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Abstract

There is much current interest in systems exhibiting homoclinic snaking, in which so-

lution curves of localised patterns snake back and forth within a narrow region of pa-

rameter space. Such solutions comprise superimposed, back-to-back stationary fronts,

each front connecting a homogeneous and a patterned state. These fronts are pinned

to the underlying pattern within the snaking region; elsewhere, they become travelling

waves and cannot form localised solutions. Application of standard asymptotic tech-

niques near bifurcation can only produce a stationary front at the centre of the snaking

region; this is the Maxwell point, where patterned and homogeneous states are equally

energetically favourable. Such methods fail to capture the pinning mechanism because

it is an exponentially small effect, and must be studied using exponential asymptotics.

Deriving the late terms in the asymptotic expansion and observing that it is divergent,

we truncate optimally after the least term. The resultant remainder is exponentially

small and governed by an inhomogeneous differential equation. Rescaling this equa-

tion near Stokes lines—lines in the complex plane at which forcing is maximal—we

observe a smooth but rapid increase from zero to exponentially small in the coefficient

of an exponentially growing complementary function as Stokes lines are crossed. Re-

quiring that unbounded terms vanish fixes the phase of the underlying pattern relative

to the leading-order front. Furthermore, matching two fronts together produces a set

of formulae describing the snaking bifurcation diagram. We successfully apply this

method to continuous and discrete systems. In the former, we also show how symmet-

ric solutions comprising two localised patches form figure-of-eight isolas in the bifur-

cation diagram. In the latter, we investigate snaking behaviour of a one-dimensional

localised solution rotated into a square lattice, and find that the snaking region vanishes

when the tangent of the angle of orientation is irrational.
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CHAPTER 1

Introduction

Patterns are ubiquitous throughout nature. From convection to animal coat markings

to neural firing, vastly disparate physical situations often produce qualitatively very

similar results. This observation has motivated the field of theoretical research known

as pattern formation. Mathematically speaking, this concerns the emergence of spa-

tially periodic structures in a previously homogeneous system as a control parameter

is increased. One particularly famous physical example is Rayleigh-Bénard convection,

in which a layer of fluid is heated from below. When the temperature gradient across

the fluid is low, heat is conducted from the lower to the upper boundary and there is

no bulk flow of fluid. However, once the temperature gradient increases past a certain

value, fluid at the lower boundary begins to rise. As it rises, it cools and becomes more

dense, in turn causing it to sink. This competition between rising and sinking fluid

thus forms a patterned state of spatially repeating convective rolls. Other theoretical

and physical examples of pattern formation abound in the literature; a good starting

point is the review by Cross and Hohenberg [33]. An introduction to the more common

analytical methods used can be found in the book by Hoyle [46].

There has been considerable focus in recent years on localised patterns [18, 37, 52], in

which a patterned region is embedded within the homogeneous state, rather than fill-

ing the whole domain. Under certain conditions, a multiplicity of these exists within a
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CHAPTER 1 Introduction

well-defined parameter range. The interweaving solution curves ‘snake’ back and forth

within this parameter range via successive saddle-node bifurcations, the width of the

localised patch increasing as the curve is traversed. The two snaking curves represent

symmetric solutions, and are connected by a succession of ’rungs’, or branches of asym-

metric solutions. Hence the phenomenon is often referred to as a ’snakes-and-ladders’

bifurcation [14]. The alternative nomenclature ‘homoclinic snaking’ is also used, draw-

ing an analogy between the profile of the localised solution and the homoclinic orbits

of dynamical systems theory [96].

Localised patterns and homoclinic snaking have been observed in numerous experi-

mental and theoretical contexts, including optics [26, 42, 73, 86, 92, 99, 100], convection

in binary mixtures [3, 71], ferrofluids [75], Couette flow [81], reaction-diffusion systems

[60, 91], vibrated granular layers [88, 95], magnetoconvection [8, 34], buckling prob-

lems [47], mathematical neuroscience [30, 58, 59, 80] and convection with temperature-

dependent viscosity [82]. A specific example of the phenomenon is shown in figure

1.1, with a close-up of the snakes-and-ladders structure, and example patterns from

various points in the diagram are shown in figure 1.2. The two figures are the results

of numerical computations of a well-known paradigm of pattern formation, the Swift-

Hohenberg equation (SHE),

∂u
∂t

= ru−
(

1 +
∂2

∂x2

)2

u + su3 − u5, (1.0.1)

given here in its one-dimensional form with cubic and quintic nonlinearities; variants

of (1.0.1) abound in the literature. Originally conceived as a simple model of hydro-

dynamic fluctuations in convection [84], the SHE is also relevant to nonlinear optics,

mathematical neuroscience and structural mechanics, but is nowadays most commonly

studied in its own right as a generic model of pattern formation [33]. Indeed, one of

the most extensively studied examples of homoclinic snaking is in the SHE [13]; to

our knowledge, the first study of localised states in the specific variant (1.0.1) was per-

formed by Sakaguchi and Brand [78], although they did not discuss the snaking effect.
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CHAPTER 1 Introduction

Model equations such as the SHE have the advantage that they are simple enough to be

amenable to relatively detailed analysis, while retaining the same qualitative pattern-

forming features observed in more realistic systems or experiments. This is in con-

trast to pattern-forming systems in general, and those exhibiting homoclinic snaking

in particular, which are invariably modelled by rather more complicated systems. It

is therefore instructive to study generic pattern-forming processes by means of model

equations; hence the prevalence of the SHE in the literature. Such work provides sig-

nificant insight into the mechanisms whereby patterns come into being, which would

be impossible to come by should analysis be confined only to more physically realistic,

but also more complicated, systems. For this reason, our focus throughout the thesis

shall be on homoclinic snaking in model equations.

We shall now describe the snakes-and-ladders bifurcation structure in more detail, con-

centrating on the simplest, and hence most widely studied, case of spatial oscillations

which are localised in one spatial direction only. Of course, many of the examples

above are inherently two- or three-dimensional, if not also time-dependent, but for the

sake of simplicity we shall only mention these in passing. Much of the current under-

standing is due to work by Burke and Knobloch [12–14], the bulk of which has been

carried out numerically in various forms of the SHE, underpinned by an intuitive pic-

ture given by Pomeau [74]. This picture was formalised in a dynamical systems context

by Woods and Champneys [96], and more recently by Beck et al. [4]. Further insight

was provided by the analysis of Kozyreff and Chapman [56], in which the method of

exponential asymptotics was used to describe explicitly the exponentially small effects

responsible for the snaking bifurcation diagram; we shall expound upon this in more

detail later. Some results are available in higher dimensions, most notably for localised

hexagons, spots and rings on the plane [2, 61, 62, 68, 69, 90], and oscillons, objects which

are localised in space and oscillatory in time [16, 38]; on the whole, however, current

understanding of higher-dimensional phenomena is much less well developed than in
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CHAPTER 1 Introduction

the one-dimensional case.

In the one-dimensional SHE, for example as in figure 1.1, the solution curves originate

at a pair of subcritical pitchfork bifurcations from the spatially periodic branch. The bi-

furcation point is near the origin, arbitrarily close as the domain length tends towards

infinity, where the set of allowable wavenumbers becomes a continuum. These sec-

ondary solution branches form slightly modulated spatial oscillations, which increase

in amplitude as r decreases, while at the same time becoming more and more localised.

When the amplitude is equal to that of the stable, constant amplitude branch, the curves

turn over via a saddle-node bifurcation and begin to snake. The two curves interweave,

repeatedly turning back at successive saddle-nodes. The position of the saddle-nodes

rapidly tends to one of two asymptotes in parameter space, so the branches occupy

a well-defined parameter range. Close to each saddle-node is a secondary pitchfork

bifurcation, producing the so-called ‘rungs’ which link the snakes [14]. The snakes

describe localised patterns which preserve some symmetry of the governing system,

while the ladders consist of asymmetric solutions. For example, equation (1.0.1) is in-

variant under u → −u and x → −x. In this case, each snake actually represents a pair

of solution curves related by the symmetry u→ −u; one pair comprises even solutions

and the other odd. As the snakes are traversed, a new pair of humps is added for each

fold, one hump at each end of the patterned region. In this way the localised patch

grows in extent as the snaking curve is traversed. Other growth mechanisms have

also been observed; for example, in parametrically driven systems localised solutions

grow according to a central defect which inserts an additional hump, pushing exist-

ing humps outward [64]. Although initially unstable, the snaking solutions become

stable at the first saddle-node, after which they alternate between stability and insta-

bility with each successive saddle-node [13]. The ladders are always unstable in one

dimension, although this no longer necessarily holds in two dimensions [2]. Similar

snakes-and-ladders structures to those of the SHE are also observed in more physically
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CHAPTER 1 Introduction

realistic applications [3, 47, 81, 99].

The localised patterns which form the snakes-and-ladders bifurcation can be thought

of as superpositions of two back-to-back fronts connecting the homogeneous state to

the patterned, as seen in figure 1.2, for example; this of course requires both states to

be stable solutions of the pertinent system. Such a bistable region can be seen in figure

1.1, in this case due to a subcritical pitchfork bifurcation at r = 0 to small-amplitude

spatial oscillations, followed by a saddle-node at some r < 0 at which the patterned

solution branch turns over and becomes stable. The snaking bifurcation diagram then

occupies a much narrower parameter range within the bistable region. Snaking is not

seen throughout the entire bistability region because bistability itself is not sufficient;

the two different solutions must be almost equally ‘energetically preferred’, in some

sense. In variational systems such as the SHE, this is easily understood in terms of a

Lyapunov functional, or ’energy’ [13, 78]. Stable solutions correspond to minima of this

functional, and so a front connecting two stable states will in general move so that the

state with lower energy ‘wins out’ over the other; if the two states have equal energy

the front will remain stationary. This suggests a more general way to describe such

a phenomenon which does not rely upon a variational structure, and can be traced

back to Pomeau [74]. In a bistable system, a travelling wave solution may be sought

between the two states. When the velocity of the wave is non-zero, one pattern is

preferred over the other, and the less favoured vanishes. However, a point exists where

the wave velocity is zero and there is no preference, corresponding to the two states in

a variational system possessing equal energy. In this case the solution is a stationary

front and both patterns persist. Such a point is known as the Maxwell point.

At the Maxwell point, localised patterns may therefore be constructed from two back-

to-back fronts; away from the Maxwell point, fronts become travelling waves and the

localised patch either expands to fill the domain or contracts and is destroyed, de-

pending upon which state is preferred by the system [12, 78]. However, for a small
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CHAPTER 1 Introduction

enough perturbation of the system from the Maxwell point, fronts lack sufficient veloc-

ity to overcome the energy barrier posed by the underlying spatial oscillations and are

’pinned’ to the underlying pattern [74]. This pinning occurs by means of an interaction

between the slow scale of the pattern amplitude and the fast scale of its frequency, re-

sulting in a fixing of the phase [12, 39, 56]. Thus localised patterns exist within a small

region [78] centred on the Maxwell point, organised into a snakes-and-ladders bifurca-

tion structure [13]. We note that snaking also occurs in discrete systems [26, 85, 99, 100].

In this case an energy barrier is posed by the underlying lattice; sufficiently close to the

Maxwell point a front cannot overcome this barrier and becomes pinned, fixing its ori-

gin with respect to the lattice [40, 51].

We have heretofore not mentioned the effects of boundaries on snaking, and implic-

itly assumed an infinite system in which the width of a localised patch can increase

indefinitely. This is obviously not the case when a system is finite, and in general the

snakes exit the snaking region when the localised patch is close to filling the domain

and reconnect onto a branch of uniform amplitude oscillations [6, 36]. However, even

distant boundaries can have a marked effect on the snaking structure. With periodic

boundaries (or Neumann boundaries, which can be embedded in a periodic domain of

twice the length), the situation is similar to that in an infinite domain, and in fact pro-

vide a good approximation to behaviour on the real line provided the localised patch

is sufficiently far from the boundaries. Under more general conditions without trans-

lational invariance, the position of the pattern relative to the boundaries becomes an

important consideration and follows a complicated bifurcation sequence as the pattern

width varies [55].

In fact, boundary conditions can have even more profound consequences than these.

Although we have thus far discussed the snaking bifurcation diagram in the context of

a bistable system, bistability is not strictly a requisite for snaking to occur. This was first

observed by Mercader et al. in binary fluid convection with physically realistic bound-
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CHAPTER 1 Introduction

ary conditions [71], and later studied in the SHE by Houghton and Knobloch [45]. If

non-Neumann boundary conditions are imposed (such as ux = ±βu and uxxx = 0

on the boundaries x = ±D, as in [45]), there is no uniform amplitude branch since

it violates the boundary conditions. Therefore the system is not bistable and there is

no uniform amplitude branch for the snaking curve to reconnect to when the localised

patch approaches the domain boundaries. Two possible scenarios were observed in

[45]. First, the snaking curve may leave the snaking region to the right; the pattern

amplitude then begins to increase, modulated slightly at the boundaries in order to ac-

commodate the imposed conditions, and the solution branch propagates indefinitely.

Alternatively, a snaking curve may turn back over and retrace its steps, sometimes

several times, before reconnecting to the trivial branch. That said, the systems under

consideration in [45] and [71] do exhibit bistability between the zero and uniform am-

plitude solution branches under different boundary conditions, and so these examples

of homoclinic snaking without bistability are not completely unrelated to the snaking

picture described above.

We should at this point note that not all localised patterns snake. For example, non-

snaking localisations have been observed in systems which are coupled to an advected

field [76, 77] or a conservation law [32, 66]; in both cases the localised patterns are

not constructed from back-to-back fronts and so arise due to a different mechanism

than that discussed above. A trivial example of localised solutions which do not snake

in the SHE are those constructed from fronts connecting two constant solutions; the

absence of spatial oscillations means there is no structure for the fronts to pin to, hence

no snaking [2].

We have thus far considered only the simplest systems exhibiting homoclinic snaking.

These are reversible in x, variational in time and conservative in space; (1.0.1) is a typ-

ical example. However, snaking is also observed in systems without such properties

[11, 99]. In irreversible systems, which do not obey the symmetry x → −x, the snakes-
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CHAPTER 1 Introduction

and-ladders diagram either breaks up into stacks of figure-of-eight isolas or forms two

criss-crossing snakes [54, 79]; if the conservative nature of the system is also broken

the resultant localised states drift [11]. There remains much to be done in elucidating

the nonvariational and nonconservative cases, with current understanding limited to

initial normal-form analyses of this much more complicated problem [10].

Even in simple one dimensional systems like (1.0.1), the snaking region is rather com-

plex. As multi-pulse solutions can be thought of as superpositions of multiple patches

of spatial oscillations, the ideas discussed so far can readily be extended to cover them

[15]. Many such solutions exist, infinitely many on an infinite domain, each with their

own solution curve. Depending on the symmetries of the solution, and the gap be-

tween localised patches, these are described by separate snakes, or isolas in the style of

a figure of eight. Furthermore, the snaking width is not necessarily constant, and has

been observed under certain conditions to decay exponentially as the localised patch

increases in extent, a situation known as collapsed snaking [2, 64, 99, 100]. The situ-

ation is even worse in two dimensions, with multiple snaking widths and even more

isolas [61, 62].

In an effort to further elucidate the snaking process, there have been several attempts

over the past two decades to apply analytical methods to the problem. One approach

which has been especially fruitful in the one-dimensional case is that of spatial dynam-

ics, in which the steady version of (1.0.1), for example, is thought of as a fourth-order

dynamical system, or a system of four first-order ordinary differential equations in the

elements of u = (u, ux, uxx, uxxx) [31, 47, 96]. In this formulation the spatial variable

x takes the role traditionally reserved for time. If the origin (u = 0) has both stable

and unstable manifolds, and there exists a heteroclinic connection from the origin to

a periodic orbit, then the reversibility of the SHE in x guarantees the existence of a

homoclinic connection from the origin via said periodic orbit [4]. A localised pattern

can therefore be described in terms of an orbit which departs the origin on its unsta-
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CHAPTER 1 Introduction

ble manifold and circles a periodic solution a certain number of times before returning

along its stable manifold. Thus localised spatial oscillations can be constructed.

Although extremely useful in elucidating the snakes-and-ladders structure in phase

space, such analysis is only able to provide a conceptual explanation of the phen-

omenon. In addition, there does not seem to be any way to extend dynamical systems

techniques to higher dimensions or non-autonomous systems, although some progress

can be made when stripes are localised in one direction only [2], and other analytic

techniques have been employed to study radially symmetric spots and target patterns

[61, 68].

The method of multiple scales provides one promising avenue of research, and has

proven very successful in describing other patterns, such as rolls and hexagons close

to onset [33]. Crucially, it is not limited to one-dimensional problems. Indeed, since

localised solutions have been observed in the Ginzburg-Landau equation [41], vari-

ous attempts have been made to include the phase-locking responsible for homoclinic

snaking within existing calculations. The shortcoming of conventional multiple-scales

analysis is that it fails to capture the snaking region, as front solutions can be found only

at the Maxwell point. Because the inherent assumption within the method of multiple

scales is that the fast and slow scales are independent, the phase-locking of one scale to

the other can never be derived by this approach alone. Moreover, the snaking region

is in fact exponentially small and therefore unobservable by conventional asymptotic

methods based purely on algebraically small terms.

Initial attempts to overcome these difficulties focused on the inclusion of the phase

locking between the two scales within the conventional multiple-scales analysis at al-

gebraic orders [5, 28]. The leading-order solution is written, as usual, to be of the form

A(X)eix+iφ + A∗(X)e−ix−iφ, where x is the fast scale, X the slow scale, φ some constant

phase and the asterisk represents the complex conjugate. At some order in the multiple-

scales expansion a solvability condition determining A(X) is found by imposing that
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secular, or resonant, terms vanish. This is in agreement with the usual multiple-scales

theory. At this point, some authors [5, 28] have tried to include non-secular terms in the

solvability condition, i.e. terms such as e3ix, e5ix, etc. Rescaling the fast scale in terms

of the slow, these become exponentially small corrections, and in this way an equa-

tion describing the position of a front or the distance between back-to-back fronts can

be derived, with constant solutions existing within an exponentially small parameter

range.

However, such a method gives rise only to one snaking curve, whereas numerical com-

putations have invariably shown two. Additionally, an algebraically small prefactor in

the exponentially small width of the snaking region is missed. The most telling argu-

ment against this method, though, is that there is little justification for shoehorning

non-secular terms into the solvability condition [29, 57]. While this remains a worth-

while attempt to take account of the pinning mechanism, and does provide some in-

sight into how the pinning region may be created, the key step that produces the de-

sired results is unfounded. The effects of phase-locking are not felt at algebraic orders;

one must go beyond all orders to find them.

The method of exponential asymptotics, or asymptotics beyond-all-orders, arises when

studying divergent asymptotic expansions, such as those produced by singular pertur-

bation problems [1, 7, 21, 72]. Divergent expansions must be truncated; by truncating

optimally after the least term, the resultant remainder can be shown to be exponentially

small. Crucial information governing the leading-order solution is encoded within the

remainder—in the present concern of homoclinic snaking, the phase of the underlying

pattern relative to the front is fixed beyond all orders in this manner [22, 39, 40, 56].

The method was initially motivated by, and is intimately related to, Stokes’ phen-

omenon. This is the observation that asymptotic expansions of certain integrals, for

example integral representations of the error function or Airy function [7, 72], contain

contributions whose coefficient (the Stokes multiplier) abruptly changes from zero to
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non-zero as certain lines in the complex plane (the Stokes lines) are crossed. Thus a con-

tinuous function appears to be given by a discontinuous asymptotic expansion. In fact,

a careful analysis of exponentially small terms in the tail of the asymptotic expansion

shows that this change in coefficient is not discontinuous at all. Instead, the coefficient

varies smoothly and rapidly within a narrow layer centred on the Stokes layer. This

rapid variation is only observable through appropriate rescaling; away from the Stokes

line the coefficient appears to be piecewise constant. This was first shown, in the con-

text of the complex error function, by Berry [7], and later made rigorous by McLeod

[70]. The smooth variation of the coefficient between zero and non-zero values was

found to take place via an error function; this is the usual, although not generic [19],

form the smoothing takes.

The method was soon applied to differential equations, and found to be useful in elu-

cidating problems involving water-waves [87, 89], shocks [20], flow past submerged

steps [24, 25, 63] and travelling waves in discrete [51] and continuous [1] systems. In

such applications, Stokes’ phenomenon manifests as the ‘switching on’ of certain con-

tributions to the remainder of an asymptotic expansion solution, in the sense that their

coefficients vary smoothly from zero to non-zero (albeit exponentially small) as Stokes

lines are crossed. For example, in flow past a submerged step, exponentially small sur-

face waves exist downstream, but not upstream, of the step. Such behaviour cannot be

observed using asymptotic techniques based solely on algebraically small quantities.

The first rigorous asymptotic analysis of the snaking phenomenon was carried out by

Kozyreff and Chapman [22, 56] in the context of the SHE with quadratic and cubic

nonlinearities, following the beyond-all-orders techniques of [1]. Extension of these

methods to other snaking problems forms the subject matter of this thesis; some of our

results have either been published [39] or are under review [40]. Similar ideas involving

Fourier transforms have been used in [93, 94] following the methods developed in [17,

97, 98]; some outstanding technicalities are addressed in [49]. However, although the
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subject of these studies is localised wavepackets, and phase-locking is observed, the

objects under consideration take the form of sech-like profiles, rather than back-to-

back fronts. Consequently, the analysis is relevant to slowly modulated patterns before

the onset of snaking, not the snaking solutions themselves. Moreover, it is not clear

from the methods used precisely what the phase-locking mechanism is; the method

first used by Kozyreff and Chapman is more transparent.

Briefly, the method is as follows. The observation that a leading-order front solution

is singular at certain points in the complex plane, coupled with the fact that the per-

turbation problem is singular (i.e. that the highest derivative does not contribute at

leading order) leads to the conclusion that the asymptotic expansion is divergent and

must be truncated. If the point of truncation is chosen to be at the least term, the resul-

tant remainder turns out to be exponentially small. Evaluating the remainder therefore

allows exponentially small effects to be analysed explicitly. The forcing of the remain-

der equation is exponentially small but maximal at Stokes lines. By rescaling near the

Stokes lines, the switching on of an exponentially growing complementary function is

observed, with the undesirable consequence of a non-uniform asymptotic expansion.

This can only be avoided by fixing the phase of the underlying oscillations in terms of

a deviation from the Maxwell point; real solutions exist only within an exponentially

small parameter range. Thus the phase-locking mechanism giving rise to the existence

of fronts in parameter range centred on the Maxwell point is observed. Furthermore,

by matching two back-to-back fronts, a set of equations can be derived which describes

the full snakes-and-ladders bifurcation diagram.

The main drawback of the work by Kozyreff and Chapman is the lack of a quantitative

comparison with numerical results. This is due to the fact that although the expo-

nentially small scaling of the Stokes multiplier can be derived analytically, it remains

defined in terms of an analytically undeterminable O (1) constant. This is a conse-

quence of the linear nature of higher-order contributions to the asymptotic calculation,
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CHAPTER 1 Introduction

and also appears in the similar methods based on Fourier transforms, e.g. [93, 98].

However, there does exist a recurrence relation from which the Stokes multiplier may

be determined to a good degree of accuracy, if solved to a high enough iteration. In

the quadratic-cubic SHE this is computationally very expensive, and so Kozyreff and

Chapman relied instead on a numerical best-fit approximation. Thus their numerical

comparison is not entirely convincing. In the problems studied in later chapters, and

others, e.g. [1, 51], such compromises are unnecessary as the recurrence relation is

relatively cheap to solve to high order, and rigorous numerical checks may be carried

out.

In the following chapters we shall employ the method of exponential asymptotics in

the analysis of various snaking scenarios. We begin in Chapter 2 by describing Stokes’

phenomenon in more detail, and provide an introduction to the exponential asymp-

totic method via the particular example of the exponential integral. In Chapter 3 we

describe how the method of multiple scales may be used to analyse pattern-formation

in the SHE, and illustrate why such conventional methods fail to capture snaking be-

haviour. Then, in Chapter 4 we apply exponential asymptotics to the cubic-quintic SHE

to derive a full asymptotic description of a stationary front solution; in particular, we

are able to observe explicitly the pinning of the front to the underlying spatial oscilla-

tions, and thus obtain a formula for the width of the snaking region. This allows us

to match back-to-back fronts together in Chapter 5, resulting in a set of formulae de-

scribing the full snakes-and-ladders bifurcation diagram. We also extend this process

to match two localised patches together to form multi-pulse solutions, and show how

these form isolas in the bifurcation diagram. At this point we switch our focus from

continuous systems to discrete ones. Chapter 6 comprises an exponential asymptotic

study of steady solutions to a differential-difference equation on a square lattice which

are localised in a single spatial direction. Through a similar approach to that used in

Chapters 4-5, we are able to derive the full snakes-and-ladders bifurcation diagram; in

13
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particular, we show that the width of the snaking region is zero if the tangent of the an-

gle of orientation of the solution is irrational, and is non-zero but exponentially small

otherwise. This is done for a reasonably general form of the differential-difference

equation; in Chapter 7 we apply our general results to specific examples and discuss

some complexities in the calculation of the Stokes multiplier. Finally, we conclude in

Chapter 8, and discuss possible avenues for further work.
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Figure 1.1: Top: the snakes-and-ladders bifurcation diagram for (1.0.1) with s = 1.6, achieved

numerically using pseudo-spectral methods on a periodic domain of length 50π,

where || · || is the L2 norm. Bottom: close-up of the bottom of the snaking region.

The thick lines indicate stable solutions, and the thin lines indicate unstable solu-

tions; stability of the localised solutions is not indicated in the upper panel. The

labels (a)-(f) correspond to the solutions plotted in figure 1.2. Note only the first

eight rungs are shown in the upper panel.
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CHAPTER 1 Introduction

Figure 1.2: Examples of solutions to (1.0.1) with s = 1.6, achieved numerically using pseudo-

spectral methods on a periodic domain of length 50π. The label of each pattern

indicates the point at which it can be found in the bifurcation diagram shown in

figure 1.1.
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CHAPTER 2

Stokes’ phenomenon and the

method of exponential asymptotics

In this chapter we shall discuss Stokes’ phenomenon in greater detail, and illustrate

how the method of exponential asymptotics may be employed to analyse problems in

which it occurs. Stokes’ phenomenon concerns the behaviour of divergent asymptotic

expansions, in which different contributions are dominant in different regions of the

complex plane. At certain lines in the complex plane, known as Stokes lines, a sub-

dominant contribution experiences an abrupt increase from zero to non-zero in its co-

efficient (the Stokes multiplier). In the common parlance of such problems, we say the

subdominant term has been ‘switched on’ by the Stokes line. Although it remains expo-

nentially small, the subdominant term then grows until an anti-Stokes line is reached,

at which point the previously dominant term is switched on. While it is exponentially

smaller than the dominant one, the subdominant term is impossible to observe using

conventional asymptotic methods, as these only account for algebraically small be-

haviour; hence the development of exponential asymptotics [1, 7, 21, 70, 72] in order to

analyse exponentially small behaviour explicitly. We note that some authors swap the

definitions of Stokes and anti-Stokes lines given here, and advise that close attention

be paid to context in order to avoid confusion. We shall now illustrate this behaviour
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CHAPTER 2 Stokes’ phenomenon and the method of exponential asymptotics

by means of an instructive example, the exponential integral.

2.1 Stokes’ phenomenon in the exponential integral

The exponential integral is defined as

Ei(z) =
∫ z

−∞

et

t
dt, (2.1.1)

where we choose the contour of integration in the complex plane to avoid the singular-

ity of the integrand at t = 0. Now, consider what happens as z moves round the origin.

Increasing Arg (z) by 2π, we have

Ei(ze2πi) =
∫ z

−∞

et

t
dt +

∮ ze2πi

z

et

t
dt. (2.1.2)

The first integral on the right-hand side is just Ei(z); hence

Ei(ze2πi)− Ei(z) = 2πi, (2.1.3)

where we have used the residue theorem to evaluate the integral around the closed

contour z → ze2πi. Thus we observe an apparent discontinuity in Ei(z), due to the

singularity at the origin of the integrand. In fact, the contribution 2πi is ‘switched

on’ as a Stokes line is crossed; we shall illustrate this presently. At this point we note

that Ei(z) has a logarithmic singularity at z = 0 and so a branch cut is required to

avoid multi-valuedness. We choose this to be the negative real axis, and restrict −π <

Arg (z) ≤ π. Note this does not alter the result (2.1.3); the situation is more complicated

than a simple branch cut.

The cause of the apparent discontinuity in (2.1.1) can be made clear by employing the

method of steepest descents as |z| → ∞. Defining z = ρeiθ and performing the change

of variables t = ρτ in (2.1.1), we have

Ei(z) =
∫ eiθ

−∞

eρτ

τ
dτ. (2.1.4)
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With τ = x + iy and (x, y) ∈ R2, it is easy to see that the lines of steepest descent of

the exponent ρτ are those of constant y. Because the integrand decays exponentially

quickly as x → −∞ for any fixed y, we do not need to worry about the imaginary part

of the lower limit of integration. Hence we can deform the contour of integration on to

the horizontal line y = sin θ, yielding

Ei(z) =
∫ cos(θ)+i sin(θ)

−∞+i sin(θ)

eρτ

τ
dτ. (2.1.5)

The integral is now on the line of steepest descent of the exponent (see the left-hand

panel of figure 2.1), and we are able to employ Laplace’s method to derive an asymp-

totic solution. However, there is a caveat, due to the singularity of the integrand at

τ = 0. If <(z) > 0, the line of steepest descent crosses the singularity as =(z) increases

past zero. Thus, when θ > 0 we must ensure the contour of integration still passes

below the singularity. This is achieved by including a ‘detour’ around the origin; when

the line y = sin θ reaches the imaginary axis, we require it to first go vertically down to

near the origin, circle it once via a closed loop and return vertically up the imaginary

axis before continuing to the end-point eiθ , as shown in figure 2.1. The two vertical

contours cancel, and so we are left with

Ei(z) = 2πiH(θ) +
∫ cos(θ)+i sin(θ)

−∞+i sin(θ)

eρτ

τ
dτ, (2.1.6)

where we have evaluated the closed integral around the origin in the same manner as

in (2.1.2) and (2.1.3). Here H is the Heaviside step function

H(t) =





1 t > 0,

0 t < 0;
(2.1.7)

recall z is restricted to −π < θ ≤ π due to the branch cut along the negative real

axis. Thus the line θ = 0 defines the Stokes line, switching on the contribution 2πi

as it is crossed. Note that it is unclear at this point what happens on the Stokes line,

as the discontinuity prevents a simple analytic continuation. We shall for the moment

suppose that θ 6= 0, and return to this point later.
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Figure 2.1: Steepest descent contours for the integral (2.1.4). When θ < 0, the contour is

simply the line =(τ) = sin θ (left). However, as θ increases past zero, the contour

passes over the singularity of the integrand at τ = 0, and so must be deformed

as in the right-hand panel. The contours along the imaginary axis cancel, but the

closed contour around the origin contributes a term 2πi to (2.1.4), yielding the

result (2.1.6).

We may now evaluate the integral in (2.1.6) using Laplace’s method. Writing τ =

x + eiθ , we can see that it is dominated by the region near x = 0, giving

Ei(z) = 2πiH(θ) + ez
∫ 0

−∞

eρx

x + eiθ dx

∼ 2πiH(θ) + eze−iθ
∫ 0

−∞
eρx

∞

∑
n=0

(−1)ne−inθxndx

∼ 2πiH(θ) +
ez

z

∞

∑
n=0

n!
zn . (2.1.8)

Thus we have derived an asymptotic series solution for the exponential integral. We

can now see that the anti-Stokes line is defined by the line θ = π
2 , as beyond this

line the series contribution to (2.1.8) is exponentially small and the contribution 2πi is

dominant. Note, however, that the series in (2.1.8) is divergent; this must therefore be

truncated if the solution is to be meaningful. We shall show in the next section that the

change in the constant term is not discontinuous, as suggested by (2.1.8), but is in fact

smooth and rapid in a narrow region around the Stokes line; this variation is encoded

within the remainder of the truncated series.
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2.1.1 Error function smoothing of the remainder

As (2.1.8) is divergent, we truncate the series after N terms, yielding

Ei(z) ∼ ez

z

N−1

∑
n=0

n!
zn + RN(z), (2.1.9)

for some remainder RN(z) to be determined. Note the discontinuous term 2πiH(θ)

appearing in (2.1.8) has been incorporated into RN(z). We shall show presently that RN

varies smoothly but rapidly from zero to 2πi as the Stokes line θ = 0 is crossed, thus

‘smoothing out’ the discontinuity. Away from the Stokes line, RN is equal to 2πiH(θ).

We shall analyse the remainder by means of the differential equation

d2 f
dz2 +

(
1
z
− 1
)

d f
dz

= 0, (2.1.10)

following the method of [72], therein applied to the error function and other examples.

This has solution

f (z) = AEi(z) + B, (2.1.11)

for some constants A and B. As Ei(z) is a solution of (2.1.10), substitution of (2.1.9)

therefore provides a differential equation for RN . Solving this will enable us to derive

explicitly the switching on of the contribution 2πi at the Stokes line.

We first verify that the asymptotic series (2.1.9) satisfies (2.1.10), up to an error due to

truncation. Differentiating (2.1.9) once, we have

dEi
dz

=
ez

z

N−1

∑
n=0

(
n!
zn −

(n + 1)!
zn+1

)
+

dRN

dz

=
ez

z

(
1− N!

zN

)
+

dRN

dz
; (2.1.12)

hence

d2Ei
dz2 =

ez

z

(
1− 1

z
− N!

zN +
(N + 1)!

zN+1

)
+

d2RN

dz2 , (2.1.13)

and substituting (2.1.9) into (2.1.10) yields

d2RN

dz2 +

(
1
z
− 1
)

dRN

dz
= −Nez N!

zN+2 . (2.1.14)
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(2.1.14) simplifies considerably if we truncate the expansion (2.1.9) optimally, i.e. after

the least term. Comparing successive terms in (2.1.9), we see that the series begins to

diverge when
∣∣∣∣

N!
zN

zN−1

(N − 1)!

∣∣∣∣ ∼ 1, (2.1.15)

giving

N ∼ |z|+ ν, (2.1.16)

where ν is added to ensure N is an integer, and is bounded as |z| → ∞. Writing z = ρeiθ

and employing Stirling’s approximation for large factorials

n! ∼
√

2πnn+1/2e−n, n→ ∞, (2.1.17)

we see that the right-hand side (RHS) of (2.1.14) becomes

RHS ∼ −
√

2πez NN+3/2e−N

zN+2

∼ −
√

2πeρeiθ (ρ + ν)ρ+ν+3/2e−ρ−ν

ρρ+ν+2ei(ρ+ν+2)θ

= −
√

2π

ρ
exp

[
ρ
(

eiθ − 1
)
+

(
ρ + ν +

3
2

)
ln
(

1 +
ν

ρ

)
− i(ρ + ν + 2)θ − ν

]

∼ −
√

2π

ρ
exp

[
ρ
(

eiθ − 1
)
− i(ρ + ν + 2)θ

]
. (2.1.18)

Thus the forcing of (2.1.14) is exponentially small except at θ = 0, the Stokes line. To

capture the effects of maximal forcing, we scale close to the Stokes line and write θ = ηθ̂

for |η| � 1, where the exact scaling is to be determined. This gives

RHS ∼ −
√

2π

ρ
exp

[
−1

2
ρη2θ̂2

]
, (2.1.19)

suggesting the scaling η = 1/
√

ρ. Thus we obtain

RHS ∼ −
√

2π

ρ
e−θ̂2/2. (2.1.20)

We are now in a position to derive the leading-order change as RN crosses the Stokes

line. From (2.1.20), we see that maximal change occurs in the azimuthal direction, and
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so hold ρ constant and write

d
dz

= − ie−iθ

ρ

d
dθ
∼ − i√

ρ

d
dθ̂

. (2.1.21)

Hence the leading-order contribution to (2.1.14) is

dRN

dθ̂
∼ i
√

2πe−θ̂2/2. (2.1.22)

This has solution

RN ∼ πi

(
1 + erf

(
θ̂√
2

))
, (2.1.23)

where erf (z) is the error function, defined to be

erf (z) =
2√
π

∫ z

0
e−t2

dt. (2.1.24)

We have chosen the constant of integration in (2.1.23) to be πi in order to conform with

our earlier observation that the singularity at t = 0 in (2.1.1) produces a contribution

2πi when θ > 0, but not when θ < 0, as in (2.1.6). Thus we have shown how the

constant contribution to Ei(z) varies smoothly but rapidly from zero to 2πi via an error

function as the Stokes line is crossed. Note that we can now analytically continue (2.1.9)

to also hold at θ = 0, where we see that RN = πi, or half the change in Ei(z) across the

Stokes line.

2.1.2 An alternative method: integration by parts

As an aside, we mention an alternative method to derive an asymptotic series solution

to (2.1.1); integration by parts. After N integrations, (2.1.1) reads

Ei(z) ∼ ez

z

N−1

∑
n=0

n!
zn + IN(z), (2.1.25)

where

IN(z) = N!
∫ z

−∞

et

tN+1 dt. (2.1.26)
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(2.1.25) is an asymptotic series as |z| → ∞, and is in fact precisely the series as that

derived earlier using the method of steepest descents (2.1.9), except in this case the re-

mainder is given explicitly as IN(Z). However, if we differentiate IN once with respect

to θ, we have

dIN

dθ
= iez N!

zN ; (2.1.27)

by optimally truncating as in (2.1.16) and rescaling near the Stokes line, this simpli-

fies to give (2.1.22), and the result (2.1.23) follows. Although this method may seem

simpler, the longer process of solving (2.1.1) using steepest descents has allowed us

to describe the switching on of the contribution 2πi as the Stokes line is crossed in an

intuitive manner as being due to the crossing of a singularity by a contour of steepest

descent. Furthermore, it is instructive to derive the error function smoothing of the

remainder by solving its differential equation (2.1.14), since the method is similar for

problems which do not have an integral representation.

2.2 Exponential asymptotics

The error function smoothing of Stokes discontinuities was first derived by Berry [7],

and later made rigorous in [70]. Berry’s analysis was applied to the error function

itself (2.1.24), using a different method to that presented here. We note that, unlike the

exponential integral (2.1.1), the integrand of the error function is not singular. In this

case, Stokes’ phenomenon occurs due to the line of steepest descents intersecting the

saddle point of the integrand. This forces a discontinuous change in the contour of

integration analogous to figure 2.1, also switching on a subdominant contribution.

We have thus far discussed Stokes’ phenomenon in the context of asymptotic approx-

imation of integrals, and defined Stokes lines as when the line of steepest descents

intersects a singularity (or saddle point) of the integrand, thus switching on a subdom-

inant contribution. However, the phenomenon also occurs in asymptotic solutions to
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differential equations, without an integral representation. In such cases the method of

analysing the remainder via its differential equation described in Section 2.1.1 is espe-

cially useful, as it provides a clear and explicit derivation of the smooth switching on of

terms otherwise hidden in the exponentially small remainder [72]. Motivated by this

method, we are able to interpret Stokes lines as lines in the complex plane at which the

forcing of the remainder equation is maximal, i.e. those lines at which the remainder

experiences greatest variation.

Stokes’ phenomenon occurs when an asymptotic expansion is divergent. Two ingre-

dients are sufficient for divergence in a differential equation: a singular perturbation,

so that the highest derivative does not contribute at leading-order, and a solution with

(usually complex) singularities. These two properties produce an asymptotic expan-

sion which is divergent in the form of a factorial over a power [1, 21]; this generic

form of the divergence allows the derivation of an asymptotic formula for late terms

in the expansion, which is necessary as an explicit solution for the nth term is usually

unobtainable. Truncation of the asymptotic series and substitution into the original dif-

ferential equation then produces an equation for the remainder, with forcing due to the

truncation error. Then, truncating optimally as in Section 2.1.1 and rescaling near the

lines of maximal forcing (the Stokes lines) allows the derivation of the leading-order

contribution to the remainder, showing explicitly the switching on of a particular com-

plementary function to the remainder equation. This invariably yields crucial infor-

mation regarding the solution which would otherwise be hidden behind the dominant

terms in the asymptotic expansion.

We shall use this method throughout the thesis to analyse various homoclinic snaking

problems, in a similar manner to [22, 51]. We shall find that the terms which are

switched on at Stokes lines are exponentially growing. Requiring that these unbounded

terms vanish results in a solvability condition on the leading-order solution, yielding

the pinning mechanism by which stationary fronts exist away from the Maxwell point.
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This pinning can only take place within an exponentially small parameter range, pro-

viding a formula for the width of the snaking region. Furthermore, matching expo-

nentially growing and decaying terms in back-to-back fronts produces an asymptotic

description of the full snakes-and-ladders bifurcation diagram.
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CHAPTER 3

Multiple scales analysis of the

cubic-quintic Swift-Hohenberg

equation

The Swift-Hohenberg equation (SHE) [84] is the archetypal model of pattern forma-

tion [33]. Due to its relative amenability to analysis and prevalence in the literature,

perhaps the most extensive studies of localised patterns and homoclinic snaking have

been carried out in the SHE and its variants [10, 13, 14, 39, 56, 78]. We shall continue in

this tradition and focus on the cubic-quintic SHE in one dimension, namely

∂u
∂t

= ru−
(

1 +
∂2

∂x2

)2

u + su3 − u5; (3.0.1)

the methods described are equally applicable to generalisations of (3.0.1), as well as

other pattern-forming problems. The bifurcation diagram of (3.0.1) with s = 1.6 is

shown in figure 1.1, and example solutions in figure 1.2. The trivial solution u ≡ 0

loses stability at r = 0 via a subcritical pitchfork bifurcation to constant amplitude

spatial oscillations. This solution branch turns over at a subsequent saddle-node at

some r < 0, providing a region of bistability between the zero and patterned states.

Localised patterns form a snakes-and-ladders bifurcation structure within the bistable
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CHAPTER 3 Multiple scales analysis of the cubic-quintic Swift-Hohenberg equation

region. The same bifurcation diagram is observed for all s > 0; however, if s ≤ 0 the

pitchfork is supercritical and there is no region of bistability, and hence no snaking.

Figure 1.1 is the product of numerical computations, as are many studies of snaking

behaviour [13, 14]. We desire to study snaking analytically; to begin with, we shall

describe in this chapter how the much simpler behaviour of constant amplitude spatial

oscillations can be studied using the method of multiple scales. Then we shall discuss

why the conventional method fails to capture snaking behaviour, and hence why it

must be extended to incorporate exponentially small effects [22, 39, 56]. This shall pave

the way for a more complete asymptotic description of the SHE via the method of ex-

ponential asymptotics [7], incorporating the snakes-and-ladders bifurcation observed

numerically, to be carried out in the next two chapters.

To see why the method of multiple scales is the correct one to use, first linearise (3.0.1)

around u ≡ 0 by writing u ∼ εeσt+ikx for some constant 0 < ε � 1 and neglecting

terms smaller than O (ε). Thus we obtain the growth rate equation

σ = r− (1− k2)2. (3.0.2)

As r increases, σ first vanishes when r = 0 and |k| = 1, indicating that the trivial

solution first loses stability to spatial oscillations with wavenumber ±1. Assuming

|r| � 1 and writing k = ±1 + k̂ with |k̂| � 1 then gives

σ = r− 4k̂2 + O(k̂3), (3.0.3)

suggesting that the dynamics close to bifurcation take place on the slow scales x =

O
(
r−1/2) and t = O

(
r−1), as well as the fast scale x = O (1). Thus we expect a

solution in the form of slowly modulated spatial oscillations with wavenumber ±1.

We therefore perform a multiple-scales analysis of (3.0.1) by rescaling its parameters

(3.0.1) as

r = ε4r4, s = ε2s2. (3.0.4)
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Defining the slow scales

X = ε2x, T = ε4t, (3.0.5)

with

u(x, t) = εU(x, X, T). (3.0.6)

(3.0.1) then becomes

ε4 ∂U
∂T

= ε4r4U −
[(

1 +
∂2

∂x2

)2

+ 4ε2
(

1 +
∂2

∂x2

)
∂2

∂x∂X
+ ε4

(
2 + 6

∂2

∂x2

)
∂2

∂X2

+ 4ε6 ∂4

∂x∂X3 + ε8 ∂4

∂X4

]
U + ε4s2U3 − ε4U5. (3.0.7)

We may now seek an asymptotic solution in the form of a power series,

U(x, X, T) = U0(x, X, T) + ε2U1(x, X, T) + ε4U2(x, X, T) + · · · , (3.0.8)

by equating terms in (3.0.7) at each order in ε2. Note the above scalings have been

chosen in order to ensure the correct balance of terms in the subsequent calculation.

In particular, setting s = O
(
ε2) ensures that the asymptotic regime incorporates the

bistable nature of (3.0.1), and hence also the snaking region.

Equating terms at O (1) provides the leading-order contribution

0 = −
(

1 +
∂2

∂x2

)2

U0, (3.0.9)

with solution

U0 = A0(X, T)eix + A∗0(X, T)e−ix, (3.0.10)

where the asterisk represents complex conjugation. Hence the solution takes the ex-

pected form of slowly modulated spatial oscillations with wavenumber±1. The ampli-

tude A0 is determined by applying a solvability condition, which we shall now derive

by continuing the calculation to higher orders in ε2.

At O
(
ε2), we simply have

0 = −
(

1 +
∂2

∂x2

)2

U1, (3.0.11)
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so

U1 = A1(X, T)eix + A∗1(X, T)e−ix (3.0.12)

Then, O
(
ε4) terms yield

(
1 +

∂2

∂x2

)2

U2 = −∂U0

∂T
+ r4U0 −

(
2 + 6

∂2

∂x2

)
∂2U0

∂X2 + s2U3
0 −U5

0 , (3.0.13)

with the usual homogeneous solution

U2 = A2(X, T)eix + A∗2(X, T)e−ix. (3.0.14)

To determine the particular integral, we note the right-hand side of (3.0.13) takes the

form

C5e5ix + C3e3ix + C1eix + C∗1 e−ix + C∗3 e−3ix + C∗5 e−5ix, (3.0.15)

where the Ck are function of X and T. Although the forcing terms which are propor-

tional to ekix for k = ±3,±5 can be accounted for by the particular integral

(
1− k2)−2

Ckekix, (3.0.16)

those proportional to e±ix are problematic, as e±ix are the complementary functions of

(3.0.13). Hence these forcing terms are resonant and lead to a particular integral which

is unbounded as x → ±∞. Because we require that ε2U2 remains O
(
ε2) for all x in

order to retain a uniform asymptotic expansion, we must fix C1 = 0, thus eliminating

secular terms. Considering (3.0.10) and (3.0.13), this requires that

∂A0

∂T
= r4A0 + 4

∂2A0

∂X2 + 3s2|A0|2A0 − 10|A0|4A0. (3.0.17)

(3.0.17) is often referred to as the ‘solvability condition’; solving it determines the slow-

scale dynamics of the leading-order solution (3.0.10).

3.1 Constant amplitude solutions

We shall first consider constant solutions to (3.0.17), which correspond to solutions of

(3.0.1) in the form of spatial oscillations with constant amplitude. Setting A0 = W0eiφ,
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where W0 and φ are real constants, (3.0.17) gives us

0 = r4W0 + 3s2W3
0 − 10W5

0 . (3.1.1)

We also have φ arbitrary, which is due to the invariance of (3.0.17) under rotations

A0 → A0eiφ. (3.1.1) has up to five distinct solutions, given by

W0 = 0,±
√

W+,±
√

W−, (3.1.2)

where

W± =
3
20

s2 ±
1
20

√
9s2

2 + 40r4. (3.1.3)

Note that we may consider W0 ≥ 0 without loss of generality, as W0 < 0 may be

recovered from (3.0.17) via the symmetry A0 → −A0. While the trivial solution exists

for all r4 and s2, the other four solutions are only viable in certain parameter ranges,

which may be determined by enforcing W± real and positive. Doing so, we find that

if s2 > 0 then A0 = ±√W+eiφ is a solution in the range r4 ≥ −9s2
2/40, and A0 =

±√W−eiφ in the range −9s2
2/40 ≤ r4 < 0. On the other hand, if s2 ≤ 0 then A0 =

±√W+eiφ is a solution for r4 > 0, but A0 = ±√W−eiφ ceases to be a valid solution.

We can analyse the bifurcation structure of these constant amplitude solutions by per-

forming a linear stability analysis of (3.0.17). To this end, we set A0 = (W0 + a0(X, T) +

ib0(X, T))eiφ, where W0 is one of the solutions in (3.1.2) and a0 and b0 are real and of

small magnitude. Substituting into (3.0.17), linearising and equating real and imagi-

nary parts yields

∂a0

∂T
=

∂2a0

∂X2 +
(

r4 + 9s2W2
0 − 50W4

0

)
a0, (3.1.4)

∂b0

∂T
=

∂2b0

∂X2 +
(

r4 + 3s2W2
0 − 10W4

0

)
b0. (3.1.5)

As W0 satisfies (3.1.1), writing a0 = â0eσ1T+ik1X, b0 = b̂0eσ2T+ik2X gives

σ1 = −k2
1 +

(
6s2W2

0 − 40W4
0

)
, (3.1.6)

σ2 = −k2
2, (3.1.7)
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and we see that the imaginary part of small perturbations always decays. Considering

first the trivial solution, A0 ≡ 0 is unstable to perturbations with small wavenumber;

this corresponds to the linear stability analysis carried out at the beginning of the chap-

ter, in which we saw that the solution u ≡ 0 to the original equation (3.0.1) is unstable to

perturbations with wavenumber close to ±1. The other constant amplitude solutions

are given by W2
0 = W±, which give

6s2W± − 40W2
± = − 1

10

√
9s2

2 + 40r4

(√
9s2

2 + 40r4 ± 3s2

)
. (3.1.8)

In the relevant parameter ranges satisfying existence of W±, this quantity is negative

for the choice W2
0 = W+, but positive for W2

0 = W−. Thus A0 = ±√W+eiφ is always

linearly stable, while A0 = ±√W−eiφ is always linearly unstable.

We can now describe the bifurcation structure of constant amplitude solutions. The

trivial solution loses stability at r4 = 0 via a pitchfork bifurcation, which is supercritical

for s2 ≤ 0 and subcritical for s2 > 0. In the latter case, there is a secondary saddle-node

bifurcation at r4 = −9s2
2/40, at which the solution branch turns over and becomes

stable. We compare our asymptotic analysis with numerical computations in figure 3.1,

which were obtained by solving (3.0.1) on a periodic domain of length D = 10π using

a Fourier pseudo-spectral method. We see that the numerical bifurcation diagram is

faithfully reproduced by the asymptotic calculation, albeit with decreasing accuracy as

r4 increases. This discrepancy is simply because the present analysis is only valid close

to bifurcation, described asymptotically by the limit ε→ 0.

3.2 Front solutions

Having successfully described the bifurcation structure of constant amplitude solu-

tions using the method of multiple scales, we shall now discuss how the same method

may be applied to front solutions, the building blocks of localised patterns. First, we

have seen that the SHE (3.0.1) is bistable only when s is positive, and so shall fix s > 0
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henceforth. Then, within the bistable region we may seek a front which connects the

patterned state to the trivial state. These correspond to steady solutions of the ampli-

tude equation (3.0.17) which connect A0 =
√

W+eiφ to A0 ≡ 0; solutions connecting

A0 = −√W+eiφ to A0 ≡ 0 are given simply by exploiting the invariance of (3.0.17)

under the reflection A0 → −A0.

Writing A0 ≡W0(X)eiφ0(X) in (3.0.17) gives us

0 = r4W0 + 4
d2W0

dX2 − 4W0

(
dφ0

dX

)2

+ 3s2W3
0 − 10W5

0 , (3.2.1)

0 = 2
dW0

dX
dφ0

dX
+ W0

d2φ0

dX2 , (3.2.2)

and we impose the boundary conditions

W0 →
√

W+ as X → −∞, (3.2.3)

W0 → 0 as X → ∞. (3.2.4)

Multiplying (3.2.2) by W0 and integrating we obtain

dφ0

dX
=

C
W2

0
(3.2.5)

for some constant C. However, upon substitution into (3.2.1), we see that we must have

C = 0 in order to satisfy the boundary condition at X = ∞. Thus φ0 must be constant,

and we set φ0 = φ; again, the arbitrary phase φ arises due to the invariance of (3.0.17)

under rotations.

Multiplying (3.2.1) by dW0/dX and integrating, we have

0 =
1
2

r4W2
0 + 2

(
dW0

dX

)2

+
3
4

s2W4
0 −

5
3

W6
0 , (3.2.6)

where we have again set the constant of integration to zero in order to satisfy the

boundary condition at X = ∞. In order to satisfy the boundary condition at X = −∞,
√

W+ must satisfy the X-independent versions of (3.2.1) and (3.2.6), yielding

0 =
√

W+

(
r4 + 3s2W+ − 10W2

+

)
, (3.2.7)

0 = W+

(
1
2

r4 +
3
4

s2W+ −
5
3

W2
+

)
. (3.2.8)

33



CHAPTER 3 Multiple scales analysis of the cubic-quintic Swift-Hohenberg equation

As W+ 6= 0, this equation pair has solution

r4 = rM,1 := − 27
160

s2
2, W+ =

√
− 3

10
rM,1, (3.2.9)

where we have chosen the positive square root in compliance with the boundary con-

dition at X = −∞; the negative root corresponds to the solution −A0(X). Note that

the value given for W+ is simply (3.1.3) with r4 = rM,1.

Setting r4 = rM,1, rearrangement of (3.2.6) provides the integral

∫ dW0

W0(9s2/40−W2
0 )

=

√
5
6

∫
dX, (3.2.10)

where we have chosen the positive square root to ensure W0 → 0 as X → ∞. This has

solution

W0 =

(
3
10

)1/4 √
µ√

1 + eµX
=: A f (X), (3.2.11)

where µ =
√−rM,1. Note we have set the constant of integration to zero as it simply

corresponds to a change of origin, and (3.0.17) is invariant under translations in X.

We can think of A0 = A f (X)eiφ as a travelling wave with zero wavespeed. Indeed, for

r4 > rM,1 the equivalent solution is a travelling wave in which the non-zero amplitude

‘wins out’ over the trivial state, while for r4 < rM,1 the converse occurs. However, the

foregoing calculation does not provide the whole picture. According to our leading-

order analysis, stationary fronts exist only at the Maxwell point r ∼ ε4rM,1, which leads

to the erroneous conclusion that localised patterns comprising back-to-back fronts also

only exist at the Maxwell point. This is in clear contradiction to numerical results such

as that shown in figure 1.1, which indicate that localised solutions to (3.0.1) form a

snakes-and-ladders structure centred on the Maxwell point.

There is a clue as to how to resolve this discrepancy in the symmetries of the SHE

(3.0.1) and its amplitude equation (3.0.17). Inspection of (3.0.17) indicates that the so-

lution (4.1.7) is unique up to a change in origin, a change of sign of X and a change of

sign of A0. Each of these symmetries corresponds to a symmetry of the SHE, as (3.0.1) is
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invariant under translations and reflections in x and reflections in u. However, (3.0.17)

also has a fourth symmetry, given by the arbitrary phase φ; any rotation of a particular

solution to (3.0.17) also provides a solution. Due to the form of the leading-order solu-

tion U0 = A0eix + A∗0e−ix, this is equivalent to the translation x → x + φ, and appears

due to (3.0.7) being invariant under (independent) translations in both x and X. This

fourth symmetry is somewhat unexpected, as it has no counterpart in (3.0.1), and is an

artefact of the multiple-scales approach. In fact, the apparent arbitrariness of the phase

is illusory, as it is the fixing of this phase which provides the locking mechanism that

generates snaking bifurcations. That said, the method of multiple scales alone is insuf-

ficient to derive φ, as it remains arbitrary to all algebraic orders. Exponentially small,

or beyond-all-orders, terms in the tail of the asymptotic expansion must be considered,

which requires the method of exponential asymptotics; the application of this method

to the present problem and the subsequent fixing of φ provides the subject matter of

the following chapter.

35



CHAPTER 3 Multiple scales analysis of the cubic-quintic Swift-Hohenberg equation

−0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

r

||u
(x
)||

Student Version of MATLAB

−0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

r

||u
(x
)||

Student Version of MATLAB

Figure 3.1: Numerical (broken lines) and asymptotic (solid lines) bifurcation diagrams of con-

stant amplitude solutions to (3.0.1). The left-hand panel shows the subcritical

case with s = 0.5, and the right-hand panel shows the supercritical case with

s = −0.5. Stable solutions are indicated by thick lines, and unstable by thin lines.

|| · || is the L2 norm.
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CHAPTER 4

Homoclinic snaking in the

cubic-quintic Swift-Hohenberg

equation

The purpose of the present chapter is to apply the ideas of exponential asymptotics to

the cubic-quintic Swift-Hohenberg equation (SHE)

∂u
∂t

= ru−
(

1 +
∂2

∂x2

)2

u + su3 − u5, (4.0.1)

in order to derive an analytical formula which describes the snaking bifurcation dia-

gram in the small-amplitude limit near the pattern-forming bifurcation at r = 0. To

begin with, the focus is upon stationary fronts, the building blocks of localised pat-

terns. Once these are understood fully, localised patterns may be constructed at will.

This we do in the next chapter.

The observation that the leading-order front solution (3.2.11) of the SHE has singular-

ities in the complex plane, coupled with the fact that the perturbation problem (3.0.7)

is singular in the slow scale, leads to the conclusion that the subsequent asymptotic

expansion is divergent and should be truncated [51]. Truncating the asymptotic ex-

pansion in an optimal fashion ensures that the remainder is exponentially small, and
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results in an inhomogeneous equation from which the remainder may be determined.

The forcing of the remainder equation is maximal at certain lines in the complex plane,

known as Stokes lines. By rescaling in the neighbourhood of the intersections between

these Stokes lines and the real axis, the coefficient of a complementary function is seen

to vary from zero to non-zero as they are crossed. This ‘switching on’ is shown to take

place smoothly by means of an error function, as is usual [7]. As the complementary

function is exponentially growing, the requirement that this vanish provides a relation-

ship between the phase of the pattern and the distance from the Maxwell point, thus

giving a formula for the width of the region in which fronts (and localised patterns

built from superpositions of fronts) are stationary. Moreover, the growing exponential

terms allow two distant fronts to be matched together, leading to a set of equations

describing the full snakes-and-ladders bifurcation structure.

This was first done by Kozyreff and Chapman in the SHE with quadratic and cubic

nonlinearities [56]; the present calculation is similar. However, we are able to provide a

more convincing numerical comparison, since we are able to calculate the Stokes mul-

tiplier through iteration of a recurrence relation. Kozyreff and Chapman rely instead

upon a best fit approximation, rendering their comparison somewhat inexact. Indeed,

our ability to provide a quantitative comparison between analytical and numerical re-

sults is one of the novel aspects of the present work.

4.1 Leading-order analysis

Recall that in the Chapter 3 we studied spontaneous pattern formation in the SHE

(4.0.1) near the onset of instability by introducing the small parameter 0 < ε � 1

and applying the multiple-scales ansatz u(x, t) = εU(x, X), X = ε2x. Note that we

are only concerned with stationary solutions in this chapter and so shall neglect time-

dependence throughout. Rescaling by defining r = ε4r4, s = ε2s2 in order to obtain the
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correct balance of terms, (4.0.1) therefore becomes

0 = ε4r4U −
[(

1 +
∂2

∂x2

)2

+ 4ε2
(

1 +
∂2

∂x2

)
∂2

∂x∂X
+ ε4

(
2 + 6

∂2

∂x2

)
∂2

∂X2

+ 4ε6 ∂4

∂x∂X3 + ε8 ∂4

∂X4

]
U + ε4s2U3 − ε4U5. (4.1.1)

A formal asymptotic analysis may now be carried out by expanding U in powers of ε2

as

U(x, X) =
N−1

∑
n=0

ε2nUn(x, X) + RN(x, X). (4.1.2)

Note that (4.1.1) is the steady version of (3.0.7). However, whereas in that calculation

we neglected terms smaller than O
(
ε2) in the asymptotic expansion of U (3.0.8), we

now include higher-order terms explicitly. In particular, we include a remainder term

RN . This is because the expansion (4.1.2) is divergent when the leading-order solution

U0 is a front, and must be truncated. If this truncation is optimal then the remainder

RN will be exponentially small; the point of truncation N is as yet unknown. We shall

discuss these facts in more detail shortly.

As discussed in Section 3.2 the previous chapter, the leading-order solution to (4.1.1)

takes the form of slowly modulated spatial oscillations given by

U0(x, X) = A0(X)eix + A∗0(X)e−ix, (4.1.3)

where the asterisk denotes the complex conjugate and the envelope A0 is determined

by a solvability condition arising at O
(
ε4). This appears in the form of the Ginzburg-

Landau equation

0 = r4A0 + 4
d2A0

dX2 + 3s2|A0|2A0 − 10|A0|4A0, (4.1.4)

given in unsteady form in (3.0.17). This admits a stationary front solution at

r4 = rM,1 := − 27
160

s2
2, (4.1.5)

given by

A0(X) = A f (X)eiφ, (4.1.6)
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where

A f (X) =

(
3
10

)1/4 √
µ√

1 + eµX
, (4.1.7)

as defined in(3.2.11), with µ =
√−rM,1 as found in (3.2.9). Thus ε4rM,1 provides a

first approximation to the (unscaled) Maxwell point rM. The real constant φ represents

the phase of the underlying oscillations, arbitrary to all algebraic orders. By analysing

the exponentially small remainder RN in (4.1.2), we shall fix φ and hence derive the

exponentially small parameter region in which stationary fronts exist. Note that the

fact that A f is real for real X makes the present calculation more straightforward in

some respects than, for example, the quadratic-cubic SHE studied in [22].

Successive correction terms to the Maxwell point rM may be found by writing

r =
N−1

∑
n=4

ε2nr2n + ε4δr, (4.1.8)

where δr is exponentially small, and continuing the calculation to higher orders. Re-

quiring that the solution remain bounded at each order then fixes each of the r2n. This

has been done up to O
(
ε14), giving

r6 = r10 = r14 = 0,

r8 = rM,2 :=
1377

81920000
s4

2,

r12 = rM,3 :=
106677

10485760000000
s6

2.

(4.1.9)

We omit the details for the sake of brevity. Thus we have a three term expression for

the Maxwell point, namely

rM = ε4rM,1 + ε8rM,2 + ε12rM,3 + O
(

ε16
)

. (4.1.10)

This will prove useful when we come to compare analytical and numerical results in

Section 4.8. Note that every algebraic perturbation of the Maxwell point is fixed in

terms of s2, and so the exponentially small snaking region cannot be expressed using

algebraic corrections alone. Thus we truncate the expansion of r (4.1.8) at the same

point as the expansion of U (4.1.2), and denote the resultant remainder by δr. We derive
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in Section 4.7 a condition expressing the phase φ of the pattern in terms of δr; hence δr

provides a bifurcation parameter through which we are able to describe the snaking

region.

4.2 Setting up the beyond-all-orders calculation

In light of the importance of the seemingly arbitrary phase φ, it is helpful to introduce

x̃ = x + φ, (4.2.1)

and rewrite

U(x, X) =
N−1

∑
n=0

ε2nUn(x̃, X) + RN(x̃, X), (4.2.2)

U0(x̃, X) = A f (X)eix̃ + A f (X)e−ix̃; (4.2.3)

recall A f (X) is real for real X. Solutions at higher order in ε2 can thus be found in

terms of modulated sums of the harmonics ekix̃, for integer k. In this way φ is retained

implicitly within the calculation until it can be determined.

4.2.1 The remainder equation

Given the truncated expansion (4.1.2), we can easily write down the equation for the

remainder RN by linearising the steady version of (4.1.1) around ∑N−1
n=0 ε2nUn. This

gives

ε4 (rM,1 + · · ·) RN −
(

1 +
∂2

∂x̃2 + 2ε2 ∂2

∂x̃∂X
+ ε4 ∂2

∂X2

)2

RN

+ ε4
(

3s2U2
0 − 5U4

0 + · · ·
)

RN ∼ −ε4δr (U0 + · · ·) + forcing due to truncation.

(4.2.4)

There are two components to the forcing on the right-hand side of (4.2.4). The first

is due to the (exponentially small) deviation from the Maxwell point, and is given to
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leading order by −δrU0. The second is denoted here as ‘forcing due to truncation’,

and consists of those terms which are smaller than O
(
ε2N−2) and therefore are not

accounted for by terms of algebraic order in ε2 in the expansion (4.1.2). Because (4.2.4)

is linear, we can ignore this as yet unknown forcing for the moment, and are able to

make valuable progress using our current knowledge. Note that, while RN and δr are

both exponentially small, there is an additional scaling of ε4 in the first term of the

right-hand side of (4.2.4), which is necessary for the forcing due to δr to contribute to

the leading-order solvability condition, as shown in (4.2.8).

(4.2.4) remains a multiple-scales problem, and so we can solve it in the same manner as

used to find U0. Hence we expand RN as

RN = RN,0 + εRN,1 + ε2RN,2 + ε3RN,3 + ε4RN,4 + · · · . (4.2.5)

where each of the RN,j are functions of x̃ and X. Note that the expansion of RN is in

powers of ε rather than ε2. As will become apparent in Section 4.6, a rescaling of X

will prove necessary in order to fully capture the effects of the as yet unknown forcing,

which results in odd powers of ε appearing in (4.2.4), and so the remainder must be

expanded in powers of ε if this is to be accounted for.

For now, equating terms at O (1) gives

(
1 +

∂2

∂x̃2

)2

RN,0 = 0, (4.2.6)

with solution

RN,0 = S0(X)eix̃ + S∗0(X)e−ix̃, (4.2.7)

where the asterisk denotes complex conjugation. Proceeding to higher orders in ε, we

find that RN,1, RN,2 and RN,3 are of a similar form. Finally, a solvability condition is

reached at O
(
ε4), which requires that

rM,1S0 + 4
d2S0

dX2 + 6s2A2
f S0 + 3s2A2

f S∗0 − 30A4
f S0 − 20A4

f S∗0 = −δrA f . (4.2.8)
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This has solution

RN,0(x̃, X) =


D1A′f (X) + iD2A f (X) + D3A′f (X)

∫ X 1

A′f (s)
2 ds

+iD4A f (X)
∫ X 1

A f (s)
2 ds + δrP(X)

]
eix̃ + c.c., (4.2.9)

where the Dj are arbitrary real constants and the particular integral P is

P(X) := −1
8

A′f (X)
∫ X A f (s)

2

A′f (s)
2 ds. (4.2.10)

The first pair of complementary functions, which are bounded in X, can be found by

splitting S0 into its real and imaginary parts and noting that A f satisfies (4.1.7). The

second pair, which are unbounded, can then readily be found using the method of

reduction of order, and the particular integral P, also unbounded, by the method of

variation of parameters.

Note that the third and fourth complementary functions are unbounded in X. A naive

reaction to this fact would be to set D3 and D4 to zero. However, we shall find in Section

4.6 that the leading-order ‘forcing due to truncation’ results in a non-zero multiple, with

coefficient dependent on φ, of the third complementary function being switched on as

X crosses the imaginary axis from right to left. Furthermore, the particular integral P

is itself unbounded as X → −∞. Therefore, if the third complementary function did

not contribute then we would be left with no means by which to cancel out this growth

apart from setting δr = 0, rendering the present attempt to describe the snaking region

fruitless. In fact, we shall see that the correct way to ensure a uniform expansion as

X → −∞ is to apply a solvability condition, which sets the coefficient of unbounded

terms to zero by fixing the phase of the underlying pattern in terms of δr. This is the

phase-locking mechanism responsible for the occurrence of snaking.
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4.2.2 nth term equations

We can now see that if we are to fully determine the exponentially small remainders in

the expansions of U and r, the ‘forcing due to truncation’ in (4.2.4), must be derived, as

must the point of truncation N. In order to do this, we must first calculate the large-n

behaviour of the asymptotic expansion.

Substituting the expansions of U and r into the steady version of (4.1.1) and equating

terms at O
(
ε2n) provides a differential-recurrence relation for Un, 0 ≤ n ≤ N − 1:

(
1 +

∂2

∂x̃2

)2

Un = − 4
∂2

∂x̃∂X

(
1 +

∂2

∂x̃2

)
Un−1 −

∂2

∂X2

(
2 + 6

∂2

∂x̃2

)
Un−2

− 4
∂4

∂x̃∂X3 Un−3 −
∂4

∂X4 Un−4 + rM,1Un−2

+
n−3

∑
j=0

r2j+6Un−j−3 + s2

J1

∑
j1=0

J2

∑
j2=0

Uj1Uj2Un−2−j1−j2

−
J1

∑
j1=0

J2

∑
j2=0

J3

∑
j3=0

J4

∑
j4=0

Uj1Uj2Uj3Uj4Un−2−j1−j2−j3−j4 , (4.2.11)

where

J1 = n− 2, J2 = n− 2− j1,

J3 = n− 2− j1 − j2, J4 = n− 2− j1 − j2 − j3,
(4.2.12)

and with the understanding that Un ≡ 0 for n < 0. Now, the leading-order solution

(4.1.3) comprises modulated harmonics of wavenumber ±1. The higher-order nonlin-

ear interactions between harmonics due to the cubic and quintic powers of U in (4.1.1)

then produce harmonics of higher wavenumber; as both nonlinear terms are O
(
ε4),

new harmonics appear at even orders of ε2 but not odd. We therefore seek a solution

in the form

Un =
K(n)

∑
k=−K(n)

An,k(X)eikx̃, (4.2.13)

where

K(n) =





2n + 1, n even,

2n− 1, n odd.
(4.2.14)

Note that only odd powers of eix̃ can occur in the solution, so An,k = 0 for even k.

44



CHAPTER 4 Homoclinic snaking in the cubic-quintic Swift-Hohenberg equation

Substituting (4.2.13) into (4.2.11) and equating powers of eikx̃ then gives

(
1− k2)2

An,k = − 4ik
(
1− k2) d

dX
An−1,k −

(
2− 6k2) d2

dX2 An−2,k − 4ik
d3

dX3 An−3,k

− d4

dX4 An−4,k + rM,1 An−2,k +
n−3

∑
j=0

r2j+6An−j−3,k

+ s2

J1

∑
j1=0

J2

∑
j2=0

K(j1)

∑
p1=−K(j1)

K(j2)

∑
p2=−K(j2)

Aj1,p1 Aj2,p2 An−2−j1−j2,k−p1−p2

−
J1

∑
j1=0

J2

∑
j2=0

J3

∑
j3=0

J4

∑
j4=0

K(j1)

∑
p1=−K(j1)

K(j2)

∑
p2=−K(j2)

K(j3)

∑
p3=−K(j3)

K(j4)

∑
p4=−K(j4)

Aj1,p1 Aj2,p2 Aj3,p3 Aj4,p4 An−2−j1−j2−j3−j4,k−p1−p2−p3−p4 , (4.2.15)

where An,k is taken to be zero for |k| > 2n + 1. The derivation of the An,k in the large-n

limit is presented in the following two sections. Unlike the quadratic-cubic case studied

by Chapman and Kozyreff in [22], the leading-order solution (4.1.7) to the amplitude

equation is real (up to the arbitrary rotation encapsulated by the phase-shift φ), a con-

sequence of the lack of a term to break the u → −u symmetry in (4.0.1). Hence the

following analysis is, in this respect, more straightforward than their work. However,

the higher-order nonlinearities in the SHE make some aspects of the calculation more

complicated; in particular, there are eight nested summations in the equation for the

large-n amplitudes (4.2.15), rather than four in [22].

4.3 Large-n behaviour near the complex singularities

We are now in possession of enough information to seek a solution to (4.2.15) in the

large-n limit. Firstly, we observe that the leading-order envelopes A0,±1 = A f , given

in (4.1.7), have infinitely many singularities on the imaginary axis, at X = Xm :=

(2m + 1)iπ/µ, for m ∈ Z. Moreover, in light of (4.2.11), we can see that in order to find

Un then Un−l must be differentiated l times with respect to X, for l = 1, 2, 3, 4. There-

fore, as U0 = O
(
(X− Xm)−1/2) as X → Xm, we expect that Un = O

(
(X− Xm)−n−1/2)

as X → Xm. These two facts taken together indicate that the asymptotic expansion is
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divergent and each term in the expansion must consist of a factorial over a power, a fea-

ture generic to such singular perturbation problems [1, 51]. The expansion must there-

fore be truncated in order to retain uniformity. If we truncate after the least term, the

remainder is exponentially small; thus it is the presence of singularities in the leading-

order solution that is responsible for the exponentially small tail. This in itself is well

known (see, for example, [5]); it is only with the advent of techniques developed specif-

ically to carry out calculations beyond all algebraic orders and explicitly derive the

exponentially small remainder [1, 7, 51] that the connection has become clear [56].

Although we are ultimately concerned with the behaviour of the system on the real

line, we shall start by solving (4.2.15) close to its complex singularities, as doing so will

elucidate the more general behaviour. In light of the above discussion, and restricting

our attention for the moment to singularities in the upper half-plane by assuming m ≥

0, we define the constants Bn,k by

An,k ∼
Bn,k

(X− Xm)n+1/2 (4.3.1)

as X → Xm. In particular, because A0,±1 = A f , we have

B0,±1 = −i
(

3
10

)1/4

. (4.3.2)

Note the minus sign in (4.3.2) arises due to the choice of the positive square root in

(4.1.7) and ensuring that the necessary branch cuts do not cross the real line. By symme-

try, the solution at X = −Xm is then simply the complex conjugate of that at X = +Xm.

Taking the leading-order approximation in powers of (X − Xm) of (4.2.15) therefore

provides a recurrence relation in the Bn,k. Furthermore, the factorial-over-power na-

ture of the An,k motivates the ansatz

Bn,k ∼ κnΓ (n + αk)

(
ak +

1
n

bk +
1
n2 ck + · · ·

)
(4.3.3)

as n → ∞, familiar to such beyond-all-orders methods [1, 51]. The large-n limit has

been exploited here in order to write down all n-dependence explicitly, thus ensuring

that κ, αk, ak, bk and ck are independent of n; these unknowns remain to be found.
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Upon substitution of the ansatz (4.3.1), (4.2.15) becomes

(
1− k2)2

Bn,k = 4ik
(
1− k2)

(
n− 1

2

)
Bn−1,k −

(
2− 6k2)

(
n− 1

2

)(
n− 3

2

)
Bn−2,k

+ 4ik
(

n− 1
2

)(
n− 3

2

)(
n− 5

2

)
Bn−3,k

−
(

n− 1
2

)(
n− 3

2

)(
n− 5

2

)(
n− 7

2

)
Bn−4,k

−
n−2

∑
j1=0

n−2−j1

∑
j2=0

n−2−j1−j2

∑
j3=0

n−2−j1−j2−j3

∑
j4=0

K(j1)

∑
p1=−K(j1)

K(j2)

∑
p2=−K(j2)

K(j3)

∑
p3=−K(j3)

K(j4)

∑
p4=−K(j4)

Bj1,p1 Bj2,p2 Bj3,p3 Bj4,p4 Bn−2−j1−j2−j3−j4,k−p1−p2−p3−p4 , (4.3.4)

as X → Xm. Note that the dominant balance is between the left-hand side of (4.2.15),

the four terms involving derivatives and the quintic term; neither the cubic term nor

that containing the expansion of r contribute at leading order in (X− Xm).

To solve (4.3.4), we order the wavenumbers k according to the size of the offsets αk

by defining ki for i = 1, 2, 3, . . . so that αk1 > αk2 > αk3 > · · · . The leading-order

contribution to (4.3.4) for k = k1 therefore comprises only the linear terms, as these

are O (Γ (n + αk1)), whereas the quintic terms are at most O (Γ (n− 2 + αk1)). Dividing

through by κn−4Γ (n + αk1), we obtain the eigenvalue equation

[
(1− k2

1)
2κ4 − 4ik1(1− k2

1)κ
3 + (2− 6k2

1)κ
2 − 4ik1κ + 1

]
ak1 = 0. (4.3.5)

Requiring non-zero ak1 , this provides a quadratic polynomial in κ if |k1| = 1, and a

quartic polynomial otherwise. If k1 = 1, (4.3.5) has the repeated root κ = −i/2, if

k1 = −1 it has the repeated root κ = i/2, and if |k1| > 1 it has the repeated roots

κ = −i/(k1 + 1),−i/(k1 − 1). As each wavenumber k is odd, we can without loss of

generality set κ = −i/2q for |q| ∈ {1, 2, . . . , (K(n)− 1)/2}, where K(n) is the maximum

positive wavenumber as defined in (4.2.14). Then, for a particular eigenvalue κ =

−i/2q, the dominant wavenumbers are given by k1 = 2q± 1. Therefore we set α2q±1 =

α, for some constant α to be determined.

Proceeding to k = k2 6= 2q± 1, we see that the leading-order linear terms (4.3.5) do not
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sum to zero κ = −i/2q. In order for ak2 6= 0 then (4.3.5) cannot be the leading-order

contribution; there must be a leading-order balance between linear and quintic terms.

The largest possible quintic terms arising from the nested summations in (4.3.4) are

O (Γ (n− 2 + α)). These occur either when one of the index pairs (ji, pi) = (n− 2, 2q±

1), or when all four of the indices ji are zero (giving n− 2− j1 − j2 − j3 − j4 = n− 2)

and the indices pi satisfy k− p1− p2− p3− p4 = 2q± 1, for i = 1, 2, 3, 4. Satisfying first

the conditions on the ji and recalling that B0,1 = B0,−1 (see (4.3.2)), the largest terms are

thus

−5B4
0,1 (Bn−2,k2−4 + 4Bn−2,k2−2 + 6Bn−2,k2 + 4Bn−2,k2+2 + Bn−2,k2+4) . (4.3.6)

Hence, as k2 6= k1, a balance between linear and quintic terms is achieved when at

least one of αk2±2 or αk2±4 are equal to αk1 = α. This is the case when k2 + σ = 2q± 1,

where σ = ±2,±4, i.e. for k2 = 2q ± 3, 2q ± 5. We shall not calculate the ak2 6= 0

explicitly as we are concerned only with leading-order behaviour; the important detail

is the offsets α2q±3 = α2q±5 = α− 2. By continuing in this manner, one may show that

α2q±7 = α2q±9 = α− 4, etc.

Now we have a compete description of the offsets αk we know how the Bn,k scale ac-

cording to their Γ-functions. Hence we are able to determine α. Concentrating on the

dominant harmonics for each eigenvalue, we set k = k1 = 2q ± 1 and continue to

higher orders in 1/n in (4.3.4). We find that O (1/n) terms vanish, but at O
(
1/n2) we

have

0 =
(
−4α2 + 8α + 6

)
a2q+1 + 6a2q−1,

0 =
(
−4α2 + 8α + 6

)
a2q−1 + 6a2q+1.

(4.3.7)

Non-trivial solutions exist provided that the solvability condition

(
−4α2 + 8α + 6

)2
= 36 (4.3.8)

is met. Thus we must have α = 3, 2, 0 or −1. We shall only consider α = 3, as the other

values, being smaller, are subdominant; this gives a2q+1 = a2q−1 = λq, say.
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We have finally arrived at an expression for the leading-order behaviour of Un as X →

Xm and n→ ∞. For a particular |q| ∈ {1, 2, . . . , (K(n)− 1)/2}, this is

Un ∼
(−i)nΓ (n + 3) λq

(2q)n (X− Xm)
n+1/2

[
e(2q+1)ix̃ + e(2q−1)ix̃

]
, (4.3.9)

where the λq are as yet unknown (and in general, complex) constants. The full solution

near Xm, incorporating the leading order coefficient of each harmonic

k ∈ {−K(n), . . . , K(n)}, is thus given by summing (4.3.9) over all q. By symmetry,

the solution near to the conjugate singularity at −Xm is simply the sum over all q of

the complex conjugate of (4.3.9). Note that the dominant contributions come from the

singularities closest to the real line, namely those at X = X0 = iπ/µ and X = X−1 =

−iπ/µ; the dominant eigenvalue is given in both cases by |q| = 1.

4.4 Calculating λ±1

An inconvenient consequence of the linear nature of the large-n calculation is that the

constants λq remain undetermined. In particular, the λ±1 are unknown. As λ±1 cor-

respond to the minimum value of |q| in (4.3.9), and therefore determine the dominant

contribution to Un, they are crucial for a quantitative expression for the width of the

snaking region (see Section 4.7). Fortunately, we do in fact possess a means by which

the λq can be determined; the recurrence relation (4.3.4). In light of the large-n solution

(4.3.9), the ansatz (4.3.3) can be rearranged to give

λ±1 = lim
n→∞

(±2i)nBn,±1

Γ(n + 3)
,

λ(k∓1)/2 = lim
n→∞

((k∓ 1)i)nBn,k

Γ(n + 3)
, ±k ∈ {3, 5, . . . , K(n)}.

(4.4.1)

Consequently, if (4.3.4) can be iterated to a large enough value of n, the ansatz (4.3.3)

holds and the λq are given by (4.4.1).

In order to begin iterating (4.3.4) to large values of n, we first require B0,±1 and B1,±1.

All Bn,k with |k| 6= 1 are zero for n = 0, 1, and so these four constants provide the
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starting point from which all Bn,k for n ≥ 2 can be found. As A0,±1 = A f (X), we

know that B0,±1 = −i (3/10)1/4 (see (4.3.2)). Furthermore, expressions for the B1,±1

are easily found by continuing the multiple-scales calculation outlined in Section 4.1 to

O
(
ε6), producing a solvability condition which can be solved to give A1,±1. We omit

this calculation for the sake of brevity and merely present the result, consisting of two

complementary functions and a particular integral, namely,

A1,±1(X) = aA′f (X)± ibA f (X)± i
2

A f (X)
∫ X 2A f (s)A′′f (s)− A′f (s)

2

A f (s)2 ds, (4.4.2)

where a and b are arbitrary real constants. In view of the invariance of the SHE (4.0.1)

under translation, both constants may be set to zero with no loss of generality. Hence

B1,±1 = ∓5
8

(
3
10

)1/4

, (4.4.3)

and we possess the requisite information in order to iterate (4.3.4).

We note here that, while (4.3.4) gives Bn,k directly for |k| 6= 1, the situation is slightly

more complicated for k = ±1. Because the coefficients of Bn,±1 and Bn−1,±1 vanish, the

quintic nested summations come into play, resulting in a pair of coupled equations in

Bn−2,±1. These must be solved in order to obtain explicit expressions for the Bn−2,±1 in

terms of the Bm,k for 0 ≤ m ≤ n− 3.

In practice, solving the recurrence relation is computationally intensive for large values

of n, due to the presence of the nested summations and the increasing numbers of har-

monics at each order. However, by iterating the recurrence relation up to n = 30 and us-

ing polynomial interpolation in inverse powers of n on Bn,1 and Bn,3 for n = 20, . . . , 30,

two estimates of the large-n limit (4.4.1) for q = 1 have been calculated using floating

point arithmetic (λ1 being the most important unknown constant, corresponding as it

does to the dominant eigenvalues). Polynomial interpolation on the Bn,1 yields the es-

timate λ1 ≈ −0.10190i, while interpolation on the Bn,3 yields λ1 ≈ −0.10084i. The data

and polynomial approximation are shown in figure 4.1, and compared with a further

five data points beyond n = 30, with good visual agreement. Taking the average of
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these estimates gives

λ1 ≈ −0.101i. (4.4.4)

This value of λ1 will prove essential in allowing the accurate assessment of the present

work against numerical calculations.

λ−1 can be easily found by noting two convenient properties of (4.3.4). Firstly, (4.3.4)

is invariant under the transformation Bn,k → −B∗n,−k. As we also have B0,1 = −B∗0,−1

and B1,1 = −B∗1,−1, then Bn,k = −B∗n,−k for all n and k. We can infer from this that

λq = −λ∗−q in (4.3.9). Secondly, we can see from inspection of B0,±1, B1,±1 and (4.3.4)

that the Bn,k are imaginary for even n and real for odd n. Thus λq is imaginary, as we

have already seen by iteration of (4.3.4), and we have λq = λ−q for all q; in particular

λ1 = λ−1. These relationships are also useful when iterating (4.3.4), as they provide a

simple method of checking the validity of one’s results.

Note that the amplitude of the large-wavenumber harmonics rapidly becomes negli-

gible as (4.3.4) is iterated. This can be easily seen by considering (4.3.9) for large q.

The iteration process could then, in principle, be carried forward to much greater val-

ues of n than has been done here, simply by truncating the nested sums to ignore the

large-wavenumber harmonics. However, as can be seen from figure 4.1, convergence

is very slow, so the resultant marginal gains in accuracy are unlikely to be worth the

extra computational time required.

4.5 Large-n behaviour on the real line

We shall now derive a more general solution to (4.2.15) in the large-n limit, in particular

one which is valid on the real line. The factorial-over-power nature of the solution, as

discussed at the beginning of the last section, still holds. We extend the solution away
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Figure 4.1: Results of evaluating the Bn,k by iteration of (4.3.4). The data points represent

=[(2i)nBn,k/Γ(n + 3)] for k = 1 (circles) and k = 3 (diamonds). The lines plot

a second-order polynomial in inverse powers of n, given by interpolation using

these data for n = 20, . . . , 30. The solid line represents this for k = 1, and dashed

line for k = 3. The data for n = 30, . . . , 35 are also plotted, indicating the good

agreement between the predictions from interpolation and the direct calculation.

from the singularities at X = Xm by means of the ansatz

An,k(X) ∼ Γ (n + βk)

F(X)n+βk

(
fk(X) +

1
n

gk(X) +
1
n2 hk(X) + · · ·

)
, (4.5.1)

as n → ∞. Here F(X), βk, fk(X), gk(X) and hk(X) are independent of n and are to be

determined. Note the βk in the exponent of F(X); this provides exact cancellation with

the Γ-function when differentiating with respect to X in (4.2.15).

As in Section 4.3, F(X) is determined by the leading-order approximation of (4.2.15),

with the assumption that βk is maximal, i.e. by considering the dominant modes in

Un. The largest terms are O (Γ(n + βk)), and so consist of the left-hand side of (4.2.15)

and the terms from the right-hand side in which the first derivative of F(X) appears,
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yielding

0 =
[(

1− k2)2 − 4ik
(
1− k2) FX +

(
2− 6k2) F2

X − 4ikF3
X + F4

X

]
fk. (4.5.2)

This is precisely the eigenvalue equation (4.3.5) which determined κ in the Section 4.3,

with FX = 1/κ. Thus FX = 2iq, where |q| ∈ {1, 2, . . . , (K(n)− 1)/2}, with the dominant

modes given by k = 2q + 1, 2q− 1 and β2q±1 = β, β2q±5 = β2q±3 = β− 2, etc.

Now, in light of (4.2.15), An,k must have the same singularities as A0,±1 = A f , which

can be ensured by the choice of the constant of integration in F. Therefore we set

F(X) = 2iq (X− Xm) , (4.5.3)

for m ∈ N ∪ {0}, as we can regain the contribution due to singularities in the lower

half-plane by symmetry. An,k is then given by the sum of the contributions from each

singularity Xm, plus their complex conjugates.

Dividing (4.2.15) through by Γ(n + β) and continuing to O (1/n), we find that there is

exact cancellation, as was seen in the Section 4.3, and so we must proceed to O
(
1/n2)

to make further progress. Here the largest terms in the two sets of nested summations

contribute, along with the term with coefficient rM,1, resulting in the coupled ODEs

0 = 4
d2 f2q+1

dX2 + rM,1 f2q+1 + 6s2A2
f f2q+1 − 30A4

f f2q+1 + 3s2A2
f f2q−1 − 20A4

f f2q−1,(4.5.4)

0 = 4
d2 f2q−1

dX2 + rM,1 f2q−1 + 6s2A2
f f2q−1 − 30A4

f f2q−1 + 3s2A2
f f2q+1 − 20A4

f f2q+1.(4.5.5)

Because A f (X) satisfies (4.1.4), it is immediately obvious that one set of solutions are

f2q+1 = − f2q−1 = A f (X), (4.5.6)

f2q+1 = f2q−1 = A′f (X). (4.5.7)

The second set of solutions is readily found using the method of variation of parame-

ters, and is given by

f2q+1 = − f2q−1 = A f (X)
∫ X

Xm

1

A f (s)
2 ds =: Gm(X), (4.5.8)

f2q+1 = f2q−1 = A′f (X)
∫ X

Xm

1

A′f (s)
2 ds =: Hm(X), (4.5.9)
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where the lower limit of integration is chosen in order to be able to match between the

outer solution derived here and the inner solution (4.3.9) derived in the Section 4.3.

Now, as X → Xm, remembering that each singularity is in the upper half-plane, we

have

A f ∼ −i
(

3
10

)1/4 1
(X− Xm)1/2 , (4.5.10)

A′f ∼
i
2

(
3
10

)1/4 1
(X− Xm)3/2 , (4.5.11)

Gm ∼
i
2

(
10
3

)1/4

(X− Xm)
3/2, (4.5.12)

Hm ∼ −
i
2

(
10
3

)1/4

(X− Xm)
5/2. (4.5.13)

Matching the outer solution given above with the inner solution (4.3.9) requires equal

powers of (X − Xm), thus fixing β. Respectively, the solutions above give β = 0,−1, 2

or 3, corresponding to the values of α derived in Section 4.3. As the value of β which

results in the largest argument of the Γ-function in (4.5.1) dominates, we set β = 3 and

discount the other solutions. This gives the contribution to Un for n → ∞ from the

singularity Xm, m ≥ 0, for a particular |q| ∈ {1, 2, . . . , (K(n)− 1)/2}, as

Un ∼
(−i)nΓ (n + 3)

(2q)n(X− Xm)n+3 ΛqHm(X)
[
e(2q+1)ix̃ + e(2q−1)ix̃

]
,

(4.5.14)

where

Λq = 2i
(

3
10

)1/4

λq. (4.5.15)

As λq is imaginary, Λq is real. From our estimate for λ±1 given in (4.4.4), we have

Λ±1 ≈ −0.15.

By symmetry, the contribution from the conjugate singularity at X = −Xm is simply

the complex conjugate of (4.5.14). The full solution, consisting of the sum of the con-

tributions from each singularity, for each q, is therefore real for real X, as would be

expected. Now, because n is large, the dominant contribution to Un on the real line
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comes from those singularities closest to the real line, taking the minimum value of

q. Thus Un is asymptotic on the real line to (4.5.14) with m = 0 and |q| = 1, plus its

complex conjugate, and the dominant harmonics are e±ix̃ and e±3ix̃. Note that this is

in contrast to the quadratic-cubic SHE, in which the dominant modes are the constant

mode e0ix̃ and e±2ix̃ [22], and is due to the fact that only odd powers of u appear in the

original equation (4.0.1).

4.6 Optimal truncation and the remainder

Now that the large n terms in the expansion of U are known, we seek to truncate the

expansion optimally, that is, to truncate in such a manner as to ensure the remainder

is not algebraically small but exponentially small. To this end, we must consider each

contribution (4.5.14) to Un separately for each singularity Xm and each eigenvalue q.

Truncating after N terms, N is given, in light of (4.3.9) and (4.5.14), by minimising

∣∣∣∣
ε2nΓ(n + 3)

(2q)n(X− Xm)n+3

∣∣∣∣ (4.6.1)

with respect to n and evaluating at n = N − 1. Approximating the Γ-function using

Stirling’s formula, the minimum of (4.6.1) is at

d
dn

(
ε2n
√

2π(n + 3)n+5/2e−n−3

(2|q|)n |X− Xm|n+3

)
= 0. (4.6.2)

Collecting exponents gives

d
dn

exp
[

n ln
(

ε2(n + 3)
2|q(X− Xm)|

)
− n +

5
2

ln(n + 3)
]
= 0; (4.6.3)

setting n = N − 1, we therefore require

ln
(

ε2(N + 2)
2|q(X− Xm)|

)
= 0, (4.6.4)

which gives

N ∼ 2|q(X− Xm)|
ε2 + ν, (4.6.5)
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for a particular q and m, where ν ∈ [−2.5,−1.5) is added to ensure that N − 1 is the

integer closest to the minimum of (4.6.1). Note that N depends upon ε, X, Xm and

q. Recalling that U and r are given by the truncated expansions (4.1.2) and (4.1.8),

respectively, we are now in a position to derive the exponentially small remainder RN ,

which will in turn give us the exponentially small deviation from the Maxwell point

δr.

Substitution of (4.1.2) into (4.1.1) gives the equation for RN(x̃, X),

ε4rM,1RN−
(

1 +
∂2

∂x̃2 + 2ε2 ∂2

∂x̃∂X
+ ε4 ∂2

∂X2

)2

RN + ε4
(

3s2U2
0 − 5U4

0

)
RN + · · ·

∼ − ε2N
(

1 +
∂2

∂x̃2

)2

UN − ε2N+2

[(
1 +

∂2

∂x̃2

)2

UN+1

+ 4
∂2

∂x̃∂X

(
1 +

∂2

∂x̃2

)
UN

]
+ ε2N+4

[
4

∂4

∂x̃∂X3 UN−1 +
∂4

∂X4 UN−2

]

+ ε2N+6 ∂4

∂X4 UN−1 − ε4δrU0 + · · · . (4.6.6)

Here, only the leading-order forcing has been retained. The process of determining

which terms contribute at leading order, while somewhat laborious, is made much

easier by considering the factor of (X − Xm)−N−3 in the solution (4.5.14) for Un, which

gives ∂X = O (N) = O
(
1/ε2). Once the dominant contributions have been found, the

forcing can then be further simplified by use of (4.2.11), resulting in (4.6.6).

The complementary functions of (4.6.6) and particular integral due to the deviation

from the Maxwell point δr have already been derived in Section 4.2.1. However, we are

now able to elucidate the effect on RN of the previously unconsidered forcing. This will

turn out the be maximal near Stokes lines, and require a rescaling of the slow variable

X in their vicinity. This in turn will enable us to explicitly observe the switching on of

the unbounded complementary function of (4.6.6) via error function smoothing.
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4.6.1 The remainder near the Stokes lines

Because (4.6.6) is linear, we can consider the contribution to the forcing for each q and

each Xm separately. For a particular q and Xm, then, the right-hand side (RHS) of (4.6.6)

is

RHS ∼ ε2N(−i)NΓ(N + 3)
(2q)N(X− Xm)N+3 ΛqHm(X)

[
c2q+1(X; N, ε)e(2q+1)ix̃ + c2q−1(X; N, ε)e(2q−1)ix̃

]
,

(4.6.7)

where

ck(X; N, ε) ∼ −
(
1− k2)2

+

[
i

2q
(
1− k2)2

+ 4ik
(
1− k2)

]
ε2N

X− Xm

+
(
8qk− 4q2) ε4N2

(X− Xm)2 + 2qi
ε6N3

(X− Xm)3 , (4.6.8)

for k = 2q ± 1. Note that, because N = O
(
1/ε2), d(X − Xm)−N/dX = O (N) =

O
(
1/ε2), whereas dHm/dX = O (1). Therefore the ck are O (1); moreover, derivatives

of Hm(X) do not contribute at leading order.

It is convenient to write

2q(X− Xm) = ρeiθ , (4.6.9)

which gives

N ∼ ρ/ε2 + ν. (4.6.10)

Note that ρ and θ depend implicitly on Xm and q. Using Stirling’s approximation to

rewrite the Γ-function, the prefactor of (4.6.7) can be written as

ε2N(−i)NΓ(N + 3)
(2q)N(X− Xm)N+3 ∼

ε2N(−i)N
√

2π(N + 3)N+5/2e−(N+3)

(2q)N(X− Xm)N+3

∼
√

2πε−5(−i)N

(2q)−3√ρ

(
ε2(ρ/ε2 + ν + 3)

ρ

)ρ/ε2+ν+5/2

e−(ρ/ε2+ν+3)e−iNθ

∼ 8
√

2πq3

ε5√ρ
e(ρ/ε2+ν+5/2) ln(1+ε2(ν+3)/ρ)e−(ρ/ε2+ν+3)e−iN(π/2+θ)

∼ 8
√

2πq3

ε5√ρ
e−iN(π/2+θ)e−ρ/ε2

. (4.6.11)

Thus the right-hand side of (4.6.6) is exponentially small in ε.
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Now,

e−ρ/ε2
= e−2|q(X−Xm)|/ε2

= e−2|q(x−Xm/ε2)|, (4.6.12)

so we can see that the exponential smallness is a consequence of the singularities Xm,

and a non-oscillatory x-dependence has been recovered. Recalling that Xm is in the

upper half-plane, we have

e2qix̃ = e2qi(x+φ) = e2qi(X−Xm+Xm)/ε2
e2qiφ = eiρeiθ/ε2

e−2q|Xm|/ε2
e2qiφ. (4.6.13)

Therefore, considering the real part of the exponent in (4.6.7), we see that the forcing is

maximal when

− 1
ε2 (ρ + ρ sin θ + 2q|Xm|) = 0. (4.6.14)

For fixed ρ, this occurs at θ = −π/2, the Stokes line. Certain contributions to the re-

mainder are ‘switched on’ as Stokes lines are crossed, in a sense to be detailed presently.

Note there are two Stokes lines emanating from each Xm, one for q > 0 and one for

q < 0. As the present calculation is ultimately concerned with the behaviour on the

real line, only those Stokes lines which intersect it need be considered. Focusing as

usual on singularities in the upper half-plane, we see that the Stokes lines of impor-

tance are those for q > 0. The contributions from the lower singularities (in which case

the Stokes lines of importance are those with q < 0) can then be retrieved by taking the

complex conjugate.

In order to capture the dynamics in the neighbourhood of the pertinent Stokes lines,

we rescale θ as θ = −π/2 + η(ε)θ̂, where the exact scaling η(ε) is to be determined.

Including a factor of e2qix̃, rewritten in terms of X as in (4.6.13), we write the prefactor

of (4.6.7) as

ε2N(−i)NΓ(N + 3)
(2q)N(X− Xm)N+3 e2qix̃

∼ 8
√

2πq3

ε5√ρ
e−iηθ̂(ρ/ε2+ν+3)e−ρ/ε2

eρ(1+iηθ̂−η2 θ̂2/2)/ε2
e−2q|Xm|/ε2

e2qiφ

∼ 8
√

2πe3iπ/2q3

ε5√ρ
e−iηθ̂(ν+3)e−qρη2 θ̂2/2ε2

e−2q|Xm|/ε2
e2qiφ. (4.6.15)
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This suggests the scaling η(ε) = ε, yielding

ε2N(−i)NΓ(N + 3)
(2q)N(X− Xm)N+3 e2qix̃ ∼ 8

√
2πe3iπ/2q3

ε5√ρ
e−ρθ̂2/2e−2q|Xm|/ε2

e2qiφ, (4.6.16)

at leading order. Thus we see that the forcing is maximal at θ̂ = 0, i.e. on the Stokes

line, but rapidly decays as |θ̂| increases. Thus the maximal change in RN occurs in the

region θ̂ = O (1). This we shall henceforth refer to as the Stokes layer.

With this scaling of θ, the coefficient functions c2q±1 become

c2q±1 ∼ −16q2εiθ̂, (4.6.17)

Hm(X) is evaluated on the Stokes line to be

Hm(X) = Hm

(
Xm −

iρeεiθ̂

2q

)
= Hm

(
Xm −

iρ
2q

)
+

ερ

2q
θ̂H′m

(
Xm −

iρ
2q

)
+ O

(
ε2)

(4.6.18)

and ∂X is

∂

∂X
= −2qie−iθ

ρ

∂

∂θ
=

2qe−εiθ̂

ερ

∂

∂θ̂
. (4.6.19)

The aim of the present step in the calculation is to observe the switching on of previ-

ously subdominant terms. As this occurs as Stokes lines are crossed, variations in the

radial direction are of no concern. It is therefore sufficient to treat ρ as constant and

concentrate solely on variations in the azimuthal direction.

Thus, (4.6.6) becomes
(

1 +
∂2

∂x̃2 + ε
4qe−εiθ̂

ρ

∂2

∂x̃∂θ̂
+ ε2 4q2e−2εiθ̂

ρ2
∂2

∂θ̂2
− iε3 4q2e−2εiθ̂

ρ2
∂

∂θ̂

)2

RN − ε4 (rM,1 + 3s2U2
0

− 5U4
0

)
RN ∼

128
√

2πq5

ε4√ρ
θ̂e−ρθ̂2/2e−2q|Xm|/ε2

e2qiφΛqHm

(
Xm −

iρ
2q

)(
eix̃ + e−ix̃

)
.

(4.6.20)

Note the additional factor of e2qiφ, which appears due to the rescaling of e2qix̃ in terms

of X, as detailed in (4.6.15). In this way the phase shift has an explicit presence in the

calculation.
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Although variations in θ̂ occur on a faster lengthscale than the original slow-scale X,

they are still slower than the rapid oscillations in x̃, and so the problem remains one of

multiple scales. This suggests the multiple-scales ansatz,

RN ∼
√

2π

ε6 e−2q|Xm|/ε2
e2qiφΛq

(
RN,0 + εRN,1 + ε2RN,2 + · · ·

)
, (4.6.21)

where each of the RN,j are functions of x̃ and θ̂. Note that RN has been scaled to be a

factor of ε−2 larger than the resonant forcing in (4.6.6). This ensures that all resonant

terms in (4.6.6) sum to zero at each order, in accordance with the usual multiple-scales

method.

After cancelling the common factor of ε−6e−2q|Xm|/ε2
in (4.6.20), we find that the prob-

lem becomes simply one of multiple scales in algebraic orders. Taylor expanding the

exponential terms in the differential operator and equating terms at O (1) gives

(
1 +

∂2

∂x̃2

)2

RN,0 = 0, (4.6.22)

giving the leading-order solution

RN,0 = S0,1(θ̂)eix̃ + S0,−1(θ̂)e−ix̃. (4.6.23)

Note that RN,0 is not necessarily real on the real line; this fundamental property of

the dependent variable U is recovered by adding the contribution from the conjugate

singularity −Xm. At O (ε) we have

(
1 +

∂2

∂x̃2

)2

RN,1 = 0, (4.6.24)

with solution

RN,1 = S1,1(θ̂)eix̃ + S1,−1(θ̂)e−ix̃. (4.6.25)

Finally, at O
(
ε2) we obtain

(
1 +

∂2

∂x̃2

)2

RN,2 −
16q2

ρ2
∂4RN,0

∂x̃2∂θ̂2
=

128q5
√

ρ
θ̂e−ρθ̂2/2Hm

(
Xm −

iρ
2q

)(
eix̃ + e−ix̃

)
.

(4.6.26)
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Ensuring secular terms sum to zero provides the solvability condition

d2S0,±1

dθ̂2
= −8q3ρ3/2Hm

(
Xm −

iρ
2q

)
θ̂e−ρθ̂2/2. (4.6.27)

Hence we must have

S0,±1(θ̂) = (2q)3
√

π

2
Hm

(
Xm −

iρ
2q

) [
C±1 + erf

(
θ̂
√

ρ/2
)]

. (4.6.28)

Here the C±1 are constants of integration, the other pair of which have been set to zero

in order to ensure that the expansion remains uniform towards the edges of the Stokes

layer, and erf (z) is the error function,

erf (z) =
2√
π

∫ z

0
e−v2

dv. (4.6.29)

The contribution from the singularity Xm, m ≥ 0, for a particular q is therefore

RN ∼
(2q)3π

ε6 e−2q|Xm|/ε2
e2qiφΛqHm

(
Xm −

iρ
2q

) [(
C1 + erf

(
θ̂
√

ρ/2
))

eix̃

+
(

C−1 + erf
(

θ̂
√

ρ/2
))

e−ix̃
]

. (4.6.30)

By symmetry, the contribution from the singularity in the lower half-plane −Xm is

simply the complex conjugate of (4.6.30), given by (recalling that Λq is real)

RN ∼
(2q)3π

ε6 e−2q|Xm|/ε2
e−2qiφΛqH∗m

(
−Xm +

iρ∗

2q

) [(
C∗1 + erf

(
θ̂∗
√

ρ∗/2
))

e−ix̃

+
(

C∗−1 + erf
(

θ̂∗
√

ρ∗/2
))

eix̃
]

. (4.6.31)

where ρ∗eiπ/2−iεθ̂∗ = 2q(X + Xm) = 2q(X − X∗m). By matching (4.6.30) and (4.6.31)

with the solution outside the Stokes layer, we can now show that it is a combination

of Hm(X) and its complex conjugate H∗m(X) that is switched on by crossing the Stokes

line (from right to left).

4.6.2 Matching the inner and outer solutions

By considering the forcing terms in (4.6.20), we can now see that as θ̂ → ±∞, the right-

hand side rapidly tends to zero. In other words, the forcing due to the singularities
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is significant only in a region of width O (ε) centred on the imaginary axis; the Stokes

layer. Elsewhere along the real line, it can be taken to be zero, and the solution is given

to leading order by (4.2.9), rewritten here as

RN ∼
[

D1A′f + iD2A f + D3Hm(X) + D∗3 H∗m(X) + iD4Gm(X) + iD∗4 G∗m(X)

+ δrP(X)] eix̃ + c.c., (4.6.32)

where P(X) is given in (4.2.10). This must be matched to the inner expansion within

the Stokes layer (4.6.30) and (4.6.31); we have redefined the arbitrary constants Dj in

order to facilitate this. Comparing (4.6.32) with (4.6.30) and (4.6.31), we immediately

see that we must have C1 = C−1 = C, say, in order for the coefficient of H∗m to be the

complex conjugate of the coefficient of Hm both within and without the Stokes layer;

we assume this henceforth.

Focusing on the fundamental harmonic eix̃, the inner expansion at the edges of the

Stokes layer is, for a particular q and Xm,

RN →
(2q)3π

ε6 e−2q|Xm|/ε2
Λq

[
e2qiφHm

(
Xm −

iρ
2q

)
(C± 1)

+e−2qiφH∗m

(
−Xm +

iρ∗

2q

)
(C∗ ± 1)

]
eix̃ + c.c. (4.6.33)

as θ̂ → ±∞ and θ̂∗ → ±∞. Matching to the right of the Stokes layer requires that

RN → 0 as θ̂ → ∞ and θ̂∗ → ∞, giving C = −1. Matching to the left is made simplest by

first substituting X = Xm − iρeiεθ̂/2q in Hm(X) and X = −Xm + iρ∗e−iεθ̂∗/2q in H∗m(X)

in (4.6.32). Focusing upon the pertinent part of (4.6.32), i.e. that which is switched on,

and taking the limit θ̂ → 0, θ̂∗ → 0, this gives

RN ∼
[

D3Hm

(
Xm −

iρ
2q

)
+ D∗3 H∗m

(
−Xm +

iρ∗

2q

)]
eix̃ + c.c. (4.6.34)

At the left-hand edge of the Stokes layer, the inner solution is given by

RN ∼ −
2(2q)3π

ε6 e−2q|Xm|/ε2
Λq

[
e2qiφHm

(
Xm −

iρ
2q

)
+ e−2qiφH∗m

(
−Xm +

iρ∗

2q

)]
eix̃ + c.c.

(4.6.35)
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Matching the two solutions therefore gives

D3 =




−2(2q)3π

ε6 e−2q|Xm|/ε2
e2qiφΛq, X ≤ 0,

0 X > 0.
(4.6.36)

Continuity is recovered by the adding the inner solution (4.6.30) and (4.6.31) to the

outer solution (4.6.32), and subtracting matched parts. This results in the coefficient

of Hm(X) varying from zero to non-zero as the Stokes lines are crossed from right to

left, giving the switching on of exponentially small terms via error function smoothing

familiar to such beyond-all-orders analysis [7].

4.7 Existence of stationary fronts

We are now able to derive an existence condition for stationary fronts. We shall hence-

forth focus on the dominant contribution to the remainder, which is given by the sin-

gularities closest to the real line, X0 and X−1 = −X0, with |q| = 1, on the real line. Thus

the dominant contribution to the remainder RN to be switched on as the Stokes lines

are crossed is

−16π

ε6 e−2|X0|/ε2
Λ1

(
e2iφH0(X) + e−2iφH∗0 (X)

)
eix̃ + c.c., (4.7.1)

existing to the left of the Stokes layer. Although the remainder (4.6.32) is exponentially

small, Hm(X) (see (4.5.9)) is exponentially growing as X → ±∞. As the coefficient

of Hm is zero to the right of the Stokes layer, unbounded terms are only present as

X → −∞; note that the particular integral included in (4.6.32) is also exponentially

growing as X → −∞, but bounded as X → ∞. To ensure that the expansion remains

uniform, the coefficient of the unbounded contributions must be set to zero. Because

Hm(X) ∼
(

10
3

)1/4

µ−5/2e−µX, (4.7.2)

and the particular integral (4.2.10) is

P(X) ∼ −δr
8

(
3

10

)1/4

µ−3/2e−µX, (4.7.3)
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as X → −∞, we have the exponentially growing contribution to RN ,

−
[(

10
3

)1/4 32π

ε6µ5/2 e−2|X0|/ε2
Λ1 cos (2φ) +

δr
8µ3/2

(
3
10

)1/4
]

e−µXeix̃ + c.c., (4.7.4)

for large, negative X.

For the expansion to remain uniform, the exponentially small but exponentially grow-

ing term must vanish. Hence φ must satisfy

256πe−2|X0|/ε2
Λ1 cos (2φ) +

(
3
10

)1/2

ε6µδr = 0. (4.7.5)

This gives four values of φ in [0, 2π), two of which merely correspond to the reflection

u→ −u, provided that the condition

|δr| ≤ δrc :=
(

10
3

)1/2 256π

ε6µ
|Λ1|e−2|X0|/ε2

(4.7.6)

is met. This, then, is the exponentially small parameter range within which the phase of

the underlying spatial oscillations is fixed and stationary fronts exist. Moreover, (4.7.6)

provides an analytical formula for the width of the snaking region close to bifurcation.

We can rewrite this in terms of the unscaled parameters r and s to give

|r− rM| ≤ ∆rc :=
10240π

9s
|Λ1|e−8

√
30π/9s, (4.7.7)

where Λ1 ≈ 0.15 (see Section 4.4) and rM denotes the unscaled Maxwell point, given

by rewriting (4.1.10) in terms of s:

rM = − 27
160

s2 − 1377
81920000

s4 − 106677
10485760000000

s6 + O
(
s8) . (4.7.8)

Our formula should be compared to that derived by Susanto and Matthews using vari-

ational methods in [83], equation (16) in that paper, reproduced here in terms of the

variables presently in use. They have

|r− rM| ≤
14
√

30π

3s
e−8
√

30π/9s, (4.7.9)

which is of the same form as (4.7.7), albeit approximately six times smaller. Nonethe-

less, the similarity between the two formulae is encouraging. We note that, because the
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derivation of (4.7.9) is based only on leading order terms, the snaking width formula

given here is the more accurate of the two.

4.8 Comparison with numerical computations

We shall now compare our analytical results with numerical computations. The latter

have been achieved by solving the steady version of (4.0.1) in x ∈ [−D/2, D/2] with

periodic boundary conditions. This is a good approximation of the real line for large

D, provided the patterned region of the localised solution under consideration is suf-

ficiently far from the boundaries that they have negligible effect on the solution, i.e.

D � 2L/s2 (as s = O
(
ε2)).

The numerical results presented here were obtained using a spectral collocation method

to discretise the problem, and pseudo-arclength continuation to compute the bifurca-

tion diagram. We note that second-order finite difference methods were found to be

unable to determine the Maxwell point to sufficient accuracy for small s. Even with

spectral methods, numerical continuation within the (exponentially small) snaking re-

gion can be particularly challenging due to the high density of solutions therein [15].

Such numerical difficulties can be somewhat mitigated by seeking a solution in the

form of a cosine series rather than a full Fourier series, thus restricting our attention

to solutions with even symmetry. Not only does the continuation process require only

half as many gridpoints, but it is less prone to jumping from one branch to another,

as the majority of the solution branches within the snaking region do not possess even

symmetry. The second snaking branch, comprising odd localised patterns, can then be

found using a sine series. Of course, no such short cut is available when calculating the

rung solutions, as these are asymmetric, and one is forced to use a full Fourier series

for such solution branches.

Our formula for the snaking width (4.7.7) is compared to numerical results in figure 4.2,
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Figure 4.2: Left: log plot of the analytically (solid line) and numerically (data points) deter-

mined snaking widths. Right: percentage error in the analytical formula for the

snaking width (4.7.7). s = 0.45 is roughly the lowest value of s for which accurate

results can be obtained in MATLAB without contamination due to machine error.

for various values of s. The norm used is ||u||2 = ∑N
j=0 u2

j D/N, the discrete analogue of

the L2 norm, where u(x) has been discretised into a sequence uj = u(−D/2 + jD/N),

j ∈ {0, .., N}. Note that u0 = uN , as we have chosen to seek a solution in a D-periodic

domain. Typically, we chose D = 200π and N = 1800, giving eighteen grid points

per wavelength. There is good agreement between the two, although the analytical

formula for 2∆rc overestimates the width of the snaking region. Nevertheless, we see

in figure 4.2 that the error decreases linearly with s. Indeed, one of the strengths of the

exponential asymptotics approach in general is its ability to shed light on behaviour

taking place on scales too small to be numerically accessible. Furthermore, the percent-

age error in approximating the snaking width by 2∆rc is proportional to s = O
(
ε2), as

we would expect the first correction term to the remainder RN to be (see Section 4.6).

We remark that Chapman and Kozyreff did not use a recurrence relation in the man-

ner outlined in Section 4.4 in order to determine an estimate for their equivalent of

λ±1 (which in the case of the quadratic-cubic SHE is complex as opposed to purely

imaginary, thus giving two real constants to find) [22]. Instead, it was determined by

a numerical fit of their analytical formula for the snaking width to a numerical com-
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putation for a particular value of ε. Consequently, agreement between numerical and

analytical results actually worsens as ε decreases below their selected value (see figure

5 of [22]). Due to our constructive derivation of λ±1 (and hence Λ±1), we observe in-

creasing agreement between analytically and numerically derived snaking widths as ε

decreases, as one would expect from an asymptotic analysis (see figure 4.2). Thus the

present work provides a more satisfying application of their method.
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Matching distant fronts: localised

patterns and multi-pulses

Now that we have derived the full asymptotic expansion of a stationary front solution

to the Swift-Hohenberg equation (SHE) (3.0.1), including the exponentially small but

exponentially growing terms in the remainder (4.7.4), we can construct fully localised

spatial oscillations by superimposing two distant fronts back-to-back. This is done by

matching the far-field expansion of an up-front with the far-field expansion of a down-

front; the resultant matching conditions describe the snakes-and-ladders bifurcation

diagram. This process can be extended to describe ’multi-pulse’ solutions consisting

of two or more patches of spatial oscillations [4, 15, 53] by matching the exponentially

decaying tails of two localised patterns. In addition, a similar process allows investi-

gation of the effects of boundary conditions on the snaking bifurcation diagram [55].

Following the calculation in Section 4.6.1, we note that each front used in the construc-

tion of a solution has an associated set of Stokes lines. Therefore each front switches on

new exponentially growing terms as the Stokes lines are crossed; these are eliminated

by carefully matching successive fronts.
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5.1 Far-field expansions of fronts

To undergo the matching process, we need to know the behaviour of both a down-

front and an up-front in the far-fields X → ±∞. We shall focus first on a down-front,

as given by the asymptotic expansion U = U0 + · · ·+ RN derived in Chapter 4; an up-

front may be recovered simply by exploiting the spatial reversibility of the SHE (3.0.1)

and performing the reflection (x, X) → (−x,−X) in the down-front. In the far-fields,

the down-front is dominated by the sum of the leading-order front and the unbounded

terms appearing in the remainder (4.7.4). In the relevant limits, the leading-order front

A f (4.1.7) is

A f ∼





( 3
10

)1/4√
µ
(
1− 1

2 eµX) , X → −∞,
( 3

10

)1/4√
µe−µX/2, X → ∞;

(5.1.1)

the unbounded contribution (4.5.9) to the remainder which is switched as Stokes lines

are crossed (see (4.6.30)-(4.6.33)) is

Hm ∼





( 10
3

)1/4
µ−5/2e−µX, X → −∞,

−2
( 10

3

)1/4
µ−5/2eµX/2, X → ∞;

(5.1.2)

the particular integral (4.2.10) due to the deviation δr from the Maxwell point which

appears in the remainder equation (4.2.4) is

P ∼




− 1

8

( 3
10

)1/4
µ−3/2e−µX, X → −∞,

1
4

( 3
10

)1/4
µ−1/2Xe−µX/2, X → ∞.

(5.1.3)

Note that the particular integral P remains bounded as X → ∞. Thus it is exponen-

tially subdominant to the leading-order terms in the expansion in this limit and can be

neglected. However, P is exponentially growing in the opposite far-field X → −∞, and

so will need to be taken into account in the leading-order expansion in that limit.

Before we write down the full far-field expansion, we note that in order to construct lo-

calised patterns and multi-pulses we must match fronts which are separated by some

distance in X. Hence we require the far-field expansions of translated fronts. We scale

69



CHAPTER 5 Matching distant fronts: localised patterns and multi-pulses

the front separation to be O
(
1/ε2), motivated by the observation that the exponen-

tially growing term in the remainder causes the asymptotic expansion to become non-

uniform when X = O
(
1/ε2). Taking into account the error-function smoothing of the

coefficient of Hm, as detailed in (4.6.30) and (4.6.31), the full leading-order far-field ex-

pansion of a down-front translated to the right by a distance l/ε2, where l is an O (1)

constant, is

U ∼
{

E1

[
1− 1

2
eµ(X−l/ε2)

]
+

[
E2

ε6 e−2|X0|/ε2
(K cos(2φ + γ)− 2 cos(2φ))

− E3δr] e−µ(X−l/ε2)

}
ei(x+φ−l/ε4) + c.c. (5.1.4)

for X � l/ε2, and

U ∼
{

E1e−µ(X−l/ε2)/2 − 2E2

ε6 e−2|X0|/ε2
K cos(2φ + γ)eµ(X−l/ε2)/2

}
ei(x+φ−l/ε4) + c.c.

(5.1.5)

for X � l/ε2, where we define

E1 =

(
3
10

)1/4√
µ,

E2 =

(
10
3

)1/4 16πΛ1

µ5/2 ,

E3 =
1

8µ3/2

(
3
10

)1/4

.

(5.1.6)

Note the constant Keiγ; this arises from matching the inner solution (4.6.30) and (4.6.31)

within the Stokes layer to the outer solution (4.6.32), and setting C = −1 + Keiγ. In

Section 4.6.2, we set K to zero, as in that case we required Hm to have coefficient zero

to the left of the Stokes layer. In the present chapter, however, we need to match ex-

ponentially decaying tails of fronts in order to construct multi-pulses and investigate

boundary conditions. Therefore we shall require Hm to have non-zero coefficient to the

left of the relevant Stokes layer in order that the tails contain both exponentially grow-

ing and decaying terms, and so shall not fix Keiγ for the moment but instead evaluate

it as needed in the calculations to come.
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From (5.1.4) and (5.1.5) we can write down the far-field behaviour of an up-front by

performing the reflection (x − l/ε4, X − l/ε2) → (−x + l/ε4,−X + l/ε2); in order to

retain the focus on the fundamental harmonic eix, we then take the complex conjugate.

Thus we obtain

U ∼
{

E1

[
1− 1

2
e−µ(X−l/ε2)

]
+

[
E2

ε6 e−2|X0|/ε2 (
K̂ cos(2φ̂ + γ̂)− 2 cos(2φ̂)

)

− E3δr] eµ(X−l/ε2)

}
ei(x−φ̂−l/ε4) + c.c. (5.1.7)

for X � l/ε2, and

U ∼
{

E1eµ(X−l/ε2)/2 − 2E2

ε6 e−2|X0|/ε2
K̂ cos(2φ̂ + γ̂)e−µ(X−l/ε2)/2

}
ei(x−φ̂−l/ε4) + c.c.

(5.1.8)

for X � l/ε2. The phase-shift and constant of integration are denoted by hatted sym-

bols in the up-front in order to allow us to take into account all possible solutions when

matching fronts. As the focus is on the fundamental harmonic eix and we have per-

formed the reflection (x − l/ε2) → −x + l/ε2 in (5.1.4) and (5.1.5), the phase-shift

appears as −φ̂ rather than +φ̂. Note that the up-front and down-front have the same

origin, namely X = l/ε2.

As an aside, we note that, whereas Chapman and Kozyreff were forced to include a

super-slow scale ξ = ε4x in order to carry out this step [22], there is no need to do

so here. In the quadratic-cubic case considered in [22], the O
(
ε2) contribution to the

expansion contains a term of the form XeX as X → −∞. This decaying exponential has

a coefficient of O (1) when X = O
(
1/ε2), and so must be included in the matching

process. The super-slow scale ξ, which manifests as a slow phase adjustment φ =

Φξ + ψ for some constants Φ and ψ, is necessary in order to derive the O
(
ε2) term in

the expansion, as it forces an unbounded particular integral to vanish. On the other

hand, in the present case of the cubic-quintic SHE, the equivalent super-slow scale

turns out to be ξ = ε8x. As we match fronts when X − l/ε2 = O
(
1/ε2), i.e. when

the exponentially growing terms in the remainder (4.7.4) cancel out their exponentially
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small coefficients, the super-slow scale does not affect the matching process and is of

no consequence to the present calculation.

5.2 Constructing localised patterns

We can now match together a down-front and an up-front to form a localised pattern.

We first note that, as we require U → 0 as X → ±∞, Hm must have coefficient zero

outside the localised patch. Hence we must have K = 0 in order to eliminate growing

terms in the tails of of the fronts, as in Section 4.6.2. We shall choose the origin of the

down-front to be at X = L/ε2, and the up-front to be at X = −L/ε2, thus producing

a localised patch of width 2L/ε2, centred on X = 0. Thus we match the constant

amplitude, exponentially growing and exponentially decaying terms in the down-front

for X � L/ε2, given by (5.1.4) with l = L, with the equivalent terms in the up-front for

X � −L/ε2, given by (5.1.7) with l = −L.

Equating constant amplitude terms gives

eiφ−iL/ε4
= e−iφ̂+iL/ε4

; (5.2.1)

hence

φ̂ =

(
2L
ε4 − φ

)
mod 2π. (5.2.2)

Equating coefficients of e−µX gives

E1

2
e−2µL/ε2

=
2E2

ε6 e−2|X0|/ε2
cos (2φ) + E3δr, (5.2.3)

while equating coefficients of eµX requires

E1

2
e−2µL/ε2

=
2E2

ε6 e−2|X0|/ε2
cos(2φ̂) + E3δr. (5.2.4)

In consequence, either

φ̂ = φ mod π, (5.2.5)
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or

φ̂ = −φ mod π. (5.2.6)

Thus there are four possible relations between the two phases, modulo 2π, each of

which must be considered in order to draw the bifurcation diagram.

Case 1. φ̂ ≡ φ mod 2π

In this instance φ ≡ L/ε4 mod π, and the front separation 2L/ε2 is defined implicitly

by

δr = −
(

10
3

)1/2 256π

ε6µ
e−2|X0|/ε2

Λ1 cos
(

2L
ε4

)
+ 4µ2e−2µL/ε2

, (5.2.7)

where we now write out the constants Ej in full.

Case 2. φ̂ ≡ φ + π mod 2π

Now φ ≡ L/ε4 + π
2 mod π and L is given by

δr = −
(

10
3

)1/2 256π

ε6µ
e−2|X0|/ε2

Λ1 cos
(

2L
ε4 + π

)
+ 4µ2e−2µL/ε2

. (5.2.8)

Case 3. φ̂ ≡ −φ mod 2π

This gives 2L = 2pπε4 for p ∈N. The phase-shift is obtained by solving

δr = −
(

10
3

)1/2 256π

ε6µ
e−2|X0|/ε2

Λ1 cos (2φ) + 4µ2e−2µL/ε2
. (5.2.9)

Case 4. φ̂ ≡ −φ + π mod 2π

Here 2L = (2p + 1)πε4 for p ∈N, with the phase-shift again determined by (5.2.9).

The bifurcation equations are therefore a result of two exponentially small effects, the

pinning of the envelope to the underlying pattern at a particular value of δr and the in-

teraction between the up-front and the down-front. Cases 1 and 2, in which the phase-

shifts of the two fronts are equal modulo π, describe the two snaking solutions, each

with a different symmetry. Case 1 preserves the symmetry x → −x, whilst Case 2 pre-

serves the symmetry (u, x) → (−u,−x). The snaking structure itself is a consequence
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of the cosine terms in (5.2.7) and (5.2.8). An increase of the front separation, 2L/ε4, by

2π, causes the snake to go through a complete loop, thus adding two more spatial os-

cillations to the pattern as it does so. The terms which are exponentially small in L tend

to zero extremely rapidly as the front separation increases. When these are negligible,

the solution curves enter the snaking region, the width of which is therefore defined by

|δr| ≤ δrc =

(
10
3

)1/2 256π

ε6µ
|Λ1|e−2|X0|/ε2

. (5.2.10)

This is precisely the condition for the existence of stationary fronts, (4.7.6), derived

earlier. Hence the exponential terms in L show how the snaking curves skew to the

right for moderate values of L.

Cases 3 and 4 describe the ladders. The patterns here are asymmetric, with a front

separation independent of δr. Although the width of the localised region is fixed, the

phase of the pattern shifts inside its envelope as φ varies with δr along the solution

branch, thus providing the ladders linking the two snaking curves. Note that L must

be at least O (1), and therefore p must be at least O
(
1/ε4) in these cases. The ladders

exist in the same region of parameter space as the snakes, with the exponential term in

L (5.2.9) again rapidly tending to zero as L increases.

In each of the four cases, the phase φ is determined uniquely modulo π. While adding

an even multiple of π to the phase leaves the solution unchanged, adding an odd in-

teger multiple of π to the phase corresponds to the symmetry u → −u, a feature of

the cubic-quintic Swift-Hohenberg equation (4.0.1). Thus each snake and each ladder

in fact represent two patterns, related by the symmetry u→ −u.

These results complement well those of Beck et al. [4], in which the existence of fronts

(heteroclinic orbits in x) in a general, reversible fourth-order system, of which (4.0.1) is

a special case, was shown to give rise to snakes-and-ladders bifurcations of localised

states (homoclinic orbits in x) through the ‘gluing together’ of matched fronts. We also

remark that the values derived here for the phase-shifts in the snaking solutions (Cases
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Figure 5.1: The top left panel contains the analytical snakes-and-ladders bifurcation diagram

of the cubic-quintic SHE (3.0.1) for s = 0.6. The other three panels present com-

parisons between the analytical formula (5.2.7) for the even snaking branch (thick

line) and numerical calculations (thin line) in a domain of width D = 200π, with

s = 0.5 (top right), s = 0.55 (bottom left) and s = 0.6 (bottom right). The

unscaled Maxwell point rM is given by (4.7.8).

1 and 2) and the front separations in the ladder solutions (Cases 3 and 4) agree with

those found by Susanto and Matthews [83] using a variational approach.

The full analytical snakes-and-ladders bifurcation diagram can be seen in figure 5.1,

along with a comparison of the analytically derived even snaking curve with numeri-

cally derived examples for various values of s = ε2s2, with good agreement. Numer-

ical computations were carried out using spectral collocation methods and pseudo-

arclength continuation, in the same manner as in Section 4.8.
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5.3 Constructing multi-pulse solutions

We shall now extend the matching process of Section 5.2 to construct multi-pulse solu-

tions. These comprise two or more localised patches of spatial oscillations, or ‘pulses’,

embedded within the trivial state. In an infinite domain, such solutions do not snake;

instead, they form isolas within the snaking region [4, 15, 53], as shown in figure 5.2 for

solutions with even symmetry. In contrast, in a periodic domain certain multi-pulses

with even symmetry do snake. For example, a Γ-periodic solution containing m pulses

whose centres are a distance Γ/m apart is equivalent to a (Γ/m)-periodic solution con-

taining one pulse; there are also certain asymmetric solutions which snake in a finite

domain [15]. However, we shall only consider infinite domains and so will not ob-

serve snaking of multi-pulses. Each pulse inherits its form from the part of the snake

it is closest to; for example, in figure 5.2 we see that the individual pulses on the sta-

ble ‘snaking part’ of the isola are almost rotationally symmetric about their centres,

those on the ‘rung-like part’ are asymmetric, and those on the unstable ’snaking part’

are almost reflectionally symmetric. Note each two-pulse in that figure has reflection

symmetry; the picture is similar for rotationally symmetric and asymmetric solutions.

For the sake of simplicity, we shall focus on two-pulse solutions, which we construct

by superimposing two localised patterns of width O
(
1/ε2), separated by a distance

which is also O
(
1/ε2). The resultant matching conditions are similar to those derived

in Section 5.2; however, the exponentially decaying tail of the down-front in the left-

hand pulse must be matched with the exponentially decaying tail of the up-front in the

right-hand pulse.

We define the front translations so that the pulses are separated by a distance of 2Ls/ε2,

the left-hand pulse has width 2L1/ε2 and the right-hand pulse has width 2L2/ε2, for

some Ls, L1, L2 = O (1). Thus the left-hand pulse is centred at X = −(Ls + L1)/ε2,

while the right-hand pulse is centred at X = (Ls + L2)/ε2, and the gap between the
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Figure 5.2: Left: isolas of symmetric two-pulse solution to (3.0.1) with s = 1.5 on a periodic

domain of length 40π. Stable (unstable) solutions are indicated by a thick (thin)

line. Right: example two-pulses. Labels correspond to the positions indicated in

the left-hand panel.

fronts is centred at the origin. We set φ = φ1 and Keiγ = K1eiγ1 in the down-front of

the left-hand pulse and φ = φ2 and Keiγ = K2eiγ2 in the down-front of the right-hand

pulse, and assign subscripts to the hatted parameters associated with the up-fronts in

the obvious manner.

We first ensure U → 0 as X → ±∞ by setting K̂1 = K2 = 0, thus eliminating grow-

ing terms as X → ±∞ in the same manner as in Section 4.6.2. Secondly, we match

the two pulses together by equating exponentially growing and decaying terms in

(5.1.5) with (l, φ, Keiγ) = (−Ls, φ1, K1eiγ1) to the corresponding terms in (5.1.8) with

(l, φ̂, K̂eiγ̂) = (Ls, φ̂2, K̂2eiγ̂2). Thus we obtain

E1e−µLs/ε2
e−i(φ1+φ̂2+2Ls/ε4) = − 2E2

ε6 e−2|X0|/ε2
K1 cos(2φ1 + γ1), (5.3.1)

E1e−µLs/ε2
ei(φ1+φ̂2+2Ls/ε4) = − 2E2

ε6 e−2|X0|/ε2
K̂2 cos(2φ̂2 + γ̂2). (5.3.2)

As both right-hand sides are real, we must therefore have

φ̂2 =

(
−2Ls

ε4 − φ1 + pπ

)
mod 2π, (5.3.3)

for p = 0, 1.
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Now we match the two fronts of the left-hand pulse together, in a similar manner

as in Section 5.2. Equating terms of constant amplitude in (5.1.4) with (l, φ, Keiγ) =

(−Ls, φ1, K1eiγ1) and (5.1.7) with (l, φ̂, K̂eiγ̂) = (−Ls − 2L1, φ̂1, K̂1eiγ̂1) gives

φ̂1 =

(
2L1

ε4 − φ1

)
mod 2π. (5.3.4)

Then, matching exponential terms and employing (5.3.1) yields

−E1

2
e−2µL1/ε2

= −(−1)p E1

2
e−µLs/ε2 − 2E2

ε6 e−2|X0|/ε2
cos(2φ1)− E3δr, (5.3.5)

−E1

2
e−2µL1/ε2

= −2E2

ε6 e−2|X0|/ε2
cos(2φ̂1)− E3δr. (5.3.6)

Similarly, we construct the right-hand pulse by matching (5.1.4) with (l, φ, Keiγ) =

(Ls + 2L2, φ2, K2eiγ2) to (5.1.7) with (l, φ̂, K̂eiγ̂) = (Ls, φ̂2, K̂2eiγ̂2). Matching constant

amplitude terms gives

φ2 =

(
2L2

ε4 − φ̂2

)
mod 2π, (5.3.7)

while matching exponential terms and substituting (5.3.2) provides

−E1

2
e−2µL2/ε2

= −2E2

ε6 e−2|X0|/ε2
cos(2φ2)− E3δr, (5.3.8)

−E1

2
e−2µL2/ε2

= −(−1)p E1

2
e−µLs/ε2 − 2E2

ε6 e−2|X0|/ε2
cos(2φ̂2)− E3δr. (5.3.9)

Substitution of (5.3.3) into (5.3.7) yields

φ2 =

(
2Ls

ε4 +
2L2

ε4 + φ1 + pπ

)
mod 2π. (5.3.10)

Thus (5.3.4), (5.3.10) and (5.3.3) respectively define the phases φ̂1, φ2 and φ̂2 in terms of

the primary phase φ1, and we are left with the system of four equations (5.3.5), (5.3.6),

(5.3.8) and (5.3.9) in the four unknowns φ1, Ls, L1 and L2.

Now, subtracting (5.3.5) from (5.3.6) and substituting (5.3.4) gives

0 = (−1)p E1

2
e−µLs/ε2

+
2E2

ε6 e−2|X0|/ε2
[

cos(2φ1)− cos
(

2φ1 −
4L1

ε4

)]
, (5.3.11)

which can be solved for L1 to give

L1

ε4 =
φ1

2
± 1

4
arccos

[
(−1)p ε6E1

4E2
e2|X0|/ε2

e−µLs/ε2
+ cos(2φ1)

]
+

k1π

2
, (5.3.12)
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for some sufficiently large, positive integer k1. Similarly, subtracting (5.3.9) from (5.3.8)

and substituting (5.3.3) and (5.3.10) gives

0 = (−1)p E1

2
e−µLs/ε2

+
2E2

ε6 e−2|X0|/ε2
[

cos
(

2φ1 +
4Ls

ε4

)
− cos

(
2φ1 +

4Ls

ε4 +
4L2

ε4

)]
,

(5.3.13)

which can be solved for L2 to give

L2

ε4 = −φ1

2
− Ls

ε4 ±
1
4

arccos
[
(−1)p ε6E1

4E2
e2|X0|/ε2

e−µLs/ε2
+ cos

(
2φ1 +

4Ls

ε4

)]
+

k2π

2
,

(5.3.14)

for some sufficiently large, positive integer k2. Note that the first term inside the inverse

cosines in (5.3.12) and (5.3.14) is exponentially small provided (2|X0| − µLs) is O (1)

and negative, i.e. for sufficiently large pulse separation Ls.

(5.3.12) and (5.3.14) thus provide L1 and L2 in terms of Ls and φ1. As (5.3.12) and (5.3.14)

are both discontinuous functions of φ1, we can begin to see how the snakes-and-ladders

bifurcation diagram breaks up into isolas. Unfortunately, the complexity of (5.3.8) and

(5.3.9) prevents a complete analytical description of the bifurcation diagram. However,

the problem simplifies greatly if we assume that the two-pulse is symmetric, allowing

further progress.

5.3.1 Symmetric two-pulses

As the cubic-quintic SHE (3.0.1) is invariant under reflections (u, x) → (u,−x) and

rotations (u, x) → (−u,−x), symmetric two-pulses come in both even and odd forms.

Clearly, a symmetric solution requires that L1 = L2 = L, say, φ2 = φ̂1 + pπ and φ̂2 =

φ1 + pπ, where p = 0 corresponds to even solutions and p = 1 to odd solutions. Thus

(5.3.3) gives

φ1 = −Ls

ε4 mod π. (5.3.15)
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Note that (5.3.8)-(5.3.9) are now equivalent to (5.3.5)-(5.3.6). Therefore substitution into

(5.3.12) gives

L
ε4 = − Ls

2ε4 ±
1
4

arccos

[
(−1)p

(
3
10

)1/2 ε6µ3

64πΛ1
e2|X0|/ε2

e−µLs/ε2
+ cos

(
2Ls

ε4

)]
+

kπ

2

(5.3.16)

for some sufficiently large integer k, and (5.3.5) then provides the bifurcation equation

δr = −
(

10
3

)1/2 256π

ε6µ
e−2|X0|/ε2

Λ1 cos
(

2Ls

ε4

)
+ 4µ2

(
e−2µL/ε2 − (−1)pe−µLs/ε2

)
,

(5.3.17)

where we have written out the constants Ej in full.

We can therefore parameterise the bifurcation diagram by Ls. The pulse width is given

by (5.3.16), which is discontinuous for Ls/ε4 within a small band of values near mπ,

for some large positive integer m. Furthermore, because the first term inside the arc-

cosine is exponentially small for large enough Ls, the positive branch of L is approxi-

mately constant for Ls/ε4 between mπ and mπ + π
2 , and decreases approximately lin-

early with Ls for Ls/ε4 between mπ + π
2 and (m + 1)π, and vice versa for the negative

branch, where m is some large, positive integer. Thus each branch of (5.3.16) encodes

one ’snake-like’ and one ’rung-like’ segment of the isola. The two branches coincide

when the argument of the arccosine is equal to one, forming a figure-of-eight. The bi-

furcation parameter δr is then given by (5.3.17); as (5.3.16) is discontinuous in Ls, so

is (5.3.17). Varying the integer k in (5.3.16) provides the expected infinite multiplicity

of symmetric solutions. As the value of Ls barely changes the norm of the solution,

the bifurcation diagram occurs in stacks of nested isolas, with varying Ls produce the

’nest’ and varying L producing the ’stack’ (to use the terminology of [15]). Isolas of

even two-pulses are plotted using (5.3.16)-(5.3.17) in figure 5.3; results are similar for

odd two-pulses. Note how the isolas become skewed to the right of the snaking re-

gion as the pulse width decreases, in the same way as was observed for one-pulses,

due to the exponentially small term in L in (5.3.17). Numerical computations for large

domains are rather difficult, as the isolas become exponentially close together (as seen
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Figure 5.3: Isolas of two-pulses with even symmetry in the SHE (3.0.1) with s = 0.6, drawn

using the analytical formulae (5.3.16)-(5.3.17). Isolas are drawn alternating be-

tween solid and dotted lines for the purpose of clarity only; stability is not indi-

cated.

in figure 5.3), which makes the likelihood of skipping between branches very high. For

this reason, we do not present a quantitative comparison of our results with numeri-

cal computations. However, qualitative agreement with figure 5.2 and [15], combined

with the numerical verification of our results for one-pulses carried out in Section 5.2,

provides good reason to be confident in the present result.
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CHAPTER 6

One-dimensional homoclinic

snaking on a planar lattice

Homoclinic snaking is not only a phenomenon of continuous systems; remarkably sim-

ilar bifurcation structures also appear in discrete systems [85]. A pertinent physical

example which has received much recent attention is nonlinear optics [26, 99, 100], not

least due to the potential use of ‘cavity solitons’ as a basis for purely optical informa-

tion storage and processing [73]. The main difference between discrete and continuous

snaking is the form of the pinning mechanism. Rather than consisting of fronts pinned

to underlying spatial oscillations, the lattice itself provides the requisite structure to

which fronts may pin. Therefore spatial oscillations are unnecessary for pinning to

take place and the simplest discrete system to exhibit snaking behaviour is second-

order. This is in contrast to snaking in a continuum, in which a fourth-order system

such as the SHE is required. Furthermore, numerical computations are much simpler

in discrete problems than in continuous ones, as there is no need to discretise the prob-

lem. Thus discrete contexts provide a promising means of studying more complicated

snaking phenomena in greater detail than has heretofore been achieved, in particular

snaking in higher dimensions [26, 85]. In this chapter we perform an initial step in this

direction by considering snaking of one-dimensional fronts of arbitrary orientation on
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CHAPTER 6 One-dimensional homoclinic snaking on a planar lattice

a two-dimensional square lattice, using the method of exponential asymptotics. We

shall show that the width of the snaking region is a discontinuous function of the angle

of orientation of the solution with respect to the lattice; in particular, that the snaking

region vanishes when the tangent of the angle is irrational.

We remark that an exponential asymptotic analysis of discrete fronts has been carried

out in [50] using a different method than that employed here, following [97, 98]. How-

ever, discrete effects in that work were modelled by allowing the coefficient of a non-

linear term to vary periodically in space, rather than through a difference operator as is

the case here, and so differs from the present work. We expect our method to be equally

applicable to both methods of modelling discreteness. An incomplete analysis [27] of

snaking phenomena has also been performed in an non-autonomous system similar

to that in [50]; this fails to fully describe the snakes-and-ladders bifurcation because it

does not consider exponentially small effects.

A typical differential-difference equation on the plane is

∂u
∂t

= ∆u− F(u; r), (6.0.1)

where u ≡ u(x, y, t) for (x, y, t) ∈ Z2 × [0, ∞). Here F(u; r) is some nonlinear function

of u incorporating a bifurcation parameter r, which we assume to be bistable, and the

difference operator ∆u comprises the nearest-neighbour stencil

∆u(x, y, t) := u(x + 1, y, t) + u(x− 1, y, t) + u(x, y + 1, t) + u(x, y− 1, t)− 4u(x, y, t).

(6.0.2)

Although we have specified ∆u, the methods presented here should be applicable to

a reasonably general class of difference operators. Two different snaking scenarios for

(6.0.1) with u ≡ u(x) are shown in figures 6.1 and 6.3, with corresponding example

solutions in figures 6.2 and 6.4. As already mentioned, we can see that the snakes-and-

ladders structure is much the same as in the continuous case (see figure 1.1), although

the symmetries preserved by the two snakes are different. Both snaking curves rep-
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Figure 6.1: Pitchfork-saddle snaking bifurcation diagram produced by solving (6.0.1) with

u ≡ u(x) and F(u; r) = −ru − 3u3 + u5 on the domain x ∈ [0, d] with d =

50. Left: snaking bifurcation diagram showing both the constant solution and

snaking symmetric localised solutions. For clarity, we omit the asymmetric ‘rung’

solution curves in this panel. Right: a zoomed-in view of the snaking region, rungs

included. Thick (thin) lines indicate stable (unstable) solutions; we do not show

stability of the snaking curves in the left-hand panel. Labels in the right-hand

panel correspond to example solutions in figure 6.2.

resent solutions with reflectional symmetry in x, but one solution type is symmetric

about a particular lattice point, while the other is symmetric about the point midway

between two neighbouring lattice points. We refer to the former as site-centred and

the latter as bond-centred. As usual, the snakes are connected by rungs of asymmetric

localised solutions.

Figures 6.1-6.4 were calculated numerically on the domain x ∈ [0, d] with periodic

boundary conditions. The first example, presented in figures 6.1 and 6.2, is the result

of setting F = −ru− 3u3 + u5; here bistability is the product of a subcritical pitchfork

bifurcation followed by a saddle-node, analogous to the SHE introduced in Chapter 1
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Figure 6.2: Example solutions of (6.0.1), obtained numerically with u ≡ u(x) and F(u; r) =

−ru− 3u3 + u5 on the domain x ∈ [0, d] with d = 50, zoomed in to the range

x ∈ [15, 35]. Labels correspond to points indicated in figure 6.1. Panels (a)-(c)

show site-centred solutions, panel (d) a bond-centred solution and panel (e) an

asymmetric ’rung’ solution.

studied in Chapters 3-5. On the other hand, figures 6.3 and 6.4 show the bifurcation

diagram and example solutions for F = −r− 2u + u3. In this case bistability is due to

a pair of saddle-nodes which together form an S-shaped solution curve. The solution

measure used is ∑d
x=0 u(x); although not a norm in the strict sense, this choice is moti-

vated by the desire that the visual representation of each loop of the snake is distinct in

the latter example. We remark that the former example is invariant under the reflection

u → −u, and so figure 6.1 can be reflected in the r-axis, while the latter is invariant

under the rotation in phase-space (u, r)→ (−u,−r), and so there exists a second set of

snaking curves emerging near the upper saddle-node in figure 6.3. We will apply the
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Figure 6.3: Saddle-saddle snaking bifurcation diagram produced by solving (6.0.1) with u ≡

u(x) and F(u; r) = −r − 2u3 + u3 on the domain x ∈ [0, d] with d = 50.

Left: snaking bifurcation diagram showing both the constant solution and snaking

symmetric localised solutions. For clarity, we omit the asymmetric ‘rung’ solu-

tion curves in this panel. Right: a zoomed-in view of the snaking region, rungs

included. Thick (thin) lines indicate stable (unstable) solutions; we do not show

stability of the snaking curves in the left-hand panel. Labels in the right-hand

panel correspond to example solutions in figure 6.4.

analytical results derived in this chapter to both these examples in Chapter 7.

In order to study the pinning mechanism and resulting snaking behaviour asymptoti-

cally, we replace F(u; r) by ε2F(u; r) in (6.0.1), where 0 < ε� 1, yielding

∂u
∂t

= ∆u− ε2F(u; r). (6.0.3)

Rescaling as (X, Y, T) = (εx, εy, ε2t) ∈ R2 × [0, ∞) and dividing through by ε2, we

achieve

∂u
∂T

=
1
ε2 [u(X + ε, Y, T) + u(X− ε, Y, T) + u(X, Y + ε, T) + u(X, Y− ε, T)

−4u(X, Y, T)]− F(u; r), (6.0.4)

which is the second-order finite difference approximation of the continuous reaction-

86



CHAPTER 6 One-dimensional homoclinic snaking on a planar lattice

15 20 25 30 35
−2

0

2

u
(x

) (a)

15 20 25 30 35
−2

0

2
u
(x
) (b)

15 20 25 30 35
−2

0

2

u
(x
) (c)

15 20 25 30 35
−2

0

2

x

u
(x
) (d)

15 20 25 30 35
−2

0

2

x

u
(x
) (e)

Student Version of MATLAB

Figure 6.4: Example solutions of (6.0.1), obtained numerically with u ≡ u(x) and F(u; r) =

−ru − 2u + u3 on the domain x ∈ [0, d] with d = 50, zoomed in to the range

x ∈ [15, 35]. Labels correspond to points indicated in figure 6.3. Panels (a)-(c)

show site-centred solutions, panel (d) a bond-centred solution and panel (e) an

asymmetric ’rung’ solution.

diffusion equation

∂u
∂T

=

(
∂2

∂X2 +
∂2

∂Y2

)
u− F(u; r), (6.0.5)

with a mesh spacing of ε. (6.0.5) can be derived directly from (6.0.4) in the limit ε → 0

by a Taylor expansion in ε truncated at leading order; thus (6.0.5) is the continuous

analogue of (6.0.3) (and (6.0.1)). Note, however, that (6.0.5) is invariant under rotations,

while (6.0.3) is not.

The formulation (6.0.3) corresponds to scaling the system close to bifurcation, a view-

point common to nonlinear dynamical approaches in continuous systems, as in Chap-

ters 3-5 (see also [13, 22, 39] for snaking examples, and [33] for a comprehensive review
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of others). This is equivalent to the limit of small mesh spacing described by (6.0.4),

but we shall continue to use the language of nonlinear dynamics in order to facilitate

comparison of the present chapter with previous chapters on continuous snaking, as

well as with other work. We note that any specific nonlinearity may require rescaling

before it is in the form (6.0.3), as we shall see in Chapter 7 where we shall apply the

results derived here to specific examples.

6.1 Rotation into the plane

Figures 6.1 and 6.3 comprise solutions to (6.0.1) which are functions of x only. Mat-

ters become somewhat more complicated when one-dimensional solutions are rotated

into the plane. In the SHE (3.0.1) and similar continuous systems, and in the contin-

uous analogue (6.0.5) of (6.0.1), a solution can be rotated at will without affecting it.

In contrast, a one-dimensional solution to a discrete problem such as (6.0.1) cannot be

freely rotated due to the presence of the lattice; a solution depends quantitatively on

its orientation. In particular, fronts cannot pin to the lattice if the tangent of the angle

of orientation is irrational, for reasons we shall elucidate presently, in which case the

width of the snaking region collapses to zero. This phenomenon has been the subject

of much study from a dynamical systems point of view [44, 48, 65]. The present cal-

culation complements the more general results derived in such work, allowing us to

observe explicitly the pinning mechanism and the vanishing of the snaking region at

irrational orientations.

We shall consider a one-dimensional solution to (6.0.3) by defining

z = x cos ψ + y sin ψ, ψ ∈ [0, 2π). (6.1.1)

and writing u ≡ u(z, t). Here ψ is the angle of orientation of the solution in the plane,

measured anticlockwise from the x-axis. The difference operator (6.0.2) is therefore
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rendered

∆u(z, t) = u(z + cos ψ, t) + u(z− cos ψ, t) + u(z + sin ψ, t) + u(z− sin ψ, t)− 4u(z, t).

(6.1.2)

Thus ψ retains an explicit presence in the rotated, one-dimensional version of (6.0.3),

in contrast to its continuous analogue (6.0.5) which is invariant under rotations. It is of

course the lattice which prevents such free rotation of the axes.

The importance of the rationality of ψ can be inferred by considering the spatial domain

of (6.1.2), which is the discrete, countable set

Ψ :=
{

x cos ψ + y sin ψ | (x, y) ∈ Z2} . (6.1.3)

We also define the extended set of rational numbers

Q∞ := Q∪ {±∞}, (6.1.4)

where we assign tan(±π
2 ) = ±∞. If tan ψ ∈ Q∞, then we can set

tan ψ =
m2

m1
, (m1, m2) ∈ Z2\{(0, 0)}, gcd(|m1|, |m2|) = 1, (6.1.5)

without loss of generality, in which case Ψ is rendered

Ψ :=





m1x + m2y√
m2

1 + m2
2

∣∣∣∣∣∣
(x, y) ∈ Z2



 . (6.1.6)

Since m1x + m2y is an integer, Ψ has a well-defined lattice spacing of (m2
1 + m2

2)
−1/2.

Note that a point on the ’effective’, one-dimensional lattice Ψ is only a point on the

’actual’, two-dimensional lattice (x, y) ∈ Z2 if m1x + m2y = k
(
m2

1 + m2
2
)

for some

k ∈ Z. However, the value of u at the actual lattice point (x, y) is equal to that of u at

the (m1x + m2y)th effective lattice point in Ψ, as indicated in figure 6.5.

In contrast, if tan ψ is irrational and finite, then Ψ is a dense (and countably infinite) set.

As a consequence, any point on the real line is arbitrarily close to a point in Ψ. Thus

there is no well-defined lattice spacing for irrational tan ψ, without which a front cannot

pin to the lattice. We therefore expect snaking to occur only when tan ψ is rational or

infinite, i.e. when tan ψ ∈ Q∞.
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Figure 6.5: The effective (one-dimensional) lattice (m1x+m2y)(m2
1 +m2

2)
−1/2 with rational

tan ψ = m2/m1, superimposed onto the actual (two-dimensional) lattice (x, y) ∈

Z2. Actual lattice points are represented by circles; effective ones by squares. The

independent variable z varies in the direction of the solid line; z is constant in the

direction of the dotted lines, which also indicate the correspondence of effective to

actual lattice points.

6.2 Exponential asymptotics

We shall now discuss the motivation behind applying exponential asymptotics to the

discrete problem (6.0.3). With u ≡ u(z, t), (6.0.3) becomes

∂u(z, t)
∂t

= ∆u(z, t)− ε2F(u(z, t); r), (6.2.1)

where z is defined as in (6.1.1) and ∆u(z, t) is given in (6.1.2). Note (6.2.1) has continu-

ous analogue

∂u
∂T

=
∂2u
∂Z2 − F(u; r), (6.2.2)

where

Z = ε (z− z0) . (6.2.3)
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We include the (constant) origin z0 in order to enable the derivation of the pinning

mechanism later on; although the continuous equation (6.2.2) is invariant under trans-

lations in space, the discrete equation (6.2.1) is not, due to the presence of the lattice.

Fixing z0 therefore corresponds to the pinning of a front to the lattice. This is analogous

to fixing the phase of the spatial oscillations in the SHE in Chapter 4, and is done in a

similar manner. We will expound upon the significance of z0 and the means by which

it can be fixed presently.

We define uc to be a constant solution of (6.2.1), so that F(uc; r) = 0. We can investi-

gate the stability of uc by setting u = uc + ûeσt+ikz in (6.2.1), where k ∈ [0, 2π), and

linearising with |û| � 1. Thus we obtain the growth rate equation

σ ∼ −2 [2− cos(k cos ψ)− cos(k sin ψ)]− ε2Fu (uc; r) , (6.2.4)

where the subscript u denotes the first derivative of F with respect to u. Hence uc is

linearly stable provided Fu (uc; r) > 0, but becomes linearly unstable to perturbations

with small wavenumber k as Fu (uc; r) becomes negative. We can therefore describe the

dynamics of (6.2.1) close to bifurcation using the double limit ε → 0 and k → 0, under

which (6.2.4) becomes

σ ∼ −k2 − ε2Fu (uc; r) . (6.2.5)

This suggests that (6.2.1) evolves with the slow scales (Z, T) = (ε(z− z0), ε2t) as ε→ 0,

precisely the scales on which the continuous analogue (6.2.2) varies. Note again the ori-

gin z0, as yet undetermined. The instability of uc to modes with small wavenumber is in

contrast to the equivalent situation in the SHE (3.0.1), in which the zero solution loses

stability to modes with wavenumber ±1 [13]; such an instability is pattern-forming

and produces a spatial structure to which fronts may pin (see Chapter 3). No such

pattern-forming mechanism is present in the second-order equation (6.2.2). As there is

no spatial structure in the continuous analogue, there is nothing for a front to pin to;

therefore the leading-order continuum approximation to (6.2.1) does not snake. How-

ever, snaking persists in numerical computations of (6.2.1) even very close to bifurca-

91



CHAPTER 6 One-dimensional homoclinic snaking on a planar lattice

tion, indicating that the continuum approximation (6.2.2) does not tell the whole story.

This discrepancy can be resolved by incorporating higher-order effects in the asymp-

totic solution to (6.2.1), in particular those which are exponentially small. To do this we

shall employ the method of exponential asymptotics [1, 7, 72], in a similar manner as

in Chapter 4.

To recap briefly, when the leading-order solution to a singular perturbation problem

contains singularities, the resultant asymptotic expansion is divergent. If it is truncated

optimally by truncating after the least term, the remainder can be shown to be expo-

nentially small. The equation governing the remainder is inhomogeneous, with forcing

arising as a consequence of truncation. This forcing is maximal near Stokes lines—

certain lines in the complex plane emanating from singularities of the leading-order

solution—and a careful rescaling in the vicinity of these lines shows that the coefficient

of an exponentially growing complementary function of the remainder equation varies

smoothly from zero to non-zero as they are crossed [7]. Such unbounded contributions

must be eliminated if the expansion is to remain non-uniform, invariably resulting in a

solvability condition on the leading-order solution [1, 22, 39, 51].

In the current context, we shall find that eliminating unbounded terms in the remain-

der fixes the location of the origin z0 of a stationary front with respect to the lattice.

This is precisely the pinning mechanism by which the snaking region is generated.

Furthermore, in a similar manner as in Chapter 4, the inclusion of an exponentially

small deviation from the Maxwell point leads to a relation between the origin of the

front and the distance from the Maxwell point, which can only be satisfied within a

certain exponentially small region—the snaking region. Once the full expansion for a

front is known, two back-to-back fronts may be matched together. This results in a set

of formulae which fully describe the snakes-and-ladders bifurcation of the structure

snaking region, the ultimate aim of this study. Previous work by King and Chapman

[51] derived the condition on the origin of the front in a purely one-dimensional sys-
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tem; however, they did not study snaking explicitly, nor did they consider the rotation

of solutions into the plane. Thus the current calculation represents a significant exten-

sion of that work.

The present calculation is in some respects simpler than analogous work in the SHE

(see Chapters 4 and 5 and [22, 39]). For instance, the appropriate method of studying

continuous pattern formation near onset is that of multiple scales, rather than the rel-

atively simpler continuum approximation employed in discrete problems. Moreover,

the nonlinearities present in the SHE lead to an ever-increasing number of harmon-

ics ekix at each order of ε, with the obvious consequence of an ever-increasing number

of equations determining their coefficients (see Section 4.2.2). That said, the Taylor

expansion of slow differences results in what is in effect an infinite-order differential

equation, and so the current calculation is not without its own complexities.

6.3 Setting up the beyond-all-orders calculation

We shall now prepare the way for the application of the exponential asymptotic method

to (6.2.1) as ε → 0. With u ≡ u(Z, T), we have u(z ± cos ψ, t) → u(Z ± ε cos ψ, T)

and u(z ± sin ψ, t) → u(Z ± ε sin ψ, T). The small-ε limit can therefore be exploited

to expand the difference operator ∆u (6.1.2) in powers of ε using Taylor’s theorem,

rendering (6.2.1) as

ε2 ∂u
∂T

= 2
∞

∑
p=1

ε2p cos2p ψ + sin2p ψ

(2p)!
∂2pu
∂Z2p − ε2F(u; r). (6.3.1)

Note that only even powers of ε are present. The leading order approximation to (6.2.1)

is therefore simply the continuous analogue (6.2.2).

Seeking a stationary solution to (6.2.1) in the form of a (truncated) asymptotic expan-

sion, we now write u(Z, T) ≡ u(Z) and expand as

u(Z) ∼
N−1

∑
n=0

ε2nun(Z) + RN(z, Z). (6.3.2)
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In an abuse of notation, we have retained z-dependence in the remainder RN , for rea-

sons to be expounded upon presently. The expansion (6.3.2) has been truncated after N

terms; if we choose the point of truncation optimally by truncating at the point at which

it starts to diverge, the remainder will be exponentially small in ε, thus allowing us to

investigate exponentially small effects. In particular, the evaluation of the remainder

will allow the rigorous matching of back-to-back fronts, providing a formula for the

(exponentially small) snaking region in the limit ε→ 0.

Now, the leading order (steady) contribution to (6.3.1) is

0 =
d2u0

dZ2 − F(u0; r), (6.3.3)

which is of course simply the steady version of (6.2.2). We shall assume that u0(Z)

takes the form of a stationary front, and hence impose the boundary conditions

u0 → u± as Z → ±∞, (6.3.4)

where u± are stable, constant solutions of (6.0.3) and therefore satisfy

F(u±; r) = 0, Fu(u±; r) > 0. (6.3.5)

We shall also assume, without loss of generality, that u− < u+, as the front with oppo-

site orientation in the plane is simply given by the rotation ψ→ ψ + π.

In order to investigate the phenomenon of homoclinic snaking, we shall restrict our

attention to the class of functions F(u; r) where front solutions to (6.3.3), connecting the

two constant solutions u±, exist only at a particular value of the bifurcation parameter,

r = rM say. This is the Maxwell point, the point in parameter space at which travelling

waves connecting u− to u+ have zero velocity, as discussed the introductory chapter

and in Section 3.2. Because (6.3.3) can be integrated once, the constant solutions u±

must also satisfy its first integral; thus we impose

∫ u+

u−
F(v; r)dv = 0. (6.3.6)
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rM can therefore be defined as the value of r satisfying F(u±; r) = 0 and (6.3.6). Note

that these conditions form a system of three algebraic equations in the three unknowns

u± and rM, providing a means of determining the Maxwell point. From this we might

(erroneously) infer that stationary fronts exist only at the Maxwell point, in direct con-

tradiction of numerical results showing homoclinic snaking within a well-defined re-

gion of parameter space centred on the Maxwell point (see figures 6.1 and 6.3). A stan-

dard continuum approximation cannot reconstruct such behaviour, as snaking does

not occur within an algebraically small distance from rM but an exponentially small dis-

tance; such scales are indistinguishable by techniques based solely on algebraic powers

of ε.

We remark that for some choices of F the integral condition (6.3.6) is satisfied without

the need to impose a specific value of r. For example, if we choose F = r sin u, u+ = 2π

and u− = 0 then (6.3.6) is true for all r > 0. For such an F snaking does not occur, as

there is no Maxwell point and front solutions to the leading-order approximation may

be found across an interval of r-values rather than at a specific point. However, fronts

still pin to the lattice in such a case, and so much of the following calculation remains

relevant.

In order to incorporate exponentially small deviations from the Maxwell point into

subsequent calculations, we write r = rM + δr and expand F(u; r) around rM as

F(u; rM + δr) ∼ FM(u) + δrFr,M(u), (6.3.7)

where we define

FM(u) := F(u; rM), Fr,M(u) :=
∂F
∂r

∣∣∣∣
r=rM

. (6.3.8)

We assume that Fr,M 6= 0 for simplicity, but note that the present work may in princi-

ple be extended to choices of F whose first non-zero derivative with respect to r at the

Maxwell point is of higher order. δr is thus the bifurcation parameter we shall use to de-

scribe the snaking bifurcations; it will turn out to be exponentially small. In principle,
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one should also include further algebraic corrections to the Maxwell point by writing

r = rM + ε2r2 + · · ·+ ε2N−2r2N−2 + δr; each of the rj can be fixed by successive solvabil-

ity conditions at each order in ε2 (see (4.1.8) and the subsequent discussion in Chapter

4). However, only the leading order term rM and the exponentially small remainder δr

are important to the present calculation, so we shall not discuss such algebraic terms

further.

Although exponentially small in ε, the remainder RN(Z) will be shown to be expo-

nentially growing in Z. Eliminating unbounded contributions results in an existence

condition for stationary front solutions to (6.2.1), characterised by a fixing of the ori-

gin of the front in terms of the the bifurcation parameter δr. The existence criterion

which determines the origin z0 will therefore describe the pinning of the front solution

to the underlying lattice, the mechanism responsible for snaking bifurcations. Fur-

thermore, matching two fronts and eliminating the unbounded contributions to the re-

mainder will produce a set of matching conditions relating δr, the origin of each front

and the separation distance between the two. It is precisely these matching conditions

which describe the snakes-and-ladders bifurcations analytically, the ultimate aim of the

present calculation.

6.4 The remainder equation

Although an expression for the large-n terms in (6.3.2) is necessary in order to evaluate

the remainder RN explicitly, we are able at this point to derive the complementary

functions of its governing equation. It is these which will be switched on as Stokes lines

are crossed. Furthermore, we are able to determine the forcing due to the deviation δr

from the Maxwell point and see how exponentially small terms can lead to a solvability

condition on the leading-order front.

The leading-order contribution to RN is simply the linearisation of the steady version
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of (6.2.1) around u0, with F(u; r) linearised about the Maxwell point as in (6.3.7), which

is

[RN(z + cos ψ, Z + ε cos ψ) + RN(z− cos ψ, Z− ε cos ψ) + RN(z + sin ψ, Z + ε sin ψ)

+RN(z− sin ψ, Z− ε sin ψ)− 4RN(z, Z)]− ε2F′M(u0(Z))RN(z, Z)

∼ ε2δrFr,M(u0(Z)) + forcing due to truncation,

(6.4.1)

where the exact scalings of RN and δr, while exponentially small, are yet to be deter-

mined. As (6.4.1) is linear, and autonomous with regard to the fast scale z, we can look

for a solution to the homogeneous equation of the form

RN(z, Z) = eiκzSN(Z) + c.c., (6.4.2)

for some eigenvalue κ ∈ C, and Taylor expand the slow-scale differences in powers of

ε. This results in

eiκz
{

2 [cos(κ cos ψ) + cos(κ sin ψ)− 2] SN + 2iε [cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ)] S′N

+ ε2 [cos2 ψ cos(κ cos ψ) + sin2 ψ cos(κ sin ψ)
]

S′′N − ε2F′M(u0(Z))SN

}
+ O

(
ε3RN

)
= 0.

(6.4.3)

Expanding SN as

SN(Z) = SN,0(Z) + εSN,1(Z) + ε2SN,2(Z) + · · · , (6.4.4)

then, if SN,0 is to be non-zero, we obtain at O (1) the condition

cos(κ cos ψ) + cos(κ sin ψ)− 2 = 0. (6.4.5)

Real solutions to (6.4.5) are given by κ cos ψ = 2M1π and κ sin ψ = 2M2π, for any

(M1, M2) ∈ Z2; these exist only when tan ψ ∈ Q∞. Hence there are no real, non-zero

solutions to (6.4.5) for irrational tan ψ. Note that (6.4.5) also admits complex solutions

in general. If tan ψ ∈ Q∞ and κ ∈ R, we may therefore set

cos ψ =
m1√

m2
1 + m2

2

, sin ψ =
m2√

m2
1 + m2

2

,

(m1, m2) ∈ Z2\{(0, 0)}, gcd(|m1|, |m2|) = 1,

(6.4.6)
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without loss of generality. This then gives

κ = 2Mπ
√

m2
1 + m2

2, M ∈ Z. (6.4.7)

Of particular note are the axes and principal diagonals ψ = kπ
4 , k ∈ {0, 1, . . . , 7}, which

correspond to either cos ψ having unit modulus and sin ψ vanishing, or vice versa, or

both cos ψ and sin ψ having modulus 1/
√

2. In each of these eight instances, (6.4.7)

describes all solutions to (6.4.5); there are no complex solutions.

If ψ and κ satisfy (6.4.6) and (6.4.7) respectively, we find that O (ε) terms also vanish in

(6.4.3). Proceeding to O
(
ε2), we then obtain

S′′N,0 − F′M(u0(Z))SN,0 = 0. (6.4.8)

As u0 satisfies (6.3.3), the complementary functions of (6.4.8) are

g(Z) := u′0 (Z) , G(Z; ζ) := u′0 (Z)
∫ Z

ζ

1
u′0(t)2 dt, (6.4.9)

where g(Z) can be found by noting that (6.4.8) with SN,0 = u′0 is simply the first deriva-

tive of (6.3.3), after which G(Z; ζ) can readily be found using the method of reduction

of order. The parameter ζ is a (complex) singularity of u0(Z), included to simplify

subsequent calculations. Thus each real κ provides a contribution to RN of the form

eiκz (aκg + AκG), for some constants aκ and Aκ.

We now turn our attention to complex (=(κ) 6= 0) solutions of (6.4.5), noting that there

are no non-zero, purely imaginary solutions to (6.4.5). Requiring that O (ε) terms in

(6.4.3) vanish, we must have either

[cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ)] = 0 (6.4.10)

or

S′N,0 = 0. (6.4.11)

It can be shown that if κ is complex and satisfies (6.4.5) then it does not satisfy (6.4.10);

we defer this calculation to Appendix A. Thus, if κ is complex, we have SN,0 = Bκ, for

some constant Bκ.
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Finally, we may seek the particular integral of (6.4.1) due to the term involving δr.

Setting RN(z, Z) = δrP(Z), we obtain at leading order

P′′ − F′M(u0(Z))P = Fr,M(u0(Z)), (6.4.12)

which can be solved using the method of variation of parameters to give

P(Z) = u′0 (Z)
∫ Z 1

u′0(t)2

[∫ u0(t)

u−
Fr,M(v)dv

]
dt. (6.4.13)

Combining the contributions for real and complex κ and the particular integral, the

leading-order solution to (6.4.1) is thus

RN(z, Z) ∼ δrP(Z) + ∑
κ∈R

eiκz [aκg(Z) + AκG(Z; ζ)] + ∑
κ/∈R

eiκzBκ, (6.4.14)

for arbitrary constants aκ, Aκ and Bκ. Crucially, the form of the solution is dependent

upon the rationality of tan ψ. If tan ψ ∈ Q∞, we can define ψ as in (6.4.6), in which case

real κ are given by (6.4.7). Recall that if ψ = kπ
4 with k ∈ {0, 1, . . . , 7} then all solutions

are purely real and the second summation does not contribute; however, this is not the

case for tan ψ ∈ Q∞ in general. On the other hand, if tan ψ /∈ Q∞, then the only real

solution to (6.4.5) is κ = 0, and so the first summation consists of only this one value of

κ.

We also note that if tan ψ is rational or infinite then κz = 2Mπ(m1x + m2y); hence

eiκz = 1 on lattice points. However, writing RN in the form (6.4.14) will prove to be

useful later on, when we come to evaluate the effects of the as yet unknown forcing in

(6.4.1), and so we shall continue to write eiκz even when κ ∈ R.

6.4.1 The form of the solvability condition

We are now able to infer the source of the beyond-all-orders solvability condition which

determines the origin of the leading-order front. Linearising (6.3.3) around the constant

solutions u0(Z) ≡ u±, we can find expressions for u0 in the far-fields, namely

u0 ∼ u± ∓ D±e∓α±Z as Z → ±∞, (6.4.15)
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where

α± := +
√

F′M(u±) > 0 (6.4.16)

and D± > 0. Therefore the complementary functions defined in (6.4.9) are given by

g ∼ α±D±e∓α±Z, (6.4.17)

G ∼ ± 1
2α2
±D±

e±α±Z (6.4.18)

as Z → ±∞, and the particular integral is

P ∼





(
2α2

+D+

)−1
(∫ u+

u−
Fr,M(v)dv

)
eα+Z, Z → ∞,

−Fr,M(u−)/
(
α2
−
)

, Z → −∞.
(6.4.19)

Thus there appears exponential growth in G as Z → ±∞, and in P as Z → ∞. As

a consequence, one may be tempted to set both the coefficient of G and δr to zero in

order to eliminate this, and conclude erroneously that a different approach is required.

In fact, the exponential growth is not so easily removed; we shall see that the as yet

undetermined forcing due to truncation of the divergent series (6.3.2) results in a non-

zero multiple of G being present as Z → ∞. Furthermore, the exponentially small

deviation δr from the Maxwell point also produces unbounded terms in the same limit.

However, for certain values of the origin z0 of u0, which can be defined in terms of δr,

these unbounded terms have coefficient zero. This is only the case if δr lies within

an exponentially small range of values—the snaking region. Thus we shall see that

homoclinic snaking is a direct result of the pinning of fronts to the lattice.

6.5 Calculation of late terms in the expansion

In order to determine the point of truncation and the unknown forcing in the remainder

equation (6.4.1), we require an asymptotic formula for the nth term in the expansion

(6.3.2) as n → ∞. In light of the Taylor expansion (6.3.1) of the difference equation

(6.2.1) in the continuum limit, we can see that the nth term is given by differentiating
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the (n− 1)th term four times and integrating twice, and so on. Therefore, if u0 is singu-

lar at some point(s) in the complex plane, the expansion (6.3.2) is divergent in the form

of a factorial over a power [7, 51]. Hence we propose the ansatz

un ∼ (−1)n Γ(2n + β)

W(Z)2n+β

(
f0(Z) +

1
2n

f1(Z) +
1

(2n)2 f2(Z) + · · ·
)

(6.5.1)

as n → ∞, in which all dependence on n and Z has been written down explicitly and

the large-n limit has been exploited in order to write un as a series in inverse powers

of n. Therefore the equation for un as n → ∞, n ≤ N − 1, given by equating terms in

(6.2.1) at O
(
ε2n+2), is

0 = 2
n+1

∑
p=1

cos2p ψ + sin2p ψ

(2p)!
d2pun−p+1

dZ2p − F′M (u0) un + · · · , (6.5.2)

where the neglected terms contribute at higher orders in 1/n.

In light of (6.5.1), the derivative terms in (6.5.2) are therefore O (Γ(2n + 2 + β)), whereas

the terms arising due to the expansion of FM(u) around u0 are merely O (Γ(2n + β)).

As a result, the leading-order contribution to (6.5.2) is

0 = 2(−1)n+1 Γ(2n + 2 + β)

W2n+β+2

n+1

∑
p=1

(−1)p cos2p ψ + sin2p ψ

(2p)!
(W ′)2p f0 (6.5.3)

The summation is dominated by p = O (1), and so we can replace the upper limit with

infinity to give

0 =
∞

∑
p=0

(−1)p (W
′ cos ψ)2p + (W ′ sin ψ)2p

(2p)!
− 2. (6.5.4)

Evaluating the summation, we therefore have

0 = cos(W ′ cos ψ) + cos(W ′ sin ψ)− 2. (6.5.5)

This is precisely the eigenvalue equation (6.4.5) derived in Section 6.4. Hence we set

W ′ = κ, where κ is a (possibly complex) non-zero solution to (6.4.5). Recall the existence

of real, non-zero solutions is dependent upon the rationality of tan ψ, as discussed in

that section. We note that both the eigenvalue equation (6.4.5) and the O (ε) condition
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(6.4.10) are invariant under κ → −κ and κ → κ∗; furthermore, (6.4.5) admits no non-

zero, purely imaginary solutions. Therefore we can restrict W ′ = κ to the right half-

plane <(κ) > 0 without loss of generality, as replacing W with −W in (6.5.1) results in

an additional factor of (−1)−β, which can simply be absorbed into the fk. Hence we

have

W = κ (Z− ζ) , (6.5.6)

where Z = ζ is a singularity of u0, and therefore also of each un. Since (6.5.2) is linear

in un, the full solution consists of the sum of the contributions from each singularity ζ,

which in turn is the sum of the contributions for each eigenvalue κ, with <(κ) > 0.

We now proceed to higher orders in 1/n in (6.5.2) in order to determine β and f0. As

W is a linear function of Z, we have

d2pun−p+1

dZ2p = (−1)n+p+1 Γ(2n + 2 + β)

W2n+β+2 κ2p
(

f0 +
1

2n
f1 +

1
(2n)2 ((2p− 2) f1 + f2)

)

+ (−1)n+p Γ(2n + 1 + β)

W2n+β+1 κ2p−12p
(

f ′0 +
1

2n
f ′1

)

+ (−1)n+p−1 Γ(2n + β)

2W2n+β
κ2p−22p(2p− 1) f ′′0 + O (Γ(2n− 1 + β)) . (6.5.7)

After substitution of (6.5.7) and division by Γ(2n + 2 + β), we may therefore solve

(6.5.2) via derivation of the asymptotic series f0 + f1/(2n) + f2/(2n)2 + · · · . Thus we

obtain

0 = 2

{
(−1)n+1

W2n+β+2

[
∞

∑
p=1

(−1)p (κ cos ψ)2p + (κ sin ψ)2p

(2p)!

(
f0 +

1
2n

f1 +
1

(2n)2 ( f2 − 2 f1)

)

−
(

κ cos ψ
∞

∑
p=1

(−1)p−1 (κ cos ψ)2p−1

(2p− 1)!
+ κ sin ψ

∞

∑
p=1

(−1)p−1 (κ sin ψ)2p−1

(2p− 1)!

)
1

(2n)2 f1

]

+
(−1)n+1

W2n+β+1

[
cos ψ

∞

∑
p=1

(−1)p−1 (κ cos ψ)2p−1

(2p− 1)!
+ sin ψ

∞

∑
p=1

(−1)p−1 (κ sin ψ)2p−1

(2p− 1)!

]

×
(

1
2n
− 1 + β

(2n)2

)(
f ′0 +

1
2n

f ′1

)
+

(−1)n

2W2n+β

[
cos2 ψ

∞

∑
p=1

(−1)p−1 (κ cos ψ)2p−2

(2p− 2)!

+ sin2 ψ
∞

∑
p=1

(−1)p−1 (κ sin ψ)2p−2

(2p− 2)!

]
1

(2n)2 f ′′0

}
− F′M(u0)

(−1)n

W(Z)2n+β

1
(2n)2 f0 + · · ·

(6.5.8)

102



CHAPTER 6 One-dimensional homoclinic snaking on a planar lattice

as n→ ∞. Each of these summations may be evaluated explicitly, yielding

0 = 2
{
(−1)n+1

W2n+β+2

[
(cos(κ cos ψ) + cos(κ sin ψ)− 2)

(
f0 +

1
2n

f1 +
1

(2n)2 ( f2 − 2 f1)

)

− (κ cos ψ sin(κ cos ψ) + κ sin ψ sin(κ sin ψ))
1

(2n)2 f1

]

+
(−1)n+1

W2n+β+1 (cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ))

(
1

2n
− 1 + β

(2n)2

)(
f ′0 +

1
2n

f ′1

)

+
(−1)n

2W2n+β

(
cos2 ψ cos(κ cos ψ) + sin2 ψ cos(κ sin ψ)

) 1
(2n)2 f ′′0

}

− F′M(u0)(−1)n 1
W(Z)2n+β

1
(2n)2 f0 + · · · . (6.5.9)

As κ satisfies (6.4.5), the first line on the right-hand side of (6.5.9) vanishes. Because

this includes the O (1) terms, we proceed to O (1/n) and find that

0 = [cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ)] f ′0. (6.5.10)

If κ is real then (6.5.10) is automatically satisfied (see Section 6.4) and we must continue

to O
(
1/n2). The zero eigenvalue does not contribute to un, as this would lead to divi-

sion by zero, so κ can only be real if tan ψ ∈ Q∞. Thus we can define tan ψ = m2/m1

as in (6.4.6), in which case κ = 2Mπ(m2
1 + m2

2)
1/2 as in (6.4.7), albeit with M > 0 as we

have fixed <(κ) > 0. Consequently, the first three lines of (6.5.9) vanish and we are left

with

0 = f ′′0 − F′M (u0(Z)) f0. (6.5.11)

This we have already solved; the complementary functions g(Z) and G(Z; ζ) are de-

fined in (6.4.9). Hence if κ is real then either f0 = λM,ψg or f0 = ΛM,ψG, for some

constants λM,ψ and ΛM,ψ, in general dependent on ψ. On the other hand, if κ has non-

zero imaginary part then (6.5.10) can only be satisfied if f ′0 = 0 (see Section 6.4), and

we therefore set f0 = Ωκ,ψ in this case, for some constant Ωκ,ψ, also dependent on ψ.

It remains to evaluate β; this is readily achieved by consideration of the singularities of

u0. We shall assume that the singularities of u0 are all either of the form

u0 = O
(
(Z− ζ)−γ

)
as Z → ζ, −γ /∈N∪ {0}, (6.5.12)
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or

u0 = O
(
(Z− ζ)−γ h (ln (Z− ζ))

)
as Z → ζ, γ ∈ R, (6.5.13)

for some function h(ln(t)) 6= Atα for any constants (A, α) ∈ C2. We shall henceforth

refer to the constant γ (which we take to be real for simplicity; results are similar for

complex γ) as the strength of the singularity at ζ. The systems giving rise to figures 6.1

and 6.3 are both examples of an algebraic singularity (6.5.12); [99] is an example of a

logarithmic one (6.5.13). By inspection of (6.5.2), we can see that if u0 has a singularity

of strength γ then un must have one of strength 2n+ γ, as un is found by differentiating

un−1 four times and integrating twice. Considering the three possible solutions for f0,

g has a singularity of strength γ + 1 and G has one of strength −γ − 2, whereas the

constant function has none at all. Thus, substituting (6.5.6) for W into the factorial-

over-power (6.5.1) and expanding un near the singularity ζ for each f0 in turn provides

the following:

f0 = λM,ψg ⇒ 2n + γ = 2n + β + γ + 1, (6.5.14)

f0 = ΛM,ψG ⇒ 2n + γ = 2n + β− γ− 2, (6.5.15)

f0 = Ωκ,ψ ⇒ 2n + γ = 2n + β. (6.5.16)

These give β = −1, β = 2γ + 2 and β = γ, respectively. Therefore the contribution to

un from each singularity ζ is

un(Z) ∼
∞

∑
M=1




(−1)nΓ(2n− 1)λM,ψg(Z)
[
2Mπ

√
m2

1 + m2
2(Z− ζ)

]2n−1 +
(−1)nΓ(2n + 2γ + 2)ΛM,ψG(Z; ζ)
[
2Mπ

√
m2

1 + m2
2(Z− ζ)

]2n+2γ+2




+ ∑
κ/∈R
<(κ)>0

(−1)nΓ(2n + γ)Ωκ,ψ

[κ(Z− ζ)]2n+γ
. (6.5.17)

We note that when tan ψ /∈ Q∞ then the first summation in (6.5.17) does not contribute,

there being no real, non-zero eigenvalues. If, on the other hand, tan ψ ∈ Q∞ then we

define ψ as in (6.4.6) and both summations contribute, unless ψ = kπ
4 , k ∈ {0, 1, . . . , 7},

in which case there are no complex eigenvalues and the second summation does not

contribute.
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Clearly, it is the eigenvalues of smallest modulus which are dominant as n → ∞.

For eigenvalues of equal size, dominance is then determined by comparing the off-

sets within the Γ-functions. When κ ∈ R, the dominant eigenvalue is given by M = 1.

Therefore, if the modulus of the smallest complex eigenvalue is less than 2π(m2
1 +

m2
2)

1/2 then the third term is dominant over the other two. Otherwise, the third term

is subdominant to the first two, in which case the second dominates the first provided

γ > − 3
2 . The question of dominance plays no role in determining the remainder, as

each contribution can be considered separately by making use of the superposition

principle of linear equations. However, it does become significant when calculating

the constant Λ1,ψ, a prerequisite for accurate comparison with numerical results. This

will be discussed in detail in the context of a cubic-quintic nonlinearity in the next

chapter.

6.6 Optimal truncation and Stokes lines

We can now turn our attention to the effects of the unknown forcing in the remainder

equation (6.4.1). Before we can evaluate it, we must first determine the point of trunca-

tion n = N− 1, desiring to truncate the expansion optimally so the resultant remainder

is exponentially small. To this end, we shall treat the contribution to the expansion from

each eigenvalue κ and each singularity ζ separately, as each contribution has a differ-

ent least term. This we are free to do, since both the large-n equation (6.5.2) and the

remainder equation (6.4.1) are linear. We shall therefore for the moment work in terms

of a general solution pair ( f0, β), rather than one of the three specific solutions derived

in the previous section. In light of the large-n solution (6.5.17), each contribution to un

is minimal with respect to n when

d
dn

∣∣∣∣∣
ε2nΓ(2n + β)

[κ(Z− ζ)]2n+β

∣∣∣∣∣ = 0, (6.6.1)
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where β is determined by the choice of f0 under consideration. The limit n→ ∞ can be

exploited in order to approximate this using Stirling’s formula, yielding

d
dn

(
ε2n
√

2π(2n + β)2n+β−1/2e−2n−β

|κ(Z− ζ)|2n+β

)
= 0. (6.6.2)

Collecting exponents gives

d
dn

exp
[

2n ln
(

ε (2n + β)

|κ(Z− ζ)|

)
− 2n +

(
β− 1

2

)
ln(2n + β)

]
= 0. (6.6.3)

Setting n = N − 1, we therefore require

ln
(

ε (2N + β− 2)
|κ(Z− ζ)|

)
= 0, (6.6.4)

yielding

N ∼ |κ(Z− ζ)|
2ε

+ ν, (6.6.5)

where ν = O (1) is added to ensure N is an integer.

We are now able to evaluate the unknown forcing appearing in (6.4.1). This forcing

arises as a result of truncation, and consists of those terms not accounted for by equat-

ing coefficients at O
(
ε2n+2) in (6.3.1) for n = 0, 1, . . . , N − 1. Considering the un equa-

tion (6.5.2), it follows that this forcing, denoted henceforth by RHS, is given by the

double summation

RHS ∼ −2
∞

∑
m=N

ε2m+2
m+1

∑
p=m−N+2

cos2p ψ + sin2p(ψ)

(2p)!
d2pum−p+1

dZ2p + · · · , (6.6.6)

where the lower limit of summation in p arises because the asymptotic expansion has

been truncated after the Nth term. Since m � 1 and the range p = O (1) is dominant,

we can make use of (6.5.7) and Stirling’s formula to give

RHS ∼ − 2
√

2π
∞

∑
m=N

∞

∑
p=m−N+2

[
ε2m+2(−1)m+1 (2m + 2 + β)2m+3/2+βe−(2m+2+β)

[κ(Z− ζ)]2m+2+β

]

×
[
(−1)p (κ cos ψ)2p + (κ sin ψ)2p

(2p)!

]
f0 + · · · . (6.6.7)
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After writing m = N + m̂, this is dominated by the range m̂ = O (1) and, because

(t + c)α = exp(α ln(t + c)) ∼ tαeαc/t as t→ ∞, can be written

RHS ∼ − 2
√

2π(−1)N+1 ε2N+2(2N)2N+3/2+βe−2N

[κ(Z− ζ)]2N+2+β

∞

∑̂
m=0

∞

∑
p=m̂+2

[
(−1)m̂ ε2m̂(2N)2m̂

[κ(Z− ζ)]2m̂

]

×
[
(−1)p (κ cos ψ)2p + (κ sin ψ)2p

(2p)!

]
f0 + · · · (6.6.8)

as N → ∞. Reversing the order of summation, we now have

RHS ∼ − 2
√

2π(−1)N+1 ε2N+2(2N)2N+3/2+βe−2N

[κ(Z− ζ)]2N+2+β

×
∞

∑
p=2

[
(−1)p

(
(κ cos ψ)2p

(2p)!
+

(κ sin ψ)2p

(2p)!

) p−2

∑̂
m=0

(−1)m̂
(

2εN
κ(Z− ζ)

)2m̂
]

f0 + · · · .

(6.6.9)

This we can evaluate, since

∞

∑
p=2

[
(−1)p v2p

(2p)!

p−2

∑
m=0

(
−w2)m

]
=

∞

∑
p=2

(−1)p v2p

(2p)!
1 + (−1)pw2p−2

1 + w2

=
1

1 + w2

[
cos v− 1 +

1
w2 (cosh(vw)− 1)

]
. (6.6.10)

Therefore, since κ satisfies (6.4.5), the leading-order forcing due to truncation can be

written as

RHS ∼ 2
√

2π(−1)N ε2N(2N)2N−1/2+βe−2N

[κ(Z− ζ)]2N−2+β(κ2(Z− ζ)2 + 4ε2N2)

[
cosh

(
2εN cos ψ

Z− ζ

)

+ cosh
(

2εN sin ψ

Z− ζ

)
− 2
]

f0 + · · · . (6.6.11)

In order to simplify subsequent calculations we now define

κ(Z− ζ) = ρeiθ , (6.6.12)

which gives N ∼ ρ/(2ε) + ν. Therefore we can write the prefactor of (6.6.11) as

ε2N(2N)2N−1/2+βe−2N

[κ(Z− ζ)]2N−2+β(κ2(Z− ζ)2 + 4ε2N2)
∼ ε1/2−β

√
ρ

(2εN/ρ)2N−1/2+β e−iθ(2N−2+β)e−2N

e2iθ + 4ε2N2/ρ2

=
ε1/2−β

√
ρ

(1 + 2εν/ρ)2N−1/2+β e−iθ(2N−2+β)e−2N

e2iθ + 1 + 4εν/ρ + 4ε2ν2/ρ2

∼ ε1/2−β

√
ρ

e2εν(ρ/ε+2ν−1/2+β)/ρe−iθ(2N−2+β)e−ρ/ε−2ν

e2iθ + 1

∼ ε1/2−β

√
ρ

e−iθ(2N−2+β)e−ρ/ε

e2iθ + 1
. (6.6.13)
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Thus we obtain

RHS ∼ 2
√

2π(−1)N ε1/2−β

√
ρ

e−iθ(2N−2+β)e−ρ/ε

e2iθ + 1

[
cosh

(
κ cos ψe−iθ

)

+ cosh
(

κ sin ψe−iθ
)
− 2
]

f0 + · · · , (6.6.14)

and we see from the factor e−ρ/ε that RHS is exponentially small.

We now seek a solution to the remainder equation (6.4.1), this time with the ’forcing

due to truncation’ replaced by RHS, in the same way as in Section 6.4. Writing RN =

e∓iκzSN(Z) in (6.4.1), where κ is as usual a solution of (6.4.5) with <(κ) > 0, and Taylor

expanding the differences in Z, we find

2iε [cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ)] S′N + ε2 [cos2 ψ cos(κ cos ψ)

+ sin2 ψ cos(κ sin ψ)
]

S′′N − ε2F′M(u0(Z))SN + · · · = e±iκzRHS + · · · . (6.6.15)

Note that on the left-hand side, the O (RN) contribution vanishes because κ satisfies

(6.4.5). The O (εRN) terms on the left-hand side vanish if κ is real, in which case the

leading-order contribution is O
(
ε2RN

)
; otherwise it is O (εRN).

Now,

exp(±iκz− ρ/ε) = exp
[
±iκz0 +

(
±iκζ ± iρeiθ − ρ

)
/ε
]

. (6.6.16)

Therefore we can see that, although it remains exponentially small on the real line,

e±iκzRHS is maximal with respect to θ at θ = ∓π
2 . These values of θ define the Stokes

lines, two emanating from each singularity, at which the main change in SN will occur.

As we are concerned with the behaviour of the solution for real z, the Stokes lines

of importance are those which cross the real line. Focusing on those singularities in

the upper half-plane, so that =(ζ) > 0, the Stokes line of interest is θ = −π
2 . We

therefore concentrate on solutions RN = e−iκzSN . Symmetry considerations then allow

the contribution from the conjugate singularity at ζ∗, which is of the form RN = e+iκzSN

and is due to the Stokes line θ = π
2 originating at that singularity, to be recovered

simply by taking the complex conjugate.
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In order to capture the effects of maximal forcing, we rescale θ in the vicinity of the

Stokes line as θ = −π
2 + η(ε)θ̂, where the scaling η(ε) is to be determined. This gives

e+iκz(−1)Ne−iθ(2N−2+β)e−ρ/ε

∼ exp
[

iκz0 +
i
ε

(
ρe−iπ/2+iηθ̂ + κζ

)
+ iNπ − i

(
−π

2
+ ηθ̂

)
(2N − 2 + β)− ρ

ε

]

∼ exp
[

iκ
(

z0 +
ζ

ε

)
+

1
ε

(
ρ + iρηθ̂ − 1

2
ρη2θ̂2

)
− iηθ̂

(ρ

ε
+ 2ν

)

+ i (β− 2)
(π

2
− ηθ̂

)
− ρ

ε

]

∼− eiβπ/2eiκ(z0+ζ/ε)e−ρη2 θ̂2/(2ε), (6.6.17)

which suggests the scaling η =
√

ε. We therefore also have

cosh
(
κ cos ψe−iθ)+ cosh

(
κ sin ψe−iθ)

e2iθ + 1
∼ κ [cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ)]

×
(
−1

2
+

3i
4
√

εθ̂

)
+ κ2 [cos2 ψ cos(κ cos ψ) + sin2 ψ cos(κ sin ψ)

]
+ · · · ,

(6.6.18)

where we have made use of the fact that κ satisfies (6.4.5) in order to eliminate terms;

note that if κ is real the first contribution to the right-hand side also vanishes and the

second is simply equal to κ2. We shall now consider the two types of eigenvalue in turn,

κ ∈ R and κ /∈ R, in order to elucidate precisely what contribution to the remainder

each makes.

6.6.1 Contribution to RN from κ ∈ R

As discussed in Section 6.4, κ can be real and non-zero only if tan ψ ∈ Q∞, in which

case we define tan ψ = m2/m1 as in (6.4.6). This gives κ = M(m2
1 + m2

2)
1/2 as in (6.4.7),

with M > 0 due to our restriction that <(κ) > 0. Thus if κ is real then the leading-order

balance in (6.6.15) is

ε2S′′N(Z)− ε2F′M(u0(Z))SN(Z) = −i
√

π/2eiβπ/2 ε1−β

√
ρ

eiκ(z0+ζ/ε)κ2 f0(Z)θ̂e−ρθ̂2/2 + · · · ,

(6.6.19)
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where f0 is equal to one of λM,ψg(Z) or ΛM,ψG(Z; ζ), which give β equal to−1 or 2γ+ 2

respectively. Writing

SN(Z) = ε−βeiκ(z0+ζ/ε) f0(Z)ŜN(θ̂), (6.6.20)

we have

ε2S′′N(Z) = ε1−βeiκ(z0+ζ/ε) f0(Z)
κ2

ρ2
d2ŜN

dθ̂2
+ O

(
ε3/2−βeiκ(z0+ζ/ε)

)
. (6.6.21)

Thus

d2ŜN

dθ̂2
∼ −i

√
π/2eiβπ/2ρ3/2θ̂e−ρθ̂2/2 + · · · . (6.6.22)

Imposing the boundary condition ŜN → 0 as θ̂ → −∞, this has leading-order solution

ŜN(θ̂) ∼
iπ
2

eiβπ/2erfc
(
−θ̂

√
ρ

2

)
, (6.6.23)

where erfc (t) is the complementary error function

erfc (t) :=
2√
π

∫ ∞

t
e−s2

ds. (6.6.24)

Therefore the exponentially small terms

RN ∼
∞

∑
M=1

iπeiβπ/2ε−βe2Mπ
√

m2
1+m2

2i(z0+ζ/ε)e−iκz f0(Z), (6.6.25)

for each singularity ζ in the upper half-plane, are present to the right of the Stokes layer.

By symmetry, the contribution from the conjugate singularity at Z = ζ∗ is simply the

complex conjugate of (6.6.25). Note that here e−iκz = 1 on lattice points, as tan φ ∈ Q∞

for real κ.

6.6.2 Contribution to RN from κ /∈ R

We now consider the forcing of the remainder equation (6.6.15) due to those eigenval-

ues with =(κ) 6= 0 (recall that we have set <(κ) > 0). We know that for such κ

cos ψ sin(κ cos ψ) + sin ψ sin(κ sin ψ) 6= 0, (6.6.26)
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(see Section 6.4) and so the leading order balance in (6.6.15) is

2εiS′N(Z) =
√

2πeiβπ/2 ε1/2−β

√
ρ

eiκ(z0+ζ/ε)e−ρθ̂2/2 f0 + · · · , (6.6.27)

where f0 = Ωκ,ψ, a constant, and β = γ. Writing

SN(Z) = ε−βeiκ(z0+ζ/ε) f0ŜN(θ̂), (6.6.28)

we have

εS′N(Z) = ε1/2−βeiκ(z0+ζ/ε) f0
κ

ρ

dŜN

dθ̂
+ O

(
ε1−βeiκ(z0+ζ/ε)

)
. (6.6.29)

Thus

dŜN

dθ̂
∼ −i

√
π/2eiβπ/2√ρe−ρθ̂2/2 + · · · . (6.6.30)

Since RN = e−iκzSN and <(κ) 6= 0, for =(±κ) > 0 we have RN → 0 as z → ±∞.

Although these contributions to the remainder are bounded in the pertinent limit, in

the opposite limit we have eiκz → ∞ as z→ ∓∞ for =(±κ) > 0. However, the resultant

unbounded growth may be prevented by choosing the constant of integration when

integrating (6.6.30) appropriately. Doing this, we have

ŜN(θ̂) ∼





iπ
2 eiβπ/2erfc

(
θ̂
√

ρ
2

)
, =(κ) > 0,

− iπ
2 eiβπ/2erfc

(
−θ̂
√

ρ
2

)
, =(κ) < 0.

(6.6.31)

Therefore the exponentially small terms

RN ∼ ∑
<(κ)>0,
=(κ)>0

iπeiβπ/2ε−βeiκ(z0+ζ/ε)e−iκz f0, (6.6.32)

are present to the left of the Stokes layer, and the exponentially small terms

RN ∼ ∑
<(κ)>0,
=(κ)<0

−iπeiβπ/2ε−βeiκ(z0+ζ/ε)e−iκz f0, (6.6.33)

to the right, for each singularity ζ in the upper half-plane. By symmetry, the contribu-

tions from the conjugate singularity at Z = ζ∗ are the complex conjugates of (6.6.32)

and (6.6.33). Note that, due to our selection of the constants of integration, the Stokes

lines relevant to complex κ do not switch on any exponentially growing terms as they
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are crossed. Thus contributions from κ /∈ R remain exponentially small in the far-fields

and play no role in determining the leading-order solution. We are therefore free to

neglect such contributions when discussing leading-order behaviour, and shall do so

henceforth.

6.7 The width of the snaking region

Although we have ensured that complex κ do not produce any unbounded terms in

the remainder, there are still exponentially growing contributions from real κ which we

have yet to deal with. Because G(Z; ζ) has zero coefficient to the left of the Stokes lines

and the particular integral P(Z) is bounded as Z → −∞ (see (6.4.19)), the remainder

is bounded in this limit. On the other hand, G has non-zero coefficient to the right of

the Stokes lines, and both G and P experience exponential growth as Z → ∞. We must

eliminate these unbounded terms if the asymptotic expansion is to remain uniform.

Note that we shall now evaluate our solution on the lattice points, and so e−iκz ≡ 1 in

(6.6.25), as tan φ ∈ Q∞ for real κ.

G and P are given in the far-field by (6.4.18) and (6.4.19), respectively. In light of (6.6.25),

the dominant terms which are switched on are given by those singularities closest to,

and equidistant from, the real line, with M = 1. For the sake of simplicity, we shall as-

sume henceforth that there are only two such singularities. In this instance, focusing on

the exponentially growing complementary function G, the leading order contribution

which is switched on as the Stokes lines are crossed is

∼ −iπeiγπε−2γ−2e2π
√

m2
1+m2

2i(z0+ζ/ε)Λ1,ψG(Z; ζ) + c.c., (6.7.1)

where we have written κ = 2Mπ(m2
1 + m2

2)
1/2 with M = 1. Note that, as we are

focusing solely on f0 = Λ1,ψG, we have β = 2γ + 2. Including the particular integral

P(Z) due to the forcing ε2δrFr,M(u0) in (6.4.1), the remainder in the far-field Z → ∞ is
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therefore

RN ∼





π|Λ1,ψ|e−2π
√

m2
1+m2

2=(ζ)/ε

ε2γ+2α2
+D+

cos
[

2πz0

√
m2

1 + m2
2 + χ

]
+

δr
∫ u+

u−
Fr,M(v)dv

2α2
+D+



 eα+Z,

(6.7.2)

where

χ = −π

2
+ γπ +

2π

ε
<(ζ)

√
m2

1 + m2
2 + Arg

(
Λ1,ψ

)
. (6.7.3)

For the expansion to remain uniform as Z → ∞, we require the coefficient of these

unbounded terms to be zero. This is true if

δr = −2π|Λ1,ψ|e−2π
√

m2
1+m2

2=(ζ)/ε

ε2γ+2
∫ u+

u−
Fr,M(v)dv

cos
[

2πz0

√
m2

1 + m2
2 + χ

]
, (6.7.4)

thus fixing the origin of the front z0 to be one of two values modulo (m2
1 + m2

2)
−1/2.

Furthermore, real solutions exist only if

|δr| ≤ 2π|Λ1,ψ|e−2π
√

m2
1+m2

2=(ζ)/ε

ε2γ+2|
∫ u+

u−
Fr,M(v)dv| ; (6.7.5)

thus stationary fronts only exist for δr within this (exponentially small) region. As lo-

calised solutions are constructed from back-to-back stationary fronts, (6.7.5) provides

a formula for the width of the snaking region. Note the constant Λ1,ψ is at present un-

determined; in fact, it cannot be determined analytically due to the linear nature of the

large-n equation (6.5.2). However, the leading-order contribution to (6.5.2) as Z → ζ

yields a recurrence relation which can in principle be used to obtain a good approxi-

mation to Λ1,ψ, in a similar manner to the method used Section 4.4 for the cubic-quintic

SHE. This must be done on a case-by-case basis for each choice of the nonlinearity

F(u; r), and so we defer further discussion of the calculation of Λ1,ψ to the next chapter,

in which we shall consider two specific examples.

6.8 The snakes-and-ladders bifurcation equations

Armed with the full asymptotic expansion for a stationary front, including exponen-

tially gorwing terms in the remainder, we are now able to construct localised solutions,
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or spatially homoclinic connections to the constant solution u− via u+, by means of

matching two stationary fronts back-to-back. Such a solution consists of an up-front

u(εz − εz0) matched to a distant down-front u(−εz + εz0 + L/ε), where L > 0 is

an O (1) constant. Note that the down-front is produced by applying the rotation

(ψ, z0) → (ψ + π,−z0) to u(Z), followed by the translation εz0 → εz0 + L/ε. There-

fore the origin of the up-front is at z = z0, as before, whereas the translation of the

down-front to the right shifts its origin to −z = −z0 − L/ε2. The scaling of the front

separation L/ε is motivated by the fact that the exponentially growing contribution to

the remainder (6.7.2) is no longer exponentially small when Z = O (1/ε) and is posi-

tive. This allows us to observe the interplay between three exponentially small effects:

the locking of fronts to the lattice, the deviation from the Maxwell point and the front

matching error. The first two are responsible for the existence of the snaking region, as

already shown in Section 6.7; we shall see now that the third is responsible for the way

the solution curves are skewed to the right of the snaking region when the localised

patch is small enough.

From the far-field expansions (6.4.15) and (6.7.2), we see that an up-front u ∼ u0 + · · ·+

RN is given by

u ∼ u+ − D+e−α+Z +





π|Λ1,ψ|e−2π
√

m2
1+m2

2=(ζ)/ε

ε2γ+2α2
+D+

cos
[

2πz0

√
m2

1 + m2
2 + χ

]

+
δr
∫ u+

u−
Fr,M(v)dv

2α2
+D+

}
eα+Z (6.8.1)

as Z → ∞. By symmetry, the down-front is given within the matching region by (6.8.1)

under the combined rotation and translation (ψ, z0) → (ψ + π,−z0 − L/ε2). Thus

Z → −Z + L/ε and we have

u ∼ u+ − D+e−α+(−Z+L/ε) +





π|Λ1,ψ|e−2π
√

m2
1+m2

2=(ζ)/ε

ε2γ+2α2
+D+

× cos
[

2π

(
−z0 −

L
ε2

)√
m2

1 + m2
2 + χ

]
+

δr
∫ u+

u−
Fr,M(v)dv

2α2
+D+

}
eα+(−Z+L/ε) (6.8.2)
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as (−Z + L/ε) → ∞. Note that we have not yet eliminated exponentially growing

terms; these are necessary in order to match with exponentially growing and decaying

terms between fronts. Unbounded terms are then removed by adding the up-front

and down-front together and subtracting matched parts, following the usual method

of matched asymptotic expansions.

Matching growing and decaying exponential terms in the matching region, we obtain

−D+e−α+L/ε =
π|Λ1,ψ|e−2π

√
m2

1+m2
2=(ζ)/ε

ε2γ+2α2
+D+

cos
[

2πz0

√
m2

1 + m2
2 + χ

]
+

δr
∫ u+

u−
Fr,M(v)dv

2α2
+D+

,

(6.8.3)

−D+e−α+L/ε =
π|Λ1,ψ|e−2π

√
m2

1+m2
2=(ζ)/ε

ε2γ+2α2
+D+

cos
[
−2π

(
z0 +

L
ε2

)√
m2

1 + m2
2 + χ

]

+
δr
∫ u+

u−
Fr,M(v)dv

2α2
+D+

. (6.8.4)

We therefore have

cos
[

2πz0

√
m2

1 + m2
2 + χ

]
= cos

[
−2π

(
z0 +

L
ε2

)√
m2

1 + m2
2 + χ

]
, (6.8.5)

providing the requisite detail from which to derive the snaking bifurcation equations.

There are two cases to consider, firstly

z0 = − L
2ε2 +

k

2
√

m2
1 + m2

2

, (6.8.6)

and secondly

L
ε
=
( χ

π
+ k
) ε√

m2
1 + m2

2

, (6.8.7)

where k is some integer.
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CHAPTER 6 One-dimensional homoclinic snaking on a planar lattice

6.8.1 The snakes

Suppose first that (6.8.6) holds. Substituting for z0 in (6.8.3) and rearranging, we gain

the bifurcation equation

δr =− 2∫ u+

u−
Fr,M(v)dv

{
π|Λ1,ψ|
ε2γ+2 e−2π

√
m2

1+m2
2=(ζ)/ε cos

[
−πL

ε2

√
m2

1 + m2
2 − kπ + χ

]

+ α2
+D2

+e−α+L/ε
}

, (6.8.8)

from which the front separation L may be determined. As (6.8.8) is periodic in k with

period 2, only the parity of k is of importance when determining L; thus (6.8.8) de-

scribes two distinct snaking solution curves with phases that differ by π. Each solu-

tion is unique up to translations in Z = ε(z− z0) by integer multiples of the effective

lattice spacing ε(m2
1 + m2

2)
−1/2. Furthermore, inspection of (6.8.6) indicates that the lo-

calised solution is site-centred if k is even and bond-centred if k is odd. The second

term on the right-hand side of (6.8.8), corresponding to the front matching error, skews

the solution curves to the right for small enough L. However, as L increases this term

rapidly becomes negligible, in which case the snaking curves are confined to the same

exponentially small parameter range defined in (6.7.5)—the snaking region. L is free to

increase without bound, producing an infinite multiplicity of localised solutions within

this range.

6.8.2 The ladders

Now suppose that (6.8.7) holds. Since k is arbitrary, in this case the front separation

L/ε may take one of a discrete set of values, provided the constraints L > 0 and k =

O
(
1/ε2) (as L = O (1)) are satisfied. The origin z0 of the up-front may then be found
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CHAPTER 6 One-dimensional homoclinic snaking on a planar lattice

by solving (6.8.3), rewritten here as

δr =− 2∫ u+

u−
Fr,M(v)dv

{
π|Λ1,ψ|
ε2γ+2 e−2π

√
m2

1+m2
2=(ζ)/ε cos

[
2πz0

√
m2

1 + m2
2 + χ

]

+ α2
+D2

+e−α+L/ε
}

. (6.8.9)

This equation therefore describes the rungs of the snakes-and-ladders bifurcation dia-

gram. Each k corresponds to a single rung, which may be parameterised by z0 in the

range [0, (m2
1 + m2

2)
−1/2). The deviation δr from the Maxwell point for each z0 is then

provided by (6.8.9), which has solutions in the same range of values of δr as (6.8.8), as

expected. Furthermore, each rung in fact represents two solution curves, correspond-

ing to the two solutions of (6.8.9) in the range z0 ∈ [0, (m2
1 + m2

2)
−1/2). These two

solutions coincide at the maximum and minimum of the cosine, representing the bifur-

cation points at which the rungs meet the snakes. Note that each rung originates on

one snake at z0 = 0 and terminates on the other at z0 = (m2
1 + m2

2)
−1/2/2, linking the

two snaking solution curves.

Thus we have derived a set of formulae describing the snakes-and-ladders bifurcation

diagram for one-dimensional solutions to the general differential-difference (6.0.3). The

width of the snaking region is given by (6.7.5) if tan ψ ∈ Q∞, and is zero if not. In the

next chapter we shall apply these results to the two specific examples shown in figures

6.1 and 6.3, and compare the asymptotic prediction with numerical computations. In

particular, we shall discuss the calculation of the as yet undetermined constant Λ1,ψ.
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CHAPTER 7

Specific examples of discrete

snaking: numerical verification of

asymptotic results

In Chapter 6 we used the method of exponential asymptotics to analyse homoclinic

snaking of solutions to

∂u
∂t

= ∆u− ε2F(u; r) (7.0.1)

which are localised in one spatial direction only, where ∆u is the nearest-neighbour

stencil (6.0.2), 0 < ε � 1 and F(u; r) is some bistable nonlinearity incorporating a

bifurcation parameter r. We found that when the tangent of the angle of orientation ψ of

these solutions is irrational then the snaking width is zero; otherwise, it is exponentially

small and the snakes-and-ladders bifurcation diagram is described by the formulae

(6.8.8)-(6.8.9). In the present chapter we shall apply these general results to two specific

choices of F. We shall focus exclusively on angles with non-zero snaking width, and so

henceforth set

cos ψ =
m1√

m2
1 + m2

2

, sin ψ =
m2√

m2
1 + m2

2

,

(m1, m2) ∈ Z2\{(0, 0)}, gcd(|m1|, |m2|) = 1;

(7.0.2)
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see Sections 6.1 and 6.4 for further details. In particular, for both examples we shall

calculate the analytically undeterminable constants Λ1,ψ appearing in (6.8.8)-(6.8.9) for

ψ = kπ
4 , k ∈ {0, 1, . . . , 7}, and discuss why their calculation is more difficult for other

values of ψ.

7.1 Example: a cubic nonlinearity with constant forcing

Our first example is (7.0.1) with a cubic nonlinearity and constant forcing, given by

∂û
∂t

= ∆û + r̂ + ŝû− û3, (7.1.1)

fixing ŝ > 0 in order to ensure bistability. Note this is not yet of the same form as (7.0.1);

a rescaling is required to describe dynamics close to bifurcation. Defining

û = εu, r̂ = ε3r, ŝ = ε2s, (7.1.2)

substituting into (7.1.1) and dividing by ε, we have

∂u
∂t

= ∆u− ε2 (−r− su + u3) ; (7.1.3)

this is now equivalent to (7.0.1) with F(u; r) = −r − su + u3. (7.1.3) is probably the

simplest form of (7.0.1) which exhibits snaking behaviour. The bifurcation diagram and

example solutions for (7.1.1) with ψ = 0 can be seen in figures 6.3 and 6.4; unhatted

variables in those figures correspond to hatted ones in (7.1.1). The two constant, stable

solutions (which are both non-zero) are connected via an unstable branch, thus forming

an S-shaped solution curve in parameter space. This results in a region of bistability, in

turn containing the snaking region. We note that a similar system with this nonlinearity

was studied in [27], in which discreteness was incorporated by allowing a coefficient

in a partial differential equation to vary periodically in space, rather than through a

difference operator as is the case here. However, that work presents an incomplete

description of the snaking phenomenon, due to its failure to incorporate exponentially

small terms.
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In order to apply the results of Chapter 6, we must first derive a one-dimensional,

stationary front from which localised solutions may be constructed. To this end, we

define Z as in (6.2.3), set u ≡ u(Z) in (7.1.3) and impose the boundary conditions

u± as Z → ±∞. Taylor expanding as in Section 6.3, the leading-order continuum

approximation is

0 =
d2u0

dZ2 + r + su0 − u3
0. (7.1.4)

This can be integrated once after multiplication by u′0, yielding

0 =
1
2

(
du0

dZ

)2

+ ru0 +
1
2

su2
0 −

1
4

u4
0 −

(
ru− +

1
2

su2
− −

1
4

u4
−

)
, (7.1.5)

where the constant of integration has been chosen to ensure that u0 ≡ u− is a solution

of (7.1.5). Requiring that the far-fields of the front satisfy both (7.1.4) and (7.1.5), we

find that u± and the Maxwell point r = rM are given by the algebraic system

0 = rM + su+ − u3
+,

0 = rM + su− − u3
−,

0 = rMu+ +
1
2

su2
+ −

1
4

u4
+ −

(
rMu− +

1
2

su2
− −

1
4

u4
−

)
(7.1.6)

(see the discussion around (6.3.6)). This can readily be solved to give

u± = ±
√

s, rM = 0; (7.1.7)

in consequence (7.1.5) becomes

2
(

du0

dZ

)2

=
(
s− u2

0
)2

. (7.1.8)

This is easily integrated, providing the leading-order front

u0 =
√

s tanh
(√

s
2

Z
)

, (7.1.9)

where the sign of the square root has been chosen so that u+ > u−; the front of opposite

orientation can be obtained by exploiting the reversibility of (7.1.1).
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We now need to evaluate the various constants appearing in the bifurcation equations

(6.8.8)-(6.8.9). From (7.1.9), we see that the singularities ζ of u0 are

ζ = ζm =

√
1
2s
(2m + 1)πi (7.1.10)

each of which has strength γ = 1. Thus (6.7.3) yields χ = π
2 + Arg

(
Λ1,ψ

)
. The domi-

nant singularities are those nearest (and equidistant from) the real line, namely ζ0 and

ζ−1 = ζ∗0 . In addition, because

u0 ∼
√

s
(

1− 2e−
√

2sZ
)

(7.1.11)

as Z → ∞ and Fr,M(u) ≡ −1 we have

α+ =
√

2s, D+ = 2
√

s,
∫ u+

u−
Fr,M(v)dv = −2

√
s. (7.1.12)

Note that, although α+ is defined by (6.4.16), it is simpler in practice to simply read

it off from the leading-order exponential in the far-field. Hence we may now write

down the bifurcation equations (6.8.8)-(6.8.9) in terms of the parameters of the scaled

equation (7.1.3). For the sake of brevity, we shall not write these out in full, and instead

content ourselves with the width of the snaking region. From (6.7.5), we find that this

is

|δr| ≤ π|Λ1,ψ|e−π2
√

2(m2
1+m2

2)/ε
√

s

ε4
√

s
. (7.1.13)

It is instructive to write this in terms of the original, hatted variables appearing in

(7.1.1), in which case ŝ provides the small variable. Thus we obtain the unscaled

snaking width as

|r̂| ≤ π|Λ1,ψ|e−π2
√

2(m2
1+m2

2)/ŝ
√

ŝ
, (7.1.14)

since the Maxwell point in this case is zero. However, we are not yet able to compare

our analytical results with numerical computations, as Λ1,ψ remains undetermined. We

turn our attention to its evaluation now.
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7.1.1 Finding Λ1,ψ

All that remains for a comprehensive comparison between numerical computations of

(7.1.1) and our analytical predictions is the evaluation of the constants Λ1,ψ. Unfortu-

nately, this cannot be done analytically due to the linear nature of the large-n equation

(6.5.2). However, it may be calculated directly through the iteration of a certain recur-

rence relation arising from the behaviour of the solution near the singularity ζm.

As the singularity in the leading order front u0 (7.1.9) has strength γ = 1, we have (see

the discussion around (6.5.12)-(6.5.16))

un ∼
Un

(Z− ζm)2n+1 , (7.1.15)

as Z → ζm, for some sequence of constants Un. Upon substitution of this ansatz into

the steady version of (7.1.3), Taylor expanding the slow differences, equating powers

of ε and taking the leading-order terms in (Z− ζm)−1 leads to

0 = 2
n+1

∑
p=1

cos2p ψ + sin2p ψ

(2p)!
Γ (2n + 3)

Γ (2n− 2p + 3)
Un−p+1 −

n

∑
p1=0

n−p1

∑
p2=0

Up1Up2Un−p1−p2 .

(7.1.16)

Iteration of this recurrence relation therefore yields the sequence Un. In principle, we

may then compare (7.1.15) for large n with the analytical formula for un (6.5.17) in order

to find Λ1,ψ.

There are three types of contribution to (6.5.17), two arising from real and one from

complex eigenvalues (where each eigenvalue κ is a solution of (6.4.5)). The real eigen-

values are characterised by the integers M, and it is clear that the dominant one is given

by M = 1. Furthermore, the term involving G(Z; ζm) dominates the one involving g(Z)

(see the discussion after (6.5.17)). As we are not in general able to determine complex

eigenvalues analytically, we shall for now merely denote by K the eigenvalue κ /∈ R of

smallest modulus in the quadrant <(K) > 0, =(K) > 0. Recall that we set <(κ) > 0

without loss of generality in Section 6.5. Hence there is only one other complex eigen-

value with modulus equal to that of K, and this is simply K∗, as solutions of (6.4.5)
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occur in complex conjugate pairs. Therefore, taking only the dominant contribution to

(6.5.17) from real κ and the dominant contribution from complex κ, we have

un(Z) ∼ (−1)nΓ(2n + 4)Λ1,ψG(Z; ζm)
[
2π
√

m2
1 + m2

2(Z− ζm)
]2n+4 +

(−1)nΓ(2n + 1)
(Z− ζm)2n+1

(
ΩK,ψ

K2n+1 +
ΩK∗,ψ

K∗2n+1

)
.

(7.1.17)

Note that (7.1.17) is not meant to represent a two-term asymptotic series, as there may

be many more terms in (6.5.17) which are much smaller than one of those on the right-

hand side of (7.1.17), but much larger than the other. Now, from (7.2.9) we have

u0 ∼
√

2
Z− ζm

(7.1.18)

as Z → ζm; thus U0 =
√

2, and

G(Z; ζm) ∼ −
1
8

√
2 (Z− ζm)

3 (7.1.19)

in the same limit. Because U0 is real, inspection of (7.1.16) indicates that Un is real for all

n; hence ΩK∗,ψ = Ω∗K,ψ. Comparing (7.1.17) with (7.1.18), the dominant contributions

to Un from real and complex κ are

Un ∼
(−1)n+1

√
2Γ(2n + 4)Λ1,ψ

8
(

2π
√

m2
1 + m2

2

)2n+4 +
2(−1)nΓ(2n + 1)|ΩK,ψ|

|K|2n+1

× cos
[
Arg

(
ΩK,ψ

)
− (2n + 1)Arg (K)

]
(7.1.20)

as n → ∞. As discussed after (6.5.17), if |K| < 2π(m2
1 + m2

2)
1/2 then the second term

dominates; otherwise, the first does. Immediately we see a difficulty in obtaining Λ1,ψ.

If the second term is dominant, rearranging (7.1.20) provides an expression for ΩK,ψ;

we require Λ1,ψ. To obtain Λ1,ψ in this way, the first term must be the dominant one.

Unfortunately, it seems that if (6.4.5) admits complex solutions, then |K| < 2π(m2
1 +

m2
2)

1/2 no matter the choice of m1, m2. Although we are unable to prove this rig-

orously, two strands of investigation provide evidence that this is indeed the case.

First, in the limit m2 � m1, complex solutions to (6.4.5) of smallest modulus are

κ ∼ 2π(1 + im2/m1), which have modulus much less than 2π(m2
1 + m2

2)
1/2. Second,
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Figure 7.1: Complex solutions to (6.4.5) of smallest modulus, for various values of m1, m2,

scaled by (m2
1 + m2

2)
1/2. Circles represent m2 = 1, squares m2 = 2, diamonds

m2 = 3 and triangles m2 = 4; recall we have set gcd(|m1|, |m2|) = 1. Although

the data points are in many cases difficult to distinguish from one another on

this scale, the salient detail, that each eigenvalue has modulus less than 2π(m2
1 +

m2
2)

1/2, is clear. The solid line represents the asymptotic approximation of complex

soltuions to (6.4.5) with smallest modulus, κ ∼ 2π(1+ im2/m1), valid for m2 �

m1.

solving (6.4.5) numerically for various choices of m1, m2 has not produced a counter-

example, and furthermore suggests that the aymptotic formula for κ is a good approx-

imation even for moderate values of m2/m1, as shown in figure 7.1. Thus it would

appear that we cannot calculate Λ1,ψ using the above method if (6.4.5) admits complex

solutions. Furthermore, as the eigenvalues κ are independent of the choice of F(u; r),

this is so for all problems of the form (7.0.1).

There are, however, special cases with no complex eigenvalues at all; the axial and

diagonal alignments ψ = kπ
4 , k ∈ {0, 1, . . . , 7}. For such alignments (7.1.20) contains
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only the term in which Λ1,ψ appears. Rearranging, we therefore see that in such a case

Λ1,ψ ∼ lim
n→∞

(12)1/4(−1)n+1
(

2π
√

m2
1 + m2

2

)2n+4

Γ(2n + 4)
Un, (7.1.21)

yielding a good approximation for Λ1,ψ if Un can be calculated for large enough n. Now,

(7.1.16) must in general be iterated separately for each ψ. However, as (7.0.1) is invari-

ant under rotations ψ→ ψ+ π
2 , it suffices to iterate (7.1.16) only for ψ = 0 and ψ = π

4 , as

the other six alignments can be recovered using said invariance. Doing so, we calculate

Λ1,0 ≈ −2535 and Λ1,π/4 ≈ −10141. Thus we may carry out a quantitative comparison

between the analytical formula (7.2.15) and numerical computations for these values

of ψ. We note that inspection of the ratio Λ1,π/4/Λ1,0 ≈ 4 and the equivalent ratio in

the next example suggests the simple relationship Λ1,ψ = Λ1,e(m2
1 + m2

2)
1+γ; however,

this is found to drastically underestimate the width of the snaking region for ψ 6= kπ
4 ,

k ∈ {0, 1, . . . , 7}.

7.1.2 Comparison of analytical and numerical results

We have solved the one-dimensional, steady version of (7.1.1) for ψ = 0, π
4 numeri-

cally, using pseudo-arclength continuation to compute the bifurcation diagram. The

domain size is chosen to be large enough that boundary effects have negligible effect

on the width of the snaking region. In order to preserve this independence, the domain

must be increased as ŝ = εs decreases to counterbalance the spreading out of fronts;

for example, we used three hundred points for ŝ = 1, but seven hundred for ŝ = 0.2.

We imposed symmetric boundary conditions and sought stationary front solutions to

(7.1.1); such a solution is equivalent to a site-centred solution on a domain of twice the

size. Exploiting the symmetry of the solution to calculate only half the lattice points

in this manner has the dual benefit of faster computation times and a vastly decreased

chance of skipping between solution branches, which may otherwise occur all too read-

ily given the high density of solutions within such a narrow parameter range. We have
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chosen to focus here only on site-centred solutions; similar results are easy to find for

the bond-centred solution branch. Of course, there is no symmetry to exploit when

computing ladders, and so greater care must be used when calculating these at small

values of ŝ.

Numerical results are compared to (7.1.14) in figures 7.2, with good agreement. Al-

though an analytical formula is unavailable for ψ 6= kπ
4 , k ∈ {0, 1, . . . , 7} as Λ1,ψ remains

undetermined in these cases, we see that the snaking width appears to scale with ŝ as

predicted by (7.1.14) for all values of ψ shown. Note that numerical results are unavail-

able for very small ŝ, and that the smallest value of ŝ for which numerical results are

available increases with m2
1 + m2

2; this is due to the snaking width approaching values

in which machine error is significant. The full analytical bifurcation diagram (6.8.8)-

(6.8.9) for (7.1.1) is drawn in figure 7.3a, and a comparison between an analytical and a

numerical snaking solution curve shown in figure 7.3b, again with good agreement.

7.2 Example: a cubic-quintic nonlinearity

Our second example is the discrete analogue of the SHE (3.0.1) studied in Chapters 3-5

and, for example, [14, 39], namely (7.0.1) with cubic and quintic nonlinearities, given

by

∂û
∂t

= ∆û + r̂û + ŝû3 − û5, (7.2.1)

fixing ŝ > 0 to ensure bistablity. This equation was also studied in [85] to investigate

snaking of fully two-dimensional localisations. Now, as in the last example, we must

rescale (7.2.1) close to bifurcation to put it in the form (6.0.3). To this end, we define

û =
√

εu, r̂ = ε2r, ŝ = εs, (7.2.2)

and, after substitution into (7.2.1), cancel the common factor of
√

ε to give

∂u
∂t

= ∆u− ε2 (−ru− su3 + u5) . (7.2.3)
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Figure 7.2: Left: analytical (lines) and numerical (points) snaking widths for one-dimensional

solutions to (7.1.1) at various orientations ψ = arctan(m2/m1). The solid line

and circles represent (m1, m2) = (1, 0); the dashed line and squares represent

(m1, m2) = (1, 1); diamonds represent (m1, m2) = (2, 1); triangles represent

(m1, m2) = (3, 1); stars represent (m1, m2) = (3, 2). Note an analytical formula

is only available for the first two choices of ψ. Right: percentage error in analytical

formula (7.1.14) for (7.1.1) with (m1, m2) = (1, 0) represented by circles and

(m1, m2) = (1, 1) by squares.

This is now equivalent to (6.0.3) with F(u; r) = −ru − su3 + u5. The bifurcation dia-

gram for (7.2.1) with ψ = 0 can be seen in figure 6.1; unhatted variables in that figure

correspond to hatted in (7.2.1). The system is bistable due to a subcritical pitchfork

bifurcation at r̂ = 0 and a subsequent saddle-node bifurcation at some r̂ < 0, at which

point the nontrivial solution curve turns over to form a region of bistability, within

which is the snaking region.

The first task is to seek a one-dimensional, stationary front. We define Z as in (6.2.3), set

u ≡ u(Z) in (7.2.3) and impose the boundary conditions u → u± as Z → ±∞. In this

case u− = 0, which simplifies the algebra somewhat. Taylor expanding the differences

in the same manner as in Section 6.3, the leading order continuum approximation is

0 =
d2u0

dZ2 + ru0 + su3
0 − u5

0. (7.2.4)
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Figure 7.3: Left: snakes-and-ladders bifurcation diagram for (7.1.1) with ŝ = 0.6 and ψ = 0,

drawn using the analytical formulae (6.8.6)-(6.8.9). Right: comparison of analyt-

ical (thick line) and numerical (thin line) site-centred snaking curve for ŝ = 0.4

and ψ = 0.

This can be integrated once after multiplication by u′0, leading to

0 =
1
2

(
du0

dZ

)2

+
1
2

ru2
0 +

1
4

su4
0 −

1
6

u6
0, (7.2.5)

where the constant of integration vanishes because u− = 0. The constant solutions

u = u± must satisfy both (7.2.4) and (7.2.5); u− = 0 does so trivially, but u+ will only

do so at r = rM, the Maxwell point. Thus u+ and rM are determined by the coupled

algebraic equations

0 = rM + su2
+ − u4

+,

0 =
1
2

rM +
1
4

su2
+ −

1
6

u4
+,

(7.2.6)

which are readily solved to give

u+ = +

√
3
4

s, rM = − 3
16

s2. (7.2.7)

Setting r = rM and rearranging, (7.2.5) becomes

3
2

(
du0

dZ

)2

= u2
0

(
3
4

s− u2
0

)2

, (7.2.8)

which may be integrated to give

u0(Z) =
(

3
4

)1/4 √
µ√

1 + e−µZ
, (7.2.9)
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where

µ =

√
3

2
s, (7.2.10)

and we have chosen the positive square root in order that u+ > u−; the front of oppo-

site orientation may be recovered by exploiting the reversibility of (7.2.1).

We now need to evaluate the various constants which appear in the bifurcation equa-

tions (6.8.8) and (6.8.9). From (7.2.9), we can see that the singularities ζ of u0 are

ζ = ζm := (2m + 1)πi/µ, m ∈ Z, (7.2.11)

each of which has strength γ = 1
2 . Thus (6.7.3) gives χ = Arg

(
Λ1,ψ

)
. The dominant

singularities are those nearest (and equidistant from) the real line, namely ζ0 and ζ−1 =

ζ∗0 . Also, since

u0 ∼
(

3
4

)1/4√
µ

(
1− 1

2
e−µZ

)
(7.2.12)

as Z → ∞ and Fr,M(u) = −u, we have

α+ = µ, D+ =
1
2

(
3
4

)1/4√
µ,

∫ u+

u−
Fr,M(v)dv = −1

2

(
3
4

)1/2

µ. (7.2.13)

Thus the bifurcation equations (6.8.8) and (6.8.9) can now be written in terms of the

parameters of the scaled equation (7.2.3). Again, we shall not write these out in full

and simply write down the width of the snaking region from (6.7.5), which now reads

|δr| ≤ 8π
∣∣Λ1,ψ

∣∣ e−2π2
√

(m2
1+m2

2)/εµ

√
3ε3µ

. (7.2.14)

Writing this in terms of the original, hatted variables appearing in (7.2.1) yields

|r̂− r̂M| ≤
16π

∣∣Λ1,ψ
∣∣ e−4π2

√
3(m2

1+m2
2)/3ŝ

3ŝ
, (7.2.15)

where r̂M = −3ŝ2/16 + O
(
ŝ4) is the unscaled Maxwell point and ŝ provides the small

variable. This formula corresponds to that derived in [67] using variational approxi-

mations (equation (50) in that work); however, the method presented here yields a com-

plete formula, whereas that in [67] is unable to determine the constant factor

16π|Λ1,ψ|/
√

3. We also note that the functional dependence of (7.2.15) on ŝ when
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(m1, m2) = (1, 0) is identical to that of the corresponding formula (4.7.6) derived in

Chapter 4 for the cubic-quintic SHE (3.0.1). However, the snaking width is much

smaller in the present case, as e−1/ŝ is raised to the power ≈ 22.8 in (7.2.15), and only

to the power ≈ 15.3 in (4.7.6).

All that remains is to derive the constants Λ1,ψ. In a similar manner as in Section (7.1.1),

we have

un ∼
Un

(Z− ζm)2n+1/2 , (7.2.16)

as Z → ζm, for some sequence of constants Un which can be found by iteration of the

recurrence relation

0 = 2
n+1

∑
p=1

cos2p ψ + sin2p ψ

(2p)!
Γ
(
2n + 5

2

)

Γ
(
2n− 2p + 5

2

)Un−p+1

−
n

∑
p1=0

n−p1

∑
p2=0

n−p1−p2

∑
p3=0

n−p1−p2−p3

∑
p4=0

Up1Up2Up3Up4Un−p1−p2−p3−p4 , (7.2.17)

where U0 =
( 3

4

)1/4. Again, due to the dominant contribution from complex eigen-

values at other values of ψ, we are only able to calculate Λ1,ψ when ψ = kπ
4 , k ∈

{0, 1, . . . , 7}. For such orientations

Λ1,ψ ∼ lim
n→∞

(12)1/4(−1)n+1
(

2π
√

m2
1 + m2

2

)2n+3

Γ(2n + 3)
Un. (7.2.18)

By iteration of (7.2.17), we are therefore able to calculate Λ1,0 ≈ −89 and Λ1,π/4 ≈

−252; Λ1,ψ for ψ = kπ
4 , k ∈ {2, 3, . . . , 7} then follow using the invariance of (7.0.1)

under rotations ψ→ ψ + π
2 .

Numerical computations for ψ = 0, π
4 are compared to (7.2.15) in figure 7.4, with good

agreement. Note that machine error becomes significant at much larger values of ŝ

than in the example of Section 7.1; this is because the exponent in (7.2.15) is larger than

that in (7.1.14). The full analytical bifurcation diagram is drawn in figure 7.5a using

the value of Λ1,ψ calculated from the recurrence relation (7.1.16), and a comparison

between an analytical and a numerical snaking solution curve shown in figure 7.5b.
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ŝ

S
n
a
k
in
g
W

id
th

Student Version of MATLAB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

ŝ
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for (7.2.1). Right: percentage error in analytical formula compared to numerical
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Discussion

We have successfully applied the method of exponential asymptotics to homoclinic

snaking problems in both continuous (Chapters 3-5) and discrete systems (Chapters

6-7). The continuous system we chose was the cubic-quintic SHE (3.0.1). Close to onset

of a pattern-forming instability, conventional multiple-scales techniques at algebraic

orders reveal a leading-order steady front (Section 3.2) connecting the patterned state

to the trivial solution. However, this was predicted to exist only at the Maxwell point,

thus failing to produce the snaking region. Because the snaking region is exponentially

small, beyond-all-orders effects in the tail of the (divergent) asymptotic expansion must

be accounted for in order to fully describe it.

To this end, we first derived the behaviour of the late terms in the expansion using the

usual factorial-over-power ansatz (4.5.1) [1, 51]. These late terms were seen to consist

of contributions (4.5.14) from each of the complex singularities of the leading-order

solution, the dominant ones being those closest to the real line. Truncating optimally by

truncating each of these contributions after their least term, we saw that the remainder

is not algebraically small but exponentially small.

Due to truncation, the remainder equation (4.6.6) is inhomogeneous. Rescaling the

slow variable X = ε2x in the vicinity of the Stokes lines, i.e. close to maximal forcing,
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we saw explicitly how the coefficient of a complementary function to the remainder

equation varies smoothly from zero to non-zero as the Stokes lines are crossed (4.6.30).

Both this complementary function and a particular integral due to a deviation from

the Maxwell point are exponentially growing in the far-field. Requiring that these un-

bounded contributions vanish provides a condition relating the phase of the pattern to

the deviation from the Maxwell point, thus yielding the pinning mechanism which is

ultimately responsible for the snaking phenomenon. Furthermore, pinning may only

occur within an exponentially small distance from the Maxwell point, providing a for-

mula (4.7.7) for the width of the snaking region.

Armed with the full asymptotic expansion of a stationary front, we were then able

to construct localised patterns by matching two fronts placed back-to-back. The re-

sultant matching conditions (5.2.7)-(5.2.9) relate the (not necessarily equal) phase of

each front and the front separation to one another; these equations describe the snakes-

and-ladders bifurcation structure as the front separation varies. Thus we were able

to draw the bifurcation diagram analytically and compare the results with numerical

simulations. These comparisons are underpinned by a constructive derivation of the

constant Λ1. We were also able to extend this process to construct symmetric two-

pulses by matching together the exponentially decaying tails of two localised patches,

and showed how this interaction causes the snakes-and-ladders bifurcation to break

up into an infinite sequence of figure-of-eight isolas, in agreement with [4, 15, 53].

We found that the analytical formula for the snaking width gave good agreement in

the limit s → 0, as expected, albeit consistently giving a slight overestimate. However,

while the error for s = 1 is ≈ 100%, for s = 0.5 it is ≈ 50% (see figure 4.2), indicating

that we may have confidence in our predictions in the small-s limit. This confidence is

bolstered by the striking similarity that our formula bears to that derived by Susanto

and Matthews using variational methods [83], reproduced here in (4.7.9), although the

result of Chapter 4) is the more accurate as it takes into account exponentially small
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terms as well as those at leading order.

We then switched focus to study discrete snaking in the differential-difference equa-

tion (6.0.3) in Chapters 6-7. Application of the method follows a similar process as

that in Chapters 4-5, and also produces a set of formulae (6.8.8)-(6.8.9) describing the

snakes-and-ladders bifurcation within the exponentially small snaking region (6.7.5).

However, rather than confining solutions to the real line as in Chapters 4-5, we consid-

ered solutions to (6.0.3) which were localised in one direction at an arbitrary orientation

ψ to a square lattice. In this case, we showed that no exponentially growing terms are

switched on in the remainder when tan ψ is irrational, resulting in a snaking width

of zero. In addition, we found that when tan ψ = m2/m1, where gcd(|m1|, |m2|) = 1

and tan±π
2 = ±∞, the snaking width (6.7.5) decreases exponentially as (m2

1 + m2
2)

1/2

increases.

The results of Chapter 6 were derived for an arbitrary nonlinearity in (6.0.3). Thus, in

order to validate them numerically, we considered two specific examples in Chapter 7.

Unfortunately, we were unable to provide a quantitative comparison with numerical

results for all values of ψ, due to the lack of a method to compute the Stokes multiplier

Λ1,ψ when ψ 6= kπ
4 , k ∈ {0, 1, . . . , 7}; however, comparison with numerical results

indicates that the analytical formulae (6.7.5) for the snaking width scales in the correct

manner. Moreover, agreement between numerical and analytical results is good for

values of ψ for which we were able to calculate Λ1,ψ.

Thus we have demonstrated how the method of exponential asymptotics may be used

to describe homoclinic snaking near bifurcation, following the work in [22, 51, 56].

Furthermore, we have found that the method is applicable even when the leading-

order solution is not known explicitly. Motivated by our results, we shall now discuss

some possible directions for further work.
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8.1 Further work

Much of the current understanding of homoclinic snaking is in the context of systems

which are variational in time, conservative in space and reversible [4, 13, 96]. Although

progress has been made in extending results to problems in which these properties no

longer hold [10, 11, 54, 79] the picture is still far from clear. The methods used in this

thesis should also apply to problems of this type; for example the SHE with additional

terms such as those studied in [11]. It should be a relatively simple matter to keep track

of the extra terms through the exponential asymptotic equation, and thus see how these

terms affect the structure of the snaking region. The method should also be applicable

to the slanted snaking seen in systems with a conserved quantity or nonlocal terms

[35, 43].

The description of multi-pulses presented in Chapter 5 is far from complete, as we

have only considered symmetric two-pulses, and there are infinitely many other multi-

pulses in an infinite domain. While the matching process for solutions with more than

two pulses is unlikely to be analytically tractable, we expect further progress can be

made than has been reported in Chapter 5. Although the matching conditions (5.3.5)-

(5.3.6) and (5.3.8)-(5.3.9) are relatively complicated, preliminary investigations in the

limit of large pulse-width (i.e. setting the left-hand side of each matching condition

to zero) look promising. Further work is required to fully elucidate the phenomenon,

as are detailed numerical calculations against which to compare analytical results. In-

deed, little work has been done on multi-pulses, so further numerical work would be

of value in itself [4, 15, 53].

Some perhaps more interesting extensions of our work are motivated by the fact that

our calculation in Chapter 6 was done without specifying the nonlinearity F(u; r) in the

discrete system (6.0.3); see also [21, 51]. In fact, we were able to derive a general set of

formulae for the snakes-and-ladders bifurcation diagram without knowing explicitly
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what the leading-order front looked like. This is a great strength of the exponential

asymptotic method, as it allows much information to be gleaned from systems which

are otherwise impervious to asymptotic analysis. One immediate use for the results of

Chapter 6 is to systems such as the saturated nonlinearity studied in [99], in which a

leading-order front is unavailable. If a numerical front solution can be found, and ex-

tended into the complex plane to determine the position of the singularities, the bifur-

cation equations (6.8.8)-(6.8.9) could be used to provide a ‘semi-analytical’ description

of the snaking region. We note also that there is no reason why a similar result may not

be obtained for generalisations of the SHE studied in Chapters 3-5.

Moreover, it is likely that the exponential asymptotic method may prove especially use-

ful in the study of higher-dimensional and time-dependent snaking behaviour. Very

little is known about such problems [2, 16, 38, 61, 62, 68, 69, 90], in large part due to the

failure of dynamical systems techniques in systems with more than one ‘time-like’ vari-

able; of course, the situation is not helped by the substantially more difficult numerical

calculations required. However, since the exponential asymptotic method does not re-

quire an explicit leading-order solution, commonly unavailable in higher dimensions,

to be successful, it provides a very promising technique with which to investigate such

problems. Indeed, higher-dimensional and time-dependent exponential asymptotics is

a worthy candidate of research in its own right, as very little has been done [9, 23]. We

remark also that discrete systems such as (6.0.3) are an ideal candidate for such studies,

as they are simpler than, say, the two-dimensional SHE, and much easier to solve nu-

merically, while exhibiting very similar snaking behaviour. The obvious starting point

is to consider asymptotic solutions to (6.0.3) which are radially symmetric at leading-

order; higher-order equations are obviously not radially symmetric, and it would be

interesting to see how this affects the form of the solution and resultant snaking be-

haviour.

Another potential use for the calculation of Chapter 6 is in elucidating how fully two-
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dimensional localisations evolve along their solution curves. In a numerical study

[85] of the specific example (7.2.1), Taylor and Dawes describe this rather complex be-

haviour and observe several distinct snaking widths. Moreover, the localised patch

consists of different superpositions of one-dimensional fronts such as those studied in

Chapter 6 at different points along the snaking curve. Thus the analytical description

of fronts with arbitrary orientation in the plane developed in Chapter 6 may shed light

on how two-dimensional localised patches increase in extent.

We have seen that the method presented first by Kozyreff and Chapman [22, 56] and

applied further here provides a self-consistent and rigorous derivation of the behaviour

the snaking region in the cubic-quintic SHE. In deriving explicitly the effects of Stokes

lines in the asymptotic expansions of stationary fronts, we have provided further sup-

port of Pomeau’s intuitive explanation that it is phase-locking between spatial scales

which is responsible for fronts remaining stationary close to the Maxwell point [74],

and that this pinning leads to homoclinic snaking. We expect that the techniques given

here will prove extremely useful in the investigation of other localised phenomena

about which little is presently known, as well as having broader application to prob-

lems in pattern formation and nonlinear dynamics.
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On complex solutions of the

eigenvalue equation (6.4.5)

Suppose that κ = a + ib is such that (6.4.5) holds, i.e.

cos(κ cos ψ) + cos(κ sin ψ)− 2 = 0 (A.0.1)

and a and b are real, non-zero constants. As sin2 Θ + cos2 Θ ≡ 1, (6.4.10) can be rewrit-

ten to give

cos2 ψ
(
1− cos2(κ cos ψ)

)
= sin2 ψ

(
1− cos2(κ sin ψ)

)
. (A.0.2)

Thus (A.0.1) and (A.0.2) taken together may be formulated as a system of two algebraic

equations, treating cos(κ cos ψ) and cos(κ sin ψ) as two unknown constants. Of course,

in actuality there is only one unknown, the eigenvalue κ; any solution must therefore

provide a consistent value of κ.

Solving this system is a simple exercise, and we find upon doing so that either

cos(κ cos ψ) = cos(κ sin ψ) = 1, or

cos(κ cos ψ) =
3 tan2 ψ + 1
tan2 ψ− 1

, cos(κ sin ψ) = − tan2 ψ + 3
tan2 ψ− 1

. (A.0.3)

The first instance gives real κ and is simply the solution given by (6.4.6) and (6.4.7),

which we have already discussed fully in Chapter 6. In the second instance, separating
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κ into its real and imaginary parts, we have

cos(a cos ψ) cosh(b cos ψ)− i sin(a cos ψ) sinh(b cos ψ) =
3 tan2 ψ + 1
tan2 ψ− 1

, (A.0.4)

cos(a sin ψ) cosh(b sin ψ)− i sin(a sin ψ) sinh(b sin ψ) = − tan2 ψ + 3
tan2 ψ− 1

. (A.0.5)

However, the imaginary part of both of the above equations must vanish, as the right-

hand side of each is real. Therefore sin(a cos ψ) = sin(a sin ψ) = 0, giving a cos ψ =

2M1π, a sin ψ = 2M2π for (M1, M2) ∈ Z2. However, (A.0.1) now reads

cos(κ cos ψ) + cos(κ sin ψ) = cosh(b cos ψ) + cosh(b sin ψ) = 2. (A.0.6)

This has real solutions only if b cos ψ = b sin ψ = 0, which gives b = 0, a contradiction

as b = =κ 6= 0. Thus there are no solutions κ to (6.4.5) with =(κ) 6= 0 that also satisfy

(6.4.10).
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