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Abstract

The dynamical evolution of the matter content of the universe is modelled throughout

this study as that of self and mutually gravitating Lagrangian fluids in the so called

ΛCDM-Concordance cosmological framework which leads to the Hierarchical Clus-

tering paradigm for the formation of cosmic structures. As a numerical tool for in-

vestigating galaxy formation scenarios in this context, we employed GADGET2 (see

Springel 2005) and the more recent GADGET3 (see Springel et al. 2008): we describe

the numerical solvers implemented in the code and test their behaviour in both gravi-

tational and hydrodynamical setups of relevance for cosmological calculations (Tasker

et al. 2008). Using the outputs of the MILLENNIUM simulation and the relative Semi

Analytical galaxy catalogues produced by Croton et al. 2006, we developed an algo-

rithm aimed at the identification of large spherical underdense regions in the simulated

Large Scale Structure (LSS), at z = 0. Focusing on this peculiar environment, we

found a confirmation in numerical simulations for the observations by Trujillo, Car-

retero & Patiri (2006). The Tidal Torque Theory can predict the spatial distribution

of the orientation of both the angular momentum vector of Milky Way size galax-

ies located on the surface of large spherical voids, and of their host DM halos. We

re–simulated the 5 GIMIC regions (Crain et al. 2009) following the gravitational evo-

lution of the CDM component only. We then applied a Semi Analytical Model (SAM)

of galaxy formation (De Lucia & Blaizot 2007) obtaining the galaxy catalogues and

merger histories for the 5 different volumes simulated. It is not yet well understood

if and how the LSS environment can influence the Star Formation (SF) histories of

galaxies. Starting from the stellar mass content of semi–analytical galaxies at z = 0,

we defined characteristic epochs for their build up and, as a preliminary study, investi-

gated how these distribute as a function of different LSS environments.
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Chapter 1

Cosmological Framework

1.1 Standard Cosmological Model

Hubble’s observation of the linear distance-velocity relation for galaxies came after

the work of Friedmann, whose model had already foreseen the non-static nature of a

Universe that obeys the Cosmological Principle and General Relativity (hereafter GR).

Einstein’s theory of gravitation generalizes the fundamental ideas of Special Relativity:

starting from the assumption of the invariance of the speed of light c under Lorentz

transformation, Einstein also realized that it was necessary to

• abandon the idea of a gravitational potential related to the distribution of matter

and whose gradient gives the gravitational field at any point;

• assume that our four-dimensional space-time is curved by the presence of matter;

• impose that free-falling objects describe geodesics in space-time.

These considerations lead to GR theory, in which gravitation is not formulated as a

force or a field but as a curvature of a 4-D space-time sourced by matter. All isolated

systems (i.e. bodies in free-fall and light rays) follow geodesics which are bent by

space-time curvature. In other words their trajectories are affected by the distribution

of matter around them. This is phenomenologically what gravity means.
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By geometrical considerations it is possible to see that a suitable metric for such a Uni-

verse is that introduced by Friedmann-Lemaitre-Robertson-Walker (hereafter FLRW):

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(1.1)

in which the square root of the term in square brackets represents the physical distance

between two points (say dl), whereas (r, θ, φ) are polar and comoving.

Consider Einstein’s equation:

Gik = Rik −
1

2
gikR =

8πG

c4
Tik (1.2)

with the symbols having their usual meanings, and assume an homogeneous and isotropic

perfect fluid, choosing for the energy-momentum tensor the expression:

Tik = (p+ ρc2)UiUk − pgik (1.3)

Solving this equation with the FLRW metric leads to:(
ȧ

a

)2

=
8πG

3
ρ+

kc2

a2
(1.4)

ä

a
= −4πG

3
(ρ+ 3p). (1.5)

Known as the Friedmann equations, they describe the time dependence of the expan-

sion factor and can be looked as, respectively, an energy conservation and a sort of sec-

ond law of Newtonian dynamics. Historically, in order to avoid an expanding universe

Einstein added to his equation a constant term Λ, but after the observations of Hub-

ble this artifact disappeared. Eventually this term reappeared in modern cosmology,

where it is given a very peculiar and important meaning because it seems to account

for current observational evidence indicating the expansion rate of the Universe.

As outlined above by looking at the FLRW metric, we see that objects in free-fall

follow geodesics in space-time. Referring to GR, and thinking of galaxies as non

relativistic objects, their motion is described by dl ' 0 and so the comoving distance

does not change during the expansion. This shows that it is the behaviour of the scale

factor (a(t) in 1.1) that drives the observed flow of galaxies. Identifying H with ȧ/a

we have theoretically reproduced the velocity field observed by Hubble, and obeyed the
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Cosmological Principle. Photons also move along geodesics. In detail, their motion

can be described by:

ds2 = 0 (1.6)

which means:

c2dt2 = dl2 = a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.7)

which is the infinitesimal equation of motion that has to be integrated to get the distance

travelled by a photon in a given time interval. Choosing a photon with constant (θ,φ)

coordinates, that travels between t1 and t2, its change in comoving coordinates is given

by: ∫ r2

r1

dr√
1− kr2

=

∫ t2

t1

c

a(t)
dt (1.8)

which is called the equation of propagation of light.

In order to fully characterize the perfect fluid we have assumed, we also need an equa-

tion of state. Usually this is written:

p = wρc2 (1.9)

where the parameter w, describing the kind of perfect fluid, is chosen in the Zel’dovic

interval: 0 < w < 1. It can be easily shown that any universe with this kind of

equation of state, which is a solution of the Friedmann equations, will present an initial

singularity at t = 0 where the expansion parameter a(t = 0) = 0 and the density ρ

diverges. This initial unavoidable event is called the Big Bang and is a peculiar feature

of the Standard Cosmological Model here outlined.

An important quantity that must be introduced is the critical density: the FLRW metric

of equation (1.1) reduces to the Euclidean metric of a flat space-time taking k = 0.

Considering equation (1.6) with this choice for k, and solving for ρ, gives the critical

density:

ρc(t) =
3c2H2(t)

8πG
(1.10)

that obviously depends on time, and nowadays takes the value

ρ0c = 1.9× 10−29 h2 g cm−3 (1.11)

A density larger than this would mean that our universe is closed (geometrically this

corresponds to k = 1); on the other hand a lower density would be characteristic of an



open universe (k = −1). In the literature the value of the density with respect to the

critical one is expressed by a parameter

Ω(t) =
ρ(t)

ρc(t)
(1.12)

In order to understand the geometrical shape of our universe and its future it is neces-

sary to know the amount of matter and energy contained in it. By relating the equation

of state (equation 1.9), referring to the value of the parameter w and constraining the

expansion to be adiabatic it is possible to see that:

• for pressureless matter w = 0 and ρm(a) ∝ a−3

• for radiation w = 1
3

and ρr(a) ∝ a−4

Going back in time, i.e. to smaller values of a, and looking at ρm and ρr, there must

have been an epoch in which the two densities coincided, named the equivalence period

(τeq), before which it was radiation that dominated the expansion, and after which the

matter became predominant (τeq when ρDM(τeq) = ρrad(τeq)).

In this framework is set another pillar of the Standard Cosmological Model: the Big

Bang Nucleosynthesis (hereafter BBN). This model has undergone many observational

tests that have confirmed all its prescriptions for the abundances of light elements in

the universe.

1.2 Standard paradigm of structure formation

Clusters of galaxies are the largest virialized structures in the universe. There are many

peculiar properties that make them very interesting from a cosmological point of view.

It is possible to outline a widely accepted scenario for cosmic structure formation as

follows:

• The Universe appears to be dominated by non baryonic Dark Matter (DM) that

doesn’t interact with radiation and seems to be collisionless. Recently, in order

to account for observational evidence regarding the global expansion of our uni-

verse, additional models have been proposed for what is called Dark Energy that

seems to drive the expansion on very large scales.
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• The amount of baryonic matter is that predicted by Big Bang Nucleosynthesis

and contributes about 1/6th of the total amount of matter. Somewhat less than

10% of this resides in the form of stars, galaxies and condensed material, the rest

being diffuse.

• At the epoch of hydrogen recombination the universe could be considered ho-

mogeneous and isotropic on sufficiently large scales. Below this threshold there

were small inhomogeneities, generated by quantum effects during an inflation-

ary stage soon after the initial singularity. These fluctuations constitute a random

Gaussian field. In this framework their is no characteristic scale for structure for-

mation.

• These seeds grow by gravitational instability, and their evolution after recombi-

nation is driven by the gravity of the DM: the earliest structures formed are DM

halos.

• Galaxies formed later when baryons collapsed dissipatively in the dark matter

potential wells.

The model that best describes these views is that of hierarchical clustering, based on

the assumption that non-relativistic Cold Dark Matter drives the process and that the

density fluctuation spectrum was such that small structures were preferred. Hierarchi-

cally larger (more massive) structures formed by coalescence and merging of smaller

ones.

1.2.1 More about the hierarchical clustering model

After equality (τeq), the dark matter fluid (collisionless, without electromagnetic in-

teractions and non relativistic) had a vanishing pressure. As a consequence it could

concentrate in gravitational wells, deepen the potential and also amplify the pertur-

bations. Being a causal mechanism it could operate only inside the Hubble radius

so, even today, the Fourier Spectrum of CDM perturbations has a characteristic scale

corresponding to the Hubble radius at ”matter-radiation equality” . Problems in the de-

termination of this quantity arise because soon the process lost linearity and what we
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can observe are non linear structures: numerical simulations are required to make pre-

dictions. During the radiation dominated era the CDM perturbations inside the Hubble

radius could not grow. Smaller wavelengths (looking at the Fourier spectrum) entered

the Hubble radius first. As they entered earlier than longer wavelengths they were the

first to be amplified and the first that became non linear. The smallest structures in the

universe are therefore the oldest ones. As progressively smaller and smaller wavenum-

bers entered the horizon later, so perturbations on larger scales reached non-linearity

at later times.

1.3 Dynamical features

The formation process of galaxy clusters is essentially driven by gravity. Hydrodynam-

ical forces, radiative cooling, star formation, energy feedback and thermal conduction

involve only the baryonic component and so have a smaller effect on the evolution.

Observations indicate that galaxy clusters are younger than their hosted galaxies so

they retain much more information about the cosmological parameters involved: their

mass and abundance are very sensitive to the amplitude σ8 of the power spectrum of

primordial fluctuations P (k) and to the density parameter Ω0. The formation epoch

zform and evolutionary properties are almost exclusively connected with σ8. Galaxy

clusters have been successfully used to map the density and velocity fields of mat-

ter in the universe. In order to analyse the dynamical and kinematical properties of

clusters of galaxies (to put constraints on cosmological parameters) it is necessary to

distinguish between different constituents as we will now describe.

1.3.1 Dark Matter

Dark matter dominates the gravitational field of galaxy clusters. As such they can be

considered as collisionless systems to a first approximation: the motion of each DM

particle is determined by the mean gravitational field of the system because two-body

interactions are negligible. Through the non-collisional Boltzmann equation (Vlasov

equation) a full description of the dynamics of a collisionless system can be described.

Solving this equation is very difficult and usually its momenta with respect to velocity
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are taken:

• The zero order moment gives the continuity equation

• The first order moment gives the conservation of momentum: Jeans equation

This last relation describes the interplay between the gravitational potential gradient

and the density and velocity fields of the system. A spherical, symmetric and static

system has a radial gravitational potential gradient proportional to the ratio

M(< r)/r2.

Isolating the mass inside r, the Jeans equation can be written :

M(< r) = −rσ
2
r(r)

G

[
d log ρ

d log r
+
d log σ2

r

d log r
+ 2β(r)

]
(1.13)

where M(< r) is the total mass that generates the potential well, and β(r) represents

the anisotropy parameter of the velocity field:

β(r) = 1− σ2
t (r)

σ2
r(r)

(1.14)

and the local quantities ρ(r), σ2
t (r), σ2

r(r), β(r) refer to any distribution of points in

dynamical equilibrium within the potential(σt and σr are, respectively, the tangential

and the radial component of the velocity dispersion). The spatial and dynamical dis-

tribution of such a tracer must satisfy the Jeans equation in order to give the right total

mass of the system.

Multiplying equation (1.13) by the radial coordinate r and integrating over the whole

space returns the virial theorem:

〈v2〉 =
GM

r
. (1.15)

If the virial theorem is applied to a finite region of radius r0 (e.g. the central region

of a cluster), the range of integration is modified and an additional term of superficial

pressure (∝ ρ(r0)) must be added. Forgetting this manipulation leads to an underes-

timation of the total mass. A rich galaxy cluster can have a total mass that exceeds

1015M�. The amount of baryonic matter is a few times 1014M� and consists of two

main components: hundreds of galaxies and a diffuse hot intracluster plasma (ICM).

This second component is several times more massive than the whole galactic contri-

bution.



1.3.2 Intra Cluster Medium

This is the collisional component: a hot plasma with a mass several times that of the

galaxies (MICM ' 1014M�). If this gas is in thermodynamical equilibrium within

the potential well of the cluster it must be completely ionized with a temperature of

≈ 108K. Therefore galaxy clusters are strong X-ray sources of free-free emission,

with typical luminosity Lx ≈ 1045 erg s−1. The dynamical status of a collisional

gas is described by the equation of hydrostatic equilibrium. Under the assumption of

a static and spherically symmetric potential this equation is equivalent to the Jeans

equation (1.13). Substituting the velocity dispersion term with the virial temperature:

kT/µmp = σ2 and taking a zero velocity field anisotropy β = 0 (i.e. the isotropy is

due to collisions) the hydrostatic equilibrium equation is written:

M(< r) = −rkT (r)

Gµmp

[
d log ρ

d log r
+
d log T (r)

d log r

]
. (1.16)

The predictions of simulations for this component agree with observations. From re-

cent, high resolution simulations it emerges that:

• The ICM distribution follows the DM density profile, but has a wider spatial

distribution. This is an effect of the collisional nature of this component: during

gas inflow into DM potential wells, an angular momentum and energy transfer

takes place from the DM to the ICM. This mechanism results in a baryon fraction

increasing with the radius.

• The ICM gas is supported by its thermal pressure and not by its velocity disper-

sion. Merging with substructures can slightly modify the situation but thermal

pressure still dominates.

• The ICM distribution is, to first order, isothermal. Actually temperature de-

creases in the outer regions and at the virial radius it is a factor of 2 lower than

in the center.
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1.4 Linear Jeans theory

In the framework of the standard cosmological model, the cosmic structures we ob-

serve formed by gravitational amplification of primordial density fluctuations. To a

first approximation, the early universe can be considered as a perfect, Newtonian, self-

gravitating fluid. The behaviour of this system is described by the following equations:

conservation of mass (i.e. the continuity equation)

∂ρ

∂t
+ ~∇(ρ~v) = 0; (1.17)

conservation of momentum (i.e. Euler’s equation)

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p− ~∇Φ; (1.18)

together with an equation relating the gravitational potential Φ to its

source (i.e. Poisson’s equation) :

∇2Φ = 4πGρ; (1.19)

an equation of state for the fluid (relating pressure,density and entropy, S)

p = p(ρ, S) (1.20)

and finally an equation describing the temporal evolution of entropy. This last equation

is simplified by assuming that we are only dealing with adiabatic systems:

dS

dt
= 0 (1.21)

For such a system the equation of state is also simplified:

p = p(ρ, S) −→ p = p(ρ). (1.22)

The system of these equations admits the static solution of a homogeneous and isotropic
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universe characterized by :

ρ = ρb = const (1.23)

p = pb = const (1.24)

~v = 0 (1.25)

Φ = Φb = const (1.26)

S = const. (1.27)

It should be noted that such a solution cannot be consistent: the Poisson equation does

not work with a constant gravitational potential if ρ 6= 0. This can be seen as an

undesirable consequence of a Newtonian description of a static and infinite universe.

It is anyway useful to consider this unperturbed solution and to apply first order per-

turbation theory to study the evolution of such a system. The perturbed solution in an

expanding universe (Einstein-de Sitter) has the following form in physical coordinates:

ρ = ρb(1 + δ) (1.28)

p = pb + δpb (1.29)

~u = H~r + ~v (1.30)

Φ = Φb + φ (1.31)

(1.32)

where ~u includes the contribution of both an Hubble expansion term and of the pe-

culiar velocity of the object and the density perturbation ρbδ ≡ δρ is the source of

the gravitational potential perturbation φ. Consider a universe dominated by matter

and inside the horizon; inserting these perturbed quantities into the set of equations

(1.17 to 1.22) in physical coordinates and manipulating them to obtain the comoving

expressions gives the system of three equations that describes the fluid behaviour:

∂

∂t
δρ+

ρb
a
~∇~v + 3Hδρ = 0 (1.33)

∂

∂t
~v +H~v = −v

2
s

a
~∇δ −

~∇φ
a

(1.34)

∇2φ

a
= 4πGρbδ. (1.35)
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In order to simplify one moves to Fourier space and imposes plane wave solutions of

the form:

f(~x, t) = fk(t) exp(i~k~x) (1.36)

where ~x is the comoving coordinate and k = 2π/λcom. Referring to the density field

perturbation it takes the shape:

δρ = δρk exp(iωt) (1.37)

and rewriting the dynamical equations:

δ̇ +
i~k~vk
a

= 0 (1.38)

~̇vk +
ȧ

a
~vk = −i

~k

a
(v2
sδk + φk) (1.39)

φk =
4πGρbδka

2

k2
(1.40)

it is possible to reduce the whole system description to a single differential equation in

δk. It can be shown that, for all perturbations, only the component parallel to the wave

vector ~k is significant in the time evolution. The equation obtained is:

δ̈k + 2
ȧ

a
δ̇k + δk

[
k2v2

s

a2
− 4πGρb

]
= 0 (1.41)

Looking at the terms inside square brackets, the value assumed by the quantity

λJ =
2π

kJ
= vsa

(
π

Gρb

) 1
2

(1.42)

allows a distinction between two kinds of solutions:

• λ < λJ gives two oscillating solutions (the pressure term dominates);

• λ > λJ are solutions with gravitational instability (gravity term dominates).

The explicit solution in the case of instability represents the growth of a density pertur-

bation (i.e. the amplification of an initial fluctuation in the density field). Everything

holds for a matter dominated universe (i.e. after the time of equivalence= τeq) and

until: δ � 1. Looking at τ < τeq means looking at a radiation dominated universe

containing different species. The general relativistic derivation of the evolutionary
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equation for a density perturbation in a matter-radiation fluid leads to a differential

equation similar to equation (1.41):

δ̈k + 2
ȧ

a
δ̇k + δk

[
k2vs −

32

3
πGρb

]
= 0 (1.43)

where k is now the physical wavelength and the factor 32/3 accounts for all the possi-

ble sources of the potential well (relativistic pressure contribution). From these equa-

tions it is possible to predict the evolution of a linear density perturbation at any epoch

and for any wavelength.

1.5 Thesis Outline

The remainder of this thesis is laid out as follows: in Chapter 2 I introduce the nu-

merical algorithms I have used to complete the work described here. In Chapter 3 I

describe some of the numerical testing I undertook in order to establish the accuracy of

these numerical methods. In Chapter 4 I introduce a method for identifying a particu-

lar environment in the Large Scale Structure, galaxy voids, and examine the alignment

of DM halos near these large underdense structures. In Chapter 5 I introduce a set of

numerical models and use them to examine the dependence of galaxy formation on the

larger scale environment. Finally, I conclude and make some suggestions for further

work in Chapter 6.



Chapter 2

Numerical algorithms

Computational modelling of the formation and evolution of Large Scale Structure

(hereafter LSS) in the Universe has traditionally been tackled as the modelling of the

time evolution of a set of self gravitating fluids, either collisional (ideal gas hydrody-

namics) or non-collisional (dark matter), within a volume expanding according to a

preferred cosmological model.

Numerical models adopt two main approaches to the description of the kinematics of

a fluid element:

• Eulerian: the motion of a fluid element is described with respect to an external

(to the fluid) system of reference such as a fixed mesh, resulting in the spatial

discretization of the continuum.

• Lagrangian: the motion of a fluid element is described with respect to the fluid

element itself, for example sampling the fluid properties with tracers (such as

particles), thus resorting to a discretization in mass of the continuum.

Both these traditional approaches have found their way into modern computational

techniques, each of them presenting a number of benefits and unavoidable drawbacks

(see Dolag et al. (2008) for a review). Here we are focusing on the Lagrangian ap-

proach, such as the one implemented in the widely disseminated GADGET2 code

(Springel 2005).
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To calculate the dynamical evolution of a self gravitating collisional fluid, it is neces-

sary to calculate the resulting net force acting on each individual Lagrangian particle:

F = Fgrav + Fhydro (2.1)

The gravitational and the hydrodynamical contributions are calculated by means of

very different algorithms.

2.1 Gravity calculation

For the most part of the life of the Universe, the formation and evolution of the LSS

can be modelled by following the dynamics of a non-collisional, non-relativistic, self

gravitating fluid (namely ”Cold Dark Matter”, CDM) in an expanding background

space. A Lagrangian representation of this fluid resorts to particles, which can be

thought as a finite sampling of CDM phase-space density.

The dynamics of these Lagrangian elements can then be derived by solving the N-boby

problem for a system of particles having mass m, position ~x and momentum ~p, and

living in a Universe whose expansion is described by a scale factor a = (1 + z)−1

(where z is the redshift).

The continuum limit of such a discretization is described by the non-collisional Boltz-

mann equation (or Vlasov equation), assuming a phase space distribution function

f(~x, ~p, t) :
∂f

∂t
+

~p

ma2
~∇f −m~∇Φ

∂f

∂~p
= 0 (2.2)

which needs to be coupled to the Poisson equation for the gravitational potential:

~∇2Φ(~x, t) = 4πGa2 [ρ(~x, t)− ρ̄(t)] (2.3)

where Φ is the peculiar gravitational potential and ρ̄(t) is the background density.

In other words, the description of the dynamics of this system of particles is given by

the Hamiltonian:

H =
∑
i

~p2
i

2mi a(t)2
+

1

2

∑
ij

mimj ϕ(~xi − ~xj)
a(t)

(2.4)
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whereH = H(~p1, . . . , ~pN , ~x1, . . . , ~xN , t) and the canonical momenta can be expressed

as ~pi = a2mi~̇xi.

In our discrete Lagrangian approach, the peculiar potential at position ~x can be written

as:

φ(~x) =
∑
i

mi ϕ(~x− ~xi) (2.5)

Let’s consider a Newtonian gravitational potential of the form given in equation (2.5),

for a system of two point masses. The potential at the position of particle i (relative

position) due to particle j, is:

φ(xi) = − Gmj

xi − xj
(2.6)

which diverges for particle j at zero separation from particle i. In order to avoid this,

and also to prevent spurious two body relaxations (Steinmetz & White 1997), a co-

moving softening length, ε, is usually introduced, such that the expression given in

equation (2.6) becomes:

φ(xi) = − Gmj

[(xi − xj)2 + ε2]
1
2

(2.7)

which becomes equivalent to that of a Plummer sphere of size ε, for null particle sep-

arations. The softening value is typically chosen to be roughly 1/40th of the mean

interparticle separation in the computational box (Power et al. 2003). Once the pecu-

liar gravitational potential, at the particles positions, is known, it is then possible to

describe the dynamics of the system by means of the comoving equations of motion

(for each particle):
d~p

dt
= −m~∇Φ (2.8)

and
d~x

dt
=

~p

ma2
. (2.9)

which can be combined, once the peculiar velocity ~v = a~̇x is introduced:

d~v

dt
+ ~v

ȧ

a
= −

~∇Φ

a
. (2.10)

Different algorithmic choices are available for computing the gravitational potential of

a large number of Lagrangian particles, such as the ones involved in a cosmological

calculation.
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2.1.1 Direct summation

In a Lagrangian representation of a self gravitating fluid, the most direct way of calcu-

lating the value of the gravitational potential at a particle position is given by:

Φ(~r) = −G
∑
j

mj

(|~r − ~rj|2 + ε2)
1
2

(2.11)

which provides as a solution of the N-Body problem the exact Newtonian potential. In

this formulation it is possible to note the presence of the gravitational softening term

ε, already discussed in equation (2.7). In order to perform this accurate calculation

of the potential, this algorithm needs to compute a sum over all particles for each

individual particle. This results in a calculation scaling ∝ N2, where N is the number

of particles, therefore bearing a very high computational cost for large numbers of

fluid tracers. In cosmological calculations of galaxy formation the number of particles

needed for sampling the fluid’s phase space is typically very large and, furthermore,

reasonable approximations of the exact Newtonian potential can be tolerated: thus

direct summation is not used in cosmological simulations.

2.1.2 Multipole expansion: the oct-tree method

In order to overcome the N2 bottleneck of direct summation, a widely used approach

involves the use of a multipole expansion of the gravitational potential.

Despite the Universe being homogenous and isotropic on sufficiently large scales, the

evolution of the LSS leads to an highly clustered matter distribution on scales well

below the horizon. Gravity is a long range force and, in principle, the total gravitational

potential evaluated at a particle’s position should take into account the contribution

from all the particles in the simulation box, as in the direct summation method. The

clustered distribution of matter on the scales typical of the LSS, allows for a multipole

approximation to be taken: the contribution to the local gravitational potential provided

by a group of particles (a clump) which is sufficiently small and distant can be safely

approximated as that of a macro-particle positioned at the center of mass of that distant

matter clump. In other words, if the distant particles clump is seen, by the particle

under consideration, to subtend a small enough angle, a multipole approximation of
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the gravitational potential of such a matter distribution can be taken as the contribution

to the local gravitational potential.

This approach is implemented by the so called tree algorithms, out of which the most

commonly adopted in cosmological codes is the Barnes-Hut tree, as it was first intro-

duced by Barnes & Hut (1986). This is an iterative method also known as an oct-tree:

the whole computational box (of linear size L, called the root) is bisected through its

center in all three spacial directions, resulting in eight smaller cubes of linear size L/2.

At each successive iteration, each of these smaller cubes is divided into eight again and

the algorithm continues to iterate until a level is reached in which the cubes are either

empty or contain single particles (called the leaves). So, all leaves contain informa-

tion about an individual particle while, at the upper levels toward the root, collective

information for groups of particles are stored in the tree nodes. In order to evaluate the

Figure 2.1: 2-Dimensional representation of Barnes and Hut oct-tree, from Springel 2005

gravitational potential at each particle position, the tree needs to be walked: starting

at the root level, it is asked if a node’s angular dimension, as seen from the particle

position, is smaller than a fixed value (the opening angle). If this condition is met,

the multipole approximation of the potential contributed by particles stored within that

node can be taken. In the node’s angular dimension is bigger than the opening angle,

then it is opened and its branches are walked until another node meets the geometrical

criterion, or the leaves are reached.

Building such a tree is not computationally expensive, while walking the tree takes

a considerable computational time: nevertheless, estimating the gravitational poten-
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tial using this algorithm requires on the order of Nlog(N) operations, thus proving

computationally efficient with respect to the direct summation approach.

In the oct-tree algorithm presented by Barnes & Hut (1986), the opening angle was

defined with a geometrical criterion:

α ≈ d

l
(2.12)

where d is the linear dimension of the node of interest and l the distance from the

current particle position.

2.1.3 Potential on a mesh: the PM method

In the Particle-Mesh approach, the gravitational potential is assumed to be a field-

quantity and it is calculated on a computational mesh. These algorithms start by trans-

ferring the Lagrangian mass distribution onto a 3-dimensional mesh. This is done by

smoothing particles’ densities on the mesh. Once the mass distribution is loaded onto

the mesh, the gravitational potential Φ can be calculated, in Cartesian coordinates, by

convolving the mass density with a suitable Green’s function g(~x):

Φ(~x) =

∫
g(~x− ~x′)ρ(~x′)d~x′. (2.13)

It is possible to show that, by choosing

g(~x) = −G/|~x| (2.14)

and moving to Fourier space, the Poisson equation ( 2.3) becomes a simple multiplica-

tion:

Φ̂(~k) = ĝ(~k) ρ̂(~k). (2.15)

The Fourier transforms are fast to perform thanks to the widely used fast FFTW algo-

rithms (see www.fftw.org), and the Green’s function ĝ(~k) needs to be computed only

once when the cubic mesh is initialized at the beginning of the simulation. Once the

potential is obtained at the mesh points, the corresponding force can be calculated dif-

ferentiating the potential. A final interpolation of the forces, from the mesh points back
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to the particle positions, allows for the equation of motion of each Lagrangian particle

to be solved.

This class of force calculation algorithms, typically employ on the order of Nlog(N)

operations to reach the solution, with N being the number of mesh points. It is worth

mentioning that the most relevant limitation of this method resides in its approximate

handling of highly clustered distributions of particles: when a single mesh cell is filled

with a large amount of Lagrangian tracers the force resolution obtained is poor. In

order to overcome this shortcoming of the method, a very large mesh should be used

(large N ), at the price of reducing the computational efficiency of the fast Fourier

transform algorithms.

2.1.4 GADGET2 gravity calculation

In GADGET2, the gravity calculation is performed with the hybrid TreePM approach.

Following Springel (2005), the gravitational potential can be split in Fourier space such

that

Φ~k = Φlong
~k

+ Φshort
~k

(2.16)

where

Φlong
~k

= Φ~k exp(−~k2r2
s ) (2.17)

with rs being the physical scale for the force-split. The long-range component of the

potential (PM ) is then calculated on a mesh, by means of FFT methods in a very

efficient and accurate way. It is possible to obtain an expression for the short-range

part of the potential, exploiting the fact that, for rs � L with L being the box size, the

short-range solution of the Poisson equation ( 2.3) in real space is given by:

Φshort(~x) = −G
∑
i

mi

~ri
erfc

(
~ri
2rs

)
. (2.18)

which also provides a cutoff at short range for the PM estimate of the gravitational

potential and an upper limit (i.e. a long range cutoff) for the tree calculation of the

potential. With this implementation, the tree needs to be walked only for a small spatial

region of size rs � L around each particle. Using this hybrid method, a very accurate

estimate of the long range force is obtained while keeping the main advantages of tree

algorithms and overcoming the resolution issues of the PM approach.
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In GADGET2, the adopted tree algorithm is very similar to the one presented in section

(2.1.2) with the choice of considering only the monopole in the multipole expansion

of the potential of a tree node. The estimate thus provided is less accurate with respect

of a choice that takes into account higher multipole orders, but this is compensated by

the limited range of the tree calculation and by the considerable gain in computational

efficiency.

The criterion adopted in GADGET2 for walking the tree and making a decision on

when a node needs to be opened or not, is not purely geometrical as the one presented

in equation (2.12). Walking the tree, a node of massM , linear size l, at distance r from

the particle under consideration, is considered for usage if:

GM

r2

(
l

r

)2

≤ α |~a| (2.19)

where |~a| is the size of the total acceleration obtained in the last timestep, and α is

a tolerance parameter. In this criterion the dynamical state of the simulation is taken

into account: the idea is to limit the absolute force error, introduced by the monopole

approximation of the particle-node interaction, by a comparison of an estimate of the

truncation error with the total expected force.

In the PM part, the smoothing of the density onto the mesh and the force interpolation

from the mesh points back onto the particle positions is done using the CIC (Cloud In

Cell) approximation, which is a common choice for this kind of PM algorithm.

2.2 Hydrodynamical calculation

Within the gravitational framework outlined in the previous sections (and also in 1.4),

cosmological codes that include hydrodynamics also need to follow the time evolution

of the baryonic matter in the universe. This is modelled as a self gravitating fluid whose

gravity is described as in the CDM case (i.e. it is assumed to be safe to calculate ~∇Φ

as outlined in the previous section).

This baryonic ideal fluid, mainly composed by hydrogen end helium, undergoes colli-

sional dynamics and in order to follow its evolution a set of hydrodynamical equations
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needs to be solved. The continuity equation :

dρ

dt
+ ρ~∇~v = 0 (2.20)

describes the conservation of mass, while the Euler equation:

d~v

dt
= −

~∇P
ρ
− ~∇Φ (2.21)

describes the conservation of momentum, and the first law of thermodynamics:

du

dt
= −P

ρ
~∇ · ~v (2.22)

describes the conservation of energy for a non radiative (i.e. adiabatic) fluid.

This set of equations needs to be closed by an equation that relates the pressure P

with the internal energy per unit mass u of the ideal gas element. Assuming an ideal

monoatomic gas, with adiabatic index γ = 5/3, the equation of state provides the

required closure of the set of hydrodynamical equations:

P = (γ − 1)ρu (2.23)

As in the calculation of the gravitational potential, the hydrodynamical evolution of

the ideal fluid needs to be expressed in an expanding background. This leads to the

following form for the equation of hydrodynamics :

∂ρ

∂t
+

3ȧ

a
ρ+

1

a
~∇ · (ρ~v) = 0 (2.24)

∂~v

∂t
+

1

a
(~v · ~∇)~v +

ȧ

a
~v = − 1

aρ
~∇P − 1

a
~∇Φ, (2.25)

∂

∂t
(ρu) +

1

a
~v · ~∇(ρu) = −(ρu+ P )

(
1

a
~∇ · ~v + 3

ȧ

a

)
(2.26)

respectively, in which a is the scale factor for the expansion of the Universe.

One Lagrangian approach to the solution of the hydrodynamical equations for an ideal

fluid is called Smoothed Particle Hydrodynamics (hereafter SPH): in this technique,

the Lagrangian fluid element is represented by a particle (all particles share the same

mass value) and physical quantities characterizing its behaviour are obtained by a spa-

tial smoothing with a kernel function over a finite adaptive volume. In other words,
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physical quantities pertaining to a Lagrangian element of the fluid are convolved with

a kernel function (e.g. a Gaussian or a spline window function) rather than a Dirac δ

function centered at the particle position.

Following Monaghan (1992) and starting with the general expression for the smoothing

of a quantity A with a window function W :

〈A(~x)〉 =

∫
W (~x− ~x′, h)A(~x′)d~x′ (2.27)

a normalization for the kernel function needs to be imposed, such that
∫
W (~x, h)d~x =

1 and W (~x, h)→ δDirac(~x) for h→ 0. The characteristic parameter for the smoothing

h is called the smoothing length.

Moving from the continuum to the Lagrangian discretization represented by a set of

j particles (with equal mass mj , and positions ~xj) it is possible to write for the i-th

particle:

〈Ai〉 = 〈A(~xi)〉 =
∑
j

mj

ρj
AjW (~xi − ~xj, h) , (2.28)

in which the volume element for the integration in 2.27 is replaced by the particle based

volume estimate mj/ρj . It is also useful to calculate the spatial derivative of equation

(2.28):

~∇〈Ai〉 =
∑
j

mj

ρj
Aj ~∇iW (~xi − ~xj, h), (2.29)

where ~∇i is the derivative taken along ~xi. It is possible to show that this derivative can

also be expressed in the following pair-wise symmetric formulation:

~∇〈Ai〉 =
1

ρi

∑
j

mj(Aj − Ai)~∇iW (~xi − ~xj, h). (2.30)

which can also be rewritten in the useful form:

~∇〈Ai〉 = ρi
∑
j

mj

(
Aj
ρ2
j

+
Ai
ρ2
i

)
~∇iW (~xi − ~xj, h). (2.31)
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In general, if a kernel with compact support is adopted (i.e. W (~x, h) = 0 for |~x| > h),

the sums over j in the previous equations are limited to the particles lying in a sphere

of radius h centered on the i-th particle (i.e. its neighbours) (see Appendix A).

The kernel smoothed expression of the density of particle i, can then be obtained by

replacing A=ρ:

〈ρi〉 =
∑
j

mjW (~xi − ~xj, h), (2.32)

which can be interpreted as the density estimate for particle i.

This Lagrangian approach inherently conserves mass (i.e. the continuity equation

(2.20) is automatically fulfilled) and making use of the above formalism, the Euler

equation (2.21) takes the form:

d~vi
dt

= −
∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

+ Πij

)
~∇iW (~xi − ~xj, h). (2.33)

The time variation of the mass–weighted internal energy of a particle (i.e. the first law

of thermodynamics) can be expressed as:

dui
dt

=
1

2

∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

+ Πij

)
(~vj − ~vi) ~∇iW (~xi − ~xj, h). (2.34)

It has been shown by several authors (Hernquist & Katz 1989, for example) that taking

the geometric mean, instead of the arithmetic mean, inside the pair-wise symmetric

derivative leads to more stable numerical results. With this choice, equations (2.33)

and (2.34) take the form:

d~vi
dt

= −
N∑
j=1

mj

(
2

√
PiPj

ρiρj
+ Πij

)
∇iW ij . (2.35)

and
dui
dt

=
1

2

N∑
j=1

mj

(
2

√
PiPj

ρiρj
+ Πij

)
(~vj − ~vi) · ∇iW ij , (2.36)

In equations (2.35) and (2.36), the smoothing kernel has also been symmetrized, with

respect to the pair-wise smoothing lengths: W ij = W (|~rij|, [hi + hj]/2), which is a

common choice.

In the SPH formulation of the hydrodynamical equations (equations 2.33 and 2.34,

or 2.35 and 2.36), it is necessary to introduce an artificial viscosity term Πij: this is
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necessary in order to follow the behaviour of a dissipative flow, which is able to iden-

tify sudden and steep density gradients such as shocks. This approximation presents

several drawbacks, limiting by construction the predictive power of SPH in some situ-

ations.

The main advantage of such a Lagrangian approach resides in the fact that SPH is

able to naturally follow a wide dynamical range of densities, providing at no cost a

very high spatial resolution in overdense regions (i.e. more particles are placed in

such places) making the overall scheme efficient in coping with the extreme dynamical

ranges involved in numerical studies of galaxy formation.

2.2.1 SPH implementation in GADGET2

Following Springel (2005) and looking at equations ( 2.35) and ( 2.36), it is possible to

point out that there is actually not any absolute need to distribute the pressure equally

between a particle pair. It has been shown that, if the SPH estimate for the local veloc-

ity divergence is used in order to derive the energy equation, the following formulation

can be obtained (see equation 2.36):

dui
dt

=
N∑
j=1

mj

(
Pi
ρ2
i

+
1

2
Πij

)
~vij · ∇iW ij . (2.37)

which has been shown to conserve energy just as well, while producing less scatter in

entropy, as pointed out by Couchman, Thomas & Pearce (1995a).

The GADGET2 formulation of SPH introduces a more fundamental change in the over-

all numerical scheme by implementing a formulation of SPH in terms of the dynami-

cal equations for the specific entropy rather than specific internal energy (Lucy, 1977;

Benz, 1987; Hernquist, 1993). The specific entropy s of a fluid element can be charac-

terized in terms of an entropic function A(s):

P = A(s)ργ (2.38)

where γ is the adiabatic index, and this equation of state resembles that of a generic

polytrope. Using equation (2.38) together with the equation of state of an ideal fluid

(equation 2.23), the internal energy per unit mass can be expressed by

u =
A(s)

γ − 1
ργ−1 (2.39)
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Rather than following the evolution of each particle’s internal energy, it is possible to

integrate the time variation of the entropic function A(s). It is immediately obvious

that for an inviscid fluid in a laminar regime:

dA

dt
= 0. (2.40)

As mentioned above, moving away from the inviscid fluid approximation requires the

introduction of an artificial viscosity in SPH: shocks cause the entropic function A(s)

to vary with time even in the absence of other sources or sinks of entropy. For example,

a suitable SPH discretization of equation (2.40) for a dissipative fluid is given by

dAi
dt

=
1

2

γ − 1

ργ−1
i

N∑
j=1

mjΠij~vij · ∇iW ij , (2.41)

which shows that entropy is only generated by the artificial viscosity in shocks, for a

dissipative fluid in the adiabatic approximation. This equation (2.41) is integrated in

the GADGET2 implementation of SPH, in order to follow the thermodynamical evo-

lution of a fluid element: this approach offers the possibility of tight control of each

particles’ specific entropy, guaranteeing that it can only grow in time in the adiabatic

regime. In order to follow the dynamical evolution of an SPH particle, Springel &

Hernquist (2002) show that it is possible to derive, from a discretized form of the La-

grangian of the fluid, an equation of motion for SPH particles that takes the form:

d~vi
dt

= −
N∑
j=1

mj

[
fi
Pi
ρ2
i

∇iWij(hi) + fj
Pj
ρ2
j

∇iWij(hj)

]
, (2.42)

where the coefficients fi are defined by

fi =

[
1 +

hi
3ρi

∂ρi
∂hi

]−1

, (2.43)

and the abbreviation Wij(h) = W (|~ri − ~rj|, h) has been used.

In order take into account entropy generation by microphysical processes in shocks, a

corrective viscous force is also taken into account:

d~vi
dt

∣∣∣∣
visc

= −
N∑
j=1

mjΠij∇iW ij , (2.44)

with Πij ≥ 0 is non-zero only when particles approach each other in physical space.
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The form for the artificial viscosity Πij adopted by GADGET2 is a modified version of

the widely employed parametrization introduced by Gingold & Monaghan (1983) and

by Balsara (1995), that reads:

Πij =


[
−αcijµij + βµ2

ij

]
/ρij if ~vij · ~rij < 0

0 otherwise,
(2.45)

where

µij =
hij ~vij · ~rij
|~rij|2

. (2.46)

Here hij and ρij are the arithmetic means of the corresponding quantities for the two

particles i and j, with cij giving the mean sound speed. The strength of the viscosity

is regulated by the parameters α and β, with typical values in the range α ' 0.5− 1.0

and the common choice of β = 2α.

In GADGET2, following Monaghan (1997), the notion of signal velocity, vsig
ij , between

two particles is introduced. This leads to a modified form for the artificial viscosity:

Πij = −α
2
wijv

sig
ij /ρij (2.47)

while a simple form for the signal velocity can expressed as

vsig
ij = ci + cj − 3wij (2.48)

where wij = ~vij · ~rij/|~rij| is the relative velocity of the two particles projected onto

the separation vector, for particles approaching each other (i.e. for ~vij · ~rij < 0), wij =

0 otherwise. This leads to an explicit formulation of the viscosity parametrization

implemented in GADGET2:

Πij = −α
2

[ci + cj − 3wij]wij
ρij

(2.49)

Springel (2005) also notes that the effect of this viscosity parametrization in the equa-

tion of motion is analogous to an excess pressure of the form:

Pvisc '
α

2
γ

[
wij
cij

+
3

2

(
wij
cij

)2
]
Ptherm (2.50)

that depends only on a Mach-number like quantity w/c, and not explicitly on the

particle separation or smoothing length as in the standard Balsara parametrization

(Pvisc ' 1
2
ρ2
ijΠij)
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2.3 Time evolution

The accuracy in the time evolution of a fluid, described by the Hamiltonian in equation

(2.4), strongly depends on both the time step size and the integration scheme chosen

to advance in time the solution of an equation of motion like equation (2.10).

The choice of the time step size is non trivial, but the simple criterion often used is

∆t = α
√
ε/|~a| (2.51)

which takes into account the dynamical state of the system, being |a| the acceleration

obtained at the previous time step, ε a length scale (typically linked to the gravitational

softening) and α a tolerance parameter. In order to update in time the characteristic

dynamical variables of a particle, first order ordinary differential equations (ODEs)

like equation (2.8) and equation (2.9) need to be solved . There are many explicit or

implicit (iterative) solvers that suite this need, among which a frequent choice is the

so called leap-frog integrator in which the first order derivatives are shifted in time by

∆(t)/2 with respect to the corresponding position or momentum.

Following Springel (2005) and Quinn et al. (1997), it is worth noticing that for an

N-body system:

H = Hkin +Hpot (2.52)

like in equation (2.4) and that each of the two contributions can be computed exactly.

This allows us to define the following drift and kick operators:

Dt(∆t) :

 ~pi 7→ ~pi

~xi 7→ ~xi + ~pi
mi

∫ t+∆t

t
dt
a2

(2.53)

Kt(∆t) :

 ~xi 7→ ~xi

~pi 7→ ~pi + ~fi
∫ t+∆t

t
dt
a

(2.54)

where ~fi = −
∑

jmimj
∂φ(~xij)

∂~xi
is the force on particle i.
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By means of these operators, it is possible to define two variants of the leap-frog time

integration scheme, which are second order accurate in the time integration. Defining

the time evolution operator U(∆t) for an interval ∆t, it is possible to write

U(∆t) = D

(
∆t

2

)
K(∆t)D

(
∆t

2

)
, (2.55)

or

U(∆t) = K

(
∆t

2

)
D(∆t)K

(
∆t

2

)
(2.56)

which correspond to the drift-kick-drift (DKD) and kick-drift-kick (KDK) leapfrog in-

tegrators. The corresponding expressions in terms of the explicit dynamical variables

are:

~xn+1/2 = ~xn + ~vn∆t/2 (2.57)

~vn+1 = ~vn + ~f(~xn+1/2)∆t (2.58)

~xn+1 = ~xn+1/2 + ~vn+1∆t/2. (2.59)

and

~vn+1/2 = ~vn + ~f(~xn)∆t/2 (2.60)

~xn+1 = ~xn + ~vn+1/2∆t (2.61)

~vn+1 = ~vn+1/2 + ~f(~xn+1)∆t/2 (2.62)

where n is the last completed time step. This time integration scheme is adopted in

GADGET2 because of its symplectic properties that make it remarkably stable to per-

turbations to the Hamiltonian of the system, therefore leading to better conservation of

both energy and momentum (see Springel, 2005, for a detailed discussion).

In cosmological calculations of galaxy formation, the simulation code needs to cope

with a very large dynamical range, spanning from very dense galactic cores through

shock fronts to much lower density regions of the ICM (containing a large amount

of mass). In this context, advancing all particles with a fixed time step ends up in a

potential waste of computational resources since the long range gravitational forces are

subject to very small variations while contributions to a particle’s acceleration coming

from its small surrounding region (the one accounted for by the tree calculation) can

have considerable variations. For these reasons, adaptive and individual time steps are

adopted in GADGET2 and the KDK scheme is to be preferred since the Kick operator
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is required to be applied only for a limited number of particles, the vast majority being

Drifted and Kicked more rarely.

The above considerations apply to both CDM non-collisional particles and to SPH

particles, as long as their mutual and self gravitational interaction is considered. SPH

particles require additional criteria for time stepping since the inclusion of the artificial

viscosity modifies their equation of motion (equation 2.50). In the signal velocity

approach adopted in GADGET2, the Courant-like hydrodynamical timestep criterion

for particle i is expressed by:

∆t
(hyd)
i =

Ccourant hi

maxj(v
sig
ij )

(2.63)

where vsig
ij = ci + cj − 3wij is the signal velocity as defined in equation (2.48) and

its maximum value is taken among the j neighbours of particle i (gather approach).

Ccourant is the Courant factor and, typically, Ccourant = 0.15.



Chapter 3

Modelling and testing

As mentioned at the beginning of Chapter 2, the most widely used techniques in mod-

elling the formation of the LSS in the Universe are the Lagrangian and the Eulerian

approaches. Implementations of these techniques within the numerical tools used in

the community can widely differ. With the purpose of testing and comparing the re-

sults produced by these numerical tools, several code comparison projects have been

carried out. For example:

• The Santa Barbara Cluster comparison project (Frenk et al., 1999): this is the

mother of code comparison projects in which a large number of codes calculated

the evolution of a cluster of galaxies, starting from the same initial condition and

comparing the results at a given epoch.

• Cosmic code comparison (Heitmann et al., 2008): the most widely used cosmo-

logical codes test their gravitational solvers on identical setups.

• Hydrodynamics code comparison (Agertz et al., 2007): both Lagrangian and

Eulerian codes test their hydrodynamical solvers on a suite of tests.

• Amsterdam void finder comparison study (Colberg et al., 2008): a comparison

of many current void finders on the same region of the Millennium simulation.

• Haloes going Mad (Knebe et al., 2011): a comparison of widely used structure

finders on a variety of tests.
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• The Aquila project (Scannapieco et al., 2011): a comparison of several cosmo-

logical galaxy formation codes when trying to form the same galaxy, from the

same cosmological initial conditions.

In a published paper (Tasker et al., 2008), we set out for a code comparison project

aimed at testing and comparing two Eulerian codes and two Lagrangian codes on sim-

ple physical setups in which both the initial and the final states could be analytically

described. Our focus was on trying to determine what accuracy in the calculation is

needed in Eulerian and Lagrangian codes to behave in a quantitatively similar way

with respect to known analytical solutions, i.e. we set out to determine which numeri-

cal resolution is needed to do so.

The codes considered for this purpose are:

• Eulerian: ENZO (Bryan & Norman 1997; O’Shea et al. 2004) and FLASH

(Fryxell et al. 2000)

• Lagrangian: GADGET2 (Springel 2005; Springel & Hernquist 2002) and HY-

DRA (Couchman, Thomas & Pearce 1995b; Pearce & Couchman 1997)

In this chapter we discuss a suite of tests for both the gravitational and the hydrody-

namical solvers implemented in the GADGET2 simulation code. These tests were our

contribution to the comparison study that was presented by Tasker et al. (2008).

3.1 Sod - shock tube test

It is of great relevance for hydrodynamical codes in astrophysics to be able to cap-

ture shocks in order to model several highly energetic phenomena taking place in the

Universe that result in strong shock fronts propagating at considerable Mach numbers

through a diffuse medium. Among such phenomena, in the numerical modelling of

galaxy formation it is important to follow winds produced by supernovae explosions

or active galactic nuclei (AGN) activity, the collision of interstellar media occurring

in galaxy mergers or shocks originated by the infall of diffuse or clumped material,

following the LSS and flowing onto galaxy clusters (i.e. accretion shocks).
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Figure 3.1: Sod shock test initial conditions.

The Sod shock tube test (Sod, 1978) allows us to test the code’s behaviour against an

analytical solution (the solution of the Riemann problem, obtained by the use of the

Rankine-Hugoniot conditions). The setup is simple: two fluids with different densities

are at rest and separated by a membrane that is then removed. With a proper choice

of the initial density gradient between these two regions, a sharp shock interface forms

when the membrane separating the two fluids is removed. The time evolution of quan-

tities of interest, along a direction orthogonal to the initial contact interface, can be

described analytically. This allows a quantitative assessment of the code’s behaviour.

3.1.1 Initial conditions

The traditional setup for the Sod test is usually one-dimensional, assumed to model the

fluids behaviour orthogonal to the shock front. We have chosen to perform a full three-

dimensional model of the fluids’ behaviour, in order to better reproduce the systems

of interest in complex calculations of galaxy formation scenarios. In order to build the

initial conditions pictured in Figure 3.1, two glass-like particle distributions have been

generated using the dedicated GADGET2 capability. As described in White (1996), an

amorphous distribution of particles can be generated by running the code with gravity’s

sign inverted. Given that all particles are assigned the same mass and enabling periodic

boundary conditions, this repulsive force acts to lead the system towards an equilib-

rium configuration in which the mean inter-particle separation is maximized. This

configuration is obtained avoiding the introduction of artificial characteristic lengths

such as the grid spacing of a computational mesh. Two such glass distributions have

been generated, respectively with 1.6 × 106 (big) and 4 × 104 (small) particles, and

slabs have been cut out of these 3D computational volumes in a suitable way in order

to create both the setups pictured above (each containing 106 particles) in which, re-

spectively, the membrane separating the two fluids is oriented at 90◦ to the x-axis of the
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Figure 3.2: Small glass: Gaussian fit of the distribution function of the nearest neighbour separa-
tions for all the particles in the computational volume at an early stage of glass generation.

Figure 3.3: Small glass: Gaussian fit of the distribution function of the nearest neighbour separa-
tions for all the particles in the computational volume at a later stage of glass generation. Com-
paring with the above figure it is possible to see that the system is lead towards an equilibrium
configuration that maximises the inter-particle separation.

box ([1,0,0] plane) and at 45◦ to each of the x, y and z axes ([1,1,1] plane). These two

different orientations for the shock propagation will also highlight possible directional

dependencies of the hydrodynamical solver. In order to also assess resolution effects

on the code’s behaviour, we have also generated the above setups for a computational

box containing 250, 000 particles.
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3.1.2 Runs and Results

In this test, fluids are modelled as perfect fluids with a polytropic index γ = 5
3
, more-

over periodic boundaries on the cubic computational box have been enabled.

Table 3.1: Sod shock setup parameters.

State Right Left
ρ 4 1
p 1 0.1795
v 0 0

The choice of the values of the physical quantities for the initial states is that of Ta-

ble 3.1 and the results have been analyzed at t = 0.12, just prior to the wrapped shock

fronts overlapping in the inclined case.

In the SPH integration, we have adopted the standard 32 neighbours for the smoothing

of physical quantities (i.e. particle density), running the code in CGS units. All the

following plots are consistent with this system of units.

The shock front and the contact discontinuity move from the high density region into

the low density one (i.e. right to left in the following figures), while a rarefaction wave

moves in the opposite direction.

The membrane initially separating the two fluids is positioned at x = 0, and:

• at t = 0, the particles representing the high density fluid have positive x−values

while the low density particles have negative x−values.

• Each profile has been produced orthogonally to the initial discontinuity surface,

by averaging particles’ physical quantities within each bin, for a total of 200

equally sized bins.

• The computational box is cubic, centered at (0, 0, 0) and with linear size L = 1.

• At t = 0.12, looking at the density panels in the following figures and moving

from positive to negative values of the x−coordinate three characteristic jumps

can be identified: respectively the rarefaction wave (RW, or sound wave SW),

the contact discontinuity (CD) and the shock discontinuity (SD).
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• The entropy profile has been produced defining the computational entropy s as:

s =
T

ργ−1
(3.1)

• We set the strength of the artificial viscosity parameter α = 1, as discussed in

equation (2.44) above.

• The energy panel is actually showing the behaviour of particles’ internal energy

per unit mass, as calculated by GADGET2.

• The velocity panel, shows the modulus of the projected linear velocity of parti-

cles along the direction of analysis (i.e. perpendicular to the initial CD orienta-

tion).



Testing the solvers 37

Figure 3.4: [1,0,0] setup: the black line is the theoretical solution, green is the 250, 000 particle
setup, red is the 106 particle setup. Analysis has been performed in a direction orthogonal to the
initial contact interface (i.e. the x-axis in this case), for the chosen end–state t = 0.12.
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Considering Figure 3.4 and focusing on the red line, it is possible to see how the

GADGET2 implementation of SPH successfully passes the test. This should be no

surprise as the Sod test forms a standard test case for astrophysical fluid codes (see for

instance Springel, 2005 for a 1-D, high resolution, very finely tuned Sod test). The

analytical solution is reasonably well recovered, while it is possible to identify several

features peculiar to SPH solvers.

The SW propagation is well recovered in all profiles, with negligible departures with

respect to the analytical solution. On the other hand the CD is poorly handled by the

code: after the removal of the membrane separating the two fluids (t = 0.), two very

different particle distributions suddenly appear next to each other: SPH smoothing

between particles belonging to such different distributions give rise to the appreciable

ringing in the velocity profile, which is clearly reflected in a considerable overshoot

in both the energy and entropy profiles. A very characteristic feature of SPH is the

appearance of the so called pressure blip in the pressure profile, at the CD position.

This is due to the generation of spurious pressure forces as discussed in section (2.2.1),

and outlined in equation (2.50) above.

The SD position is well recovered even if a considerable smoothing of this discon-

tinuity can be noticed in all profiles. A considerable post-shock ringing can also be

noticed in the velocity profile. Lagrangian techniques capable of solving the equations

of hydrodynamics need the introduction of an artificial viscosity term in order to model

the behaviour of dissipative phenomena. This is necessary in order to prevent particle

interpenetration, which is, by definition, not an issue in the Lagrangian modelling of

non-dissipative phenomena. SPH introduces an artificial viscosity parameter which is

conventionally set to unity but in our setup this value does not appear to be sufficiently

effective at capturing and modelling shock discontinuities.
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Figure 3.5: Increased viscosity, [1,0,0] setup: the black line is the theoretical solution, green is the
250, 000 particle setup, red is the 106 particle setup. Analysis has been performed in a direction
orthogonal to the initial contact interface (i.e. the x-axis in this case), the chosen and-state t = 0.12
.
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Setting the artificial viscosity parameter α = 2 (i.e. double its standard value) leads

to a considerable reduction of the ringing in the velocity profiles, as it can be seen by

comparing Figure 3.5 with Figure 3.4. On the other hand, the SD jump is still poorly

recovered in all other profiles: this choice for the artificial viscosity parameter smooths

the discontinuity even more, with respect to the standard value.

By comparing the green and the red lines, it is possible to appreciate the effects of vary-

ing the resolution on this SPH calculation. Reducing the number of particles (green

lines) leads to a poorer sampling of the fluids: the SPH smoothing volumes are larger

in this case and this acts both in smearing out the pressure blip and in reducing the

energy overshoot at the CD location. On the other hand, the SW and, most impor-

tantly, the SD are even more smoothed. The post shock ringing in the velocity profiles

appears not to depend on resolution.
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Figure 3.6: Increased viscosity, [1,1,1] setup: the black line is the theoretical solution, green is the
250, 000 particle setup, red is the 106 particle setup. Analysis has been performed in a direction
orthogonal to the initial contact interface (i.e. along the diagonal of the cubic computational box,
in this case) for t = 0.12

Comparing Figure 3.5 with Figure 3.6, no clear orientation dependency can be no-

ticed in the GADGET2 solution of the Sod test. This is expected, since SPH does not

introduce any directionality and only depends solely on the relative distance of the

Lagrangian particles it uses as tracers.
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3.2 Sedov blast wave test

In this fully hydrodynamical test (no gravitational interaction is taken into account), a

considerable amount of energy is deposited in a very small region at the center of a

cubic computational volume, resulting in an intense explosion propagating through an

homogenous background medium. This test can be considered as representative of the

very energetic explosions occurring in supernovae events.

In the Lagrangian modelling, due to the introduction of artificial viscosity briefly dis-

cussed in the previous section, the spherical shock front sweeps up particles as it prop-

agates through an unperturbed medium. This allows SPH to concentrate resolution

elements on the shock front itself, this being the densest region.

Sedov (1959) obtained an analytic solution for the propagation of the shock front due

to a point source explosion. The shock front’s radius is given by:

r(t) =

(
E0

αρ0

)1/5

t2/5 (3.2)

where E0 is the initial energy injected, ρ0 is the background density and α = 0.49 for

an ideal gas with γ = 5/3.

In absence of radiative cooling and gravitational interaction the problem is unitless.

3.2.1 Sedov test setup

We considered a shock propagating in a box of linear size L = 10, caused by the

injection of an energy E0 = 105 in a very small spatial region at the center of the

box (ideally this should be a point-like injection). We choose a density ρ = 1 for the

unperturbed ideal gas, with γ = 5
3
. The chosen value for E0 results in an extreme

shock: this has been explicitly chosen in order to stress the hydrodynamic solver.

Also in this case we started with 106 SPH particles in a relaxed glass-like distribution,

injecting the energy within a top-hat sphere containing the central 32 particles. The

SPH integration has been performed smoothing on the 32 nearest neighbours for each

SPH particle.

It is worth mentioning a time step issue we noticed from the outset: these calculations



Testing the solvers 43

have been performed allowing for the use of adaptive timesteps for individual particles,

as is common practice in galaxy formation calculations. In GADGET2 it is possible to

specify a range in which the timesteps are allowed to vary: with a standard choice (see

equation 3.3), and given the very high energy input, we observed particle interpenetra-

tion effects. In order to limit this, we had to almost force a fixed, very small, time step

for all particles. We also decide to adopt α = 2 for the artificial viscosity parameter.

This issue has subsequently been well documented for GADGET2. Saitoh & Makino

(2009) pointed out that, for codes allowing individual particle timesteps, particles with

overlapping SPH smoothing lengths should not be allowed timesteps more than a fac-

tor of 4 apart. Such a timestep range limiter is not a part of the standard Gadget2

distribution but is required in the presence of strong shocks such as the one imposed

here. Recently, several groups (Durier & Dalla Vecchia, 2012, Reed et al 2011) have

implemented the so called Saitoh switch into various forms of Gadget. Durier & Dalla

Vecchia (2012) explicitly show the issues related to a Sedov blast test almost identical

to the one used here.

3.2.2 Runs and Results

In Figure 3.7 the radial profiles of the hydrodynamical quantities of interest are shown:

• GADGET2 successfully recovers the position of the spherical shock front.

• The shock front is smoothed out in the radial direction, this being a direct ef-

fect of the SPH smoothing between particles lying within the shock front and

particles belonging to the unperturbed background medium.

• The shock front is reproduced in the calculation as a spherical shell, rather than

a spherical surface. This is caused both by the SPH artificial viscosity that limits

(by construction) the compressibility of the fluid and by the finite discrete sam-

pling of the medium. The net result is the underestimation of the density peak

and the systematic (but small) underestimate of the pressure profile.

• The velocity profile shows considerable ringing in the post shock region, overes-

timating on average the theoretical prediction: this is essentially due to the fact
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that in the Gadget2 implementation of SPH particles are sorted in an entropy-

related quantity at first (see equation 2.38), and then the kinematics are calcu-

lated. This allows the conservation of both entropy and internal energy to a great

extent, but leaves the short range kinematics disordered.

• The internal energy radial profile is recovered very well: the slight underestimate

inside the shock region is caused by the broadening of the shock front.

Figure 3.7: Radially binned profiles (green lines) produced considering 500 radial bins, logarith-
mically spaced. The black lines show the theoretical Sedov solution at this time (t=0.1).
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A visual impression of the end state of this setup is provided in the Figure 3.8.

Figure 3.8: Sedov, 32 particle, spherical top-hat energy injection: column density projection map
along the z-axis, for all particles in the box at t = 0.1.
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In Figure 3.8, GADGET2 is shown to recover the spherical shape of the shock front well

but the grainy appearance of the shock front suggests the presence of a noisy density

distribution: this is a hint that particles in the shock front might not be uniformly

distributed in physical space, within the shock shell region.

In order to investigate further the details of this issue, we decided to vary the energy

injection method:

• CP/32 neighbours: in this setup we injected E0 in the most central particle and

integrate the SPH quantities on the nearest 32 neighbours.

• TH/64 neighbours: in this setup, the injection was distributed within a top-hat

profile on the central 64 particles. Consistently we performed the SPH integra-

tion over the nearest 64 neighbours for each particle.

• GUASS/64 neighbours: in all the other setups, the small region of energy injec-

tion has very sharp edges (i.e. energy jumps many orders of magnitude among

neighbouring particles). We smooth the injection energy with a Gaussian pro-

file, truncated at 10 percent of the peak value: this mitigates the sharpness of

the injection region but, as a drawback, the volume within which the energy is

injected is spatially broadened.
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Figure 3.9: Sedov: projection along the z - axis of particles in a slab through the center of the box
(one mean interparticle separation thick) for different setups.

In Figure 3.9, for each of the aforementioned setups, the z-axis projection of the par-

ticle positions in a slab through the center of the volume is shown. Moving from top

to bottom and left to right, it is possible to appreciate how the shock front shell is

broadened as the volume of the region of injection is increased. The shock front is also

broadened as the volume over which the SPH is smoothed is increased (i.e. increasing

number of neighbours). The grainy aspect noticed in Figure 3.8 is also present in the

other setups: there are particles in the shock region that have an empty small spherical

region around them, resembling bubble-like structures in the shock front. The persis-

tence of these structures is not surprising given that the lack of a timestep limiter in all

the runs.

The corresponding radial profiles for density, velocity and pressure are presented in

the following figures:
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Figure 3.10: Density: radially binned density profiles for different setups. Blue lines are the
corresponding RMS in each bin.

Figure 3.11: Pressure: radially binned pressure profiles for different setups. Blue lines are the
corresponding RMS in each bin.
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Figure 3.12: Velocity: radially binned profiles of the radial velocity component, in different setups.
Blue lines are the corresponding RMS in each bin.

Figure 3.13: Energy: internal energy for all particles in the shock region. The formation of an
overly energetic plume of particles is clearly visible.
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Figure 3.14: Entropy: computational entropy (Equation 3.1) for all particles close to the shock
front.

Varying the energy injection method, the most noticeable features appear right behind

the theoretical radial position of the shock front: as noticed in Figure 3.9 the thickening

of the shell containing the shock front and the increase of the SPH smoothing volumes

drive the formation of bubble-like structures. This corresponds to a progressive under-

estimate in the binned radial density profiles right behind (i.e. at smaller radius) the

shock front, as it can be noticed in Figure 3.10. The increased broadening ahead (larger

radius) of the shock front is also responsible for the progressive underestimation of the

peak density. These two features are reflected in the binned radial pressure profiles

(Figure 3.11), which become progressively more disordered across the shock front.

At the same radial position, in Figure 3.12 it is also possible to notice the appearance of

fluctuations in the radial velocity profiles. This reflects a progressively larger disorder

in the velocity field in the immediate post-shocked regions.

The most evident feature clearly emerges when looking at the internal energy of the

particles: a plume of over energetic particles appears immediately after the shock front

(Figure 3.13). This becomes even clearer when looking at each particle’s computa-

tional entropy as defined in equation 3.1. For a close-up of the shock region see
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Figure 3.14. In the GADGET2 implementation of SPH, a gas particle cannot loose

its internal entropy so the over energetic particles remain well above the theoretically

predicted value a long time after they have been shocked (see equation 2.41). This is

again a direct consequence of the large range in timesteps allowed at the same physical

location by GADGET2. These problems are particularly evident in test cases such as

the one here, where very strong shocks are present.
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Figure 3.15: Projection along the z-axis of the position of particles located in a slab, through the
center of the box, of thickness comparable to the average SPH smoothing length. Over energetic
particles are marked in yellow.

In Figure 3.15, particles belonging to the over energetic plume have been marked in

yellow. The reason why these particles become over energetic resides in the hydrody-

namical time stepping scheme implemented in Gadget2: SPH particles are assigned a

time step value which is a function of the signal velocity (vsig, see equation 3.3).

For particles in the homogeneous medium, not immediately close to the initial energy

injection, a relatively big timestep size is assigned by the algorithm: these particles

becomes SPH-idle, while the drift (D) operator is applied to them (see section 2.3).

In our setup, given the very high energy input, the blast wave propagates at very high
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speed (high Mach number) compared to the drifting time of idle particles in the sur-

rounding medium. When the SPH particles of interest become active and the kick (K)

operator is applied to them, they end up finding themselves within the shocked region,

thus suddenly acquiring a very high amount of energy.

If the maximum allowed time step size is large, compared to the characteristic propaga-

tion time of the blast wave, the awakened particles might find themselves well behind

the shock front, leading to the particle interpenetration observed in Section 3.2.1. Al-

ternatively, if the maximum allowed timestep size is small, the awakened particles find

themselves within the shock front, driving the formation of bubbles described above.

Our discussion of these findings with the GADGET3 developers, led to the development

of a wake-up mechanism which is currently implemented in GADGET3 code.

In GADGET2 the hydrodynamical timestep is assigned as in equation 3.3:

∆t
(hyd)
i =

Ccourant hi

maxj(v
sig
ij )

(3.3)

where maxj(v
sig
ij ) is the maximum value of vsig among the j neighbours of particle

i. In this gather approach (see Hernquist & Katz 1989 for a definition of gather and

scatter implementations of SPH), particle i is assigned with a timestep that is inversely

proportional to the largest vsigj among its neighbours.

In the wake-up mechanism, this approach is reversed to a scatter implementation of the

time step assignment: centering on particle i (let’s assume it is SPH active and located

in the shock front), if vsigi > vsigj for all of its j neighbours, then the assignment

vsigj = vsigi is made. In this way, all SPH neighbours of particle i will be assigned

a smaller timestep (much smaller than the one adopted by SPH particles lying in the

unperturbed medium) and their status moved from SPH ”idle” to SPH ”active”. In

order to obtain a strict conservation of momentum and energy, the newly ”awakened”

particles are drifted (D) back to their previous time step, and the kick K operator is

applied with the new ∆t
(hyd)
j .
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Figure 3.16: Reproducing the Sedov test discussed in Springel & Hernquist 2002, we obtain the
correct answer.

3.3 Static and translating King spheres

Adding self-gravity, where every fluid element is affected by every other, dramatically

complicates the situation and it is not possible to design a test with an exact analytical

solution anymore. Since it is still essential for the purpose of this comparison that

our problems remain well-posed, we select situations in which the correct behaviour

of the system is known, even if it cannot be mathematically expressed. To do this,

we perform two tests; the first of these concerns a static gas profile in equilibrium.

Gravity acts to try and collapse the gas, while pressure pushes it outwards. While these

forces remain perfectly balanced, the gas remains at rest. This situation is analogous

to a relaxed galaxy cluster and requires the code to resolve the gas density over many

orders of magnitude. The second test involves the same cluster translating through the

simulation box. By using periodic boundary conditions, the cluster’s velocity is chosen

such that it should return to its original position after 1 Gyr. With no external forces,

the cluster should remain in hydrostatic equilibrium and retain its profile during the

translation.
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3.3.1 Initial conditions

The model we used for the galaxy cluster is the King model King (1966), which was

chosen because it possesses a finite radial cut-off, and is therefore a well defined prob-

lem. Its form is based on the distribution function:

f(ε) =

 ρc(2πσ
2)−3/2

(
eε/σ

2 − 1
)

ε ≥ 0,

0 ε < 0
(3.4)

where ε = Ψ − 1
2
v2, is the coordinate change for the shifted energy, ρc is the central

density and σ is related to (but not equal to) the velocity dispersion. The resulting

density distribution of this cluster vanishes at the tidal radius, rt. Integrating over all

velocities yields a density distribution:

ρ (Ψ) = ρc

[
e

Ψ
σ2 erf

(√
Ψ

σ2

)
−
√

4Ψ

πσ2

(
1 +

2Ψ

3σ2

)]
. (3.5)

Putting this into the Poisson equation (Equation 2.3) results in a second order ODE

which can be solved numerically.

This model has three independent parameters, the mass of the cluster, the tidal radius

and the concentration c = log10(rt/r0), where r0 is the central or King radius. For

this problem, we selected a concentration of 3, rt = 1 Mpc and a cluster mass of

1014 M�. This results in a King radius of 1 kpc. Therefore, to successfully maintain

hydrostatic equilibrium, the code must be able to model the cluster out to 1 Mpc while

resolving the 1 kpc core. This makes it a particularly challenging test. The two key

requirements for success in this test are to be able to resolve the core and to have

an accurate gravitational solver. Although the King model does not have an analytical

solution, a one-dimensional numerical solution for the cluster’s profile can be achieved

from a simple numerical integration.

We setup the King profile using 100,000 particles, radially perturbing a glass to the

desired density profile within a periodic 3 Mpc box.
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3.3.2 The static King halo

We evolved the static King halo both testing the gravitational tree algorithm (see sec-

tion 2.1.2) and the Particle-Mesh (PM) gravity solver (see section 2.1.3) as imple-

mented in the GADGET2 code, and described in section 2.1.4.

In testing the tree algorithm we switched off the PM calculation within GADGET2

and we adopted the standard value α = 0.6 in the ”opening criteria” as in equation

(2.19). Independently, we also tested the accuracy of the PM gravity solver by reduc-

ing the tree calculation range to a value close to zero (rs ' 0, with rs described in

section 2.1.4).

Figure 3.17: Treecode result for the static King sphere. Left to right, radially binned profiles for
density, temperature and computational entropy are shown. The black lines are the initial t = 0
values, while the red lines represent the profiles after 1 Gyr.

Figure 3.18: PM result for the static King sphere. Left to right, radially binned profiles for density,
temperature and computational entropy are shown. The black lines are the initial t = 0 values,
while the red lines represent the profiles after 1 Gyr.
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As shown in Figures 3.17 and 3.18, GADGET2 is successful at keeping the cluster

in equilibrium and resolving the core well: the initial profiles are matched over seven

orders of magnitude, down to densities of 10−10. In both tests, negligible deviations

from the static King profile appear after 1 Gyr: at the lowest density edge of the cluster,

small deviations (∼ 15%) from the profile are seen as the cluster edge diffuses into the

background and the model starts to run out of particles.

In testing GADGET2’s tree code, we encountered a problem in this static test. Although

the radial profiles were very stable, the cluster as a whole tended to drift around over

time. This is due to the difficulty of very accurately determining the lowest order term

in the gravitational force expansion for a treecode. Each individual term includes a

small error, with these errors largely but not exactly uncorrelated. Under these con-

ditions the total momentum of the system is not guaranteed to be conserved exactly

and a “random walk” occurs. As the configuration is designed to be entirely static

the direction of the residual force is highly correlated from one step to the next and

despite recovering the correct value to one part in 108 this still leads to a net drift. It

is possible to circumvent this, as shown above, by dramatically reducing the opening

angle for the tree but this rapidly negates the advantage of using a tree in the first place.

For more normal simulations this tiny zeroth order force error is of course negligible

as the random motion of the particles disorders the direction of the drift error as time

progresses.

3.3.3 The translating King halo

Using the stable cluster developed above we can test the Galilean invariance of the

code by giving a velocity relative to the static simulation volume. This is a commonly

encountered situation for cosmological simulations where large objects often move at

many hundreds of kilometers per second relative to the background. For this test the

cluster was given a bulk velocity such that, in 1 Gyr, it moved around the simulation

box once, returning to its original starting position. Since there are no external forces

acting on the cluster, the end profile should be identical to the initial one. In this test

we employed the standard hybrid TreePM gravity solver. The radial profiles for the

end state (t = 1Gyr) have been calculated centering on the King halo center at t = 0.
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Figure 3.19: King translating - TreePM. Left to right, the radial profiles for density, temperature
and entropy are shown. Black lines represent the status of the King halo at t = 0, while red lines
represent the final status.

The code maintains the density profile of the cluster extremely well, with the only

deviations appearing in the core, and essentially due to a small offset in returning to

the initial position of the halo. Figure 3.20 shows the residue remaining if the initial

Figure 3.20: Image subtractions of the density projections at the start and end of the translating
cluster test, The projected density range is [104, 1018.6] M� Mpc−2.

configuration is subtracted from the final one. This 25 kpc offset is compatible with

the code’s accuracy.
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3.4 Comparing the solvers

As briefly outlined at the beginning of the chapter, the results presented here were em-

bedded in the wider scope of a comparison between Lagrangian (discretising in mass)

and Eulerian (discretising in space) modeling techniques (for a detailed discussion see

Tasker et al., 2008).

A widely used Lagrangian modeling approach, the Smoothed Particle Hydrodynamics

(SPH), has been presented into some detail in section 2.2. Eulerian techniques rely on

a computational mesh that fills the simulation volume: physical quantities, character-

ising the fluid element contained within a mesh cell, are opportunely associated to a

point in space (e.g. the center of the cell) and fluxes across the cell surfaces are then

computed with a class of algorithms, known as Riemann solvers, which provide very

fast and accurate solutions, while keeping the errors under tight control.

Therefore, in the Eulerian approach, the size of the cell in the computational mesh is

the resolution element. In general, the cell size needed to accurately follow the fluid

behaviour is small enough to make it almost computationally impossible to fill the

whole simulation volume with a unique, very finely grained, computational mesh.

Starting with a coarse enough grid, the idea is to place nested subgrids in the regions

of interest, eventually iterating this procedure building a hierarchy of refinement levels.

The technique that implements this idea is known as Adaptive Mesh Refinement: if a

certain condition is met within a mesh cell, the space contained within the cells itself

is further discretized lying a finer computational mesh and this can happen iteratively.

While in SPH the discretization in mass provides higher resolution in the denser re-

gions of space, the criterion that can trigger higher resolution in AMR calculation is

somewhat arbitrary and, in general, allows to place refinements (i.e. to focus with

higher resolution) in regions where sudden changes are taking place.

In comparing the behaviour of Eulerian and Lagrangian codes on the suite of tests

presented in this chapter we have determined that, in order to reproduce the theoreti-

cal behaviour with the same accuracy, both families of solvers need to place the same

amount of resolution elements in the regions of interest. Due to the inherent character-

istics of the two methods, this is more conveniently achieved by SPH codes when the

focus is placed on regions of higher density or in configurations in which a very wide
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dynamic range is present. This is often the case in large scale cosmological calcula-

tion, and that is one of the main reasons for the success of SPH in this field of research.

On the other hand, AMR codes are far more flexible and efficient in tracking sudden

and steep changes in arbitrary physical quantities while the inbuilt Riemann solver

algorithms makes them a lot more efficient in capturing and modeling sharp shock

discontinuities.

The lesson learned with this comparison project is that it is possible to quantitatively

establish a level of accuracy that allows a firmly grounded comparison between Eule-

rian and Lagrangian codes: this results in a rule of thumb saying that an equal amount

of resolution elements needs to be placed in the region of interest in order to evaluate

the accuracy of the solving algorithms.

Furthermore, the two approaches are somehow complementary in providing trustable

solutions in different situations this leading to the recommendation to choose the ap-

propriate tool for the calculation of interest.

Careful, controlled testing such as that detailed in this chapter underpins the entirety of

numerical astrophysics. The concepts and ideas developed here are employed through-

out the rest of this thesis



Chapter 4

The orientation of galaxy dark matter

halos around cosmic voids

4.1 Abstract

In this chapter we focus on one particular environment, that of voids, underdense re-

gions in the underlying dark matter density field. We develop a method for locating

such regions and, in the spirit of the last chapter, demonstrate the accuracy of our

method by comparison to a large selection of other void finders available in the liter-

ature. We then use our void sample to examine the effect these structures have upon

the alignment of galaxies located close to the void walls. After first extracting a set of

such voids we use the Millennium N–body simulation to explore how the shape and

angular momentum of galaxy dark matter haloes surrounding the largest cosmological

voids are oriented. We find that the major and intermediate axes of the haloes tend to

lie parallel to the surface of the voids, whereas the minor axis points preferentially in

the radial direction. We have quantified the strength of these alignments at different

radial distances from the void centres. The effect of these orientations is still detected

at distances as large as 2.2 Rvoid from the void centre. Taking a subsample of haloes

expected to contain disc–dominated galaxies at their centres we detect, at the 99.9%

confidence level, a signal that the angular momentum of those haloes tends to lie paral-

lel to the surface of the voids. Contrary to the alignments of the inertia axes, this signal

is only detected in shells at the void surface (1<R<1.07 Rvoid) and disappears at larger
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distances. This signal, together with the similar alignment observed using real spi-

ral galaxies (Trujillo, Carretero & Patiri 2006), strongly supports the prediction of the

Tidal Torque theory that both dark matter haloes and baryonic matter have acquired,

conjointly, their angular momentum before the moment of turnaround.

4.2 Introduction

The angular momentum of a galaxy plays a central role in determining its evolution

and final type. However, understanding the origin and properties of the galactic an-

gular momentum has been one of the key problems in astrophysics in the last five

decades. The current ’standard’ theory for the origin of the angular momentum, within

the cosmological framework of hierarchical structure formation, is the tidal–torque

theory (hereafter TTT). This theory is based on early ideas from Hoyle, 1951, that

suggested that the angular momentum of a galaxy arises from the tidal field of neigh-

bouring galaxies. This idea was further developed and quantified by Peebles (1969);

Doroshkevich (1970) and White (1984).

The TTT suggests that most of the angular momentum is gained gradually by the pro-

tohaloes during the linear regime of the growth of density fluctuations, due to tidal

torques from neighbouring fluctuations. Angular momentum grows linearly with time

at this early epoch and saturates when the halo decouples from the expanding back-

ground at the moment of turnaround. It is assumed that during this phase the baryonic

component follows the dark matter distribution and consequently gains a similar spe-

cific angular momentum to that of the halo. A subsequent large collapse factor of the

baryonic matter to the centre of the halo will explain the centrifugally supported nature

of the galactic discs (Fall & Efstathiou 1980).

To first order, the angular momentum of the haloes results from the misalignment

between the principal axes of the inertia momentum tensor (Iij) of the matter being

torqued and the principal axes of the shear or tidal tensor (Tij=-∂2φ/∂xi∂xj) gener-

ated by neighbouring density fluctuations. The leading term of the torque is given

by Li∝Tjk(Ijj-Ikk), where i, j, and k are cyclic permutations of 1, 2 and 3. Several

aspects of this picture have been confirmed by a number of studies of the angular mo-
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mentum properties of dark matter haloes both analytically (Heavens & Peacock 1988;

Catelan & Theuns 1996) and in N–body simulations (Barnes & Efstathiou 1987; Sug-

erman, Summers & Kamionkowski 2000; Lee & Pen 2000; Porciani, Dekel & Hoffman

2002a,b).

If I and T were uncorrelated (as frequently has been assumed under the argument

that the former is local and the latter is dominated by the distribution of the large–

scale structure) the direction of the angular momentum in the linear regime should be

aligned with the intermediate axis of I (the direction that maximizes the difference

between Ijj and Ikk). However, Porciani, Dekel & Hoffman (2002b) have found in

their simulations that there is a strong correlation between the I and T tensors, in the

sense that their minor, major and intermediate principal axes tend to be aligned at the

protohalo stage. The strong correlation between I and T should produce an angular

momentum vector of the haloes that is perpendicular to the minor axis of the sheet

they are embedded in (i.e. perpendicular to the direction of the maximum compression

of the large–scale structure at that point). However, this last correlation, at least at

redshift zero, is expected to be very weak (or totally erased) by non–linear effects

(such as exchange of angular momentum between haloes) at late times.

From the observational point of view, Trujillo, Carretero & Patiri (2006) have found

that the rotation axes of spiral galaxies located on the shells of the largest cosmic voids

lie preferentially parallel to the void surface (in agreement with the expectation for the

angular momentum of haloes given in the previous picture). The observational rela-

tion could be explained then as a consequence of the spin of the baryonic matter still

retaining memory of the angular momentum properties of the haloes at the moment

of turnaround (Navarro, Abadi & Steinmetz 2004). It is key, consequently, to explore

whether the signal is also found in the haloes of cosmological N–body simulations

when we mimic the observational technique. If so, this will strongly support our cur-

rent understanding of how haloes and baryonic matter have acquired, conjointly, their

angular momentum.

Together with the orientation of the angular momentum, the alignment of the shape

of the galaxy dark matter haloes (M<1013h−1M�) with their surrounding large–scale

structure can have important observational consequences. In fact, the shapes of dark
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matter haloes can affect the coherence of tidal streams (Sackett 1999), can be re-

lated to galactic warps (Ostriker & Binney 1989; Debattista & Sellwood 1999; López-

Corredoira, Betancort-Rijo & Beckman 2002) or can affect the distribution of the or-

bits of satellite galaxies (Holmberg 1969; Zaritsky et al. 1997; Sales & Lambas 2004;

Agustsson & Brainerd 2006; Yang et al. 2006). In addition, infall of material into the

haloes is not isotropic but is expected to be through the filaments where the haloes

are embedded. Consequently, the orientation of the dark matter haloes within these

structures can affect the characteristics of the galaxy properties previously mentioned.

The alignment of massive (group and cluster) haloes (M>1013h−1M�) with their sur-

rounding large–scale structure has been explored in detail (Splinter et al. 1997; Onuora

& Thomas 2000; Faltenbacher et al. 2002; Kasun & Evrard 2005; Hopkins, Bahcall &

Bode 2005; Basilakos et al. 2006). These works indicate that the major axes of neigh-

bouring galaxy clusters are aligned. A result that is in agreement with the ”Binggeli

effect” (Binggeli 1982). The origin of these alignments is still under debate and could

be associated to infall of material (van Haarlem & van de Weygaert 1993) and/or tidal

fields (Bond, Kofman & Pogosyan 1996). Due to the lack of resolution in previous

simulations, it is only now that an exploration of the alignment of the galaxy dark

matter haloes has become possible (Bailin & Steinmetz 2005, hereafter BS06; Altay,

Colberg & Croft 2006, hereafter ACC06; Patiri et al. 2006b, hereafter PA06; Aragon-

Calvo et al. 2006). These works suggest that the major axis of the haloes lies along

the filaments. The quantification of the strength of these alignments is key to studies

of strong and weak lensing where the intrinsic distribution and alignment of galaxy

shapes plays an important role in interpreting the signal (see e.g. Heavens, Refregier

& Heymans 2000; Croft & Metzler 2000; Heymans et al. 2006).

The aim of this chapter is to characterise the alignment of both the shape and angular

momentum of galaxy dark matter haloes with their surrounding large–scale structure

to an unprecedented statistical level using the Millennium simulation (Springel et al.

2005). In particular, we will focus our attention on haloes surrounding the largest

cosmological voids. Contrary to filaments (which are strongly affected by redshift–

space distortion), large cosmological voids are a feature easy to characterise from the

observational point of view (Trujillo, Carretero & Patiri 2006). In addition, another
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important advantage of the void scheme is that (because of the radial growth of the

voids) the vector joining the centre of the void with the galaxy (halo) is a good approx-

imation to the direction of the maximum compression of the large–scale structure at

that point.

This naturally generates a framework for exploring the alignments of the shape and

angular momentum of the haloes with their surrounding matter distribution. Conse-

quently, our work mimics the observational framework to provide an easy interpreta-

tion of current and future observations. The large volume sampled by the Millennium

simulation combined with the excellent spatial resolution allows us to conduct this

project. This unprecendented statistical power is absolutely crucial if we want to ex-

plore signals expected to be very weak like the alignment of halo angular momentum

and the large–scale structure.

This chapter is structured as follows: the next section provides a description of the

Millennium simulation itself, the void and halo samples used, and details of how the

shapes and spins were measured. Following that, Section 4.4 describes our results and

we discuss our findings in Section 4.5.

4.3 Numerical simulation

4.3.1 N–body simulation

The main simulation we have used for this study is the Millennium Simulation of

Springel et al (2005). This employs 21603 dark matter particles each of mass 8.6 ×

108h−1M� within a comoving box of side 500h−1Mpc. This simulation was performed

in a ΛCDM universe with cosmological parameters: ΩΛ = 0.75,ΩM = 0.25,Ωb =

0.045, h = 0.73, n = 1, and σ8 = 0.9, where the Hubble constant is characterised

as 100hkms−1Mpc−1. These cosmological parameters are consistent with recent com-

bined analyses from WMAP data (Spergel et al. 2003) and the 2dF galaxy redshift

survey (Colless et al. 2001), although the value for σ8 is a little higher than would per-

haps have been desirable in retrospect. The spatial resolution is 5h−1kpc everywhere

inside the simulation volume.
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4.3.2 Void and halo samples

To explore the effect of the large–scale structure on the orientation of the dark matter

haloes, we use a technique similar to the one adopted in analysing the orientation of

disc galaxies in real observations (Trujillo, Carretero & Patiri 2006). To this aim we

need, first, to find and characterise the radius of the large voids in the simulation. To

speed up the process of finding the voids, we used as an initial guess for the position

of the void centres the position of the most underdense particles in the box. To do

this, for every dark matter particle in the Millennium Simulation we have estimated

the local density by using a standard (Monaghan & Lattanzio 1985; Hernquist & Katz

1989) smoothing kernel averaging over 32 neighbours. We produced a list of the most

underdense particles and then radially sorted surrounding particles in distance from

these points. In this way the radius of a volume underdense by a factor of 10, centred

on the most underdense particle, was calculated. All particles with densities less than

0.035 of the cosmic mean and further than 2h−1Mpc away from an even less dense

particle were tried as prospective centres. After cleaning this catalogue by removing

those positions that lay within a larger void and limiting the size to be larger than

5h−1Mpc in radius, this technique produced 3024 potential void centre candidates.

We estimate that this catalogue of potential void centres is greater than 99% complete,

given that we tried over 200,000 random centres but only found 2 additional voids in

the last 50,000 (i.e. voids with central densities close to our limit of 0.035).

Once a list of initial positions for searching for voids in the simulation had been cre-

ated, we used these positions to search for the maximum spheres that are empty of

haloes with mass larger than a given value. To conduct this search we follow an algo-

rithm based on a modification of the one presented in Patiri et al. (2006a). The haloes

were identified using a minimal spanning tree that links together particles with density

exceeding 900 times the background density (Thomas et al. 1998). This is to focus

on the core properties. In our case, we have used all haloes with masses larger than

8.6×1011h−1M� (i.e. those haloes with more than 1000 particles). Using this mass

cut we are selecting haloes that contain galaxies with stellar masses similar to the ones

used in the observational data. To characterise the final position of the void centres

and their radii, we populate a sphere of radius R=5 h−1 Mpc, centered on each initial
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position, with 2000 random points. For every point in this sphere, we estimate the

position of the closest 4 haloes lying in geometrically ”independent” octants. Then we

built the sphere defined by these 4 haloes. This is repeated for all the 2000 random

points. As a characterization (position and radius) of the void we choose the biggest

empty spherical region generated in the previous step. It is important to stress that the

position of the void defined in this way normally does not match the position of the

initial guess.

To match the observations we select only those voids whose radius (as measured by

the largest sphere that is empty of haloes greater than a given mass) is larger than 10

h−1 Mpc. This cut produces 2932 voids in our box with a median radius of 14 h−1

Mpc. To explore the alignments of the haloes we have concentrated only on haloes

with masses 8.6×1011h−1M� <M< 8.6×1012h−1M�(i.e. we restrict the sample to

galaxy–sized haloes) and located within shells beyond the surface of the voids.

In addition, we have also created a subsample of haloes which contain a disc–dominated

galaxy at their centre. These haloes are expected to have had a relatively ’quiet’ life and

have suffered smaller non–linear effects after turnaround such that their spin properties

should remain matched to those of the baryonic matter. To select these haloes we have

used the semianalytic galaxy catalogue of Croton et al. (2006). We have created the

subsample by selecting the brightest dominant galaxy within 200 h−1 kpc of our halo

centre. We then select those haloes where the semianalytic code indicates that there is

a galaxy brighter than MK<-23 mag that has a bulge–to–total (B/T) ratio 0<B/T<0.4

(i.e. a Milky–Way like disc galaxy).

4.3.3 Void finder comparison

In order to test the veracity of our void detection and extraction algorithm we took part

in a large void finder comparison study undertaken by Colberg et al. (2008). In order

to demonstrate that our finder is indeed working we show the relevant plots below.

Colberg et al. (2008) used the Millennium simulation (Springel et al. 2005) and a

matched z = 0 galaxy catalogue, created using a semi–analytical galaxy formation

model (Croton et al. 2006). Within the Millennium simulation volume they located
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Figure 4.1: A slice of thickness 5h−1 Mpc through the centre of the region extracted from the
Millennium simulation. The image shows the dark matter distribution in the central 40h−1 Mpc
region. Void galaxies (within any void, not just the largest one) are superimposed on the dark matter
distribution as blue circles. The locations of the largest void (with dark matter particles inside the
void marked green), its centre (red circle), and all void galaxies found.

a 60h−1 Mpc region centred on a large void and extracted the coordinates of the

12,528,667 dark matter particles contained within it. This subvolume had a mean

density which is lower than the cosmic mean, corresponding to an overdensity δ =

ρ/ρ̄− 1 = −0.28.

They also extracted a list of the 17,604 galaxies together with their BVRIK dust cor-

rected magnitudes (down to B=-10) that are present in the semianalytic catalogue of

Croton et al. (2006) within this volume and the 4,006 dark matter halos present in the

subfind catalogue (a clean spherical overdensity based catalogue) with masses greater

than 1011 h−1 M�.

Figure 4.1 shows a 5h−1 Mpc thick slice through the dark matter distribution in the

central 40h−1 Mpc region. Void galaxies (within any void, not just the largest one)

are superimposed on the dark matter distribution as blue circles. The locations of the

largest void (with dark matter particles inside the void marked green), its centre (red

circle), and all void galaxies found. The largest dark matter halo in this region only has

a mass of 1.75×1012 h−1 M�, so filaments in these images correspond only to the least

massive filaments in standard slices through the dark matter distribution as seen in, for

example, Springel et al. (2005). Furthermore, the slice contains a total of 145,194 dark

matter particles, equivalent to an overdensity of δ = −0.77.

It is clear from the following figures that our void finder obtains results essentially
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Figure 4.2: Radially averaged dark matter density profiles of the largest void in each of the void
catalogues found by the groups involved in the study of Colberg et al. 2008. For each void finder
the profile extends out to the largest radius that can be studied, given the size of the volume. See
main text for more details.

indistinguishable from other finders available in the literature.

4.3.4 Halo shapes and spins

To characterise the orientation of the haloes we have determined the orientation of

their principal axes and their angular momentum vectors. The principal axes of the

halo mass distribution are measured by diagonalising the inertia tensor,

Iij =
1

Np

Np∑
k=1

mkxk,ixk,j (4.1)

where the sum is over all the particles in the halo Np, and the coordinates are defined

with respect to the centre of mass of the halo of mass Mh. The resulting eigenvalues

Mha2/5, Mhb2/5, and Mhc2/5 are sorted by size, in descending order. The eigenvectors

give the directions of the principal axes.

The angular momentum vector of the halo is given by:

L =
∑
k

mkrk × vk (4.2)



Orientation of Halos around voids 70

Full box

all galaxies

Pearce
FairallBrunino

Colberg
Hoyle/Vogeley

Gottloeber

Neyrinck
Foster/Nelson

Mueller

Platen/Weygaert
Hahn/Porciani

Figure 4.3: Space density of galaxies (h3/Mpc3/mag) as a function of dust correctedMB for galax-
ies in the volume under consideration and in the catalogues of those void finders which identify
galaxies inside voids. For purposes of comparison, the luminosity function of the full simulation
volume is also given. Each void finder luminosity function is corrected for the volume occupied by
the relevant void sample.

Figure 4.4: Distributions of the local densities of the galaxies in the results of those void finders
that identity void galaxies. The local density is expressed via r14, which for each galaxy gives the
radius of the sphere around the galaxy that contains 1014 h−1 M�. For comparison purposes, the
distribution of the full galaxy sample is also shown.
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where the sum is again over all the particles in the halo and rk and vk are the position

and velocity of each particle relative to the centre of mass of the halo.

The uncertainty in the position of the inertia axes and of the angular momentum has

been evaluated by comparing these quantities in the same haloes in two different runs

that differ by a factor of 20 in resolution. We found that we can measure the orientation

of the angular momentum vector with an uncertainty (as provided by the full width

half maximum of the distribution) of ∼14◦ when the number of particles in the (low

resolution) halo is larger than 1000. The uncertainties in the inertia axes are 13◦ for

the semimajor and semiminor axes and 20◦ for the intermediate axis.

Once the angular momentum and the inertia vectors are evaluated, we estimate the

cosine of the angle between those vectors and the vector joining the centre of the void

with the centre of the halo R:

µ = cos θ =
( R ·V
|R||V|

)
(4.3)

4.4 Results

Fig. 4.5 shows the probability density distribution P(cos θ) of the cosine of the angles

between the inertia axes (and the angular momentum) and the vector joining the centre

of the void to the centre of the halo. We show the results for two different shells:

the shell located at the surface of the void with a width of 5% of the radius (i.e. 1

Rvoid<R<1.05 Rvoid), and a shell located well beyond the surface of the void at 1.2

Rvoid<R<1.4 Rvoid. We do this to highlight the effect of moving farther away from the

void surface. The dashed line in this figure corresponds to the probability distribution

of randomly distributed angles (i.e. P(cos θ)=1).

To the best of our knowledge there is no theoretical prediction for the probability den-

sity distribution of the angles between the inertia axes and the vector joining the centre

of the void to the centre of the halo. For this reason, we have used the following simple

analytical expression motivated by the planar symmetry of the problem to quantify the

strength of the signal:
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P (µ)dµ ∝ pdµ

(1 + (p2 − 1)µ)3/2
(4.4)

If p=1, we obtain the null hypothesis (i.e. P(cos θ)=1). Values of p>1 imply that the

inertial axis tends to be aligned with the surface of the shell, whereas p<1 implies that

the axis tends to be perpendicular to the void surface. This simple analytical expression

produces good fits to the observed distribution with reduced χ̃2.1 in most of the cases.

The results of our fits are summarized in Table 4.1.

We find significant alignments of the inertia axes within the shells of the voids. The

major axes of the dark matter haloes tends to lie parallel to the surface of the voids (i.e.

there is an excess of haloes with large values of θ). For the minor axis the alignment

is contrary to the major axis, there is an excess of haloes with the minor axis oriented

in the radial direction of the voids. The intermediate axis also tends to lie parallel to

the surface of the voids, although the signal is not as strong as in the case of the major

axis. As expected, the signal declines in all the cases as the distance from the centre

of the voids is increased, although this decline is slow: we still detect a weak signal

of alignments of the major and minor axes at distances as large as ∼2.2 Rvoid from the

void centre. The distribution of angular momentum vectors, however, is compatible

with a random orientation.

To test the reliability of our results we have repeated our analysis locating the centres of

the voids at random positions within the whole volume of the simulation. As expected,

we recovered for all the cases a signal which is compatible with the null hypothesis. To

run this test we have used exactly the same number of random centres as the number of

voids we have. The number of haloes and their distances to the centres of these ’fake’

voids are similar in this control experiment to the real case.

As stated in the introduction, any signal of alignment in the angular momentum of

the haloes is expected to be erased after the turnaround by non-linear effects. For this

reason, if this signal is still present nowadays it should be found in haloes which have

had the ’quietest’ lives since turnaround. To explore this, we have repeated the same

analysis as before but this time using the subsample of haloes with a disc-dominated

galaxy at their centre. The results are shown in Fig. 4.6 and the strength of the signal

is quantified in Table 4.1.
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Contrary to the result obtained using the full sample of haloes, the angular momentum

vectors of the haloes with a disc–dominated galaxy at their centre tend to lie parallel

to the surface of the void. To test the reliability of this signal we have run different

statistical tests: the departure of the average (Avni & Bahcall 1980) of cos θ from 0.5

(i.e. the expected value in the null hypothesis case) and the Kolmogorov–Smirnov (K-

S) test. Both tests reject the null hypothesis at the 99.8% level. Our results are robust

to changes in the ratio B/T ranges selected (i.e. we still find a significant signal for the

alignment of the angular momentum including haloes with galaxies with B/T<0.6).

In addition, we have also checked that including those haloes contained in our list of

voids with R<10 h−1 Mpc do not alter (within the error bars) our results. This is as

expected beacause almost all of our initial void centres produce voids larger than 10

h−1 Mpc in radius.

It is worth noting that the maximum signal is found when we select a shell of width 1

Rvoid<R<1.07 Rvoid. For this case, the null hypothesis is rejected at 99.9%. On the

other hand, the inertia axes show the same trends in this subsample as in the previous

case using all the haloes.

To characterize the strength of the alignment of the angular momentum we have fol-

lowed two approaches. We have used (as before) equation (4.4) and, secondly, we have

compared our result with the theoretical prediction for this quantity from Lee (2004)

within the framework of the TTT. The strength of the intrinsic galaxy alignment of the

galaxies with local shear at the present epoch is expressed as the following quadratic

relation (Lee & Pen 2002):

< LiLj >=
1 + c

3
δij − cT̂ikT̂kj, (4.5)

where L is the halo angular momentum (spin) vector and T̂ is the rescaled traceless

shear tensor T defined as T̂ij=T̃ij/|T̃|with T̃ij≡Tij−Tr(T)δij/3, and c is a correlation

parameter introduced to quantify the strength of the intrinsic shear-spin alignment in

the range of [0,1]. To estimate c we have used the analytical approximation suggested

in Lee, Kang & Jing (2005):
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Figure 4.5: Probability density distribution of the cosine of the angles θ between the inertia axes
(and angular momentum) and the vector joining the centre of the voids with the halo centres. The
error bars on each bin is the Poissonian error and (to avoid confusion) are only plotted for the
innermost shell bins. The null hypothesis (i.e. a sine distribution) is represented by the dashed line.

P (µ) =
(
1− 3c

4

)
+

9c

8
(1− µ2) (4.6)

The values of the parameter c we obtain in the different shells are summarized in Table

4.1. When c=1 the strength of the galaxy alignment with the large-scale distribution is

maximum, whereas c=0 implies galaxies are oriented randomly. In the inner shell, we

measure in this case c=0.151±0.046. It is worth noting that the value of c measured

in this work is a lower limit of the true value because it has been evaluated without

any attempt to correct for the smoothing produced by the uncertainty in measuring the

angular momentum vector of the haloes. Consequently, the strength (and statistical

significance) of the observed alignment should be higher. To quantify this effect, we

have re–estimated c again but this time using the theoretical prediction convolved with

our error function in measuring the angular momentum. After fitting the convolved

function to the data, we obtain c=0.158±0.045.
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Table 4.1: The strength of the alignments on the different shells. To measure the alignment of the
inertia axes we have used the parameter p (p=1 in the null case), and c (Lee 2004) in the case of
the angular momentum (c=0 in the null case).

Shell Maj. A. Int. A. Min. A. A. M. A. M. Number of
Rvoid Units p p p p c Haloes

Total Sample
1.00 <R<1.05 1.218±0.012 1.061±0.011 0.778±0.008 1.007±0.010 0.004±0.026 13128
1.05 <R<1.10 1.165±0.014 1.060±0.013 0.800±0.010 0.994±0.012 -0.014±0.032 8644
1.10 <R<1.20 1.150±0.009 1.057±0.008 0.820±0.007 0.992±0.008 -0.020±0.020 21567
1.20 <R<1.40 1.111±0.005 1.040±0.005 0.863±0.004 0.989±0.005 -0.033±0.012 60908
1.40 <R<1.80 1.070±0.003 1.021±0.003 0.914±0.002 0.989±0.003 -0.027±0.007 200201
1.80 <R<2.60 1.030±0.001 1.011±0.001 0.959±0.001 0.995±0.001 -0.014±0.004 707760
2.60 <R<3.20 1.011±0.001 1.003±0.001 0.985±0.001 0.998±0.001 -0.004±0.002 1301720

Disc-Dominated subsample
1.00 <R<1.05 1.172±0.021 1.056±0.019 0.803±0.015 1.062±0.019 0.151±0.046 4212
1.05 <R<1.10 1.156±0.026 1.040±0.023 0.812±0.019 0.994±0.022 0.013±0.059 2587
1.10 <R<1.20 1.148±0.017 1.035±0.015 0.837±0.012 1.003±0.015 0.018±0.038 6366
1.20 <R<1.40 1.098±0.010 1.036±0.009 0.875±0.008 0.991±0.009 -0.029±0.023 17553
1.40 <R<1.80 1.057±0.005 1.021±0.005 0.920±0.005 0.987±0.005 -0.028±0.013 56883
1.80 <R<2.60 1.025±0.002 1.012±0.002 0.960±0.002 0.994±0.003 -0.013±0.006 228198
2.60 <R<3.20 1.013±0.002 1.006±0.002 0.981±0.002 0.999±0.002 -0.002±0.005 370409

Figure 4.6: Same than in Fig. 4.5 but this time using only haloes which contain a disc–dominated
galaxy at their centres. Note that using this halo subsample the angular momentum vector tends to
lie parallel to the surface of the void.
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4.5 Discussion

In this chapter, we have shown that when haloes are selected in order to contain a

Milky–Way like disc galaxy at their centres the angular momentum of the dark mat-

ter halo is oriented preferentially parallel to the surface of the voids. Observationally,

the same alignment is detected using the baryonic matter (Trujillo, Carretero & Patiri

2006). These two pieces of information are in agreement with the TTT prediction

that both the dark and the baryonic matter component have conjointly acquired their

angular momentum before the moment of the turnaround. Interestingly, the signal de-

tected in the real observation c=0.7+0.1
−0.2 is higher than the one found in the simulations

c=0.151±0.046. This is to be expected taking into account that the signal in the dark

matter haloes should be erased by non–linear effects such as exchange of angular mo-

mentum between the haloes. Future work, consequently, should explore the strength

of the alignment of the haloes at the moment of turnaround. At that early epoch the

strength of the signal should be as strong as the one measured using the baryonic com-

ponent. Porciani, Dekel & Hoffman (2002b) shows hints that this should be the case

by comparing the relation between the halo spin and the linear shear tensor at different

redshifts from z=50 to z=0.

We have compared our work with previous analysis of the alignment of the inertia

axes and angular momentum with their surrounding large–scale structure using differ-

ent simulations. We concentrate first on the alignment of the angular momentum: using

the void framework, neither Heymans et al. (2006) nor PA06 have found a signal of the

alignment of the angular momentum within the shell of the voids. Their results are eas-

ily understood taking into account that no preselection of the haloes was done in either

of these works and that they explored the signal in just one shell of width 4 h−1 Mpc.

In fact, if we mimic their analysis we find c=-0.014±0.012 (p=0.996±0.005), in agree-

ment with their findings. In the same shell, selecting those haloes with 0<B/T<0.45

produces c=0.030±0.021 (p=1.012±0.008). This is a factor of 5 weaker than the sig-

nal we find in the closest shell to the void surface. As we have seen in this work,

the signal is only significant at the void surface, consequently, taking a wide shell can

mask it. In the particular case of Heymans et al. (2006) their mass resolution limit

could be another source of concern, since it is a factor of ∼10 worse than the present
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simulation.

Comparison with other work is more complicated since the analysis of the alignments

is done using a different scheme. BS06 measure the alignment of the angular momen-

tum along filaments. Interestingly, they found that the angular momentum of galaxy

mass haloes shows a weak tendency to point along filaments, while those of group and

cluster mass haloes show a very strong tendency to point perpendicular to the filaments.

The significance and strength of their signal in terms of the c parameter is, however, not

quantified. Consequently, the agreement between ours and their work can be done only

qualitatively. Porciani, Dekel & Hoffman (2002b) explored the alignment of massive

haloes (M>1013h−1M�) between their final spin and the initial shear tensor at the

halo position. They found c=0.07±0.04. The mass regime explored by these authors

and their comparison between an initial and a final property of the haloes prevents

us making a direct comparison between their and our measurements of the c parame-

ter. Finally, in a recent paper, Aragon-Calvo et al. (2006), using galaxy mass haloes

find that the strength of alignment of their spins in walls is c=0.13±0.02. This is in

excellent agreement with the value reported in this chapter.

If we focus our attention on the alignment of the inertia axes, we find that our results

are in good agreement with those of BS06, ACC06 and PA06. All these authors find

that the tendency of the minor axis to lie perpendicular to large–scale filaments is the

strongest of the alignments. It is interesting to note that the strength of these alignments

seems to be dependent on the mass of the haloes, being stronger for the most massive

(cluster–sized) ones. BS06 and ACC06 suggest that the different strength could be

related to fact that most massive haloes receive a larger infall of matter from filaments.

This could also help to explain the tendency of the angular momentum of the most

massive haloes to be perpendicular to the filaments. In this sense, the cluster mass

haloes would acquire most of their current angular momentum from major mergers

along the filaments, whereas the angular momentum of the galaxy mass haloes will

still have memory of the initial tidal fields.

The alignment of the haloes with their local large–scale structure is not only of interest

to constrain models of galaxy formation, it could also be relevant to explain other

observational features. For example, the tendency of satellite galaxies to avoid orbits
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that are coplanar with their host spiral galaxies (know as the ”Holmberg effect”) found

in observations (Holmberg 1969; Zaritsky et al. 1997; Sales & Lambas 2004, but see

Agustsson & Brainerd 2006) and in simulations (Zentner et al. 2005; Libeskind et al.

2007). This could be due to the preferential accretion of satellites along filaments, that

we have seen are preferentially aligned with the major axis of the host halo.

Finally, it is worth pointing out the potential importance of the alignments we have

discussed here to strong and weak lensing studies. In particular, these alignments could

contribute to the weak lensing signal producing a shear–ellipticity correlation (Hirata

& Seljak 2004). The degree of contamination that these alignments will produce in the

weak lensing surveys should be explored in future work.

Voids are one extremum of the range of large scale environments within which galaxies

can reside. These environments range from underdense voids to highly overdense

galaxy clusters which may contain many thousands of galaxies. In the next chapter we

utilise large simulations covering several of such environments and attempt to quantify

what effect this has on galaxy properties.



Chapter 5

Large Scale Structure environmental

effects on galaxy formation

One of the main projects carried out by the Virgo Consortium in recent years has been

the Millennium Simulation (Springel et al. 2005) in which a comoving volume of 500

h−1Mpc has been evolved to present day (i.e. z = 0), employing of the order of

1010 tracers (particles) to model the gravitational evolution of the non-collisional DM

component. In cosmological calculations of structure formation it is crucial to make

sure that the simulated volume is large enough to allow fluctuations in the density field

on the linear scale of the box to remain in the linear regime down to the time when

the simulation is stopped. This requirement is met by the Millennium run, which is

therefore able to follow the formation of cosmic structures spanning an enormous dy-

namical range (the gravitational softening, ε ∼ 5h−1 kpc). This resulted in a very

computationally intensive calculation and it wouldn’t have been possible, due to com-

putational resource limitation, to perform the same calculation both keeping the same

accuracy in mass resolution and also accounting for the physics of the baryonic com-

ponent. A trade-off has been adopted in the ”Millennium with Gas” project, at the

price of a coarser resolution for the baryonic component (Hartley et al. 2008, Gazzola,

PhD thesis).

In order to overcome this limitation, Semi-Analytical techniques have been developed

(White & Frenk (1991), Kauffmann, White & Guiderdoni (1993), Cole et al. (1994,

2000), Somerville & Primack (1999), Baugh (2006)): in this approach, the evolution
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of baryons within DM halos are followed by means of analytical prescriptions. The

formation history of DM halos (identified within the parent simulation) are organized

so that the merger trees allow us to follow the hierarchical formation processes, driven

by gravity, that result in present day DM halos. Semi-Analytical Models (hereafter

SAMs) of galaxy formation can then use the DM halos merger trees generated from

an N-body simulation and produce galaxy populations that can be then compared with

observations.

Exploiting the Millennium Simulation, several authors have carried out Semi-Analytical

studies of galaxy formation: for example, the SAMs used in Bower et al. (2006), Cro-

ton et al. (2006) and Font et al. (2008) produced galaxy populations in the MILLEN-

NIUM volume. Also De Lucia et al. (2006) applied their SAM to same simulation

results.

5.1 Sampling different environments in the LSS

Taking into account baryonic physical processes in large calculations of structure for-

mation generates a demand for computational resources difficult to meet with present

day facilities. It has been shown by Theuns et al. (1998) that resolving the Jeans Mass

in the Intergalactic Medium (IGM) after the re-ionization epoch is a necessary require-

ment for numerical calculations to be able to model the high redshift Ly − α forest:

this translates in a gas particle mass∼ 106M�h
−1 which is computationally unfeasible

for large scale calculations such as the Millennium run. On the other hand, following

a galaxy formation scenario in a box of linear size L . 100h−1 Mpc can not lead to

predictions on z = 0 galaxy populations: density fluctuations on the scale of the box

become non-linear long before the desired end of the calculation, therefore leading to

non reliable results (see Bagla & Ray 2005; Gelb & Bertschinger 1994; Sirko 2005).

The re-simulation technique has been developed in the past two decades in order to

overcome these limitations: starting from a parent simulation of a large cosmological

volume it is possible to identify regions of interest in the end state of the simulation

(let’s assume this is z = 0). Particles belonging to these regions can then be traced

back to the initial conditions (hereafter ICs) and, allowing a padding zone for safety,
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the Lagrangian region of interest in the ICs can be ”zoomed” in. The number of par-

ticles in these regions is increased, while the resolution in the external volume can be

degraded using a coarser sampling in mass of the continuum (see Tormen, Bouchet &

White 1997, for example). Using the re-simulation technique and the MILLENNIUM

run as a parent simulation, the Virgo Consortium started a project called Galaxies-

Intergalactic Medium Interaction Calculation (GIMIC), aimed at re-simulating a series

of five LSS environments including baryonic physics and with a resolution close to the

Jeans mass in the IGM soon after the re–ionization epoch. The project is presented

in Crain et al. (2009), where details of the calculations can be found. For the present

work, we performed the gravity-only version of the GIMIC calculations at intermedi-

ate mass resolution. We then produced the merger trees for halos and substructures we

identified in our simulations, passing these as inputs to the SAM by De Lucia et al.

(2006); De Lucia & Blaizot (2007). We then analyzed the galaxy catalogues produced

by the SAM, and the corresponding galaxy merger trees, in order to identify the effects

(if any) of the LSS on the processes of galaxy formation.

5.1.1 Initial conditions and numerical calculations

In the GIMIC project, the LSS formed in the MILLENNIUM volume has been sampled

in order to identify regions spanning a wide range of environments from underdense

voids to rich galaxy clusters. This resulted in selecting five roughly spherical regions,

whose overdensities at z = 1.5 are (−2,−1, 0,+1,+2) times the root-mean-square

deviation, σ, from the cosmic mean on a scale of ∼ 20h−1Mpc at z = 1.5. Four out

of five spheres have a comoving radius of 18h−1 Mpc, while the σ = +2 regions was

chosen to be centered on a rich cluster, thus requiring a spherical Lagrangian region of

radius 25h−1Mpc to be followed during the calculation.

The corresponding Lagrangian regions in the ICs have then been resampled using a

higher number of particles. In the original MILLENNIUM run, DM (low resolution)

particles have a mass mDM = 8.6 × 108h−1M�. Here two sets of ICs have been

generated at intermediate mass resolution mDM = 6.46 × 107h−1M� and high mass

resolution mDM = 8.08 × 106h−1M�. Outside these zoomed regions, the MILLEN-

NIUM volume has been resampled with a multi-mass particle distribution. Moving out
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Region x y z Comoving radius N (int. res)
[h−1Mpc] [h−1Mpc] [h−1Mpc] [h−1Mpc]

−2σ 153.17 347.90 424.81 18 2.23× 107

−1σ 387.91 316.48 113.46 18 2.80× 107

0σ 271.94 108.29 107.45 18 3.44× 107

+1σ 179.51 379.22 196.64 18 4.30× 107

+2σ 233.10 139.30 387.38 25 1.24× 108

Table 5.1: Parameters for the five GIMIC regions. Columns 2-5 give the location (in Millen-
nium Simulation coordinates) and the nominal comoving radius of the regions at z = 1.5. The
following column show the number of dark matter particles within the zoomed region of the simu-
lation.Adapted from Crain et al. (2009).

of the high resolution region 8 different boundary layers have been defined and each of

them has been populated with a smaller number of larger particles. In this way, the La-

grangian representation of the continuum becomes coarser and coarser moving away

from the region of interest. It is not possible to follow the dynamics of such a system,

but a good accuracy in its tidal force contribution to the high-resolution particles can

be obtained, thus also dramatically reducing the overall computational requirements.

This zooming technique, by introducing a larger amount of particles in the regions of

interest, modifies (increase) the Nyquist frequency in the simulated box. It has then

become necessary to take into account the extra power associated to higher modes. To

do this, the same power spectrum used in the generation of the MILLENNIUM run ICs

was adopted up to its characteristic Nyquist frequency while the power corresponding

to the extra modes introduced in these calculation have been obtained by means of

CMBFAST(Seljak & Zaldarriaga 1996). The Zel’dovich displacement field was then

applied (see Power et al. 2003, as an example). A detailed discussion on the procedure

used for the selection of the GIMIC regions and on the generation of the initial condi-

tions can be found in Crain et al. (2009). It is worth noticing that this strategy allows

the hi-resolution regions to be evolved down to z = 0 without worring about finite box

size effects. Fluctuations on the scale of the MILLENNIUM volume are still described

by linear theory and their contribution is taken into account in the GIMIC calculations.

The GIMIC simulations adopt the same cosmological parameters as the MILLEN-

NIUM simulation: Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045, ns = 1, σ8 = 0.9, H0 =

100 h km s−1 Mpc−1, h = 0.73, consistently with the WMAP-1st year data (Spergel

et al. 2003), and with the 2dfGRS (Colless et al. 2001) .
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In our production runs we evolved the intermediate mass resolution ICs, limiting our-

selves at following the non-collisional CDM component and neglecting baryonic pro-

cesses. In our calculations, following Crain et al. (2009), we used a 10243 mesh for the

PM estimate of the gravitational potential and adopted a gravitational softening length

initially fixed in comoving space, but becoming fixed in physical space at z = 3:

εcom(a)
′
= min(εcom, ε

max
phys/a) (5.1)

The softening was chosen such that at z = 3, it was fixed at εmax
phys = (1.0)h−1 kpc

which is smaller then the limit indicated by Steinmetz & White (1997), in order to

avoid spurious two body relaxation effects.

In carrying out the calculations presented here, we have used GADGET3, an updated

version of the GADGET2 code presented in Springel (2005). The most relevant algo-

rithmic update, in the scope of our non-collisional calculations, resides in GADGET3’s

newly implemented domain decomposition strategy. The new implementation is par-

ticularly suited for calculations with very clustered particle distributions, such as the

GIMIC spheres, improving the load-balancing of the calculation on high performance

computer architectures with a very large number of computational processing units

(see Springel et al. 2008).

5.1.2 Post Processing Pipeline, and Merger Trees construction

With the goal of providing the SAM with high quality inputs, we designed a runtime

strategy aiming at a very high time resolution: we saved the status of our system (here-

after a snapshot) on a series of 193 output times, chosen to be logarithmically evenly

spaced in the expansion factor. We identified CDM halos in the high resolution re-

gions using the standard FOF algorithm (Davis et al. 1985), as implemented in the

GADGET3 code. This algorithm identifies isodensity contours of δ ' 3/(2πb3). We

choose the standard value b = 0.2 for the linking length parameter, in units of the

mean interparticle separation, leading to δ ' 60. The FOF algorithm presents some

limitations in the way groups of particles are identified: implementing only a geomet-

rical criteria for grouping particles may introduce artifacts in the group detection such

as abridging of independent self gravitating groups or spurious identification of small



GIMIC and SAMs 84

Figure 5.1: The overdensity evolution of the five spherical regions at intermediate resolution. The
vertical dotted line denotes the epoch at which the regions were selected (z = 1.5). Notice the
drop, after z = 1.5, in overdensity of the +1σ region; this results from a massive halo with high
peculiar velocity leaving the spherical region. Taken from Crain et al. (2009)

groups in the outskirts of much larger ones. Therefore, particle groups identified by the

FoF algorithm are geometrically linked but not necessarily gravitationally self-bound.

To overcome these limitations and to properly identify DM halos’ substructures (DM

halos within larger DM halos), we performed a gravitational unbinding procedure, as

implemented in the code SUBFIND, inlined in GADGET3 (see Springel et al. 2001 for

a detailed description of SUBFIND). This code is also able to identify gravitationally

bound halos, contained in larger gravitationally bound halos (i.e. subhalos or substruc-

tures). We decided to consider only halos (or subhalos) retaining more than 30 high

resolution DM particles, at each time (in each snapshot), this being on the safe side of

the standard identification threshold (20 DM particles, as shown also by Knebe et al.

(2011)).

This post-processing pipeline returned DM halo and subhalo catalogues, for the 5

GIMIC regions. Given the multi-mass particle distribution surrounding the high-

resolution region, we discarded halos not exclusively formed by high resolution parti-

cles at all times (we discarded halos contaminated by field particles).

In the hierarchical model of structure formation small DM halos form first and then

merge to form larger structures. After identifying DM structures at each time in our

simulation, a further step is necessary in order to link corresponding, or merging, ha-
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los across our time series of snapshots. This task has been performed using a software

suite, namely:

• L-BASETREE: this code actually establishes the links (by means of pointers in

complex data structures) between halos identified in different snapshots

• L-HALOTREE: using the catalogues produced by SUBFIND and links identified

by L-BaseTree, this code builds the so called merger trees. These trees are rooted

at DM halos (or subhalos) identified in the end-state of each simulation and,

going back in time, all the available information on the halo’s progenitors are

stored in a tree structure.

• additional post-processing:

L-ADDPOSTAB, L-ADDIDTAB, L-MAKEUNIQUEIDS and

L-SELECTMAINBRANCHES are accessory post processing tools that modify the

initial structure of the halos’ merger trees in order to allow the SAMs to use them.

A visual impression of a halo merger tree is given in figure 5.2. Following Springel

et al. (2005), the “first progenitor” of a given halo was simply defined as the most

massive of its progenitors. This pointer was meant to efficiently track the main branch

of a merger tree. This is obtained connecting, starting at z = 0, the FoF group under

consideration with its most massive progenitor at the immediately preceding available

time and iteratively linking all other most massive progenitors, going back in time.

Due to severe version incompatibilities between the version of GADGET3 available to

us and the suite of post processing tools kindly shared with us by Klaus Dolag, a lot of

code implementation work was necessary in order to produce the final version of the

merger trees.

We arbitrarily choose to save the simulation outputs in the Hierarchical Data Format

(HDF5) enabling an extreme portability of the data among different platforms. This

also required a considerable amount of coding.

In Figure 5.3, we show the differential number density of haloes identified with the

FoF algorithm, dn(M)/dM , multiplied by M2 in order to reduce the dynamic range

of the plot, and thus more clearly highlighting the differences between regions. In this
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Figure 5.2: Schematic organisation of the merger tree in the Millennium Run. At each output time,
FOF groups are identified which contain one or several (sub)halos. The merger tree connects these
halos. The FOF groups play no direct role, except that the largest halo in a given FOF group is
the one which may develop a cooling flow according to the physical model for galaxy formation
implemented for the trees. To facilitate the latter, a number of pointers for each halo are defined.
Each halo knows its descendant, and its most massive progenitor. Possible further progenitors can
be retrieved by following the chain of ‘next progenitors’. In a similar fashion, all halos in a given
FOF group are linked together. Figure taken from Springel et al. 2005

plot, dn(M)/dM is normalized by the total mass contained in each sphere. In this

way we also have a measure of the efficiency of halo formation per unit mass. Starting

from our data, we have reproduced Figure 2 (right panel) in Crain et al. (2009) as a

validation of our runs. Comparing the two plots, a remarkable agreement is found,

with differences due to a different binning in mass. It is worth noticing the original

plot in Crain et al. (2009) has an incorrect normalization: the authors have erroneously

normalized the masses in GADGET internal mass units (i.e. 1010 solar masses). We

are using here the same normalization for consistency purposes only.

Following Crain et al. (2009) and looking at Figure 5.3, it is possible to appreciate the

systematic variation from region to region at all masses. Haloes form more efficiently

in the high-density regions because they are the most dynamically advanced and the

most massive haloes form only in the most overdense regions.

These results agree with previous numerical and analytical studies of DM halo evolu-
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Figure 5.3: Differential number density of halos as a function of mass at z = 0, normalized by the
total enclosed mass of each region and multiplied by M2 to reduce the dynamic range of the plot.

tion (e.g. Frenk et al., 1988; Mo & White, 1996; Sheth & Tormen, 2002).

Frenk et al. (1988),Cole (1997) and more recently Sheth & Tormen (2002), have shown

that the rate at which a dark matter halo population evolves is fundamentally different

between regions of varying overdensity. This has also been shown to be reflected in

the clustering bias of haloes as a function of mass by Mo & White (1996).

5.2 Semi Analytical Modelling of Galaxy Formation

Starting from the DM halo (and subhalo) merger trees, we used the SAM described

in De Lucia & Blaizot (2007) and De Lucia et al. (2006) to model galaxy formation

processes in the different LSS environments simulated. Here we just summarize the

main feature of such a model, referring the interested reader to the aforementioned

works (and references therein) for a detailed presentation of the model itself.

5.2.1 Summary of physical processes included in the model

The SAM employed in this study, includes many relevant physical processes relevant to

the production of accurate predictions for the properties of galaxy populations. While
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we refer the reader to the detailed discussion available in the aforementioned papers,

we give here a short summary:

• Gas cooling

The model estimates the rate of gas cooling following White & Frenk (1991)

with an implementation similar to that of Springel et al. (2001). The local cool-

ing time is defined as the ratio between the specific thermal energy content of

the gas and the cooling rate per unit volume:

tcool(r) =
3

2

kTρg(r)

µ̄mpn2
e(r)Λ(T, Z)

(5.2)

where, µ̄mp is the mean particle mass, ne(r) is the electron density, k is the

Boltzmann constant, and Λ(T, Z) represents the cooling rate. The latter is strongly

dependent on the virial temperature of the halo, and on the metallicity of the gas.

In this model, these dependencies are accounted for by using the collisional ion-

ization cooling curves by Sutherland & Dopita (1993). See also Croton et al.

(2006) and De Lucia et al. (2010).

• Star Formation (SF) Gas cooled with the aforementioned scheme is modelled

to form stars. Assuming the cold gas to be evenly distributed over the galactic

disc, a critical mass is defined as

mcrit = 3.8× 109
( Vvir

200 km s−1

)( rdisk

10 kpc

)
M� , (5.3)

where the disk is assumed to have a scale length to rs = (λ/
√

2)Rvir, and the

outer disk radius is set to rdisk = 3rs, based on the properties of the Milky Way.

Here λ is the spin parameter of the dark halo in which the galaxy resides, as

measured directly from the simulation at each time step. When the cold gas

mass in the disk exceeds this critical value, the star formation rate is assumed to

be

ṁ∗ = αSF (mcold −mcrit) tdyn,disk , (5.4)

with αSF, being the efficiency parameter, typically set so that 5 to 15 percent of

the gas is converted into stars in a disk dynamical time tdyn,disk. SF bursts driven

by merger events are also taken into account, along with the resulting feedback

contribution also needed to prevent gas-overcooling at early times (White &
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Rees (1978); Cole (1991)). For a detailed discussion of the SF model imple-

mented in this code, we refer the interested reader to De Lucia & Blaizot (2007);

De Lucia et al. (2006); De Lucia, Kauffmann & White (2004); Croton et al.

(2006)

• Stellar Populations

Galaxy photometric properties are computed by the SAM model using the stellar

population synthesis prescriptions from Bruzual & Charlot (2003) and using the

method described in De Lucia, Kauffmann & White (2004). The model used for

this study, adopts the stellar Initial Mass Function (IMF) introduced by Chabrier

(2003) together with the Padova–1994 evolutionary tracks.

• Feedback mechanisms: AGN, SNe

In order to suppress the onset of cooling flows the adopted SAM includes the

feedback contribution by Active Galactic Nuclei (AGN) when active in the so

called radio mode: this is a low–energy feedback scheme that accounts for the

accretion of hot gas onto a Super Massive Black Hole (SMBH), once a static

hot gas halo has formed around the galaxy hosting the SMBH. As SF proceeds,

young massive stars rapidly reach their final evolutive stage and end their life

as SNe. Such very energetic events heavily affect the surrounding diffuse gas

by the injection of metal polluted hot gas along with a considerable amount of

energy that partially reheats cold gas in the galactic disk and can also lead to

the ejection of hot gas from the surrounding halo (SNe winds). Details on the

inclusion of such properties in the model can be found in De Lucia & Blaizot

(2007); Croton et al. (2006).

• Attenuation by Dust

Light attenuation operated by dust in the ISM is included in the model: combin-

ing both the prescriptions by Devriendt, Guiderdoni & Sadat (1999) (for the ho-

mogenous ISM component) and by Charlot & Fall (2000) (for molecular clouds

nesting star formation) the implemented model applies the dust correction to the

resulting optical depth in the way described by Devriendt, Guiderdoni & Sadat

(1999).



GIMIC and SAMs 90

In the present study, we try to focus on the LSS environmental effects on galaxy for-

mation, therefore we follow the merger history of SA galaxies forming in different

environments. In the hierarchical paradigm of structure formation, large DM halos are

formed by merging of smaller objects (that form first): the epoch and the rate of these

merging events are expected to depend on the local density. Therefore, also for our

samples of galaxies it is important to model the galaxy–galaxy mergers in an accurate

way since the resulting galaxy properties might reflect the larger scale evolutionary

patterns.

5.2.2 Galaxy Mergers

The cosmic merging histories of halos and their substructures is accurately traced by

the DM merger trees produced. This allows to safely follow the motion of SAM galax-

ies lying at the centers of individual halos, with the main limitations imposed by strip-

ping and truncation mechanisms due to tidal forces that lead, as an ultimate fate, to

the disruption of the DM subhalo within a larger host DM structure. This happens,

in our outputs, when the substructure is depleted of DM particles and falls below the

detection threshold for the SUBFIND algorithm (in our case ' 1.95 × 109M�). When

a substructure is disrupted, the hosted galaxy is assumed to survive for a characteristic

timescale, determined by dynamical friction, and to continue moving on its current

orbit. After this time is elapsed, the orphan galaxy is assumed to merge on the central

galaxy of her new parent halo. In general, this is the FoF main group halo but it can

also be another surviving substructure within it.

When such a galaxy merger happens, a collisional starburst (Somerville, Primack &

Faber 2001) is triggered:

considering two merging galaxies G1 and G2 (with m1 > m2) the SAM model assumes

that all the gas from G1 and G2 is gathered in the disk component of the remnant galaxy

G while its bulge component results by adding all the stars of G2 to the bulge stars of

G1. Following also the evolution of the diffuse galactic gas, the model assumes that

a fraction of the gas in G is instantaneously converted into stars, with this fraction

depending on the baryonic mass ratio of the two merging galaxies:

mnew
star = 0.56×

(
m2

m1

)0.7

×mgas
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In the limit of m2 << m1, no star formation is triggered by the collision, when m1 '

m2 about the 40% of the gas is turned into stars and in the case of a major merger

(m2/m1 ≥ 0.3) there is not resulting disc component and all the stars are gathered

in the bulge component of galaxy G. This instantaneous burst of star formation, also

drives a feedback model in which a fraction of the remaining cold gas is ejected (see

also Croton et al. 2006).

5.3 Preliminary Results

We applied the SAM briefly described in previous section to the halos (and subhalos)

merger trees obtained from the GIMIC calculations. At each of our 193 output times,

individual galaxy properties were saved and, furthermore, for all galaxies at z = 0 we

produced the galaxy merger trees (essentially, in the same way we produced DM halos

merger trees).

Within the semi–analytical model of galaxy formation used in this study, three main

galaxy types are defined:

• Type0 (T0): these are galaxies that sit at the centre of a self-bound DM halo. All

galaxies are born as T0. At each snapshot, T0 galaxies are found at the centers

of DM main halos and not at the centers of DM halos that have been accreted by

larger objects.

• Type1 (T1): galaxies that are sitting at the centre of DM halos that merge onto

larger DM halos (thus becoming substructures embedded in a larger halo) move

from T0 to T1, at what is defined as the infall epoch.

• Type2 (T2): as briefly outlined in the previous section, a DM substructure is pro-

gressively disrupted by stripping and truncation mechanisms due to tidal forces

within the parent halo. When the substructure, hosting a T1 galaxy, falls below

the detection threshold of SUBFIND the hosted galaxy becomes of Type2 and its

dynamical evolution is followed as previously described.
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Figure 5.4: Galaxy merger tree.
In this example, the merger tree of a Galaxy of Type 0 is shown: at z = 0 its stellar content sums
up to ' 1.27× 1011M� and this galaxy is central in a DM halo of ' 2.74× 1013M�.
Colors: black is for T0 galaxies, green or T1 and red is for T2
Symbols: symbol size is proportional to the stellar content of the represented object.
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In Figure 5.4 a visualization of a typical galaxy merger tree is shown. The z = 0 galaxy

is shown at the top of the plot and all its progenitors, and their merging histories, are

plotted going backwards in time recursively. The main branch is defined connecting

the galaxy, at each epoch, to the progenitor with the largest stellar mass at the immedi-

ately preceding epoch (in Figure 5.4 the left-most branch is the main branch). In this

plot, galaxy merger events are shown as lines, color coded with the Type of the galaxy

merging on the main branch.

Following De Lucia & Blaizot (2007), we defined three characteristic epochs for Galaxy

evolution:

• Formation: this is the epoch when the total stellar mass, cumulated on all the

progenitors, reaches half the value (50%) of the final stellar mass (at z = 0) of

the galaxy under consideration

• Assembly: this characterizes the epoch in which the main progenitor of the

galaxy under consideration has formed half (50%) of the final stellar mass (at

z = 0)

• Infall: consistently with the definition of T1 galaxies, this is defined as the epoch

in which the DM halo hosting the galaxy under consideration is accreted by a

larger halo. This epoch can only be defined for T1 and T2 galaxies (at z = 0).

Studying the cumulative distribution functions of these characteristic quantities, as

filtered from the large scale structure (i.e. in the GIMIC sphere), and depending on

the galaxy Types and on their merging histories may shed some light on the effect of

different LSS environments on galaxy formation scenarios.
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Figure 5.5: Stellar mass content differential distribution function at z = 0. Clockwise from top
left, the overall sample of galaxies containing more than 5 × 108M� in the stellar component,
the Type 0, Type1 and Type2 corresponding distributions. Lines are color coded black to cyan for
growing overdensities

In Figure 5.5 the differential mass distribution of all galaxies (with M z=0
st & 5 ×

108M�) is shown, color coded for the 5 GIMIC regions (black to cyan for growing

overdensities). Given the logarithmic scales in the plot, is straightforward to see how

these samples are heavily dominated by low mass galaxies, at z = 0. An excess for

T1 galaxies in the +2σ region at the very high mass end can be observed: in this

region, a DM halo of mass ' 2 × 1015M� (one the most massive CDM halos in

the MILLENNIUM volume) hosts a population of massive DM substructures, at whose

centers are likely to sit massive T1 galaxies. An excess of galaxies with large stellar

masses in the overdense regions has also been seen by Crain et al. (2009) (see their

Figure 3, right panel). They interpret this as a result of the lack of AGN feedback in
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their calculations (fully hydrodynamical). Overall the differential mass distributions

shown above have a very similar shape, while it is possible to notice a systematic

relative offset for the 5 GIMIC regions, for all galaxy types: in higher overdensities a

higher number of galaxies of each Type forms across the whole mass range considered.

The most massive galaxies preferentially form in the more overdense regions.

In what follows we focus on the stellar content of galaxies, this being the main proxy

for overall galactic properties. It is therefore expected to be a sensitive indicator of

possible environmental influences on galaxies’ formation histories.

The following plots show the ”cumulative” distribution functions (hereafter CDFs) of

the three characteristic redshifts zFormation, zAssembly and zInfall for different samples

of our galaxy populations in the 5 GIMIC high resolution regions (usual color coding).

The CDFs are normalized on the total number of galaxies in each corresponding sam-

ple and defined as:

CDF (z) =

∑
zi>z

dn(zi)

NTOT

(5.5)

In Figure 5.6, T1 galaxies (at z = 0) are shown to have Infall redshifts much lower

than T2 galaxies (at z = 0). This happens by construction in the SAM used for this

study: as already outlined in previous sections, after a DM halo (hosting a T0 galaxy)

merges onto a larger DM halo (Infall epoch) the accreted T0 galaxy becomes a T1

object.

On a timescale driven by tidal stripping and tidal truncation mechanisms in the parent

DM halo, the accreted DM substrucure hosting a T1 galaxy is disrupted and the hosted

T1 galaxy becomes a T2 galaxy, whose evolution is followed by the model as outlined

in section 5.2.2. Therefore, a T2 galaxy (at z = 0) must have been accreted earlier

then a T1 galaxy (at z = 0).

Looking at the LSS environmental dependency of Infall redshifts in Figure 5.6, it can

be noticed how (in particular for T2 galaxies) a clear trend emerges:

T2 galaxies (at z = 0) tend to show higher Infall redshifts in the overdense regions

with respect to underdense ones. This behaviour reflects the hierarchical paradigm of

structure formation adopted in this study (ΛCDM cosmology): structures tend to form

earlier in overdense regions, where also the rate of merger events is higher than in
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underdense regions.

In Figure 5.7, focusing on the Formation epoch (i.e. left column) it is possible to see

that moving from T0 to T1 and to T2 galaxies, the average Formation epochs move

backwards in time (i.e. at higher z). The same behaviour can be observed also for the

average Assembly epoch (i.e. right column).

In the SAM used for this study, star formation processes stop being efficient in T1

galaxies shortly after zInfall. Due to Ram Pressure stripping by the diffuse hot gas

component of the parent halo and due to efficient SNe feedback, the newly accreted

T1 galaxy is instantaneously depleted of its hot gas reservoir. Therefore, star formation

within accreted galaxies (T1) is limited to the consumption of the residual gas in the

cold phase.

Galaxies of Type 1 stop forming stars shortly after zInfall, when they have consumed

Figure 5.6: CDFs for the Infall redshift for all T1 and T2 galaxies with Mz=0
st & 5 × 108M� in

the 5 GIMIC high resolution regions
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their remaining cold gas reservoir. As a consequence, unless a merger event happens,

their final stellar mass is almost conserved down to z = 0.

In other words, as it can be observed comparing Figure 5.7 with Figure 5.6, T1 and T2

Figure 5.7: CDFs for Formation (left column) and Assembly (right column) redshifts, for the entire
galaxy population (i.e. all galaxies with Mz=0

st & 5 × 108M�) in each high-resolution GIMIC
region, considering the three galaxy types. For each GIMIC sphere, the corresponding number of
galaxies is also indicated in the plot. Color coding as in Figure 5.3: black to cyan growing region
overdensity
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galaxies tend to have higher zAssembly and zFormation than zInfall, by construction.

Always looking at T1 and T2 galaxies in Figure 5.7, it is then clear how the LSS envi-

ronmental dependency (relative offset of colored lines in each panel) is largely driven

by the corresponding dependency in the CDFs for zInfall observed above.

In order to outline the possible residual dependence on the LSS environment, galaxies

with equal zInfall will be compared at a further stage.

Moving on to Type 0 galaxies and relatively comparing the two CDFs for zFormation

and zAssembly, it is possible to appreciate a weak tendency to have zFormation & zAssembly.

This is expected since T0s are expected to have (on average) a richer merging history,

compared to T1 and T2 galaxies which exhibit zFormation ' zAssembly.

The CDFs for T0 galaxies are not dependent on zInfall, therefore the observed depen-

dency on the LSS environment is not to be expected by construction, with the meaning

outlined above. Looking at the overall sample of T0 galaxies in Figure 5.7, a hint

can be seen of a small offset between the CDFs of the different galaxy populations

belonging to the 5 simulated LSS environments .

In Figure 5.8, in order to investigate the influence of different LSS structure environ-

ments, we subsampled the overall population of T0 galaxies in 3 bins for M z=0
star , as

indicated in the Figure.

In this figure it is easier to notice how galaxies in all three mass bins tend to have

zFormation & zAssembly, with a more marked difference for growing masses.

Most interestingly, a clearer dependency on the LSS structure environment can be

observed in both the CDFs of zFormation and zAssembly for galaxies belonging to the

intermediate and high mass bins: for z & 1, and in particular for the intermediate mass

bin, it is possible to notice a systematic tendency for galaxies belonging to the richest

environments to both have higher zFormation and zAssembly. It is not straightforward to

link this behaviour with the dynamical state of the underlying CDM component (DM

halos merger rates).

Focusing on the CDFs of zFormation for central galaxies with M z=0
st & 5× 1010M�, an

overshoot of the CDFs for the overdense environments at z . 0.9 can be appreciated

(blue and cyan). This is a hint that, in overdense environments, galaxies in this higher

mass bin tend (on average) to be more efficient at forming stars at low redshifts, com-

pared with massive galaxies in underdense regions. A less evident, but still present,



GIMIC and SAMs 99

Figure 5.8: CDFs for Formation (left column) and Assembly (right column) redshifts for Type 0
galaxies in the 5 GIMIC regions. Here, the overall sample has been divided in three bins in Mz=0

st ,
as indicated in each panel. The color coding of the curves goes from black to cyan for growing
overdensities. The number of objects in each subsample is also shown.

tendency can also be observed for the corresponding CDFs for zAssembly.
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5.4 Summary and Discussion

Figure 5.5, shows how the galaxy populations are dominated in number by low mass

galaxies across all the LSS environments considered. Moreover, an excess of satellite

(i.e. Type 1) galaxies at the high mass end in the σ = +2 volume has also been pointed

out: Crain et al. (2009) also notice an excess of massive galaxies in the overdense

regions and explain it by the lack of AGN feedback in their fully hydrodynamical

calculations. The SAM used in this study includes feedback from AGN in the so called

low–energy radio mode but potentially the same excess of massive galaxies pointed out

by Crain et al. (2009) is seen. This will be matter of further investigation.

Satellite (i.e. Type 1 and Type 2) galaxies are shown to exhibit a tendency to form

and assemble their stellar content at higher redshifts compared to central (i.e. Type 0)

galaxies. It has been also shown how this happens by construction in our SAM, being

SF processes quenched in satellite galaxies soon after the Infall epoch. Satellite galax-

ies of Type 2 have been accreted by their host CDM halo (at z = 0) much earlier then

satellite of Type1 galaxies. This, again, happens by construction in the SAM model

used for this study, a residual environmental dependency of the Infall epochs can be

observed. This behaviour reflects the more advanced dynamical state of the underly-

ing CDM structure formation processes in overdense regions (higher merger rates for

CDM halos). In such environments, the tendency for CDM substrucures (hosting a

galaxy) to fall into a larger CDM halo appears earlier in time than in underdense re-

gions thus resulting in the offset in the CDFs for Infall epochs we previously pointed

out.

Figure 5.8 shows that more massive central (Type 0) galaxies exhibit a clearer ten-

dency to first form their stellar content and then assemble it at a later stage, with re-

spect to lower mass T0 galaxies (zFormation ' zAssembly). This suggests a tendency for

a large fraction of the z = 0 content of these central (Type 0) galaxies to be formed

by their progenitors at higher redshifts and then assembled in the final object at a later

stage. This was already pointed out by De Lucia & Blaizot (2007) to be the case for

Bright Central Galaxies (BCGs) located at the center of Galaxy Clusters. Since those

objects are very rare in our sample, there are hints that this might also happen for T0

galaxies belonging to Galaxy Groups, but further investigation is required.
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Considering central galaxies with 5 × 109M� . M z=0
st . 2 × 1010M�, a residual

dependency could be pointed out on the LSS structure environment on the CDFs of

both zFormation and zAssembly: in more overdense regions there is a clear tendency for

central galaxies to have the 50% of their final stellar mass (at z = 0) formed earlier

than galaxies located in less dense environments. The same trend is also observed for

the assembly epochs of the same sample. Given the complex interplay of the physical

processes pertaining to cosmic baryons, it is not straightforward to interpret this as a

result of the relatively more advanced dynamical state of the underlying CDM structure

formation processes in overdense regions, compared to the less dynamically evolved

(lower merger rates of CDM halos) ones.

Numerical modelling of the star formation histories (SFH) of galaxies still struggles in

reproducing observational data: this is certainly due to the complex interplay of phys-

ical mechanisms that can influence the efficiency of a single galaxy in giving birth to

stars.

Moreover, it is also possible that physical processes triggered by the environment be-

yond the galaxy borders can influence the local SFH. Current galaxy surveys are de-

signed to detect large number of galaxies, in wide portions of the sky, sampling well

defined ranges in cosmic time: as examples consider the SDSS survey that aims at

observing all the sky at z . 0.3 or the DEEP2 project that aims at probing a much

smaller portion of the sky (3.5 deg2) but out to z . 1.4 or the forthcoming EUCLID

mission which aims at surveying the all sky out to z ' 1.

In order to link the baryonic properties of different galaxy catalogues in a coherent

picture, numerical simulations such as the ones carried out in this study will play a

fundamental role in unveiling the nature of the multi-scale phenomena that results in

the zoo of the observed galactic properties.



Chapter 6

Conclusions and future work

The dynamical evolution of the matter content of the universe has been modelled

throughout this study as that of Lagrangian fluids, considering both the non-collisional

CDM component and the collisional baryonic one. As a numerical tool for carrying

out these large and complex calculations we employed GADGET2 (see Springel 2005)

and the more recent GADGET3 (see Springel et al. 2008): we describe the numerical

solvers implemented in the code and test their behaviours in both gravitational and hy-

drodynamical setups of relevance for cosmological calculations (Tasker et al. 2008).

We conclude that such a complex numerical tool cannot be properly used without a de-

tailed comprehension of the inherent limits of the algorithmic approach. This is shown

to be crucial for obtaining reliable physical results.

We also exploit the so called Semi–Analytical approach for the modelling of non–

dynamical physical processes of relevance for galaxy formation such as star forma-

tion, feedback mechanisms and galaxy mergers, among others. Using the outputs of

the MILLENNIUM simulation and the relative semi analytical galaxy catalogues pro-

duced by Croton et al. (2006), we developed an algorithm aimed at the identification of

large spherical underdense regions in the simulated LSS structure, at z = 0. Focusing

on this peculiar LSS environment, we found a confirmation in numerical simulations

of the observations by Trujillo, Carretero & Patiri (2006): the Tidal Torque Theory can

predict the distribution of the spatial orientations of both the angular momentum vector

of Milky Way size galaxies located on the surface of large spherical voids, and of the

spatial orientations of their host DM halos.
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Targeting galaxy formation processes in a set of different LSS environments, we re–

simulated the 5 GIMIC regions (Crain et al. 2009) following the gravitational evolu-

tion of the CDM component only. We have then applied a Semi Analytical Model of

galaxy formation (De Lucia & Blaizot 2007 ) on the CDM halos’ merger trees, thus

obtaining the galaxy catalogues for the 5 different LSS environment simulated. It is

not yet well understood if and how the LSS environment can influence the star for-

mation history of galaxies. Starting from the stellar mass content of Semi–Analytical

galaxies at z = 0, we defined characteristic epochs for the build up of their final stellar

mass and, as a preliminary study, investigate how these distributes as function of LSS

environment.

6.1 Testing hydrodynamical and gravitational solvers

in GADGET2

In Chapter 3 we analyzed the behaviour of GADGET2 on a suite of tests

• Sod: this standard, purely hydrodynamical, shock–tube problem allowed us to

contrast GADGET2 results with an analytical solution Sod (1978).

The code’s implementation of the SPH behaves as expected not showing any

dependency of the solution on the spatial orientation of the propagating shock

front. As an inherent feature within the SPH technique, GADGET2 cannot ac-

curately reproduce sharp shock and contact discontinuities. This effect is shown

to depend on the accuracy in sampling the fluid (i.e. on the number of particles)

and on the choice of the parametrization for artificial viscosity.

• Sedov: the point–like explosion modelled in this test, allowed an assessment of

GADGET2 capabilities in following the propagation, at high Mach number, of a

very energetic shock front trough an unpertubed medium. In absence of gravity,

we could contrast our results with an analytical solution (Sedov 1959). Using the

individual hydrodynamical time stepping scheme commonly employed in cos-

mological calculation, forced us to apply a very low limit on the time step size in

order to recover the analytical expectations. Nevertheless, a plume of over ener-
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getic particles has been observed at the shock front at all evolutionary stages. As

a result we identify and show a limitation of the gather-like (in the SPH sense)

assignment scheme of the hydrodynamical timestep in GADGET2 and suggested

a possible solution. We discussed this issue with GADGET2 developers and con-

tributed to the identification of a scatter-like approach which has been shown to

improve the results (private communication).

• King halo we created a distribution of CDM and SPH particles that resembles

a static very concentrated (c = 3) King profile. The gravitational force trying

to collapse the halo is compensated by the SPH hydrodynamical pressure force,

therefore our setup is perfectly static. This enabled a verification of the accuracy

of both the gravitational (TREE-PM) and the hydrodynamical solvers which are

shown to reproduce the expected correct behaviour.

These tests were our contribution to the code-comparison project published in Tasker

et al. (2008). Contrasting Lagrangian with Eulerian techniques, and with analytical

solutions, we’ve shown that particle–based and mesh–based methods reproduce an an-

alytical solution with the same accuracy when they place an equal number of resolution

elements in the regions of interest. In light of our results, we also conclude that GAD-

GET2 is definitely a valuable modelling tool, when used with awareness of the internal

workings of the code. We also warned GADGET2 users of the production of spurious

entropy in energetic shock fronts propagating in a low density homogeneous medium.

6.2 Spatial orientation of the angular momentum of ha-

los around cosmic voids

In Chapter 4, we developed an algorithm for the identification of large underdense

regions (i.e. voids) in the LSS matter distribution (for a validation of this algorithm

see Colberg et al. 2008). We have shown that, selecting halos on voids’ surfaces con-

taining a Milky–Way like disc galaxy at their centres the, angular momentum of the

dark matter halo is oriented preferentially parallel to the surface of the voids. Observa-

tionally, the same alignment is detected using the baryonic matter (Trujillo, Carretero
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& Patiri 2006). These two pieces of information are in agreement with the TTT pre-

diction that both the dark and the baryonic matter component have conjointly acquired

their angular momentum before the moment of the turnaround. Interestingly, the signal

detected in the real observation c=0.7+0.1
−0.2 is higher than the one found in the simula-

tions c=0.151±0.046. This is to be expected taking into account that the signal in the

dark matter haloes should be erased by non–linear effects such as exchange of angu-

lar momentum between the haloes. This work has been published in a refereed paper

(Brunino et al. 2007).

Future work, consequently, should explore the strength of the alignment of the haloes

at the moment of turnaround. At that early epoch the strength of the signal should be

as strong as the one measured using the baryonic component. Porciani, Dekel & Hoff-

man (2002b) show hints that this should be the case by comparing the relation between

the halo spin and the linear shear tensor at different redshifts from z=50 to z=0.

6.3 GIMIC and SA galaxies

We performed a set of CDM–only cosmological calculations using the GADGET3 code

(Springel et al. 2008) and following the dynamical evolution of 5 different LSS envi-

ronments selected in the MILLENNIUM volume as quasi–spherical regions with radius

' 20h−1 Mpc. This set of simulations is the gravity–only version of a project car-

ried out by the Virgo Consortium under the acronym GIMIC (Galaxies-Intergalactic

Medium Interaction Calculation) and presented in Crain et al. (2009).

We saved the status of our systems in a time series of 193 snapshots evenly spaced in

the logarithm of the expansion factor.

We identified and extracted the CDM halos and their substructures from the raw snap-

shot data and organized them in the so called halo merger trees by means of the code

SUBFIND and of a suite of post–processing tools.

Thanks to the accurate temporal resolution of our outputs and to the high mass res-

olution in our calculation, the obtained halo merger trees have been provided, as an

high quality input, to the SAM by De Lucia & Blaizot (2007). This model follows the

formation of galaxies in CDM halos, treating the complex baryonic physics by means

of analytical prescriptions.
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We then generated and analysed the galaxy catalogues and the relative merging histo-

ries, defining three characteristic epochs for galaxy formation:

• formation: when 50% of the stellar content of a galaxy at z = 0 have been

formed (in the galaxy itself, or in its progenitors).

• assembly: when 50% of stellar content of a galaxy at z = 0 is present in the

galaxy itself.

• infall: for satellite galaxies, this epoch represents the time when the CDM sub-

structure, in which the galaxy was initially formed, merged onto a larger CDM

halo.

As a preliminary study, we showed the Cumulative Distribution Functions (CDFs) of

these quantities looking at their LSS potential environmental dependencies.

We observed that satellite galaxies tend to form and assemble their stellar content at

higher redshifts compared to central galaxies. We also showed how this happens by

construction in the SAM employed for this study, being SF processes quenched in

satellite galaxies soon after their Infall epoch.

We also indicated how more massive central galaxies exhibit a clearer tendency to first

form their stellar content and then assemble it at a later stage, with respect to central

galaxies of lower mass (which tend to have zFormation ' zAssembly). This behaviour is

to be interpreted as a tendency for a large fraction of the z = 0 stellar content of these

central massive galaxies to be formed by their progenitors at higher redshifts and then

assembled in the final object at a later stage.

Considering central galaxies with 5 × 109M� . M z=0
st . 2 × 1010M�, we also

showed a residual dependency on the LSS structure environment on the CDFs of both

zFormation and zAssembly: we interpret this as a hint of a clear tendency for central galax-

ies in overdense regions to have the 50% of their final stellar mass (at z = 0) formed

(and assembled) earlier then galaxies located in less dense environments.
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6.4 Possible evolutions

A further, deeper, analysis is needed in order to better quantify and understand the

preliminary results presented in Section 5.3 on the influences of the LSS environment

on the galaxy formation processes modelled with the Semi-Analitical technique used

in this study.

Several steps should be carried out, starting with a comparison of our galaxy catalogues

and merger histories with those obtained by De Lucia et al. (2006) on the MILLEN-

NIUM simulation. The GIMIC ICs were generated using the same power spectrum

(amplitude and phases) as in the MILLENNIUM simulation (up to the its Nyquist Fre-

quancy) so we should be able to compare the effect of our increased numerical reso-

lution almost on a per-galaxy basis.A comparison with the results obtained by other

SAMs on the MILLENNIUM outputs, will also help in further validating our results.

A comparison of the star formation histories of our Sami-Analytical galaxies with

those of the galaxies formed in the original GIMIC hydrodynamical calculations by

Crain et al. (2009) will also be instructive. Moreover, given the comoving volume of

the GIMIC regions, and the mass resolution of our calculation, we should be also able

to compare our populations of SA galaxies with those probed by the 2DFGRS (Colless

et al. 2001) and by the SDSS (York et al. 2000).
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Appendix A

SPH smoothing in GADGET2

As discussed in section 2.2, at the core of the SPH technique there is a smoothing of

particles’ physical quantities using a window or kernel function which is commonly

denoted as W (~x, h) (with ~x the particle position and h the smoothing scale). This

function, is asked to be normalized such that:

W (~x, h)d~x = 1 (A.1)

and

W (~x, h)→ δDirac(~x) (A.2)

for h → 0. Moreover, it is also necessary to choose this function such as it has a

compact support:

W (~x, h) = 0 (A.3)

when |~x| > h such that the discretized equation of hydrodynamics can take the general

form (2.32, 2.33, 2.34).

In GADGET2, the SPH kernel function takes the form:

W (r, h) =
8

πh3
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(A.4)

with r being the radial distance from the particle center, and h being the characteristic

distance for the kernel function cut-off. It is common to indicate h as the smoothing
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length: it determines the spherical region that contains all the neighbouring particles

that contributes to (or are contributed by) the SPH estimation of physical quantities for

the individual particle under consideration.

In GADGET2 implementation of SPH, smoothing lengths are individual to particles

and defined such that their kernel volumes contain a constant mass for the estimated

density:
4π

3
h3
i ρi = Nsphm (A.5)

where Nsph is the typical number of smoothing neighbours, and m is an average parti-

cle mass.
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