolution of the 

number of unlearnt patterns in three of the networks. 
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Figure 92: History of patterns learnt for several different number of hidden 
nodes for a 7' input network 
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Figure 93: History of patterns learnt for two different number of hidden nodes 
For a 54 input network 
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Figure 94: History of patterns learnt for several different number of hidden 
nodes for 3' input network 

Figure 93 corresponds to a network with 52 input nodes, (i. e. 5x5 squared 

window), for up to 3 thousand iterations. The learning set was extracted from 

the picture in Figure 90 
. and consists of 2255 points. Figure 94 corresponds to 

a network with 32 input nodes for up to 5000 iterations. After an initial phase 

the learning rate successively fades. After a certain number of iterations the 

number of patterns actually learnt does not improve significantly, although a 

more robust solution is achieved. However, in a few cases, a continuously 

improving solution was registered. One example is present in Figure 94. This 

behaviour, however, is not even typical of a particular window size. 

A common criteria used when deciding to stop the learning phase is to allow 

the network to learn until 90 to 95 °. 'o of the patterns have been learnt. In the 

previous figure it can be seen that after 50 iterations the network has reached a 
90% success rate (232 wrong patterns out of 2255). In each of the learning 

sets. non-edge patterns roughly count for at least 2/3 of the points. which 
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means that the learning phase starts with approximately 66% of the patterns 
learnt. 

In the most equilibrate case (3 pixels size), for each edge pattern there will be 

2 non-edge patterns, as Figure 95 illustrates: 

background 

i- ignored 

n- non-edge 
n- e- edge e 

vn 

Figure 95: Pattern extraction 

In the majority of cases the network was left running until a stable solution 

was achieved. 

To ensure that differences in results are due only to the different number of 

iterations two of the first networks. trained with a reduced learning set and 

presented in TABLE XVII were taught a second time with the number of 

iterations limited to 1000. TABLE XX and TABLE XXI presents the 

performances for the bands and squares images respectively obtained by these 

networks. 
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TABLE XX 
Performance of neural network edge detectors on the Band images after 

training on a reduced training set of Band B with a limited number of LOGO 
iterations 

Window Hidden 
Band A Image Band B Image 

Size Nodes EQ MQ EQ MQ 

5 0.94 0.23 0.87 0.21 
3x3 20 0.88 0.26 0.88 0.25 

EQ -Edge Quality MQ - Map Quality 

TABLE XXI 
Performance of neural network edge detectors on the Squares image after 

training on a reduced training set 
of Band B with a limited number of 1000 iterations 

Window Hidden Lines Inside Outside 
Size Nodes k cs k a A a 

5 0.07 0.08 0 0 0 0 
3x3 20 0.28 0.26 0.02 0.07 0 0 

Q- Average value a- Standard deviation 

Figure 96 and Figure 97 show the Lenna image processed by a 3: x-70x1 

network, using the same learning set but with a different number of learning 

iterations. Generally there are no significant differences between the images. 

Some of the lines are present in only one of them., e. g. the column on the left 

side and the hair line on the right side. 

However. the higher contrast in Figure 96 is clearly visible. This is due to the 
large binarisation of the network response. However marked lines are dotted 

when the extended learning has been carried out. This could be due to over 
learning. When over-learning occurs the space partition is done locally to the 

points in the learning set, thus reducing the number of points that are included 
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in that partition. 

Figure 96: Lenna image processed by a 3'x20xl neural net after being trained 
with a full learning set for 5000 iterations 

Figure 97: Lenna image processed by a 3'x20x1 neural net after being trained 
with a full learning set for 1000 iterations 
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TABLE XXII 
Final values of the neural network edge detectors on the Band images 

after training on a reduced training set of Band A 

Window size Learning Set 
3x3 Final Values 1,811 

HidNod WP RCD % @ RMS 

5 207 1,604 88.57 1,050 0.09 

10 179 1,632 90.12 1,050 0.08 

15 142 1,669 92.16 1,050 0.06 

20 140 1,671 92.27 1,050 0.07 
WP - Number of wrongly recalled patterns (uff - Iterations for convergence 

RCD -Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXII -A 

Window Size Learning Set 

5x5 Final Values 2,170 

HidNod WP RCD % @ RMS 

15 62 2,108 97.14 1,050 0.03 

20 68 2,102 96.87 1,050 0.03 

25 63 2,107 97.1 1,050 0.03 
VP-Number of wrongly recalled patterns (? - Iterations for convergence 

RCD -'lumber of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXII -B 

W endow size Learning Set 

70 Final Values 2.386 

HidNod WP RCD @ RMS 

20 26 2.360 98.91 2,500 0.01 

30 45 2.341 98.11 1.150 0.02 
40 25 2,361 98.95 2.000 0.01 

50 35 2.351 98.53 2.100 0.01 

60 47 2.339 98.03 500 0.02 
WP -Number of wronely recalled patterns 41) - Iterations for convergence 

RCD - Number of correctly recalled patterns Rb1S - Root mean square error at convergence 

TABLE XXII -C 
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TABLE XXIII 

Performance of the neural network edge detectors on the Band Images 
after training on a reduced training set of Band A 

Window Hidden Band A Image Band B Image 
Si_e. Nodes EQ MQ EQ MQ 

5 0.92 0.31 0.91 0.32 

3 
10 0.96 0.31 0.66 0.9 

15 0.94 0.43 0.62 0.82 

20 0.96 0.35 0.64 0.86 

EQ -Edge Quality MQ - Map Quality 

TABLE XXIII -A 

Window Hidden Band A Image Band B Image 
Size. Nodes EQ MQ EQ MQ 

15 0.54 0.36 0.51 0.36 
5 20 0.85 0.37 0.73 0.34 

1 25 0.65 0.37 0.62 0.36 
EQ -Edge Quality MQ - Map Quality 

TABLE XXIII -B 

Window Hidden Band A Image Band B Image 
Size. Nodes EQ MQ EQ MQ 

20 0.66 0.32 0.58 0.31 

7 7 
30 0.65 0.34 0.58 0.3 

x 
40 0.55 0.36 0.51 0.34 

50 0.76 0.41 0.56 0.32 

60 0.49 0.33 0.5 0.32 
EQ -Edge Quality MQ - Map Quality 

. ABLE XXIII -B 
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TABLE XXIV 
Performance of the neural network edge detectors on the Squares Image 

after training on a reduced training set of Band A 

Window Hidden Lines Inside Outside 
Size. Nodes R a A a R a 

5 0.17 0.17 0 0.01 0 0 

3 3 
10 0.23 0.22 0 0.02 0 0 

x 
15 0.34 0.21 0.02 0.05 0.01 0.01 

20 0.23 0.17 0.01 0.02 0 0 
9- Average value v- Standard deviation 

TABLE XXIV -A 

Window Hidden Lines Inside Outside 
Sie. Nodes R a k a it a 

15 1 0.63 0.37 0.23 0.24 0.02 0.02 
5x5 -2-0-7 0.4 0.34 0.02 0.04 0.01 0.01 

25 1 0.48 0.27 0.13 0.16 0.01 0.01 
Q- Average value a- Standard deviation 

TABLE XXIV -3 

Window Hidden Lines Inside Outside 
size. Nodes 

Q a e a 
20 0.4 0.29 0.09 0.16 0 0 

30 0.43 0.29 0.06 0.07 0 0 

70 40 0.57 0.39 0.25 0.22 0.01 0.02 

50 : 0.51 0.33 0.12 ( 0.15 1 0.01 0.01 

60 - 0.58 0.3 0.2 1 0.15 1 0.05 0.05 
C- Average value a -Standard deviation 

TABLE XXIV -C 

5.5.5.5 Learning set origin 

Another problem is from where to extract the learning set. Two band images 

have been presented within this thesis. Up to now the Band B image has been 

used for the training of the neural network. To evaluate the best source. 

another set of networks were taught with learning sets extracted from Band A 
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image. TABLE XXII presents the final values for the networks referred to . 
Their performance on the bands and squares image are presented in TABLE 

XXIII and TABLE XXIV respectively. 

The learning sets that can be extracted are larger in this case than in the case of 
the band B image. Networks trained on the band A image exhibit a higher 

number of unlearnt patterns and slightly worse relative recalling. 

To evaluate the difference between the solutions the Band B image was 

processed by networks of the same size, one trained on the Band A image, the 

other trained on the Band B image. The processed pictures were first 

thresholded, and then blended. The blended image was enhanced afterwards 

with false colours and is presented in Figure 98. Common marked points are 

shown in red, which are the majority. Points where disagreement exists are 

shown in blue and green. The biggest difference resides in the fact that one of 

the solutions (in blue) marks more points inside the band than the other. 
However, no significant difference exists and in both cases the marked 

common points are the same. 

The number of points were counted and it was found that there were more blue 

points than green. This is still true if the marked areas inside the band are 

cleaned by hand. This could suggest that the image in Figure 90 is more 

suitable for producing training sets than the image in Figure 88. This can be 

seen if we compare Figure 99 with Figure 97 where less edges are marked in 

the later. e. g. the left side vertical bar, albeit more defined and continuous. 

However this result can not be generalised. as the comparison of Figure 99 

with Figure 96 suggests. 
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with Figure 96 that less edges are marked, e. g. the left side vertical bar. 

'A` 

ý' '1 

9 
. "riý 

` 
i, " 5 

. 'j: 
'f 

1 ri. « i- 'ü 

i 

r 

' ý. 
ý. 

V: 

f, 

e'1/ 
i 

Figure 99: Lenna image processed by a 32x20xl network using a learning set 
extracted from Band A (Figure 88) 
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5.5.6 Nehvork Size 

Several networks with different hidden layer size were tested. and the network 

with the highest learning rate was selected. If similar learning rates were 

obtained for a number of networks then the networks were tested on the same 
image so as to try to select the best network. The smallest network is the 

preferred one, as it will minimise processing time and the amount of memory 

required. 

There is no known rule as to the best size of hidden layer, or even as to the 

most suitable first attempt. Some authors suggest the hidden layer have half of 

the number of input layer nodes. Others suggest a slightly larger number. A 

trial and error procedure was followed. The first attempt is usually to try the 

same number of hidden laver neurons as the number of input neurons. Larger 

and smaller networks are then tried. Usually a larger hidden layer implies 

easier learning, (although more time for each iteration) but does not imply a 

better solution or a better learning rate. Indeed there exist an area where the 

learning achievements of the networks are similar, and for which no evident 

performance differences are detected in processed images. 

Figure 100 and Figure 101 shows the number of learnt patterns for a 32 and a 

72 input network respectively, versus the number of hidden nodes for different 

numbers of iterations. Unless a very small and clearly unsuitable hidden layer 

was used then the results obtained were similar. This suggests that there is 

little dependence upon the performance of the networks with reference to the 

number of hidden nodes investigated. 
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Figure 100 : Evolution of learnt patterns for a 33 input network using different 
numbers of iterations 
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Figure 101 : Evolution of learnt patterns for a 73 input network using 
different numbers of iterations 

However. a larger hidden layer always implies a more computationally 

expensive solution. Figure 102 through 105 show the learning performances 

of a 72 input network having 10.30,50 and 70 hidden nodes respectively. 

These networks were taught using the full learning set extracted from Figure 
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90. The networks used are from the ones presented in TABLE XIV - C. 

Figure 102: Learning performance for a 7'x10x1 network 

: f. _ _ýr 

Figure 103: Learning performance for a 7'x30x1 network 
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Figure 104: Learning performance for a 7'x50x1 network 
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Figure 105: Learning performance for a 7'x70x1 network 

It can be seen that more or less equivalent solution were achieved by all the 

networks, with only a variation of 3 to 5% being obtained in the first two 
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cases and 0,5 to 1,5 % in the second two cases, in the number of unlearnt 

parameters. In respect to the generalisation capabilities of the network, an 

example is presented in the following pictures. Two processed girl images, 

(networks with 3x3 input nodes and 30 (Figure 106) and 40 (Figure 107) 

hidden nodes) were thresholded and subtracted. The difference image is shown 

in false colours. Common points are not marked as they include the 

background points. Points uniquely marked by the bigger network are shown 

in green and points uniquely marked by the smaller are shown in red. The 

colours were obtained through simply changing the look up table. 
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Figure 106: Girl processed by a 3'x3Oxl network 
using a full learning set extracted from the Band B image 
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Figure 107: Girl processed by a 3'x40x1 network using a 
full learning set extracted from the Band B image 
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Although different, there is no evident advantage of one solution over the 

other. The only significant difference in performance being observed in the 

window behind the girl. 

5.5.6.1 Full image 

A full Band B image was used to extract a full learning set from which other 

sets of networks were taught. The final values attained are presented in 

TABLE XXV , and their performance on the bands and squares images 

presented in TABLE XXVI and TABLE XXVII respectively. 

TABLE XXV 

Final values obtained with a full learning set 
extracted from a full Band B image 

Window Size Learning Set Size 

3x3 Final Values 4,850 

HidNod WP RCD % @ RMS 

10 304 4.346 89.61 3,000 0.09 

20 418 4.432 91.38 1,020 0.07 

30 402 4.448 91.71 1,340 0.07 
30 397 4.453 91.81 1,020 0.07 

WP - Number of wrongly recalled patterns n- Iterations for convergence 
RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXV -A 

Window size Learning Set Size 

5%5 Final Values 5,761 
HidNod WI' RCD % @ RMS 

20 273 5.488 95.26 1,020 0.04 

'0 1 263 5.498 95.43 1.020 0.04 

40 242 5.519 95.8 1.020 0.04 

50 210 5.521 95.83 1,020 0.01 
WP - Number of wrongly recalled patterns tZ - Iterations for convergence 
RCD -'Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXV -8 

187 



Chapter 5 Performance comparison between various edge detectors 

TABLE XXVI 
Performance of the neural network edge detectors on the Band Images 

after training on a full training set of Band B 

Window Hidden Band A Image Band B Image 
Size. Nodes EQ MQ EQ MQ 

10 0.88 0.57 0.88 0.62 

3 3 
20 0.84 0.55 0.87 0.66 

x 
30 0.87 0.56 0.91 0.67 

40 0.82 0.59 0.841 0.7 
EQ -Edge Quality MQ " Map Quality 

TABLE XXVI -A 

Window Hidden Band A Image Band B Image 
Size. Nodes EQ MQ EQ MQ 

20 0.82 0.59 0.941 0.78 

5 
30 0.4 0.52 0.951 0.71 

40 0.86 0.55 0.971 0.78 

50 0.881 0.61 0.951 0.81 
EQ -Edge Quality MQ " Map Quality 

TABLE XXVI -8 
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TABLE XXVII 
Performance of the neural network edge detectors on the Squares Image 

after training on a full training set of Band B 

Window Hidden Lines Inside Outside 
Si=e. Nodes 9 Q 9 Q a 

10 0.7 0.35 0 0.02 0 0 

20 0.85 0.3 0.02 0.07 0.05 0.07 

30 0.81 0.31 0.02 0.06 1 0 0 

40 0.94 0.34 0.03 0.09 0.06 0.08 
9- Average value a- Standard deviation 

TABLE XXVII -A 

Window Hidden Lines Inside Outside 
Size. Nodes R 6 R ßIR Q 

20 0.77 0.33 0.01 0.021 0 0 

5 
30 0.75 0.311 0.02 0.06 0.01 0.01 

40 0.75 0.34 0.01 0.041 0 0 

50 ý 0.8 0.32 0.01 0.031 0.01 0.011 
Q" Average value a" Standard deviation 

TABLE mir -B 

5.5.7 Performance 

5.5.7.1 Window Dependence 

Several windows sizes were tested. Results for three sizes of window are 

presented in figure 106. figure 109 and figure 110. It was expected that a 

network whose inputs are from a larger window would perform better than a 

network whose inputs are from a smaller window. due to the larger area 

covered in the image which provides more information to the network. It was 
found that this was not the case. In some cases. the resulting networks marked 
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erroneously areas with low varying or constant grey level as edges. 

Figure 109: Girl image processed by a 7'x30x1 network 

(full learning set) 

Figure 110: Girl image processed by a 57x30x1 network 
(full learning set) 
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5.5.8 Localisation 

It is difficult to characterise the localisation of the edges marked, since some 

of the networks mark points that are clearly outside the edges. A localisation 

criteria will always leave in doubt if these points are considered as edges, and 

as to which of the true (or expected) edges to assign them The points are 

marked with the same intensity, thus it is difficult to see how strong the 

categorisation is. When considering localisation, lines considered as singular 

points should be rejected. Lines, or clusters of points that are perceived as 

lines, are the most important edges marked. An example is presented in Figure 

111, where the edge image was added to the original picture. This was 

darkened to enhance the marked edge position. 

Figure 111: Result of the processing by a 3'x10x1 network 
superimposed on the original 
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5.5.9 Robustness 

One of the major advantages of neural networks are their robustness. Indeed it 

could alone justify the use of a neural solution even if the computational load 

is considerably heavier. This characterisation is incomplete without verifying 

how they perform in adverse conditions. To test it a degraded version of the 

image of Band A was generated. The picture was blurred by a Gaussian 

function and noise was added. The degraded image is presented in Figure 112. 

Figure 112: Degraded version of Figure 88 
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Figure 113: Result of the processing of a degraded picture (Figure 112) 

by a 32x1Ox1 network superimposed on the original 

The image in Figure 112 was then processed with a network consisting of 

32-15-1 neurons. Figure 113 shows the superposition of the result onto the 

original picture. 

Another way of evaluating the robustness of the solutions is achieved by the 

definition of a suitable gauge, which could be an image with a linearly variant 

amount of noise. An example of an image that fulfils this objective is the 

squares image (Figure 33). 

Figure 114 and Figure 115 shows the results of the 32x 10x 1 and 3 'x 15x 1 

networks applied to Figure 33, respectively. 
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-1 

Figure 114: Squares image processed by a 3'x10x1 network using a reduced 
learning set extracted from Band A 

Figure 115: Squares image processed by a 3'x15x1 riet-work using a ruducod 
learning set extracted from Band A 

From these images several interesting points can be noted. Firstly, the 
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confirmation of the conclusion about the robustness of the networks. Secondly 

the unexpected factor that the solutions proposed are directional, as the edges 

are not equally detected in all directions. Also the fact that less contrasted 

edges are missed. 

5.5.10 Computational Load 

An important issue in the implementation of image processing algorithms is 

the computational load. Images require to be of high resolution to be of any 

use in many image processing applications. The number of operations 

performed by a neural network are greater than the number of operations 

which are required by the majority of the algorithms described in the first part 

of this chapter. However, neural networks include a decision criteria, as to the 

marking of the points, which will alleviate the computational load of the 

resulting solutions. This was not active when producing some of the images, 

so as to maintain the same conditions for the visual comparisons performed. 

Effectively it is easy to compute a thresholded output for the neural network. 

Secondly convolution operators can be implemented in a neural network form. 

A 3x3 mask corresponds to a 9x2x1 topology with an unitary slope line as the 

activation function. The networks investigated are inherently non-linear and 
thus have more potential than a convolution mask. 

5.5.11 Discussion 

In this section an approach for a neural network edge detection scheme has 

been presented. The performance of the more effective solutions obtained were 
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presented together with the options and assumptions made. These form 

guidelines for the arbitration strategy developed in the next chapter. 

Some of the limitations of the approach used were highlighted and are 

common to the next chapter. There are several variations that can improve the 

performance of the system. One could be to include an iterative procedure for 

misclassified patterns to be included in a progressively extended learning set. 
Some pattern clustering scheme should also be researched, mainly over the 

targeted images, in an attempt to provide smaller learning sets. 

5.6 Conclusion 

This chapter has presented examples of edge detection schemes, to which an 

arbitration strategy may be applied and expected to perform satisfactorily. The 

second part of the chapter described investigations carried out into edge 

detection using neural networks. The performance of the solutions achieved 

were presented, through representative examples chosen from among the 

converged networks, and the results were discussed. These will be used as a 

comparison to the arbitration strategy to be presented in the next chapter. The 

solutions obtained in the next chapter will be presented and their performance 

characterised. Finally, comparisons between the proposed approach and the 

presented approaches will be drawn. 
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6 ARBITRATION 

"Pluralitas non est ponenda sin 
necessitate" ("Occarn razor')" 

6.1 Introduction 

In the last chapter some common edge detectors were described and their 
behaviour and performance analysed in the form of processed images. The 

development of neural networks for edge detection was presented as was the 

performance achieved by these networks. Advantages and disadvantages of the 

proposed solutions were highlighted relative to the previously implemented 

methods. 

The aim of the research is to investigate image edge map improvement by the 

use of arbitration between different edge detection maps. In this chapter the 
development of the arbitration process is described. and options and 

assumptions assumed justified. Examples of arbitration processes are 

presented. Finally comparisons will be performed and conclusions drawn. 

14 "No more things should be presumed to exist than are absolutely necessary" 
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6.2 The arbitration system 

The general form of the arbitration system is represented in a block diagram 

form in Figure 116 

Ai 
Ei 

Figure 116 : Arbitration Strategy 

Firstly the image P is processed by a set of edge enhancement filters Aa. Ab 

... Ai. The output of each of these edge enhancement filters are edge enhanced 

maps Ea. Eb, 
.... 

Ei. From these maps, edges are arbitrated by a Neural 

Network. based on the information provided by the input data Ea 
... Ei. to 

produce an edge map Am. 

A slightly different version could be designed. if we substitute the edge 

enhancement filters by edge detection filters. The arbitration system will 

process. in this case, binary vectors instead of multi valued vectors. These will 

provide less information for the arbitration system. than the one present in our 

system. as information regarding edge strength is lost. Edge strength is one 

indicator of the importance of an edge, as in general cases main objects within 

198 



Chapter 6 Arbitration 

a scene are the ones which present high contrast or are represented by high 

SNR components of the image. However, when assigning patterns to the 

decision classes of edge / non-edge, mapping inconsistencies are generated. 

This suggests that more information than that provided by thresholded edge 

maps is necessary. An example can be taken from the arbitration between two 

edge maps with marked lines wider than the window size used for arbitration. 

In this case in the area covered by such lines, the same pattern (all pixels have 

the value 1) must be assigned to an edge and a non-edge class simultaneously. 

This case will require larger windows, or additional information to that 

provided by thresholded edge maps only. 

The arbitration process has some similarities with the neural networks for edge 

detection process described in the last chapter. The core difference is that in 

the arbitration process. the network processes data extracted from more than 

one window, in paired positions, from more then one distinct edge enhanced 

map. 

The number of algorithms used in the tests carried out, due to hardware 

limitations, were kept to two. The hardware requirements for the edge 

detection case are. at least, doubled for the arbitration case. However, the 

principles applied can be extended to any number of algorithms. 

Effectively, and as explained later in this chapter. an increase in the number of 

methods to be arbitrated. will produce problems that the hardware available 

could not handle in an admissible time. The memory limitations will be 

aggravated and the network learning phase will increase. This is incompatible 

with the time limitations imposed on the current research. 
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6.3 Implementation 

A general outlook as to the implementation procedure was presented in 

Chapter 5. The arbitration procedure and the edge detection procedures were 

developed in parallel as basic options are common to both cases, e. g., learning 

set source. Emphasis will be placed on main differences and particularities of 

the neural network arbitration implementation relative to the neural network 

edge detection implementation, rather than repeat common options assumed 

during development. 

The main difference is the number of hidden nodes. as the networks input size 

is multiplied by the number of methods arbitrated upon. However, as stated in 

chapter 5, the number of hidden nodes does not seem to be a decisive factor in 

the performance achieved. Networks with different hidden node number will 

be tested. In practice processing times for the arbitration of 1 image changes 

from the order of tens of minutes to several hours for the larger networks 

tested. This factor is a main limitation to extensive tests being performed on 

very large networks. 

The time necessary to process one image is a second limiting factor to the 

number of methods being arbitrated upon. In addition to the problems that 

exist with the learning phase. processing will be extremely slow as a larger 

transputer network is not available. Although the processing time could be 

reduced. as some edge information is already present when the arbitration is 

started. This will reduce the time used to process the band images. however 

some thresholding would be necessary for the other images used throughout 

the work. The processing could be reduced to the areas where edge enhanced 

maps are non null. This option of the implementation of an empirical shortcut 

was avoided as it could produce a bias in the comparisons performed. due to 
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false or incorrect edges hiding in the non processed areas. 

6.3.1 Image Selection 

The images used throughout the development in Chapter Five were the ones 

used in the work reported in this chapter. This simplifies the development 

phase as it allows direct comparisons to be performed. The images used are 

presented in Figure 32. Figure 34 and Figure 90. The neural network 

selection options are common with the ones presented in Chapter Five . 

6.3.2 Learning Set Extraction 

The learning set extraction follows a similar procedure as that used for the 

edge detection networks. The selected area to be scanned is the widest 

meaningful area from the edge maps involved. This process is illustrated in 

Figure 117. First the image is scanned to define the region of interest from 

which the learning vectors will be extracted. This area is defined as in Chapter 

Five. All the edge enhanced maps are scanned and the widest area chosen. 

Around this area a border is added, in order to allow windows to work. This 

area is then scanned, using a previously defined step, for the pattern extraction. 

From each of the edge maps, the pixels inside the window are extracted and 

concatenated to form a pattern. This is stored together with the information as 

to whether it represents or does not represent an edge. A set of vectors is then 

produced and stored. which will be presented to the neural network for the 

learning process. Vectors including only background pixels are discarded. with 

the exception of the first. following the same procedure as that used for neural 

network edge detection. 
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Learning sets are larger than those generated for the cases reported upon in the 

previous chapter, as the area covered by the edge maps is wider than the bands 

themselves. 

6.3.3 Topology 

For the arbitration strategy the number of network inputs is doubled when 

compared to the neural network for edge detection. Taking as a starting rule 

that the number of hidden nodes should be similar to the number of input 

nodes, the memory needs to quadruple relative to the previous case. This 

factor made using the transputer system difficult. This prompted the migration 

of the learning program to the Vax/vms system. Some of the presented 

networks were taught in multiple batch jobs, successively submitted to the 

lower priority batch queues, as each iteration required more CPU time than 

that allowed for medium priority ones or running on-line. 

  
Select 
region. 

ofinterest. - - 

OU 
Colect 
data - 

Figure 117: Learning set definition 
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6.4 Procedure 

Images were used as presented, without any further processing or thresholding. 
Despite the lookup table used for displaying and or printing, edges are marked 

proportional to their strength. This affects some of the manipulations to be 

carried out. 

For the arbitration cases a hard threshold was introduced into the network in 

order to produce binary pictures as the output. 

6.5 Performance 

6.5.1 Generalities 

The following sections describe tests performed using different arbitration 

schemes. Firstly the most relevant characteristics of the methods are described. 

The networks used are presented along with their learning achievements and 

the characteristics of the learning sets used. These are presented together with 

at least one of the images processed. The complexity of the images does not 

allow quantitative measures. that fully reflect the edge map quality, to be 

evaluated. Thus the same indicators will be used as before where generated 

images are used for both learning and in the testing of the various arbitration 

schemes. This makes it difficult to distinguish which network performed the 

best. However, in some cases, failed edges are different. The processed images 

chosen to be presented are the ones which seemed to be the more 

representative solution from a visual aspect. providing more defined edges and 

a minimal number of scattered points or misplaced lines. The measures 
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performed in chapter five are repeated for the images presented, and these 

values will be considered for quantitative comparisons. 

The "Girl" image was again the best image to reveal weaknesses and 
differences, and thus is presented in the majority of cases. 

6.5.2 Case A- Roberts vs. Canny 

6.5.2.1 Methods 

The first test of the arbitration strategy will be performed between the Roberts 

(see section A4) and Canny (see section A 11) edge detection operators. 

Roberts, as the quickest. allows the definition of the most sharp edges. 

However it fails to define low contrast ones. As the smallest window used, and 

thus with the smallest embedded smoothing, it also has a quite remarkable 

sensitivity to noise. Also as a gradient operator, it will mark a wider edge in 

proportion to the slope between the two adjacent areas with a near constant 

grey level. The Canny operator marks edges as a line 1 pixel wide. but does 

not distinguishing between their relative strength. This information can 

however be extracted from the slope at the zero crossing of the second 

derivative and is present in the edge enhanced map used. The Canny operator 

can originate a bias in edge localisation which depends on embedded 

smoothing. A small amount of this is present in the image used. It is expected 

that the bias will be corrected. Also a systematic misdefinition of the corners 

in the squares images are expected to be corrected. 

These two operators present opposite characteristics. The Roberts operator will 

only mark a few strong edges whilst the Canny operator will mark both weak 

and strong edges. Edge maps used for generation of the learning sets are 
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presented in Figure 118 and Figure 119. 

C_; ' 

r; 
Z7 

Figure 118: Band B processed by the Roberts operator 

V" 

Figure 119: Band B processed by the Canny operator 

Arbitration 
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These are used together with the reference map presented in Figure 91 to 

generate the learning set. 

An image of the differences between the two edge maps, highlighted by false 

colours, is presented in Figure 120. The Roberts algorithm is unique from 

amongst the ones investigated as it is the only one not centred over a single 

pixel. Thus it leaves an arbitrary choice as to the location to mark as an edge. 

This results in with an error of ± pixel in either direction. These originate the 

blue border in the false colours picture. 

Figure 120-Pifferr Once, using false coI, urs, berwee: l Vigil Ie 118 and Figure 119 

TABLE XXVIII presents the size values of the learning sets used for dif crnt 

window sizes. 
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ROB-CAN vs. REF region of interest 
94 x 110 

WILýItJW {Gtü. {{ll{ý. ýGW 

size used n on Of 

3x3 5,546 

Sx5 6,283 9240 

1x7 6,807 

TABLE XXVIII 
Learning Sets characteristics 

for Roberts vs. Canny Arbitration 

Vectors containing only the background are discarded which accounts for 26% 

to 40% of the region of interest. 

6.5.2.2 Performance when applied to the Bands and Squares images 

TABLE XXIX presents the learning rates for the various networks for 

different sizes. TABLE XXX and TABLE XXXI present the measures over 

the processed images. The best solutions are obtained for the smallest 

networks. as can be concluded from comparison between the images processed 

by the different networks. The smallest windows do not present a smaller 

number of scattered isolated points as they are able to mark main edges with 

smaller distortions. 
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TABLE XXIX 
CASE A 

Final Values obtained for the neural network arbitration 
between the Roberts and canny edge maps 

Window Size 

3x3 Final Values 
Detail 

Hidden Nodes WP RCD % RMS E 

5 866 4,680 84.39 650 0.01 21 
10 642 4,904 88.42 500 0.94 15' 
15 498 5,048 91.02 600 0.08 15 
18 504 5,042 90.91 450 0.77 16 
30 427 5,119 92.3 450 0.69 16 
40 268 5,278 95.17 

- 
600 0.05 14 

50 296 5,250 ' '- 94.66 

ý__ 

500 0.52 - 25 
WP - Number of wrongly recalled patterns c7_r - iterations for convergence 
RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

Better defined shape 

TABLE XXIX -A 

Window Size 

5x5 Final Values 

Hidden Nodes WP + RCD % @ RMS 
Detail 

E 

25 133 6,1501 97.88 750 0.02 23 

50 100 j 6,183 1 98.41 850 0.02 20 
WP - Number of wrongly recalled patterns I üý - Iterations for convergence 
RCD - Number of correctly recalled patterns I RMS - Root mean square error at convergence 

TABLE XXIX -8 

Window Size 

7x7 Final Values 
Detail 

Hidden Nodes W. P. RCD % (nom RMS E 

20 85 6,722 98.75 840 0.01 _0 
50 53 6,754 99.22 280 0.01 25 

WP " Number of wrongly recalled patterns (- Iterations for convergence 
RCD -Number of correctly recalled patterns RSMS - Root mean square error at convergence 

TABLE XXIX -C 
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TABLE XXX 
CASE A 

Performance of the arbitration process between the Roberts and Canny edge maps 
when applied to the Band Images 

Window Hidden Band A Image Band B Image 
Sre Nodes EQ MQ EQ MQ 

5 0.62 0.35 0.63 0.42 

10 0.64 0.35 0.63 0.4 

15 0.64 0.35 0.64 0.43 

3 18 0.64 0.36 0.64 0.42 

30 0.56 0.35 0.57 0.41 

40 0.6 0.3 0.57 0.35 

50 0.57 0.33 0.56 0.4 

EQ -Edge Quality MQ - Map Quality 

TABLE XXX -A 

Window Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

25 0.45 0.27 0.74 0.7 
5 50 0.61 0.36 0.98 0.91 

EQ -Edge Quality MQ - Map Quality 

TABLE XXX -B 

Window Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

_0 0.53 0.34 0.99 0.93 
7 50 0.47 0.3 0.98 0.92 

EQ -Edge Quality MQ - Map Quality 

T7, BLE XXX -C 
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TABLE XXXI 
CASE A 

Performance of the arbitration process between the Roberts and Canny edge maps 
when applied to the Squares image 

Window Hidden Lines Inside Outside 
Si=e Nodes A a k a 9 

5 1.12 0.63 0.01 0.02 0.03 0.03 
15 0.87 0.44 0.01 0.02 0.03 0.03 

3 18 0.98 0.5 0.01 0.01 0.03 0.02 

30 1.11 0.5 0.02 0.02 0.05 0.03 

40 0.82 0.32 0.02 0.02 0.05 0.04 

50 0.94 0.42 0.02 0.02 0.05 0.04 
R- Average value a- Standard deviation 

TABLE XXXI -A 

Window Hidden Lines Inside Outside 
Size Nodes 

ß t ß 9 

5 25 1.05 0.39 0.06 0.04 0.12 0.07 

50 0.95 0.34 0.05 0.04 0.1 0.06 
Q- Average value a- Standard deviation 

TABLE XXXI -8 

Window Hidden Lines inside Outside 
Si: e Nodes I a a A a 

7 20 0.91 0.21 0.07 0.04 0.13 0.04 

50 0.99 0.25 0.04 0.03 0.08 0.04 

x- Average value Q- Stanaara uevianon 

6.5.2.3 Position 

TABLE XXXI -C 

Figure 121 and Figure 122, show superimposed on the original girl image the 

edges marked by networks with 32 and 72 input nodes respectively. As in the 

neural detection case, edges are marked incompletely and in the correct 

position . 
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Figure 121: Arbitration using a 3`x5x1 network superimposed on the girl image 

Figure 112: Arbitration using a 7'x5x1 network superimposed on the Girl imay� 
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6.5.2.4 General Performance 

A final comparison should be performed between the obtained edges from the 

arbitration system and the edges obtained by the edges operators alone. It is 

important to assess what and where are the gains obtained using the arbitration 

strategy. The images in figure 123 and 124, and the images in figure 125 and 

126 present the results from the blending of the arbitrated edge maps and the 

edge maps arbitrated upon. In this case lost edges are marked in red and 

gained edges are marked in green. Edges that are present in both images are 

marked in blue. The arbitration strategy is performing more than a logical 

AND If the arbitration strategy only perform a logical AND only common 

points to both edge maps would be marked, thus the comparisons would only 

present common and lost points (or blue and red points). This fact can be 

concluded from the existence of green points, as the only non common points 

would be the ones that are only present in the original image. The fact that red 

points exist show that more than a logical OR is being performed. As in this 

case points marked by one or more of the operators would be marked in the 

final edge map. Thus the blending would originate only common and gained 

points (or blue and green points). 

The 52 window produced some of the best recalling. Here it is difficult to see 

the differences between the processed image. from which the learning set was 

extracted. and the reference image used in the extraction. These are presented 

for one of the cases studied, in Figure 127. 
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Figure 123: B1ending of the edges produced by a3 xbxl neural network 
arbitrator and the Roberts operator results 

Figure 124: Blending of the edges produced by a 3'x5xl neural network arbitrator 
and the Canny operators results 
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Figure 125: Blending of the edges produced by a 7'x5xl neural network arbitrator 
and the Roberts operator results 

Figure 126: Blending of the edges produced by a 7x5x1 neural network arbitrator 
and the Canny operator results 
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Figure 127: Processed learnt image by the 53x30x1 neural network arbitrator 

ý`. 

.ý . ,ý 

Figure 128: Comparison between Figure 127 

and the reference edges 

The difference image between Figure 127 and Figure 91 is presented in Figure 

128. This picture has been biased at 128 grey levels, so that we can distinguish 
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positive and negative values. 

Arbitration 

The network performance for the test images used is presented, using the same 

sequence of images as before, in Figure 129 through Figure 131. 

"ý 

Figure 129: Band A image processed by a 53x30x1 network 
arbitrating between the Roberts and Canny edge enhanced maps 
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Figure 130: Lenna processed by a 5'x30x1 network 
arbitrating between the Roberts and Canny edge enhanced maps 

Figure 131: Gir1 processed by a 52x30x1 network 
arbitrating between The Roberts and Canny edge enhanced maps 
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6.5.2.5 Discussion 

The first arbitration strategy investigated was between the Roberts and Canny 

edge detection operators. These were the methods used throughout the 

development phase. These two algorithms are particular cases: the first marks 

the edges rapidly and with high contrast, whilst the second marks (probably) 

all edges including spurious features. They were chosen as they allow for easy 

assessment of the arbitration strategy. Although the results can not be 

considered perfect (in any of the cases), the results obtained show that such a 

strategy is able to work and produces an edge map that both inherits 

characteristics from the original maps and disinherits characteristics from each 

of the edge enhanced maps used. 

6.5.3 Case B- Roberts vs. Deriche 

6.5.3.1 Methods 

A second test was performed between algorithms from the same groups as 

Case A. The Roberts operator was maintained, and the Canny operator was 

replaced by a faster operator of the same group. This being the Deriche 

operator (section A. 12). This operator was chosen as it marked fewer 

background edge features than the Canny operator. Effectively the edge map 

produced by the Deriche operator is more selective than the one produced by 

the Canny operator. TABLE XVIII presents the size values of the learning sets 

used for different window sizes. The result of processing the Band B image 

with the Deriche operator is presented in Figure 132. The highlighted 

differences between the Roberts and Deriche edge maps are presented in 

Figure 1: 3. with the differences highlighted by the use of false colours. The 

results presented after training on a reduced learning set, are directly 

comparable, on a fair basis, with the ones presented in Chapter Five. For this 
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second test, the learning set was extracted from Band A, showing the 

independence of the method from the master image. 

ROB+DER vs. REF region of interest 
62 x 44 

window learning sets 
size written total 

3x3 2,016 

5x5 2,289 2728 

7x7 2,447 

Table XXXIII 
Learning Sets characteristics 

for Roberts vs. Deriche Arbitration 

r' 

FY 

Figure 132: Band B processed by the Deriche operator 
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Figure 133: Highlighted differences between Figure 118 (Roberts) 

and Figure 132 (Deriche) 

6.5.3.2 Performance 

Several networks with different hidden layer size have been taught. TABLE 

XXXIV shows the number of unlearnt patterns and the percentage of recalled 

patterns achieved for these networks. Appendix C presents the performance 

on one of the processed images, of the networks tested for the current 

arbitration case. Figure 134 through Figure 136 show representative cases for 

each of the window sizes tested. These were selected according to quality of 

the edges produced. The smaller windows present the best defined detail 

within section E of the girl image. They also provide well defined thin edges, 

which are among the most continuous of all the arbitrated maps. 

Performance for the Bands and Squares images are presented in TABLE 

XXXV and TABLE XXXVI respectively. Values are better for the Band A 

image as learning sets were extracted from this image. Performance is better 

for the smaller networks 
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TABLE XXXIV 
CASE a 

Final Values obtained for neural network arbitration between the Roberts and 
Deriche edge maps 

Window Size 

Final Values 
3x3 Detail 

Hidden Nodes WP RCD % Q RMS E 

10 109 1,907 94.59 1,750 0.05 21 

15 110 1,906 94.54 750 0.05 28 

18 90 1,926 95.54 850 0.05 9 

20 99 1,917 95.09 800 0.05 14 

22 101 1,915 94.99 800 0.05 24 

30 81 1,935 95.98 900 0.04 25 

40 103 1,913 94.89 750 0.05 24 

50 68 1,948 96.63 950 0.03 26 
WF- Number of wrongly recalled patterns 2,, rß - iterations tor convergence 

RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXXIV -A 

Window Size i 

5x5 Final Values 
Detail 

Hidden Nodes I WP RCD °'o RMS E 

40 40 2.249 98.25 4,850 0.02 29 

50 32 2.257 98.6 5,000 0.01 17 

70 29 2,260 98.73 4,800 0.01 18 
MVP -Number of wrongly recalled patterns 0- Iterations for convergence 
RCD -Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXXIV -S 

Window Size 

7x7 Final Values 
Detail 

. Hidden Nodes I MVP RCD °a ( pia RMS E 

20 19 2.428 ( 99.22 00 4.2 0.01 31 

30 19 1 2.4281 99.22 3,300 0.01 _6 

40 l3 2.43411 99.47 5,000 0.01 

60 15 2.4321 99.39 1.880 ý 0.01 28 
\VP -Number of wrongly recalled patterns 64 - Iterations for convergence 
RCD - `umber of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXXIV -C 
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TABLE XXXV 
CASE B 

Performance of the arbitration process between the Roberts and Deriche edge 
maps when applied the band images 

Window Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

10 0.48 0.3 0.4 0.28 

15 0.52 0.32 0.44 0.29 

18 0.48 0.3 0.4 0.29 

20 0.45 0.26 0.39 0.25 
3x3 22 0.46 0.3 0.31 0.3 

30 0.48 0.32 0.39 0.28 

40 0.51 0.32 0.42 0.29 

50 0.48 0.28 0.44 0.28 
EQ -Edge Quality MQ - Map Quality 

TABLE XXXV -A 

Window ' Hidden Band A Image Band B Image 
Size 

I 
Nodes EQ MQ EQ MQ 

40 0.46 0.29 0.4 0.28 

5 5 
50 0.51 0.28 0.42 0.26 

x 
60 0.49 0.29 0.42 0.25 

70 0.49 0.27 0.4 0.23 
EQ -Edge Quality MQ - Map Qua] try 

TABLE XXXV -B 

Window i Hidden Band A Image Band B Image 
Size . Nodes EQ MQ EQ MQ 

20 0.38 0.22 0.33 0.21 

30 0.4 0.21 0.36 0.22 

7x7 40 0.41 0.24 0.35 1 0.23 

50 0.37 0.2 0.34 I 0.22 

60 0.38 0.18 1 0.35 0.22 
EQ -Edge Quality %IQ - Map Quality 

TABLE (XXV -C 
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TABLE XXXVI 

Case S 
Performance of arbitration process between the Roberts and Deriche edge maps 

when applied to the Squares image 

Window Hidden Lines Inside Outside 
Si: e Nodes k a a a 

10 0.69 0.24 0.07 0.08 0.9 0.1 

15 0.65 0.22 0.6 0.08 0.9 0.1 

18 0.77 0.29 0.8 0.09 0.11 0.1 

3x3 20 0.66 0.27 0.8 0.09 0.1 0.1 

22 1.06' 0.34 0.12 0.14 0.18 0.18 

30 0.78 0.3 0.12 0.13 0.16 0.15 

40 0.78 0.35 0.9 0.12 0.13 0.14 

50 0.69 0.25 0.5 0.05 0.07 0.06 

Q- Average value a- branaara aeviauon 

" Two pixel wide vertical edges. 

TABLE XXXVI -A 

Window Hidden Lines Inside Outside 
Sice Nodes 

a ß, Q 6 
1 40 0.76 0.3 0.14 0.12 0.18 0.15 

5x5 50 0.67 0.28 0.1 0.11 0.13 0.13 
1 70 1 0.5 0.17 0.08 0.07 1 0.08 0.07 

t- Average value a- Standara deviation 

TABLE XXXVI -B 

Window Hidden 
size 

. 
Nodes I ` 

Lines 

,a 

I 

! 
nside 

Q 

Outside 

I86 

1 20 0.59 0.46 0.17 0.16 0.23 0.2 

30 0.43 0.48 0.19 0.15 0.21 0.19 

ý7 40 0.65 0.28 0.12 0.11 0.15 0.13 

50 0.59 0.41 1 0.17 0.13 0.19 0.17 

60 0.44 0.39 1 0.14 0.11 0.16 0.15 

x" Average value a" Standard deviation 

TABLE XXXVI -C 
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Figure 134: The Girl image edge map arbitrated 
between the Roberts and Deriche edge maps 

using a 32x15xl network 
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Figure 135: The Girl image edge map arbitrated 
between the Roberts and Deriche edge maps 

using a 5'x50x1 network 

Arbitration 
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Figure 136: The Girl image edge map arbitrated 

between the Roberts and Deriche edge maps 

using a 7'x4Oxl network 

Arbitration 

As in the previous case the lines are in the correct position and clearly reflect 

the edge shape. This fact is expected as the arbitration process is being 

performed between correct edge positions. 

It has been found, as already verified for Case A (Roberts vs. Canny) edge 

maps, that networks working with the smaller windows present a better edge 

map, as the lines are thinner and they leave less points scattered around. 

6.5.3.3 Discussion 

Although the overall visual aspect of the presented solutions are better than 

Case A (Roberts vs. Deriche), the amount of work performed by the arbitration 

process is smaller, as the edges within the edge maps used for the arbitration 

process are stronger and more defined than in Case A. 
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Another interesting point. common with the first case presented is the fact that 

the best solutions seem to be achieved with smaller networks. 

6.5.4 Case C- Prewitt vs. Canny 

6.5.4.1 Methods 

Together with the Marr and Hildreth operator the Canny operator marks all 

edges (probably) and is capable of detecting even poor contrast edges. This is 

not the case with the other operators investigated. The results previously 

presented using the Canny operator seem to reflect the fact that the Roberts 

operator did not mark low contrast edges with a strong intensity. To try to 

overcome this problem another test was performed. The Roberts operator was 

substituted by an operator with stronger marking capabilities, the Prewitt edge 

enhancement mask. 

PWT-CAN vs. REF 

3x3' 5.780 

Sx5 6.463 9'-40 

TABLE XXXVII 

Learning sets sizes for Prewitt : 1s. Canny Arbitration 

The learning sets used to train the neural network arbitrator were extracted 

from the edge map presented in Figure 137 together with the map presented 

in Figure 119 (Canny operator) when compared to the reference map presented 
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in Figure 91. The learning sets sizes used are presented in TABLE XXXVII. 

Figure 137: Band B image processed by the Prewitt operator 

The highlighted differences, by the use of false colours, is presented in Figure 

138. Points present in both maps are represented as Green. Edges uniquely 

marked by the Canny edge detection operator are presented in Red. Edges 

uniquely marked by the operator due to Prewitt are presented in blue. 
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Figure 138: Highlighted differences between Figure 119 (Canny) 

and Figure 137 (Prewitt) 

TABLE XXXVIII 
CASE C 

Final Values obtained for the neural network arbitrator between Prewitt and 
Canny edge maps 

Window Size 

3x3 Final Values 5,780 
Detail 

Hidden Nodes W. P. RCD % u RMS E 

5 946 4,834 83.63 1,050 0.11 19 
10 635 5,145 89.01 1,050 0.09 25 
15 626 5,154 89.17 1,050 0.09 33 
20 482 5,298 91.66 650 0.07 25 
25 476 5,304 91.76 650 0.07 32 

WP - Number of wrongly recalled patterns @- Iterations for convergence 
RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XXXVIII -A 
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Window Size 

5x5 Final Values 6,463 
Detail 

Hidden Nodes W. P. RCD % (ai RMS E 

15 277 6,186 4.29 200 0.04 13' 
20 126 6,337 1.95 450 0.02 28 
25 105 6,358 1.62 850 0.02 31 
30 95 6,368 1.47 500 0.01 23 
40 62 6,401 0.96 500 0.01 
50 98 6,365 1.52 500 0.04 26 

wr- rvumoer or wrongly recalled patterns ýM - Iterations for convergence 

RCD - Number of correctly recalled patterns RMS - Root mean square error at convergence 

" Difficult to distinguish 
"" Indistinguishable 

TABLE XXXVIII -B 
TABLE XXXIX 

CASE C 
Performance of the arbitration process between Prewitt and Canny edge maps when 

applied to the Band images 

Window Hidden Band A Image Band B Image 
Si: e Nodes EQ MQ EQ MQ 

5 0.6 0.31 0.64 0.46 

10 
3 3 

0.55 0.37 0.71 0.53 
x 

15 0.61 0.36 0.76 0.58 

20 0.48 0.34 0.79 0.59 

25 0.55 0.39 0.8 0.61 
EQ -Edge Quality MQ - Map duality 

TABLE XXXIX -A 

Window i Hidden Band A Image Band B Image 
Si=e ? Nodes EQ MQ E MQ 

15 0.52 0.33 0.85 0.62 

20 0.52 0.38 0.97 0.9 

25 0.55 0.39 0.98 0.92 

5x5 30 0.52 0.35 0.98 0.93 

40 0.57 0.4 1 0.99 ? 0.95 

50 0.55 0.38 0.99 0.94 
EQ -Edge Quality MQ " Map Quality 

TABLE XXXIX -3 
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TABLE XL 
CASE C 

Performance of the arbitration process between prewitt and Canny edge maps when 
applied to the Squares image 

Window Hidden Lines Inside Outside 
Si: e Nodes ,1 a Q a v 

5 1.07 0.6 0 0 0.01 0.01 

10 0.94 0.43 0.02 0.03 0.05 0.04 

3x3 15 1.13 0.5 0.02 0.02 0.06 0.3 

20 1.24 0.34 0.08 0.06 0.19 0.11 

25 0.93 0.33 0.12 0.08 0.25 0.12 

R- Average value a- btanaara aevianon 

TABLE XL -A 

Window Hidden Lines Inside Outside 
Size Nodes 

a a a 

15 0.89 0.17 0.08 0.05 0.14 0.04 

20 1.13 0.23 0.11 0.5 0.21 0.4 

5x5 25 0.99 0.31 0,07 0.04 0.14 0.5 

30 0.97 0.2 0.06 0.04 0.12 0.05 

40 1 0.25 0.09 0.06 0.17 0.07 

50 1.06 0.32 0.12 0.07 0.22 0.08 
t -. Average value a- branaaro aevianon 

TABLE XL -B 

6.5.4.2 Performance 

In previous cases larger windows did not present an increase in the 

performance of the networks. Due to this reason 7x7 windows were not tested. 

TABLE XXXVIII presents the learning characteristics for a number of hidden 

nodes. TABLE XXIX and TABLE XL present the performance for the Band 

and Squares images.. selection of the best performing networks is easy to 

obtain if we look at the different "Girl" pictures. Effectively, as in the cases 
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before. the smaller networks (3'' x5x 1) converged to present better definition 

of the lines, even in completeness ( note the left shoulder in the girl image, see 

Figure 139), while removing the majority of the artefacts in the background. A 

second possible choice is the solution including 15 hidden nodes (Figure 140). 

This solution, despite the inclusion of more background points, also includes 

more lines (see the upper right line corresponding to the border of the window, 

or the line between neck and jaw in Figure 139). 

V 

.rf 

ý.:. - ý" 

Figure 139 : Girl image arbitrated between the Prewitt and Canny edge macs using 

a 3' x5x1 network 
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Figure 140 : Girl image arbitrated between the Prewitt and Canny edge maps 

with a 3' x 15 x1 network 

Solutions obtained when using 52 windows are not very good with weak 

edges of an ill defined shape being produced and a large amount of scattered 

points in the background. 

6.5.4.3 Discussion 

A comparison between the case reported in this section and case A. where the 

Roberts and Canny operators were used. shows that a more complete set of 

lines is achieved when the arbitration is done between the Prewitt and Canny 

edge detectors. This is expected as Prewitt edge maps mark the edges with 

more intensity than the Roberts operator. Not only is the Detail E more 

defined in this case. %ý here the roundness is clearly visible. but difference can 

also be seen on the left side of the iirls face. Resulting edge maps present a 

similar aspect as in case A. presented before. 
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6.5.5 CASE D- Roberts vs. Prewitt 

6.5.5.1 Methods 

A fourth test was performed. In the previous cases, different approaches were 

mixed. In this case we will arbitrate two similar approaches. Advantages are 

expected in the form of a reduction in the high intensity features from the 

background, which are due to noise or other causes. In this case we are leaving 

the arbitration process to operate mainly on the lines. However we are loosing 

one component of the information present in the previous cases, which 

corresponds to the thickness of the edges. Images used for the learning set 

extraction were presented in Figure 118 and Figure 137. 

A blending of these two images is presented in Figure 141. These are 

thresholded to a similar number of marked points (10% of the whole image). 

The similarity of the edge maps originates the need to threshold. In the 

previous presented cases there are enough meaningful differences to allow a 

wide choice for the threshold, before blending, without affecting the analysis 

of the blended image. In this case as the width of the edges, which can be 

extracted from the Prewitt edge map, includes the vast majority of the points 

marked by the Roberts operator. differences are hardly perceived. The value of 

the threshold, is imposed by the Roberts operator (th=l), in order to obtain the 

biggest number of marked edges. A similar percentage of marked points was 

chosen for the Pre«itt edge map image, in order to achieve a similar 

comparison basis. The images are blended in the same ratios as used before 

(1/3 and 2/3), and the LUT changed to false colours. Green assigned to points 

marked only by the Pre«itt operator. Red to points marked only by the 

Roberts operator, and Blue for common points. Table XLI gives the learning 

set characteristics and table XLII gives the results of the arbitration. 
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TABLE XLI 

Learning set characteristics 

Arbitration 

The similarity of the edge maps does not allow for a large area to be arbitrated 

upon. The main objective of the work in this case is to evaluate the response in 

the presence of large and undefined edge positions. 

Figure 141: Blending of the Girl image processed by the Roberto and PIewý t_t 
operators thresholded to 10% of marked points 
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TABLE XLII 
Case D 

Final values obtained for the neural network arbitrator 
between the Roberts and Prewitt edge maps 

Window Size 

3x3 Final Values 
Detail 

Hidden Nodes W. P. RCD % @ RMS E 

5 704 5,175 88.03 800 0.09 29 
10 547 5,332 90.7 700 0.08 20 
15 492 5,387 91.63 650 0.07 25 
20 369 5,510 93.72 650 0.06 23 
25 372 5,507 93.67 500 0.05 22 

30 323 5,5561 94.51 550 0.05 24 
WP - Number of wrongly recalled patterns a- Iterations for convergence 

RCD -Number of correctly recalled patterns RMS - Root mean square error at convergence 

TABLE XLII -A 

Window Size 

5x5 Final Values 
Detail 

Hidden Nodes W. P. RCD % ll RMS E 

10 403 ý 6,124 93.83 200 0.05 

15 251 6.276 96.15 250 0.03 38 

20 137 6,390 97.9 250 0.02 39 
WP - Number of wrongly recalled patterns (@ - Iterations for convergence 
RCD - Number of correctly recalled patterns I RMS - Root mean square error at convergence 

6.5.5.2 Performance 

TABLE XLII -B 

Figure 142 presents one of the solutions of the arbitrated picture superimposed 

on the original girl image. The smallest network is presented. as it presents the 
least number of background points marked (two in the window and one in the 

left of the shoulder). It also presents the best edge definition in terms of width. 

as can be seen in the left shoulder line. TABLE XLIII and TABLE XLIV 

present the performance for the Band and Squares images. 
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Figure 142: Superposition of the processed image by a 3' x5x1 network, onto 
the original girl image 

TABLE XLIII 
Case D 

Performance of the arbitration process between the Roberts and Prewitt edge 

maps when applied to the Band Images 

Window Hidden Band A Image Band B Image 
Size Nodes EQ MQ EQ MQ 

5 0.71 0.46 0.73 0.56 

10 0.71 0.47 0.8 0.61 

15 0.61 0.42 0.73 0.61 
3x3 20 0.6 0.44 0.73 0.65 

25 0.67 0.45 0.84 0.68 

30 0.66 0.41 0.83 0.67 
EQ -Edge Quality MQ - Map Quality 

TABLE XLIII -A 

236 



Chapter 6 Arbitration 

Window Hidden Band A Image Band B Image 
Sire Nodes EQ MQ EQ MQ 

10 0.61 0.45 0.78 0.68 

5x5 
15 0.68 0.46 0.85 0.74 

20 0.66 0.5 0.87 0.78 
EQ -Edge Quality MQ - Map Quality 

TABLE XLIII -B 
TABLE XLIV 

CASE D 
Performance of the arbitration process between the Roberts and Prewitt edge 

maps when applied to the Squares image 

Window Hidden Lines Inside Outside 
Size Nodes 

v v a 
5 1.17 0.71 0 0 0 0 

10 0.96 0.58 0.01 0.01 0.02 0.01 

3 15 0.98 0.58 0.02 0.02 0.03 0.03 

20 1.03 0.49 0.02 0.03 0.03 0.03 

25 1.08 0.56 0.01 0.02 0.02 0.02 

30 0.82 0.57 0.01 0.02 0.02 0.02 
C- Average value a- Standard deviation 

TALE XLIV -A 

Window Hidden Lines Inside Outside 
Si=e Nodes 

Q 4 a Q a 
5 1.26 0.55 0.1 0.1 0.19 0.17 

5 10 0.97 0.37 0.03 0.02 0.04 0.03 
30 1.07 0.46 0.02 0.02 0.03 0.03 

C- Average value a- Standard deviation 

SABLE XLIV -3 

6.5.5.3 Discussion 

This last example. although it produces the clearest map with the fewest 

scattered points, does not represent the highest achievement from the 
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presented examples. The edge enhanced maps being arbitrated upon are very 

similar and the edge detection algorithms chosen are more selective in 

marking the sharpest edges than the others investigated. 

The arbitration scheme produces a more complete map than that produced by 

the Roberts operator. However, the arbitration scheme produces a similar 

result to the edge map produced by the Prewitt Operator with a suitable 

threshold. For the same threshold condition as used to produce the image in 

Figure 141, a comparison between the edge map produced by the Prewitt 

operator and the edge map that was superimposed on to Figure 142, shows that 

a gain of 131 points was obtained relative to the Prewitt edge map, and a loss 

of 1099 points also occurred. This value is higher than the number of retained 

points (1089). There was no improvement in the definition of the edges. as a 
decrease in edge width was not achieved. Although this case has produced the 

best edge maps, it is as a direct result of the data fed into the network. and not 
due to an outstanding performance of the arbitration system. 

6.5.6 Closure 

In this section several edge detection arbitration schemes have been presented. 
These were presented along with an analysis of their performance and 

efficiency. The reasons that suggested the tuples to be chosen were presented 

as were the comparisons performed and measurements taken. 

Comparisons between the different edge detection arbitration schemes are next 

to be described. These will be based on the measures presented earlier. Finally 

conclusions will be dra,, Nn. 
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6.6 Comparisons 

6.6.1 Foreword 

In the previous section we have presented several examples of arbitration 

schemes along with representative examples of their performance. In the 

remainder of this chapter. comparisons between the proposed solutions will be 

presented. The comparisons presented are the best example for each particular 

case. Finally global comparisons will be drawn. 

6.6.2 Computational Load 

The arbitration process is more computational intensive than the methods 

arbitrated upon. Also. as more than one window is used it requires more 

calculations than the equivalent neural network edge detector using the same 

window size. Although these factors are drawbacks to practical application of 
the system, they can be overcome using parallel processing techniques, 

described in Chapter Four. 
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6.6.3 Convergence of the solutions 

Method Window 
Size 

Hidden 
Nodes 

% MQB EQB Line (A) t1 

Neural Network 3 40 91.81 0.84 0.07 0.94 0.34 
Edge Detector 5 50 95.83 0.95 0.81 0.8 0.32 

Techniques Arbitrated: 

3 50 95.17 0.56 0.4 0.94 0.42 
Roberts Canny 5 50 98.41 0.98 0.91 0.95 0.34 

7 50 99.22 0.98 0.92 0.99 0.25 

3 30 95.98 0.39 0.28 0.78 0.3 
Roberts Deriche 5 70 98.73 0.4 0.23 0.64 0.16 

7 30 99.47 0.36 0.22 0.55 0.47 

3 25 91.76 0.8 0.61 0.93 0.23 
Prewitt Canny 5 40 99.04 0.99 0.95 1 0.25 

3 30 94.51 0.83 0.67 0.38 0.02 
Robert Prewitt 5 20 97.96 0.87 0.78 1.07 0.46 

%- Percentage of correctly recalled E0. - Edge Quality for Band B image *" Average value 
Patterns MMQ... Mop Quality for Band B image a- standard deviation 

TABLE XLV 
Learning achievements 

The first factor compared. in table XLV, is the percentage of correctly recalled 

patterns between the different cases. Images processed by the networks that 

presented the highest recalling factors, are given in figures 143 through 147. 

First it should be recalled that the Edge Quality Parameter and the recalling 

factor are distinct quantities as they refer to distinct sets of points. Values 

obtained show that network performance is not proportional to the percentage 

of recalled patterns. This fact can be seen. through the tables presented so far. 

as better scores did not coincide with better recalling factors. It can also be 

noted from tables TABLE XLVI and TABLE XLVII that the optimum number 

of hidden nodes for each figure of merit were normally different from the 

equivalent solution presented in TABLE XLV . This is due to the distinct 

figures of merit used throughout the work. 
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Figure 143: Edge detection of Band B using a 3'x50x1 neural network 

!ýrt 

Figure 144- Band B edges arbitrated between the Roberts and canny produced edge 
maps using a 3'x50x1 neural network 
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Figure 145 -Band B edges arbitrated between the Roberts and Deriche produced 

edge maps using a 7'x30xl neural network 

Figure 146 -Band B edges arbitrated between the Prewitt and Canny produced edge 
maps using a 5'x40x1 neural network 
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Figure 147 -Band B edges arbitrated between Roberts and Prewitt produced edge 

maps using a 5'x20x1 neural network 

6.6.4 Robustness 

Robustness of the arbitration examples can be evaluated by a number of 

means. First it can be evaluated by the standard deviation presented for the 

various marked lines, as they are differently marked as the amount of noise 

varies. Secondly, and independently from the grey level, it can be evaluated by 

the number of points obtained outside the squares, in the case of the squares 

image. The best values obtained for each of the different networks are 

presented in TABLE XLVI. The first factor that can be noted is the closeness 

of the length of the average line to one. Values measured for the edge detectors 

presented in TABLE XLVI were generally larger than one with larger standard 

deviations. Values outside the square are consistently of small value showing 

an insensibility to noise that outperforms some of the methods arbitrated upon. 
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Generally values are situated between the scores presented by the methods 

arbitrated upon. 

Method Window Hidden Line Outside 
Size Nodes 9 a R a 

Neural Network 3 40 0.94 0.34 0.06 0.08 
Edge Detector 5 50 0.8 0.32 0.01 0.01 

Techniques Arbitrated 

3 18 0.98 0.5 0.03 0.02 
Roberts Canny 5 50 0.95 0.34 0.1 0.06 

7 50 0.99 0.25 0.08 0.04 

3' 30 0.78 0.3 0.16 0.15 
Roberts Deriche 5 40 0.76 0.3 0,18 0.15 

7 40 0.65 0.28 0.15 0.14 

3 10 0.84 0.43 0.05 0.04 
Prewitt Canny 5 25 0.99 0.31 0.14 0.05 

3 20 1.03 0.49 0.03 0.03 
Roberts Prewitt 5 10 1.26 0.55 0.19 0.17 

""' considered HN-22, Lines=1.06±0.34 9- Average value a- Standard deviation 

TABLE XLVI 
Performance for the Squares Image 

Best Values 

Figure 148 through Figure 152 present the images with the best line measures 

for each of the cases presented (in bold in TABLE XLVI) 
. 

The best values 

were obtained for the arbitrated Roberts and Canny edge detector map using a 

72x50x 1 neural network, as this presents the closest to the unit value and the 

smallest standard deviations. However, a comparison between the pictures 

presented show that the value does not correspond to the best image obtained. 
The values obtained reflect the fact that edges are marked with a Nsidth of 

more than one pixel in some areas. The best solution. in visual terms. in this 

case seems to be that obtained by the neural network edge detector using a 

x40x1 network. 32 

Several comments can be drawn from the presented images. Firstly a better 

edge definition is obtained from the Neural Network Edge detector in 
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comparison with the arbitrated maps. The images, obtained using the Neural 

Network edge detector, present clear edges as a continuous thin line, with 

correct shape and position. This fact is reflected in the values presented in 

TABLE XLVI. 

Figure 148: Neural Network Edge Detection using a 3'x40x1 neural network 
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Figure 149 - Squares edges arbitrated between the Roberts and Canny produced 

edge maps using a 73x50x1 neural network 

!1!. ß. J15{ .. 

1s 

Two" 

IIA1" 1ý=f. ý 

Figure 150 - Squares edges arbitrated between the Roberts and Deriche produced 
edge maps using a 3'x30x1 neural network 
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Figure 151 - Squares edges arbitrated between the Prewitt and Canny produced 

edge maps using a 52x25x1 neural network 
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Figure 152 - Squares edges arbitrated between the Roberts and Prewitt produced 

edge maps using a 3'x20x1 neural network 
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The second detail, that grasps the attention, is the directional behaviour present 
in some of the resulting maps of the arbitration system and for various edge 
detection neural networks. This fact suggests that a bias exists in the learning 

set derived from the learning image used. 

Finally some of the solutions perform better for medium quantities of added 

noise (in terms of the square picture scale), performing poorly in the total 

absence of noise. The same behaviour is also observed, although less 

frequently, in the case of varying grey level. Intermediate contrasts are 

marked as edges whilst low and high contrast edges have been lost. 

6.6.5 Sensibility and Overall Performance 

Figures 153 to 157 present the 'Girl' image processed by the neural networks 

which achieved the highest Edge Map Quality scores presented in TABLE 

XLVII. 

Method Window Hidden MQ 
Size Nodes AB 

Neural Network Edge Detector ý5 50 0.61 0.81 

Techniques Arbitrated: 

Roberts Canny 5 50 0.36 0.91 

Roberts Deriche 3 15140 0.32 0.29 

Prewitt Canny 5 40 0.4 0.95 

Roberts Prewitt 5 _0 0.5 0.78 

: ABLE XLVII 
Best Edge Map Quality 

obtained by the solutions presented 
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Measures for Roberts and Deriche produced edge maps are superior for Band 

A. This is due to the fact that these networks were taught with learning sets 

extracted from this picture (see 6.5.3.1), instead of Band B like the other cases. 
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Figure 153: Edge detection of the "Girl" image using a 5'x50x1 neural network 
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Figure 154: "Girl" image edges arbitrated between the Roberts and Canny 
produced edge maps using a 5'x5Ox1 neural network 
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Figure 155: "Girl" image edges arbitrated between the Roberts and Deriche 
produced edges maps using a 3'x15x1 neural network 
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Figure 156: "Girl" image arbitrated between the Prewitt and Canny produced edge 

maps using a 5'x40x1 neural network 
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Figure 157: "Girl" image edges arbitrated between the Roberts and Prewitt 

produced edge maps using a 5'x2Ox1 neural network 
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This image is a difficult image for any edge detector due to the low contrast 
between different areas in the image. As for the squares image, edges 

produced by the neural network edge detector are better defined, being thin 

and continuous. However a large number of the lines corresponding to the low 

contrast edges are missing. All the arbitration schemes mark them, however a 
larger number of false edges are produced. A clear difference between the 

arbitrated results and the edge detection techniques alone, is the small round 

edge in the left side of the image which is completely missed by the majority 

of the edge detection techniques alone. This detail was also missed by the 

Roberts operator in the enhanced image, however it can be seen to be present 
in the arbitrated example using that filter. Arbitrated maps tend to reflect 

characteristics of the methods from which they were arbitrated, producing 
intermediate versions of the edges. 

From the images presented it can be seen that edge maps that result from the 

arbitration present more scattered points than the map produced by the neural 

network edge detector. These are due to a more complete detection being 

carried out. which include edges that correspond to features in the background. 

Although incompletely marked the results are better than for the neural 

network edge detector which misses them completely. A larger number of 

edges are present in the maps produced by the arbitrator. This suggests that 

using the arbitration strategy enhancement carried out by the edge 

enhancement filters produces a more sensitive operator than a neural network 

alone. 
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6.7 Comparison Result 

The selection between the arbitration scheme proposed and the neural network 
for edge detection is difficult to perform, due to the different and conflicting 

requirements for edge detection and the different characteristics of the 

produced maps. Both techniques correctly located the edges and presented 

some degree of noise robustness. Edges produced by the neural network 
detector are thinner but incomplete (or less complete) than the arbitration cases 
investigated. The arbitration cases seem to require a stronger definition of the 

learning set to achieve the same degree of thinness as the neural network edge 
detector. 

6.8 Chapter conclusion 

In this chapter the development of a neural network edge arbitrator was 

presented. This was applied to the edge map arbitration between pairs of edge 

enhancement schemes. Solutions obtained were presented and evaluated, as in 

the previous chapter. Advantages and disadvantages of the method have been 

shown, relative to the edge detection algorithms and to the neural network 

edge detector developed in Chapter Five. 

The next chapter presents an overview of the work done and conclusions from 

the work presented so far. It evaluates the achievement of the objectives. 

Finally it suggests further research to be carried out. 
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"Valeu a pena? 
Tudo vale a pena 
se alma näo e pequend"s 
(Fernando Pessoa, in Mensagem) 

7.1 Surcease 

In this thesis research into a novel edge detection strategy has been carried out. 

The technique is based on the arbitration between edge enhanced maps 

produced by diverse edge enhancement filters. It was hoped that the different 

edge maps, through arbitration, would complement each other and through the 

process of merging would produce an unique edge map. This was expected to 

inherit some of the suitable characteristics from each of the source maps. An 

artificial neural network was used to perform the arbitration task. The system 

development has been presented along with examples that show its advantages 

and disadvantages. 

In Chapter One the problem of edge detection was introduced and its 

importance within digital image processing and computer vision applications 

highlighted. This chapter also presented the objectives of the work to be 

carried out and an overview of the structure of the Thesis. 

" Was it worthwhile? 
Everything is worthwhile 
if the soul is not insignificant 
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It was also explained, in this chapter. that in a large number of image 

processing applications, edge enhancement filters are expected to process a 
large number of images which have similar characteristics. Effectively, as 
images are produced by the same acquisition system they should present 

similar distortions (e. g.. noise due to the acquisition process). Also, as similar 

subjects are investigated (e. g. blood cells) these will present similar border 

characteristics. This allows us to define samples of different types of image to 

which the system will be applied. from which representative sets of edge data 

can be extracted and used to train the artificial neural network. This will then 

be used to perform the arbitration task. 

In Chapter Two a discussion of the concept of an edge was presented. It was 

important to analyse the concept of an edge as it defines the edge model used 

and thus affects the different algorithms or approaches selected. The 

performance of an algorithm is dependent on the edge model used, and the 

relative performance should be assessed with this constraint in mind. A large 

number of algorithms have been described in the literature. and a review of 

edge enhancement and detection techniques was next to be presented. This 

review aimed to cover a wide range of approaches that have been proposed. A 

more detailed description of the most widely referred to approaches in the 

literature then follows. Their performance and practical use is assumed due to 

the number of citations. Thus their selection should form a suitable first choice 

of methods to be implemented and to be used for the testing of the arbitration 

strategy. 

Comparisons of the edge detection algorithms was also carried out, as it could 

provide an additional criteria for the selection and grading of the algorithms. 
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However. comparing the published results on a like by like basis proved to be 

difficult and thus added little to the global grading of the algorithms presented. 

Edge detection figures of merit were next to be considered. Figures of merit 

were proposed to perform a grading of the performance of edge detection 

algorithms. They incorporate some of the characteristics that are required to 

produce a good edge map. However, as they measure the overall performance, 

they are inappropriate for use in a development study as they blend the distinct 

aspects that should be taken into account. 

A literature review of artificial neural networks has also been carried out and 

was presented within Chapter Two. Main paradigms were presented and 

discussed, so as to allow for the selection of the most suitable network to be 

implemented. Among several classic paradigms multi-layer perceptrons 

seemed to be the most suitable, as they do not require a complete definition of 

the learning sets and the large number of applications reported in the literature 

suggest their high potential for the problem in hand. This type of network was 

described in more detail later on as was the learning method used. 

Mathematical proofs that show. or at least suggest. that the proposed 

arbitration scheme is feasible are presented in Chapter Three. These are 
followed by the detailed presentation of the multi-layer perceptron learning 

law used in the development of the arbitration technique. 

Image processing applications, due to the large number of operations involved 

are computationally intensive. To trv and alleviate the extra load introduced 

through the addition of the neural network arbitrator system a parallel 

implementation of the system, upon a transputer platform. is described in 
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Chapter Four. Parallel processing concepts were first described. Next to be 

described was the transputer platform used and the particular approach 

adopted for the implementation of the arbitration system. Implementations 

based on distinct paradigms were performed in order to assess and compare 

the performance exhibited. These were based on the pipeline and data 

parallelism paradigms. Different process allocations were investigated, in 

order to assess the efficiency cf various implementations' so as to be able to 

optimise the resource allocation. Reductions in computing time of up to 2.5, in 

comparison to a single processor implementation, were obtained using a 

transputer network of 7 processors, configured using a data parallelism 

approach. 

Chapter Five presents two necessary preliminary tasks that were carried out. 

The first is the selection of edge enhancement or edge detection algorithms to 

be implemented. Such a task requires the selection and definition of suitable 

images that demonstrate the diverse performance exhibited by the different 

edge detection algorithms presented. A large number of image types were 

processed. From these a small subset were selected that were representative 

and provided meaningful characteristics for the subsequent analysis. 

Artificially generated images and 'standard' images, as commonly used for 

comparative studies in the literature, for edge detection were chosen. As 

published comparison criteria were found to be inappropriate for the work, 

more stringent and objective comparisons were researched and are presented 

in Chapter Five. These were used as a complement to the visual comparisons, 
being used as the first assessment factor. Through visual comparisons it was 

possible to grade less successful solutions and to note the increase in the 

quality of the system response being obtained. However, they become 

increasingly inefficient and difficult to perform as the quality of the produced 
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edge maps was increased. Measurable characteristics from the images being 

used were researched and suitable methods to quantify them defined. 

Also within Chapter Five the implementation of the selected edge detection 

schemes and the analysis of their performance is presented. It was shown that 

the edge enhanced maps produced by different edge enhancement algorithms 

present different characteristics. It was also shown that different edge 

segments can be marked by different algorithms. The results are presented as 

processed pictures. to which the previously defined measurements were 

applied. These were presented together with a discussion on their relative 

merits. 

The development of a neural network for edge detection is next to be 

described. This problem requires smaller networks and thus it is faster to test 

than the arbitration strategy, allowing an easier coarse definition for the 

arbitration strategy to be developed in a more expeditious way. Learning set 

characteristics were researched as were some neural network characteristics 

that are not known 'a priori'. Examples of networks trained with learning sets 

extracted from different images were presented and the produced edge maps 

characterised. Also the experiments that justified the selection of several 

options were described. It was shown that a neural network can be trained 

with the sample images chosen and is able to successfully process images of a 

similar or different nature. Their performance is dependent on the image from 

which the learning set was extracted. and from the quantity of information 

included in the learning set. Comparisons were drawn between the different 

responses. This process shares characteristics with the arbitration process 

described later. 
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The development started with the use of very reduced training sets, which 

were useful to initially test the system. However, the quality of the solutions 

produced were very poor, which clearly suggested the requirement for more 

extensive sets. These were successively enlarged until the meaningful part of 

the image was included. This increased the system learning times. However, 

the time necessary to process one image with an artificial neural network is 

independent from the data used to teach it, and thus, practical applications of 

any of the approaches is not bounded due to this fact. 

Solutions achieved are able to detect'main' edges, presenting a certain degree 

of robustness. Some of the solutions obtained also present a directionality of 

the response, which suggests that a more elaborate definition of the learning 

set could be required. 

The edge maps obtained present thin and well defined edges, even when the 

neural networks had been taught with sets extracted from simplified images. 

The implementation of the arbitration system is described in Chapter Six. This 

system generalises the edge detection systems described before. The 

arbitration system inherits characteristics from the neural network edge 
detector described before. The arbitration strategy was tested using several 

pairs of edge enhancement and detection algorithms and respective solutions 

were characterised and compared. 

Chapter Six also presents the development and performance of the proposed 

technique. The proposed technique is firstly explained with emphasis on the 
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practical problems that arose and the options inherited from the neural network 

edge detection scheme previously presented. 

It has been shown that the arbitration system can perform well, if suitable edge 

enhanced maps are used. The arbitration will select points (or features) from 

each of the maps and thus the edge maps must include different features to 

allow the arbitration system to work. It was shown that such a system was able 

to select relevant points from each of the edge maps. The arbitration system 

was applied to four different pairs of edge enhancement filters, with different 

degrees of success. The edge maps produced presented some characteristics 

which were unfavourable when compared to the neural network edge detector. 

However, other characteristics were favourable. One such favourable 

characteristic was the arbitration systems ability to detect edges within low 

contrast images. 

Four tests. to the arbitration strategy were performed using different sets of 

edge enhancement algorithms. The first test to the arbitration strategy was 

performed using the Roberts and Canny edge enhancement operators. as they 

produce largely different edge maps. The first mainly marking high contrast 

edges and the second marking a wider number of edges. including low contrast 

and noise related features. The nature of the neural network arbitrator was 

analysed and verified to be more complex than a logical point by point 

merging of the maps arbitrated upon. 

Comparisons between the produced maps and the maps arbitrated upon 

showed the former to be better in many aspects. The arbitrated maps are more 

complete and have a better definition than the ones produced by the Roberts 

operator. This operator. as is common for the gradient based operators. in 

order to mark low contrast edges, requires a low threshold value. As a 
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consequence, high contrast edges are marked thicker, which affects their 

localisation and definition. Although the arbitrated case did not present a one 

pixel thickness, as in the case of the edges marked by the Canny operator, the 

number of points present in the edge map is smaller and correspond to the high 

contrast edges. A clear reduction in the noise related features is visible. 

A second test was performed by the substitution of the Canny edge detector 

with a quicker recursive algorithm, namely the Deriche algorithm, which also 
belongs to an optimal approach. This detector presents a higher distinction 

between high and low contrast edges, and thus it was expected that a clearer 

map would be obtained. The arbitrated maps produced were more complete 

than the ones produced by the Roberts operator and present high contrast 

edges. More lines were produced and the object shapes were clearer than in the 

previous case. Effectively a dislocation of the edges. due to the gaussian 

standard deviation value used in the Canny operator implementation. 

originates a small error in the edge localisation which is reflected in the 

arbitrated map as sporadic points besides the lines. These points, although they 

did not interfere with the definition of the edge, degrade the visual aspect of it. 

Next a search for the low contrast and more blurred edges was carried out. 

This was achieved by changing the Roberts operator for another which had 

stronger marking capabilities. For this purpose the Prewitt edge detection 

operator was used. Prewitt's edge maps presented stronger edges and better 

marking capabilities than the Sobel one and presented more homogeneous 

lines. The edges are also thicker than those produced by the Roberts operator 

and this fact is reflected in the arbitrated maps obtained. However, this system 

produced a large number of scattered points in the background without any 

clear advantage in the marked edges when compared with the previous cases. 
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A fourth test was performed using similar approaches, namely the Roberts and 

the Prewitt operators. In this case similar edge maps are used. These having 

points marked in the same position, and forming similar shapes. Here the 

arbitrated maps present the best edge shapes. They also present a smaller 

number of scattered points which can not be directly attributed to an edge. A 

comparison with the maps arbitrated upon reveals that they present an 

intermediate situation between the two previous maps, which although 

revealing the success of the arbitration system suggests the need for further 

research work. 

7.2 Further work 

The work so far has only investigated the arbitration of 4 different pairs of 

edge enhancement filters. More then just two sets of inputs to the system 

should be investigated. The computational load will increase, however the 

extra information offered by the other edge maps could be significant. Leading 

on from this the selection of which edge filters to use. with respect to the 

image under study, is not trivial and a further arbitration system should be 

developed that automatically selects the appropriate edge filters to use. 

Other combinations of inputs to the arbitration system are also possible such 
as the substitution of the maps by the image itself. thus forming a problem 

with mixed characteristics when compared with the ones described above. 

The edges obtained from the arbitration system are broader than the edges 

marked by the neural network edge detector. This could be due to a more 
complex space being generated and suggests that a larger number of training 

samples is required. Further research should be carried out to allow for a 
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larger number of maps to be used. Effectively the use of only two methods 
leaves ambiguities when one point is only marked in one of the edge enhanced 

maps. 

A comparison of the solutions obtained, in the four tested cases, does not 

originate the same grading for the different images studied. This suggests that 

different edge enhancement tuples will give a different preference for different 

image types. This suggests that different tuples should be tested as a more 

application directed criteria for stopping the learning phase. For instance 

monitoring of the quality of the edge map that a particular learning iteration 

produces, could be used as a criteria to stop the learning phase and possibly 

improve the quality of the obtained solution. 

Thus the exciting work described within this thesis opens the way to further 

investigations, using arbitration, into the important topic of edge detection. 
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A METHODS RETAIN-ED 

A. 1 Introduction 

This Appendix describes the implementation of the edge detection techniques 

used. As the majority of the techniques are convolution operators, this operator 

is presented first, and is common to all implementations unless otherwise 

stated (e. g. Deriche). For each of the techniques. the selected options are stated 

and the implemented mathematical formulae presented. 

A. 2 Convolution operators 

Most local edge detection techniques are based on a convolution between the 
image and a filter, followed by a decision process. This decision process is not 

considered here. In the convolution. (also designated as edge enhancement), 

the filter is applied to all points of the image. This filter is usually defined by a 

matrix. This matrix is usually a square matrix of odd dimensions. This allows 

for the filter to be centred on a known point. In image terms, the filter is 

applied as a sliding vdndow, and thus is commonly referred to as a '%%indow'. 
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This window is applied to all points in the image, producing a second image as 

the result. Usually the application is performed sequentially from left to right, 

and top to bottom, or in increasing values of the coordinates. Figure A. 1 shows 

the values and notation used throughout this thesis. As a consequence, the 

filter elements are referred to according to the same sequence, thus for a 3x3 

filter: 

(n-l. m-1) (n, m-1) (n+1, m-1) 
(n-l, m) (n, m) (n+1. m) 

(n-1, m+1) (n, m+1) (n+l, m+1) 

Figure A-1: Notation used 

In all algorithms, the resulting image is scanned and the grey level span 

readjusted to 256 levels. Due to this the normalisation coefficient sometimes 

associated with some of the masks presented are omitted . 

In the case of the borders, some values outside the image are needed. It was 
decided to allow a margin in the border of the image so that the filter could 

work. For comparison purposes the borders must not be included in the results 

since they will introduce transient effects due the strategy used, and thus it will 

produce spurious results. 
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n=1 

n= M= 
1 256 m 

N=256 
n 

Figure A-2: Referential used 

A. 3 Implementation 

All algorithms were implemented in Occam. working with a companion 

program in C. The Occam Toolset. and earlier TDS3. were used for producing 

bootable versions of the code. These receive and send the images to the 

companion C program. which retrieves, stores and displays the images. 

A. 4 Roberts Operator 

The Roberts operator is simple and quick to use due to the small amount of 

operations involved. It is one of the few filters that use an even window. This 

characteristic implies an uncertainty in the marked position. to one pixel. in 

the filter. The principal disadvantage is also as a consequence of the small 

size of the window used. and is the noise sensibility. The result from the 

convolution filter requires the thresholding of the resulting image. Takingg, into 

account the isotropy, and. from 
. 
Abdou results [I]. the square root model was 
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chosen. The Roberts gradient was implemented as 

Rob = 
ý(n, 

m)-p(n-1, m-1)]2+[p(n-1, m)-p(n, m-1)]2 (A-1) 

which corresponds to the convolution with the filters 

R` _10 (A-2) 
0 -1 

and 

R '' _ 
-01 

10 (A-3) 
- 

with 

RYy =ý +R, ', 
(A-4) 

The integer part of the square root R, is used. The image is scaled before 

returning to the computer. 
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A. 5 Sobel 

One of the most common edge detection algorithms is due to Sobel It is 

defined over a 3x3 window, and thus, is slightly slower to apply then the 

Roberts filter and slightly less sensitive to noise. It is also a convolution 

operator and requires thresholding of the edge enhanced map. Taking into 

account the isotropy the Square Root composition was chosen again. Sobel 

masks are defined as. 

-1 -2 -1 
Sx= 000 

121 

and 

-1 01 
Sy= -202 

-101 

(A-Sa, b) 

S= SX +Sy (A-6) 

The integer part of the square root is used and the resulting image is scaled as 
in the other cases so far. 

A. 6 Prewitt 

Another 3x3 operator was proposed by Prewitt. It is also a convolution 

operator requiring the thresholding of the resulting edge map. Taking into 

account the isotropy the Square Root version was chosen again. Prewitt masks 

are defined as: 

111 
P. x =000 

-1 -1 -1 

and 

10 -1 
P, " =10 -1 

10 -1 

(A-7) 

P= PT -+, P? (A-8) 
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The integer part of the square root is used and the resulting image is scaled as 
in the cases so far. 

A. 7 Frei & Chen 

Frei and Chen defined the edge detection problem as a multidimensional space 

and redefined a selection criteria based on the projection of the space defined 

by the following sets of vectors. 

1 1 1 0 -1 
W1 = 00 0 W2 = I 0 -J 

-1 -J2 -1 1 0 -1 

0 -1 J J 
-1 0 

W3= 10 -1 W4= -1 01 

-ý I 0 0 1 -ý 

oIo -1 011 
W5= -10-1 W6= 0 00 

010 1 0 -1 
1 -2 1 -2 1 -2 

W7 _ -2 4 -2 W8 = 1 41 
1 -2 1 -2 1 -2 

! 

11 
L 

1 
Wq= 111 

111 

(A-9) 

The decision process is defined by 

F= 'ý° (A-10) 

-0 
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The value of F is considered for the edge map. 

A. 8 O'Gormann 

The first algorithm of this type was developed by Huckel and presents several 
implementation problems. It uses a circular window and is based on 

computational heavy functions. A more untroublesome version was proposed 
by O'Gormann. This algorithm has the advantage of use mainly integers, 

which makes it better for implementation, particularly if T4 transputers are 

used. 

The best fit of an ideal edge is performed over a window, being the decision 

based on the quality of the fit. The class of ideal edges considered are step 

edges of the form: 

b+d ifxcosO+ysinO>O 
h(x, y) -b- 

cl otherwise 

O'Gormann uses the first six Walsh functions defined in a 4x4 window: 

W, =[1,1,1,1.1.1,1,1.1.1,1,1,1.1,1,1] 
W, =[ 1,1,1,1.1.1,1,1, -1. -1; . -1 AA . -I . -I) 

W, =[-1, -1,1.1, -1, -1. I. 1.1.1, -1, -1.1.1, -1. -1] 

(A-11) 
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The coefficients for the template are 

ao=b 
ai =ý[q(s+c)-q(s-c)-2q(c)] (A-12) 
a2 = c[q(s+c)+q(s-c)-2q(s)J 
a3=as=as=0 

where s= sin 8, c= cos 0 and 

I x2 ifx>_0 
q(x) 

-x2 ifx <0 
(A-I3) 

The analytic distance between the points in the window and the ideal step is 

b= Ao 

d= [AII+IA2I 
dsi nA' i IAII? IA2I (A-14) 

tan 9=g 2a: if 

241 sign "2 ff IA 1I< IA 2I 

where 

Ar = P(x"Y)(x. y) (A-15) (xy)en 

For the measure of the goodness of the match k is used. where k is: 

k_ . 4, +A 
, 

rA-16 

.4 1+a. +. 4 j+A4 +l, 

ý 

`) 

For a perfect match k takes the value 1. and the operator rejects an edge if 

k<0.9. To deal with regions of uniform intensity the operator also rejects an 

edee if d<1.0 
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AS Laplacian 

The Laplacian is a second order derivative operator, which, although having 

excellent prospects, is unacceptably sensitive to noise. As a second derivative 

it was expected to mark one pixel wide edges, if zero crossings were used. 
Thus no threshold or any other subsequent processing is required. 

The Laplacian is computed using 

010 
1 -4 1 (A-17) 

010 

As in the previous convolutions the resulting image is re-scaled. 

A. 10 LoG operator 

As a solution to the above mentioned problem Marr and Hildreth proposed the 

use of the Laplacian of The Gaussian. The operator is the Laplacian applied to 

an image smoothed by a Gaussian function. This operation can be 

implemented as the convolution with the second derivative of the Gaussian 

function. This allows the implementation as a convolution operator with a very 

large mask, sometimes 32x32. to allow a variety of standard deviations for the 

Gaussian function. This operator also presents the characteristic of being 

separable. allowing, alternatively, to make separate convolutions in the vertical 

and horizontal directions. 
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A. 11 Canny 

Canny uses, the convolution in the edge direction with this function. The first 

derivative in the direction n is 

Gn= ýn =n"VG (A-18) 

n is ideally oriented normal to the edge direction. This direction could be 

estimated from the smoothed gradient direction by: 

ciG I) n- TV-(G-Ai 

where * denotes convolution. 

(A-19) 

An edge point is defined to be a local maximum (in the direction of n) of the 
operator G applied to the image I. At a local maximum. 

nG;, *I ==G*I =0 4cn- 

and the edge strength will be the magnitude of 

IG, i *II= IV(G* 1 )I 

(A-20) 

(A-21) 

Because of the associativity of the convolution. Canny first convolutes with a 

symmetric Gaussian G and then computes directional second derivative zeros 

to locate edges. 

A more detailed description of Canny's algorithm is due to Fleck. which refers 
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to the original LISP code as reference. According to Fleck, Canny used the 

following masks (which are the 2x2 form of the Prewitt operator) to compute 

the X and Y components of the Gradient, which creates a systematic bias in 

the boundary locations: 

i-1 1 -1 -1 
-1 111 (A-22) 

Instead of these masks Fleck uses the masks [-1,0,1] to compute the first 

differences in four directions: horizontal H, vertical V and diagonals D1 and 
D2. This is a slightly different Sobel operator. The X and Y components of the 
Gradient are computed by projecting the diagonal differences onto the axes: 

X= H+ DiZD, 
(A-23) 

Y= V+ "i" (A-24) 

and the amplitude is 

A= Xz -+y 2 (A-25) 

at each cell a value is interpolated for a pseudo-cell in the gradient direction. 

Values are extracted from the two neighbouring cells closest to the gradient 

direction: one from the HN neighbours (Ahv) and one from a diagonal 

neighbour (Add). Let B be the larger of the magnitudes of X and Y. and S the 

smaller 
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The pseudo-cell's value is then 

(8-S)Ai, +SAjj Ag =8 
(A-26) 

A value A. g for a pseudo-cell in the opposite direction is computed in the same 

way. A cell (x, y) is marked as a boundary if: 

A(x, y) >_ Ag(x, y) 
A(Y, y) >A _g(x, y) 

(A-27) 

The value A is marked as the edge. Av=4.0 is implemented. This value was 

chosen as a compromise between the bias localisation minimisation and 

effectiveness for noise smoothing in the acquired pictures. 

A. 12 Deriche 

The Deriche operator uses a smoothing function of the form 

S= k(ocInl + l)e'°1"I and leads to a recursive implementation being obtained 

using the following filter: 

. 'LL(m, n) = SS,, (m. n) + SS�"(m. n) (A-28) 

with the smoothing function 

SS(m, n) = k(a I mº +i )e-ll ml k(a (nt + 1)e-a' (A-29) 

A- 294 



APPENDIX A Methods Retained 

with 

SS. = kJmero`l mI k(a l n) + 1)e-°`l"l 

and 

(A-30) 

SS,, = k(alml + 1)ellmlkine-aInl (A-3 1) 

with k= t""2 and k1= _ct-e- 
t2 

l+2ael-e'=a e 

Where SStr(m, n) and SS,,, (m, n) are the second directional derivatives in x and 

y respectively. The filter obtained is 

LL(m, n) = e')m)e-ai"l -kalmle-«imikalnle-°`lnl (A-32) 

and fixing k such that the output of the Laplacian to a constant input is null 

requires 

Zae-" (A-33) 

To convolute a MxN input image x(m. n) with the filter. we separately perform 

the convolution with each term of the filter (A-32). 

For the first term: 
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yi(m, n) =x(m, n)+e-ayi(m, n-1) (A-34) 

for n=l,.., N and m--1,.., M with the boundary conditions x(m, 0)=0 and 

y, (m, 0)=y, (m; 1)=0 for m=1,.., M 

Y2(m, n) = e-°`X(m, n+ 1) + e«Y2 (m, n+ 1) = ems` [X(m, n+ 1) + Y2 (m, n+ 1)] 

(A-35) 

for n=N,.., I and m= 1,.., M with the boundary conditions 

x(m, N+ 1) =x(m, N+2) =y2(m, N+ 1) =y2(m, N+2) =0 (A-36) 

for m=1,..., ̀ VI 

and, a temporary image is obtained by adding the two vectors 

rI (m, N) = Y1 (m, n) + Y., (m, n) (A-37) 

for n= 1.... N and m=1.... M 

To r, (m. n) is applied another filter in the vertical direction to obtain the result 

Y, (m. n) 

Y1(m. n)=rt(m, n)+e-'Y1(in-1. n) (A-38) 

for m= 1..., M and n=1.... N with the following boundary conditions 
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ri (0, n) = Yi (0, n) = Y1(- l, n) =0 

for n= 1,.., N and 

(A-39) 

Y2(m, n)=e«ri(m+I, n)+e«Y2(m+I, n)=e-°`r2(m+I, n)+Y2(m+I, n) 

for m=M..., 1 and n= 1,.., N with the following boundary conditions 

(A-40) 

ri(M+1, n)=ri(MV+2. n)=Y2(M+I, n)=Y2(M+2, n)=0 (A-41) 

and, the final result is 

Y0(m, n) = Yi (m, n) + YY (m, n) (A-42) 

for n=1,.., N and m= 1.... M. 

For the second term of LL(m. n) 

Y3(m. n)=x(m, n-1)+2e-aY3(m. n-1)-e-2aY3(m, n-2) (A-43) 

for n=1.... N and m=1... \4 

with the boundary conditions x(m. O)=O and Y, (m. 0)=Y; (m: 1)=0 for m=1.... ßf 

Y4(m. n) = e-"x(m. n+ 1)+2e-°`Y4(m, n+ 1)-e-2 Y4(m. 11 -2) (A-44) 

Methods Retained 
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for n=N,.., I and m-- 1,.., M with the following boundary conditions 

x(m, N+ 1) =x(m, N+2) = Y4(m, N+ 1) = Y4(m, N+2) =0 (A-45) 

for m=1,..., M 

and, a temporary image is obtained by adding the two vectors 

r2 = Zý (Y3 (m, n) + Y4(m, n)) (A-46) 

To r2(m. n) is applied another filter in the vertical direction to obtain the result 

Yb(m, n) 

Y3(m, n) =r2(m- 1, n)+2e-, "Y3(m-1, n)-e-2aY3(m-2, n) (A-47) 

for m=1.... M and n=1.... N with the following boundary conditions 

r2(0, n)=i3(-1, n)=Y3(0, n)=0 Porn=l,.., N (A-48) 

and 

Y4 =r, (m+ I, n)+2e--"IY4(m+ l, n)-e`2'Y4(m+2, n) (A-49) 

with the boundary conditions 

r(M+ 1. n) = r(M+ 2. n) = Y4 (f 1. n) = Y. ß (, 11 + 2. ri) =0 (A-50) 

for n= 1.... N 

A-298 



APPENDIX A Methods Retained 

and, the final result is 

Yb (m, n) =-2- (Y3 (m, n) + Y4(m, n)) (A-51) 

for n=1,... N and m-- 1,.., M 

The Laplacian of the input image x(m, n) has to be computed by subtracting 

yb(m, n) from ya(m, n). It requires only 14 multiplication and 16 additions per 

output element independently of the size of the neighbourhood considered and 
specified by the parameter cc. 

This parameter specifies the size of the Gaussian, and is related to the 

standard deviation by 

as =2 J (A-52) 
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Abstract 

ugh it is not a recent research field, edge dei an 
thins present same problems in many image 
wing applications. Different edge detectors present 
et and different responses to the same image, showing 
act detail. Our proposal is that different edge detection 
ißues be utilised in parallel. for generalised edge 
ion of different image types. This allow the 
ment of several edge maps containing different 
'en. From the various edge maos, edges are arbitrated 
a neural network, performing the merging of the 
nt maps. To overcome the increased computing töne, 
mentation is being pey f rmed on a multi-transvuur 
, using the inherent paraIIeIism of the techniques 

this paper, the problem is presented along with the 
atssion of suitability for parallel processing. We present 
rrrpies that show the different performance of the 
sniques for the same image. Results with a neural 
work are presented, along with a comparison uzen the 
ividual techniques. 

1. Introduction 

Edge detection is an important problem in irraze 
processing applications as it is the common starun 
stete tor segmentation or feature detection in unaees. 
the idea of an edge is difficult to define preaseiv. in 
a picture a change in the colouribrightness of an 
object is perceived as a line that can be understood as 
an edge. Although not all changes ;n 
colour/brightness define a border of an obiect. it is 
generally accepted as a sharp change in the grey level 
intesssity of a picture. Edges having various pronies 
are usually present in an usage. From the deiinitson 
the most typical profile is the step or root edge, 
althouzn it is rare in natural scenes. The edge Ironie 
usually appears distorted due to the image acauistnon 
device and the noise that always appears in signals. 
Although in a naturai scene the most common 
borders are vertical and honzonml lines, other snares 

are also present and could be more significant in 
some applications. Many edge detection techniques 
have been developed to cope with this abundance of 
different types of edges. 

2.1 A Review of Edge detection techniques 

A wide range of approaches have been developed for 

solving the edge detection problem. Derivative 
methods are the most common. In this approach, the 
derivative of the picture is taken, and, using a 
threshold criteria. extreme values of the derivative are 
selected and accepted as edges. Usually this 
processing is done by the convolution of the picture 
with a mask [37,381. A different approach is template 
matching, where the window is matched with a set of 
templates of ideal edges. The template producing the 
highest correlation determines the existence of the 
edge at that point [13,37.39). Although these masks 
are inherently discrete, some of the masks could 
define the sampling of a continuous bi-dimensional 
function [24,25,261. Several methods could be used 
to produce families of masks [191. A different 

approach. which avoids the threshold step is to use 
the zero crossing of the second derivative. Due to the 
frequency characteristics of the masks. some 
smoothing is applied, which causes the adver". e effect 
of edge blurring. To alleviate this problem, factors can 
be included in the edge detector, e. g., the Laplacian of 
the image convolved with a Gaussian. Different 

support could be used to perform the smoothing and 
perform the derivatives. as a facet model 1141. An 
optimization of the shape of the smoothing function 
has also been performed (6). The resulting function 

requires relatively large support however a 
simplified version [61 and related versions (2,7,34,421 

exist. Other operators have recently been proposed 
based on different filter support. as mathematical 
morphology i23,441, median filters [4,351 or others 
(22.. 411. 

A different approach fits an edge model to a window 
of the trna¢e, and decides the presence! absence of the 
edge based on the quality of fitting [171. The 
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Figure 1- Test Image. Random radius curve with 
random grey level 

algorithm is computationaly heavy and simplified 
Ipproaches have been described [29,31,32]. Walsh 
(unctions have also been used, which, due to their 
binary characteristics allow a reduction of the 
computational complexity, and show a good ability to 
detect very low contrast edges. The technique 
assumes a rather slow ramp variation as a continuous 
edge. Statistical decision methods have also been 
applied [43]. The decision is based on the comparison 
of the characteristics on neighbouring windows. Other 
related approaches exist [5,16,201. All the refired 
techniques operate in a local window. One of the 
main criticisms, is that the global context information 
of the picture is not considered. Some authors have 
tried several methods that use global information 
such has heuristic planning, graph search techniques 
or others [ 27,28,30]. Some of the above methods 
have been characterized and/or comparisons drawn 
between them. 0,11,12,21,361. Despite all this effort 
a global comparison has not been achieved, due to 
several conflicting constraints that arise with different 
image processing applications. 

2.. 2 The application of edge detection techniques 

An efficient edge detector should achieve some 
desirable characteristics. Among these, resolution, 
precision, uniqueness, sensibility and robustness to 
image blurring and noise are important. In addition, 
the amount of operations involved should be as small 
as possible due to the usual size of images and 
eventual application constraints. Some of these 
characteristics are conflicting. The edges marked 

should be in the correct position, preferably thick and 
coherent and exempt of falsely marked edges. 
Unfortunately, most of the edge maps which are 
produced by edge detection algorithms do not fulfil 

these characteristics. Thus it is common to use some 
form of post-processing technique to perform single 
or isolated point removal, gap filling, etc. 

Effectively edge detection using local algorithms 
consists mainly of convolving one or more masks, 
and thus is not only suitable, but highly suitable for 

parallel processing since all the operations, usually 
small in number, are independently repeated at all 
image points. We suggest that techniques be 

performed in parallel, with the edge detection results 
being arbitrated upon. Such a system mounted on a 
parallel processing platform would form a powerful 
general purpose edge detection tool as each technique 
is effective under different conditions. A neural 
network is an ideal means of carrying out the 
arbitration. 

As can be seen from our discussions so far that many 
varied edge detection techniques exist. Each of these 
techniques have their advantages and disadvantages 
in the types of scenes which they are capable of 
analysing, their computational intensity and the ease 
of implementation on a processing platform. In most 
part of the cases the algorithms are ideally suited to 
being implemented on a parallel processing platform, 
if only through the use of data partitioning. From the 
above collection, we have selected several common 
operators representing different approaches.. The 
operators used are Roberts[381, Sobel[361 and 
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ewitt[37l from derivative approaches, 
Gormann[321 as a surface fit approach and 
irr[261, Canny(61 and Deriche(9l operators as 
unples of optimal filters. Although artificial 
. tunes do not present the difficulties that are present 
natural scenes, the comparison of the methods is 
ing done with generated pictures that try to reflect 
me of the features that are present in digitised 
ieo images, such as small blurring, for instance. 
is is done as we need to know the precise location 
the edges., and thus allowing precise comparisons 
tween the different techniques. An example of such 
picture is shown in fig I, which consist of a 
adorn radius stripe, where the grey level changes 

W.. ý 

Figure 3- Neural Network Mapping 

hth a random slope. To this picture noise or blurring 
d be added. In the presented case, the picture was 

d with a gaussian function, and a small amount 
noise added. Several images are produced and 

! '3ted. By the time of generation, a second image is 
Roduced representing the edge position in the image. 

Neural Networks 

igh not a recent field, Artificial Neural 
'rks have seen major development in recent 
and are being successfully applied to numerous 
ms. Among these, pattern recognition tasks are 
only cited in the literature. 

it capacity to handle incomplete or corrupted sets 
data suggests that they can be applied to the 
erred recognition images and for instance, to inter 

position of missing edges or misplaced edges 
red on the knowledge applied by the different edge 
ecnon techniques described. 

The internal structure of a neural network allows the 
splitting of the network over several processors, with 
a relatively small amount of communication between 
them. Effectively, the architecture of a neural network 
naturally suggests a layer pipeline implementation, 
particularly relevant for intensive and repetitious 
applications such as edge detection This will reduce 
the overall processing time to the same order as that 
of a convolution filter of similar size. The only factors 
that must be propagated between different layers are 
the neuron vectors, which represent only a small 
fraction of the total amount of operations involved. 
For a nhlxnh2 coupling matrix there will be only ns, 
values shared. Also, the massively parallel layer 
structure suggests the replication of the process over 
n processors. 

4. Edge detection results 

A representative number of the various edge 
detection schemes were implemented in the first 
instance on a single transputer, then on a multi 
transputer array. Results are presented in the form of 
processed images for different types of edge detector. 
Finally results are presented as to the effectiveness of 
a neural network. 

Figures 4 through 6 show edgs maps obtained using 
several of the above mentioned methods. The pictures 
are presented, without further processing. It could 
clearly be seen that different methods detect different 

edge segments. The points falsely (? ) marked on the 
interior of the band are not the same in the different 
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Figure 5- Canny Algorithm 

Ups. Also, on the right side of the stripe, for 
a stance, some edge points are consistently missed by 
* different algorithms by different amounts. Finally 
artifacts due to the noise, although partially avoidable 
'v a convenient threshold criteria, are dissimilar in 
the different maps. This fact suggest the possibility of 
obtaining improved edge maps by joining, in some 
Nay, the responses of several methods. Although, the 
rocessing time will duplicate or multipli, with the 
se of parallel processing techniques, it is expected to 

achieve an effective implementation of this process. 

:n the first instance we are researching the ability of 
a neural network for edge detection.. The obtention of 
a neural network of minimal configuration is 
Important due to its intensive use. The learning set 
consists of images generated over a binary array by 
a small algorithm and representing edges at different 
orientations. A 5x5 window is used to supply the data 
to the input layer, followed by a5 node hidden laver, 
and, in the picture, is plotted the result from the 
output node, without further processing. The 
examples shown, correspond to a learning set 
containing 32 elements. The learning set is generated 
in a square array, where different values. are assigned 
to the points above and below a reference line. Each 
element of the set corresponds to a different value or 
the slope. This procedure is allowed if we assume the 
constraint that edges in a small window are linear. 
This fact, that can not be assumed for larger windows, 
allows for the tests to be performed on the a 
automatic generation of edges. 

A more natural and complete learning set could be 

extracted from the two picture-reference edges, 
although some problems arise. This learning set will 
present several problems due to the non 
equiprobability for the different pairs of pattern- 
responses. Effectively from the selection of the region 
of interest, it will be possible to perform the 
extraction of 41.55 elements, in which, 40 to 50% will 
represent the background, which, in a noise free 
image will be identical. In this case, a careful analysis 
of the learning set must be performed to avoid that 
large parts of the learning set represent the same 
pattern and to avoid inconsistency of the patterns in 
the learning set. 
It is important to notice that, from a possible learning 

set consisting of 225 points, a convergence to a 
working solution of the network was obtained with a 
small subset. Although the results are not "perfect", 
the simplicity and exiguity of the training set are 
good . 

These problems are substantially aggravated for the 
arbitration system, since this requires that the learning 
set be extracted from several images, and thus the 
number of points will expand. Effectively, considering 
the fact that a neural net requires several hundred 
iterations to converge, the handling of such large 

amounts of data is a major problem for a efficient 
implementation of the learning phase. 

5. Implementation 

The system has been implemented on a transputer 
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ges are fed to the network by an external 
; ram, running in parallel on a host computer, 
ch accesses a Matrox frame grabber board. Edge 
ction algorithms are implemented using a data 
illelism structure, splitting the image over n 
, essors (Fig 4). The mapping of the neural network 
the transputer array is done by layers. Each 
: ess includes a layer, so the extension of the lavers 
e neural network is done by adding intermediate 
esses. This allows a pipeline implementation of 
network, overlapping process computing times. 

layer could also be mapped on a set of 
sputen, which divide between them the coupling 
ricer, and share the node values as shown in 
re 5. 

have shown that, distinct edge detection 
orithm originate distinct edges maps. This maps 

nts some details that are particular to the output 
each unique method. Also, the artifacts introduced 
noise have diverse localization effects due to 

1ifferent frequency response of the methods. This 
1lggest the fact that distinct algondhm responses 
Ould be integrated by an appropriate arbitration 
system. Although the complexity of the system is 
tugmented, paralelization of the algorithms and an 
kCurate division over an appropriate number of 
processors will minimize this problem. In the first 
stance the neural network has been tested for edge 

fetection and found to be successful as shown in fig 
and 8. Our investigations into the use of a neural 

etwork as an edge detector suggest that it is the 
-deal solution to the arbitration problem. The 
, omplete system is currently under development, 
and the initial results we have obtained look very 
Promising. 
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Abstract Although it is not a new research field, current edge detection 
sigoruhmt fail to offer a complete solution to many image processing 
applications. Different edge detectors present distinct and different responses 
:o the same image, thus showing different detail. Our proposal is that different 
tage detection techniques be used in parallel. for generalised edge detection of 
alit erent image types. This technique produces several edge maps containing 
luferent features. From the various edge maps, edges are then arbitrated with 
2 neural network, which performs the merging of the different maps. To 
overcome the increased computing time. implementation is being performed on 
a multi-transputer array. using the inherent parallelism of the techniques 
. avolved. 
In this paper, the problem is presented along with a discussion as to its 

atahtliry for parallel processing. We present examples that show the different 
performances of the techniques for the same image. We also present the result 
of using a neural network to carry out arbitration of the image. A comparison 
is then arawn between the arbitrated image and the individual techniques. 

1 -Introduction 

Edge detccaon is an important role in image processing applications as it is the common 
starting step for segmentation or feature detection in images. The idea of an edge is 
difficult to define precisely. In a picture a change in the colour or brightness of an object is 
perceived as a line that can be understood as an edge. Although not all changes in colour 
or brightness define the border of an object, it is generally accepted that an edge is defined 
as a sharp change in the grey level intensity of a picture. Edges having various profiles are 
usually present in an image. From the definition the most typical profile is the step or roof 
edge, although it is rare in natural scenes. The edge profile usually appears distorted due to 
the image acquisition device and the noise that always appears in signals. Although in a 
natural scene the most common borders are vertical and horizontal fines. other shapes are 
also present and could be more significant in some applications. Many edge detection 
techniques nave been developed to cope with this abundance of different types of edge. 

2 . The Application Of Edge Detection Techniques 

A wide range of approaches have been developed for solving the edge detection problem 
Each of these techniques have their advantages and disadvantages in the types of scenes 
which they are capable of analysing, their computational intensity and the ease of 
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implementation on a processing platform. An efficient edge detector should achieve some 

_desirable 
characteristics. Among these. resolution. precision. uniqueness. sensibility and 

robustness to image olumng and noise are important. In addition, the amount of operations 
involved should be as small as possible due to the usual size of images and eventual 
application constraints. Some of these characteristics ate conflicting. The edges matted 
should be in the correct position. preferably thick and coherent and exempt of falsely 

rnarxed edges. (nfonunately, most of the edge maps which are produced by current edge 
detection algontnms co not fulfil these characteristics. Thus it is common to use some 
form of post-processing technique to perform single or isolated point removal. gap tilling, 
etc. Effectively edge detection using local algorithms consists mainly of convolving one 
or more masks. ans thus is not only suitable. but highly suitable for parallel processing 
since all the operations. usually small in number, are independently repeatea at all image 
points. We suggest that techniques be performed in parallel. with the edge oetectson results 
being arbitratea upon. Such a system mounted on a parallel processing platform totms a 
powerful general ourvose edge detection tool, as each technique is etfecove under 
different conditions. The arbteaoon could be performed by the use of a rule based system. 
However, the wiae range or methods and applications will require a multiple definition of 
the rule set uses. accoraing to the requirements of the different applications. Also, the 
large amount of data makes it difficult. if not. impossible. to define a genets purpose tool. 
A neural network could overcome these difficulties and will be an ideal mean of cutytng 
out the arbitration. 

In most cases the afgonthms ate ideally suited to being implemented on a parallel 
processing platform. if oniv through the use of data partitioning. We have selected several 
common operators representing otifercnt approaches. In the case of derivative operators 
Robensltl. Sobetl61 and Prewml7l were selected. The U'Gotmann131 operator was 
selected as a surface tit operator and Marfl41. Cannvl II and Denche12.31 openton were 
uses as exampies of optimal filters. Although amtictal pictures do not present the 
difficulties that are present in natural scenes, the comparison of the methods has been 
arned out with venerated images that nv to reflect some of the features (flat are present in 
digiased video images. wch as small blurring. etc. r he artificially generated images were 

1: L IC ýcl t"tt"t ItV t JOS 
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used as we neea to know the precise location of the edges. thus allowing precise 
comparisons oetween the different techniques. An example of such a picture is shown in 
Figure I. which consist of a random radius stripe, where the grey levels change with a 
random slope. To this image noise or bluing could be added. In the presented case. the 
picture was blurred with a gaussian function, and a small amount of noise was added. 
Several images Aere produced and tested. At the time of generauon. a second image 
(Figure 2) was also produced to show the edge position in the image. 

3 "Arlificial Neural Networks 

Althougn not a recent field. Artificial Neural Networks have seen mator development in 
recent years. and are being successfully applied to numerous problems. Among these. 
pattern recognition tasks are commonly cited in the literature. Their capacity to handle 
incomplete or corrupted sets of data suggests that they can be applied to the venous edge 
images and for instance. to infer the position of missing edges or misplaced edges based 
on the knowledge supplied by the different edge detection techniques desrnoed. Among 
the different types of networks. muitilaver perceptrons (91 are very common, and. this is 
the type of network used in this work. 

The Internat structure of this network allows the splitting of the network over several 
processors. with a relatively small amount of communication between them. Effecnvely. 
the architecture of a neural network naturally suggests a layer pipeline implementanon. 
which is particularly relevant for intensive and repetitious apphcanons such as edge 
detection This will reduce the overall processing time to the same order as that of a 
convolution filter of similar size. The only factors that must be propagated between 
different layers are the neuron vectors, which represent only a small fraction of the total 
amount of operations involved. For a nh l xnh2 coubitng matrix there will be only nhl 
values snared. Also, the massively parallel layer structure suggests the replication of the 
process over n processors. 
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Figure 5- Roberts 
Operator 

4- Edge Detection Results 

..................... _..., Figure d- Ong, nal Figure 7- Canny 
Operator 

Several edge detection schemes were implemented on a multi transputer array. Results are 
presented in the form of processed images for different types of edge detector. Finally 
results are presentea as to the effectiveness of a neural network arbitrator. 

Figures 3.4 and 5.7 show edge maps obtained using two of the above mentioned 
methods. The pictures are presented without further processing. It can clearly be seen that 
the different metnods detect different edge segments. The points falsely marked (? ) are not 
the same in the different maps. Also, on the right side of the snipe, for instance, some 
edge points are consistently missed by the different algorithms by different amounts. 
Finaily artefacts due to the noise, although partially avoidable by using a convenient 
threshold criteria. are dissimilar in the different maps. This fact suggests the possibility of 
obtaining improved edge maps by joining. in some way, the responses of several methods. 
Although the processing tints: will increase, with the use of parallel processing techniques. 
it is expected to achieve an effective implementation of this process. 

A natural learning set could be extracted from the image and reference edges in 
pictures 1 and 2. though some problems arise. This learning set will present several 
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problems cue to the non equiprooability for the different pairs of pattern-responses. 
Effectively from the selection of the region of interest, it is possible to perform the 
extraction of 84" 110 elements. in which. 40% represent the background. which in a noise 
free image "wiil be identical. In this case, a careful analysis of the learning set must be 
periorrnea so as to avoid the large pans of the learning set which represent the same 
pattern and :o avoid inconsistency of the patterns in the learning set. It is important to 
notice that. from a possible learning set consisting of 225 points, convergence to a woriang 
solution of the networK can be obtained with a small subset. Althou¢n the results are not 
"perfect". the caoabilities of such a training set are still under consideranon. 
These problems are substantially aggravated for the arbitration system. since this requires 
that the learning set be extracted from several images, and thus the number of points will 
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expand. Effectiveiv. considenng the fact that a 

neu ai net requires several hundred iterations 

to converge. the hanaling of such large 

amounts of data is a major problem for an 

efficient impiementanon of the ieamtnz pnase. 

5 -implementation 

The system has been implemented on a 
nsputer networx consisting of Tl14 anu 

T00 transputers. as shown in Figure d 
Images are fed to me networu by an extemai 
program, running in parallel on a host 

computer. which can access a Matrox frame 

3aober boara. Edge detection aleonthms are 
imotemented ; sine a data parallelism 
structure, splitting the image over n processors 
Figure 8). This is done accoroine to the tree 

structure shown. The mapping of the neural 
network on the transputer array is done in 
avers and impiemented as a pipeline. This 

results in overiaoptng process computing 
times. Each process includes a laver, so 
ncreasing the numoer of lavers in the neural 

network is cone by simply adding 
intermediate processes. The structure used 
allows a pipeitne impiementatton of the 
'etwork using me intemai ring (R 1.0 Z. 0), or 
: ne external ring (R 1.0 1.1 ... 

2.0). For single 
: avers it allows me acta parallelism between 
^e transputets i. 0 aria 2.0. It also allows eacri 
aver to be maouea on a set of trsnsputcr. 
iividing between tnem the coupiing matrices. 
:o speed up comnutation time. Experiments 
were conauctea. as to the different 
possibilities of mapping. the seven processes 
onto a transputer network ranging from i to 
allocated transnuters. Figure 9 shows tr- 
Increment in eiticiencv trano between the 
:: mes used to compute x lines with r, 
ansouters ana the time taken by a single 
"net. This :s shown for 1.2.4. anQ 
"ansouters. T ". -, c use of -; or o transouter 
: auses imbalance to the network ana thus is 
aot impiementea. This has oeen done for both 
avers. ana t, etnnz :0 the pipet ine 

=ontieuranon. using 3, tatnsouters for the first 
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and second layers. It is clearly visible that the increment in computing speed. is not 
proportional to the resources used. It is also clear that. increasing the number of 
transputers from 4 to 7 results in no increase of performance. This is due to the smaller 
size of the second laver used in all networks. since the output of all networks, is 1 node. 
This clearly shows that a different allocation of resources is needed. Figure 10 shows the 
efficiency obtained when more than one transputer is used per layer and process allocation 
is vaned. The first case allows the results for 3 transputers per layer. The other results 
relate to 5 and I transputer per layer performing different amounts of line and column 
multiplications. The structures tested, were based on the pipeline using the internal ring. 
They differ by the splitting of the different layers by the nearest transputers (according to 
figure 8). The others configurations are the reinforcement of the resources allocated to the 
first layer. were all four transputers are allocated. Two different nodes allocation. when 
the matrices were split by lines between the transputers are shown (Ii and Ii) as the 
splitting by columns. 

6 -Results 

Examples of arbitrated edges are presented in figure 11 through 13. Figure 11 is the edge 
map arbitrated from figures 3 and 4. This network was trained with the set composed by 
figures 3.4 and 2. and. represent the success rate of the learning set. Learning was 
performed as a raster scan, with an incremental step of two in both directions. It was 
performed the removal of background points. The success rate achieved was 1/385 points. 
The application of this network to arbitrate figures 5 and 7. gives the result present in 
figure 12. 
A more complete set of learning points was used in the learning phase of the network used 
in the arbitration for figure 13. This consist of 5546 points. From this set 91% recalling 
rate was achieved by the network. 
The complexity of the images used, will make a quantitative comparison difficult to 
achieve, beetng traditional criteria [61 impossible to apply. By the comparison of the 
images presented it is clearly visible that most pan of the background anefacts. present in 
Canny's edge map (figure 7) due to the noise. have been removed. Comparing with 
Roberts operator. a thinner edge line is obtained from the arbitration process. This 
compares favourably with the technique of applying thresholding after Roberts operator so 
as to obtain a binary image results in thicker edges. 
A careful companion between figures 3,4, and 9 reveals that some gaps have partially 
been filled in by the arbitration process. Some of the descontinuines are still present as the 
area covered by the arbitration network (3x3 windows is small. 

7" Conclusion 

We have shown that. distinct edge detection algorithms originate different yet distinct edge 
maps. These maps present some details that are particular to the output of each unique 
method. Also, the artefacts introduced by noise have diverse localisation effects due to the 
different rreauency response of the methods. This suggests the fact that distinct algorithm 
responses could be integrated by an appropriate arbitration system. Although the 
complexity of the system is augmented, parallelization of the algorithms and an accurate 
division over an appropriate number of processors will minimise this problem. Our 
investigations into the use of a neural network, as an edge arbitrator, suggests that it is the 
ideal solution to the aroitratton problem. Although some information could be lost in the 



. %M. S N. Rwnollto and K.. & . CuTis / Nearof. %ctw w* A'bitronon 39 

process. results presented. show that some improvement can be achieved using this 
approach. it is our conviction that some of the imperfections presented by the arbitrated 
edge maps could be avoided by the use of windows covenng a bigger area. 
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ABSTRACT 

Different edge decectors presen: dis: in ct and different responses to the 
same image thus showing different detail. : de are researching the 
hypothesis of using different edge dececcion techniques, in parallel, for 
generalised edge detection of different image types. This allows the 
attainment of several edge maps, each edge map associated to a different 
edge detection tecn_ique containing different features. From the various 
edge maps edges are arbitrated .: sing a neural network. Zn this paper, we 
present examples that show the performance of a neural network edge 
detector along with ocher individual edge detection techniques alone. This 
is done in order to show the advantages of an arbitration approach over 
the neural network alone and the other techniques. 

To overcome the increased ct: nputi: g time, implementation is being 
performed on a multi-transputer array, using the inherent' parallelism of 
the techniques involved. 

1 INTRODUCTION 

Many varied edge detection techniq.: es exist. Edge detection is an 
important problem in image processing applications as it is the common 
starting step for segmentation or feature detection in images. Each of 
these techniques have their advantages and disadvantages in the types of 
scenes which they are capable of analysing. The idea of an edge is 
difficult to define precisely. Edges having various profiles are usually 
present in an image. The edge prof---'e usually appears distorted due to 
the image acquisition device and the noise that always appears in signals. 
Although in a natural scene the most common borders are vertical and 
horizontal lines, other shapes are also present and could be more 
significant in some applicaticns. : 4anv edge detection techniques have been 
developed to cope with this abundance of different types of edges. 

There are some desirable c a_acter°stics the an edge detector should 
achieve such as prec--sion, .... _: 'eness, and robustness to image blurring 
and roise. :n addition, the r.. ount cf operations involved should be as 
small as possible. Some :_ these characteristics are conflicting. 
Unfortunately, most c: the edce taps which are produced by edge detection 
algorithms do not _.. __il _ ese characteristics. Thus it is common to use 
some form of post-processing : _:. nique to perform single or isolated point 
removal, gap filling, etc. 

. 1t`ough artificial pictures io not -resent the difficulties that are 
present jr. natural scenes, _e comparison of the methods is initially 
carried out with generated : ctures that try to reflect some .... the 
features tat are present _ = digitized video images, such as small 
blurring , for instance. This is don a as we need to know the Precise 
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Figure 1: Original Stripe Figure 2. Reference Edges for 
Figure 1 

location of the edges, and thus a-lows for precise comparisons between the 
different techniques. An example cf such a picture is shown in the first 
figure presented, Figure 1, whic consist of a random radius stripe, where 
the grey '_evei changes with a random slope. To this picture noise or 
blurring is added. In the presented case, the picture was blurred with a 
gaussian function, and a small amount of noise added. Several images were 
produced and tested. A second image is produced, figure 2, which shows the 
edge positions in the image. 

our proposal is that different edge detection techniques be utilised in 

parallel, for generalised edge detection of different image types. This 

allows the attainment of several edge maps containing different features. 
From the various edge maps, edges are arbitrated with a neural network 
performing the merging of the different maps. To overcome the increased 

computing time, implementation is being performed on a multi-transputer 
array using the inherent paraiiel_sm of the techniques involved. 

2 EDGE DETECTION 

In the first instance results f_c.., a reoresentacive number of the various 
edge detection schemes were _-: p_e^entec :n the form of processed images 
for different zypes of edge cetec=crs. 

Widely referred to met ods were selected, as a representat_ve sample """', 

croviding a range of approaches. These include derivative approaches, 
such as Roberts- Sobel 

__ ? rewict operators. Among other 
approaches, several optimal filters :: ere implemented such as Marr ', 
Canny, , and Deriche'. 

Figures 3 through show edge maps ýbcained -.: sing t-. qo of the above 
ment. oneä mecnods. '`pese maps present some details chat are particular to 
the output of each unique met oc. : he occtures are presented, without any 

ur: ner processing, suds: as nres-oic_nc for 
_ nscance. : -, noc er difference 

_s readily perceived. Althouc 
_mai edge detectors r- : geil defined 

and closed contours, _ ey ai__ a_so car. as edges noise related features 
or -. weak contrasts ä.: e co snacews, for 

_nscance, 
aerivative approaches will 
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Figure 3: Roberts operator Figure 4: Canny Operator 

provide a more effective selection, but at the cost of loosing some weak 
edges. Also, due to the inherent filtering present in zero crossing 
operators, derivative approaches have a smaller tendency to dislocate 
edges. Thus, it can clearly be seen that different methods detect 
different edge segments. For instance artefacts due to the noise, although 
partially avoidable by a convenient threshold criteria, are dissimilar in 
the different maps. This suggests the fact that distinct algorithm 
responses could be integrated by an appropriate arbitration system in 
order to fuse the information present in the different edge maps. Several 
approaches could be used in implementing this process, and, among them 
artificial neural networks seem to be particularly suited to this job. 

Effectively, artificial neural networks can handle incomplete or corrupted 
sets of data thus they can be applied to the recognition images and can be 
used to infer the position of missing edges or misplaced edges, based on 
the knowledge applied by the different edge detection techniques 
described. To this purpose multi-layer back-propagation neural networks"" 
are being used. These types of network are capable of reproducing an 
input/output relation, learned from a repetitive exposition to a set of 
examples. They also have an inherently parallel structure allowing for a 
parallel implementation"". Various sizes of neural network architecture's 
have being investigated for their ability to perform the arbitration 
required. 

EXPERINENTS 

The experiments were performed in parallel under the same image conditions 
the same as possible, in order to allow direct comparisons. 

In the neural edge detection case, from the master image a collection of 
patterns is collected, corresponding to edge and non edge patterns, 
according to the reference edge man. This set is collected from the images 
using a raster scan process. :- window size is defined and the image is 
scanned at fixed step. Thus a collection of patterns is produced containing 
edge patterns and no edge patterns. Vectors which contain only the 
background windows are discarded. The patterns selected are presented as 
the training pattern of the neural edge detection system. The network used 
in to neural edge detection system is a multi-layer neural network. This 
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Cperator Operator 

neural network is then trained from that selection of patterns extracted 
from a reference pair of images. Then, to assess its performance several 
images, of the same kind, or others, are presented and compared to the 
edge maps obtained by other edge detectors. It is expected that in the 
later case, the network will be capable of selecting relevant edges based 
on the patterns previously learnt. 

To perform the arbitration strategy, a couple of algorithms were selected. 
in the first case, the neural network arbitrate between the Roberts and 
Canny Operators. First the nasser image is processed by the selected 
algorithms. prom this image, a collection of patterns are collected, 
corresponding to edge and non edge patterns, according to a reference edge 
map. If artificial images are used, the edge map is generated at the same 
time as the master' image, otherwise, it is traced from the original 
image by the 4sser. This set is collected from the image by the raster scan 
process previously described. The patterns selected are presented for the 
training of the arbitration system. The arbitration is done by a 
multi-layer neural network. This neural network is then trained from a 
selection of patterns extracted from a reference pair of images. Then, to 
assess its performance several images, of the same kind, or others, are 
presented and compared to the edge maps obtained by other edge detectors. 
It is expected that in the later case, the network will be capable of 
selecting relevant edges based on the patterns previously learnt. 

RESULTS 

-n our experiments a similar image to that shown in figure 1 has been 

generated simultaneously with a reference edge map isimilar to that 
presented in figure 2). This image was crocessed by the Roberts and Canny 
operators. From the original image, the stripe was located and extracted 
as a set of vectors corresponding to a 3x3 window, which was used as data 
for the learning phase of a neural network with 9 input points. On the 
processed images, the same technique is used. The network used now has 18 
input points. In the learn-mg phase, the information of the reference 
window is used to identify the edge or non edge vectors. The network used 
is a three layer back-propagation neural network, for which several sizes 
of the hidden layer have been tried. 

The networks obtained were : en used ,.., process aa number of irrages for 
both conditions (direct edce detection, and arbitratic^). Some .. f the 
Results are presented in figure 9 and 9 (edge detection), and 10 _hrough 
12 (arbitration). 
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Wehaye investigated the ability of a 
neura2' network for edge detection 
arbitration from several edge 
detection techniques. Problems are 
substantial for the arbitration 
system, since it requires that the 
learning set be extracted from 
several images, and thus the number 
of points will be very large. 
However, the arbitration system has 
proved to be more efficient than a 
neural network alone. However it is 
more computationally extensive. 
Effectively, considering the fact 
that a neural net requires several 
hundred iterations to converce, the 
handling of such large amounts of 
data is a major problem for an 
efficient implementation of the 
learning phase. Finally results have 
been presented as to the advantages 
of an arbitration stratecy in 
comparison with a neural network alone. 
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ABSTRACT 

Edge detection is a common starting step in many 
image processing applications. Many varied edge 
detection techniques have been proposed. 
Different edge detectors present distinct and 
different responses to the same image, showing 
different detail. Our proposal is that different edge 
detection techniques be utilised in parallel, 
allowing for the attainment of several edge maps 
containing different features. The merging of the 
different maps is performed by a neural network 
arbitrator. To overcome the increased computing 
time, implementation is being performea on a 
multi-transputer array, using the inherent 
parallelism of the techniques involved. In this 
paper, we present examples that show the 
performance of the neural arbitration of different 
techniques, along with a comparison with the 
individual techniques alone. 

INTRODUCTION 

Edge detection is a common starting step in many 
image processing applications. Effectively. many 
segmentation and feature detection approaches 
rely on an edge map of an image. Although a 
common research topic, the complexities that 
arise from natural scenes, still leaves the problem 
unsolved. Indeed, the idea of an edge is orfficult 
to define precisely as they do not corresoond 
entirely to an image feature. Although usually 
assumed as a discontinuity in the grey level. due 
to blurring or noise that are inherent to the image 
acquisition devices available, it is difficult to 
obtain clear local discontinuities in the grey level 
as it is impossible to define a standard profile that 
charactenses an edge. This abundance of crofiles 
and imaging conditions makes their detection 
incomplete or inaccurate in many common 
situations. Many edge detection techniques have 
been developed to cope with this abundance of 
different profiles of edges. 

Different types of scenes and imaging 
regutirements will make some of the techniques 
more sustabfe for some applications. This is due, 

not only to the underlying image model assumed, 
but also to the diverse robustness and sensitivity of 
each of the techniques. Effectively, depending on 
a variable number of factors several conflicting 
requirements are searched for in an edge detection 
algorithm, these could be, for instance, robustness, 
resolution, precision or uniqueness. Uniqueness 
and resolution are important factors that will 
alleviate the burden imposed on subsequent parts 
of an image processing system. The marking of 
closed contours will diminish the uncertainty areas 
in a segmentation system. Precision is a 
fundamental requirement for quality control 
applications, for instance. Also, the complexity and 
size of an image require that algorithms preferably 
involving a small number of simple operations, 
are used to allow large throughputs of the system. 
Unfortunately, most of the edge maps that are 
produced by edge detection algorithms do not fulfil 
these characteristics. To achieve these 
requirements it is common to use some form of 
post-processing technique to perform single or 
isolated point removal, gap filling, etc. This 
collection of conflicting requirements, makes the 
edge detection comparison- a difficult task to 
achieve. as the multiplicity of situations that anse 
in natural scenes makes their comparison difficult. 
Although some particular approaches have clearly 
strong points for some particular feature, they have 
weak points for others. This comparison could be 
made on a feature by feature basis, but the wide 
list of situations will make any weighted figure of 
merit meaningless in a wider context. 

EDGE DETECTION 

Firstly a representative number of the various edge 
detection schemes were implemented in the foram 
of processed images for different types of edge 
detectors. Widely referred to methods were 
selected ý' '', providing a wide range of 
approaches. Derivative approaches, namely the 
Robertst4, Sobel""" and Prew ittj51 operators were 
applied. as were the Marr61, Canny', and 
Deriche'=" optimal filters. This selection was made 
on the basis of the computational simplicity of the 
derivative approaches, and the uniqueness of the 

Image Processing And Its Applications, 4-6 July 1995 
Conference Publication No. 410. C IEE 1995. 
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Figure 1: Original Stripe 

marked edges produced by the zero crossing of 
second derivative. Figures 5 through 8 show edge 
maps obtained using two of the above mentioned 
methods. The pictures are presented, without any 
further processing. These maps present some 
details that are particular to the output of each 
unique method. For instance, artefacts due to the 
noise, although partially avoidable by a 
convenient threshold criteria, are dissimilar in the 
different maps. Another striking difference is also 
readily perceived. Although optimal edge 
detectors mark well defined and closed contours, 
they will also mark as edge's noise related 
features or weak contrasts due to shadows, for 
instance, derivative approaches will provide a 
more effective selection, but with the cost of 

Figure 2: Reference Edges for Figure 1 

loosing some weak edges. Also, due to the 
inherent filtering present in zero crossing 
operators. derivative approaches have a smaller 
tendency to dislocate edges. Thus, it can clearly be 
seen that different methods detect different edge 
segments. This suggests that distinct algonthm 
responses could be integrated by an appropriate 
arbitration system to fuse the information present 
in the different edge maps. 

The adverse characteristics present in images are, 
in many applications, common to the type of 
images used. not only because some of the 
characteristics were produced by the particular 
type of devices used, but also due to the fact that 
some characteristics are inherent to the type of 

Figure 4: Lenna- image (original) E'-igure 3: Peppers' image (Lnginai) 
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Figure 5: 'Peppers' using Roberts Operator 

Figure 7: 'Lenna' using Roberts Operator 

scene being analysed. This will allow us to 
develop algorithms that can be adapted or fine 
tuned for particular imaging conditions, assumed 
constant in a particular application. Also, the 
merging of the desirable characteristics produced 
by some operators, even for particular situations 
could be a way of overcoming the referrea 
problems. Our proposal is that different edge 
detection techniques be utilised in parallel, for 
generalised edge detection of different image 
types. This allows the attainment of several edge 
maps containing different features. From the 
various edge maps, edges are arbitrated with a 
neural network.. performing the merging of the 
, iitferesit maps. To overcome the increased 
computing time, implementation is being 

Figure 6: 'Peppers' using Canny Operator 

Figure 8: 'Lenna' using Canny operator 

performed on a multi-transputer array, using the 
inherent parallelism of the techniques involved. 

Among the several approaches that could be used 
in implementing this process, an artificial neural 
network seems to be particularly suited to this job. 
Effectively, artificial neural networks can handle 
incomplete or corrupted sets of data thus they can 
be applied to the recognition of images and can be 

used to infer the position of missing edges or 
misplaced edges based on the knowledge applied 
by the different edge detection techniques 
described. To this purpose a multi-layer 
back-propagation neural networks "I are being 

used. These types of networks are capable of 
reproducing an input/output relation, teamed fror 



517 

Figure 9: Arbitration (Roberts and Canny) 

a repetitive exposition to a set of examples. They 
also have an inherently parallel structure allowing 
for a parallel implementation "'. Various sizes of 
neural network architecture's are being 
investigated for their ability to perform the 
arbitration required. , 

Figure 10: Arbitration ( Roberts and Canny) 

Then, to assess its performance, several images 
were presented to the neural network arbitrator. 
These images could be of the same or of a 
different kind. The result is then compared to the 
edge maps obtained by other edge detectors. 

RESULTS 

3 ARBITRATION 

The arbitration strategy has been tested with the 
above referred to algorithms. These tests have 
been done using artificially generated images, as 
we need to know the correct position of edges in 
the image. These images try to reproduce some 
features present in artificial images, such as 
noise, blurring, a larger numoer of contrast edges. 
and different edge curvatures. An example of 
such an image is presented in Figure 1, along with 
the correspondent edge mao, generated at the 
same time as the image itself. Firstly an image is 
processed by the selected algorithms. The 
resulting edge maps, were then scanned. 
producing a collection of patterns, including edge 
patterns and (the majority) non edge patterns. 
This was acnieved through joining corresponding 
windows, and matching them with the information 
present in the respective reference map (similar to 
Figure 2). These lists are scanned for conflicts, 
and repeated points discarded. The patterns 
selected are presented for the training of the 
arbitration system. The arortration is done by a 
mutil-layer neural network. Several network sizes 
are tested, and the most promising selected. 

Several sets of vectors were collected from a set 
of images similar to the ones presented in Figure 1 
and 2. These sets correspond to diverse sizes of 
windows used, namely 3x3.5X5 and 7x7. Odd 

sizes are used to avoid imprecision in the edge 
position, that arise otherwise. This set of vectors 
was used to teach several three layer 
back-propagation neural networks, which has a 
variable size of the hidden layer. The examples 
presented are for a 7x7 window. These originated 
a full set of 9240 points, from which the vast 
majority are non edge points. These were thought 
until 90% of the initial misclassifications were 
correct. These networks were then tested on 
aifferent ; mages, having similar or diverse 

characteristics from the image used to generate 
the training set. Resets presented are from the 
later case tFigure 9 ana 10). The results were then 
evaluated. from these results we can see that the 
neural network arbitration system is effective in 
improving the achieved edge map. 
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5 CONCLUSION 

We are researching the ability of a neural network 
for edge detection arbitration from the edge 
detection techniques investigated. Results were 
presented as to the effectiveness of a neural 
network to act as an arbitrator of the edge 
information so as to correctly specify all the edges 
in both artificially generated and real images. 
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Our investigations into the use of a neural network 
as an edge detector arbitrator suggests that it is 
the ideal solution to the problem. Problems are 
substantial for the arbitration system, since it 
requires that the learning set be extracted from 
several images, and thus the number of points will 
be very large. Effectively, considering that a 
neural net requires several hundred iterations to 
converge, the handling of such large amounts of 
data is a major problem for an efficient 
implementation of the learning phase. However, 
the arbitration system has proved to be more 
efficient than a neural network alone I'll, Although 
apparently more computationally expensive, using 
the edge maps allows a selection of the points 
were the neural network should be applied, in 
orede to reduce the amount of processed points. 
This strategy will make it competitive to the neural 
network alone. This problem can be further 
alleviated by the parallel implementation ("I of the 
system. 
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