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Abstract

Cutting and packing problems are increasingly prevalent in industry. A well utilised freight

vehicle will save a business money when delivering goods, as well as reducing the environ-

mental impact, when compared to sending out two lesser-utilised freight vehicles. A cutting

machine that generates less wasted material will have a similar effect. Industry reliance on

automating these processes and improving productivity is increasing year-on-year.

This thesis presents a number of methods for generating high quality solutions for these

cutting and packing challenges. It does so in a number of ways. A fast, efficient frame-

work for heuristically generating solutions to large problems is presented, and a method of

incrementally improving these solutions over time is implemented and shown to produce

even higher packing utilisations. The results from these findings provide the best known

results for 28 out of 35 problems from the literature. This framework is analysed and its

effectiveness shown over a number of datasets, along with a discussion of its theoretical

suitability for higher-dimensional packing problems. A way of automatically generating

new heuristics for this framework that can be problem specific, and therefore highly tuned

to a given dataset, is then demonstrated and shown to perform well when compared to the

expert-designed packing heuristics. Finally some mathematical models which can guar-

antee the optimality of packings for small datasets are given, and the (in)effectiveness of

these techniques discussed. The models are then strengthened and a novel model presented

which can handle much larger problems under certain conditions. The thesis finishes with

a discussion about the applicability of the different approaches taken, to the real-world

problems that motivate them.
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1

Introduction

I suppose it is tempting, if the
only tool you have is a hammer,
to treat everything as if it were a
nail.

The Psychology of Science: A
Reconnaissance

Abraham Maslow

1.1 Background and Motivation

The phrase ‘cutting and packing’ envelops a multitude of tangible problems in every day life.

These problems cover such questions as “will all of this shopping fit into my car?” to “how can

I best spread these audio tracks across the minimum number of compilation CDs?” and “can

we finish this building project any faster?”

In an industrial setting there is an ever-growing need for efficiency of material usage and waste

reduction. An increase in public awareness of environmental issues, and the pressure that

is hence put on large companies to become ‘greener’ drives businesses to try and improve

their efficiency further; fewer, better loaded, delivery vehicles on the roads not only reduces

direct costs for a company, but can in some cases allow access to financial incentives from a

government. It can be easily observed that in recent years the reliance on automation has

increased, requiring the development of fast and efficient cutting and packing systems in order

to semi-automate cutting and packing procedures and keep up with this demand. In some

cases (such as Computer Numerical Control machines or robotic packing in factories) these

procedures can be fully automated by a computer with the appropriate machinery. It has been

suggested that automated approaches can be as efficient, or in some cases more efficient, than

1



1. INTRODUCTION

a human attempting the same problem [Rob84] and usually in a substantially shorter amount

of time [HRK96].

It is obvious, therefore, that improvements in automated cutting and packing procedures can

lead to big savings for both companies and the environment, and are certainly a worthwhile

research direction.

This has been realised by many researchers, with several different approaches being taken for

solving cutting and packing problems, with only some inter-method comparison, little justifi-

cation as to when to use which, and only vague insight into how well each of the approaches

may fare on any given problem.

1.2 Aims and Scope

The purpose of this dissertation is to provide a contribution to cutting and packing research

through improvements in several solution methodologies and some indication of the strengths

and weaknesses of each. Firstly, a generalised constructive packing framework upon which to

base the subsequent work is given. Secondly, some fast single-pass constructive heuristics and

metaheuristics which generate good solutions for problems of up to 1000 boxes are presented,

and which fit into the proposed framework. Thirdly, an analysis of the framework and an

insight into the complexity of higher-dimensional packing problems in general is offered. The

fourth aim is to improve the current methodology for generating packing heuristics, as well

as providing methods for improving other heuristics generated through genetic programming

techniques. Finally, some extensions and new models for solving smaller packing problems with

guaranteed optimality are given, with the aim to give some insight into the time and quality

trade-offs between these methods and the other non-exact methods presented.

1.3 Contributions of this Thesis

• Chapter 3

– A generalised constructive three-dimensional packing framework (the 3BF frame-

work.)

– A set of fast and highly effective packing heuristics for the framework.

– An integrated heuristic-metaheuristic approach to solving three-dimensional packing

problems.

– The best known results for a number of standard benchmark instances.

2



1.3 Contributions of this Thesis

• Chapter 4

– A bound on the number of gaps at any point in a packing in D dimensions.

– A runtime performance analysis of the 3BF framework.

– An abstract data type (ADT) for representing D-dimensional packings (Skyline.)

– A theoretical and empirical analysis of approaches from the literature implemented

for the Skyline ADT.

• Chapter 5

– Improved methods for automatically generating heuristics for the 3BF framework,

one of which that is applicable to genetic programming approaches in general.

– The best known results for automatically generating three-dimensional packing heuris-

tics.

• Chapter 6

– Improvements to a state-of-the-art integer linear programming model for three-

dimensional packing.

– The first detailed experimental results from the state-of-the-art model and the high-

lighting of its shortcomings.

– A new space-indexed model for three-dimensional packing with extremely tight linear

programming relaxations and comprehensive experimental results.

– Experimental/anecdotal insight into when to use exact methods and when to rely

on heuristics for three-dimensional problems, based on the current state-of-the-art.

1.3.1 Publications Produced and Talks Given based on the Work in

this Thesis

The following works have been produced during the creation of this thesis. Though material

from all of them has been assimilated into the thesis as a whole, they can be assigned as

belonging particularly to the following specific chapters.
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1. INTRODUCTION

Journal Publications

• Chapter 3

– S. D. Allen, E. K. Burke, and G. Kendall. A hybrid placement strategy for the

three-dimensional strip packing problem. European Journal of Operational Research,

209(3):219 – 227, 2011.

• Chapter 4

– S. D. Allen and E. K. Burke. A data structure for higher-dimensional rectilinear

packing. INFORMS J. on Computing, to appear.

• Chapter 5

– S. D. Allen and E. K. Burke. Automatic generation of three-dimensional packing

heuristics. Technical report, University of Nottingham, 2010, submitted for review.

• Chapter 6

– S. D. Allen, E. K. Burke, and J. Mareček. A space-indexed formulation of packing

boxes into a larger box. Technical report, University of Nottingham, 2011, submitted

for review.

Conference Publications and Talks

• Chapter 3

– S. Allen, E. K. Burke, M. Hyde, and G. Kendall. Evolving reusable 3D packing

heuristics with genetic programming. In GECCO ’09: Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation, pages 931–938, New York,

NY, USA, 2009. ACM.

– S. D. Allen. A heuristic/metaheuristic approach to the three-dimensional strip-

packing problem. Talk given at the Student Conference on Operational Research,

SCOR 2010, March 27–29, Lancaster, UK, March 27–29 2009.

• Chapter 4

– S. D. Allen. Data structures for higher-dimensional rectilinear packing. Talk given

at the Student Conference on Operational Research, SCOR 2010, April 9–11, Not-

tingham, UK, April 2010.

• Chapter 6

– S. D. Allen, E. K. Burke, G. Kendall, and S. Groenemeyer. Strip packing: What

can we learn from project scheduling? Talk given at the ALIO-INFORMS Joint

International Meeting 2010, June 6–9, Buenos Aires, Argentina, June 2010.
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Technical Reports and Manuals

• Chapter 3

– S. D. Allen. CrateViewer: visualising {one, two, three}-dimensional packings. Uni-

versity of Nottingham, March 2010, manual.

1.4 Structure of the Thesis

The main body of the thesis is separated into 6 chapters. Chapter 2 provides a literature

review and description of the previous work undertaken in the field as well as some formalised

definitions of the problems that we will be solving. Chapter 3 introduces the 3BF constructive

framework and gives some heuristics and experimental results. Chapter 4 analyses the 3BF

framework and provides some insight into data structures and efficiency of packing in higher

dimensions. Methods of automatically generating heuristics for the 3BF framework are given

in chapter 5. Some computational experience and a new integer linear programming model for

exactly solving three-dimensional problems is given in chapter 6. Finally the thesis is concluded

with some discussion in chapter 7.

1.4.1 Notation Used in this Thesis

The general notation used in this thesis is given in Table 1.1.

Symbol Description Meaning

X Uppercase Latin character A set or vector

x Lowercase Latin character Member of a set or an index

X
[j]
[i] Uppercase Latin character A pre-defined/computed constant

with optional indices

x
[j]
i Lowercase Latin character with indices A variable; continuous or integer

χ
[j]
i Lowercase Greek letter with indices A binary decision variable

Table 1.1: Notation used in this thesis.
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2

Background and Related Work

One can think effectively only
when one is willing to endure
suspense and to undergo the
trouble of searching.

How We Think: A restatement of
the relation of reflective thinking

to the educative process
John Dewey

Summary

This chapter provides an introduction to the background of the thesis, through a review
of the relevant literature in the areas of cutting and packing as a whole, and the optimisa-
tion techniques previously applied to the problems. This should provide an insight into the
motivations for the techniques applied to the problems posed in later chapters. Specific
results and methodology from the literature will be provided, as and when needed, at the
appropriate points in later chapters.

2.1 An Overview

Research into cutting and packing has received significant research interest in recent years,

with several well characterised approaches being employed to differing levels of success. Cut-

ting and packing, in the purest academic sense, underlies a number of common problems,

from the one-dimensional knapsack problem which is an integral part of many other diffi-

cult problem formulations to synonymous models of scheduling problems (resource constrained
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2. BACKGROUND AND RELATED WORK

project scheduling [BDM+99, Har00, NI02, BL03, ABKG10], parallel processor scheduling

[CGJ78, GJ77a, GJ77b, CMV94] etc.)

The terms cutting and packing are often used interchangeably in the academic literature, as the

problems are usually the same in a mathematical sense, but with slight variations in terminology.

There are, however, many different ‘flavours’ of cutting and packing problems which we cover in

the following sections. The recurring theme throughout all packing problems (and, in general,

scheduling problems) is the assignment of ‘items’ to ‘bins’ or ‘locations.’

For a comprehensive classification of different packing problems, including three- and higher-

dimensional problems see the typologies of Dychkhoff and Wäscher, [Dyc90, WHS07]. Other

general surveys on the academic literature related to cutting and packing problems can be found

in [SP92, Dyc92, DD92, CFC94, HT01a, LMV02, CSY02].

2.2 One-dimensional Cutting and Packing

One-dimensional (or uni-dimensional) packing problems are incredibly prevalent in, and indeed

can be found at the core of, many operational research (OR) problems. They are often used as

a staple in teaching OR and optimisation to undergraduate students due to their inherent con-

ceptual simplicity. One-dimensional packing problems generally fall into two main categories,

the bin packing problem and the knapsack problem.

The one-dimensional problem is analogous to some real-world problems in industry, for example

cutting lengths of cabling or metal beams [SSW94] whilst minimising trim wastage. Similarly,

maximisation of the utilisation of one-dimensional bins or knapsacks can be found in areas such

as maximising profit in advertisement scheduling [AGM02] and creating one-way cryptographic

functions [MH78].

An excellent coverage of one-dimensional problems can be found in the book by Martello and

Toth [MT90]. E. G. Coffman has arguably produced some of the most influential literature in

the area of one-dimensional cutting and packing, and has published a number of papers and

books extensively covering the topic, for example see [CLT88, CGJT80, CGJ84, CGJ87, CL91,

CJGJ96]. These papers and surveys include detailed analysis of different approaches to solving

the problems.

Although the problems can be elegantly defined and are conceptually simplistic, the algo-

rithms, representations and techniques for solving them have little direct bearing on the two-

or higher-dimensional packing problems tackled in this thesis, except, in some cases, when one-

dimensional problems act as additional constraints or sub-problems (commonly the zero-one

knapsack problem).
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2.2 One-dimensional Cutting and Packing

2.2.1 The Bin Packing Problem

The description of the bin packing problem is that, given a number of one-dimensional items

with given sizes (with the size representing, for example, the required length of a section of

cable or an amount of time in seconds that an audio track lasts for) and an unlimited supply of

‘bins’ or containers with fixed capacity (representing, using the previous examples, the length

of a roll of cable or a blank audio CD), find the fewest number of bins required to assign all

items to a bin such that the sum of the items’ sizes does not exceed the capacity of the bin.

This can be formalised as: given N items with non-negative sizes Li, i ∈ {1, 2, . . . , N}, bin

placement indicator χb
i ∈ {0, 1} which is 1 if piece i has been stored in bin b and 0 otherwise,

and bin capacity C:

Minimise b∗ (2.1)

s.t.
b∗∑
j=1

χj
i = 1 ∀i ∈ {1, 2, . . . , N} (2.2)

∑
i

χj
iLi ≤ C ∀j ∈ {1, 2, . . . , b∗} (2.3)

Constraint 2.2 denotes that each piece must be packed into exactly one of the bins, and con-

straint 2.3 ensures that the capacity of each bin is not exceeded.

The bin packing problem is well known to be strongly NP-complete [GJ79].

2.2.2 The Knapsack Problem

The knapsack problem is similar to the bin packing problem and also has several variants.

In this thesis the problem will be defined as the most common variant, which is the zero-one

knapsack problem. Instead of minimising the number of bins used when packing all pieces,

the objective is to maximise the summed value of a single available bin, where each piece is

assigned a value as well as a size (with the value optionally being independent of the size of the

piece). The formulation follows: given N items with non-negative sizes Li and non-negative

values (knapsack weights), Wi, i ∈ {1, 2, . . . , N}, bin placement indicator χi ∈ {0, 1} which is

1 if piece i is to be placed in the bin and 0 otherwise, and bin capacity C:

Maximise

N∑
i=1

Wiχi (2.4)

s.t.
N∑
i=1

Liχi ≤ C (2.5)
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Constraint 2.5 ensures that the capacity of the bin is not exceeded.

The zero-one knapsack problem is only weakly NP-complete, as a pseudo-polynomial time result

(in this case based on the capacity, C) can be found by dynamic programming [MT90].

2.3 Two-dimensional Cutting and Packing

One of the most common forms of research in cutting and packing focuses on two-dimensional

packing problems, which have many real-life practical applications — for example paper [JRZ97,

HWPS98, AB98, Hah68, McD99, MS02], metal [MR06, NT00, KD02], glass [DG74, PRK04] or

other sheet material cutting (see, for example, [CCT+03, CPM00, MG98]). Other, more theo-

retical ideas, can also be modelled as a two-dimensional packing problem such as multi-processor

scheduling [CGJ78]. Dowsland and Dowsland [DD92] give an overview of some industrial ap-

plications of two-dimensional cutting and packing.

Two-dimensional problems have a much clearer mapping to higher-dimensional problems than

the one-dimensional problem as the interaction of the dimensions when placing items only exists

when there is more than one dimension being taken into consideration (e.g. overlapping may

occur — as explained in later sections – but this cannot happen in the one-dimensional problem

as the concept of overlapping constraints does not exist for it). In most cases two-dimensional

problems can be treated in the same way as a higher-dimensional problem (in fact, higher-

dimensional problems can be mapped to a two-dimensional problem simply by setting all but

two of their dimensions to be some fixed ε — of course this is true of the mapping of higher-

dimensional problems to any lower-dimensional problem). We leave the formalisation of these

problems until section 2.4.

As with one-dimensional packing, there are many variants of the two-dimensional packing prob-

lems. A rigorous classification of these can be found in [WHS07]. For a detailed coverage of two-

dimensional packing problems see [LMM02], which details exact approaches as well as heuristic

and approximation results for several variants of the two-dimensional packing problems. Some

lower bounds are also given.

One example of the special constraints in the two-dimensional packing literature can be found

in [MM68, CJL89, EG75] where the case of only packing squares into a square or rectangular

container is covered. Another constraint is known as the ‘guillotine-cutting constraint’ in which

only straight line cuts across the full length of the bin (or sub-bin, recursively) are allowed, this

is a standard constraint in industrial cutting applications in which a machine is to cut strips of

material automatically. Examples of work with this constraint can be found in [TTS94, CH95,

LMV99, LLM02]. Other constraints in two-dimensional packing involve limiting the rotation

of pieces to be packed/cut. Sometimes, depending on the real-world problem it may suffice

to permit any rotation (e.g. sheet steel cutting [VFFS89]), whereas, for example, in patterned
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fabric cutting certain rotations may be restricted, or any rotation prohibited. Generally, feasible

rotations are fixed to be orthogonal, that is, only rotations of 90 degrees are valid.

Several methods of solving the two-dimensional problem have been tried. These methods are

explained in section 2.5.

Exact methods for solving two-dimensional problems have had limited effect due to the strong

combinatorial effect on the solution space, especially when admitting rotations of pieces. Work

on exact methods can be found in [Bea85, CH95, Hif01, CJCM08, KIN+09, BKCS10, SAdC10].

Only relatively small problem instances (with up to 100 pieces) can be solved optimally using

exact methods, though progress is being made through improved bounding and the greater

processing power of modern computers.

Due to the complexity of solving two-dimensional problems exactly, heuristic and metaheuristic

approaches have generally been employed with reasonable success. Some constructive algo-

rithms include [AO79, Cha83, CG84, CS90, CS93, BKW04, WZC09, EP09]. These tend to get

fairly strong results in a very short amount of time but are not guaranteed to be optimal and

generally terminate after a single, deterministic, run.

For medium – large sized instances metaheuristics tend to be a good trade-off between heuristic

algorithms and exact methods — given a reasonable amount of time they tend to outperform

simple constructive heuristics, and can cope with much larger problem instances than exact

methods. See [HT01a, RBN09, BKW09] for examples of metaheuristic approaches to two-

dimensional packing.

2.4 Three-/Higher-dimensional Cutting and Packing

There are other classes of cutting and packing problems which cannot however be solved using

methods applied to the two-dimensional problem, such as block cutting (e.g. foam, wood,

marble, etc. [JHD97]), load planning in freight and shipping (delivery vehicles, air cargo,

etc. [Fas04, LM80]) or multi-dimensional limited resource scheduling [ABKG10]. This is where

advances in three-dimensional packing can create big savings in profit and reductions in wastage

to production and logistics companies. This class of problems is the focus of the thesis.

Even though two-dimensional strip packing and its variants have been studied since the 1960s

it is only over recent years that the amount of research interest concerning three-dimensional

packing problems has become prevalent, for example [MPV00, Bis06, CPT08, EP09]. There are

several optimisation problems which fall under the umbrella term of three-dimensional packing.

These are, again, characterised in the typology of Wäscher [WHS07].

The two main variants of the three-dimensional packing problem are the Container Loading

Problem (CLP) and the Strip Packing Problem (SPP). Both of these problems are formalised

in the following sections and are NP-Hard, even to approximate [CC09].
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2.4.1 The Container Loading Problem

A large D-dimensional (typically within this thesis, three-dimensional, D = 3) parallelepiped C

is given, with dimensions L1
0, L

2
0, . . . , L

D
0 ∈ R+ indicating its width, height and length respec-

tively in three dimensions. A set B of N D-dimensional parallelepipeds to pack are also given

with dimensions L1
i , L

2
i , . . . , L

D
i ∈ R+ again indicating width, height and length in three dimen-

sions, x1
i , x

2
i , . . . , x

D
i ∈ R≥0 indicating the relative coordinates of their leftmost/lowest/deepest

etc. corner (i.e. that which is closest to the origin) and χi ∈ {0, 1} indicating whether box i is

packed or not. In all cases i ∈ {1, . . . , N}. The objective is to position as many of the boxes

within the container in order to maximise the volume utilisation. The CLP is effectively the

higher-dimensional equivalent of the uni-dimensional knapsack problem.

The following constraints must hold. The interiors of all the boxes should be disjoint (i.e.

the non-overlapping constraint). This means that the boxes must be non-overlapping in at

least one dimension. The non-overlapping constraint is given as constraint 2.7 in the following

model. The domain constraint states that the extremities of all placed boxes must lie within

the bounds of the container, i.e. the boxes cannot be positioned such that they are sticking out

of the container, as formalised in constraint 2.8. The orthogonality constraint states that all

placed boxes be positioned such that each side must be parallel to a side of the container, i.e.

if rotations of the boxes are permitted then only those of 90 degrees may be made. In the case

that rotations are allowed and a rotation of box i occurs then the order of the L∗i values are

rearranged. The orthogonality constraint is implicitly held in the representation of boxes given

here. The full model is as follows:

Maximise

N∑
i=1

χiWi (2.6)

s.t.

χi

D∏
k=1

overlap(k, i, j) = 0 ∀ 1 ≤ i < j ≤ n (2.7)

χi

D∑
k=1

uncontained(k, i) = 0 ∀ 1 ≤ i ≤ n (2.8)

where

Wi =

D∏
j=1

Lj
i (2.9)

overlap(k, i, j) =

{
1

0

if xki < xkj + Lk
j and xkj < xki + Lk

i

otherwise.
(2.10)

uncontained(k, i) =

{
1

0

if xki < 0 or xki + Lk
i > Lk

0

otherwise.
(2.11)
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2.4 Three-/Higher-dimensional Cutting and Packing

Constraints 2.7 and 2.10 ensure that non of the packed boxes overlap, i.e. for every pair of

boxes, at least one dimension does not have an overlap. Constraints 2.8 and 2.11 ensure that

each box is placed such that it lies within the bounds of the container. Wi (as defined by

constraint 2.9) represents both the volume and the profit of the box, which are synonymous in

the CLP.

The CLP has been approached in several different ways throughout the academic literature.

Exact methods have been proposed. For example, the mixed integer-linear programming (MIP)

model of Chen et al. [CLS95] allows the packing of boxes into multiple containers, though very

little has been given in terms of the experimental results — only a maximum 6 boxes were

packed using this model. Fasano [Fas99] has also given a MIP model for the container loading

problem, which has been analysed and strengthened slightly by Padberg [Pad00]. This has also

provided very little computational experience, but with the suggestion that ‘around 20’ [Pad00]

boxes should be solvable using the given model. These models are all based on allowing the MIP

solver to fix the continuous variables representing the coordinates of the smaller boxes, and they

also introduce some binary decision variables representing precedence constraints of the boxes

on a per-axis basis. Other exact methods include graph-theoretical approaches [MA93, LLM02]

and tree search routines [FS97].

More extensive work has been done on heuristics for the CLP. The heuristics developed can, in

general, be roughly divided into two main classes. The first of these includes the wall building

method proposed in [GR80]. This is where solutions are created by building up individual layers

along the depth of the container in order to simplify the problem. This approach has also been

used in [BD82, HKE89, BM90]. Another approach to the first class of heuristic packings can

be seen as stack building, that is, creating vertical stacks of boxes which are then positioned

on the base of the container, based on the solution to a two-dimensional packing problem.

This approach was first suggested in [GG65] and has also been used in [GB97]. Both of these

methods, of course, create ‘greedy’ packings which may not be optimal, though in practice

tend to get fairly good results. These two methods can be treated as one class, a ‘layering’

approach to packing. This also covers other heuristics that generate packings in layers such as

[GMM90, BR95, BG01, Pis02, LRW03].

The second group of approaches to CLP heuristics is that of block arrangement and single pass

constructive methods. This method involves placing either a single box at a time or a block of

boxes (i.e. a group of boxes which have been joined together and treated as a single unit) within

the container until all boxes have been packed, based on some heuristic scoring/choice function.

Examples of these can be seen in [Ele02, BGM03, LRY05, CPT08, HH09, WGC+10, HH11].

Metaheuristic approaches (as explained in section 2.5.2 have also been applied to the container

loading problem. It has been found, as with the two-dimensional problem, that metaheuristics

can tackle medium to large problems (i.e. those with more than around 50 boxes) more effec-

tively than exact methods, and for smaller problems can often solve the problems to optimality
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(but, of course, with no guarantees). Some metaheuristic methods used in three-dimensional

container loading include [Dow93, GB97, BG01, BGM03, MBG04, MO05, GILM06, HZWC10,

FDHI10, Tan10].

2.4.2 The Strip Packing Problem

Three-dimensional strip packing can be defined as the following: given a three-dimensional bin

(parallelepiped) of fixed width and height but unconstrained length (the ‘container’), and a list

of smaller cuboids (‘boxes’) of given width, length and height, the goal is to pack the boxes

into the container, such that all vertices of each box lie within the bounds of the container,

minimising the container’s resulting length. An obvious constraint is that the packed boxes

must not overlap (i.e. their interiors are disjoint). Also the boxes must be packed feasibly —

i.e. they must be packed orthogonally (parallel to the axes of the container).

The SPP follows a similar formulation to the CLP, but with some important differences. The

SPP assumes a container with one dimension of infinite length, without loss of generality we

assume hereafter that this is the Dth dimension (or ‘length’ in the two- and three-dimensional

case). All boxes must be packed in the SPP. The SPP shares the same constraints (domain,

non-intersection and orthogonality) as the CLP. The SPP can be formalised as follows:

Minimise s∗ (2.12)

s.t.

s∗ ≥ xDi + LD
i ∀i ∈ {1, 2, . . . , n} (2.13)

LD
0 = ∞ (2.14)

χi = 1 ∀i ∈ {1, 2, . . . , n} (2.15)

χi

D∏
k=1

overlap(k, i, j) = 0 ∀ 1 ≤ i < j ≤ n (2.16)

χi

D∑
k=1

uncontained(k, i) = 0 ∀ 1 ≤ i ≤ n (2.17)

where

overlap(k, i, j) =

{
1

0

if xki < xkj + Lk
j and xkj < xki + Lk

i

otherwise.
(2.18)

uncontained(k, i) =

{
1

0

if xki < 0 or xki + Lk
i > Lk

0

otherwise.
(2.19)

s∗, as defined in constraint 2.13, is the furthest point along the Dth axis across all boxes during a

packing, and is being minimised in the objective function. Constraint 2.14 allows the container

to be as long as needed in order to fit all of the boxes. 2.15 ensures that all boxes are packed.
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(0,0,0)

L  (length)3
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L  (width)1
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0

Figure 2.1: A visual representation of a three-dimensional strip packing container.

Constraints 2.16 and 2.17 are as the CLP formulation. Constraint 2.16 ensures that no boxes

overlap in all dimensions. Constraint 2.17 forces all boxes to be placed within the limits of the

container.

A visual example of a strip packing container can be seen in Figure 2.1. According to the

cutting and packing typology of Wäscher [WHS07] this problem is classified as the 3D regular

open-dimension-problem (ODP) with one open dimension.

Strip packing in three or higher dimensions has been largely neglected by the academic com-

munity. The first approximation of the three-dimensional strip packing problem was not pub-

lished until 1990 by Li and Cheng [LC90] who released an improved version of the algorithm

two years later [LC92]. These papers along with others (e.g. [MW04, JSO06, BHI+07])

focus on algorithmic performance analysis, though there are some with actual implementa-

tion details and empirical results; more recently results of metaheuristic approaches appear in

[BG99, KI04, BM07, ABK11]. There has been even less work in exact methods for strip packing

with, to the author’s knowledge, a single MIP model given in [WLGDS10].

2.5 Previous Approaches used in {One–Three}-dimensional

Packing

Traditionally in the field of OR and, specifically, combinatorial optimisation, methods for solving

problems fall into three main categories. These are heuristics and approximation algorithms (an

approach used in chapter 3), iterative improvement/local search based algorithms (which we

refer to as metaheuristics, also employed in chapter 3) and exact methods (applied in chapter

chapter 6). This thesis encompasses all three of these methods at different points and as such

they will be briefly described here for introductory purposes. A detailed coverage of these

methods, and more, can be found in [BK05].
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2.5.1 Heuristics and Approximation Algorithms

Heuristics, in the domains of computer science and optimisation, refer to algorithms which,

regularly in practice, deliver good solutions to a problem based on a ‘rule of thumb’ or a set

of rules derived from some experience or insight into the problem by a practitioner. Although

tending to work well in practice, heuristics do not give any guarantee to the quality of solutions

generated and can, in theory, deliver indefinitely bad/unknown worst-case solutions. Approxi-

mation algorithms, on the other hand, are similar in the respect that they give good solutions in

practice, but differ in that they give guaranteed bounds on the worst-case solution to a problem.

This property may make them much more attractive than heuristics, but often, in the domain

of cutting and packing, the current state-of-the-art does not give particularly good bounds and

the bounds themselves are particularly difficult to derive for anything but the most trivial of

algorithms. Note that the approximation algorithms tend not to, in general, perform as well as

more advanced heuristic algorithms in empirical analysis with experimental testing.

A common form of heuristics and approximation algorithms in cutting and packing is that which

we refer to as the class of constructive packing algorithms. The basic premise is that, starting

with an empty container/bin, iteratively add items/boxes to the packing until all of them, or as

many as possible have been packed. The choice of which items to pack, and whereabouts to place

them within the container can be seen as a heuristic choice, usually employing some form of

‘fill the space the best’ criteria, covered more extensively in chapter 3. Examples of this form of

packing include [BKW04, HH09, ABK11]. The term ‘bottom-up’ is sometimes used to describe

the fact that packings of this type are generally constructed following a linear direction, i.e.

from the bottom/back of the container, towards the top end. This is not necessarily always the

case, for example see [OGF00] which iteratively adds items to a central cluster of previously

placed items. This paper also demonstrates a second class of constructive algorithms which

place each item in an ‘online’ way, that is, placing each item in the order that it is passed

into the algorithm. Other examples of this include the ‘bottom-left’ and ‘bottom-left-fill’ style

algorithms which are explained in [Jak96] and [HT99], respectively. The bottom-left algorithm

effectively takes the piece and places it in the lowest, leftmost available position in the current

packing in which the item will fit. Bottom-left-fill does the same, but attempts to fill any gaps

that have been created, i.e. when a smaller piece is packed later than a larger piece. This style

of algorithms obviously rely on a good ordering of the pieces being passed into the algorithm,

and therefore can be used in decoding a list of items into a solution — an idea that is often

used in the metaheuristic packing methods described in this thesis.

2.5.2 Metaheuristics

Another way to create high quality solutions is to take a solution of any quality and iteratively

improve it by making perturbations to the representation until a higher quality is obtained.
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The methods for creating these perturbations (and therefore new solutions) are termed meta-

heuristics and are also known as local search, or iterative improvement techniques. The term

is prefixed by ‘meta’ as the techniques can be applied to any problem where perturbations to

a solution will create new solutions, without any problem-specific domain information needed.

Therefore, metaheuristics are simply a way of describing a local search procedure which can

be applied to any similar problem. Metaheuristics are almost always based on some form of

randomness (‘stochastic optimisation.’)

2.5.2.1 Hill Climbing

Possibly the simplest metaheuristic is that of a hill climber. Simply put, a hill climbing algo-

rithm takes the current solution and perturbs it in some defined way at random. Most commonly

this involves swapping a number of items in a list, or flipping bits in a bitstring. The hill climber

then ‘moves’ to the new solution (i.e. replaces the current solution with the new one) if the

solution is of higher quality, judged by some evaluation function. This is then repeated until

some stopping criterion is met, e.g. a time limit, a lack of improvement in solution quality over

X steps etc. Sometimes this is adapted by sampling multiple one-step perturbations (known

as ‘neighbours’ — any solutions which can be reached by one step of the defined perturbation

method are collectively termed ‘the neighbourhood’) and moving to the highest quality one.

Hill climbing algorithms often have ways of escaping local optima. This is a condition where no

neighbour can be found with a higher solution value than the current solution. One standard

way of doing this in hill climbing is the concept of ‘random restart,’ or randomly picking another

solution to start hill climbing from when no more progress can be made from the current point

in the search.

2.5.2.2 Simulated Annealing

Simulated annealing is a common form of hill climbing in which worsening moves through a

neighbourhood are sometimes accepted based on a given criterion. The name comes from a

natural process in metallurgy in which a material is repeatedly heated and cooled in order to

reduce defects in its production. The concept of simulated annealing is that there is a predefined

cooling schedule, or a function which represents the probability of accepting a worsening move,

over time. The function is termed the ‘cooling schedule.’ Generally the probability decreases

over time, though depending on the application it may increase again, or continue to cycle from

high to low until the algorithm terminates. The standard function for the acceptance criterion

in simulated annealing is e(−∆E/T ) where ∆E is the difference in solution quality between

the current and potential new solution and T represents time, i.e. the number of algorithm

iterations or actual ‘wall clock’ or CPU time taken. The algorithm was first given in [Kir84].
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2.5.2.3 Tabu Search

Another common adaptation of hill climbing is that of tabu search. This is simply a form of

hill climber with memory. In order to avoid becoming stuck in local optima or following short

cyclic paths around the search space, either the last X previously visited states or the last X

‘state perturbing actions’ (moves) are stored in a ‘tabu list’ — a queue of fixed length, X —

which prohibits them from being visited/executed again, at least within X steps.

A ‘state perturbing action’ is a specified perturbation to a state, for example randomly setting

the value of a specified integer variable in the solution. This means that this variable cannot

be changed (or at least changed back to its previous state, depending on the implementation

of the tabu search) within X steps.

An iteration of a tabu search generally samples a number of neighbours in the neighbourhood

(or all if the neighbourhood is sufficiently small) and moves to the neighbour with highest

solution quality (which may be of lower quality than the current state) and which does not

violate the tabu list.

This is a simple, yet effective, method. A standard reference for this technique is [GL93].

2.5.2.4 Evolutionary Algorithms

The term ‘evolutionary algorithms’ encompasses many biologically inspired algorithms for local

search. The most common of these are genetic algorithms (GA’s), and a common theme is that

they work on a population of solutions rather than a single point search such as in hill climbing.

The idea behind genetic algorithms is to maintain a population of strong solutions and then

randomly mix together pairs of solutions (“crossover”) and permute them in some way (“mu-

tation.”) Standard references to these methods are [Hol92, Fog02].

Another form of evolutionary algorithm is that of a memetic algorithm. This is a two stage

evolutionary algorithm which utilises a population of solutions and acts as a genetic algorithm

in the first stage, with crossover and mutation operations to create new solutions. It then

performs a second stage consisting of each member of the population acting as a hill climber —

thus performing a local search at each point in the solution space. The stages are then repeated

until a stopping criterion is met. As yet, there has been no attempt at implementing memetic

algorithms in cutting and packing research. The standard reference for memetic algorithms is

[Mos89].

In cutting and packing the solutions are generally represented by a permutation list, i.e. the

order of which boxes shall be placed. In this case it makes very little sense to use populations of

solutions and mix together individual solutions. As each box may appear only once in a packing,

special care must be taken in order to avoid duplicate boxes being packed or individual boxes

getting ‘lost’ in the algorithm. Mixing together two strong solutions in no way guarantees that
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the newly generated solution will be strong, and often any structural information or ‘good’

properties of either solution gets lost in the crossover. In the case of cutting and packing, the

method may as well just pick a random point in a solution and randomly shuffle the permutation

after this point. For these reasons evolutionary algorithms have had very little positive impact in

cutting and packing, where no suitable representation has yet been proposed in which crossover

would be an appropriate operation.

2.5.3 Automated Heuristic Generation

A fairly recent research direction is that of allowing a computer to generate novel heuristics to

effectively tackle new problems, or new instances of standard problems such as, in this case,

cutting and packing. These methods involve generating constructive heuristics or sequential

patterns of constructive heuristics to be applied to packing problems, based on algorithm train-

ing phases on representative problems. This can effectively reduce the work of trial-and-error

on the part of the practitioner/researcher, allowing a computer to try and piece together com-

ponents of a heuristic or combinations of heuristics in order to build a heuristic placement

procedure that can efficiently pack an instance of a packing problem. This should, in theory,

be able to get fair results without having to enumerate all of the possible heuristic placement

strategies either by hand or by computer, which could be computationally infeasible given a

large enough set of heuristic components/permutation space.

Some success has been found in this area in other fields. For example generating produc-

tion/machine scheduling dispatching rules [GUA06, JJB07, TH08], Boolean satisfiability [Fuk08,

BEDP08] and function optimisation [TMC+04, Olt05]. Work in the field of cutting and pack-

ing, for example [BHKW11, TMFÁR05], has had a fairly limited effect. As such, the results

from the works (on packing problems) are acceptable, though not yet human-competitive in a

significant way.

The authors of these papers often refer to these methods of problem solving as ‘hyper-heuristics’,

the definition of which, used in the wider literature, often differs to encompass broader fields

of search methodologies, including automated parameter tuning and dynamic neighbourhood

searches. Hyper-heuristics were originally described in [BHK+03] as “using (meta-)heuristics

to choose (meta-)heuristics to solve the problem in hand” but a more general definition can be

given as “an algorithm that works on a search space of heuristics, as opposed to a search space

of solutions”.

Automated heuristic generation methods, or hyper-heuristics, can be seen as a cross between

heuristics (section 2.5.1) and metaheuristics (section 2.5.2).
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2.5.4 Exact Methods

Work in exact methods for three-dimensional problems has shown that small problem sizes can

be solved to optimality or near-optimality in a reasonable time [Fas99, MPV+07]. On the other

hand, heuristic and metaheuristic approaches have been shown to give good results on much

larger problem instances in a comparably short amount of time, as evidenced in the references

from sections 2.5.1 and 2.5.2.

Exact methods used in solving cutting and packing problems currently fall into three main

areas: mathematical programming models, tree searches and dynamic programming, though

other approaches exist such as graph-theoretical models [MAA92, LLM02].

2.5.4.1 Mathematical Programming Models

Although many mathematical programming solver classes exist, the standard class of problems

formulated in the cutting and packing literature is that of mixed integer linear programming

problems (MIP or, synonymously, MILP). These problems are all formulated with linear ob-

jective functions (generally, the sum of packed box volumes) and linear constraints (equalities

and inequalities). The formulation of mathematical programming models involves describing

the problem precisely in terms of combinations of continuous variables, integer variables, bi-

nary decision variables and constants. Examples of MIP formulations of the three-dimensional

packing problem are given in chapter 6.

Linear problems (that is, without integrality constraints on the unknown variables) can be

solved in polynomial time using interior point methods and, in most practical cases, using the

worst-time exponential simplex method [Dan98, PS98].

In the case where integer variables are required, the problem becomes NP-hard. This is the

standard case of the problems in this thesis. Relaxing the integrality constraints and solving the

problem as a continuous linear problem gives an upper bound on the optimal solution quality

(when maximising an objective function). The mathematical programming solver then needs

to find a solution with integral variables that matches closest to this bound. Of course, the

solution space quickly becomes very large due to the combinatorial nature of the problem and

many other tricks built up over decades of research must be employed to find the provably

optimal integer solution. A good introduction to integer linear programming can be found in

[NW88].

Generally, the use of a well refined MIP solver is preferred over creating one from scratch for

any given problem. The most common commercial solvers used in research are ILOG CPLEX

and Gurobi. Popular non-commercial solvers include SCIP [Ach09] and CBC [LH10].
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2.5.4.2 Tree Searches

Tree searches are a common enumeration technique found in computer science and OR. In the

case of cutting and packing the standard method is to model each branch of the tree as adding

a single box, or a group of boxes to a packing in order to construct a full solution. Of course,

bounding by using a predictive heuristic (a.k.a. branch-and-bound) can then be applied to the

search in order to ‘cut off’ infeasible or lower quality solutions during the search. Tree searches

have limited success, and can only be applied to small problems due to the high branching

factor of modelling a problem in this way. They do, however allow for constraints such as the

guillotine cutting constraint to be modelled implicitly. See [Bea85, CH95, FS97, MPV+07] for

some examples of tree searches applied to two-/three-dimensional problems. The majority of

tree searches in cutting and packing, as opposed to other disciplines, do not guarantee optimality

and are often used only to provide strong heuristic/approximate results [PE06].

2.5.4.3 Dynamic Programming

Another enumeration technique that is often found is that of dynamic programming. Dynamic

programming takes many forms, but usually involves breaking a master problem down, solving

the smaller sub-problems and recombining them in a way which will produce an exact or

approximate solution to the original problem, depending on whether recombining the sub-

problems can guarantee optimality or not. This has been found to be highly effective in solving

the one-dimensional knapsack problem in pseudo-polynomial time and has been applied to other

problems in higher dimensions, though it does not often provide many improvements over tree

searches and is generally just another form of enumeration.

Dynamic programming can be used to try and solve the problem directly, or as a method to

solve a sub-problem in the cutting or packing master-problem [MPT99, CMWX08].

2.6 Summary

An overview of some of the background to cutting and packing problems, in one dimension and

higher has been presented. The theoretical and real-world applications of these problems should

provide the motivation for the rest of the thesis. We have also covered the main approaches

to tackling these problems given previously in the literature and highlighted the strengths and

weaknesses of each. These techniques will also be touched upon in later chapters, but in greater

context.
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3

The 3BF Heuristic and

Framework

Simplicity is the ultimate
sophistication.

Leonardo da Vinci

Summary

This chapter presents a hybrid placement strategy (consisting of heuristic construction
and metaheuristic improvement phases) for the three-dimensional strip packing problem
along with an underlying generalised framework for three-dimensional packing. In addi-
tion to the proposed strategy, a number of test results on available literature benchmark
problems are presented and analysed. The results of empirical testing of the algorithm
show that it outperforms other methods from the literature, consistently in terms of speed
and solution quality — producing 28 best known results from 35 test cases.

3.1 Introduction

The method of generating a three-dimensional packing in this chapter is the ‘bottom up’ ap-

proach, as described in section 2.5.1 and used in [BKW04, CPT08, ABHK09, ABK11]. This

involves iteratively taking the deepest (i.e. lowest along the y axis - note that in this thesis we

will use the terms height, width, length and depth. To avoid any confusion we have labelled

these for 3D packings in Figure 3.1, showing how the x, y and z coordinates relate to the width,
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length/depth and height of the box or container respectively) available gaps in a packing, evalu-

ating all boxes that will fit into these gaps and using some heuristic scoring method to evaluate

them in order to select which boxes will be placed in which gaps. This obviously allows for the

exploitation of information regarding the current partial solution, or sub-packing. For exam-

ple, the locations of the previously placed boxes and the amount of remaining space available

within the container etc. can be used, allowing for a dynamic choice of which box to place at

a given time — an ability that is not as simple to implement using other methods mentioned

in section 4.1. If a gap is unusable (i.e. all available unplaced boxes are too large to fit) then

the gap can safely be assumed to be waste and a virtual filler piece can be placed within the

exact dimensions of the gap, raising it to the furthest point of its nearest neighbour in order to

create a larger surface on which to place subsequent boxes. This general packing methodology

can be thought of as a ‘best-fit approach’ — boxes are placed in locations which are somehow

judged to be ‘best’ by some criteria specified by the algorithm. This approach is formalised in

the pseudocode of Algorithm 1. Note that the exact implementations of the methods used in

the pseudocode are explained in depth in Section 3.2.

In order to produce a packing, the method finds the available position(s) for a box to be placed

in the container, scoring all unpacked boxes in each of the positions based on a given evaluation

function, and placing the box with the highest placement score in the ‘best’ position. That is, a

box with a higher placement score is assumed to be a better candidate according to the current

placement scoring function. If a gap cannot be filled (or partially filled) by any of the available

boxes then it is deemed to be unusable and is subsequently discarded. Due to the problem

being offline, and therefore the list of boxes to be packed being static, it can be assumed that if

no box can fit a gap on the current iteration of the packing process then no box will be able to

fit it at a later stage. If this is the case for any of the gaps then each of the unusable gaps are

adjusted to the same y position of their least protruding neighbour (i.e. the box touching the

edge of the gap which has the smallest value of its furthest face along the y axis), thus creating

x (width)

y (length)

z (height)

(0,0,0)

Figure 3.1: A strip packing container, with x, y, and z axes labelled, and accompanying width,
length, and height indicators

24



3.1 Introduction

Algorithm 1 Constructive Packing Algorithm/3BF Framework

Input: a set of boxes to place B, a container C
Output: a set of boxes with associated orientation and placement information, P

1: P ← ∅
2: while |B| > 0 do
3: G← getLowestGaps(C,P )
4: bestScore← 0
5: bestOrientation← 0
6: for all i such that 1 ≤ i ≤ |G| do
7: for all j such that 1 ≤ j ≤ |B| do
8: for all valid orientations o such that 1 ≤ o ≤ D do
9: t← evaluationScore(gi, b

o
j)

10: if t > bestScore then
11: bestScore← t
12: bestBox← j, bestGap← i, bestOrientation← o
13: end if
14: end for
15: end for
16: end for
17: if bestScore 6= 0 then
18: position bbestOrientation

bestBox in gbestGap

19: remove bbestBox from B
20: add placement of bbestOrientation

bestBox to P
21: else
22: for all i such that 1 ≤ i ≤ |G| do
23: mark gi as invalid for future iterations
24: end for
25: end if
26: end while
27: return P
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Figure 3.2: (left) a two-dimensional packing, (right) the gaps available in this packing, marked
as bold lines.

a larger platform for subsequent boxes to be placed upon. We can imagine this as filling the

unusable gaps with an invisible box which fills each unusable gap perfectly up to the protrusion

of the neighbour.

3.2 The 3BF Placement Heuristic

This section introduces a new heuristic algorithm, which we refer to as the Three-Dimensional

Best Fit (3BF) placement heuristic for the three-dimensional strip packing problem. We also

present an implementation for the algorithm in order to gauge the results against a number of

available benchmark tests.

The algorithm on which 3BF draws some of its inspiration is [BKW04], which we refer to as

2BF. Though inspiration is drawn from this paper and the general methodology (i.e. a ‘best fit’

scheme) is the same, there are many significant differences which are discussed in later sections.

In many heuristic algorithms designed for the two-dimensional problem, the solution is found by

iteratively taking the head of the list of input rectangles (usually sorted by a common property

such as width or volume). Instead of searching the list sequentially, in 3BF the list is searched

dynamically in order to find the most suitable rectangles to fill the available gaps. We define

gaps as suitable locations at the furthest points (as illustrated two dimensions in Figure 3.2)

in a packing in which a box may be placed, unobstructed by other boxes. This means that

gaps are effectively two-dimensional ‘sites’ for a box to be positioned in. This is referred to

as a ‘skyline’ representation in the paper by Burke et al. [BKW04], i.e. the two-dimensional

skyline in a three-dimensional packing can be imagined as a heightmap with only rectilinear

features (the height/shade is defined by the furthest face of the furthest box in the packing at

any point), where every rectangle that can be drawn enclosing a single shade represents a gap

that a box can be placed into. The exact implementation details are described in greater detail

in chapter 4. In the same paper by Burke et al. the methodology of greedily placing boxes based

on their size is referred to as ‘best fit.’ This method is also employed by our proposed 3BF

methodology, which attempts to find a box whose base/footprint (we use the term ‘footprint’

of a box to refer to the deepest face which will be placed within a gap, i.e. the back of the box

when rotated to a given orientation) fills the deepest available gap entirely or, failing that, to
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fill as much of the gap as possible — effectively making this a greedy algorithm. When multiple

orientations of a box or different boxes fill the same amount of the gap (or multiple gaps are

available) then tie breaking is done according to additional rules (explained in section 3.2.1),

and remaining ties are broken arbitrarily.

As with the 2BF algorithm there are some issues with time complexity as, at each stage, first

a gap needs to be found by searching the container profile and then a box has to be chosen

from the input list. There are some attempts to relieve these time complexity bottlenecks as

described in the later sections of this chapter.

The representation of gaps and boxes used here is similar to the “extreme-point” method as

introduced in Crainic et al. [CPT08]. Initially, in an empty container, a single point will be

available for boxes to be placed in — (0,0,0). When a box is added to this location the point

is removed and a number of new points are added to the list, allowing subsequent boxes to be

placed on top of and around the newly placed box. For every box that is placed, nine new points

are pushed back into the gap list, sorted by increasing y location, followed then by increasing

z and x locations. The location of the new points are as in the paper of Crainic et al., which

also proves the complexity of the point list update procedure as O(n) where n is the number

of boxes already placed in the container.

This representation, using a sorted point list, means that in order to find the best gaps in the

box the list must only be searched from the beginning until a point with a higher y location than

the first point in the list is reached in the case of the Neighbour Score and Maximum Contact

placement strategies, or only the first point in the case of the Deepest-bottom-leftmost and

Smallest Extrusion strategies (see section 3.2.1). Once potential locations are found, suitable

boxes are placed at each location in order to gauge their suitability and checked for collisions

with previously placed boxes (as explained in section 3.3.2)

In order to speed up the input list dynamic search each input box is first oriented so that width

≥ height ≥ length. The list is then sorted into order of decreasing width (if widths are equal the

second priority is height and the third is length). This means that only around n
2 inspections

are needed at each iteration of the algorithm on average, as given a gap of dimensions i by j

(where i ≥ j) we need only traverse the input list until all boxes of dimensions equal to i and

j is found (or the first closest answers), as any box found after this will be worse at fitting the

gap than these boxes have already been.

As well as speeding up the search this also means that larger boxes are generally placed earlier

on in the packing, which often leads to a higher quality solution as there are fewer boxes

protruding over the top of the three-dimensional skyline of the container.

After a gap has been selected, the list of input boxes is searched in order to find the best fit for

the gap. The result will always be one of three options:

1. One or more boxes are found to have a rotation whose footprint has exactly the right
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dimensions to totally fill the gap, possibly after rotation. In this case, the box with the

highest evaluation score (as explained in section 3.2.1) is chosen.

2. One or more boxes are found to fit the gap, possibly after rotation, but without filling

the gap entirely. If this is the case then the box which fills most of the gap (or in the case

of multiple boxes filling the same amount of space, the box with the highest evaluation

score) is chosen.

3. No boxes are found to fit the gap.

In the case of option 1, there is no choice as to where the box should be placed within the

gap, so it only undergoes the rotations necessary to make it fit and it is placed. In the case of

option 2 then the box that fills the most of the gap is used after any necessary rotations, with

tie breaking and placement according to the placement strategy (see 3.2.1) currently in use.

Finally, for option 3 the gap can successfully be ignored on future iterations of the algorithm

(i.e. removed), as the input list of boxes is static.

A pseudocode representation of the class of constructive algorithms that 3BF is part of is

provided in Algorithm 1. The set D represents the set of box placements, where a placement

consists of a box (originally from B), a specified orientation and a placement point as provided

by the getLowestGaps method. The getLowestGaps method returns a list of placement points

(each representing a position along the x-, y-, and z-axes) that a box may be placed in —

i.e. so that its lower back left vertex is positioned at the given point, taking into account

the previously placed boxes. It is assumed that getLowestGaps marks gaps that are unusable

(i.e. lie within the location of an already placed box in D) as invalid and ignores invalid gaps.

Finally, evaluationScore which defines the behaviour of 3BF is described in 3.2.1. We assume

that all orientations, o, of any given box are valid unless specified in the dataset.

3.2.1 Placement Strategies

As with 2BF, there are a number of placement strategies, although they are substantially

different due to the third dimension having to be taken into consideration. There are also

different priorities (i.e. the minimisation of the length of the filled container being the highest

priority in 3BF, as opposed to the minimisation of the height of the packing in 2BF). The

scores generated by the placement strategies are defined such that a higher score is deemed a

better location for that orientated box/gap pair. The placement strategies are illustrated in

(the two-dimensional) Figure 3.3 and are as follows:

1. Deepest-bottom-leftmost: The box is placed at the deepest-bottom-leftmost position

(i.e. with the lowest y position, ties broken by lowest z position and finally lowest x

position) in the container, i.e. at the point closest to (0,0,0). The evaluation function
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BA

1 2

3 4

A
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A

Figure 3.3: The placement strategies in action. (Left) a partial packing and two non-rotatable
candidate boxes (with identical widths) for packing next and the lowest gap indicated by a thicker
line, (right) packing after one iteration following the (1) Deepest-bottom-leftmost, (2) Maximum
Contact, (3) Smallest Extrusion and (4) Neighbour Score rules.

returns the area of the footprint of the box, with ties being broken by furthest extrusion in

the y-axis, i.e. a bigger extrusion is deemed a better solution in this placement strategy.

Large extrusions placed towards the end of a packing are dealt with by the tower processing

technique described in section 3.2.2.

2. Maximum Contact: The box with the largest volume is placed so that the sum of its

surface areas in contact with other boxes and edges of the container is maximised. The

faces of the box are weighted differently by multiplying the surface area (in contact with

other boxes/the container) of the back by 4, the left side by 2, the underside by 2 and

all other surfaces by 1. Obviously, changing the weightings can lead to different packings

with different priorities, e.g. weighting the underside by more would lead to much more

stable packings in terms of real-world problems with gravitational constraints.

3. Smallest Extrusion: As with the deepest-back-leftmost strategy, though the evaluation

function returns 1 divided by the extrusion in the y-axis; thus the box with the smallest

far point in the y direction (which fills the gap the most) is chosen and placed in the

deepest-bottom-leftmost position.

4. Neighbour Score: The box with the largest footprint is placed so that it is touching as

many boxes whose furthest face on the y-axis are equal to, or less than, that of the box

being placed, i.e. neighbouring boxes that could form vertical walls for subsequent boxes

to be placed in front of. This scoring method effectively takes all boxes surrounding the

box being tested, and sums the perimeter which is in contact with any of those boxes.

Boxes protruding further than the tested box/orientation pair are not included in the

summation, and boxes with an identical protrusion to the tested box/orientation pair

are given a weighting of 2, i.e. summed twice, as they directly create a larger gap for

subsequent boxes to be placed in.
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*
*

1 2

Figure 3.4: A two-dimensional ‘tower’ (marked with an asterisk) being rotated during the tower
processing stage, in order to increase solution quality in a packing.

In the case of Figure 3.3 it can be seen in part (1), the Deepest-bottom-leftmost strategy packs

box A into the position as it is the deepest, lowest position available and given that box A has

an equal width but higher volume than box B it is packed. Part (3) follows the same logic but

as box B has a lower volume it is packed instead. In part (2) of the diagram, box A is placed in

the rightmost location of the gap as it shares more contact with the rightmost box previously

packed within the container. Box A is chosen over B as it is earlier in the packing list. In

part (4) of the diagram box B is placed in this location as it shares the same extrusion as the

rightmost box and therefore creates a larger ‘platform’ for subsequent boxes to be placed on.

3.2.2 Tower Processing

Due to the nature of the algorithm, solutions may potentially be found of relatively poor quality

as ‘towers’ can be placed. These occur when boxes are placed late on in the packing process

with their rotations such that the greatest (or second greatest) dimension is assigned to the

y-axis, causing them to stick out above the ‘skyline’ of the container. To combat this problem

a further stage is introduced into the algorithm, where the tallest tower is taken and rotated so

that the dimension currently assigned to the y-axis is assigned to either of the other two axes

and a shorter dimension is assigned to the y-axis. It is then placed back somewhere within the

solution in its new orientation. This is repeated until no improvement in solution quality can be

found. A two-dimensional representation of this can be seen in Figure 3.4 and the pseudocode

is presented in Algorithm 2. The function furthestPoint returns the location (i.e. along the

y-axis) of the front-most face, that is, the extent of the extrusion of the box in the skyline. The

getAllGaps method works as the getLowestGaps method except that it returns all gaps that

have not been marked as invalid rather than just those sharing the lowest y location.

3.3 Metaheuristic Enhancements to 3BF

Though the solution results presented previously represent good quality in short computational

times, the findings of Burke et al. [BKW09] suggest that with a hybrid heuristic/metaheuristic
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Algorithm 2 Tower Processing Algorithm

Input: a set of boxes with orientation and position information, P , the container they have
been placed in, C
Output: the set of placed boxes with orientation and position information, P , with ‘tower’
boxes processed where possible

1: loop
2: let boi ∈ P be a box with orientation o and position information, with maximum

furthestPoint(boi )
3: j ← furthestPoint(boi )
4: k ← j
5: bbesti ← boi
6: remove boi from P
7: for all orientations p ∈ {1 . . . 6} of bi, b

p
i , such that length(bpi ) < length(boi ) do

8: place bpi in lowest available gap from getAllGaps(C,P )
9: if furthestPoint(bpi ) < j then

10: j ← furthestPoint(bpi )
11: bbesti ← bpi
12: end if
13: remove bpi from P
14: end for
15: position bbesti in lowest available gap from getAllGaps(C,P )
16: add placement information of bbesti to P
17: if furthestPoint(bbesti ) = k then
18: exit
19: end if
20: end loop
21: return P
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packing strategy the quality of solutions may be further improved. This leads to two distinct

placement phases, which are shown in Figure 3.6.

The aim of implementing a second, metaheuristic stage to the initial 3BF algorithm is to increase

solution quality whilst maintaining short execution times. This effectively means creating a

hybrid algorithm which will place the majority of the input list of boxes using the fast 3BF

algorithm, and then placing the remaining boxes using a metaheuristic method for higher quality

solutions.

The 3BF heuristic, coupled with a metaheuristic search method along with a decoding procedure

(which we call the deepest-bottom-left-fill method, DBLF) gives the hybrid packing strategy.

In order to produce orderings that may generate higher quality solutions, the DBLF method is

paired with a tabu search (see section 3.3.3 and chapter 2).

3.3.1 Deepest-Bottom-Left-Fill Strategy

Algorithm 3 DBLF Algorithm

Input: a set of ordered, unplaced boxes, B and a container, C
Output: a set of boxes with associated placement information, P

1: P ← ∅
2: for all i such that 1 ≤ i ≤ |B| do
3: G← getAllGaps(C,P )
4: placed← false
5: for all j such that 1 ≤ j ≤ |G| do
6: if placed = false and fits(bi, gj) then
7: position bi in gj
8: remove b from B
9: add placement information of b to P

10: placed← true
11: end if
12: end for
13: end for
14: return P

In the research area of two-dimensional cutting and packing problems the most commonly used

method for packing regular and irregular shapes involves the bottom-left class of heuristics.

These methods involve simply placing the input list of rectangles into the bottom-leftmost

location on the packing sheet. Applications of this class appear in the literature as early as

1980 [BJR80, Cha83].

The main issue with using the bottom-left approach is that holes can appear in the packing

sheet where subsequent rectangles are unable to be placed, as shown in Figure 3.5.

The solution to this problem is suggested as the bottom-left-fill method, which maintains a list

of potentially usable gaps (ordered by increasing distance from (0,0,0) with lowest depth being
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Hole

Figure 3.5: 2D packing sheet with a hole.

Inputs:
B:         list of boxes
x,y,z:    container dimensions
n:         number of boxes
m:        number of boxes to be placed by  
            metaheuristic method
s:         phase 2 duration (seconds)

3BF Heuristic

Phase 1 (until n - m boxes have been placed)

Phase 2 (for s seconds)

DBLF Heuristic

Tabu search
Neighbourhood: 8
Tabu list size: 24

Phase 1 solution,
m boxes

Figure 3.6: A summary of the proposed process.
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highest priority and furthest left being lowest priority) for boxes to be packed within and also

a list of the previously placed boxes in order to check for collisions with subsequently placed

boxes. This method has been shown to improve solution quality over pure bottom-left methods

[HT99]. DBLF is an obvious extension of BLF as it simply places boxes in the deepest available

position in three dimensions (i.e. closest to (0,0,0) — with the depth/y-axis being of highest

priority to minimise, the bottom/z-axis next and finally the left/x-axis) whilst filling available

gaps where possible. This approach has also been used previously in literature [KI04], where a

detailed description can be found.

The DBLF method is an online algorithm (i.e. it processes each box in the input list in order,

as and when the algorithm reaches it) and therefore the order of the input list is important as

it determines the output solution. It has been shown in the literature that intelligently pre-

ordered input sequences generally generate higher quality solutions [CGJ84] and, specifically,

ordering by decreasing dimensions tends to yield the best results [HT01b].

Pseudocode for the DBLF algorithm is provided in Algorithm 3. The getAllGaps method

returns all usable gaps in ascending order of their y positions (ties broken by ascending z then

x positions). The removeUnusableGaps method removes all gap locations which lie within any

placed boxes, i.e. marks them as invalid, meaning that no other boxes can be placed there

without causing overlaps.

3.3.2 The DBLF Method and Axis-Aligned Bounding-Box Trees

If implemented naively, the collision detection in DBLF can take quadratic time, with N boxes

requiring a total of O(N2) comparisons. To attempt to overcome this bottleneck a simple

hierarchical space partitioning method used in many three-dimensional computer graphics and

gaming systems [Wal02] was implemented — the Axis Aligned Bounding Box tree (AABB tree).

This structure is explained more thoroughly in chapter 4 but an explanation is given here for

clarity.

AABB trees are used for fast collision detection in some games and other three-dimensional

modelling systems as they model each object in the ‘world’ with a ‘bounding box’ — effectively

a cuboid that encompasses the entire object. Axis-aligned bounding boxes are a special case of

bounding boxes which are always parallel to all three axes in three dimensions. Obviously, as

the objects being manipulated in this case are already cuboid in shape and can only perform

rotations of 90 degrees this is an ideal solution.

Firstly, the AABB tree partitions the container into smaller sections, by recursively splitting

each section (initially the whole container) in half along its longest axis each time and placing

each half into the child nodes of a binary tree structure, up to a maximum depth of 5 in

this implementation. For every candidate box that is added to the AABB tree structure, the

tree is searched recursively until the leaf space containing the location of the candidate box is
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found. Only boxes from this leaf are then individually tested for collisions with the candidate

box, drastically cutting down the amount of time in the practical case for collision detection

compared to the naive approach. It is worth noting, however, that the theoretical worst-case

complexities of the two methods are the same, as shown in chapter 4.

3.3.3 Tabu Search

The metaheuristic employed in manipulating the input list of m boxes to be assessed using

DBLF is tabu search (see [GL93]). Initially the input list for the search was a list of boxes

rotated and sorted. Although it is suggested in [BKW09, HT01b] that rectangles (or in this

case boxes) are sorted by decreasing height, it was found through experimentation that boxes

sorted by decreasing width as their first priority and decreasing height as the lowest priority

created substantially better solutions for this problem. The tabu search method generates 8

neighbours (i.e. direct moves from the current position) of the local state at random and assesses

the fitness of each state by decoding it using the DBLF method as described previously. The

method used to generate a neighbouring solution is straightforward. Two boxes from the given

list are chosen at random and swapped by position. The first chosen box is then randomly

rotated to one of its possible orientations, each with equal probability (1/6 if all orientations

are allowed) and this list is then returned to the DBLF function for evaluation. The neighbour

with the highest score (meaning lowest overall solution length) is accepted as the next move

and is added to the tabu list, meaning that it can not be revisited again (though due to the

finite nature of memory, and the linearly increasing time factor involved with checking if states

are already in the tabu list, the length of the tabu list is limited to a certain number of states,

S, and when S is reached the first state in the list is simply ‘forgotten’ and may be revisited).

The parameters for the tabu search were decided upon after initial testing, consisting of setting

the neighbourhood sample sizes between 2–100 (in steps of 2) and tabu list length of 0–100 (in

steps of 2). The tabu search tended to work well on the datasets provided with a tabu list size

of 24 and neighbourhood sample size of 8, though these parameters tended to be fairly robust

and values in a similar region produced results of much the same quality.

3.3.4 Adaptive value of m

During initial testing it was also found that a fixed value of m (the number of boxes to be

packed using the metaheuristic method) between approximately 10 and 35 yielded the best

results, though the implementation competed more strongly when the value of m was allowed

to adjust dynamically throughout each run. In this implementation m was started at 10 and

was increased by a value of 2 if a higher solution quality was not found within 10 seconds of

the run, i.e. after 10 seconds of running time if a higher quality solution had been found then

m would remain the same for the next 10 seconds, otherwise it would increase by 2.
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Karabulut and
3BF Inceoglu [KI04]

Dataset N Time (s) Utilisation Utilisation
C1P1 15 < 0.1 100.0 100.0
C1P2 29 0.1 100.0 100.0
C1P3 50 0.4 100.0 100.0
C1P4 106 1.6 98.5 98.0
C1P5 155 4.8 88.0 100.0

C2P1 16 < 0.1 100.0 100.0
C2P2 25 0.1 100.0 92.6
C2P3 52 0.4 97.1 99.0
C2P4 100 1.8 87.0 96.2
C2P5 151 4.0 98.0 96.2

C3P1 21 < 0.1 100.0 100.0
C3P2 31 0.1 92.6 94.3
C3P3 51 0.4 87.0 92.6
C3P4 101 1.8 89.3 91.3
C3P5 151 3.9 82.4 90.9

Average 94.7 96.7

Table 3.1: Results on the KI datasets.

3.4 Comparative Evaluation of the Packing Strategy

We now offer some experimental results in order to compare the 3BF packing procedure and

others that have been proposed in the literature. Results can be seen in Tables 3.1, 3.2, 3.3,

and 3.4. The experimental setup is described in the following section.

3.4.1 Experimentation and Results of 3BF

The implementation of the algorithm is in C++ using the Standard Template Library (STL)

where appropriate and compiled using the Microsoft Visual C++ 8.0 compiler. A viewer appli-

cation used for visualisation and inspection of solution quality was also written in C++, using

the OpenGL library [All10a]. In order to try and get the best result possible, all four of the

placement strategies were tried and the best result returned as the final solution.

Several different sources of test data were used to evaluate the performance of 3BF, and are

marked in the results tables. Firstly the KI test datasets used in [KI04] (Table 3.1) were

attempted in order for a direct comparison with a previously established packing strategy

producing the previous state-of-the-art results (using genetic algorithms along with the DBLF

method, GA+DBLF. Though this method is probabilistic, no indication of the number of runs

or whether the results are best results or average results across the runs is given by the authors).
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Bortfeldt and Bortfeldt and
3BF Mack [BM07] Gehring [BG99]

Dataset N Time (s) Utilisation Utilisation Utilisation
BR1 139 0.3 88.7 87.3 92.3
BR2 140 0.4 89.0 88.6 93.5
BR3 135 0.5 87.8 89.4 92.3
BR4 132 0.6 87.8 90.1 90.8
BR5 128 0.7 87.7 89.3 89.9
BR6 134 0.9 87.6 89.7 89.2
BR7 129 1.1 87.4 89.2 87.1
BR8 138 1.3 86.8 87.9 84.0
BR9 128 1.6 86.5 87.3 80.9

BR10 129 2.0 86.3 87.6 79.1
Average 87.6 88.6 87.9

Table 3.2: Results on the BR datasets.

3BF Bortfeldt and Mack [BM07]

Dataset N Time (s) Utilisation Utilisation
BR1-XL 1000 8.6 92.2 86.9
BR2-XL 1000 10.2 92.2 88.3
BR3-XL 1000 12.5 91.8 89.8
BR4-XL 1000 14.9 92.0 90.2
BR5-XL 1000 16.8 92.4 89.9
BR6-XL 1000 19.4 92.5 91.5
BR7-XL 1000 22.9 92.4 91.0
BR8-XL 1000 26.2 92.6 90.8
BR9-XL 1000 30.1 92.1 90.9

BR10-XL 1000 35.3 92.5 90.4
Average 92.3 90.0

Table 3.3: Results on the BR-XL datasets.
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3BF Burke et al. [BKW04]

Dataset N Time (s) Utilisation Time (s) Utilisation
N1 10 < 0.1 100.0 < 0.1 88.9
N2 20 < 0.1 94.3 < 0.1 94.3
N3 30 < 0.1 98.0 < 0.1 96.2
N4 40 < 0.1 96.4 < 0.1 96.4
N5 50 < 0.1 97.1 < 0.1 95.2
N6 60 0.1 99.0 < 0.1 97.1
N7 70 0.1 97.1 < 0.1 93.5
N8 80 0.2 97.6 < 0.1 95.2
N9 100 0.4 98.7 < 0.1 98.7

N10 200 0.6 99.3 < 0.1 98.7
N11 300 1.0 99.3 < 0.1 98.7
N12 500 1.2 99.0 < 0.1 98.0
N13 3152 8.5 99.6 1.4 99.6

Average 98.0 96.2

Table 3.4: Results on the N datasets.

Note that there is a constraint that no box may be rotated for this dataset.

Secondly, the BR datasets (thpack1–thpack10) originally suggested in [BR95] and available

to download from the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html)

were adapted for use in the strip packing problem by ignoring the container length dimension

but maintaining the rotation restrictions as suggested in the original paper, in order to compare

against [BM07] which is also the current state-of-the-art for some of these datasets (BR6–BR10).

Tables 3.2 and 3.3 show these results. The method proposed in [BM07] is deterministic and

therefore no repeat runs were necessary in the original paper with regards to solution qualities.

The current state-of-the-art results for sets BR1–BR5 are, however, held by a parellelised tabu

search method described in [BG99]. This paper also uses several variants of probabilistic and

deterministic methods to generate solutions but only a single run of each method is used to

determine the ‘winning’ method. It is worth noting that the problem formulation used in the

paper includes additional stability constraints where boxes must be supported by the boxes

beneath them, i.e. lower in the z-axis. As with the aforementioned papers, only the first 10

instances from each dataset were used in the comparison.

Finally, the two-dimensional datasets proposed in [BKW04] were used for comparison with the

different placement strategies to those proposed here (comparing a three-dimensional packing

strategy to a two-dimensional strategy is, in this implementation, simply a case of setting all

height values in the two-dimensional datasets to a fixed, arbitrarily small number). The packing

methods given in [BKW04] are deterministic. The results are shown in Table 3.4.

The number of boxes, N , is shown in each results table for comparison purposes, with the value

for the BR1–BR10 datasets being the mean number of boxes per instance. All tests were carried

out on an Intel PC with a core speed of 1.86 Ghz using single-threaded code.
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3.4 Comparative Evaluation of the Packing Strategy

Volume utilisation (as a percentage) in the tables can be calculated by taking the optimal

length for the packing divided by the maximum extreme y position over all the boxes, where

the optimal length is known for the C1P1–C3P5 and N1–N13 datasets, and is calculated in a

similar fashion to that of Bortfeldt and Mack [BM07] using a volume lower bound as shown

below for the other datasets (where B is the set of boxes to be packed and cw and ch are the

container width and height respectively).

V olumeLowerBound =

⌈(∑
b∈B

volume(b)

)
/(cw · ch)

⌉
(3.1)

3.4.2 Notes on comparison with 2BF

The results on the N1-N13 datasets are not compared against the best known results, instead

they are compared against the original 2BF implementation in order to get a clearer idea of how

competitive the newer placement policies are against the original policies presented in [BKW04].

The times taken to run the 3BF experiments can be seen to be notably longer than the 2BF

counterparts, though this is understandable due to the different methods of representing the

problem between the 2BF and 3BF implementation. A two-dimensional array-based method

was initially trialled for use in the 3BF implementation but was shown to be too slow for

containers with large dimensions (due to the memory allocation and the constant memory

traversal needed) and also did not provide the flexibility of being able to handle boxes and

containers with floating point dimensions.

3.4.3 Experimentation and Results of 3BF with Metaheuristic En-

hancements

Results in this section relate to Tables 3.5, 3.6, 3.7, and 3.8.

Each run of the algorithm was allowed 160 seconds in total (i.e. including both the deterministic

and the metaheuristic phases) to attempt each problem instance, the same running time as used

in [BM07]. For comparison on the N1–N13 datasets a time limit of 60 seconds was imposed

to compare more fairly with the experimental set up used in the original paper. The initial

value of m was set to 10 for all datasets and was allowed to adapt dynamically. The same

rotation restrictions described in section 3.4 were imposed and the same test machine used.

Note the comparison on the N1–N13 datasets is now with the 2BF heuristic with metaheuristic

enhancements (in this case simulated annealing) included as described in [BKW09]. The results

included from [BKW09] are the best results over 10 runs. Results reported by 3BF+TS are

averaged over 100 runs, with standard deviations being at, or incredibly close to, zero. This is

likely due to near optimal solutions being found (local optima) with little to distinguish between
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Karabulut and
3BF+TS Inceoglu [KI04]

Dataset N Utilisation Utilisation
C1P1 15 100.0 100.0
C1P2 29 100.0 100.0
C1P3 50 100.0 100.0
C1P4 106 99.5 98.0
C1P5 155 100.0 100.0

C2P1 16 100.0 100.0
C2P2 25 100.0 92.6
C2P3 52 100.0 99.0
C2P4 100 98.0 96.2
C2P5 151 99.0 96.2

C3P1 21 100.0 100.0
C3P2 31 100.0 94.3
C3P3 51 98.0 92.6
C3P4 101 95.2 91.3
C3P5 151 95.5 90.9

Average 99.0 96.7

Table 3.5: Results on the KI datasets using metaheuristic enhancements.

Bortfeldt and Bortfeldt and
3BF+TS Mack [BM07] Gehring [BG99]

Dataset N Utilisation Utilisation Utilisation
BR1 139 90.0 87.3 92.3
BR2 140 89.6 88.6 93.5
BR3 135 89.0 89.4 92.3
BR4 132 88.8 90.1 90.8
BR5 128 88.5 89.3 89.9
BR6 134 88.6 89.7 89.2
BR7 129 88.7 89.2 87.1
BR8 138 88.3 87.9 84.0
BR9 128 87.9 87.3 80.9

BR10 129 87.9 87.6 79.1
Average 88.7 88.6 87.9

Table 3.6: Results on the BR datasets using metaheuristic enhancements.
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3BF+TS Bortfeldt and Mack [BM07]

Dataset N Utilisation Utilisation
BR1-XL 1000 92.4 86.9
BR2-XL 1000 92.4 88.3
BR3-XL 1000 91.9 89.8
BR4-XL 1000 92.1 90.2
BR5-XL 1000 92.5 89.9
BR6-XL 1000 92.6 91.5
BR7-XL 1000 92.6 91.0
BR8-XL 1000 92.8 90.8
BR9-XL 1000 92.3 90.9

BR10-XL 1000 92.7 90.4
Average 92.4 90.0

Table 3.7: Results on the BR-XL datasets using metaheuristic enhancements.

3BF+TS Burke et al. [BKW09]

Dataset N Utilisation Utilisation
N1 10 100.0 100.0
N2 20 100.0 100.0
N3 30 100.0 98.0
N4 40 99.8 97.6
N5 50 99.1 97.1
N6 60 99.3 98.0
N7 70 98.0 96.2
N8 80 97.6 97.6
N9 100 98.7 98.7

N10 200 99.3 98.7
N11 300 99.3 98.0
N12 500 99.0 98.0
N13 3152 99.6 99.6

Average 98.9 98.3

Table 3.8: Results on the N datasets using metaheuristic enhancements.
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improving solutions. Another evaluation method, used at least in the interim, for generating

the final solution, such as the ‘area below the skyline’ score given in [BKW09] could possibly

be used to help the search in this respect.

3.4.4 Evaluation of Results

As can be seen in Tables 3.1, 3.2, 3.3 and 3.4, the results obtained by pure 3BF are very

competitive with the best known results from the literature. In 18 out of 35 cases 3BF achieves

the highest volume utilisation currently known (shown in a bold typeface) further to all 13 from

the 2004 Burke et al. paper, and the time taken to do this is considerably less than that of the

results from the literature, with the exception of N1-N13 (see section 3.4.2).

As with the results of the purely deterministic 3BF shown previously, 3BF with metaheuristic

enhancements performs extremely competitively with the datasets from the literature, using a

similar running time in each case. As can be seen in Tables 3.5, 3.6, 3.7 and 3.8 the best known

results were achieved (shown in a bold typeface) in 28 of 35 test instances, and a further 13

best results compared to the paper of Burke et al. [BKW09].

3.5 Conclusions

This chapter presents an efficient three-dimensional hybrid placement strategy, which tackles

the three-dimensional strip packing problem in an effective manner.

It has been shown that 3BF is a suitably powerful and efficient method of packing boxes

within a container for the three-dimensional strip packing problem, and also that with some

metaheuristic enhancements (coupled with a DBLF packing strategy) to this solution, quality

can be improved even further in a very reasonable amount of execution time. In this work,

the 3BF heuristic alone has provided the best known solutions for 18 of 35 datasets, and when

coupled with the metaheuristic enhancements it has provided the best known solutions for 28

of the 35 datasets. Both approaches have led to better solutions than the original 2BF papers.

The 3BF packing algorithm has been shown to be very effective over a wide range of problem in-

stances from the literature, and could be directly applied to many other two-/three-dimensional

packing problems. The proposed methodology could easily be extended to include other con-

straints such as balancing and weight distribution due to the flexibility of the framework.

Further improvements to solution quality could also be incorporated with novel evaluation

functions which would integrate with the framework with minimal changes to the structure of

the methodology. The time taken to reach suitably high solution quality with this strategy is

very reasonable on realistically sized instances and could be implemented in many industrial

settings with relative ease.
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4

A Data Structure for

Higher-Dimensional Rectilinear

Packing

Representation is the essence of
programming.

The Mythical Man-Month
Fred Brooks

Summary

This chapter presents an Abstract Data Type (ADT) for producing higher-dimensional
rectilinear packings using constructive methods, the Skyline ADT. Furthermore, a novel
method and several approaches from the literature are provided in the form of concrete im-
plementations of the presented ADT. Formal definitions of two higher-dimensional packing
problems are given, the concept of gaps is explained and the polynomial growth worst-case
behaviour of gaps is shown. The complexity of both the 3BF algorithmic framework and
implementations of the ADT are analysed and comparative run-time speeds are compared
over a range of datasets from the literature. The data structure described herein may be
used in the majority of constructive heuristic and metaheuristic techniques used to tackle
three- and higher-dimensional problems.

4.1 Introduction

In this chapter we focus on the bottom-up constructive algorithmic style in packing, which has

been used in recent years in many papers, e.g. [MPV00, CPT08, BKW09, RBN09, ABK11]. We

43



4. A DATA STRUCTURE FOR HIGHER-DIMENSIONAL RECTILINEAR
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Figure 4.1: (Left) a two-dimensional packing, (centre) the gaps which subsequent boxes may be
placed in, represented by thick black lines (i.e. the skyline), (right) the vector representation of
the one-dimensional skyline.

first formalise some of the notions and bound the running time of a standard three-dimensional

constructive algorithm, the 3BF framework presented in chapter 3. We then present an abstract

data type (ADT) for the creation of a solution (or partial solution) and finally give results

and bounds on the running times of various concrete implementations of this, both from the

literature and a novel approach given here.

4.2 Skylines and Gaps

The term ‘skyline’ as used to describe the outline of the topmost packed rectangles (i.e. projec-

tion in D−1 dimensions of a D-dimensional packing) was first coined by Burke et al. [BKW04].

An example of a skyline (along with its numerical representation) can be seen in Figure 4.1.

This representation method means that only the feasible positions for subsequent rectangles to

be placed in are recorded. Also, rectangles that are placed deeper in the packing, and positions

that are unusable, are effectively disregarded as this information is not needed. In the Burke

et al. paper the skyline was implemented as a one-dimensional structure representing a two-

dimensional packing. A ‘one-dimensional skyline’ as presented in the paper can be formalised

as a vector of n elements (lines), represented as tuples ({x1
1, x

2
1, l

1
1}, {x1

2, x
2
2, l

1
2}, . . . , {x1

n, x
2
n, l

1
n})

where l1n represents the width of the n-th part of the skyline and xdn represents its coordinate

in dimension d. In the case of the one-dimensional skyline, x1 represents the position along

the x-axis and x2 is the position along the y-axis. Obviously,
∑n

i=1 l
1
i equals the width of the

container/strip, L1
0. For all n > 1 the relative x1 position of part n, x1

n, can be calculated as

x1
n =

∑n−1
i=1 l

1
i and x1

1 = 0.

As we are treating a two-dimensional packing as a one-dimensional projection we lose the y-

position value associated with each gap, but we store this information as the D + 1th position

value, xD+1
i — in this case x2

i . This also means that we can use the same data structure

(presented in this chapter) in D dimensions to represent a D dimensional packing if we associate

a binary value of xD+1
i = 1 to a location containing a box and xD+1

i = 0 if the location is empty,

i.e. by modelling the problem as a D + 1 dimensional problem with a maximum XD+1
i value

of 1. This adds a level of flexibility (as any position in the container may be used rather than
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constructing a packing from ‘bottom-up’) to the packing process but will, as we will see later,

increase the computational complexity regarding the number of dimensions and gaps.

In order to find the lowest gaps, the list must be traversed and references to the gaps with the

lowest x2
i value stored for use in the packing algorithms. The number of gaps at any given point

in the packing is denoted as g. Splitting a gap is merely a case of changing its l1i value to its

new width, w′, and inserting a new gap after it in the list with the same x2
i value, a width of

l1i − w′ and a position value of x1
i + w′. Merging two adjacent gaps with the same x2

i value at

positions i and i+ 1 is just a case of adjusting the l1i value by adding the second gap’s width,

l1i+1, and finally removing the second tuple (at position i+ 1) from the vector.

For higher-dimensional packing (i.e. D-dimensional with a (D − 1)-dimensional skyline repre-

sentation) a similar formalisation can be employed, though the operations on this representation

are more involved procedures (see Section 4.3). Formally, the (D − 1)-dimensional skyline can

be represented as a vector of (D − 1)-dimensional rectilinear parallelepipeds (i.e. gaps) with

different associated xD values, i.e.

({x1
1, x

2
1, . . . , x

D
1 , A1}, {x1

2, x
2
2, . . . , x

D
2 , A2}, . . . , {x1

g, x
2
g, . . . , x

D
g , Ag}). In this case Ai is a vec-

tor of oriented facets for gap i, as the simple line representation used in the one-dimensional

skyline does not suffice in higher dimensions. This representation means that the polytopes

representing gaps may have holes and may self-intersect (see [dBCvKO08]).

4.2.1 Rectangular Simplification of Gaps

In a simplified two-dimensional skyline representation, gaps can be realised as rectangles. In

this case, the set of gaps consists of a set of rectangles whose summed areas may be greater,

but are not less, than that of the container’s area, i.e. they may overlap as in Figure 4.2.

Obviously, this example could be represented using one rectangular gap (shaded) and one L-

shaped gap (unshaded) if a suitable representation for gaps is used, but in the case where only

parallelepipeds are being placed within the container, and therefore only rectangular footprints

are added to the skyline, it is acceptable to simplify using purely rectangular gaps in the

skyline implementations, and some implementations lend themselves more naturally to this

representation. In this chapter we refer to rectangular gaps of maximal size as ‘simple gaps.’

More generally we can define a simple gap as one which can be defined fully by two extreme

coordinates (x1
a, x

2
a, . . . , x

D−1
a ) and (x1

b , x
2
b , . . . , x

D−1
b ) where xja < xjb ∀1 ≤ j ≤ (D − 1). For

all simple gaps i, j, i 6= j at least one extreme coordinate of i does not lie within j. Note

that ’non-simple’ gaps (which in this chapter we refer to as just ’gaps’) are also maximal by

definition, and as such are not fully contained within any other non-simple gap.
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overlap

Figure 4.2: Two overlapping simple gaps in a two-dimensional skyline (representing a three-
dimensional packing).

Figure 4.3: The hyperplanes (shown as dotted lines) created within a container when a two-
dimensional box (shaded) is added. The 9 defined regions (including the region where the box
itself lies) can be observed.

4.2.2 The Relationship Between the Number of Gaps and the Number

of Placed Boxes

We now look at the relationship between the number of boxes placed at any stage within the

packing, n, and the maximum number of rectangular positions (simple gaps) in the skyline in

which subsequent boxes may be placed, g. The results presented in this chapter can also act as

valid upper bounds when considering the case where other rectilinear gaps (i.e. non-simple) are

allowed in the skyline as all rectilinear polygons can be represented as a set of rectangles (in

fact the rectangle covering problem which involves representing a polygon with the minimum

possible number of rectangles is itself an NP-complete problem [GJ79]). It is obvious, however,

that if non-simple gaps are represented then the number of non-simple gaps can be bounded by

O(n) as the set of all polygons at any given height/level can be represented as a single polygon

(with holes if more than one box extends to the same height and its ‘footprint’ is disjoint to the

other boxes of that height), and the number of all unique heights in a skyline can be no more

than n+ 1. This is useful in the interval-tree method which we introduce in Section 4.3.1.

We prove bounds on the number of simple gaps by modelling the problem as a specialised

case of the ‘space partitioning using planes’ problem [YY87], where all planes must be aligned

orthogonally to all axes and, therefore, it is not possible for all planes to intersect all other

planes.
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Lemma 1. For any D-dimensional parallelepiped box, b, being placed within a D-dimensional

parallelepiped container the maximum number of dividing hyperplanes (i.e. hyperplanes defined

by box b which divide or partition the space) added to the space is 2D.

Proof. A visual example of the dividing hyperplanes created by placing a two-dimensional box

within a container can be seen in Figure 4.3. We define a D-dimensional parallelepiped box,

b, as a vector, db (of size D, where the i-th element is indexed by dib) containing sets of the

locations of the two extreme points in each dimension. I.e. {xib, xib + lib} where 1 ≤ i ≤ D).

We place b within a D-dimensional parallelepiped container, represented similarly as dc but

containing extreme points in the respective dimension from all previously placed boxes plus

the container itself. The box being placed is a parallelepiped, and as such may be represented

as two extreme points in each dimension. Therefore, |dib| = 2 ∀1 ≤ i ≤ D. We can define

a hyperplane by taking each point per dimension and extending it indefinitely in all other

dimensions. Each extreme point in each dimension may have a unique position not in dic.

The number of new partitioning hyperplanes is thus equal to
∑D

i=1 |dib\dic|. In the worst case

(
∑D

i=1 |dib\dic|) = (
∑D

i=1 2) = 2D. Therefore, the number of new hyperplanes dividing the D-

dimensional space after a D-dimensional parallelepiped has been placed can be no greater than

2D.

Lemma 2. If n D-dimensional parallelepiped boxes have been placed into a D-dimensional

parallelepiped container there are at most (2n + 1)D regions (defined here as an area within

space bounded in each direction by a positioned hyperplane or container boundary) in the D-

dimensional container.

Proof. Due to Lemma 1 we know that there can be at most 2D hyperplanes per placed box,

with the alignment of the hyperplanes being distributed evenly (i.e. 2 perpendicular to, and

therefore partitioning, each dimension) and orthogonally throughout space. The number of

regions defined in any dimension is the number of hyperplanes dividing it plus 1 (i.e. an empty

space within a container is one region, a single dividing plane through this space leads to two

regions etc.) assuming all hyperplanes are distinct. Due to the orthogonality constraint no

hyperplane aligned to a specific dimension may intersect any other hyperplane of the same

alignment (therefore creating new, non parallelepiped regions) and thus the total number of

regions in the space is the product of the maximum number of regions for each dimension, i.e.

no more than (2n+ 1)D if all hyperplanes are disjoint.
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Algorithm 4 Gap Generation Procedure.

Input: a skyline S broken into r × r two-dimensional rectangular regions with associated
heights and an empty r × r matrix M
Output: an r × r matrix M , with non-empty elements each containing a simple gap defined
by an upper-left and lower-right region location pair (each as a coordinate)

1: for all j such that 1 ≤ j ≤ m do
2: for all i such that 1 ≤ i ≤ m do
3: Coordinate s← {i, j}
4: h← heightOf(s)
5: for all k such that m ≥ k > i do
6: if heightOfAllRegionsBetween(s, {k, j}) = h then
7: l← j
8: while heightOfAllRegionsBetween(s, {k, l + 1}) = h do
9: l← l + 1

10: end while
11: g ← {s, {k, l}}
12: if g does not exist as a sub-gap in M then
13: Store g in M
14: end if
15: end if
16: end for
17: end for
18: end for
19: return M

Height 0
Height 1

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

 

Figure 4.4: A two-dimensional skyline, divided into 9 regions, and the corresponding matrix
(transposed for clarity, initially empty, element positions indicated in diagram).
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Figure 4.5: Generating all simple gaps in a skyline (with a corresponding matrix, transposed for
clarity). Black dots represent top-rightmost regions of the gaps.
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Figure 4.6: Generating all simple gaps in a skyline. Black dots represent the top-rightmost
regions of the gaps which have not been used previously in the generation procedure.
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Theorem 1. If n D-dimensional parallelepiped boxes are packed into a D-dimensional con-

taining parallelepiped there will be, in the worst case, O(nD) simple gaps for subsequent boxes

to be placed in.

Proof. If we know the locations of all regions, as defined in Lemma 2, then we can generate all

possible simple gaps.

It is obvious that any simple gap can be defined by either a single region or a pair of regions

(representing two extreme points of a simple gap), and therefore the number of simple gaps

is bounded from above by the number of single and combined pairs of regions, (2n + 1)D +
(2n+1)D(2n)D

2 = O(n2D).

We will now show that this bound can be tightened to O(nD). We do so by presenting a

constructive approach to generating all of the gaps in a packing and show this can not be

more than the number of regions bounded previously. We will demonstrate this with a two-

dimensional skyline, but the idea can be extended to any number of dimensions.

The gap generation procedure is given in Algorithm 4. We now give an example of the algorithm

based on Figure 4.5. Figure 4.4 shows the layout of a given skyline, and the (initially empty)

corresponding matrix, which has been transposed to make the mapping more intuitive in this

example. M is initially empty, and the skyline is broken into 9 regions with heights either 0 or

1. Lines 1 – 3 set s to be {1, 1}. Line 4 sets the value of h to be the height of region {1, 1},
i.e. 0. Lines 5 and 6–16 ‘stretch’ the gap to the edge of the container. Lines 8 to 10 then

attempt to extend the gap downwards, though are unable to due to the height difference of

region (3,2). Gap a (g in the pseudocode), represented by the pair {(1,1),(3,1)} is then stored

in the matrix at position (3,1), i.e. the position of the top-rightmost region of a. The process

is then repeated, ignoring gaps which are already contained within the gaps in M , such as

{(1,2),(2,2)}. In the case given, the gap can always be stored in the matrix at the position of

the top-rightmost region of the gap. This is not always the case, and if this happens then the

highest, rightmost available position is to be used, as is the case in Figure 4.6.

It is obvious that the matrix can store all possible simple gaps using the method provided, and

that all simple gaps are represented in this manner. It then holds that the r × r matrix M

(where r × r = r2 = (2n + 1)2, or more generally for D dimensions O(nD)) can represent all

possible simple gaps in the two-dimensional skyline, and by extension the number of simple

gaps cannot exceed the number of regions in the skyline, and hence is bounded by O(nD).

4.2.3 A Bottom-Up Constructive Approach to Packing

We now take the 3BF framework presented in chapter 3 and [ABK11]. In order to give a detailed

analysis of its complexity we must break the 3BF framework (given again in this chapter as
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Algorithm 5, which is functionally equivalent to its counterpart Algorithm 1 which we have

already seen in chapter 3) down into finer-grained routines which we can then characterise the

complexity of later. We present an analysis of the general 3BF packing framework in terms of

the input list size, N , and the number of dimensions, D.

Algorithm 5 Constructive Packing Algorithm.

Input: a set B of N boxes to place, a container C
Output: a set of boxes with associated placement information, P

1: P ← ∅
2: while |B| > 0 do
3: G← lowestGaps(C)
4: bestScore← 0
5: for all i such that 1 ≤ i ≤ |G| do
6: for all j such that 1 ≤ j ≤ |B| do
7: if isContained(bj , gi) then
8: t← evaluationScore(gi, bj)
9: if t > bestScore then

10: bestScore← t
11: bestBox← j, bestGap← i
12: end if
13: end if
14: end for
15: end for
16: if bestScore 6= 0 then
17: position bbestBox in gbestGap

18: splitGap(gbestGap, bbestBox)
19: changeHeight(gbestGap, height(bbestBox))
20: remove bbestBox from B and add to P
21: else
22: for all i such that 1 ≤ i ≤ |G| do
23: n← neighbouringGaps(gi)
24: changeHeight(gi,min(height(n)))
25: end for
26: end if
27: end while
28: return P

4.2.3.1 Complexity Analysis

As can be seen from the now familiar 3BF framework given in Algorithm 5, the main algorithm

loop at line 2 is dependent on the time taken to place all boxes. This, in the worst case, will

mean that for every box placed (lines 18 to 20) all previous gaps will need to be filled and

raised to create a suitably large gap to place each subsequent box, in (lines 22 to 25). The

main loop, starting at line 2 will therefore take O(ng) iterations to complete. We will therefore

call function lowestGaps O(ng) times. As isContained is nested within two for-loops of sizes
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|G| = g and |B| = n in the worst case it is obvious that it will be called ng times per iteration,

or O(n2g2isContained) iterations in total. This same argument holds for evaluationScore,

giving O(n2g2evaluationScore). If we were to allow all rotations of each box then we would

have to increase the runtime of evaluationScore and isContained by a factor of D! as this is

the maximum number of unique orthogonal alignments of a parallepiped in D dimensions. The

maximum number of rotations being D! is intuitive, as when deciding a rotation for a box we

fix one of its D lengths to dimension one, then one of the remaining D−1 lengths to dimension

two and so on until all dimensions have been fixed, so we have D×(D−1)× . . .×1 possibilities,

or D!.

Having D! allowable rotations would obviously dominate many of the terms in the analysis, and

would quickly cause any packing method to become intractable in higher dimensions, so for the

purpose of this analysis we assume that a fixed, constant number of rotations are allowed for

any given D. It is clear that the remaining pseudocode inside the two for-loops takes constant

time per iteration. As lines 18 to 20 are contained within the main loop they will be called once

per box placed (i.e. a box cannot be placed more than once in a packing). Therefore splitGap

and changeHeight will be called n times in total from this section of pseudocode, regardless of

how many times the main loop is iterated, giving a bound of O(n(splitGap+changeHeight)).

Line 23 will be run in O(ng2neighbouringGaps) and due to the fact that N may contain

a list of all gaps (minus the one being inspected), and the function to find the minimum

height in this list will take time linear with respect to |N | = g, the remaining line will take

O(ng2(changeHeight +min(height(N)))) = O(ng2(changeHeight + g)).

This leads us to an overall complexity for the algorithm, depending heavily on the implemen-

tation details of the functions and also the upper bound total number of gaps, g, of:

O(ng(lowestGaps) + n2g2(isContained + evaluationScore) + n(splitGap +

changeHeight) + ng2(neighbouringGaps) + ng2(changeHeight + g))

= O(ng3 + n2g2(isContained + evaluationScore) + ng2(neighbouringGaps +

changeHeight) + ng(lowestGaps) + n(splitGap)).

4.3 An Abstract Data Type for Packing

Given in Figure 4.7 is a UML description of the ADT used for representing a three-dimensional

packing, i.e. a two-dimensional skyline. As we have seen in Section 2.5.1, the functions of

the ADT are all that are needed to generate a three-dimensional packing in conjunction with

Algorithm 5.
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Skyline
+getLowestGaps() : {RectilinearPolygon}
+getNeighbouringGaps(rp : RectilinearPolygon) : {RectilinearPolygon}
+splitGap(rp : RectilinearPolygon, gap : RectilinearPolygon)
+changeHeight(rp : RectilinearPolygon, newHeight : Integer )
+isContained(rp : RectilinearPolygon, gap : RectilinearPolygon) : Boolean

Figure 4.7: The Skyline ADT for higher-dimensional packing.

The lowestGaps function returns a list of gaps (i.e. rectilinear polygons in the three-dimensional

packing/two-dimensional skyline approach) that are located at the lowest position in the skyline

(i.e. the deepest position in the container).

Initially this will be a polygon representing the base of the container. The isContained function

returns a Boolean value: true if the specified box fits within the specified gap and false otherwise.

evaluationScore is specific to the associated packing algorithm and is a ‘fitness’ score which

dictates which box will be placed in which gap at each iteration of the algorithm. The box/gap

pair with the highest fitness score are always chosen to be placed. Depending on the evaluation

function tie breaking may need to be specified.

splitGap is used to split a gap that has been returned previously into a number of new gaps.

The number of new gaps ranges from zero if the box fits the gap perfectly, to any positive

number if the box does not fill the gap entirely, e.g. its footprint is smaller than the gap.

changeHeight is used to change the height/depth of part of the skyline to a new value, for

example when a box has been placed or an unusable gap is found. The final function,

neighbouringGaps, returns a list of the gaps in the skyline that are at higher positions than

the gap being queried, but touch its perimeter. This is used to determine how high to raise an

unusable gap so that it creates a larger platform along with a neighbouring gap that may be

usable in a future iteration of the algorithm.

4.3.1 Implementations of the ADT

We will now look at five methods of implementing the ADT in total, four taken from the

literature and a new implementation described in this chapter. The implementations will be

analysed in terms of computational complexity of the operations and timing tests on represen-

tative benchmark instances from the literature.

We assume that evaluationScore, i.e. the scoring method for the boxes, takes constant time,

for instance simply returning L1
i · L2

i for box i. Without loss of generality we hereby describe

the Ld dimension as the ‘height’ of the skyline at a specific point. The complexities of the

implementations are summarised in Table 4.1.
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4.3.2 Array Representation

The first and simplest implementation of the Skyline ADT is by using an array of D−1 dimen-

sions to represent the packing, i.e. a two-dimensional array to represent a three-dimensional

packing. The array obviously has dimensions of L1
0 ·L2

0 · . . . ·LD−1
0 , and LD

0 is the unconstrained

dimension to minimise for the strip packing problem, or the maximum value allowed in the

container loading problem. The value of each array element is the corresponding LD
0 value of

the current packing. In order to determine a list of simple gaps at the lowest possible position

the array must be traversed fully. To get neighbouring gaps the array needs to be checked

around the edges of the queried simple gap location. Raising (and lowering) areas of the skyline

to a new position based on a placed box, i, is simply a case of setting the array values between

(x1
i , x

2
i , . . . , x

D−1
i ) and (x1

i +L1
i , x

2
i +L2

i , . . . , x
D−1
i +LD−1

i ) to the new xDi +LD
i value. Splitting

gaps is a redundant operation in this implementation as it dynamically searches for new gaps

at each iteration and implicitly holds this information in the representation. The isContained

function is simply a rectilinear polyhedron in rectilinear polyhedron check.

For the complexity analysis of the array representation we introduce a new variable, s, repre-

senting the mean size of the dimensions of the container, i.e. mean(L1
0, L

2
0, . . . , L

D−1
0 ). As we

will see, the size of the container dominates the complexity of some of the operations in this

representation.

• lowestGaps. To generate all lowest gaps the array must be fully traversed to find the

lowest point in the packing. Note that this information can be cached, but will not affect

the overall asymptotic complexity of the operation. Scanning the array once will take

O(sD) time. Once the height of the lowest point of the packing is known the array must

be traversed again, creating gaps at every position (i.e. ‘starting point’) where the lowest

value is found, and growing these outwards until an element of different (i.e. greater)

height is encountered. The gap is then added to the list to be returned to the algorithm.

This leads to a complexity of the order O(s2D) as each element may be inspected per

‘starting point’ found.

• neighbouringGaps. The procedure to find a list of heights of neighbouring gaps when a

box is placed is simple. We just inspect all array elements around the perimeter of the

box in question. This leads to a worst case complexity of sD−12D = O(sD−1D).

• splitGap. This operation is redundant as a change in height of a section of the sky-

line/array will implicitly change the location/size of any gaps affected (i.e. as the gaps

are calculated dynamically in this representation so this operation does not need to be

called). This leads to a complexity of O(1).

• changeHeight. In the worst case a change of height of the skyline will mean updating all

elements of the array to the new height. O(sD).
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• isContained. As the size of each gap is calculated as it is discovered this will take time

bounded by 2D, or O(D), as all that is needed is a rectilinear polyhedron in rectilinear

polyhedron check to ensure that a box fits within the gap.

4.3.3 Collision Detection Representation

The second implementation uses brute-force comparison for collision detection. The method

stores an ordered list (in a balanced binary tree) of D-dimensional coordinate locations based

on previously positioned boxes. The list is ordered from lowest to highest xdi value. Each

time a box, i, is placed, the coordinate location in which it is placed is removed, and D new

coordinates are added — e.g. in the three-dimensional case at (x1
i , x

2
i +L2

i , x
3
i ), (x1

i +L1
i , x

2
i , x

3
i )

and (x1
i , x

2
i , x

3
i + L3

i ). This obviously makes finding the lowest gaps an easy operation and

splitting the gaps redundant, though other operations require comparing each box with all

other previously placed boxes. This method also only allows a maximum of D gaps for every

box placed, and thus when using this implementation of the data structure g = O(nD) rather

than O(nD) which means that portions of the solution space are inaccessible as obviously not

all gaps can be represented.

• lowestGaps. In the worst case the number of gaps returned will be a constant factor

of the number of previously placed boxes due to the fact that a factor of D number of

potential gap coordinates may be added to the skyline at each iteration of the algorithm,

but only one per axis — therefore only one per box can be ‘lowest’ in the packing. Recall

that the list of coordinates is sorted by depth. Therefore, the complexity is at most no

more than O(log(nD) + k), where k is the number of gaps returned.

• neighbouringGaps. The number of neighbouring gaps in this representation will actually

be the number of neighbouring boxes previously placed, and therefore a constant factor

time per dimension collision check will be needed for each previously placed box, i.e. a

complexity of O(nD).

• splitGap. This operation involves checking the list of potential gap coordinates and

removing any that lie within the bounds of the box in question (taking time proportional

to D). As the number of gap coordinates is bounded by a factor of nD this will take

O(nD2) time.

• changeHeight. In this representation we mean adding D new coordinates to the gap

list (of size bounded by O(nD)). This can be done by a binary insertion, and so takes

O(D · log(nD)) time.

• isContained. This involves checking all previously placed boxes for collision and therefore

takes O(nD) time.
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4.3.4 Plane Representation

The third implementation is similar to the brute-force collision detection method but represents

gaps as D lists of axis-aligned (D−1)-dimensional ‘planes’ (actually rectangles) at each coordi-

nate (as described in the brute-force method). Using these planes means that checking whether

boxes fit into the gaps is a simple operation, but updating the lists of planes at each iteration

of the algorithm is time consuming. For a detailed explanation of the implementation refer

to [ABHK09]. This method also bounds the number of gaps available by a factor of D of the

number of placed boxes, i.e. g = O(nD) and as such portions of the solution space cannot be

accessed as not all possible gaps are represented. In fact, this method is even more restricting

than the collision detection method as large boxes cannot initially be placed adjacent to smaller

boxes (a constraint of having ‘planes’ of fixed sizes) and a series of decreasing box sizes can be

observed early on in the solutions generated. For this reason it is less effective than the simple

collision detection method at creating efficient packings.

Although in the original paper describing this method in detail ([ABHK09]) it is not specified

in which order the list of gaps is stored, we hereby assume that they are stored, sorted by depth,

in a balanced binary tree so as to improve the complexity of some of the following methods.

• lowestGaps. As with the collision detection representation the number of gaps in the

skyline will be a factor of nD, and the lowest at any point a constant factor of nD. In

the worst case the complexity will be O(log(nD) + k).

• neighbouringGaps. Again, this is similar to the collision detection method and so will

have a complexity of O(nD).

• splitGap. The operation of splitting gaps involves changing the sizes of all planes that

overlap with the area to be split and potentially adding new gaps to the representation

(i.e. if the split off area is smaller than the planes it is splitting, new gaps/planes need to

be added to the representation to store the ‘leftover plane’). In the worst case this could

involve updating planes stored in every gap location already in the representation. A gap

may itself hold planes created by every box previously placed and therefore to update all

planes (with each update costing time O(D)) in all gaps would take O(n2D3) time.

• changeHeight. To change the height of a gap the plane information must be updated

in surrounding gaps. As with splitGap, in the worst case this may involve updating

every other gap in the representation, and there may be one plane per gap for every box

previously placed. Therefore, this operation will also take O(n2D3) time.

• isContained. The test for containment within a gap will take time bounded by O(D)

for each plane being stored within the gap. As we have seen previously there may be one

plane per dimension per gap for every box previously placed. Therefore, this will take

O(nD2) time.
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4.3.5 Axis-Aligned Bounding Box Tree Representation

Axis-Aligned Bounding-Box trees, or AABB trees, are used in [ABK11] to represent the packing

structure. These are standard tree structures used in many computer games and other three-

dimensional graphics applications ([Wal02]). The idea is that space is recursively partitioned

into smaller regions so that collision detections for boxes need only be applied to the subsets

of previously placed boxes, located in small portions of the space. Other than this spatial

partitioning, the operations are much the same as with the brute-force comparison method. In

this implementation the height of the AABB tree was set to five as this number produced the

best results during initial testing.

This representation is very similar to the naive collision detection method in terms of its time

complexity (assuming a binary tree of fixed depth). We will see later that although this method

has the same theoretical time complexity as the collision detection method, in empirical testing

it generally works faster than the naive method.

• lowestGaps. Due to the similarity with the collision detection method O(log(nD) + k).

• neighbouringGaps. In the worst case all partitioned spaces will need to be checked (i.e.

in the case that a box manages to lie across all spaces) and therefore the time taken will

be O(nD).

• splitGap. As with the collision detection method, O(nD2)

• changeHeight. As with the collision detection method, O(D · log(nD)).

• isContained. As with neighbouringGaps, O(nD).

4.3.6 Interval Tree Representation

The final implementation proposed in this chapter is the use of interval trees. This approach has

not been presented in the three-dimensional cutting and packing literature previously. Interval

trees are data structures used widely in computational geometry applications ([dBCvKO08]).

The implementation presented here stores the skyline as a collection of rectilinear polygons (with

an associated height position) in an ordered list, sorted from lowest position in the skyline to

highest. Each polygon is made up of lines stored in the interval tree and doubly linked to the

polygon. This means that fast comparisons of surrounding ‘neighbours’ in the skyline and fast

changes of height of portions of the skyline can be executed by querying the interval tree or

changing the height value and moving the polygon in the list respectively. Splitting gaps and

merging adjacent gaps in the skyline after a box has been placed can be done using fast Boolean

mask operations on the rectilinear polygons (in two dimensions see [WW88] and for a general,

higher-dimensional approach see [BMP99]) and reinserting them into the list and interval tree.

57



4. A DATA STRUCTURE FOR HIGHER-DIMENSIONAL RECTILINEAR
PACKING

A good reference for information and proofs about complexity of the operations on the interval

tree itself can be found in [dBCvKO08], which we refer the interested reader to.

It is worth remembering that as the interval tree representation is not limited to simple gaps

it can in fact just store a polygon (with holes as necessary) per unique height in the skyline,

lowering the number of gaps at any time to n.

• lowestGaps. As we store gap information in two separate data structures (as described

in Section 4.3.1) we only need to lookup lowest gap information in the depth sorted list

of gaps, therefore taking O(log(n) + k).

• neighbouringGaps. To get information about surrounding gap polygons we only need

to query the interval tree, taking O(Df · log(f) + k) where k is the number of results

returned and f is the number of facets defining the gap. We know that f is bounded from

above by a factor of n (i.e. 4 in the two-dimensional case as only rectangles can be added

to the skyline, or 2D generally) and as such O(f) ≤ O(Dn).

• splitGap. To split a gap we first need to remove the gap from both the interval tree

and the ordered list, taking O(Df · log(f)) and O(log(n)) respectively. We then perform

Boolean masking operations taking f · log(f) in two dimensions or O(f2D32D) in higher

dimensions (as explained in [WW88] and [BMP99] respectively) . Insertion of the new

gaps now takes place back into both the interval tree and the ordered list, again taking

O(Df · log(f)) and O(log(n)) respectively. Therefore, this operation takes O(Df · log(f))

in two dimensions, or O(f2D32D) generally.

• changeHeight. Changing height of a gap is simply a case of removing the gap from

the ordered list and reinserting it at the correct position, finding its neighbours and

merging with any of them at the same height. This obviously takes O(Df · log(f) + k)

or O(f2D32D) time as explained previously (removal/insertion in a sorted list, a call to

neighbouringGaps and the Boolean masking operations explained previously).

• isContained. The containment operation will check (in time O(D)) each of the 2D facets

of the box being placed against every facet (of which there are f) of the polygon. As such

this operation takes O(Df) in the worst case.
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Representation isContained neighbouringGaps changeHeight lowestGaps splitGap

Array O(D) O(sD−1D) O(sD) O(s2D) O(1)
Collision O(nD) O(nD) O(D · log(nD)) O(log(nD) + k) O(nD2)

Plane O(nD2) O(nD) O(n2D3) O(log(nD) + k) O(n2D3)
AABB Tree O(nD) O(nD) O(D · log(nD)) O(log(nD) + k) O(nD2)
Interval Tree O(Df) O(Df · log(f) + k) *1 O(log(n) + k) *1

Table 4.1: Summary of the complexities of the implementations.

4.3.7 Summary of Complexities

When all operation complexities are applied to the packing algorithm complexity the following

overall complexities can be observed:

• Array. O(n3D+1 + n2D+1sD + nD+1s2D).

• Collision. O(n5D3).

• Plane. O(n5D5).

• AABB Tree. O(n5D3).

• Interval Tree. O(n4(Df)) if D ≤ 2, O(n3f2D32D) otherwise.

It is worth recalling that the collision detection, plane and AABB tree methods do not allow

for all possible simple gaps to be represented (|G| = O(nD) as opposed to |G| = O(nD)) and

therefore scale better into higher dimensions as the number of gaps dominates most operations

in the packing problems studied here. On the other hand, the array based method and the

interval tree representation do allow for all gaps being represented (and therefore can achieve

higher volume utilisations in packing compared to the other methods) and for lower dimensions

are at least competitive with the ‘approximating’ implementations.

4.4 Empirical Results

In order to test the ‘actual’ run time of the implementations in an empirical setting, several

experiments were run on some representative problem sets from the literature (BR1–BR10 and

BR1XL–BR10XL, see [BR95] and [BM07] respectively) and some artificial sets created to test

various aspects governing problem difficulty (i.e. number of boxes to be placed and physical

magnitude of the container/boxes). The evaluation/scoring method was simply the footprint

of the largest box that would fit in the lowest gap (i.e. the area that would be updated in the

skyline) with ties being broken randomly. All tests were carried out 100 times on an Intel PC

with a core speed of 1.86 GHz using single-threaded C++ code for the MSVC compiler. The

average time taken across all runs is reported.

1O(Df · log(f) + k) or O(f2D32D), see section 4.3.6
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4.4.1 Datasets from the Literature

The results in Figure 4.8 show the time taken to run the first 10 instances of each of the

Bischoff-Ratcliff (BR) datasets presented in [BR95] for each implementation of the ADT. The

graph shows a fairly constant increase in time taken, from dataset BR1–BR10. This is due to

the increasingly heterogeneous property of the boxes in the datasets. There are approximately

90–150 boxes to pack in each instance of the BR datasets. The number of distinct box types in

each of BR1–BR10 is 3, 5, 8, 10, 12, 15, 20, 30, 40 and 50 respectively. As such the homogeneity

of the datasets decreases (or the heterogeneity increases). The implementation of the packing

algorithm only checks each box type (not each box individually) to see if it will fit in the lowest

gaps at each iteration and for its evaluation score, naturally leading to more comparisons as

the homogeneity of the datasets decreases. The increase in heterogeneity also leads to a more

‘fractured’ skyline, as there are fewer boxes of identical dimensions which ‘fit together’ perfectly

(allowing the merging of adjacent gaps). The only implementation that does not seem to suffer

from this property is the collision detection method. This is unsurprisingly fairly robust as it

has to (in the worst case) check for collisions with every previously placed box regardless of

its position or size and also each box placed using this implementation always creates exactly

D = 3 new gap positions, whereas the other methods may create substantially more.

Similarly, the results in Figure 4.9 are from the first 10 instances of each of the extended

datasets (BRXL), described in [BM07]. The number of box types increases identically to the

BR datasets and the increase in time taken for all but the collision detection method can be

observed in a similar fashion.

The trend in time taken holds across both datasets (from BR3 and BR3XL onwards), with

the interval tree method consistently fastest, followed by the axis-aligned bounding box tree

method, array based method, and finally the planes method. The brute force collision detection

method stays fairly constant despite the change in heterogeneity.

4.4.2 Scaling the Problem Instance Size

A simple dataset was created to investigate the effect of problem instance size on runtime for

each implementation of the ADT. A container with base of dimensions 233×220 units was used,

and initially 12 cube boxes of dimensions 10×10×10 units were packed into it. The number of

boxes was then scaled by 1–250 (i.e. a range of 12–3000 boxes being packed) and the experiment

repeated. The results can be seen in Figure 4.10. There are periodic ‘bumps’ in the graphs,

shown clearly in all methods except the interval tree and indicated by the vertical dashed lines.

These bumps can be explained fairly easily. The boxes being packed are homogeneous, and

therefore the skyline will always be at most at two different heights, h and h + 10 (as the

dimensions of the boxes are all 10 units). All of the implementations of the ADT adjust the

gaps in the skyline as a box is placed. The four implementations displaying visible bumps all
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Figure 4.8: Graph showing time taken on BR datasets (logarithmic time scale).
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Figure 4.9: Graph showing time taken on BRXL datasets (logarithmic time scale).
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Figure 4.10: Graph showing the effect of scaling the problem instance size (logarithmic time
scale).

add new gaps at higher positions within the skyline, whilst the interval tree implementation

simply updates the gap at the higher position. As the number of box-placeable locations at

a certain height, h (which we assume to be the lowest point in the skyline), approaches zero

the time taken to evaluate fitness/validity of the boxes in all of the remaining lowest gaps will

decrease. As the number decreases and boxes are being added, the number of gaps at height

h + 10 will keep increasing. If the list of gaps at height h has been exhausted, then on the

next iteration of the algorithm the skyline implementation will report the large list of gaps at

height h+ 10 as being at the lowest position and so the evaluation and placement process will

take a much longer time again whilst the gaps at height h + 10 are being filled. The vertical

dashed lines on the graph are at multiples of 42 as the number of boxes is always a multiple

of 12, and 23 × 22 = 506 boxes will fill a ‘layer’ in the packing, therefore
⌊

506
12

⌋
= 42. The

graph also illustrates what we have seen in Figures 4.8 and 4.9, reinforcing the idea that the

planes method can only outperform the brute force collision detection method when packing

exceptionally homogeneous datasets.
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Figure 4.11: Graph showing the effect of scaling the box/container sizes.

4.4.3 Scaling the Container/Box Sizes

In order to ascertain the effect on run time of increasing the physical sizes of the container and

boxes to be placed, an artificial dataset was created. A container of dimensions 9× 9× 9 and

27 cube boxes of dimensions 3 × 3 × 3 were packed by all of the ADT implementations. The

dimensions were scaled from 1–150 and the runs repeated. The results are shown in Figure

4.11. Note that the slope (or lack thereof) of the interval tree line is indicative of the other

experiments which are not shown for clarity. It can be seen that the array implementation is

affected by an increase of the scale of the problem dimensions, as suggested by the theoretical

result of Section 4.3.2, whereas the other methods are unaffected by this factor.

4.4.4 Improving the State-of-the-Art

We now show that using the interval-tree representation can significantly speed up non-trivial

heuristics from the literature.

4.4.4.1 Container Loading

The current state-of-the-art heuristic for the container loading problem is FDA (fit degree

algorithm) which is given in [HH11]. This consists of a single-pass constructive heuristic which
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has 4 stages (summarised below), and an iterated improvement phase utilising local search. We

use the constructive phase as the basis of the comparison.

1. Select a corner of a gap (or ‘action space’ in the parlance of the original paper) based on

the following conditions, using a lexicographic ordering:

(a) Distance from the nearest identically oriented corner of the container, smaller distance

being better.

(b) Volume of gap, larger is better.

(c) Deepest-bottom-leftmost coordinate, smaller is better, i.e. closest to the origin of the

container.

(d) Furthest-highest-rightmost coordinate, smaller is better, i.e. closest to the origin of

the container.

2. Select a box/group of boxes (called a block) to fit the gap based on the following condi-

tions, using a lexicographic ordering:

(a) Fit degree of the block, larger is better. This is a measure of how much a block is in

contact with previously placed boxes.

(b) Volume of an item in the block, larger is better.

(c) Length of an item in the block, larger is better.

(d) Length of the shortest side of an item in the block, larger is better.

(e) Deepest-bottom-leftmost coordinate of the block, smaller is better.

(f) Furthest-highest-rightmost coordinate of the block, smaller is better.

(g) Orientation number, smaller is better. This is a number from 1–6 representing the

orientation of a block.

3. Go to step 1 if there is no box placeable in the gap and select the next best gap.

4. Repeat 1–3 until all boxes have been packed or there are no more usable gaps.

The original timing test results are given as ‘FDA’ in Table 4.2 and the results using the

interval-tree representation are given as ‘FDA*.’ The times given as ‘FDA’ in Table 4.2 have

been scaled due to the differences in test computers and the result given for the entire dataset

is given as opposed to a per-instance average. Results are given from the BR1–10 datasets used

previously as well as the BR11–15 datasets (with 60, 70, 80, 90 and 100 unique box types per

instance respectively). All 100 instances from each dataset are used in each experiment, and

the average run times over 100 runs is given. The results are very strong and a significant speed

up can be observed. The test computer (1.86 GHz Intel PC) used previously was used for the

‘FDA*’ results.
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Time (seconds)

FDA FDA*

BR1 1.3 0.4
BR2 1.3 0.5
BR3 2.5 0.8
BR4 2.5 0.9
BR5 2.5 1.1
BR6 5.0 1.3
BR7 5.0 1.6
BR8 7.5 2.2
BR9 13.8 2.6

BR10 31.3 3.3
BR11 31.3 3.7
BR12 102.7 4.3
BR13 109.0 4.9
BR14 125.3 5.4
BR15 194.2 5.7

Table 4.2: Time taken to pack the BR datasets using the FDA algorithm with the interval-tree
representation.

4.4.4.2 Strip Packing

The 3BF heuristic presented in chapter 3 and [ABK11] is used in our testing for the strip

packing problem, and is implemented in the original paper using an AABB-tree representation.

The heuristic is currently the best performing single-pass constructive strip packing heuristic

for the three-dimensional strip packing problem.

Boxes are allowed to be rotated in this experiment (according to the restrictions put on them

by the datasets). A post-processing stage referred to in [ABK11] as tower-processing is used,

but takes less than 1% of the recorded runtime.

The original timing test results are given as ‘3BF’ in Table 4.3 and the results using the interval-

tree representation are given as ‘3BF*.’ The average number of boxes per instance is given in

the table as N . The first 10 instances from each dataset are used in each experiment, and

the average run times over 100 runs is given. It is worth noting that the the AABB-tree

representation in the original paper is a direct implementation of the data structure, and the

implementation given here using interval-trees is called through an extra layer of abstraction

(i.e. the Skyline ADT interface) and therefore requires some additional computational overhead.

The results are still, however, very strong and a significant speed up can be observed. The same

test computer (1.86 GHz Intel PC) was used in both sets of experiments.
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Time (seconds)

N 3BF 3BF*

BR1 139 0.3 0.2
BR2 140 0.4 0.2
BR3 135 0.5 0.4
BR4 132 0.6 0.4
BR5 128 0.7 0.5
BR6 134 0.9 0.6
BR7 129 1.1 0.7
BR8 138 1.3 1.1
BR9 128 1.6 1.2

BR10 129 2.0 1.5
BR1-XL 1000 8.6 1.4
BR2-XL 1000 10.2 1.6
BR3-XL 1000 12.5 2.0
BR4-XL 1000 14.9 2.4
BR5-XL 1000 16.8 3.0
BR6-XL 1000 19.4 3.3
BR7-XL 1000 22.9 3.9
BR8-XL 1000 26.2 5.7
BR9-XL 1000 30.1 6.8

BR10-XL 1000 35.3 8.4

Table 4.3: Time taken to pack the BR and BRXL datasets using the 3BF algorithm with the
interval-tree representation.

4.5 Conclusions

Algorithms are only as efficient as the data structures that support them. In this chapter we have

demonstrated a series of data structures for representing packings (and partial packings) cre-

ated in a constructive manner and provided a uniform interface in the form of an abstract data

type which allows these packings to be constructed effectively. The computational complexity

has been given for a standard D-dimensional packing algorithm (the 3BF framework/heuristic)

along with the complexity of several common data structures from the literature and one novel,

efficient, implementation based on a small set of standard computational geometry methods.

The performance of this new approach has been analysed theoretically and computationally

and has been shown to be very efficient generally, especially in lower dimensions. The ap-

proach given in this chapter can be used for implementing both skyline type packing strategies

(i.e. packing along one dimension in a linear fashion) and full packing strategies, where box

placement is unrestricted within the container — though as we have seen, this increases the

time complexity of the procedure. We have shown several fast methods for packing in higher

dimensions, both with approximating the number of possible gaps and two methods (array

and interval tree) for packing with all possible gaps. We have also demonstrated that existing
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state-of-the-art heuristic packing strategies can be significantly sped up by using the improved

problem representation data structures given in this chapter.
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5

Automatically Generating

Evaluation Functions for the 3BF

Heuristic Framework

On two occasions I have been
asked,—“Pray, Mr. Babbage, if
you put into the machine wrong
figures, will the right answers
come out?” [. . .] I am not able
rightly to apprehend the kind of
confusion of ideas that could
provoke such a question.

Passages from the Life of a
Philosopher

Charles Babbage

Summary

In this chapter we explore techniques for automatically generating evaluation functions
that can be used within the three-dimensional packing framework presented previously
— the 3BF framework. An evaluation of genetic programming compared to other local
search-based methods for generating evaluation functions is given (with statistical analysis)
and the shortcomings highlighted. We then introduce some implementations of generating
procedures that overcome these shortcomings. We show that automatically generating
evaluation functions is a promising research direction and give computational results over
some standard literature benchmarks, indicating that this method of generating evaluation
functions for packing can be competitive with the state-of-the-art constructive heuristics.
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5.1 Constructive Heuristics and the Strip Packing

Problem

The work in this chapter focuses on automatically generating single-pass constructive heuristics

and shows that automatically generating constructive heuristics can, in fact, produce practical

packing methods.

The 3BF framework that we use for three-dimensional packing is presented in chapter 3. The

framework supports a class of offline heuristic algorithms, i.e. at any stage in the packing

the properties of all boxes, packed or unpacked, are known. The problem being tackled in

this chapter is the strip packing problem (SPP), which according to the cutting and packing

typology of Wäscher [WHS07] is classified as the 3D regular open-dimension-problem (ODP)

with one open dimension.

The evaluation function, for generating a per box/gap pair placement score, used in Algorithm

1 is one that we generate using the methods explained in this chapter.

5.1.1 Representing Placement Scoring Functions

In the 3BF framework a scoring function is a function that takes a feasible box/gap pair and

assigns a numerical value to it — an estimation of the fitness of this pair. The box/gap pair at

each iteration of the algorithm with the perceived highest fitness is then chosen as the next step

in the packing. As such, a scoring function coupled with the 3BF framework can be thought of

as a three-dimensional packing heuristic.

Scoring functions which score box/gap pairs differently will generally generate different pack-

ings. If the ordering of all box/gap pairs in terms of fitness is the same between functions then,

of course, the packings will be identical. This is formalised below.

Given two expressions e1, e2 ∈ L where L is a language for representing arbitrary arithmetic

expressions, two assignments of values to the variables in the expressions, represented as vectors

a, a′ such that n = |a| = |a′|, a, a′ ∈ Rn and an evaluating function f : (e,Rn) 7→ R we say that

the expressions have an equivalent order mapping iff:

f(e1, a) ≥ f(e1, a
′)⇔ f(e2, a) ≥ f(e2, a

′) (5.1)

∀a, a′ ∈ Rn.

This can, of course, also be expressed as a Boolean pairwise preference relation: given two

expressions e1, e2 ∈ L as before, and the evaluating function f ′ : (e,Rn,Rn) 7→ {0, 1}, and

a, a′ ∈ Rn as before, we say that the expressions have an equivalent order mapping iff:

70



5.1 Constructive Heuristics and the Strip Packing
Problem

f ′(e1, a, a
′)⇔ f ′(e2, a, a

′) (5.2)

∀a, a′ ∈ Rn

where a value of 0 indicates that a′ is preferred to a, i.e. a has a strictly lower rank position

(and will therefore be chosen later in the case of the 3BF packing framework) than a′, and 1

implies that a is ranked at least as highly as a′.

Note that the equivalent order mapping applies in the general case, for all possible assignments

of values. Given, instead, a subset of all possible values (i.e. a single packing instance or

dataset) it is possible that two functions may produce the same packings, despite not having

an equivalent order mapping in the general sense.

In order to generate sensible evaluation/scoring functions for the 3BF framework, some specific

information about the problem should be exploited, and a suitable representation employed

that can structure the information and its interactions in a logical way. To this end, expression

trees, or parse trees, are a reasonable representation to model such an arithmetic expression.

This arithmetic expression defines the behaviour of the constructive heuristic as it is used to

determine which box/gap pair should be chosen at each stage by assigning it a score (and the

box/gap pair with the highest score is used in the packing). This method of automatically

generating functions has been popularised by the increased interest in genetic programming

(GP) [Koz92]. GP involves using a GA with a population of, in this case, parse trees representing

scoring functions, and ‘evolving’ them through crossover and mutation, much the same as with

a GA. The fitness of the parse tree is calculated by plugging it into an algorithm or framework

(in this case the 3BF framework) and evaluating it against a given data set, or collection of

data sets.

Parse trees obviously allow precedence of operations to be implicit in the structure of the tree.

Leaves/external nodes represent variables and constants (or terminals in GP parlance). The

internal nodes may represent unary operations (such as negation or log2), binary operations

(such as addition or subtraction), ternary (maximum value of three child nodes) or in general

n-ary and are termed ‘functions’. Examples of two general parse trees can be seen in Figure

5.1.

5.1.2 Experimental Set-up

We now take a state-of-the-art GP approach from the literature ([BHKW11]) and show that

it can be improved to produce reasonable results. We start by generating a population of

parse trees. The terminals and functions used in the parse trees are as shown in Table 5.1.

The top-level algorithm manipulating the population of parse trees is a GA, effectively turning

this parse tree generation method into a GP model. The parameters for the GA are given
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in Table 5.2 and are taken, along with the terminals and functions, from the original work in

[BHKW11]. The authors make no claims as to the optimality or robustness of these parameters,

though the authors of the original work performed extensive computational testing in order to

choose these parameters. Initial experimentation with other parameters of the GA for the strip

packing problem presented here also resulted in no significant improvements or negative changes

and therefore the parameters seem to be fairly robust on this occasion. The tree initialisation

method is ‘ramped half-and-half’, having half of the initial population of randomly generated

parse trees fully balanced and half allowed to be unbalanced. The total height of the parse

tree is limited to 17. Throughout this chapter we use results based on experimentation on the

first 10 instances of the BR5 dataset [BR95] which is sometimes referred to as the ‘thpack5’

dataset. The dataset is treated as a strip packing problem, ignoring the container length and

ensuring all boxes are packed — not to be confused with the container loading problem which

is similar in regards to the methods used for solving it but has slightly different constraints

and objectives, see, for example, [Pis02]. As such, results from the container loading problem

are not directly comparable to the ones given in this chapter. This dataset was chosen for the

testing phase as it has a balance between heterogeneous and homogeneous packing problems,

with 98–142 boxes per instance and 12 unique box types per instance. Each instance assumes a

maximum possible volume utilisation of 100%, i.e. assumes that the boxes can be positioned in

some way such that there are no gaps within the container, and therefore each run is scored out

of 1000 (10 instances, maximum of 100 for each). It is worth noting that the optimal solution

for these instances is as yet unknown, but that they were not generated as to be perfectly

packable (without gaps) and therefore a score of 100% is unlikely to be feasible. The volume

utilisation calculation is calculated by the volume lower bound divided by the used length of

the container. The volume lower bound is as given previously in chapter 3. Each experiment is

run 100 times and the best found result from each run used in the analysis.

+

∗

x y

z

/

−

a cos

b

√

abs

c

Figure 5.1: General arithmetic expressions as parse trees, (left) x · y + z, (right) a−cos(b)√
|c|

.

5.1.3 Initial results

Using the initial set-up of the experiment the results gave a mean (± standard deviation) of

775.36 ± 2.54. This result will be used throughout the chapter as a reference point. For the

purposes of comparison an identical number (i.e. 50000) of parse trees were generated at random
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5.1 Constructive Heuristics and the Strip Packing
Problem

Node Arity Description
+ Binary Addition of child nodes
− Binary Subtraction of right child node from left child node
∗ Binary Multiplication of child nodes
/ Binary Division of left child node by right child node

(or division by 0.001 if right child evaluates to zero)

v Nullary Volume of box,
∏3

k=1 L
k
i

w Nullary Weight (profit) of box
x Nullary x coordinate of box, x1

i

y Nullary y coordinate of box, x2
i

z Nullary z coordinate of box, x3
i

fXYWaste Nullary Sum of differences between the box’s and gap’s width
and length, (L′1j − L1

i ) + (L′3j − L3
i )

fXZWaste Nullary As above, but width and height, L(′)1 and L(′)2

fY ZWaste Nullary As above, but length and height, L(′)3 and L(′)2

Table 5.1: Function and Terminal nodes used in experimental set-up (for box i and gap j).

Population size 1000
Generations 50
P(Crossover) 0.85
P(Mutation) 0.1

P(Reproduction) 0.05
Selection method Tournament, size 7
Mutation method ‘Grow’ method [Koz92] to regenerate a random sub-tree

Table 5.2: GA parameters from [BHKW11].

73



5. AUTOMATICALLY GENERATING EVALUATION FUNCTIONS FOR THE
3BF HEURISTIC FRAMEWORK

for each of 100 runs and the best result from each run used. The random generation runs gave

an average best result of 777.18 ± 1.44 which, using a two-tailed Welch t-test, gives a p-value

of 4.02 × 10−9 indicating that the GA search method is significantly outperformed by simply

generating and evaluating the same number of random parse trees. This, of course, should not

be the case if a sensible search methodology is used.

5.2 Improving the Problem Representation

We now discuss several ways of improving the initial experimental set-up to gain increases in

solution qualities over time.

5.2.1 Packing and Partial Packing Data Structure

One of the biggest disadvantages of the current problem representation (that is, the plane-

representation described in section 4.3.4) with regards to its handling of packings and sub-

packings is that it disallows larger boxes to be placed next to smaller boxes. We refer to this

restriction as the plane restriction. Figure 5.2 shows two simple unique parse trees for the

equivalent two-dimensional problem. Figure 5.4 shows the packing procedure followed when

taking into account the plane restriction and Figure 5.3 shows the resulting packings, first with

the plane restriction and second/third when this restriction is lifted.

The examples given show that the initial packing representation may lead to identical solutions

from separate parse trees, as well as potentially creating inefficient solutions. In order to lift the

plane restriction, the packing representation was replaced with the interval-tree representation

given in chapter 4. Ultimately, the representation is much the same as the plane representation

but with no restriction against larger boxes being placed around smaller boxes (and a significant

decrease in the runtime cost, though this issue is not examined within the scope of this chapter

as it has already been covered previously). After running the experiments again (100 runs, best

result from each run used) the mean is increased from 775.36±2.54 to 815.33±5.58. The t-test

now gives a p-value < 2.2 × 10−16, showing that, with probability greater than 0.9999, lifting

the plane restriction increases the solution quality within the experimental parameters.

−

+

x fXYWaste

fXZWaste

+

vol y

Figure 5.2: Two distinct parse trees.
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12

19

4 x 7

7 x 5

12 x 3

4 x 7

7 x 5
12 x 3

4 x 7

7 x 5

12 x 3
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waste

Figure 5.3: Result of using (left) either tree, with the plane restriction, (centre) first tree with
no plane restriction, (right) second tree with no plane restriction.
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Figure 5.4: Packing steps for both parse trees in Figure 5.2. Packing three boxes in a 19x12
container, with the plane restriction.
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5.2.2 Terminals

The next change to the experiments involves replacing the originally proposed nodes in the

parse trees to more carefully considered nodes, allowing more problem-specific information to

be exploited in the generated heuristic functions. The full list of nodes used in this experimental

set-up can be seen in Table 5.3. The new nodes are explained in the table and the two new

‘function’ nodes which take into account the current solution state are fRF and fCS , meaning

Rotation Flexibility and Contact Score respectively. During initial testing other nodes were

considered, e.g. log2, sine(), the ration between box/container lengths etc. but were found not

to be beneficial to the results, and were not found in the final best solutions. The nodes shown

in Table 5.3 are sufficient to reproduce the heuristics in chapter 3 given a well structured parse

tree, or can at least approximate the behaviours with fairly simple parse trees.

Rotation flexibility is a measure of how well a box can be rotated. A higher score indicates that

the box can be rotated in to a higher number of unique orientations. Obviously this is a score

from between one and six. If a box, for example, has two sides the same length then only three

valid rotations are possible, i.e. a score of three. A cube has one valid rotation and therefore

a score of one. This score also takes into account rotation restrictions defined in the datasets,

e.g. in the BR datasets used here some boxes have between 2–4 orientations disallowed.

Contact score is a measurement of how well a placed box would fit in with its neighbouring

boxes. The sum of all the areas of the surface of the box that would be in contact with either

an already placed box or the container is used for this score. In practise this can mean that

similarly proportioned boxes tend to be grouped together as they have the highest amount of

surface area in common with each other. This can be seen as the primary component of the

MaximumContact placement heuristic in chapter 3.

The terminal changes again improved the results: the quality of the best solutions over 100

runs was 777.80 ± 2.36, up from the initial point of 775.36 ± 2.54. With a p-value from the

t-test of 3.1× 10−11 this indicates a difference, with probability > 0.9999.

5.3 Improving the Search Methodology

5.3.1 Hill Climbing

GA’s are traditionally a powerful optimisation technique when a problem can be represented

in a logical way in which ‘crossing’ two good (in terms of a specific evaluation function) parent

solutions leads to a good child solution. This is often the case when the individual symbols

from the genome string represent, e.g., separate dimensions in the problem space, and are

independent. On the other hand, crossing two individuals when the genome represents, e.g.

a permutation (where the structure/order of the symbols are crucial to the quality of the
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Node Arity Description
+ Binary Addition of child nodes
− Binary Subtraction of right child node from left child node
∗ Binary Multiplication of child nodes

double Unary Doubles the value of child node
tenT imes Unary Multiplies the value of the child node by ten
halve Unary Halves the value of the child node
invert Unary 1

c+1 where c is the value of the child node

1 Nullary The value 1

v Nullary Volume of box,
∏3

k=1 L
k
i

x Nullary x coordinate of box, x1
i

y Nullary y coordinate of box, x2
i

z Nullary z coordinate of box, x3
i

xyArea Nullary The area of the lower face of the box, width multiplied by length
xzArea Nullary The area of the back face of the box, width multiplied by height
yzArea Nullary The area of the side face of the box, length multiplied by height
xSize Nullary Width of box
ySize Nullary Length of box
zSize Nullary Height of box
yMax Nullary y coordinate plus length of box
fCS Nullary Contact score
fRF Nullary The rotation flexibility of the box

Table 5.3: Function and Terminal nodes used in experimental set-up (for box i).

solution), is unlikely to capture the successful properties of both parents and is more likely

to lose the strength of at least one of the parents in the process. This is similar to the parse

tree representation of a mathematical function, such as in GP, in that crossing two functions

will not necessarily combine the properties of either of the functions from either parent tree in

any sensible way. To this end it was thought to try manipulating the parse trees in a different

manner.

Instead of using a GA to work on populations of trees, a simple hill climbing approach was taken

in the next set of experiments. The hill climber was set to randomly sample 1000 possible moves

in the neighbourhood at each iteration and select the move with the highest evaluation score.

The number of iterations was set to 50 so as to match with the number of generations of the

GA approach. It is obvious, therefore, that the same number of fitness evaluations takes place

in each approach and the two approaches can be considered together in a fair comparison.

These parameters were chosen so that a per-generation comparison can be made with the GA

approach, and the convergence properties of each can be identified.

5.3.2 Neighbourhood Moves

As well as the changes stated in Section 5.3.1 the mutation operator was changed as per the

following: choosing the ‘grow’ operation as before with probability 0.25 or a random switch
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operation otherwise (i.e. with probability 0.75). The switch operation takes a random node

in the tree and replaces it with a different node of the same arity. This allows the search to

be more incremental, making smaller jumps around the search space (giving, through initial

testing, solutions with around 5-10% improvement on using the grow operator alone).

The quality of the best solutions over 100 runs was 777.47 ± 2.10, up from the initial point of

775.36± 2.54 with a p-value of 1.215× 10−9. Again, this indicates a difference with probability

> 0.9999.

5.4 Putting it all Together — Results

The final set of experiments utilised all of the improvements shown previously to test whether

they would give better results than any of the individual improvements. That is, the improved

operators were included along with the improved problem representation and the hill climbing

search methodology. The results are shown in Figure 5.5 and Table 5.4. It should be noted that

the authors do not claim that the improvements, combinations of improvements or parameteres

used are optimal — merely that there exists a large scope for improvement over the current

methodology. In order to ascertain such stronger assertions a full combinatorial experimen-

tal design would be required as well as extensive parameter-tuning, which rarely in practice

increases the algorithmic results in a significant way.

As can be seen from the box plot in Figure 5.5, using all of the improvements does indeed give

a better solution than any of the improvements individually. The mean is 869.60 ± 3.43 and

naturally this leads to a p-value, when compared to any individual change or the initial set-up,

of < 2.2× 10−16, again showing that with a very high probability it can be assumed that these

improvements combined do make a statistical difference.

The solution quality over time/per generation can be seen in Figures 5.6 and 5.7. The graphs

represent the solution quality of the fittest member of the population at each generation, aver-

aged over the 100 runs.

Min. Max. Mean Median Standard
Deviation

Base code 765.27 780.72 775.36 775.53 2.54
Random trees 768.65 779.58 777.18 777.44 1.44

Interval Tree representation 803.36 829.97 815.33 815.26 5.58
Improved Terminals 773.43 791.32 777.80 779.02 2.36

Hill Climbing 771.80 783.61 777.47 777.60 2.10
All Improvements 862.37 879.39 869.60 869.15 3.43

Table 5.4: Final solution quality of each method after 100 runs.
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Figure 5.5: Box plot showing the results of all experiments on the BR5 dataset.
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Figure 5.6: Mean solution quality over time/per generation of the base code, random, hill
climbing and improved terminals methods.
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Figure 5.7: Mean solution quality over time/per generation of the base code, interval tree
representation and ‘all improvements’ methods.

5.4.1 Comments on Generated Functions

All 100 final trees were visually inspected and analysed. Visualisations of the trees can be found

at http://www.cs.nott.ac.uk/~sda/research/alltrees.pdf and a sample can be found in

Figure 5.8.

Although the height of the generated trees was (for all intents and purposes) unbounded, the

best trees were all relatively short. The range of heights for the best trees generated was 3−12,

with a mean of 5.86± 1.67. Information about the number of trees that each node appeared in

(tree count) and the total number of times that each node appeared across all of the best trees

can be found in Table 5.5. It can be seen that the terminal nodes fCS and xzArea are the most

frequently occurring individual nodes in the trees — appearing in 99 and 97 of the final trees

respectively. In fact, the two nodes appear together in 96 of the 100 final trees, dominating any

other pairwise combination of terminals.

As is often the case with automatically generated heuristics, analysis of the functionality is

particularly difficult due to the level of abstraction between the generated tree/function and

the behaviour of the heuristic (and subsequent solution produced). Usually one of the reasons

for this is the size and complexity of the generated tree, but obviously in the case of generating

relatively small trees, such as this example, this should not be so much of an issue. Inferring

behaviour of the heuristic from the trees alone is non-trivial, however. For example, the two
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(- ((* (xzArea) (fCS))) ((invert (y))))

-

* invert

xzArea fCS y

(* ((+ ((double (xSize))) (fCS))) (xzArea))

*

+ xzArea

double fCS

xSize

(+ ((+ ((+ ((tenTimes (xzArea))) ((halve (z))))) ((double ((halve ((halve ((+ (xyArea) (x))))))))))) ((+ ((+ (ySize) ((tenTimes (xSize))))) (fCS))))

+

+ +

+ double

tenTimes halve

xzArea z

halve

halve

+

xyArea x

+ fCS

ySize tenTimes

xSize

Figure 5.8: Some of the automatically generated best trees.
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trees in Figure 5.9 are functionally different (i.e. the result returned by one is always a constant

factor of the other) though the packings produced by them will always be the same. On the

other hand, the trees in Figure 5.10 are, by any standard tree-distance measure, very similar

to each other, whereas the packings they produce may be wildly different.

(+ ((* (xzArea) (fCS))) (1))

+

* 1

xzArea fCS

(double ((* (fCS) (xzArea))))

double

*

fCS xzArea

Figure 5.9: Two trees which are visually dissimilar but equivalent within the proposed heuristic
framework. Automatically generated by search methods.

5.4.2 Comparison with the State-of-the-Art

We now take the 100 generated functions and apply them to a wider range of datasets from the

literature and compare them to the current state-of-the-art in constructive heuristics.

The 3BF heuristic presented in chapter 3 is used in our testing. The heuristic is currently

the best performing single-pass constructive strip-packing heuristic for the three-dimensional

strip-packing problem.

The results in Table 5.6 show the solution qualities of the generated heuristics on the first

10 instances of each of the Bischoff-Ratcliff (BR) datasets presented in [BR95]. There are

approximately 90-150 boxes to pack in each instance of the BR datasets. The number of distinct

box types in each of BR1-BR10 is 3, 5, 8, 10, 12, 15, 20, 30, 40 and 50 respectively. As such the

(* (fCS) ((double (xzArea))))

*

fCS double

xzArea

(* (fCS) ((halve (xzArea))))

*

fCS halve

xzArea

Figure 5.10: Two trees which are visually similar but very dissimilar within the proposed heuris-
tic framework. Manually created.
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Node Arity Tree count Frequency
+ Binary 90 2.22
− Binary 47 0.76
∗ Binary 80 1.06

double Unary 54 0.70
tenT imes Unary 55 0.73
halve Unary 45 0.65
invert Unary 29 0.38

1 Nullary 21 0.26
v Nullary 12 0.12
x Nullary 18 0.21
y Nullary 15 0.15
z Nullary 20 0.21

xyArea Nullary 12 0.13
xzArea Nullary 97 1.06
yzArea Nullary 17 0.17
xSize Nullary 50 0.54
ySize Nullary 22 0.23
zSize Nullary 34 0.41
yMax Nullary 25 0.28
fCS Nullary 99 1.11
fRF Nullary 14 0.15

Table 5.5: Function and terminal nodes’ frequency in 100 best evolved trees.

homogeneity of the datasets decreases (or the heterogeneity increases). The implementation

of the packing algorithm only checks each box type (not each box individually) to see if it

will fit in the lowest gaps at each iteration and for its evaluation score, naturally leading to

more comparisons as the homogeneity of the datasets decrease. Similarly, the results with

the postfixed ‘-XL’ are from the first 10 instances of each of the extended datasets (BRXL),

described in [BM07], where each of the original BR instances are scaled to contain 1000 boxes

to pack. The number of box types increases identically to the BR datasets.

It can be seen from Table 5.6 that the results are very competitive. The ratio between the best

performing automatically generated heuristic and the 3BF heuristic is consistently between

0.97 and 1.01 for each dataset and even the ratio between the median automatically generated

heuristic and 3BF remains between 0.94 and 0.98. This shows that the heuristics generated in

this chapter are at least competitive with the expert created, state-of-the-art — and in some

cases can even outperform it by a small margin. Of course, if the generating procedures were

to be run on the individual instances or datasets then an improvement could be observed.
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Min Max Mean Median Std. 3BF Median/ Max/
Dev. 3BF 3BF

BR1 79.4 85.7 83.8 84.3 1.9 88.3 0.95 0.97
BR2 76.4 85.6 81.2 83.8 4.0 88.5 0.95 0.97
BR3 73.8 85.2 79.5 82.8 4.8 87.0 0.95 0.98
BR4 74.1 86.7 79.7 82.6 4.8 87.1 0.95 1.00
BR5 73.3 86.8 79.3 82.9 5.1 86.0 0.96 1.01
BR6 73.5 83.7 78.8 81.8 4.5 86.3 0.95 0.97
BR7 72.0 84.7 78.6 82.9 5.7 86.6 0.96 0.98
BR8 72.4 84.3 78.6 82.5 5.3 86.2 0.96 0.98
BR9 71.7 85.0 78.4 82.3 5.7 85.1 0.97 1.00

BR10 73.1 85.5 79.1 82.4 5.2 85.4 0.96 1.00
BR1-XL 83.9 90.5 87.2 87.9 2.5 93.1 0.94 0.97
BR2-XL 83.3 90.8 86.7 88.7 2.9 92.0 0.96 0.99
BR3-XL 81.8 91.5 85.9 87.9 3.5 91.4 0.96 1.00
BR4-XL 82.1 92.0 86.1 88.0 3.5 91.2 0.96 1.01
BR5-XL 81.9 91.7 86.5 88.7 4.0 91.9 0.97 1.00
BR6-XL 81.6 92.0 86.4 89.2 4.1 91.9 0.97 1.00
BR7-XL 81.9 92.4 86.6 89.4 4.1 91.7 0.97 1.01
BR8-XL 81.7 92.7 86.7 89.5 4.3 91.4 0.98 1.01
BR9-XL 81.4 92.4 86.9 89.9 4.7 91.7 0.98 1.01

BR10-XL 80.8 92.7 86.6 90.1 5.1 91.6 0.98 1.01

Table 5.6: Results of the generated functions against the 3BF heuristic across the BR1 – BR10
and BR1-XL – BR10-XL datasets.
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5.5 Conclusions

This chapter has shown that, though the field of automatically generating heuristics for packing

is a relatively young one, it can be fairly successful given the correct ‘building blocks’ and search

methodology, supported by a suitable problem representation. The heuristic scoring functions

presented here have been shown to fit in with the 3BF framework well, providing the power and

flexibility of using different scoring functions and specialised problem representations within the

same framework, which can be altered and tailored to fit specific problems. Future work in this

area on implementing better search methods (e.g. simulated annealing, tabu search etc.), better

neighbourhood moves and more intelligent parse tree nodes for specific packing problems could

produce even better solutions. The techniques for improving standard approaches given here

can most likely be applied to similar areas of automatically constructing heuristics for optimi-

sation in wider fields. Ultimately, given enough domain-specific knowledge and enough time to

automatically generate procedures it is foreseeable that automatically generating heuristics for

cutting and packing can be human competitive.
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6

Integer Programming Models for

Solving Three-Dimensional

Packing Problems

Essentially, all models are wrong,
but some are useful.

Empirical Model-Building and
Response Surfaces

George E. P. Box

Summary

There are a number of heuristic methods and solvers for multi-dimensional packing,
as we have seen in previous chapters, but the progress in exact solvers, in general, and
integer programming solvers, in particular, has been limited. Padberg [Math. Methods
Oper. Res., 52(1):1–21, 2000] estimated an integer linear programming formulation of
Fasano (the current state-of-the-art) could cope with “about twenty boxes.” Our compu-
tational experiments confirm this hypothesis, and show that the seemingly trivial decision
of whether twelve unit-cubes can be packed into a box with a near-unit-base and height
eleven, cannot be made within an hour by modern integer programming solvers using this
formulation.

We present a new, “space-indexed,” linear programming relaxation, which often pro-
vides lower bounds within 1 percent of optimality, and allows for integer optima to be
computed on instances with many thousands of boxes within an hour. Results of extensive
computational tests of both formulations are reported.

6.1 Introduction

Although there are a number of heuristic solvers of varying quality, the progress in exact solvers

for the Container Loading Problem has been limited, so far. Branch-and-price-and-cut solvers
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exist for realistic models of transportation considering both weight and volume of vehicle load

[GILM06, Lüb10]. However, one needs to solve the van loading problem (a variant of the CLP,

explained in section 6.3) to optimality as the pricing sub-problem for these models.

Fasano [Fas99] proposed a mixed integer linear programming (MIP) formulation for the CLP,

but did not provide comprehensive computational results. The model was very similar to that

of Chen [CLS95] who used it for a multiple container loading problem, whereas Fasano applied

it to a single container loading problem. Chen was only able to pack a maximum of 6 boxes

using the formulation. Padberg [Pad00] suggested the MIP formulation of Fasano could cope

with “about twenty boxes,” but without providing any computational results. We confirm these

limits using ILOG CPLEX, Gurobi, and SCIP in Section 6.5. This observation motivates the

rest of the chapter, where we present a new space-indexed formulation providing strong linear

programming relaxations. Integer optima for instances of over 100000 boxes can be computed

within an hour. Throughout this chapter, we use the notation as described in Table 6.1.

Symbol Meaning

N The number of boxes
h A fixed axis, in the set {x, y, z}
a An axis of a box, in the set {1, 2, 3}
xhi The coordinate of the centre of box i along the h-axis
La
i The length of axis a of box i
lai The length of axis a of box i halved
Lh

0 The length of axis h of the container
Wi The volume of box i, in the CLP

Table 6.1: Notation used.

6.2 Related Work

Fasano [Fas99] introduced an integer linear programming formulation using the relative place-

ment indicator:

λhij =

 1 if box i precedes box j along axis h

0 otherwise
(6.1)

δhai =

 1 if box i is rotated so that axis a is parallel to fixed axis h

0 otherwise
(6.2)
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The full model, as given by Fasano/Padberg is as follows:

Maximise

N∑
i=1

∑
h

Wiδ
h
1i (6.3)

s.t.∑
h

δh2i =
∑
h

δh1i =
∑
a

δhai (6.4)

L1
j(i)λ

h
j(i)i +

∑
a

lai δ
h
ai ≤ xhi ≤

∑
a

(Lh
0 − lai )δhai − L1

j(i)λ
h
ij(i) (6.5)

Lh
0λ

h
ji +

∑
a

lai δ
h
ai −

∑
a

(Lh
0 − laj )δhaj ≤ xhi − xhj

≤
∑
a

(Lh
0 − lai )δhai −

∑
a

laj δ
h
aj − Lh

0λ
h
ij (6.6)∑

h

(λhij + λhji) ≤
∑
h

δh1i,
∑
h

(λhij + λhji) ≤
∑
h

δh1j (6.7)∑
h

δh1i +
∑
h

δh1j ≤ 1 +
∑
h

(λhij + λhji) (6.8)

n∑
i=1

∑
h

(∏
a

La
i

)
δh1i ≤

∏
h

Lh
0 (6.9)

δhai, λ
h
ij ∈ {0, 1} (6.10)

L1
i ≤ L2

i ≤ L3
i (6.11)

lai =
1

2
Lai (6.12)

j(i) such that L1
j(i) = max{L1

j} for 1 ≤ i 6= j ≤ N. (6.13)

Constraint 6.4 enforces the orthogonality constraint — if a box is placed then each axis is aligned

to exactly one axis of the container and vice versa. Constraint 6.5 is the domain constraint, i.e.

all boxes must lie fully within the container, or not be placed at all. Constraints 6.6, 6.7 and

6.8 represent the non-intersection constraints, that is that no packed boxes may overlap each

other in all dimensions. Constraint 6.9 is the knapsack constraint, i.e. there cannot be more

volume filled than is available in the container.

Padberg [Pad00] has unified some of the variables and studied features of the model. In partic-

ular, he identified the subsets of constraints with the integer property. Despite the interesting

theoretical properties, modern integer programming solvers fail to solve instances larger than

10–20 boxes using this formulation, as evidenced in Table 6.2. This is far from satisfactory.
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Time (s)

Gurobi 4.0 CPLEX 12.2.0 SCIP 2.0.1 + CLP
Pigeon-01 < 1 < 1 < 1
Pigeon-02 < 1 < 1 < 1
Pigeon-03 < 1 < 1 < 1
Pigeon-04 < 1 < 1 < 1
Pigeon-05 < 1 < 1 3.3
Pigeon-06 < 1 < 1 37.9
Pigeon-07 1.5 3.6 779.3
Pigeon-08 7.4 25.6 –
Pigeon-09 88.6 398.4 –
Pigeon-10 1381.4 – –
Pigeon-11 – – –
Pigeon-12 – – –

Table 6.2: The performance of various solvers on 3D Pigeonhole Problem instances encoded in
the Fasano/Padberg formulation. “–” denotes that optimality of the incumbent solution has not
been proven within an hour.

6.2.1 Extensions to the Formulation of Fasano/Padberg

Arguably, the formulation could be strengthened by the addition of further valid constraints.

We have identified three classes of such constraints. Compound constraints stop combinations

of certain boxes being placed next to each other if they would violate the domain constraint.

For example:

δhki + δhmj + λhij ≤ 2 if lki + lmj > Lh
0 ∀k,m ∈ {1, 2, 3}, h ∈ {x, y, z}

and 1 ≤ i 6= j ≤ n (6.14)

The example for 2 boxes can be easily extended to 3 or more boxes “in a row.”

One can also attempt to break symmetries in the problem. If boxes i and j (where i < j) are

identical (i.e. La
i = La

j ∀a):

λhij = 0 and
∑
h

δh1i ≥
∑
h

δh1j (6.15)

Furthermore, if a box has two or more sides of the same length then we can limit the rotations.

We define function f , which provides a canonical mapping of {x, y, z} to {1, 2, 3}:∑
h

(f(h) · δhki) ≥
∑
h

(f(h) · δhmi) if lki = lmi ∀1 ≤ i ≤ N

and 1 ≤ k < m ≤ 3 (6.16)
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6.2 Related Work

6.2.2 Box Grouping

If we ‘merge together’ boxes that share an identical face then we can create a larger ‘compound

box,’ which helps to generate higher volume utilisations earlier in the MIP search procedure in

order to aid the bounding.

If boxes i and j share two identical side lengths, e.g. L1i = L1j and L2i = L2j then a virtual

compound box, b, can be created with dimensions L1i, L2i and L3i + L3j . This applies to any

combination of the dimensions of i and j. The obvious constraints follow:∑
H

δH1i +
∑
H

δH1b ≤ 1 (6.17)∑
H

δH1j +
∑
H

δH1b ≤ 1 (6.18)

Of course, compound boxes can be made up of more than two boxes, and in fact can be

recursively built out of boxes and compound boxes so long as the constraints reflect this.

Naturally, the problem becomes much larger and the time taken to generate the virtual boxes

gets significantly longer for each level of recursion taken to group boxes together.

6.2.3 Over-zealous Symmetry-Breaking for Heuristic Bounds

It was found that if the problem was over-constrained such that some positioning precedences

were enforced then good lower bounds could be found on the (maximisation) problem. The ‘true

optimum’ was often cut off, but the bounds were found to help the MIP tree search nonetheless.

Each combination of pairs of constraints (6.19 – 6.21) and then also all three constraints were

applied, in turn, early in the search procedure, solved for up to 5 minutes and then relaxed

again, to help with the bounding.

λ1
ij = 0 ∀1 ≤ i < j ≤ n (6.19)

λ2
ij = 0 ∀1 ≤ i < j ≤ n (6.20)

λ3
ij = 0 ∀1 ≤ i < j ≤ n (6.21)

Nevertheless, whilst the addition of these constraints and added heuristic bounds improves

the performance somewhat (in testing the time taken to solve solutions which were solved to

optimality within one hour was reduced by, on average, 30% — problems that could not be

solved optimally within the hour with the original model could also not be solved optimally

with the improved models), the formulation remains impractical for many instances.
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6.3 The Van Loading Problem

We now describe an extension to the Container Loading Problem which we call the Van Loading

Problem (VLP). As with the CLP we are to maximise the profit of packing a single three-

dimensional container of a fixed size, whereas in a slight deviation to the problem description

given in section 2.4.1 the profit (i.e. knapsack weight) of each box to be packed is independent

of the volume of the box. We also introduce an extra property of the boxes, M , which represents

the mass (‘mass’ is used to disambiguate with the weight property in the ‘classical definition’

of the knapsack problem) which is also independent of the volume of the boxes. The container

has a payload capacity, Q, and an accompanying constraint which represents the maximum

summed mass of the boxes allowed in the container. This is shown in constraint 6.22.

N∑
i=1

∑
h

Miδ
h
1i ≤ Q (6.22)

6.4 A Space-Indexed Formulation

We hence propose a new formulation, where the large box is discretised into units of space,

whose dimensions are given by the largest common denominator of the respective dimensions of

the small boxes. The small boxes are grouped by their dimensions into types t ∈ {1, 2, . . . , n}.
That is, boxes with identical dimensions and identical allowed rotations are assigned a single

type. At is the number of boxes of type t available. The formulation uses the space-indexed

binary variable:

µt
x,y,z =


1 if a box of type t is placed such that its lower-back-left

vertex is at coordinates x, y, z

0 otherwise

(6.23)
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6.4 A Space-Indexed Formulation

Without allowing for rotations, the formulations reads:

Maximise
∑

x,y,z,t

µt
xyzWt (6.24)

s.t. ∑
t

µt
xyz ≤ 1 ∀x, y, z (6.25)

µt
xyz = 0 ∀x, y, z, t where x+ L1

t > L1
0 (6.26)

or y + L2
t > L2

0 or z + L3
t > L3

0∑
x,y,z

µt
xyz ≤ At ∀t (6.27)

∑
x′,y′,z′

f(x, y, z, x′, y′, z′, t) ≤ 1 ∀x, y, z, t (6.28)

where

f(x, y, z, x′, y′, z′, t) =


µt
x′y′z′

0

if x ≤ x′ ≤ x+ L1
t and

y ≤ y′ ≤ y + L2
t and

z ≤ z′ ≤ z + L3
t

otherwise

(6.29)

The constraints are very natural: No region in space may be occupied by more than one box type

(6.25), boxes must be fully contained within the container (6.27), there may not be more than At

boxes of type t (6.27), and boxes cannot overlap (6.28). There is one non-overlapping constraint

(6.28) for each discretised unit of space and type of box. In order to support rotations, new

box types need to be generated for each allowed rotation and linked via set packing constraints

similar to constraint (6.27). In order to extend the formulation to the van loading problem, it

suffices to add the payload capacity constraint:

∑
x,y,z,t

µt
xyzMt ≤ Q (6.30)

6.4.1 Adaptive Discretisation

In order to reduce the number of regions of space, and thus the number of variables in the

formulation, a sensible space-discretisation method should be employed. The greatest common

divisor (GCD) reduction can be applied on a per-axis basis, finding the greatest common divisor

between the length of the container for an axis and all the valid lengths of boxes that can be

aligned along that axis and scaling by the inverse of the GCD. This is trivial to do and is useful

when all lengths are multiples of each other, which may be common in certain problems. In

other problems this may not reduce the number of variables at all. In this case we can apply
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a non-linear space-discretisation approach. To do this we use the same values as before on a

per-axis basis, i.e. the lengths of any box sides that can be aligned along the axis. We then

use dynamic programming to generate all valid locations for a box to be placed. For example,

given an axis of length 10 and box lengths of 3, 4 and 6, we can place boxes at positions 0, 3, 4,

6, and 7 (8, 9 and 10 are of course also possible, but no length is small enough to still lie within

the container if placed at these points). This has reduced the number of regions along that

axis from 10 to 5. An improvement of this scale may not be particularly common in practice,

though it is obvious that the non-linear space-discretisation approach will always reduce the

number of regions by at least as much as the GCD scaling, and often helps reduce the space by

at least a small amount, which can often have a substantial impact on solvers’ performance.

6.5 Computational Experience

We have tested the formulations above on three sets of instances:

• 3D Pigeonhole Problem instances, Pigeon-n, where n+ 1 unit cubes are to be packed into

a container of dimensions (1 + ε)× (1 + ε)× n.

• SA and SAX datasets, which are used to test the dependence of solvers’ performance on

parameters of the instances, notably the number of boxes, heterogeneity of the boxes, and

physical dimensions of the container. There is 1 pseudo-randomly generated instance for

every combination of container sizes ranging from 5–100 in steps of 5 units cubed and the

number of boxes to pack ranging from 5–100 in steps of 5. The SA datasets are perfectly

packable, i.e. are guaranteed to be possible to load the container with 100% utilisation

with all boxes packed. The SAX are similar but have no such guarantees; the summed

volume of the boxes is greater than that of the container.

• Van-loading instances, generated so as to be similar to those used in pricing sub-problems

of branch-and-cut-and-price approaches to vehicle routing with both load weight and

volume considerations [GILM06, Lüb10]. The Van-loading and Van-loading-X instances

use containers of 10x10x30 and 10x10x50 units, respectively, representing the approximate

ratios of a small commercial van and a larger freight truck. 2, 4 or 6 out of 6 pseudo-

randomly chosen orientations are allowed. The load weights and knapsack values are

generated pseudo-randomly and independently of the volume of the small boxes. 10

instances were generated for each class of problem.

All the tests were performed on a 64-bit computer running Linux, which was equipped with

2 quad-core processors (Intel Xeon E5472) and 16 GB memory. The solvers tested were IBM

ILOG CPLEX 12.2.0, Gurobi Solver 4.0, and SCIP 2.0.1 [Ach09] with CLP as the linear pro-

gramming solver. Instances are available1 on-line.

1 http://www.cs.nott.ac.uk/˜sda/pigeon
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6.6 Conclusions

For the 3D Pigeonhole Problem, results obtained within one hour using the three solvers and

the Fasano/Padberg formulation are shown in Table 6.2, while Table 6.3 compares the results

of Gurobi Solver on both formulations. None of the solvers managed to prove optimality

of the incumbent solution for twelve unit-cubes within an hour using the Fasano/Padberg

formulation, although the instance of linear programming (after pre-solve) had only 616 rows

and 253 columns and 4268 non-zeros. In contrast, the space-indexed formulation allowed Gurobi

Solver to solve Pigeon-10000000 within an hour, where the instance of linear programming

had 10000002 rows, 10000000 columns, and 30000000 non-zeros. Some of the 3D Pigeonhole

instances have been accepted to appear in the forthcoming MIPLIP 2010, a library for testing

the capabilities of current mathematical solvers.

For the SA and SAX datasets, Figures 6.1–6.2 summarise solutions obtained within an hour

using the Fasano/Padberg formulation, the space-indexed formulation, and a metaheuristic

approach described by Allen et al. [ABK11]. In the case of the SAX dataset, the volume

utilisation is given with respect to the tightest upper bound found by any of the solvers. Finally,

for the Van-loading instances, the results of Gurobi Solver with the space-indexed model after

one hour can be seen in Table 6.4. As there were 10 instances tested for each class of problem,

the mean number of boxes, number of unique box types and mean gap between solution value

and bound are also given.

Overall, the space-indexed relaxation provides a particularly strong upper bound. The mean

integrality gap, i.e. (root linear programming relaxation value - optimum value) / optimum

value, has been 10.49% and 0.37% for the Fasano/Padberg and the space-indexed formulation,

respectively, on the SA and SAX instances solved to optimality within the time limit of one

hour. The mean gap, or the ratio of the difference between the linear programming relaxation

value and the value of the best solution found to the bound, after an hour on Van-loading

instances was 1.5%. This is enouraging, albeit perhaps not particularly surprising, as similar

discretised relaxations proved to be very strong in scheduling problems corresponding to one-

dimensional packing [SW92, vdA94, PS07] and can be shown to be asymptotically optimal for

various geometric problems both in two dimensions [Pap81] and higher [Zem85].

6.6 Conclusions

We have presented a space-indexed linear programming formulation of the container loading

problem with a pseudo-polynomial numbers of variables. The space-indexed formulation pro-

vides very strong bounds, and hence performs particularly well on instances, where it can be

solved. Future work could focus on the development of solvers specific to the relaxation. One

could either implement a matrix-free interior point method exploiting the structure of the re-

laxation, or employ a column generation schema. The Dantzig-Wolfe decomposition could,

perhaps, divide the problem into sub-problems pertaining to each type of box (6.28) and a
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Figure 6.1: The best solutions obtained within an hour per solver per instance from the SA
dataset. Each square represents 1 pseudo-randomly generated instance. The best solution is
defined as the highest quality solution found, with ties being broken by solve time to best solution.
The number is the volume utilisation (in percent) with the tight upper bound of 100.
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Figure 6.2: The best solutions obtained within an hour per solver per instance from the SAX
dataset. Each square represents 1 pseudo-randomly generated instance. The best solution is
defined as the highest quality solution found, with ties being broken by solve time to best solution.
The number displayed is 100(1− s/b) for solution with value s and upper bound b.

97



6. INTEGER PROGRAMMING MODELS FOR SOLVING
THREE-DIMENSIONAL PACKING PROBLEMS

Time (s)

Fasano/Padberg Space-indexed
Pigeon-01 < 1 < 1
Pigeon-02 < 1 < 1
Pigeon-03 < 1 < 1
Pigeon-04 < 1 < 1
Pigeon-05 < 1 < 1
Pigeon-06 < 1 < 1
Pigeon-07 1.5 < 1
Pigeon-08 7.4 < 1
Pigeon-09 88.6 < 1
Pigeon-10 1381.4 < 1
Pigeon-100 – < 1
Pigeon-1000 – 1.0
Pigeon-10000 – 1.8
Pigeon-100000 – 4.2
Pigeon-1000000 – 45.1
Pigeon-10000000 – 664.0
Pigeon-100000000 – –

Table 6.3: The performance of Gurobi 4.0 on 3D Pigeonhole Problem instances encoded in the
Fasano/Padberg and the space-indexed formulations. “–” denotes no integer solution has been
found within the time limit of one hour.

master problem enforcing the set-packing constraint (6.25). Another interesting direction for

future research is automated reformulations. Just as modern integer programming solvers often

fail on small instances of the Fasano/Padberg formulation, they fail on certain formulations

of scheduling problems. Arguably, one could try to discretise such relaxations automatically,

starting with the identification of what variables play the role of relative position in time or

space. This could improve the performance of general-purpose integer linear programming

solvers considerably.
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Dataset Box Types Boxes Gap
(Mean) (Mean)

Van-loading-01 3 78 0.10%
Van-loading-02 5 92 0.31%
Van-loading-03 8 81 0.42%
Van-loading-04 10 73 0.32%
Van-loading-05 12 73 0.09%
Van-loading-06 15 70 0.42%
Van-loading-07 20 68 0.50%
Van-loading-08 30 71 0.99%
Van-loading-09 40 69 1.26%
Van-loading-10 50 73 1.10%

Van-loading-X-01 3 133 0.16%
Van-loading-X-02 5 155 0.16%
Van-loading-X-03 8 132 0.56%
Van-loading-X-04 10 119 0.87%
Van-loading-X-05 12 123 0.29%
Van-loading-X-06 15 115 0.36%
Van-loading-X-07 20 116 0.30%
Van-loading-X-08 30 122 0.29%
Van-loading-X-09 40 119 0.18%
Van-loading-X-10 50 121 0.28%

Table 6.4: The performance of the space-indexed model on the Van-loading and Van-loading-X
instances after one hour. Each row represents 10 pseudo-randomly generated instances.
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7

Conclusions

It is easier to measure something
than to understand what you
have measured.

Anon.

7.1 Discussion

Although two-dimensional cutting and packing has been well researched throughout the past

few decades, the improvements in packing methods for three dimensions and higher have been

comparatively sparse. The need for improved volume utilisation in delivery vehicles will continue

to become more important as large companies are driven to lower costs and reduce pollution

through transportation. Space allocation in warehousing will become even more of an issue as

online mail-order companies such as Amazon continue to grow in popularity.

There have been several methods applied to packing models in three dimensions proposed

previously, with varying success and under many different assumptions.

This thesis has shown that there is room for improvement in the current methods reported in

the literature, and that gains are still to be had with further research.

We have seen that there exist methods of generating fast and reasonably high quality solutions to

the problems by way of the 3BF framework and appropriate heuristics built into this. If real-time

packing configurations are not required we have seen that using metaheuristic enhancements

to these procedures can drive even further improvements in solution qualities. These methods

provide an end-user such as a logistics company with the flexibility to choose the trade-off

between fast/real-time packing and repacking of a delivery, or given a slightly longer, but

reasonable, time (a few minutes for example) a higher quality solution may be obtained.
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The design and implementation of representations for three-dimensional packing has, typically,

been fairly unspecified in terms of scalability, and the theoretical limitations of the different

representations has mostly been omitted from the literature. We have attempted to contribute

something to this with the analysis of the generic 3BF framework, from which most construc-

tive algorithms can be found to derive. This gives practitioners a toolbox of different data

structures and problem representations with distinct properties, and properly characterised

theoretical analysis when deciding on how to approach a novel three- or higher-dimensional

packing problem.

When one can characterise the properties of a problem that is representative of the majority

of new problems that will be solved over time, then we know that using a specialised packing

heuristic that has been crafted to meet the requirements of the particular problem can be of

great utility. This process of “hand crafting” packing heuristics can, as we have seen previously,

be automatically reproduced or tuned somewhat by the means of searching through the space

of heuristics rather than solutions. The heuristics generated from these methods can, of course,

be stored and applied to future problems of a similar nature. Given a long enough “evolution

period” and the necessary inputs and training data, the heuristics that are generated can be

both fast and efficient.

If an optimal, or near-optimal, solution is required then we have seen that there are methods

of generating solutions with mathematical guarantees on solution quality exist. These circum-

stances may arise more commonly in industry where orders for large deliveries, such as those

between warehouses, are given in advance or “batched together” so that the current mathemat-

ical programming solvers have long enough to generate incredibly high quality solutions. With

the appropriate advances in mathematical solver technologies, the increase in computational

power and improved models these methods promise to deliver plenty of potential in the future.

Given the information above and the detailed experimental results presented in the previous

chapters, practitioners should glean some extra insight into which techniques are appropriate

for a given problem, and how well these solutions will perform under different conditions.

A solid framework for (meta-)heuristic solvers has been given, as well as two mathematical

programming models which can be implemented in most modern mathematical solvers with

relative ease.

7.2 Future work

As with any research project with finite time available to it, there are areas that have not

managed to fall into the scope of this thesis but are nonetheless interesting and quite possibly

worthy of extended future efforts. These are broken down on a per-chapter basis.

Chapter 3. Given the 3BF framework, novel heuristics and local search neighbourhoods could

be derived and applied to three-dimensional cutting and packing problems. If properties of a
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problem are known in advance, e.g. the heterogeneity of the boxes to be packed, the ratios

of side lengths of the boxes and/or container, stability or load-bearing constraints etc., then

custom heuristics could be created and fitted into the framework to solve these problems. A

more conclusive study of neighbourhood moves for the metaheuristic stage should be executed

in order to ascertain the effectiveness of the current implementation.

Chapter 4. The data structures given for the implementation of the Skyline ADT are by

no means definitive, and other data structures from the computational geometry literature

could most likely be incorporated into the ADT. An in-depth assessment of other approaches

could be a distinct contribution — it is quite possible that there may be exact approaches

(i.e. those which do not cut off feasible areas of the solution space) which extend into higher

dimensions better than that of the current interval-tree representation. It is conjectured that a

better (possibly plane-sweep-style) algorithm for the special case of D-dimensional rectilinear

polyhedra, or evenD-dimensional simple gap splitting/merging could be derived for the interval-

tree representation which is currently limited by the procedures mentioned in the chapter. It

is envisioned that the given data structures could also be applied in other related fields such as

project scheduling with similar performance benefits, but of course this would need confirming

with the appropriate empirical testing.

Chapter 5. The research area of automatically generating heuristics for three-dimensional

packing is still a rather new one. That said, we have shown that small, incremental changes

to the current methodology can produce significantly larger performance benefits. It is not

surprising that improved terminals create improved heuristics, after all: “garbage in, garbage

out.” Other terminals, possibly with problem specific information, could be implemented in

order to further improve the heuristics generated. A more intelligent search methodology could

be employed, such as using an enhanced search technique (such as tabu search) and by employing

novel neighbourhood moves. This not only applies to generating packing heuristics, but also to

genetic programming models on a wider scale.

Chapter 6. The models presented both in the literature and in this thesis are fairly natural,

with few constraints. Further work into finding effective constraints for both styles of models

presented could lead to significant gains in the tractability of the problems. Similarly, where

the models become infeasibly large to solve other techniques such as column generation schemes

could be utilised. This could start to close the gap between the problem sizes solvable using exact

methods, and problems that can only be sensibly tackled by metaheuristic methods. Another

natural extension to the models would be that of load-bearing or gravitational constraints,

which should model fairly naturally but will, most likely, increase the complexity of the search

for optimality.
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7.3 Final Remarks

Research into three-dimensional packing problems is still in its infancy when compared to

its lower-dimensioned counterparts, with many gains still to be had from both an academic

perspective and in terms of commercial exploitation. This thesis will, hopefully, have given

some insight into the state-of-the-art methods for solving these problems and provided a strong

enough motivation for doing so. We have seen how different approaches can be employed to

great effect on problems of varying sizes, and have pushed the boundaries of the state-of-the-art

in several of these methodological areas.
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[EG75] P. Erdős and R. L. Graham. On packing squares

with equal squares. J. Combinatorial Theory Ser. A,

19:119–123, 1975.

[Ele02] M. Eley. Solving container loading problems by

block arrangement. European Journal of Operational Re-

search, 141(2):393 – 409, 2002.

[EP09] J. Egeblad and D. Pisinger. Heuristic approaches

for the two- and three-dimensional knapsack pack-

ing problem. Comput. Oper. Res., 36(4):1026–1049,

2009.

[Fas99] G. Fasano. Cargo analytical integration in space

engineering: A three-dimensional packing model.

In T. A. Ciriani, S. Gliozzi, E. L. Johnson, and

R. Tadei, editors, Operational Research in Industry,

pages 232–246. Purdue University Press, 1999.

[Fas04] G. Fasano. A mip approach for some practical pack-

ing problems: balancing constraints and tetris-like

items. 4OR, 2(2):161–174, 2004.

[FDHI10] G. Fuellerer, K. Doerner, R. Hartl, and M. Iori.

Metaheuristics for vehicle routing problems with

three-dimensional loading constraints. European

Journal of Operational Research, 201(3):751–759, 2010.

[Fog02] D. Fogel. An introduction to simulated evolution-

ary optimization. Neural Networks, IEEE Transactions

on, 5(1):3–14, 2002.

[FS97] S. P. Fekete and J. Schepers. A new exact algo-

rithm for general orthogonal d-dimensional knap-

sack problems. Technical report, Mathematisches

Institut, Universit”at zu K”oln, 1997.

[Fuk08] A. Fukunaga. Automated discovery of local search

heuristics for satisfiability testing. Evolutionary Com-

putation, 16(1):31–61, 2008.

[GB97] H. Gehring and A. Bortfeldt. A genetic algorithm

for solving the container loading problem. Interna-

tional Transactions in Operational Research, 4(5-6):401 –

418, 1997.

[GG65] P. Gilmore and R. Gomory. Multistage cutting stock

problems of two and more dimensions. Ops. Res.,

13:94–120, 1965.

[GILM06] M. Gendreau, M. Iori, G. Laporte, and S. Martello.

A tabu search algorithm for a routing and container

loading problem. Transportation Science, 40(3):342–

350, 2006.

[GJ77a] M. Garey and D. Johnson. Two-processor schedul-

ing with start-times and deadlines. SIAM J. Comput.,

6(3):416–426, 1977.

[GJ77b] M. Gonzalez Jr. Deterministic processor scheduling.

ACM Computing Surveys (CSUR), 9(3):173–204, 1977.

[GJ79] M. R. Garey and D. S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman and Co., San Francisco, Calif., 1979.

A guide to the theory of NP-completeness, A Series

of Books in the Mathematical Sciences.

[GL93] F. Glover and M. Laguna. Modern heuristic techniques

for combinatorial problems, chapter Tabu search, pages

70–150. John Wiley & Sons, Inc., 1993.

[GMM90] H. Gehring, K. Menschner, and M. Meyer. A com-

puter based heruistic for packing pooled shipment

containers. European J. Operational Research, 44:277–

288, 1990.

[GR80] J. A. George and D. F. Robinson. A heuristic for

packing boxes into a container. Computers and Oper-

ations Research, 7(3):147–156, 1980. Cited By (since

1996): 79.

[GUA06] C. Geiger, R. Uzsoy, and H. Aytuğ. Rapid model-
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[MAA92] R. Morábito, M. Arenales, and V. F. Arcaro. An

and-or-graph approach for two-dimensional cutting

problems. European J. Operational Research, 58:263–

271, 1992.

[MBG04] D. Mack, A. Bortfeldt, and H. Gehring. A paral-

lel hybrid local search algorithm for the container

loading problem. International Transactions in Opera-

tional Research, 11(5):511–533, 2004.

[McD99] C. McDiarmid. Pattern minimisation in cutting

stock problems. Discrete Applied Mathematics, 98(1-

2):121–130, 1999.

[MG98] R. Morabito and V. Garcia. The cutting stock prob-

lem in a hardboard industry: A case study. Comput-

ers and Operations Research, 25(6):469–485, 1998.

[MH78] R. C. Merkle and M. E. Hellman. Hiding informa-

tion and signatures in trapdoor knapsacks. IEEE

Transactions On Information Theory, 24:525–530, 1978.

[MM68] A. Meir and L. Moser. On packing of squares and

cubes. Journal of combinatorial theory, 5(2):126–134,

1968.

[MO05] A. Moura and J. Oliveira. A grasp approach to the

container-loading problem. Intelligent Systems, IEEE,

20(4):50 – 57, 2005.

[Mos89] P. Moscato. On evolution, search, optimization, ge-

netic algorithms and martial arts: Towards memetic

algorithms. Caltech concurrent computation program, C3P

Report, 826:1989, 1989.

[MPT99] S. Martello, D. Pisinger, and P. Toth. Dynamic pro-

gramming and strong bounds for the 0-1 knapsack

problem. Management Science, 45(3):414–424, 1999.

[MPV00] S. Martello, D. Pisinger, and D. Vigo. The

three-dimensional bin packing problem. Oper. Res.,

48(2):256–267, 2000.

[MPV+07] S. Martello, D. Pisinger, D. Vigo, E. D. Boef,

and J. Korst. Algorithm 864: General and robot-

packable variants of the three-dimensional bin pack-

ing problem. ACM Trans. Math. Softw., 33(1):7, 2007.

[MR06] I. Mukherjee and P. K. Ray. A review of optimiza-

tion techniques in metal cutting processes. Comput-

ers & Industrial Engineering, 50(1-2):15 – 34, 2006.

[MS02] S. Menon and L. Schrage. Order allocation for stock

cutting in the paper industry. Operations Research,

50(2):324–332, 2002.

[MT90] S. Martello and P. Toth. Knapsack problems: algorithms

and computer implementations. John Wiley & Sons,

Inc., New York, NY, USA, 1990.

[MW04] F. K. Miyazawa and Y. Wakabayashi. Packing prob-

lems with orthogonal rotations. In LATIN, pages

359–368, 2004.

108



REFERENCES

[NI02] K. Nonobe and T. Ibaraki. Formulation and

tabu search algorithm for the resource constrained

project scheduling problem. Essays and Surveys in

Metaheuristics, pages 557–588, 2002.

[NT00] S. Non̊as and A. Thorstenson. A combined cutting-

stock and lot-sizing problem. European Journal of Op-

erational Research, 120(2):327–342, 2000.

[NW88] G. Nemhauser and L. Wolsey. Integer and combinato-

rial optimization, volume 18. Wiley New York, 1988.

[OGF00] J. Oliveira, A. Gomes, and J. Ferreira. Topos–a new

constructive algorithm for nesting problems. OR

Spectrum, 22(2):263–284, 2000.

[Olt05] M. Oltean. Evolving evolutionary algorithms using

linear genetic programming. Evolutionary Computa-

tion, 13(3):387–410, 2005.

[Pad00] M. Padberg. Packing small boxes into a big box.

Math. Methods Oper. Res., 52(1):1–21, 2000.

[Pap81] C. H. Papadimitriou. Worst-case and probabilistic

analysis of a geometric location problem. SIAM J.

Comput., 10(3):542–557, 1981.

[PE06] D. Pisinger and J. Egeblad. Heuristic approaches

for the two- and three- dimensional knapsack pack-

ing problems. Technical report, Dept. of Computer

Science, University of Copenhagen, 2006.

[Pis02] D. Pisinger. Heuristics for the container loading

problem. European J. Oper. Res., 127(2):382–392,

September 2002.

[PRK04] J. Puchinger, G. Raidl, and G. Koller. Solving a

real-world glass cutting problem. Evolutionary Com-

putation in Combinatorial Optimization, pages 165–176,

2004.

[PS98] C. Papadimitriou and K. Steiglitz. Combinatorial

optimization: algorithms and complexity. Dover Pubns,

1998.

[PS07] Y. Pan and L. Shi. On the equivalence of the

max-min transportation lower bound and the time-

indexed lower bound for single-machine scheduling

problems. Math. Program., 110(3, Ser. A):543–559,

2007.

[RBN09] M. Riff, X. Bonnaire, and B. Neveu. A revision of

recent approaches for two-dimensional strip-packing

problems. Engineering Applications of Artificial Intelli-

gence, 22(4-5):823–827, 2009.

[Rob84] S. A. Roberts. Application of heuristic techniques

to the cutting-stock problem for worktops. J. Opl

Res. Soc., 35(5):369–377, May 1984.

[SAdC10] E. Silva, F. Alvelos, and J. V. de Carvalho. An in-

teger programming model for two- and three-stage

two-dimensional cutting stock problems. European

Journal of Operational Research, 205(3):699 – 708, 2010.

[SP92] P. E. Sweeney and E. R. Paternoster. Cutting

and packing problems: a categorized, application-

oriented research bibliography. J. Operational Research

Society, 43(7):691 – 706, 1992.

[SSW94] Z. Sinuany-Stern and I. Weiner. The one dimen-

sional cutting stock problem using two objectives.

Journal of the Operational Research Society, pages 231–

236, 1994.

[SW92] J. P. Sousa and L. A. Wolsey. A time indexed for-

mulation of non-preemptive single machine schedul-

ing problems. Mathematical Programming, 54:353–367,

1992.

[Tan10] C.-H. Tang. A scenario decomposition-genetic algo-

rithm method for solving stochastic air cargo con-

tainer loading problems. Transportation Research Part

E: Logistics and Transportation Review, In Press, Cor-

rected Proof:–, 2010.

[TH08] J. Tay and N. Ho. Evolving dispatching rules us-

ing genetic programming for solving multi-objective

flexible job-shop problems. Computers & Industrial En-

gineering, 54(3):453–473, 2008.

[TMC+04] J. Tavares, P. Machado, A. Cardoso, F. Pereira, and

E. Costa. On the evolution of evolutionary algo-

rithms. Genetic Programming, pages 389–398, 2004.
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