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Abstract

In this work we mainly focus on two main aspects of interest within the field of

Relativistic Quantum Information. We first expand on the current knowledge of the

effects of relativity on entanglement between global field modes. Within this aspect, we

focus on two topics: we address and revise the single mode approximation commonly

used in the literature. We study the nonlocal correlations of charged bosonic field modes

and the degradation of entanglement initially present in maximally entangled states as

a function of acceleration, when one observer is accelerated. In the second part of this

work we introduce, develop and exploit a method for confining quantum fields within one

(or two) cavities and analyzing the effects of motion of one cavity on the entanglement

initially present between cavity field modes. One cavity is always allowed to undergo

arbitrary trajectories composed of segments of inertial motion and uniform acceleration.

We investigate how entanglement is degraded, conserved and created as a function of

the parameters describing the motion and we provide the analytical tools to understand

how these effects occur. We conclude this work by analyzing the effects of the change of

spatial topology on the nonlocal correlations present in the Hawking-Unruh radiation in

the topological geon analogue of black hole spacetimes.
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Foreword

“ The Way that can be told of is not an unchanging way;

The names that can be named are not unchanging names.

It was from the Nameless that Heaven and Earth sprang;

The named is but the mother that rears the ten thousand creatures,

each after its kind.”

Tao Te Ching

The most beautiful thing about the Universe is the identity between Atman and

Brahaman. Our perception of the world is misleading, we see ourselves as separated

entities from the rest which interact with other entities. We are not able to connect

ourselves to our inner selves, the true Us which guides from within. Everyone is a

Buddha but we have forgot it and don’t believe it. Once we are able to crush the

ignorance we finally realize that there is no such thing as Us and the rest. We are one

with the Universe.

Physics does not escape this Unity, neither do the human ways of thinking. It has

always excited and amused scientists that new and fresh insight about any phenomena

can be achieved by simply changing point of view. This, of course, does not pertain

only to the realm of Physics but also to Heaven and the Ten Thousand Things. When

a scientist studies a discipline, there are standard references he or she will learn from.

Experts in this or that field will have great understanding and piercing insight into those

phenomena that can be explained, at least to some degree of accuracy, by the intuition

and mathematical skills they have developed, trained and perfected. Still, somebody

from a completely different area might address, maybe moved by simple curiosity, some

difficult problem yet unsolved and, almost by magic, provide a simple and elegant solu-

tion.

The Universe does work by mysterious ways.
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Chapter 1: Introduction and overview

The young field of Relativistic Quantum Information represents, in its own dimension,

the expression of the unity between Universe and its parts. For a long time, scientists

have investigated separately the main areas of Quantum Field Theory and Quantum

Information. Little was known about the overlap between the two and the few results

that might have been found within this overlap were not investigated further. Recently,

scientists have begun to understand that the well-developed results from Quantum Infor-

mation must take into account effects which are predicted by relativity. The underlying

motivation is strikingly simple: if the Universe is one, why should phenomena described

by the language of Quantum Information not be affected by the language of Quantum

Field Theory? In other words, if the aim is to understand Nature, should some effects

be ignored by hand?

The field of Relativistic Quantum Information aims to understand how relativity af-

fects quantum information tasks. Any quantum information protocol requires the use of

a resource, which typically consists of non-classical correlations, also known as entangle-

ment (i.e. see [1]). Although Quantum Information predictions have been successfully

verified experimentally (for example see [2]) and are now also implemented commer-

cially, only recently there has been growing attention towards the analysis of the effects

of relativity on entanglement (for example see [3, 4]). In particular, questions such as is

entanglement an observer independent quantity have been thoroughly analyzed within

the community.

Pioneering work in RQI investigated such questions and it was found that indeed

entanglement is not an observer independent quantity. Although inertial observers will

agree regarding the amount of entanglement present between, say, modes of a quantum

field, given an initially maximally entangled state of global fields, which is analyzed by

two inertial observers, the amount of entanglement present in the same state when one

of the two observers is uniformly accelerated changes. It was shown that the greater the

acceleration, the more entanglement was lost; for bosonic fields, in the limit of infinite

acceleration none survived (for a selection see [5, 6]). Similar analysis was performed for

fermionic fields and it was found that entanglement was still degraded with acceleration

but did not vanish in the limit of infinite acceleration [7, 60]. The main reason behind

this exciting discovery lies in the Unruh effect [8], which is a prediction of QFT solely.

Intuitively, different observers will not (in general) agree on the particle content of a state.

For example, the vacuum state for an inertial observer is a “highly” populated state for

an accelerated observer [9, 10]. An alternative and equivalent way of understanding

this phenomenon is that there is in general no unique and natural definition of particles

in QFT. These preliminary works addressed theoretical questions, which involved the

5



Chapter 1: Introduction and overview

analysis of global fields, that are relativistic quantum fields with non compact support.

It is not clear how to experimentally prepare and access such fields and therefore the

question remained of how to analyze the effects of relativity on entanglement in more

physical scenarios.

Quantum protocols involve manipulation and transmission of information and it is

of vital interest to provide efficient and effective ways of storing it. A simple way to

store information is to employ localized physical systems (for example, in the classical

case, the memory of a computer): it is fundamental to be able to store information in

order to retrieve and use it when necessary at a later stage. It is therefore natural to

ask if relativity will affect stored information and perhaps if it can be used to improve

the ability to store it in the first place. The most natural system, which “localizes” fields

is a cavity, modeled by a quantum field with compact support and boundary conditions

at the cavity walls. Preliminary investigation in this direction showed that given two

cavities, one at rest and one in uniform acceleration, the ability to entangle the cavity

modes when the cavities come close, decreases with increasing acceleration [11]. Another

attempt to address effects of relativity on entanglement in localized systems showed that,

once entanglement between modes within two different cavities has been created, it is

“shielded” by the cavity walls and no degradation effects are observed [11]. These works

did not address directly how relativistic motion affects the entanglement.

In this work we focus on two main topics and we conclude with an extensions of the

first topic in the third part:

PART I - The first part addresses questions, which involve global fields, as previously done in

literature. Although it is accepted that physical and experimental settings require

localized fields, understanding how entanglement between global modes is affected

by the state of motion of the observer or the topology of the spacetime can provide

insight on the mechanisms that are involved in the process.

Chapter 3 - We start by addressing the validity of the Single Mode Approximation exten-

sively used in literature (for a selection see [5–7, 60] and references therein),

which allowed for simplifications of transformations of the fields as described

by different observers. This approximation was used incorrectly and we revise

and extend it. We expand on the concept of Unruh particle and show that

new degrees of freedom arise. Finally, we construct Minkowski wave packets

and Unruh wave packets and show in which sense one can justify and recover

the Single Mode Approximation.

6



Chapter 1: Introduction and overview

Chapter 4 - As a second step we analyze entanglement degradation between modes of

charged bosonic fields. Untill present, only uncharged bosonic fields and

Grassman fermionic fields were employed in the analysis and it was found

that striking differences between the two types of fields occurred. Part of

these might be attributed to the presence of both particles and antiparticles

in fermionic fields and the question remained to understand the behavior of

entanglement when charged bosonic fields were considered.

PART II [Chapters 5,6,7,8] - The second topic is centered around the idea that in order to

access, manipulate, store and process information resources one must employ local-

ized physical systems. In a realistic situation, relativity will affect these systems.

Institutes and space agencies such as IQC and CSA (Canada) and NASA (U.S.A.)

have recently shown growing interest in understanding how relativity affects en-

tanglement.

In this part of the work we introduce relativistic quantum fields in localized sys-

tems (cavities) where the field has compact support and satisfies some boundary

conditions. We study how entanglement between field modes in one cavity or two

cavities is affected by motion of one of the cavities. We introduce a perturbative

regime, that allows one to analyze any (arbitrary) trajectory of rigid cavities, which

is obtained by composing segments of uniform motion with segments of uniform

acceleration in an arbitrary yet controlled way. Times of acceleration and inertial

coasting can be arbitrary and provide the natural variables of the problem, together

with the accelerations. We are interested in understanding how entanglement is

degraded or can be created in any travel scenario when one cavity concludes its voy-

age. Such understanding could be of great use in space based experiments, which

aim to investigate Quantum Key Distribution and multiparty satellite quantum

communication.

In addition, from a completely different perspective, the Casimir community has

been awaiting experimental verification of the so called “Dynamical Casimir effect”

(see [12] and references therein). Such effect occurs when a (perhaps small) cavity

with conducting walls has one of the boundaries free to move. Rapid and periodic

oscillations induce the electromagnetic field to spontaneously emit pairs of corre-

lated particles even if the initial state of the field is the vacuum. The oscillations

of the boundary have to occur with a mean speed which is a significant fraction

of the speed of light. Although this imposes severe limitations to the experiments,

such experiment was undertaken recently with superconducting circuits instead of

a mechanical resonator, therefore allowing for the speeds required [13]. The ap-

plication of the techniques developed in this part of the work might bring new

7



Chapter 1: Introduction and overview

insight into this field of research and possibly lead to the development of concrete

experimental proposals.

PART III [Chapter 9] - At last, we address how non-trivial spacetime topologies affect the

nonlocal correlations present in the Unruh effect. It is of great interest for research

in the field of Quantum Gravity to be able to describe the topology of the space-

time and explain if and how it is nontrivial. Although a full understanding might

be possible only once a viable theory of Quantum Gravity becomes available, in-

dications in any direction might be of great help in guiding research. In addition,

from the perspective of Relativistic Quantum Information, finding a signature of

the topology in the Hawking-Unruh particle correlations could provide a theoreti-

cal basis for proposing new ways of measuring the parameters of spacetime. Work

in this direction was already attempted in [14].

In Chapter 2 we introduce the technical tools that will be used throughout the work.

In particular, we introduce techniques from Quantum Field Theory and techniques from

Quantum Information. In Chapter 10 I briefly summarize part of my current and future

projects, which are related to work done in this thesis.

1.1 Author’s declaration

I declare that the results presented in this thesis are the result of my own work, to-

gether with my collaborators, which I have produced during my PhD studies. Chapters

3 to 8 present the results of work I have majorly contributed to and which have appeared

as eprints or have been published in journals. In Chapter 6 I have majorly contributed

by supervising the use of the techniques and analyzing results and equations. In Chapter

3 I have developed the bosonic part of the work. The fermionic analysis, which is not

included in the thesis, can be found in [15] and has been developed by collaborators.

In Chapter 7 I have again contributed by analyzing the bosonic field modes while col-

laborators have worked on the fermionic counterpart. The main idea behind Chapter 9

was suggested to me by my supervisor Dr. Jorma Louko and constitutes work done in

the first year of the PhD. Figures in Chapter 9 have been drawn by Jorma Louko (at

the School of Mathematical Sciences, University of Nottingham) and were used in [16].

Figures in Chapters 4, 5 and 3 were totally or partially redrawn by Antony Lee (at the

School of Mathematical Sciences, University of Nottingham).
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Chapter 2: Technical tools

2.1 Introduction to the technical tools

Relativistic Quantum Information is a field that requires the use of techniques from

two different areas: Quantum Field Theory and Quantum Information. It is a trademark

of this framework to merge concepts such as transformation of quantum states under

a change of coordinate with those that involve resources for quantum protocols and

measures of entanglement. Both theories are well established and have been corroborated

each to its own degree. While QI uses the formalism of standard Quantum Mechanics,

QFT introduces special relativity and (background) curved spacetimes in the game. One

of the main differences lies in the following observation: a state in standard Quantum

Mechanics can be described at any time by any observer regardless of his state of motion

and all observers will “see” the same state.

This is not the case in QFT. Two different observers need not agree on the particle

content of a state. For example, the vacuum as described by an inertial observer will be

a state populated by particles when described by, say, an accelerated observer [10, 17].

In order to address questions that take into account these effects, one needs to develop a

systematic way of using techniques from QI and from QFT. In this chapter we introduce

to some detail such techniques as required when addressing questions in RQI.

2.2 Quantum Field Theory

Quantum Field Theory and its most powerful application, the Standard Model, aim

to comprehensively explain all phenomena with the exception of gravity. The main

objects under study are the quantum field and its kinematics, together with the mutual

interactions with other fields (dynamics). Fields pertain to two categories depending

on their spin taking integer or half-integer values: the former are called bosons and the

latter fermions. The main improvement with respect to standard QM is that relativity

is explicitly introduced in the theory from the beginning [18]. Einstein equations are

not solved within this framework but a fixed background spacetime is assumed from the

start; the spacetime where the fields live is a solution to Einstein’s equations, for example

Minkowski spacetime is a solution of Einstein’s equations in the vacuum or Schwarzschild

spacetime is a solution of Einstein’s equations in the presence of a massive objects [19].

In this sense, the relativistic properties of the spacetime are built in the theory as fixed,

non-dynamical background elements.

10
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2.2.1 Quantum fields

Quantum fields are operator-valued functions defined on points of the spacetime.

The algebra where these functions take values depends on the nature of field. Fermionic

fields are represented by spinors, while spin 0 fields are represented by (operator valued)

complex distributions. QFT is extremely vast and we will not try to give an introduction

here. A standard reference is [18]. For the purposes of this work, we will need to deal

with uncharged or charged bosonic fields and only partly with fermions. We therefore

briefly present the necessary tools to describe uncharged scalar fields. When relevant,

we will give a brief account of fermionic and charged bosonic fields.

The standard textbook presentation of QFT starts by explaining how classic field

theory develops and then introduces quantization techniques for the classical fields. We

will not follow this approach but instead discuss the quantum version from the start.

Scientists that investigate complicated physical settings such as interacting fields of the

same nature or possibly even different nature use the path integral formulation that

allows for (often already difficult in this language) computable results to be obtained.

For our purposes, such formulation is not necessary.

2.2.2 Lagrangian formulation in Quantum Field Theory

A physical setting in QFT consists of (operator valued) fields Φ(xµ) defined over a

manifold M, where xµ ∈M, and that take values in an appropriate algebra. Starting

from the fields, one builds the Lagrangian density

L = L(Φ, ∂µΦ), (2.2.1)

which must obey some basic constraints, for example must be Hermitian and might

satisfy some particular gauge invariance. Given the action

I ∶=
ˆ
d4xL, (2.2.2)

one invokes the least action principle that leads to Euler-Lagrange type equations

∂

∂µ
∂L

∂(∂µΦ) −
∂L
∂Φ

= 0. (2.2.3)

Given (2.2.3), one can find the field equations or equations of motion that describe the

kinematics of the (free) fields. In general, the Lagrangian might contain a potential term

that accounts for interactions; however, in this work we will focus on non-interacting free

fields and therefore the field equations will describe the kinematics of the fields them-

selves. In chapter 3 we introduce the interaction of the field with a classical background

gauge field. Relevant techniques will be addressed therein.
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2.2.3 Tools and notation for spacetime structure in Quantum Field

Theory

We briefly introduce objects from differential geometry that are necessary in order to

understand relativity and QFT to the extent used in this work. Standard references are

[19, 20].

A spacetime is a d-dimensional manifoldM equipped with a symmetric tensor g with

components gµν(xα) called metric (we employ signature (−,+,+,+)). The determinant

of the metric is g = det(gµν), the metric is nonsingular (det(gµν) ≠ 0) and the line element

associated with the metric is

ds2 = gµνdxµdxν . (2.2.4)

A set of coordinates is a map

xα ∶ X ⊂M→ U ⊂ Rd, (2.2.5)

where X ,U are open sets. In general, a set of coordinates will not cover the entire

manifold. A collection of sets of coordinates that covers the manifold is called coordinate

chart .

Given two sets of coordinates xα ∈ X ⊂M, yα ∈ Y ⊂M where X ∩ Y ≠ ∅, a change of

coordinates or coordinate transformation is C∞ (smooth) invertible map

yβ = yβ(xα) (2.2.6)

defined on X ∩Y.

A path Γ ⊂M is a curve

Γ ∶ λ↦ Γ(λ) (2.2.7)

parametrized by λ ∈ R. When a set of coordinates {xµ} is introduced, a path takes the

form

Γ ∶ λ↦ xµ(λ). (2.2.8)

A vector v̄ is an element of the tangent space TP defined at each point P ∈M. A vector

field v̄ = ∂λ is a collection of vectors along a congruence of curves Γ parametrized by λ

and is defined by its action on functions f ∶M→ R as

v̄(f) ≡ ∂f(P (λ))
∂λ

. (2.2.9)

The metric g is a tensor that takes as input two vectors and gives as output a real

number. The invariant (under change of coordinates) length g(v̄, v̄) of a vector field

v̄ = vµēµ, where {ēµ} is a basis for the tangent space, is

g(v̄, v̄) = gµνvµvν = vνvν (2.2.10)
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and vectors are divided in three categories depending on the sign of g(v̄, v̄) (signs are

reversed for a different choice of the metric signature):

v̄ is timelike if g(v̄, v̄) < 0

v̄ is null if g(v̄, v̄) = 0

v̄ is spacelike if g(v̄, v̄) > 0. (2.2.11)

A path is timelike if the tangent vectors to it are always timelike. Analogously for space

like and null paths.

If there exists a vector field Ξ̄ = ∂λ such that

LΞ̄g = 0, (2.2.12)

where LΞ̄ is the Lie derivative with respect to Ξ̄, then Ξ̄ is called a Killing vector . An

example is the vector Ξ̄ = ∂t in Minkowski spacetime. In the specific case of Minkowski

spacetime, given a spacetime foliation in hyper surfaces labeled by t = const, the metric

gµν naturally reduces to the spatial metric gij , which does not change by changing the

hypersurface.

A spacetime is globally hyperbolic if there exists a Cauchy surface Σ, which is a space-

like hyper surface that enjoys the following property: any inextendible causal path in-

tersects the hyper surface exactly once. Solutions to hyperbolic differential equations,

such as the field equations, uniquely determine the field at any point onM once initial

conditions are specified on Σ. In Minkowski spacetime, any hyper surface t =const. is

an equivalent choice of Cauchy surface.

The proper time associated to a point-like inertial observer that follows a timelike

path xµ(λ) parametrized by λ is

τ = 1

c

ˆ
ds = 1

c

ˆ
ds

dλ
dλ, (2.2.13)

which can be computed once a trajectory for the observer is specified. τ is normally

chosen to increase towards the future.

2.2.4 The uncharged scalar field

The uncharged massive scalar field is a map

Φ ∶ xµ → Φ(xν), (2.2.14)

where Φ(xν) = Φ†(xν) is an operator valued distribution. The standard free Lagrangian

takes the form

L = ∂νΦ∂νΦ − 1

2
µ2Φ2. (2.2.15)
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Invoking the least action principle one uses (2.2.3) and finds the field equations that

determine the kinematics of Φ

(◻ − µ2)Φ = 0, (2.2.16)

where

◻ = (√−g)−1∂ν
√−g∂ν (2.2.17)

and µ > 0 is the mass of the field. Equation (2.2.16) is commonly known as the Klein

Gordon equation (KG). The conjugate momentum to Φ is defined as

Π ∶= ∂Φ

∂x0
(2.2.18)

and one imposes the algebra relations

[Φ(x0,x),Π(x0,y)] = iδ3(x − y). (2.2.19)

2.2.5 Klein Gordon equation in Minkowski coordinates

In this section we solve (2.2.16) using Minkowski coordinates.

Given a flat metric on a 3 + 1 dimensional manifoldM, the Minkowski coordinates

(t, x, y, z) ≡ (x0, xi) (2.2.20)

have the line element

ds2 = −dt2 + dx2 + dy2 + dz2 (c = 1), (2.2.21)

where the line element takes the form ds2 = −dt2+dx2 in 1+1 dimensions. The vector field

∂t is a global timelike Killing vector. The manifoldM is a globally hyperbolic spacetime,

where it is sufficient to specify initial conditions on the t = 0 Cauchy surface. In addition,

such spacetime enjoys the property of being invariant under Lorentz transformations,

which are composed by (spatial) rotations, boosts and translations. We will call such

spacetime Minkowski spacetime.

Let us focus on 1+ 1 dimensions. To add 2 extra dimensions will be straightforward.

One can expand the field Φ in Fourier basis as

Φ =
ˆ
d2ka(kµ)eikµx

µ

, (2.2.22)

where a(kµ) are (operator valued) Fourier coefficients and substitute this in (2.2.16). The

derivation of the mode solutions is standard and can be found in every QFT textbook
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[18]. We just give the result. The positive frequency modes with respect to ∂t of a

massless scalar field with µ = 0 are

uω,M(t, x) = 1√
4πω

exp[−iω(t − εx)], (2.2.23)

where ω > 0 is the Minkowski frequency and ε = ± stands for right or left movers (we

note that these decouple only in the 1 + 1 massless case).

Therefore, Φ takes the form

Φ = ∑
ε=±1

ˆ
R+
dk [a(kµ)eikµx

µ + a†(kµ)e−ikµx
µ] (2.2.24)

If µ ≠ 0 one must replace

ω → ω =
√
k2 + µ2, (2.2.25)

where k ∈ R is the momentum and labels the solutions, and also replace

exp[−iω(t − εx)]→ exp[−iωt + kx)]. (2.2.26)

In 3 + 1 dimensions one needs to replace k by k and therefore

k2 → k ⋅ k = ∣k∣2. (2.2.27)

Orthonormalisation of mode solutions in QFT is achieved by using the inner product .

It is a sesquilinear functional of two fields and does not need to be positive. Such a

functional is defined on a given hypersurface. We will show later that it also captures

the relation between different particle contents as described by different observers. As a

technical point, we stress that modes with sharp frequencies out of a continuum are not,

strictly speaking, orthonormal in the sense of Krönecker delta, but rather in the sense of

Dirac delta.

We define the inner product (⋅, ⋅) as

(φ1, φ2) = i
ˆ

Σ
φ⋆1
←→
∂aφ2 n

adΣ, , (2.2.28)

where na is a normal vector to Σ pointing to the future, Σ is an arbitrary space like

hyper surface and the operator
←→
∂a is defined through

f
←→
∂ag ∶= f∂ag − (∂af)g. (2.2.29)

If φ1, φ2 satisfy the field equation then the inner product (2.2.28) is conserved.

Specializing to Minkowski coordinates and choosing Σ ∶ t = 0, one finds that the

solutions to the 1 + 1 massless version of(2.2.16) are delta-normalised by

(uω,M , uω′,M) = δε,ε′δ(ω − ω′),

(u∗ω,M , u∗ω′,M) = −δε,ε′δ(ω − ω′),

(u∗ω,M , uω′,M) = 0. (2.2.30)
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In the 3 + 1 massive or massless case one has

(uk,M , uk′,M) = δ(k − k′),

(u∗k,M , u∗k′,M) = −δ(k − k′),

(u∗k,M , uk′,M) = 0 (2.2.31)

and to obtain the 1+1 massive relations it is sufficient to replace the frequency ω > 0 with

the momenta k ∈ R and remove the δε,ε′ pre factors since right and left movers no longer

decouple. Given such normalization, bosonic modes with a positive delta-normalization

are called positive energy modes while those with negative delta-normalisation are called

negative energy modes. We note that given a complete orthonormal (in the sense of

delta normalization) set of modes which are solutions to the KG equation (2.2.16), it

is always possible to choose a subset which has positive norm and a subset which has

negative norm. In this sense, we define as particle excitations those that are carried by

positive frequency modes. In case of charged fields, we shall see that antiparticles are

carried by negative frequency modes.

2.2.6 Klein Gordon equation in Rindler coordinates

Given 3 + 1 Minkowski spacetime with coordinates (t, x, y, z), it is possible to divide

it into four regions, which, if covered by suitable coordinates, are globally hyperbolic

spacetimes on their own right. To do this one needs to explicitly break Poincaré invari-

ance by choosing an origin for the Minkowski coordinates and dividing the spacetime in

the following parts:
⎧⎪⎪⎨⎪⎪⎩

RRW: ∣t∣ < x, 0 < x
LRW: ∣t∣ < ∣x∣, x < 0

(2.2.32)

⎧⎪⎪⎨⎪⎪⎩

FRW: ∣x∣ < t, 0 < t
PRW: ∣x∣ < ∣t∣, t < 0.

(2.2.33)

For each region, one can introduce appropriate Rindler coordinates [10], which are de-

signed to cover only the relevant part. One can see a schematic representation in Fig.

2.1 For the sake of simplicity we describe the coordinates on the RRW first.

One starts from the transformation from Minkowski coordinates (t, x, y, z) to Rindler

coordinates (η,χ, y′, z′)

t =χ sinhη

x =χ coshη, (2.2.34)

while y′ = y, z′ = z). The coordinate η ∈ R is the dimensionless Rindler time and χ > 0 is

the dimension length spatial coordinate in the RRW.
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Figure 2.1: Minkowski spacetime and the four Rindler wedges: the 45○ lines are

“causal horizons” for observers moving on Rindler trajectories χ = const..

Hypersurfaces of constant Rindler time η are straight lines trough the

origin.

The dimensionless time coordinate η is defined as the parameter that determines the

global (in the RRW) timelike Killing vector field ∂η defined in terms of Minkowski coor-

dinates as

∂η ∶= t∂x + x∂t (2.2.35)

and which represents a boost in the (t, x) plane and η increases towards the future. We

refer to (2.2.36) when recalling the Rindler transformations and we ignore the trivial

action on the y, z components. In the figure 2.1 hyper surfaces η = const are straight

lines trough the origin and world lines χ = const are hyperbolae.

In a similar fashion, we introduce Rindler coordinates in the LRW.

One starts from the transformation

t =χ sinhη

x = − χ coshη, (2.2.36)

where the dimensionless Rindler time η ∈ R increases towards the past. The coordinate

χ > 0 has dimension length.
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The 3 + 1 line element in such coordinates reads

ds2 = −χ2dη2 + dχ2 + dy2 + dz2, (2.2.37)

while in 1 + 1 it reads ds2 = −χ2dη2 + dχ2. From this, one can verify that a point like

observer that follows a trajectory χ = const. perceives a proper acceleration

A = 1

χ
(2.2.38)

and measures proper time τ along his trajectory as

τ ∶= cη
A
. (2.2.39)

Such an observer travels along an hyperbola as seen in Fig. 2.1 and will measure physical

frequencies with respect to the proper time τ .

Given a bosonic field in 1 + 1 dimensions with µ = 0, one can compute the solutions

to (2.2.16) in Rindler coordinates; one starts from

◻ = (√−g)−1∂µ
√−g∂µ, (2.2.40)

where the determinant of the metric takes the expression g = det(gµν) and the matrix

representing the metric takes the form

gµν = diag(−χ2,1). (2.2.41)

One then makes the ansatz

Φ(η,χ) =
ˆ
dΩe−iΩηΨ(χ), (2.2.42)

which implies that the Rindler positive and negative frequency modes with respect to

the timelike killing vector field ∂η are respectively

uΩ,I(t, x) = 1√
4πΩ

(x − εt
lΩ

)
∓iεΩ

. (2.2.43)

We can express (2.2.43) as functions of Minkowski or Rindler coordinates by using(2.2.36).

For completeness, we provide also the positive frequency solutions in the LRW

uΩ,II(t, x) = 1√
4πΩ

(εt − x
lΩ

)
−iεΩ

= 1√
4πΩ

e−iΩηe
iΩ ln( χ

lΩ
)
, (2.2.44)

where I and II label the RRW and LRW wedges, respectively. The quantity Ω > 0 is

the (dimensionless) Rindler frequency and again ε = 1 corresponds to right-movers and

ε = −1 to left-movers. One needs to introduce lΩ, which is a constant of dimension length,

18



Chapter 2: Technical tools

freely choosable and may depend on ε and Ω. Such choice needs to be made since the

argument of

ln( χ
lΩ

) (2.2.45)

must be dimensionless. A convenient choice will be made when appropriate within the

chapters where it appears. In these formulas one can substitute for η,χ by using (2.2.36).

To compute the normalization, it is convenient to choose t = 0 = η as hyper surface.

By (2.2.28) one finds that uΩ,I , uΩ,II are (delta) normalized in the same fashion as their

Minkowski counterparts

(uΩ,I , uΩ′,I) = δε,ε′δ(Ω −Ω′),

(u∗Ω,I , u∗Ω′,I) = −δε,ε′δ(Ω −Ω′),

(u∗Ω,I , uΩ′,I) = 0. (2.2.46)

Analogous relations occur when I is replaces by II. Mixed products vanish. Negative

frequency solutions in the RRW and LRW are obtained by taking the complex conjugates

of (2.2.43) and (2.2.44).

The computations become more involved when m ≠ 0 (and/or one considers extra

dimensions): in this case right and left movers do not decouple and one obtains a different

set of solutions to (2.2.16)

φRΩ(τ, χ) = 1√
Ωπ

( lµ
2
)
iΩ 1

Γ(iΩ)KiΩ(mχ)e−iΩη (2.2.47)

where KiΩ(mχ) is a modified Bessel function of the second kind [21], l is a dimensional

arbitrary constant.

2.2.7 Bogoliubov transformations

The choice of a complete basis for the solutions of (2.2.16) (or the fermionic counter-

part) is not unique. A transformation between one basis and another is known as Bogoli-

ubov transformations (BVT). Furthermore, suppose there are two regions of spacetime

where there are observers that naturally describe fields with two different set of coor-

dinates and suppose the definitions of particles are not equivalent in such coordinates.

Also in this case, one can introduce BVT that relate modes in one region covered by

one coordinate chart to modes in the other. Such transformations carry deep physical

meaning: given the BVT between two sets of solutions to some field equations, there

is a straightforward relation between the coefficients of these transformations and the

particle content in a quantum state as seen by different observers [9, 10]. In general, a
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positive frequency excitation as described by one observer will be a superposition of both

positive and negative frequencies as described by a different observer. This mathematical

observation is, for example, at the very basis of the Hawking-Unruh effect [8, 22]. Such

effect can be easily understood as follows: when there is a mismatch between vacua asso-

ciated to different particle annihilation operators, one observer will describe the vacuum

of the other observer as a state highly populated by particles. The consequences of these

mathematical techniques are vast: they imply that in QFT there is no such thing as a

universal notion of particle [10]. This conclusion is striking, though predictions based on

it have been awaiting decades for verification (i.e. dynamical Casimir effect, where the

vacuum state of the quantized electromagnetic field confined in a cavity becomes a state

populated by particles when one wall of the cavity rapidly oscillates).

Solutions to any field equation are usually expanded in terms of Fourier modes. Let

Φ =∑
i

aiφi = a ⋅ φ

Φ =∑
j

a′jφ
′
j = a′ ⋅ φ′ (2.2.48)

be two different decompositions of the quantum field Φ where we assume the spectrum

to be discrete for simplicity. One can then write the change of basis as

φ′ = A ⋅ φ, (2.2.49)

where A is a matrix that represents the change of basis and encodes all the properties

of the BVT. Notice that A will be fundamental throughout Part II of this work. The

(trivial) matrix relation

A−1A = 1 (2.2.50)

encodes the Bogoliubov identities, which, in the simple case of an uncharged scalar field,

assume the well known expressions that can be found in [10]. Such relations have to hold

in order for the field expansion to be invariant under a change of basis.

Given a global Killing vector ∂τ , one can pick a preferred basis {φi} of solutions to the

field equations that can naturally be split in two subsets

{φ+i } ∪ {φ−i } = {φi} (2.2.51)

such that

i∂τφ
±
i = ±ωiφ±i (2.2.52)

and ωi is the corresponding eigenvalue to φi. We define φ±i as positive and negative

energy modes respectively; they enjoy the property that

(φ±i , φ±j ) = ±δij (2.2.53)
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if they are properly normalized bosonic fields or

(φ±i , φ±j ) = δij (2.2.54)

if they are properly normalized fermionic fields. (⋅, ⋅) is understood to be the appropriate

inner product for bosonic and fermionic fields respectively and mixed inner products

always vanish.

We are in a position to establish the connection between the inner product and the

BVT. We consider bosons for simplicity and use (2.2.49) and (2.2.53). (2.2.49) can be

written in components as

φi′ =∑
j

Ai′jφ+j +∑
j′
Ai′j′φ−j′ =∑

j

[Ai′jφ+j +Bi′jφ−j ] , (2.2.55)

where we choose the upper case notation A,B for the standard generic alpha and beta

coefficients (α and β, see [10]) for bosons. We will see in the second part of the work

that such choice allows to consider BVT in different travel regimes. We now compute

(φ+i , φi′) =(φ+i ,∑
j

Ai′jφj) = (φ+i ,∑
j

[Ai′jφ+j +Bi′jφ−j ]) =

=∑
j

Ai′j (φ+i , φ+j ) +∑
j

Bi′j (φ+i , φ−j ) = Ai′i, (2.2.56)

where we have used (2.2.53) in the last line. Therefore,

(φ+i , φ′i) = Ai′i (2.2.57)

which shows that the elements of A are uniquely determined by the inner product be-

tween the different sets of modes.

As a technical point, we notice that if the spectrum is continuous, say

Φ =
ˆ
dωaωφω, (2.2.58)

then the Krönecker deltas will be replaced by Dirac deltas and the relation

A−1A = 1→ (A−1A)ωω′ = δ(ω − ω′) (2.2.59)

is modified accordingly. In such case, the definition of matrix inverses and the normaliza-

tion of the field modes is in general ill defined. One cans solve such issues by appropriately

building normalized wave packets. We will not deal with such constructions in this work

[18].

The operators ai, a′j transform accordingly to (2.2.49) as

a′ = (A−1)T ⋅ a (2.2.60)
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where a′, a are two arrays of operators corresponding to the modes φ′, φ. Therefore

Φ = a′ ⋅ φ′ = a ⋅A−1A ⋅ φ = a ⋅ φ (2.2.61)

which shows that the field is independent of the choice of basis as expected.

Specifying the type of field and its properties allows to obtain more information about

the elements and the structure of A.

Composition of Bogoliubov transformations

We wish to understand how to compose BVT in this formalism. We start from three

sets Γ,Γ′,Γ′′, for example three sets of mode solutions to some field equations.

Given a BVT A1 between Γ and Γ′, and a BVT A2 between Γ′ and Γ′′, this matrix

formalism allows us to immediately obtain the BVT A3 between Γ and Γ′′: it reads

A3 = A2A1. (2.2.62)

Schematically

Γ

A3=A2A1Ð→
A1→ Γ′

A2→ Γ′′.

This formalism allows for an easy extension to any arbitrary composition of BVT. Note

that in order to compose BVT, it is necessary that the codomain of A1 must coincide

with the domain of A1. Physically, this means that the notion of particles is the same

in both domains.

Bogoliubov transformations for uncharged bosons

Given a scalar uncharged bosonic field, we can find an explicit form for A in terms of

standard notation such as [10]. We split the solutions to (2.2.16) in positive and negative

frequencies that obey

(φ±i , φ±j ) = ±δij . (2.2.63)

A change of basis then takes the form

A =
⎛
⎝
α β

β∗ α∗

⎞
⎠

(2.2.64)

where α,β are defined in [10] and we use a compact matrix form. It is worth noticing

that the elements An,m are labeled by n,m > 0.
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In Part II of this work we will extensively employ the following notation and con-

ventions: for any (bosonic) BVT between inertial and uniformly accelerated frames we

will use lower case α and β for the different Bogoliubov coefficients. For any composite

BVT, for example inertial-to-uniformly accelerated-to-inertial, we will employ A and B

instead of the standard α and β.

we use A,B as a notation for the general travel scenario alphas and betas and use

oα, oβ for the inertial to accelerated α,β.

Fermions

For fermionic fields one can proceed in a conceptually similar way to uncharged

bosons, but keep in mind that there are both particles and antiparticles for these anti-

commuting fields. One again defines a transformation as (2.2.49) and the elements Apq
are now labeled by p, q ∈ Z where p, q > 0 mixes positive frequencies only, p, q < 0 negative

frequencies only and the other two cases mix positive and negative frequencies.

The matrix A will be specialized in the following chapters when required.

2.3 Quantum Information

Information can be manipulated, crated, stored, processed and transmitted by clas-

sical or quantum devices. Classical physics has served the purpose very well in the last

century but towards its end scientists have become aware that quantum physics can

play a fundamental role in this area. One of the first astounding results [23] showed

that the problem of prime factorization can be solved much more efficiently by using a

quantum computer (or protocol) instead of a classical computer. Other results, such as

teleportation [1] lay at the very core of QI.

One of the main aims of QI is to devise and describe protocols that can perform

a certain task more efficiently than the classical counterpart. More importantly, it is

desirable that such improvements cannot be obtained in any way by classical means. A

protocol, for example, takes an input quantum state, uses a resource and some operations

and produces as an output a quantum state. The main resource that is used in QI are

the nonlocal correlations that can be present between any two (or more) sets of degrees

of freedom in quantum systems. Such nonlocal correlations are called entanglement .

Entanglement has sparked debate since the beginning of the past century [24, 25]. It has

been understood that nonlocal correlations alone cannot be used to transmit information.

If this was not the case, it would be possible to signal superluminally, and therefore
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violate causality.

In the following we proceed to give a brief introduction to the techniques that will be

used throughout this work.

2.3.1 Separability and Entanglement

Let’s consider a state ∣Ψ⟩ ∈H where H is the Hilbert space of the system. The state

might describe some system that contains, say, two subsets of degrees of freedom A,B

whose (quantum) correlations we wish to analyze. There is no restriction on the type

of partition one might choose: the subsystems A and B can be arbitrary. When such

a bi-partition is chosen, the state is then called bipartite and we denote it by ∣Ψ⟩AB.
A state might contain three (or more) subsystems and if one wishes to choose such a

partition the state it is then called multipartite. For the purpose of this work we will

analyze only correlations between two subsystems. While bipartite correlations are very

well understood, multipartite correlations have so far not been completely characterized

and understood.

Given a bipartite system described by ∣Ψ⟩AB, the Hilbert spaceH is the tensor product

of the individual Hilbert spaces HA and HB describing the degrees of freedom of these

subsystems; the Hilbert spaces satisfy the relation

H =HA ⊗HB, (2.3.1)

and the dimensions of the Hilbert spaces obey

dim(H) = dim(HA) ⋅ dim(HB). (2.3.2)

It might seem natural that a similar product decomposition to (2.3.1) occurs for states

∣Φ⟩AB ∈H but in general there exist states ∣Φ′⟩AB ∈H such that

∣Φ′⟩
AB

≠ ∣Φ⟩A ⊗ ∣Φ⟩B (2.3.3)

for any ∣Φ⟩A , ∣Φ⟩BWe can now give a more formal definition of bipartite state. Let

{∣φi⟩A} and {∣φj⟩B} be a basis of HA and HB respectively. Then ∣Φ⟩AB is bipartite if it

has the form

∣Φ⟩AB =∑
i,j

Cij ∣φi⟩A ⊗ ∣φj⟩B (2.3.4)

and

∑
i,j

∣Cij ∣2 = 1. (2.3.5)

The density matrix formed from ∣Φ⟩AB is

ρAB = ∣Ψ⟩ ⟨Ψ∣AB (2.3.6)
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We say that a state ρAB is separable (with respect to such a bipartition) iff

ρAB =∑
i

piρ
i
A ⊗ ρiB (2.3.7)

where ∑i pi = 1. If this is not the case, then ρAB is entangled in the (sets of) degrees of

freedom A and B. Notice that in the particular case of a pure state, there exists only

one weight pk = 1 while all others vanish. Therefore

ρAB = ρkA ⊗ ρkB. (2.3.8)

An important property of entanglement is that it does not increase under LOCC

(Local Operations and Classical Communications) and is invariant under local unitary

operations (for example an operation of the form UA ⊗ UB where UA, UB are unitary

operations).

For the purposes of this work, we make the following observation: BVTs are global

unitary maps of the Fock space to itself, which, in general, are not LO. In this sense,

they create entanglement between different degrees of freedom, in particular between the

mode number degrees of freedom.

2.3.2 Purity and mixedness

A state ρ is said to be pure iff ρ2 = ρ. This means that there exists some vector ∣Ψ⟩
such that

ρ = ∣Ψ⟩ ⟨Ψ∣ . (2.3.9)

Otherwise the state ρ is said to be mixed . Equivalently, a state is pure iff

Tr(ρ2) = 1. (2.3.10)

One can define the mixedness as

M[ρ] = 1 −Tr(ρ2), (2.3.11)

where M[ρ] = 0 for pure states and M[ρ] > 0 for mixed states.

For our purposes, the difference between pure and mixed states becomes important, for

example, when one wishes to compute measures of entanglement for the state. In our

work we will always start with pure states.

2.3.3 Partial tracing and partial transposition

The quantum state contains the information of the system that is being studied. Let

us consider a bipartite system described by ∣Φ⟩AB for simplicity. It often happens that
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one ignores or cannot access some part B of the system and can only obtain information

about the complementary subsystem A. To describe such ignorance one employs the

mathematical operation called partial trace. Given a bipartite state ρAB, we define the

partial trace TrB(ρAB) over B as the trace over all degrees of freedom contained in B.

Formally, let {∣φi⟩B} be a basis for HB. Then

TrB(ρAB) =∑
i
B ⟨φi∣ρAB ∣φi⟩B . (2.3.12)

It is trivial to check that

TrB(ρAB) = ρA⇔ ρAB = ρA ⊗ ρB. (2.3.13)

This is equivalent to the statement that A and B are not entangled since by tracing over

B one still has all the information about A (which is contained in ρA). In general, the

partial trace of a pure state ρAB over some subsystem B will leave a mixed state and we

understand that information about A has been lost.

We define now an operation that will be useful when studying measures of entangle-

ment for different states.

Let {∣φi⟩A} and {∣ψi⟩B} be bases for HA and HB respectively. Let ρAB be a bipartite

state and let its decomposition on these bases be

ρAB = ∑
i,j,k,l

Ci,j;k,l ∣i, j⟩ ⟨k, l∣ (2.3.14)

where

∣i, j⟩ = ∣φi⟩A ⊗ ∣ψj⟩B . (2.3.15)

The partial transpose of ρAB is defined as follows [26]:

ρPTAB ∶= ∑
i,j,k,l

Ci,l;k,j ∣i, j⟩ ⟨k, l∣ . (2.3.16)

2.3.4 Measures of entanglement

Entanglement is not a physical observable on its own. It is a property of a state.

Entanglement can be created or degraded, it can be exchanged between subsystems but

cannot be directly observed or measured. One needs to produce a measure of entangle-

ment that provides an operationally well defined way to quantify such correlations. A

great number of measures have been proposed. No measure is a priori preferable among

others although it turns out that most measures are very difficult to compute explicitly.

For the purpose of this work, we will be interested only in measures for bipartite pure

or mixed states.
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In general, a measure of entanglement E[ρ] is a non-negative real function of a state

ρ that must

i vanish for separable states: ρis separableÔ⇒ E[ρ] = 0;

ii not increase under LOCC;

iii is invariant under local unitaries;

(for a thorough discussion see [27]).

Given a pure bipartite state described by ρAB, the Von Neumann Entropy S is the

standard measure for entanglement and is defined as

S(ρB) = −Tr(ρB log2(ρB)) = −∑
i

λi log2(λi), (2.3.17)

where {λi} are the eigenvalues of ρB. It is possible to show that

S(ρB) = S(ρA). (2.3.18)

Measures of entanglement for a mixed bipartite state ρAB are usually not easy to

compute explicitly. In this case, the entanglement can be quantified using the Peres

partial-transpose criterion. Since the partial transpose of a separable state has always

positive eigenvalues, then a state is non-separable (and therefore, entangled) if the partial

transposed density matrix has, at least, one negative eigenvalue. However, this is a

sufficient and necessary condition only for 2×2 and 2×3 dimensional systems. In higher

dimensions, the criterion is only sufficient. The Peres criterion is at the core of the (only)

measure that, in general, can be of practical and computational use for mixed states.

Such measure is called negativity N [ρ] and is an entanglement monotone that quantifies

how strongly the partial transpose of a density operator ρ fails to be positive

N [ρ] ∶= ∑
λ<0

∣λ∣, (2.3.19)

where {λi} are the eigenvalues of the partial transpose of ρ. The maximum value of the

negativity Nmax
AB (reached for maximally entangled states) depends on the dimension of

the maximally entangled state. Specifically, for qubits

Nmax
AB = 1

2
. (2.3.20)

The negativity is a useful measure because all the entangled states that it fails to detect

are necessarily bound entangled, that is, these states cannot be distilled [28].
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N has the advantage of being easy to compute for bipartite systems of arbitrary

dimension [29]. The closely-related logarithmic negativity ,

EN ∶= ln(1 +N ) (2.3.21)

is an upper bound on the distillable entanglement ED and is operationally interpreted

as the entanglement cost EC under operations preserving the positivity of partial trans-

pose [30]. In this respect, the entanglement quantification based on negativity nicely

interpolates between the two canonical (yet generically difficult to compute) extremal

entanglement measures ED and EC [31].

2.4 Outline - Part I

In this first part of the work we concentrate on the effects of relativity on entanglement

between global quantum fields in flat spacetime. The results in chapter 3 and 4 have

appeared in [15] and [32] respectively.

2.4.1 Beyond the Single Mode Approximation

In Chapter 3 we address and revise the “single mode approximation” that is exten-

sively used in literature. The single mode approximation assumes that the Bogoliubov

transformations between Minkowski modes and the Rindler modes map one mode to

one mode. We revise such transformations and show that these transformations are not

injective in the frequency degree of freedom. We exploit the Unruh solutions to the field

equations in Minkowski coordinates to generalize the concept of Unruh particle. Positive

frequency Unruh modes come in pairs, unlike Minkowski modes. We show that when

such pairs are used to define Unruh particles, new degrees of freedom naturally arise. We

investigate to what extent such degrees of freedom influence the entanglement present

in initially maximally entangled states of bosonic Unruh modes as described by two in-

ertial observers when one of the two observers accelerate. We find that entanglement is

degraded with increasing acceleration and vanishes with infinite acceleration.

We describe for which choice of the new degrees of freedom one can recover the single

mode approximation. We show that it is possible to construct a peaked Minkowski wave

packet that is mapped to a peaked Unruh wave packet by the Bogoliubov transforma-

tions. If the peaking on one side is increased, it is reduced on the other. In the sense

of wave packets just presented, we argue that the single mode approximation can be

recovered for suitable choice of the new degrees of freedom. We show that mass does not

change qualitatively the results. In this work we will present only the analysis performed

28



Chapter 2: Technical tools

for uncharged scalar fields.

2.4.2 Entanglement redistribution between charged bosonic field modes

in relativistic settings

In chapter 4 we introduce charged bosonic field modes in the analysis of the behavior

of entanglement as described by different observers. Two inertial observers Alice and

Bob study three different families of maximally entangled states of charged bosonic field

modes. An accelerated observer Rob analyzes Bob’s modes and describes the entan-

glement as a function of his acceleration. It is well known that entanglement between

fermionic field modes and bosonic field modes behaves differently in the infinite accel-

eration limit. Our aim is to analyze the same states and bipartitions considered for

fermionic fields in [60] and compare the results. One bipartition occurs when Rob can-

not distinguish Unruh particles and antiparticles. The second and third bipartitions

occur where he can make this distinction. In particular, we wish to understand if en-

tanglement can be redistributed between these bipartitions in the same fashion as in the

fermionic case. We find that regardless of the presence of antiparticles, entanglement

is still degraded and vanishes in the infinite acceleration limit. While in the literature

it was found that bosonic entanglement is almost always monotonically decreasing with

increasing acceleration, we also find rare cases where this does not happen.

2.5 Outline - Part II

In this part of the work we develop the techniques required to study the effects

of cavity motion on mode entanglement. The chapters are arranged chronologically

following the work developed during the PhD. All chapters follow logically one from

another. The general techniques are developed in chapter 5 and lay the basis for the

following chapters.

2.5.1 Entanglement degradation of cavity modes due to motion

In chapter 5 we start by introducing the techniques for quantizing a 1 + 1 or 3 + 1

massive or massless scalar field with Dirichlet boundary conditions and compact support.

The spectrum of the field is discrete due to the boundary conditions. We assume that

the walls of the cavity can undergo different linear accelerations such that the length of

the cavity as measured by a comoving observer does not change. In this sense, the box

is accelerated as a whole and we use the proper acceleration of the centre of the cavity in
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the following. We can compute how the mode solutions to the field equations before any

travel of the cavity (pre-trip) are related to the mode solutions of the field equations after

the trip (post-trip). The BVT between the pre-trip modes and the post-trip modes can

be computed analytically in a perturbative regime where the parameter is the product of

the acceleration of the centre of the cavity and its proper length. Therefore large cavities

with small accelerations or small cavities with large accelerations can be treated with

our techniques.

We entangle one mode of the field contained in an inertial cavity held by Alice with

one mode of the field contained in a cavity that travels and is held by Rob. The initial

state is assumed to be maximally entangled. We compute the entanglement between

the mode in Alice’s cavity and the mode in Rob’s cavity after the latter’s travel in the

following scenarios: the inertial-accelerated-inertial, the one way trip scenario and the

return trip scenario.

We find that in the 1 + 1 massless case there is degradation of entanglement and it

occurs as a second order correction to the initial value. The correction appears as a

function of the details of the travel scenario. Given that in this case there is exact

periodicity, Alice and Rob can plan Rob’s one way trip such that there will be no

degradation. We verify that for reasonable values of accelerations and lengths of cavities

this correction is negligible.

We notice that the extra dimensions just contribute as an effective mass. We find that

the correction to the initial value of the entanglement is greatly enhanced when mass and

or transverse dimensions are present. To take advantage of this, one needs to prepare

states of photons in Rob’s cavity which have momenta which are highly traverse to the

direction of travel.

2.5.2 Kinematic entanglement degradation of fermionic cavity modes

In chapter 6 we analyze the setting of chapter 5 using fermionic fields. Quantization

of massless 1+1 fermions is obtained using the Dirac equation with boundary conditions.

Dirichlet boundary conditions cannot be employed for fermionic fields; for our setting

we therefore require the current to vanish at the walls of the cavity. This introduces

the presence of a zero mode in the spectrum, which we are able to treat by introducing

a regularizing phase shift of the wave function at each wall. We then investigate the

effects on entanglement of one cavity’s motion. As for bosons, we find that entanglement

is degraded in a fashion that depends on the type of scenario chosen. The correction

to the initial value of the negativity occurs again at second order in the perturbation

parameter. We also find that when the regularizing phase shift is removed, all corrections
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to the entanglement are well behaved. The fermionic Hilbert space is finite dimensional.

This allows us to investigate the violation of other Bell-type inequalities such as CHSH.

We find that the violation is diminished when one cavity travels. Last, due to the

presence of antiparticles, we also analyze entanglement degradation due to motion when

there is particle-antiparticle entanglement.

2.5.3 Generation of entanglement within a moving cavity

In chapter 7 we analyze bosonic and fermionic quantum fields contained within one

cavity. The initial state of the fields is separable in the mode number degree of freedom.

After the cavity travels, the modes will all mix due to Bogoliubov transformations. We

use the negativity to quantify the entanglement crated between any two modes of the

spectrum. Surprisingly, when modes are oddly separated we find that the amount of

entanglement created is at first order in the perturbation parameter for both bosons and

fermions. If the modes are evenly separated, the amount of entanglement created is only

at second order. In addition, we find that the behavior of entanglement as a function of

the time spent accelerating is different for fermions and bosons, therefore indicating that

this might be of interest for practical purposes. A striking difference appears between

uncharged bosons and fermions: excitations of only one type in the initial state suppress

the fermionic generation of entanglement. This phenomenon arises for fermions as a

direct consequence of the particle-antiparticle coherence generated by the BVT, rather

than particle particle or antiparticle-antiparticle coherence.

2.5.4 Entanglement resonances within a moving cavity

In chapter 8 we look for a mechanism to enhance the entanglement generation within

cavity scenarios. We notice that it is possible to select two arbitrary oddly separated

modes and perform the Two Mode Truncation that allows to effectively reduce the full

BVT to Bogoliubov Transformations between the two modes solely. Such reduced trans-

formations satisfy Bogoliubov identities to second order in the perturbation parameter.

We then consider initial Gaussian states, for example the vacuum or coherent states.

Since the reduced BVT are Gaussian operations, we employ Continuous Variables tech-

niques to obtain the entanglement of the two modes when the cavity undergoes some

travel scenario that we call building block. When the travel scenario consists of repeating

the building block an arbitrary number of times, these techniques allow us to find analyt-

ical conditions for the final entanglement to grow linearly with the number of repetitions.

We find that, in general, the total time of the building block is inversely proportional to
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the sum of the frequencies of the two modes. This condition is only necessary but not

sufficient and one needs to analyze case by case to find extra constraints. As an example

we analyze a scenario which is analogous to standard dynamical Casimir setups [12].

The work done in this chapter has been further developed and generalized at a later

stage. An updated version of the results can be found in the latest version of [33].

2.6 Outline - Part III

In this last part of the work we concentrate on the effects of relativity on entanglement

between global quantum fields in curved spacetime where the topology of the spatial

hyper surfaces is not trivial. The results have been presented in [34].

2.6.1 Effects of topology on the nonlocal correlations within the Hawking-

Unruh radiation

In chapter 9 we go beyond flat spacetimes typically considered in literature and aim

at understanding how nonlocal correlations present in the Hawking-Unruh radiation in

black hole spacetimes are affected by the change in spatial topology.

While typically solutions to Einstein’s equations have spatial topology equivalent to R3,

there are solutions where this must not be the case. From the perspective of Quantum

Gravity, it is of great interest to understand if the topology of spacetime can change.

We introduce charged bosonic fields in two different spacetimes: Minkowski with a back-

ground magnetic field and electrically charged Reissner-Nordström spacetime. The quan-

tum field is coupled to the classical background gauge field. We introduce different Geon

versions of the spacetimes and show that among all there are cases where one needs to

enlarge the gauge group in order to perform the Geon quotients. The next step is to

investigate the particle-particle correlations in the Hawking-Unruh radiation in the Geon

versions of Schwarzschild and Reissner-Nordström spacetime. We find that when there is

need for enlarging the gauge group, the correlations in the radiation are modified. More

specifically, instead of finding particle-antiparticle correlations we find particle-particle

correlations. We emphasize that our prediction is a signature of the topology.
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Chapter 3: Beyond the Single Mode Approximation

The first works in the field of RQI employed global quantum fields defined on the entire

spacetime. These works were aimed at showing that relativity does affect entanglement.

It was assumed that two inertial parties, Alice and Bob, which employed inertial coor-

dinates to describe fields, would at first analyze nonlocal correlations present between

initially entangled global relativistic quantum field modes (see [4, 5, 35] for a sample). As

a second step, a third party, uniformly accelerated Rob, would describe Bob’s part of the

system using Rindler coordinates; the transformations between the modes in the different

coordinate charts were therefore crucial. The “single mode approximation” (SMA) was

employed in order to express the relations between mode solutions to relativistic wave

equations in different coordinates, namely Minkowski modes in Minkowski coordinates

and Rindler modes in Rindler coordinates. The main idea behind this approximation is

that solutions to field equations in Rindler coordinates are peaked around some particular

frequency when expressed as a combinations of Minkowski modes, and viceversa.

In this chapter we discuss the validity of this assumption and show that in general it

does not hold. The BVT that relate modes in Minkowski and Rindler coordinates are non

trivial and not peaked. We introduce Unruh modes in the analysis and the corresponding

particle creation and annihilation operators. We are able to show that, starting from

entangled states where Bob analyzes a wave packet of Unruh modes (sharply) peaked

around some Unruh frequency, it is possible to recover the SMA approximation for a

suitable choice of parameters. We also generalize the definition of Unruh particle which

introduces additional degrees of freedom that can be used to further understand the

effects of the state of motion of the observer on entanglement.

3.1 Global Minkowski, Unruh and Rindler modes revised

We start by analyzing in more detail the relations between the Minkowski, Unruh

and Rindler set of solutions to the field equations.

Consider a real scalar field Φ in (1+1) dimensional Minkowski spacetime. We restrict

ourselves to a massless field in one spatial dimension: the results of this chapter can be

generalized for massive fields or fields in (3+1) Minkowski space-time without qualitative

changes.

The field equations and the general (delta) normalized solutions written in Minkowski

or Rindler coordinates can be found in section 2.2.6.

An “intermediate” basis for the solutions of the field equations is given in terms of
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Unruh modes which are defined as follows

φΩ,R = cosh(rΩ)φΩ,I + sinh(rΩ)φ∗Ω,II
φΩ,L = cosh(rΩ)φΩ,II + sinh(rΩ)φ∗Ω,I , (3.1.1)

where

tanh rΩ = e−πΩ, (3.1.2)

the parameter Ω is a dimensionless frequency and I,II refer to RRW and LRW respec-

tively. The Right and Left Unruh modes φΩ,R, φΩ,L are both linear combinations of

positive Minkowski frequency modes. Negative frequency Right and Left Unruh modes

can be obtained by complex conjugation. Notice that, while R,L are a short notation

for Right and Left, the Unruh modes are defined on the entire spacetime. For Unruh

modes, R,L has the following meaning: modes with greater support on the RRW or

LRW respectively. To obtain the Unruh basis one starts from the Minkowski basis and

performs a change of basis which does not mix positive and negative Minkowski frequen-

cies. In addition, each Unruh mode labeled by Ω is in one to one correspondence with a

corresponding Rindler mode in the RRW and in the LRW, both labeled by the same Ω.

As explained in Chapter 2, different solutions to the field equation are related by BVT.

To find these transformations we consider the field expansion in the Minkowski,Unruh

and Rindler bases respectively

Φ =
ˆ ∞

0
(aω,Mφω,M + a†

ω,Mφ
∗
ω,M)dω =

=
ˆ ∞

0
(AΩ,RφΩ,R +A†

Ω,Rφ
∗
Ω,R +AΩ,LφΩ,L +A†

Ω,Lφ
∗
Ω,L.)dΩ

=
ˆ ∞

0
(aΩ,IφΩ,I + a†

Ω,Iφ
∗
Ω,I + aΩ,IIφΩ,II + a†

Ω,IIφ
∗
Ω,II)dΩ, (3.1.3)

where aω,M , AΩ,R,AΩ,L, and aΩ,I , aΩ,II are Minkowski, Unruh and Rindler annihilation

operators, respectively. Usual bosonic commutation relations hold

[aω,M , a†
ω′,M ] =δ(ω − ω′),

[AΩ,R,A
†
Ω′,R] =[AΩ,L,A

†
Ω′,L] = δ(Ω −Ω′)

[aΩ,I , a
†
Ω′,I] =[aΩ,II , a

†
Ω′,II] = δ(Ω −Ω′). (3.1.4)

Commutators for mixed R, L and I, II vanish. One can use the inner product 2.2.28 to

find the transformations between the different mode solutions. Between Minkowski and
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Unruh modes they read

φω,M =
ˆ ∞

0

(αRωΩφΩ,R + αLωΩφΩ,L)dΩ

φΩ,R =
ˆ ∞

0
(αRωΩ)∗φω,Mdω

φΩ,L =
ˆ ∞

0
(αLωΩ)∗φω,Mdω, (3.1.5)

where

αRωΩ = 1√
2πω

√
Ω sinhπΩ

π
Γ(−iεΩ)(ωlΩ)iεΩ

αLωΩ = 1√
2πω

√
Ω sinhπΩ

π
Γ(iεΩ)(ωlΩ)−iεΩ. (3.1.6)

From (5.4.3) in [21] we may choose lΩ such that

αRωΩ = 1√
2πω

(ωl)iεΩ

αLωΩ = 1√
2πω

(ωl)−iεΩ, (3.1.7)

where l is a constant of dimension length, independent of ε and Ω. If a choice of units

is made, l may be set to one. The transformation between modes gives rise to transfor-

mations between field operators. Minkowski operators aω,M and Unruh operators AΩ,L,

AΩ,R are related by

aω,M =
ˆ ∞

0

((αRωΩ)∗AΩ,R + (αLωΩ)∗AΩ,L)dΩ

AΩ,R =
ˆ ∞

0
αRωΩaω,Mdω

AΩ,L =
ˆ ∞

0
αLωΩ aω,Mdω,

(3.1.8)

where αRωΩ, α
L
ωΩ are Bogoliubov coeficients. The transformation between Unruh opera-

tors and Rindler operators aΩ,I , aΩ,II is

aΩ,I = cosh(rΩ)AΩR + sinh(rΩ)A†
Ω,L

aΩ,II = cosh(rΩ)AΩ,L + sinh(rΩ)A†
Ω,R. (3.1.9)

We can address how to relate the particle states in different coordinates. Since the Unruh

annihilation operators are linear combinations of Minkowski annihilation operators only,

Minkowski modes and Unruh modes share the common vacuum state ∣0⟩M = ∣0⟩U , where

AΩ,R∣0Ω⟩M = AΩ,L∣0Ω⟩M = 0. (3.1.10)
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Although states with a completely sharp value of Ω are not normalisable, we may ap-

proximate normalisable wave packets that are sufficiently narrowly peaked in Ω by taking

a fixed Ω and renormalising the Unruh and Rindler commutators to read

[AΩ,R,A
†
Ω,R] = [AΩ,L,A

†
Ω,L] = 1 (3.1.11)

[aΩ,I , a
†
Ω,I] = [aΩ,II , a

†
Ω,II] = 1 (3.1.12)

with mixed commutators vanishing. In this idealization of sharp peaking in Ω, the most

general creation operator that is of purely positive Minkowski frequency can be written

as a linear combination of the two Unruh creation operators, in the form

a†
Ω,U = qLA†

Ω,L + qRA
†
Ω,R, (3.1.13)

where qR, qL ∈ C and

∣qR∣2 + ∣qL∣2 = 1. (3.1.14)

It is trivial to check that

[aΩ,U , a
†
Ω,U ] = 1. (3.1.15)

Therefore, a single Unruh particle state corresponds to

a†
Ω,U ∣0⟩U =

∞
∑
n=0

√
n + 1

tanh(rΩ)
cosh2(rΩ)

∣Φn
Ω⟩ (3.1.16)

∣Φn
Ω⟩ = qL ∣nΩ⟩I ∣(n + 1)Ω⟩II + qR∣(n + 1)Ω⟩I ∣nΩ⟩II .

We stress that in literature one finds qR = 1 and qL = 0 as a common assumption which

corresponds to a very special choice of Unruh modes.

3.2 Entanglement revised beyond the single mode approxi-

mation

In the RQI literature, the SMA

aω,M ≈ AΩ,R (3.2.1)

is considered to directly relate Minkowski and Unruh modes. The main argument for

taking this approximation is that the distribution

aω,M =
ˆ ∞

0

[(αRωΩ)∗AΩ,R + (αLωΩ)∗AΩ,L]dΩ (3.2.2)

is peaked. However this is not true and (3.2.2) in fact oscillates (see (3.1.7)).

Entanglement in non-inertial frames can be studied provided one considers the state

∣Ψ⟩ = 1√
2
(∣0ω⟩M ∣0Ω⟩U + ∣1ω⟩M ∣1Ω⟩U) , (3.2.3)
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where the notation in the right hand side of equation (3.2.3) assumes that the states

observed by Alice and Bob are orthogonal to good approximation. We will use the

notation where kets are plot between Alice and Bob simply for clarity of the distinction

between the subsystems. we choose the state (3.2.3) for mathematical simplicity. A

single Unruh frequency Ω corresponds to the same Rindler frequency Ω. As stated

before, when qR = 1 and qL = 0 we recover the results canonically presented in the

literature (for example [7]). In this section, we will revise the analysis of entanglement

in non-inertial frames starting from a general Unruh mode. However, since Minkowski

coordinates are a natural choice for inertial observers we will show in the section 3.3 that

the standard results also hold for Minkowski states as long as suitable wavepackets are

considered.

Having the expressions for the vacuum and single particle states in the Minkowski,

Unruh and Rindler bases enables us to analyze the degradation of entanglement when

described by observers in uniform acceleration in the standard scenario. Let us consider

the maximally entangled state Eq. (3.2.3) analyzed by two inertial observers. By chang-

ing ∣qR∣’s we can pick different initial states. An arbitrary Unruh single particle state has

different right and left components with weights ∣qR∣ and ∣qL∣. Therefore, we can view

the system as being tripartite and say that Alice’s modes with frequency ω are entangled

to right Unruh (Alice-Bob) modes Ω. There is no a priori reason to choose a specific

value of ∣qR∣. In fact, and as we will see later, feasible choices of Minkowski states are in

general linear superpositions of different Unruh modes with different values of ∣qR∣.

We now wish to study the entanglement in the state taking into account that the Ω

modes are described by observers in uniform acceleration. Therefore, Unruh states must

be transformed into the Rindler basis as usual. The Alice-Bob system, once analyzed by

Rob, is a tri-partite system. The Minkowski mode corresponds to the mode studied by

Alice and the Rindler modes of the region I are analyzed by Rob. In the limit a→ 0 the

Alice-Rob partition corresponds to the Alice-Bob partitions.

We quantify entanglement using negativity N , (2.3.19), since we are left with mixed

states.

In what follows we study the entanglement between the Alice-Rob modes. The Alice-

Rob density matrix is obtained by tracing over the region II

ρAR = 1

2

∞
∑
n=0

[T
n

C
]
2

ρnAR, (3.2.4)
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where

ρnAR = ∣0n⟩⟨0n∣ + n + 1

C2
(∣qR∣2 ∣1n + 1⟩⟨1n + 1∣ + ∣qL∣2 ∣1n⟩⟨1n∣ ) +

√
n + 1

C
(qR ∣1n + 1⟩⟨0n∣

+ qLT ∣1n⟩⟨0n + 1∣ ) +
√

(n + 1)(n + 2)
C2

qR q
∗
LT ∣1n + 2⟩⟨1n∣ + (H.c.)non-

diag.
. (3.2.5)

Here (H.c.)non-diag. means Hermitian conjugate of only the non-diagonal terms and we

defined for convenience

S ∶= sinh(rΩ)

C ∶= cosh(rΩ)

T ∶= tanh(rΩ).

(3.2.6)

The partial transpose σR of ρR with respect to Alice is given by

σAR = 1

2

∞
∑
n=0

[f(n)]2
σnAR (3.2.7)

where

σnAR = ∣0n⟩⟨0n∣ + n+1
C2 (∣qR∣2 ∣1n + 1⟩⟨1n + 1∣ + ∣qL∣2 ∣1n⟩⟨1n∣ ) +

√
n+1
C (qR ∣0n + 1⟩⟨1n∣

+ qLT ∣0n⟩⟨1n + 1∣ ) +
√

(n+1)(n+2)
C2 qR q

∗
LT ∣1n + 2⟩⟨1n∣ + (H.c.)non-

diag.
(3.2.8)

The eigenvalues of the partial transpose density matrix are computed numerically. The

resulting negativity between the Alice-Rob modes is plotted in Fig. (3.1) for different

values of ∣qR∣ = 1,0.9,0.8,0.7. ∣qR∣ = 1 corresponds to the canonical case studied in the

literature [5]. In the bosonic case, the entanglement between the Alice-Rob modes always

vanishes in the infinite acceleration limit. Interestingly, there is no fundamental difference

in the degradation of entanglement for different choices of ∣qR∣. There is no Unruh state

which whose entanglement does not degrade monotonically with acceleration.

3.3 Wave packets: recovering the single mode approxima-

tion

The entanglement analyses of section 3.2 take Alice’s state to be a Minkowski one

particle state with a sharp Minkowski momentum and Rob’s state to be an Unruh one

particle state with sharp Unruh frequency. The Unruh particle is a linear combination of

two Unruh modes specified by qR and qL. The Alice and Rob states are further assumed

to be orthogonal, so that the system can be treated as bipartite. We now discuss the
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Figure 3.1: Negativity as a function of rΩ = arctanhe−πΩ for a sample of values of

∣qR∣.

sense in which these assumptions are a good approximation to Alice and Rob states that

can be built as Minkowski wave packets.

Recall that a state with a sharp frequency, be it Minkowski or Unruh, is not nor-

malisable and should be understood as the idealisation of a wave packet that contains a

continuum of frequencies with an appropriate peaking. Suppose that the Alice and Rob

states are initially set up as Minkowski wave packets, peaked about distinct Minkowski

momenta and with negligible overlap, so that the bipartite assumption is a good ap-

proximation. The transformation between the Minkowski and Unruh bases is an integral

transform: we wish to arrange Rob’s state to be peaked about a single Unruh fre-

quency. If we succeed we also wish to understand how the frequency uncertainties on

the Minkowski and Unruh sides are related.

For definiteness, we focus on the massless scalar field of section 2.2.4. The massive

scalar field is briefly discussed at the end of the section.

We start by considering a packet of Minkowski creation operators a†
ω,M smeared with

some weight function f(ω). We wish to express this packet in terms of Unruh creation
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operators A†
Ω,R and A†

Ω,Lsmeared with the weight functions gR(Ω) and gL(Ω), so that
ˆ ∞

0
f(ω)a†

ω,M dω =
ˆ ∞

0
(gR(Ω)A†

Ω,R + gL(Ω)A†
Ω,L)dΩ. (3.3.1)

From (3.1.8) it follows that the smearing functions are related by

gR(Ω) =
ˆ ∞

0
αRωΩf(ω)dω

gR(Ω) =
ˆ ∞

0
αRωΩf(ω)dω (3.3.2)

f(ω) =
ˆ ∞

0

((αRωΩ)∗gR(Ω) + (αLωΩ)∗gL(Ω))dΩ.

By (3.1.7), the above equations are recognised as a Fourier transform pair between the

variable ln(ωl) ∈ R on the Minkowski side and the variable ±Ω ∈ R on the Unruh side:

the full real line on the Unruh side has been broken into the Unruh frequency Ω ∈ R+

and the discrete index R,L. All standard properties of Fourier transforms thus apply.

Parseval’s theorem takes the formˆ ∞

0
∣f(ω)∣2 dω =

ˆ ∞

0
(∣gR(Ω)∣2 + ∣gL(Ω)∣2)dΩ, (3.3.3)

where the two sides are recognised as the norm squared of the one-particle state created

from the Minkowski vacuum by the smeared creation operator (3.3.1), evaluated respec-

tively in the Minkowski basis and in the Unruh basis. The classical uncertainty relation

reads

(∆Ω)(∆ ln(ωl)) ≥ 1
2 , (3.3.4)

where ∆Ω is understood by combining contributions from gR(Ω) and gL(Ω) in the sense

of (3.1.8) (since there are both contributions Right and Left modes). Note that as

equality in (3.3.4) holds only for Gaussian functions, any state in which one of gR(Ω)
and gL(Ω) vanishes will satisfy (3.3.4) with a genuine inequality.

3.3.1 Example: logarithmic Gaussian wave packet

As a concrete example, with a view to optimising the peaking both in Minkowski

frequency and in Unruh frequency, consider a Minkowski smearing function that is a

Gaussian in ln(ωl),

f(ω) = ( λ

πω2
)
1/4

exp{−1
2λ[ln(ω/ω0)]

2} (ω/ω0)−iµ, (3.3.5)

where ω0, λ > 0 and µ ∈ R. λ and µ are dimensionless and ω0 has the dimension of inverse

length. f is normalised through ˆ ∞

0
∣f(ω)∣2 dω = 1. (3.3.6)
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The expectation value and uncertainty of ln(ωl) are those of a standard Gaussian,

⟨ln(ωl)⟩ = ln(ω0l)

∆ ln(ωl) = (2λ)−1/2, (3.3.7)

while the expectation value and uncertainty of ω are given by

⟨ω⟩ = exp (1
4λ

−1)

∆ω = ⟨ω⟩[exp(1
2λ

−1) − 1]1/2
. (3.3.8)

The Unruh smearing functions are cropped Gaussians,

gR(Ω) = 1

(πλ)1/4 exp[−1
2λ

−1(Ω − εµ)2] (ω0l)iεΩ

gL(Ω) = 1

(πλ)1/4 exp [−1
2λ

−1(Ω + εµ)2] (ω0l)−iεΩ.

(3.3.9)

We analyze two limits.

εµ ≫ λ1/2: gL(Ω) is small and gR(Ω) is peaked around Ω = εµ with uncertainty

(λ/2)1/2

εµ≪ −λ1/2: gR(Ω) is small and gL(Ω) is peaked around Ω = −εµ with uncertainty

(λ/2)1/2

Note that the difference in the relative magnitudes of gL(Ω) and gR(Ω) is consistent

with the properties of the smeared mode Minkowski mode functionˆ ∞

0
f(ω)uω,M dω (3.3.10)

that corresponds to the smeared creation operator (3.3.1): a contour deformation argu-

ment shows the following

εµ≫ λ1/2: the smeared mode function is large in the region t + x > 0 and small in

the region t + x < 0

εµ ≪ −λ1/2: the smeared mode function is large in the region t − x > 0 and small

in the region t − x < 0

Now, let Rob’s state be the smeared function (3.3.5), and choose for Alice any state that

has negligible overlap with Rob’s state, for example by taking for Alice and Rob distinct

values of ε. For ∣µ∣ ≫ λ1/2 and λ not larger than of order unity, the combined state is then

well approximated by the single Unruh frequency state of section 3.3 with Ω = ∣µ∣ and
with one of qR and qL vanishing. To obtain a state for which qR and qL are comparable,

we may take for Rob’s state a smearing function that is a linear combination of (3.3.5)

and its complex conjugate.
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3.3.2 Example: non Gaussian wave packet

While the phase factor (ω/ω0)−iµ in the Minkowski smearing function (3.3.5) is essen-

tial for adjusting the location of the peak in the Unruh smearing functions, the choice of

a logarithmic Gaussian for the magnitude appears not essential. We have verified that

similar results ensue with the choices

f(ω) = 2λ(ω/ω0)λ−iµ exp(−ω/ω0)√
ωΓ(2λ)

(3.3.11)

and

f(ω) = (ω/ω0)−iµ√
2ωK0(2λ)

exp [−λ
2
( ω
ω0

+ ω0

ω
)] , (3.3.12)

for which the respective Unruh smearing functions can be expressed in terms of the

gamma-function and a modified Bessel function.

3.4 Conclusions

In this chapter we have revised the SMA typically used in literature in the field of

RQI. The SMA attempts to relate a single Minkowski frequency mode (inertial observers)

with a single Rindler frequency mode (uniformly accelerated observers). We have shown

that the SMA does not hold in general. Furthermore, we show that the states canonically

analyzed in the literature correspond to maximally entangled states of Minkowski and

Unruh modes. We analyzed the entanglement between two bosonic modes in the case

when, as described by inertial observers, the state corresponds to a maximally entangled

state between Minkowski modes and Unruh modes. We found that, when a uniform

accelerated observer looks at the same states, the entanglement is always degraded with

acceleration. It could be argued that the qR = 1 Unruh mode is the most natural choice

of Unruh modes since the entanglement for very small accelerations (a → 0) is mainly

contained in the subsystem Alice-Rob. However, other choices of Unruh modes become

relevant if one wishes to consider an entangled state described by inertial observers which

involves only Minkowski frequencies. We have also shown that a Minkowski wave packet

involving a superposition of general Unruh modes can be constructed in such way that

the corresponding Rindler state involves (effectively) a single frequency. This result is

particularly interesting since it presents an instance where the SMA can be considered

recovering the standard results in the literature.
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In the previous chapter we have addressed the validity of the SMA commonly em-

ployed in literature. It is of interest to use the results presented there, in particular

the generalization of the concept of Unruh particle, to investigate further the effects of

relativity on entanglement. One of the main aims in RQI is to understand how entan-

glement depends on the motion of an observer. It has been shown that the amount of

entanglement initially present in a state of free modes of a relativistic quantum field

analyzed by two inertial observers, Alice and Bob, is different when the same state is

analyzed by Alice and a uniformly accelerated observer Rob [5–7, 36–47]. In particular,

if Alice and Bob share a maximally entangled state of bosonic field modes, Rob will

measure entanglement which degrades with increasing acceleration and vanishes in the

limit of infinite acceleration [5–7, 36–47, 47, 48]. Surprisingly, when Alice and Bob share

a maximally entangled state of fermionic field modes, entanglement is still degraded

with acceleration but does not vanish in the limit of infinite acceleration (for example,

see [49]). The reasons for this striking difference are not yet understood. In order to

address this issue, nonlocal correlations between fermionic particle and antiparticle de-

grees of freedom have also been taken into account [60]. There the authors considered

initially maximally entangled states and three different bipartitions: the first where Rob

could not distinguish between particle and antiparticles and two where he could analyze

separately particles and antiparticles. They found that the survival of entanglement in

the infinite acceleration in the first bipartition could be accounted for by considering the

redistribution of entanglement between particle and antiparticle bipartitions. While [60]

did improve the understanding of the behavior of fermionic entanglement as described by

different observers, the behavior could not be directly compared with that for bosons, as

previous work on bosons has focused on real scalar fields in which there is no distinction

between particles and antiparticles.

In this chapter we introduce charged bosonic fields. Alice and Bob will analyze a one

parameter family of maximally entangled states of Unruh modes. Bob and uniformly

accelerated Rob will not agree on the particle content of each of these states. We con-

sider the same bipartitions as in [60] and analyze the bosonic analogues of the states

studied therein. We study the entanglement tradeoff between the bipartitions and how

entanglement is degraded as a function of the Rob’s proper acceleration.

In spite of the presence of antiparticles, we find that mode entanglement always

vanishes in the infinite acceleration limit. The redistribution of entanglement between

particles and antiparticles observed in the fermionic case [60] does not occur for charged

bosons. This supports the conjecture that the main differences in the behavior of entan-

glement in the bosonic and fermionic case are due to Fermi-Dirac versus Bose-Einstein
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statistics [50].

4.1 Charged bosonic field states for uniformly accelerated

observers

4.1.1 Quantization of charged scalar fields

The charged massive scalar field is a map

Φ ∶ xµ → Φ(xν), (4.1.1)

where Φ(xν) is an operator valued distribution. In this case, Φ(xν) ≠ Φ†(xν) and the

free Lagrangian reads

L = ∂νΦ†∂νΦ − 1

2
µ2Φ†Φ. (4.1.2)

Invoking the least action principle one uses (2.2.3) for both Φ,Φ† and finds the field

equations which determine the kinematics:

(◻ − µ2)Φ = 0,

(◻ − µ2)Φ† = 0, (4.1.3)

where, again, µ ≥ 0 is the mass of the field. The conjugate momenta to Φ and Φ† are

defined as

Π ∶= ∂Φ†

∂x0
,

Π† ∶= ∂Φ

∂x0
(4.1.4)

and one imposes the algebra relations

[Φ(x0,x),Π(x0,y)] = iδ3(x − y),

[Φ†(x0,x),Π†(x0,y)] = iδ3(x − y), (4.1.5)

We at last notice that while for the uncharged bosonic field the Fourier spectrum carried

one type of operator, in this case Φ carries two different types of operators, say aω, bω
where the as annihilate particle operators and bs annihilate antiparticle operators. The

generic expansion of Φ reads

Φ =
ˆ
dn−1ki [a(ki)u(kµxµ) + b†(ki)u∗(kµxµ)] (4.1.6)

where n is the dimensions of the spacetime, u are mode solutions which satisfy (4.1.3)

and are normalized through(2.2.28). The four momenta kµ satisfy

kµk
µ −m2 = 0 (4.1.7)

47



Chapter 4: Entanglement redistribution between charged bosonic field
modes in relativistic settings

4.1.2 States of charged bosonic field modes

We consider a free charged scalar field Φ in 1 + 1 Minkowski spacetime and employ

the quantization techniques explained in chapters 2 and 3.

We now proceed to expound those features about Unruh modes which will be used

in this chapter.

It is well known that the Unruh basis provides an intermediate step between Minkowski

and Rindler modes and allows for analytical Bogoliubov transformation between Unruh

operators and Rindler operators [8]. Given the set of Minkowski modes {u±ω,M}, one can

obtain the Unruh modes {u±Ω,Γ} by a simple change of basis. Here Ω is the same label

as for the Rindler modes and Γ = R,L are extra indices. Positive and negative energy

Minkowski modes do not mix when transforming between the two set of modes and

therefore the Unruh operators CΩ,R,CΩ,L,DΩ,R,DΩ,L annihilate the Minkowski vacuum

as well. The BVT between Unruh and Rindler operators takes the simple form

CΩ,R = (cosh rΩ cΩ,I − sinh rΩ d
†
Ω,II) ,

CΩ,L = (cosh rΩ cΩ,II − sinh rΩ d
†
Ω,I) ,

D†
Ω,R = (− sinh rΩ cΩ,I + cosh rΩ d

†
Ω,II) ,

D†
Ω,L = (− sinh rΩ cΩ,II + cosh rΩ d

†
Ω,I) , (4.1.8)

where the standard definition of rΩ is

tanh rΩ ∶= e−πΩ. (4.1.9)

The transformation between the Minkowski vacuum ∣0⟩M and the Rindler vacuum ∣0⟩R
can be found in a standard way. We first introduce the generic Rindler Fock state

∣nn,mm⟩Ω as

∣pq, rs⟩Ω ≡ ∣pq, rs⟩ ∶=
(c†Ω,I)p√

p!

(d†
Ω,II)q√
q!

(d†
Ω,I)r√
r!

(c†Ω,II)s√
s!

∣0⟩R (4.1.10)

and c, d correspond to particle and antiparticle respectively. The subscript to the oper-

ators indicates wethet the operator has support in region I or region II. This allows us

to write

∣0Ω⟩M = 1

C2

+∞
∑

n,m=0

Tn+m ∣nn,mm⟩Ω , (4.1.11)

where

T ∶= tanh rΩ,

C ∶= cosh rΩ,

S ∶= sinh rΩ (4.1.12)
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and ∣0Ω⟩M is a shortcut notation used to underline that each Unruh Ω is uniquely mapped

to the corresponding Rindler Ω.

One particle Unruh states are defined as

∣1j⟩+U = c†Ω,U ∣0⟩M ,

∣1j⟩−U =d†
Ω,U ∣0⟩M , (4.1.13)

where the Unruh particle and antiparticle creation operator are defined as a linear com-

bination of the two Unruh operators

c†k,U = qRC†
Ω,R + qLC

†
Ω,L,

d†
k,U =pRD

†
Ω,R + pLD

†
Ω,L. (4.1.14)

qR, qL, pR, pL ∈ C and satisfy

∣qR∣2 + ∣qL∣2 = ∣pR∣2 + ∣pL∣2 = 1. (4.1.15)

The coefficients pR,L and qR,L are not independent. We require that the Unruh particle

and antiparticle operators have the same interpretation of particle and antiparticle op-

erators when restricted to the same Rindler wedges. Therefore to be consistent with a

particular choice of qR and qL, we must choose pL = qR and pR = qL. (4.1.16) reduces to

c†k,U =qRC†
Ω,R + qLC

†
Ω,L,

d†
k,U =qLD†

Ω,R + qRD
†
Ω,L. (4.1.16)

Therefore, Unruh L and R excitations are given by

∣1k⟩+U = c†k,U ∣0⟩U = qR ∣1Ω,R⟩ + qL ∣1Ω,L⟩

∣1k⟩−U = d†
k,U ∣0⟩U = qL ∣1Ω,R⟩ + qR ∣1Ω,L⟩ (4.1.17)

4.2 Particle and Anti-particle entanglement in non-inertial

frames

We have found the expressions for the vacuum and single Unruh and Rindler particle

states. This allows us to analyse the degradation of entanglement from the perspective of

observers in uniform acceleration. Unruh modes with sharp frequency are not normalised

but are delta-normalised. As discussed in 3.3, one can always consider a superposition of

Minkowski modes which will correspond to a distribution of Unruh frequencies Ω. One

can then choose the Minkowski distribution in such a way that the Unruh distribution

will be peaked around some frequency Ω. In the following we study the idealized case
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of Unruh modes that are sharply peaked in Ω, so that the width of the peak may be

neglected and we may regard the modes as normalized to a Kronecker (rather than Dirac)

delta in Ω 3.1.

We first consider the following one parameter family of maximally entangled states

prepared by inertial observers Alice and Bob.

∣Ψσ
+⟩ =

1√
2
(∣0ω⟩M ∣0Ω⟩U + ∣1ω⟩σM ∣1Ω⟩+U) (4.2.1a)

∣Ψσ
−⟩ =

1√
2
(∣0ω⟩M ∣0Ω⟩U + ∣1ω⟩σM ∣1Ω⟩−U) (4.2.1b)

∣Ψ1⟩ =
1√
2
(∣1ω⟩+M ∣1Ω⟩−U + ∣1ω⟩−M ∣1Ω⟩+U) (4.2.1c)

where U labels bosonic Unruh modes and σ = ± denotes particle and antiparticle modes

as usual. The states are parametrized by dimensionless parameter Ω and again we

have split Alice and Bob’s subsystems in the right hand side of equations (4.2.1). We

also not that, since Alice’s subsystem only provides the initial entanglement, the results

will be independent of the choice of σ. State (4.2.1a) has only particle excitations in

Bob’s subsystem, while state (4.2.1b) has only antiparticle excitations. State (4.2.1c) is

symmetric under Unruh charge conjugation in Bob’s subsystem. For these reasons, we

believe that states (4.2.1) are the simplest and most general states we wish to consider,

since we will analyze the influence of charge on entanglement. In fact, (4.2.1) cover all

possible combinations of charge in Bob’s subsystem.

Rob does not naturally describe the states (4.2.1) with Minkowski coordinates but

with Rindler coordinates. To take this into account we transform the Unruh modes

to Rindler ones using (4.1.17). After this transformation, the total system Alice-Bob

becomes effectively a tri-partite system Alice-Region I-Region II.

As is commonplace in the literature, we define the Alice-Rob bi-partition as the

Minkowski-region I Rindler modes. We note that the dimensionless Rindler frequency

Ω that appears as a label in the states (4.2.1) is not equal to the physical, dimensionful

frequency observed in these states by any Rindler observer. As the proper time of a

Rindler observer of acceleration A is equal to η/A, this Rindler observer sees the states

(4.2.1) to have the physical frequency

E = ΩA. (4.2.2)

The parameter r is hence related to the physically observable quantities E and A by

tanh r = e−πΩ = e−πE/A. (4.2.3)

In particular, if E is considered fixed, the limit r →∞ is that in which A→∞.
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To study distillable entanglement in this context we will employ the negativity N
as usual (2.3.19). Two cases of interest will be considered. In the first case we assume

that Alice and Rob cannot distinguish between particles and antiparticles. In this case,

particles and antiparticles together are considered to be a subsystem. In the second

case we consider that Rob is able to distinguish between particles or antiparticles and

therefore antiparticle or particle states must be traced out.

4.2.1 Entanglement in states ∣Ψ+⟩ and ∣Ψ−⟩

We start with states (4.2.1a) and (4.2.1b). To compute entanglement we first compute

Alice-Rob partial density matrix in (4.2.1a) we trace over region II in ∣Ψ+⟩⟨Ψ+∣ and
perform the partial transposition. We obtain,

ρPTA−R =1

2

1

C4 ∑
n,m

T 2n+2m {

∣0⟩ ⟨0∣⊗ ∣n,m⟩ ⟨n,m∣

+ 1

C2
∣1⟩ ⟨1∣⊗ [(n + 1)∣qR∣2 ∣n + 1,m⟩ ⟨n + 1,m∣ + T

√
(n + 1)(m + 1)qRq∗L ∣n + 1,m + 1⟩ ⟨n,m∣+

+ T
√

(n + 1)(m + 1)qLq∗R ∣n,m⟩ ⟨n + 1,m + 1∣ + (m + 1)∣qL∣2 ∣n,m⟩ ⟨n,m∣]

+ 1

C
∣1⟩ ⟨0∣⊗ [

√
(n + 1)q∗R ∣n,m⟩ ⟨n + 1,m∣ + T

√
(m + 1)q∗L ∣n,m + 1⟩ ⟨n,m∣] + h.c.} .

(4.2.4)

A major difference between the fermionic and the bosonic case is that in the latter,

the Fock space is infinite dimensional in the particle number degree of freedom. In the

present case it is therefore not possible to find the eigenvalues of the partial transpose

density matrix analytically. However, we calculate N numerically and plot our results

in Fig.4.1.

We see that entanglement always vanishes in the infinite acceleration limit as for the

uncharged bosonic case.

We now analyse the entanglement when Rob only looks at antiparticles. In this case

Rob’s particle modes are entangled with Alice’s subsystem. Since Rob is not interested

in antiparticles, we must trace over all antiparticle states and therefore, considering eq.

(4.2.4):

−ρ
PT
A−R =∑

n

⟨n−I ∣ρ+AR ∣n−I ⟩ . (4.2.5)
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Figure 4.1: Negativity N as a function of r for the state ρPTA−R. Curves are for qR =
1,0.9,0.7,0.6,0.5,0.3,0.1 from top to bottom. Entanglement vanishes at

finite r in some cases.

This yields

−ρ
PT
A−R =1

2
∑
n

T 2n

C2
{∣0⟩ ⟨0∣⊗ ∣n⟩ ⟨n∣+

+ ∣1⟩ ⟨1∣⊗ [(n + 1) 1

C2
∣qR∣2 ∣n + 1⟩ ⟨n + 1∣ + ∣qL∣2 ∣n⟩ ⟨n∣]

+ ∣1⟩ ⟨0∣⊗ [ 1

C

√
(n + 1)q∗R ∣n⟩ ⟨n + 1∣ + h.c.]}

(4.2.6)

In this case we find analytical results. One can show that the partially transposed density

matrix of the Alice-Rob bipartition has negative eigenvalues iff

1 ≥ ∣qR∣2 > T 2. (4.2.7)

This means that entanglement, quantified by N , vanishes for finite acceleration. We plot

the entanglement in this bipartition in Fig. 4.2.
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Figure 4.2: Negativity N as a function of r for the state −ρ
PT
A−R. Curves are for

qR = 1,0.9,0.7,0.6,0.5,0.3,0.1 from top to bottom.

The entanglement is always degraded and vanishes at finite acceleration A. We will

compare these results with those of the last part of section 4.2.2. We stress that in the

present case, the cutoff (4.2.7) is the same for every eigenvalue of (4.2.6).

It is interesting to analyze the case where Rob and AntiRob’s only consider antipar-

ticles. In this case one must trace over particle states. We consider again eq. (4.2.4) and

obtain:

+ρ
PT
A−R =∑

n

⟨n∣+I ρ+AR ∣n⟩+I , (4.2.8)

and therefore,

+ρ
PT
A−R =1

2
∑
n

T 2n { 1

C2
∣0⟩ ⟨0∣⊗ ∣n⟩ ⟨n∣

+ ∣1⟩ ⟨1∣⊗ [(n + 1) ∣qL∣
2

C4
+ (T 2C2) ∣qR∣2] ∣n⟩ ⟨n∣

+ ∣1⟩ ⟨0∣⊗ [ T
C3

√
(n + 1)q∗L ∣n + 1⟩ ⟨n∣ + h.c.]} . (4.2.9)

In this case negative eigenvalues in the Alice-Rob partial transpose density matrix exist

iff

∣qL∣2 + T 2C2∣qR∣2 < 0, (4.2.10)

53



Chapter 4: Entanglement redistribution between charged bosonic field
modes in relativistic settings

which can never be satisfied.

Therefore, entanglement is always zero in this bipartition. This result is in clear con-

trast with the fermionic case in which entanglement is always created in this bipartition

[60]. We therefore conclude that in the bosonic case the redistribution of entanglement

between particles and antiparticles does not occur.

The tensor product structure of the Hilbert space in the fermionic and the charged

bosonic case plays an important role in the behavior of entanglement in the infinite

acceleration limit. In the case of neutral scalar fields there are no antiparticles and

entanglement is completely degraded. One could expect that in the charged bosonic

case transfer between particles and antiparticles might occur but we find that this is not

the case. In the next section we will see more explicitly that the different statistics play a

primary role in entanglement behavior. We also notice that, as in [60], these results have

been computed for the initial state (4.2.1a). One can easily find the result for the initial

state (4.2.1b) by exchanging particle with antiparticle in all the previous calculations

and conclusions.

4.2.2 Entanglement in state ∣Ψ1⟩

We now study the entanglement in the state (4.2.1c).

The density matrix for the subsystem Alice-Rob is obtained from ∣Ψ1⟩⟨Ψ1∣ by tracing

over region II:

ρPTA−R =1

2

1

C6 ∑
n,m

T 2n+2m {

∣−⟩ ⟨−∣⊗ [(n + 1)∣qR∣2 ∣n + 1,m⟩ ⟨n + 1,m∣

+T
√

(n + 1)(m + 1)qRq∗L ∣n + 1,m + 1⟩ ⟨n,m∣

+ T
√

(n + 1)(m + 1)qLq∗R ∣n,m⟩ ⟨n + 1,m + 1∣ + (m + 1)∣qL∣2 ∣n,m⟩ ⟨n,m∣]

+ ∣+⟩ ⟨+∣⊗ [(m + 1)∣qR∣2 ∣n,m + 1⟩ ⟨n,m + 1∣

+T
√

(n + 1)(m + 1)qRq∗L ∣n + 1,m + 1⟩ ⟨n,m∣

+ T
√

(n + 1)(m + 1)qLq∗R ∣n,m⟩ ⟨n + 1,m + 1∣ + (n + 1)∣qL∣2 ∣n,m⟩ ⟨n,m∣]

+ ∣−⟩ ⟨+∣⊗ [T
√

(m + 1)(m + 2)qRq∗L ∣n,m + 2⟩ ⟨n,m∣

+
√

(n + 1)(m + 1)∣qR∣2 ∣n,m + 1⟩ ⟨n + 1,m∣

+
√

(n + 1)(m + 1)T 2∣qL∣2 ∣n,m + 1⟩ ⟨n + 1,m∣

+ T
√

(n + 1)(n + 2)qLq∗R ∣n,m⟩ ⟨n + 2,m∣] + h.c.} . (4.2.11)

As in subsection 4.2.1, it is not possible to find an analytic expression for the eigenvalues

of (4.2.11). We calculate N numerically. We show our numerical results in Fig. 4.3.
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Figure 4.3: Negativity N as a function of r for the state ρPTA−R. Curves are for qR =
1,0.9,0.7,0.6,0.5,0.3,0.1 from top to bottom.

We find once more that entanglement is degraded in all cases and vanishes in the limit

of infinite acceleration.

The standard result addressing how entanglement behaves as a function of accelera-

tion of one of the two parties have, in the majority of cases, shown that entanglement

monotonically decreases. A rare counterexample was found in [51]. There the authors

found that, in analogous settings as described in this Chapter and for fermionic systems,

there are values of qR that allow for non-monotonically decrease of entanglement as a

function of the acceleration. In the present we find again a similar behavior as in [51].

The physical motivations for such feature to arise are not yet understood, although we

might conjecture the following: when qR = 1, there is initial entanglement between Alice

and Right Unruh modes as analyzed by Bob, while when qR ≠ 1, Alice is entangled with

both Right Unruh modes (Right Unruh degrees of freedom) and Left Unruh modes (Left

Unruh degrees of freedom). On one hand, when qR = 1, we can perform a change of

basis from Unruh to Rindler bases and by tracing over degrees of freedom in region II

we will always lose entanglement (see (3.1.1)). On the other hand, when qR ≠ 1 we can
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still perform the same change of basis and trace over degrees of freedom in region II,

but in this case, while increasing r decreases the contribution from the Right modes in

region I (see (3.1.1)), it also increases the contribution of the Left modes in region I,

therefore creating two competing effects. For this reason, one can expect that in principle

entanglement is not monotonically degraded1.

We focus on a region 0 < r < 0.25 of 4.3. We find numerically that for some values of

∣qR∣ entanglement is not a monotonically decreasing function of r. We choose to show a

sample for ∣qR∣ = 0.9.

0.05 0.10 0.15 0.20 r
0.398

0.400

0.402

0.404

0.406

N

qR= 0.9

Figure 4.4: Negativity N as a function of r in the range 0 < r < 0.25 from figure 4.3.

We choose ∣qR∣ = 0.9 as a sample.

1We thank Gerardo Adesso at the University of Nottingham for indicating that this might be the

cause and that Local Operations might lie at the basis of such effect
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Assuming now that Rob only analyzes particles, we trace over antiparticles in region

I and obtain

−ρ
PT
A−R =1

2
∑
n

T 2n {

∣+⟩ ⟨+∣⊗ [ ∣qR∣
2

C4
(n + 1) ∣n + 1⟩ ⟨n + 1∣ + ∣qL∣2

C2
∣n⟩ ⟨n∣]

+ ∣−⟩ ⟨−∣⊗ [ ∣qL∣
2

C4
(n + 1) + ∣qR∣2

C2
] ∣n⟩ ⟨n∣

+ ∣+⟩ ⟨−∣⊗ [ T
C4

√
(n + 1)(n + 2)qLq∗R ∣n⟩ ⟨n + 2∣ + h.c.]} (4.2.12)

We are able to analytically find the eigenvalues of the state (4.2.12). Unlike the case for

the state (4.2.6), where all the eigenvalues could be negative when (4.2.7) is satisfied,

here we find that only a finite subset of the eigenvalues can be negative and this subset

depends on r. The entanglement for this scenario is plotted in Fig. 4.5.
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Figure 4.5: Negativity N as a function of r for the state ρPTA−R. Curves are for qR =
1,0.9,0.7,0.6,0.5 from top to bottom.

Assuming that Rob looks only at antiparticles yields analogous results.

We find that entanglement behaves very differently to the corresponding fermionic case
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where entanglement between Alice’s and Rob’s particle (or antiparticle) sector is iden-

tically zero [60]. However, here the entanglement grows with acceleration and reaches a

maximum value after which it degrades. We trace the difference between the two cases

down to extra terms of the form ∣n⟩ ⟨n + 2∣ which appear in (5.2.6). Clearly, no such

fermionic Fock state ∣(n + 2)±Ω⟩ can exist due to Pauli exclusion principle. This behavior

is again a rare case of non monotonically decrease of entanglement with increasing r.

4.3 Conclusions

In this chapter we have analyzed the entanglement tradeoff between the particles

and antiparticles when the initial maximally entangled states are composed by charged

bosonic fields. Including antiparticles in the study of field mode entanglement in non-

inertial frames has deepened our understanding of key features which explain the differ-

ence in behavior of entanglement in the fermionic and bosonic case. It was shown in [60]

that in the fermionic case an entanglement redistribution between particle and antipar-

ticle modes is responsible for the finite value of entanglement in the infinite acceleration

limit. In particular, the relative redistribution for different particle and antiparticle bi-

partitions could be used to explain the behavior of the entanglement when particles and

antiparticles were considered as a whole system. Here we have analyzed the charged

bosonic case and computed the entanglement in the partitions that correspond to those

considered for fermions in [60]. We showed that, due to the bosonic statistics, there

are substantial differences in the entanglement behavior when particles or antiparticles

are not taken into account. We also find rare cases of non-monotonically decrease of

entanglement as a function of acceleration. However, we confirmed that entanglement is

always degraded in the infinite acceleration limit independently of the redistribution of

entanglement between the particle and antiparticle bipartitions.

The main difference with the results found in [60] is the following: while in the

fermionic case the redistribution of entanglement between particle and antiparticle sec-

tors can explain the survival of entanglement for infinite accelerations, in the bosonic case

such redistribution allows the entanglement to degrade at infinite accelerations. Such

behavior is better explained by analyzing Figures 4.3 and 4.5, where the entanglement

vanishes in the limit of infinite acceleration for both cases.
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A common way to implement quantum information tasks involves storing information

in cavity field modes. How the motion of the cavities affects the stored information is

a question that could be of practical relevance in space-based experiments [52, 53]. At

present, there has been no success in concretely addressing this question in the framework

of RQI, although a first step was attempted in [11]. From a completely different per-

spective and for almost four decades, the community working on the dynamical Casimir

effect has been seeking an experimentally implementable model which would allow for the

demonstration of the creation of particles as predicted by QFT in Casimir-like settings,

where the wall of a cavity confining the quantum electromagnetic field in its vacuum

state oscillates rapidly and excites the vacuum of the field therefore producing pairs of

correlated particles. Any input in this direction could increase corroboration of QFT

and provide indication that motion dopes affect quantum resources.

In this chapter we introduce a scheme that allows us to confine a relativistic quantum

field in a cavity and determine how modes before any motion occurs are related to the

modes in the cavity after it has undergone non inertial motion. The cavity walls are

modeled by Dirichlet boundary conditions on the field. In particular, we find a suitable

parameter which enables us to employ perturbation techniques and obtain analytical re-

sults to the lowest contributing order. This perturbation parameter is directly related to

the physical variables of the problem and controls the size of the cavity vs the magnitude

of the proper acceleration.

We use this setup to analyze the degradation of initially maximal entangled state of

couples of uncharged scalar field modes each within a cavities in Minkowski space. One

cavity will remain inertial while the other will undergo motion that need not be sta-

tionary. Our analysis therefore combines the explicit confinement of a quantum field

to a finite size cavity and a freely adjustable time-dependence of the cavity’s accel-

eration. This allows observers within the cavities to implement quantum information

protocols in a way that is localized both in space and in time [11]. In particular, our

system-environment split is manifestly causal and invokes no horizons or other notions

that would assume acceleration to persist into the asymptotic, post-measurement future

(cf. [54, 55]). By the equivalence principle, the analysis can be regarded as a model of

gravity effects on entanglement.

61



Chapter 5: Entanglement degradation of cavity modes due to motion

5.1 Cavity prototype configuration

5.1.1 Field quantization inside a Dirichlet box

We start by quantizing a massive scalar field Φ in a (1 + 1)-dimensional cavity in

Minkowski spacetime, where µ > 0 is the mass of the field and the left and right cavity

walls are placed at 0 < L0 < R0. The choice of boundary conditions is not unique and

we employ the Dirichlet boundary conditions which require Φ = 0 on the boundaries.

We find this choice natural for this type of problem given its simplicity (for example

see [12]). It is possible to choose other boundary conditions, for example Von Neumann

boundary conditions, but we will restrict ourselves the The Dirichlet ones. When the

box is inertial, this implies

Φ(t,L0) = Φ(t,R0) = 0 (5.1.1)

and the field has support only within the cavity. In this case, the mode solutions to

(2.2.16) take the form

φ±n,M(t, x) = 1√
nπ

sin(ωn(x −L0))e∓iωnt (5.1.2)

where n > 0 labels the energy eigenstates, ± stands for positive or negative frequency,

ωn =
√

( nπ

R0 −L0
)2 + µ2 (5.1.3)

are the dimensional frequencies with respect to the Killing vector ∂t and

i∂tφ
±
n(t, x) = ±ωnφ±n(t, x) (5.1.4)

The spectrum is therefore discrete and quantization proceeds exactly as in the continuum

case, except that now modes are properly normalizable through (2.2.28)

(φ±n, φ±n′) = δnn′ (5.1.5)

Mixed products vanish. The field Φ can be expanded as

Φ = ∑
n>0

[anφ+n + h.c] (5.1.6)

where the creation and annihilation operators satisfy the usual commutation relations

[an, a†
m] = δnm (5.1.7)

We are interested in a cavity which has constant proper length as measured by a comoving

observer. When the cavity is accelerating, the natural coordinates to employ are the

Rindler coordinates η,χ introduced in 2.2.36 and the boundaries follow two different
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Rindler trajectories. The proper accelerations of the left wall AL0 , the centre A and

right AR0 wall of the box are respectively

AL0 =
c2

L0

A = 2c2

R0 +L0

AR0 =
c2

R0
(5.1.8)

We take advantage of the invariance under the boost Killing vector ∂η during the accel-

eration to write the solutions to (2.2.16) as

φ±n,R(η,χ) =
1√
nπ

sin(Ωn ln( χ
L0

))e∓iΩnη (5.1.9)

where n ∈ N,
Ωn =

nπ

ln(R0

L0
)

(5.1.10)

is the dimensionless discrete frequency with respect to the boost Killing vector ∂η and

i∂ηφ
±
n,R(η,χ) = ±Ωnφ

±
n,R(η,χ) (5.1.11)

Let Alice and Rob be observers in (1 + 1)-dimensional Minkowski spacetime, each

carrying (or comoving with) a cavity of this type that contains an uncharged scalar field

of mass µ ≥ 0 with Dirichlet boundary conditions. Alice and Rob are initially inertial

with vanishing relative velocity, and each cavity has length δ > 0. As shown above, the

field modes in each cavity are discrete, indexed by the quantum number n ∈ N and having

the frequencies

ωn ∶=
√
M2 + π2n2/δ (5.1.12)

where M ∶= µδ. We proceed in the following to build trajectories for Rob’s cavity.

5.1.2 Basic Building Block

Rob starts inertial, possibly at rest (Alice and Rob will prepare the state at this point

and we do not address the preparation procedure. We assume that the state has been

prepared before the analysis starts). He then uniformly accelerates for a finite interval of

his proper time. After accelerating, Rob’s cavity is again inertial and has proper length

δ in its new rest frame. We call this travel scenario Basic Building Block (BBB). Figure

5.1 shows the prototype case.
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Figure 5.1: Cavity trajectories in Minkowski space. Alice’s cavity remains inertial.

Rob’s cavity is inertial in region I, accelerates in region II and is again

inertial in region III. The figure shows the prototype case where Rob’s

acceleration is to the right and uniform throughout region II, and η̄ is the

duration of the acceleration in Rindler time atanh(t/x).
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By composing BBBs one can obtain a “general” travel scenario, where by general we

mean any travel scenario that can be obtained by pasting together segments of uniform

acceleration and inertial evolution. It is possible to obtain also the transformations for

a small varying accelerations which we omit to present since they involve time ordered

integrals which makes them unmanageable when needed for explicit computations.

5.1.3 Bogoliubov transformations

Let {φn, φ∗n}, n = 1,2, . . ., denote Rob’s field modes that are of positive and negative

frequency ωn with respect to his proper time t before the acceleration (the star denotes

complex conjugation as usual). Similarly, let {φ̄n, φ̄∗n}, n = 1,2, . . . denote Rob’s field

modes that are of positive frequency Ωn with respect to his proper time during the

acceleration.

The two sets of modes {φn, φ∗n},{φ̄n, φ̄∗n}are related by the BVT

φ̄m =∑
n

(α0,mnφn + β0,mnφ∗n)

φ̄∗m =∑
n

(oα
∗
mnφ

∗
n + oβ

∗
mnφn) (5.1.13)

where the coefficient matrices α and β are determined by the motion of the cavity

during the acceleration [10]. We notice that they encode the entries of the matrix A in

(2.2.64) and can be found using (2.2.28). We denote by A0 the matrix for the inertial to

accelerated BVT.

Rob might follow an arbitrarily complicated trajectory, which is composed of segments

of inertial evolution alternated with segments of uniform acceleration. Let the pre-trip

modes be again φn, n = 1,2, . . . and the post-trip modes be φ̄n, n = 1,2, . . .. We find that

the coefficients Amn,Bmn for the general trajectory can always be expressed in terms

of the coefficients α0,mn,β0,mn of the inertial to accelerated BVT. In general, the

resulting expression is complicated but the methods to obtain it are particularly simple

and can provide insight into the physics. We use the formalism of the M matrices

developed in chapter 2 to provide a simple tool for computation of travel coefficients.

One starts from a generic BVT matrix A0, which encodes how the modes φ̄m during

acceleration are related to the modes φm just before it. The inverse BVT, A−1
0 undoes

this transformation. We now introduce two diagonal matrices E ,F where E encodes the

time evolution of each mode during an inertial segment and F during an accelerated
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segment. Specifically

E = diag(. . . , eiωkt . . . ; . . . e−iωkt . . .)

F = diag(. . . , eiΩkt . . . ; . . . e−iΩkt . . .) (5.1.14)

We find that

A = . . .E(n) (A(n)
0 )

−1
F (n)A(n)

0 . . .E(2) (A(2)
0 )

−1
F (2)A(2)

0 E(1) (A(1)
0 )

−1
FA(1)

0 (5.1.15)

where the expression must be read right to left. Eq. (5.1.15) can be interpreted as

follows: one cavity is inertial and then starts accelerating. This is encoded in A(1)
0 . The

cavity uniformly accelerates, F (1), and then turns off the engines (A(1)
0 )

−1
. The cavity

travels at constant velocity, E(1) and then repeats the procedure at will. Accelerations

and times of acceleration and coasting can be chosen at will. This travel scenario is

not the most general and one can design different travel scenarios once the above logic

is understood. For example, one can set the proper time of some inertial segment that

connects two accelerated ones to zero. In addition, different accelerated segments might

have different proper accelerations. For the sake of simplicity and without loss of gen-

erality, in the following we will specialize to scenarios where, in case of two or more

segments of acceleration, the magnitude of the acceleration is the same.

5.1.4 h≪ 1 perturbative expansion

In order to fulfill our aims, it is necessary to be able to compute the Bogoliubov

coefficients. Any matrix A can be written in terms of α0,mn,β0,mn which implies that

we need to be able to compute these coefficients. It turns out that they do have a closed

form which we reproduce below:

α0,mn = 1

δ

√
n

m
Fmn +

1

ln(R0

L0
)

√
m

n
Gmn (5.1.16a)

β0,mn = 1

δ

√
n

m
Fmn −

1

ln(R0

L0
)

√
m

n
Gmn (5.1.16b)

where

Fmn ∶=
ˆ R0

L0

dx sin (ωn(x −L0)) sin(Ωm ln( x
L0

))

Gmn ∶=
ˆ R0

L0

dx

x
sin (ωn(x −L0)) sin(Ωm ln( x

L0
)) (5.1.17)

and (5.1.16) cannot be handled in practical computations. We have identified a pertur-

bative regime that allows us to treat analytically the Bogoliubov coefficients (5.1.16).

We introduce the parameter

h ∶= Aδ
c2

(5.1.18)
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where A is the proper acceleration of the center of the cavity, δ is the length of the cavity

as measured in its rest frame and we have restored the speed of light c in this definition

in order to highlight the role of all the relevant physical constants. The perturbative

regime is for h≪ 1. We can now expand the A matrix as

A = A(0) +A(1) +A(2) +O(h3) (5.1.19)

where the superscript indicates to which order in h do the elements of A contribute. The

matrix A(0) is the contribution to A when h = 0. It is clear that when h = 0 every mode

evolves freely and does not mix. We do choose not to write the powers of h explicitly

for notational simplicity. Therefore

A(0) = diag(. . .Gi−1,Gi,Gi+1, . . . ; . . . ,G
∗
i−1,G

∗
i ,G

∗
i+1) (5.1.20)

Gi satisfies ∣Gi∣ = 1 and it collects all phases from inertial evolution and accelerated

evolution.

In the bosonic case, since A can be expressed as (2.2.64), we can also write

A = A(0) +A(1) +A(2) +O(h3) , (5.1.21a)

B = B(1) +B(2) +O(h3) , (5.1.21b)

where the superscripts indicate again the power of h. We now turn to the expansions of

oα and oβ which can be written as

oαnn = 1 − 1
240 π

2n2h2 +O(h4), (5.1.22a)

α0,mn =
√
mn

(−1 + (−1)m−n)
π2(m − n)3

h +O(h2) (m ≠ n), (5.1.22b)

β0,mn =
√
mn

(1 − (−1)m−n)
π2(m + n)3

h +O(h2). (5.1.22c)

which hold iff nh ≪ 1. These expressions will be fundamental throughout this and the

following chapters.

Note on the role of relative parity of cavity mode numbers

We have found that the Bogoliubov coefficients (5.1.21) in the perturbative regime

display dramatic differences when the relative parity of two modes k, k′ is even or odd.

Such feature will play a key role in Chapter 7 and Chapter 8. The reason for this beaver

is not yet understood, although one can make the following observations. First, we

remind that the Bogolibov coefficients are determined by inner products between modes

(2.2.57). Any transformation that maps a mode φk to

φk ↦ (−1)kφk (5.1.23)
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is a map that knows about the parity of the mode. We therefore notice that such a map

will act on the elements of the Bogoliubov matrix A as

Akk′ ↦ (−1)k+k′Akk′ . (5.1.24)

Therefore, the Bogoliubov coefficients are affected by the relative parity of the modes

that define them. We then notice that, since h > 0, given the perturbative expansion in

(5.1.19) for rightwards accelerations, which we reproduce below

A = A(0) +A(1) +A(2) +O(h3) (5.1.25)

it is possible to obtain the leftwards acceleration expansion by means of the map (5.1.23).

This accounts for the expansion (5.1.19) to take the form

A = A(0) −A(1) +A(2) +O(h3) (5.1.26)

which, to all effects, could have been achieved by replacing h with −h. This can occur

only when k + k′ = 2n + 1 and therefore we expect all Bogoliubov coefficients Akk′ with
k + k′ = 2n to vanish ′ = 0.

5.1.5 Pre-trip preparation

Let Alice and Rob initially prepare their two-cavity system in the maximally entangled

Bell state

∣Ψ⟩ = 1√
2
(∣0⟩A ∣0⟩R + ∣1ω⟩A ∣1k⟩R) (5.1.27)

where the subscripts A and R identify the cavities, ∣0⟩ is the vacuum and ∣1k⟩ is the

one-particle state with quantum number k. Experimentally, ∣Ψ⟩ might be prepared by

allowing a single atom to emit an excitation of frequency ωk over a flight through the

two cavities [56, 57], and the assumption of a single k is experimentally justified if δ is so

small that cavity’s frequency separation ωn+1 −ωn is large compared with the frequency

separations of the atom.

The subscripts A,R refer to Alice and Rob and the fields in their cavities have support

only within the cavity.

5.1.6 Travel techniques

Working in the Heisenberg picture, the state ∣Ψ⟩ does not change in time, but for late

time observations the early time states ∣0⟩R and ∣1k⟩R need to be expressed in terms of

Rob’s late time vacuum ∣0̄⟩R and the late time excitations on it, by formulas that involve
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the Amn,Bmn from (5.1.15). In this sense, the acceleration creates particles in Rob’s

cavity.

We regard the late time system as tripartite between Alice’s cavity, the (late time)

mode k in Rob’s cavity and the (late time) modes {n ∣ n ≠ k} in Rob’s cavity. As any

excitations in the n ≠ k modes are entirely due to the acceleration, we regard these

modes as the environment. We ask: Has the entanglement between Alice’s cavity and

the mode k in Rob’s cavity been degraded after he finishes his travel (and therefore is

inertial again), from the maximal value it had before Rob’s acceleration?

We quantify the entanglement by the negativityN (2.3.19), where the reduced density

matrix ρ is obtained by tracing the full density matrix ∣Ψ⟩ ⟨Ψ∣ over Rob’s late time

frequencies {ωn ∣ n ≠ k}.

The situation covering all the scenarios below is when

A =diag(G1,G2, . . .) +A(1) +O(h2)

B =B(1) +O(h2), (5.1.28)

where the first-order coefficient matrices A(1) and B(1) are off-diagonal, and each Gn

has unit modulus as explained in the subsection 5.1.4. Since we are considering that all

accelerations in our travel scenarios are the same, h is the only expansion parameter.

We perturbatively expand ρ in terms of h as

ρ = ρ(0) + ρ(1) + ρ(2) +O(h3). (5.1.29)

In order to find the contributions to (5.1.29) we need to find the expressions of ∣0⟩R and

∣1k⟩R in terms of late-time excitations. We start by the standard expression that relates

different vacua [9]

∣0⟩R = NeW ∣0̄⟩R (5.1.30)

W ∶= −∑
ij

Vij

2
ā†
i ā

†
j (5.1.31)

V = B∗A−1. (5.1.32)

where N ∈ C is an appropriate normalization constant which in this perturbative regime

has the form

∣N ∣2 = 1 − 1

2
Tr(V †V ) +O(h3), (5.1.33)

the matrix V is defined through the full travel scenario beta and alpha Bogoliubov

matrices B,A and the ket ∣0̄⟩R is the vacuum annihilated by the post-trip annihilation

operators āj . Note that ∣N ∣2 = 1 +O(h2).
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Given (5.1.28), it is trivial to check that the V matrix has the perturbative expansion

V = V (1) +O(h2). (5.1.34)

This can be immediately verified since B ∼ O(h) and A ∼ O(1), therefore the lowest

possible order for V is O(h). Using (5.1.28),(5.1.27),(5.1.30) and (5.1.33) one obtains

the explicit form for ∣0⟩R and ∣1k⟩R to second order in h. We find:

∣0⟩R =N {1 +W + 1

2
W 2+} ∣0̄⟩R

∣1k⟩R =N {Γ + ΓW + 1

2
ΓW 2 +∆} ∣0̄⟩R (5.1.35)

where

Γ ∶=∑
j

(A†)
nj
ā†
j

∆ ∶=∑
j

(BTV )
nj
ā†
j . (5.1.36)

One can use (5.1.35) to compute the terms in (5.1.29) and then perform the partial

transpose but we do not reproduce such computations explicitly since they are technically

involved and not illuminating.

Once (5.1.29) is computed, we observe that the first nontrivial contribution appears

to order h2 and the partial transpose is to this order an 8 × 8 matrix. When working

in perturbation theory one can employ standard techniques to find the eigenvalues of

matrices. However, when the unperturbed term in the expansion, ρ(0) in our case, has

degenerate eigenvalues, this forces one to use degenerate perturbation theory.

Given the 8 × 8 matrix ρ that we need to diagonalize in the perturbation regime, we

isolate the O(2) contribution ρ(2). Then, we compute the eigenvalues of the unperturbed

part ρ(0). We select a set of eigenvalues λ(0)
i that is degenerate and g > 1 elements and

we find the eigenvectors vi ∣ i = 1, . . . , g which span the g dimensional subspace associated

to such eigenvalues. One then constructs a g × g square matrix Ñ where the elements

Ñij can be found by

Ñij = vTi ⋅M (2) ⋅ vj (5.1.37)

and T denotes partial transposition. The O(2) corrections to the eigenvalues λi can

be found by diagonalizing the matrix Ñ , whose eigenvalues we denote by λ̃i ∼ O(h2).
Therefore, we find the corrected degenerate eigenvalues λi of ρ as

λi = λ(0)
i + λ̃i. (5.1.38)

We choose to work to the first non-trivial contributing order which is O(h2). Using

these techniques we find that the partial transpose to this order has exactly one negative
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eigenvalue. The formula for the negativity reads to this order

N = 1
2 − ∑

′

n

(1

2
∣A(1)
nk ∣

2 + ∣B(1)
nk ∣2) , (5.1.39)

where the prime on the sum means that the term n = k is omitted. In order to plot the

dependence of (5.1.39) as a function of the parameters, one needs to specify the details

of the travel scenario considered. Such details will appear in the explicit expression of

A
(1)
nk and B(1)

nk .

We emphasize that the decrease of the negativity is due only with the mixing of the

modes. The BVT act as a local operation in Rob’s cavity and therefore will in general

decrease the initial entanglement between Alice and Bob.

5.2 Massless field.

In this section we specialise to a massless scalar field. Nonzero mass or extra dimen-

sions will be included in section 5.3.

5.2.1 Basic Building Block travel scenario

Let I, II and III denote respectively the initial inertial region, the region of acceleration

and the final inertial region. As a first travel scenario, we consider the BBB depicted in

Figure 5.1. Let the proper acceleration at the centre of the cavity be h/δ. In region II,

the field modes that are positive frequency with respect to η and their frequencies with

respect to the proper time τ at the centre of the cavity are

Ω̃n =
nπh

2δarctanh(h/2) . (5.2.1)

We notice that (5.2.1) follows from

Ω̃n = AΩn (5.2.2)

As a special case of (5.1.15), we can now write the Bogoliubov transformation from

region I to region III as the composition of three individual transformations.

The first comes with the coefficient matrices (oα, oβ) from I to II. The second is with

the coefficient matrices

F = (diag(p, p2, p3, . . .),diag(p−1, p−2, p−3, . . .)) (5.2.3)

where

p ∶= exp(iΩ̃1τ̄) (5.2.4)
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and τ̄ is the proper duration of the acceleration: this undoes the phases that the modes

φ̄n develop over region II. The third is the inverse of the first, from II to III, with the

coefficient matrices (oα
†,−oβ

T ).
Collecting, we find that the negativity N1 is given to order h2 by

N1 = 1
2 − 2[Q(k,1) −Q(k, p)]h2 = 1

2 − h
2
∞
∑
r=0

akr ∣p1+2r − 1∣2, (5.2.5)

where

Q(n, z) ∶= 4n2

π4
Re(Li6(z) −

1

64
Li6(z2)) + 6n

π4

∞
∑
r=[n

2
]
Re (z1+2r)( 1

(1 + 2r)5
− n

(1 + 2r)6
)

(5.2.6)

Here Li6 is the polylogarithm [21], the square brackets in the lower limit of the sum in

(5.2.6) denote the integer part, and anr are all strictly positive. The sum term in (5.2.6)

is O(n−3) as n → ∞, and numeric shows that the sum term contribution to Q(n, z) is

less than 1.1% already for n = 1 and less than 0.25% for n ≥ 2.

The negativity N1 (5.2.5) is periodic in τ̄ with period 2πΩ̃−1
1 and attains its unique

minimum at half-period, with a shape that is close to a pure cosine curve. The behavior

is plotted for one period in Fig. 5.2

The full time evolution of the field in Rob’s cavity during the accelerated segment is

periodic with period since the frequencies Ω̃n are integer multiples of the fundamental

frequency Ω̃1: hence, the periodic behavior of Fig. 5.2. The negativity N1 is therefore

periodic not just in the small h approximation of (5.2.5) but exactly for arbitrary h.

More generally, the same periodicity occurs for all cavity trajectories that contain a

uniformly accelerated segment. We note that the period can be written as

2δ (h/2)−1arctanh(h/2) ∶ (5.2.7)

this is the proper time elapsed at the centre of the cavity between sending and recapturing

a light ray that bounces off each wall once.

5.2.2 One way trip travel scenario

As a second travel scenario, suppose that Rob blasts off as above, coasts inertially for

proper time τ̄ ′ and then performs a braking manoeuvre that is the reverse of the initial

acceleration, bringing him to rest (at, say, Alpha Centauri). Composing the segments
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1
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- N1

h2

Figure 5.2: We plot ( 1
2
−N1)h−2 with k = 1 as afunction of u ∶= Ω̃1τ̄ over the full

period 0 ≤ u ≤ 2π
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as above, we see that the negativity N2 is periodic in τ̄ ′ with period 2δ. Noting that for

leftward acceleration (5.1.22) holds with negative h, we find to order h2 the formula

N2 =1
2 − h

2
∞
∑
r=0

akr ∣p1+2r − 1∣2∣(pp′)1+2r − 1∣
2

=1
2 − 2[2Q(k,1) − 2Q(k, p) +Q(k, p′) − 2Q(k, pp′) +Q(k, p2p′)]h2, (5.2.8)

where

p′ ∶= exp(iπτ̄ ′/δ), (5.2.9)

[cf. the expression of N1 in terms of two Qs in (5.2.5)]. In addition to displaying the

periodicities in τ̄ and τ̄ ′, (5.2.8) shows that the coefficient of h2 vanishes iff

p = 1 or pp′ = 1. (5.2.10)

This implies that to order h2, any entanglement degradation caused by the accelerated

segments can be cancelled by fine-tuning the duration of the coasting segment. The time

scales for a 1m long cavity are of the order of ms − ns. A plot is shown in Figure 5.3.

5.2.3 Return trip travel scenario

As a third scenario, suppose Rob travels to Alpha Centauri as above, rests there for

proper time τ̄ ′′ and then returns to Alice by reversing the outward maneuvers. Again

composing the segments, we see that the negativity N3 is periodic in τ̄ ′′ with period 2δ,

and to order h2 we find

N3 = 1
2 − h

2
∞
∑
r=0

akr ∣p1+2r − 1∣2 ⋅ ∣(pp′)1+2r − 1∣
2
⋅ ∣(p2p′p′′)1+2r − 1∣

2
, (5.2.11)

where

p′′ ∶= exp(iπτ̄ ′′/δ), (5.2.12)

and the sum can be expressed as a sum of 14 Qs if desired. The periodicites in τ̄ , τ̄ ′ and

τ̄ ′′ are manifest in (5.2.11). The coefficient of h2 vanishes iff

p = 1, pp′ = 1 or p2p′p′′ = 1, (5.2.13)

so that to order h2 any entanglement degradation caused by the accelerated segments can

be cancelled by fine-tuning the duration of either of the independent inertial segments.

Plots are not illuminating and resemble those of Fig. 5.3. Selected plots for the current

scenario can be found in [58].
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Figure 5.3: The plot shows ( 1
2
−N2)h−2 with k = 1 as a function of u ∶= Ω̃1τ̄ and

v ∶= πτ̄ ′/δ over the full periods 0 ≤ u ≤ 2π and 0 ≤ v ≤ 2π. Note the zeroes

at u ≡ 0 mod 2π and at u + v ≡ 0 mod 2π.
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5.2.4 Validity of the perturbation regime h≪ 1

Four comments are in order.

I Should one wish to consider noninertial initial or final states for Rob, our small

h analysis is applicable whenever the assumptions leading to formula (5.1.39) still

hold. For example, in a kick-start scenario that contains just regions I and II of

Fig. 5.1, so that Rob’s final state is uniformly accelerating, we find

Nkick =
1

2
−Q(k,1)h2 (5.2.14)

II Second, the validity of our perturbative treatment requires the negativity to re-

main close to its initial value 1/2 which in our scenarios happens when kh ≪ 1.

As the expansions (5.1.22) are not uniform in the indices, the treatment could

potentially have missed even in this regime effects due to very high energy modes.

However, we have verified that when the h2 terms are included in the expansions

(5.1.22), these expansions satisfy the Bogoliubov identities (2.2.50) perturbatively

to order h2 and the products of the order h matrices in the identities are uncon-

ditionally convergent. This gives confidence in our order h2 negativity formulas,

whose infinite sums come from similar products of order h matrices.

III Third, the matrices (5.1.22) can be self-consistently truncated to the lowest 2 × 2

block provided the rows and columns are renormalised by suitable factors of the

form 1 + O(h2) to preserve the Bogoliubov identities to order h2. Taking Rob’s

initial excitation to be in the lower frequency, we find that all the above negativity

results hold with the replacement

Q(1, z)→ a10Re(z) +
1

2
a11Re(z3) (5.2.15)

and the error in this replacement is less than 0.7%. The high frequency effects on

the entanglement are hence very strongly suppressed.

IV The analysis can be adapted to a fermionic field and to scenarios where mode

entanglement is generated from an initially unentangled state; such settings are

the main object of study of the following three chapters

5.3 Massive field

For a massive field the frequencies are not uniformly spaced and the negativity is no

longer periodic in the durations of the inertial and uniformly accelerated segments. The
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massive counterparts of the expansions (5.1.22) can be found using uniform asymptotic

expansions of modified Bessel functions [21, 59], with the result

α0,nn = 1 − (π
2n2

240
+ M

2

120
+ M

2(M2 − 5)
240π2n2

+ M
2(M2 − 24)
96π4n4

)h2 +O(h4),

(5.3.1a)

α0,m ≠ n + β0,mn =
2mn(−1 + (−1)m−n)[π2(n2 + 3m2) + 4M2](M2 + π2n2)1/4

π4(m2 − n2)3(M2 + π2m2)1/4 h +O(h2),

(5.3.1b)

α0,m ≠ n − β0,mn =
2mn(−1 + (−1)m−n)[π2(m2 + 3n2) + 4M2](M2 + π2m2)1/4

π4(m2 − n2)3(M2 + π2n2)1/4 h +O(h2)

(5.3.1c)

where

M ∶= µ
δ

(5.3.2)

and we have again verified that the Bogoliubov identities are satisfied perturbatively to

order h2.

The perturbative treatment is now valid provided h ≪ 1 and hM2 ≲ 100, allowing the

possibility that M may be large. When k ≪M , a qualitatively new feature is that the

order h contribution in oα is proportional to M2, resulting in an overall enhancement

factor M4 in the negativity. In the travel scenario with one accelerated segment, the

negativity takes in this limit the form

N1 = 1
2 − h

2M4 × 256k2

π8 ∑′′

n

n2

(k2 − n2)6
{1 − cos [(

√
M2 + π2k2 −

√
M2 + π2n2 )(τ̄/δ)]} ,

(5.3.3)

where the double prime means that the sum is over positive n with n ≡ k+1 mod 2. The

negativity N1 (5.3.3) is approximately periodic in τ̄ with period 4Mδ/π, but it contains
also significant higher frequency components. Plots are shown in Figure 5.4.

5.4 (3 + 1) dimensions.

The above (1 + 1)-dimensional entanglement degradation analysis extends immedi-

ately to linear acceleration in (3+1)-dimensional Minkowski space, where the transverse

momentum merely contributes to the effective(1 + 1)-dimensional mass (see chapter 2).

For a massless field in a cavity of length δ = 10m and acceleration 10ms−2, an effect of
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Figure 5.4: The plots show ( 1
2
−N1)h−2M−4 (5.3.3) for M = 103 as a function of

u = πτ̄/(4Mδ), in the upper figure with k = 1,2,3,4 (solid, dashed, dash-

dotted,wide-dashed) and in the lower figure with k = 30.
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observable magnitude can be achieved by trapping quanta of optical wavelengths pro-

vided the momentum is highly transverse so that k ≪M ≈ 108. Were it possible to trap

and stabilise massive quanta of kaon mass µ = 10−27 kg in a cavity of length δ = 10 cm,

the effect would become observable already at the extreme microgravity acceleration of

10−10 ms−2.

5.5 Conclusions

In this chapter we have introduced the techniques that allow us to quantize an un-

charged massive or massless scalar field in a 1+1 or 3+1 cavity and to compute explicitly

the BVT between initial and final modes of the traveling cavity in the low h regime. Our

techniques allow for “general” trajectories which are composed by inertial and uniform

accelerated segments. We find that the entanglement present in an initial maximally

entangled state between two modes, one in each inertial cavity, is degraded when one

of the two cavities travels. The degradation of entanglement is quantified by negativity

and we find that for 1+1 massless bosons it is periodic. Exact periodicity occurs because

every mode acquires a phase during the inertial or accelerated segments which are mul-

tiples of the fundamental one. The degradation of entanglement is not exactly periodic

for 1 + 1 massive or 3 + 1 massless or massive fields. In this case, the degradation can

be enhanced by entangling highly transverse photons (with high momentum transverse

to the direction of the acceleration) or massive bosons (which cannot be realized with

current technologies). The enhancement cannot be so large that the overall correction to

the negativity will exceed 5-10% of the maximum value. Over this amount, we exit the

perturbative regime. This chapter provides the basics tools for understanding the work

presented in the following three where we analyze fermionic field modes entanglement

and creation of entangleement within a single cavity.
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In the previous chapter we have introduced techniques for analyzing how motion of

cavities that contain bosonic quantum fields affects the initial entanglement between

modes of the fields in different cavities. Studies of uniform acceleration in Minkowski

spacetime (see [5, 7, 15, 36, 48, 60] for a small sellction and [61] for a recent review) have

revealed significant differences in the degradation that occurs for bosonic and fermionic

fields. There are in particular clear qualitative differences in the bosonic versus fermionic

particle-antiparticle entanglement swapping (see [60] and Chapter 4 for an example) and

in the infinite acceleration residual entanglement and nonlocality [48].

The analyses of uniform acceleration mentioned above involve two ingredients that

make it difficult to compare the theoretical predictions to experimentally realisable sit-

uations. The first is that while the uniformly-accelerated observers are considered to

be pointlike and perfectly localised on a trajectory of prescribed acceleration, the field

excitations are nevertheless usually treated as delocalised field modes of plane wave type,

normalised in the sense of Dirac rather than Kronecker deltas. This may seem a tech-

nicality, perhaps remediable by use of appropriate wave packets [15], but at present it

appears unexplored how localised observers would in practice perform measurements to

probe the correlations in the delocalised states.

The second concern lies in the time evolution of the correlations. An inertial tra-

jectory in Minkowski space is stationary, in the sense that it is the integral curve of a

Minkowski time translation Killing vector. A uniformly-accelerated trajectory is also

stationary, in the sense that it is the integral curve of a boost Killing vector. However,

the combined system of the two trajectories is not stationary, as the two Killing vec-

tors do not commute. For example, in the(1 + 1)-dimensional setting there is a unique

moment at which the two trajectories are parallel, and the trajectories may or may not

intersect depending on their relative spatial location. Yet the analyses mentioned above

regard the correlations between observers on the two trajectories as stationary and the

relative location of the trajectories as irrelevant, observing just that the spacetime has a

quadrant causally disconnected from the uniformly-accelerated worldline and noting that

the field modes confined in this quadrant are inaccessible to the accelerated observer.

While the acceleration horizon that is responsible for this inaccessibility may be seen as

the basis of the Unruh effect [8, 22], the horizon exists only if the uniform acceleration

persists from the asymptotic past to the asymptotic future. In this setting it is not clear

how to address motion on trajectories that remain uniformly accelerated only up to the

moment at which localised observers might make their measurements on the quantum

state.
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Both of these concerns have been addressed in the previous chapter by means of

bosonic quantum fields. In this chapter we shall undertake the first steps of investigat-

ing fermionic entanglement in accelerated cavities by adapting the scalar field analysis

developed in chapter 5 to a Dirac fermion. When considering fermions, the presence of

positive and negative charges allows a broader range of initial Bell-type states to be con-

sidered. Another difference is that in a fermionic Fock space the entanglement between

the cavities can be characterised not just by the negativity but also by the violation of

the Clauser-Horne-Shimony-Holt (CHSH) version of Bell’s inequality [62, 63], physically

interpretable as nonlocality. New technical issues arise from the boundary conditions

that are required to keep the fermionic field confined in the cavities.

In this chapter we focus on a massless fermion in (1 + 1) dimensions. In this setting

another new technical issue arises from a zero mode that is present in the cavity under

boundary conditions that may be considered physically preferred. This zero mode needs

to be regularised in order to apply usual Fock space techniques.

6.1 Quantization of fermions within an inertial cavity

As a first step we quantize the fermionic field in the cavity.

Let (t, x) be standard Minkowski coordinates in (1 + 1) dimensional Minkowski space

with standard Minkowski metric.

The massless Dirac equation reads

i γµ∂µψ = 0 , (6.1.1)

where the 4 × 4 matrices γµ form the usual Dirac-Clifford algebra,

{γµ, γν} = 2ηµν . (6.1.2)

A standard basis of plane wave solutions reads

ψω,ε,σ(t, x) = Aω,ε,σ e−iω(t−εx)Uε,σ , (6.1.3)

where ω ∈ R, ε ∈ {1,−1}, σ ∈ {1,−1}, the constant spinors Uε,σ satisfy

α3Uε,σ = εUε,σ , (6.1.4a)

γ5Uε,σ = σUε,σ , (6.1.4b)

U †
ε,σUε′,σ′ = δεε′δσσ′ , (6.1.4c)
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The solutions (6.1.3) satisfy the eigenvalue equations

i∂tψω,ε,σ(t, x) = ωψω,ε,σ(t, x)

α3ψω,ε,σ = γ0γ3ψω,ε,σ = εψω,ε,σ
γ5ψω,ε,σ = iγ0γ1γ2γ3ψω,ε,σ = σψω,ε,σ (6.1.5)

where ω is the frequency of the mode, ε labels right-movers (ε = 1) and a left-movers

(ε = −1), σ is the eigenvalue that labels helicity/chirality [18] and the right-handed

(σ = +1) and left-handed (σ = −1) solutions are decoupled because m = 0 in (6.1.1).

We confine the field in the inertial cavity

L0 ≤ x ≤ R0, (6.1.6)

where 0 < L0 < R0 and δ ∶= R0 − L0 is the usual length of the box. The fermionic inner

product reads

(ψ,ψ′) =
R0ˆ

L0

dxψ†ψ′ , (6.1.7)

where the integral is evaluated on a hyper-surface t = const. To ensure unitarity of the

time evolution, so that the inner product (6.1.7) is conserved in time, the Hamiltonian

must be defined as a self-adjoint operator by introducing suitable boundary conditions

at x = L0 and x = R0 [64, 65]. We specialise to boundary conditions that do not couple

right-handed and left-handed spinors. For concreteness, we consider from now on only

left-handed spinors, and we drop the index σ. The analysis for right-handed spinors is

similar.

We seek the eigenfunctions of the Hamiltonian in the form

ψω(t, x) = Aω e−iω(t−x)U+ + Bω e−iω(t+x)U− , (6.1.8)

where Aω,Bω ∈ C. In order to retain unitarity, one choice of boundary conditions would

be to allow probability to flow out through one of the cavity walls and instantaneously

reappear at the other wall; physically, this would correspond to a spatial surface being

a circle, possibly with one marked point. However, we wish to regard the spatial surface

as a genuine interval with two spatially separated endpoints, and we hence specialise to

boundary conditions that ensure vanishing of the probability current independently at

each wall. The boundary condition on the eigenfunctions thus reads

( ψ̄ωγ3ψω′ )x=L0
= 0 = ( ψ̄ωγ3ψω′ )x=R0

, (6.1.9)

where ψ̄ = ψ †γ0.
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Following the procedure of [64, 65], we find from (6.1.8) and (6.1.9) that the self-

adjoint extensions of the Hamiltonian are specified by two independent phases, char-

acterising the phase shifts of reflection from the two walls. We encode these phases

in the parameters θ ∈ [0,2π) and s ∈ [0,1), which can be understood respectively as

the normalised sum and difference of the two phases. Choosing the value of the phases

leads to (in principle) different quantizations. The quantum theories then fall into two

qualitatively different cases, the generic case 0 < s < 1 and the special case s = 0.

In the generic case 0 < s < 1, the orthonormal eigenfunctions are

ψn(t, x) =
1√
2δ

[e−iωn(t−x+L0)U+ + eiθe−iωn(t+x−L0)U−] (6.1.10a)

where

ωn = (n + s)π/δ , n ∈ Z. (6.1.11)

Note that ωn ≠ 0 for all n, and positive (respectively negative) frequencies are obtained

for n ≥ 0 (n < 0). A Fock space quantisation can be performed in a standard manner [18].

The special case s = 0 corresponds to assuming that the two walls are of identical

physical build. In this case ωn ≠ 0 for n ≠ 0 but ω0 = 0. It follows that a Fock quantisation

can proceed as usual for the n ≠ 0 modes, but n = 0 is a zero mode that does not admit

a Fock space quantisation. In what follows we consider the s = 0 quantum theory to be

defined by first quantising with s > 0 and at the end taking the limit s → 0+. All our

entanglement measures will be seen to remain well defined in this limit.

6.2 Uniformly accelerated cavity

We proceed to quantize the fermionic field contained in a cavity, as in the section 6.1,

when the latter accelerates and is rigid in its rest frame. We consider a cavity whose

ends move on the worldlines

xL =
√
L2

0 + t2,

xR =
√
R2

0 + t2, (6.2.1)

where the notation is as above.

The proper accelerations of the ends are 1/L0 and 1/R0 respectively, and the cavity as

a whole is static in the sense that it is dragged along the boost Killing vector

Ξ ∶= x∂t + t∂x. (6.2.2)

At t = 0 the accelerated cavity overlaps precisely with the inertial cavity of Sec. 6.1.
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Coordinates convenient for the accelerated cavity are the standard Rindler coordinates

(2.2.36) in the RRW. The metric reads

ds2 = −χ2dη2 + dχ2 (6.2.3)

The cavity is at

L0 ≤ χ ≤ R0, (6.2.4)

and the boost Killing vector Ξ along which the cavity is dragged has the expression

Ξ = ∂η.

In Rindler coordinates the massless Dirac equation (6.1.1) takes the for [10, 66]

i ∂η ψ(η,χ) = (−i α3(χ∂χ + 1
2) ) ψ(η,χ) , (6.2.5)

and the inner product for a field encased in the accelerated cavity reads

(ψ,ψ′) =
R0ˆ

L0

dχψ†ψ′ , (6.2.6)

where the integral is evaluated on a hyper surface η = const. Working as in Sec. 6.1, we

find that the orthonormal energy eigenfunctions are

ψ̂n(η,χ) =
e−iΩnη√

2χ ln(R0/L0)
((χ
a
)
iΩn

U+ + eiθ (
χ

a
)
−iΩn

U−) (6.2.7)

where the R frequencies are defined as

Ωn =
(n + s)π

ln(R0/L0)
(6.2.8)

and n ∈ Z. θ and s have the same meaning and values as above: we consider the

microphysical build of the cavity walls not to be affected by their acceleration. For s ≠ 0

a Fock space quantisation can be performed in a standard manner. For s = 0 the mode

n = 0 is again a zero mode, and we consider the s = 0 quantum theory to be defined as

the limit s→ 0+.

6.3 Quantization and BVT

We now turn to a cavity whose trajectory consists of inertial and uniformly accelerated

segments.

The prototype cavity configuration is the same as in the previous chapter and we

reproduce it here shown in Fig. 6.1. Again, Alice and Rob will be initially inertial and
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η
_

Alice Rob

x

III
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t
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Figure 6.1: Space-time diagram of cavity motion is shown. Rob’s cavity is at rest

initially (Region I), then undergoes a period of uniform acceleration from

t = 0 to η = η̄ (Region II) and is thereafter again inertial (Region III).

Alice’s cavity overlaps with Rob’s cavity in Region I and remains inertial

throughout.

at t = 0 Rob will start a trip. Trajectories are again planned using the techniques in

Chapter 5.

The Dirac field Ψ in Rob’s cavity before the trip starts may be expanded as

Ψ = ∑
n≥0

anψn +∑
n<0

b†nψn (6.3.1)

while after the trip it may be expanded as

Ψ = ∑
n≥0

ân ψ̂n +∑
n<0

b̂†n ψ̂n (6.3.2)

where the nonvanishing anticommutators are

{am, a†
n} = {bm, b†n} = δmn , (6.3.3a)

{âm, â†
n} = {̂bm, b̂†n} = δmn . (6.3.3b)

We again employ the formalism of A matrices for the BVT and we can express the final
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modes in terms of the initial ones through

ψ̂m =∑
n

Amnψn , ψn =∑
m

A∗mn ψ̂m , (6.3.4)

where the coefficients of A are given by

Amn = (ψn, ψ̂m ) (6.3.5)

Once more, the matrix A can be expressed in terms of the BVT between inertial and

accelerated modes that we denote by A.

The perturbation parameter is again

h ∶= 2δ

R0 +L0
, (6.3.6)

satisfying 0 < h < 2. Expanding A in a Maclaurin series in h, we find

A = A(0) + A(1) + A(2) + O(h3) , (6.3.7)

where the superscript indicates the power of h and the explicit expressions for A(0), A(1)

and A(2) read

A(0)
mn = δmn , (6.3.8a)

A(1)
nn = 0 , (6.3.8b)

A(1)
mn =

[(−1)m+n − 1](m + n + 2s)
2π2(m − n)3

h , (m ≠ n) (6.3.8c)

A(2)
nn = −( 1

96
+ π

2(n + s)2

240
)h2 , (6.3.8d)

A(2)
mn =

[(−1)m+n + 1]
8π2(m − n)4

[(m + s)2 + 3(n + s)2 + 8(m + s)(n + s)]h2 . (m ≠ n) (6.3.8e)

The expressions (6.3.8) show that the small h expansion of Amn is not uniform in the

indices, but it is easy to verify that the expansion maintains the unitarity of A pertur-

batively to order h2 and the products of the order h matrices in the unitarity identities

are unconditionally convergent.

The perturbative unitarity of A persists in the limit s → 0+. Had we set s = 0 at the

outset and dropped the zero mode from the system by hand, the resulting truncated A

would not be perturbatively unitary to order h2.

6.3.1 Pre-trip to post-trip Bogoliubov transformations

After the trip, we expand the Dirac field in Rob’s cavity as

Ψ = ∑
n≥0

ãn ψ̃n + ∑
n<0

b̃†n ψ̃n , (6.3.9)
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where the mode functions ψ̃n are as in (6.1.10) but (t, x) are replaced by the Minkowski

coordinates (t̃, x̃) adapted to the cavity’s new rest frame, with the surface t̃ = 0 coinciding

with η = η1. The nonvanishing anticommutators are

{ãm, ã†
n} = {b̃m, b̃†n} = δmn . (6.3.10)

The BVT between the modes before and after the journey can then be written as

ψ̃m =∑
n

Amnψn , ψn =∑
m

A∗mn ψ̃m . (6.3.11)

We proceed as before and expand A in a Maclaurin series in h as

A = A(0) + A(1) + A(2) + O(h3) , (6.3.12)

where the superscript again indicates the power of h. Given a specific travel scenario

one can express every term in (6.3.12) as functions of A.

6.3.2 Relations between operators and vacua

We denote the Fock vacua of the field before the trip by ∣0 ⟩ and after the trip by ∣ 0̃ ⟩.
As for the bosonic case [9], we make the following ansatz for the transformation between

the two

∣0 ⟩ = NeW ∣ 0̃ ⟩ , (6.3.13)

where

W = ∑
p≥0,q<0

Vpq ã
†
p b̃

†
q (6.3.14)

and the V matrix entries Vpq and the normalisation constant N are to be determined.

Note that the two indices of V take values in disjoint sets.

It follows from (6.3.9) and (6.3.11) that the creation and annihilation operators before

and after the voyage are related by

n ≥ 0 ∶ an = (ψn, ψ ) = ∑
m≥0

ãmAmn + ∑
m<0

b̃†mAmn , (6.3.15a)

n < 0 ∶ b†n = (ψn, ψ ) = ∑
m≥0

ãmAmn + ∑
m<0

b̃†mAmn . (6.3.15b)

Using (6.3.13) and (6.3.15a), the condition an ∣0 ⟩ = 0 reads

⎛
⎝ ∑m≥0

ãmAmn + ∑
m<0

b̃†mAmn
⎞
⎠
eW ∣ 0̃ ⟩ = 0 . (6.3.16)

88



Chapter 6: Kinematic entanglement degradation of fermionic cavity
modes

From the anticommutators (6.3.10) it follows that

[W , ãm ] = −∑
q<0

Vmq b̃
†
q , (6.3.17a)

[W , [W , ãm ] ] = 0 . (6.3.17b)

Using (6.3.17) and the Hadamard lemma,

eABe−A = B + [A, B ] + 1
2 [A, [A, B ] ] + . . . , (6.3.18)

(6.3.16) reduces to

∑
m≥0

Amn Vmq = −Aqn (n ≥ 0 , q < 0) . (6.3.19)

A similar computation shows that the condition bn ∣0 ⟩ = 0 reduces to

∑
m<0

A∗mn Vpm = A∗pn (n < 0 , p ≥ 0) . (6.3.20)

If the block of A where both indices are non-negative is invertible, Eq. (6.3.19) de-

termines V uniquely. Similarly, if the block of A where both indices are negative is

invertible, Eq. (6.3.20) determines V uniquely. If both blocks are invertible, it can

be verified using unitarity of A that the ensuing two expressions for V are equivalent.

Working perturbatively in h, the invertibility assumptions hold, and using ((6.3.12)) we

find

V = V (1) + O(h2), (6.3.21)

where

V (1)
pq = −A(1)

qp G
∗
p = A(1)∗

pq Gq (p ≥ 0, q < 0). (6.3.22)

We shall show in Section 6.4 that the normalisation constant N has the small h expansion

N = 1 − 1
2∑
p,q

∣Vpq ∣2 +O(h3) . (6.3.23)

6.4 Evolution of entangled states

In this section we study the evolution of Bell-type quantum states of modes within

two cavities. We shall work perturbatively to quadratic order in h.

We specialize to the scenario where Rob is initially inertial, accelerates uniformly and

then turns the engines off and travels with constant velocity. More complicated scenarios

can be analyzed in a similar fashion adopting the techniques developed in the previous
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chapter. Focusing first on Rob’s cavity only, we write out in Sec. 6.4.1 the pre-trip

vacuum and states with a single (anti-)particle in terms of post-trip excitations on the

appropriate vacuum. In Sec. 6.4.2 we address an entangled state where one field mode is

controlled by Alice and one by Rob. In Sec. 6.4.3 we address a state of the type analysed

in [60] where the entanglement between Alice and Rob is in the charge of the field modes.

6.4.1 Rob’s cavity: vacuum and single-particle states

Consider the initial vacuum ∣0 ⟩ in Rob’s cavity before the journey starts. We shall

use (6.3.13) to express this state in terms of post-trip excitations over the post-trip vac-

uum ∣ 0̃ ⟩.

We expand the exponential in (6.3.13) as

eW = 1 + ∑
p,q

Vpq ã
†
p b̃

†
q + 1

2 ∑
p,q,i,j

Vpq Vij ã
†
p b̃

†
q ã

†
i b̃

†
j +O(h3). (6.4.1)

We denote the final single-particle states by

∣1̃k⟩
+ ∶= ã†

k ∣ 0̃ ⟩ (6.4.2)

for k ≥ 0 and by

∣1̃k⟩
− ∶= b̃†k ∣ 0̃ ⟩ (6.4.3)

for k < 0, so that the superscript ± indicates particles and antiparticles respectively.

From (6.4.1) we obtain

eW ∣ 0̃ ⟩ = ∣ 0̃ ⟩ + ∑
p,q

Vpq ∣ 1̃p⟩
+ ∣1̃q ⟩

−

− 1
2 ∑
p,q,i,j

VpqVij(1 − δpi)(1 − δqj) ∣1̃p⟩
+ ∣1̃i⟩

+ ∣1̃q⟩
− ∣1̃j⟩

− +O(h3) , (6.4.4)

where the ordering of the single-particle kets encodes the ordering of the fermion creation

operators. It follows that the normalisation constant N is given by (6.3.23), and (6.3.13)

gives

∣0 ⟩ = (1 − 1
2∑
p,q

∣Vpq ∣2) ∣ 0̃ ⟩ + ∑
p,q

Vpq ∣ 1̃p⟩
+ ∣1̃q ⟩

−

− 1
2 ∑
p,q,i,j

VpqVij(1 − δpi)(1 − δqj) ∣1̃p⟩
+ ∣1̃i⟩

+ ∣1̃q⟩
− ∣1̃j⟩

− +O(h3) . (6.4.5)

Consider then in Rob’s cavity the state with exactly one pre-trip particle,

∣1k⟩− ∶= b†k ∣0 ⟩ for k < 0 or

∣1k⟩+ ∶= a†
k ∣0 ⟩ for k ≥ 0. (6.4.6)
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Acting on the initial vacuum (6.4.5) by (6.3.15b) and the Hermitian conjugate of (6.3.15a)

respectively, we find

k < 0 ∶ ∣1k⟩− =∑
p,q

VpqApk ∣1̃q⟩
−

+ ∑
m<0

Amk
⎡⎢⎢⎢⎢⎣
(1 − 1

2∑
p,q

∣Vpq ∣2) ∣1̃m⟩− +∑
p,q

Vpq(1 − δmq) ∣1̃p⟩
+∣1̃q⟩

−∣1̃m⟩−

−1
2 ∑
p,q,i,j

VpqVij(1−δpi)(1−δqj)(1−δmq)(1−δmj) ∣1̃p⟩
+∣1̃i⟩

+∣1̃q⟩
−∣1̃j⟩

−∣1̃m⟩−
⎤⎥⎥⎥⎥⎦

+O(h3) , (6.4.7a)

k > 0 ∶ ∣1k⟩+ = −∑
p,q

VpqA∗qk ∣1̃p⟩
+

+ ∑
m≥0

A∗mk
⎡⎢⎢⎢⎢⎣
(1 − 1

2∑
p,q

∣Vpq ∣2) ∣1̃m⟩+ +∑
p,q

Vpq (1 − δmp) ∣1̃m⟩+∣1̃p⟩
+∣1̃q⟩

−

−1
2 ∑
p,q,i,j

VpqVij(1−δpi)(1−δqj)(1−δmp)(1−δmi) ∣1̃m⟩+∣1̃p⟩
+∣1̃i⟩

+∣1̃q⟩
−∣1̃j⟩

−
⎤⎥⎥⎥⎥⎦

+O(h3) . (6.4.7b)

6.4.2 Entangled two-mode states

We wish to consider a state where one cavity field mode is controlled by Alice and

one by Rob. Concretely, we take

∣φ±init ⟩AR+ = 1√
2
( ∣0k̂ ⟩A ∣0k ⟩R ± ∣1k̂ ⟩

κ

A
∣1k ⟩+R ) , (6.4.8a)

∣φ±init ⟩AR− = 1√
2
( ∣0k̂ ⟩A ∣0k ⟩R ± ∣1k̂ ⟩

κ

A
∣1k ⟩−R ) , (6.4.8b)

where the superscripts ± indicate particles or antiparticles, so that κ = + for k̂ ≥ 0 and

κ = − for k̂ < 0. Furthermore, we consider the two particle basis state of the two mode

Hilbert space, corresponding to one excitation each in the modes k̂ in Alice’s cavity and k

in Rob’s cavity, to be ordered as in (6.4.8). As pointed out in Ref. [67], making such a

choice can lead to ambiguities in the entanglement. In fact, the fermionic Fock space is

not naturally equipped with a tensor product structure. When defining vectors in the

Fock space, the ordering of fermionic operators is uniquely defined unto an overall sign

difference. In our case, the ambiguity amounts to a relative phase shift of π, i.e., a sign

change, in (6.4.8), which does not affect the amount of entanglement. In other words,

the states (6.4.8) are pure, bipartite, maximally entangled states of mode k̂ in Alice’s

cavity and mode k in Rob’s cavity.
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We form the density matrix for each of the states (6.4.8), express the density matrix

in terms of Rob’s post-trip basis to order h2 using (6.4.5) and (6.4.7), and take the partial

trace over all of Rob’s modes except the reference mode k. All of Rob’s modes except k

are thus regarded as environment, to which information is lost due to the acceleration.

The relevant partial traces of Rob’s matrix elements depend on the sign of the mode

label k. Throughout this work, we use the notation Tr¬k to emphasize that we are

performing a trace over all degrees of freedom (mode numbers) except k and analogously

for Tr¬k,k′ . For k ≥ 0, corresponding to (6.4.8a), we find

Tr¬k ∣0k⟩ ⟨0k∣ = (1 − f−k ) ∣ 0̃k⟩ ⟨0̃k∣ + f−k ∣1̃k⟩
++⟨1̃k∣ , (6.4.9a)

Tr¬k ∣0k⟩+⟨1k∣ = (Gk +A(2)
kk ) ∣ 0̃k⟩

+⟨1̃k∣ , (6.4.9b)

Tr¬k ∣1k⟩++⟨1k∣ = (1 − f+k ) ∣1̃k⟩
++⟨1̃k∣ + f+k ∣ 0̃k⟩ ⟨0̃k∣ , (6.4.9c)

where we have used (6.3.22) and introduced the abbreviations

f+k ∶=∑
p≥0

∣A(1)
pk ∣2 , f−k ∶=∑

q<0

∣A(1)
qk ∣2 . (6.4.10)

For k < 0, corresponding to (6.4.8b), we find similarly

Tr¬k ∣0k⟩ ⟨0k∣ = (1 − f+k ) ∣ 0̃k⟩ ⟨0̃k∣ + f+k ∣1̃k⟩
−−⟨1̃k∣ , (6.4.11a)

Tr¬k ∣0k⟩−⟨1k∣ = (G∗
k +A

(2)∗
kk ) ∣ 0̃k⟩

−⟨1̃k∣ , (6.4.11b)

Tr¬k ∣1k⟩−−⟨1k∣ = (1 − f−k ) ∣1̃k⟩
−−⟨1̃k∣ + f−k ∣ 0̃k⟩ ⟨0̃k∣ . (6.4.11c)

6.4.3 States with entanglement between opposite charges

We finally consider the state in the initial region of the form

∣χ±init ⟩AR = 1√
2
( ∣1k ⟩+A ∣1k′ ⟩−R ± ∣1k′ ⟩−A ∣1k ⟩+R ) , (6.4.12)

where the meaning of the subscripts and superscripts is as described for Eq. (6.4.8),

indicating that k ≥ 0 and k′ < 0. In this state Alice and Rob each have access to both of

the modes k and k′, and the entanglement is in the charge of the field modes, similarly to

the states considered in [60]. While superselection rules do not allow for states with linear

combinations of different charges, our cavity scenario does not lead to inconsistencies.

In fact, is is easy to see that the state (6.4.12) is not a superposition of different charges

in any of the cavities.

We form the reduced density matrix to order h2 as in Sec. 6.4.2, but now the partial

tracing over Rob’s modes excludes both mode k and mode k′. The relevant matrix
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elements take the form

Tr¬k,k′ ∣1k′⟩−−⟨1k′ ∣ = f−k′ ∣ 0̃k⟩
+∣ 0̃k′⟩

−−⟨0̃k′ ∣
+⟨0̃k∣ + (1−f−k′−f−k +∣A

(1)
kk′ ∣

2) ∣ 0̃k⟩
+∣ 1̃k′⟩

−−⟨1̃k′ ∣
+⟨0̃k∣

+ (f−k −∣A
(1)
kk′ ∣

2) ∣ 1̃k⟩
+∣ 1̃k′⟩

−−⟨1̃k′ ∣
+⟨1̃k∣ + (∑

q<0

GkG
∗
k′A

(1)∗
qk A

(1)
qk′ ∣ 0̃k⟩

+∣ 0̃k′⟩
−−⟨1̃k′ ∣

+⟨1̃k∣ + h.c.) ,

(6.4.13a)

Tr¬k,k′ ∣1k ⟩++⟨1k ∣ = f+k ∣ 0̃k⟩
+∣ 0̃k′⟩

−−⟨0̃k′ ∣
+⟨0̃k∣ + (1−f+k′−f+k +∣A

(1)
kk′ ∣

2) ∣ 1̃k⟩
+∣ 0̃k′⟩

−−⟨0̃k′ ∣
+⟨1̃k∣

+ (f+k′−∣A
(1)
kk′ ∣

2) ∣ 1̃k⟩
+∣ 1̃k′⟩

−−⟨1̃k′ ∣
+⟨1̃k∣ − (∑

p≥0

GkG
∗
k′A

(1)∗
pk A

(1)
pk′ ∣ 0̃k⟩

+∣ 0̃k′⟩
−−⟨1̃k′ ∣

+⟨1̃k∣ + h.c.) ,

(6.4.13b)

Tr¬k,k′ ∣1k ⟩+−⟨1k′ ∣ = (G∗
kG

∗
k′ ∣A

(1)
kk′ ∣

2 +A∗kkA∗k′k′) ∣ 1̃k⟩
+∣ 0̃k′⟩

−−⟨1̃k′ ∣
+⟨0̃k∣ , (6.4.13c)

where in (6.4.13c) A∗kkA∗k′k′ is kept only to order h2 in the small h expansion

A∗kkA∗k′k′ = G∗
kG

∗
k′ +G∗

k′A
(2)∗
kk +G∗

kA
(2)∗
k′k′ +O(h3) . (6.4.14)

6.5 Entanglement degradation and nonlocality

We are now in a position to study the entanglement and the nonlocality of the states

after Rob has undergone his trip.

6.5.1 Entanglement of two-mode states

Consider the states ∣φ±init ⟩AR+ and ∣φ±init ⟩AR− (6.4.8), in which Alice and Rob control

one mode each. We shall quantify the entanglement by the negativity N (2.3.19) and

the nonlocality by a possible violation of the CHSH inequality [62, 63].

The unperturbed part of ρ±PTAR± has the triply degenerate eigenvalue 1
2 and the non-

degenerate eigenvalue −1
2 . In a perturbative treatment the positive eigenvalues remain

positive and the only correction to the negativity comes from the perturbative correc-

tion to the negative eigenvalue. A straightforward computation using (6.4.9) and (6.4.11)

shows that the leading correction to the negativity comes in order h2, and to this order

the negativity formula reads

N [ρ±AR±] = 1
2 (1 − fk) (6.5.1)

where fk ∶= f+k + f−k and fk can be expressed as

fk =
∞
∑
p=−∞

∣Ek−p1 − 1∣2∣A(1)
kp ∣2 = 2[Q(2k + s,1) −Q(2k + s,E1)]h2, (6.5.2)
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where

Q(α, z) ∶= 2

π4
Re[α2 (Li6(z) −

1

64
Li6(z2)) + Li4(z) −

1

16
Li4(z2)], (6.5.3)

the function Li is the polylogarithm (see [21]) and

E1 ∶= exp( iπη1

ln(b/a)) = exp( iπhτ1

2δarctanh(h/2)) . (6.5.4)

We see from (6.5.1) that acceleration does degrade the initially maximal entanglement,

and the degradation is determined by the function fk (6.5.2). fk is periodic in τ1 with

period

2δ(h/2)−1arctanh(h/2), (6.5.5)

that is the proper time measured at the centre of Rob’s cavity between sending and

recapturing a light ray that is allowed to bounce off each wall once. fk is non-negative,

and it vanishes only at integer multiples of the period. fk is not an even function of k for

generic values of s, but it is even in k in the limiting case s = 0 in which the spectrum is

symmetric between positive and negative charges. fk diverges at large ∣k∣ proportionally
to k2, and the domain of validity of our perturbative analysis is

∣k∣h≪ 1. (6.5.6)

Plots for k = ±1 are shown in Fig. 6.2.

We now turn to nonlocality, as quantified by the violation of the CHSH inequality

[62, 63]

∣ ⟨BCHSH ⟩ρ ∣ ≤ 2 , (6.5.7)

where BCHSH is the bipartite observable

BCHSH ∶= a ⋅ σ ⊗ (b + b′) ⋅ σ + a′ ⋅ σ ⊗ (b − b′) ⋅ σ , (6.5.8)

a, a′, b and b′ are unit vectors in R3, and σ is the vector of the Pauli matrices. The

inequality (6.5.7) is satisfied by all local realistic theories, but quantum mechanics allows

the left-hand side to take values up to 2
√

2. The violation of (6.5.7) is hence a sufficient

(although not necessary [48, 68]) condition for the quantum state to be entangled.

To look for violations of (6.5.7), we proceed as in [48], noting that the maximum value

of the left-hand-side in the state ρ is given by [63]

⟨Bmax ⟩ρ = 2
√
µ1 + µ2 , (6.5.9)
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Figure 6.2: The plot shows fk/h2 as a function of u ∶= 1
2
η1/ ln(b/a) =

hτ1/[4δarctanh(h/2)], over the full period 0 ≤ u ≤ 1. The solid curve

(black) is for s = 0 with k = ±1. The dashed, dash-dotted and dotted

curves are respectively for s = 1
4
, s = 1

2
and s = 3

4
, for k = 1 above the solid

curve and for k = −1 below the solid curve.

where µ1 and µ2 are the two largest eigenvalues of the matrix U(ρ) = T Tρ Tρ and the

elements of the correlation matrix T = (tij) are given by tij = Tr[ρσi ⊗ σj]. In our

scenario

U(ρ±AR±) =
⎛
⎜⎜⎜
⎝

1 − fk 0 0

0 1 − fk 0

0 0 1
4 − fk

⎞
⎟⎟⎟
⎠
+ O(h4) , (6.5.10)

and working to order h2 we hence find

⟨Bmax ⟩ρ±AR± = 2
√

2 (1 − 1
2fk) . (6.5.11)

The acceleration thus degrades the initially maximal violation of the CHSH inequality,

and the degradation is again determined by the function fk. Such effect arises again

because of the coherence introduced by the BVT between the inertial cavity and the

modes within the cavity different from k.

95



Chapter 6: Kinematic entanglement degradation of fermionic cavity
modes

6.5.2 Entanglement between opposite charges

We finally turn to the entanglement between opposite charges in the state (6.4.12).

Expressing the density matrix in the post-trip basis, tracing over Rob’s unobserved

modes and working perturbatively to order h2, we find that the only nonvanishing ele-

ments of the reduced density matrix are within a 6×6 block. Partially transposing Rob’s

subsystem replaces the last lines in (6.4.13a) and (6.4.13b) by their respective conjugates

and shifts the particle-antiparticle off-diagonals (6.4.13c) away from the diagonal. The

only nonvanishing elements of the partial transpose are thus within an 8×8 block, which

decomposes further into two 3 × 3 blocks that correspond respectively to (6.4.13a) and

(6.4.13b) and the 2 × 2 block

±1
2

⎛
⎜
⎝

0 GkGk′ ∣A(1)
kk′ ∣

2 +AkkAk′k′

G∗
kG

∗
k′ ∣A

(1)
kk′ ∣

2 +A∗kkA∗k′k′ 0

⎞
⎟
⎠
, (6.5.12)

where the off-diagonal components are kept only to order h2 in their small h expan-

sion (6.4.14).

The only negative eigenvalue comes from the 2 × 2 block (6.5.12). We find that N is

given by

N [ρ±χ] = 1
2 − 1

4 ∑
p≠k′

∣A(1)
kp ∣2 − 1

4 ∑
p≠k

∣A(1)
k′p∣

2 = 1
2 − 1

4 (fk + fk′) + 1
2
∣Ek−k′1 − 1∣2∣A(1)

kk′ ∣
2
.

(6.5.13)

The entanglement is hence again degraded by the acceleration, and the degradation has

the same periodicity in τ1 as in the cases considered above. The degradation now depends

however on k and k′ not just through the individual functions fk and fk′ but also through

the term proportional to ∣A(1)
kk′ ∣

2 in (6.5.13): this interference term is nonvanishing iff k

and k′ have different parity, and when it is nonvanishing, it diminishes the degradation

effect. In the charge-symmetric special case of s = 0 and k = −k′, the degradation

coincides with that found in (6.5.1) for the two-mode states (6.4.8).

6.6 One-way journey

Our analysis for the trajectory followed by Rob that comprises being inertial, uni-

formly accelerating and traveling inertial again can be generalised in a straightforward

way to any trajectory obtained by grafting inertial and uniformly-accelerated segments,

with arbitrary durations and proper accelerations. The only delicate point is that the

phase conventions of our mode functions distinguish the left boundary of the cavity
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from the right boundary, and in Sec. 6.3 we set up the Bogoliubov transformation from

Minkowski to Rindler assuming that the acceleration is to the right. It follows that the

Bogoliubov transformation from Minkowski to leftward-accelerating Rindler is obtained

from that in Sec. 6.3 by inserting the appropriate phase factors, Amn → (−1)m+nAmn,
and in the expansions (6.3.8) this amounts to the replacement h→ −h.

As an example, consider Rob’s cavity trajectory that starts inertial, accelerates to

the right for proper time τ1 as above, coasts inertially for proper time τ2 and finally

performs a braking manoeuvre that is the reverse of the initial acceleration, ending in an

inertial state that has vanishing velocity with respect the initial inertial state. Denoting

the mode functions in the final inertial state by ̃̃
ψn, and writing

̃̃
ψm =∑

n

Bmnψn , (6.6.1)

we find

∣B(1)
mn∣

2 = ∣Em−n1 − 1∣2∣(E1E2)m−n − 1∣2∣A(1)
mn∣

2 (6.6.2)

whereE2 ∶= exp(iπτ2/δ). For the two-mode initial states ∣φ±init ⟩AR+ and ∣φ±init ⟩AR− (6.4.8),
the negativity and the maximum violation of the CHSH inequality hence read respec-

tively

N [ρ±AR±] = 1
2(1 − ̃̃

fk), (6.6.3a)

⟨Bmax ⟩ρ±AR± = 2
√

2(1 − 1
2
̃̃
fk) , (6.6.3b)

where

̃̃
fk =

∞
∑
p=−∞

∣B(1)
kp ∣2

= 2[2Q(2k + s,1) − 2Q(2k + s,E1) +Q(2k + s,E2) − 2Q(2k + s,E1E2) +Q(2k + s,E2
1E2)]h2 .

(6.6.4)

The negativity in the state ∣χ±init ⟩AR (6.4.12) reads

N [ρ±χ] = 1
2 − 1

4(
̃̃
fk +

̃̃
fk′) + 1

2
∣Ek−k′1 − 1∣2∣(E1E2)k−k

′
− 1∣2∣A(1)

kk′ ∣
2
. (6.6.5)

The degradation caused by acceleration is thus again periodic in τ1 with period

2δ(h/2)−1 atanh(h/2), (6.6.6)

and it is periodic in τ2 with period 2δ. The degradation vanishes iff E1 = 1 or E1E2 = 1,

so that any degradation caused by the accelerated segments can be cancelled by fine-

tuning the duration of the inertial segment, to the order h2 in which we are working.

A plot of ̃̃
fk is shown in Fig. 6.3.
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Figure 6.3: The plot shows ̃̃
fk as a function of u ∶= hτ1/[4δ atanh(h/2)] and v ∶=

τ2/(2δ) over the full period 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, for s = 0 and k = 1.

Note the zeroes at u ≡ 0 mod 1 and at u + v ≡ 0 mod 1.

6.7 Conclusions

We have employed the machinery developed in the previous chapter to analyse the

entanglement degradation for a massless Dirac field between two cavities in (1 + 1)-
dimensional Minkowski spacetime, one cavity inertial and the other moving along some

“arbitrary” trajectory (that can be obtained by composing segments of inertial coasting

and uniform acceleration). Working in the approximation of small accelerations but

arbitrarily long travel times, we found that the degradation is qualitatively similar to that

found in Chapter 5. The degradation is periodic in the durations of the individual inertial

and accelerated segments, and we identified a travel scenario where the degradation

caused by accelerated segments can be undone by fine-tuning the duration of an inertial

segment. The presence of charge allows however a wider range of initial states of interest

to be analysed. As an example, we identified a state where the entanglement degradation

contains a contribution due to interference between excitations of opposite charge.

Compared with bosons, working in a fermionic Fock space led both to technical

simplifications and complications. A technical simplification was that the relevant re-

duced density matrices act in a lower-dimensional Hilbert space because of the fermionic
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statistics, and this made it possible to quantify the entanglement not just in terms of

the negativity but also in terms of the CHSH inequality.

A technical complication was that when the boundary conditions at the cavity walls

were chosen in an arguably natural way that preserves charge conjugation symmetry,

the spectrum contained a zero mode. This zero mode could not be consistently omitted

by hand, but we were able to regularise the zero mode by treating the charge-symmetric

boundary conditions as a limiting case of charge-nonsymmetric boundary conditions.

All our entanglement measures remained manifestly well defined when the regulator was

removed.

Another technical complication occurring for fermions is the ambiguity [67] in the

choice of the basis of the two-fermion Hilbert space in (6.4.13). An alternative valid

choice of basis is obtained by reversing the order of the single particle kets in (6.4.13),

which amounts to a change of the signs in the off-diagonal elements of (6.4.13a) and

(6.4.13b). While our treatment does not remove this ambiguity, all of our results for

the entanglement and the nonlocality of these states are independent of the chosen

convention.

Our analysis contained two significant limitations. First, while our Bogoliubov trans-

formation technique can be applied to arbitrarily complicated graftings of inertial and

uniformly accelerated cavity trajectory segments, the treatment is perturbative in the

accelerations and hence valid only in the small acceleration limit. We were thus not

able to address the large acceleration limit, in which striking qualitative differences be-

tween bosonic and fermionic entanglement have been found for field modes that are not

confined in cavities [5, 7, 15, 48, 60].

Second, a massless fermion in a (1 + 1)-dimensional cavity is unlikely to be a good

model for systems realisable in a laboratory. A fermion in a linearly-accelerated rect-

angular cavity in (3 + 1) dimensions can be reduced to the (1 + 1)-dimensional case by

separation of variables, but for generic field modes the transverse quantum numbers then

contribute to the effective (1+ 1)-dimensional mass; further, any foreseeable experiment

would presumably need to use fermions that have a positive mass already in (3 + 1)
dimensions before the reduction. It would be possible to analyse our (1+1)-dimensional

system for a massive fermion, and we anticipate that the mass would enhance the mag-

nitude of the entanglement degradation as in the bosonic situation.

We stress that the maximum value of h allowed within the perturbative regime is no

greater than 0.01.
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In the previous chapters we have shown that maximally entangled states of bosonic or

fermionic fields confined in (two) cavities are affected by the non inertial motion of one

of the cavities. In particular, the entanglement is degraded and we were able to quantify

the magnitude of the degradation and its dependence on the different travels scenarios.

It is natural to ask at this point if relativistic effects in this context only degrade

the initial entanglement. Such effect would imply that communication protocols that

use cavity mode entanglement as a resource would never be improved by the motion of

cavities through spacetime. We wish to understand if any entanglement can be created

at all through motion and to quantify it.

In this chapter we investigate entanglement creation between different modes of a

bosonic and fermionic quantum field confined in a single cavity when the initial state is

pure and separable in the field mode degree of freedom. We develop a general quanti-

tative analysis for a scalar field and we refer for the complete work available in [69] for

the complete parallel analysis of fermionic field. We give detailed results for a sample

travel scenario and mention that the particle statistics has a significant effect on the

entanglement.

We work in (1 + 1)-dimensional Minkowski space: additional transverse dimensions

can be included via their contribution to the effective field mass as already explained.

The length of the cavity in its instantaneous rest frame is again δ > 0. The cavity is

assumed to be inertial outside a finite time interval, but the initial and final velocities

need not coincide.

In this Chapter we will address matters regarding how to detect entanglement creation

but not how to extract the entanglement that is created. Such goals are part of research

in progress.

7.1 Bosons

7.1.1 Cavity configuration

We consider the setting of chapter 5 for a massive scalar field Φ. Let {φn ∣ n = 1,2, . . .}
be a complete orthonormal set of mode solutions that are of positive frequency with

respect to the cavity’s proper time at early times (pre-trip), and let {φ̃n ∣ n = 1,2, . . .}
be a similar set at late times (post-trip). Each set has an associated set of creation and

annihilation operators, with the commutation relations

[an, a†
m] = [ãn, ã†

m] = δnm (7.1.1)
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and a vacuum state, denoted respectively by ∣0 ⟩ and ∣ 0̃ ⟩. The two sets of modes are

related by the BVT encoded in the matrix A while the set of operators are related by

the BVT encoded in the matrix A−1.

The vacua are related by (5.1.30) and (5.1.31) as usual.

7.1.2 Pre-trip preparation

We prepare the system in the pre-trip region in a separable state in the mode degree of

freedom. We ask: does the cavity’s motion generate mode entanglement when analyzed

in the post-trip region, where the particle content of the state has changed?

To answer this question we proceed as follows. We first specify the pre-trip region

state and express it in the post-trip basis using (5.1.30) and subsequent equations. We

then use equation (2.2.49) to express the BVT between the pre-trip modes and the post-

trip modes. These allow us to rewrite the part of the initial state possessed by Rob in

terms of post-trip excitations.

We then trace over all post-trip modes except those labelled by two distinct quantum

numbers k and k′. We quantify the entanglement in the resulting reduced density matrix

by the negativity N (2.3.19).

As usual, the proper acceleration at Rob’s cavity centre is proportional to h/δ. We then

work perturbatively in h and we can write the relation between the different vacua to

order h2. Then

N = 1 − 1
4∑
p,q

∣V (1)
pq ∣2 (7.1.2)

and

∣0 ⟩ = (1 − 1
4∑
pq

∣V (1)
pq ∣2) ∣ 0̃ ⟩ + 1

2∑
pq

Vpqã
†
pã

†
q ∣ 0̃ ⟩ + 1

8 ∑
pqij

V (1)
pq V

(1)
ij ã†

pã
†
qã

†
i ã

†
j ∣ 0̃ ⟩ +O(h3) .

(7.1.3)

7.1.3 Initial state: ∣0 ⟩

As a first example, we take the in-region state to be the in-vacuum ∣0 ⟩.
To order h2, the partially-transposed reduced density matrix vanishes outside a 6 × 6

block. Among the six eigenvalues, the only possibly negative ones are

λ4 = −∣B(1)
kk′ ∣

2
, (7.1.4a)

λ6 = fβk¬k′ + f
β
k′¬k − ((fβk¬k′ − f

β
k′¬k)

2 + ∣Vkk′ ∣2)
1/2
, (7.1.4b)
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where

fβm¬n ∶= 1
2 ∑
q≠n

∣B(1)
qm ∣2 (7.1.5)

and Vkk′ is kept to order h2. λ4 arises from coherence between ∣ 0̃ ⟩ and ∣ 1̃k ⟩ ∣ 1̃k′⟩, while
λ6 arises from coherence between ∣ 0̃ ⟩ and ∣ 2̃k ⟩ ∣ 2̃k′⟩.

Specialising to the usual travel scenario that is composed of inertial and uniformly-

accelerated segments, we find that a qualitative difference emerges depending on the

relative parity of k and k′. If k and k′ have opposite parity, the expansions (5.1.22) show

that oβ
(1)
kk′ is nonvanishing but V (2)

kk′ = 0. It follows that

∣Vkk′ ∣2 = ∣B(1)
kk′ ∣

2 +O(h4). (7.1.6)

The leading term in the negativity is then linear in h and given by ∣B(1)
kk′ ∣. If, by contrast,

k and k′ have the same parity, we have B(1)
kk′ = 0 and Vkk′ = V (2)

kk′ +O(h3). The leading

term in the negativity comes then from λ6 and is of order h2. Sample negativity plots

for both cases are shown in Fig. 7.1 for a massless field and the BBB travel scenario.

7.1.4 Initial state: ∣1k ⟩

As a second example, we take the pre-trip state to be ∣1k ⟩, containing exactly one

in-particle. Using (7.1.3) we find

∣1k ⟩ =∑
m

(A∗
mk +∑

p

B
(1)
pk V

(1)
pm − 1

4δmkG
∗
k∑
pq

∣V (1)
pq ∣2)ã†

m ∣ 0̃ ⟩

+1
2 ∑
mpq

(A∗
mk +G∗

kδmk)Vpqã†
mã

†
pã

†
q ∣ 0̃ ⟩

+1
8G

∗
k ∑
pqij

VpqVij ã
†
kã

†
pã

†
qã

†
i ã

†
j ∣ 0̃ ⟩ +O(h3) . (7.1.7)

To order h2, the partially-transposed reduced density matrix now vanishes outside an

8 × 8 block. Among the first five eigenvalues, the only possibly negative one is

µ3 = −
√

3 ∣B(1)
kk′ ∣

2
, (7.1.8)

which arises from coherence between ∣ 1̃k ⟩ and ∣ 3̃k ⟩ ∣ 2̃k′ ⟩. The last three eigenvalues

are the roots of a cubic polynomial, analytically cumbersome for generic values of the

parameters but readily amenable to numerical work.

Specialising to a cavity worldtube that is grafted from inertial and uniformly-accelerated

segments, we again find a qualitative difference depending on the relative parity of k
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and k′. In particular, if k and k′ have opposite parity, the leading contribution to nega-

tivity comes from the eigenvalue

µ8 = −
√

∣A(1)
kk′ ∣

2 + 2∣B(1)
kk′ ∣

2 (7.1.9)

and is linear in h. The negativity is in this case higher than the corresponding negativity

for the in-region state ∣0 ⟩. We have found that this is a common feature of the results

in the cavity settings. The physical reason for this phenomenon is yet not completely

understood. Sample negativity plots are shown in Fig. 7.1 for a massless field for the

BBB travel scenario.

Fermions

The analysis for fermionic modes has been pursued by N. Friis at Nottingham. For a

more detailed analysis we refer to [69].

7.2 Conclusions

We have demonstrated that non-uniform motion of a cavity generates entanglement

between modes of a bosonic quantum field confined to the cavity. Working to quadratic

order in the cavity’s acceleration, and quantifying the entanglement by the negativity,

we found that the entanglement generation depends on the initial state of the field, on

the relative parity of the mode pair that is observed at late times and from [69] we

know it depends also on the bosonic versus fermionic statistics. For both bosons and

fermions, we found situations where the entanglement generation can be enhanced by

placing particles in the initial state. For fermions, however, charge conservation and

the Pauli exclusion principle require the choice of the considered out-region modes to be

consistent with the initial state to generate entanglement, while the bosonic statistics

allow the modes to be freely populated without hindering entanglement generation.

Compared with the motion-induced entanglement degradation between a static cav-

ity and a moving cavity analyzed in Chapters 5 and 6, we found that the entanglement

generation can occur already in linear order in the cavity’s acceleration, while the entan-

glement degradation is a second-order effect. The prospects of experimental verification

[58] could hence be significantly better for phenomena signalling entanglement generation

than entanglement degradation. Experimental proposals in this direction are currently

under investigation.
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Figure 7.1: The leading order contribution to the negativity is shown for a massless

scalar field and a massless Dirac field. The travel scenario has a single

accelerated segment, of acceleration h/δ as measured at the cavity’s centre

and of duration τ = (4δ/h)atanh(h/2)u in the cavity’s proper time τ . The

negativity is periodic in u with period 1. Fig. 7.1(a) shows N /h, in dashed

for a scalar field with in-region vacuum and (k, k′) = (1,4), in dotted for

a scalar field with in-region state ∣1k ⟩ and (k, k′) = (1,4), in solid for a

Dirac field with in-region vacuum and (κ,κ′) = (2,−1) with s = 0, and

in dotted-dashed for a Dirac field with in-region state ∣∣1κ ⟩⟩ and (κ, κ̂) =
(1,4) with s = 0 in the notation of Chapter 6. Fig. 7.1(b) shows the

corresponding curves for N /h2 with the scalar field modes (k, k′) = (1,3)
and the fermionic modes (κ,κ′) = (1,−1) and (κ, κ̂) = (1,3).
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The motion-induced entanglement effects that we have analysed have technical simi-

larities with the creation of squeezed states in resonators with oscillating walls, known as

the dynamical Casimir effect [70, 71]. In this context, we emphasize that our only approx-

imation was to work in the small acceleration regime, meaning that the product of the

cavity’s length and acceleration is small compared with the speed of light squared [58, 72].

Our analysis hence covers as a special case cavities that oscillate rapidly with a small

amplitude: such cavities are often introduced in theoretical analyses of the dynamical

Casimir effect but are experimentally problematic [70].

Our analysis however covers also cavities that accelerate in a given direction for finite

but arbitrarily long times, with travel distances that may be arbitrarily large. Further, as

the equivalence principle implies that gravitational acceleration can be locally modeled

by acceleration in Minkowski space-time, our results suggest that a gravitational field

can produce entanglement. Experiments for entanglement generation could hence be

sought in setups that span macroscopic distances, including quantum communication

through near-Earth satellite orbits.
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In the previous Chapters we have analyzed how motion of cavities through spacetime

degrades entanglement between initially entangled modes of quantum fields contained in

two separate cavities or creates entanglement between modes of a quantum field within

a single cavity. We found a regime where we could explicitly compute the decrease or

increase of the negativity as a function of the acceleration of the cavity h (normalized to

the width of the cavity itself) and the time of acceleration. In particular, we showed that

the degradation and creation effects are typically of second order in h; in some cases,

creation effects can occur to first order in h. Although it appears that the influence of

motion of devices is negligible, it is of paramount interest to show that such effects are

of impact when considering quantum communication protocols. It would therefore be

fundamental to find a situation where they can be greatly enhanced.

In this Chapter we introduce the mathematical techniques that allow us to efficiently

study entanglement for different travel scenarios avoiding cumbersome analytical com-

putations as presented in the previous chapters. We work in the small h regime. We

start by developing the “two mode truncation” (TMT) which allows us to consider only

two arbitrary modes of the energy spectrum of the field contained within a cavity and to

effectively reduce the full BVT between all the modes to BVT between these two modes

only. We show that this can occur up to corrections to third order in h. The BVT

are Gaussian transformations since they are exponentials of quadratic operators. If we

start from Gaussian states, for example the vacuum or squeezed states, we find that the

natural language to use in our problem is that of Covariance Matrices (CM) within the

formalism of Continuous Variables (CV). Gaussian states and gaussian transformations

are represented by finite dimensional matrices (for an extensive introduction see [73] and

references therein) and there are many manageable tools within the formalism that allow

for computation of entanglement.

We proceed to show that one can pick an arbitrary travel scenario, called building

block. In general, by repeating the building block any number of times it is possible

to fine-tune the total duration of the single building block such that entanglement gen-

erated at the end of the trip grows linearly with the number of repetitions. We find

analytical conditions for such phenomenon to occur and show that as a particular case

we can describe dynamical Casimir-like scenarios where the cavity oscillates as a whole.

The importance of our results is emphasized by the following: a resonant enhance-

ment of particle creation occurs in the dynamical Casimir effect [71] which was recently

demonstrated in the laboratory in a superconducting circuit consisting of a coplanar

transmission line with a tunable electrical length which produces an effective moving

boundary [13]. Two-mode squeezed states were detected in the radiation emitted in this
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experiment. Previously it was shown that single-mode squeezed states, which contain

no entanglement, can also be produced in these scenarios [71].

8.1 Setup and development of the Two Mode Truncation

technique

In this chapter we consider a real massless scalar field Φ confined in (1+1)-dimensional

cavity in Minkowski spacetime, with Dirichlet boundary conditions modeling the walls.

Transverse dimensions can be included as a positive contribution to µ as usual and the

field has support only inside the cavity.

We choose a set of Minkowski coordinates (t, x) to describe the cavity that is resting

at times t < 0. The modes in the cavity are (5.1.2) labeled by k ∈ N. The field is expanded

as (5.1.6). When the cavity is accelerated we employ Rindler coordinates and the modes

take the form (5.1.9) also labeled by natural numbers k ∈ N.

To employ the full BVT, even in the perturbative regime, leads to cumbersome com-

putations. For example, if one wishes to perform partial tracing the complexity of the

operation grows extremely fast. When employable, CV techniques allow for simple and

straightforward analytical results. Such techniques can be applied to efficiently solve

problems when a (small) finite number of modes is used. In addition, gaussian states

such as two mode squeezed states or coherent states are typical states that can be pro-

duced in laboratory. We therefore aim at finding a finite set of modes which can be

treated within our perturbative regime and emily the CM formalism.

The BVT mix all modes. The matrix relation A−1A encodes the Bogoliubov identities

that are satisfied by all the modes together. In our perturbative regime, if one picks two

arbitrary modes k, k′ and computes the relation A−1
k,k′Ak,k′ for such two modes, this will

not satisfy the standard Bogoliubov identities as in (2.2.50). This is of course expected

since eliminating by hand all other modes will introduce errors in the process. A natural

set of questions to ask is:

“Is there a choice of two modes that allows for BVT which mix “only” such modes to

some good approximation? Is there any self consistent procedure which allows for this

choice? If this is possible, to which order is it safe to ignore the errors introduced?”

In this section we will show that such questions have a positive answer. The procedure

we will developed is called two mode truncation (TMT). We have verified that such

procedure is possible only for modes k, k′ separated by an odd integer k − k′ = 2n + 1.

In order to conserve probabilities, one cannot arbitrarily pick any number of modes and
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ignore the relations between such modes and the rest without introducing errors. We

wish to show that is possible to “renormalize” every mode by an appropriate factor such

that for any two oddly separated modes, the Bogoliubov coefficients that relate such

modes satisfy the Bogoliubov identities to second order in h. Such procedure is self

consistent. This means that assuming the two modes to satisfy Bogoliubov identities

after the renormalization is viable.

We proceed to develop the TMT: we multiply any mode, say φk, by a factor 1+Ckh2

which just changes the normalization of the mode. We proceed to choose {Ck} as follows:

the elements of the A matrix are uniquely determined by inner products of field modes.

Therefore, if

φk Ð→ φ′k = (1 +Ckh2)φk (8.1.1)

then, using (2.2.16) one finds that

Akk′ Ð→ A′kk′ = (1 + C̃kh2 +C∗
k′h

2)Akk′ , (8.1.2)

where, in general, Ck and C̃k need not to be equal. In fact, {Ck} is the set of constants

used to renormalize the pre-trip modes while {C̃k} is the set used to renormalize the post-

trip modes. One can now employ (8.1.2) to analyze the effect of such renormalization

on the Bogoliubov coefficients A,B. We find that

Akk′ →A′
kk′ = Akk′ × (1 + C̃kh2 +C∗

k′h
2)

Bkk′ →B′
kk′ = Bkk′ × (1 + C̃kh2 +C∗

k′h
2) . (8.1.3)

One realizes that, since oα
(1)
k,k′ and oβ

(1)
k,k′ vanish for even mode separation (see (5.1.22)),

one can always choose {Ck} such that

AA−1 = id +O(h3) (8.1.4)

for any arbitrary travel scenario. This means that the Bogoliubov identities (2.2.50)

are satisfied at first and second order. The consistency of this procedure holds only for

modes k, k′ separated by and pod integer k − k′ = 2n + 1.

In addition, analyzing expression (9.2.38) we notice that the operator W has the

expression

W = −∑
i,j

Vij

2
a†
ia

†
j , (8.1.5)

where

V = B∗A−1. (8.1.6)

To first order, we notice that the contributions to V come in the form of

V ∼ B(1)⋆A(0)⋆ +O(h2), (8.1.7)
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where we suppress all the indices for the sake of simplicity.

Therefore, the first order corrections to the vacuum ∣0⟩ in (9.2.38) will have the form

W ∣0⟩ ∼A(0)B(1)(. . .) ∣0⟩ , (8.1.8)

which shows that when the TMT is employed, the vacuum is not affected by the renor-

malization procedure to first order.

8.2 Techniques for Gaussian states

We make the following observation: in this chapter, we analyze only two modes and

employ the TMT which is a unitary operation (up to O(h3) corrections). All operators

that will act on the states are gaussian. We can choose the initial states to be gaussian,

therefore the natural formalism to employ to address this setting is the formalism of

Covariance Matrices in continuous variables. In the next two subsections we explain

how to translate the techniques developed in the previous three chapters into this new

language.

8.2.1 Continuous variables

A continuous variable system is described by a Hilbert space

H = ⊗ni=1Hi (8.2.1)

resulting from the tensor product structure of infinite dimensional Fock spaces Hi’s. The
operator ai is the annihilation operator that acts on Hi. We now define

q̂i ∶=ai + a†
i ,

p̂i ∶=
1

i
[ai − a†

i] , (8.2.2)

which are the quadrature phase operators and we denote the corresponding phase-space

variables by qi and pi. Let us introduce

X̂ = (q̂1, p̂1, . . . , q̂n, p̂n) , (8.2.3)

which denotes the vector of the operators q̂i and p̂i. The canonical commutation relations

can be expressed in terms of

[X̂i, X̂j] = 2iΩij , (8.2.4)

where we define the symplectic form as

Ω = ⊕ni=1ωi (8.2.5)
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and

ω =
⎛
⎝

0 1

−1 0

⎞
⎠
. (8.2.6)

The states of a CV system can be equivalently described by the density matrix or by

quasi probability distributions [73]. States with Gaussian characteristic functions and

quasiprobability distributions are referred to as Gaussian states. An example of a non

gaussian state is the Fock state ∣1k⟩ while an example of gaussian state is a coherent

state. We introduce the vector of first moments

X̄ = (⟨X̂1⟩ , ⟨X̂1⟩ , . . . , ⟨X̂n⟩ , ⟨X̂n⟩) (8.2.7)

and the covariance matrix (CM)

σ = 1

2
⟨X̂iX̂j + X̂jX̂i⟩ − ⟨X̂i⟩ ⟨X̂j⟩ , (8.2.8)

which completely characterize the Gaussian state ρ.

The positivity of the density matrix ρ and the canonical commutation relations imply

σ + iΩ ≥ 0 (8.2.9)

and such inequality is the necessary and sufficient constraint which σ has to satisfy to

be a CM corresponding to a physical physical Gaussian state [73].

Unitary operations that preserve the Gaussian character of the states on which they

act and are generated by Hamiltonian terms at most quadratic in the field operators,

correspond, in phase space, to a linear symplectic transformation. Given a symplectic

transformation S, it preserves the symplectic form Ω

Ω = STΩS. (8.2.10)

Symplectic transformations on a 2n-dimensional phase space form the real symplectic

group Sp(2n,R) and act linearly on the first moments and by

σ → σ′ = STσS (8.2.11)

on covariance matrices. In addition,

Det(S) = 1, ∀S ∈ Sp(2n,R). (8.2.12)
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8.2.2 Evolution of the initial state

As explained in subsection 8.2.1, in gaussian CV a state can be totally described by its

first and second moments [74, 75]. The key point is to realise that unitary transformations

of a state ρ are represented by a similarity transformation i.e.

U †ρU → STσS, (8.2.13)

where S is a symplectic matrix which represent U in the formalism and σ is a covariance

matrix of the Gaussian state ρ.

We consider only two modes confined in one cavity and we will change from the a, a†

basis to the q̂, p̂ basis.

States and transformations will be represented by 4 × 4 matrices. In particular, the

vacuum state is represented by the identity 1. The “evolution” of our state is encoded in

the BVT. We start from an initial state, the vacuum in this case, and wish to look for the

state after some travel scenario. and working to order h2, we find that the matrix that

represents our truncated BVT B(h) between the two lowest modes in this formalism

reads:

B(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −A(1)
− h2 0 −Ch 0

0 1 −A(1)
+ h2 0 −Dh

Dh 0 1 −A(2)
− h2 0

0 Ch 0 1 −A(2)
+ h2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

A
(k)
± = 32(16M4 + 80M2π2 + 91π4)

729π8
± 1/16

M2 + k2π2
,

D = 8(4M2 + 7π2)
27π4

( M
2 + π2

M2 + 4π2
)
−1/4

,

C = 8(4M2 + 13π2)
27π4

( M
2 + π2

M2 + 4π2
)

1/4

, (8.2.14)

and M = µδ is dimensionless mass of the field. The matrix B(h) transforms the

Minkowski {X1, P1,X2, P2} to the Rindler {X̃1, P̃1, X̃2, P̃2}.

Evolution of the system in this formalism is obtained as follows.

Suppose the initial state in the cavity is σi and the cavity undergoes some unitary inertial

evolution represented by U(τ). Then the final state σf is

σf = ST (τ)σiS(τ), (8.2.15)

where our task is to find the symplectic matrix S(τ) which represents the evolution

induced by U(τ). Now the cavity might start accelerating and therefore we need to
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transform the operators into R operators. This is taken care of by B(h). The state then
takes the form

σf = BT (h)ET (τ)σiE(τ)B(h). (8.2.16)

The state then evolves “freely” during the acceleration, F (h, τ) and then stops acceler-

ating. B−1(h). The final state after this trip is

σf = (B−1)T (h)F T (h, τ)BT (h)ET (τ)σiE(τ)B(h)F (h, τ)B−1(h) (8.2.17)

It is clear how to proceed further by “sandwiching” the state with appropriate matrices.

The symplectic matrices E,F correspond to the evolution operators in (5.1.14). As an

initial state σi we consider a pure state: in this formalism det(σi) = 1. Since we apply

unitary transformations, it follows that det(σf) = 1. This gives us a way to check that

the TMT does maintain the unitarity of the transformations.

We will use the logarithmic negativity EN to quantify entanglement. Given a state

σ, one first computes the partial transpose which in this language takes the form

σ̃ = PσP (8.2.18)

where the matrix

P = diag (1,1,1,−1)

performs the partial transposition. Clearly, P 2 = id and P † = P .
One now defines the symplectic version of σ̃ as

σ̃s = iΩσ̃ (8.2.19)

where Ω is the symplectic matrix. The eigenvalues of σ̃s come into two pairs {±ν̃−,±ν̃+}
where 0 < ν̃−, ν̃+. From now on, −ν̃− will denote the smallest positive symplectic eigen-

value of σ̃s. If ν̃− < 1 then there is entanglement (see [76]) and it is quantified by the

logarithmic negativity EN which is defined as

EN ∶=Max (0,− ln(ν̃−)) (8.2.20)

Another measure that could be chosen is the negativity . In this formalism it is defined

as

N ∶=max{0,
1 − ν̃−
2ν̃−

} (8.2.21)

When ν̃− = 1 − ν̃(1)− and 0 < ν̃(1)− ≪ 1, it is easy to see that first order in ν̃(1)−

EN ∼ν̃(1)−

N ∼ ν̃
(1)
−
2

∼ EN
2

(8.2.22)
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8.3 Resonance condition

We look for a condition where the entanglement generated after any travel scenario,

which we call Building Block (BB), can be increased by repeating the BB an arbitrary

amount of times.

Let the initial state be the vacuum: in this case σin = id. The transformation to the

final state is represented by the matrix S and therefore we can write the final state as

σout = STσinS = STS (8.3.1)

The matrix S may represent any desired travel scenario and we need not specify it a

priori. It encodes the inertial evolutions, the uniformly accelerated evolutions and the

BVT. Notice that for transformations that do not preserve the energy of the system,

such as two mode squeezing or single mode squeezing, STS ≠ 1. Once the travel scenario

is fixed, we can repeat it any number of times, say N , using the techniques described in

the section 8.2. We have

σ1 =STS

σN =(ST )NSN (8.3.2)

where σ1 is the final state after one BB and σN is the final state after the BB has been

repeated N times.

We notice that if

[ST , S] = 0 (8.3.3)

then

σN = σN1 (8.3.4)

We call (8.3.3) the resonance condition. This is the central part of the chapter. From

now on we proceed to show that the resonance condition allows for a linear increase of

the entanglement created after a single BB, as a function of the number of repetitions,

when we repeat the BB any number of times.

We work in the h ≪ 1 approximation and therefore we can expand our states in power

series.

σ1 =σ(0)
1 + σ(1)

1 +O(h2)

σN =σ(0)
N + σ(1)

N +O(h2) (8.3.5)

where the superscript stands for the relevant order in h and we are interested to truncate

at first order. From this point, it is understood that higher than first orders do not
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contribute.

We know that the zeroth order contribution must be the identity, since when h = 0 the

modes undergo free evolution. Therefore we get

σ1 =id + σ(1)
1

σN =id + σ(1)
N (8.3.6)

On resonance, we have that

σN = σN1 = (id + σ(1)
1 )

N
= id +Nσ(1)

1 (8.3.7)

which, when we compare with the second line of (8.3.6) implies that

σ
(1)
N = Nσ(1)

1 . (8.3.8)

To compute the logarithmic negativity (2.3.21), we need the symplectic eigenvalues of

the symplectic version (8.2.19) of our final state. Therefore, we need to look at the

eigenvalues of the matrices

σ̃1 =iΩPσ1P

σ̃N =iΩPσNP. (8.3.9)

Again, on resonance we can use (8.3.6) and (8.3.8) to write

σ̃1 =iΩ + iΩPσ(1)
1 P

σ̃N =iΩ + iNΩPσ
(1)
1 P. (8.3.10)

We wish to diagonalize both matrices in (8.3.10). We first notice that the zeroth order

in their expansion σ̃(0)
1 and σ̃(0)

N is

σ̃
(0)
1 = σ̃(0)

1 = iΩ, (8.3.11)

which has two couples of degenerate eigenvalues {1,1,−1,−1} which forces us to employ

degenerate perturbation theory. The procedure is described in detail in [77] in the

context of Covariance Matrixes and we shall briefly review it here.

Let ∣v1⟩ , ∣v2⟩ be the two eingenvectors of the degenerate eigenvalue 1. Therefore

σ̃
(0)
N ∣v1⟩ = ∣v1⟩

σ̃
(0)
N ∣v2⟩ = ∣v2⟩ . (8.3.12)

We now employ the first order correction σ̃(1)
N to compute the corrections to the eigen-

values. We construct the 2× 2 matrix M(N) after N shakes whose elements are defined

by

Mij(N) ∶= ⟨vi∣ σ̃(1)
N ∣vj⟩ . (8.3.13)
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The eigenvalues of M will be denoted by ν̃(1)± (N) and are the corrections to the unper-

turbed eigenvalues 1 of σ̃(0)
N . On resonance

σ̃
(1)
N = Nσ̃(1)

1 , (8.3.14)

which implies

Mij(N) = ⟨vi∣ σ̃(1)
N ∣vj⟩ = N ⟨vi∣ σ̃(1)

1 ∣vj⟩ = NMij(1). (8.3.15)

Therefore

Eigen [Mij(N)] = NEigen [Mij(1)] . (8.3.16)

Which translates to

ν̃
(1)
± (N) = Nν̃(1)± (1) (8.3.17)

Therefore, we have found that the two corrected positive eigenvalues of σ̃N are related to

the corrected positive eigenvalues of σ̃1. We reproduce the expansion of smallest positive

eigenvalue after N shakes ν̃−(N) below

ν̃−(N) = 1 − ν̃(1)− (N) (8.3.18)

where

ν̃
(1)
− (N) = Nν̃(1)− (1) (8.3.19)

We can compute the logarithmic negativity EN for both σ̃1 and σ̃N where it takes the

expression EN (1) and EN (N) respectively. We get

EN (1) = − ln (ν̃−(1)) = − ln (1 − ν̃(1)− (1)) ≈ ν̃(1)− (1)

EN (N) = − ln (ν̃−(N)) = − ln (1 − ν̃(1)− (N)) = − ln (1 −Nν̃(1)− (1)) ≈ Nν̃(1)− (1) (8.3.20)

provided that Nν̃(1)− (1) ≪ 1. Therefore

EN (N) = NEN (1) (8.3.21)

which is the linear increase of entanglement we were looking for.

8.4 Position of the resonance

We have found that the condition for the resonance to exist is (8.3.3). One can express

S in terms of general Bogoliubov coefficients between pre-trip and post-trip modes. We

use the results from [77] and find that in general [ST , S] has the following form

[ST , S] =
⎛
⎝

0 C

CT 0

⎞
⎠
+O(h2)
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where C has the expression

C = 2
⎛
⎝
C11 C12

C12 −C11

⎞
⎠

and the elements can be expressed in terms of the B coefficients of A for the overall trip.

C11 =((cos(φk) − cos(φk′))Re(B(1)
kk′) + (sin(φk) + sin(φk′))Im(B(1)

kk′)

C12 =((− cos(φk) + cos(φk′))Im(B(1)
kk′) + (sin(φk) + sin(φk′))Re(B(1)

kk′) (8.4.1)

The coefficient B(1)
kk′ is the first order correction to the beta for the full travel scenario,

Gk = exp[iφk]

Gk′ = exp[iφk′] (8.4.2)

are the zero order corrections to the alphas for the full travel scenario; these coefficients

are all elements of the A matrix which encodes the TMT truncation version of the BVT.

k, k′ ∈ N. We also know that

φk =ωkT

φk′ =ωk′T (8.4.3)

where T is the total proper time of the BB and

ωk =
kπ

δ
(8.4.4)

is the frequency of the mode k and δ is the length of the cavity as usual. To first order,

the inertial frequency ωk = (kπ)/δ and the R frequency

Ω̃k = (kπh)/(2δ tanh−1(h/2)) (8.4.5)

coincide since

Ω̃k =
kπh

2δ tanh−1(h/2)
= kπ
δ

(1 +O(h2)) = ωk (1 +O(h2)) (8.4.6)

Therefore,

ωkT = ωk∑
i

Ti (8.4.7)

where Ti is the individual proper time of the i-th segment which composes the travel

scenario. This might be a Rindler proper time or a Minkowski proper time. In general,

the expression will be complicated.

In order for [ST , S] = 0 we find that (8.4) implies

B
(1)
kk′ [G

∗
k −Gk′] = 0. (8.4.8)
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A sufficient condition for this is

G∗
k −Gk′ = 0. (8.4.9)

This occurs when

Tn =
2nπ

ωk + ωk′
, (8.4.10)

which we call total resonance time.

There might be extra resonance conditions determined by B(1)
kk′ = 0 but it is possible to

find these conditions explicitly only once the specific travel-plan of the scenario is given.

In (8.6) we give an example and an explicit computation.

8.5 General description of the increase of entanglement

The entanglement after one scenario is ∣B(1)
kk′ ∣ where B

(1)
kk′ is the first order correction

for the overall travel scenario beta coefficient. In general, if there are n segments of

acceleration with different accelerations h,h′, h′′, . . . , h(n), then

∣B(1)
kk′ ∣1 = ∣(β̃(1)

0 )kk′ ∣∣(p + q)h + (p′ + q′)h′ + (p′′ + q′′)h′′ + . . . + (p(n) + q(n))h(n)∣, (8.5.1)

where the p, q’s are phase factors which are complicated combinations of all the times

within the individual segments and β̃
(1)
0 is the coefficient to the first order correction

to the inertial to accelerated beta. For a long travel scenario it is not possible to write

down the phase factors explicitly. It is evident though that there will be combinations of

accelerations (and their directions) that will affect the amount of entanglement created.

By using (5.1.15) it is clear that, if one repeats a travel scenario N times, the final

entanglement takes the form

∣B(1)
kk′ ∣N = ∣(β̃(1)

0 )kk′ ∣∣∑
i

(pi+qi)h+∑
i

(p′i+q′i)h′+∑
i

(p′′i +q′′i )h′′+ . . .+∑
i

(p(n)i +q(n)i)h(n)∣,

(8.5.2)

where every h(l) getsN phase factors of the form {p(l)i , q
(l)
i }, one from each travel scenario

in the repetition. On resonance we expect that ∑i(p
(n)
i + q(n)i ) = N(p(n) + q(n)) ∀i and

therefore

∣B(1)
kk′ ∣N = N ∣B(1)

kk′ ∣1. (8.5.3)

We give an explicit example in the next section.
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8.6 Travel example: Casimir-like scenario

8.6.1 Casimir-type scenario: same acceleration/deceleration

In this scenario, the Building Block is composed of a segment of uniform acceleration

followed immediately by a uniform deceleration of the same magnitude and for the same

proper time. The total proper time of one Building Block T is just twice the proper time

of the acceleration/deceleration τ , therefore T = 2τ . From (8.4.10) we find then that

τn =
nπ

ωk + ωk′
, (8.6.1)

which is the resonance condition for this particular travel scenario.

Eq. (8.4.10) provides the times for resonance but it does not guarantee that the

entanglement does not vanish identically at those times. Therefore one must verify that

B
(1)
kk′ ≠ 0 (8.6.2)

for these times. In fact, B(1)
kk′ gives the entanglement at the end of the travel [77], therefore

if it vanishes there is no entanglement. Let us look at our present case, which we call

Casimir like scenario.

Then

B
(1)
kk′ = ∣(β(1)

0 )kk′ ∣∣g2
k − gkḡk′ + (−1)k+k′gkḡk′ − (−1)k+k′ ḡ2

k′ ∣ (8.6.3)

where ∣gk∣ = ∣gk′ ∣ = 1 are the phase factors acquired during a single segment of accel-

eration/deceleration. The factor (−1)k+k′ comes by considering leftwards accelerations

(deceleration in our case). Therefore, given that T = 2τ , in our specific case:

gk =e−iωkτ

gk′ =e−iωk′τ

Gk =e−iωkT = g2
k

Gk′ =e−iωk′T = g2
k′ . (8.6.4)

Using these identities, one can verify that (8.6.3) implies that B(1)
kk′ = 0 at the resonance

times

τn =
2nπ

ωk + ωk′
(8.6.5)

which means that we expect (non vanishing) entanglement resonances only for the reso-

nance times

τn =
(2n + 1)π
ωk + ωk′

. (8.6.6)
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The analytical predictions of this section are demonstrated in Fig. 8.1 where we

specialize to massless fields, k = 1, k′ = 2 and resonances are expected at τ1 = 1
3δ and

τ3 = δ. The resonance at τ2 = 2
3δ is a null entanglement resonance.

Figure 8.1: The logarithmic negativity LN is shown as a function of the proper time

of acceleration/deceleration τ and the number of repetitions N for k = 1,

k′ = 2. Resonances are found as expected at τ1 = 1
3
δ and τ3 = δ. EN = 0

for τ2 = 2
3
δ. We have specialized to massless fields.

8.6.2 Casimir-type scenario: different acceleration/deceleration

We extend the calculations of the subsection 8.6.1 to a Casimir scenario where the

acceleration is h = nh̃ and the acceleration/deceleration is h′ =mh̃ where n,m ∈ N. The
sign of h′ will be taken into account sperately. The entanglement is

B
(1)
kk′ = ∣(β̃(1)

0 )kk′ ∣∣g2
kh − gkḡk′h + σ(k, k′)gkḡk′h′ − σ(k, k′)ḡ2

k′h
′∣, (8.6.7)

where β̃(1)
0 is the coefficient of the first order h or h′ and

σ(k, k′) =
⎧⎪⎪⎨⎪⎪⎩

1 for rightwards accelerations

(−1)k+k′ for leftwards accelerations (deceleration in our notation)
.

Therefore, using the values for the accelerations we get

B
(1)
kk′ = ∣(β(1)

0 )kk′ ∣∣ng2
k − ngkḡk′ +mσ(k, k′)gkḡk′ −mσ(k, k′)ḡ2

k′ ∣. (8.6.8)
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On resonance we know that G∗
k −Gk′ = 0 and here g2

k = Gk and g2
k′ = Gk′ , therefore

B
(1)
kk′ = ∣(β(1)

0 )kk′ ∣∣(n−mσ(k, k′))−(n−mσ(k, k′))ḡkḡk′ ∣ = ∣(β(1)
0 )kk′ ∣∣n−mσ(k, k′)∣∣1−ḡkḡk′ ∣.

(8.6.9)

Equation (8.6.9) contains all the information we need. If

τn =
2nπ

ωk + ωk′
(8.6.10)

then gk′ = ḡk and the last term in (8.6.9) vanishes as expected because

∣1 − ḡkḡk′ ∣ = ∣gk − ḡk′ ∣. (8.6.11)

If

τn =
(2q + 1)π
ωk + ωk′

(8.6.12)

then gk′ = −ḡk and the last term in (8.6.9) gives ∣1 − gkḡk′ ∣ = ∣gk − ḡk′ ∣ = 2. Therefore

B
(1)
kk′ = 2∣(β(1)

0 )kk′ ∣∣n −mσ(k, k′)∣. (8.6.13)

We always have to choose oddly separated modes for these scenarios (∣(β(1)
0 )kk′ ∣ = 0 for

evenly separated, see (5.1.22)).

Suppose we accelerate towards the right and instead of decelerating, we accelerate

again towards the right. Then σ(k, k′) = 1 and

B
(1)
kk′ = 2∣(β(1)

0 )kk′ ∣∣n −m∣. (8.6.14)

Suppose we accelerate and then decelerate, then σ(k, k′) = −1 and we get

B
(1)
kk′ = 2∣(β(1)

0 )kk′ ∣∣n +m∣, (8.6.15)

which is what we can verify numerically.

The first of these two cases can be understood as follows: if n =m, it means that we

accelerate with acceleration h and immediately accelerate again with acceleration h′ = h.
Then we repeat this N times: this is just a Basic Building Block scenario with a very

long period of acceleration. Therefore,

B
(1)
kk′ = 2∣(β(1)

0 )kk′ ∣∣n −m∣ = 0 (8.6.16)

and there is no entanglement! This is to be expected: the times for resonance are those

for which a BBB has vanishing entanglement, otherwise one could increase the final

entanglement at will by accelerating longer.
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8.7 Bogoiubov operations

In this Chapter we have analyzed the bipartite entanglement generate between piers

of oddly separated modes in a single cavity when the initial state is a coherent state.

We have a lose found an additional feature which characterizes the BVT. In this setting

they act as a two mode squeezing operation, where the squeezing parameter r is directly

related to the correction to the symplectic eigenvalue ν̃(1) through

r ∝ ν̃(1) (8.7.1)

We can interpret the results of the previous sections as follows: when off resonance, the

operations represented by the symplectic matrix S act non-constructively, which does

not allow entanglement to be increased. When on resonance, the operations all act

constructively and therefore the squeezing is increased by repeating the operation.

8.8 Conclusions

In this chapter we have introduced the TMT, which justifies restricting the BVT to

only two oddly separated modes. The BVT are Gaussian transformations and therefore

we have chosen to employ initial Gaussian states and CV techniques. When the initial

state is the vacuum or a coherent state, one can show that by repeating any travel

scenario an arbitrary number of times, one can always find a suitable total time for

such scenario to obtain a linear increase of entanglement with the number of repetitions.

In addition, genuine two mode squeezing between the two modes is achieved where

the squeezing parameter is directly related to the entanglement generated. We have

found that there are always resonances when the “frequency” of the repetitions is just

an even integer multiple of the sum of the frequencies of the two modes. Such condition

is necessary but not sufficient for linear increase of entanglement. The specific form

of the B coefficient for the travel scenario adds constraints on the possible times of

resonances. As a concrete example we analyze a Casimir-like scenario where a segment

of acceleration is immediately followed by a segment of deceleration of same magnitude.

We then generalize this specific case to one where the magnitude of acceleration and

deceleration need not be the same and the direction can be chosen freely.
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Chapter 9: Effects of topology on the nonlocal correlations within
the Hawking-Unruh radiation

In the previous chapters we have analyzed how the state of motion of observers

affects the entanglement initially present in (a family of) maximally entangled states.

We have contributed to the understanding of how this resource for QI tasks is affected by

relativistic effects. We have also introduced and employed a confined fields in cavities.

An open question remains on how entanglement is affected by the curvature of the

spacetime. There is wide consensus among the community regarding the structure of

the spacetime at small scales not being continuous. In particular, many approaches agree

that the topology at small scales might be quantized in some sense.

The standard arena for studies that involve curved spacetimes are black hole space-

times (See [19, 78]). They have been thoroughly studied in the past four decades and

have been extended to different theories of Quantum Gravity.

Previous work in the literature has considered black hole spacetimes where the spatial

topology is not trivial. It was argued that there are solutions to Einstein’s equations

which allow for the spatial topology to be different from R3 [79].

In this chapter we analyze charged scalar fields coupled to a (classical) background

magnetic or electric field in a 3 + 1 curved spacetime where the spatial foliation is not

topologically equivalent to R3. In particular, we investigate geon spacetimes and the

effects, if any, of the presence of non-trivial topology on nonlocal correlations present in

relativistic quantum fields.

9.1 Introduction to geons

Given a stationary black hole spacetime with a bifurcate Killing horizon, it may be

possible to construct a time-orientable quotient spacetime in which the exterior regions

separated by the Killing horizon become identified. In the asymptotically flat case the

quotient spacetime is a topological geon in the sense of Sorkin [79], the showcase example

being the Z2 quotient of Kruskal known as the RP3 geon [80–83]. There exist also

examples where the quotient spacetime is asymptotically locally flat, asymptotically

anti-de Sitter or locally anti-de Sitter [84–87], and we shall understand a topological

geon black hole to encompass all these situations, the characteristic property being that

the infinity consists of only one component.

Topological geon black holes that arise from a stationary black hole in the manner

described above are unlikely to be of interest in astrophysics. They are eternal, in the

sense that their exterior region is stationary and the full spacetime contains both a black

hole region and a white hole region, and their distant past regions cannot be replaced by

a conventional collapsing star without introducing a change of spatial topology. However,
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as the spacetime has only one stationary exterior region, the topological geon black holes

provide an arena for investigating thermal properties of black holes in an unconventional

setting.

To see the issue, consider quantum field theory on Kruskal spacetime [78]. On Kruskal

spacetime, there is a distinguished vacuum state known as the Hartle-Hawking(-Israel)

vacuum [88–90]. While the Hartle-Hawking vacuum is a pure state, it contains entan-

glement between the field degrees of freedom that are defined in the opposing exteriors

with respect to their respective timelike Killing vectors. Probing the Hartle-Hawking

vacuum in one exterior amounts to tracing over degrees of freedom in the causally dis-

connected exterior, and the outcome of this partial tracing is a thermal density matrix

in the Hawking temperature [10]. On the RP3 geon, by contrast, a causally disconnected

exterior does not exist.

Is there hence thermality in the exterior of the RP3 geon, and if so, in what sense?

For a real scalar field on the RP3 geon, this issue was analysed in [91]. The Hartle-

Hawking vacuum on Kruskal induces a Hartle-Hawking-like vacuum on the geon, and

this vacuum does not exhibit thermality when probed by generic operators in the geon’s

exterior. However, when the Hartle-Hawking-like vacuum is written as Boulware exci-

tations on the Boulware vacuum [92], the excitations come in correlated pairs, and the

expectation value of any operator that is designed to couple to only one member of each

pair is thermal, in the usual Hawking temperature. In particular, operators with sup-

port in the asymptotically distant future (or past) see the Hartle-Hawking-like vacuum

as thermal. These properties follow directly from the geometry of quotienting Kruskal

into the RP3 geon, and they generalise to higher spin [93], to similar quotients for more

general geon black holes [87], to geon-like quotients of Rindler and de Sitter spacetimes

[91, 94] and also to the context of gauge-gravity correspondence [84, 85]A recent review

is given in [95].

When the black hole has a gauge field (such as a badkground electric or magnetic

field), it may be necessary to include charge conjugation in the map with which the

gauge bundle of the two-exterior black hole is quotiented into the geon’s gauge bundle.

This happens for example for the Maxwell field on the Reissner-Nordström hole, both

with electric and magnetic charge [87]; it also happens for generic spherically symmetric

Einstein-SU(n) black holes for n > 2 [96]. Gauge charges on the geon are then globally

defined only up to their overall sign [97], similarly to what is known as Alice strings in

the cosmic string context [98–100]. As this sign ambiguity can be fixed within the geon’s

exterior, it is unlikely to have interesting consequences for purely classical observations in

the geon’s exterior. However, when a quantum field couples to the geon’s gauge field, one
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−Q RL Q

Figure 9.1: Penrose-Carter diagram with two dimensions suppressed of Reissner-

Nordtrøm spacetime. The future and past horizons are the π/4 straight

lines. Note the vertical singularity and the inner and outer horizons (the

inner horizon is also a Cauchy horizon [19]). Note the correlations con-

tained in the global fields between right and left wedges.

may expect the Hartle-Hawking-like vacuum to contain information about the gauged

charge conjugation behind the horizons, in a way that is detectable by observing the

vacuum in the geon’s exterior. The purpose of this chapter is to demonstrate that these

expectations are correct.

9.1.1 Geons in brief

We briefly introduce the concept of geon using the Reissner-Nordtrøm spacetime

example, since this will be considered later on in the Chapter. We will not introduce the

details about the spacetime. These can be found in section 9.3.

The simplified Penrose-Carter diagram of the Reissner-Nordtrøm spacetime is de-

picted in Fig. 9.1 where two dimensions are suppressed and we have highlighted the

correlations between fields in the left and right causally disconnected regions. As ex-

plained further on, the charge as viewed by observers in the two causally disconnected

regions takes opposite values. The spatial foliation of the spacetime can be changed in

a nontrivial way by acting with a “mirror” map. This map, unto nontrivial details to

maintain the manifold character of the foliation, will be introduced in Section 9.3. The

Penrose-Carter diagram of the geon spacetime is depicted in Fig. 9.2 The diagram can
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±Q

Figure 9.2: Penrose-Carter diagram with two dimensions suppressed for the geon

Reissner-Nordtrøm spacetime. The future and past horizons are the π/4
straight lines Note the correlations contained in the global fields within

the past and future of the same (and only!) wedge.

be naively explained as follows: the geon quotient maps every point in Fig. 9.1 on the

left of the middle symmetry axis to the corresponding “mirror” point on the right. There

is now only one exterior region and therefore the correlations, if any, cannot be between

causally disconnected exterior regions. A path that hits the symmetry axis is reflected

back continuously (this can be obtains when correctly considering the two suppressed

dimensions). The symbol ±Q is related to the fact that there is no global meaning of

charge in this geon Reissner-Nordstrøm spacetime. All details can be found in Section

9.3.

9.2 Scalar field coupled to a Z2 ⋉U(1) Maxwell field

We start by considering a complex scalar field Φ coupled to a prescribed Maxwell

field in a (possibly) curved spacetime (M, gµν). We assume the spacetime to be globally

hyperbolic and time-oriented. The action reads [101]

S =
ˆ
M

[−gµν(DµΦ)∗DνΦ −m2Φ∗Φ]√−g d4x , (9.2.1)

where the star denotes complex conjugation and m ≥ 0 is the mass. The gauge-covariant

derivative Dµ reads

Dµ ∶= ∇µ − eAµ , (9.2.2)
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where ∇ is the spacetime covariant derivative, Aµ is the Maxwell gauge potential and

e > 0 is the coupling constant. We use a convention in which Aµ is imaginary.

The field equations can be obtained by (2.2.3) and read

(gµνDµDν −m2)φ = 0 , (9.2.3)

and the (indefinite because of normalization in Dirac-delta sense) inner product is given

by

(φ1, φ2) = i
ˆ

Σ
φ⋆1(x)

↔
Dµφ2(x)nµdΣ , (9.2.4)

where Σ is a Cauchy hypersurface, dΣ is the induced volume element on Σ and nµ is

the unit normal vector that points to the future, so that nµvµ < 0 for every timelike

future-pointing vector vµ. When φ1 and φ2 satisfy (9.2.3), the inner product (9.2.4) is

independent of the choice of Σ. When φ1 = φ2, the value of the inner product (9.2.4) is

interpreted as the charge.

SInce the gauge group is U(1) ≃ SO(2), the gauge transformations read

(eAµ, φ)↦ (eAµ + u−1∂µu, uφ) , (9.2.5)

where u is a U(1)-valued function on (a subset of)M and we identify U(1) with the set

of complex numbers of unit magnitude. These transformations leave the action (9.2.1),

the field equation (9.2.3) and the inner product (9.2.4) invariant.

When the gauge group is enlarged to

Z2 ⋉U(1) ≃ O(2), (9.2.6)

the gauge transformations in the disconnected component read [87, 96, 97]

(eAµ, φ)↦ (−eAµ + u−1∂µu, uφ
∗) , (9.2.7)

where u is again a U(1)-valued function on (a subset of)M. These transformations leave

the action (9.2.1) and the field equation (9.2.3) invariant, but they change the sign of

the inner product (9.2.4). The disconnected component of the gauge group makes hence

positive charges gauge-equivalent to negative charges. The gauge transformation (9.2.7)

indeed reduces to the usual charge conjugation transformation when u is the identity.

The situation of interest for this work is when M admits a freely-acting involutive

isometry J , such that the quotient spacetime

M′ ∶=M/{Id, J} (9.2.8)

is globally hyperbolic, and the gauge field configuration satisfies

J∗(A) = −A, (9.2.9)
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where J∗ denotes the pull-back by J (for a extensive review on differential geometry see

[20]). We wish to define onM′ a charged scalar field that couples to the gauge field.

Recall first that in order to define the gauge field on M′, it is necessary to use the

enlarged gauge group Z2⋉U(1) [87, 96, 97]. We may start from a (not necessarily trivial)

principal Z2 ⋉U(1) bundle P overM and form its quotient P ′ = P /Z2 under a Z2 group

of bundle automorphisms, where the nontrivial automorphism acts on M by J and in

the fibres by

(− IdZ2 , IdU(1)) ∈ Z2 ⋉U(1). (9.2.10)

From (9.2.7) and (9.2.9) it is seen that the gauge field configuration is invariant under

this map.

If the coupling to the gauge field were not present, we could simply take a scalar field

onM and require it to be invariant under J∗. When the coupling to the gauge field is

present, this does not work, since if φ solves the field equation (9.2.3) onM, it follows

from (9.2.9) that J∗φ need not do so; however (J∗φ)∗ does.

We may hence define a scalar field onM′ as a field onM that satisfies (J∗φ)∗ = φ:
the field is invariant under J up to a gauge transformation that lies in the disconnected

component of the enlarged gauge group Z2 ⋉U(1). The gauge group onM′ must hence

contain both components of Z2 ⋉U(1).

9.2.1 Constant background magnetic field: preliminaries

First of all we introduceM0 which is a quotient manifold defined as

M0 ∶=M/J0 (9.2.11)

where J0 is defined as follows:

J0 ∶ (t, x, y, z)z→ (t, x, y, z +L) (9.2.12)

and L is a positive constant. The reason to introduceM0 is the following: the geon map

for the Reissner-Nordtrøm case is a genuine involution; the maps J+ and J− that we will

use in this section, defined as

J+ ∶ (t, x, y, z)z→ (t,−x, y, z + L
2
) (9.2.13a)

J− ∶ (t, x, y, z)z→ (t,−x,−y, z + L
2
) (9.2.13b)

are not involutions onM but are onM0.

We start from the Lagrangian (9.2.1) and wish to look at a charged scalar field coupled

to a constant background magnetic field. We choose the field to be in the x direction in
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order to model what happens for the geometrical geon. It is suitable to fix a gauge in

which

Ã ∶= −iCyd̃z. (9.2.14)

where we use the slide to denote one-forms [20]. We want to address the problem of how

does the connection transform under the action of the involution. Take J+ and pull back

the connection under this map. It is easy to check that, given a point x ∈M0

Ã′(x) ∶= J∗+(Ã)(x) = Ã(x) (9.2.15)

and therefore no issue arises because of the connection.

Consider the involution J−. Pull back the connection by this map; we obtain

Ã′ ∶= J∗−(Ã). (9.2.16)

If we want to compare the pullback of the connection Ã′ with the connection Ã itself it

is easy to see that

Ã′(x) ∶= J∗−(Ã)(x) = −Ã(x), (9.2.17)

where x ∈M, and therefore we must account for this change of sign if we want to take

the geon quotient. We know that there is a gauge freedom allowed in our setting and we

will use a gauge transformation to correct for this sign.

To do this, we enlarge the gauge group from U(1) to O(2) as implemented in eq. (9.2.7)

and explained in section 9.2 . The joint action of the disconnected component composed

with the action of the involution are the map we will use to take the quotient.

9.2.2 Constant background magnetic field - Classical case

We are now in a position to proceed to solve the field equations. We start by solving

the field equation onM0 of a complex scalar field coupled to the vector potential (9.2.14),

(DµD
µ −m2)φ = 0, (9.2.18)

which yields an analytic solution in terms of modes

Un,j,kx(xµ) =
1

4πωjL

1√
2jj!

√
π
∣C∣

eik
n
z ze

− 1
2
∣C∣(

√
∣C∣(y+ k

n
z
C

))
2

Hj (
√

∣C ∣(y + k
n
z

C
)) e−iωjt

(9.2.19)

expressed as functions of Minkowski coordinates, where

ω =
√

2∣C ∣ (j + 1

2
) + k2

x +m2 (9.2.20)
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is the time conjugate parameter, kx is the x coordinate conjugate parameter, which has

a continuous spectrum,

k(n)z = 2π

L
n (9.2.21)

is the discrete z coordinate Fourier conjugate parameter, j ∈ N labels the Hermite poly-

nomials Hj . The explicit derivation of the modes (9.2.19) is not illuminating and cum-

bersome. We shall not reproduce it here. The normalisation, using equation (9.2.4),

does not differ from the usual flat spacetime normalisation since we chose the spatial hy-

persurfaces to be orthogonal to the ∂t Killing vector and therefore the time component

of the connection vanishes (as can be easily checked by the gauge choice we made). We

have

(Un,j,kx , Un′,j′,k′x) = δn,n′δj,j′δ (kx − k
′
x) (9.2.22)

The modes U are found for different values of these quantum numbers and the field can

be expanded on a basis formed by these modes.

Φ = ∑
n∈Z,j≥0

ˆ +∞

−∞
dkx [a(n, j, kx)Un,j,kx(xµ)] (9.2.23)

where a(n, j, kx) are Fourier coefficients that, once we quantize, will become operators.

We now will look at the mode solutions to (2.2.16) in Rindler coordinates on the RRW

and LLW. We stress that the Rindler time in the two patches increases towards the

future and the past respectively.

The field equation, once we Fourier transform the field in z as φ = exp(iknz z)φ̃, reads

(
k2
η

χ2
+ 1

χ
∂χ + ∂2

χ + ∂2
y − ∣C ∣2 (y + k

n
z

C
)

2

−m2) φ̃ = 0 (9.2.24)

A solution exists in terms of modified Bessel functions with purely imaginary order Kikη

and Hermite polynomials Hj . A specific solution to the field equation on the right, i.e.

a mode is

R± =
C1√

4π∣kη ∣L
1√

2jj!
√

π
∣C∣

e
− 1

2
∣C∣(y+ k

n
z
C

)
2

Hj (
√

∣C ∣(y + k
n
z

C
))

×Kikη (
√
m2 +Ejχ) e∓ikηηeik

n
z z, (9.2.25)

where

Ej = 2∣C ∣(j + 1

2
), (9.2.26)

the parameter kη is real, the coefficients a(j, n, kη) are Fourier coefficients and the number

C1 is some normalization constant. The field Φ can then be expanded in terms of (9.2.25)

in the same fashion of (9.2.23). Taking equation (9.2.4) where ⟨Ã, et⟩ = 0 we have the
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usual inner product of flat spacetime, where we define the constant η hypersufaces as

those on which to perform the integral. Therefore it can be shown that

C1 =
√

2kη sinh(πkη)
π

(9.2.27)

Fixing the sign of kη to be positive, we can then rewrite the expansion of the field as

φ =∑
j,n

ˆ +∞

0
dkη [A(j, n, kη)R+ + (B(j, n, kη))†R−] (9.2.28)

where all the dependences in the right positive and negative frequency modes R± are

dropped for convenience. If ∂η is the Killing vector in the RRW, then i∂ηR± = ±kηR±.

This expansion is defined on the RRW and we can find, in an analogous fashion, a

solution of the field equations on the LRW. We define the left positive and negative

frequency modes L∓ to be

L± =
1√

4π∣kη′ ∣L
1√

2jj!
√

π
∣C∣

e
− 1

2
∣C∣(y+ k

n
z
C

)
2

Hj (
√

∣C ∣(y + k
n
z

C
))Kikη′ (

√
m2 +Eχ′) e∓ikη′η′eiknz z

(9.2.29)

and they satisfy i∂ηL± = ±kηL± where now ∂η is the Killing vector in the LRW.

9.2.3 Constant background magnetic field - Quantum case: M0

We will now quantize the field and compute the BVT between the Minkowski type

operators and the Rindler type operators. The quantization of the field is straightfor-

ward and can be done by promoting the Fourier coefficients, found in the Chapter 2, to

operators.

There are four types of Rindler creation and annihilation operators, the ones that

live on the RRW and the ones that live on the LRW. In the same way, we expect to

find four different types of Minkowski creation and annihiliation operators. To find the

modes that carry these Minkowski operators, we continue the two modes on the right in

both the upper and lower part of the complex t plane. The continuation is simple and,

once the normalisation is worked out we have four Minkowski like modes which have the
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following form

N1 ∶=
e−i

π
2
(j+n)

√
2 sinh(πkη)

[e
π
2
kηR+ + e−

π
2
kηL+] (9.2.30a)

N2 ∶=
e−i

π
2
(j+n)

√
2 sinh(πkη)

[e−
π
2
kηR− + e

π
2
kηL−] (9.2.30b)

M1 ∶=
e−i

π
2
(j−n)

√
2 sinh(πkη)

[e−
π
2
kηR+ + e

π
2
kηL+] (9.2.30c)

M2 ∶=
e−i

π
2
(j−n)

√
2 sinh(πkη)

[e
π
2
kηR− + e−

π
2
kηL−] (9.2.30d)

These modes are analytical everywhere, except possibly the horizon: in addition, they

share the same vacuum as the M modes. The phases exp(−iπ2 (j ±n)) are added in order

to simplify expressions that will follow.

The N modes have been obtained by analytical continuation of the R modes to the

left in the upper half plane of Minkowski t coordinate, while the M modes by analytical

continuation in the lower half plane of Minkowski t coordinate. Therefore, the N modes

will be those carrying particles and M modes carrying antiparticles.

We can expand the field as follows: R± and L± have support respectively on the R and

on the L. The field Φ can be expanded as

Φ =⨋ (AMN1 +BMN2 + (CM)†M1 + (DM)†M2) (9.2.31a)

Φ =⨋ (aRR+ + (bR)†L+ + (cR)†R− + dRL−) (9.2.31b)

where we have dropped all the dependences for the sake of simplicity. They can be

easily recovered by looking at the field expansion (9.2.25). The superscripts M and R

refer Minkowski and Rindler type operators respectively as usual.

The creation and annihilation operators satisfy the standard commutation relations

[AM(n, j, kη), (AM)†(n′, j′, k′η)] = δn,n′δj,j′δ (kη − k′η) (9.2.32)

All other similar commutators yield the same result both for Minkowski and Rindler

type of particles. Particle-antiparticle commutators vanish.

We can finally compute the BVT between the different operators. It is particularly

simple to find them by reading the coefficients of the R±, L± modes in (9.2.30d) modes.
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One finds

aR = 1√
2 sinh(πkη)

[e
π
2
kηAM + e−

π
2
kη(CM)†] (9.2.33a)

(bR)† = 1√
2 sinh(πkη)

[e−
π
2
kηAM + e

π
2
kη(CM)†] (9.2.33b)

(cR)† = 1√
2 sinh(πkη)

[e−
π
2
kηBM + e

π
2
kη(DM)†] (9.2.33c)

dR = 1√
2 sinh(πkη)

[e
π
2
kηBM + e−

π
2
kη(DM)†] (9.2.33d)

It is immediate to check that

⟨0Mink∣ (aR)†aR ∣0Mink⟩∝
1

e2πkη − 1
(9.2.34)

and the same holds for all other Rindler operators. Number expectation values are then

thermally distributed (as is well known, since the operators are delta-normalised in the

sense of Dirac, there is an infinite constant of proportionality in (9.2.34). This can be

taken care of, for example, by smearing off the field).

We now turn our attention to the Rindler particle content of the Minkowski vacuum.

We wish to see what type of particles are present.

We start looking at the formally self adjoint operators

J ∶= i∑ [(aR)†(bR)† − aRbR] (9.2.35a)

J ′ ∶= i∑ [(cR)†(dR)† − cRdR] (9.2.35b)

where again the sum is among all the relevant quantum numbers. As in [10, 91] we can

show that

AM =e−iJaReiJ (9.2.36a)

CM =e−iJbReiJ (9.2.36b)

BM =e−iJ ′dReiJ ′ (9.2.36c)

DM =e−iJ ′cReiJ ′ (9.2.36d)

Since [J, J ′] = 0, in general we have that

ÔM = e−i(J+J ′)ÔRei(J+J ′) (9.2.37)

where the two different operators are chosen according to (9.2.36d). Ô stands for any of

the operators and the superscript distinguishes between R and M ones. Given (9.2.37)

it is trivial to show that

∣0M ⟩ = e−i(J+J ′) ∣0R⟩ (9.2.38)
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which in turn implies, after lengthy calculations, that

∣0M ⟩ = 1

(cosh r)2

+∞
∑
n,n′

(tanh r)n+n′ ∣na, nb, n′c, n′d⟩ (9.2.39)

where tanh r = exp(−πkη) while the subscripts to the particle number in the right hand

side refer to the corresponding type of operator. Formally

∣na, nb, n′c, n′d⟩ =
((aR)†)na

√
na!

. . .
((dR)†)n

′
d

√
n′d!

∣0R⟩ (9.2.40)

This completes the characterization ofM

9.2.4 Constant background magnetic field - Quantum case: M−

We are ready to do the geon identification: simple properties of the field solutions,

together with the action of J− and Ω, show that the first line of equation (9.2.31) trans-

forms as follows

Φ =⨋ (AMN1 +BMN2 + (CM)†M1 + (DM)†M2)
J−○ΩÐ→

Φ =⨋ ((AM)†M1(−n) + (BM)†M2(−n) +CMN1(−n) +DMM2(−n)) . (9.2.41)

The simple transformation (9.2.41) occurs because of our choice of the modes and of the

operators.

This suggests that the field expansion which is suitable in order to perform the geon

identification is the following:

Φ = ⨋ (AMN1 +BMN2 + (AM)†M1 + (BM)†M2) , (9.2.42)

which has one problem: there is an overcounting of the modes in the field expansion.

The geon identifications identify couples of modes and therefore we need to find a way

to expand Φ on a mode basis which is complete and not overcounted. We introduce the

operators βσ, γσ σ = 0,1 and the Hermitian conjugates such that we get

Φ = ⨋
′
(β0N1 + γ1N2 + (β1)†M1 + (γ0)†M2 + (β1)†N1(−n)

+ (γ0)†N2(−n) + β0M1(−n) + γ1M2(−n)) . (9.2.43)

The case where n = 0 will be discussed further in this section. Whenever there is a

dependence on the quantum number n (in the operators and the modes), we suppress

it if it is written in the form n, write it otherwise. The superscript prime over the

summation symbols stands that we sum only over n ≥ 0. The main property that it

enjoys, as already stated, is to be invariant under the map J− ○Ω.
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We can now look for the BVT between the RRW modes, which “survive” after the

geon identification, and the field in the form (9.2.43). Define first

AM ∶=
⎧⎪⎪⎨⎪⎪⎩

β0(n) n > 0

β1(−n) n < 0
(9.2.44a)

BM ∶=
⎧⎪⎪⎨⎪⎪⎩

γ1(n) n > 0

γ0(−n) n < 0
(9.2.44b)

Then, the BVT transformations read

aR(n) = 1√
2 sinh(πkη)

[e
π
2
kηAM(n) + e−

π
2
kη(AM)†(−n)] (9.2.45a)

(cR)†(n) = 1√
2 sinh(πkη)

[e−
π
2
kηBM(n) + e

π
2
kη(BM)†(−n)] , (9.2.45b)

where n > 0.

The case in which n = 0 needs some extra care. From (9.2.45), it is easy to understand

that the operators on the right hand side are not independent but one is the Hermitean

conjugate of the other. This means that there will be a different behavior between the

R operators with n ≠ 0 and those with n = 0. Notice that even though there are four

operators in (9.2.43), they group together into two M operators when one looks at the

BVT. This occurs because of the geon identification.

The number expectation value gives exactly the same result as in (9.2.34).

Again, we define two formally self adjoint operators J, J ′ such that

J = i ∑
m≥0

[(aR)†(−m)(aR)†(m) − aR(−m)aR(m)] (9.2.46a)

J ′ = i ∑
m≥0

[(cR)†(−m)(cR)†(m) − cR(−m)cR(m)] . (9.2.46b)

The M vacuum ∣0M ⟩ can be then expressed in terms of R vacuum ∣0(−)
R ⟩ as follows

∣0M ⟩ = e−i(J+J ′) ∣0(−)
R ⟩ . (9.2.47)

Explicitly:

∣0−M ⟩ =
+∞
∏
q,q′=1

+∞
∑
N=0

(2n − 1)!!(2n′)!!√
(2n)!(2n′)!

e−πkη(n+n
′+m+m′)

(cosh r)3
∣2n,2n′⟩ ∣m⟩q ∣m⟩−q ∣m′⟩

q′ ∣m
′⟩−q′ ,

(9.2.48)

where, only for notational simplicity, N = (n,n′,m,m′,m,m′).
The meaning of the kets on the right is understood from the previous results. q is the

discrete quantum number that comes from the compactification of the z direction. We

notice one important contribution that comes from the n = 0 Rindler operators: this
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takes the form in the right hand side of (9.2.48) of the part that depends on n and n′.

Comparing this part with the one that depends on m,m′, q, q′ we clearly see a different

structure. The calculations are not illuminating - such calculations have been used in

[91] - and this issue arises because for n = 0 we can see that in both equations (9.2.45)

the two operators are not independent. The n = 0 case thus gives rise to some extra

interesting structure.

9.2.5 Constant background magnetic field - Quantum case: M+

One wishes to look also atM+. As already pointed out, there is no problem in taking

the quotient of M0 because the U(1) gauge group is sufficient since the connection

behaves nicely under J+:

J∗+(Ã)(x) = Ã(x) (9.2.49)

Taking the quotient is straightforward and the procedure is similar to that of the sub-

section 9.2.2. Equation (9.2.41) is modifed and will take the form

Φ =⨋ (AMN1 +BMN2 + (CM)†M1 + (DM)†M2)
J−Ð→

Φ =⨋ (AMN2 +BMN1 + (CM)†M2 + (DM)†M1) (9.2.50)

From (9.2.50) we can, following the calculations done onM−, write an invariant expan-

sion of the field

Φ = ⨋ (AMN1 +AMN2 + (CM)†M1 + (CM)†M2) , (9.2.51)

where we notice that there is no change of the sign of n involved in the modes. The BVT

look like

aR = 1√
2 sinh(πkη)

[e
π
2
kηAM + e−

π
2
kη(CM)†] (9.2.52a)

(cR)† = 1√
2 sinh(πkη)

[e−
π
2
kηAM + e

π
2
kη(CM)†] . (9.2.52b)

The R operators have the same thermal distribution (9.2.34) of those in M−. What is

different is the R particle content of the M vacuum. The same procedure adopted in the

subsection 9.2.4 show that

∣0+M ⟩ = 1

cosh r

+∞
∑
n=0

(tanh r)n ∣nanc⟩ , (9.2.53)

where we adopt the notation of the previous subsection for the definition of the kets.
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9.2.6 Particle correlations and the meaning of charge

Equations (9.2.48) and (9.2.53), together with the following equation

∣00
M ⟩ = 1

cosh r

+∞
∑

n,n′=0

(tanh r)n+n′ ∣nAnB⟩ ∣n′Cn′D⟩ , (9.2.54)

which can be found in [10, 91] ,show that different geon identifications affect the particle

correlations. While in (9.2.54) there is a particle-antiparticle correlation, as there is in

(9.2.53), onM− equation (9.2.48) shows that there are particle-particle and antiparticle-

antiparticle correlations. Therefore, we can conclude that the presence of a geon quotient

does affect the nonlocal correlations present in the Unruh radiation.

At last comment, we are left with the task of understand the meaning of charge in

this context. Considering the standard [18] normal ordered charge operator

Q ∶=∑ [(aM)†aM + (bM)†bM − (cM)†cM − (dM)†dM ] , (9.2.55)

which is defined in term of R operators on the whole M spacetime, it is easy to check

that, once we perform the geon identification

Q ≡ 0. (9.2.56)

It is important to notice that the charge operator vanishes identically: one can interpret

this fact as showing that there is no global notion of charge on this geon spacetime. In

this case it is physically meaningless to define a global charge.

9.3 Electrically charged Reissner Nordtrøm spacetime

In this section we proceed to analyse the behavior of a charged scalar field on a curved

background coupled to a background electric field. Our aim is to understand how the

Unruh radiation is affected by the geon identifications.

Electrically charged Reissner Nordtrøm spacetime - Classical case

We start by considering the Lagrangian (9.2.1) and field equations (9.2.3). Our metric

is now, in (t, r, θ, φ) coordinates:

ds2 = −F (r)dt2 + dr2

F (r) + r
2dΩ2 (9.3.1)

where F (r) ∶= (1 − r+
r
) (1 − r−

r
) and r± ∶= M ±

√
M2 −Q2. We are in the genuine Black

Hole range 0 < ∣Q∣ <M . We fix the gauge to be
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Ã = iQ
r
d̃t (9.3.2)

where Q is the charge of the black hole as seen from infinity. Since Gauss law holds, it

can be shown that, once the global time orientation is given, an observer near I + (the

future null infinity) on the right will, say, measure an electric field pointing outwards

from the hole; then, an observer at I + on the left will see an electric field pointing

inwards. The two observers will therefore disagree on the sign of the charge of the Black

Hole. Although this might seem paradoxical, we are reminded that the two observers live

in two causally disconnected regions. Therefore, their disagreement cannot be verified.

We proceed to solve (9.2.3) in these new coordinates. One can give an ansatz for the

separation of the solution in the following form:

Φ =∑
m,l

ˆ +∞

−∞
dΩY l

m(θ, φ)R(r)e∓iωt, (9.3.3)

where ω > 0 is the conjugate variable to the time coordinate.

We can introduce the generalised tortoise coordinate r∗ such that

∂r =
1

F
∂r∗ . (9.3.4)

We express R(r) in terms of a new function R(r) ∶= Ψ(r)
r and we compute the differential

equation for Ψ

[(ω ± eQ
r

)
2

+ ∂2
r∗ −

1

r

∂F

∂r
F + l(l + 1)

r2
F −m2F] .ΨDΨ = 0. (9.3.5)

We find the usual spherical harmonics Y l
m(θ, φ). Our phase convention for the spherical

harmonics is (Y l
m(θ, φ))∗ = (−1)mY l

−m(θ, φ) It is interesting to look at the behavior of

the solution (and differential equation) close to the horizon and far from the horizon.

The two asymptotic behaviors of equation (9.3.5) in these regions are:

DΨ
r≫r+∼

⎡⎢⎢⎢⎣
− ∂

2

∂r2∗
− (Ω2 −m2)

⎤⎥⎥⎥⎦
Ψ (9.3.6a)

DΨ
r∼r+∼

⎡⎢⎢⎢⎣
− ∂

2

∂r2∗
− (Ω ± eQ

r+
)

2⎤⎥⎥⎥⎦
,Ψ (9.3.6b)

and Ω is the conjugate variable to the time coordinate in the Fourier expansion. The

generalised tortoise coordinate has explicit relation with r

r∗ = r +
α

2
ln( r

r+
− 1) − r

2
−
r2
+

α

2
ln( r

r−
− 1) , (9.3.7)

where

α ∶= 2r2
+

(r+ − r−)
= 1

κ
(9.3.8)

is the inverse of the surface gravity κ. Notice that r∗ Ð→ −∞ as r Ð→ r+.
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9.3.1 Normalisation

The issue of normalisation brings in some novel features if compared to the flat

spacetime normalisation.

Given (9.2.4) suppose one is able, as in the present case, to separate the solutions in the

time coordinate

φ(t, x) = ⨋ dλe−iEtφ̃E(x), (9.3.9)

where we drop all unimportant lables for the sake of simplicity and λ collects all of

the variables of integration. Since φ(t, x) satisfies the Klein Gordon field equation, it is

possible to show that φ̃E satisfy

(E − eV )2φ̃E(x) = φ̃E(x) −∆φ̃E(x) (9.3.10)

and ∆ is the Laplacian, V is the potential that comes from the connection.

The relation satisfied by modes corresponding to different quantum numbers is
ˆ
dΣφ̃E′(x)(E′ +E − 2eV )φ̃E(x) = εEδ(E′ −E). (9.3.11)

Where it is possible to assume that all ε are nonvanishing. The modes are not strictly

speaking orthogonal; in turn this relation can be used to determine the normalisation of

the modes. ∣ε∣ can be absorbed in the definition of the modes but it is not possible to

change the sign of the right hand side of (9.3.11).

9.3.2 Low frequencies: ω <m

In the case where ω < m it is known from [91] that solutions to (9.3.5) vanish expo-

nentially as r Ð→ +∞. Furthermore, this allows us to check that the near horizon form

is a real function. Their behavior is

Ψ±(r∗) ∼ cos(k±r∗ + θ±) r∗ Ð→ −∞ (9.3.12a)

Ψ±(r∗) ∼e−Γr∗ r∗ Ð→ +∞, (9.3.12b)

where we have defined

Γ =
√
m2 − ω2,

k± ∶=ω ±
2γQ

α
,

γQ ∶=eQα
2r+

, (9.3.13)

an the quantity eQ
r+ is the potential at the horizon and θ± is a phase factor uniquely

determined by integrating the field equation.
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Once the normalization issue is understood then it is easy to check that

(Ψ±′,Ψ±) = ±4πk±δll′δmm′δ(ω′ − ω) (9.3.14)

and we have reintroduced all the quantum numbers in the r.h.s of (9.3.14).

9.3.3 Electrically charged Reissner Nordtrøm spacetime - Quantum

Case

In order to quantise the field and then perform the Bogoliubov transformations we

first need to analytically continue the modes from the right hand side to the left. We

follow section 9.2 both in spirit and in notation.

Following [101], we choose to look for a gauge on the right that is regular across the

future horizon. The gauge transformation maps the field Φ into a new field Φ′ as follows

Φ′ = egΦ (9.3.15)

where g ∈ L(U(1)) ≃ iR; in particular, as explained in [20], we can write g = iΛ where Λ

is a function defined on the spactime (providing us with a local gauge transformation).

The gauge choice we make is

Λ = eQα
2r+

(ln( r
r+

− 1) − ln( r
r−

− 1)) . (9.3.16)

The coordinates we use are the Ingoing Eddington-Finkelstein (v, r, θ, φ). We then show

that

eiΛΨ± ∼ e±iΩv [f(r) + eik±α ln( r
r+ −1) × g(r)] , (9.3.17)

where f(r) and g(r) are analytical functions of r. In order to check whether this is a

positive or negative frequency we observe that, as pointed out in [101], we need to look

at eigenfunctions of the operator tµDµ where t is the future pointing normal at H+ on

the right. It can be shown that it has the form

t = tv(1,0,0,0), (9.3.18)

where tv = T is some nonvanishing scaling factor. We also know that the gauge covariant

derivative has the form, in the new gauge

Ãnew = Ãold + d̃Λ = iQ
r
d̃v − iQ

r (1 − r−
r
)
d̃r, (9.3.19)

which of course is regular trough H+. Therefore, (the subscript R stands for right),

1

T
tµ Dµ(eiΛΨ±)∣

R
= ∓iΩ(eiΛΨ±)∣

R
. (9.3.20)
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Apart from the scaling factor T , we see that eiΛΨ± are eigenfunctions of the operator

tµDµ with eigenvalue ∓iΩ. It is important to notice that these are exactly the same

eigenvalues of the solutions to the field equation of a charged scalar field that is not

coupled to any background. We conclude that the background does not inflence the near

horizon definition of positive and negative frequencies. This allows us to use the same

arguments that have been used by [8] to continue the modes across the horizon in the

relevant half complex global t plane. The exponential on the right hand side of equation

(9.3.17) which depends on r is the singular part when we cross the horizon. We can

argue that the continuation will result in adding a multiplicative factor to that part of

(9.3.17), therefore obtaining a solution of the form

eiΛΨ±∣
F
∼ e±iΩv [f ′(r) + e−αk±πeik±α ln(1− r

r+ ) × g′(r)]∣
F
, (9.3.21)

where f ′(r) and g′(r) are analytical functions of r. The subscript F stands for Future

and means that we must think of being in the future wedge. We wish to continue this

mode back to the left wedge. First of all we transform the modes back in (9.3.21) using

the gauge Λ. Then we choose a gauge that is regular across H+∣L. The function Λ′ we

are looking for is

Λ′ ∶= −eQ
r+

α

2
(ln(1 − r

r+
) − ln( r

r−
− 1)) . (9.3.22)

We choose the Outgoing Eddington Finkelstein coordinates (u, r, θφ) and close to H+∣L
and once the modes are gauged using this function, they look like

eiΛΨ±∣
F
∼ e±iΩu [f ′′(r) + e−ik±α ln(1− r

r+ ) × g′′(t)]∣
F
, (9.3.23)

where f ′′(r) and g′′(r) are analytical functions of r and we have defined the analogous

of the tortoise coordinate in the Future as

r∗∣F = r + α
2
ln(1 − r

r+
) − r

2
−
r2
+

α

2
ln( r

r−
− 1) , (9.3.24)

and this has been used to derive the divergent exponential in (9.3.23). We gauge trans-

form the field and the connection as done before and define the operator which deter-

mines the positive and negative frequencies on H+∣L as tµDµ where, again, t is the future

pointing normal vector to the horizon. It can be easily checked that

1

T
tµ Dµ(eiΛΨ±)∣

R
= ∓iΩ(eiΛΨ±)∣

F
, (9.3.25)

where again t = (tu,0,0,0) is the future pointing normal vector and T = tu is some

nonvanishing scaling factor.

We can conclude the following: the modes retain their close to horizon positive and
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negative character, allowing us to use simple arguments to continue them across the

horizons themselves. We can continue the mode as done before and obtain

eiΛ
′
Ψ±∣

L
∼ e±iΩv [f ′′′(r) + e−αk±πeik±α ln( r+

r
−1) × g′′′(r)]∣

L
, (9.3.26)

where f ′′′(r) and g′′′(r) are analytical functions of r. We then transform the mode back

with the gauge Λ′ to have the analogous of the mode on the right hand side. Finally,

putting all together, we see that the modes on the right, once continued in the lower half

complex plane trasform like

Ψ±∣R Ð→ e−αk±πΨ±∣
L
. (9.3.27)

We define, for convenience,

R± ∶= e∓iΩtΨ±
lΩYlm∣

R
(9.3.28a)

L± ∶= e∓iΩtΨ±
lΩYlm∣

L
, (9.3.28b)

where, on the right hand side, we have restored the quantum numbers the modes depend

on for the sake of completeness. Finally we obtain an explicit solution for the normalised

Minkowski like modes

N1 ∶=
e
i(l+m)π

2

2
√

sinh(πk+α)
[e

απ
2
k+R+ + e−

απ
2
k+L+] (9.3.29a)

N2 ∶=
e
i(l+m)π

2

2
√

sinh(πk−α)
[e

απ
2
k−R− + e−

απ
2
k−L−] (9.3.29b)

M1 ∶=
e
i(l+m)π

2

2
√

sinh(πk+α)
[e−

απ
2
k+R+ + e

απ
2
k+L+] (9.3.29c)

M2 ∶=
e
i(l+m)π

2

2
√

sinh(πk−α)
[e−

απ
2
k−R− + e

απ
2
k−L−] . (9.3.29d)

We expand the field in terms of Minkowski like modes and modes that live separately

on the right and left side

φ =⨋ (AM1 N1 +AM2 N2 + (BM
1 )†M1 + (BM

2 )†M2) (9.3.30a)

φ =⨋ (a1R
+ + (a2)†R− + (b1)†L+ + b2L−) . (9.3.30b)

We compute the commutators between the operators and again find relations analogue

to (9.2.32) where the quantum numbers have to be replaced with m,j,Ω. These rela-

tions allow us to compute the Bogoliubov transformations between the different type of
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operators

(a1)† ∶= 1

2
√

sinh(πk+α)
[e

απ
2
k+(AM1 )† + e−

απ
2
k+BM

1 ] (9.3.31a)

b1 ∶=
1

2
√

sinh(πk−α)
[e

απ
2
k−AM2 + e−

απ
2
k−(BM

2 )†] (9.3.31b)

a2 ∶=
1

2
√

sinh(πk+α)
[e−

απ
2
k+(AM1 )† + e

απ
2
k+BM

1 ] (9.3.31c)

(b2)† ∶= 1

2
√

sinh(πk−α)
[e−

απ
2
k−A2 + e

απ
2
k−(BM

2 )†] . (9.3.31d)

Computing the usual number expectation value we find, for any of these operators

⟨0M∣ o†o ∣0M⟩ = 1

4 (e2αk±π − 1) , (9.3.32)

where o is a generic Rindler operator and the ± sign depends on the operator. This result

agrees with [91].

As done before, we compute how the modes (9.3.29) transform under the geon map. We

find that they transform as

Ni(m)Ð→Mi(−m) (9.3.33)

where i = 1,2; therfore we are able to take the geon identification and find that

(a1)† ∶= 1

2
√

sinh(πk+α)
[e

απ
2
k+(AM1 )†(m) + e−

απ
2
k+AM1 (−m)] (9.3.34a)

a2 ∶=
1

2
√

sinh(πk−α)
[e

απ
2
k−AM2 (m) + e−

απ
2
k−(AM2 )†(−m)] , (9.3.34b)

which, again, allows us to see that

⟨0M∣a†
iai ∣0M⟩ = 1

4 (e2αk±π − 1) (9.3.35)

where again i = 1,2, the + refers to the type 1 operator while − to the type 2. We have

already discussed the m = 0 case and the issue here is exactly the same.

9.3.4 High frequencies: Ω >m

We have seen which are the effects on the particle content emitted from a Black Hole

of the geon identifications in the case of low frequencies. We now turn our attention to

the high frequency case, Ω >m. Following [91] it is possible to show that in this regime,

the radial field equation behaves like

DΨ
r≫r+∼

⎡⎢⎢⎢⎢⎣

∂2

∂r2∗
+ Γ2 +Θ±

α

2r∗
+ (1 − r

2
−
r2
+
)Θ±

ln (2r∗
α

)
(2r∗
α

)2
+O ( 1

r2
∗
)
⎤⎥⎥⎥⎥⎦

Ψ (9.3.36a)

DΨ
r∼r+∼

⎡⎢⎢⎢⎣
− ∂

2

∂r2∗
− (Ω ± eQ

r+
)

2⎤⎥⎥⎥⎦
,Ψ (9.3.36b)
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where Γ ∶=
√

Ω2 −m2 and

Θ± ∶=
2

α
[(r+ − r−)m2 ± 2eQΩ] (9.3.37)

have been defined to simplify the formulas. The asymptotic form of the solutions for

r ≫ r+ can be shown to take the form

Ψ± ∼ e±i(Γr∗+Σ± ln( 2r∗
α

)), (9.3.38)

where

Σ± ∶=
Θ±
2Γ

. (9.3.39)

Again, since there is a complete formal analogy with calculations in [91], we choose two

sets of solutions of the form

←
Ψ± ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩

←
B±e

−ik±r∗ r∗ Ð→ −∞
e−i(Γr∗+Σ± ln( 2r∗

α
)) +

←
A±e

i(Γr∗+Σ± ln( 2r∗
α

)) r∗ Ð→ +∞
(9.3.40a)

→
Ψ± ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩

eik±r∗ +
→
A±e

−ik±r∗ r∗ Ð→ −∞
→
B±e

i(Γr∗+Σ± ln( 2r∗
α

)) r∗ Ð→ +∞
(9.3.40b)

and the arrows on top stand for “ingoing” and “outgoing”, meaning that we have imposed

boundary conditions on these solutions such that the “outgoing” have only an outgoing

component at infinity and analogously for the “ingoing” solution.

We can compute the Wronskian of these solutions and, since in this case it is conserved,

gain some conditions on the coefficients. One finds that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ
←
B± =

→
B±k±

Γ
←
B±(

→
A±)∗ = −k±

←
A±(

→
B±)∗

Γ∣
←
B±∣2 = k± [1 − ∣

→
A±∣2]

Γ [1 − ∣
←
A±∣2] = k±∣

→
B±∣2

. (9.3.41)

There are 16 real parameters and 12 real relations that leave us with 4 free parameters

which, in principle, are uniquely determined by solving the field equation. There is no

interesting insight in repeating these lengthy calculations so we will state the results. We

can normalise both the ingoing and outgoing modes, keeping in mind the inner product

as defined in [102] and it is possible to show that for

e∓iΩt
←

Ψ± (9.3.42)

e∓iΩt
→

Ψ± (9.3.43)
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the normalisation constants are
√

2Γ ± k
2
± ∓ Γ2

Γ
[1 − ∣

←
A±∣] (9.3.44)

√
±2k± ∓

k2
± ∓ Γ2

k±
[1 − ∣

←
A±∣] (9.3.45)

respectively. These modes do not transform nicely under our geon map. We will look for

a linear combination of the modes, in terms of two pairs of coefficients a+, b+ and a−, b−
in such a way that the field expansion in terms of them is invariant under the geon map.

We have two different linear combinations, one for the positive frequencies and one for

the negative frequencies. Calculations are tedious and not illuminating, therefore we will

briefly explain what are the following steps to take. We would like to normalise these

new modes obtained by a linear combination of the old ones. We then define the new

modes as

R± ∶= (a±e∓iΩt
→

Ψ± + b±e∓iΩt
←

Ψ±)Ylm∣
R
, (9.3.46)

which are normalised once one does a clever choice of the a and b coefficients using the

properties of the Wronskian displayed before . This can be done. Just staring at the

definition of R± makes one realise that these modes can be continued exactly as those in

the low Ω case across the horizons. Formally everything is the same and therefore there

are no new mathematical or conceptual issues that arise.

We define the modes

N1 ∶=
(e)(

i(l+m)π
2

2
√

sinh(πk+α)
[e

απ
2
k+R+ + e−

απ
2
k+L+] (9.3.47a)

N2 ∶=
(e)(

i(l+m)π
2

2
√

sinh(πk−α)
[e

απ
2
k−R− + e−

απ
2
k−L−] (9.3.47b)

M1 ∶=
(e)(

i(l+m)π
2

2
√

sinh(πk+α)
[e−

απ
2
k+R+ + e

απ
2
k+L+] (9.3.47c)

M2 ∶=
(e)(

i(l+m)π
2

2
√

sinh(πk−α)
[e−

απ
2
k−R− + e

απ
2
k−L−] (9.3.47d)

where it is immediately evident the formal analogy between this case and the the Ω <m
one. We are stll left with the unknown coefficients of the linear combinations but we

will show how they can be fixed. We check how the modes (9.3.47) transform under the

geon map. It can be shown that

Nσ(n)Ð→Mσ(−n), (9.3.48)

where σ = 1,2, provided that

b± =
¿
ÁÁÀ Γ

k±(1 −
←
A±)

(a⋆± − a±
←
A±) . (9.3.49)
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This fixes b± in terms of a± leaving us with two real free parameters.

We can once more build a field expansion in term of different modes

φ =⨋ (AM1 N1 +AM2 N2 + (BM
1 )†M1 + (BM

2 )†M2) (9.3.50a)

φ =⨋ (a1R
+ + (a2)†R− + (b1)†L+ + b2L−) (9.3.50b)

and again there is an exact formal analogy between these relations and (9.3.30). We

can conclude that the relations (9.3.32) hold for the operators in the high Ω case as well

and (9.3.34) and (9.3.35) too. Therefore, the particle correlations are not affected by Ω

being high or low.

There is one more issue that we would like to discuss and that agrees with results

well known in literature under the name of superradiant modes: as shown in [103], a

necessary condition for the superradiance to occur is that

i

2Γ
W (Ψ±, (Ψ±)∗)∣r̃∗ > 0, (9.3.51)

where W is the Wronskian defined for two functions f, g as

W (f, g) = f ′g − fg′ (9.3.52)

and the point r̃∗ is where some boundary conditions are imposed. Since the Wron-

skian in our case is constant, it can be calculated either for r∗ Ð→ ±∞. If we look for

superradiance then

∣
←
A±∣2 > 0, (9.3.53)

which in turn, using some of the relations (9.3.41) turns out to be equivalent to k± < 0.

This implies

m < Ω < ∓eQ
r+

(9.3.54)

which perfectly agrees with [19, 101, 103].

9.4 Conclusions

In this chapter we have analyzed charged scalar fields in two different geon spacetimes:

flat spacetime where the charged field was coupled to a classical background magnetic

field and electrically charged Reissner-Nordtrøm spacetime where the field was coupled to

a classical background electric field. We have revised the construction of a geon and have

discussed what issues arise when there is a constant classical background magnetic field.

In particular, we have found that one needs to enlarge the gauge group to accommodate

for transformations within the disconnected component of the enlarged group. These
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allow us to define the magnetic geon. We then compute the BVT and show that there

is a specific geon configuration for which the standard particle-antiparticle correlations

change into particle-particle and antiparticle-antiparticle correlations.

We have also addressed the structure of the nonlocal correlations in the geon version

of the electrically charged Reissner-Nordtrøm black hole. We have analyzed the low

and high frequency regimes. We find that, as in the previous case, the correlations are

affected by the topology of the spatial foliations.
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Chapter 10

Work in progress and future work

“ Cuando aún era de noche,

cuando aún no había dia,

cuando aún no había luz,

se reuneron.

Se convocaron los dioses,

alla en Teotihuacan.”

Codex Matritense
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10.1 Work in progress and future work

The results described in this work have been obtained during my PhD studies. I

have also initiated and contributed to other projects which are now at different stages

of progress. I will briefly describe the projects aims

Slow light - the predictions of the cavities chapters are plagued by the magnitude

of the h parameter. Since h = Aδ/c2, already at first order and for reasonable cavities

and accelerations, perhaps δ = 1cm and A ∼ 1 − 10g, h ∼ 10−16. Although one can

compute exactly the magnitude of the contribution, it is clear that the effects are very

small. Furthermore, in the field of quantum optics, standard laboratory techniques for

measuring corrections to entanglement such as tomography, allow for 1 − 5% relative

error on the entanglement. These daunting figures seem to indicate that the effects we

have found might not be measurable experimentally, at least with current technology.

On the other hand and from a completely different perspective, the Casimir commu-

nity has been awaiting experimental demonstration of the dynamical Casimir effect for

almost four decades [13].

I have suggested that introducing dispersive media within cavities might allow for

“slow light” within and therefore higher values of the h parameters. This simple sug-

gestion comes from the observation that h = Aδ/c2 is plagued by a large speed of light

in the denominator. If one was able to reproduce the predictions obtained in empty

cavities in the case of cavities filled with disperseve media, it might be possible to look

for configurations where the new speed of light cnew could satisfy cnew < c and perhaps

also cnew << c. I have started investigating such possibilities in collaboration with Dr.

Daniele Faccio (Heriot Watt, Edinburgh, UK), Dr. Chris Binns (University of Leices-

ter, Leicester, UK), Dr. Sergio Cacciatori (Universita‘ dell’Insurbia, Como, Italy) and

colleghi di Sergio e Daniele and Jorma.

Extended detectors in Relativistic Quantum Information - In order to exploit quantum

resources, physical devices capable of utilizing entanglement are needed. The standard

device considered in literature is the point like Unruh-DeWitt detector which couples

locally to global fields [8]. Although it has provided some insight of how to extract

entanglement within RQI settings, such detector is a highly idealized device. A more

physical implementation is the extended version of the point like Unruh-DeWitt detector,

as considered in [104] and further studied in [87]. Such detectors, whether extended or

not, couple to the whole spectrum of the field.

In collaborations with Dr. Achim Kempf (University of Waterloo, Canada), Dr.

Ivette Fuentes and Dr. Jorma Louko (University of Nottingham, UK), I am currently
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investigating extended Unruh-DeWitt detectors when the spatial or frequency distribu-

tion is such that one can employ mathematical techniques successfully used in Quantum

Gravity to couple the detector to a discrete set of modes. Such approach has the advan-

tage to leave open the opportunity to employ the powerful language of CV to compute

detector response, entanglement extraction from fields and so on. We aim at introducing

a physical model of detector which could in principle address measurable effects.

Experimental verification of predictions from the cavity travel scenarios - The cavity

travel techniques I have described in this work and that have been thoroughly investi-

gated promise to have interesting experimental applications. We envisage that predic-

tions of this work will attract interest from scientists that aim at measuring the effects of

relativity on QI tasks. We have become aware that space agencies from Canada and USA

are interested in performing space based experiments which involve the use of protocols

studied in the area of Quantum Key Distribution. Such agencies have initiated prelimi-

nary theoretical interest in expanding on the technological and theoretical understanding

of the physics of these settings.

We believe that our results provide the first steps towards designing experiments

which can test the effects of relativity on entanglement. Our cavities are local, contain

massless bosons and require sizes and acceleration which can be achieved with current

technology.

We wish to investigate further our cavity scenarios and provide a concrete and realistic

model for quantifying effects of motion on quantum protocols.
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Basic Building Block, 63

Bipartite system, 24

Bogoliubov identity, 20

Bogoliubov transformation, 20, 22, 65, 71

Bogoliubov transformation, bosonic, 22

Bogoliubov transformation, fermionic, 23

Bogoliubov Transformations, 19

Boundary condition, 82, 108

Building block, 114

Cauchy surface, 13

Cavity, 62

Commutator, CV, 111

Continuous variable, 110

Coordinate chart, 12

Coordinate transformation, 12

Coordinates, Minkowski, 14

Coordinates, Rindler, 16, 62, 84

Covariance matrix, 111

Degenerate eigenvalues, 70

Dirac equation, 81, 84

Dirac-Clifford algebra, 81

Dirichlet boundary conditions, 62

Entanglement, 23, 26

Entanglement, measure of, 26

Fermionic field, 81

Field equation, 129

Field Equations, 11

Frequency, negative, 20

Frequency, positive, 20

Gaussian state, 111

Gaussian, logarithmic, 42

Globally hyperbolic, 13, 129

Hadamard lemma, 88

Helicity, 82

Hilbert space, 24

Inner product, 15, 21, 36, 129

Inner product, fermionic, 82, 84

KG equation, 14

Killing vector, 13, 17, 62, 63

Least action principle, 11

Lie derivative, 13

Logarithmic negativity, 28

Lorentz transformations, 14

Manifold, 12

Metric, 12

Minkowski spacetime, 14, 16

Mixedness, 25

Multipartite system, 24

Negativity, 27, 39, 51, 113

Negativity, logarithmic, 116

Normalization, 19

Partial trace, 26

Partial traspose, 70

Path, 12

Perturbation theory, 70
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Perturbation theory, degenerate, 70, 115

Perturbative regime, 66

Phase space variable, 110

Physical frequency, 50

Polylogarithm, 72

Quadrature phase operator, 110

Resonance condition, 114

Resonance time, total, 118

Right/Left handed, 82

Right/Left movers, 82

Scalar field, charged, 47, 48

Scalar field, massive, 15, 62, 76, 100

Scalar field, massless, 15, 35, 71, 108

Scalar field, uncharged, 13

Set of coordinates, 12

Single Mode Approximation, 38

Smearing, 41

Smearing function, 44

Spacetime, 12

Spacetime, Minkowski, 62

Spinor, 81

State, bipartite, 24

State, entangled, 25

State, mixed, 25

State, partially transposed, 27

State, pure, 25

State, separable, 25

Symplectic eigenvalues, 115

symplectic form, 110

Symplectic group, 111

Symplectic transformation, 111

Two mode truncation, 108

Uncertainty relation, 42, 43

Vector, 12

Vector field, 12

Von Neumann Entropy, 27

Wave packet, 41

Zero mode, 83
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