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ABSTRACT 

Flexible road pavements often fail due to excessive rutting. as a result of 

cumulative vertical permanent deformation under repeated traffic loads. The 

currently used analytical approach to flexible pavement design evaluates the 

pavement life in terms of critical elastic strain at the top of the subgrade. Hence, 

the plastic pavement behaviour is not properly considered. Shakedown analysis 

can take into account the material plasticity and guarantee structure stability 

under repeated loads. It provides a more rational design criterion for flexible 

road pavements. 

Finite element analyses using the Tresca and Mohr-Coulomb yield criteria are 

performed to examine the responses of soil half-space when subjected to 

different loading levels. Both shakedown and surface ratchetting phenomena 

are observed and the residual stresses are found to be fully-developed after a 

limited number of load passes. The finite element results are then used to 

validate the solutions from shakedown analysis. 

The main focus of current research is concerned with new solutions for static 

(i. e. lower-bound) shakedown load limits of road pavements under both two- 

dimensional and three-dimensional moving surface loads. Solutions are derived 

I 



by limiting the total stresses at any point (i. e. residual stresses plus loading 

induced elastic stresses) to satisfy the Mohr-Coulomb yield criterion. Previous 

analytical shakedown solution has been derived based on a residual stress field 

that may not satisfy equilibrium for certain cases. In this study, a rigorous 

lower-bound shakedown solution has been derived by imposing the 

equilibrium condition of residual stresses. 

The newly developed shakedown solutions have been applied to one-layered 

and multi-layered pavements. It was found that the rigorous lower-bound 

solution based on the self-equilibrated residual stress field is lower than the 

analytical shakedown solution for cases when the critical point lies on the 

surface or at the base of the first pavement layer. The results showed that the 

theoretical predictions of pavement shakedown load limit generally agree with 

the finite element and experimental observations for pavement behaviours. 

The shakedown solution has been further extended to study the influence of the 

shape of contact load area for pavements under three-dimensional Hertz loads. 

It was found that the shakedown load limit can be increased by changing the 

load contact shape from a circle area to an elliptical one. A new pavement 

design approach against excessive rutting has been proposed. The pavement 

design is suggested by plotting thickness design charts using the direct 

shakedown solutions and choosing the thickness combination based on the 

design traffic load. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Road pavements such as track road, driveway, motorway, airport runway and 

taxiway are daily-used civil engineering structures built over soil subgrade for 

the purpose of sustaining vehicular traffic safely and economically. The 

analysis and design of road pavements under moving traffic loads is an 

important but complex problem. Over the last three decades, there has been a 

positive evolution in philosophy and practice from a wholly empirical approach 

to pavement design towards the use of a theoretical framework for design (e. g. 

AASHTO, 2002; Austroads, 1992; Highway, 2006,2009). However, a major 

limitation of this theoretical framework is that elasticity theory is of 

fundamental concern and no consideration is given to strength and plasticity of 

pavement material. 

Plasticity theory has been used for stability problems of foundations, 

embankments and slopes in the field of geotechnical engineering. These 
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problems usually deal with static loads which may increase gradually to such a 

limit that the soil cannot withstand the current stress state and fails due to 

instantaneous collapse. In these cases, limit analysis can provide a proper 

measure for structure safety design. However, when the soil structure is 

subjected to repeated or cyclic loads, such as road pavements under vehicular 

traffic, the design load provided by limit analysis is by no means sufficient to 

prevent structure failure. Although the applied repeated loads may not cause 

instantaneous collapse of the structure, they possibly induce plastic 

deformation in every load cycle and finally results in structural failure either 

from alternating plasticity or from unlimited incremental plasticity (ratchetting). 

Shakedown analysis is thus introduced to determine the critical load limit 

(termed as `shakedown limit') that will prevent structure failure under cyclic 

load conditions. 

The determination of the shakedown limit, as an essential part in the 

application of shakedown concept, usually can be achieved either by numerical 

elastic-plastic analysis or by two classical shakedown theorems. Compared to 

numerical elastic-plastic approach, where the full history of stress-strain curve 

is calculated, the shakedown theorems allow a direct calculation of the 

shakedown limit through searching the critical failure point, thus is drawn lots 

of attention by engineering researchers. According to König (1987), the static 

shakedown theorem was proved by Bleich (1932) using a system of beams of 

ideal I-corss-sections. Later, it was Melan (1938), who established a foundation 

stone for static shakedown theorem for the general case of continuum, giving a 

lower bound to the shakedown limit. In 1960, Koiter formulated a general 
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kinematical shakedown theorem which can provide an upper bound to the 

shakedown limit. 

The fundamental shakedown theorems have been applied to study behaviours 

of elastic-plastic structures subjected to repeated or cyclic loads (e. g. Johnson, 

1985; König, 1987). In the field of geotechnical engineering, their applications 

in pavement structures under traffic loads are particularly useful as the 

shakedown limit is able to provide a more rational design criterion (Yu, 2006). 

The possibility of using shakedown limit as an appropriate load parameter for 

the pavement design was firstly recognised by Sharp and Booker (1984) who 

studied the AASHO road test records. Brett (1987) examined the variation of 

roughness of a number of road sections in New South Wales, Australia. The 

results also suggested the stable roughness condition was attributed to 

shakedown of pavement. Over the years, many researchers have studied the 

shakedown condition of pavements using the fundamental shakedown 

theorems. However, due to the difficulties in optimisation and numerical 

calculation, particularly for the three-dimensional pavement problems, the true 

shakedown load limit has not yet been well determined. Compared to the 

upper-bound shakedown solution, the lower-bound shakedown solution gives 

conservative estimation to the true shakedown load limits. It is potentially more 

useful in the design of pavement structures. 
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1.2 Aims and objectives 

The overall purpose of the research is to provide practical methods and 

solutions for shakedown analysis of flexible pavements under repeated traffic 

loads. 

The research objectives include: 

" To gain better understanding of the static shakedown theorem and the 

shakedown and non-shakedown phenomena of soil half-space under 

moving surface loads. 

" To examine residual stress fields in pavements induced by repeated 

moving surface loads. 

" To develop theoretical solutions for shakedown load limit so that 

numerical shakedown results can be benchmarked. 

" To study the influence of load contact shape on the shakedown load 

limit. 

" To derive shakedown limits of layered pavements and study parameters 

that might affect the shakedown limit. 

", To highlight the difference between the two-dimensional and three- 

dimensional pavement models. 

" To check the validity of the shakedown solution by comparing it with 

the results obtained from laboratory tests. 

" To propose a design procedure for flexible pavements using the 

shakedown solutions. 

4 



1.3 Thesis outline 

This thesis is divided into six chapters. A brief outline is given below: 

Chapter 1 introduces the necessary background and key objectives of the 

current research on the analysis and design of pavements using shakedown 

theory. 

Chapter 2 contains comprehensive literature reviews including shakedown 

concept and theorems, principles of flexible pavements, shakedown 

phenomena in pavements, shakedown analyses in pavement applications and 

plastic deformation in rolling and sliding contact. 

Chapter 3 presents finite element analysis of soil half-space subjected to 

moving surface loads. The shakedown and non-shakedown phenomena as well 

as the development of plastic strains and residual stresses are examined. 

Shakedown status of the soil half-space is also checked by using Melan's 

lower-bound shakedown theorem. 

Chapter 4 develops analytical solutions for shakedown of single-layered 

pavements. Both two-dimensional and three-dimensional pavement models are 

considered. The shakedown solutions are also extended to cases with elliptical 

contact area. 

Chapter 5 gives shakedown solutions for multi-layered pavements. The 

influences of layer thickness and material properties on the shakedown limit 

are examined. Results are also compared with other author's solutions and 
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experimental data. Finally, a simple pavement design procedure with the use of 

the present shakedown approach is proposed. 

Chapter 6 summarises the major findings of this research and proposes 

suggestions for further research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This Chapter starts with an introduction to the basic shakedown concept and 

classical shakedown theorems. Then, flexible road pavements are described in 

several aspects including components and materials, distress modes, contact 

loads and design approaches. Following that, a literature review concerning 

experimental observations of pavement shakedown phenomena and recent 

studies on pavement shakedown analysis is presented. Finally, a review of 

elastic-plastic half-space responses in rolling-sliding contact is given. 

2.2 Notion of shakedown 

As shown in Figure 2.1, when an elastic-plastic structure is subjected to cyclic 

or repeated loads, four distinctive situations may occur due to different levels 

of load magnitudes (Yu, 2006). 
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Pllastie shakedown 
---------------- 

Deflexion 

Figure 2.1. Elastic/plastic behaviour of structure under cyclic loads 

(Collins et al., 1993b) 

Firstly, if the applied load is sufficiently small, purely elasticity can be 

recognised, so that the strain is fully recoverable and nowhere in the structure 

experiences plastic deformation. 

Then, with an increase in load level, stress states of some points exceed the 

material yield surface, and therefore the structure deforms plastically. However, 

after a number of load cycles, it is likely that the structure adapts itself to the 

cyclic loads and finally it responds purely elastically to the subsequent load 

cycles. This phenomenon is termed as ̀ shakedown' and the critical load limit 

below which shakedown can occur is regarded as the ̀ shakedown limit'. 

Thirdly, if the load level is higher than the shakedown limit and the plastic 

deformation changes in sign in every load cycle, a closed cycle of alternating 

plasticity may take place. This situation is called cyclic plasticity or plastic 

Ratch. tting 
1111 
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shakedown. In this situation, although the total plastic deformation remains 

small, the structure at the most stressed points may fail due to alternating 

plastic collapse. 

Finally, when the loading level is high and there is always some plastic 

deformation added in every load cycle, the structure may undergo unlimited 

incremental plasticity and finally fail due to excessive plastic deformation. This 

phenomenon is known as ratchetting. 

The purpose of shakedown analysis is to find the load limit between the 

shakedown case and the latter two non-shakedown cases in the prevention of 

structure collapse due to unlimited plastic deformation. 

2.3 Shakedown theorems 

2.3.1 Melan's static shakedown theorem 

Melan's static or lower-bound shakedown theorem (Melan, 1938) states that an 

elastic-perfectly plastic structure will shakedown under repeated or cyclic loads 

if the yield condition at any point is not violated by a total stress field which 

combines the self-equilibrated residual stress field with the elastic stress field 

produced by the applied load. If the applied load is denoted by Apo (where po 

may be conveniently set as the unit pressure in the actual calculation and A is a 

dimensionless scale parameter), then all the induced elastic stress components 

are also proportional to A. Melan's lower-bound shakedown theorem hence 

demands that: 
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f (a6ii+6+1ý5ý, (2.1) 

where 

elastic stress field due to the applied pressure A po , 

Q: self-equilibrated residual stress field, 

f ýaj =0: yield condition for the material. 

The largest value of A obtained by searching all possible self-equilibrated 

residual stress fields will give the actual shakedown load limit pd = 2sdpo in 

which Asd is the shakedown limit parameter. 

2.3.2 Koiter's kinematic shakedown theorem 

Koiter's kinematic or upper bound theorem (Koiter, 1960) states that an elastic- 

perfectly plastic structure will not shakedown under repeated or cyclic loads if 

any kinematically admissible plastic strain rate cycle z and any external loads 

po, within the prescribed limits can be found for which: 

I dt ß po, , 
dS >I dt JJL 6r E dV' (2.2) 

where 

ü; : displacement velocity, 

S: structure surface where traction are specified, 
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q, : stresses on the yield surface, 

V. structure volume. 

Alternatively, the upper bound theorem can be formulated as follows: 

ý. 
ýd 

di J, po, ü, dS <_ f dt f5i o a, ý dV, (2.3) 

which provides an upper bound to the shakedown load parameter 2rd 
. 

2.4 Flexible road pavements 

2.4.1 Road pavement components and materials 

Road pavements are layered structures (see Figure 2.2) positioned over the 

natural soil to support wheel loads of different magnitudes, speeds and 

intervals. Generally speaking, road pavements can be classified into two types: 

flexible and rigid. A flexible road pavement consists of unbound materials (i. e. 

they have no binder) and asphalt, while a rigid road pavement has a concrete 

slab as the main structure layer. 

Figure 2.2. A pavement under a wheel 



Pavement 
structure 

Figure 2.3. Typical structures of flexible pavements 

Pavement 
Foundation 

As shown in Figure 2.3, flexible pavement structures usually consist of several 

main layers: surfacing, base, sub-base and capping. The surfacing is usually of 

high quality, tough enough to withstand direct loading and to provide good ride 

quality; however, it has a relatively small structure influence. The base gives 

the pavement most of its strength and has a relatively large thickness. The sub- 

base works in conjunction with the base to support the wheel loads and also 

provides resistance to the flexure of the base layer. Below the pavement 

structure, the soil is termed as subgrade, and is seldom strong enough to 

support the load application alone. Capping is usually a cheap, locally available 

material, and is only used for weak subgrade. Pavement foundation refers to 

the layers between the base and the subgrade. 
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(a) Sealed granular road (b) Asphalt pavement 

Figure 2.4. Typical material layouts of flexible pavements 

Figure 2.4 shows two typical material layouts of flexible road pavements. One 

feature common to them is the placement of one or more layers of granular 

materials over the subgrade soil. The typically used granular materials include 

gravels or crushed rocks which are able to be compacted and exhibit the ability 

to withstand shear but not tension. The surface material can be either bitumen 

or asphalt. The bitumen, which is basically a residue from the distillation of 

heavy crude oil, is to provide a waterproof covering and a smooth riding 

surface here. Its primary mechanical property is viscosity, which is sensitive to 

temperature. The asphalt, which is a mixture of unbound granular material and 

bitumen, deforms as in the case of granular material and has significant tensile 

strength due to the added bitumen (Thom, 2008). The asphalt usually has much 

higher stiffness and strength than the granular materials and its properties are 

dependent on temperature and loading frequency. 

13 

Bitumen seal 



2.4.2 Road pavement failure modes 

There are two principle structural failure modes of flexible road pavements: 

rutting and cracking. They are of most concern to pavement engineers. 

Figure 2.5. Rutting in road pavements 

As shown in Figure 2.5, rutting is recognised as a surface downward 

deformation on the wheel track from the original level of pavement. It arises 

due to an accumulation of permanent deformation in the pavement structure 

(including the asphaltic layer and granular layer) and the subgrade when they 

are subjected to moving wheel loads, as illustrated in Figure 2.6. According to 

Brown (1996), the surface rutting usually arises from the surface layer for thick 

asphalt pavement; however, it is mainly attributed to the granular layers and 

subgrade for thinly sealed pavement. In Britain, a maximum deformation of 25 

mm in the wheel tracks has been defined as the failure condition and a 

maximum deformation of 15 to 20 mm is regarded as the optimum condition 
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for remedial work, such as the provision of an overlay or replacement of the 

surfacing (Croney and Croney, 1991). 

Year 
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Figure 2.6. Development of permanent deformation in Transport Research Laboratory 

experiments at Alconbury Hill (Lister, 1972) 

Cracking of flexible pavements under the influence of repeated wheel loads is a 

fatigue phenomenon caused by flexure of pavement as a result of small 

resistance in the lower region (Brown, 1996). As shown in Figure 2.7, the 

fatigue cracking may occur at the surface outside the loaded area or at the 

bottom of the asphaltic layer directly under the load, where the tensile stress or 

strain is highest. The surface cracking is apparent particularly for the thin 

surfacing pavement, while the thicker asphalt layer tends to introduce more 

tensile stresses at the bottom of the layer rather than at the surface. Under 

repeated load applications, the cracks propagate, connect, and form one or 
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more longitudinal parallel cracks at the surface, as shown in Figure 2.8 (Huang, 

1993). 
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Figure 2.7. Tensile strains in asphalt layer under wheel loading 

1 

ý 

IiJj' 

I,. 
p). 

f 

_ý ý, 

ý' 
t ý, 

Figure 2.8. Fatigue cracking in NNheel paths 

.1 

16 

I' 



2.4.3 Contact area and load distributions 

The wheel load is transmitted through the tyre to the road pavement surface. A 

realistic analysis of pavement behaviour requires an understanding of the likely 

contact form and stress distributions between the tyre and the road pavement 

surface. 

According to Browne et al. (1981), the shape of the contact area depends on 

tyre cross-section shape and structure. For example, the contact patch of a 

typical aircraft tyre usually appears to be nearly elliptical in shape, whereas the 

contact area of an automotive tyre tends to have essentially straight parallel 

sides. Moreover, when the load is small or the inflation pressure is high, the 

contact area is approximately circular. However, as the wheel load is increased, 

the contact patch becomes increasing elongated in the direction of travel, as 

shown in Figure 2.9. Nevertheless, a circular loaded area is usually considered 

by researchers in pavement engineering (Browne et al., 1981; Croney and 

Croney, 1991; Huang, 1993; Werkmeister et al., 2004). 
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Figure 2.9. Contact patches (Croney and Croney, 1991) 
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The loading acting on the pavement can be expressed as two components: one 

perpendicular to the contact surface, called `normal load', and one tangential to 

the contact surface, called `tangential load'. The tangential load may be further 

decomposed into a longitudinal component, parallel to the central plane of the 

tyre, and a transverse component, perpendicular to the central plane. 

Experimental measurements on the load distributions between the tyre and the 

road pavement have been conducted by a number of authors. It has been found 

that the load distributions are highly non-uniform (Freitag and Green, 1962; De 

Beer et al., 2005). According to Browne et al. (1981) and Huhtala et al. (1989), 

the normal pressure distribution is influenced by the tyre structure, tyre 

inflation pressure, driving forces (driving or carrying), and so on. For example, 

Huhtala et al. (1989) have reported that the contact pressure is greatest in the 

centre for truck tyres, whereas it is greatest on the tyre edge for personal cars. 

The normal load distribution is nearly independent of speed (Bonre and Kuhn, 

1959; Himeno et al., 1997), but acceleration and deceleration have a significant 

effect on the longitudinal force component (Bonse and Kuhn, 1959). The major 

part of the longitudinal force component is in the rear of the contact patch due 

to the braking or traction forces, and its direction is also dependent on these 

forces (Browne et al., 1981). Bonse and Kuhn (1959) have found that the 

distribution of the transverse force component is influenced by deviation from 

the central plane and tyre characteristics, and is zero at the centre line of the 

tyre tread. Moreover, its direction is always towards the centre line of the tyre 

tread. 

18 



2.4.4 Road pavement design approaches 

Flexible road pavement design approaches can be broadly classified as 

empirical and analytical. The empirical design approaches tend to rely more on 

experience and observations gained from experimental pavements and in- 

service roads and use index-value-based characterisation of material properties 

(e. g. California Bearing Ratio (CBR), layer coefficient, etc. ). The analytical 

approaches use a theoretical framework that relates the critical elastic 

stress/strain to pavement overall performance. 

The most commonly used empirical approaches are based on the CBR test, 

which was initially developed by O. J. Porter in the 1930s. The CBR test is a 

penetration test that gives a ratio of the load on a testing material to the load on 

a standard crushed rock material with an equal achievement of penetration 

which is defined as failure. By using the CBR test, an empirical relationship 

between the CBR values and the required pavement thickness can be evaluated. 

Britain has adopted the CBR method for flexible pavement design since 1946. 

The British pavement design standard of the Highways Agency (2009) 

provided guidance to pavement foundation design in which the subgrade CBR 

values are converted into stiffness moduli in relation to the thickness and 

foundation stiffness. The Highways Agency (2006) also presented guidance to 

flexible pavement base and surfacing design in which the layer thicknesses are 

in relation to material types and traffic intensities. 

Between 1958. and 1960, one of the most significant pavement tests of the 

twentieth century was conducted by the American Association of State 
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Highway Officials (AASHO). Its results then contributed to the pavement 

design guides of the American Association of State Highway and 

Transportation Officials (AASHTO) presented afterwards. The AASHO road 

test interpreted how well the pavement serves the user as pavement 

serviceability. The pavement serviceability concept is then defined in terms of 

Present Serviceability Index (PSI) in the following AASHTO design guides. 

The PSI, together with layer coefficient and reliability factors, formed an 

empirical equation for flexible pavement design in the 1986 AASHTO guide. 

Over the last three decades, there has been a positive transition from wholly 

empirical approaches to pavement design towards the use of analytical 

approaches (e. g. Powell et al., 1984; Brown et al., 1985; Seeds, 2000; Nunn, 

2004). In Britain, the analytical pavement design procedure is included in the 

Highways Agency (2006,2009). The design flow of this approach can be 

summarised as Figure 2.10. On the one hand, the traffic loads are converted 

into the number of standard axles (design life). On the other hand, a multi-layer 

linear elastic analysis package is used to calculate the load-induced elastic 

stresses and strains in pavements. Two critical stresses/strains are considered: 

excessive horizontal tensile stress/strain at the bottom of the base layer causing 

fatigue cracking, and excessive vertical compressive strain at the top of the 

subgrade producing permanent deformation at the pavement surface, as shown 

in Figure 2.11. The 1992 Austroads guide and the 2002 AASHTO guide also 

utilise similar theoretical framework for pavement design. 
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Figure 2.10. Design flow for mechanics-empirical approach (Yu, 2011) 
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Figure 2.11. Critical stresses and strains in a flexible pavement 
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The relationships between the pavement life and the critical stresses/strains are 

usually expressed as empirical equations which were derived based on real 

evidence of pavement performance. For example, the equation proposed by 

Powell et al. (1984) in the UK Transport Research Laboratory is likely to be 

approximately suitable for roads on UK clay soils, as shown in Equation (2.4) 

for the prevention of excessive rutting. 

Nf =3.09x1Q10ee395, (2.4) 

where NJ is the number of load applications to failure in millions, c is the 

subgrade strain (microstrain), 

Brown and Brunton (1986) also suggested a design criterion to prevent fatigue 

cracking as shown in Equation (2.5). 

Nf =C 
1 m, 

(2.5) 
st 

where el is the tensile strain at the bottom of the asphaltic layer, C and m are 

constants which depend on volumetric proportion of binder and its initial 

softening point. 

The analytical approach provides a means of evaluating and comparing 

different design alternatives in an attempt to maximise the pavement's whole 

life value. However, it should be noted that this approach is mainly based on 

the elasticity theory. Although empirical equations have been introduced to 

predict pavement life, the relationship between the subgrade elastic strain and 

the pavement rutting is weak (see Figure 2.10). Therefore, any attempt at 
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utilising plasticity theory in the prediction of pavement failure is a clear 

advance in the pavement design process. 

2.5 Shakedown phenomena in road pavements 

Observations from repeated load tests and full-scale road experiments have 

both shown the existence of shakedown phenomena. 

2.5.1 Repeated load tests 

A flexible road pavement, particularly when unsurfaced or thinly surfaced, can 

be broadly described as one or more layers of granular material placed over the 

subgrade soil. The overall performance of the pavement structure is then 

primarily dependent on the behaviour of granular layers. 
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Figure 2.12. Effect of number of cycles and stresses on permanent axial strain 
(Lekarp and Dawson, 1998) 
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Lekarp et al. (1996) performed repeated load tests in triaxial apparatus and 

hollow cylinder apparatus to study the long-term behaviours of granular 

materials. Five different aggregates were selected, four of which were placed in 

the Triaxial Apparatus subjected to cyclic deviator and confining pressures, 

while the last aggregate was tested in the Hollow Cylinder Apparatus with 

variable deviator stress. The cumulative permanent axial strain was plotted 

against the number of load cycles (see Figure 2.12) and it was then pointed out 

by Lekarp and Dawson (1998) that high levels of stress ratios q'/p' (q' is 

deviator stress, p' is mean stress) cause gradual collapse of the material while 

low stress ratios ultimately result in an equilibrium state, in similarity with the 

shakedown concept. Similar results were also reported by several other authors 

(e. g. Chan, 1990; Gidel et al., 2001; Arnold et al., 2003; Habiballah and 

Chazallon, 2005). Lekarp et al. (2000) carried out an extensive review of the 

permanent strain response of unbound aggregates and pointed out that the 

applied stress level is one of the most significant factors affecting this response 

and the resulting permanent strain would eventually reach an equilibrium 

condition at low levels of stress. 

Werkmeister et al. (2001,2004,2005) did a series of triaxial tests on 

Granodiorite and sandy gravel by varying vertical stress (deviator stress) while 

keeping a constant confining pressure. The results were reported by plotting 

cumulative vertical permanent strain against vertical permanent strain rate (see 

Figure 2.13). Based on the plots, the responses of the granular materials were 

categorised as plastic shakedown (Range A), plastic creep (Range B) and 

incremental collapse (Range C). 
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Figure 2.13. Permanent vertical strain against permanent vertical strain rate of 
Granodiorite, with confining pressure = 70 kPa (Werkmeister et al., 2001) 

A number of undrained triaxial tests were also conducted on natrual soil. 

Sangrey et al. (1969) varied the axial compression with an axial strain rate of 

about 0.0002% per mininute to enable satisfactory measurements of pore water 

pressure. It was found that the specimen may reach a non-failure equilibrium 

condition in which closed stress-strain and pore pressure-strain hysteresis loops 

are measured, otherwise a pore pressure buildup will bring the soil to the 

effective stress failure envelope. Muhanna et al. (1998) and Yang and Huang 

(2007) tried to define the shakedown status and examined the effect of water 

content on the shakedown limit. It was found that an increase in moisture 

content can decrease the soil's resistance to load. 
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2.5.2 Full scale road tests 

Shakedown phenomena were also directly observed in full-scale road tests. As 

early as 1984, Sharp and Booker studied the AASHO test data and pointed out 

the possibility that a shakedown limit may exsit below which the PSI can be 

controlled in a satisfactory range (see Figure 2.14). 
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Figure 2.14. Typical performance trends (Sharp and Booker, 1986) 

Juspi (2007) performed a series of wheel tracking tests in the University of 

Nottingham using various wheel loads with up to 100,000 wheel passes. The 

permanent vertical deformation was plotted against the number of passes for 

different contact pressures, as shown in Figure 2.15. It was found that the 

development of vertical permanent deformation depends directly on the applied 
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load levels. These curves were then categorised into three types (see Figure 

2.15): Type 1 showing a stabilized permanent deformation after 5000 passes, 

was clearly a shakedown situation; Type 2, showing a gradually increase of 

permanent deformation throughout the loading period; Type 3, showing a rapid 

development of permanent deformation, was clearly in excess of shakedown. 

As a result, the experimental shakedown load limit should be between 229 kPa 

and 339 kPa for this particular case. More details of these tests will be 

presented in Chapter 5. 
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Figure 2.15. Variation in vertical deformation with number of load passes 

(Juspi, 2007) 

Ravindra (2008) and Ravindra and Small (2008) conducted pavement tests 

using the Sydney University Pavement Testing Facility to investigate the 

shakedown behaviour of road pavements. The test pavements consisted of a 
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recycled crushed concrete base layer and a sand subgrade layer. The wheel 

load was kept the same, but the thickness of the base layer was ranging from 50 

mm to 350mm (i. e. pavement shakedown load limit varies). It was found that 

when the shakedown load limit is smaller than the wheel load, there is a rapid 

increase in vertical surface deformation as shown in Figure 2.16. 
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Figure 2.16. Average vertical surface deformation (laser reading) of particular cross 

sections against number of load passes (Ravindra, 2008) 

2.6 Shakedown analyses in pavement engineering 

Shakedown analyses for pavements under traffic loads usually utilise the 

classical shakedown theorems: either Melan's static shakedown theorem or 

Koiter's kinematic shakedown theorem. 
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In 1962, Johnson had utilised the line rolling contact assumption to examine 

the shakedown condition of an isotropic, elastic-perfectly plastic Tresca half- 

space. Using the Hertz load distribution, the shakedown limit was found as po = 

4. Oc at the critical points (±0.87a, 0.50a), and the corresponding residual 

stresses at these points are -0.134po (i. e. -0.536c). Johnson and Jefferies (1963) 

then extended this analysis to the rolling and sliding contact problem and found 

that the critical point moves to the surface when the frictional coefficient q/p is 

larger than 0.367. 

The pioneering work of shakedown analysis in pavement application was done 

by Sharp and Booker (1984) using Mohr Coulomb material. It was assumed 

that the actual wheel loading was applied by a long roller and the stress 

variation between the roller and the pavements was approximated by a 

trapezoidal load distribution. A method of conics was proposed to conduct 

shakedown analysis based on the use of the static shakedown theorem. 

Raad et at (1988) proposed a numerical shakedown approach using finite 

element formulation coupled with an optimisation technique. The influences of 

thickness and material characterisation of the granular layer and the asphalt 

concrete layer on the shakedown behaviour were examined in detail in their 

following papers (Raad et al., 1989a, 1989b; Raad and Weichert, 1995; 

Boulbibane et al., 2000). 

Radovsky and Murashina (1996) presented an analytical approach to 

shakedown analysis of a plane strain pavement model. Experimental studies 

were also conducted to determine the general form of a horizontal residual 
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stress field in soil. As shown in Figure 2.17(a), pressure cells were installed at 

various lateral and vertical positions of the experimental road section. The soil 

had 10% sand, 77% silt and 13% clay. The roller wheel had five tyres with a 

contact width 2a = 27 cm. It was found that the residual stresses ceased to 

increase after 12 rolling passes. Figure 2.17(b) shows the measured residual 

stresses against the depth. The peak residual stress occurs at z=7 cm (i. e. z/a = 

0.52). 
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Figure 2.17. Measured residual stresses in soil after rolling passes 

(Radovsky and Murashina, 1996) 
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Yu and Hossain (1998) developed a lower-bound shakedown formulation using 

finite element technique and linear approximations. The optimum residual 

stress field was found by using stress-based finite elements. The shakedown 

problem was finally solved as a linear programming problem. Shiau and Yu 

(2000) investigated the influences of material properties on the shakedown 

limit of layered pavement by using the lower-bound shakedown formulation 

and developed a displacement bounding method for estimating the pavement 

permanent deformation at shakedown state. Shiau (2001) also extended the 

formulation to shakedown analysis of three-dimensional pavements. However, 

the size of the linear programming problem became prohibitively large when 

finer mesh was applied. 

Yu (2005) proposed an analytical solution for shakedown of cohesive-frictional 

half-space under moving Hertz loads using Melan's static shakedown theorem. 

This solution provides the same two-dimensional shakedown limits as those in 

Collins and Cliffe (1987). In the case of cohesive material, the obtained 

shakedown limits are also close to the three-dimensional upper bound 

shakedown solution of Ponter et al. (1985). 

Krabbenhaft et al. (2007) and Zhao et al. (2008) suggested a scanning line 

method to find the lower-bound shakedown limits of plane strain half-space 

under moving surface loads. The influences of different load distributions on 

the shakedown limits were examined. 

Meanwhile, based on the kinematic shakedown theorem, Collins and Cliffe 

(1987) and Collins et al. (1993a, 1993b) obtained an upper bound shakedown 
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solution by assuming a failure mechanism of subsurface slip, which was 

parallel to the shakedown solution of Ponter et al. (1985) for a pure cohesive 

material under three-dimensional moving loads. The solution was then 

developed by introducing a rut failure mechanism at the cross-section 

perpendicular to the direction of travel, providing more realistic shakedown 

limits (Collins and-Boulbibane, 1998; Boulbibane and Collins, 2000; Collins 

and Boulbibane, 2000; Boulbibane et al., 2005). 

Li and Yu (2006) developed a numerical approach to kinematic shakedown 

analysis of frictional materials by making use of finite element technique and 

nonlinear mathematical programming. The potential difficulty of integration 

along a deformation path is removed by using König's technique (König, 1987). 

This approach was then extended to materials following non-associated plastic 

flow (Li, 2010). It was found that the shakedown limit with non-associated 

plastic flow is smaller than that with associated plastic flow. 

A linear matching method, originally proposed for limit and shakedown 

analyses of metal structures under static or cyclic load (Ponter and Engelhardt, 

2000; Chen and Ponter, 2001,2005; Ponter et al., 2006), has been applied to 

the pavement shakedown problem using the Drucker-Prager yield criterion 

(Boulbibane and Ponter, 2005). According to Boulbibane and Ponter (2006), 

the basic idea of this method is that the stress and strain fields for non-linear 

material behaviour may be simulated by the solution of linear problems where 

the linear moduli vary with time and space. 
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2.7 Plastic deformation and shakedown of half-space in 

rolling and sliding contact 

According to Johnson (1985), rolling is defined as a relative angular motion 

between two bodies in contact about an axis y (see Figure 2.18). If the 

peripheral velocities of two surfaces at point 0, Vi and V2, are equal, the 

motion is a pure rolling; otherwise it is accompanied by sliding. The contact 

stresses are normal to the contact plane x -y for the pure rolling contact. And the 

sliding will introduce a surface shear force parallel to the contact plane. 

Figure 2.18. Two bodies in contact at 0 

Several engineering problems are concerned with repeated rolling and sliding 

contact, such as roller bearings, railway track and road pavements. In these 

cases, the dimensions of the contact area are quite small compared with the 

dimensions of the bodies. 
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2.7.1 Hertz load distribution 

The contact stresses on the solid surface due to the rolling and sliding contact 

are usually assumed to be in Hertz load distribution (Johnson, 1962,1985). For 

a line contact problem which considers a long cylinder rolling over a half-space 

with a contact width 2a and a maximum pressure po at the load centre, the 

contact pressure p can be written as Equation (2.6). For a point contact problem 

which considers a ball rolling on a surface with an elliptical contact area, the 

normal pressure distribution can be written as Equation (2.7) where a and b are 

semi-axes of the elliptical contact area. 

z vz 

P= Po 1-x (2.6) 
z a 

z2 2 J112 
P= Po 1- 

2 j7 
). 

The surface contact shear stress q is usually expressed in an analogical form 

(Equation (2.8) for the line contact and Equation (2.9) for the point contact), 

linked with the normal pressure by a frictional coefficient y= q/p. 

X2 
1/2 

q= ßl0 
(I_ x2 (2.8) 

22 vz 

9= 40 1-2 72 (2.9) 
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2.7.2 Plastic deformation and residual stresses 

Rolling and sliding line contact 

Travel direction 
C> 

9 

x Forward direction 
Z 

or 

or <0 Q0 
c, <00 

Experience of one element 

Figure 2.19. Experience of one element in line contact 

When the rolling and sliding contact travels over a semi-infinite half-space in 

the x direction (see Figure 2.19), any element at the same depth z experiences 

the same stress and strain history. As shown in Figure 2.19, an element of 

material is subjected to a cycle of reverse shear during one contact pass. If the 

stress state exceeds the yield limit, some plastic shear strains e will occur. 

One element may experience both positive and negative plastic shear strain, 

and it is the combination of them that gives rise to net plastic shear strain after 

one contact pass. These net plastic shear strains, whether in positive or in 

negative, are only dependent on depth z and they form a plastic shear band in 
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the half-space parallel to the surface. While the negative plastic shear strain 

produces a forward plastic flow, the positive plastic shear strain produces a 

backward plastic flow (the forward direction refers to Figure 2.19). The overall 

plastic shear strain in the half-space manifests itself as a tangential 

displacement of the surface (Merwin and Johnson, 1963). When the load is 

above the shakedown limit, the half-space will either experience tangential 

surface ratchetting due to cumulative net plastic shear strains, or undergo 

continuous cyclic plasticity due to full reversal of plastic shear in each contact 

pass. It should be noted that different material models may give rise to different 

half-space responses (which will be discussed in Section 2.7.3). 

Directly under the contact, an element of material is compressed normal to the 

surface and a small amount of compressive plastic strains Ett may occur. 

Under the plane strain condition, the element then attempts to expand in the x 

direction. Since all elements at the same depth deform plastically in the same 

way in turn, their lateral expansion must be annulled by the development of 

compressive residual stresses c acting parallel to the surface (Johnson, 1985). 

When the load is at or below the shakedown limit, these residual stresses 

generally help the material to resist further development of plastic deformation. 

When the load is above the shakedown limit, as the load magnitude is 

increased further, the residual stresses will spread into a thicker layer but will 

be incapable of preventing continuing plastic deformation. 
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Rolling and sliding point contact 

Travel direction 

Figure 2.20. Rolling and sliding point contact 

According to Ponter et al. (1985), the point contact problem has two different 

modes of continuing plastic deformation: plastic displacements in the direction 

of travel, which is similar to that found in the line contact, and a groove of 

steadily increasing depth produced by a thin wheel. In the first mode, the 

surface displacement is associated with plastic shear strains s, P and c. In the 

second mode, the material directly below the contact is compressed in the z 

direction and moves in the y direction. The material compression is associated 

with plastic normal strains -ä and rue,, while the material lateral movement is 

attributed to the presence of plastic shear strains (Kulkarni et al., 1990,1991; 

Jiang et al., 2002). In addition, all six components of residual stresses are 

possible and, indeed, they are independent of x. 
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2.7.3 Historical development 

There have been consecutive analytical and numerical works on the 

investigation of metal half-space responses in repeated rolling or rolling and 

sliding contact. 

In the early studies, elastic-perfectly plastic Von Mises material was usually 

adopted. Merwin and Johnson (1963) developed an approximate method to 

investigate the plastic flows and residual stresses by assuming that the total 

strain cycle was the same as the elastic strain cycle. It was found that the 

surface is displaced in the forward direction in the pure rolling line contact. 

This finding agrees with experimental observations (e. g. Crook, 1957; 

Hamilton, 1963; Hahn and Huang, 1986). When the load is above the 

shakedown limit, the surface tangential displacement accumulates at a constant 

rate with the number of load passes. Johnson and Jefferis (1963) then extended 

this method to the rolling and sliding contact problem. However, one limitation 

of this approximate method is that the equilibrium condition is not satisfied 

during the rolling contact process. 

The pure rolling contact problem was also solved by a finite element method of 

Bhargava et al. (1985a, 1985b) which fulfils the equilibrium and compatibility 

requirements. This method obtains similar peak residual stresses to those 

reported by Merwin and Johnson (1963). Both backward and forward plastic 

flows were observed in the half-space. However, consecutive cycles only 

produce increases in the forward plastic flow. Consequently, the surface 

displacement is dominated by the relatively larger forward plastic flow. The 
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finite element method also found that Merwin and Johnson (1963) severely 

underestimates the rate of increase in surface displacement by a factor of about 

five. 

Hearle and Johnson (1987) then used a distributed dislocation technique to 

avoid the simplifying assumption of Merwin and Johnson (1963), and the 

obtained surface displacement agrees with Bhargava et at. (1985b), as shown in 

Figure 2.21. For the rolling and sliding contact, Hearle and Johnson (1987) 

showed higher surface displacement than that obtained by Johnson and Jefferis 

(1963). 

Based on the finite element model of Bhargava et at. (1985a, 1985b), Ham et at. 

(1988) conducted finite element analysis for the rolling and sliding contact. 

The obtained forward surface displacement is much higher than that predicted 

by Johnson and Jefferis (1963) and Hearle and Johnson (1987). Ham et al. 

(1989) then introduced a linear kinematic hardening plasticity model and 

predicted a much smaller value than that for the elastic-perfectly plastic 

material. 

Bower and Johnson (1989) modifed the technique of Hearle and Johnson (1987) 

by using a nonlinear kinematic hardening plasticity model proposed by Bower 

(1989). Their rate of increase in surface dispacement for the pure rolling 

contact generally agrees with the observations in experiments, as shown in 

Figure 2.21. For rolling with significant sliding contact, Bower and Johnson 

(1989) noticed that the suface displacement is dominated by the behaviour of 

surface elements. They then assumed that the elastic stress field within the thin 
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surface layer provides a good approximation to the true stress field and 

excluded the plastic deformation in the axial direction to perform integration. 

Compared to the experimental work, the obtained surface displacement 

becomes asymptotically correct as the shakedown limit is approached. 
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Figure 2.21. Rate of increase in surface displacement for pure line rolling 

(Bower and Johnson, 1989) 

More studies have shown that the material model dramatically affects the half- 

space responses. For example, the non-linear kinematic hardening models can 

account for the cumulative plastic deformation (Bower and Johnson, 1989, 

1991; McDowell and Moyar, 1991; Howell et al., 1995; Jiang and Sehitoglu, 

1996; Sakae and Keer, 1997; Xu and Jiang, 2002), while the linear kinematic 

hardening models enforce fully reversed plastic cycles and therefore exclude 
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the possibility of ratchetting (Ham et al., 1989; Kulkarni et al., 1990,1991; Yu 

et at., 1993; Jiang and Sehitoglu, 1994). Bower and Johnson (1989) also noted 

that isotropic hardening material will always shakedown to an elastic state in 

one half cycle. Moreover, Bower's model (Bower, 1989; Bower and Johnson, 

1989) predicted a constant rate of surface movement while Jiang's model 

(Jiang and Sehitoglu, 1996; Jiang et al., 2001; Xu and Jiang, 2002) showed a 

decay of the surface displacement rate as the number of rolling contacts 

increased. 

In the present study, the elastic-perfectly plastic Mohr Coulomb model was 

adopted for finite element analysis of soil half-space under moving surface 

loads (see Chapter 3). 

2.8 Summary 

Flexible road pavements subjected to repeated traffic loads may fail due to the 

fact that irrecoverable strain accumulates at each load application, leading to 

excessive vertical permanent deformation after a number of load applications. 

Alternatively, if the pavement ceases to experience any further plastic strain 

after a number of load cycles, a shakedown status is achieved. Shakedown 

analysis is mainly concerned with the calculation of the shakedown load limit 

below which the pavement can shake down, so that the pavement permanent 

deformation will be very small even under a very large number of load 

applications. Generally speaking, one can determine the shakedown limit by 

using either the shakedown theorem or elastic-plastic analysis. 
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CHAPTER 3 

FINITE ELEMENT ANALYSIS OF SOIL 

HALF-SPACE UNDER MOVING SURFACE 

LOADS 

3.1 Introduction 

In this chapter, the finite element (FE) method is used to simulate the responses 

of plain strain soil half-space subjected to repeated moving surface loads. 

These responses including the developments of residual stresses, plastic strains 

and permanent deformations cannot be predicted by using the classical 

shakedown theorems. 

The Tresca and Mohr Coulomb yield criteria are used to model the plastic flow 

of the soil. Both associated plastic flow rule and non-associated plastic flow 

rule are considered. The surface loads, assumed in two-dimensional Hertz load 

distribution, are applied using different loading levels around the shakedown 

limit in order to capture the shakedown and non-shakedown phenomena of the 

soil half-space. The influence of the residual stress distribution on the half- 
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space shakedown status is highlighted by using Melan's static shakedown 

theorem. The FE calculated residual stress fields will also be used in the next 

chapter for the purpose of comparison. 

3.2 FE model 

3.2.1 ABAQUS 

The FE method is a numerical approach that solves the governing differential 

equations of a system through a discretisation process. Its development can be 

traced back to the work done by Hrennikoff (1941) and Courant (1943). By the 

early 1970s, the FE software was only used on large main-frame computers. 

However, since then there has been a transition to `workstations' and then 

desktop personal computers. Nowadays, the FE software has been widely used 

in engineering applications. 

ABAQUS is a commercial FE software package developed by SIMULIA. It 

can solve problems ranging from relatively simple linear analyses to the most 

challenging nonlinear simulations. ABAQUS also offers portals for user 

material, user elements, user output etc. Its ability to incorporate a FORTRAN 

subroutine into the calculation is exceptionally useful. The present FE analyses 

were conducted using the user subroutine DLOAD, which can define the 

variation of the distributed load magnitude as a function of position, time, 

element number, load integration point number, etc. 

ABAQUS has an extensive library of elements that can be used for a wide 

range of applications, such as continuous elements, rigid elements, contact 

43 



elements etc. The choice of element type has important consequences 

regarding the accuracy and efficiency of the simulation. The standard 

continuous elements were selected for the present study. According to the 

ABAQUS manual, the continuous elements are provided with first-order 

(linear) and second-order (quadratic) interpolation. The interpolation order is 

usually determined by the number of nodes used in the element. The linear 

elements have nodes only at their corners, such as Figure 3.1, while the 

quadratic elements have one more node in the middle on each side, such as 

Figure 3.2. The quadratic elements provide higher accuracy than the linear 

elements for smooth problems that do not involve complex contact conditions 

or severe element distortions. 
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Figure 3.1. Two-dimensional linear elements 
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Figure 3.2. Two-dimensional quadratic elements 
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ABAQUS evaluates the material response at each integration point (Gauss 

point) in each element and a choice between full and reduced integration can 

have a significant effect on the accuracy of results for a given problem. The 

expression `full-integration' refers to the number of integration points required 

to integrate the polynomial terms in an element's stiffness matrix exactly when 

the element has a regular shape. As shown in Figure 3.1(a) and Figure 3.2(a), 

the fully-integrated, linear element has two integration points in each direction 

while the fully-integrated, quadratic element has three integration points in 

each direction. The reduced-integrated elements use one fewer integration 

point in each direction than the fully-integrated elements, as shown in Figure 

3.1(b) and Figure 3.2(b). The ABAQUS manual suggests that the second-order 

reduced-integrated element in ABAQUS/Standard generally yield more 

accurate results than the corresponding fully-integrated elements. As a result, 

the eight-noded, reduced-integrated, quadrilateral elements (CPE8R) were 

adopted in the present study to model the soil half-space in the plane strain 

condition. 

3.2.2 FE model 

Figure 3.3 shows the FE model of plane strain half-space under moving Hertz 

load distribution. There is a restraint on horizontal movement at the vertical 

boundaries, and there is a restraint on vertical movement at the bottom 

boundary. This model tries to simulate the idealised line contact problem 

(refers to Section 2.7) by using a long travelling distance. The size of the 

simulated region (84a long x 30a high) was selected through sensitive studies 
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in which further extension of length or width or change of boundary condition 

(e. g. spring boundary condition) has a negligible effect on the half-space 

responses. 

30a 

q Region A 01 2a 
..... .......... Hertz load distribution 

Figure 3.3. FE model of plane strain half-space under moving surface loads 

At the top surface of the half-space, the Hertz load, including normal pressure 

p and surface traction q (refers to Equations (2.6) - (2.9)), is moving along a 

loading area (78a). A user-subroutine DLOAD was utilised to control the load 

applications. In every load pass, the Hertz load distribution was first applied 

gradually at the start point. It then translated incrementally in the x direction 

over a distance of 76a. Automatic increment size was selected in the ABAQUS, 
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so that sufficiently small increments can be taken to obtain the results in a 

reasonable accuracy. Loads were completely removed at the end of each pass, 

so that the residual stresses and the plastic strains can be obtained. 

The simulated region was discretised by 22,960 eight-noded, reduced- 

integrated, plane strain elements (CPE8R). To capture the high stress and strain 

gradients near the surface, small elements (0.25a x 0.1a) were used for the 

region near the loading area (z <_ 2a) and the elements were distributed 

uniformly along 2a: 5 x: 5 82a. Away from z= 2a, the mesh becomes more and 

more coarse. 

Table 3.1. Parameters for soil material 

Young's modulus Poisson's Cohesion Friction angle Dilation angle 
E (MPa) ratio v c (kPa) 0(11) V/(") 

100 0.4 50 0 0 

100 0.3 50 10,20,30 10,20,30 

Material of the FE model is assumed to be elastic-perfectly plastic using the 

standard linear elastic parameters (Young's modulus E and Poisson's ratio v) 

and Mohr Coulomb yield criterion parameters (cohesion c, friction angle 0 and 

dilation angle yr). The material is also assumed be homogeneous and isotropic. 

As summarised in Table 3.1, Poisson's ratio was given as a relatively high 

value 0.4 in the case of Tresca-type soil (i. e. ý= yr= 0), while it was chosen as 

a lower value 0.3 for frictional soil. In addition, the problem was analysed 

using stress and strain measures that account for geometry changes, to capture 
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material rearrangement due to possible large deformation. It should be noted 

that in the present study and the following chapters, compressive stresses and 

strains are always taken as negative. 

3.2.3 Model verification 

A number of semi-analytical methods (Merwin and Johnson, 1963; Hearle and 

Johnson, 1987) and FE methods (Bhargava et al., 1985a, 1985b) have been 

used for analyses of Von Mises half-space under moving surface loads, as 

reviewed in Section 2.7. In the present study, FE analyses were first undertaken 

using Von Mises elastic-perfectly material so that the validity of the proposed 

FE model can be proved. 

The material properties were selected the same as those used in Bhargava et al. 

(l 985a, 1985b): Young's modulus E= 207 GPa, Poisson's ratio v=0.3, shear 

resistance k= Qo /, 13- 
= 227 MPa (o is the yield strength). A pure rolling 

condition (i. e. only normal loads) was considered and the Hertz load 

distribution had a maximum pressure polk = 4.35 in the centre. 

Figure 3.4 shows the residual stress and plastic strain distributions in 

the Region A (refers to Figure 3.3) upon the removal of load applications. As 

can be seen, the stress and strain distributions are independent of the travel 

direction. This suggests that the results taken from the Region A are 

representative for the line contact problem. 
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(a) Horizontal residual stress a 
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Figure 3.4. Residual stress and plastic strain fields in the Region A 

after five load passes 
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Figure 3.5 compares the deformed mesh after five load passes with the 

undeformed mesh in the Region A. The deformation is magnified by a scale 

factor 100. There are obvious shear deformation within a narrow band beneath 

the surface and small compressive deformation normal to the surface. In the 

travel direction, horizontal deformation of Region A is nearly zero. These 

findings imply the plastic strains existing in this region are the plastic shear 

strain t and the plastic normal strain 6, p 
, in agreement with considerations in 

Merwin and Johnson (1963) for the line contact problem. The distortions of the 

vertical lines represent the forward and backward plastic flow. The forward 

plastic flow occurs at smaller depths due to the negative plastic shear strain 

while the backward flow occurs at deeper depths due to the positive plastic 

shear strain. 

Figure 3.6 shows the variation of the normalised surface displacement GU/poa 

(U is surface displacement) with the number of load passes. As can be seen, the 

amount of forward displacement increases linearly with increasing load passes 

while the vertical downward displacement barely changes. Similar findings 

were also reported by Bhargava et al. (1985b). The averaged forward 

movement per load pass GiUi/poa (DU, is increment of the horizontal surface 

displacement) is 0.043, in agreement with the results of Bhargava et al. (1985b) 

and Hearle and Johnson (1987) which were shown in Figure 2.21. 

Figure 3.7 shows that the residual stress distributions at the middle section in 

the present study are close to those in Merwin and Johnson (1963) and 

Bhargava et al. (1985b). 
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Forward direction 

Figure 3.5. Deformed mesh in the Region A after five passes (scale factor: 100) 
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Figure 3.6. Surface displacement against number of load passes for Von Mises half- 

space when po = 4.35c 
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3.3 Tresca half-space 

Analyses reported here were undertaken using the Tresca material which is a 

special case of the Mohr Coulomb material. Pure rolling contact is considered 

first with two load magnitudes po = 4. Oc (at the shakedown limit) and 4.2c. 

3.3.1 Plastic strain and residual stress distributions 

Johnson (1962) assumed the non-zero residual stresses in the half-space under 

repeated line contact are ýý and o, as a function of depth z/a, and predicted 

the shakedown limit for the Tresca half-space under pure rolling contact is 

po = 4. Oc with the critical point lying at the depth z/a = 0.5. Figure 3.4 in the 

last section has indicated that the residual stress and plastic strain distributions 

are independent of the travel direction. Figure 3.8 shows the normalised 

residual stresses against depth z/a at the middle section. It agrees with 

Johnson's assumption. 

0.2 

0r 

N 

s ö. 
V 

D 
2 

3 

Residual stress 1c 
0 -0.2 -0.4 -0.6 -0.8 

Figure 3.8. Residual stress fields after three load passes whenpo = 4. Oc 
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Figure 3.9 and Figure 3.10 show the distributions of the plastic strains (ems and 

e) and residual stresses (Q and Q") at the middle section of Region A after 

different numbers of load passes. The residual stresses are normalised with 

respect to the soil cohesion c, and the depth z is normalised by the half contact 

width a. As can be seen, the residual stresses o and Qn, and the plastic 

normal strain s° are usually negative (i. e. in compression), while the plastic 

shear strain s, varies from negative to positive. 

After the first pass of po = 4.0c, the half-space shows some plastic strains and 

residual stresses below the surface: 0.1 5 z/a <_ 1.8 (see Figure 3.9). However, 

further load applications do not have any obvious effect on the existing plastic 

strains and residual stresses. Therefore, the half-space is in a steady state. 

When po = 4.2c (Figure 3.10), the plastic zone is 0.1 5 z/a 5 2, larger than that 

in Figure 3.9. With the increase of load passes, the plastic shear strains in the 

repeatedly deformed zone 0.3 <_ z/a <_ 0.8 decrease continuously with the 

number of load passes, and therefore the forward plastic flow (negative plastic 

shear strain) outweighs the backward plastic flow after a few load passes. In 

addition, during the repeated load applications, the peak point of negative s. P 

moves towards z/a = 0.5 which is the most critical depth in the half-space 

according to Johnson (1962). The plastic normal strain only changes slightly in 

the repeated deformed zone. The residual stresses in the repeated deformed 

zone generally decrease with increasing load passes, and they reach steady 
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states after four load passes. Therefore, the development of residual stresses is 

attributed to the compressive s° rather than c,, ' 
. 
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Figure 3.9 continued on following page 
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Figure 3.9. Distributions of plastic strains and residual stresses when po = 4. Oc 

56 



Plastic strain sPX_ 

-0.0015 -0.001 -0.0005 0 0.0005 

Q 
N 

s 
ý. cz. 
v 
D 

(a) 

Plastic strain cP_- 

-0.0015 -0.001 -0.0005 0 0.0005 

Repeatedly 
deformed zone 

E4 

N 

s 
ý. a 
v D 

2 

(b) 

0.001 0.0015 

Repeatedly 
deformed zone 

' pass I 

+pass2 

ý-- pass3 

ý- pass4 

--ý- pass5 

0.00 1 0.0015 

-ýpassI 

- pass2 

-- pass3 

--t- pass4 

pass5 

Figure 3.10 continued on following page 

57 



0.2 

or 
0 

Residual stress o' 1c 

-0.2 -0.4 -0.6 -0.8 -1 -1.2 

Repeatedly 
deformed zone 

N 

ar 

t) 

n 

2 

3 

(c) 

0.2 

0r 

1 
0 N 

ß. 

C) 

2 

0 

passt 

pass2 

--ý pass3 

-ý- pass4 

pass5 

Residual stress a''»/ c 

-0.2 -0.4 -0.6 -0.8 -1 -1.2 

Repeatedly 
deformed zone 

3 _- _- 

-+- pass l 

--ý pass2 

-pass3 

-ý- pass4 

--- pass5 

(d) 

Figure 3.10. Distributions of plastic strains and residual stresses when po = 4.2c 
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3.3.2 Surface ratchetting 

Figure 3.11 shows the variation of surface displacement with the number of 

load passes when po = 4.2c. While the vertical downward displacement barely 

changes, the horizontal displacement decreases almost linearly with the number 

of load passes as a consequence of the significantly increasing forward plastic 

flow (see Figure 3.10(a)). The averaged forward surface movement per load 

pass GAU1/poa (AU is increment of the horizontal surface displacement) is 

0.054. As can be seen, a negative surface displacement is predicted after ten 

load passes as the overall forward plastic flow finally outweighs the overall 

backward plastic flow. 
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Figure 3.11. Surface displacement against number of load passes when po = 4.2c 
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3.3.3 Stress-strain response 

Permanent deformation of the Tresca half-space is mainly attributed to the 

plastic shear strain. Figure 3.12 shows typical shear stress-strain responses at 

the critical depth (i. e. z/a = 0.5) for po = 4. Oc and 4.2c respectively. The shear 

stress is normalised by the soil cohesion. As can be seen, the shear stress-strain 

cycles are evident due to the reverse of shear stress from positive to negative 

during each load pass. When po = 4.0c, the stress-strain response becomes pure 

elastic after two load cycles. When po = 4.2c, the shear stress-strain cycle 

moves towards the left since the amount of negative plastic shear strain 

outweighs that of positive plastic shear strain in each load cycle. 

Figure 3.13 exhibits shear strain history at the critical depth in the middle 

section, in which x' is the current horizontal coordinate of the Hertz load centre 

(refers to the local coordinate in Figure 3.3). As can be seen, the effective 

distance from the load centre to the middle section is about 5a. The shear strain 

always grows with increasing x%a when the load is far away from the middle 

section. However, it decreases dramatically from positive to negative when x'/a 

is between around -0.8 to 0.8. Clearly, for case po = 4.0c, no further plastic 

strain occurs after the first two load pass; for case po = 4.2c, the shear strain is 

not fully reversed in each load pass, resulting in cumulative negative plastic 

shear strain. 
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3.3.4 Effect of surface traction 

In this subsection, the surface traction q is assumed to be proportional to the 

normal pressure p. According to Wong (2001) and Jiang and Sehitoglu (1996), 

the direction of the surface traction is dependent on whether the wheel is 

`driving' or `driven'. As shown in Figure 3.14, a driven wheel leads to a 

tangential force on the pavement surface, direction of which is coincident with 

the travel direction (q/p < 0), while a driving wheel results in q/p > 0. The 

direction of tangential force may have influences on the half-space responses. 

Travel direction 

7'Th 

Driven Driving 
wheel wheel 

4lP<O 4/p>O 

Figure 3.14. Schematic of tangential force direction 

Figure 3.15 compares the horizontal residual stress and plastic shear strain 

distributions for q/p = 0.2 and those for q/p = -0.2. Clearly, the direction of the 

surface traction directly affects the sign of plastic shear strain. Moreover, the 

negative q/p produces larger amounts of plastic shear strains and horizontal 

residual stresses than the positive q/p. 
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stress distributions whenpo = 3.2c 
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Figure 3.17. Surface displacement against number of load passes when po = 3.3c 

Figure 3.16 shows the deformed and undeformed mesh in the Region A after 

ten load passes when po = 3.3c and q/p = ±0.2 (the theoretical shakedown limit 

is 3.2c). Only forward shear flow is observed in Figure 3.16(a) due to the 
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presence of surface traction in the forward direction. When q/p = -0.2, only 

backward shear flow can be present as shown in Figure 3.16(b). 

Figure 3.17 also shows a linear relationship between the surface horizontal 

displacement and the number of load passes. The averaged increase/decrease 

rates of the surface displacement GAUL/poa are 0.041 for q/p = 0.2 and 0.052 

for qlp = -0.2. In addition, there is only a slightly downward vertical 

displacement. 

3.3.5 Residual stress field at the shakedown limit 

Residual stress field is a key component in Melan's static shakedown theorem. 

For the two-dimensional pavement problem, the distribution of horizontal 

residual stresses c affects the pavement shakedown limit (Johnson, 1962; 

Sharp and Booker, 1984; Radovsky and Murashina, 1996). 

FE analyses presented in this subsection were undertaken using the theoretical 

shakedown limits obtained in Chapter 4. The fully-developed horizontal 

residual stress fields for a range of q/p from -0.4 to 0.4 are compared in Figure 

3.18. Again, the direction of tangential force has a slight effect on the residual 

stresses. When q/p varies from -0.3 to 0.3, the residual stresses are mainly 

compressive and the peak compressive residual stresses are beneath the surface. 

The plastic region decreases markedly with increasing q/p. When q/p = ±0.4, 

there are only very small residual stresses at the surface of the half-space. 
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3.4 Mohr Coulomb half-space 

3.4.1 Plastic strain and residual stress distributions 

Analyses reported here were conducted when the friction angle 0 as well as the 

dilation angle yr is equal to 20 degrees. Figure 3.19 and Figure 3.20 show the 

plastic strain and residual stress distributions for po = 7.5c and po = 7.6c (the 

theoretical shakedown limit is 7.56c). A plastically deformed zone is observed 

after the first contact pass and further increases of load passes lead to a 

shrinking repeated plastic zone. 

When po = 7.5c, all residual stresses and plastic strains reach steady states after 

eight load passes (see Figure 3.19). When po = 7.6c (Figure 3.20), the residual 

stresses and the plastic shear strains also tends to become stabilised after a 

number of load passes. However, the plastic normal strains at the most critical 

points increase continuously. When the load is large enough, the plastic shear 

strain at the most critical points may also accumulate constantly with 

increasing load passes, as shown in Figure 3.21 for case po = 7.8c. 

Compared to the Tresca half-space (see Figure 3.9 and Figure 3.10), the Mohr 

Coulomb half-space shows the growth of the amounts of both forward and 

backward plastic shear strains e, and even normal plastic strain s° when 

subjected to repeated load passes. It should be noted that the normal plastic 

strains in the half-space are attributed to both soil compression and dilatancy. 
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3.4.2 Surface ratchetting 

Figure 3.22. Deformed mesh in the Region A after ten passes when 0= 20° and 

po = 7.8c (scale factor: 100) 
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Figure 3.22 shows the deformed and undeformed mesh in the Region A after 

ten load passes when 0= yr= 200 and po = 7.8c. Clearly, there is a backward 

and upward surface movement. 

The variations of the surface displacements with the number of load passes are 

shown in Figure 3.23 for po = 7.8c, 7.6c and 7.5c respectively. As can be seen, 

the horizontal surface displacements are almost constant. It implies that the 

increase rate of the backward plastic flow equals that of the forward plastic 

flow. All the vertical displacements start with a positive value which means the 

vertical deformation is dominated by the soil dilatancy rather than vertical 

compression. When the load is above the theoretical shakedown limit, the 

vertical surface displacement after the first few load passes increases 

proportionally with the number of load passes. The averaged increments per 

load pass GOU2/poa (AU2 is increment of the vertical surface displacement) are 

0.0 16 for po = 7.8c and 0.002 for po = 7.6c. When the load is below the 

shakedown limit (po = 7.5c), the vertical surface displacement tends to become 

stabilised. 
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3.4.3 Effect of surface traction 

The presence of surface traction tends to induce more horizontal surface 

displacement. For case 0= yr= 20°, po = 6.6c and q/p = 0.1, surface ratchetting 

in both horizontal and vertical direction is present, as shown in Figure 3.24. 

The averaged increments per load pass are GAU1/poa = 0.011 and GAU2/poa = 

0.004. 
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Figure 3.24. Surface displacement against number of load passes 

when 0= yr=20°, po=6.6c andq/p=0.1 
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3.4.4 Effect of non-associated plastic flow 

The above cases were all studied based on the assumption that the soil material 

follows associated plastic flow rule (i. e. 0=0. In reality, the soil dilation 

angle is usually smaller than the friction angle. FE analyses were undertaken 

using friction angle 0= 200 and dilation angle yr= 12° so that the effect of non- 

associated plastic flow can be revealed. 

Figure 3.25 and Figure 3.26 compare the fully-developed plastic shear strain 

and horizontal residual stress distributions for 0= 20° and yr = 12° with those 

for O= yr = 20°. Clearly, smaller dilation angle induces larger amounts of 

forward and backward plastic shear strains. Moreover, fewer amounts of 

horizontal residual stresses are produced. 

Figure 3.27 shows the development of plastic normal strains when po = 7.5c 

and 7.6c respectively. Compared to Figure 3.19(b) where the associated plastic 

flow is assumed, Figure 3.27 shows cumulative plastic normal strains at each 

load application even when po = 7.5c. This is probably because the residual 

stresses at the most critical points are not enough to prevent further yield in the 

half-space. Therefore, the half-space with non-associated plastic flow has less 

shakedown capacity than that with associated plastic flow. 

Figure 3.28 shows the variations of surface displacements with the number of 

load passes forpo = 7.5c and 7.6c. The horizontal displacements are larger than 

those in Figure 3.23 and barely change with the increase of load passes. The 

vertical displacements start from about zero due to less dilation angle, and they 

accumulate continuously even whenpo = 7.5c. 
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3.4.5 Residual stress field at the shakedown limit 

Figure 3.29 summarises the fully-developed horizontal residual stress fields for 

various friction angles ranging from 0° to 30° when all applied loads are at the 

theoretical shakedown limit. Their peak points all lie beneath the surface, 

around z/a = 0.5, in agreement with the one measured in experiment (see 

Figure 2.17). With the increase of friction angle, the zone for residual stresses 

expands to deeper depths and larger amounts of compressive residual stresses 

are produced. 
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3.5 Correlation of Melan's static shakedown theorem 

with elastic-plastic FE analysis 

3.5.1 Shakedown and non-shakedown 

In the previous FE simulations, the residual stresses, as a key component in the 

static shakedown theorem, are fully-developed after a limited number of load 

passes, and their distributions in the Region A have been suggested of being 

representative for the line contact problem. By further applying a static load 

distribution on the Region A, stresses in the half-space can be calculated and 

the yield points can also be visualised in the ABAQUS. According to Melan's 

shakedown theorem, if no yield point can be found, the half-space is in the 

shakedown status; otherwise, it is in the non-shakedown status. 

Figure 3.30 and Figure 3.31 show the yield area in the Region A before and 

after the load passes when po = 4. Oc and 4.2c for Tresca materials. Clearly, 

before the load passes, there are large continuous yield areas under the static 

Hertz load, and undoubtedly, the yield area produced bypo = 4.2c is larger than 

that produced by po = 4.0c. After the load passes under which the residual 

stresses are fully-developed in the half-space, no yield area can be found when 

po = 4.0c, and two yield areas are observed beneath the loading edges when 

po = 4.2c. This means po = 4. Oc leads to the shakedown status whereas po = 

4.2c results in the non-shakedown status. As a result, the shakedown limit 

should be between 4. Oc and 4.2c. A few applications have been undertaken 

using different load conditions and material properties as summarised in Table 
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3.2 together with the theoretical shakedown limits. As can be seen, the 

theoretical shakedown limits generally agree with the numerical observations. 

(a)po=4. Oc (b)po=4.2c 

Figure 3.30. Indication of yield areas in the Region A before the load passes 

ia) Po = 4. Oc (b) po = 4.2c 

Figure 3.31. Indication of yield areas in the Region A after the load passes 
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Table 3.2. Comparison between the numerical observations and the theoretical 

shakedown limits 

q/p Friction angle po% Shakedown? Theoretical 
0(0) shakedown limit 

0 0 4.0 Yes 4.0 

4.1 No 

4.2 No 

0.2 0 3.1 Yes 3.2 

3.2 No 

3.3 No 

-0.2 0 3.1 Yes 3.2 

3.2 No 

3.3 No 

0 20 7.5 Yes 7.56 
7.56 No 

7.6 No 

7.8 No 

0.1 20 6.3 Yes 6.46 

6.4 No 

6.46 No 

6.6 No 

3.5.2 Influence of load history 

In the case of Tresca material and po = 4.2c, the half-space will never satisfy 

the static shakedown condition without the change of residual stress field or 

load magnitude. 

With the existing residual stress fields produced by po = 4.2, the static Hertz 

loads were applied using two smaller load magnitudes po = 4. Oc and po = 3.8c 

respectively. Their yield areas are presented in Figure 3.32. It is interesting to 
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notice that the half-space does not yield when po = 3.8c, but yields when 

po = 4.0c, though the yield areas are smaller than those in Figure 3.31(b). 
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Efforts were then made by applying repeated load passes with a smaller load 

magnitude po = 4. Oc on the existing residual stress fields (produced by five 

passes of po = 4.2c). Unlike Figure 3.10(c) in which the amount of horizontal 

residual stresses in the repeated plastic region increases with the number of 

load passes when po = 4.2c, the present analysis shows a reduction of this 

amount within a very narrow band around the critical depth h/a = 0.5 (see 

Figure 3.33). After ten load passes, only one yield point can be found when a 

static Hertz load with po = 4. Oc is applied on the half-space. This finding 

implies that once the applied load is within the shakedown limit, no matter 

what the load history is, the residual stresses will develop in such a way that 

help the half-space to resist further yield. 

3.6 Conclusions 

The present FE model is able to simulate the behaviour of soil half-space under 

the repeated moving surface loads. When the load is above the yield limit, the 

residual stresses and the plastic strains are developed in the soil half-space 

upon the removal of load applications. The residual stresses are fully- 

developed after a number of load passes, whereas the plastic strains may 

accumulate at each load application. 

When the load is above the shakedown limit, Tresca half-space under the 

repeated moving surface loads shows a horizontal surface ratchetting as a result 

of cumulative plastic shear strains. For the Mohr Coulomb half-space, an 

upward surface ratchetting is predicted due to the increasing plastic normal 

strains caused by the soil dilatancy. The presence of surface traction induces 
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surface horizontal displacement and its direction also has some effect on the 

distributions of plastic strains and residual stresses. The non-associated plastic 

flow rule gives less resistance to continuous plasticity than the associated 

plastic flow rule. 

It should be noted the real pavements show the development of rutting (i. e. a 

downward surface displacement) rather than the upward surface ratchetting. 

This is because the real pavement problem is actually a three-dimensional 

problem rather than a two-dimensional plane strain problem considered in the 

present study. The lateral movement of the soil beneath the load path also 

contributes to the pavement rutting (Huang, 1993; Juspi, 2007). 

Nevertheless, FE analyses in the present study are able to capture the 

shakedown and non-shakedown phenomena around the theoretical shakedown 

limit for the two-dimensional pavement model. Residual stresses play an 

important part in the prevention of further yield. The fully-developed residual 

stress fields in the FE analyses can also be used to check critical residual stress 

fields developed in the next chapter. 
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CHAPTER 4 

SOLUTIONS TO STATIC SHAKEDOWN 

ANALYSIS OF SINGLE-LAYERED ROAD 

PAVEMENTS 

4.1 Introduction 

Rutting of a flexible pavement is substantially influenced by the plasticity of 

the pavement material. However, in the current analytical approaches to 

pavement design, only the elastic strain at the top of the subgrade is used as a 

design parameter in prevention of excessive rutting. Shakedown analysis using 

the shakedown theorem takes into account the material plasticity and allows a 

direct calculation of shakedown load limit. It can be used to develop an elastic- 

plastic theoretical framework for pavement design. 

This chapter develops direct solutions to shakedown analysis of single-layered 

pavement under repeated moving surface loads. Melan's lower-bound 

shakedown theorem has been adopted as the theoretical basis for deriving the 

shakedown limits. Both two-dimensional (2D) and three-dimensional (3D) 
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Hertz load distributions are considered. The elastic stress fields have been 

found and expressed in closed form solutions. 

The present 2D and 3D shakedown solutions are compared with other authors' 

solutions. The critical residual stress fields at the shakedown limit are also 

compared with the residual stress fields from previous FE calculations. The 

effects of the soil friction angle, Poisson's ratio and surface frictional 

coefficient, are studied in detail. The 3D shakedown solutions are also 

extended to pavements with elliptical contact area. 

4.2 Problem definition 

Here, the single-layered flexible road pavement is considered as a cohesive- 

frictional half-space of which the material is homogenous, isotropic and 

modelled by the Mohr Coulomb criterion. The half-space surface is assumed to 

remain flat after a number of load applications, and therefore the shape of the 

contact area and the elastic stress distributions are not influenced by previous 

plastic flow. Both 2D and 3D pavement models are examined for deriving 

shakedown limits. 

4.2.1 2D pavement model 

The 2D plane strain pavement model is established under the simplifying 

assumption that the load is applied by an infinitely long roller, as shown in 

Figure 4.1, where 2a is the contact width, P is the total normal loads per unit 

length applied in the vertical direction due to wheel rolling and Q is the total 

shear loads per unit length applied in the travel direction due to sliding. The 
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normal and shear load distribution p and q on the contact area between the 

wheel and the pavement surface are described as Equation (4.1). 

P 

Po 
Jýq 

x 

contac width 

z 

Figure 4.1. A pavement under a 2D moving Hertz load 

_ 
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Ica 

(-aSx<_a) 

This load distribution is normally regarded as the 2D Hertz load distribution 

(Johnson, 1985; Yu, 2006) and its maximum compressive pressure is po = 

2Phra occurring at the load centre (x =z= 0). Due to the relation of rolling and 

sliding, the normal and shear loads are correlated by the frictional coefficient 'u 

as: 

Q= PP. (4.2) 

This frictional coefficient is determined by the materials and the physical 

conditions of the interface. 
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4.2.2 3D pavement model 

Travel direction 

---> P 
P 

(ffllý M. x 

z 

contact a 

Figure 4.2. A pavement under a 3D moving Hertz load 

In the 3D pavement model, it is first considered that the half-space is subject to 

a surface contact loading limited to a circle of radius, a (see Figure 4.2). The 

normal and shear load distributions on the surface are given as follows: 

3P 
222p 

2ýa3(a -x -y)1/2, 

q 
2N' -(a2 

(a2 
- x2 - y2 

)vz (4.3) 

(x2 
+y2`-a2) 

This load distribution is often referred to as the 3D Hertz load distribution 

(Johnson, 1985; Collins and Cliffe, 1987) and it has a maximum compressive 

pressure po = 3P/27ra2 at the centre of the contact area (x =y=z= 0). The same 

proportional relationship between Q and P is assumed as Equation (4.2). 
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Most of current works (Ponter et al., 1985; Radovsky and Murashina, 1996; 

Boulbibane and Collins, 2000; Yu, 2005; Boulbibane and Ponter, 2006; 

Krabbenhaft et at., 2007) adopted the Hertz load distribution for shakedown 

analysis of pavements. If the load moves along the x-direction, the core task of 

shakedown analysis of pavements is to find the critical value P (for a given p 

and material) below which the structures are under safe and stable condition. 

4.3 Elastic stress fields 

In order to implement shakedown analysis, the elastic stress fields are required 

to be solved. 

4.3.1 2D Hertz elastic stress fields 

The elastic stress fields of a half-space under a 2D Hertz load can be found in 

literatures and listed below (Johnson, 1985; Yu, 2006). 

The stresses due to the normal load 

If the compressive stresses are treated as negative, the elastic stresses due to the 

normal load P are given as follows: 

2,2 

(6 l 
_- 

2P 
M 

(I+ Z2 
2 -2z , tIv 7a m +n 

iz 
m 1-ZZ+ 

+n 2 era 
(4.4) e) 

pm p 

2P m _Z2 atep 
iraZ 

nmZ+n2. 
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The stresses due to the shear load 

The elastic stresses due to the tangential shear force Q are given below: 

2Q z2 - m2 )=2n 2- 
2Z -2x , q ila m+n 

((Ta )q 

_ 

(6 

)P 

QP, 

`0 z 

)q (c ) 

QP 

with 

m2 =j 
ýaZ-xZ+22)2+4x222 

+(a2-x2+z2) 
, l} 

n2 =2 ýa2 
-x2 +zzý +4x222 -(a2 -x2 +z2) 

(4.5) 

in which the signs of m and n are the same as the signs of z and x respectively. 

Total stresses due to the combination of normal and shear loads 

It is normally assumed (Johnson, 1985) that the interaction effect between the 

normal pressure and surface traction can be neglected and therefore the stresses 

due to the normal pressure and the surface traction are independent to each 

other. Then, the total elastic stresses at any point (x, z) in the half-space are the 

sum of the solutions of normal loads and shear loads: 

ay'=(Q, ')p+(o"; ß)9. (4.6) 
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4.3.2 3D Hertz elastic stress field 

The analytical solutions for elastic stresses at any point (x, y, z) in the half- 

space, under the 3D Hertz load, defined in Equation (4.3), was given by 

Hamilton (1983). 

The stresses due to the normal load 

The elastic stresses due to the normal load P are given as follows: 

2p 
[o+u)z(p+r 

-N(x2+2uy2 
Iýft2 

)- za 

+Y2-x2[(1-v)Nz2-1 
3V 

(NS+2AN+a3)-vMza]} 
, (4.7) 

e 3P azM 
JJJ 
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(xN 

S G2 +H 2 ) 

The stresses due to the shear load 

The elastic stresses due to the tangential shear force Q are given below: 

(u) - 2ýQ 
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where 

v is Poisson's ratio, 

A=rZ+z2-a2, 

S=(A2+4a2z2)1! 
2, 

r2 = x2 +y2, 

S+A 1/2 

C2 
=(S 2A 

)1/2 

rp=tan-'( M I, 

G=M2-N2+zM-aN, 

H=2MN+aM+zN. 

Similarly, the total elastic stresses at any point (x, y, z) in the 3D half-space has 

the same expression of Equation (4.6). 

4.4 Static shakedown solutions 

According to Melan's lower-bound shakedown theorem, the self-equilibrated 

residual stresses, when combined with the elastic stresses produced by the 
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applied loads, have to lie within the yield criterion. Hence, the establishment of 

residual stress field is essential for the determination of shakedown limit. 

4.4.1 Residual stress fields 

Residual stress is such that can remain in the half-space after the load 

applications as a result of plastic deformation. 

2D pavement model 

For the problem considered here that the plane strain half-space retains a flat 

surface after a number of load passes, every cross-section perpendicular to the 

travel direction experienced the same load history and therefore the residual 

stress fields are only dependent on the depth z. When the equilibrium and 

boundary conditions are applied, it is not difficult to find that the normal 

residual stress ýü and the shear residual stress 6X2 cannot exist. As a result, 

the existing residual stresses in the 2D half-space are only a and a; , as 

functions of depth z. This has also been numerically verified by the FE 

analyses described in the last chapter. 

3D pavement model 

The residual stresses in a 3D pavement model are much more complicated than 

those in the plane strain pavement model, because all the six components of the 

residual stresses may exist at a general point. For the problem considered here 

that the material is assumed to be isotropic and homogenous, the residual stress 

fields must be independent of the travel (x) direction (Johnson, 1985; Kapoor 

and Johnson, 1992; Boulbibane and Collins, 2000). However, as mentioned by 
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Boulbibane and Collins (2000), the optimisation problem of the 3D pavement 

model is still extremely large. 

Yu (2005) assumed that the most critical plane for a half-space under a 3D 

moving Hertz load is one of the x-z planes (y = const). On these planes, the 

self-equilibrium and boundary conditions eliminate the possibility of o" , and 

o. It follows that the only non-zero residual stress on these planes that may 

affect the shakedown limit is the normal residual stress in the travel direction 

c r. ", as a function of y and z. In the y-direction, the residual stress Q" may 

well exist, as a function of z. These residual stress fields have been proved 

valid by the numerical studies of Shiau (2001), in which the FE meshed and 

mathematical programming approach were used to search for the optimum 

residual stress fields. 

4.4.2 An analytical shakedown solution 

The total stresses for a general point in the half-space can be defined as the 

sum of the elastic stresses and residual stresses. If the total applied load is 

denoted by Apo (% is a dimensionless scale parameter, po is conveniently set as 

unit pressure), then all the induced elastic stresses are also proportional to A. 

On the x-z plane in the 2D pavement model and any y= const plane in the 3D 

pavement model, the total stresses can be expressed as follows: 

6-=2. +6r 

ýZ _ cä (4.9) 
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Assuming the soil material obeys the Mohr Coulomb yield criterion, Melan's 

lower-bound shakedown theorem then requires that the total stress state of any 

point in the half-space has to lie within the Mohr Coulomb failure surface. 

Since 6' can be chosen such that o, is an intermediate principle stress, the 

above requirement leads to the following expression: 

22 1/2 

f =[(2o +o _2o.: 
) +4(2a: ) ] 

+(2Qr+o +2o )sinO-2ccosgSo, (4.10) 

where c is the soil cohesion and 0 is the friction angle. 

The above expression can be rewritten as: 

=(ate+M)2+N<_0, (4.11) 

with 

ýý, M=e -Au. ' +2tan0(c-i%o . tan 

N= 4(1+tan2O)[(, IQ )2 
-(c-26 tan 0)2]. 

In order to satisfy this requirement, one condition must be met: 

N<_0=> A< c (4.12) 1 Q:! +a-u tan0 

By searching for the maximum value of Jcr J+Qütan0 through the whole 

half-space, the condition (4.12) can provide an analytical shakedown limit ''sd 
. 

Yu (2005) derived an alternative form of expression (4.11) and obtained the 
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same shakedown condition (4.12). For the 3D pavement problem, because the 

elastic stresses are symmetric along the central plane (y = 0), Yu (2005) 

searched for the most critical plane under yz0 and it was found that the most 

critical plane was always the central plane y=0. As a result, in the following 

investigations for the 3D pavement problems, the most critical plane y=0 is 

focused on. 

4.4.3 Critical residual stress fields 

The shakedown condition (4.12) is based on the assumption that the first term 

of Equation (4.11) is zero, and therefore it gives a maximum boundary to the 

exact lower-bound shakedown limit. Moreover, the residual stress field 

calculated from 2sd may not fulfil the equilibrium condition. It is instructive to 

find a possible residual stress field that satisfies both Equation (4.11) and the 

condition of equilibrium. 

According to Equation (4.11), the residual stress o at any point i in the half- 

space must be between two roots of f=0: -M, - -N; (smaller root) and 

-M, + -N; (larger root) in which N, is always negative once the necessary 

shakedown condition (4.12) is satisfied. For the system to be independent of 

the travel direction x, the possible residual stress Qý at any depth z is unique 

and has to lie between two critical residual stresses: max (-M, 
- -N, 

(referred to as ̀ maximum smaller root') and min(-M, + -N, 
) (referred to as 

`minimum larger root'), as shown in Equation (4.13) and Figure 4.3. Both 
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critical residual stresses are dependent on the elastic stresses, material 

properties and load parameter A. It should be noted that if the maximum 

smaller root is larger than the minimum larger root, it will be impossible to find 

a common residual stress that makes fs0 at all points at the same depth. In 

this case, the half-space is in a non-shakedown status; hence smaller load 

parameter A is required. 

(4.13) max 
(-M; oS main (-M; +.., r---N, ). 

II 
II 
II 
II 

11 

maximum I minimum 
la smaller root ; rger root 

a smaller root 
_ý 

II 
o larger root 

possible o range 

Figure 4.3. Possible residual stress range 

f 

Qý 
xx 

At a given load parameter, two critical residual stress fields can be obtained by 

calculating the maximum smaller root and the minimum larger root at each 

depth independently. For the load parameter at or within the shakedown limit, 

these critical residual stress fields actually constitute a region which contains 

the real residual stress field. For the load parameter in excess of the shakedown 

limit, there will always be some points providing f>0 at the critical residual 

stresses. 
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4.4.4 A rigorous lower-bound shakedown solution 

Based on the condition of the critical residual stresses, a procedure of searching 

for the best lower-bound shakedown limit of pavements under repeated moving 

surface loads is developed as outlined in Figure 4.4. 

First, using the load parameter 2sd obtained from the necessary shakedown 

condition (4.12), possible residual stresses -M, +4--N, and -M, - -N, are 

calculated for every point in the whole half-space. Then, a critical residual 

stress field is obtained by calculating either the minimum larger root or the 

maximum smaller root at each depth. This step reduces the residual stress field 

as function of depth z. Shakedown condition under this load parameter can be 

checked by substituting Ad and the critical residual stress field into Equation 

(4.11). If the maximum value of f among all points is found to be very close 

to 0 (said le-3 here), the present lower-bound shakedown solution 2. d 

coincides with the analytical shakedown solution 2,, d. Otherwise, if max(f) 

is larger than le-3, a smaller load parameter is required. In the latter case, the 

problem becomes how to determine the maximum permissible load parameter 

Asd at which the sum of corresponding elastic stresses and critical residual 

stresses fulfils the Mohr Coulomb yield condition at every location in the half- 

space. 

Noticing that the load parameters have to lie between Asd and 0, a method of 

bisection is utilised to find the optimum shakedown limit efficiently. The 

method of bisection takes a load parameter = (A +A2 )/2 in which the 
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initialised A1 is 0 and the initialised A2 is 2sd 
, then recalculates the critical 

residual stress field, followed by the search for the maximum value off. Here, 

a condition le -4 <-max (f) S le -3 is checked in consideration of a total 

stress state that just violates the yield condition. If max (f) is larger than 1 e-3, 

the current load parameter is too large, A2 is updated by A3 ; else if max (f) is 

smaller than l e4, A is updated by A3 
. The above procedure is repeated until 

the condition le -4 <- max (f) <_ le -3 is satisfied. The final load parameter A 

is the exact lower-bound shakedown limit 2sd , and the point providing the 

maximum value of f is the critical point. 

In addition, it is expected that the residual stress itself satisfies the yield 

,,, 
): 5 0) once the chosen boundary is large condition inherently (i. e. f (o.,, 

enough. This can be checked by using Equation (4.14) which is obtained by 

substituting the horizontal residual stress only into the Equation (4.11). As it 

can be seen, the obtained critical residual stresses have to lie between two 

residual stress limits which are only dependent on the soil cohesion c and angle 

of friction 0. 

2c cos O< 
0-, 

2c cos _ 
(4.14) 

sinn-1 sinn+1 
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_ 2sd =C 

max(jaýI+att tan qi) 

a= -M, t N; at point i 

Critical residual stress field 

v' = max 
(-M; 

- -N, 
) 

or o- = min 
(-M, + -N, 

) 

Y 

max(f): 5le-3? 
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----------------------------------- -------------- 
Method of 
Bisection 

_ /ý A 
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Figure 4.4. Flow chart of the lower-bound shakedown solution 
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The above procedure as well as the elastic stress solutions for the Hertz load 

was programmed in FORTRAN. The minimum larger root and the maximum 

smaller root were utilised independently, and the same shakedown limits were 

obtained. It was found in the numerical applications that a very small change of 

the load parameter A3 (said le-3) around the lower-bound shakedown limit 2d 

results in a significant change of max (f) , 
from 1 e-7 to 1 e-3 and therefore the 

above condition le-4 <- max (f): 5 le-3 can provide an accurate shakedown limit. 

The method of bisection was also checked by using an alternative method that 

reduces the load parameter gradually from the analytical shakedown limit 2sd 

until a condition max(f)<_ le -7 is satisfied. Both methods gave the same 

shakedown limits and the latter one was much more time-consuming if the 

decrease increment was very small. 

4.5 Shakedown limits of pavements 

The shakedown load limits of pavements may be represented by normalised 

shakedown limits: k 
,,, = 2sdPo Ic for the analytical shakedown limit and 

kk =2 po /c for the rigorous lower-bound shakedown limit (po is the 

maximum compressive pressure). The normalised shakedown limits are 

dependent on the soil friction angle 0 and surface frictional coefficient u. In 

Subsections 4.5.1 and 4.5.2, Poisson's ratio is taken as 0.3. The effect of 

Poisson's ratio on the shakedown limit will be investigated in Subsection 4.5.3. 

105 



4.5.1 Effect of frictional coefficient and soil friction angle 

2D shakedown limits 
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Figure 4.5.2D shakedown limits versus frictional coefficients for cohesive materials 

Figure 4.5 demonstrates the variation of 2D shakedown limit with the frictional 

coefficients 1u for cohesive materials. Here, the analytical shakedown limits are 

the same as the rigorous lower-bound shakedown limits. The normalised 

shakedown limit decreases markedly with increasing frictional coefficient. 

Further investigation shows that the critical point moves towards the surface 

with the rise of frictional coefficient. When 0.3 <p<0.4, the failure mode 

changes from subsurface failure (i. e. critical point lies below the surface) to 

surface failure (i. e. critical point lies on the surface). The present 2D 

shakedown solutions are in agreement with the static shakedown solutions of 

Shiau (2001) and Krabbenhaft et al. (2007) in which the Hertz load 
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distributions were adopted. Moreover, the present results are between Sharp 

and Booker (1984)'s lower-bounds and Li and Yu (2006)'s upper-bounds in 

which the trapezoidal load distributions were applied. Li and Yu (2006) only 

presented the shakedown limits for the frictional coefficient from 0 to 0.5. 

Table 4.1 and Table 4.2 present the analytical shakedown limits and the 

rigorous lower-bound shakedown limits for cohesive-frictional materials. As 

can be seen, the analytical and lower-bound shakedown limits both increase 

with increasing soil friction angle but decrease with increasing frictional 

coefficient. A direct comparison between two solutions is shown graphically in 

Figure 4.6. As can be seen, the rigorous lower-bound solution diverges from 

the analytical shakedown solution as the frictional coefficient and soil friction 

angle both increase. Further investigation shows that if the critical point lies on 

the surface of the pavement, the lower-bound shakedown limit is lower than 

the analytical shakedown limit; otherwise, both solutions are identical. In 

addition, the present lower-bound shakedown limits agree well with those in 

Krabbenhaft et al. (2007), and the present analytical shakedown solution are 

identical to the upper-bound solution obtained by Collins and Cliffe (1987) 

which considered a sliding mechanism with `V' cross section. 

When the normalised lower-bound shakedown limit k, _ AdPO Ic is 

multiplied by the corresponding frictional coefficient, shakedown limit in terms 

of surface traction 2, dgo /c is obtained, as shown in Figure 4.7. It is interesting 

to notice that 2 qo /c barely changes with increasing frictional coefficient 

once the critical point lies on the surface of the pavement. This implies the 2D 
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lower-bound shakedown limit is not affected by the normal pressure when 

surface failure occurs. 

Table 4.1.2D analytical shakedown limit kk = 2, p0 /c 

(Note: Underlined shakedown limits correspond to surface failure. ) 

µ 0= 00 5° 10° 15° 20° 25° 30° 35° 40° 45° 

0.0 4.00 4.66 5.45 6.40 7.56 9.00 10.82 13.16 16.25 20.39 

0.1 3.56 4.11 4.76 5.53 6.46 7.59 8.98 10.72 12.95 15.86 

0.2 3.20 3.67 4.21 4.85 5.61 6.52 7.63 9.00 10.70 12.88 

0.3 2.90 3.30 3.77 4.31 4.95 5.70 6.61 7.71 9.08 10.80 

0.4 2.50 3.00 3.40 3.87 4.41 5.06 5.82 6.74 7.87 9.28 

0.5 2.00 2.42 3.09 3.51 3.98 4.54 5.19 5.98 6.94 8.13 

0.6 1.67 1.95 2.36 3.01 3.62 4.11 4.68 5.37 6.20 7.23 

0.7 1.43 1.63 1.91 2.31 2.98 3.75 4.26 4.87 5.60 6.50 

0.8 1.25 1.40 1.60 1.88 2.29 3.00 3.91 4.45 5.11 5.41 

0.9 1.11 1.23 1.38 1.58 1.87 2.31 3.10 4.10 4.69 5.90 

1.0 1.00 1.10 1.21 1.37 1.57 1.87 2.37 3.34 4.34 4.99 

Table 4.2.2D rigorous lower-bound shakedown limit k, ='. sd po /c 

(Note: Underlined shakedown limits correspond to surface failure. ) 

µ O= 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

0.0 4.00 4.66 5.45 6.40 7.56 9.00 10.82 13.16 16.25 20.39 

0.1 3.56 4.11 4.76 5.53 6.46 7.59 8.98 10.72 12.95 14.24 

0.2 3.20 3.67 4.21 4.85 5.34 5.54 5.79 6.13 6.55 7.09 

0.3 2.90 3.30 3.38 3.46 3.56 3.69 3.86 4.08 4.37 4.73 

0.4 2.50 2.51 2.54 2.59 2.67 2.76 2.89 3.05 3.27 3.54 

0.5 2.00 2.01 2.03 2.07 2.13 2.21 2.31 2.44 2.62 2.83 

0.6 1.67 1.67 1.69 1.73 1.77 1.84 1.93 2.03 2.18 2.36 

0.7 1.43 1.43 1.45 1.48 1.52 1.58 1.65 1.74 1.87 2.02 

0.8 1.25 1.25 1.27 1.30 1.33 1.38 1.44 1.53 1.63 1.77 

0.9 1.11 1.12 1.13 1.15 1.18 1.23 1.28 1.36 1.45 1.57 

1.0 1.00 1.00 1.02 1.04 1.06 1.10 1.16 1.22 1.31 1.42 
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Figure 4.6.2D shakedown limits versus frictional coefficients for various friction 

angles for cohesive-frictional materials 
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Figure 4.7. Effect of surface traction on the 2D lower-bound shakedown limit 
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3D shakedown limits 
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Figure 4.8.3D shakedown limits versus frictional coefficients for cohesive materials 

Figure 4.8 compares the present 3D shakedown limits for cohesive materials 

with other authors' results. For the cases studied here, the analytical and lower- 

bound shakedown solutions are identical. Using the Hertz load distributions, 

the present shakedown limits agree with the upper-bound shakedown limits of 

Ponter et al. (1985) for cases p=0 and p >_ 0.3. The difference between the 

present solution and Ponter et al. 's solution is largest when p=0.2 . The upper- 

bound shakedown limits of Collins and Boulbibane (2000) and the numerical 

lower-bound shakedown limits of Shiau (2001) are also presented in this figure 

using the uniform load distributions. As can be seen, Collins and Boulbibane's 

upper-bounds are much higher than other solutions. This is because plane strain 
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condition was assumed in the cross-section perpendicular to the travel direction 

and the deformations are not fully three-dimensional. The numerical results of 

Shiau (2001) indicate that the shakedown limits for the uniform load 

distributions are generally lower than those for the Hertz load distributions. 

Table 4.3 and Table 4.4 present the normalised 3D shakedown limits kk and 

km. for frictional-cohesive materials. Figure 4.9 displays these shakedown 

limits as a function of frictional coefficient for different values of friction angle. 

Clearly, the presence of surface traction tends to reduce both analytical and 

lower-bound shakedown limits. When the frictional coefficient is high, the 

lower-bound shakedown limit decreases more significantly than the analytical 

shakedown limit with increasing frictional coefficient. 

Compared to the 2D pavement model, the 3D pavement model always provides 

higher shakedown limits. The difference between them is of the most 

significant in the case of normal load only and decreases with increasing 

frictional coefficient. In the case of normal loading only, the 3D pavement 

model has a critical point (0.86a, 0,0.36a) providing a shakedown limit 

kk =k=4.68c, while the 2D pavement model has a critical point (0.87a, 

0.5a) and gives a shakedown limit km. = k,,, = 4.00c . 

Figure 4.10 shows the lower-bound shakedown limits in terms of the surface 

traction. At a specific value of friction angle, the value of 2 q0 /c ceases to 

increase when a limit is reached. It implies that the 3D lower-bound 
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shakedown limit is independent of the normal pressure when surface failure 

occurs. 

Table 4.3.3D analytical shakedown limit kk =% p0 /c 

(Note: Underlined shakedown limits correspond to surface failure. ) 

µ 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

0.0 4.68 5.52 6.53 7.75 9.25 11.12 13.48 16.51 20.50 25.89 

0.1 4.13 4.83 5.65 6.63 7.80 9.23 11.01 13.21 16.04 19.70 

0.2 3.68 4.27 4.96 5.77 6.73 7.87 9.24 10.96 13.09 15.79 

0.3 3.32 3.83 4.41 5.09 5.89 6.83 7.96 9.34 11.02 13.14 

0.4 2.50 3.21 3.96 4.55 5.23 6.03 6.97 8.12 9.51 11.23 

0.5 2.00 2.43 3.10 4.11 4.70 5.39 6.20 7.17 8.36 9.81 

0.6 1.67 1.96 2.37 3.03 4.26 4.87 5.58 6.42 7.44 8.69 

0.7 1.43 1.64 1.92 2.33 2.99 4.31 5.06 5.81 6.71 7.80 

0.8 1.25 1.41 1.61 1.89 2.30 3.01 4.53 5.30 6.10 7.07 

0.9 1.11 1.23 1.38 1.59 1.87 2.32 3.14 4.88 5.60 6.47 

1.0 1.00 1.10 1.22 1.37 1.58 1.88 2.39 2.36 5.17 5.97 

Table 4.4.3D rigorous lower-bound shakedown limit k_ 2dPO /C 

(Note: Underlined shakedown limits correspond to surface failure. ) 

N 0=00 50 10° 15° 20° 25° 300 35° 40° 450 

0.0 4.68 5.52 6.53 7.75 9.25 11.12 13.48 16.51 20.50 25.89 

0.1 4.13 4.83 5.65 6.63 7.80 9.23 11.01 13.21 16.04 18.71 

0.2 3.68 4.27 4.96 5.77 6.73 7.07 7.42 7.88 8.48 9.27 

0.3 3.32 3.83 4.21 4.35 4.52 4.70 4.93 5.23 5.62 6.13 

0.4 2.50 3.06 3.15 3.24 3.38 3.52 3.69 3.91 4.20 4.58 

0.5 2.00 2.40 2.52 2.58 2.69 2.81 2.95 3.13 3.36 3.65 

0.6 1.67 1.95 2.10 2.16 2.23 2.33 2.46 2.60 2.79 3.04 

0.7 1.43 1.64 1.80 1.84 1.91 1.99 2.10 2.23 2.39 2.60 

0.8 1.25 1.41 1.57 1.60 1.67 1.74 1.83 1.94 2.09 2.27 

0.9 1.11 1.23 1.37 1.43 1.48 1.54 1.62 1.72 1.85 2.01 

1.0 1.00 1.10 1.21 1.29 1.33 1.38 1.45 1.54 1.66 1.80 
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4.5.2 Critical residual stress fields at the shakedown limit 
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Figure 4.11 and Figure 4.12 display typical critical residual stress fields at the 

shakedown limit in 2D and 3D pavement models. These critical residual stress 

fields all lie between the residual stress limits (-3.46 and 1.15) which are 

calculated from Equation (4.14). 

In each case, two critical residual stress fields (i. e. the minimum larger root and 

the maximum smaller root) touch at one point which also indicates the critical 

depth of the pavement (i. e. depth of the critical point). As can be seen, the 

critical depth is beneath the surface when p is small (i. e. subsurface failure 

mode). With the rise of frictional coefficient, two critical residual stress fields 

tends to converge at the surface of the pavement, leading to surface failure 

when p=0.2. In addition, the critical depth always lies at one of the peak 

points of the compressive (negative) minimum larger root. 

4.5.3 Effect of Poisson's ratio 

Equations (4.7) - (4.8) show that the elastic stress field a due to the 3D Hertz 

load is a function of Poisson's ratio. As all the above analyses were conducted 

when v=0.3, it is instructive to investigate the influence of Poisson's ratio on 

the lower-bound shakedown limit km,,. 

Figure 4.13 shows the lower-bound shakedown limit versus Poisson's ratio for 

different values of friction angle. As can be seen, the shakedown limit does not 

change when q= 0°, but decreases proportionally with increasing Poisson's 

ratio when O> 011. It should be noted that when subsurface failure occurs, the 

lower-bound shakedown limit is not affected by Poisson's ratio (k,,, = k. ). 
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Figure 4.14 shows the effect of Poisson's ratio on the critical residual stress 

fields when surface failure occurs. Clearly, for cases v=0.1 and v=0.49, the 

critical residual stress fields only vary significantly within 0 
_< z/ a<_ 0.1. The 

residual stress at the critical point (z/a = 0) is small when the Poisson's ratio is 

low. 

4.5.4 Comparison with the FE results 

Critical residual stress fields at the shakedown limit forms a region for the real 

residual stress field. This can be checked by comparing the critical residual 

stress fields with the fully-developed residual stresses obtained in Chapter 3. 
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Figure 4.15. Comparison between critical residual stress fields and FE calculated 

residual stress field when p=0,0 = 0° and km. = kma 
.=4.0 
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For case p=0,0 = 0° and k. = kmax = 4.0, the FE calculated residual stress 

field lies between the minimum larger root and the maximum smaller root (two 

critical residual stress fields), as shown in Figure 4.15. Moreover, the FE result 

agrees with the critical residual stresses at the critical depth (z/a = 0.5), giving 

Qý /c=0.53. This is also identical to the residual stress given by Johnson 

(1962) for Tresca materials. 

Figure 4.16 compares the critical residual stress fields with the FE results for a 

range of frictional coefficients, from -0.4 to 0.4. It should be noted that the sign 

of frictional coefficient does not affect the critical residual stress fields in the 

lower-bound solution. However, it may cause slightly different residual stress 

fields in the FE calculations as mentioned in Chapter 3. Clearly, the FE 

calculated residual stress fields are well contained by the critical residual stress 

fields, even at the critical depths. Moreover, the FE calculated residual stresses 

within the plastic region are very close to the compressive (negative) minimum 

larger roots. Outside the plastic region, the FE calculated residual stresses are 

almost zero while the minimum larger roots are positive. This is because the 

critical residual stresses are calculated based on the assumption that yield 

occurs at all depths. 

Figure 4.17 shows the comparison between the critical residual stress fields and 

the FE calculated residual stress fields for various soil friction angles. Again, 

the critical residual stress fields are verified as they provide boundaries to the 

FE results. The compressive minimum larger roots are also close to the FE 

calculated residual stresses, particularly for those near the critical depth. 
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4.5.5 Residual stress at the critical point 

Figure 4.18 and Figure 4.19 show the required residual stresses at the critical 

points to achieve shakedown state for various frictional coefficients and 

friction angles in the 2D and 3D pavement models. It is interesting to notice 

that there is a sharp drop of residual stress when the critical point location 

moves from below-surface to surface. When subsurface failure occurs, the 

required residual stress decreases with increasing frictional coefficient in both 

2D and 3D pavement models. When surface failure occurs, the residual stress 

decreases in the 2D model (except when 0=0°) but increases in the 3D model 

with the rise of frictional coefficient. In addition, the residual stress in the 3D 

pavement model is always smaller than that in the 2D pavement model. 
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4.6 Extended shakedown solutions for pavements with 

elliptical contact area 

One limitation of the existing design method and shakedown solutions for 

pavements under three-dimensional surface loads is that they all consider the 

surface load distribution is limited within a circle. In reality, when the carrying 

load is high, the contact area between the tyre and the pavement tends to 

become elongated rather than a circular form (Croney and Croney, 1991; Juspi, 

2007). In this section, the solutions for shakedown of pavements are extended 

to the cases with elliptical contact area. 

4.6.1 Load distributions 

The surface contact loading is limited to an elliptical contact area with semi- 

axes a (major axis) and b (minor axis), as shown in Figure 4.20. 

Travel direction 

Figure 4.20. A pavement under a moving 3D Hertz load distributed over 

an elliptical contact area 
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The total normal and shear force P and Q are distributed over the elliptical 

contact area and formulated as: 

i 
p 27rab 

1 
a2 

q= 
3Q 

J_X2 
2, rab a2 

2 vz 

Y 
b2 

2 1/2 

b2 . 
y (4.15) 

x2 1+ý1 Z 
a2 2 

where the normal and shear force have the correlation µ= QIP and p is the 

frictional coefficient. This load distribution, also referred to as the 3D Hertz 

load distribution (Johnson, 1985; Ponter et al., 1985), has a maximum 

compressive pressure po = 3P / 2; rab at the centre of the loading area (x =y=z 

= 0). 

4.6.2 Elastic stress fields 

The analytical solutions for elastic stresses at any point (x, y, z) in the half- 

space, due to the 3D Hertz load distribution, defined in Equation (4.15), were 

derived by Bryant and Keer (1982) and Sackfield and Hills (1983a, 1983b). 

The stress expressions that are relevant to the present study are given below. 

There are some typos in Sackfield and Hills (1983b). The corrected stress 

expressions of cr., and (7, due to the normal and shear loads are given as 

follows: 
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where 

a, b are the lengths of the major and minor axes of the contact ellipse, 

s is the largest root of x2 +y+ Z2 
=1, a2(s2+1) a2(s2 +(b/a)2) a2s2 

xi Yiz2 H= 
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The stress expressions of a., used in this section is taken from Bryant and 

Keer (1982), as shown below: 

2gab(1-ez)UZx 
(1-2v) äz 

zlg1iº 

z 
(4.18) 

-2vß'(P>x>Y, z)+2(1-v) 
zTI (P) _xz 

(P) 

a a3 p3Q (P4, v) , 

2 

6xx ý9 Trab -e2vzäx (1-2v) 3ä1sz'O 
a 

(2 
_I 

)A (4.19) 

-2(1+v)P, (p)+6v19x2 
50 

(p) 
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where 

v is Poisson's ratio, 

e2=1-(b/a)2 (0<e<1), 

v are roots of x2 + y2 + ZZ 
p2 z 4-2 z v2 , a2s2 a2 (s2 

-e2) a2 (sZ 
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The above elastic stress expressions have been programmed in FORTRAN and 

verified through comparing with the FE results. 
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4.6.3 Effect of frictional coefficient and soil friction angle 

Based on the elastic stress fields defined by Equations (4.16) - (4.19), 

shakedown solutions for pavements with elliptical contact area are obtained. 

Some typical results are presented in this subsection to investigate the effect of 

frictional coefficient and soil friction angle. Poisson's ratio is taken as 0.3. 

Figure 4.21 presents the results demonstrating the dependence of the 

normalised analytical shakedown limit kn,,, = 2sdpo /c on both the friction 

angle 0 and surface frictional coefficient u when b/a = O. S. The curves are 

similar to the ones in Figure 4.9 for a special case b/a =I (circular contact 

shape). Moreover, the numerical search for the most critical point throughout 

the half-space shows that the critical point always lies on the central plane 

y=o. 

Figure 4.22 shows the normalised lower-bound shakedown limits 

kI =. ýd po Ic against the frictional coefficients µ for various values of 

friction angle when b/a = 0.5. The data again show similar trend to those 

observed in Figure 4.9. Compared to the analytical shakedown solution, the 

lower-bound shakedown solution gives smaller shakedown limits when the 

critical point is located at the surface of the pavement. 
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4.6.4 Effect of aspect ratio 

In this subsection, a series of analyses was carried out to investigate the 

influence of aspect ratio on the analytical and lower-bound shakedown limits. 

When qS = 0°, the interactive effect of aspect ratio and frictional coefficient on 

the analytical shakedown limit is shown in Figure 4.23. It can be seen that the 

aspect ratio does not affect the shakedown limit when surface failure occurs. 

However, the reduction of aspect ratio tends to increase the analytical 

shakedown limit when subsurface failure occurs, associated with the critical 

point moving upwards. For case p=0.2, the analytical shakedown limit ceases 

to increase at b/a = 0.36, because the critical point moves to the surface of the 

pavement. 

The above shakedown limits kk =A po /c when multiplied by the 

corresponding aspect ratio b/a are presented against b/a in Figure 4.24. It is 

interesting to find that (2, p0 / c) * (b / a) reduces linearly with decreasing 

aspect ratio when the failure mode does not change. Therefore, shakedown 

limit at any aspect ratio can be expressed as: 

k. = 
AsdPO 

= 
krrc�rar 

+ tan 9- tan 0 
(4.20) 

c b/a b/a 

where kc;, 
a, 

is the shakedown limit at b/a =1 (circular contact area) and 0 is 

an inclination angle. 
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As shown in Figure 4.24, the increase of frictional coefficient tends to reduce 

the inclination angle for cases with the same failure mode. In addition, the 

sudden change of the inclination angle indicates the critical point location 

jumps from below the surface to at the surface (from h/a = 0.18 to 0 when u= 

0.2 and b/a = 0.36). 

Figure 4.25 shows the lower-bound shakedown limits kmax against the aspect 

ratios for various frictional coefficients when 0= 0°. These lower-bound 

shakedown limits are then multiplied by the corresponding aspect ratio and 

presented in Figure 4.26. 

The lower-bound shakedown solution is the same as the analytical shakedown 

solution in most cases. However, there exists some transition cases rather than 

a turning point when the failure mode is about to change with increasing aspect 

ratio. As shown in Figure 4.26, the shakedown limits in the transition stage do 

not follow the linear relationships and they give lower values than those in the 

analytical shakedown solution. 

135 



10 
0 

subsurface failure 
8 fý=0.2 

--ý=0.4 

6 

E 

= 4 

0 

2 

surface failure 
0 

1 0.8 0.6 

Aspect ratio b/a 

/=o 
-ý P=0.2 
-ý- P=0.4 Transation 

-p=0.6 stage 

Figure 4.25.3D shakedown limits km. versus aspect ratios for various values of 

frictional coefficient when 0= 0° 

5r4.68 

4 3.68 

3 
2.5 

2 
1.67 

0 

0` 
1 

0=71° 

e=6s 

} 

0.4 0.2 

e= 

0.8 0.6 0.4 0.2 

Aspect ratio b/a 

Figure 4.26.3D shakedown limits k,, * (b / a) versus aspect ratios for various values 

of frictional coefficient when ý= 00 

136 



When 0= 30°, the interactive effect of frictional coefficient and aspect ratio on 

the normalised analytical shakedown limit is shown in Figure 4.27. It indicates 

that the shakedown limit increases significantly with decreasing aspect ratio for 

subsurface failure cases, but does not change for surface failure cases. These 

shakedown limits when multiplied by the aspect ratio are also drawn against 

b/a in Figure 4.28. Again, linear relationships are observed and the inclination 

angle 0 reduces with increasing frictional coefficient for subsurface failure 

cases. 

Under the same condition, the rigorous lower-bound shakedown limits are 

shown against the aspect ratios in Figure 4.29. As can be seen, surface failure 

occurs from p=0.2 in Figure 4.29 rather than from p=0.8 in Figure 4.27. In 

addition, the lower-bound shakedown limits with the surface failure mode are 

always lower than the corresponding cases in Figure 4.27. Different from 

previous results (Figure 4.23, Figure 4.25 and Figure 4.27), shakedown limit in 

this case can always be raised by reducing the aspect ratio even if the critical 

points are located at the surface of the pavement. 

When the above shakedown limits are multiplied by the aspect ratio, linear 

relationships are also observed (see Figure 4.30). In addition, no transition 

stage (referred to Figure 4.26) is found in Figure 4.30. This can lead to a 

convenient estimation of shakedown limits in consideration of the change of 

aspect ratio, as expressed in Equation (4.20). 
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Table 4.5. Comparison of different shakedown solutions when p=0.15 

(Note: case 1, analytical shakedown solution; case 2, rigorous lower-bound solution; 

underline shakedown limits correspond to surface failure; asterisked shakedown limits 

correspond to transition cases. ) 

0 45° 30° 15° 0° 

b/a case 1 case2 case 1 case 2 case 1 case 2 case I case 2 

1.0 17.53 12.45 10.05 9.93 6.17 6.17 3.90 3.90 

0.9 18.08 12.74 10.35 10.15 6.34 6.34 3.98 3.98 

0.8 18.79 13.12 10.74 10.45 6.55 6.55 4.10 4.10 

0.7 19.72 13.63 11.25 10.85 6.84 6.84 4.25 4.25 

0.6 21.00 14.31 11.95 11.38 7.23 7.23 4.45 4.45 

0.5 22.80 15.34 12.94 12.18 7.79 7.79 4.74 4.74 

0.4 25.59 16.76 14.48 13.26 8.65 8.65 5.18 5.14* 

0.3 30.22 19.12 17.08 15.08 10.10 10.10 5.90 5.57* 

0.2 39.73 23.87 22.28 18.72 13.03 13.02* 6.70 6.00* 

40 -- -- ---- ---x 0=4511 
- -X- - Analytical shakedown solution 
--l Rigorous lower-bound solution 

30 ------- -- --- -- --------- - --- -- ----- - --- ---- - ------ ---- --------- - -- ---. X--- - 

O= 
.X 20 - --- -- -- - -- --------------- _ 

11 

O= 30 

±! :: 0-150 
ö 10 --- -- -- ----- --- -- -- - 
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1 0.8 0.6 0.4 0.2 
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Figure 4.31. Comparison of shakedown limits from analytical shakedown solution and 
lower-bound solution for various friction angles and b/a when p=0.15 
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Table 4.5 and Figure 4.31 compare the analytical shakedown solution and the 

rigorous lower-bound solution for various friction angles when the frictional 

coefficient is 0.15. As can be seen, differences between two solutions mainly 

appear when the friction angle is relatively high (O= 300,45°) and the critical 

point in the lower-bound solution is initiated at the pavement surface. The 

difference tends to increase with decreasing aspect ratio. When the friction 

angle is relatively low (ý = 0°, 15°), both solutions are identical in most cases 

and their critical points mostly lie within the half-space. Transition cases only 

occur when the aspect ratio b/a and soil friction angle 0 are both very small 

and they give rise to a little difference between the lower-bound and the 

analytical shakedown solutions. 

4.6.5 Residual stress distributions 

The influence of aspect ratio on the critical residual stress fields at the 

shakedown limit is shown in Figure 4.32. Clearly, for each case studied here, 

two critical residual stress fields converge at one critical point beneath the 

pavement surface. Moreover, with the reduction of aspect ratio b/a, the critical 

point gradually moves towards the surface. Similar to the results for 

shakedown of pavements with circular contact area (see Figure 4.12), the 

critical points for cases b/a = 0.8 and 0.6 occur at the peak points of the 

compressive (negative) minimum larger root. However, when b/a = 0.4, the 

critical point lies a little away from the peak point and this probably leads to 

the transition case in the lower-bound shakedown solution. 
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4.7 Conclusions 

-2 

An analytical shakedown solution and a rigorous lower-bound shakedown 

solution to the stability problem of pavements subjected to 2D and 3D moving 

surface loads have been derived. The analytical shakedown solution gives a 

necessary condition for shakedown, while the rigorous lower-bound solution 

provides a lower-bound to the shakedown limit by using a self-equilibrated 

critical residual stress field. 

For the single-layered pavements, the shakedown limit is dependent on the 

surface frictional coefficient and soil friction angle. The rigorous lower-bound 

shakedown solution for 3D pavements is also slightly affected by the Poisson's 
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ratio when 0*0 and the critical point lies on the pavement surface. The 

critical residual stress fields at the shakedown limit have been verified by 

comparing with the FE calculated residual stress fields. 

Both shakedown solutions have been extended to pavements with elliptical 

contact area. In the analytical shakedown solution, the shakedown limit 

increases with decreasing aspect ratio b/a only for subsurface failure cases. In 

the rigorous lower-bound solution, the shakedown limit can be raised by 

decreasing aspect ratio for both surface failure and subsurface failure cases. 

This implies that under the same contact area, the pavement with elliptical 

contact shape is able to afford more loads than the one with circular contact 

shape. 

Generally speaking, the rigorous lower-bound solution is lower than the 

analytical shakedown solution for cases when the critical point lies on the 

surface of the pavement (i. e. rolling with significant sliding). However these 

solutions are identical for cases when the critical point lies within the pavement 

(i. e. rolling with limited sliding). For pavements with elliptical contact area, 

some transition cases may exist in the rigorous lower-bound solution, which 

give slightly lower shakedown limits than those in the analytical shakedown 

solution even when subsurface failure occurs. These transition cases only 

appear when the friction angle and aspect ratio are both very small. 

Solutions derived in this chapter can be used to verify and benchmark 

numerical shakedown results. 
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CHAPTER 5 

SHAKEDOWN ANALYSIS OF MULTI- 

LAYERED ROAD PAVEMENTS 

5.1 Introduction 

Shakedown analysis in Chapter 4 is concerned with isotropic, homogenous 

single-layered road pavements. In reality, the road pavements consist of several 

layers of different materials. For the purpose of practical pavement design, 

approaches to shakedown analysis of multi-layered road pavements are 

developed in the present chapter. These approaches are based on the 

shakedown solutions in Chapter 4 and take into account the variation of 

material properties. 

The proposed approaches are first validated through comparing with the results 

in Chapter 4 for single-layered road pavements. Then, they are applied to two- 

layered road pavements when subjected to 2D or 3D moving surface loads. The 

influences of material properties and layer thicknesses are examined in detail 

and the results are compared with other authors' solutions. Shakedown 
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analyses are also carried out in order to compare with experimental results of 

Juspi (2007). Finally, a simple design procedure using the shakedown theory is 

developed for layered pavements. 

5.2 Approaches to shakedown analysis of layered road 

pavements 

5.2.1 Analytical shakedown solution for layered pavements 

For the problem considered here that the material properties vary from one 

layer to another, Equation (4.12) should be modified to take the layered system 

into account. The modified equation is given as follows: 

12m ýý, =min(A,,, 
Asd, 

---+Asd 

Cn (5.1 
An = 

sd 
max 

(IQ I+ 
6R tan 

) 

where 

c� : soil cohesion at nth layer, 

ý� : soil friction angle at nth layer, 

elastic stresses induced by unit pressure, 

d: analytical shakedown limit parameter for nth layer, 

2sd : analytical shakedown limit parameter for the layered pavement. 
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Moreover, elastic stress fields in the layered structure are much more 

complicated than those in a homogeneous half-space. They are dependent on 

material elastic parameters at each layer (Young's modulus E� and Poisson's 

ratio u) and so far have not yet been given by any closed form expression. 

Therefore, FE analyses for elastic stress fields are carried out by means of the 

FE software ABAQUS. 

In order to implement shakedown analysis of layered pavements, the function 

I qz I+ cII tan q� is programmed into the user subroutine UVARM, which 

defines the function as an output variable for every integration point. As a 

result, in the ABAQUS output field, the integration point providing the 

maximum value of IoI+ o- tan O� at each layer can be found and the 

shakedown limit parameter for each layer A, "d can be calculated. According to 

Equation (5.1), the minimum one among the obtained ä is taken as the 

analytical shakedown limit parameter 2sd for the layered pavement. 

5.2.2 Rigorous lower-bound shakedown solution for layered pavements 

It is very difficult to obtain the rigorous lower-bound shakedown limit for 

layered pavements by only using the ABAQUS, since the lower-bound 

shakedown solution involves an optimisation procedure as outlined in Figure 

4.4. Therefore, MATLAB is introduced to implement the lower-bound 

shakedown analysis. 
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Report file from FE results Input file for FE analysis 
(Node labels and elastic stresses (Node labels and coordinates) 

in nth layer) 

Filter program 

Combination file 
(Node labels, coordinates and elastic stresses) 

Sorted by depth z 

Final data file 

Optimisation procedure (see Figure 4.4) 

Lower-bound shakedown limit parameter for each layer 2 

Figure 5.1. Flow chart for data processing in MATLAB 

Figure 5.1 shows a program flow chart for the lower-bound shakedown 

analysis of layered pavements using the MATLAB. As can be seen, the initial 

data (coordinates and elastic stresses of every node) are taken from the FE 

analysis. The coordinate information of all nodes is stored in an input file, 

while the elastic stress information of each layer is recorded in sequence of 

node label in a report file. 

For each layer, a filter program is used to match the coordinate of each node 

with the corresponding elastic stresses. The combined data are then sorted by 

depth z in order to determine the critical residual stresses at each depth 
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(referred to Section 4.4). Using the optimisation procedure outlined in Figure 

4.4, lower-bound shakedown limit parameter for nth layer 2 can be obtained, 

as well as the critical point in each layer. Finally, the lower-bound shakedown 

limit parameter for the layered pavement 2sd is the minimum one among all 

Aid" 
9 as shown below: 

AM =mink sd, 
Asd,..., A, d)" (5.2) 

5.3 FE models 

5.3.1 2D model 

Figure 5.2 presents a typical 2D plane strain FE model with first layer 

thickness h1/D = 1. There are a restraint on horizontal movement at vertical 

boundaries and a restraint on vertical movement at bottom boundary. On the 

top surface, normal and shear loads (P and Q) are distributed as Equation (4.1), 

linked by a frictional coefficient p=Q/P. The size of the simulated region is 

chosen to be large enough so that boundary conditions have negligible effect 

on the shakedown limit. The half-space is discretised by eight-noded, reduced- 

integrated, quadrilateral elements (CPE8R). Very fine mesh is applied in the 

vicinity of loading area, as small as approximately 0.02D x 0.02D, to capture 

stresses in a reasonable accuracy. The half-space is assumed to be continuous 

with different material properties for each layer, and higher mesh density is 

applied near the interface between two layers. 
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Figure 5.2. A typical 2D FE mesh and boundary conditions 

Figure 5.3. A typical 3D FE mesh and boundary conditions 
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5.3.2 3D model 

Figure 5.3 shows a typical 3D FE model with first layer thickness h1/D = 1. 

The front face y=0 represents a plane of symmetry, and therefore a restraint 

on horizontal (but not vertical) movement is imposed on this face. There are a 

restraint on horizontal movement at the back face and a restraint on vertical 

movement at the bottom face. The normal and shear load distributions 

formulated as Equation (4.3) are applied on the top surface limited within a 

half circle due to the symmetric condition. The simulation region is discretised 

by twenty-noded, reduced-integrated, brick elements (C3D20R), and the mesh 

density is relatively high in the vicinity of the loading area and near the 

interface between two layers. 

5.3.3 Results verification 

In order to validate of the proposed approaches, shakedown analyses of single- 

layered pavements were first performed. Poisson's ratio was assumed as 0.3 in 

the FE model. The analytical and lower-bound shakedown limits, defined as 

k. = 2. , po /c and k=2 po /c respectively, are presented in pairs for the 

purpose of comparison. Sensitive studies on the dimensions of length L/a and 

height H/a (see Figure 5.4), suggest that a mesh with the dimension of H/a =8 

and 0.5L/a = 10 would be sufficient to accurate model the infinite half-space 

for cases with or without surface shear force and friction angle. The obtained 

results also generally agree with the shakedown limits from Chapter 4, as 

shown in Figure 5.5 for the 2D pavement model and in Figure 5.6 for the 3D 

pavement model. 
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5.3.4 li VAR\I distributions 

ABAQUS is able to output the contour of UVARM, which is defined as 

function I6. I+o tan 0. Figure 5.7 and Figure 5.8 show typical UVARM 

distributions in the 2D and 3D pavement models. When 0= 0° and po =1 e4, 

the maximum value of UVARM occurs beneath the surface for p=0 and at the 

surface for ,u=0.5. Compared with the Figure 5.7, Figure 5.8 shows similar 

UVARM contours on the most critical plane y=0. However, the maximum 

value of UVARM in the 2D model is larger than that in the 3D model. As a 

result, the 2D shakedown limit is smaller than the 3D shakedown limit. 
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(A. q 7ä9i) 

"2.6921.03 
"2.2791.03 
"2.0671.03 
. l. es1. "03 
" 1.624.. 03 
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N. dc 1999 
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N. Mi 2245 

(b) N=0.5 

Figure 5.7. UVARM distributions in the 2D pavement models 

when 0=0* and po =1 e4 
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Figure 5.8. UVARM distributions in the 3D pavement models 

when 0= 0° and po =1 e4 
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5.4 2D shakedown limits of two-layered pavements 

In this section, the proposed shakedown approaches are applied to 2D two- 

layered road pavements. Figure 5.9 shows the problem notation of a 2D two- 

layered pavement, in which D is full contact width. A pure cohesive second 

layer (4 = yri = 00) is considered, with Poisson's ratio v2 = 0.49. In the first 

layer, the soil friction angle 01 may vary from 0 to 45 degrees, with Poisson's 

ratio v2 = 0.2. 

hý 

00 

2a=D 

vt = 0.2,01 = Vi, Ei, ci 

02 = 0.49, q2= L'2= 0, E2, c2 

Figure 5.9. Problem notation of a two-layered pavement 

In the following studies, the normalised analytical and lower-bound shakedown 

limits are represented as k. = %%po /c2 and k,. = 2dpo /C2 respectively. 

These shakedown limits are not only dependent on the surface frictional 

coefficient and soil friction angle, but also on material stiffness ratio El/E2, 

strength ratio cI/c2 and normalised first layer thickness hl/D. 
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5.4.1 Effect of stiffness ratio and frictional coefficient 

Figure 5.10 demonstrates the influence of stiffness ratio El/E2 on the 2D 

analytical shakedown limit for various values of strength ratio cl/c2 when ,u=0 

and u=0.5. Clearly, at a given value of strength ratio, there always exists an 

optimum stiffness ratio that would provide the maximum resistance to 

pavement failure (i. e. the shakedown limit is maximised). For cases cl/c2> 1, 

the shakedown limit firstly increases then decreases with the rise of E1/EZ. The 

peak point indicates the change of critical point location from the second layer 

(increasing part) to the first layer (decreasing part). For cases c1/c2 < 1, failure 

always occurs in the first layer, and therefore the shakedown limit keeps 

decreasing with increasing E1/EZ. 

Figure 5.11 shows the effect of stiffness ratio on the 2D lower-bound 

shakedown limit. Compared with Figure 5.10, the lower-bound shakedown 

limit after the peak point drops more quickly with increasing E1/E2, associated 

with the optimum stiffness ratio moving left. For case p=0, both solutions 

(Figure 5.10(a) and Figure 5.11(a)) are identical when the critical point is 

located at the top of the second layer (increasing part) or within the first layer 

(occurs when cI/c2 and E1/E2 are both small). However, they are different when 

the critical point occurs at the base of the first layer. For case p=0.5, the 

lower-bound shakedown limits (Figure 5.10(b)) are smaller than the analytical 

shakedown limits (Figure 5.11(b)) when the critical point lies on the surface of 

the f irst pavement layer (decreasing part). 
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Figure 5.10.2D analytical shakedown limits versus stiffness ratios for various values 

of strength ratio when h, /D =I and 01 = 300 
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Figure 5.11.2D lower-bound shakedown limits versus stiffness ratios for various 

values of strength ratio when h, /D =I and 01 = 30° 
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The differences between Figure 5.10(a) and Figure 5.10(b) and between Figure 

5.11(a) and Figure 5.11(b) is significant when the stiffness ratio is small, and 

becomes smaller with increasing stiffness ratio. 

5.4.2 Effect of strength ratio and first layer friction angle 

Figure 5.12 shows the analytical shakedown limit against the strength ratio for 

various values of first layer friction angle when hl/D =1 and p=0. Clearly, at 

a low value of stiffness ratio (El/E2 = 10), the normalised shakedown limit 

ceases to increase at a particular value, as shown in Figure 5.12(a). This 

indicates that the critical point location transfers from the first layer to the 

second layer. Further increase of the strength ratio will not improve the 

pavement capacity. At a high value of stiffness ratio (Ei/E2 = 1000), an 

increase in strength ratio always improves the pavement capacity, as shown in 

Figure 5.12(b). 

Figure 5.13 compares the analytical shakedown solution with the rigorous 

lower-bound shakedown solution when h1/D = 1, p=0 and El/E2 = 10. It 

demonstrates that both solutions give identical results when the critical point 

initiates in the second layer. When failure occurs at the base of the first layer, 

the lower-bound solution provides relatively small shakedown limits. 

Figure 5.12 and Figure 5.13 indicate that the rise of the first layer friction angle 

obviously increases the pavement shakedown limit when the critical point lies 

in the first layer. 
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5.4.3 Effect of first layer thickness 

Figure 5.14 shows the shakedown limit against the stiffness ratio for a range of 

normalised first layer thickness h1/D. It can be seen that the shakedown limit 

can be raised by increasing the first layer thickness h1/D. It is expected that if 

the first layer thickness is very large, the second layer will have negligible on 

the pavement capacity, so that the shakedown limit will reach a maximum 

value which is entirely controlled by the material properties of the first layer 

and is independent of E1/EZ. In addition, at a given value of hl/D, the optimum 

stiffness ratio in the lower-bound shakedown solution (see Figure 5.14(b)) is 

smaller than that in the analytical shakedown solution (see Figure 5.14(a)). 
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Figure 5.14. Interactive effect of stiffness ratio and first layer thickness on 2D 
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5.4.4 Critical residual stress fields 

Figure 5.15 shows three typical critical residual stress fields in the 2D two- 

layered pavements. The residual stress is normalised by the second layer 

cohesion c2 and the depth is normalised by half of the contact width a. Clearly, 

these residual stresses fields are quite different from those in the homogenous 

half-space (see Figure 4.11). Discontinuous residual stresses are observed at 

the interface between two layers. In the first layer, two critical residual stress 

fields tend to converge at the top and the bottom of this layer. This may result 

in the critical point lying at the surface (see Figure 5.15(c)) or at the base of the 

first layer (see Figure 5.15(a)). In the second layer, two critical residual stresses 

fields tend to converge at the top of the second layer, leading to second layer 

failure (see Figure 5.15(b)). 
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5.5 3D shakedown limits of two-layered pavements 

By means of the proposed shakedown approaches, 3D shakedown limits for 

two-layered pavements are obtained. The parameter notations are the same as 

the ones used in the 2D pavement model (see Figure 5.9), in which D 

represents diameter of the circular contact area in this section. 

5.5.1 Effect of stiffness ratio and frictional coefficient 

Figure 5.16 shows 3D analytical shakedown limits versus the stiffness ratio for 

a range of strength ratios when h1/D = 1,6 = 30°. It shows trends of curves 

which are similar to Figure 5.10. At a given value of strength ratio, the 

existence of peak shakedown limit is evident in the case of normal loading only 

(see Figure 5.16(a)) but is less obvious when u=0.5 (see Figure 5.16(b)). 

Before the peak shakedown limit, the critical point occurs at the top of the 

second layer. After the peak shakedown limit, the critical point occurs within 

the first layer. 

Figure 5.17 shows the same plot for the 3D lower-bound shakedown limits. For 

case k=0, the 3D lower-bound shakedown solution (see Figure 5.17(a)) shows 

very similar results to the analytical shakedown solution (see Figure 5.16(a)). 

The critical points mostly occur in the second layer or within the first layer. For 

case u=0.5, the lower-bound shakedown limits barely change with increasing 

E1/EZ after the peak point (see Figure 5.17(b)). The values are smaller than the 

analytical shakedown limits (see Figure 5.16(b)) because surface failure occurs. 
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Figure 5.18 shows the contours of UVARM on the most critical plane y=0 in 

the 3D pavement models when h, /D = 1,0, = 0° and E1/E2 = 10. Compared to 

Figure 5.8 where a homogenous half-space is used, UVARM contour lines 

encounter a sudden change at the interface between two layers. Moreover, most 

positive values of UVARM are attracted to the first layer (hi/D <_ 1). This 

means more loads are carried by the first layer, and therefore the failure point 

tends to initiate in this layer. 
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5.5.2 Effect of strength ratio and first layer friction angle 

Figure 5.19 shows the 2D and 3D shakedown limits against strength ratios for 

various values of first layer friction angle. Clearly, the 3D shakedown limits 

are about two times higher than the 2D shakedown limits. The 3D shakedown 

limit also grows faster than the 2D shakedown limit with increasing strength 

ratio when the critical point lies in the first layer. 

In addition, while the lower-bound shakedown solution and the analytical 

shakedown solution are different in the 2D pavement models (see Figure 5.13), 

they are identical in the 3D pavement models. 
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Figure 5.19.2D and 3D shakedown limits versus strength ratios for various values of 

first layer friction angle when hl/D = 1, p=0 and EI/EZ = 10 

5.5.3 Effect of first layer thickness 

Figure 5.20 shows the influence of the normalised first layer thickness hl/D on 

the analytical and lower-bound shakedown limits. Clearly, larger h, /D gives 

rise to higher shakedown limit. Two shakedown solutions only have a slight 

difference when the first layer thickness is small (ht/D <_ 1) and the stiffness 

ratio is high, because their critical points lie at the base of the first layer. For 

case hl/D = 3, the shakedown limit barely changes with increasing stiffness 

ratio and are very close to those obtain for an infinite homogenous half-space. 

This implies that effective depth of the 3D Hertz load is around 3 in this 

particular case, definitely smaller than that of the 2D Hertz load (see Figure 

5.14). 
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5.5.4 Critical residual stress fields 

Typical critical residual stress fields in the 3D two-layered pavements are 

shown in Figure 5.21. The parameters used in Figure 5.15 for 2D pavements 

are adopted in the present analysis for the purpose of comparison. 

In the second layer, the present critical residual stress fields are similar to those 

in Figure 5.15. They converge with decreasing z/a, leading to failure at the top 

of the second layer, as shown in Figure 5.21(b). In the first layer, the present 

critical residual stress fields are quite different from those in Figure 5.15 when 

p=0. They tend to converge in the middle of the first layer rather than at the 

top or bottom (see Figure 5.21(a) and Figure 5.21 (b)). Figure 5.21(c) indicates 

the critical point is located at the surface due to high frictional coefficient. 
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5.6 Comparison with other shakedown solutions 

Shiau and Yu (2000) conducted lower-bound shakedown analysis of 2D 

layered pavements by using a numerical approach. The residual stress field is 

modelled by means of stress-based finite elements, satisfying the equilibrium 

conditions and the boundary conditions. Shiau and Yu (2000) show a plot of 

shakedown limits against stiffness ratio for a range of first layer thicknesses 

(see Figure 5.22(a)). The trapezoidal load distribution was utilised and the 

frictional coefficient was set to be 0.4. 

For the purpose of comparison, the same material properties (¢ i= 300, vi = 0.3, 

= 00, v2 = 0.4, cl/c2 = 5) and frictional coefficient are adopted for the present 

shakedown analysis. As shown in Figure 5.22, the present shakedown solutions 

are all maximised when hl/D = 5, in agreement with that in Shiau and Yu 

(2000). The shakedown limits in Shiau and Yu (2000) are generally lower than 

the present analytical shakedown limits but higher than the present rigorous 

lower-bound limits. The differences between Figure 5.22(a) and Figure 5.22(c) 

are mainly because the present shakedown solutions utilise the Hertz load 

distribution rather than the trapezoidal load distribution. Zhao et al. (2008) 

examined the effects of load distribution on the shakedown limits for a 

homogenous soil half-space and their figure shows that when q$ = 30° and u= 

0.4, the shakedown limit for the Hertz load distribution is about 20% less than 

that for the trapezoidal load distribution, in agreement with the present study 

when hilD = 5. 
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Boulbibane et al. (2005) suggested a rutting development method and obtained 

upper-bound shakedown limits for 3D layered pavements when subjected to a 

single uniform loaded circular patch. They plotted the shakedown limits 

2SdP / c2 (P is uniform contact pressure) against the first layer thickness hl/a 

for various values of c2/cI (see Figure 5.23(a)). 

A direct comparison between the upper-bound solution and the present 3D 

analytical shakedown solution is shown Figure 5.23. The present shakedown 

analysis were performed by using the same parameters (Oj = 20°, v1 = 0.35,02 

= 00, v2 = 0.4, Et/E2 = 3) and the uniform load distribution. As it can be seen, 

the upper bound solution provides higher values than the analytical shakedown 

solution. At a given value of c2/cl, the shakedown limits in both solutions 

increase with increasing hl/a until a critical value is reached, corresponding to 

an effective first layer thickness. This effective first layer thickness is 2 when 

c2/cl ? 0.5 in the upper-bound solution and when c2/cl >_ 0.3 in the analytical 

shakedown solution. In addition, in the upper-bound solution, the shakedown 

limit always increases with decreasing c2/cl even if failure occurs in the second 

layer. However, in the analytical shakedown solution, once the critical point is 

located at the second layer, the strength ratio does not affect the shakedown 

limit. 
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5.7 Comparison with pavement experiments 

5.7.1 Introduction of experiments 

Juspi (2007) conducted experimental studies of pavement behaviour under 

repeated traffic loads in view of shakedown concept. Two types of testing 

apparatus were used for the wheel tracking experiments on layered pavements: 

the Slab Test Facility (STF) and the Pavement Test Facility (PTF), as shown in 

Figure 5.24. 
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In the STF, specimens tested were Im long x 0.6m wide x 0.18 m deep. In the 

PTF, four test sections (2.5m long x 1.25m wide each) were constructed in the 

test pit at the same time. A range of soil types were chosen for the experiments, 

including: silt, silty clay (Keuper Marl), sands (Portaway and Langford Fill) 

and crushed rocks (Carboniferous Limestone and Granite). Soil properties were 

obtained through standard monotonic load triaxial tests. The contact area 

between the pavement and the tyre was obtained by measuring the footprint of 

the static inked wheel on a graph paper placed over soil specimen. The 

tangential force required to rotate the wheel was also measured, and the ratio 

between the tangential force and the vertical force was 0.12 when operating on 

the Granite and 0.15 on the Limestone. 

Juspi (2007) plotted vertical downward permanent deformations of specimens 

against the number of wheel passes for various contact pressures, as shown in 

Figure 2.15. The pavement behaviours due to different loading levels were then 

classified as shakedown status or non-shakedown status. 

5.7.2 Numerical prediction of shakedown loads 

For the problem studied here that the wheel ran repeatedly along a fixed path, 

the pavement was subjected to a 3D moving surface loads. 3D FE models were 

then established for each layered pavement. Table 5.1 shows material 

properties and layer thicknesses used in the FE models in which Poisson's 

ratios were set to be 0.4 for the silt and the Keuper Marl and 0.3 for the other 

materials. It was also assumed that the contact loads were limited to a circle of 

radius, a, calculated from A= ira2 (A is the contact area measured in 
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experiments). Both normal and shear loads are assumed in Hertz load 

distribution. The surface frictional coefficients u were assumed to be 0.12 for 

Granite surface and 0.15 for Limestone surface. 

Table 5.1. Summary of soil characteristics 

Test Layer Material type 
hcvE 

reference (mm) (kPa) (°) (MPa) 

Slab Test Facility (STF) 

1 Granite 120 13 49 0.3 22 
Gr-PS 

2 Portaway Sand 60 8.5 36 0.3 26 

I Granite 120 13 49 0.3 22 
Gr-Silt 

2 Silt 60 14 38 0.4 22 

1 Carboniferous 
120 12 51 0 3 10 

CLI-KM Limestone 1 . 

2 Keuper Marl 60 44 0 0.4 2 

Pavement Test Facility (PTF) 

1 Carboniferous 450 16 55 0 3 46 
CL2-KM Limestone 2 . 

2 Keuper Karl 1050 44 0 0.4 2 

Carboniferous 1 Limestone 2 450 16 55 0.3 46 

CL2- Langford Fill LFS-KM 2 Sand 200 9.5 44 0.3 17 

3 Keuper Marl 850 44 0 0.4 2 

Note: h= layer thickness, c= cohesion, 0= friction angle, v= Poisson's ratio, E_ 
Young's modulus. 

5.7.3 Comparisons and discussion 

A summary of the theoretical shakedown load limits A po is presented in Table 

5.2, together with experimental observations of pavement behaviours for 

different contact pressures. It can be seen that the theoretical shakedown load 
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limits generally agree with experimental observations for two-layered 

pavements. For three-layered pavements, the theoretical prediction is well 

below the measured shakedown load. This difference could be caused by 

inaccurate measurements. Typically, the measurement on the ratio of shear to 

normal load might overestimate the surface frictional coefficient. Sensitive 

analyses were then conducted for the three-layered pavement by varying the 

frictional coefficient µ. 

Table 5.2. Comparison of the experimental observations and the theoretical 

shakedown load limits 

Test Test reference Maximum Shakedown? Theoretical 
facility contact pressure shakedown load 

PO' (kPa) limit A dvo (kPa) 

STF Gr-PS 229 Yes 288 

339 No 

404 No 

Gr-Silt 218 Yes 290 

349 Yes 

437 No 

585 No 
CL1-KM 212 

293 

336 

Yes 239 

No 

No 

PTF CL2-KM 321 Yes 323 

381 No 

500 No 
CL2-LFS-KM 465 Yes 320 

615 No 

650 No 

680 No 
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Table 5.3 summarises the predicted shakedown limits for a range of frictional 

coefficients from 0.15 to 0. It shows that the theoretical prediction increases 

markedly with decreasing frictional coefficient, and it agrees with the 

experimental observation when p=0. 

Table 5.3. Sensitive study on three-layered pavements 

Contact pressure Shakedown? Theoretical shakedown load limit (kPa) 
(kPa) 

u=0.15 µ=0.1 , u=0.05 µ=0 

465 Yes 
320 362 415 480 

615 No 

5.8 Design application 

Shakedown limits calculated from the proposed numerical approaches can 

provide a means of practical pavement design. Given traffic load, contact 

pressure and contact area, a simple thickness design procedure is described 

below: 

9 Determine material properties for each layer: E, v, c, 0. (Asphalt 

properties are dependent on temperature and speed) 

9 Calculate shakedown load limits for different layer thickness 

combinations by using shakedown solution. 

9 Plot thickness design chart. 

9 Choose best thickness combination from the chart using the contact 

pressure and the shakedown load limit. 
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Pavement designed in this way will shakedown under design load so that the 

permanent deformation will be very small even under a very large number of 

load applications. 

Figure 5.25 shows an example thickness design chart for a three-layered 

pavement, which consists of an asphalt layer, a granular layer and infinite 

subgrade. Typical values of asphalt parameters were taken from Boulbibane et 

al. (2000). The shakedown load limits in terms of pressure with unit kPa are 

presented in the form of a contour map. If the design pressure is 750 kPa, any 

thickness combination on this contour line can be chosen for design, such as 

h1/a=1.45 and h2/a= 1.5orh1/a= 1.35andh2/a=1.94. 

5.9 Conclusions 

In this chapter, approaches for shakedown analysis of multi-layered pavements 

have been developed. Results have shown that the shakedown limit varies with 

the change of frictional coefficient, material strength ratio, stiffness ratio, 

friction angle and normalised layer thicknesses. The rigorous lower-bound 

solution gives lower shakedown limits than those in the analytical shakedown 

solution for cases when the critical point lies on the surface or at the bottom of 

the first pavement layer. However, both solutions are identical for cases when 

the critical point lies within the first layer and at the top of the second layer. 

The 3D shakedown limits are generally higher than the 2D shakedown limits. 

For the two-layered pavements with small surface traction, the critical point in 

the 3D model tends to initiate within the first pavement layer. However, the 
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critical point in the 2D model tends to lie at the bottom of the first pavement 

layer. 

Comparisons with recent numerical lower-bound solution (Shiau and Yu, 2000) 

and upper-bound solution (Boulbibane et al., 2005) have shown pleasing 

consistency. Comparisons with experimental data of Juspi (2007) have 

suggested the theoretical shakedown solutions provides a good estimation to 

the measured shakedown limits of layered pavements. 

Design of pavements against excessive rutting using the shakedown theory can 

be carried out by choosing pavement materials and layer thicknesses to ensure 

that under a given design traffic load the pavement design will shakedown. An 

example chart has been used to illustrate the design process. 
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CHAPTER 6 

CONCLUDING REMARKS 

6.1 Conclusions 

Shakedown analysis provides a load limit under which failure due to excessive 

plastic deformation can be prevented and therefore is a powerful tool for 

stability analysis of road pavement due to moving traffic loads. 

FE analyses of soil half-space under moving surface loads have shown the 

shakedown and surface ratchetting phenomena owing to different loading 

levels. The non-associated plastic flow rule gives lower resistance to further 

yield than the associated plastic flow rule. Based on the fully-developed 

residual stress field, shakedown status of the soil half-space has been checked 

by means of Melan's lower-bound shakedown theorem.. The results indicate 

that the FE calculated shakedown limits are generally consistent with the 

theoretical shakedown limits for 2D pavement models. 

Two shakedown solutions have been presented for pavements subjected to 2D 

and 3D surface loads. The analytical shakedown solution is based on a residual 
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stress field that may not satisfy the equilibrium condition, hence gives the 

necessary condition for shakedown. The lower-bound shakedown solution is 

based on a self-equilibrated critical residual stress field and provides rigorous 

lower-bound shakedown limits. The rigorous lower-bound solution is lower 

than the analytical shakedown solution for cases when the critical point lies on 

the surface or at the base of the first pavement layer. 

Solutions for single-layered pavements which adopt analytical elastic stress 

fields can be used to benchmark numerical shakedown results. It has been 

found that the normalised shakedown limit increases with increasing soil 

friction angle 0 but decreases with the rise of frictional coefficient p. Moreover, 

when the critical point initiates on the pavement surface, the lower-bound 

shakedown limit is mainly controlled by the magnitude of shear force. In 

addition, Poisson's ratio u also has slightly effect on the lower-bound 

shakedown limits. 

In consideration of pavements with elliptical contact area, the shakedown limit 

can always be raised by decreasing the aspect ratio b/a (b < a) for subsurface 

failure cases. For surface failure cases, the lower-bound shakedown limit also 

rises with decreasing b/a when the friction angle is not zero. 

In the application of layered pavements, shakedown solutions have been 

obtained by using elastic stresses calculated from FE analyses. The shakedown 

limits of layered pavements are not only dependent on the frictional coefficient 

and the material friction angle, but also on the strength ratio, stiffness ratio and 

normalised layer thicknesses h/D. Comparisons with experimental data have 
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shown that the theoretical shakedown solution provides a good estimation for 

the experimental shakedown limits. 

A pavement design approach against excessive rutting has been proposed using 

the shakedown theory. For the three-layered pavements with given material 

properties, pavement thickness design can be carried out by choosing thickness 

combinations to ensure that under a given design traffic load the designed 

pavement will shakedown. 

Direct comparisons between 2D and 3D results suggest that the shakedown 

limit for 2D pavement model is generally lower than that for 3D pavement 

model. Their difference is of the most significant in the case of normal loading 

only and decreases with increasing frictional coefficient. For the two-layered 

pavements with small frictional coefficient, the critical point tends to lie within 

the first pavement layer in the 3D model rather than at the base of this layer in 

the 2D model. 

The critical residual stress fields (i. e. the minimum larger root and the 

maximum smaller root) at the lower-bound shakedown limit constitute a region 

for the real residual stress field. Comparisons with FE results have shown that 

the compressive minimum larger root is close to the FE calculated residual 

stress field, particularly in the vicinity of the critical depth. In the layered 

pavement, the critical residual stress fields are discontinuous at the interface 

between two layers. 
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6.2 Suggestions for future research 

Future work could be undertaken in the following aspects: 

" The present shakedown analysis can be applied to railway foundations 

which have similar structures to the road pavements and have rolling 

stock running on its surface. 

" The present shakedown solutions are based on the assumption of 

elastic-perfectly plastic pavement materials. In reality, these materials 

exhibit work hardening or softening behaviour. Further research will 

consider the effect of work hardening. 

" FE analysis of soil half-space under moving surface loads can be 

extended to layered pavements and to work hardening material. 

Moreover, to reveal the real behaviour of pavement under moving 

wheel, a 3D FE model is required. Since the three-dimensional model 

will consume a lot of computation effort, modification should be made 

to the model dimensions and the boundary conditions. 

" Unlike the numerical elastic-plastic analysis, solutions using 

shakedown theorems do not provide information about the deformation 

of pavements which is important in view of serviceability requirements. 

Further work along the line of Shiau and Yu (2000) is then required in 

order to predict the permanent deformation at the time when the 

shakedown state is reached. 
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