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ABSTRACT 

A systematic investigation of the effects of coolant-to-mainstream 
density ratio and mainstream acceleration on the heat transfer following 

injection through a row of holes in a flat plate into a turbulent boundary layer 

is described. A mass transfer technique was employed which uses a swollen 

polymer surface and laser holographic interferometry. The constant 

concentration of the test surface simulated isothermal conditions. Density 

ratios in excess of unity, representative of gas turbine operating conditions, 

were obtained using foreign gas injection into mainstream air. The 

experimental technique was validated for such measurements. 
The cooling film heat transfer coefficient was measured for a range of 

blowing configurations and flow conditions; the holes were spaced at three- 

diameter intervals and inclined at 35° or 90° to the mainstream, and the 

ranges of the other pertinent test parameters covered were, 
0.5 5 blowing rate 5 2.0, 

1.0 5 density ratio S 1.52, and 
0.0 S acceleration parameter S 5x 10'. 

However, the tests with mainstream acceleration were performed with 35° 
injection only. 

The heat transfer coefficient was found to be increased by injection, 

and with the blowing rate for both 35° and 90° injection. Close to the 

injection site, normal blowing produced higher heat transfer coefficients than 

angled blowing, but gave lower coefficients far downstream. 

There were large differences in behaviour between the two injection 

angles with varying density ratio. For normal injection, the heat transfer 

coefficient at a fixed blowing rate was insensitive to the variation of density 

ratio, whereas for 35° injection strong dependence was observed, an increase 

in the density ratio leading to a decrease in the coefficient. Similar behaviour 

for the inclined injection case was also found in the presence of strong 

favourable pressure gradient. 
As mainstream acceleration acts to suppress injection induced 

turbulence, the heat transfer coefficient under the film with and without 

density ratio was found to decrease in the presence of mainstream acceleration 
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relative to that in absence of acceleration. The heat transfer coefficient was 

observed to relate to the acceleration parameter in an approximately linear 

manner, an increase in the acceleration resulting in a decrease in the 

coefficient. 
For normal injection, good scaling of the heat transfer coefficient 

including density ratios was achieved with the blowing parameter. For 35° 

injection, the coolant to mainstream velocity ratio was seen to scale the data 

best. Correlations for the heat transfer data using these scaling parameters and 
incorporating the distance downstream are formulated as (x/D)M°4 for normal 
injection and (x/D)(uJu., ) ' for 35° injection. With these correlations data 

obtained at density ratios not representative of gas turbine practice can be 

adapted for design calculations. 
The predictions of a computational fluid dynamics general purpose 

program called PHOENICS were tested against the present measurements and 

those of others. In general, the computed results of film cooling effectiveness 

agreed reasonably well with available experimental data. The ability to predict 

the heat transfer coefficient associated with film cooling was satisfactory for 

normal injection, but not as satisfactory for injection through 35° holes. 
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CHAPTER 1 

INTRODUCTION 

This Chapter introduces the subject of film cooling of surfaces and explains its 

application to gas turbines. It also highlights the need for film cooling research 

and touches on the problems associated with such research. 

1.1 THE GAS TURBINE 

Gas turbine engines, which are highly efficient and sophisticated 

machines, have established a wide scope of applications especially in the field 

of aircraft propulsion. The design of advanced aircraft gas turbine engines is 

directed by. a number of factors. These include, in addition to the key 

objectives of reduced fuel consumption and high performance, the factors of 
high reliability and durability, low initial and maintenance cost, and low 

weight. The most important of all is the engine fuel consumption that 

accounts for over 30 percent of direct operating cost (1]. 

The performance of gas turbines has improved considerably over the past 

three decades. The advancement in providing higher engine thermal efficiency, 

and hence greater engine specific power and reduced fuel consumption, is 

achieved by increasing the turbine inlet temperature and the cycle pressure 

ratio. Modem aircraft turbofan engines are operating at 1600K turbine inlet 

temperatures and approximately 25: 1 pressure ratios [2]. These improved cycle 

conditions impose an extremely hostile environment on the critical hot 

components in the engine. Thus, careful design considerations are needed to 

maintain acceptable reliability and long service life. 

One of the, principal limitations to progress in enhancing the thermal 

efficiency is the requirement of turbine inlet gas temperatures far above the 

melting point of stator vane and rotor blade materials. Initially, this problem 
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was dealt with by developing new materials with significantly improved high 

temperature properties, such as creep strength and resistance to thermal 

fatigue. The high temperature alloys have resulted in increased usable metal 

temperatures of about 10°C per year [3]. However, the competitive nature of 

the gas turbine industry has demanded ever higher engine performance, 

requiring turbine inlet temperatures to increase at a rate exceeding that 

achievable by development of improved materials. 

1.2 COOLING OF GAS TURBINE BLADES 

To ensure the structural integrity of the blades when exposed to a high 

temperature environment for prolonged periods of time, cooling schemes are 

introduced. The schemes generally utilize the relatively cold pressurised air 

bled from the compressor discharge. Internal cooling is not sufficient and the 

exposed blade surfaces can be kept below critical temperatures only by means 

of additional external surface cooling. The introduction of cooling produced an 

upward step of roughly 100°C in turbine entry temperature and a subsequent 

rate of increase of about 20°C per year [4]. Fig. 1.1 portrays the substantial 

contribution of cooling in raising turbine operating temperatures. 

Gas turbine blades may be cooled by liquids or gases. Liquid coolants 

provide potential thermodynamic advantages over air coolants, however, the 

practical engineering difficulties associated with the liquid systems, particularly 

for aeropropulsion applications, and the relative simplicity of the latter has 

resulted in the wide spread use of the gas cooling systems. In the present 

study, work is limited to situations in which the coolant and the mainstream 

fluids are gases. 

There are various cooling techniques used in advanced gas turbines, that 

have progressed from simple convection systems to more sophisticated 

arrangements as illustrated in Fig. 1.2. 

The techniques used are briefly, 

i) Convection cooling: Internal radial serpentine passages of basically 

rectangular cross section are used to cool the niidchord regions of the 

2 
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blades. The coolant circulates within the passages, takes energy directly 

from the surface by forced convection. 

ii) Impingement cooling: Perforated inserts are incorporated inside the 

passages. The coolant passes through the small holes impinges on the 

inside blade wall, enhancing the heat transfer rate. Impingement cooling is 

a very high performance scheme that offers a great cooling potential and, 

therefore, is mainly used at the leading edge of the blade. 

iii) Pin fin arrays cooling: Pin fins are generally incorporated in the trailing 

edge of the blade, typically of equal height and diameter, and located in 

staggered patterns. They serve as heat transfer augmentation devices by 

turbulating the coolant as it passes around them. 

iv) Transpiration cooling: Parts of the outer skin of the blade are made of 

porous material. The coolant is effused out through the skin pores into 

the hot mainstream gases offering high potential cooling effectiveness. 

Additionally, the heat transfer coefficient is reduced [5]. However, the 

problems involved with this method, such, as manufacture of the skin of 

the blade, lack of material strength, and clogging of the fine pores, 

restrict its usage, especially in aircraft applications. 

v) Film cooling: The coolant is permitted to eject to the surface through a 

variety of configurations, two-dimensionally such as normal and angled 

flush slots, and tangential slots, or three-dimensionally such as a single 

row of discrete holes, multiple staggered rows of holes, and slots with 

discontinuities. The coolant is injected over parts of the blade surface in 

such a way that it remains close to the surface forming a protective 

insulating layer from the hot mainstream gas. Film cooling is a principal 

method of cooling turbine blades, and is required at many vulnerable 

regions of the blade surface from the leading edge to the trailing edge. 

Further it is worth noting that injection through continuous slots 

provides more efficient cooling performance than through discrete holes, 

due to the fact that slot injection mixing with the hot mainstream is less 

intensive. But, the high turbine blade stress levels, and the- aerodynamic 

5 



penalties makes the use of slot cooling undesirable. Injection through a 

single row of holes, however, produces an extremely nonuniform 

conditions due to the resulting three-dimensional effects of jet-mainstream 

mixing especially over the downstream regions close to the holes. 

Numerical treatment of such flows is therefore difficult, and most of the 

work on film cooling has been experimentally based. 

A broad indication of the potential cooling effectiveness from some of 

the cooling techniques is shown in Fig. 1.3. 

For any turbine blade cooling arrangement, the turbine inlet temperature 

and the resulting thermal efficiency can only be increased to a certain level. 

Beyond that, penalties associated with cooling air injection exceed the 

benefits. The penalties involve losses in aerodynamic efficiency produced by 

mixing of low momentum coolant and high velocity mainstream gas, and 

power needed for compression and pumping of the cooling air that bypasses 

the combustion chamber. Moffat [6] cited that the turbine efficiency is 

dropped possibly by as much as 1% for each 1% coolant discharged through 

the blades. In addition, there is a thermodynamic penalty associated with the 

cooling air removing heat from the hot mainstream gas over the blades. The 

direct impact on the operating expenses of the engine is indicated by Elovic 

and Koffel [7], who reported that each one percent of compressor discharge 

air used for cooling results in about 0.75% increase in specific fuel 

consumption in a typical high bypass, high pressure ratio turbofan engine. 

The main requirements, therefore, that are demanded from the designer of 

turbine hot components are, 
i) Minimizing cooling air consumption with an arrangement of minimum 

interference with the hot mainstream aerodynamics, so as to reduce the 

engine fuel consumption and give maximum engine efficiency. 

ii) Accomplishing minimum blade and vane overall temperature levels and 
local temperature gradients to avoid thermal stresses. 

The challenge of these requirements can be alleviated if predictions of 

local gas-side heat transfer coefficients of the component are more accurate. 
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Stepka [8] estimated the uncertainties in calculated heat transfer coefficients to 

be 35% which, for realistic engine conditions, would result uncertainties of 

98K in metal surface temperature. This order of uncertainty has forced turbine 

hot components designers to require over-cooling to insure acceptable 

reliability and life. Thus, adversely affecting the cycle efficiency. 

Despite recent advances in the development of ceramic coatings that have 

permitted higher turbine entry temperatures, turbine blade cooling remains a 

necessary major cooling mechanism. 
This research is concerned only with film cooling, although an optimized 

blade cooling system utilizes film cooling and a combination of the cooling 

schemes outlined above. 

1.3 PARAMETERS OF FILM COOLING 

A major factor contributing to the complexity of the film cooling 

situation is the large number of parameters involved. 

The various parameters governing the film cooling process include the 

geometrical configuration of the holes and the aerodynamic characteristics of 

the flows as presented in Fig. 1.4. 

Systematic studies of film cooling parameters have given some insight 

into some of their influence. But further work is still required to produce 

general quantitative information of their individual and combined influence 

and to cover the whole field of conditions involved, especially those typical of 

gas turbine practice. However, in any one film cooling investigation the 

number of parameters varied is usually very restricted, due to time and cost 

limitations. 

A review of the available literature describing the influence of these 

parameters on film cooling performance is given in the following chapter. 
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Fig 1.4, Parameters of Film Cooling 
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1.4 THEORY OF HEAT TRANSFER FROM FILM COOLED 
SURFACES 

For constant property flows, the connection between heat flux, q., and 

temperature at a particular position on an impervious turbine blade surface is 

conventionally described by a heat transfer coefficient defined through the 

equation, 

qA=h. (T.. -T. ) ---(1.1) 

where T. is the mainstream gas temperature which is equivalent to the 

adiabatic wall temperature for low Mach number flows, or the recovery 

mainstream temperature in the case of high Mach number flows. T. is the 

wall temperature and h, the associated heat transfer coefficient. 

On film cooled blade surfaces, the heat flux, a1, is customarily 

represented by adopting an equivalent equation given by [9], 

qr=hr(T.. -T. ) ---(1.2) 
here, N is the heat transfer coefficient in the presence of the film and T,. is 

the adiabatic wall temperature, i. e., the temperature which the wall assumes 

when there is no heat flux from the wall surface into its interior. Tr is 

representative of the local temperature of the film. 

For constant property flows, h4 is independent of the temperature field, 

but is a property of the flow field. 

In most experimental work the adiabatic wall temperature is expressed in 

a dimensionless form called the adiabatic wall film cooling effectiveness, II,,,, 

given by, 

t1.. =(T.. -T.. )/(T.. -T. ) --- (1.3) 

where T. is the temperature of the coolant, the recovery coolant temperature 

for high speed flows. 

In the vicinity of the injection site, i, is close to unity (T,. aT. ), i. e. the 
film is very efficient. Far downstream, t). M is close to zero (T�, P-T_), where 
the boundary layer recovers to its undisturbed condition. 

In experiments following the adiabatic wall approach, the heat transfer 

coefficient h4 must be obtained from other experiments employing a constant 
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wall temperature along the surface or constant heat flux. 

An alternative approach called "Superposition", first developed by 

Metzger et al [10], expresses the heat flux, %, to a film cooled surface by a 
different relation given by, 

%=h(T. -T�) ---(1.4) 
here T. is the temperature of the isothermal wall and h is the heat transfer 

coefficient with injection. In this relation the parameter that accounts for the 

effects of injection is the newly defined parameter h. Its effect can be seen by 

combining equations (1.1) to (1.4), i. e., 
qJ go= huh, 

=hJh, (1 
- -1. w 

O) 
--- 

(1.5) 

where 0 is a dimensionless temperature difference parameter defined by, 

e=(T_-T. )/(T_-T. ) ---(1.6) ,. 

The linearity of the expression ý (1.5) has been demonstrated 

experimentally for incompressible flows [10,11] and for compressible variable 

property flows [12]. 

Equation (1.5) yields h, = h, when 0=0 (i. e. when T.; T. ). This case 
has been used by Metzger et al [13] and by Ville and Richards [14] to 

determine h, by extrapolation from measurements of h made over a range of 

0. 
When h=0, i. e. the average surface heat transfer rate is zero [15], q�, = 

1/0, hence 0 becomes like the conventional effectiveness a measure of the 

mixing between the main and the coolant flows. 

It is worth noting that Choe et al [ 16] have presented the film cooling 
data by supplying h at 0=0 and 0=1 (obtained by changing T. from T. to 

T. ), so that h can be acquired at any value of 0 as follows, 

h=h, ý. o -e(k-bo. ) 

They have also shown that the adiabatic effectiveness can be obtained from 

the same data, 
11. 

w 
=1 he 

l/g. p 

The two approaches are equally well founded in theory and data from 

one method can be transformed to the other [16]. However, adiabatic wall 
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conditions experiments provide an advantage in that the problem which have a 

three temperature potentials T.., T. and T. is reduced to a two temperature 

one, Ti., and T.. 

In conclusion, there are two parameters of major concern to designers of 
film cooled surfaces. Using the adiabatic wall approach, equation (1.2) reveals 

that detailed information on the adiabatic wall temperature T�, represented by 

the effectiveness 'r),. and on the distribution of the heat transfer coefficient h, 

are required in order to predict the blade local surface temperature. Or, if 

using the superposition approach (equation 1.4), information on h obtained at 

two values of 0=0 and 1, are required. 

1.5 TURBINE BLADE COOLING DESIGN CONSIDERATIONS 

The implementation of internal and external cooling increases the life of 

vanes and blades substantially. The design of such cooling arrangements that 

provide an acceptable blade life is dependent on the accurate determination of 
the surface temperature ' distribution of the blade. The blade surface 

temperature is in turn dependent on the external heat flux to the surface from 

the hot mainstream, the heat conduction within the blade material and the heat 

convection to the cooling air. 

The distribution of the heat flux around the surface of a turbine blade, 

under typical engine operating conditions, is generally highest at the stagnation 

region of the leading edge, and the trailing edge region on both the suction 

and the pressure sides. Other regions of high heat flux are the thin boundary 

layer pressure side; and the laminar-to-turbulent transition region on the 

suction side. 

It is thus clear that most of the blade surface requires -cooling to reduce 

the surface temperature levels and gradients. Rows of normal injection holes 

are therefore required at the blade leading edge and inclined injection 

configurations are required at the remaining high heat flux regions. 
However, with film cooling the boundary layer theory used for 

calculation, of the heat transfer distribution is no longer applicable, the 
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momentum of the coolants injected through a number, of angled discrete holes 

is significant, at least, over a certain distance downstream of injection. The 

coolant to mainstream density variations, the wide variety of injection 

configurations and other parameters all add to the complexity of the situation. 

It follows that, the thermal design of film cooled blades, at present, is 

based on experimental information acquired at modelled or real engine 

conditions. The designer is, therefore, forced to rely on expensive and time- 

consuming experimentation. 

A vast amount of systematic research has taken place on film cooling in 

an effort to quantify the process. However, the available data are still 

inadequate to produce general correlations or numerical models for design 

purposes. Consequently, there remains a strong need for further acquisition of 

experimental data especially at simulated engine operating conditions. The 

present research provides information on the heat transfer coefficient at 

density ratios and pressure gradients representative of the engine environment. 

An attempt is also made to correlate this information to provide better 

predictability for future designs. 

1.6 OUTLINE OF THESIS 

Chapter 2 reviews the most relevant studies that have been done 

previously on the film cooling process, particularly on the heat transfer 

coefficient following injection through discrete holes. The objectives of the 

current work followed by a brief description of the experimental methods for 

acquiring the heat transfer coefficient are outlined in Chapter 3. Chapter 4 

provides an explanation of the experimental method used, whereas a 

description of the apparatus is given in Chapter S. The experimental 

programme, operating conditions and procedures are presented in Chapter 6. 

Validation of the present experimental mass transfer method for the 

measurement of the cooling film heat transfer coefficient with density ratios is 

provided in Chapter 7. Chapter 8 presents and discusses the experimental 

results. 



In addition to the experimental part of this study, Chapter 9 is concerned 

with the theoretical part describing the appropriateness of a numerical 

procedure for the solution of the film cooling problem. The final conclusions 

drawn from the present research and recommendations for the future work are 

given in Chapter 10. 

°S 
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CHAPTER 2 

LITERATURE SURVEY 

This Chapter reviews the present state of the art of film cooling with a view to 

summarise the effects of the various parameters on film cooling performance. 

2.1 INTRODUCTION 

Extensive work has been done into film cooling during the last 30 

years. Early work was concentrated on two-dimensional injection through 

continuous slots. This work has been surveyed by Goldstein [9] and further 

updated by Hartnett [171. As it refers to slots it will not be referred to here 

unless it helps to explain a certain point. An effort was also made on 

transpiration cooling, a comprehensive survey of which is found in [17]. But 

for the past 20 years film cooling research has been mainly directed at three- 

dimensional injection through discrete holes, due to its practical usefulness in 

applications to gas turbine airfoils. 

Considerable experimental data exist on film cooling with injection 

through discrete holes. It is important, however, to understand the physical 

mechanism of the interaction between the mainstream and the injectant, since 

the mixing process is highly three-dimensional, and of a greater extent and 

influence than that of slots. An insight into the manner in which a jet mixes 

with a mainstream is gained through flow visualization studies [18,19 & 20]. 

These studies have shown that as a jet emerges from the surface it is 

deflected in the streamwise direction and takes on a "kidney" shape caused by 

a pressure difference created between upstream and downstream lips of the jet 

at exit (Fig. 2.1). Counter-rotating 
. vortex patterns are also formed just 

downstream of an injection hole. These vortices dominate the flow in the 

nearfield and persist to the farfield, augmenting the entrainment of mainstream 
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Fig. 2.1 Schematic representation of injection through a hole. 
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fluid, and introducing high intensity turbulence, thereby enhancing the heat 

transfer. Moreover, as the blowing rate is raised, a region of recirculating flow 

is generated immediately after a hole. The complex behaviour becomes even 

stronger when the blowing rate and/or the blowing angle are increased. 

The extensive intermixing process has a great influence on the film 

cooling effectiveness and the heat transfer coefficient. Many of the film 

cooling data relate only to the effect of injection on the adiabatic 

effectiveness. The effect on the heat transfer coefficient, however, is necessary 

to fully assess the film cooling process, in particular at the region near the 

injection site which is the region of interest. Most of the recent experimental 

research on film cooling is, therefore, concerned with the heat transfer 

coefficient as is the case in the current work. 
Following is a brief discussion of the investigations that are pertinent to 

the present experimental work, with an emphasis on the influence of coolant 

to mainstream density ratio and mainstream pressure gradients on the heat 

transfer coefficient. 

2.2 THE HEAT TRANSFER COEFFICIENT 

2.2.1 General 

A number of studies on local and lateral average heat transfer 
coefficients have been reported. These studies involved different geometry of 

holes with different injection angles under various mainstream and coolant 

conditions. These studies have revealed that the heat transfer coefficient (local 

and lateral average) is appreciably influenced by injection, with the influence 

being more substantial near the holes, and varies with the various parameters 

of film cooling. 

Blowing, in general, enhances the heat transfer coefficient close to a 
hole with a monotonic decrease toward the unblown value far downstream. 

This effect is significantly intensified as the blowing rate or the injection 

angle is increased [21,22]. However, injection from a shallow angle results in 

higher coefficients than in normal injection far downstream, since the effects 
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of normal jets fall off more quickly with distance from the holes [21]. 

The effect of mainstream Reynolds or Mach number on the heat 

transfer coefficient was found to be small [23], [24] respectively. The injectant 

whether it is turbulent or laminar appears to have a similar influence on the 
heat transfer coefficient [25]. The boundary layer thickness was shown by 

Liess [24] to have a negligible effect on the lateral average heat transfer 

coefficient. The approach boundary layer (turbulent or transitional [26]. 

turbulent or laminar [25]) made only a little or no difference to the heat 

transfer coefficient. 

Kruse [27] noted that, with small hole spacing the lateral average heat 

transfer coefficients immediately downstream of the injection location were 
higher than with large hole spacing. The Stanton number, St, was also 
increased when the spacing of "holes" and "rows" was decreased [28]. Similar 

behaviour was also reported by Crawford et al [29] who also examined the 

effect on St due to changing the number of rows of holes. The St trends were 

seen to be similar for two cases of different number of rows, indicating a 
dominance of the flow near the surface by injection. However, for low 

blowing (MS0.4) through rows of holes on a convex surface, and with the 

coolant being of similar temperature to that of the surface, the structure of the 

curved boundary layer was found to be dominated by the curvature effects 
[30]. 

The work primarily dealing with the influence of coolant to mainstream 
density ratio and mainstream pressure gradients on the heat transfer coefficient 

is listed in Table 2.1. The table also includes the range of parameters under 

which the heat transfer coefficient was measured. 

J 
2.2.2 Coolant to Mainstream Density Ratio 

Published work on the effect of coolant to mainstream density ratio on 

the heat transfer coefficient is very limited. Most has been reported by Jones 

and his co-workers [12,31 & 32]. They have used a test facility, the 
isentropic light piston tunnel, in which the heat transfer coefficient was 
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measured with density ratios representative of real engine conditions. The 

change in the density ratio was obtained directly by varying the coolant to 

mainstream temperature ratio. However, their results suffer from being 

averaged in the spanwise direction. 

In all of their studies, Forth [31], Forth and Jones [32] and Forth et al 

[12], the investigations of the influence of density ratio on film cooling 

performance were carried out on a flat plate with a turbulent boundary layer. 

Injection was at 30° to the flow direction through a single row of holes, two 

staggered rows of holes and a slot. The lateral spacing between the holes was 

2.5 dia and row spacing for the two rows of holes was 2 dia. They have 

shown a significant effect of density ratio for all of the geometries 

investigated. Their results were, however, generally involved in scaling the 

film-cooling performance taking into account the variations in the density 

ratio, a matter discussed later in this chapter. They have also shown that the 

substantial effect of the density ratio is dependent upon the injection geometry 

and may alter according to whether jet lift off occurs, but their results 

regarding the specific influence of density ratio on the heat transfer coefficient 

were somewhat inconclusive. In addition, they have investigated the influence 

of the wall to mainstream temperature ratio. This accounts for the variation of 

properties through the film layer. They have stated that the film cooled heat 

transfer coefficient obtained in constant properties experiments can 

underpredict the heat transfer coefficient in the engine (with T. /T.. =0.6) by 

about 12%. At locations far downstream from injection this can be the 

dominant effect. 

The work of Forth [31] with injection through a row of holes, seems to 

be, at present, the only available data in which the heat transfer coefficient 

with variable density ratio is documented. A close examination of this data is 

therefore worthwhile. The data reproduced in Fig. 2.2 indicate the following 

noteworthy features, 

i) The spanwise average heat transfer coefficient ratios with and without 
injection, h/h� are seen to be always above one. Injection through a row 
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of holes, therefore, according to [31], enhances the heat transfer 

coefficient over the whole cooled surface at all density ratios and for all 
blowing rates. This is consistent with the data of Liess [24] at unity 
density ratio, however, the steady state experiments of Eriksen and 
Goldstein [22] at pfp_=0.85 produced fik ratios about 5% below unity 
downstream of injection at M=0.5. 

ii) At p jp.. 0.81, the trends of are similar in manner to those of Liess 

[24] and Hay et al [21] obtained at pa/p.. 1.0. That is, close to the holes, 

the ratio h/, increases as M is increased, and decays monotonically with 
distance downstream. 

iii) As pJp_ was increased to 1.67, the ratio h/h, appeared to increase as M 

was raised to about 0.4. As M was raised further to 1.2, h/h, tended to 

decrease gradually with increased M near the holes and reached values 
lower than those at p jp= 0.81, but continued to rise slowly further 

downstream. This is in contrast to that at density ratio close to unity 

(point ii)). 

iv) The observed behaviour in the ratio ht% highlighted in point iii) seems to 

be gradual with increased density ratio. At p jp_ 1.22 the decrease in h/! t, 

close to the holes at M>0.4 is very much less distinct. 

It is worth noting that the ratios of M i, in Fig. 2.2 include the effects 

of wall to mainstream temperature ratio. 

A decrease- in the heat transfer coefficient with film cooling for 

increasing the density ratio was observed earlier by Eriksen and Goldstein 

[22]. They measured about 2% decrease in the heat transfer coefficient 
downstream of injection at 35° through a row of holes for unheated air 
injection (pjp_ 1.0) than that for a heated injection (pjp_=0.85) at M=1.0. 

They have attributed this effect to the difference in the momentum flux ratio, 
I, between the unheated and heated injection. However, for injection through a 

single normal hole, Eriksen and Goldstein [23] found insignificant difference 

in the heat transfer coefficient for this variation in density ratio. 
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Loftus and Jones [33] injected a relatively colder air into a mainstream 

air through a row of holes, but their report was concentrated more on 

establishing the linearity of the relation of the superposition model for 

variable property flows than the actual effect of coolant to mainstream density 

ratio. 
An empirical variable property correction for, a film cooled turbulent 

boundary layer was formulated by Ligrani and Camci [34]. The correction 

relation provides a means to determine changes of the heat transfer coefficient 
due to variable property, including density ratios, from the constant property 
heat transfer coefficient and adiabatic film cooling effectiveness values 

available in the literature. However, this was based over a range of conditions 

on a particular injection geometry of two staggered rows of holes with an 

arrangement similar to that of Jabbari and Goldstein [35], and therefore can 

not be generalised. 

In all of the work reviewed above, the density ratio was achieved by 

varying either the temperature of the coolant or that of the mainstream. 
Recently Teekaram et al [36] have shown that using foreign gas injection in a 
heat transfer test facility is viable without resorting to a mass transfer 

analogy. This is a major finding since future experimental work with density 

ratios can readily be represented with foreign gas injection. 

21.3 Mainstream Pressure Gradient 

The influence of mainstream pressure gradient on the heat transfer 

coefficient under a cooling film has received little attention (see Table 2.1). 

Work on two-dimensional film 'cooling in the presence of mainstream 

acceleration has been reported by Hartnett et al [37] and Warren and Metzger 

[38] for blowing via an angled flush slot. In both of these studies, 

acceleration on a flat plate was produced by contours placed in the roof of 

the test section of the wind tunnel. They found that the effect of low 

acceleration was weak. However, in the latter - study [38] at low M, an 

appreciable decrease in the heat transfer coefficient with injection was 
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observed at high acceleration. For that case, the favourable pressure gradient 

without injection was sufficiently strong for re-transition of the turbulent 

boundary layer to laminar. But at injection rates approaching unity, the 

depressed heat transfer coefficients increased toward their fully turbulent 

values. 

The influence of mainstream acceleration on the heat transfer coefficient 
for injection via two staggered rows of holes inclined at 35° to the flow 

direction was investigated by Jabbari and Goldstein [39]. In this study, the 

highest acceleration parameter, K (=v(duJdx)/u2), examined was about 

1.05x10`. They found that the centreline heat transfer coefficient normalized 

by that without injection was insignificantly affected by acceleration when the 

blowing rate was less than one. But when M was of the order of unity or 

above, the heat transfer ratio was reduced by about 10% close to the injection 

point. Far downstream, the reduction in the coefficients ratio showed 

dependence on M, being very small for M=1.0 and about 10% for M=1.5. 

They also found that the spanwise average heat transfer coefficient ratio 

was reduced by acceleration when M was one, and the reduction extended 

further downstream at larger M. They have suggested that this was possibly 

caused by suppression of injection induced turbulence by mainstream 

acceleration. 

Liess [24] and Kruse [27] using thermal techniques considered injection 

through a single row of holes in the presence of mainstream acceleration. 

Liess [24], with the pressure gradient extending only to about 20 hole 

diameters downstream, and injection at 35°, noted that suppression of the 

development of streamwise vortices by the mainstream acceleration produced a 

fall in the spanwise average heat transfer coefficients compared to the constant 

mainstream velocity values. Kruse [27], on the other hand, with acceleration 

parameter changing from about 4x10` to 2x104 in the first 20 hole diameters 

downstream, and injection at 10°, 45° and 90°, found the effect of pressure 

gradient on the film-cooled heat transfer coefficient to be generally weak. 

Kruse also examined the effect of adverse pressure gradient (K'-0.55x104) on 
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the heat transfer coefficient. There again the effect was weak. This is in 

agreement with the results of Hay et al [26] for injection through a row of 
holes inclined at 35° or 90° and for similar range of blowing rates where K=- 

0.85x10`. However, the results of Hay et al at favourable pressure gradients 

were at variance with those of Kruse. In a series of experiments using a mass 
transfer technique conducted at mild and strong favourable pressure gradients 

of K=1.0x10; and 5.0x104 respectively, Hay et al [26] measured a substantial 

reduction in the ratio of the heat transfer coefficient with and without 
injection h/tt,. They have reported a decrease in h/h, values of about 20%- 

30% of those at zero acceleration by the mild acceleration at low blowing rate 

(M=0.5), but as M was raised the fi/h, values approached the zero acceleration 

values. Hay et al also noted that the effect of strong acceleration, in which 

relaminarization of the boundary layer has taken place, in lowering the heat 

transfer coefficient was even more significant, particularly at low blowing 

rates. However, when M was raised to about 2.0, the depressed heat transfer 

coefficient was increased and a tendency to overcome the relaminarization 

effect was observed, although full recovery to zero acceleration levels did not 

occur. 

2.3 THE ADIABATIC WALL EFFECTIVENESS 

The determination of the adiabatic wall effectiveness is outside the 

scope of the current work, however, due to its important connection with the 

heat transfer coefficient in defining the film cooling process, and a lot of the 

effectiveness experiments give also an insight into the flowfield and mixing 

associated with film cooling, a short look is worthwhile. 
The literature is rich in reports of experiments with - injection through 

holes that take into account the influence of the various important film 

cooling parameters on the effectiveness. Highlights of the principal findings of 
these studies are as follows, 

" The effectiveness increases with the blowing rate up to an optimum value 

of M in the range 0.4 - 0.5 for density ratios of unity. Further increase in M 

25 



results in lower effectiveness [40]. 

" The effectiveness increases, in general, with increase in density ratio, 

particularly at large blowing rates. Further, the optimum value of M increases 

with increasing density ratio [41]. 

" The effectiveness decreases modestly with favourable pressure gradients, 

but increases substantially with adverse pressure gradients [42]. 

" The effectiveness is relatively independent of the mainstream Reynolds 

number [43]. 

" The effectiveness is maximum at smaller values of M when the jet is 

laminar than when turbulent [25]. - 

" The effectiveness, in general, decreases moderately with increase in 

turbulence intensity or in turbulence scale [44]. 

" The effectiveness decreases with the presence of surface roughness at low 

M, whereas it increases at high M [45]. 

" The spanwise average effectiveness is little influenced by the boundary 

layer displacement thickness 8., but it decreases as 8' increases beyond 0.2 

hole diameters [24]. 

" The effectiveness increases with decreasing streamwise, injection angle, 

however lateral uniformity of effectiveness is better at large angles [27]. 

" The effectiveness increases with decreasing hole spacing to diameter ratio 

[27]. 

" The effectiveness is higher for two staggered rows of holes than for a 

single row of holes [35]. 

" The effectiveness for two rows of holes is higher for the staggered than 

for the in-line configuration [46]. 

" The effectiveness is improved as the exit area of the injection hole is 

increased for the same coolant mass flow rate [47]. 

" The average effectiveness is higher over a convex surface than over a flat 

plate, while the concave surface results in lowest effectiveness comparatively 

[48]. 
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" The average effectiveness downstream of two staggered rows of holes 

correlates well with two-dimensional film cooling parameters [35]. 

2.4 THEORETICAL MODELS AND CORRELATIONS 

Most of the available theoretical models in the literature have been 

developed primarily to estimate the film cooling effectiveness. These models 

were usually based on one of two approaches; the line or point heat sink [49], 

and the energy balance in the film layer approach [50]. The models were first 

proposed for injection through slots and were later modified for injection 

through holes. A detailed review of the two-dimensional injection models can 

be found in [9]. 

It is worth noting that, in both approaches the blowing rate was 

suggested to be the key parameter governing the fluid mechanics of the film 

cooling process. 

Generally, the models were inadequate to predict the effectiveness at 
high blowing rates, while reasonable agreement with some experimental data 

were attained at low M. Further, the energy balance models do not address 

themselves to large density differences between coolant and mainstream. The 

weakness in these relations is attributed to the aerodynamic effects of injection 

that have not been comprehended, especially at high blowing rates when jet 

lift-off takes place. 

There have also been numerous attempts at formulating correlations 

based on experimental results. Most of these correlations were centred on the 

effectiveness for injection through slots. The effectiveness data were often 

presented in terms of the mass flux ratio M for constant-property flows, even 

for injection through a hole [51], whilst the momentum flux ratio I or the 

velocity ratio uJu,. have been used to correlate results in the presence of 

density gradients [47,52] for single rows of holes. 

Similarly, the cooling film heat transfer coefficients for injection 

through slots have been shown by Metzger et al [10,53] and Foster and Haji- 

Sheik [54] to correlate reasonably well with the mass flux ratio at constant 
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density. The greatest deviation of the data in their empirical correlations 

occurred at distances immediately downstream of the slot. Unfortunately, these 

data cannot be used at turbine operating density ratios unless proper scaling 

can be established and applied. 

Recently, Fitt et al [55] have reported considerable progress in 

predicting the precise manner in which injection occurs. A two-dimensional, 

irrotational, inviscid, incompressible (but with p, *p_) model, with no 

separated regions was proposed, (see Fig. 2.3). The flowfield was then solved 

analytically by expressing the flows in the slot, mainstream and film regions 

as dimensionless, asymptotic expansions and matching pressures across the 

dividing streamline. One of the main results obtained was that, the height of 

the injection layer, b/s, was related to the momentum flux ratio I by, 

h=o es=1'ý ---(2.1) 
s p_u.. 2 

This result implies that the height of the injection layer scales with I for slot 
flows without separation. 

Forth and Jones [32] extended this result in the injection region to the 

viscous jet-mainstream mixing region downstream. For correct scaling of the 

mixing process, Forth and Jones invoked an empirical relation [56] in which a 
dimensionless jet velocity maximum scaled well with the parameter, 

ä 3L. 2 
b uf= 

where b is the height of a tangential slot for p. =p_, and of is the velocity in 

the film layer. Therefore for p, *p_ scaling would occur with, 

b PCu f= 

Using equation (2.1), the velocity field would depend on, 

11 IP-JI =J 1-ý' ___(2.2) 
s P_U-2 

Thus the velocity field in the viscous region would be a function of 
downstream distance, a/s, and I. In addition, the Reynolds analogy suggests 

that the temperature field and therefore the heat transfer parameters would 
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Fig. 2.3 Two-dimensional film cooling model. 
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depend on xis and I. 

Furthermore, Forth and Jones [32] have identified two broad and 

distinct flow regimes; the weak injection regime, in which the injection flow 

remains essentially attached to the surface, as for an angled slot or a double 

row of holes at 30°, and the strong injection regime in which the injected 

flow lifts off the surface and penetrates some distance into the mainstream, as 

for a 30° inclined single row of holes. For the weak injection regime, the heat 

transfer data with variable density and velocity ratios collapsed well with the 

newly developed parameter, equation (2.2), whereas for the strong injection 

regime, satisfactory scaling was achieved with a modified form of eq. (2.2) 

incorporating the velocity ratio and distance only. 

2.5 NUMERICAL WORK 

Accurate analysis of the flowfield in the vicinity of injection through 

discrete holes requires three-dimensional calculation procedures. Patankar et al 

[57] analysed the injection at high blowing rates from a single normal hole. 

Their numerical calculation was based on three-dimensional elliptic finite- 

difference scheme. Bergeles et al [58] calculated laminar flow and temperature 

fields for injection via a single and multi-row of holes inclined at 90°, 45° 

and 35° by applying a partially parabolic calculation code. They have also 

considered a case for which injection was through a row of holes at 30° in 

the presence of density gradients and strong mainstream acceleration. Their 

predictions of the spanwise averaged effectiveness for the latter case agreed 

satisfactorily with some experimental data. Further, in another two 

publications, Bergeles et al [59, &-601 predicted the film cooling effectiveness 

for injection through a row and two rows of holes aligned at 30° to a 

turbulent mainflow. The numerical simulation method presented embodied a 

semi-elliptic treatment of the flowfield in the vicinity of the holes. The most 

widely used k-c two-equation model of turbulence, which assumes an 

isotropic eddy viscosity, was modified by introducing non-isotropic transport 

coefficients. The numerical results showed a good agreement for the cases of 
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low blowing rates (M<0.5). However, the assumptions of symmetrical jet exit 

conditions, local equilibrium inherent in the turbulence model, and the 

inability of the semi-elliptic procedure to properly simulate the zone of 

recirculation downstream of a hole, has produced significant errors at 

conditions of small boundary layer thickness and large M. 

Crawford et al [61] extended their boundary layer program STAN5 by 

an injection model in which the additional lateral mixing was modelled by 

augmentation of the mixing length in their turbulence model. The calculated 

Stanton numbers for full-coverage film cooling at different injection angles 

and for spacings s/D of 5 and 10 compared well with corresponding 

experimental data. Using basically the same model of [61], Miller and 

Crawford [62] presented predictions of St and effectiveness for geometries 

incorporating single, double and multiple rows of holes. They obtained good 

agreement with experimental data for M<1.0 and a<45°. 

More recently, Demuren, Rodi and Schonung [63] employed a locally 

elliptic calculation procedure, which could be safely applied to regions with 

flow reversals even at large M. The standard k-c turbulence model was used 

but modified as in [59] to account for non-isotropic eddy viscosities and 

diffusivities. They analysed the influence of injection angle, relative hole 

spacing and blowing rate on the effectiveness. Agreement of the effectiveness 

predictions with systematic data was satisfactory for M up to 1.0 and for 

small hole spacing, but for high M and large spacing the predicted level of 

effectiveness was lower than the experimental results. They claimed that the 

mixing process was crudely simulated with the turbulence model used. In their 

recent work, Schonung and Rodi [64] used the Lam and Bremhorst [65] 

modified version of the k-e turbulence model. In this model, the wall 

functions for bridging the viscous sublayer are not implemented as the 

governing differential equations of the flow are solved up to the wall. They 

have described a two-dimensional boundary layer procedure in which injection 

and dispersion models were incorporated to account for the elliptic nature and 

three-dimensionality of the flow respectively. Their calculated heat transfer 
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coefficients for injection through a row of holes and those measured by 

Eriksen and Goldstein [22] were in. satisfactory agreement at distances far 

downstream (x/D>30). Near the injection site, somewhat, appreciably lower 

coefficients were predicted. The authors suggested that this might have been 

due to an underestimation of the lateral mixing by the model. 

2.6 CONCLUDING REMARKS 

In the light of this literature survey, a few conclusions relevant to the 

present investigation can be made, 
i) Studies concerning the effects of density ratio have been mainly limited 

to the film cooling effectiveness. The influence of density ratio on the 

local heat transfer coefficient is yet to be determined. 

ü) The effect of adverse mainstream pressure gradient on the film cooling 
heat transfer coefficient has been shown to be generally insignificant. 

However, the effect of favourable pressure gradient is seen to have some 

contradictory results regarding the level by which the heat transfer 

coefficient is reduced. 
iii) Further development of correlations is needed to allow the application to 

design of the heat transfer coefficient data from unity density ratio tests. 
iv) The current schemes of computing film cooling heat transfer coefficients 

are, at present, unsatisfactory. 
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CHAPTER 3 

OBJECTIVES AND EXPERIMENTAL 

METHODS 

Chapter 3 outlines the objectives of the present work, explains the various 

experimental methods used to measure the heat transfer coefficient and the 

reasons behind the choice of the method used in this study. 

3.1 OBJECTIVES OF PRESENT WORK 

The review of the existing data on the film cooling heat transfer 

coefficient in the presence of density and pressure gradients indicates a need 

for further work. 

Film cooling is normally employed in gas turbine practice with large 

temperature differences between the mainstream and cooling air flows. This 

results in coolant to mainstream density ratios well in excess of unity. Cost 

considerations have resulted in many fundamental investigations being carried 

out at low temperatures, with density ratios near unity. The results of such 

experiments have shown the order of increase in the heat transfer coefficient 

produced by injection, and have given some insight into the flow mechanisms. 

But, since it is' evident that the film cooling process depends significantly on 

density ratio [32,66], these experiments do not yield data directly applicable 

in the design process, unless proper scaling is established and applied. 

Studies of heat transfer with film cooling under accelerating flow are also 

of practical concern, since both the pressure and suction sides of vanes and 

blades are exposed to favourable pressure gradients. Such studies, in particular 

those with the presence of severe mainstream acceleration are scarce. Firm 

conclusions on the influence of such conditions on the heat transfer rate have 
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not yet been reached, and such influence can not be disregarded. 

Many of the questions regarding the effect of density and pressure 

gradients on film cooling heat transfer coefficients, therefore, have remained 

unanswered. 
Furthermore, satisfactory prediction of the cooling film heat transfer 

coefficient by numerical methods is still lacking, in particular at regions close 

to the injection site where recirculation takes place. Consequently, further 

generation of models or improvement of existing ones is of substantial 

importance if prediction of the film cooling heat transfer coefficients is to be 

made successfully and more readily. 

The current work springs from the above considerations. It is an attempt 

to provide answers to these intricate questions. However, with time as the 

major constraint, the experimental results with different flow conditions are 

obtained only for two configurations of a single row of holes on a flat plate. 

The objectives of the present research may be summarized as follows, 

i) To investigate the effect of coolant to mainstream density ratio on local 

and spanwise averaged heat transfer coefficients. 
ii) To investigate the effect of mainstream acceleration imposed by moderate 

and strong favourable pressure gradients on the cooling film heat transfer 

coefficient. 

iii) To examine also the effect of density ratios, on the heat transfer coefficient 

in the presence of mainstream acceleration. 
iv) To attempt to formulate heat transfer coefficient data correlations for 

preliminary design calculations. 

v) To identify the optimum cooling conditions based upon the experimental 

results obtained, in an effort to reduce the penalties associated with 

excessive usage of cooling air. 

vi) To determine the suitability of a fluid dynamics computational program for 

the solution of three-dimensional film cooling problems. 

These objectives imposed the type of experimental apparatus to be 

employed and the nature of experiments to be performed. '. 
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3.2 EXPERIMENTAL METHODS OF ACQUIRING THE HEAT 

TRANSFER COEFFICIENT 
\Various experimental methods have been developed by researchers 

seeking accurate measurements of) local and mean Cheat transfer coefficients) 

under cooling films. Such methods utilize either a heat or a mass-transfer 

analogue system, and usually employ either a constant surface temperature 

(constant surface concentration in mass-transfer analogue processes) or a 

constant heat flux along the surface. 

A summary of the most widely used techniques is given in the following. 

For. a more comprehensive review, the reader is referred to Button and 
Mohamad [67] and Hay [68]. 

J 

3.2.1 Heat Transfer Techniques 

The thermal method is the most common used to determine the heat 

transfer coefficient. Thermally isolated copper or aluminium strips running 

spanwise across the test surface are heated electrically, directly or through 

cemented wire resistors, by passing a measured current through them. The 

strips, thus, produce a constant heat flux when heated and adiabatic wall when 

unheated. The heat transfer coefficient is determined from the local surface 

temperatures measured using a large number of themiocouples embedded in 

the insulation behind the heater strips or bonded between them, the heat 

transferred to the working fluids and the associated fluid temperatures. Such 

systems had been used by Eriksen and Goldstein [22], Foster and Haji-Sheik 

[54] and Mick and Mayle [69]. 

Another method utilizing an electrically heated surface uses a thin layer 

of cholesteric - liquid crystals over the heated surface. The crystals display 

different colours in response to different temperatures. The thermal 

visualization determines the surface temperatures and consequently the local 

heat transfer coefficient, as has been used by Hippensteele et al [70]. 

Kruse [27] used a heat transfer model made of plastic with a poor 

thermal conductivity. Copper blocks embedded in the model were individually 
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cooled by internal air flows. The heat flux at different streamwise positions, 

averaged in the spanwise direction, was determined by the measured mass 
flow and the inlet and outlet temperatures of the individual internal air flows. 

The surface temperature was measured by means of a calibrated infra-red 

pyrometer, and the fluids temperatures were measured by thermocouples, thus 

giving the heat transfer coefficient. 

Such tests are normally performed in steady state wind tunnels at low 

speed and low temperature. However, Liess [24] with a similar experimental 

model using heater strips and thermocouples in a blowdown wind tunnel test 

facility, measured lateral average heat transfer coefficients at Mach numbers 

and Reynolds numbers representative of gas turbine conditions. The 

coefficients were obtained by being related to the transient variation of 

temperature of the heater strips. 

Short duration test techniques, such as isentropic light piston tunnels, 

facilitate a more complete modelling of the engine environment. Air at 

constant pressure and temperature flows through a working section having a 

pre-cooled or pre-heated isothermal test surface. The heat transfer rates from 

the surface are measured using thin, film resistance gauges associated with 

analogue circuits of transient surface temperature techniques. In addition, 

pressure transducers and thermocouples are used to measure the injection and 

mainstream flow properties during a test. This method-has been used by Forth 

et al [12] and Ligrani and Camci [34]. However, the size of the gauges 
dictates that the coefficients measured are spanwise averaged, rather than 

local. 

3.2.2 Mass Transfer Techniques 

In view of the difficulty of measuring accurately the local heat transfer 

coefficient using thermal systems, other workers [71,72] resorted to an 
alternative method utilizing mass transfer analogue experiments, primarily the 

sublimation of naphthalene. In this technique the test surface is made of a 

removable section made of naphthalene. Local mass transfer coefficients are 
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determined from the local depth of sublimed naphthalene surface. The latter is 

obtained by local measuring of the surface profile before and after exposure 

to the flow field employing an accurate mechanical depth gauge. If average 

mass transfer coefficients are required, the naphthalene section is divided into 

segments. The weight of the naphthalene segments before and after exposure 

to the air streams determines the mass transfer rate. 

A relatively new mass transfer method for the acquisition of heat transfer 

coefficient data from film cooled surfaces is the swollen polymer technique 

[73]. Instead of a naphthalene coating, a polymer coating swollen to 

equilibrium by absorption of an organic swelling agent is used. Loss in the 

swelling agent to the flow field results in a reduction in thickness linearly 

related to the mass transferred. Use of laser interferometry produces a 
hologram with a fringe pattern from which the coating recession, and 

therefore the mass (heat) transfer coefficient, can be deduced at all points on 

the surface. 

3.3 CHOICE OF EXPERIMENTAL TECHNIQUE 

In regard to achieving the objectives set for the current research, and 

after evaluation of the two experimental approaches, the mass transfer 

approach was favoured over the heat transfer one. It was selected for the 
following reasons, 
i) The mass transfer method offers a good spatial resolution, so that 

accurate local measurements of mass transfer at the surface are 

achievable. 

ii) A large range of coolant to mainstream density ratio can be easily 

obtained by using unheated mainstream air and injecting a dense gas or a 

mixture of gases to achieve the desired density ratio. This avoids the task 

of heating a large mass of mainstream air to a high temperature or 

chilling injectant air, which would cause condensation and icing. 

iii) Errors produced by heat conduction within the wall in thermal techniques 

especially when large temperature differences are present close to the 
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injection location are avoided. 

The conventional mass transfer technique of naphthalene sublimation is, 

however, slow and cumbersome, the naphthalene mass lost by sublimation due 

to diffusion and convection is deduced from a lengthy and tedious process by 

mechanically measuring thickness changes of the coating. Corrections 

accounting for mass losses by free convection during thickness measurement 
have to be considered. The coating also requires frequent reconstruction to 

maintain an acceptable smooth hydrodynamic surface. 
A more convenient and powerful mass transfer method is the swollen 

polymer technique. Here, surface restoration requires only immersion of the 

surface in a swelling agent for a few hours. The very small changes in the 

coating thickness are accurately, quickly and easily measured using laser 

holographic interferometry. This yields high resolution and full surface 

mapping of the mass transfer. The swollen polymer technique is therefore 

chosen for conducting the present experimental research. A detailed 

description of this method is given in the following chapter. 

3.4 MASS TRANSFER ANALOGY 

Analogous mass transfer techniques have been used in many studies for 

the determination of the influence of injection on the heat transfer coefficient 
[21,71]. Using a mass transfer technique dictates that a mass transfer analogy 
for the film-cooling process must be satisfied: The heat-mass transfer analogy 
holds if the Sherwood number, Sh, describing the mass transfer coefficient is 

equivalent to the Nusselt number, Nu, describing the heat transfer coefficient. 

This can be so if the Schmidt number, Sc, for the mass transfer process is 

equal to the Prandtl number, Pr, for the heat transfer process. For a turbulent 

flow, this implies not only the molecular diffusion numbers but the turbulent 

ones as well. 

In addition, similar initial boundary conditions must be maintained and 

the film-cooling controlling parameters must have the same magnitude. 
Further, one boundary condition at an impermeable wall for the momentum 
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equation is zero normal velocity. However, in a mass transfer situation, there 

is a finite migration of the mass transferring material to the flow streams 

normal to the wall surface. This is generally very small so that it does not 

significantly affect the validity of the analogy [74]. 

Thus, a constant concentration surface mass transfer correlation 
Sh=f(Re, Sc) can be utilized as Nu=f(Re, Pr) for an isothermal surface heat 

transfer calculation. However, if, as is the case in film-cooling experiments, 

the form of the function is not known, difficulties arise if Sc and Pr are 

different. Launder and York [75] stated that it is generally acknowledged that 

the turbulent Prandtl and Schmidt numbers are equal. Eckert and Drake [76] 

suggested that experimental evidence also point to the fact that the turbulent 

numbers are equal. By contrast, the molecular Prandd and Schmidt numbers 

are usually different; the Sc for naphthalene diffusing in air at ambient 

temperatures is approximately 2.5, and 2.85 for ethyl salicylate organic 

compound diffusing in air used in the swollen polymer technique [21]. Both 

are many times greater than the Pr of air (=0.71). 

Fortunately, that particular difficulty has been easy to circumvent. If it is 

assumed that the form of the functions of Reynold and Schmidt numbers can 

be written as a product of individual functions of these groups, i. e. 

Sh=f, (Re)f, (Sc), ratios of Sherwood number in the analogue mass transfer 

experiment will then be equal to Nusselt number ratios in the heat transfer 

experiment even though Sc and Pr are not matched. 

When absolute values of heat transfer coefficients rather than ratios are 

acquired, researchers [77] generally use the correlation forms derived from the 

Reynolds' analogy, such as the Chilton-Colburn analogy, 

h=h. p c, (Pr/Sc)'"' 

where hm is the mass transfer coefficient, and p and c, are the density and 

specific heat of the experimental fluid. 

Others, for example Goldstein & Taylor [71], Webster & Yavozkurt [72], 

and Han et al [78] put their results in the following experimentally validated 
form, 
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Nu = (Pr/Sc)' Sh 

where n has a value of the order of 0.4. 

However, in this research the heat transfer coefficients are presented as 

ratios. 

An exact analogy for the variable property situation does not exist. 
However, Eckert and Goldstein [79] have shown that the heat-mass transfer 

analogy holds with a good approximation when the density ratio of the 

coolant to the mainstream has the same value for the mass transfer experiment 

and the analogous heat transfer situation. 
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CHAPTER 4 

14 , THE SWOLLEN POLYMER TECHNIQUE ý ' 

Description of the swollen polymer technique is provided in this Chapter. 

Further, the factors determining a suitable choice of polymer-swelling agent 

system for the present film cooling experiments are outlined. 

4.1 THE SWOLLEN POLYMER TECHNIQUE 

The experimental technique of swollen polymers is comparatively a novel 

one devised for the determination of local convective transfer coefficients. 

This powerful and versatile method has been developed by Macleod and co- 

workers [80,81] at Edinburgh University. Swollen polymers supplemented by 

laser holographic interferometry offer the advantages of precision, rapidity, 

simplicity and very high spatial resolution over the conventional naphthalene 

coatings. Further, the polymer can be applied to surfaces of quite complex 

geometry, which could not be formed of naphthalene. 
The technique incorporates a mass-transferring surface of permanent 

polymer coating such as silicone rubber. The coating, of thickness normally 

between 0.1 and 1.0mm, has its superficial area maintained nearly constant by 

adhesion to a rigid test surface. The coating is swollen to equilibrium in a 

reversible manner by a suitable liquid swelling agent. Equilibrium swelling is 

achieved simply by immersing the coating in a bath of the swelling agent for 

a few hours. Because the swelling is to equilibrium the concentration of the 

swelling agent is constant over the coating surface, simulating isothermal 

conditions. Convective evaporation of the swelling agent to a flowfield, within 

designated limits, results in a local change of a few microns in the polymer 

coating thickness proportional to the local mass transfer coefficient. This is 

realised only if the following basic conditions hold [801, 

41 



i) The reduction in coating thickness is proportional to mass of swelling 

agent transferred 

ii) The constant vapour pressure of the swelling agent over the surface (or 

the constant swelling agent concentration at the surface) remains sensibly 
invariant as the transfer proceeds. 

iii) The overall resistance to mass transfer is predominantly in the gas phase. 
iv) Lateral diffusion of the swelling agent within the polymer is insignificant. 

Satisfactory practical fulfilment of these requirements at certain chosen 

conditions has been shown to apply by Macleod and Todd [80], who have 

conducted experimental and theoretical analysis of these requirements. 
However, the chosen conditions imply that for any swollen coating system the 

period of experiment "must" be limited to the "constant rate period". During 

this period, the deviation of convective transfer from the requirements outlined 

above remains within acceptable limits. A proper choice of polymer-swelling 

agent system, suitable to the conditions and - duration of the specific 

experimental situation, can therefore generally fulfil the requirements. Such 

swollen polymer systems can give an accurate measurable loss of mass 

transfer, and hence mass transfer coefficients, over a convenient constant rate 

period. 

" 4.1.1 The Constant Rate Period 

The constant rate period for any swollen polymer is estimated from the 

maximum allowable fractional recession of the coating, which can be 

calculated from the theoretical analysis provided in [80]. 

It is always desirable to have a constant rate period long enough to 
minimize start-up and shut-down errors. 

The length of the constant rate period depends upon many factors, a 
discussion of which is given elsewhere [82]. However, the effects of these 
factors on the constant rate period may be summarized as follows, 

i) High rates of transfer and high Reynolds number flows give 
inconveniently short constant rate periods. 
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ii) High equilibrium swelling is desirable to lengthen the constant rate period. 
iii) The higher the diffusivity of the swelling agent within the polymer phase 

the longer the period of the constant rate. 
iv) The higher the operating temperature the shorter the constant rate period. 

v) The constant rate period depends only slightly on the initial swollen 

polymer thickness when the coating thickness is small, <1mm. 

vi) The constant rate period is highly sensitive to the vapour pressure of the 

swelling agent. The vapour pressure depends both on temperature and 

composition of swelling agent in the swollen coating. A comparatively 
low saturation vapour pressure swelling agent increases the constant rate 

period considerably. Further, a maximum change of 5% of the initial 

value of the vapour pressure is tolerable during the course of an 

experiment for it would have a negligible effect on the determination of 

mass transfer coefficient compared with other sources of error [80]. 

It is noteworthy that theoretically calculating the constant rate period 
leads to pessimistic estimates of the permissible duration of an experiment 
[80]. The time interval at which 5% change of vapour pressure is allowed 

would be much' longer if the mass transferred is time averaged or "integrated" 

(that is determined by dividing the total weight loss by the total time). Kapur 

[83] showed by experiment that the measured integrated constant rate periods 
for some polymer-swelling agent systems to be more than twice the length 

predicted by the theoretical analysis. 

In film cooling experiments, high local mass transfer rates are present 
near the injection site, the "integrated" constant rate period suggestion could 

not be accepted, and all of the mass transfer experiments in this research were 

operated inside the theoretically estimated constant rate period. The latter was 

calculated based on 5% allowable change in the saturated vapour pressure of 

the swelling agent used. 
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4.1.2 Determination of Mass Transfer Coefficients 

The local mass transfer coefficient, ho� at any point on the surface 

measured using the swollen polymer is, 

m"=h (C -C.. ) ---(4.1) 

where m" is the mass flux at that point, C. and C. are the concentration of 

swelling agent vapour at the wall and the free stream respectively. Equation 

(4.1) is analogous to equation (1.1). However, since the concentration of the 

swelling agent in the free stream, C. � is equal to zero, 

m"=h. C,, ---(4.2) 
The mass flux, m", at any point of the polymer surface in time t can also 

be calculated from the measured change of the swollen coating thickness (i. e. 

recession), S� at that point, 

m"=p. S. /t ---(4.3) 

where pK is the density of the swollen polymer. 

From equations (4.2) and (4.3) we have, 

h.. = (P. ý 8j/(C. t) ---(4.4) 
Thus local mass transfer coefficients can be determined from 

measurements of coating shrinkage if C.. and p. e are known. 

The concentration of the swelling agent vapour in air just above the 

polymer surface, G,,, is given by [84], 

G,. = M. x. L. x22 $/cm ---(4.5) 
22400 760 T 

where M. is the molecular weight of the swelling agent, and P. is the vapour 

pressure over the polymer coating swollen to equilibrium, in mm Hg at a 

temperature T, in Kelvin. 

The saturation vapour pressure, P,, is generally given in the literature for 

many organic agents as a function of temperature. 

As for the density of the swollen polymer, pK, Kapur and Macleod [84] 

have found experimentally that, for small recessions, the relation between 

recession and weight loss for the saturated swollen coating is the same as that 

for a homogeneous subliming solid of the same density. Thus p. e 
is given by, 

1/P.. _ (a/p, ) + (1-a)/p. --- (4.6) 
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where a is the mass fraction of the swelling agent in the swollen polymer, 

which is a measured value, p. and p. are the densities of the swelling agent 

and the polymer coating respectively. 

Information on p. and p. is provided by the manufacturer, or may be 

obtained from data sources. 

The diffusivity of the vapour of the swelling agent in the experimental 

fluid is needed for conversion of the mass transfer coefficient into heat 

transfer coefficient. It can be calculated reasonably accurately using 

established empirical correlations if not available in data sources. 

Therefore for accurate measurement of mass transfer coefficients using the 

swollen polymer method it is essential to obtain accurate measurement of 

coating recession. By using a transparent swollen polymer with a good optical 

quality maintained before and after sublimation the local shrinkage in coating 

thickness can be measured accurately and easily by holographic interferometry. 

It is worth noting that interferometric techniques cannot be employed with 

conventional coatings. 

4.2 LASER HOLOGRAPHIC INTERFEROMETRY 

Holographic interferometry is a technique widely used to provide accurate 
information about surface displacements or deformations of solid objects in 

the form of interference fringes recorded on a photographic plate, called a 

hologram. The basic principles of interferometric holography can be found in 

many text books, e. g. Ostrovsky et al [85]. 

In the swollen polymer technique holographic interferometry is used to 

measure accurately the recession at all points of the surface of a transparent 

polymer coating applied to a diffusely reflecting substrate. To obtain a 

hologram of the coating recession, a beam of coherent laser light is split into 

two beams (see Fig. 5.7 in chapter 5). One beam is scattered from the fully 

swollen polymer coating (object beam) in its initial state and the other 

illuminates a photographic plate (reference beam). Both beams interfere with 

each other and fall upon the photographic plate to record. a density pattern of 
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the light reflected from the coating, thus forming a first exposure. A second 

exposure is then made on the same photographic plate after subjecting the 

polymer coating to an air stream causing the recession to be examined. When 

the resulting double-exposure hologram (or interferogram) is developed and 

reconstructed by illumination with the reference beam, bright and dark fringes 

are observed to be superimposed on the polymer coating. The interference 

fringes are produced by the change in optical path length of the object beam 

created by the coating shrinkage between the making of the two exposures. 

These fringes are contours of equal recession or equal mass transfer. From the 

geometry of the optical setup and the physical properties of the swollen 

polymer it is possible to evaluate the coating shrinkage at any point of the 

surface, provided the fringe order at that point is identified. 

It is important to note that precise relocation of the object on the 

holographic setup is essential for spurious fringes that could be caused by 

improper relocation be avoided. 

The method of holographic interferometry 'described above where two 
holograms corresponding to two states of the polymer coating recorded on one 

photographic plate is called the "double-exposure" method. The fringes 

produced are known as "double-exposure" or "frozen" fringes. Alternatively, if 

a hologram of the polymer initial state is developed in-situ (or precisely 

relocated in its previous position after being developed elsewhere), and is 

viewed when illuminated by the reference beam while mass is transferring 

from the polymer coating, interference fringes will develop in real time. The 

fringes appearing by this "real-time" method are known as "live" fringes. 

4.2.1 Fringe Order Identification 

In order to translate the interference pattern to the thickness changes of 

the polymer coating at all points in the surface, the order of each fringe must 

be established. In experiments using the real-time method the fringe order can 

be fairly readily identified by counting the number of fringes passing through 

a point on the surface. The task may even be simplified further if the 
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interferogram includes a region of zero fringe order (i. e. zero recession) to 

which other fringes can then be related. 

In other kind of experiments where a wind tunnel is used as in the 

current work, it is only possible to use the double-exposure method. In this 

case the zeroth fringe can not be identified on the interferogram as generally 

it will not appear there since the whole polymer surface would have suffered 

a mass transfer. Moreover, the way the fringe order changes (increase or 

decrease) at a given point is not known. 

However if the fringe number and direction of increase at a reference 

point are determined the fringe order at all points of the surface can be 

deduced. One method of determining the fringe number at a selected reference 

point is by the use of an air-gauge as a means of measuring the absolute 

recession at that point. That is by taking two measurements one before 

sublimation and one after. 

The air-gauge is capable of providing very accurate measurements of 

small changes in displacement at a point. However, evaporation of the 

swelling agent by the impingement of the supply air of the air-gauge on the 

swollen polymer surface, and relocation of the air-gauge probe to take the 

second measurement at the same point produce errors of the order of one or 

two fringes. It is of advantage, therefore, to make the air-gauge measurement 

at a point of high recession to reduce the errors associated with such method. 

Another method of identifying the fringe order was used by Hay et al [86]. 

A jet saturated with the same swelling agent as that in the swollen polymer 

was used to create an area of zero recession on the surface. They found that 

it was difficult to ensure full saturation of the jet, and success using this 

method was therefore inconsistent. 

An attempt was made to improve on the accuracy of obtaining a region 

of zero recession. A soft sponge continuously wet with the swelling agent was 

kept in contact with an area of the polymer test surface during the mass 

transfer phase in the wind tunnel. An area of no recession was obtained, 

however, the -many fringes around it could not be totally resolved as they 
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were too close to each other. Further improvement of this method is needed, 

but it could have been more successful if used at lower Reynolds number 

flows and/or for shorter exposure times to the flows than have been used in 

the experiments of this research. 

To find whether the fringe order is increasing or decreasing at a point, a 
hologram of the initial state of the polymer test surface is made and 

developed in-situ. The polymer surface after being exposed to the flow stream 

in the wind tunnel is accurately relocated on the holographic table and is 

viewed through the hologram. Slight displacement of the test surface towards 

the photographic plate moves the fringes towards an area of high recession (a 

valley) or away from a low recession area (a hill) on the surface [87]. This 

information may also be found by the use of two air-gauges separated by a 

distance in the streamwise direction [21]. 

The air-gauge was the tool used for fringe order identification in the 

current work. Modifications to the basic air-gauge system were implemented 

in an effort to reduce the errors inherent in the tool when used with swollen 

polymers. 

4.2.2 Relationship Between Recession and Fringe Order 

From the known geometry of the optical setup the change in optical 

path-length, S, with recession, 8, at a given point of a transparent coating of 

refractive index N can be calculated from the following equation given by 

Kapur and Macleod [88], 

S=8 (N-cos(i,:. ) + NT H 
l Cosa cosB 

where i, and i2 are illuminating 

sin(a)=sin(i, )/N and sin(B)=sin(is)/N. 

and viewing angles respectively, 

The difference in optical path length between points on successive fringes 

is )2 where ), is the wavelength of the laser light. If the fringe order is n 

then S=04, subsequently the recession, 

S, IIX /( -cos(i, - + N-cos(i, -B)1 --- (4.7) 
2 cosa cosB J 
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Therefore the recession at any point in the polymer surface can be 

accurately evaluated once n, X, N and the geometry (i�i2) are known. 

The fringe order n can be determined by the use of an air-gauge as 

explained in section 4.2.1 above. The wavelength X of the laser light used is 

known. The variation of the refractive index N with composition of the 

swelling agent in the polymer was shown by Kapur and Macleod [81] to be 

very small over the composition range within the constant rate period (<1% 

for silicone rubber-ethyl salicylate system). The illumination angle i, and the 

viewing angle iz are known from the optical arrangement. But, if i, and iz are 

large the geometrical factor which involves cosines of these angles may vary 

over the test surface so that the fringes may not be directly contours of equi- 

recession. However, Maali [89] has shown that for a flat test surface the 

variation in the geometrical factor over the whole surface is negligible (<1%, 

i. e. <112 a fringe for a 20x2Ocm plate and i1<23°). Maali has also shown that 

the variation becomes significant for curved surfaces. 
The optical setup for the present study, is described in the following 

chapter, while reduction of the experimental data for calculating the film 

cooling mass transfer coefficient using the swollen polymer method - is 

provided in chapter 6. 

_. _ ýx_ ra.. r.. 

4.3 APPLICATIONS 

The swollen polymer technique in conjunction with laser holographic 

interferometry has 
. 
found applications to a variety of problems in mass 

transfer. Kapur and Macleod [81] examined the mass transfer coefficients 

variation over a flat plate surface exposed to tangential and normal 

impingement of a laminar air jet. Masliyah and Nguyen [90,91 and 92] used 

the polymer technique to study mass transfer under laminar conditions for jets 

issuing from square, rectangular and two-dimensional tubes and impinging on 

a flat surface. Recently, the technique has been extended by Hay et al [21, 

77] to determine heat transfer coefficients and adiabatic effectiveness of film 

cooled flat plates. 
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In this work the technique is utilized to convey film cooling heat transfer 

coefficient data at conditions partly simulating realistic conditions in gas 
turbines. 

4.4 SELECTION OF SUITABLE POLYMER-SWELLING AGENT 

SYSTEM FOR THE CURRENT WORK 

The polymer used in the mass transferring system is polydimethylsiloxane 
(PDMS) available commercially as RTV615 from the General Electric 

Corporation (U. SA. ). It has a good swelling properties with respect to many 

organic agents, adequate optical properties to provide good holograms, 

relatively easy to prepare and adheres firmly to metal test surfaces (aluminium 

or stainless steel) with the aid of a thin layer of silicone primer. Furthermore, 

it is permanent so that it can be reactivated any number of times by 

re-immersion in the organic compound. 

In order to choose a suitable swelling agent it was necessary to conduct 
theoretical and experimental investigations on some potential swelling agents. 
Upon the outcome of these investigations, described in Appendix A, it was 

concluded that n-tetradecane is the most appropriate swelling agent of the 

options available in the application of the swollen polymer technique to film 

cooling. However, one drawback was encountered using tetradecane as the 

swelling agent, the swelling of RTV615 by tetradecane is rather high (=50% 

of the initial coating thickness) [93]. Such high swelling was undesirable since 
it could cause a disturbance to a hydrodynamic boundary layer over a smooth 

test surface. This effect was minimized by reducing the dry coating thickness 

to 0.3mm. 

The advantages upon which n-tetradecane was chosen are summarized as 
follows, 

i) Long constant rate period at high rates of transfer. 

ii) Availability of accurate vapour pressure data. 

iii) Its low vapour pressure at ambient temperatures validates the assumption 

of negligible free convection during air-gauging. 

50 



iv) Errors associated with fringe order identification are smaller than those of 

other potential swelling agents. 

v) Consistency and good repeatability of results as shown in chapter 6. 

vi) Has a satisfactory shelf-life, it does not degrade rapidly with time. 

vii) Readily available at adequate purity. 
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CHAPTER 5 

THE EXPERIMENTAL APPARATUS 

In this Chapter, description of the experimental apparatus is provided. 

5.1 THE WIND TUNNEL 

The experiments were conducted in an existing but modified low-speed, 

low-turbulence, open-circuit wind tunnel. A general view of the wind tunnel is 

shown in Plate 5.1, and a layout is shown in Fig. 5.1. Previously, this tunnel, 

on which the film cooling studies of Foster and Lampard [66] and Afejuku et 

al [46] had been carried out, was of an open return centrifugal blower type. 

Later, Hay et al [86] found that the tunnel could only supply low mainstream 

flow rates in the tunnel working section and was not satisfactory for their 

work. A laboratory compressor plant which could provide high and constant 

mainstream flow rates was therefore utilized. However, preliminary tests by 

the author have shown that the mainstream velocity field over the test surface 

in the test section was not uniform, this being due to continuous accumulation 

of dust from the incoming compressed air in the entrance section of the wind 

tunnel. Major modifications had, therefore, to be made to the entrance section. 

The floor and roof of the test section, together with the injection system were 

among other components modified to suit the current work. 

The main flow was passed through an entrance section, a test section, a 

diffuser, and finally through a silencer before being discharged outside the 

laboratory building. 

In addition, a thermostatically controlled heater had been installed in the 

pipework feeding the pressurised air from the compressor plant, restricting 

temperature fluctuations in the test section during an experiment to within 

±0.2°C. This was necessary in order to determine the absolute mass transfer 
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coefficient accurately using the swollen polymer technique, as the swelling 

agent partial pressure is strongly dependent on temperature. 

The wind tunnel sections are now described proceeding in the now 

direction. 

5.1.1 The Entrance Section 

The entrance section was of rectangular cross-section and consisted of the 

following components: air filters, honeycomb flow straighteners, gauze screens, 

and a contraction (see Fig. 5.1). 

Three panel type veeglass air filters of 50mm thickness each were fitted 

50mm distance apart in the upstream portion of the entrance section. The 

panels provided adequate filtration and on average arrested 86% of the 

incoming air dust. The upstream filter was usually replaced every 20 working 

hours since the compressed air carried relatively large amounts of dust, while 

the other two were replaced every 40 working hours. Panels were replaced by 

simply sliding them through grooves made inside the wooden walls of the 

entrance section, and were moved in or out through a side door. 

Directly downstream, an impregnated paper honeycomb straightener of 

length to diameter ratio of 8 as quoted by Bradshaw and Pankhurst [94] is 

located to remove any swirl in. the flow. The flow turbulence level was 

reduced and the velocity lateral variation removed by three stainless steel wire 

mesh screens of 31.4% open area ratio. The screens were placed in the 

downstream direction more than 500 wire diameters apart [94]. Pressure 

tappings were embedded in the side wall both upstream and downstream of 

each screen. Effective blockage of the screens by the mainstream air dust was 

indicated by the change in pressure drop across a screen. Cleaning of the 

screens during the experimental phase of the research was required only 

occasionally, as most of the dust was retained by the upstream air filters. 

A contraction of 3: 1 area ratio connected the entrance and test sections. 
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5.1.2 The Test Section 

The test section was attached firmly to the end of the contraction part of 

the entrance section. This section was 928mm in overall length and 381mm x 

152mm in cross section at entry. Plate 5.2 and Fig. 5.2 show a general view 

and detail of the test section respectively. 

The bottom wall of the test section was composed of two segments (parts 

A and B in Fig. 5.2) separated by a boundary layer bleed slot (part C), which 

reduced the test section height to 133mm. The bleed removed the floor 

boundary layer and thereby provided a newly-defined boundary layer over the 

part of the test section floor incorporating the film cooled test surface. Four 

pressure tappings made from hypodermic tubing were embedded evenly at 

both sides of the tip of the bleed slot. These taps, combined with a hinged 

aluminium flap controlling the flow through the bleed, ensured that the 

location of the stagnation point was at the tip of the bleed slot, and thus the 

main flow was parallel to the test surface. 

A trip wire of 0.70mm diameter was situated 38mm downstream from the 

edge of the slot bleed. In this way, a fully developed turbulent boundary layer 

was obtained over the whole of the film cooled surface. 

Downstream of the trip wire, the test section floor (part B) of a smooth 

top surface had a 216mm diameter circular hole cut through it so that a 

removable assembly of circular flat plates (part D, described in detail later) of 

the same floor hole diameter could be inserted and spring clamped in position. 

A steel locating pin fixed to the bottom surface of the floor and aU shape 

cut in the test plate flange (see Fig. 5.4) assisted similar relocation of the 

plate axes when fitted to the floor hole. Six spring clamps with rubber pads 

were located at even intervals around the hole to hold the test plate in 

position (see Fig. 5.2). The rubber pads were used to alleviate any point 

stresses at the point of contact between the clamps and the plate. A rubber 

tube seal was also incorporated into a groove in the bottom surface of the 

floor around the hole to stop any outward leakage of fluid from around the 

plate periphery. Furthermore, the wall was equipped with static pressure taps. 

56 



w 0 
o V 

o .. c 
Ü 

aý 
co 

u 
0o 

b 
c 

--------------, 
-. --- 6. 

jJ1 
1:; 

' .. 7 

ti 

a 

c 0 r. r 
u a 

a 

s 

0 
r 
4J 

N 
1 

an 
Gý 

57 



928mm 

611mm 

PERSPEX SIDE 
-ALUMINIUM ANGLE 

PRESSURE TAPS 
ALUMINIUM FLOOR 

, 12mm THICK 

+4+ 

A 

PLYWOOD FLOOR 

ýe ý 
i . 

`TEST PLATE 

PRESSURE TAP OF STAGNATION 
POINT INDICATOR 

I. ----------------- ----------------------------------- 

---ýý- - -- ----- --- ý- 

ALUMINIUM ANGLE 

BLEED SLOT- 

SPRING CLAMP 

`-KINEMATIC RIB 

INJECTION TUBES 

RUBBER SEAL 

RUBBER PAD 

Fig. 5.2 Details of the test section (excluding the roof). 
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The taps were located in the streamwise direction on both sides of the hole 

and were connected to a multi-tube manometer. 

The side walls of the tunnel test section were made of Perspex. The roof 

was not fixed, so that it was possible to use different contour roofs. The 

contours were constructed from 1mm thick plywood fixed on strong wooden 

frames. Each contour incorporated a groove on the centreline and a row of 

holes at off centreline positions for the introduction of pitot and hot-wire 

probes for boundary layer and turbulence measurements. The groove and the 

holes were taped over when not in use. Three contour roofs were made, the 

profiles of which are shown in Fig. 5.3, permitting the generation of zero, 

moderate and strong favourable pressure gradients. The contours could be 

moved up or down or angled to tailor the desired acceleration parameters 

between zero and 5x 10'. 

The test section was enclosed in a large environmental chamber in order 

to utilize the bleed air in maintaining all surfaces at the tunnel operating 

temperature (see Plate 5.1). In addition, a temperature controlled heater was 

employed, the purpose of which was to control and speed up the tunnel to 

reach isothermal conditions. The test plates, partially immersed in swelling 

agent contained in stainless steel baths, were also kept in the chamber, so 

they too assumed the same tunnel temperature. The environmental chamber 

constituted a timber framework (2.45m x 2.26m x 2.37m) which was double 

glazed by polythene sheeting. 

5.1.3 The Test Plate 

The test plate was a major component of the test section since it formed 

the film cooled surface and the injection arrangement. 

Three test plate assemblies were made, each had a different injection 

configuration, one of which is shown in Plate 5.3 and details are shown in 

Fig. 5.4. Each assembly was manufactured from a plain aluminium sheet and 

machined to accommodate the items shown in Fig. 5.4. 
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(A) constant mainstream velocity, K=0.0 

(B) moderate acceleration, K=19 X10-6 

(C) strong acceleration, K=5.0 x 10-6 

Fig. 5.3 Profiles of contours in the test section. 
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Fig. 5.4 Details of the test plate. 
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The transparent silicone rubber coating (RTV615) formed the mass- 

transferring surface after being swollen in n-tetradecane. The coating was 

applied to the test plate so that its surface and the tunnel floor provided a 

hydrodynamically smooth surface. 

The application of the polymer coating to the recess in the test plate top 

surface is described in detail in [82]. 

The stainless steel hypodermic tubes that fed the injectant were fitted 

flush with the coating surface. The tubes were at 235mm downstream of the 

trip wire when the plate was fitted in the test section floor. 

One test plate incorporated only a single injection tube held normal to its 

surface, whereas, each of the other two plates contained a single row of seven 

injection tubes held at three hole diameters between their centres in the lateral 

direction. One row was normal to the streamwise direction and the other was 

inclined at 35°, as shown in Fig. 5.5. 

The stainless steel kinematic rib screwed to the underside of the test 

plate, Fig. 5.4, allowed extreme precision of location on a fixed kinematic 

mount placed on the holographic table (see Plate 5.4). The kinematic rib and 

the kinematic mount featured the classical fixture of "hole, groove and plane", 

removing the six degrees of freedom of the test " plate by the use of six 

contact points, a description of which is given by Kapur and Macleod [88]. 

A dummy aluminium plate (without a polymer coating) of similar size to 

the coated test plates was also made. The plate had static pressure taps 

embedded at one side. The dummy plate was used to fill the hole in the test 

section floor during the time it took the tunnel to reach steady and isothermal 

conditions before carrying out a test, and was also used when measurements 

of the boundary layer were made. 

5.1.4 The Discharge Section 

The whole of the discharge section was retained without any 

modifications for this work. 
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A diffuser with an adjustable roof was attached to the downstream end of 

the test section. The roof was movable and so could be adjusted to match the 

height of any of the test section contours used, in addition to providing some 

diffusion 

A second diffuser with an adjustable roof similar to the first was also 

used to enlarge the diffusion angle. At its downstream end, a 450mm 

diameter, 5m long flexible circular duct was connected. The other end of the 

duct was attached to a silencer box for discharging the compressed air outside 

the laboratory building. 

5.2 THE INJECTION SYSTEM 

The air injectant was drawn from the laboratory compressor plant 

supplying the mainstream through a separate supply line. The injectant flow 

rate was controlled by a needle valve and metered by a calibrated rotameter. 

Three rotameters were used allowing accurate measurement of both small and 

large injection rates, the calibration of which is described in [82]. Valves were 

fitted at both ends of the medium and large flow capacity rotameters to 

permit the use of either depending upon the desired flow rate. 

When a foreign gas or gas mixtures were used as the injectant, it was fed 

from pressurised bottles through a pressure regulator, which reduced the 

pressure and eliminated any pressure fluctuations, Fig. 5.6. The foreign gas 

was then adjusted by the use of a needle valve and passed through about 5 

meters of 10mm O. D. coiled copper tube before being metered by the 

calibrated rotameters. A controlled electric band heater kept the temperature of 

the pressure regulator steady when carbon dioxide high pressure cylinders 

were used. 

A plenum chamber was connected to the outlet of the rotameters. The 

chamber contained a straightener and two gauze screens, thereby smoothing 

out any velocity nonuniformity through it. Seven equally spaced hypodermic 

tubes of 2.30mm I. D. formed the exit of the plenum chamber. At their exit, 

seven long flexible nylon tubing were connected to carry -the coolant fluid to 
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the hypodermic injection tubes of the test plate. The long injection tubes 

ensured having fully developed flow at their exit. 
The whole of the injection system was placed inside the environmental 

chamber to ensure that the secondary fluid was at the tunnel operating 

temperature when injected. 

5.3 INSTRUMENTATION 

Instruments were used to measure the boundary layer velocity profiles and 

turbulence intensities over the test surface both with and without injection, 

and temperature. 

The boundary layer velocity profiles without injection were obtained using 

a small flattened total pressure probe and the static pressure taps of the tunnel 

floor of the test section. The probe was mounted on an existing sliding 

carriage with a micrometer head which provided both axial and vertical 

positioning of the probe tip for measurements. The probe could be inserted 

into the flow through either the groove or the holes of the contour roofs. 

The variation of longitudinal flow turbulence intensity and velocity 

profiles with and without injection were also obtained using a DISA 55-DO1 

constant temperature hot wire anemometer employing either straight or 90° 

probes. The probe was carried and inserted into the flow as for the total 

pressure probe. 

Precise temperature control and measurements were needed. As stated 

earlier the vapour pressure of the swelling agent is strongly dependent upon 

temperature, and more seriously spurious fringes may appear on the film 

cooling interferograms as a result of thermal effects. Temperature was 

measured using calibrated chromel/alumel thermocouples (Ni-Cr/Ni-Al) in 

conjunction with a digitiser which translated the voltages into temperatures 

(description of calibration is given in [82]). Four thermocouples in all were 

used; one was embedded in the pipe feeding the plenum chamber to measure 

the injection gas temperature before injection, another was inserted through the 

roof of the test section to measure the mainstream temperature, and the 
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remaining two measured the environmental chamber and the swelling agent 

bath temperatures. The bath was used to soak the test plate prior to a test and 

also to ensure that the plate was at the same temperature as the tunnel test 

section. 

5.4 THE HOLOGRAPHIC TABLE 

An existing holographic table was situated in a separate darkroom away 

from the wind tunnel and floor-borne vibrations. The optical components were 

assembled on a rigid anti-vibration table 1.82m x 1.21m x 0.81m. The table 

had 0.15m thick cast iron top with T-slots running parallel to its length and 

breadth to which the various optical components were firmly clamped. The 

main body of the table was of bricks and supported by four pneumatic springs 

on which the table was lifted, levelled and isolated from ground vibrations. 

Plate 5.4 shows a view of the optical setup, and Fig. 5.7 illustrates the 

layout of the setup. 
A Spectra Physics 124A He/Ne laser of maximum output of 15mal and 

of wavelength of 632.8 nanometres was used as a coherent light source. A 

DURST TIM 60 exposure timer was located between the laser and the mains 

power supply to operate and adjust the exposure time between 1 and 60 

seconds. The timer also provided a continuous laser beam to set up the laser 

table. 

The beam from the laser source (1) was raised to a convenient height by 

a beam steering device (2) and turned by a mirror (3). The light was then 

split by a beam splitter (4) into reference and object beams with the 

appropriate desired ratio of intensity. The reference beam was directed by a 

mirror (5) to pass through a spatial filter (6) consisted of an objective lens 

with a 25 microns pinhole to remove any fringe patterns from the beam 

created by dust particles on mirrors. The emergent expanding beam was then 

received at the photographic plate (7), (Agfa-Gevaert 8E75 HD), which was 

clamped rigidly in a holder. The plate holder had also a plastic light-proof 

box used to protect the semi-exposed plate from stray light in between the 
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ANTI-VIBRATION TABLE 
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Fig. 5.7 Layout of the optical setup. 
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two exposures. The object beam formed by reflection from the beam Splitter 

was steered by a mirror (8) to pass through a spatial filter (9), identical to 

(6), onto the coated test plate (10) mounted on a kinematic stand for the 

precise repositioning of the plate for the second exposure. Part of the beam 

scattered from the diffusely reflective test plate fell on the photographic plate 
(7). 

The optical setup was arranged so that the difference in path length of the 

object and reference beams (less than 30mm) was well within the coherence 
length of the laser light used (about 300mm) necessary to reproduce 
interference fringes. 

It has been observed that a difference in temperature of the test plate of 

more than 0.5°C between the two exposures produced spurious fringes. 

Therefore, the holographic table was surrounded by an enclosure made of 

timber framework (2.72m x 2.80m x 2.11m) covered by polythene sheeting. 

The enclosure and a controlled electric heater enabled the setting of the table 

temperature to that of the tunnel test section during a test. Furthermore, to 

preserve the test plate temperature during a test, the test plate was brought to 

and from the holographic table in a wooden box kept in the environmental 

chamber of the tunnel test section. 

5.5 THE AIR-GAUGE SYSTEM 

The air-gauge was the independent method used to determine the 

recession at a selected reference point on the swollen polymer surface. The 

principle of air-gauging simply is that air from a constant pressure supply 

flows to the atmosphere via two* orifices. One is a control orifice inside a 

tube, while the other is formed by the space between a surface and the tip of 

a needle probe of the tube. Variation of the space causes pressure changes 

between the two orifices measured on a manometer. Therefore, in the swollen 

polymer technique, a comparison of the manometer readings taken before and 

after the exposure of the swollen polymer surface to the flows in the wind 

tunnel would reveal the absolute recession at the- reference point, if the 
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relation between the air-gauge back pressure and probe-to-surface distance is 

known. 

An existing air-gauge probe, shown in Plate 5.5, consisted of a 1.5mm 

O. D. and 1.1mm I. D. hypodermic tubing fixed into a blanked off end of a 

length of 10.0mm I. D. copper tube. The probe was clamped horizontally to a 

spring loaded micrometer controlled assembly, the micrometer head of which 

had graduations of 0.0001in divisions , thus permitting fine adjustments of the 

probe tip normal to the test plate surface. 

The probe assembly was mounted on a kinematic bracket, designed as 

that described by Kapur and Macleod [88], for removal and accurate 

relocation of the probe when taking measurements (see Plate 5.5). 

Air was supplied to the probe from a laboratory compressor, the pressure 

of which was regulated and maintained at 105mm H2O by passing the air 

through water at a depth of 105mm. The air was then bubbled through two 

small tanks about half filled with the swelling agent (n-tetradecane) as shown 

in Fig. 5.8. This was done to saturate the air to minimise evaporation from 

the swollen polymer surface at the point of measurement. The air partially 

saturated with the swelling agent from the second tank was passed up through 

chips of polymer soaked with n-tetradecane and through a layer of glassfibre 

packing, to remove droplets of swelling agent entrained in the air before it 

was exhausted to the probe through a plastic tube. 

The air-gauge back pressure was measured -on a water filled Betz 

manometer. A quick release valve was located in the air tube to the 

manometer. This was done to reduce evaporation of the swollen coating 

during the time it took the manometer to reach a steady reading (normally 

0.5-1.0 minute) for the second measurement. By shutting the valve after 

taking the first reading, the manometer was kept at a pressure close to the 

expected second pressure reading (i. e. after exposure of the coating to the 

flow streams) and hence that time was reduced significantly. 

To determine the absolute recession at a point, and hence the fringe 

order, it was necessary to calibrate -the probe to obtain the relationship 
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between the manometer pressure and displacement. This was done as 

described in Appendix B. 

,} 
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CHAPTER 6 

EXPERIMENTAL PROGRAMME, OPERATING 

CONDITIONS AND PROCEDURES 

This Chapter describes the format of the experimental programme and states 

the range of parameters covered and under which conditions. Moreover, the 

manner in which the tests were carried out is outlined, and the consistency of 

the results is assessed. 

6.1 EXPERIMENTAL PROGRAMME 

After the existing swollen polymer apparatus had been improved through 

extensive experimentation and subsequent modifications (see Appendix C), 

preliminary tests were conducted to validate the technique for the 

determination of mass (heat) transfer coefficients. Initial tests were without 

injection. Later tests with injection included variation of the coolant to 

mainstream density ratio. The tests were carried out using the test plate with 

the single normal tube. The injection hole was sealed by a nylon plug for the 

zero injection studies. It was thought that testing with varying density ratio 

using foreign gases having different Schmidt numbers could be validated using 

a single injection hole rather than a row of holes, since the effect of Schmidt 

number variation on the mass transfer coefficient was the major concern. This 

reduced, the amount of the expensive foreign gases employed in the 

investigation. 

The validation tests described in chapter 7 were conducted under zero 

mainstream pressure gradient. However, if Sc influence is found to be 

insignificant the validation can be assumed to hold in the presence of pressure 

gradients also. 
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Once qualification of the present technique had been achieved, the 

experimental programme for injection via a row of holes was conducted 

within the range of parameters summarised in Table 6.1. 

As can be seen in Table 6.1, the injection hole diameter was fixed at 

2.30mm, whereas the diameter of typical film cooling holes are around 

0.5mm. Scaling up the hole diameter was necessary to facilitate studying of 

the lateral distribution of the heat transfer coefficient. 

In practice, spacing of film cooling holes to diameter ratio is generally in 

the range of 2.5 to 5.0, and most of the existing experimental data was for 

hole spacing of 3.0 diameters. Therefore, a hole spacing of 3.0 diameters was 

chosen so that a comparison of the present results with the published data 

could be made. 

Two injection hole inclinations were used, 90° injection angle, as 

encountered around the leading edge of a turbine blade, and 35° angle, as 

encountered on both the pressure. and suction sides. 

The number of holes used in a row was 7. This was found to give a 

central region representative of an infinitely long row of holes over the full 

streamwise extent of the surface. Edge effects of the mainstream on the 

cooling film heat transfer coefficients were confined to the holes situated at 

either end of a row. A similar observation was reported by Pedersen et al 

[52] for effectiveness measurements. 

The effect of density ratio on the heat transfer coefficient was given the 

primary consideration. Density ratios of 1.0 and 1.52 were studied with the 

latter approximating real blade cooling situation. The density ratio of 1.52 

arose from the use of cheap, readily available carbon dioxide gas as the 

injectant. Initially, a nominal zero mainstream pressure gradient was employed, 

blowing rates of 0.5,1.0,1.5 and 2.0 for a density ratio of unity were covered 

using the 90° holes test plate. The test plate was then replaced by the 35° 

holes plate and the tests were repeated. 

The next series of tests covered the same range of parameters as above 

but for a density ratio of 1.52. 
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Geometrical Parameters 

Single row of holes on a flat surface 

Injection hole diameter (D)' : 2.30mm 

Hole spacing to diameter ratio (s/D) : 3.0 

Injection hole inclination (a) : 90° and 33° 

Number of injection holes :7 

Data collection area, 

- upstream of injection point : 3D 

- downstream of injection point : 60D 

Flow Parameters 

Density ratio (p jp_) : 1.0 and 
, 
1.52 

Blowing rate (pua/p_u�) : 0.5,1.0,1.5 

and 2.0 

Mainstream acceleration parameter (K) : 0.0,1.9x10` 

: and 5.0x 10` 

Table 6.1 Range of film cooling parameters covered in the experimental 

work. 
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At this stage, sufficient information had been obtained for comparisons 

with published work and between the two density ratio results to be made. 
Attention was then focused on the influence of mainstream acceleration 

on the heat transfer coefficient. The flat roof parallel to the floor of the wind 

tunnel test section was changed for one giving effectively a constant 

acceleration parameter K (-v(duJdx)/u_=) of 1.9x10` and subsequently for 

another giving K of S. Ox 10'`. These accelerations are within the range 

experienced on a turbine blade in regions away from the leading edge. Since 

it can be shown from continuity that a one-dimensional flow between two 

convergent flat surfaces yields a constant K, the roof contours were essentially 

inclined planes. One was inclined at 19° to the streamwise direction and the 

other was inclined at 44°. 

In the application of discrete hole film cooling to turbine vanes and 

blades, the coolant is usually injected at an angle to both pressure and suction 

surfaces. Subsequently, only 35° injection was used for the investigation of 

mainstream acceleration. 

For both favourable pressure gradient cases considered the results were 

taken for the same range of blowing rates of 0.5 to 2.0 for a unity density 

ratio. 

The other significant effect accounted for was the influence of density 

ratio in the presence of pressure gradient. The tests for density ratio of 1.52 

were, however, limited to the strong favourable pressure gradient of K=5.0x10, 

'. This was done in anticipation that the effect of density ratio would be more 

pronounced in this case. 

For the unity density ratio cases measurements of velocity profiles and 

turbulence intensities were made for all blowing rates considered in the 

presence of the different pressure gradients. However, the turbulence intensity 

measurements were restricted to the root mean square longitudinal velocity 

fluctuations only. The measurements were taken at three stations in the 

streamwise direction along the centreline of the centre hole. This was done in 

an endeavour -to deduce explanations for the behaviour of the heat transfer 
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coefficient with injection at the various conditions investigated. 

Table 6.2 indicates the sequence of, and conditions at which the 

measurements were conducted. 

6.2 OPERATING CONDITIONS 

The experiments were carried out under the following operating 
conditions, 

a- Steady state, isothermal conditions prevailed during all tests. 

b- The mainstream Reynolds number at the injection location, Re,,,, was 

3.8x103 for all cases considered. 

c- The intensity of turbulence of the mainstream without injection was 

0.68%. 

d- The operating temperature of the wind tunnel test section was controlled 

to be within the range of 25°-30°C. The injectant temperature was similar 

to the mainstream temperature during a test. The variation of the 

mainstream temperature during a test was within ±0.2°C, while that of the 

injection temperature was within ± 0.3°C. 

e- Fully developed turbulent injectant flow existed during all tests with 

injection. 

f- The maximum tube-to-tube variation of injected flow was less than one 

percent. 

g- In absence of mainstream acceleration, the following conditions also 

existed, 

- the mainstream velocity was nominally 25m/s; 

-a fully-developed, two-dimensional turbulent boundary layer existed over 

the entire test plate surface. The effective origin of the turbulent boundary 

layer was 53mm upstream of the trip wire, 288mm upstream of the 

injection location. Details of the measurement of the boundary layer are 

given in [82], and 

- the boundary layer displacement thickness to hole diameter ratio, &'/D, 

at the injection location was 0.40. 
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Injection; Density; Blowing Acceleration Additional 

angle ratio rate = parameter measurements 

aMK Velocity; Turbulence 

'0.5-2.0 = (x10 profiles intensity 
_. I= 

900 1.0 � 0.0 

35° 1.0 � 0.0 � ,/ 
900 1.52 0.0 

35° 1.52 0.0 

35° 1.0 � 1.9 

35° 1.0 � 5.0 �j 

35° 1.52 � 5.0 

Table 6.2 Sequence of tests conducted, row of holes. 
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h- In the presence of mainstream acceleration, these conditions were further 

employed, 

- the variation in pressure distribution started upstream of the injection 

holes; the contour roofs were adjusted so that the mainstream velocity at 

the injection location was 25m/s, the same as that of the zero mainstream 

acceleration case, 

- the requirement of high mainstream acceleration, and the constraint of 

fixed height of the side walls of the tunnel test section, restricted the 

establishment of a constant acceleration parameter to over only a limited 

part of the test surface, particularly in the case of higher acceleration. The 

variation of the mainstream velocity, u_, normalized by the mainstream 

velocity at the point of injection, u. � and that of the pressure gradient 

parameter K as a function of the dimensionless distance x/D are shown in 

Fig. 6.1. The shape of the resulting boundary layer thickness is depicted 

roughly in the figure. As indicated by Fig. 6.1 the dimensionless distance 

covered by effectively constant acceleration was as follows, 

case (B), K- 1.9x104, -55x/D 550 and, 

case (C), K- 5.0x104, -55x/D530 

case (A) was for the test section roof produced no acceleration where, 

K-0.0, and -5Sx/D560, and 

- it has been reported by Moretti and Kays [95] that for K23. Sx106, 

complete relaminarization (reverse transition) of boundary layer flow takes 

place. Reverse transition is indicated by some existing features as, 

velocity profiles become laminar-like near the wall, and the 

laminar-sublayer thickness increases [96]. However, this does not imply 

that reverse transition exhibits a sudden change in the mean properties of 

the boundary layer flow but rather, a smooth progression [97]. 

Examination of the velocity profiles in Fig. 6.2 suggests that acceleration 

has thickened the viscous sublayer at K=5x10'` particularly far 

downstream. Nevertheless, shape factors determined from the velocity 

profiles suggest that the boundary layer is still turbulent (Fig. 6.2). It 
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seems that the short distance (x/D up to 30) subjected to the constant K 

of 5x 10` was not long enough to allow the full effect of acceleration in 

relaminarizing the flow. 

6.3 EXPERIMENTAL PROCEDURE 

The experimental procedure is best given by a sequential description of 

the process by which the heat transfer coefficient was measured. 

Prior to this, pressure gradients had to be set, and boundary layer 

measurements had to be made. 

63.1 Setting of the Pressure Gradients 

For the zero pressure gradient case, the flat roof contour was positioned 

parallel to the test section floor, and adjusted until a uniform pressure was 

indicated by the floor pressure tappings. 

For any of the two favourable pressure gradient cases, the adjustment was 

carried out while the mainstream velocity at the injection point was about 

25m/s. At first, each contour roof was set at a position, the mainstream 

velocity at different downstream locations was measured, and the acceleration 

parameter was then calculated. Iterative adjustments of the roof then followed 

until the desired acceleration parameter was reached. 

Once the correct setting of a roof was obtained, it was locked at that 

position. All of the tests required for that particular pressure gradient were 

then carried out before changing that roof. 

6.3.2 - Boundary Layer Measurements 

The flattened tip pitot probe was employed to measure the velocity 

profiles in absence of injection for the zero pressure gradient case as the 

boundary layer thickness was relatively, large. The hot wire probe used to 

measure the turbulence intensity and the velocity profiles with and without 

injection was employed in all of the pressure gradient cases. 
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Both probes were introduced to the flow in the same manner as described 

in chapter 5. The groove along the roofs' centreline allowed velocity surveys 

to be made in the streamwise direction. Off centreline holes allowed checking 

of the lateral uniformity of the mainstream. 

The pitot probe was raised from the floor surface towards the bulk of the 

flow in small steps using the micrometer. An ohmmeter indicated the contact 

of the pitot probe with the tunnel floor. The hot wire probe was lowered from 

the mainstream towards the surface until the velocity measured was 

considerably less than that of the mainstream, or until the wire touched the 

surface and broke. 

Frequent calibration of the hot wire was necessary, normally before and 

after each set of measurements. Calibration over the range of velocities 

encountered in the boundary layer measurement was accomplished using the 

pitot probe as reference. 

The boundary layer displacement and momentum thicknesses were 

calculated from the velocity profiles using the trapezoidal rule. 

6.3.3 Test Preliminaries 

The wind tunnel was set at the required velocity of 25m/s and the 

stagnation point set at the lip of the bleed slot. 

The electric heaters were switched on and controlled so that the 

temperature of both the wind tunnel and the holographic laboratory set at 

around 27°C. 

The holographic table was then prepared: jacked up and levelled; the 

reference and object beams of the- laser light adjusted, and the supply to the 

air-gauge was turned on and adjusted. 

Before a test was actually conducted, a waiting time of about two to 

three hours was required to allow the tunnel test section, test plate, injection 

system and the holographic table wann up and reach steady, isothermal 

conditions. 
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63.4 Test Procedure 

After it was ascertained that the operating conditions were uniform and 
isothermal, the test was carried out in the following sequence, 

The test plate was removed from the swelling agent bath, ' dried, and taken 

to the holographic table for taking the initial exposure. The test plate was 

then mounted properly on the kinematic support on the holographic table. 

The air-gauge assembly was placed carefully on its kinematic bracket and 

the probe tip was adjusted at the correct distance from the coating surface 

using the micrometer. After the back pressure measured on the manometer 

was noted, the probe assembly was removed gently. 

The lights were then switched off and an unused photographic plate was 

placed and secured in its holder on the holographic table with the emulsion 

side facing the test plate. The photo-plate was then exposed to both the object 

and reference beams for 15 seconds, alter which it was covered by the light- 

proof box and a polythene cover. 
Afterwards, the test plate was taken to the wind tunnel, spring clamped in 

position and its injection tubes connected to the injection system. The swollen 

polymer coating was then exposed to the mainstream air and injectant flows 

for a period between 10 and 20 minutes (normally 12 minutes) which was 

inside the "constant rate period". During that period the temperature was noted 

at minute intervals and the injection flow rate required was checked and 

adjusted if necessary. 

The test plate was removed from the tunnel test section and returned to 

the kinematic support on the holographic table for the final exposure. The 

half-exposed photo-plate was uncovered carefully and exposed to both the 

object and reference beams for another 15 seconds. After that the 

photographic plate was removed from its holder and placed in a light tight 

box emulsion side up. 

With the lights switched on, the air-gauge was replaced on its kinematic 

bracket and the second air-gauge back pressure manometer reading was noted. 

Then the test plate was put back in the swelling agent bath to be ready for 
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the next run (at least 3 hours were allowed for the polymer to reach 

equilibrium swelling). 

The exposed photo-plate was then developed in a darkroom, after which it 

was repositioned in its holder on the holographic table and illuminated with 

the reference beam only. The interference fringes superimposed on the 

holographic image of the test plate were 'then photographed using a 

conventional camera. The image printed plus the air-gauge pressure readings 

were then analysed and processed as outlined in the following section from 

which the recession, and the heat transfer coefficient, at the entire polymer 

test surface were determined for that particular run. 

The major steps of the test procedure can be summarized as shown in 

Fig. 6.3. A step by step description of the test procedure is given in [82]. 

6.4 REDUCTION OF THE EXPERIMENTAL DATA 

The local mass transfer coefficient, h., from the "film cooled" surface as 

measured with this technique is equivalent to the heat transfer coefficient, h, 

measured on an isothermal wall. 

The local mass transfer coefficient at any point on the "film cooled" 

surface is evaluated from equation 6.1 (analogous to equation (1.2)), 

m"=h. (C. -Ci.. ) ---(6.1) 

where m" is the mass flux and Cý 
, 

is the concentration of the swelling agent 

vapour (n-tetradecane) at an impermeable wall with the same mainstream 

conditions. As in the case of the heat transfer coefficient, h,, the mass transfer 

coefficient 1i_ is a function only of the flowfield. 

In a similar manner to the adiabatic wall effectiveness 71.., eq. (1.3), a 

mass transfer effectiveness, ij,.,, based on the impermeable wall concentration 

[9] is defined as, 

11. = (C - C_)/(C. - C.. ) --- (6.2) 

where C. is the concentration of the swelling agent vapour in the coolant. 

Combining equations (6.1) and (6.2) and eliminating CrN, yields, 

m" = h. [(C,, -C, )-11. (C. -C. J] ---(6.3) 

88 



SEQUENCE OF EXPERIMENT 

" AIR-GAUGE READING (P1) OF SWOLLEN 
COATING IS TAKEN AT A REFERENCE POINT 

" HOLOGRAM IS FORMED ON A 
PHOTOGRAPHIC PLATE OF INITIAL STATE OF 
POLYMER COATING 

" SWOLLEN POLYMER SURFACE IS EXPOSED 
TO MAINSTREAM AND COOLANT FLOWS IN THE 
WIND TUNNEL 

ti 

" HOLOGRAM IS FORMED ON THE SAME 
PHOTO-PLATE OF FINAL STATE OF THE POLYMER 
COATING --ý 

" AIR-GAUGE READING (P2) IS TAKEN AT THE 
SAME POINT 

" THE PHOTO-PLATE IS DEVELOPED AND THE 
INTERFERENCE FRINGES SEEN WHEN ILLUMINATED 
BY THE REFERENCE BEAM ARE PHOTOGRAPHED 

" THE PRINTED IMAGE OF INTERFERENCE 
FRINGES IS ANALYSED FOR WHICH: 

RECESSION « FRINGE ORDER « (P1-P2) 
AND, THE MASS TRANSFER COEFFICIENT, 

h. « RECESSION 

Fig. 6.3 Sequence in a swollen polymer technique experiment. 
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With the concentration of n-tetradecane in the mainstream and the 

coolant being equal to zero, i. e. C_ = C. = 0.0, equation (6.3) reduces to, 

m"=heC --- (6.4) 

Since m" also = p. 8/t, eq. (4.3), then, 

h. = (p. a)/(C, t) --- (6.5) 

where 8 is the coating recession under the film. 

The vapour pressure of n-tetradecane over the polymer coating swollen to 

equilibrium, P� needed for the determination of C.,, is correlated over moderate 

temperature ranges using a Clapeyron equation [93], 

log P. = 10.702 - 3738.01/1' --- (6.6) 

here T is temperature in Kelvin. 

With the molecular weight of n-tetradecane, M. = 198.39, C. can be 

calculated at any temperature from equation (4.5). 

The density of the swollen polymer pK is calculated from equation (4.6), 

knowing that p' for n-tetradecane = 0.765 g/cm', p. for silicone rubber 

RTV615 = 1.02 g/em', and the mass fraction of n-tetradecane in RTV615 [93] 

= 0.378. 

The measurement of the coating recession 8 is further needed to 

determine h.. Evaluation of 8 is achieved using equation (4.7) if the following 

are known: 

- the laser light wavelength = 632.8 nanometres; 

- the illuminating angle i, and the viewing angle i2. For the current 

optical setup, i, = 16.5°, and iz = 19°; 

- the refractive index of the swollen polymer N, and 

- the fringe order, n. 
The refractive index N is evaluated reasonably accurately by [83], 

N=N. v. + N. (1-v1) --- (6.7) 

where N. is the refractive index of swelling agent (n-tetradecane) = 1.428, Na 

is that of the coating = 1.406, and v. is n-tetradecane volume fraction in the 

swollen coating (=0.333 [93]). 

The recession using the current optical setup then becomes, 
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S=0.3693 n microns --- (6.8) 

The fringe order n at a reference point is determined by the absolute 

recession measured at that point using the air-gauge. From the slope of the 

linear range of the calibration graph in Appendix B (=1.2995 microns/mm 

H=O), 

6=1.2995 (PI - P2) microns --- (6.9) 

where P1 and P2 are back pressure readings of the air-gauge manometer 

before and after exposure of the swollen coating to the tunnel flows 

respectively, in mm H=O. 

From equations (6.8) and (6.9) we have, 

n= 3.52 (P1 - P2) ---(6.10) 
As has been noted earlier in chapter 4, once n at one point of the surface 

is determined the fringe order at the whole surface is identified, and 8 can be 

evaluated at all points on the surface using equation (6.8). 

The local mass transfer coefficient hm at any point of the film cooled 

surface is then obtained, using equation (6.5). 

The "heat" transfer coefficients in this research are presented as ratios, so 

that the heat transfer coefficient with injection, h, to that without, h� is 

equivalent to the mass transfer coefficient with injection, h., to that without, 

h, o, " 
Since the mainstream flow is two-dimensional, the ratio h11. & is obtained 

from the same interferogram, that is h� from a location influenced by the film 

and h� from the same downstream location at regions not influenced by the 

film. In this way both coefficients are obtained at the same operating 

temperature (i. e. same C. ) and time t. Thus, by applying equations (6.5) and 

(6.8) we get, 

h =b� =S =II ---(6.11) 
h. h. 

where 8. and n, are the coating recession and fringe order at regions not 

influenced by injection. 

Lateral average heat transfer coefficients normalized by their 

corresponding no-injection' values, i, were obtained by numerically 
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integrating the local coefficients or the fringe order across half the pitch as 

follows, 

_I fo aY jLx. D. z/D) d(z/D) 
h. (S/D)n h0(ß) 

In the present work, h is measured from a constant and uniform wall 

concentration, and absence of the mass-transferring agent from both the 

mainstream and the coolant flows gives an equivalent condition to the 

temperature parameter 0=0. The measured heat transfer coefficient, h, 

corresponds, therefore, to that measured using the adiabatic wall approach, N. 

6.5 CONSISTENCY AND REPEATABILITY OF RESULTS 

After the technique had been improved, in particular the control of 

temperature, success in attaining good quality holograms was high. In 

measurements of similar pertinent film cooling parameters, consistency of the 

results was excellent. For example, interferograms number 171,172 and 173 

displayed in Fig. 6.4 correspond to normal injection of air at a blowing rate 

of 2.0. The operating temperature was controlled at 27°C for all of the tests, 

and the test duration was 14 minutes for the tests number 171 and 172 while 

it was increased to 16.5 minutes for the test number 173. As can be seen in 

Fig. 6.4, the pattern and number of constant-recession contours under the film 

are remarkably identical in tests 171 and 172. Furthermore, the fringe order 

number as measured by the air-gauge was also similar. Both the number of 

contours and fringe order are greater in test 173. In similar tests, the number 

of contours in the double-exposure holograms increased or decreased 

depending on the operating temperature and test duration, and increased as 

either or both increased. However, the values of the local heat transfer 

coefficient ratio, h/h� did not differ by more than 3 percent as shown in Fig. 

6.5, where the ratio h/be of tests 171 and 173 are plotted in contour format. 

Test 172 is excluded as its data is identical to that of test 171. The small 

difference observed in the values of h/h, at a location is attributed to fringe 

order identification using the air-gauge since the trends are very similar. 

Mention should also be made that, during a test, good replacement of 
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Test Number 171 

uý 

Test Number 172 

U- 

Test Number 173 

u. 

Fig. 6.4 Interferograms depicting contours of constant mass transfer 

coefficients of normal air injection at M=2. 
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both the test plate and the air-gauge on their kinematic mounts in addition to 

a good temperature control throughout is essential for acquiring excellent 

repeatability of the results. 

Uncertainty analysis is carried out in Appendix D according to the 

method of Kline and McClintock [98]. The uncertainty on the heat transfer 

coefficient ratio with and without injection, h/1, � 
is estimated to be ±4.0% in 

the nearfield (x/D<10) and ±5.0% in the farfield (x/D>10). The uncertainties 

associated with the lateral average heat transfer coefficient, h/h,,, are rather 

larger, ± 7.9% and ±9.4% in the near and farfelds respectively. Uncertainty 

on the absolute mass transfer coefficient is within ±6.7%, so that the 

uncertainties on the ratios ii,. i and h., ih in the presence of favourable 

pressure gradients are even larger at ±9.4% and ±8.2% respectively in the 

nearfield, and ±13.4% and ±12.4% respectively in the farfield, since the 

analysis was dependent on division of two averaged absolute heat transfer 

coefficient values. 

<, . 

t, "I 
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CHAPTER 7 

VALIDATION OF THE EXPERIMENTAL 

TECHNIQUE 

Chapter 7 qualifies the experimental technique for the determination of the 

mass (heat) transfer coefficient, and presents and discusses the validation of 

the technique for the measurement of cooling film mass transfer coefficients at 

non-unity density ratios with foreign gas injection. 

7.1 EXPERIMENTAL QUALIFICATION AT ZERO INJECTION 

(i) Zero Mainstream Pressure Gradient 

The accuracy of the technique for determining mass transfer rates was 

verified with a fully developed turbulent boundary layer without injection at 

zero mainstream pressure gradient. Measured mass transfer Stanton numbers 

were compared with a standard correlation for a flat plate mass transfer with 

a step change in surface concentration at a distance L from the virtual start of 

the boundary layer [99]. The Reynolds number in the correlation was based 

on the distance from the virtual origin of the tripped boundary layer as 

determined by extrapolation of the displacement thickness. 

The experiments were performed with the hole in the test plate blocked to 

provide a smooth test surface. Stanton number measurements of three separate 

tests in addition to the standard correlation are. shown in Fig. 7.1. The 

experimental results obtained show a good agreement with the established 

correlation within a scatter range of about ± 4.5 percent except for a region 

upstream of injection location, where the correlation overpredicts the 

experimental data by a maximum of 7 percent. The scatter band indicates the 

degree of uncertainty with measured absolute magnitudes inherent in the 
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technique. 

(ii) Favourable Pressure Gradients 

Experimental data on the heat transfer coefficient on a flat plate in the 

presence of mainstream acceleration at condition similar to those of the 

present work does not exist. However, the available data, in general, has 

shown the heat (mass) transfer coefficient to decrease by the influence of 

mainstream acceleration. 
The strong influence of mainstream velocity acceleration on the mass 

transfer coefficient is indicated by Fig. 7.2 which shows the local coefficients, 

hID , and the corresponding Stanton numbers, Stm� without injection. Also 

shown are the results of zero pressure gradient to provide a base line. Note 

that acceleration has depressed Ste. below the constant velocity values, with 

the magnitude of the depression increasing as the acceleration parameter, K. 

increases. As for the mass transfer coefficient, the reduction at x/D=10 

amounts to about 14% for the moderate favourable pressure gradient (case 

(B)) and 40% for the strong favourable pressure gradient (case (C)) of the 

zero pressure gradient values. The differences in ham, values are reduced to 

about 11% and 33% respectively at x/D=25. The slight recovery of hm, is 

due to the great acceleration of the mainstream. In case (C), h. tends to 

decrease after the mainstream velocity returns to constant. The results are in 

agreement with the findings of Back et al [100] who have reported that heat 

transfer rates considerably below expected magnitudes for turbulent now were 

found for levels of K above 2-3x106. 

In general, the reduction in the overall heat transfer rate by mainstream 

acceleration is attributed to the reduction in the generation of turbulent energy, 

leading to a decay of turbulence in the outer part of the boundary layer, and a 

consequent decrease in eddy diffusivity for heat transfer [96]. This is 

evidenced by the turbulence intensity profiles shown in Fig. 7.3. The intensity 

of turbulence is observed to be lower for the case with acceleration, and 

decreasing throughout the accelerated zone. 
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Apparently, the decrease observed in h. has resulted from a combination 

of the effects of a thicker viscous sublayer and suppression of the generation 

of turbulence. 

Mention should be made of the fact that, in all of the cases investigated, 

there were also differences in pressure gradient upstream of the injection 

location. These differences affected the approach boundary layer, and therefore 

will have influenced the variation of h. to some degree. 

7.2 EXPERIMENTAL VALIDATION AT NON-UNITY DENSITY 

RATIOS 

7.2.1 Simulation of Density Ratios 

The proper modelling of typical gas turbine engine operating conditions 
dictates a simulation where the coolant to mainstream density ratio is well in 

excess of unity. In the swollen polymer technique this is achieved by using as 

injectants foreign gases of higher densities than the mainstream. Concentration 

fields are taken to correspond to temperature fields, and mass transfer to heat 

transfer. As stated earlier in chapter 3, this is only strictly true if the ratio of 

the diffusivities of momentum and mass, the Schmidt number, in the model is 

the same as that of momentum and heat, the Prandd number, in the "real" 

situation. Matching is rarely achieved in practice, and it is necessary to 

explore experimentally the consequences of this for each new application. The 

use of foreign gases in film cooling modelling introduces an additional 

complexity in that the local Schmidt number will vary according to the 

dilution of the injectant by the mainstream air. 

In a cooling film, the bulk of' the flow is turbulent, and only in the wall 

sublayer is molecular transport important. In measurements of adiabatic wall 

effectiveness, the mass transfer analogue requires an impermeable wall so that 

both the mass flux and the concentration gradient will be zero at the wall. 

Such measurements might be expected not to depend on Schmidt number. 

When heat transfer coefficients are to be determined the flux and gradient 

at the wall are finite. The experimental work presented and discussed in this 
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section is therefore directed towards providing a systematic assessment of the 

effect of the variation of the molecular Schmidt number on the cooling film 

mass transfer coefficient. In consequence, the validation of the swollen 

polymer technique for the measurement of mass (heat) transfer coefficients at 

non-unity density ratio is addressed. 

The experiments were conducted with the test plate having the single 

normal injection tube. The measurements were taken for a blowing rate of 

unity at zero mainstream pressure gradient. Experimental data on normal 

injection with a blowing rate of unity [21, & 22] has shown this to produce 

high heat (mass) transfer coefficients close to the injection location, so that 

any probable variation in the mass transfer coefficient due to Sc variation of 

injectant could be more easily measured. 

71.2 Preliminary Considerations 

On a film cooled flat surface under zero mainstream pressure gradient, the 

mass transfer coefficient, h., depends upon a large number of parameters. 

However, using a foreign gas injectant introduces the additional problem of 

property variations, the effect of which is investigated through Schmidt 

number variation. firn may be expressed non-dimensionally as a function of 

these parameters, 

ham� = het h (M, I, Sc, Re, s/D, a, Tu, ... ) .--- (7.1) 

where hm, is the mass transfer coefficient without blowing. 

The mass and momentum flux ratios M and I involve the effect of 

coolant to mainstream velocity and density ratios. For a fixed geometry, if the 

mainstream conditions are held constant together with the injectant velocity 

and density, the mass transfer coefficient, hm, will only be a function of Sc. 

The effect of Sc can thus be examined experimentally. 

Varying Sc in a film cooling experiment using the swollen polymer 

method can be accomplished via two routes; by changing the swelling agent 

alone, keeping the injection fluid the same, or by introducing different fluids 

while keeping the same swelling agent. In the analysis conducted on the 

102 



selection of potentially suitable swelling agents for use in film cooling tests, 

presented in chapter 4, n-tetradecane was found to be the most appropriate. It 

alone could be used at ambient temperatures for a considerable length of test 

time at relatively high rates of mass transfer such as occur on film cooled 

surfaces in regions close to injection location. Thus the first route for varying 

Sc was ruled out and the second was the only option open and so was used. 

In order to vary Sc, mixtures of gases of different diffusivity mixed in 

volume ratios such that the density was the same were used. Thus in a film 

cooling context equal density and velocity ratios at fixed values of M and I 

can be obtained with different values of Sc. The mixtures of gases that were 

used as injectants were composed from light gases such as Helium and heavy 

ones such as Xenon. 

7.2.3 Estimation of Schmidt Numbers 

In the absence ' of experimental values of molecular Schmidt number for 

the diffusion of the swelling agent tetradecane in gases and gas mixtures, it 

was necessary to use empirical relations to predict Sc. In most cases, both the 

diffusion coefficient and the viscosity had to be calculated. Standard text book 

methods were used (e. g. [101]). Semi-empirical correlations based on 

consideration of the kinetic theory of gases and the Leonard Jones potential of 

intermolecular forces, described by Brokaw [102], were used in the 

calculations of diffusion coefficients. An approximate formula based on simple 

mean-free path arguments cited by Brokaw [102] was used in the calculation 

of the viscosity of gas mixtures. Description of the correlations used is 

displayed in Appendix E. The formulae have been extensively tested [102] by 

comparison with experimental data involving many gas mixtures. The 

agreement was found to be generally quite good. 

An experimental Sc value for tetradecane diffusing in air is given by 

Paterson et al [93] who performed open-tube experiments from which Sc was 

determined. The experimental value was 3.51 and the value predicted by the 

above calculation method was 3.53 thus confirming the accuracy of the 
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prediction formulae used. 

The results of calculations of the Schmidt number of tetradecane in air 

and in various gas mixtures chosen to simulate various Sc values and density 

ratios to air are shown in Fig. 7.4. The results span the mixture and Sc ranges 

that could occur within a cooling film using the gas mixtures (shown in Table 

7.1) as coolant. At exit from the cooling hole the Schmidt number is given by 

the values corresponding to zero mole fraction of air. As the coolant film is 

diluted with air so the Sc values shift to those for higher mole fraction of air. 

7.2.4 Experimental Methodology 

Two sets of validation experiments were performed. The first set (see 

Table 7.1) was intended to reveal the effect of the variation in coolant 
Schmidt number on the mass transfer coefficient at a density ratio of unity. 

The maximum difference in Sc between any two experiments was about 11%. 

The second set of tests (see Table 7.1) was conducted at a coolant to 

mainstream density ratio of about 1.38. The Sc variation was larger at about 

28%. 

The effect of moisture in the air was not taken into account in the above 

calculations of Schmidt number. If the moisture is taken into account the 

difference in Sc for . the first set of tests would change typically to about 
13.5%. The values for the second set of tests would not be affected. 

7.2.5 Presentation and Discussion of Results 

Stanton numbers based on mass transfer coefficients, h., measured at the 

sides of an interferogram in regions not affected by injection were found to 

fall within the shaded area of Fig. 7.1, indicating similar local Stanton number 

values as those obtained with the test surface exposed to the mainstream 

alone. This has permitted the direct calculation of the ratio of mass transfer 

coefficients with and without injection, bjL, from each hologram. When the 

results are presented in this way rather than absolute magnitudes of the 

coefficients, the effects of systematic errors, such as occur in the fringe order 
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Coolant =p jp- Sc Max. Diff. in Sc 
1 

------------- 
20%Xe+80%He 1.0 3.17 

62%CO2+38%He 1.0 3.27 11% 

Air 1.0 3.53 

90%CO2+10%He 1.38 2.93 28% 

Argon 1.38 3.73 

Table 7.1 Schmidt number of n-tetradecane in air, gases 

and gas mixtures at 300 K and 1 atm. 

_ A, r 
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identification used in the determination of the coating recession, are reduced. 

Fringes in the first 1.5 diameters downstream of the injection location 

could not be resolved. Measurements within this region would require use of 

larger injection hole diameter. 

For the first set of tests at unity density ratio (see Table 7.1), the Schmidt 

number was changed by a maximum of about 11% while maintaining the 

injectant density close to that of the mainstream air. Comparison of the 

normalized mass transfer coefficient distribution in the streamwise direction is 

shown in Fig. 7.5. The data are presented for five lateral positions covering 

all regions affected by injection up to 50 hole diameters downstream. The 

ratios of t�/l. for the three tests do not differ by more than 3 percent at any 

point on the cooled surface. This is within the accuracy of the experimental 

technique. 

In the second set of tests (see Table 7.1), using different gas mixtures, 

the density ratio was set to 1.38, and the Schmidt number was varied by 

28%. Referring to Fig. 7.6 at the - centreline and half a diameter lateral 

positions the results are practically identical all the way downstream. 

However, at positions one diameter off the jet centreline a maximum 

difference in hJh of approximately 7.5% is noticed near the injection 

location, whereas at the 1.5D and 2. OD lateral positions smaller differences in 

the mass transfer coefficient ratio are observed. Although the differences in 

h. /h. at a few lateral positions in this case are a little higher than in the- first 

set of tests with the smaller Sc variation, in general these differences are quite 

small. As a result, the comparison brings out the fact that molecular Schmidt 

number variations within the range investigated have a negligible effect on 

film cooled surface mass transfer rates. Consequently, the experiments have 

shown that the measurement of cooling film mass transfer coefficients at 

non-unity density ratios using the swollen polymer technique with foreign gas 

injection is not sensitive to the change in Sc and is a valid method. This 

conclusion is corroborated by the following considerations. 
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It is generally acknowledged that in convective mass transfer the Stanton 

number representing the mass transfer coefficient is, to a good approximation, 

proportional to the power -0.4 of the molecular Schmidt number. But, in the 

case of film cooling, the relation between Stanton number and Sc is not 

known. However, if a relation somehow similar to the relation without 

blowing in regard to Sc is assumed to hold for the film cooling situation, a 

change in the mass transfer coefficient of about 10 percent at any point on 

the surface would be expected for a 28 percent variation in Sc. This is so 

assuming 100% jet fluid is in contact with the surface. But, practically, jet 

dilution by the mainstream air results in low local jet concentration in most of 

the flowfield and hence reduced effect of jet Sc. 

It is well established that turbulent contribution to mass transport is 

generally greater than laminar contribution. Injection into a mainstream 

increases the level and scale of turbulence due to mixing and interaction 

between the jet and the mainstream [19]. Pedersen [41] found experimentally 

that injectant molecular Sc had no effect on the downstream wall 

concentrations for injection through a row of holes. For the injection velocities 

used in this work, the jets will be detached from the surface and intense 

turbulent mixing will result. It is thus understandable that a variation of Sc by 

28 percent does not have a significant effect on mass transfer coefficients 

from film cooled surfaces, as demonstrated experimentally above. 

Recently, Teekaram et al [36] have conducted thermal film cooling tests 

using air or CO. injectants in an isentropic piston tunnel facility. The row of 

cooling holes were inclined at 30° as against 90° in the present tests. Their 

conclusion also was that the gas species did not affect the results obtained 

and that foreign gas injection can be used to simulate density ratio effects. 

7.3 CONCLUSIONS 

The experimental method has been qualified for the determination of mass 

transfer coefficients. 
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The effect of molecular Schmidt number on the cooling film mass 

transfer coefficient is negligible for the range of Schmidt numbers examined. 

Therefore the method of measurement of mass transfer coefficients from film 

cooled surfaces at non-unity coolant to mainstream density ratios, using the 

swollen polymer technique with foreign gas injection has been validated. 

The experimental film cooling data of the current work are for both air 

and carbon dioxide injection. The maximum difference in Sc of the injectants 

is about 21%, which is within the 28% Sc difference examined here. Therefore, 

the influence of Sc variation between air and carbon dioxide on the measured 

mass transfer coefficients is neglected. 

111 



CHAPTER 8 

DISCUSSION OF EXPERIMENTAL RESULTS 

In this Chapter representative sets of results from the current experimental 

programme are presented for analysis and discussion. 

The presentation and discussion of the results concentrates on two main bodies 

of information, the effect of coolant to mainstream density ratios and the effect 

of mainstream acceleration on the cooling film heat transfer coefficient. 

8.1 PRESENTATION OF RESULTS 

The results are presented as ratios of local heat transfer coefficients with 

and without injection, h/h,. Some are presented as contour plots derived from 

large numbers of data points read from the interferograms. Individual fringes 

could not be properly resolved in the first one or two diameters downstream 

of the holes so contours are not shown there. The plots terminate at 20 

diameters since, beyond this point, h/h, changes very slowly, and is close to 

unity anyway, for all but the highest blowing rate. 

Some of the results are also presented as laterally averaged heat transfer 

coefficients normalized by the coefficients without injection, 

As noted earlier, in the presence of favourable pressure gradients, the 

mainstream velocity at the injection location was about 25m/s, i. e. the same as 

that for the zero mainstream acceleration case. The blowing rate, M, given in 

the results presented hereafter is related to that local mainstream 

velocity. 

Results are also presented in terms of the 
. ratio of laterally averaged heat 

(mass) transfer coefficient under the film in the presence of the favourable 

pressure gradient to that with zero pressure gradient conditions at the same 

location and blowing rate. In this way, the factor by which the heat transfer 
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coefficient has been altered due to the imposition of a favourable pressure 

gradient is quantified. 
It has been shown that, by changing the contour roof of the tunnel, for 

zero pressure gradient in the presence of injection, a large change in the 

approach boundary layer condition (from thick, turbulent to thin, transitional) 

produces no measurable change in the cooling film heat transfer coefficient 

[26]. It would seem logical to assume that the heat transfer coefficient under 

films injected into regions experiencing nonzero pressure gradients are 

similarly insensitive to approach boundary layer conditions. In the current 

work of the effect of mainstream favourable pressure gradient on the heat 

transfer coefficient, errors associated with different approach boundary layer 

thickness are neglected. 

To avoid confusion, the subscript notations of the heat transfer coefficient 

are given here, 

o zero injection, zero pressure gradient, K=0.0 

MF moderate favourable pressure gradient, K=1.9x104 

oMF zero injection, K=1.9x104 

SF strong favourable pressure gradient, K=5.0x10` 

oSF zero injection, K=5. Ox10-* 

8.2 EFFECT OF DENSITY RATIO 

The effect of density ratio is now described for each film cooling 

geometry used in this study. 

8.2.1 Single Normal Hole 

The single normal hole results used to validate the experimental technique 

are utilized here to convey the effect of density ratio for this injection 

geometry. 

Contours of the heat transfer ratio h/h, for the two density ratios 1.0 and 

1.38 at a blowing rate of unity are plotted in Fig. 8.1. Increases in the heat 

transfer coefficient exceeding 10 percent are confined to the first 10 diameters 
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downstream of the holes, and are greatest on the centreline immediately after 

the hole. 

Although the momentum flux is reduced by approximately 28 percent 

for the denser injectant, the contours for the two densities hardly differ from 

one another. The fast mixing and high turbulence levels associated with 

normal injection diminish the influence of jet density as well as momentum 

variation on the heat transfer coefficient. 

One further result to be extracted from the figure is that the blowing 

rate, M, seems to be a promising correlating parameter in this case. 

8.2.2 Single Row of 90° Holes 

It seems logical that the result obtained here regarding the effect of 

density ratio on b/th,, should be similar to that obtained for a single normal 

hole since the jet-mainstream mixing is essentially identical in nature. This is 

confirmed by Fig. 8.2 where the influence of varying the density ratio from 

1.0 to 1.52 on the normalized heat transfer coefficient at four blowing rates is 

shown. Only small differences occur between the contour shapes and levels 

for the two densities at any position. For most blowing rates, differences do 

not exceed 3%, although they rise to 5% at large downstream distances at the 

highest blowing rate. The density ratio thus has no distinct effect on the 

normalized heat transfer coefficient at a constant blowing rate. 

Fig. 8.2 also shows the effect of jet-mainstream mixing on the heat 

transfer coefficient. Generally, the contour plots for both density ratios 

indicate that injection causes large increases in the heat transfer coefficient. 

For M=2.0, this increase exceeds-100% just downstream of a hole. 

There is also a significant lateral variation in the heat transfer coefficient. 
At a blowing rate of 0.5, the maximum heat transfer coefficient occurs near 

the edge of the jets all the way downstream where the jets interact with the 

mainstream. Apparently, due to the low jet trajectory at M=0.5, the jets 

behave like multiple single jets, until far downstream where injection effects 

disappear. However, for M of 1 or greater, the maximum is initially on the jet 
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centreline, while beyond about x/D of 7, the maximum h/h. occurs at 

mid-pitch positions. This behaviour may be due to the fact that, at elevated 

blowing rates, the jets mix quickly with the mainstream, spread rapidly and 

coalesce close to the injection location. As a consequence, the lateral 

distribution of N% at x/D greater than 7 becomes flatter, and is almost 

two-dimensional at the highest blowing rate. 

Comparison of data from Fig. 8.2 with that for injection through a single 

normal hole at unity density ratio for M of 0.5,1.0 and 1.5 are presented in 

Fig. 8.3. The data shows that the heat transfer coefficient following injection 

through a row of holes is the same or little higher than that for injection 

through a single hole at centreline positions, whereas it is appreciably higher 

at locations between the holes at M greater than 0.5. Mixing between 

neighbouring jets therefore enhances the heat transfer coefficient. Similar 

conclusions were reported by Eriksen and Goldstein [22] for injection through 

35° holes. 

The insensitivity to density ratio of the detailed normalised heat transfer 

coefficient distribution at a fixed blowing rate naturally implies that the 

spanwise-average distributions will also correlate with M. This is verified in 

Fig. 8.4, where the laterally averaged normalized heat transfer coefficient h/k 

is presented for density ratios of 1.0 and 1.52 as a function of x/D. Upstream 

of the injection holes, the injection-affected region is at most 3 hole diameters 

in extent at high M. At these high blowing rates, the jets are seen as solid 

bars by the mainstream and the interaction gives rise to an increase in iJh, 

just upstream of up to 16% at M=2. As the blowing rate reduces, so also 

does the strength of the interaction, until at M=0.5 there is a slight decrease 

in the heat transfer, probably caused by the slowing' down of the mainstream 

by the jets. 

Downstream of the injection location, RN increases with M, and 

decreases monotonically with x/D. Maximum values vary from 1.45 at M=0.5 

to 1.75 at M=2.0. 
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8.2.3 Single Row of 35° Holes 

Blowing rate does not correlate data from 35° tests, as seen from Fig. 

8.5, contour plots of hjh, for M=0.5-2.0 at density ratios of 1.0 and 1.52. 

Close to the injection holes (x/D55) differences of the order of 10% occur in 

h/h� when the density ratio changes, lower density leading to increased heat 

transfer. Similar behaviour occurs further downstream, where the difference in 

h/h, has increased by 20% at mid-pitch positions for the highest blowing rate. 
At any given blowing rate, the lower density injectant has the higher 

momentum. Because the inclined jets do not mix rapidly with the mainstream, 

this increased momentum is reflected in the cooling film, and hence Reynolds' 

analogy leads to the expectation of an increased heat transfer coefficient. 

A closer comparison of the data in Fig. 8.5 reveals that there is a slight 
deviation for the case of M=0.5. At dimensionless regions >5 h/h,. is seen to 

increase (not exceeding 4%) with the increase in jet density. The denser gas 

was injected at such low velocity (ufu,.. 0.33) that the gross separation from 

the surface, as seen for the higher injection velocities, did not occur. This 

point is reinforced by the streakline flow visualisation using helium bubbles 

made by Colladay and Russell [19] who have shown that the film injected 

through 30° holes remained attached to the surface as long as the velocity 

ratio did not exceed about 0.5. This attached film flow is designated by Forth 

and Jones [32] as the weak injection regime. As the low momentum jets 

emerge they are knocked over by the mainstream pressure and are kept 

attached to the surface. The weak jet-mainstream mixing permits the retention 

of the jets for a longer downstream distance before the jets becoming diffused 

into the existing boundary layer. This behaviour is indicated by the gradual 

though small decay of the heat transfer coefficient with downstream distance. 

In a recent paper, for injection through a geometry similar to that of the 

present study, Pietrzyk et al [103] have postulated that the extent of the 

separation region in the wake of a hole for a high density jet (p jp.. 2.0) 

would be similar to that of the unity density ratio jet with equal velocity 

ratio. Pietrzyk et al have also found that for M=0.5 the - turbulence levels at 
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the exit of a dense jet (pJp, 2--2.0) are less than those for the M=O. 5 unity 

pip_ jet. However. high turbulence levels persisted for greater distances 

downstream for the dense jet. This supports the present findings at M=0.5. 

Regions of high h/h, close to the holes were observed for all blowing 

rates examined. The heat transfer coefficient in these regions increased in 

magnitude with increased M, as did their streamwise extent. For M=0.5 at 

both density ratios, interaction between the jets and the mainstream, all the 

way downstream, has increased h near the edges of the jets more than on the 

jets centreline. This has also been observed. by Eriksen & Goldstein [22]. For 

M2l. 0 and at regions less than about 12 diameters, h/h, is greater at the 

centreline than on regions between the holes. This is understandable since, at 

sufficiently high injection momentum ratios, jet lift off immediately 

downstream of the holes permits the mainstream to flow beneath the jets 

creating intense eddies, and increasing the heat transfer. Further downstream, 

reattachment of the streamwise vortices and interaction between the spreading 

adjacent jets has apparently enhanced the heat transfer coefficient at mid-pitch 

positions. 

To clarify the influence of density ratio variation on the heat transfer 

coefficient, the normalized heat transfer coefficient data averaged in the 

spanwise direction are plotted as a function of the streamwise direction for 

four blowing rates in Fig. 8.6, with the density ratio as parameter. Upstream 

of the injection holes (-x/D<3), the heat transfer coefficient is slightly reduced 

by the presence of the jets. Downstream of the holes, an increase in density 

ratio is seen to result in a considerable decrease in h/h, at all M's. As M 

increases, the difference in momentum between the heavier and lighter gas 

injectants increases, and this is reflected in a corresponding increase in the 

difference in fi/k between the two sets of results. Differences in h/h0 as high 

as 8 percent at M=0.5 and 18 percent at M=2.0 are observed. 

It is of interest to note that the results for the case of M=1.0 are 

consistent with those obtained using a heat transfer method by Eriksen and 

Goldstein [22], where an increase in jet density of 15% is accompanied by a 
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decrease in i 
., of approximately 2%. 

Furthermore, Fig. 8.6 reveals that, at the unity density ratio h/h, is always 

21.0 and increased as M was increased. At density ratio of 1.52, h/h, is also 

always 21.0. However, in the range 5Sx/DS25, h/h, fell by 5% when M was 

increased from 0.5 to 1.0 as shown in Fig. 8.7. This behaviour is also seen in 

the results of Forth [31] for injection through 30° holes (see Fig. 8.7). At 

density ratio of 0.81 h/h, increased as M was increased to -1.2 in a similar 

manner to the present results at p jp_ of one. But when the density ratio was 

about 1.67, at x/D<30 h/h, fell as M was raised from 0.4 to about 1.2. The 

decrease of h/h, in [31], however, was greater probably because of the 

differences in density ratio, injection inclination and experimental method. 

Results of the lateral average effectiveness obtained by Pedersen et al 
[52] and Forth [31] with injection via 35° and 30° row of holes respectively, 

have shown that the optimum value of M at which maximum effectiveness 

occurred increased as the density ratio increased. It is interesting to note that 

the optimum value of M of about 0.5 at pjp_ of 1 increased to about 0.62 at 

pip., of 1.5 [41] coincides with low h/h. values at M=0.5 and unity p jp_, 

and lower h/h, values at M=1 than at M=0.5 at pip_ of 1.52. This may be 

because jet lift-off depends on I, which is higher for smaller pip_ at a given 

M. 

A comparison of the present results for 35° injection with those of other 

experimenters for a density ratio of unity using a similar injection geometry is 

shown in Figs. 8.8 and 8.9. The operating conditions for each data set are 

shown on the figures. 

In Fig. 8.8 the hN data for' x/D less than 10 and for all M covered is 

compared with that of Goldstein and Taylor [71] obtained using the 

naphthalene sublimation technique. The agreement is generally good, although 

the results of [71] show a much steeper initial fall in h/k. This may be due 

to the differing boundary layer displacement thicknesses and Reynolds 

numbers. 
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The results of references [22], [24], [104] and [25] were obtained by 

thermal methods at different test conditions, and are compared with the 

present results in Fig. 8.9. At M=0.5, very close agreement is seen between 

the present results and those of Friksen [104] and Goldstein and Yoshida [25]. 

Generally, the difference between the present results and the results of the 

other experimenters is less than the difference between their results. 

8.2.4 Comparison of Data of 90° and 35° Holes 

The 90° and 35° results differ markedly in their response to changes in 

blowing rate and in density ratio. For 90° injection the variation with blowing 

rate was quite weak at both density ratios, except when M=2. Further, there 

was little difference between 1.0 and 1.52 density ratio results. By contrast, 

for 35° injection the heat transfer coefficient rose when the blowing rate 

increased or the density ratio decreased, indicating a dependence on jet to 

mainstream velocity or momentum ratio. 

Typical double-exposure holograms of 90° and 35° injection at M=1.0 and 

pip_ of 1.0 and 1.52 are shown in Fig. 8.10. The figure reveals qualitatively 

the structure of the contours of mass transfer coefficients. Notice the 

differences in the patterns of the contours downstream of injection, especially 

immediately after the holes. The difference between the ' two injection angles 

is attributable to the difference in nature of jet-mainstream mixing. The 

difference between the contours of the 35° injection is caused by raising the 

density ratio from 1 to 1.52. 

The retention of the jet structure within the cooling film for the shallow 

angled injection was noted earlier. This is much less pronounced for the 

normal injection case. The normal jets penetrate deeper into the mainstream, 

and strong mixing occurs as they are turned parallel to the wall. This mixing 

results in a film from which the jet structure is almost completely absent, 

approaching two-dimensionality within the first 15 diameters. A velocity 

distribution similar to a turbulent boundary layer would therefore be expected, 

with the heat transfer coefficient ratio quickly tending to unity as observed in 
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Fig. 8.2. The enhanced heat transfer immediately downstream of the jets arises 
from their strong interaction with the mainstream which gives high turbulence 

intensities. As shown in Fig. 8.11 the inclined jets show a smaller increase in 

heat transfer initially as they disturb the mainstream less, but the decay is 

slower because of the reduced mixing. 

It follows that, from a blade cooling design point of view, employing 
inclined injection holes rather than normal ones is more beneficial; the lower 

heat transfer coefficients and higher cooling effectiveness values [17] at a 

given blowing rate that are associated with inclined injection results in a more 

efficient film cooling performance. 

8.3 EFFECT OF MAINSTREAM ACCELERATION 

Observation of interference fringes of constant mass transfer, Fig. 8.12, 

albeit qualitative, provides a clear picture of the variation in the structure of 
jet-mainstream intermixing due to acceleration. Fig. 8.12 shows three 

interferograms obtained from three different tests, but for the same blowing 

rate of unity. The tests were run for equal time (12 minutes) and operated at 

temperatures of 27°-29°C. The holograms represent the three different pressure 

gradient cases; zero (A), moderate favourable (B) and strong favourable (C). 

The following features may be noted from the figure, 

i) Close to the holes, the strong mixing between the jets and the mainstream 
is faster in the highly accelerating mainstream cases (B) and (C) than in 

the constant mainstream velocity case (A). The jets travel more rapidly 

and the strong mixing is marked for a longer downstream distance. As a 

result, the distinct three-dimensional character of the contours of mass 
(heat) transfer coefficient is extended from about 10 diameters at K=0.0 

to about 15 diameters at K=5.0x 104. 

ii) The lateral spread of the jets downstream of the holes is reduced by the 

acceleration. The reduction is observed most in case (C). Close to the 
injection site, the jet flows seem to be more compact and therefore more 
independent of each other. The thinner boundary layer and the 
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accelerating mainstream seem to have squeezed the emerging jets quickly 

into the downstream direction. This behaviour has also been observed by 

Foster [105] for 90° injection with s/D=3, who measured jet 

concentrations at x/D--4.25 and z/D=0.0-1.5 above a film cooled wall at 

zero and strong favourable (K=8.5x 104) pressure gradients. A reduction in 

the lateral spread of jets issuing from staggered rows of holes aligned at 

45° with s/D=8 by an acceleration parameter of 2.0x10' was also reported 

by Launder and York [75]. 

iii) The pattern of the mass transfer contours is generally similar at all K. 

The peak in the local mass (heat) transfer coefficient corresponding to the 

maximum polymer coating shrinkage downstream of the hole centreline 

appears to have happened at the same position, about x/D=2.4. Thus, 

separation may have occurred even at K=5.0x10;, and has taken place 

almost at the same location. 

Similar behaviour to that in Fig. 8.12 was seen at the other blowing 

rates used in this study. 
To provide the aspects of the response of the injected jets to the 

acceleration, the centreline turbulence intensity (longitudinal velocity 
fluctuations) and mean velocity profiles with air injection for M=1.5 with and 

without acceleration are plotted in Fig. 8.13. In general, the mean velocity 

profiles close to a hole do not differ too greatly from one another, although 

acceleration tends to press the jets slightly down as the boundary layer is 

thinned, which results in an increase in the velocities near the wall. The effect 

of acceleration on the turbulence levels is more pronounced; suppression of 

injection induced turbulence is - increased with increase in acceleration 

parameter at all downstream positions. It should be noted, however, that the 

levels at K=1.9x104 were measured by a different hot-wire probe (90° probe 

against 180° probe for the others) and a slight out of line behaviour' is 

observed. 

The turbulence levels close to the wall and in all cases are seen in Fig. 

8.13 to be decreasing with downstream distance, and larger for the zero 
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acceleration condition, indicating greater transfer close to a hole and at zero 

acceleration. 

The effect of the cooling jets on the downstream surface heat transfer in 

the presence of acceleration is shown in Fig. 8.14. The figure shows that 

injection always causes an increase in the heat transfer coefficient. The 

laterally averaged heat transfer coefficients with acceleration normalized by 

their corresponding no injection values are increased largest near the injection 

location and decreased monotonically with distance downstream, and further 

enhanced as the blowing rate is raised. This effect is seen to be magnified by 

acceleration. The curves are generally of similar shape with the exception: the 

peak in the normalized average heat transfer coefficient observed at K=0.0, at 

about x/D=15 for M=2.0 is still evident at higher values of K, but has 

become progressively less distinct with acceleration; the jets close to the holes 

spread less with acceleration far downstream so that interaction between 

neighbouring jets is less intensive than at K=0.0. 

Apparently, even in accelerating flows injection always reintroduces strong 

turbulence enhancing the heat transfer coefficient. However, at moderate 

favourable pressure gradients, full recovery of the enhanced heat transfer 

coefficients to levels of those at zero pressure gradient does not take place 

until far downstream (x/D>45), as seen in Fig. 8.15, a plot of the ratio S. A 

as a function of x/D. The figure shows that the heat transfer coefficient under 

the film is slightly reduced by acceleration, but the effect diminishes from 

about x/D=30. At locations close to the holes, the heat transfer coefficient 

with acceleration, h,., is reduced by 3 to 8 percent of that for zero 

acceleration, E. Beyond about 5 diameters downstream, the reduction in ha, 

for almost all of the blowing rates used increases further to about 10 percent 

of S. Farther downstream, h,,,, rises and becomes of similar magnitude to h as 

the region subjected to the constant acceleration ends. As mentioned above, 

the mainstream acceleration suppresses the injection induced turbulence, 

Jabbari and Goldstein [39] using two staggered rows of holes observed a 

slight drop in the laterally averaged heat transfer coefficient of cooling films 
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for M>1.0 by an acceleration of about 1.0x10;. Liess [24], and Hay et al 

[26], both employing similar injection configuration to the one in the current 

study, reported a decrease in the spanwise averaged heat transfer coefficient in 

the presence of a mild pressure gradient. 

It can also be seen in Fig. 8.15 that in the presence of a moderate 

favourable pressure gradient, the variation of the ratio of the heat transfer 

coefficient fi. 4 with the blowing rate is small and is within the inaccuracy 

of the experimental measuring technique. Finn conclusions regarding M are 

therefore difficult to draw. Close to the holes the disparity in behaviour of 

h,, J, /h between the blowing rates may be explained by the complex 

characteristics and steep gradients of the three-dimensional heat transfer 

coefficients under the film. The trends indicate that close to the injection site, 

the effect of acceleration is most pronounced at weak injection rates, whereas 

farther downstream, the opposite occurs. An exception to this is the case for 

M=2.0, but as seen in Fig. 8.14 the heat transfer coefficient h, was distinctly 

high for M=2.0 far downstream. 

As the patterns of interference fringes of equi-recession at zero and 

favourable pressure gradient conditions do not differ greatly (see Fig. 8.12), 

one would expect the trends of the ratios of local and lateral average heat 

transfer coefficients downstream of injection would generally be somewhat 

similar as verified in Fig. 8.16, a plot of the distribution of the centreline 

coefficients ratio, h h, in the streamwise direction, where the centreline 

coefficient is little reduced by acceleration. 

In the presence of strong favourable pressure gradient (K=5.0x104), a 

more definite variation of the reduced cooling film heat transfer coefficient 

with M is observed (Fig. 8.17). In general, the strong mainstream acceleration 

appears to significantly lower the heat transfer coefficient with injection all 

the way downstream particularly at lower M's. This behaviour was also 

observed by Hay et al [26]. The lateral average heat transfer coefficient is 

now reduced by about 20% and falls further, by 27%, for low blowing at 

locations farther downstream. As the blowing rate is increased, R. ranges 
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between 80% of the value for the zero pressure gradient close to the injection 

point to 86% far downstream. This distinct behaviour of ii p/h with M may be 

interpreted by the fact that at K=5.0x104 the jets penetrate the thin boundary 

layer (8/D=0.6 at x/D=5) and encounter the high mainstream velocity. As the 

blowing rate is raised, injection creates greater disturbance in the mainstream 

boundary layer, and therefore resists more strongly the domination of the 

imposed pressure gradient in suppressing the injection induced transport eddies 

close to the wall. It is worth noting also that the differences in the values of 
&A resulting from varying M are at most 10%, which are not far from the 

uncertainties associated with the curves themselves. 

In order to study the influence of mainstream acceleration on the cooling 
film heat transfer coefficient more effectively, the average coefficient at the 

various pressure gradients normalized by that at zero pressure gradient, 

(h).., J(h)� is plotted in Fig. 8.18 as a function of K with M as parameter at 

fixed downstream positions. The figure reveals that the laterally averaged heat 

transfer coefficient approximates to a linear behaviour with the mainstream 

acceleration parameter; the data do not vary significantly from the fitted line 

at all downstream positions (within about ±7%). The development of the 

induced streamwise vortices and mixing between adjacent jets are suppressed 

with acceleration, resulting in direct reduction in the ratio h/(h), with 

increased K. The overall average reduction in the coefficients ratio for all M 

tested is about 8% at K=1.9x104, and increases to about 19% for M21.5 and 

23.5% for M<1.5 at K=5. Ox10-6. 

In addition, Fig. 8.18 shows that the, influence of blowing rate on h/(h), is 

not so obvious everywhere at K=1.9x104, while the influence becomes 

substantial when K is further increased to 5.0x10;, particularly at x25 

diameters downstream. 

Suppression of injection induced turbulence by the mainstream 

acceleration is clearly shown in Fig. 8.19, where the effect of acceleration on 

the centreline turbulence intensities is seen to be larger than on the centreline 

mean velocities. Further noteworthy features are, 

141 



1.1 

1.0 

0.9 

0.9 

0.7 

1.1 

i. 0 

h 0.9 
1h)p 

0.8 

0.7 

1.1 

1.0 

0.9 

0.8 

0.7 

0' 

xi0 - 2.7 

Pc/p =10 
1.0 

1.5 
L =1.0-0.04(Kx106) 'ý--- 2.0 

(h)o 

x/o = 5.0 x. 0 = lo 0 . 

x/0 20.0 xý*0 = 30 0 . 

KX106 K x106 
Fig. 8.18 Effect of acceleration parameter on the laterally averaged heat 

transfer coefficient, row of holes, cc=-3P. 

142 



ýiovov, o OO^^N 

11I tG 
1Ö 

1K 

1I 11 

I, iIY 

"r\IX 

III 
fal 

-0 1 o- a 
moo, Ä 

Ob 

u 

ED , 
0 

V V) 0 V) 0 v> no no in ýcý 
f') NN.. t 

O 1'1 NNO 

>I° >%Io 

eý 
r 

I 

xioroV! o OO-^N 

I 

b 

IIIIu 

äo 

0 ho 
rr O 

uM 

Cw 
C13 u 

Ndý 

x 

8 

_ 

0 

o DÖ 
0 

Co ö 

Y 

NN--O Pf N 

Flo >'ja 

143 



i) The mean velocity peaks appear to have been slightly pushed down closer 

to the wall by acceleration as the boundary layer is thinned. 

ii) The peaks appearing in the turbulence intensity profiles correspond to 

upper or lower edge of a jet core where intensive jet-mainstream mixing 

takes place. 
iii) As M is increased, jet penetration is higher and the turbulence intensity is 

enhanced as observed in the mean velocity and turbulence intensity 

profiles. 

The most striking acceleration effect of all is the amount by which the 

injection introduced turbulence, and hence heat transfer, is reduced, including 

the region close to the wall. 

8.4 COMBINED EFFECTS OF ACCELERATION AND DENSITY 

RATIO 

The preceding discussion of the film cooling data in the presence of a 

favourable pressure gradient was for coolant to mainstream density ratio of 

unity. The cooling film heat transfer coefficient decreased with increase in K. 

Further, it was seen that the influence of K on h at a magnitude of 1.9x104 

was relatively small; one would expect a similar behaviour when the density 

ratio is raised by 52% created by carbon dioxide injection. Hence, it was felt 

that the combined influence of K and pJp_ on h can be more effectively 

revealed at the higher value- of K (=5.0x1(Y'), and the investigation was 

carried out only in the presence of strong favourable pressure gradient. 

The tests with pJp.. 1.52 at K=5.0x104 showed the same general trends 

as those at K=0.0 (Fig. 8.20). The laterally averaged ratio !. 1h, for M21.0 

increases significantly in the vicinity of the holes with M and decays 

monotonically with x/D. This time with the pressure gradient, however, the 

effects of the absence of gross separation on the heat transfer coefficient at 

M=0.5 after 5 diameters downstream are more pronounced. The attached 

low-momentum jets, at M=0.5, were maintained in the thin boundary layer, 

flattened by the strong acceleration, mixed with neighbouring jets and 
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persevered longer far downstream. To confirm the behaviour at Mß. 3 further 

tests at a blowing rate of 0.4 were conducted and the results are also shown 

in Fig. 8.20. The behaviour is identical to the case of M=0.5. However, 

h, have lower values than those for M=0.5. This points to further 

reduction in jet velocities producing further decrease in the heat transfer 

coefficient. This also suggests that jet blow-off in the present experimental 

setup occurs at a momentum flux ratio, I, around 0.16 corresponding to 

M=0.5. 

The dimensionless heat transfer coefficient FSI, (h for carbon dioxide 

injection as a function of x/D with M as parameter is given in Fig. 8.21. In 

general, the curves for 1.0SM52.0 with CO2 injection have the same form as 

those with air injection (Fig. 8.17) at the blowing rates M<1.5. This is 

probably because the velocity ratio, uju,,, rather than M or I is the correlating 

parameter for the heat transfer data in the strong injection regime [32], which 

is <1.5 for the highest M covered with CO2 injection (uju�=13). The factor 

by which acceleration has now reduced the cooling film heat transfer 

coefficient is about 28.5% at regions of 10 to 20 diameters downstream. The 

influence of K on h is only slightly stronger than in the case of p jp . 1.0 at 

M<1.5 where the factor reached about 27%. However, the small recovery of 

h. Jh close to the injection location observed for air injection is not as strong 

for carbon dioxide, whereas its recovery beyond x/D=20 is almost identical. 

The overall average reduction in 9 is about 27%. It has been shown earlier 

that the characteristics of the heat transfer coefficient at p jp-=1.52 for M=0.5 

belong to the weak injection regime. The distinct behaviour of h., 4 of 

remarkably reduced influence of acceleration for M-0.5 in Fig. 8.21 at 

locations further than 5 diameters downstream, is explained by the substantial 

increase in i at M=0.5 observed in Fig. 8.20. A further comment should be 

made that the ratio hsdh at p jp= 1.52 appears to be insensitive to the 

blowing rate for strong injection. 

The effect of acceleration of K=5. Ox10' on the heat transfer coefficient at 
density ratios above unity is shown to differ only slightly in manner and 
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magnitude to the effect at density ratio of one. An acceleration of 1.9x104 

would, therefore, be expected to yield effects which also do not differ too 

greatly when p jp_ is raised from 1.0 to 1.52. 

The influence of varying the density ratio from 1.0 to 1.52 at constant 

acceleration K=5. Ox 10' on the heat transfer coefficient is shown in Fig. 8.22. 

The data are presented as lateral distribution of the local heat transfer 

coefficient for M ranging from 0.5 to 2.0 at x/D locations of 3 and 25. Fig. 

8.22 also gives some insight into the influence of strong favourable pressure 

gradient on the spanwise distribution of local heat transfer coefficient with 

injection. The noteworthy points from the figure are summarized as follows, 

i) At x/D=3, and for 0.5! 04 : 52.0, a substantial decrease in the heat transfer 

coefficient ratio h. Jhh of around 20% occurs when p jp_ is increased by 

52%. As stated earlier at K=0.0, this behaviour is interpreted by the fact 

that the heavier gas injectant has a lower momentum at a fixed value of 

M, which is reflected in the heat transfer coefficient. 

ii) At x/D=25, the decrease in h when using the denser injectant is 

observed to be gradual with M, and reaches about 20% at M=2.0. On the 

other hand, an increase in h with increase of density ratio is evident 

for the weak injection regime (I=0.16) at Mß. 5. This is similar to what 

was observed at K=0.0, although here, the increase in the heat transfer 

ratio is greater. 

iii) Close to a hole, a peak in the heat transfer coefficient for M=0.5 is 

observed at about 7/D=0.5 at both density ratios. This is characteristic of 

low trajectory jets at zero pressure gradient conditions [22,71], where the 

centreline value of the heat transfer coefficient is lower than the value 

near the edge of the jet. As M was increased the peak moved to the 

centreline and remained there for all M examined. 

iv) Far downstream from a hole, the relatively high values of hsp at the edges 

of a jet for M=0.5 at both density ratios, moved to z/D=1.5 for larger M; 

an effect of jet spreading, interaction with adjacent jets, and the induced 

streamwise vortices. 
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The results are seen to be consistent with those found at zero 
mainstream pressure gradient although the strong mainstream acceleration 

seems to have exaggerated the influence of density ratio. 
So far, the influence of mainstream acceleration at fixed density ratios of 

1.0 and 1.52, or that of density ratio at fixed acceleration of zero and 5x10'` 

on the heat transfer coefficient are discussed. However, the simultaneous 

effect of both acceleration and density ratio is further needed as data collected 

at unity density ratio in the absence of pressure gradients can be converted 
into data at condition partly characteristic of gas turbines. Fig. 8.23 presents a 

plot of the ratio of lateral average heat transfer coefficients, h, JIh, as a 
function of x/D. h,, was obtained at p jp_ 1.52 and K=5x 10`, and h at 

pjp.; 1.0 and K=0.0. The reduction in the ratio h. % is seen to be 

comparatively larger than in any preceding condition considered, as both 

density ratio and acceleration act to reduce the heat transfer coefficient. The 

conversion factor of h for Mz1.0 is on average about 30% close to a hole 

(x/D<5), with this average increasing to about 35% further downstream. The 

singular behaviour of h., /h at M=0.5 is again explained by the change of 
injection regime from strong at the low density jets to weak. 

8.5 CORRELATING PARAMETERS 

(i) QQ* lWection 

The parameter correlating film cooling heat transfer coefficient ratio for 

normal hole injection appeared to be the mass flux ratio, M. Confirmation of 

this is seen in Fig. 8.24 in which h/h, is plotted against M, 1, and u. /u_ for 

x/D=5 and 20, with the density ratio as the varying parameter. For x/D=20, 
data collapse at the two density ratios is achieved in all three plots, but for 

x/D=5, only M gives a satisfactory correlation. 

Data correlation is taken a stage further in Fig. 8.25 where h/h, is plotted 

against (x/D)M°- . Significant deviation from a mean curve occurs only for the 

highest blowing rate. The decay in h/h, looks exponential, and this is 

confirmed by the log-linear plotting of Fig. 8.26, from which M=2 data are 
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omitted. A best-fit line yields a correlation for single row 90° injection as, 

h/k = 1.0 + 0.555 exp (-0.14(x/DXM) ° 

This correlation is applicable to variable coolant to mainstream density 

ratios, a blowing rate range from 0.5 to 1.5 and for the important 

dimensionless downstream distances in film cooling of x/D<25. The 

correlation could also be applied to downstream distances further than 25D as 

the influence of injection on the heat transfer coefficient there is rather weak. 
A measure of the accuracy of the correlation is shown in Fig. 8.27, the 

experimental results of M=0.5,1.0 and 1.5 at the density ratios of 1.0 and 

1.52 are compared with -the curve predicted using the correlation. Good 

agreement between the experimental data and the correlation is observed. The 

uncertainty associated with h/h, using this correlation is at most of the order 

±5 percent. 

(ii) 35° Injection 

As has been previously noted, M is not a good correlating parameter for 

350 data. With the data at x/D of 5 and 20 plotted in Fig. 8.28 against the 

injection parameters, uju,. is seen to give a better data collapse than either M 

or I. 

The velocity ratio uJu.. therefore appears to be the key correlating 

parameter for the 35° data. This is corroborated by the findings of Forth [31], 

who has reported that for a row of holes at a given velocity ratio, uJu.,, the 

influence of density ratio, p jp_, in the "strong injection" regime is small. 

Accordingly, if the correlation of the "weak injection" regime, equation (2.2), 

is written in the following form, 

s 
PMj- r J4A 

and the density ratio term for strong injection conditions is dropped as 
implied, we are left with, 

s 
[M, 1-40 
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Forth and Jones [32] have correlated some single row, inclined hole heat 

transfer data using (x/D)(u)'" for the "strong injection" regime (note that 

the hole diameter, D, was used instead of the slot width, s). This is associated 

with jet lift-off, which they state will occur above about I=0.1. Below this 

limit, i. e. in the weak injection regime, data were found to correlate on I (eq. 

(2.2)). 

For the tests reported here, jet lift-off occurred at I about 0.16, and a 

minimum blowing parameter of 0.5 was used, so that 120.16. Strong injection 

conditions, therefore, prevailed throughout except for the high density injection 

at M=0.5 where I=0.16. The correlation (x/D)(uju-)`A would therefore be 

expected to apply, and this is verified in Fig. 8.29. This figure also includes 

results from [22] and [25] which corroborate the use of the velocity ratio as a 

correlating parameter. The correlation is seen to work best for low values of 

the parameter, with significant deviation only for the highest blowing rate, low 

density condition. The dotted mean curve indicated in the figure can be 

represented by, 

h/h. = 1.025 + 0.35 exp(-0.15(x/DXuJu�)I). 
The recommended correlating curve collapses the experimental data excluding 

the highest velocity ratio case of 2 to within ±7 percent uncertainty as shown 

in Fig. 8.30. 

However, the success of blowing rate, rather than velocity ratio, as a 

correlating parameter for 90° injection data seems to indicate that a 

subdivision of the strong injection regime may be needed. 

Since the general behaviour of the cooling film heat transfer coefficient 

under favourable and zero pressure gradients are shown to be somewhat 

similar (see Figs. 8.14 and 8.20), it would seem logical that the pressure 

gradient data should correlate with the zero pressure gradient correlating 

parameter, (x/D)(uju�)'. This is clearly shown to be so in Fig. 8.31, where a 

reasonable collapse of the pressure gradient heat transfer data is achieved. 

A correlation attempt which includes the acceleration parameter K to 

bring together all of the experimental data excluding those at uju,. of 2 is 
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shown in Fig. 8.32. The correlation incorporates the scaling parameter, 
(x/DXuJu�)', and that expressing the effect of acceleration at unity density 

ratio, [1-0.04(Kx106)]. The scatter, however, is seen to be large particularly 
for the data of density ratio in presence of acceleration. 

8.6 APPLICABILITY OF CURRENT WORK 

The importance of the present results is not only in identifying and 

assessing the effects of density and pressure gradients on the cooling film heat 

transfer coefficient, but also the possibility of direct application of the results 
in its current form in turbine blade film cooling calculations. 

The range of parameters at which the heat transfer coefficient was 

measured mostly were within those existing on. a turbine blade: the 

acceleration parameters K=1.9x10' and 5x10`; the blowing rates M=0.5-2.0 

and density ratio pfp. 1.5 covered; and the ' mainstream Reynolds number 
Rep=3.8x10' at the injection location are as found in practice, although the 
boundary layer displacement thickness ratio at the injection position with zero 

pressure gradient, &/D--0.40, is rather larger than that typical of blades and 

vanes, Hay et al [26] have shown that this should have little effect upon the 
heat transfer coefficient. 

The angles of film cooling holes in turbine airfoils on both the pressure 

and suction surfaces are often in the neighbourhood of 35°, and close to 90° 

near the leading edge. Furthermore, the spacing of holes to diameter ratio of 3 
is as encountered on a blade. 

However, the mainstream turbulence intensity of 0.68% was many times 
lower than experienced on an airfoil, and the results were obtained only over 

a flat surface rather than a curved surface of a typical blade. 

Nevertheless, the present heat transfer data, h/h, (=h�/bJ, can be utilized 

with some available flat plate effectiveness data, 1 1., to convey the optimum 
film cooling conditions for the injection geometries used. 

To achieve this, calculation of the change in the local and lateral average 
heat load distribution created by film injection are required. For a film cooled 
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surface, the heat flux, qf, expressed as a ratio to that without injection, q� is 

given by equation (1.5), 

9r=Ik (1 -11 O) 
9A h 

For modem gas turbine components, the temperature parameter, 6, 

(equation (1.6)), is typically about 1.67 [106]. 

The lateral average heat flux ratio, 4&, is obtained by numerically 

integrating the average of the product of the local heat transfer coefficient and 

the local film effectiveness (equation (1.5) with 6=1.67), and not the product 

of their averages. Using the latter can produce errors of ±100% in the 

calculated heat flux near injection locations [106]. 

Unfortunately, published local effectiveness data downstream of injection 

through a geometry similar to that of the present work are limited. 

- Effectiveness data of row of 35° holes acquired from Goldstein et al 

[40] for a density ratio of 0.85 with zero mainstream pressure gradient, 
8 */D--0.124 and Rep=2.2x10` (Fig. 8.33), is used with the current heat transfer 

data of unity density ratio to calculate jqp. A difference in the density ratio 

of 15% has been shown by Eriksen and Goldstein [22] to have a small effect 

on the heat transfer coefficient (of the order of 2%). The displacement 

thickness and Reynolds number also have a small effect on the heat transfer 

coefficient [26] and [22] respectively. 

Distributions of Jq, for the row of 35° holes are displayed in Fig. 8.34 

for the four blowing rates covered. The heat flux depends strongly on the 

blowing rate near the injection location. At M51.0, the heat flux is reduced 

over the whole downstream surface. The largest reduction is about 30% at 

M=0.5 close to the holes. Further increases in M become detrimental over 

about the fast 20 diameters where an increase of up to about 25% in jq, is 

seen at M=2. However, further downstream, injection always reduces the heat 

flux. 

The data of Forth [31] for M=0.4 shown in Fig. 8.34 agrees qualitatively 

with the present data at M=0.5, bearing in mind that Forth's data were 

obtained for 0=1.0 and 1Jq, calculated from lateral averages of h and il rather 
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than local. 

Injection at larger coolant to mainstream density ratios, as occurs in 

practice, is expected to be more beneficial due to lower heat transfer 

coefficients and higher effectiveness. The order of improvement can be gauged 

from Fig. 8.35, a plot of the heat flux ratio downstream of the centreline of 

35° holes at density ratios of 0.96 and 1.5 for M-0.5,1.0 and 2.0. The 

effectiveness data are those of Pedersen et al [52] measured at zero pressure 

gradients, &/D=0.163 and Re,, =1.1x10'. Improvement in centreline cooling 

effectiveness of the order of 30% occur when the density ratio is increased by 

50% at the higher blowing rates. In addition (see Fig. 8.35), at the lowest 

blowing rate the centreline heat flux is appreciably reduced that near the 

injection site heat flow from the surface to the coolant film is observed. 

However, at M=2.0 for the lower density ratio case, the high heat transfer 

coefficients close to the holes offsets the film effectiveness and an increase in 

the heat flux is found. 

Existing effectiveness data for injection from a row of 90° holes with 
s/D=3 are very limited. Fig. 8.36 shows the centreline heat flux ratio, Jq,, 

for 90° and 35° injection. The normal injection heat flux ratio is based on 

Foster's [105] zero pressure gradient effectiveness data at the centreline for 

pjp.. 1.45 and 8 */D--0.63, whereas the 35° injection heat flux data is based 

on that of Pedersen et al [52]. Close to the holes, the higher heat transfer 

coefficients and lower effectiveness associated with normal injection as 

compared with angled injection are reflected in the heat flux ratio curves. 

The analysis above indicates that better film cooling performance may be 

accomplished when coolants are injected at a streamwise angle, with relatively 

low blowing rates and high density ratios. 

The effect of acceleration on the heat load to a film cooled surface could 

not be assessed as effectiveness data at values of the acceleration parameter 

similar to those investigated here are not available. 
Although some controversy exists on the detailed behaviour of the 

adiabatic effectiveness of single rows of holes in the presence of acceleration; 
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for example Kruse [27] found a slight decrease in -q by mainstream 

acceleration of K=2-4x10`, while Brown and Saluja [42] reported a modest 

decrease in ti at K=1.14x104, on the whole the effect was shown to be rather 

small and negative, ie leads to an increase in the heat load to the film cooled 

surface. On the other hand, the present study has shown that acceleration is 

accompanied by a decrease in the heat transfer coefficient and is substantial at 

high K. Low to moderate acceleration, therefore, would be expected to have 

on balance little or no influence on the net heat load, whereas high 

acceleration on balance would be beneficial particularly at lower M's. 

8.7 FINAL DISCUSSION 

The present experimental study has some degree of compromise because 

of the difficulty in matching the values of the various parameters in 

systematic conditions to those occurring in actual blade film cooling 

situations. Although the maximum coolant to mainstream density ratio studied 

in this work of 1.52 is found in practice, ideally more experiments at density 

ratio of 2.0 should be made to. cover the whole range. However, as the results 

of Forth and Jones [32] for injection through a row of inclined holes which 

include data at p jp-=2.0 corroborate the present findings in regards to 

correlation of the heat transfer data, one would expect the current results to 

hold over the whole range of density ratios found in practice. 

Acceleration of K values greater than 5x104 occur in realistic blade 

conditions, more experimentation is therefore needed. However, the present 

results have indicated, in general, an approximately linear effect of K on the 

heat transfer coefficient, and it is possible that the trend may continue at 

higher values of K. 

It is not sufficient, however, for the individual parameters to be 

investigated; their complex interaction must also be examined. Here, the 

combined effects of density ratio and acceleration has been studied, but the 

other film cooling parameters such as turbulence level, curvature and rotation 

may also have some influence on the cooling film heat transfer coefficient. 
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The present results may remain valid under these conditions to a certain 

extent, but further investigations under conditions representative of those over 

blades may still be needed. 
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CHAPTER 9 

NUMERICAL STUDIES 

In this Chapter, a general purpose computer scheme is described and its 

capability for predicting the heat transfer associated with film cooling by a row 

of holes is tested. 

9.1 INTRODUCTION 

Numerical simulation of physical processes has been gaining in 

importance recently as systematic investigations are usually expensive and 

time consuming under realistic conditions. By numerical simulation new model 

concepts and parameters are varied speedily, and comprehensive information is 

obtained at little cost in time and money. On the other hand, computer 

simulation is limited by imperfect basic theories and computer capacity, and 

besides a numerically optimised solution always needs experimental 

verification in the end. 

Application of computational schemes to the film cooling process which 

has been noted in chapter 2 was of limited success. Most of these schemes 

were developed to predict the complex flow field generated by injection 

through discrete holes, and the film cooling effectiveness. The very little work 

considering the film cooling heat transfer coefficient has been as yet 

unsatisfactory especially close to the injection holes. The predictions of even 

the best numerical procedures applied to complex flows such as film cooling 

often deviate from the experimental data [61]. A computational procedure that 

could successfully solve the film cooling problem without experimental testing 

would, therefore, be of considerable value. 

The objective of the work in this chapter is to investigate the ability of a 

numerical procedure to predict the flowfield and heat transfer associated with 
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film cooling. In addition, this work includes predictions of the heat transfer 

coefficient at variable coolant to mainstream density ratio. The physical model 

studied is the present experimental geometry of a row of holes. Comparisons 

of the computed results with the corresponding experimental data are made to 

assess the accuracy of the scheme and to explore its use as a design tool for 

film cooling analysis. 

The computational procedure employed is described in the following 

section. Description of the problems simulated, physical models and 

computational details is given in section 9.3 followed by a presentation and 

discussion of the predicted results ' in section 9.4. Finally, general remarks on 

the computer code are concluded in section 9.5. 

9.2 DESCRIPTION OF THE COMPUTER SCHEME 

9.2.1 General 

The computer scheme used, called PHOENICS (Parabolic, Hyperbolic or 

Elliptic Numerical Integration 
-Code 

Series), is a general purpose 

Computational-Fluid-Dynamics program designed for simulating fluid flow, 

heat transfer, chemical reaction and combustion process. 

PHOENICS was created by CHAM Ltd. in 1979-80 and was first released 

in 1981. A major upgrade was effected in 1984; and since that time, there 

have been numerous re-issues to supply new features, rectify errors or 

facilitate use. 

PHOENICS-1981 was used in the first two years of this research, whereas 

version 1.4, which incorporates the changes that have been made up to June 

1987, was used in the remaining period of the research. Both versions are 
installed on the University's VAX 11/780 system. 

The program solves the discretized versions of the differential equations 

expressing the physical laws of conservation of mass, momentum and energy 

(or species -concentration). The equations are solved by a "finite-volume" 

method involving integration over the grid cells of a calculation domain, 

followed by iterative solutions of the resulting non-linear algebraic equations. 
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A general description of the solution of the differential equations of 

conservation is provided in [107). However, the exact solution procedure 

implemented in PHOENICS is "conservative" and "fully implicit", although 

additions or modifications requiring interaction with the solution schemes are 

possible via subroutines accessible to the user. 

9.2.2 Components of PHOENICS 

A brief summary of the structure of PHOENICS version 1.4 is given 

here. Full description of the main features is provided in [108]. Details of the 

nature of PHOENICS-1981 can be found in [109]. Both versions incorporate 

essentially the same solution schemes. 

PHOENICS comprises two essential computer codes and two auxiliary 

ones. 

The essential ones are a pre-processor called SATELLITE and a processor 

called EARTH. The auxiliary ones are a post-processor called PHOTON and a 

separate self-instruction program called GUIDE. Here, emphasis is centred on 

the essential codes as they set up and solve the simulated problems. 

(1) SATELLITE, is a program supplying problem-defining data to cause 

EARTH to simulate the required process. The input data such as geometry, 

velocities, fluid properties, initial and boundary conditions, number of sweeps 

and printout required are inserted in several ways by, 

" creating an instruction file called Q1, or modifying an existing one. 

" using an interactive input mode, designed to assist new users. 

" loading or amending an instruction file from the PHOENICS input library, 

containing over 500 input-file examples. 

SATELLITE also possesses a subroutine called SATLIT with which 
data-settings by FORTRAN statements can be inserted to establish the 

problem specifications. However, here, the input data of the simulated 

problems are set up in a created Q1 file. 
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(2) EA$Ti, is the central program of PHOENICS containing the main flow- 

simulating software. It incorporates the coding sequences representing the 

relevant laws of physics applied to each cell of the discretised calculation 
domain. 

EARTH reads the data provided by the SATELLITE input file, executes 

the computations of each variable solved for and produces the required output 
file of the solutions. 

It provides the full solution capabilities, including, 

" one-, two- or three-space dimensions, either steady state or transient. 

" single-phase and two-phase options. 

" equipped to solve for up to 50 variables, and as many more as the user 

cares to specify. Typical variables are, 

- the pressures and specific enthalpies of both phases. 

- the three velocity components in the three space directions of both 

phases. 

- the volume fractions of both phases. 

- the k-c turbulence model properties of either phase. 

- concentration variables of both phases as many fis required. 

" solves for auxiliary variables derived from algebraic equations rather than 
from differential ones, such as laminar viscosity, Prandtl number, density 

etc. 

" handles a flow in space of which parts are inaccessible to the fluid 

caused by partial or total blockage by solid material. 

Furthermore, EARTH contains subroutines which are accessible to the 

user. The major subroutine is GROUND which is in fact a collection of 

subroutines. Its main function is to assist SATELLITE program to complete 

problem specifications, so that it enables the user to insert the necessary 
boundary conditions, fluid properties and output-control features that are not 

contained within EARTH. 

A second important subroutine, GREX2 (GRound EXample 2), contains 

numerous built-in property and boundary condition options together with 
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physical models, which are available to the user. 
In the current work, GREX2 is accessed to provide the generalised wall 

functions necessary to calculate the heat transfer. GROUND is used to 

calculate the temperature, density and other auxiliary variables. 

(3) PHOTON, is the interactive graphical program, displays the results from 

EARTH calculations as, 

" two- and three-dimensional representations. 

" vectors or contours of any variables. 

" solution geometry and grid systems. 
PHOTON is based on a graphic software not available at Nottingham 

University. Therefore, the graphical representation of one of the computed 

results in the current work was plotted using a similar graphical program 

called GRAFFIC. The latter was used with PHOENICS-81. 

(4) GUIDE, which contains extensive instructional material acts as a source 

of helpful information about PHOENICS and its use. 

9.3 APPLICATION OF PHOENICS IN THE PRESENT WORK 

9.3.1 The Problems Simulated 

The physical problems concern film cooling by injection from a single 

row of 90° or 35° holes of s/D of 3 across a flat plate exposed to a 

mainstream. The flowfield, heat transfer coefficient and cooling effectiveness 

are investigated for different blowing rates and density ratios. Examples of the 

computed results are presented and compared with the present and available 

experimental data. 

As the emerging jets from the discrete holes interact with the two- 
dimensional oncoming mainstream flow, a complex three-dimensional flow is 

generated in which flow reversal can occur near the injection site [19 & 20]. 

Therefore, a three-dimensional and elliptic calculation was essential to 

simulate realistically the flow and the associated heat transfer processes. The 
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turbulent stresses and heat fluxes are evaluated by the most widely used K- 

C model of turbulence implemented in PHOENICS. Furthermore, a modified 

version of the standard numerical scheme was necessary to predict heat fluxes 

at flow separation regions. 
The jet velocity distribution at the hole exit in reality are asymmetric 

resulting from the interaction between the jet and the mainstream flows, the 

calculation domain was chosen, therefore, to include the flow region inside the 

injection hole as well. This way, the influence of the jet-mainstream 

interaction near the hole is determined as part of the final solution, without 

the need for simplifying assumptions, such as specifying two-dimensional 

uniform jet flow velocity distribution at the hole exit. 

9.3.2 Mathematical and Physical Models 

The well established differential equations of . conservation of mass, 

momentum and energy (or species concentration) are used in PHOENICS. 

These are solved approximately using methods of numerical mathematics, as 

there are no exact analytical solutions of these equations for applications of 

practical interest. 

The equations of conservation retain their fundamental validity also for 

turbulent flows. Consequently, the turbulence time-averaged properties 

(turbulent shear stresses and heat fluxes) are considered via "turbulence 

models". PHOENICS version 1.4 has several models exemplified in GREX2, 

one of which is the most widely used and accepted model known as the "k-e" 

turbulence model which utilises the eddy (turbulent) viscosity concept and 

calculates two quantities k, the kinetic energy of turbulence and e, its 

dissipation rate. 

The eddy viscosity is related to the turbulent kinetic energy k and to its 

rate of dissipation e through the Kolmogorov-Prandtl relation as, 

t 0.09pk=/£ (9.1) 

The distribution of k and £ over the flowfield using PHOENICS is 

determined from the basic k-e turbulence model semi-empirical transport 
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equations as given by [110] in Cartesian tensor notation, 

aý = a_ 1, ak +L, + ,l (9.2) P at P 
[j 

aý+ Iý 

uae = a_ aF, + ýý -h + ! QzF2- (9.3) 
G)xi 

1(1YL- 
kP 

, 
ax, y Pk 

For fully developed turbulent flows, the empirical constants appearing in 

this standard k-c model take these values, 

C1=1.44 , Ci=1.92 , (Yt=1.0 , ß, =1.3 
It is worth noting that the standard k-c model, suffers from the following 

simplifying assumptions, 
i) It adopts an isotropic turbulent viscosity. This simplification is not 

encountered in three-dimensional film cooling situations. 

ii) The model is valid only for fully turbulent flows where viscous diffusions 

are neglected. 

iii) In the near wall region the model overestimates the generation of 

turbulence k [65]. Additional destruction terms in the k-transport equation 

near the wall region are therefore required to yield reasonable predictions 

to match available experimental data. 

9.3.3 PHOENICS Near-Wall Treatment 

As viscous diffusions are neglected, the k-c model is used in conjunction 

with empirical wall functions to bridge the viscous sublayer. This is 

accomplished by relating the velocity components at the first grid node 

outside this layer to the wall shear stress via the logarithmic law of the wall. 

A uniform shear stress prevails in this viscous layer, and generation and 
dissipation of energy are in balance there via the assumption that the 

turbulence is in a state of equilibrium. 

The methods which include integration right up to the wall are better than 

those assuming the wall functions [111] since they are valid throughout the 

fully turbulent, semilaminar and laminar regions. However, the computing time 

is increased considerably due to the fine mesh required to resolve the 

immediate near-wall region adequately. Wall functions economize computer 
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time and storage. 
Improvements in near-wall behaviour through the incorporation of extra 

terms to account for the viscous effects and for the anisotropy effects on the 

eddy viscosity are discussed elsewhere [82]. 

(i) PHOENICS Standard Wall Functions 

GREX2 in version 1.4 of PHOENICS contains the built-in standard wall- 
function options for both laminar and turbulent flows, namely, 
i) the Blasius law, 

C, = 0.009 / Re°" ; and 

ii) the logarithmic law, 

[k, / ln(E Re C, °t5)]2, for Re > 132.5 (9.4) 

Cr =1/ Re , otherwise. 

where C, is the skin-friction factor (=T�/pu2, ti. is the wall shear stress and u 
is the velocity parallel to the wall), k, is the Von Karman constant, taken to 
be 0.435, and E is the smooth-wall value of 9.0. The Reynolds number, Re 

(=uy/v, ), is based on the resultant velocity parallel to the wall, on the distance 

from the wall to the grid node, y, and on the laminar kinematic viscosity, v,. 
The limit of Re of 132.5 is that at which the laminar and turbulent wall- 
functions intersect. 

The Stanton number, St, is given by the empirical law of Jayatillika 

[112], 

St = C, / [Pr, (1 + P. Cn )], for Re > 132.5 (9.5) 

where, P. is the smooth-wall sublayer resistance function, a semi-empirical 
formula given by [110], 

P. = 9(Pr)Pr, 1)(PrJPr)'" 

For Re 5 132.5, St is simply = Cf / Pr. 

The heat flux at the wall, q, � is then deduced from, 

q�=Stpu(h, -k) 

where h, is the enthalpy at the grid node in question, and hw is the enthalpy 

corresponding to the prescribed wall temperature: 
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The heat transfer coefficient was then evaluated from the heat flux qmm, 

using equation (1.4), 

q. =h (T,. - T. ) 

If the flux of other variables is in question, such as velocity resolutes, the 

enthalpy values in the above equation are replaced by the in-cell value and 

that at the wall of that variable. St is then the skin-friction factor. 

In addition, the near-wall grid node values of k and E are fixed to the 

following empirical correlations via the incorporated logarithmic-law option 

applicable to smooth walls, 

k� =0/0.3, and (9.6) 

E.. =u, '/ (k, y) = 0.09' k. "s/ (k� y) (9.7) 

here, u, is the friction velocity (=(tiJp)'R=uC, 'R). 

The activation of the wall-function options is given in the PHOENICS 

reference manual [108]. However, the wall functions of the wall heat transfer 

could not be accessed directly from the EARTH program in PHOENICS 

version 1981, and at that time the above implicit equations were implemented 

in GROUND which had to be solved iteratively for the friction factor Cr. 

However, this treatment in which the heat transfer coefficient is calculated 

via a friction factor manipulation, was found to be appropriate for the case 

where there was no injection, ie boundary-layer type flows where the 

near-wall layer is in local equilibrium. For flows with recirculation, as occurs 

immediately downstream of discrete hole injection to a mainstream, the 

predicted heat transfer coefficients there were found negligible. The present 

experimental data has indicated that the heat transfer coefficients are actually 

at maximum in the separated regions. This deficiency in the standard wall 

functions is due to the fact that in regions where the flow separates from the 

wall the shear stress and hence friction velocity is zero. Since the computed 

Stanton number was directly proportional to the friction velocity the 

calculations resulted in an incorrectly predicted zero heat flux and heat 

transfer coefficient. 
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It was desirable, therefore, to employ a more adequate wall-function 

treatment of heat transfer. Transfer to the latest version of PHOENICS 

(version 1.4) was necessary as implementation of improvements is much easier 

and more straightforward. 

The deficiency in the standard wall-function options was the main reason 
behind the installation of PHOENICS version 1.4 at the University, although 

time was short for familiarization with the new version and implementation of 

improved wall functions. 

(ii) PHOENICS Generalised Wall Functions 

The generalised wall functions adopt the method of Launder and Spalding 

[110], the main feature of which is based on a modified log-law that uses the 

turbulent kinetic energy as the characteristic velocity scale, rather than the 

friction velocity. 
Adoption of the practices in [110] leads to the prediction of finite values 

of k and of wall heat flux at a reattachment point. 

Furthermore, the wall functions account for the effects of wall roughness, 

and the criteria for transition from the turbulent wall function to laminar ones 

is modified. 

The standard log-law of the wall for Cti is generalised by expressing u, in 

terms of a velocity scale calculated from the local k, thereby finite fluxes are 

predicted, even where the fluid velocity is zero. 

The C, log-law, eq. (9.4), can be written as, 

Ct=k� C, '2/ln(E Re C, "2) 

since C, I-u ju, and u=Re v /y it follows, 

Cr = k. (uju) / ln(E us y/v, ) 

and since u, =o. 3'Rk'R from the near-wall cell value of k, eq. (9.6), 

substitution for u. gives the generalised log-law of the wall, 

Ct = k� 0.3"2k'n / [u In(E 0.3''2k"2 y/ v)] (9.8) 

Substitution for C, '2 and u, in the Stanton number formula, eq. (9.5), 

gives the generalised form of St, 
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St = Cf / [Pr, (1 + P. Cr u/0.31'2 k"2)] (9.9) 

The value of k at the near-wall grid cells is not fixed in this option, and 

is calculated from its regular transport equation. However, in the source term 

for k (eq. 9.2), the dissipation rate for the near-wall cells is fixed to, 

E=0.09'"k' ln(EO. 3'ak"2y/v, )I(2k, y) 

When the turbulence is in local equilibrium, away from separated 

regions, the above expression recovers the near-wall empirical correlation of k 

in the standard wall functions. 

Details of activation of the generalised wall functions are given in [113]. 

Mention should be made that the generalised wall functions were 

implemented in version 1.4 late 1988. 

93.4 Computational Details 

(i) Geometry and Grid 

Three-dimensional computational grids in Cartesian coordinates were 

employed. The z-direction was taken as that of the mainstream for all of the 

computations performed as recommended by PHOENICS. The bottom side of 

the rectangular-box shaped domains was considered solid, the other sides were 

all fluid as illustrated in Fig. 9.1. The lateral boundaries were 1.5D apart, 

where D is the hole diameter, and located at planes of symmetry; one 

bisecting a hole, and the other bisecting the space to its neighbour. The solid 

wall region in the -vertical extent (y-direction) was placed to occupy 2D so 

that the effect of the mainstream on the jet inside the hole was accounted for; 

preliminary computational tests with the wall located to 4D had shown that 

the mainstream effect extended to about 1D only below the hole exit. The 

other boundary of the y- direction was adjusted to 6D above the wall surface, 

just sufficiently to encompass the region of undisturbed flow, so that uniform 

mainstream conditions were assumed there. 

The domain extended upstream some 3D from a hole origin where the 

oncoming flow was undisturbed by injection according to the present 

experimental measurements. The position of the downstream boundary from 
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Fig. 9.1 Geometry used. 
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the hole origin was adjusted so that z= 20D when heat transfer was 

computed, and z= 46D when cooling effectiveness was calculated due to 

computer run time and storage considerations. 

The number of grid nodes used in the x, y and z-directions were 9,15 

and 30 respectively. Fine-grid spacing near a hole was employed and 

gradually increased for locations away from it so as to give a good resolution 

of the solution in the area of interest as shown in Fig. 9.2. The first grid 

node away from the wall was chosen that it sufficiently bypassed the viscous 

sub-layer as required by the wall-functions. This was based on calculations 

using an established sub-layer thickness relation expressed in terms of the 

Reynolds number, with the current experimental boundary layer thickness and 
Reynolds number values used as input. 

One half of the circular injection hole included in the domain of 2.4mm 

diameter (approximately similar to that used in the experimental phase of this 

research) was represented by 18 cells in cross-section. The circular shape of 

the hole inside the wall was specified by fractional volume and area 

porosities, thus determining the proportion of the hole periphery in each cell 

open for flow, as shown in Fig. 9.2. Extensive calculations by integration over 
finite areas and volumes were made to determine the area and volume fraction 

porosities for the 35° inclined round hole as they differ from one cell to 

another depending on the cell location. 

(ii) Variables Solved 

The variables selected for solution were, 

- the velocity resolutes u, v and w in the x, y and z directions respectively, 

- the pressure P, 

- the two turbulence model parameters k and e, 

- the specific enthalpy h, and 

- the mainstream and coolant mass fractions c_ and c. respectively, when the 

effectiveness was computed. 

The auxiliary variables solved via the GROUND subroutine were, 
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- the temperature which was calculated in terms of the enthalpy; the enthalpy 

computed in EARTH was called for each grid node for computing the 

temperature in GROUND by means of a temperature-enthalpy polynomial 

curve fit. 

- the local density was linked to the temperature and pressure by the perfect 

gas law, p=P/RT 

where R is the gas constant and T is the temperature, 

- the molecular weight for each cell calculated by a relation consequence of 
Dalton's Law of mixture of gases for effectiveness calculations involving 

density gradients, and 

- the laminar kinematic viscosity when large density gradients were present. 

The viscosity was computed in terms of the enthalpy in a similar way as that 

of the temperature. 

(iii) Fluid Properties 

In all cases considered, the mainstream and coolant were both air. The 

property values were all obtained from tables of properties of fluids. 

For heat transfer calculations, and unity coolant to mainstream density 

ratio, the temperatures of both the mainstream and the coolant were 

considered at 325K while that of the wall was set to 275K. This way the 

temperature parameter 0, eq. (1.6), was equal to zero, and therefore, was 

equivalent to that of the experimental work. Note that, in PHOENICS 

temperature is specified in terms of the corresponding enthalpy. 

The density of the mainstream air at inlet was therefore taken as 1.086 

kg/m' and then calculated throughout the cells of the domain. 

Since the temperature difference between the mainstream and the wall 

was relatively small in this case, the laminar kinematic viscosity was 

considered as constant and was taken as that corresponding to the mean of 
both temperatures, ie 1.568x10'' m2/s at 300K. Similarly, the Prandtl number 

was taken as 0.707 at 300K. The turbulent Prandtl number was given a value 

of 0.9. 
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The effective viscosity, represented by µ, R, was calculated by, 

PL-ff =9 14 

where µ, was obtained through the activated k-c turbulence model. 

In the case where density ratio was present, the temperature of the 

mainstream was assumed to be at 400K. Both the coolant and the wall 

temperature were at 275K, resulting in a density ratio of 1.46 and 0=1.0. 

Here, the laminar kinematic viscosity in addition to the temperature and 

density were calculated in GROUND via the enthalpy solved for. The Prandd 

number was taken as 0.70 since its variation with temperature is small. 

For the cases of calculating the cooling effectiveness, a mass transfer 

process was assumed and a uniform temperature of 300K everywhere in the 

flow domain was considered. The corresponding mainstream and coolant 

densities at 300K were 1.177 kg/m3 when pjp= 1.0, end the laminar viscosity 

was taken as 1.846x10'' at 300K. For the cases when pjp_ 2.0, the coolant 

density was set to 2.354 kg/m'. 

(iv) Initial Conditions 

The oncoming air was assumed to have no swirl and parallel to the 

streamwise z-direction, so that the velocity components u and v were 

prescribed as zero, and the component w was set to 25m/s analogous to that 

used in the experimental work. 

The pressure value was initialised to zero. The enthalpy, h (= c, T), was 

prescribed at the mainstream temperature; at 325K h was specified to 

3.27x 10', and at 400K h was set to 4.054x 10'. The turbulent kinematic 

viscosity of the mainstream was given the initial value of 1.0x10''. 

Initial conditions needed also to be specified to the mainstream turbulence 

quantities k and E. The value of k was set to 0.7% of the mean flow kinetic 

energy. The value of £ was computed assuming that production and 

dissipation of turbulence were in balance. 

For the effectiveness computations, the mass fraction of the oncoming air 

was set to 1.0. 
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(v) Boundary Conditions 

At the mainstream inlet, part of the plane above the wall started with a 

turbulent boundary layer characterised by the seventh power law. The 

boundary layer thickness was set to about 3.3D, analogous to that in the 

experimental situation. 

Initial profiles were prescribed for the following, 

- the mean velocity, w= w_ (y/8)'" 

where, w� is free stream conditions velocity, y is vertical distance from the 

wall and 8 is the boundary layer thickness, 

- the enthalpy, h= h� + (h,. - h,,, )(y/S)^ 

where, h� and h., are the enthalpies at the wall and the freestream 

respectively, 

- the mass flux, m" = w. p 

where p is the density corresponding to the enthalpy profile, and 

- the turbulence kinetic energy, k, and dissipation rate, e, through the 

following empirical profile [108], 

k=k,, - 3k. (y/8)= + 2k&/8)3 

E=0.09'"k'm/(k. y) 

where k. is k at the wall. 

For y>3.3D, uniform mainstream conditions were set, ie, 

w=w,,, h=t-� m"=w�p,,, k=k,. and 

the subscript co denotes freestream conditions. 
At the exit of the flow domain, a uniform pressure close to zero gauge 

was fixed. The top side of the domain was treated as having mainstream 

conditions. 

The wall boundary (bottom region excluding the hole exit) was treated by 

activating the generalised wail functions for u, w, £ and h. The enthalpy hM 

(= c, T�) was set to 2.76x 10' corresponding to a uniform temperature of 275K. 

When standard wall-functions were used for effectiveness predictions, 

activation of the wall functions for k was also required as k was fixed at the 
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wall in this option. 

The variables at the hole entry were specified as follows, 

- injection velocity v for 90° holes, velocity components v and w for 35° 

holes, 

- the mass flux, given by: the injection velocity . p. 

- the enthalpy k=c, T., and 

- the turbulence quantities, k and £, given by, 

k=0.007 (injection velocity)2, and 

E=0.093" k''2 / (D/2). 

- the coolant mass fraction = 1.0 when the effectiveness was computed. 

(vi) Iteration Control and Convergence 

PHOENICS whole-field solver was activated since the pressure field was 

expected to exhibit substantial elliptic effects close to the hole. 

Convergence was procured within 120 iteration sweeps for the situations 

solving for the effectiveness. The calculations took 60 to 90 minutes CPU 

time on the VAX. At this stage, velocities, mass fractions and pressure were 

invariant to within 1%. The sum of the absolute mass errors was less than 1% 

of the total mass flow rate. 

Under-relaxation for all of the variables solved were prescribed to 

improve convergence. 

However, when the generalised wall functions for heat transfer 

calculations were employed, reasonable convergence was achieved after 300 

sweeps which took about 7 hours CPU time. 

Excessive under-relaxation was used for the velocity resolutes u, v and w, 

the enthalpy h and k and E. The pressure was relaxed by a linear factor of 

0.3. Linear under-relaxation was also specified for both the density (a factor 

of 0.1) and turbulent viscosity (0.4). 
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9.4 PRESENTATION AND DISCUSSION OF RESULTS 

Detailed information in the form of fields of the variables solved for were 

obtained. However, since the aim here is to test the ability of PHOENICS to 

simulate the film cooling situation, only selected computed results are 

presented in the form of velocity profiles, heat transfer coefficients or Stanton 

numbers and adiabatic wall effectiveness. Note that the heat transfer 

coefficient was predicted using the generalised wall functions. 

Comparisons of the predictions of the heat transfer coefficient are made 

with the current experimental data of zero mainstream pressure gradient. The 

experiments of Goldstein et al [40] and Pedersen et al [52] provided the data 

for testing the simulations of the laterally averaged and local adiabatic wall 

effectiveness for injection through a row of 35° holes. The former measured 

the effectiveness by heating the injectant and surveying the surface 

temperature, while the latter measured the surface concentration of a foreign 

gas introduced into the injectant. For the case of normal injection, the 

measurements of surface concentrations by Foster [105] provided the 

effectiveness data. In PHOENICS, the effectiveness could be predicted by 

calculating either the adiabatic temperature or the mass fraction of the 

injectant at the wall. Preliminary tests have shown that there was little 

difference (<5%) between the effectiveness values predicted by the two 

methods. Here, however, the predicted data was based on the mass fractions 

of the injectant at the wall. 
The experimental conditions of [40], which were: s/D=3, a=35°, 

u�=30.5m/s, S'/D=0.124, Rep=2.2x10`, Tu=0.5% and pjp_=0.85, were 

approximately simulated in the computer program for the inclined injection 

cases, and those of Foster [105]: s/D=3,0--90°, u_=30.5m/s, 8'/D=0.33, 

Rep=0.45x10` and pjp_ 2.0, were simulated for the normal injection cases. 

(i) Heat Transfer Coefficient 

The distribution of the calculated heat transfer coefficient without 

injection is plotted in Fig. 9.3 along with the experimentally obtained 
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coefficient (from Fig. 7.1). Both predicted and measured coefficients decrease 

in the streamwise direction. The calculated heat transfer coefficient 

overpredicts the measurements by as much as 25% at upstream locations. The 

disparity is probably caused by the inability to simulate closely the 

experimental concentration boundary layer, since the latter started downstream 

of the hydrodynamic boundary layer and was not measured. Furthermore, the 

calculated heat transfer coefficient was based on the kinetic energy of 

turbulence, k, the shape of the inlet profile of which was difficult to simulate 

accurately near the wall. 

Nevertheless, the hydrodynamic boundary layer profile is reasonably 

calculated as shown in Fig. 9.4. The measured velocity profile is that obtained 

by the hot-wire traverses (see Fig. 6.2). Near the wall, the predicted velocities 

are lower than measurements, probably caused by overestimation of production 

of turbulence by the model. This point could further explain the high 

predictions of the Stanton number (Fig. 9.3). 

Fig. 9.5 compares the predicted and measured lateral average coefficients 

ratio with and without normal injection, lh/h,, for different blowing rates at 

pJp_ 1.0. It can be seen that the overall level of agreement of calculations 

with experiment is reasonably good. Upstream of a hole, the heat transfer 

coefficient is predicted correctly. Downstream, the trend of the measured 

results is reasonably predicted, but quantitative agreement with measurements 

is best for M=0.5. As M was raised, the agreement with the measurements 

reduced progressively. The predictions were lower than the measurements at 

z/D<4 and higher further downstream. The discrepancies with measurements 

for M=1 were less than 10%, and at most 15% for M=1.5 at some 

downstream locations. For the cases of high M, detachment of jets from the 

surface was greater so that it was probably harder for the standard k-e 

turbulence model to simulate accurately the more complex three-dimensional 

mixing character. 

The lateral distribution of predicted and measured heat transfer coefficient 

at two streamwise locations is shown in Fig. 9.6. In general, the agreement of 
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the calculated coefficients with experiment is fair. Close to a hole, the 

predictions of the heat transfer coefficient were found to be minimum in 

between the holes, and maximum at about the edges of a hole. The greatest 

disparity with experiment is seen to be downstream of the hole centreline; a 

sharp drop of the coefficients is predicted even at M=1 where the data shows 

a maximum. The low predictions at the centreline are probably due to 

underestimation of the lateral mixing by the turbulence model. 

The prediction of h/h for normal injection at p jp= 1.46 and for M=0.5, 

1.0, and 1.5 are displayed in Fig. 9.7 along with the present measurements at 

p jp. =1.52. Note that there was a difference in the temperature parameter 0 

between the predicted and measured heat transfer coefficients, 0=1 & 0, 

respectively. Such difference may be expected to cause disagreement in the 

heat transfer coefficient of the order of 10% [32]. For the cases of M=0.5 and 

1.5, satisfactory predictions were obtained at zJD25. For the case of M=1, the 

predicted results show, somewhat, lower values of h/h. than experiment 

everywhere. It can also be seen that the predictions are always low close to a 

hole indicating underestimation of turbulent mixing by the model. This is in 

contrast with the experimental data which has shown strong mixing for normal 

injection regardless of injectant density for Mz0.5. 

The lateral distribution of h/h, for pjp_ 1.46 are compared with the 

experimental data in Fig. 9.8. The agreement is fair at M=0.5, but large 

discrepancies are observed at M=1 particularly close to the hole centreline at 

both downstream locations. 

Similar predictions for injection through a row of 35° holes were made 

using PHOENICS, but convergence was more difficult to attain so that under- 

relaxation had to be increased heavily. Time, however, was not available in 

the current research to test all of the necessary cases. 
Fig. 9.9 compares the calculated and measured laterally averaged heat 

transfer coefficients for 35° injection, M=0.5 and 1.0 and unity density ratio. 

The numerical predictions of Schonung and Rodi [64] are also shown in the 

figure. The conditions simulated by [64] were: row of 35° holes, s/D=3, 
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u, 30.5m/s and Tu=0.5%; the differential equations were solved right up to 

the wall, and the turbulence model was the k-e version modified by Lam and 

Bremhorst [65] which uses a damping function that simulates the influence of 

molecular viscosity. It can be seen that qualitative agreement between the 

predicted and measured h/% is satisfactory. Quantitative agreement, however, 

is not as good; the calculated coefficients are seen to exceed the 

measurements by as much as 24% close to a hole (z/D<4), and as much as 

15% farther downstream. This may indicate an overestimation of generation of 

turbulent kinetic energy near the wall. On the other hand, the predictions of 

[64] are seen to be considerably lower than the measurements, probably 

caused by underestimation of the turbulent mixing. Apparently, the predictions 

of film cooling heat transfer coefficient by the general purpose code, 

PHOENICS, are seen to be in closer agreement with experiment than those 

obtained by the computer program of [64], which was developed especially 

for solving the problem of film cooling. 

The discrepancy of the predictions with experiment could be illustrated by 

examining the "w" velocity profiles. Plots of the predicted velocity profiles 

along with those measured during the experimental phase of this research at 

streamwise locations z/D=5 and 15, and x/D-0.0 for Mß. 5 are shown in Fig. 

9.10. Close to a hole, agreement between the predicted and measured velocity 

profiles in the jet region near the wall is unsatisfactory. The low velocity 

predictions are probably due to overestimation of turbulent mixing, which may 

also explain the high predictions of the heat transfer coefficient. Further, the 

predicted velocity profile may also have been influenced by the difficulty of 

representing accurately the inclined hole inside the wall by means of 

porosities, so that the jet velocity profile at the hole exit was possibly poorly 

predicted. At z/1=15, the discrepancy with measurement extended to the outer 

region of the boundary layer. 

Overprediction of the heat transfer coefficient is clearly shown in Fig. 

9.11, a plot of the lateral distribution of h/h, along with those of experiment. 

The behaviour of the predicted heat transfer coefficient at z/D=3 appears to be 
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similar to that of experiment, though large differences between predicted and 

measured values of h/h. are seen everywhere. Farther downstream, at z/D=10, 

the behaviour is less well predicted. The quantitative differences between 

calculated and measured h/h. can possibly be reduced if damping terms are 
implemented in the turbulence model. 

(ii) Adiabatic Wall Effectiveness 

Fig. 9.12 depicts the averaged effectiveness predictions for M=0.5,1.0 

and 2.0 against the experimental data of [40] and [52]. The numerical 

predictions of Demuren et al [63] for a hole spacing s/D of 3 but a of 450 

are included in the figure. The three-dimensional partial differential equations 

governing the flow and temperature distributions in [631 were solved with a 

locally elliptic finite volume technique developed by Rodi and Srivatsa [114], 

the turbulent stresses and heat fluxes evaluated with the nonisotropic version 

of the k-c model proposed by Bergeles et al [59], and the wall function 

approach described in Launder and Spalding [110] was adopted. The general 

trend of the ý development is predicted correctly in all cases. Furthermore, 

halving the grid size has produced negligible change in the predicted 

effectiveness indicating the independence of the predictions of grid size. The 

agreement with the measurements is seen to be best for the unity blowing 

rate, but for the highest blowing rate, i is underpredicted by as much as 30% 

downstream of xJD=10. Note that the values of f are generally small which 

compound the error. The effectiveness level predicted by [63] is observed to 

follow the measurements better for M=0.5 and 2, although there is a 

difference in the angle of injection. However, the enhancement of the 

nonisotropic variant in the k-e turbulence model in [63] probably has 

improved their i predictions. 

In Fig. 9.13, Goldstein et al [40] effectiveness data for M=0.5 are 

displayed with the predictions along four lateral positions. The general trend 

of the predicted 11 is in fairly good agreement with the measurements, 

although the lateral variation is seen to be higher along the centreline and 

202 



o. 

o. 

e. 

o. 

o. 

o. 

o. 

0o. 

o. 

o. 

o. 

o. 

0o. 

o. 

S. 

S. 

a= 35 Deg. 
N=0. S 
pc/pm W. 1.0 

Predicted (PHOENICS) 
----- Predicted, Grid Size Halved 
---- - Predicted 163 1, or =45 Deg 

O Goldstein et al 140 1 
A Pedersen et al 1521 

413 

C3 C) o 

-----a---®i--- "- --- ---- O- 

I 

t 

t 
, 
ý` O" 

in 

1.0 1 

0 

2.0 

0 

so 

-------- ------ Cl 

0s lo Is 20 25 30 35 40 

z/D 

Fig. 9.12 Comparison between predicted and measured laterally 
averaged effectiveness following injection through a row 
of holes. 

203 



OOOO 
"""O 

Wlb 40 -0 ". 0 ýp 
aouuuv 

°N C) 000 r 10,010 
ýwv :: 

ofO ö ---a. dda CL 
MM ýCIONOMf01RON 

ast00-s- 00ýý+ 
u-I 

11 
11 

I 

a000 1 1 
11 
1 I 

to r Ut f 

OOOOO 

C" 

204 

0 

i(I 
,n 

1(1 w 

1 
1 
1 I 

1®p I 
o 

I 

1 r ' 

11 
1 
1 

I 

/ 
1 

N 
1 

1ýpI 

ý 

I 

1 

o I 
I `ý 

1®O O1 

1I c I 
er 

0 1 0 40 
1 

II 

, 

aq O 01 

4 of Oo 
ý+ 

1 

a o, O oI 

I 

0O 01 

O el v+ 
EI 01 

rs N0 

OOO 

2 
a1 
41 

u 

ä 

E 
L 

cc CIS 
v0 

O 

co 

cc s .ö 
L 

O 
U 
M 
.. w 

L:. 



considerably lower in between the holes. 

The general picture of the lateral average effectiveness for the case of 

normal injection as predicted by PHOENICS is much the same as for inclined 

injection as shown in Fig. 9.14. The initial behaviour, however, is less well 

predicted; differences with measurements up to 30% are observed. The farfield 

behaviour is fairly well predicted. The measurements in the figure are those of 

Foster [105] at a jet-to-mainstream density ratio of 2. The predictions of 

Demuren et al (63] for normal injection at unity density ratio are also shown. 

The prediction of Demuren et al are seen to be of the same manner as those 

predicted by PHOENICS, but at M=1 the level of ij as predicted by- [63] is 

seen to be lower than the measurements presumably caused by the lower 

density of the jets. 

Figs. 9.15(a) and (b) compare predicted and measured [105] lateral 

distribution and centreline effectiveness respectively for normal injection at 

density ratio of 2 for different blowing rates. It can be seen that the predicted 

11 is higher than the measurements at centreline positions and appreciably 

lower in between the holes as has been observed for the case of 35° injection 

(Fig. 9.13). Nevertheless, the trends agree reasonably well with the 

measurements. 

9.5 CONCLUDING REMARKS 

The computer code PHOENICS has been applied to simulate the effects 

of film cooling by a row of holes. In general, the overall performance is 

shown to agree reasonably well with the effectiveness measurements. The 

predicted heat transfer coefficients are also in fairly satisfactory agreement 

with the measurements. However, simulation of the effectiveness using 

PHOENICS was more successful than that of the heat transfer coefficient as 

was the case with the other computer schemes. 

The improvement in predictions of the heat flux are solely due to the 

implementation of the generalised wall functions in PHOENICS. 
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Mention should also be made that the computed heat transfer coefficient 

results were not checked for grid-dependence as time was not available. 
Further work (refining the hole cross-section or the domain) may still be 

required to obtain grid-independent solutions. 
Moreover, one should keep in mind that all of the cases examined lay in 

the strong injection regime where strong jet-mainstream mixing took place 
behind a hole. Therefore, it can hardly be expected that a turbulence model as 

simple as the standard k-e model will simulate accurately the complex mixing 

region after a hole. 

The inadequacy of some of the predictions are believed to stem from the 

following reasons, 

" The assumption that the eddy viscosity is isotropic in the three- 

dimensional reverse flow zone behind a hole, 

- Overestimation of the generation of turbulent kinetic energy near the 

wall, IM, 

" Difficulty in simulating accurately the inlet conditions of kinetic energy 

of turbulence in absence of available measurements. 

Further improvement in predictions, therefore, could be acquired if the 

turbulence model as well as the inlet conditions are modified to account for 

the points outlined above. 

f 
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CHAPTER 10 

CONCLUSIONS 

Here, conclusions are drawn from the discussions of the results in the previous 
Chapters. 

An experimental investigation of cooling film heat transfer coefficients for 

injection through a row of holes has been undertaken, with particular interest 

devoted to the influence of two film cooling parameters, the coolant-to- 

mainstream density ratio and mainstream acceleration. The shortage of 

experimental information with some degree of simulation of real engine 
environment as outlined in chapters 2 and 3 has led to carrying out the 

present systematic programme. 
The successful use of foreign gas injection in the mass transfer technique 

employed for measuring the heat transfer coefficient has enabled the 

simulation of typical turbine blade density ratios without resorting to the 

unreliable method of heating the mainstream. 

The results have indicated amongst other findings the inadequacies of 

directly applying some of the film cooling data measured at constant property 

conditions to turbine blade film cooling calculations at engine conditions. For 

this data to be effectively utilized, it must be properly scaled to engine 

practice. 

The highly three-dimensional, highly turbulent nature and reverse flow 

regions exhibited in the film cooling process, has so far precluded the 

advanced computational methods from adequately predicting the heat transfer 

on film cooled surfaces. The ability of a general purpose 
, 
computational fluid 

dynamics program to predict heat transfer associated with film cooling has 

been explored through comparison of the computed results with the 
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experimental data. 

The current experimental and numerical work presented and discussed in 

the preceding chapters, has been aimed at providing designers of film cooled 

turbine components with information needed for better predictability of 

external heat transfer. In the following, the conclusions that have been reached 

are outlined. 

10.1 INJECTION HYDRODYNAMIC EFFECTS 

" The heat transfer coefficient is increased by injection, and 

increases with injection rate, for both 35° and 90° injection. 

The 90° injection gives higher heat transfer coefficients in regions just 

downstream of the holes than 35° injection. For 90° holes at M=2 the 

increase in the local coefficient over the no-injection values exceeded 100%, 

while for 35° holes 65% increase was measured. The corresponding increase 

in the spanwise average coefficients was 75% and 36% for 90° and 35° 

injection respectively. Far downstream, the persistence of the structure of the 

35° jets yields higher heat transfer coefficients than for the rapidly falling off 

structure of normal jets. 

" Upstream of the holes, there was little influence on the heat 

transfer coefficient by 35° injection, while for normal injection an increase of 

up to 16% was observed for the highest blowing rate. The influence was 

noticed, however, for only 2 to 3 hole diameters upstream. 

" 'Normal injection through a row of holes results in a higher heat 

transfer coefficient between the holes than that through a single hole. Mixing 

between neighbouring jets enhances the heat transfer. 

" It has been shown that injection significantly increases the heat 

transfer coefficient, in particular at large blowing rates close to the injection 

site. This increase in the heat transfer coefficient may, in fact, be more than 

counterbalance the cooling effects of injection and cause a net increase in the 

heat load. It follows that injection at rates in excess of unity may not be 

favourable. 
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10.2 DENSITY RATIO 

(i) 90*, Injection 

" The heat transfer coefficient following normal injection through a 

single hole or a row of holes is insensitive to jet to mainstream density ratio 

variation. Maximum difference in the heat transfer coefficient of 5% for 52% 

density ratio difference was found only at the high blowing rate of 2. The 

rapid interaction and dilution of the jets by the mainstream destroys their 

identity, so that the coupling between the injection and heat transfer 

coefficient is not that strong. This results in little difference in the enhanced 

coefficients with the variation of the mass and momentum flux ratios. 

" The blowing rate, M, satisfactorily correlates heat transfer 

coefficient data under varying density ratio for normal injection. As a 

consequence, previous normal injection heat transfer studies at density ratios 

not representative of gas turbine conditions can be directly applied without 

correction provided only that blowing parameters are matched. 

The normalised spanwise average heat transfer coefficient, E/h� is 

well-correlated by, 

h/h, = 1.0 + 0.555 exp(-0.14(x/D)M ) 

in the range, 
0.55MS 1.5, and 1.5Sx/D560, 

and with ±5% uncertainty. 

(ii) 
,Sj 

Injection 

" For 350 injection, the heat transfer coefficient at a fixed blowing 

parameter is strongly dependent on the density ratio, decreasing as the density 

ratio increases. The reductions in the heat transfer coefficient were found to 

be in the main within 10% for changes in the density ratio from 1 to 1.52, 

although they have reached 20% at some downstream locations for the highest 

blowing rate of 2. 

The jet-mainstream mixing in inclined injection is of lesser extent than in 

normal injection, so that the " jets are preserved longer. At a fixed blowing 
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rate, the higher momentum of the lighter gas injectant is reflected in greater 

mixing with the mainstream, and thus enhanced heat transfer. 

Accordingly, previous heat transfer studies using inclined injection at 

density ratios close to unity are inadequate in their present form, and need 

scaling for application in gas turbine design. The relation suggested in this 

study may be used for this purpose. 

" For the range of blowing rates studied, the coolant-to-mainstream 

velocity ratio is the key parameter in correlating data at differing density 

ratios. Plotting the normalised spanwise average heat transfer coefficient 

against (x/DXu/u., ) collapses data for a range of velocity and density ratios. 

The recommended correlating curve is, 

F4% = 1.025 + 0.35 exp{-0. l5(x/D)(uJu�)') 

in the range, 

0.55uJu,. 51.5, and 1.55x/D560, 

and with ±7% uncertainty. 

" Most of the tests for 35° and 90° injection performed here, 

exhibited a similar characteristic in that gross separation from the surface has 

occurred in the wake of the holes (I>0.16). Consequently, the data falls in the 

strong injection regime and should have correlated well with the velocity ratio 

[32]. However, as reported above, the normal injection data were brought 

together better with M. This suggests that subdivision of the strong injection 

regime according to injection inclination is needed. 

It is abundantly clear that the angle of injection is the essential feature in 

the observed difference in characteristics between the two geometries 

examined. As the injection angle is reduced from 90° to 35°, the gross 

structure of jet-mainstream mixing is changed, leading to more apparent effect 

of density ratio, and change of data key scaling parameter from M to u ju,.. 

Furthermore, the film cooling heat transfer coefficients exhibit a considerably 

higher degree of sensitivity to the influence of blowing rates, momentum flux 

ratios, and even Reynolds number [22, & 231. 
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10.3 MAINSTREAM ACCELERATION 

" Mainstream acceleration works by suppressing injection induced 

turbulence, and hence reducing the heat transfer coefficient. 

The results obtained were for 35° injection only. They reveal that for 

both acceleration parameters of 1.9x104 and 5x1(Y` examined, the heat transfer 

coefficient under the film was lowered as compared with that at zero pressure 

gradient condition. The spanwise average coefficients normalized by the 

corresponding zero acceleration values, h/(h)� approximate to a linear 

character with the acceleration parameter, K. At any given blowing rate, the 

coefficients ratio decreased as K was increased. The effect of M on the heat 

transfer coefficients ratio was weak at the lower K value, and distinct at the 

higher K; an increase in M leading to a decrease in effect of acceleration on 

the coefficients ratio. Stronger blowing appeared to have resisted more the 

domination of the imposed pressure gradients. 

The overall average reduction in the averaged coefficients for all M 

covered at unity density ratio was as follows, 

at K=1.9x101, h was reduced by about 8%, and 

at K=5.0x10', h was reduced by about 23.5% for M<1.5, and by 19% 

for MZ1.5. 

These results have the practical implication that data obtained at zero 

pressure gradient conditions can be corrected for favourable pressure gradients 

allowing predictions over more realistic conditions on turbine blades. 

" The effect of strong mainstream acceleration (K=5x10) on cooling 

film heat transfer coefficient in the presence of density ratio was similar to 

that at unity density ratio for M<1.5, where the influence of M was quite 

weak. A substantial overall reduction in 1i/(di). of about 27% was present for 

M>0.5. 

" The effect of raising the density ratio by 52% at constant 

acceleration of K=5x 104 on the heat transfer coefficient was also similar to 

that at zero pressure gradient. The decrease in the coefficients reached 20% at 

some downstream positions for the large blowing rates. 
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" The heat transfer coefficient data gathered in the absence of 

density and pressure gradients for M>0.5 could be transformed into data at 

conditions more characteristic of gas turbines (pjp-=1.52 & K=5x10; ) by 

using the following correction factors; close to a hole (x/D<5), the overall 

average reduction conversion factor is about 30%, further downstream, the 

factor is about 35%. 

" Empirical evidence has pointed to the fact that the heat transfer 

coefficient data in the presence of acceleration and density ratio scales 

reasonably well with (x/D)(uju_)'', the data correlating parameter at zero 

acceleration. The laterally averaged heat transfer coefficient ratio data was 

scaled using the following correlation, 

h/ho = [1.0 - 0.04(Kx106)][1.025 + 0.35 exp{-0.15(x/DXuju�) }] 

However, the scatter was large particularly for the data at the larger density 

ratio in the presence of acceleration. 

10.4 NUMERICAL STUDIES USING PHOENICS 

The heat transfer coefficient has been predicted using the general purpose 

computer code PHOENICS. Generalised wall functions were used in which 

the heat flux was calculated using the kinetic energy of turbulence as the 

characteristic velocity scale rather than the friction velocity. This way 

plausible predictions of wall heat flux at jet separation regions were obtained. 

" For the cases of normal injection through a row of holes, the 

overall level of agreement of calculated heat transfer coefficient with 

experiment was quite satisfactory. At unity density ratio, the predicted 1/h, 

agree with measurements within 15% for large M. Best agreement though was 

achieved at M=0.5 probably because the jet-mainstream mixing was less 

intensive. 

In the presence of density ratio (pjp.. 1.46), the computed results of 

were also reasonably predicted at distances greater than 5D, but lower 

predictions than measurements were obtained closer to the holes. 
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The lateral distribution of the heat transfer coefficient, however, was less 

well predicted; a substantial underestimation of turbulent mixing at centreline 

locations was evident. 

" For the cases of injection through a row of 35° holes, the 

calculated and measured h/h, agreed fairly well qualitatively, but 

quantitatively, the calculated Fi/h. overestimated the measurements by as much 

as 24% close to a hole (zýD<4), and as much as 15% farther downstream. 

The lateral distribution of the calculated h/h, was also higher than 

measurements, although the trends at low M were predicted correctly. 

Overprediction of the heat transfer coefficient is believed to have been caused 

by overestimation of generation of turbulent kinetic energy near the wall. 

" The overall predicted level of laterally averaged effectiveness, ii, 

for both 90° and 35° holes was in fairly good agreement with experiment. 

The predictions were generally little lower than measurements, although 

maximum differences of 30% close to a hole were observed at some cases. 

The predicted lateral distribution of effectiveness was found to be higher 

than measurements at centreline locations and considerably lower at mid-pitch 

positions for both 90° and 35° holes. 

10.5 RECOMMENDATIONS FOR FURTHER WORK 

As the ability of models for accurate prediction of external heat transfer 

of film cooled surfaces at conditions characteristic of engines has not been as 

yet well established, experimental results remain the foundation for design, 

and a great deal more is still needed. 
The ease with which highly-detailed heat transfer data could be obtained 

using the swollen polymer technique, makes this method ideal for collection 

of further reliable data. Thus a data base representative to some degree of 

realistic engine conditions can be assembled. 

The current work could be continued by investigating the heat transfer for 

different configurations encountered in blade cooling design, such as two rows 

of holes looking at the effect of spacing and interaction between the two rows 
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of holes. Shaped holes which offer better cooling effectiveness [47], and one 

and two rows of crosswise angled holes, or other geometries that could be 

investigated. 

The effect of surface curvature on film cooling heat transfer coefficients 

could be studied using the present experimental technique, as could the effect 

of pressure gradients for this geometry. In addition, the effects of variation in 

Reynolds number could be examined. As the foregoing parameters are 

expected to exhibit some dependence on the density ratio, investigation of 

their interacted effects would be of considerable value. 

The swollen polymer technique has further been developed for the 

measurement of film cooling effectiveness [77]. Measurements of both 

effectiveness and heat transfer coefficient under similar conditions enables 

accurate determination of heat loads under the influence of the various 

parameters that could be investigated. 

Other work beyond the scope of the present apparatus includes the effects 

of Mach number, compressibility and rotation. 

Future numerical work should incorporate one of the modified versions of 

the k-e turbulence model (see reference [111]) in conjunction with the 

generalised wall functions in PHOENICS. However, grid-independent solutions 

must be obtained. 

Generally, future numerical work should concentrate on developing more 

sophisticated turbulence models that represent more efficiently the three- 

dimensional mixing behaviour of a jet in crossflow. 

It is hoped that, the preceding suggestions for research activity will, in 

conjunction with the results of the current work, help to establish design 

methods of greater accuracy that enhance the confidence in initial designs of 

film cooled components of gas turbines. 
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APPENDIX A 

CHOICE OF SUITABLE SWELLING AGENT 

In order to choose a suitable swelling agent it is necessary for the agent 

to satisfy the following properties to provide long enough constant rate period, 

i) high diffusivity within the polymer. 

ii) relatively low vapour pressure, and, 

iii) high swelling power. 

The diffusivities of swelling agents in rubbers have a rough 

correspondence with their liquid viscosities [83]. The vapour pressure can be 

obtained from the literature. The swelling power is a function of the 

polymer-swelling agent system and is determined experimentally. 

The equilibrium swelling of some silicone rubber (RTV615)-swelling 

agent systems was obtained experimentally by employing aluminium thin 

circular discs with a thin RTV615 rubber coating bonded to a 0.5mm 

recession in the discs. These were immersed in a bath of the swelling agent 

to be examined for a period of time until their swollen weight became 

constant indicating the completion of absorption of the swelling agent by the 

dry rubber. The difference between the weights of the dry and swollen rubber 

yielded the amount of swelling agent absorbed, from which the percentage of 

volume swelling was calculated. Plots - of the percentage swelling of RTV615 

by three organic liquids; diethyl adipate, butyl carbitol and anisaldehyde, are 

shown in Fig. A. 1. The swelling liquids were chosen for their low vapour 

pressure and they were readily available at adequate purity. However, as 

observed in the figure their swelling power is rather small. Therefore attention 

was directed at swelling agents already examined by other workers which 

have higher swelling power. 

In view of the work reported by [86 & 92], ethyl salicylate is the most 

widely used swelling agent in the swollen polymer -method. Data on ethyl 

salicylate amongst other agents is given in [83 & 84]. More recently, Paterson 
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et al [93] have reported highly reliable data on ethyl salicylate and other 

organic compounds including tetradecane. Along with ethyl salicylate, 

comparison is made with isobutyl benzoate and tetradecane representing high, 

intermediate and relatively low vapour pressure organic substances 

respectively. 

The equations in the theoretical analysis of [80], have been replaced by a 

simple iterative computer solution to obtain more readily the constant rate 

period for any specified polymer-swelling agent system. Figs. A. 2 and A. 3 

display the constant rate period of ethyl salicylate system against the mass 

transfer coefficient. The figures show that the use of ethyl salicylate as a 

swelling agent for RTV615 rubber gives inconveniently short experimental 

times at high rates of transfer. Experiments, therefore, could only be operated 

at relatively low temperatures which was not possible for the existing 

experimental setup in the air flow laboratory as it stands, or, heavily 

exceeding the 5% tolerated vapour pressure change, thus, introducing 

uncertainty and loosing accuracy. Isobutyl benzoate gives longer run times as 

shown in Fig. A. 4, but there again, it could not be used at the rather high 

blowing rates that cause high mass transfer close to the injection site without 

manipulating the operating temperature or relaxing the 5% vapour pressure 

change. By contrast, tetradecane (see Fig. A. 4) gives comfortably large 

constant rate periods at high rates of mass transfer. 

In order to compare the effectiveness and reliability of ethyl salicylate 

and tetradecane in practice, preliminary film cooling tests employing both 

chosen swelling agents were carried out at ambient temperatures. The 

conclusions were in favour of tetradecane in all aspects. Mass transfer results 

using ethyl salicylate were partly inconsistent, and the uncertainty associated 

with the identification of fringe order using the air-gauge was determined by 

submitting the swollen polymer coating to 66 air gauge measurements taken at 

a room temperature of 18°C. The mean fringe order error of which was +2.5 

fringes and the standard deviation from the mean was 1.1 fringes. The mass 

transfer results using tetradecane were consistent, and the fringe order 
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identification analysis resulted in a mean fringe order error of +1.4 fringes 

and a standard deviation of 0.6 fringes out of 58 measurements taken at a 

higher temperature, 26°C. Furthermore, tests investigating evaporation of the 

swelling agent by the air-gauge air supply impingement on the swollen 

coating were carried out. Air-gauge manometer pressure readings were taken 

against time and plotted in Fig. A. 5. It is observed that the pressure-time 

curve is steeper for the ethyl salicylate case indicating faster evaporation had 

occurred due to its higher vapour pressure. Moreover, the curvature of the 

graphs partly caused by the continued increase in distance between the air- 

gauge probe and the coating surface due to evaporation, is more pronounced 

when ethyl salicylate was used as the swelling agent. The manometer pressure 

decreased almost linearly for the first 4 to 5 minutes for the coating swollen 

by tetradecane. 

The swollen polymer method requires accurate vapour pressure data. The 

vapour pressure of ethyl salicylate recently measured at ambient temperatures 

by Paterson et al [93] is 25% lower than that measured by Kapur and 

Macleod [84]. Whereas tetradecane vapour pressure data at relatively low 

temperatures (17-56°C) established by Paterson et al [93] is only 5% greater 

than that reported in the literature by the Thermodynamic Research Centre 

[115]. 

Upon the analysis conducted above, it was concluded that n-tetradecane is 

the most appropriate swelling agent for the present work. 

An idea of what the fringe order is likely to be when employing 

tetradecane in mass transfer experiments is shown in Fig. A. 6. The figure 

displays estimates of fringe order corresponding to mass transfer rates in an 

assumed 15 minutes test duration at different temperatures. These estimates 

were deduced from the theoretically calculated recessions. It is interesting to 

note that the fringe order estimates at a mass transfer coefficient about 

3.5cm/s were found to agree quite well with those measured experimentally in 

the course of this research, thus confirming the accuracy of the theoretical 

analysis. 
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APPENDIX B 

CALIBRATION OF THE AIR-GAUGE 

Calibration of the air-gauge was nessecary for the relation between the 

air-gauge back pressure and air-gauge probe-to-surface distance to be 

determined. Three experiments, as described by Kapur and Macleod [88], were 

therefore conducted. 

The micrometer head of the air-gauge probe assembly had graduations of 

0.0001" divisions. When the former was rotated the probe tip moved forwards 

or rearwards according to the exact value and direction of rotation, hence the 

probe could be finely adjusted in the horizontal plane normal to the test-plate 

surface. 

Due to the effects of evaporation of the swelling agent on the 

displacement between the air-gauge probe and the swollen polymer surface at 

the point of measurement, the dummy plate was used instead. The back 

pressure readings measured on the water filled Betz manometer were taken 

corresponding to each 0.0002" displacement away from the surface. A plot of 

the manometer back pressure against the distance traversed by the micrometer 

is presented in Fig. B. I. It can be seen that there is a part of the graph for 

which the pressure-displacement relation is linear. This corresponds to a back 

pressure range between 30.0 and 44.0 mm H. 0 and to a distance from' the 

surface of 36.75 and 19.10 microns respectively. The steepest gradient for 

which the air-gauge pressure is most sensitive to the probe displacement 

happens to be at that linear range. Therefore, to improve accuracy, all 

recession measurements of the film cooling tests were taken inside the linear 

range. 

From the slope of the linear range of the graph, an increase of the 

distance between the probe and the surface (or recession of a swollen polymer 

surface) corresponding to one mm back pressure drop is equal to 1.2995 

microns, accordingly for a pressure drop P nun H2O, 

Recession = 1.2995 xP microns. 
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APPENDIX C 

EXPERIMENTAL DIFFICULTIES ENCOUNTERED 

There were many experimental difficulties encountered using the existing 

experimental technique. An outline of the major problems that have been 

overcome in the preparation of the apparatus is as follows: 

i) The proper choice of a swelling agent to provide a constant rate period 

long enough to minimise start-up and shut-down errors. 

ii) Reduction of the errors associated with evaporation of swelling agent by 

impingement of the air-gauge air supply on the polymer surface at the 

point of measurement. 
iii) The three-dimensionality of the mainstream over the test surface. 

iv) The interferograms suffered from the appearance of spurious fringes which 

superimposed the fringes actually produced by the film cooling 

experiments. Full investigation of this problem is discussed elsewhere 

[116], however a brief description of the stages in identifying the source 

of this problem follows: 

a- Careful replacement of the test plate on the kinematic mount for the 

double-exposure holograms produced no spurious fringes. 

b- Clamping of the test plate to the floor of the tunnel test section by nuts 

and bolts produced spurious fringes. The effect was removed by the use 

of spring clamps with rubber pads. 

c- Deflection of the test plate by the mainstream static pressure was thought 

to be the cause of the appearance of spurious fringes in tests conducted in 

a wind tunnel by Kapur [83]. The large aluminium test plate was replaced 

by a newly made stainless steel test plate of the same thickness but of 

smaller diameter, and, hence, much stiffer. However, the spurious fringes 

did not disappear so that hysteresis associated with deflection of the test 

plate by the static pressure was not the sole or dominant source of the 

appearance of false fringes. 
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d- Successful elimination of the spurious fringes was finally achieved when 

tests conducted with the difference in the temperature of the test plate 

between the two exposures did not exceed about 0.5°C. The temperature 

variation was therefore the major cause of producing false fringes. A 

constant temperature throughout the experimental apparatus during the 

course of an experiment was therefore essential for accurate determination 

of mass (heat) transfer coefficients. Uniform temperatures were 

accomplished by the provision of controlled electric heaters to the tunnel 

environmental chamber and to the newly built enclosure of the 

holographic table. 
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APPENDIX D 

UNCERTAINTY ANALYSIS 

The uncertainties on the absolute and ratios of local and laterally 

averaged heat transfer coefficients are evaluated according to the method of 

Kline and McClintock [98] as follows (full details are given in [82]): 

(i) The heat transfer coefficient ratio with and without injection, h/h, is 

calculated using equation (6.11), 

h/ho = n/no 
The uncertainty, 8(h/h. ), is estimated through the individual uncertainty 

associated with each factor as follows, 

S1 hJ (a(n/n_) 8n) =+ (j(nLnJ Sn, l2 1'x --- (D. 1) 

where, a(ni )%dn=lfn� and a(n/n, )/an, =-n/n, '. 

The estimated uncertainty on the measurement of the fringe order, Sn 

(=8n0), is taken from the standard deviation from the mean of 58 

measurements as ±0.6 fringes. 

Substituting in eq. (D. 1), a heat transfer coefficient ratio uncertainty of 

±4% is determined for near the injection field (x/D<10) where a fringe order 

value of 30 is assumed, while an uncertainty of ±5% is determined in the 

farfield (x/D> 10) where n is around 17. 

(H) The lateral average heat transfer coefficient ratio, h/h� is determined 

from equation (6.12), 

h=p= _j_ 1'1ý"n(x/D. z/D) d(z/D) 
h. no (s/D)/2 Jo n(x/D) 

The uncertainty on the calculated averaged fringe order, Sn, based on a 

95% confidence level is estimated as ±2.1 fringes in the nearfield and ±1.5 

fringes in the farfield. 

Following the procedure carried out in (i) above, uncertainties of ±7.9% 

and ±9.4% on the lateral average coefficients ratio, i fl , in the nearfield and 

farfield' respectively are determined. 
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(iii) The absolute mass transfer coefficient, t., is determined from 

equation (6.5), 

he=pK6/C�t 

Hence, 

ac. 
(D. 2) s [Ihro 61) )2 + (ehm_ý 5)2 + (? J 6CV)2 +& (fit , ý1a 

The uncertainties on the different measurements are estimated as follows, 

(a) Sp. = ±0.0035 g/cm3, estimated using equation (4.6), based on the 

uncertainty in the mass fraction of swelling agent in the swollen polymer of 

±0.013 as given by [93]. 

(b) &= ±15 seconds in a 12 minutes test time based on 98% confidence 

level. 

(c) SC,, = ±5.386x10'9 g/cm', estimated using equation (4.5) and applying the 

method of [98], based on the uncertainties ST=f0.3K and SP, 5.076x10' 

mmHg estimated from eq. (6.6). 

(d) 68 = ±0.231 microns, estimated using first eq. (4.7) to determine 

8S/lfringe=±0.00362 microns. The latter was based on the uncertainty in the 

volume fraction in the swollen polymer of ±0.0077 as given by [93] and 

using eq. (6.7). Then the method of [98] was applied to equation (6.8) where 
8n=±0.6 fringe. 

By substituting these values in equation (D. 2), a mass transfer coefficient 

uncertainty of ±6.7% is determined. 

(iv) The uncertainty on the laterally averaged heat transfer coefficient 

ratio in the presence of favourable pressure gradients is as determined in (ii) 

above so that, 

S(fi/h, ) = S(Imhw) = KA w) = ±7.9% in the nearfield and = ±9.4% in 

the farfield. 

Therefore, 

Sh g, = ±7.9% (h 6hw) = ±8.43% h.. in the nearfield, and = ±10.03% 

h.. in the farfield. Similarly, for Shy, and Sh. 
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The estimated uncertainties then are, 

Sh, ý, = ±0.270 cm/s 
Shy, = ±0.185 cm/s in the nearfield 
Sh = ±0.295 cm/s 
and, 
8hw = ±0.321 cm/s 
Shy, = ±0.221 cm/s in the farfield 
Sh = ±0.351 cm/s 

By applying the method of [98] and substituting these values in, 

h,., and h,, 
hh 

uncertainties on the laterally averaged heat transfer coefficients ratios, 

and, h . )h, of ±9.4% and ±8.2% respectively in the nearfield, and ±13.4% and 
±12.4% respectively in the field are determined. 
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APPENDIX E 

CALCULATION OF DIFFUSION COEFFICIENTS AND SCHMIDT 

NUMBERS 

(i) Calculation of Diffusion Coefficients 

In the absence of experimental information, the best present method in 

estimating diffusion coefficients of nonpolar-nonpolar gases or polar-nonpolar 

gases, is the semi-empirical expression based on consideration of the kinetic 

theory of gases and the Lennard-Jones potential of intermolecular forces. This 

is (the expression can be found in several text books, see [117] for example), 

D12=0.0018583 T' [(M, +M2) / M, M2] 2/P a12 Co --- (E. 1) 

where, D12 = diffusion coefficient, cm2/s 

T= temperature, K 

M,, M2 = molecular weight of species 1 and 2 

P= pressure, atm 

a12 = characteristic Lennard-Jones length force constant, A°, and 

CD = diffusion collision integral, dimensionless (= kT / £12), where k 

is Boltzmann's constant and E� is a characteristic Lennard-Jones energy force 

constant, erg. 

In case there are no data on c;,, and e, =, it is customary to use the 
following empirical relations [118], 

a12=(a, +a2)/2 
El: _ \C1 0u2 

---(E. 2) 

---(E. 3) 

The most reliable values of the force constants ß and e are obtained by 

correlating experimental viscosity data [102]. However if the data are not 

available as is the case with n-tetradecane, estimates for nonpolar gases can 

possibly be obtained from other properties, such as the boiling point, T,, and 

the molar volume at the boiling point, V� as cited by Brokaw [102], 

E/k=1.18 Tb , (Svehla, 1962) --- (E. 4) 

V= it N a3 /3, yielding, a=1.166 V, 10 (from [118]) -- (E. 5) 
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here N is Avogadro's number. 

The molar volume at the boiling point V. is estimated by either 
Schroeder's or Le Bas's method which are simply based on addition of 

atomic volume increments [119]. 

Other empirical relations are reported in many text books, such as those 

based on the critical point instead of the boiling point [101 & 119]. However, 

the diffusion coefficients of tetradecane diffusing in air, other gases and gas 

mixtures were calculated using the force constants relations cited by Brokaw 

[102] since better agreement was reached with the experimental data of 

Paterson et al [93]. 

(ii) Diffusion in Multicomponent Gas Mixtures 

Steady state conditions prevailed in the film cooling experiments; the feed 

streams were of constant concentration at uniform temperature and pressure. 
Steady-state diffusion in multicomponent gas mixtures is described by this 

relation [117], 

D1. =1/E°, x, /D» --- (E. 6) 

where D, m diffusion coefficient of component 1 in the mixture of m species, 

D�= binary diffusion coefficient of li system, and 

x, = mole fraction of component i. 

This relation assumes, for practical calculations, that one gas only 

diffusing in a non diffusing gas mixture. Equation (E. 6) was considered to 

apply to the processes under investigation based on the simplifying assumption 

that tetradecane only was diffusing in the other gases. 

The correlations described above conclude the theoretical aspects of 

estimating the diffusion coefficients in binary and multicomponent gas 

mixtures. 

(iii) Estimation of Viscosities of Gas Mixtures and Schmidt Numbers 

Viscosities of the gas mixtures were needed in the estimation of Schmidt 

numbers. They were estimated following the procedure of Brokaw [102] who 
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used an approximate formula for the viscosity of gas mixtures derived by 

Sutherland (1895), which is based on simple mean-free path arguments. The 

expression is, 

gw. =Emw x4WA(x1+Ei., O, jx; ) ---(E. 7) 

where p, is the mixture viscosity while µ, is the viscosity of component i; x, 

and x, are mole fractions designating the composition. Brokaw in a particular 

complete study of gas mixtures developed an accurate theoretical expression 

for Oi, so that it can be obtained from, 

OY = Si; ""'j WRY, 

here S, j can be taken as unity for mixtures of nonpolar gases. In a mixture of 

polar-nonpolar gases, however, the interactions are essentially of a nonpolar 

nature so that SÜ can also be assumed as unity [102]. A,, is a lengthy function 

of molecular weight ratio (MJMJ) only, which is given in a scale in [1021 and 

plotted against (MJM; ) in Reid et al [1171. 

The expression (E. 7) have been tested extensively by comparison with 

experimental data on 280 mixtures involving 25 gas pairs [102]. For these 

mixtures the average error was 0.7%. 

Other expressions for O;; and correlations for the estimation of viscosities 

of gas mixtures at low pressures are reported in [117]. 

Once the viscosity and diffusion coefficient of tetradecane diffusing in the 

various gases and gas mixtures have been calculated, the Schmidt number was 

estimated using the established relation, 

Sc=W1/ P2 D12 

where the subscript 2 denotes the gas or gas mixture of which tetradecane is 

diffusing into. 
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