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Abstract

Nanomechanical resonators have extremely low masses (∼ 10−15 kg) and

frequencies from a few megahertz all the way up to the gigahertz range.

These properties along with a small damping rate make them very useful

for ultrasensitive detection applications, now pushing into the realm of zep-

tonewtons (10−21 N) and zeptograms (10−21 g). On a more fundamental

level, nanomechanical resonators are expected to display quantum mechan-

ical effects when cooled down to millikelvin temperatures.

The understanding of dissipation in nanomechanical resonators is im-

portant for device applications and to study quantum mechanical effects in

such systems. However, despite a range of experiments on semiconducting

and metallic devices, dissipation in nanomechanical resonators at low tem-

peratures is not yet well understood. Although mechanical resonators have

traditionally been operated in the linear regime, exploiting their nonlinear-

ities can prove advantageous for industrial applications as well as opening

up new experimental windows into the fundamental study of the nonlinear

dynamics of mesoscopic systems.

In this thesis, we present results from low temperature dissipation studies

on pure gold and on gold-coated high-stress silicon nitride nanomechanical

resonators. A theory, which predicts the existence of tunnelling two-level

systems (TLS) in bulk disordered solids at low temperatures, is used as a

framework to describe the data. The nonlinear interactions between different

flexural modes of a single silicon nitride device, are explored experimentally

and theoretically.

The resonators were fabricated as doubly-clamped beams using a combi-

nation of optical lithography, electron-beam lithography, dry and wet etch-

ing techniques. The motion of the resonators was actuated and detected

using the magnetomotive scheme. At low temperatures, all the beams had
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resonant frequencies between 3 and 60 MHz and quality factors in the range

105 − 106. The strong variation observed in dissipation and resonant fre-

quency at the lowest temperatures (below 1 K) indicates the presence of

tunnelling TLS in nanomechanical resonators.
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Chapter 1

Introduction

An electromechanical device is a mechanical element which is coupled to

an electronic circuit, where the energy from the motion of the mechanical

part is converted into an electrical energy. In the last ten to twenty years,

fast progress in the fabrication techniques has led to the development of

electromechanical devices with dimensions in the micrometre scale. Such

devices are known as microelectromechanical systems (MEMS) and are now

widely used in industrial applications: electric current regulators, radio-

frequency (rf) components, navigational sensors are only some examples

from a whole range of applications [1–4].

In more recent years, further minaturisation of electromechanical devices

has led to the natural successors of MEMS, the nanoelectromechanical sys-

tems (NEMS), with even smaller dimensions. At the heart of a NEMS lies

a nanomechanical resonator, usually in the form of a cantilever or a doubly-

clamped beam with cross-sections below 1 µm. Nanomechanical resonators

have extremely low masses (∼ 10−15 kg) and frequencies from a few MHz

all the way up to the GHz range. These properties make nanomechanical

resonators extremely useful for ultrasensitive detection applications, with

very high force [5] and mass [6] sensitivities.

On a more fundamental level, what makes these systems interesting is

that they are mechanical objects with ∼ 1010 degrees of freedom; it would

be of much interest to see how quantum mechanical effects manifest them-

selves in such systems as compared to a few atoms which have fewer degrees

of freedom. A nanomechanical resonator is expected to behave quantum

mechanically when its vibrational energy is greater than the thermal energy
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CHAPTER 1. INTRODUCTION 2

of the surroundings, such that:

~ω ≥ kBT (1.1)

where ~ is Planck’s constant divided by 2π, ω = 2πf is the angular frequency

of the resonator, kB is the Boltzmann constant and T is the temperature

of the thermal bath surrounding the resonator. Using this simple approx-

imation, a nanomechanical beam with a resonant frequency of 1 GHz, for

example, is expected to display quantum mechanical effects at 50 mK, a

temperature well within the reach of current dilution refrigerators. Much

of the ongoing experimental research on NEMS is performed at millikelvin

temperatures, trying to cool the nanoresonator down to its ground state

and measuring its position with quantum limited sensitivity by coupling it

to other mesoscopic circuit elements such as qubits or microwave cavities

[7–9].

1.1 Dissipation

The performance of nanomechanical resonators for the applications men-

tioned and for studying quantum effects is often limited by thermal noise

and other sources of dissipation (energy loss) in the device. The dissipation

is quantified by a number known as the Q-factor (Q = 1 / dissipation), the

higher it is, the smaller the dissipation. Thermal noise can be minimized

by performing the measurements at cryogenic temperatures. However, a

full picture of the dissipation mechanisms needs to be established in order

to maximize the potential of NEMS for nanosensor applications. Some of

the more common sources of energy loss in nanomechanical resonators are

clamping losses, gas friction and defects within the structure (dissipation

mechanisms are covered in extensive detail in Chapter 2). Also, a good

understanding of the dissipation mechanisms in nanomechanical resonators

is vital for fabricating devices with extremely high Q-factors. Furthermore,

if one is to probe the quantum nature of a nanomechanical system, it is

important to understand the scaling of the dissipation with dimension and

temperature (especially at the lowest temperatures where experiments of a

quantum nature are performed).

Figure 1.1 shows a plot of Q-factor for resonators of varying sizes, clearly
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Nottingham
(Au, 2010)

Nottingham
(SiN, 2011)

Figure 1.1: Maximum reported Q-factors in mechanical resonators of different materials
and geometries and in different bath conditions [2]. The two blue circles correspond to
the nanomechanical resonators investigated in this thesis.

showing a decrease in the Q-factor with dimension [2], contrary to what was

popularly believed. The results from the two materials investigated in this

thesis have also been included (blue circles in Figure 1.1) for comparison.

It should be noted that this figure is far from being conclusive, as the data

have been collected from experiments performed at different temperatures,

with various materials and using different measurement techniques.

1.2 Nonlinear effects

Mechanical resonators can effectively be treated as harmonic oscillators as

long as the forces acting on them are linear. However, nonlinearities are

commonly encountered in nanomechanical devices, which usually manifest

themselves, in the equation of motion of the resonator, as a force which

is proportional to the cube of the displacement. This is commonly known

as the Duffing nonlinearity. Nonlinearities in NEMS devices can arise, for

example, from the effects of the measurement set-up, the clamping of the

device or geometrical effects such as the lengthening of the beam [10, 11].

The onset of the nonlinear regime decreases with device dimensions,
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therefore the linear dynamic range in nanomechanical resonators is severely

limited [12]. It is important to understand the nonlinear behaviour in NEMS

devices in order to avoid it when it is unwanted but to exploit it efficiently

when required, especially for future nanotechnology applications. In terms

of industrial applications, large integrated MEMS and NEMS devices usually

contain an array of resonators which interact with each other through non-

linear forces. Understanding this coupling is of vital importance for device

applications. Furthermore, the nonlinear coupling between two nanores-

onators [13], or even between two vibrational modes of the same resonator

[14, 15], can be exploited when studying the quantum effects in such struc-

tures. A system of coupled resonators has been proposed as a quantum

nondemolition detection scheme, in which one resonator is in a quantum

state [16].

1.3 Outline of this thesis

This thesis presents a study of dissipation and nonlinear effects in doubly-

clamped nanomechanical beams of different sizes and materials, at tempera-

tures below 2 K. The dissipation in doubly-clamped gold and silicon nitride

beams was studied as a function of temperature and magnetic field. The

nonlinear interactions between the different modes of a single silicon nitride

beam were also investigated.

Chapter 2 provides the theoretical background describing the calculation

of the resonant frequencies of doubly-clamped beams in several different lim-

its using methods of continuum mechanics. A detailed discussion of the dis-

sipation mechanisms which are known to be important for nanomechanical

resonators is also presented, with focus on a theory known as the standard

tunnelling model (STM) which is used as a framework to describe the low

temperature dissipation data. The theory described in this chapter is used

to analyze the results in Chapters 4 and 5. A brief literature review on pre-

vious low temperature dissipation experiments on both bulk and mesoscale

structures is also provided.

Chapter 3 describes the fabrication and characteristics of the gold and

silicon nitride beams used for the experiments described in Chapters 4, 5 and

6. The magnetomotive transduction scheme is explained in detail as it was

used to actuate and detect the motion of the beams. The experimental set-
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up for the respective studies is described as well as the different measurement

techniques employed. The fitting procedures, used to extract the resonant

frequency and Q-factor from the raw experimental data, are explained at

the end of Chapter 3.

Chapter 4 describes the low temperature dissipation studies on two

doubly-clamped gold beams of different lengths and cross-sections. These

were the first set of measurements studying the dissipation in metallic res-

onators. We compare the estimated resonant frequencies to the measured

ones and discuss the origins of the discrepancy between them. A magnetic

field dependence study was used to infer the intrinsic Q-factor of the res-

onator at any given temperature. The dissipation and resonant frequencies

of the beams were monitored as a function of temperature. The STM is used

to qualitatively describe the data, and a detailed discussion of other recent

dissipation studies in metallic nanomechanical structures is also provided

with comparisons to our results. The work presented in this chapter has

been published in [17, 18].

In Chapter 5, we present the results from the low temperature dissipa-

tion studies on gold-coated high-stress silicon nitride nanomechanical beams.

The measurements were carried out in a similar manner to those for the gold

beams, but with different equipment and in a different cryostat. A discus-

sion on the effect of the gold layer on top of the resonator is given. We

compare our results to those obtained recently by other research groups on

similar structures.

Chapter 6 describes the theory and experimental aspects of the non-

linear studies on a single silicon nitride beam. We probed the nonlinear

dynamics of three different vibrational modes of the same beam and studied

the nonlinear coupling between them. We found a fairly good quantitative

agreement between experiment and the theoretical model.

In Chapter 7, we summarize all our results and propose some improve-

ments for future experiments studying both the dissipation and nonlinear

dynamics of nanomechanical resonators.



Chapter 2

Theory and literature review

This chapter presents the theoretical foundations used to analyze the me-

chanical behaviour of nanomechanical resonators at low temperatures in the

linear response (harmonic) regime. Nanomechanical resonators can be mod-

elled as harmonic oscillators and so the first section provides a brief overview

on the properties of harmonic oscillators. The governing equations for the

flexural vibrations of doubly-clamped beams are obtained using the meth-

ods of continuum mechanics. The changes that have to be introduced to the

equations when the beams are under a considerable amount of tension are

also outlined. The main sources of damping in nanomechanical resonators

are presented focusing on the ones that are most relevant at low tempera-

tures. The standard tunnelling model (STM) which models the behaviour of

low energy excitations (LEE) in bulk, structurally disordered solids in terms

of tunnelling two-level systems (TLS) is described in detail. In the absence

of a suitable theory that can explain the low temperature internal friction

in mesoscopic structures, the STM provides a useful way to qualitatively

describe our results.

2.1 Mechanical resonant systems

A harmonic oscillator, also known as a linear oscillator, is a system in which

the restoring force is linearly proportional to the displacement and which has

an oscillation frequency independent of the amplitude of motion. Mechani-

cal resonators are often modelled as harmonic oscillators as it captures the

principal resonance characteristics while allowing for a simple phenomeno-

6
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logical description in terms of the resonant frequency and damping. This

picture is only valid in the linear regime of operation, where the amplitude

of the vibrating element is small. For large amplitudes, the relationship be-

tween force and displacement is no longer linear and the resonant frequency

can then change depending on the system’s displacement. Details of the

theory of nonlinear oscillations are discussed in Chapter 6.

2.1.1 Simple harmonic oscillator

One of the simplest examples of a resonator is a mass m attached to a

spring with a spring constant k [1]. When the mass is displaced from its

equilibrium position, the spring exerts a restoring force F = −ku where

u is the displacement of the mass. The mass periodically oscillates with

an angular frequency ω0 =
√

k
m about the equilibrium position. A one

dimensional (1D) simple harmonic oscillator can serve as a mathematical

model for such a system, with an equation of motion given by

mü(t) + ku(t) = 0. (2.1)

Since there is no damping mechanism in the system, the oscillation continues

on forever. In a more realistic situation however, the motion of a resonator

is driven (by an external sinusoidal force for example) and damped, where

the damping term depends on the velocity of the resonator.

2.1.2 Driven damped harmonic oscillator

A more realistic oscillating system such as a nanomechanical resonator can

be modelled as a driven damped harmonic oscillator [1] with an equation of

motion given by

ü(t) + γu̇(t) + ω2
0u(t) =

Fde
iωdt

m
, (2.2)

where γ is the damping coefficient, Fd is the amplitude of the driving force

and ωd its angular frequency. To find the homogeneous solution to the above

expression, we first consider the undriven case which is [1]

ü(t) + γu̇(t) + ω2
0u(t) = 0. (2.3)
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A particular solution to equation 2.3 is u(t) = Re[u0e
iωt], where u0 is the

amplitude and ω the oscillation frequency. Substituting this solution into

equation 2.3 gives −ω2 + iγω + ω2
0 = 0 with solutions

ω± = i
γ

2
±
√

ω2
0 −

γ2

4
= i

γ

2
± ω0

√

1− γ2

4ω2
0

. (2.4)

In the limit of small damping, the term inside the square root can be simpli-

fied by defining a new parameter, Q = ω0
γ , the quality factor which quantifies

the damping in the system [1]. The displacement in terms of the Q-factor is

u(t) = Re[u0e
−ω0t/2Q(e±iω

′

0t)] = u0e
−ω0t/2Qcos(ω

′

0t), (2.5)

where the natural frequency of the system is

ω
′

0 = ω0

√

1− 1

4Q2
. (2.6)

For the underdamped case (Q ≫ 1), the system’s motion can be approx-

imated to that of a simple harmonic oscillator, ω
′

0 ≈ ω0. On the other hand,

for a strongly damped system (Q ≈ 1), the natural frequency is lower than

ω0 and the displacement decreases rapidly within a few oscillations.

For the situation where the resonator is being driven by an external force,

Fd 6= 0, the solution to equation 2.2 is a sum of the homogeneous solution

(transient response, equation 2.5) and a steady state solution with motion

only at the drive frequency. Since the amplitude of the transient response

depends on the Q-factor, for times long in comparison to the damping time,

this solution can be ignored. The particular solution is of the form Re[Reiωdt]

where R is the amplitude response function of the oscillation [1, 19]:

R =
Fd/m

ω2
0 − ω2

d +
iω0ωd
Q

, (2.7)

a complex function which can witten as R = Rx + iRy where

Rx =
Fd/m[ω2

0 − ω2
d]

(ω2
0 − ω2

d)
2 +

ω2
0ω

2
d

Q2

(2.8)
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Figure 2.1: (a) In-phase, (b) quadrature and (c) absolute amplitude response of a driven
damped harmonic oscillator as a function of driving frequency ωd. (d) Phase response as
a function of driving frequency ωd.

and

Ry = −
Fd/m[ω0ωd

Q ]

(ω2
0 − ω2

d)
2 +

ω2
0ω

2
d

Q2

. (2.9)

The real part (Rx) is known as the ‘In-phase’ amplitude and the imaginary

part (Ry) is the ‘quadrature’ amplitude. The corresponding lineshapes are

shown in Figures 2.1(a) and (b).

The resonant response function can also be expressed as R = u0e
−iφ,

where u0 is the absolute amplitude
(

u0 =
√

R2
x +R2

y

)

and φ the phase.

They can be written as [1, 19]

u0(ωd) =
Fd/m

√

(ω2
0 − ω2

d)
2 +

ω2
0ω

2
d

Q2

, (2.10)
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and

φ(ωd) = arctan
ω0ωd

Q(ω2
0 − ω2

d)
for ωd ≤ ω0 (2.11)

= π + arctan
ω0ωd

Q(ω2
0 − ω2

d)
for ωd > ω0 . (2.12)

On resonance, the oscillation amplitude is equal to QFd

mω2
0
[19]; the Q-factor

amplifies the signal proportional to the resonator’s displacement at the nat-

ural frequency. The amplitude response has the form of a Lorentzian with a

peak at ω0 as shown in Figure 2.1(c); the Q-factor is given by Q = ω0
△ω where

△ω is the full width at half maximum (FWHM) of the Lorentzian curve.

The phase of the signal goes through a 180◦ phase shift (Figure 2.1(d)), with

the response being 90◦ out of phase with the drive at resonance.

2.2 Natural frequency

In this section we review the standard theory of beam mechanics [1, 20–22].

Consider the doubly-clamped beam represented schematically in Figure 2.2

with length L, width W and thickness h, with the coordinate system as

shown. For a structure with a cross-section much smaller than its length,

it is possible to derive a simple equation for the natural frequencies of os-

cillation considering only linear forces and ignoring any other complicated

mechanical effects. In the absence of an external drive and a damping term,

and considering only the linear response problem, the wave equation for the

flexural motion of such a beam is given by [1]

EI
∂4z

∂x4
− T0

∂2z

∂x2
+ ρA

∂2z

∂t2
= 0, (2.13)

where E is the Young’s modulus, I = Wh3

12 is the moment of inertia of the

beam, T0 is the intrinsic tension in the beam, ρ is the density and A the

cross-sectional area [22]. Expression 2.13 is the Euler-Bernoulli equation

[1] including a tension term. The two clamped ends impose the boundary

conditions:

z(0, t) = z(L, t) =
∂z

∂x
(0, t) =

∂z

∂x
(L, t) = 0. (2.14)

Equation 2.13 can be solved for several situations: the string limit where

the tension dominates over the bending rigidity (T0/EI ≫ 1), the opposite
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Figure 2.2: A schematic of a doubly clamped beam with dimensions L×W ×h and cross-
sectional area A. The beam displaces in the z direction and is subject to a tension T0

along the x-axis.

case known as the bending limit (EI/T0 ≫ 1), and one where both tension

and bending rigidity are important. A general solution to the wave equation

has the form

zn(x, t) =
∑

n

u0ngn(x)e
i(ω0nt+φn) =

∑

n

un(t)gn(x), (2.15)

where n=1, 2, 3, 4... is the mode number and gn(x) is the spatial func-

tion of the nth mode. By substituting equation 2.15 into 2.13, the spatial

dependence must satisfy the expression

EI
∂4g

∂x4
− T0

∂2g

∂x2
− ρAω2

0ng(x) = 0. (2.16)

2.2.1 String limit

In the string limit, the tension in the beam determines its resonant frequency.

The bending rigidity (first term in equation 2.16) is very small and can

therefore be neglected. With a general solution of the form g(x) = sin(kxL ),

the displacement profile is simply [20]

gn(x) = u0n sin

(

√

ρA

T0
ω0nx

)

where ω0n =
k

L

√

T0

ρA
, (2.17)

where k = nπ. As expected we simply obtain the ‘guitar string’ vibrational

modes; the resonant frequency of the nth harmonic is just n× the resonant
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frequency of the fundamental mode.

2.2.2 Bending limit

In the bending limit we can ignore the tension in the beam (second term in

equation 2.16), leading to a fourth order differential equation. The solutions,

in terms of real functions, are: g(x) = sin(kxL ), cos(kxL ), sinh(kxL ), cosh(kxL ).

Substitution of any of these into equation 2.16 leads to

kn = βnL where βn =

(

ρA

EI

)
1
4 √

ω0n. (2.18)

The general solution has the form

gn(x) = c1 sin(βnx) + c2 cos(βnx) + c3 sinhβnx+ c4 cosh(βnx), (2.19)

where c1, c2, c3, c4 are constant coefficients. The boundary conditions imply

that there are a discrete set of values of βnL satisfying the equation

cosβnL coshβnL− 1 = 0, (2.20)

which can be solved numerically to obtain βnL =4.73, 7.85, 10.99, 14.14...

for the first four modes of oscillation [1]. This allows us to express the

angular frequency of the fundamental mode as:

ω01 =

(

4.73

L

)2
√

(

EI

ρA

)

. (2.21)

The spatial dependence for the four lowest frequency modes of a doubly

clamped beam are shown in Figure 2.3.

2.2.3 Joining the two limits

In the case where the effects on the dynamics of the beam from both bending

rigidity and tension are comparable, the solution to equation 2.16 is slightly

more complicated as k becomes a tension dependent parameter. This sce-

nario has been analyzed in detail in reference [22], the main aspects of which

are outlined here.

Substituting solutions of the form sinh(kxL ) and cosh(kxL ) into equation
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n = 1 n = 2

n = 3 n = 4

Figure 2.3: The four lowest frequency modes for a doubly clamped beam, solved using
finite element simulations (COMSOL Multiphysics 3.3). The frequencies are determined
by the factor βnL.

2.16 leads to

k1 =

√

U +
√

U2 +Ω2, (2.22)

whereas sin(kxL ) and cos(kxL ) give

k2 =

√

−U +
√

U2 +Ω2, (2.23)

where U = T0L2

2EI and Ω = ω0L
2
√

ρA
EI are the dimensionless tension and

frequency parameters [22]. The general solution for the mode function g(X)

has the form

g(X) = c1 sinh(k1X) + c2 cosh(k1X) + c3 sin(k2X) + c4 cos(k2X), (2.24)

where X = x
L is a dimensionless parameter. Applying the boundary condi-

tions 2.14 leads to the characteristic equation

Ω + U sin(k2) sinh(k1)− Ωcos(k2) cosh(k1) = 0, (2.25)

which can be solved numerically for a given tension, T0, to obtain the eigen-

frequencies of a monolithic beam.

An analytical expression is also derived in reference [22] which provides

a very good approximation to the mode frequencies obtained numerically:

f0n =
π

8
(2n+ 1)2

1

L2

√

EI

ρA

√

1 +
0.97T0L2

(n+ 1)2π2EI
. (2.26)
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Equation 2.26 provides an upper bound for the frequency of the fundamental

mode (n=1). A derivation of an approximate equation for the resonant

frequency of the fundamental mode as a function of tension has also been

derived elsewhere [23], using a different type of approximation, but we will

simply refer to the results here. The analytical expression for the frequency

of the fundamental mode of a doubly-clamped beam as given in reference

[23] is

f01 =
2π

L2

√

EI

3ρA

(

1 +
L2T0

4π2EI

)

, (2.27)

very similar to equation 2.26 for n = 1. The equations outlined in this

section provide a reliable way of obtaining good estimates for the resonant

frequencies of doubly-clamped beams given the correct material coefficients

and device dimensions. Furthermore, it can be clearly seen that the presence

of any tension T0 in the beam will increase its resonant frequency.

2.3 Dissipation

The dissipation (Q−1) determines the damping rate of a resonator, and is

defined as Q−1 = γ
ω0
. An alternative definition is

1

Q
=

1

2π

∆E

E
, (2.28)

where ∆E is the energy lost during one cycle and E is the total energy

stored in the system. Losses in nanomechanical resonators can be divided

into two categories: intrinsic and extrinsic. Intrinsic losses are due to fun-

damental processes which occur within the structure, interactions involving

electrons and phonons for example, and they are difficult to control. Ex-

trinsic damping arises from the coupling of the resonator to its surroundings

such as the measurement set-up, which can be accounted for and minimized.

The overall energy loss in a resonator can be expressed in terms of a sum of

several different mechanisms.

1

Q
=

1

Qi
+

1

Qj
+

1

Qk
+ ..., (2.29)

where the indices i, j, k represent different damping mechanisms. In this

section we describe some of the main dissipation mechanisms which are



CHAPTER 2. THEORY AND LITERATURE REVIEW 15

known to exist for nanomechanical resonators, focusing on the ones which

are particularly important for our measurements. The STM is covered in

greater detail as it provides a good phenomenological description for the

behaviour of nanomechanical resonators at the lowest temperatures.

2.3.1 Extrinsic mechanisms

As the name suggests, extrinsic dissipation mechanisms arise from the cou-

pling of the resonator to its surroundings such as, for example, the mea-

surement set-up. The use of large magnetic or electric fields to actuate and

detect the motion of resonators can increase the damping in the device by a

considerable amount. Energy can also be lost through the supports into the

substrates holding the beam, a mechanism which is known as clamping loss.

However, unlike the intrinsic processes, extrinsic damping can be controlled

and reduced.

Fluid friction

If a resonator is surrounded by a fluid (gas or liquid) then collisions with

the fluid molecules can severely limit its quality factor. Depending on the

pressure in the sample chamber, the losses due to friction can be divided into

two categories. At very low pressures, the interaction is in the ‘molecular’

regime where the mean free path of the fluid molecules is much larger than

the device dimensions. Thus the quality factor is limited due to individual

collisions with the molecules. The energy loss in this case is given by

Q−1
gas =

pA

meffω0v
, (2.30)

where p is the pressure in the chamber, A and meff are the surface area and

effective mass of the resonator, ω0 its resonant frequency and v the thermal

velocity of the gas molecules [24]. At higher pressures, the losses can be

considered due to the viscosity of the fluid and Q−1
gas ∼ √

p; the dissipation

increases with pressure in the chamber as expected [25]. Frictional losses

can be avoided by using a good vacuum.



CHAPTER 2. THEORY AND LITERATURE REVIEW 16

Clamping

A vibrating resonator can lose energy to its supports through the propa-

gation of acoustic waves into the substrate, and this can be an important

source of dissipation in doubly-clamped beams. However for acoustic waves

with a wavelength comparable to the beam length L, most of the waves are

reflected back. A recent study by Wilson-Rae showed that

Q−1
cl ∝ h4

L5
(2.31)

for the fundamental mode of vibration of a monolithic structure [26]. Clamp-

ing losses depend strongly on the aspect ratio h
L and are therefore expected

to become increasingly relevant as the aspect ratio is increased, or in other

words, at higher frequencies. Furthermore, clamping losses are expected

to be temperature independent which means they can impose an ultimate

limit on the Q-factor of a resonator at low temperatures. Careful fabrication

methods can help minimize this type of damping. It is important to note

that the theory described in reference [26] does not, however, consider the

effects of tension on clamping loss.

Dissipation due to measurement set-up

Attempts to measure the mechanical motion typically tend to cause some

disturbance of the motion, and often lead to additional damping. The tech-

nique we use is known as the magnetomotive transduction scheme [27], which

involves passing currents through the device in the presence of a large mag-

netic field; the Lorentz force generated drives the resonator into motion.

The magnetomotive technique is widely used in the research of NEMS be-

cause of its simplicity, however, the use of this method results in a measured

Q-factor which is loaded by the external circuit. Details of this technique

and the loading effect are described in detail in Chapter 3, here we just

quote the resulting effect on the Q-factor:

Q−1
L = Q−1

0 + αB2,

where Q−1
L and Q−1

0 are the loaded and intrinsic dissipations, B is the mag-

netic field and α is a constant that depends on the external impedance of

the circuit and other resonator parameters [27].
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2.3.2 Intrinsic mechanisms

Intrinsic dissipation mechanisms occur due to the interactions that take

place inside the solid which may involve electrons, phonons, defects or any

impurities present in the lattice. Intrinsic losses set an absolute limit to the

performance of a mechanical oscillator. Most of the damping processes can

be effectively treated in the framework of a simple generalization of the elas-

ticity theory by C. Zener which accounts for the anelastic behaviour of solids

[1]. One of the most important sources of dissipation in mechanical systems

is the thermoelastic effect, the theory for which was first developed by C.

Zener [28] and further developed for thin vibrating beams by R. Lifshitz and

M. L. Roukes [29].

Thermoelastic effect

In the thermoelastic effect, mechanical vibrations of the structure induce

local temperature gradients across the resonator, hence heat flows from hot

to cold regions. Once out of its equilibrium position, the resonator tries

to relax back to equilibrium by coupling to the thermal modes of the sur-

rounding environment which make it a temperature dependent process. The

temperature dependence of thermoelastic damping for thin vibrating beams

is

Q−1 =
Eα2T

Cp
P, (2.32)

where E is the Young’s modulus, α = 1
L

∂L
∂T is the thermal expansion coeffi-

cient, T is the temperature, Cp the heat capacity at constant pressure and P

is a constant which depends on the beam material’s thermal diffusivity [29].

For the experiments described in this thesis, thermoelastic processes play no

significant role as the measurements were carried out at temperatures below

2 K.

Surface effects

Figure 1.1 in Chapter 1 shows how the measured quality factor in many de-

vices decreases in a linear fashion as the surface-to-volume ratio is increased

[2]. This figure is far from being conclusive as the data have been collected

from experiments performed under different conditions and with different

types of devices, however, it still suggests that surface losses could be an
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important source of dissipation. These surface losses can come from many

different factors such as oxide or water layers and dangling bonds which may

behave as TLS at low temperatures. Although various surface treatments

like annealing [30] or surface passivation with thiol monolayers [31] can be

employed to reduce these losses, they cannot be completely eliminated.

Two-level systems: Standard Tunneling Model

Studies of the thermal and acoustic properties of disordered solids at low

temperatures have always been full of interesting yet unexpected results.

Pioneering experiments carried out by Zeller and Pohl in 1971 [32] revealed

striking differences at low temperatures (T < 1 K) between the thermal

properties of dielectric amorphous solids and their crystalline counterparts.

In a Debye dielectric crystal it is well known that the heat capacity and

thermal conductivity are both proportional to T 3 at T < 1 K. In the case

of amorphous solids, the specific heat is almost linear (C ∼ T 1.2) and the

thermal conductivity varies almost quadratically (κ ∼ T 1.8). Furthermore

the thermal conductivity of amorphous solids is considerably reduced com-

pared to that of their crystalline counterparts, behaviour which was also

observed in doped alkali halides where the motion of the dopants gives rise

to additional low energy excitations [33].

The investigations mentioned above along with acoustic experiments

confirmed the presence of low energy excitations and their interactions with

phonons leading to the observed ‘glass-like’ low temperature features in dis-

ordered solids. Several theories were proposed in order to explain the be-

haviour of disordered solids at low temperatures, the most successful one

being the Standard Tunneling Model (STM), introduced simultaneously by

Phillips [34] and Anderson et al [35].

The STM predicts that the presence of defects in solids, such as dangling

bonds, contaminants or dislocations, leads to the existence of anharmonic

excitations which can cause damping. A double well potential model can

be applied to these defects where an atom or group of atoms can sit in any

one of two possible energy minima separated by an energy barrier height

V as depicted schematically in Figure 2.4. At low temperatures only the

two lowest energy eigenstates are considered hence they are known as two-

level systems (TLS). They differ in energy by ∆ which characterizes the

asymmetry between the two wells and the tunnelling energy ∆0 which is
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Figure 2.4: The double well potential model for defects in a solid, with barrier height V ,
width d, asymmetry ∆ and tunnelling energy ∆0. At low temperatures only the ground
states of both wells play a role in the dynamics hence it is defined as a two-level system.

given by

∆0 = ~Ωe−λ = ~Ωe−d
√

2mV/~2 , (2.33)

where ~Ω is the average of the two lowest energy states, d is the distance

between them and m is the mass of the tunnelling particle. The TLS hamil-

tonian is

H0 =
1

2

(

∆ ∆0

∆0 −∆

)

, (2.34)

and the total energy splitting is given by E =
√

∆2 +∆2
0 [36].

The STM assumes that there is a broad distribution of TLS with a

wide range of energies and relaxation times τ(E, T ) within the disordered

solid. The relaxation time τ of the TLS depends on the energy E (and the

underlying details ∆,∆0), but more importantly on the mechanism by which

the TLS relax to equilibrium. This means that there is a range of values

of ∆ and ∆0 which can be calculated using the probability distribution

function P (∆,∆0). For ∆, the distribution function must be symmetric

as both positive and negative values of ∆ are equally likely. Furthermore,

because of the exponential dependence of ∆0 on λ, a small change in λ leads

to a large range of ∆0 over which λ can be assumed to be constant. The

distribution function is assumed to have the general form

P (∆,∆0) =
P0

∆0
, (2.35)
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where P0 ∼ 1044J−1m−3 has been estimated from experiments on bulk amor-

phous solids [33, 37]. At temperatures above 1 K the asymmetry is not much

larger than the thermal energy available and therefore the model breaks

down as motion between the wells can occur via thermal activation, rather

than tunnelling.

The TLS couple to their environment via strain and electric fields and

therefore, can absorb energy from the mechanical motion which modifies

the strain field. The TLS then release the energy through interactions with

phonons and conduction electrons (in the case of metallic structures). This

can occur via two processes: resonant and relaxation absorption. Once a

given vibrational mode of the resonator with angular frequency ω is excited

by an external acoustic wave, the behaviour depends on the ratio ~ω
kBT , where

~ω is the energy of the acoustic wave. If ~ω
kBT ≥ 1, then the phonons can

be resonantly absorbed by those defects with the correct energy splittings

and the relevant TLS will undergo a transition from the ground state into

the excited state. However, the overall effect of this depends on the popula-

tion difference between the two states as acoustic excitation will stimulate

emission as well as absorption of phonons. In the regime where ~ω ≪ kBT ,

the TLS are likely to be in the ground state, resonant absorption is minimal

and the contribution to the damping is negligible. However, there remains

a measurable temperature dependence for the shift in frequency of the res-

onator arising from resonant interactions with TLS.

In order to directly excite a TLS, one needs an external drive at extremely

high frequencies or be able to measure at the sub-millikelvin regime; for ex-

ample, a frequency of 1 GHz corresponds to a temperature of ∼ 50 mK, a

temperature easily achievable in a dilution refrigerator. Nonetheless, most

experiments are performed in the regime where ~ω ≪ kBT as fabrication

and detection of high frequency (∼ GHz) resonators is difficult. If no direct

excitation of the level occurs, there can still be dissipation in the vibrat-

ing element via anelastic effects which come about due to the phase delay

between the stress and imposed strain. The acoustic wave couples to the

TLS and changes its thermal equilibrium by altering ∆ or ∆0. The TLS

then tries to relax to a new equilibrium position by, for example, absorbing

and emitting thermal phonons, this results in dissipation and a shift in the

resonant frequency of the resonator.

The strength of relaxation damping depends crucially on the ratio be-
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tween the mechanical period and the relaxation time τ of the TLS. Maximum

damping occurs when

ωτ ∼ 1, (2.36)

so that the mechanical period of the resonator matches the relaxation time

of the TLS. The broad distribution of tunnel splittings, ∆0, means that

there is a broad range of relaxation rates. However, one can show that for

the relaxation mechanisms relevant for TLS in amorphous solids there is

always a well-defined minimum, τmin(E), at each energy E ≃ kBT [33, 36].

At any given temperature T , it is this minimum relaxation rate τmin(E),

which is important. At the lowest temperatures where ωτmin ≫ 1, the

dissipation drop will have a characteristic temperature dependence (∼ Tn)

which depends on the details of the relaxation mechanism that determines

τ . On the other hand, when ωτmin ≪ 1, the damping will be independent of

temperature and relaxation mechanism, thus it will have a constant non-zero

value. Figure 2.5 illustrates the behaviour of the frequency and dissipation

as a function of temperature. The crossover temperature, T ∗, is defined as

that at which ωτmin ∼ 1.

As mentioned previously, TLS can relax through coupling with phonons

(and electrons in the case of metals). For acoustic experiments in the regime

~ω ≪ kBT , the resonant contribution to the damping is negligible in com-

parison with the relaxation contribution. Below T ∗, the dissipation is pro-

portional to ∼ Tn where n = 3(1) depending on whether the relaxation is

through phonons (electrons). Above T ∗, the damping is given by

Q−1 =
π

2
C, (2.37)

where C = P0η2

ρv2
is a constant which depends on the density of states of

the TLS in the structure but provides no information about the relaxation

mechanism. The parameter η is the change in the TLS asymmetry per unit

strain and v is the speed of sound.

The frequency shift at temperatures below T ∗ is dominated by the reso-

nant mechanism (the relaxation mechanism in this regime is negligible com-

pared to the resonant process) and it increases logarithmically with slope C.

Beyond T ∗ relaxation processes start to dominate the frequency shift and a

logarithmic decrease with temperature is observed, the gradient of which is

determined by the relaxation mechanism. The main predictions of the STM
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Figure 2.5: Generic predictions of the STM for the behaviour of Q−1 and frequency
shift as a function of temperature in an amorphous solid (~ω ≪ kBT over the whole
range considered here). The relaxation mechanism completely dominates the dissipation
with a plateau observed above T ∗ and a characteristic power law dependence below it.
The frequency shift of the solid has contributions from both the resonant and relaxation
mechanisms.

are summarized in Table 2.1 [37].

The difference in the properties of metallic and insulating amorphous

structures becomes evident in acoustic measurements which probe the dy-

namics of TLS. Any property which probes the relaxation times of TLS will

show a difference between the relaxation due to phonons and that due to

electrons. Studies on attenuation in metallic glasses have shown that TLS

have extremely short relaxation times when interacting with electrons [37].

The variation of the dissipation and frequency in a metallic structure is

qualitatively similar to that of an dielectric one. However, there are two

important differences: In dielectric materials, the logarithmic increase in

frequency is from the contribution of the resonant process only whereas in

metals the relaxation process contributes too. This is because in metallic

structures, the crossover from the regime ωτmin > 1 to ωτmin < 1 occurs at

much lower temperatures (sub mK) due to the fast relaxation of the TLS via

electrons. In insulating solids, T ∗ highlights the temperature at which the

contributions from the resonant and relaxation processes to the frequency of
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Table 2.1: Predictions of the STM for the acoustic properties of dielectric and metallic
amorphous solids. The parameters a and b provide information about the coupling between
the TLS to phonons and electrons respectively, T0 is an arbitrary reference temperature
[37].

Interaction Effect ωτmin ≫ 1 ωτmin ≪ 1
T ≤ T ∗ T ≥ T ∗

Resonant Q−1 negligible for ~ω ≪ kBT
Resonant δf/f0 C ln(T/T0)
Relaxation to phonons Q−1 aCT 3/ω (π/2)C
Relaxation to electrons Q−1 bCT/ω (π/2)C
Relaxation to phonons δf/f0 negligible −(3/2)C ln(T/T0)
Relaxation to electrons δf/f0 negligible −(1/2)C ln(T/T0)

the device match each other and it depends on the frequency as T ∗ ∝ ω1/3.

In metallic solids, ωτmin ∼ 1 is fulfilled at much lower temperatures and the

maximum seen only marks the crossover from electron to phonon dominated

relaxation and should be independent of the frequency [33].

The STM is not always in good agreement with the experimental data.

Modifications have been tried in the past in order to account for the dif-

ferences between theory and experiment which most commonly involved

varying the distribution function of TLS [33]. Furthermore, the STM does

not consider interactions amongst TLS, which is a factor to be considered at

temperatures below 10 mK [38]. In the last section of this chapter we will

review some of the experiments on bulk amorphous dielectrics and metals as

well as more recent measurements on nanomechanical resonators. We will

compare the results from these experiments to the predictions made by the

STM.

Regarding the dissipation in nanomechanical resonators at low temper-

atures, the STM provides a useful framework to qualitatively analyze the

results, but it is not able to give good quantitative predictions due to several

factors. Firstly, the STM was developed to describe the low temperature

behaviour of bulk amorphous solids and it does not take into account dimen-

sionality. Secondly, we do not know a priori what the distribution function

P is or how broad it is in such small devices. Furthermore, as the structures

get smaller surface effects start to become more important, therefore it is

essential to know whether the TLS are in the bulk or at the surface.
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2.4 Previous studies of dissipation

Investigations of the sound attenuation and energy loss at low temperatures

in mechanical oscillators have been carried out for many years, in this section

we provide a brief review of some of the most important results obtained in

this field of research. This section is divided into two parts: in the first part

we will discuss some of the results from previous dissipation measurements

on bulk amorphous solids and in the second part we will concentrate on the

more contemporary experiments on micromechanical and nanomechanical

resonators.

2.4.1 Low temperature studies on bulk structures

A detailed review on some of the earliest experiments on bulk amorphous

solids is available in references [33, 37, 39]. For the purposes of this sec-

tion, we only describe some of the results with a brief comparison between

experiment and theory.

Dielectrics

The STM has been used extensively, with varying degrees of success, as a

theoretical model for the internal friction in bulk amorphous solids at low

temperatures. Some of the early experiments on the polymer PMMA (using

the vibrating reed technique) [33] and on vitreous silica [39] agreed quite well

with the STM. The internal friction in these materials had the expected

T 3 dependence (due to phonon relaxation) below 1 K and a plateau at

higher temperatures. Figure 2.6 shows the internal friction in vitreous silica,

obtained by several research groups using different experimental techniques.

A plateau is clearly seen for all samples at temperatures below about 10 K

which is independent of the measuring frequency, with the low-temperature

roll-off occurring at temperatures proportional to ω1/3, in agreement with

the STM [39].

However, more recent measurements of the internal friction in vitreous

silica using the mechanical double paddle resonator technique, showed dis-

agreements with the STM at the lowest temperatures [40]. As can be noticed

in Figure 2.7, the internal friction of the vitreous silica is in good agreement

with the STM at the higher temperatures, indicated by the presence of a

plateau, but at the lowest temperatures, the data deviate from the expected
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Figure 2.6: Internal friction of vitreous silica, measured by several research groups, at
different frequencies. The devices exhibit the behaviour predicted by the STM, with a
plateau below about 10 K and a cubic temperature dependence at the lowest temperatures.
The roll-off temperature is proportional to ω1/3 as predicted by the model [39].

T 3 behaviour (denoted by the smooth black lines). Furthermore, the sound

velocity increases with a different slope at the lower temperatures, depend-

ing on the frequency, features which cannot be explained by the STM. The

Parpia group at Cornell (USA) also measured the internal friction and sound

velocity in double paddle amorphous silica oscillators down to 1 mK [38]. A

crossover from the T 3 dependence predicted by the STM to a T dependence

was observed which they claim demonstrates the existence of interactions

amongst TLS, which are not accounted for in the basic version of the STM.

Although, the STM is not always in good agreement with the exper-

iments, it is a well known fact that the constant C for many disordered

materials, obtained from the plateau, lies within a narrow range as illus-

trated in Figure 2.8. The range bounded by the dashed lines is known as

the ‘glassy range’ (Q−1 ≈ 10−3 − 10−4). The internal friction for many

amorphous solids lies within this range, at least down to 10 mK.

Metals and alloys

Experiments on amorphous metals never agreed as well with the predictions

of the STM as those on dielectrics. Vibrating reed and wire experiments by

Esquinazi et al [41], found only qualitative agreement between the STM and

the internal friction of amorphous PdSiCu, with the temperature dependence

being linear which disagreed with theoretical model for the phonon-TLS in-
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Figure 2.7: (Top) Temperature dependence of the dissipation of vitreous silica at five
frequencies, (Bottom) temperature dependence of the sound velocity at four frequencies
[40].
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Figure 2.8: The internal friction of several amorphous solids between 0.1 and 10 K, where
the internal friction is nearly independent of temperature and frequency. The dashed lines
denote the glassy range [39].

teraction. Data for polycrystalline silver revealed a plateau in Q−1 from

600 - 60 mK and a T 1/3 drop at lower temperatures once a constant back-

ground was subtracted from the data. This behaviour does not agree with

STM predictions and the T 1/3 dependence is considerably lower than ex-

pected. Vibrating wire measurements by König et al [42] on polycrystalline

platinum (Pt) and aluminium (Al) revealed the absence of electron assisted

relaxation in these systems. Whilst for Pt, Q−1 had a typical temperature

dependence and magnitude of amorphous dielectrics, the sound velocity in

the structure showed a plateau below 10 mK, a feature not explained by

the theory. König et al also carried out investigations on Al in both normal

and superconducting states; no difference was observed in the behaviour

between both states which led the authors to claim that electron-assisted

relaxation plays no significant role in Al. However, more recent vibrating
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reed experiments by Haust et al [43] disagree with this as they observe a

significant difference in the magnitude of Q−1 between the normal Al state

and the superconducting one.

In another set of experiments by Liu et al [44], the low temperature

internal friction of thin metal films was measured on substrates of ultra-pure

boron-free silicon double paddle oscillators vibrating in their asymmetric

mode. They first measured the dissipation of the bare paddles, and then

measured the loss in the film coated oscillators, to finally use the equation

Q−1
film =

Gsubtsub
3Gfilmtfilm

(Q−1
pad −Q−1

sub) (2.38)

to calculate the loss in the film. Here G is the shear moduli of the material,

Q−1
sub is the dissipation in the bare paddle and Q−1

pad is the dissipation in the

coated resonators. Liu et al, claimed that the material type, film thickness

and fabrication processes had minimal influence on the internal friction.

They found the damping in most metal films to be only weakly dependent

on temperature below 10 K, with a magnitude very close to the dissipation

in bulk amorphous insulators, denoted by the ‘glassy range’ in Figure 2.9.

2.4.2 Low temperature studies on mesoscale structures

There have been only a few studies on the internal friction in nanomechanical

resonators at low temperatures. The Mohanty group in Boston (US) have

studied dissipation in nanomechanical resonators in materials such as silicon,

gallium arsenide and diamond, however, their devices also had a 80 - 100

nm thick metallic layer on top for actuation/detection purposes. For all

the materials studied, it was found that both the dissipation and shift in

frequency can be described phenomenologically by the STM [45–47]. They

found a ∼ T 1/3 temperature dependence of the internal friction below 1 K,

but observed no clear plateau. The shift in frequency follows the expected

shape as predicted by the STM but the values of C extracted from the

frequency plots are an order of magnitude lower than for bulk amorphous

solids.

Studies on nanoscale metallic resonators have been scarce. The work

described in Chapter 4 was the first systematic study of low temperature

dissipation in metallic nanomechanical resonators. However, very recently

other groups have begun to study metallic systems as well. A review on



CHAPTER 2. THEORY AND LITERATURE REVIEW 29

Figure 2.9: Internal friction of several metal films determined using equation 2.38. The
vertical bar indicates the range of internal friction in the temperature-independent region,
measured on a wide range of bulk amorphous solids [44].
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some of the most recent work on aluminium resonators is given at the end

of Chapter 4, with comparisons to our results for the low temperature dis-

sipation in gold beams.

2.5 Summary

In this chapter we have derived the principal equations which describe the

flexural motion of nanomechanical resonators in the linear response (har-

monic) regime. The natural frequencies of the resonators can be derived

using methods of continuum mechanics with slight changes to include the

effects of tension. The main damping mechanisms that are known to affect

nanomechanical resonators have been described, with a detailed explanation

of the STM, which we will use later to qualitatively describe our low tem-

perature data. A brief review of previous dissipation studies is also given

with comparisons to the STM.



Chapter 3

Experimental Techniques

This chapter discusses the fabrication and properties of devices used for the

dissipation and nonlinear studies at low temperatures, which include gold

beams on gallium arsenide and gold-coated, high-stress silicon nitride beams

on a silicon substrate. The principal steps of the device fabrication are given

in this chapter whereas further processing details and technical specifica-

tions are given in Appendix A. Details of the experimental arrangements

for the low temperature measurements are also presented. The magneto-

motive transduction scheme is explained in detail outlining the two main

measurement techniques used: continuous wave (CW) and pulsed. The last

section describes the fitting procedures for both the CW and ring-down sig-

nals from which the resonant frequency and the Q-factor of the resonators

were accurately extracted.

3.1 Device fabrication

3.1.1 Gold beams on gallium arsenide

Nanomechanical resonators consisting of doubly-clamped gold beams were

used for dissipation studies at temperatures below 2 K. They were fabricated

using a combination of standard electron beam (e-beam) lithography and

wet etch techniques; an outline of the fabrication process is given in Figure

3.1. A <100> insulating gallium arsenide (GaAs) wafer was scribed into

smaller 9.8 × 9.8 mm chips which were subsequently cleaned with solvents

ethyl lactate, acetone, methanol and isopropanol (IPA) in ultrasound for

five minutes each. To finish off the cleaning process, the chips were placed

31
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Figure 3.1: Fabrication process for a doubly-clamped gold beam on top of a GaAs sub-
strate. (a) The GaAs chip is coated with a trilayer consisting of PMMA/Ge/LOR, (b)
the stencil is patterned using e-beam lithography, (c) the PMMA is developed and the
Ge/LOR layer is etched via plasma etching, the gold is then evaporated, (d) the Ge/LOR
stencil is removed in photo-resist stripper, (e) the chip is coated with another bilayer con-
sisting of PMMA/LOR and a suitable etch window is patterned using e-beam lithography
and (f) finally, the underlying GaAs is wet etched to release the beam.
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in a plasma asher for five minutes at 150◦C.

A trilayer resist consisting of lift-off resist (LOR) [48], germanium (Ge)

and poly-methyl methacrylate (PMMA) [48] was coated onto the GaAs

chips. A Ge stencil with an undercut LOR was obtained using e-beam

lithography and plasma etch processes as outlined in reference [49]. The

patterns defined nano-wires of two different lengths, 12 µm and 20 µm with

widths in the range 250-300 nm, connected to wider electrical contact pads.

The stencil was metallized with an adhesion layer of 3 nm thick titanium (Ti)

followed by the deposition of 60-80 nm thick gold in a thermal evaporator.

The Ge/LOR stencil was removed in photo-resist stripper (1165 Microp-

osit Remover) [50] and a doubly-clamped beam was then released by wet

etching the underlying GaAs. A window patterned in a second PMMA/LOR

bilayer resist using e-beam lithography was used to selectively etch only the

region of interest. A standard wet etch recipe H2SO4:H2O2:H20 in the ratio

1:8:100 by volume was used. By wet etching, rather than plasma etching the

GaAs, possible sputtering and ion-implantation damage was avoided. The

etched substrate was rinsed in de-ionized (DI) water followed by methanol,

and then blown dry with nitrogen gas; any remaining resist was removed in

an oxygen plasma asher. The results presented in this thesis correspond to

two beams of length L ∼ 7.5 µm and 10.5 µm, thickness h ∼ 80 nm and 65

nm and width W ∼ 300 nm and 250 nm. A typical doubly-clamped gold

beam used for the dissipation studies is shown in Figure 3.2.

3.1.2 Gold-coated high-stress silicon nitride beams

Gold-coated high-stress silicon nitride resonators were used for further dissi-

pation studies at low temperatures as well as experiments investigating the

nonlinear coupling between the different modes of a single beam. The de-

vices were fabricated from wafers composed of a 190 µm thick silicon wafer

[51] with 170 nm of LPCVD1 silicon nitride on both sides [52]; the nitride

layer has a built-in tensile stress of ∼ 1070 MPa, measured by the Cornell

Nanoscale Facility (CNF). The resonators were made using a combination

of optical lithography, e-beam lithography and plasma etching. A schematic

diagram including the main steps of the fabrication process is shown in

Figure 3.3.

1Low pressure chemical vapour deposited
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Figure 3.2: Scanning electron microscope image of a gold nanomechanical resonator. The
nanowire is 20 µm long and the suspended region which forms the resonator is 10.5 µm
in length.

The wafers were first scribed into 9.8 × 9.8 mm pieces and cleaned in the

same manner as described in the previous section. A trilayer resist consisting

of LOR, Ge and photo-resist AZ6612 [48] was coated on the wafer. The

samples were then soaked in toluene for 5 minutes to avoid over-developing

the photo-resist after UV exposure.

The electrical contact pads were defined using optical lithography, the

Ge in the exposed areas was fully dry-etched whilst around only 50-100 nm

of the LOR was removed. The sample was then coated with two layers of

PMMA and the nano-wires were patterned via e-beam lithography includ-

ing several alignment processes to ensure the contacts and the wires were

connected to each other. The remaining Ge/LOR in the exposed areas was

etched away. The resulting stencil was metallized with 3 nm of Ti and 90-

130 nm of gold in a thermal evaporator, followed by lift-off in photo-resist

stripper. Using a PMMA/Ge/LOR trilayer a suitable etch window was

patterned in the areas of interest using e-beam lithography, and finally the

doubly-clamped beams were released through an anisotropic etch of Si3N4 in

a CHF3 plasma followed by an isotropic etch of Si with SF6. The gold layer

acted as a mask however some of it was sputtered away while releasing the

beams. This meant the gold on the beams was thinner than on the contacts.

A more detailed account on the fabrication of silicon nitride resonators is

given in Appendix A.
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Figure 3.3: Fabrication process for gold-coated high-stress silicon nitride beams. (a) The
Si3N4/Si wafer is coated with a trilayer resist consisting of AZ6612/Ge/LOR, (b) the
contacts are patterned using optical lithography, (c) the photo-resist is developed and the
Ge etched fully whilst the LOR is partially etched. (d) The wafer is then coated with two
layers of PMMA and the wires are patterned using e-beam lithography, (e) the PMMA is
developed, the remaining Ge/LOR etched away and gold is evaporated, (f) finally, after
patterning a suitable etch window on a PMMA/Ge/LOR trilayer resist, the beams are
released through dry etch processes.
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(a) (b) (c)

Figure 3.4: Scanning electron microscope image of the contact pads (a), gold coated silicon
nitride beams in bridge formation (b) and a 6.4 µm long resonator with 80 nm of gold on
top (c).

Figure 3.4 shows images of a typical silicon nitride resonator used for the

experiments described in Chapters 5 and 6. The contacts are in the shape

of coplanar waveguides2 (Figure 3.4(a)) to ensure good impedance match-

ing between cables and the sample thereby minimizing unwanted reflections.

The resonators were prepared in a bridge formation (Figure 3.4(b)) to min-

imize any frequency varying background noise [53] (the balanced bridge

technique is discussed in more detail in section 3.3.2).

Two batches of devices were made for the measurements, each having

four beams (two bridges). The first batch consisted of doubly-clamped

beams with lengths 4.4 µm, 6.4 µm, 15.8 µm and 25.5 µm; the width was

the same for all, about (190 ± 10) nm, with the thickness of the nitride

layer being 170 nm. The thickness of the gold layer on top of the beams

was around (80 ± 10) nm. The second batch included 4 beams of the same

lengths as the first but with a width of ∼(170 ± 10) nm and (40 ± 10)

nm thick gold. As mentioned earlier, part of the gold is etched away when

releasing the beams; by exposing part of the contact pad on a test sample,

the amount of gold etched away from that region compared to an unexposed

area was measured using a surface profiler. The test sample was subjected

to the same etching processes used to release the beams.

2A coplanar waveguide consists of a central conducting strip with a ground plane on
each side, on top of a dielectric surface. They are commonly used to send high frequency
signals (with a low parasitic background) to micro/nano-electronic devices.
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3.2 Transduction scheme

For the experiments described in this thesis, the magnetomotive transduc-

tion scheme was used to drive and detect the motion of the nanomechanical

resonators. This technique was first developed by A. N. Cleland and M.

L. Roukes [54]. Although there are other methods to detect the motion of

such devices, for example capacitive coupling to other mesoscopic electronic

elements [55, 56], piezoresistive actuation and optical detection [57], the

magnetomotive technique is the simplest to implement in nanomechanical

devices and has been used to detect mechanical frequencies up into the GHz

range [58].

The magnetomotive technique involves placing a conducting beam of

length L at the centre of a uniform magnetic field B with its longitudinal axis

perpendicular to the magnetic field. To drive the beam into motion, a radio-

frequency (rf) alternating current Id(t) = I0e
iωt is passed along the length of

the resonator, transverse to the magnetic field; I0 and ω are the amplitude

and frequency of the oscillating current. A Lorentz force, Fd = LBId(t),

is generated at the same frequency as the rf current and perpendicular to

both the current and magnetic field, which excites the motion of the beam

[1, 27]. The scheme is illustrated in Figure 3.5.

The motion of the beam can be described by the equation

ü+ γu̇+ ω2
0u =

LB

m
Id(t), (3.1)

where u(t) is the displacement of the beam in the direction of flexure, m

its mass, ω0 its resonant frequency and γ = ω0
Q0

is the damping coefficient.

The resulting displacement of the resonator generates an electromotive force

(EMF) across it, which according to Faraday’s Law, opposes the flow of

current thereby increasing the impedance of the beam on resonance. This

EMF is given by

Vemf (t) =
dΦ

dt
= ξnLB

du(t)

dt
(3.2)

where Φ = LBuξn is the flux and ξn is a geometric constant that accounts

for the non-uniform displacement of the vibrational mode (n is the mode

number); for the fundamental mode of a doubly-clamped beam ξ1 =0.83 [1].

Allowing the displacement to have the form u(t) = u0e
iωt, where u0 is

the amplitude, and substituting this into the equation of motion 3.1, the
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Figure 3.5: Schematic diagram of the magnetomotive drive and detection technique. An
rf alternating current is passed through the beam, perpendicular to the magnetic field,
generating a Lorentz force which actuates the motion of the beam. A vibrating current-
carrying beam in a magnetic field produces an EMF voltage which is proportional its
displacement.

beam’s displacement can be expressed in terms of the driving current:

u(t) =
LBId(t)

m(ω2
0 − ω2) + imωω0

Q0

. (3.3)

Combining equations 3.2 and 3.3 yields

Vemf (t) = iω
ξL2B2Id(t)

m(ω2
0 − ω2) + imωω0

Q0

. (3.4)

Equivalent electrical circuit A mechanical resonator undergoing mag-

netomotive transduction is electrically equivalent to a parallel combination

of an inductor Lm, a capacitor Cm, and a resistor Rm [27], as depicted in

Figure 3.6. For the case where the external impedance Zext is infinite, the

voltage across the circuit is given by

Vemf (t) = iω

Id(t)
Cm

(ω2
LC − ω2) + iω

RmCm

(3.5)

where ωLC = 1/
√
LmCm is the resonant frequency of the LCR circuit.

Clearly, equations 3.4 and 3.5 are analogous to each other and the model

circuit parameters can be identified in terms of the mechanical properties of

the resonator

Cm =
m

ξL2B2
, Lm =

ξL2B2

mω2
0

, Rm =
ξL2B2

mω2
0

Q0. (3.6)
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ZextRmCmLm I(t)V(t)

Figure 3.6: LCR representation of a mechanical resonator with a external impedance Zext,
which includes the electrical resistance of the sample itself and the rest of the circuit used
for the measurements.

The above implies the equality of the resonant frequencies ωLC = ω0.

In the case where the external impedance Zext has a finite value, the

voltage across the whole circuit is

VL(t) = iω

Id(t)
Cm

(

ω2
0 +

ωω0ZcXext

|Zext|2

)

− ω2 + iωω0

(

1
Q0

+ ZcRext
|Zext|2

) (3.7)

where Rext=Re[Zext], Xext=Im[Zext] and Zc =
√

Lm/Cm [27]. From the

above expression it is clear that the external impedance has an influence on

the measured voltage signal; in this case, the measured resonant frequency

f0 and Q-factor are not intrinsic to the resonator but depend on the full

measurement circuit. The loaded values are given by

fL = f0

√

1 +
ZcXext

|Zext|2
(3.8)

Q−1
L = Q−1

0 + αB2, (3.9)

where α = ξL2

mω0

Rext
|Zext|2

. At any given temperature it is possible to extract Q0

and α by carrying out measurements as a function of magnetic field strength.

Figure 3.6 illustrates a magnetomotive reflection measurement with a

constant current source. The results presented in this thesis (Chapters 4,

5 and 6) were obtained using magnetomotive transmission and balanced-

bridge measurements3. The circuits for these measurements are described

3The reflection technique measures a signal proportional to the mechanical impedance
of the beam, which will be highest on resonance. On the other hand, through the trans-
mission technique we measure a signal proportional to the conductance of the beam.
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in detail in section 3.4, including simulations which show the behaviour

predicted from relations 3.8 and 3.9.

It has to be noted that although the magnetomotive technique works

very well for NEMS, it has some disadvantages. Firstly, it requires the use

of magnetic fields generated by large superconducting coils, which need to

be cooled down to cryogenic temperatures. This is very time consuming

as well as expensive because helium transfers are required every two days.

Furthermore, it is only possible to detect the odd flexural modes as the EMF

voltages are cancelled for the even modes.

3.3 Measurement set-up and techniques

This section describes the equipment and measurement techniques employed

for the ultra-low temperature experiments. The set-up and equipment used

for the experiments on doubly-clamped gold beams and that for silicon ni-

tride resonators was different and so this section is divided into two parts.

3.3.1 Gold nanomechanical resonator experiments

The cryostat used for this investigation was an Oxford Instruments Kelvi-

noxTLM top loading 3He/4He dilution refrigerator (see Figure 3.7) with a

base temperature of (10 ± 1) mK, equipped with a 15.5 T magnet and two rf

lines. This cryostat has the benefit of allowing the user to exchange samples

whilst the cryostat is operating at ultra-low temperatures; other systems

have to be warmed up before the samples can be changed. The measure-

ments were carried out in transmission mode therefore only one device could

be measured at a time. The sample was mounted on a 12-pin header and

placed inside a brass vacuum can (sealed with an indium O-ring) with elec-

trical feed-throughs to the sample and resistance thermometers (2 kΩ RuO2

resistors). The feed-throughs were filled with Stycast 2850FT in order to

avoid any helium mixture leaking into the vacuum can. The can, along with

the support and cables, was immersed in the 3He/4He liquid in the mixing

chamber allowing the sample to cool through the wires and substrate. The

magnetic field was applied parallel to the plane of the wafer in order to study

the fundamental out-of-plane flexural mode of the beam. Two different mea-

surement techniques relying on the magnetomotive scheme (continuous wave

and ring-down), were applied to study the motion of the beams.
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Figure 3.7: The Oxford Instruments KelvinoxTLM 3He/4He dilution refrigerator and
KelvinoxIGH gas handling system to the rear of the KelvinoxTLM.

Continuous wave (CW) This technique involved studying the resonator

response in the frequency domain, passing an rf alternating current through

the beam in the presence of a magnetic field. The response to the result-

ing Lorentz force was detected by measuring a voltage proportional to the

induced EMF as the frequency of the current was tuned through the mechan-

ical resonance. The resonant frequency f0 and Q-factor were then extracted

by fitting the spectrum to a complex Lorentzian function, after a linear

background was subtracted (see the last section for more details). Excita-

tion powers of -100 dBm or less were used and care was taken to ensure that

the resonator remained in the linear response regime throughout. Typical

raw data obtained from this technique is shown in Figure 3.8(a).

Ring-down Measurements were also made using the ring-down approach

[59] in which the resonator was excited by 200 µs radio-frequency pulses,

spaced 1 s apart, with a frequency close to the mechanical resonance; the re-
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(a)

(b)

Figure 3.8: (a) The two quadratures corresponding to a typical resonant response of a
beam measured using the CW technique. (b) A typical ring-down of a 10.5 µm long gold
beam.
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sponse of the beam was measured in the time domain. These measurements

were only used to extract the Q-factor of the beam as obtaining accurate

estimates of the resonator frequency from this method was more problem-

atic because of transient effects. During excitation the resonator moves at

the drive frequency. During ring-down, the oscillations come closest to the

natural mechanical frequency at later times when the signal is itself rather

small. A typical ring-down signal is shown in Figure 3.8(b). The analysis of

the CW and ring-down data are discussed in the last section of this chapter.

Heterodyne detection scheme

For both the techniques described above, the response of the beams was cap-

tured using a heterodyne detection scheme with an intermediate frequency

of 30 MHz as shown in Figure 3.9. Two rf signals, the beam frequency (fR

+ 30) MHz from the Agilent E4400B signal generator and the 30 MHz in-

termediate frequency from the PTS500 signal generator, were fed into the

mixer in the transmitter. Low-pass filters inside the transmitter removed

the high frequency component (fR + 60) MHz. The resulting signal at

frequency fR was applied to the sample after passing through a series of

variable attenuators which allowed the driving signal to be altered. The

response from the resonator was amplified using a +30 dB room tempera-

ture rf pre-amplifier [60] and mixed with a signal at frequency (fR + 30)

MHz in the receiver. The output at the intermediate frequency was fed into

a second mixer in the receiver to produce a dc signal proportional to the

EMF response of the nanomechanical resonator. The data was collected at

the 16-bit auxiliary ADC ports of a EG&G 7260 lock-in amplifier. Various

filters were used to remove any unwanted high frequency background noise.

The CW experiments were controlled by a Labview program written by my

colleague M. J. Patton. The TTL pulse generator was controlled by a Mat-

lab routine written by Dr. K. Panesar and was in use only for the ring-down

measurements.

3.3.2 Silicon nitride nanomechanical resonator experiments

The equipment and experimental set-up used for the silicon nitride stud-

ies were different to that for the gold studies. The cryostat in which the

samples were measured was an Oxford Instruments Kelvinox 300 3He/4He
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Figure 3.9: Schematic of the heterodyne detection set-up used to perform the magnetomo-
tive measurements. A 30 MHz intermediate frequency (IF) signal is mixed with another
rf waveform to generate a signal of the desired frequency in the transmitter. The same
IF is used to convert the rf response from the sample to a proportional dc output in the
receiver.
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dilution refrigerator (Figure 3.10) with a minimum temperature of about

40 mK and equipped with a 12 T superconducting magnet. This particular

cryostat offered the possibility to measure more than one sample at a time as

there were more rf coaxial lines available than in the top loading fridge. The

samples were mounted on a 12-pin header which was plugged into a printed

circuit board (PCB). Connections from the sample to the pins were made

using a 17 µm diameter aluminium wire and a commercial wedge bonder.

The circuit board was designed to provide four 50 Ω coplanar waveguide

transmission lines, each of them soldered to an SMA connector for exter-

nal connections. The sample stage was situated ∼31 cm below the mixing

chamber flange, at the same level as the centre of the magnetic field. The

sample stage was supported by a cylindrical structure (‘cold finger’) made

out of copper and which provided good thermal contact with the mixing

chamber (Figure 3.11).

The magnetomotive scheme in conjunction with a balanced-bridge elec-

tronic technique [53, 61] was used to study the silicon nitride resonators. In

the balanced bridge technique, two devices share the same central branch

(see Figure 3.4(b)). The potential of the centre pad is initially held at vir-

tual ground by using a 180◦ power splitter to drive the two devices out of

phase from each other and making the impedance of the two branches of

the circuitry similar. High frequency resonators have very small signals and

therefore are difficult to resolve in the presence of background noise. This

problem is partially resolved by using the balanced-bridge technique (section

3.4 provides a more detailed description).

A schematic diagram of the measurement set-up is shown in Figure 3.12;

the different types of coaxial cables employed are colour coded. The sample

consisted of two balanced-bridges, separating the two high frequency (f0 >

30 MHz) and the two low frequency (f0 < 30 MHz) beams. The output

of an Agilent 8712ET network analyzer was sent through a -50 dB fixed

attenuator before being split up into two signals using a 180◦ power splitter

and then through another set of variable attenuators before entering the

cryostat. The beams were excited using the CW technique by passing an rf

current through them and sweeping through the mechanical frequency. The

response of the beams was amplified by two +30 dB room temperature rf

pre-amplifiers and captured on the network analyzer. The first amplifier [60]

was placed just outside the cryostat and the second one [62] at the input of
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Figure 3.10: Photograph of Oxford instruments Kelvinox 300 dilution refrigerator showing
all cables and components from the 4 K flange to the mixing chamber.
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Figure 3.11: Photograph of the Cu cold finger holding the sample stage, thermally an-
chored to the mixing chamber.



CHAPTER 3. EXPERIMENTAL TECHNIQUES 48

the network analyzer.

Inside the cryostat, between room temperature and the mixing chamber

stage, the signals for the high frequency resonators were transmitted through

semi-rigid, cupro-nickel (CuNi) coaxial cables as they provide a fairly good

thermal insulation between the mixing chamber and the rest of the dilution

unit and are less resistive than the flexible stainless steel cables. These lines

were connected to surface mount attenuators just below the 1 K pot stage

followed by bias tees which, however, were not used in these experiments.

The attenuators were soldered onto coplanar waveguides made out of a gold

conducting layer on top of a sapphire substrate; this also acted as a heat

sink for the central conductor of the coaxial cable. The lines were once again

heat sunk at the mixing chamber flange, and between the mixing chamber

and the sample stage the signals were transmitted through semi-rigid copper

coaxial cables.

The input signals for the low frequency resonators were transmitted

through lossy, flexible, stainless steel (SS) coaxial cables from room temper-

ature to the sample stage. The signals were passed via -10 dB attenuators

just below the 1 K pot stage and through coplanar waveguide heat sinks

at the mixing chamber stage. The response of the beams was transmitted

through semi-rigid cables in the same manner as the high frequency signals.

In this case, the attenuators were fixed on PCB instead of sapphire.

Photographs, dimensions and room temperature transfer characteristics

of a typical 1 dB surface mount attenuator and a coplanar waveguide heat

sink are shown in Figures 3.13 and 3.14 respectively. The 1 dB attenuators

work well up to about 3 GHz; at higher frequencies the attenuation increases

drastically. The gold coplanar waveguide heat sinks only attenuate 0.5 dB

up to 1 GHz which is acceptable, especially for home-made components.

The purpose of the heat sinks was to thermalize the inner conductor of the

coaxial lines while providing 50 Ω transmission; they had a dc resistance

between 3-4 Ω.

The room temperature forward transmission (S21) characteristics of all

coaxial lines (labelled in Figure 3.12) from the top of the fridge down to

the sample space are shown in Figure 3.15. Accounting for the -10 dB (-1

dB) attenuation for the input (output) transmission lines and the -0.5 dB

from the heat sinks, the cables themselves attenuate another 0.5 dB which

agrees fairly well with Figure 3.15(a). The semi-rigid rf lines behave as



CHAPTER 3. EXPERIMENTAL TECHNIQUES 49

-1
d

B

-1
0

d
B

-1
0

d
B

-1
0

d
B

-1
0

d
B

-1
d

B

-5
0

d
B

Agilent 8712ET
Network Analyzer

+30dB

RF out RF in

S

1 2

180 2-way
power
splitter

o

variable
attenuators

heat
sinks

bias
tees

cryostat ( T < 4.2 K)

BNC connections
at top of cryostat

high
frequency
resonators

low
frequency
resonators

40 mK

800 mK

CuNi coax

Cu coax

SS coax

line 1
line 2

line 3 line 4 line 5 line 7

+30dB
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ator for the measurements on gold-coated silicon nitride resonators.



CHAPTER 3. EXPERIMENTAL TECHNIQUES 50

(a)

(c)

(b)
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Figure 3.13: (a) Photograph of a 1 dB attenuator fixed onto a coplanar waveguide with
PCB as the substrate. (b) Dimensions of the coplanar waveguide. (c) S21 measurements
of the 1 dB attenuator.
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Figure 3.14: (a) Photograph of a coplanar waveguide heat sink. The conducting layer is
Au, the substrate is sapphire. (b) Dimensions of of the heat sink. (c) S21 measurements
of the Au coplanar waveguide.
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(a)

(b)

Figure 3.15: (a) S21 measurements of the semi-rigid coaxial lines from the top of the fridge
to the sample space. (b) S21 measurements of flexible SS coaxial lines. All measurements
done at room temperature.



CHAPTER 3. EXPERIMENTAL TECHNIQUES 53

expected up to 100 MHz. The flexible coaxial lines on the other hand are

more lossy and unpredictable; below 20 MHz the attenuation is as much as

-15 dB but above that frequency the attenuation fluctuates, increasing to

more than -60 dB above 500 MHz (Figure 3.15(b)). This could be due to

the fact that the flexible cables were wrapped around Cu pillars at several

stages in the fridge in order to thermalize them and because their length

was much longer than required. The bending of the cables may have caused

such transmission behaviour at high frequencies. All resonant frequencies

reported in this thesis are below 100 MHz, a region in which the cables

worked quite well. Transmission through cables and other rf components

changes slightly with temperature; unfortunately I do not have data for the

transfer characteristics for any of the rf lines at low temperatures.

The temperature of the sample stage was monitored using a 2 kΩ RuO2

chip resistor. The resistor was glued to the sample stage using GE varnish,

and its resistance was determined using a 4-wire measurement and an AVS

resistance bridge. Twisted pairs connected the bridge to the resistor. The

RuO2 resistance at the sample stage was calibrated against the one at the

mixing chamber stage by letting the fridge stabilize for a couple of hours

at several temperatures between 4 K and 40 mK. The resistances of both

chip resistors were then measured and assuming that both stages were at

the same temperature, a calibration chart for the sample stage resistor was

produced.

3.4 Measurement circuits

In this section we describe the models for the measurement circuits em-

ployed for the experiments described in Chapters 4, 5 and 6. The gold and

the silicon nitride (with thin gold electrode) nanomechanical resonators were

measured in transmission mode, looking at a dip in the conductance of the

beam. The silicon nitride beams with a thicker gold layer were measured us-

ing the balanced-bridge technique. In both cases, a constant voltage source

was used. The simulated data were fitted to the same Lorentzian function

used to fit all the experimental data in order to confirm that the measured

signals (in volts), indeed provide us with information about the Q-factor of

the nanomechanical resonator.
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Figure 3.16: Circuit model for magnetomotive transmission measurements, with external
circuit impedances Ze and Z0, sample impedance Zm, with the drive voltage Vin and the
measured voltage V0.

3.4.1 Transmission

Figure 3.16 illustrates the electrical circuit for a magnetomotive transmission

measurement, with a voltage source instead of a current source. The drive

and measured voltage signals are denoted by Vin and V0, respectively. The

impedances of the input and output coaxial lines are Ze and Z0, and the

device impedance is Zm. We assume that all voltages and currents are

oscillating at the same frequency in the long time limit, thereby neglecting

any transients.

In a magnetomotive set-up, the electrical equivalent of a resonator is a

parallel combination of an inductor Lm, a capacitor Cm and a resistor Rm.

Hence, the resonator impedance has the form:

Zm =
iω
Cm

ω2
0 − ω2 + iω

CmRm

, (3.10)

where ω is the drive frequency and ω0 is the resonant frequency. Equation

3.10 has the typical Lorentzian shape. As all the impedances are in series,

the same current flows through each element:

I =
Ve

Ze
=

Vm

Zm
=

V0

Z0
. (3.11)

The voltages add, V = Ve + Vm + V0, which gives the relation between the
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measured and drive signal as

V0

Vin
=

Z0

Ze + Zm + Z0
. (3.12)

Analytically solving equation 3.12 to obtain the relations4

f2
L = f2

0 + βB2 (3.13)

and

Q−1
L = Q−1

0 + αB2 (3.14)

is not trivial. Instead, simulations were carried out, as a function of magnetic

field, using parameters similar to those for the 7.5 MHz thin gold silicon

nitride nanomechanical resonator, to prove that the above expressions still

hold for transmission measurements. Table 3.1 shows the parameters used

for the simulations.

Table 3.1: Parameters used for the magnetomotive transmission simulations.

Length (µm) 25.5

thickness (nm) 170 (Si3N4) + 40 (Au)

width (nm) 170

total mass (kg) 5.34×10−15

f0 (MHz) 7.499200

Q0 106

Z0 (Ω) 50

Ze (Ω) 50 - i10

Curves representing the function V0
Vin

were generated for twenty different

magnetic fields in the range 0.02 - 3 T, an example of which is illustrated in

Figure 3.17. The real and imaginary parts are plotted against each other to

form a circle, a behaviour characteristic of Lorentzian functions. The real

and imaginary parts of the simulated curves were fitted in the same manner

as the experimental data (see section 3.5, Chapter 3) in order to extract the

Q-factors and resonant frequencies fL.

Figures 3.18(a) and (b) show a plot of Q−1
L and f2

L as a function of B2,

with the simulated data following the trend of equations 3.13 and 3.14. The

4Equations introduced in section 3.2, they describe the loading effect of the magnetic
field and the external circuitry on the resonant frequency and Q-factor of the nanome-
chanical beam.
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Figure 3.17: Simulations showing the (a) real, (b) imaginary parts of the function V0

Vin

,

which trace out a circle (c) when plotted against each other. The absolute response is
shown in (d).
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smooth lines are linear fits to the data from which we obtained Q0 and f0.

The fitted values are Q0 = 106 and f0 = 7.4992 MHz, in agreement with

the values initially set (see Table 3.1), as expected. Furthermore, the fitted

gradients α and β are also in agreement with the model. These simulations

essentially prove that the voltage signals measured will provide us with the

real Q-factor and resonant frequency of the device, in the limit of B = 0.

3.4.2 Balanced-bridge technique

The use of a balanced bridge technique for the electronic detection of dis-

placement of a nanomechanical resonator was first implemented by the

Roukes Group (CALTECH, USA) [53]. Measuring the motion of nanome-

chanical resonators becomes more challenging as the frequency is increased.

This is because the mechanical resistance (Rm = ξL2B2Q0

ω0m
) of such devices

diminishes very quickly as their resonant frequency is increased, as does the

Q-factor which means that Rm ≪ Re, where Re is the total resistance of

the external measurement circuit. Hence it becomes very difficult to mea-

sure the tiny resonance signal embedded within a large parasitic background

signal. This problem is solved by using a bridge, as shown in Figure 3.19,

where Zm1 and Zm2 are the impedances of two separate nanomechanical

resonators and PS is a 2-way, 180 degree power splitter.

The following relations apply to the circuit in Figure 3.19:

I = I1 + I2 (3.15)

Vin = I1(Ze + Zm1) + V0 (3.16)

Vin = −I2(Ze + Zm2)− V0 (3.17)

V0 = IZ0. (3.18)

Rearranging equations 3.16, 3.17 and 3.18 and substituting them into 3.15

leads to the following expression

V0

(

1

Z0
+

1

Ze + Zm1
+

1

Ze + Zm2

)

= Vin

(

1

Ze + Zm1
− 1

Ze + Zm2

)

,

(3.19)

which can be further simplified to obtain the ratio of the measured to the
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Figure 3.19: Schematic diagram of a circuit for balanced bridge measurements.

drive voltage:

V0

Vin
=

Zm2 − Zm1

(Zm1 + Zm2)
(

1 + Ze
Z0

)

+ Ze

(

2 + Ze
Z0

)

+ Zm1Zm2
Z0

. (3.20)

For the situation where Zm1 ≈ Zm2, then equation 3.20 clearly suggests

that off resonance, the voltage at point X will be nulled, as expected for

a bridge measurement. Furthermore, the signals corresponding to the two

resonators will be 180 degrees out of phase, as shown by the simulated curves

in Figure 3.20(a) and (b). The absolute response from both resonators

will always increase on resonance (Figure 3.20(c)). A good balanced-bridge

measurement requires two resonators of similar dimensions (and resonant

frequencies), in order for the background signal to be cancelled in the off-

resonance regime.

The signals obtained from these bridge measurements have the same

magnetic field dependence as those from transmission measurements (linear

in B2) which further confirms that, with both measurement techniques, the

measured is a signal is proportional to the EMF generated by the device.

By extrapolating to B = 0, it is possible to extract the intrinsic properties

(f0, Q0) of the nanomechanical resonator.
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Figure 3.20: (a) Absorption, (b) dispersion and (c) absolute responses of two resonators
forming a balanced bridge.
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3.5 Resonant response analysis

This section describes a procedure to accurately extract the resonant fre-

quency and Q-factor from the raw data obtained using the CW (spectral

domain) and ring-down (time domain) techniques.

3.5.1 Spectral domain

At small amplitudes a resonator’s motion can be modelled as a harmonic

oscillator with a Lorentzian shaped resonant response. The method to fit

the resonance curves obtained from the frequency domain measurements has

been adapted from the method described in a thesis by I. Kozinsky [23]. For

a Lorentzian superimposed on a background signal, the oscillator response

R has the following form:

R(ω) =

Aei(θ−
3π
2 )ω2

0
Q

(ω2
0 − ω2) + iω0ω

Q

+B0 +B1(ω − ω0), (3.21)

which allows for a full 8-parameter fit (Ax, Ay, ω0, Q, B0x, B0y, B1x, B1y).

A is the resonant peak amplitude, ω0 the resonant frequency of the beam,

Q its quality factor, the complex values B0 and B1 are the constant and

frequency varying components of the background signal, respectively. The

subscripts x and y correspond to the two quadrature components of the

data. The raw data are fitted to the above equation, the real and imaginary

parts being fitted separately.

The initial step is to fit the x and y components of the data to trace out

a circle in the xy-plane; this allows an estimate of the peak amplitude A

which is given by the diameter of the circle. The phase factor ei(θ−
3π
2
) in the

above equation accounts for the background phase, which shifts the circle

from its zero background position (which is the origin). For convenience,

this phase is incorporated into the complex amplitude A [23]. The next step

is to fit the experimental values of dθ
dω which are background free and hence

can be fitted to provide more accurate estimates of the resonant frequency

and the Q-factor (details on how this is done are given in reference [23]).

These values are then used as initial guess parameters to fit equation 3.21 to

the raw data. An example of raw data for a 7.5 MHz silicon nitride resonator

fitted according to this method is illustrated in Figure 3.21(a).
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(a)

(b) (c)

Figure 3.21: (a)Typical real and imaginary parts of the measured magnetomotive response
of a 7.5 MHz silicon nitride sample. The smooth line is a Lorentzian fit to the data. (b)
Typical data for a 3.87 MHz gold resonator taken at 1 T; the smooth lines are exponential
fits to the envelope. (c) Plot of ln (r) as a function of time, the smooth line is a linear fit
to the data from which τ can be extracted.
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3.5.2 Time domain

Ring-down data can be analyzed by using a fast Fourier transform (FFT)

and then fitting the real and imaginary parts as outlined in the previous

section. However, an alternative way to extract the resonant frequency

and Q factor is to look at the time variation of the amplitude. In the

time domain, the x and y components of the amplitude have the form x =

e−t/τ sin(2πft) and y = e−t/τ cos(2πft) with the envelope r =
√

x2 + y2. By

fitting an exponential function to the envelope of the resulting oscillations

or alternatively, from a linear plot of ln(r) vs t we can extract the time

constant τ of the resonator. The phase θ can be extracted from a plot of

x vs y and the resonant frequency of the resonator can be deduced from

the rate of change of phase. Once f0 and τ are known, the quality factor is

calculated using the expression [1]

Q =
ω0τ

2
. (3.22)

This method gives accurate values for the Q-factor without the effects of fre-

quency varying background noise. Furthermore the values can be obtained

from simple linear fits, whereas in the frequency domain a more complicated

8-parameter nonlinear fit has to be used. Typical ring-down data for a gold

nanomechanical resonator is shown in Figure 3.21(b) and (c); raw data cor-

responding to two different temperatures are shown with the smooth lines

being fits to the data.

3.6 Summary

In this chapter we discussed the fabrication of doubly-clamped gold beams

and gold-coated high-stress silicon nitride nanomechanical resonators used

for the low temperature dissipation studies. The gold nanomechanical res-

onators were fabricated using a combination of e-beam lithography and wet

etching techniques; the silicon nitride devices were patterned using a com-

bination of optical and e-beam lithography, and released through dry etch.

The magnetomotive transduction scheme was used to study the motion of

the nanomechanical beams. The measurement set-ups for the experiments

were explained as well as the techniques used to capture the EMF signal

corresponding nanomechanical motion.



Chapter 4

Dissipation in gold

nanomechanical beams at

millikelvin temperatures

This chapter describes the results of a study of dissipation and frequency

shift in two polycrystalline gold nanomechanical resonators at temperatures

between 10 mK and 2 K. Metal resonators are being used more frequently

in low temperature experiments since the fabrication is simplified when an

underlying dielectric layer is not required [7, 63–65]. Furthermore, the Q-

factor of these resonators has been found to be relatively large, although the

temperature dependence of the dissipation has not been studied systemati-

cally. As metal resonators are readily fabricated and actuated as monolithic

structures, the interpretation of the dissipation measurements is simpler

than for dielectric ones where metallization is typically required to facilitate

actuation [45, 47, 59, 66].

The fabrication of the devices and the experimental set-up for the mea-

surements have already been described in Chapter 3. This chapter is divided

into four sections, the first describes the effect of cooling on the resonant fre-

quencies of the devices. The study of magnetic field dependence is presented

in the second section explaining how it is used to determine the intrinsic dis-

sipation in the resonators at any given temperature. Then follows the results

showing the temperature dependence of dissipation and resonant frequency.

The last section includes a review on the most recent experiments on metallic

nanomechanical resonators carried out by other research groups.

64
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4.1 Device frequencies

The resonant frequency of nanomechanical resonators can depend signifi-

cantly on the tension, T0, in the structure. Some of the tension can come

from the evaporation of the metal film, however most of the tensile stress

in a metallic resonator arises from the difference in the thermal contraction

between the substrate (GaAs) and the metal (Au) when the device is cooled

down to low temperatures. To a good approximation a doubly-clamped

beam of length L under tension T0 has a fundamental frequency given by

[22]

f0n =
π

8
(2n+ 1)2

1

L2

√

EI

ρA

√

1 +
0.97T0L2

(n+ 1)2π2EI
,

an equation already introduced in Chapter 2. Using bulk values for the

Young’s modulus (E = 78 GPa) and density (ρ = 19300 kgm−3) of gold

[23], the expected resonant frequencies without any stress (T0 =0) are 3.0

and 1.24 MHz for the beams with length 7.5 and 10.5 µm respectively. The

tension in the beams can be estimated as T0 = EA
(

∆L
L

)

where ∆L
L =

(

∆L
L

)

Au
−
(

∆L
L

)

GaAs
is the difference in the relative thermal contraction of

gold and GaAs. An estimate for the differential thermal contraction of gold

is 3.1 × 10−3 [63, 67] and 9.205 × 10−4 for GaAs [68]. These values were

used to calculate an estimate for the tensile stress, σ = T0
A , in the beams,

when cooled from room temperature down to liquid helium temperatures, of

about 170 MPa, leading to predicted resonant frequencies of 7.55 and 5.10

MHz for the beams with lengths 7.5 and 10.5 µm respectively.

The measured frequency for the shorter beam was 7.95 MHz but for

the longer beam it was 3.87 MHz. The extremely good level of agreement

between the observed resonant frequency and the predicted value for the

shorter beam is fortuitous given the inherent uncertainties such as the ma-

terial properties of the system. On the other hand, the 10.5 µm long beam

has a lower resonant frequency than expected (by about 35%). This devi-

ation is most probably due to initial compressive strain which was found

(based on our experience of fabricating a number of resonators using the

same process) to be generated in varying degree during the fabrication pro-

cess. Figure 4.1 clearly shows the effect of the tension, due to cooling, on the

resonant frequency of the 3.87 MHz beam from 20 K to 10 K. The tension

in the beam keeps increasing down to about 10 K, which can be inferred
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Figure 4.1: Plot of frequency versus temperature for the 3.87 MHz resonator clearly
showing the effect of cooling on the resonant frequency of the device. Up to 10 K, the
frequency is relatively constant but above 10 K, the frequency starts to drop very quickly
as expected.

from the rapid increase in the resonant frequency, however below 10 K, the

resonant frequency is roughly constant. A similar behaviour was seen for the

7.95 MHz beam, in measurements carried out during the cool-down, the res-

onator frequency shifted up from 7.38 MHz to 7.95 MHz as the temperature

was reduced from 77 K to 10 K.

4.2 Magnetic field dependence

Use of the magnetomotive transduction scheme results in a measured Q-

factor which is loaded by the external circuitry and the electrical resistance

of the sample itself. Measurements of the magnetic field dependence of the

resonator response were used to extract the resonator’s intrinsic Q-factor,

Q0 [27, 59]. The drive and detection circuits for the measurement system

each have a 50 Ω characteristic impedance along with some resistance due to

the cables and the sample, ∼35 Ω for the 7.95 MHz beam and ∼75 Ω for the

3.87 MHz beam (resistances measured at 4 K). Assuming that the external
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impedances presented to the sample are effectively resistive, estimates for

the parameter α = ξL2

mω0

Rext
|Zext|2

can be calculated, using appropriate values for

the mass of the beams and the external impedances. The predicted values of

α are 2.39×10−6 T−2 (3.87 MHz resonator) and 7.86×10−6 T−2 (7.95 MHz

resonator).

The dissipation as a function of magnetic field B was measured for both

beams at a range of different temperatures. Figure 4.2(a) and (b) shows

plots of the dissipation as a function of B2 for both samples. It is clear

that the magnetic field can cause a substantial change in the dissipation.

As expected, the behaviour is found to be linear in B2 and the gradient

(α) allows Q−1
0 to be obtained by extrapolation to zero field. The linear

fits to the data yield values of α close to the predicted gradients however it

can be noticed that α has a very weak temperature dependence, which can

be attributed to the fractional changes in cable impedances with field and

temperature. Figure 4.3 shows the weak dependence of α on temperature

for both gold beams; the solid lines are linear fits using the equation α =

α0 + α1T . For both devices, α1 is negligible compared to the temperature

independent value. Furthermore, the errors in α are relatively large, hence

a simple average of the measured gradients (illustrated by the dashed lines

in Figure 4.3) was used to determine Q0 at arbitrary temperatures. The

insets in Figure 4.2 show plots of the resonant frequency shift (with respect

to f0(B = 1T)); no corresponding magnetic field dependence was found for

the resonant frequency of the devices confirming that the impedances seen

by the sample can be treated as essentially real.

4.3 Temperature dependence

Measurements of the Q-factor and frequency of the 7.95 MHz resonator were

carried out from about 1 K down to 10 mK using the CW technique at B=3

T as it provided an acceptable signal-to-noise ratio over the whole range

of temperatures studied. For the 3.87 MHz device, CW measurements were

made at 2 and 3 T, as well as ring-down measurements at 1 T in temperatures

ranging from about 2 K down to 10 mK. The ring-down technique allowed

measurements in fields as low as 1 T where the magnetomotive damping is

minimal. Therefore the correction required to extract Q0 using equation 3.9

is also smaller than for higher fields.
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Figure 4.2: Dissipation, Q−1
L , versus B2 for the (a) 3.87 MHz resonator and the (b) 7.95

MHz resonator. The straight lines are linear fits to the data from which α was extracted.
The insets show the change in frequency of the beams as a function of magnetic field.
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4.3.1 Dissipation

Figures 4.4(a) and (b) show the temperature dependence of the intrinsic

dissipation, Q−1
0 , for both samples. In both plots, the data follow a common

pattern and three different regions of behaviour can be identified. Above

about 600 mK the dissipation saturates, reaching what appears to be a

plateau while saturation is also observed for the data below about 30 mK.

In the intermediate region between 30 and 500 mK, fits to the data show that

the behaviour of both devices is described by a power law Tn, with n = 0.50±
0.05 for the 7.95 MHz device and n = 0.49± 0.02 for the 3.87 MHz device.

For the latter, the individual data sets (corresponding to different fields)

were first fitted separately to obtain the respective power laws, all of them

lying in the range 0.47-0.52. Furthermore, the different sets of data, taken at

different fields and using different techniques overlay one another as shown

in Figure 4.4(b). This strongly suggests that the results are independent

of the measurement methods used. Estimates for the dissipation in the

plateau regions at the high temperatures (shown as dashed lines in the

plots) are obtained by averaging over the five points taken at the highest

temperatures for each sample. Very similar results were obtained for both
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devices: Q−1
p,s = 4.1× 10−5 and Q−1

p,l = 3.8× 10−5 for the 7.95 and 3.87 MHz

resonators respectively (the subscript p refers to plateau, s for short beam

and l for long beam). Figure 4.5 shows a plot of the loaded quality factor,

Q−1
L , as a function of temperature for both beams measured at different

magnetic fields. The solid curves represent the expression bT 0.5 + αB2,

b being a constant of proportionality obtained from the fits to the Q−1
0

data. The main aspect to notice in this plot is the evident saturation of the

dissipation at the highest temperatures.

The saturation in the dissipation at the lowest temperatures could be due

to a variety of factors including a crossover to a regime where a temperature-

independent mechanism such as clamping losses or Joule heating of the sam-

ple dominates. However, simple calculations show that neither of these are

expected to have a significant effect on the devices measured. A simple es-

timate of the clamping loss in the devices was obtained using an equation

provided in reference [26], giving values in the range Q−1
clamp ∼ 10−9−10−10.

Although the effects of tension are not included in this calculation, it never-

theless seems unlikely that this mechanism could cause saturation. However,

a more detailed theory on clamping losses in nanomechanical resonators,

which includes the effect of tension in the devices, is required to determine

conclusively whether this mechanism is likely to be relevant here. On the

other hand, it is expected that the Joule heating of the resonator should

increase the temperature of the sample by only about 1 mK at 10 mK, but

other mechanisms which are harder to quantify such as heat conduction

along the coaxial cables may play an important role at the lowest tempera-

tures.

4.3.2 Resonant frequency

The relative shift in the frequency of the resonators as a function of tem-

perature is shown in Figure 4.6(a) and (b). For the 3.87 MHz resonator,

both the 2 T and 3 T data have been plotted for comparison however the

data at 2 T is likely to be more accurate as it provides the best compromise

between linewidth and signal-to-noise ratio. For both samples, there is an in-

crease in frequency with temperature over the lower half of the temperature

range. The behaviour here is well described by a logarithmic dependence

(already introduced in Chapter 2), given by ∆f
f0

= Cs(l)ln
T
T0

with gradients

Cs = (7.37±0.95)×10−6 for the 7.95 MHz resonator, Cl = (4.30±0.45)×10−6
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at 3 T and Cl = (8.48± 0.30)× 10−6 at 2 T for the 3.87 MHz resonator.

The frequency shift for the 3.87 MHz device stops increasing at about 400

mK and shows a systematic decrease above 600 mK. At higher temperatures,

no frequency decrease is seen for the 7.95 MHz device, though it has to be

noted that the scatter in the data around 1 K, and the lack of data above,

makes it difficult to draw firm conclusions about the underlying behaviour at

higher temperatures for this device. The data for this particular sample were

collected in two runs and a frequency jump of 20.4 kHz that occurred during

thermal cycling between the runs was subtracted from the low temperature

data. Nonetheless, thermal cycling caused no change in the temperature

dependence of ∆f
f0

. Some saturation is also observed in the frequency shift

data, indicated by the two points (denoted by unfilled circles) below 30 mK

in Figure 4.6(a). This suggests that thermal decoupling between the samples

and the refrigerator could be a likely explanation for the saturation observed

in both the resonant frequency and dissipation at the lowest temperatures.
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4.4 Discussion

This section is split into two parts, the first part provides a qualitative de-

scription of the data using the standard tunnelling model as a framework.

The second part discusses some recent experiments on metallic nanome-

chanical structures at low temperatures which were reported after the work

presented in this chapter was published. Similarities and differences between

the studies are discussed.

4.4.1 Qualitative description of data

The strong variation seen in the dissipation at such low temperatures sug-

gests that tunnelling TLS, which are known to exist in polycrystalline metals

[69], are the dominant source of dissipation. The STM assumes tunnelling

TLS with a broad distribution of energies and relaxation rates. In the regime

relevant to the measurements described here, where ~ω ≪ kBT , the domi-

nant contribution to the dissipation comes from the relaxation of the TLS

rather than resonant interaction. A change in the behaviour is expected at

a temperature T ∗ where the minimum relaxation time for the TLS matches

the period of the resonator. Above T ∗, there is a plateau where the dissi-

pation Q−1
p = π

2C, depends on the material properties such as the spectral

density of TLS but is independent of temperature and frequency. Below T ∗

the dissipation is expected to have a characteristic power-law dependence

on temperature that depends both on how the TLS relax and the form of

the underlying distribution [33, 36].

The dissipation seen in the gold resonators fits the pattern predicted

by the STM with both devices showing plateau-like features above about

600 mK and a power law dependence ∼ T 0.5 at lower temperatures down

to about 30 mK. However, the temperature dependence observed here is

much lower than both those predicted by the standard theories of acoustic

damping in bulk solids [33, 36]. Interestingly, a recent model of damping due

to TLS in a nanomechanical resonator predicted a T 0.5 behaviour when the

relaxation of the TLS is due to phonons in the structure [70]. However, this

model assumes a dielectric rather than a metallic resonator and no plateau

region is predicted. Furthermore, the dissipation in the plateau regions is

very similar for the two devices although it leads to a value C ∼ 2.5× 10−5

which is about an order of magnitude below the range typical for amorphous
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solids [39], though similarly low values are seen in some disordered metals

[37] as well as in stressed dielectric resonators [71].

The STM also predicts a frequency that increases logarithmically with

temperature for T < T ∗ due to the resonant interaction between the TLS

and the acoustic excitation, with a gradient given by C [33, 36]. For T > T ∗,

a logarithmic decrease in the frequency is expected, with a gradient that

depends on the dominant relaxation mechanism. Although a logarithmic

increase in frequency at low temperatures is seen, the gradients are only

about a third of the value of C inferred from the dissipation in the plateau

regions. The logarithmic decrease in the frequency shift that is seen above

600 mK for the 3.87 MHz device agrees qualitatively with the STM how-

ever the value of C inferred from the frequency shift data depends on the

magnetic field for unknown reasons. For the higher frequency resonator, the

scatter and the lack of data above 1 K make it difficult to draw any firm

conclusions.

4.4.2 Recent studies on metallic structures

The work described in this thesis is the first systematic study of low temper-

ature dissipation in unsupported metallic nanomechanical resonators. How-

ever, very recently other groups have begun to study metallic resonators as

well. In a recent publication [72], Hoehne et al, reported low temperature

measurements on aluminium nanomechanical beams with frequencies in the

range 40 - 360 MHz. The authors measured the ‘in-plane’ response of four

doubly-clamped aluminium nanomechanical resonators using the magneto-

motive technique and looked at the temperature dependence of the damping

and frequency shift. As shown in Figure 4.7, the frequency shift in all four

resonators shows the same qualitative temperature dependence with a peak

at around 1.5 K with a decrease at higher and lower temperatures. The

logarithmic fits to the low temperature data yield values of C in the range

10−4−10−5, an order of magnitude higher than for the gold resonators, and

closer to value of C for bulk amorphous materials, C ∼ 10−3 − 10−4 which

is known to be almost universal.

The damping in the resonators increases linearly with temperature up

to about 1 K and above this temperature it continues to increase but with

a smaller slope; this is shown in Figure 4.8. The dissipation has a finite

value at T = 0 for all resonators and the authors claim it is clamping loss
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because of its frequency dependence. The linear dependence of dissipation

on temperature indicates electron-dominated relaxation of TLS according

to the STM. However electron relaxation times are extremely short and so

this mechanism would only be observed at the lowest temperatures, below

100 mK. The authors argue that at temperatures below 1 K, the beams are

essentially 1-D structures as the dominant phonon wavelength in aluminium

at these temperatures is comparable to the device dimensions (λ ≥ 100 nm).

The linear temperature dependence of the damping is consistent with a 1D

phonon-dominated relaxation mechanism. The authors suggest dislocation

kinks within the aluminium structure, which are known to exist in crystals,

as possible candidates for TLS.

Another recent experiment on an aluminium nanomechanical resonator

[73] carried out by a research group from Finland confirmed the linear tem-

perature dependence of dissipation up to 1 K in these structures. The re-

sponse of the beams was measured capacitively, between 100 K and 10 mK,

with the aluminium becoming superconducting at the lowest temperatures.

These experiments further support the 1-D phonon modes idea and reject

the electron-dominated relaxation theory as superconducting aluminium has

no unpaired electrons.
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Measurements on micron-thick aluminium films were carried out by

Parpia’s group at Cornell University [74]. The authors measured the elastic

properties of the films via the double paddle oscillator technique [44]. Mea-

surements at temperatures between 10 mK and 1 K revealed good agreement

between the data and the STM for the case of phonon-dominated relax-

ation mechanism. The plateau in the dissipation is within the glassy range

2× 10−4 < Q−1 < 2× 10−3 with a value of C ∼ 1.3× 10−4, similar to that

for aluminium nanomechanical resonators. The crossover temperature T ∗

for these devices is just 100 mK which is consistent with the STM since T ∗

varies as ω1/3 and the frequency of these resonators is only 5.5 KHz. They

also argue that the origin of TLS in their bulk samples is dislocation kinks.

The disagreement between the low temperature behaviour of gold and

aluminium suggest that dimensionality has an important role to play in

determining the sources of dissipation in such structures. For a beam to be

classified as a 1D structure, the phonon wavelength must be of the same

order as the beam dimensions or longer. The gold resonators reported in

this thesis have similar dimensions to the aluminium resonators however,

they are on average, twice as wide therefore the gold resonators cannot be
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Figure 4.9: Primary phonon wavelength in aluminium and gold at temperatures below 1
K.

assumed as 1-D structures. Figure 4.9 shows the variation in the phonon

wavelengths in both aluminium and gold for temperatures below 1 K. The

wavelengths were calculated using the equation

λT =
hv

2.821kBT
, (4.1)

where h is Planck’s constant and v the speed of sound in the solid [1].

The speed of sound in the respective metals was estimated using the simple

expression v =
√

K
ρ , where K is the bulk modulus of the solid and ρ its

density. It can be noticed that from a phonon point of view, the aluminium

beams start to look like 1D structures at temperatures around 500 mK;

for the gold beams this is the case only at temperatures below 200 mK.

However, our measurements do not support the 1D picture as even below

200 mK there is no sign of a linear dependence of Q−1
0 on temperature (see

Figure 4.4).

Apart from dimensionality, another factor which could add to the dis-

crepancies is the formation of thin oxide layers (1 - 2 nm) on aluminium,

which will also have TLS contributing to the dissipative behaviour of the

whole device. Oxide layers do not form on top of gold.
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4.5 Summary and Conclusions

The dissipation at low temperatures in gold nanomechanical resonators fol-

lows a weak power-law dependence Q−1
0 ∝ T 0.5 over the range 30 - 500 mK

and above 600 mK the dissipation saturates. The relative shift in frequency

of the resonators shows a logarithmic increase up to about 400 mK. The

observation of features normally associated with tunnelling TLS, such as

plateau in the dissipation and a power-law behaviour at low temperatures

together with the logarithmic change in frequency, suggest that this is the

right paradigm in this case. Nevertheless, our results do not fit quantita-

tively with current theories. However, differences between our results and

theories based on the behaviour of bulk amorphous solids are to be ex-

pected, not just because the TLS relaxation rates should be rather different

in nanomechanical resonators [70] but also because the very small volume of

the samples [75] together with the effects of tension [71] may lead to a dis-

tribution of TLS quite different to that usually assumed for bulk disordered

solids. Furthermore, recent experiments on aluminium nanomechanical res-

onators suggest that dimensionality has a key role to play in the dissipation

in such devices as in the case of aluminium resonators, TLS relaxation is

dominated by 1-D phonon modes at temperatures below 1 K.

Further experiments on gold devices are required in order to get a full

picture of the dissipation mechanisms in such devices; a more systematic

study, including different fabrication processes, and surface passivation of

the beams with thiol molecules [76] might help clarify the nature of TLS

in such materials. Gold beams with smaller cross-sections would allow to

explore the effect dimensionality on dissipation and check whether the 1D

phonon model would also apply for gold devices.



Chapter 5

Dissipation in silicon nitride

nanomechanical beams at

millikelvin temperatures

In this chapter we describe the results from a study of dissipation and fre-

quency shift in gold-coated, high-stress silicon nitride nanomechanical res-

onators. The measurements were carried out in the temperature range 40

mK to 1.5 K and the magnetomotive transduction scheme was used to drive

and detect the motion of the beams. High-stress silicon nitride has been

used to fabricate nanomechanical resonators for a number of NEMS exper-

iments reported recently [9, 77, 78] as the Q-factor of such resonators has

been found to be extremely large [57, 79]. The temperature dependence

of the dissipation at low temperatures in other dielectric nanomechanical

resonators have been reported in the recent years [45–47]. However, the low

temperature dissipation in silicon nitride resonators has not been studied

systematically. The presence of a metallic layer on top of the dielectric res-

onator makes the interpretation of the results more challenging as it is well

known that the metallic layer contributes significantly to the dissipation in

the system [44].

The fabrication of the devices along with the experimental arrangement

for these measurements have already been explained in Chapter 3. We car-

ried out measurements on two batches of samples, the first with a 80 nm

gold layer and second with a 40 nm one. The first batch had 4 beams of

lengths 4.4, 6.4, 15.8 and 25.5 µm and the motion of these devices was mea-

80
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sured using the balanced bridge technique. Unfortunately, the coaxial line

connected to the 15.8 µm long beam was attenuating much more than ex-

pected (by about 40 dB), most likely due to a lose connection, thus it was

not possible to measure this particular beam. From the second batch, with

a thinner gold, we were only able to detect the signal from the 25.5 µm long

beam which was therefore measured in transmission mode (see section 3.4

in Chapter 3 for more details on transmission measurements). We were able

to measure several higher modes of the 25.5 µm long beams. The results

showing the magnetic field and temperature dependence of the dissipation

and resonant frequencies are divided into two sections, corresponding to the

two batches of samples. The results are qualitatively analyzed in the frame-

work of the STM and compared to other recent low temperature studies on

high-stress silicon nitride oscillators.

5.1 Device frequencies

The first batch of resonators had a width of 190 nm and a thickness of

170 nm (excluding the gold layer) and the thin gold device had a width

and a thickness of 170 nm. The silicon nitride layer has a built in tensile

stress of about 1070 MPa, measured at room temperature [52]. When cooled

down to low temperatures, the difference in the thermal contraction between

the silicon nitride and silicon causes an additional compressive stress in the

silicon nitride layer, which at 1 K, is found to be about -50 MPa, estimated

using the equations

ǫSiN = (αTSiN
− αTSi

)∆T (5.1)

σSiN =

(

ESiN

1− ν

)

ǫSiN , (5.2)

where ǫSiN is the thermal strain of silicon nitride, αT is the coefficient of

thermal expansion, σSiN is the compressive stress in silicon nitride from the

cooling effect and ν is Poisson’s ratio [80]. Values of 2.8×10−6 and 2.0×10−6

for αTSi and αTSiN were used, along with ESiN = 211 GPa and ν ∼ 0.3 [80].

This leads to an effective tensile stress of 1020 MPa at low temperatures.

We measured the flexural vibrations of the beams in the plane of the

substrate, or in other words, the vibrations along the width of the beams.

The frequencies were estimated using several methods: using equation 2.26

(see Chapter 2), through graphical solutions (in Matlab) looking for the zero
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crossings of the function1

Y = Ω+ U sin(k2) sinh(k1)− Ωcos(k2) cosh(k1) (5.3)

an example of which is shown in Figure 5.1(a), and also from finite element

methods (COMSOL multiphysics modelling package) as shown in Figure

5.1(b). The tensile stress in the gold layer from the cooling effect is estimated

to be around 200 MPa, five times smaller than in silicon nitride. The cross-

section of the gold layer is, at most, half that of the silicon nitride, which

leads to the tension in the gold being roughly an order of magnitude lower

than in silicon nitride2. The Young’s modulus of gold (78 GPa) is also much

lower. Therefore, for the frequency calculations, we only account for the

effect of the gold electrode in the total mass of the resonator, m = mSiN +

mAu and neglect the effects on the overall tension or Young’s modulus. Table

5.1 shows the frequency estimates, obtained from the different methods, for

the resonators (and modes) investigated along with the measured resonant

frequencies. The estimates are in fairly good agreement with each other and

are within about 10% of the measured frequencies.

Table 5.1: Estimated and measured resonant frequencies (in MHz) of the nanomechanical
beams used for the studies described in this chapter. Parameters used: ESiN = 211 GPa,
ρSiN = 2700 kgm−3, ρAu = 19300 kgm−3, σSiN = 1020 MPa. The symbol n represents
the mode number.

Length n Eq. 2.25 Matlab COMSOL Measured
µm (MHz) (MHz) (MHz) (MHz)

Gold thickness ∼ 80 nm

4.4 1 56.28 56.50 58.44 55.88
6.4 1 32.40 32.34 33.22 31.36
25.5 1 6.52 6.18 6.23 5.45
25.5 3 18.71 19.22 19.43 16.84

Gold thickness ∼ 40 nm

25.5 1 8.28 7.82 7.87 7.50
25.5 3 23.54 24.16 24.38 22.85
25.5 5 41.35 42.48 43.02 39.28

1Equation 2.25 in Chapter 2
2Recall that T0 = σA where T0 is the tension, σ the stress and A is the cross-sectional

area (see Chapter 4)
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(a)

(b)

Figure 5.1: (a) Plot of the function Y = Ω+U sin(k2) sinh(k1)−Ωn cos(k2) cosh(k1), with
the zero crossings giving the mode frequencies for the 25.5 µm long beam with a thin gold
layer, (b) COMSOL simulation showing the shape of the 5th mode of the same sample.
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5.2 Si3N4 beams with a thick gold electrode

In this section we present the results from the low temperature studies on

the silicon nitride nanomechanical resonators with the thicker (80 nm) gold

electrode. A total of four resonances were measured, three of them corre-

sponding to the fundamental modes of the doubly-clamped beams plus the

third flexural mode of the longest beam. All measurements were made using

the CW technique (described in Chapter 3) at several temperatures between

40 mK and 1.5 K, using two different magnetic fields at each temperature:

2 and 4 T. A careful magnetic field dependence study was also undertaken

at T = 80 and 500 mK. Care was taken to ensure that the resonators were

not driven into the nonlinear regime.

5.2.1 Magnetic field dependence

Figures 5.2 and 5.3 show the field dependence of the dissipation and reso-

nant frequency for the samples measured. The signal from the 55.88 MHz

beam was very hard to detect and a field dependence study for this res-

onator was only performed at 500 mK. As expected, the dissipation varies

linearly with magnetic field squared. The slope of the linear fits (denoted

by the red lines) is α = ξL2

mω0

Rext
|Zext|2

. The fits yield the following values of α

(averaged from both temperatures): (1.39 ± 0.02) × 10−5 T−2 (5.45 MHz),

(5.93±0.45)×10−7 T−2 (16.84 MHz), (8.29±0.70)×10−7 T−2 (31.36 MHz)

and (2.82 ± 1.44) × 10−7 T−2 (55.88 MHz). At all other temperatures the

nanomechanical resonators were measured at two fields, and it was found

that α had no systematic dependence on temperature.

The resonant frequencies of the first and third flexural modes of the

25.5 µm long beam decrease with increasing magnetic field (shown in the

insets of Figure 5.2), which indicates that the impedances of the external

circuitry are not completely real, but have some reactance too. The slope

of the linear fits is β = ξL2f0
2πm

Xext
|Zext|2

and the intercept is f2
0 . Knowing β, we

can infer the intrinsic resonant frequency of the beam at any temperature.

However, by taking the ratio α
β , we estimated that the reactance (Xext) of

the measurement circuit is at most, only Rext
5 . No systematic frequency shift

with field was seen for the two shorter beams (Figure 5.3 insets) .
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Figure 5.2: Dissipation, Q−1
L , versus B2 for the (a) first mode (5.45 MHz) and (b) third

mode (16.84 MHz) resonance of the 25.5 µm long beam. The straight lines are linear fits
to the data from which α was extracted. The insets show the change in resonant frequency
of the beams with the magnetic field.
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Figure 5.3: Dissipation, Q−1
L , versus B2 for the (a) 31.36 MHz and (b) 55.88 MHz res-

onator. The straight lines are linear fits to the data from which α was extracted. The
insets show the change in resonant frequency of the beams with the magnetic field.
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5.2.2 Dissipation as a function of temperature

Figures 5.4(a) and (b) show the temperature dependence of the intrinsic

dissipation, Q−1
0 , for the devices measured. The data corresponding to the

different resonators follow a common pattern and two different regions of

interest can be identified. Above about 800 mK, the dissipation seems to

increase very slowly for the 5.45, 16.84 and 55.88 MHz samples, but a com-

plete saturation is not observed. On the other hand, the dissipation in

the 31.36 MHz resonator increases faster above 800 mK, for reasons which

are not clearly understood. Nevertheless, because the signals from the two

short beams were very small and hard to detect, higher drives were used

with increasing temperature and it is possible that the 31.36 MHz resonator

might have been driven on the verge of nonlinearity, causing the observed

behaviour.

From 800 mK down to base temperature (∼ 40 mK), the dissipation

in all devices falls linearly with temperature as denoted by the linear fits

(smooth lines) to data according to the equation Q−1
0 = bT +Q−1

0 (0). Here,

b is a constant related to the coupling strength between the TLS and elec-

trons/phonons in the system and Q−1
0 (0) indicates the presence of a tem-

perature independent dissipation mechanism. Table 5.2 summarizes the fit

parameters.

Table 5.2: Values obtained from the linear fits to the dissipation data, the parameter b
related to the coupling strength between TLS and electrons/phonons in the system and
the temperature independent dissipation Q−1

0 (0).

f0 (MHz) b (×10−5) Q−1
0 (0) (×10−6)

5.45 0.98 0.78
16.84 1.15 1.70
31.36 2.02 7.24
55.88 4.04 14.90

5.2.3 Resonant frequency as a function of temperature

The relative shift in the frequency of the resonators (measured at 2 T) as a

function of temperature is shown in Figure 5.5. For all the samples, there

is an increase in the resonant frequency with temperature. However, in
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the case of the longer beam, the frequency of both its first and third mode

increase up to about 400 mK whereas the frequencies of the two short beams

increase over the whole temperature range measured. The frequency increase

is a behaviour well described by the logarithmic expression ∆f
f0

= Cln T
T0
, a

prediction of the STM, already introduced in Chapter 2. The values of C

extracted from the fits to the data (denoted by the smooth lines in Figure

5.5) are given in Table 5.3.

Table 5.3: C values extracted from logarithmic fits to the frequency shift versus temper-
ature data.

f0 (MHz) C (×10−5)

5.45 0.46 ± 0.03
16.84 0.62 ± 0.03
31.36 1.42 ± 0.05
55.88 1.32 ± 0.08

At the higher temperatures, the frequency of the first mode of the longest

beam starts to decrease slowly whereas the third mode frequency seems to

saturate. The discrepancies in the frequency behaviour between the different

devices and the lack of data above 1.5 K makes it difficult to draw any

firm conclusions about the underlying behaviour at the higher temperatures.

Furthermore, no frequency saturation is observed in the data at the lowest

temperatures as was the case for the gold resonators (Chapter 4).

The signal for the 55.88 MHz resonator was very noisy and it was very

challenging to measure its resonance characteristics. Small frequency jumps,

of the order of a few Hertz, between the temperatures measured made it

difficult to extract the true C value for this resonator. This unpredictable

behaviour is illustrated by the scatter in the frequency shift data for this

particular resonator.

5.3 Si3N4 beams with a thin gold electrode

The second batch of samples had the same number of resonators (with the

same lengths) as the first batch, but with a thinner (40 nm) gold layer. For

some unknown reason, we were only able to detect a signal from the the

25.5 µm long beam and not the others. Nonetheless, we were successful in
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measuring the third and fifth mode of this resonator as well as the funda-

mental. Measurements were carried out in transmission mode, measuring a

dip in the conductance of the beam.

5.3.1 Magnetic field dependence

In contrast to the thick gold resonators, the thin gold beam was only mea-

sured once at any given temperature, at a fixed field, instead of being mea-

sured at two different fields. A careful magnetic field dependence study was

carried out at three temperatures: 45, 100 and 500 mK (only at 500 mK for

mode 5). The average value of α extracted from the fits to the Q−1
L vs B2

data was then used to extrapolate to Q−1
0 at any arbitrary temperature. We

assumed that the change in α with temperature is minimal, if not negligible,

based on the behaviour measured at 45, 100 and 800 mK.

Figures 5.6(a), (b) and (c) show the plots of the loaded dissipation

as a function of B2 for modes 1, 2 and 3, respectively. As expected,

the dissipation in all three modes varies linearly with B2, with α being:

(1.226 ± 0.021) × 10−5 T−2 (7.5 MHz), (5.312 ± 0.241) × 10−7 T−2 (22.85

MHz) and (1.309± 0.101)× 10−7 T−2 (39.28 MHz). The effect of the mag-

netic field on the resonator decreases for higher modes. Similar to the thicker

gold devices, a systematic decrease in the resonant frequency is seen with

increasing magnetic field, once again confirming that the coaxial cables have

a reactive component. However, this reactive component is estimated to be

small compared to the resistive part and the shifts in resonant frequency

with magnetic field are only of the order of a few Hertz.

5.3.2 Dissipation as a function of temperature

Figure 5.7 shows the intrinsic dissipation plotted against temperature for the

three flexural modes measured. The dissipation in all modes exhibits a linear

behaviour in the temperature range measured, no saturation is observed at

high or low temperatures. The smooth lines are linear fits to the data from

which we extract b and Q−1
0 , shown in Table 5.4.

The large error bars in Figure 5.7 are due to the fact that the Q-factor

of the resonator is extremely high (exceeding Q0 ∼ 106 for mode 1). The

magnetic fields at which the resonator was measured were above 1 T, leading

to large errors in the extrapolation to Q−1
0 . There was a difference of about
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2 orders of magnitude between the measured Q-factor and the intrinsic Q-

factor (QL ∼ 104 and Q0 > 106 for the fundamental mode). For example,

at 40 mK, the lower bound for the Q-factor of the fundamental mode is

about 4 × 106, however it could be as high as ∼ 30 × 106. This problem

could have been solved by measuring at lower magnetic fields, below 1 T.

Note that the extrapolation error is only significant when the Q-factor of a

resonator is very large, for smaller Q-factors, measuring at a field above 1

T is reasonable.

Table 5.4: Values obtained from the linear fits to the dissipation data shown in Figure
5.7.

f0 (MHz) b (×10−6) Q−1
0 (0) (×10−7)

7.50 3.95 ± 0.04 1.29 ± 0.25
22.85 4.76 ± 0.05 4.61 ± 0.32
39.28 6.87 ± 0.16 11.56 ± 0.86
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5.3.3 Resonant frequency as a function of temperature

The temperature dependence of the frequency of the three flexural modes

is shown in Figure 5.8. The resonant behaviour of the different modes were

measured at 1, 2 and 3 T respectively. The signal measured scales inversely

with mode number, hence higher magnetic fields were employed for the

higher modes. As in the case for the thicker gold devices, an increase in the

resonant frequency with temperature is observed, however there is one very

important difference: the frequency increases all the way up to 1 K for all

three modes in this case. Above 1 K, saturation is observed. The smooth

lines are fits to the data from which we extracted the values of C, shown in

Table 5.5. Saturation is observed at the lowest temperatures although the

lack of data below 40 mK makes it difficult to establish its origin.

Table 5.5: C values extracted from logarithmic fits to the frequency shift versus temper-
ature data for the three flexural modes measured.

f0 (MHz) C (×10−5)

7.50 0.39 ± 0.01
22.85 0.55 ± 0.02
39.28 0.95 ± 0.07

5.4 Discussion

This section is split into three parts: the first provides a qualitative descrip-

tion of the data using the STM as a framework. In the second part we focus

on the contributions of the metallic layer on the overall dissipation and the

third part discusses some other recent experiments on high stress silicon

nitride resonators at low temperatures.

5.4.1 Qualitative description of data

The strong variation seen in dissipation and the logarithmic increase in res-

onant frequency observed at very low temperatures suggest that tunnelling

TLS, are the dominant source of dissipation. The experiments were carried

out in the regime where ~ω ≪ kbT , and the dominant contribution to the

dissipation comes from the relaxation of the TLS rather than resonant in-
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teraction. A plateau is not quite observed for any of the devices, but the

dissipation in the thick gold electrode devices starts to saturate at the higher

temperatures. However, the lack of data above 1.5 K makes it difficult to

draw any firm conclusions.

Quantitatively, the linear temperature dependence of dissipation cannot

be explained by the basic version of the STM [33, 36]. Although, at first

instance, the linear behaviour can be attributed to TLS-electron interaction

in the gold layer, measurements on bare gold nanomechanical resonators of

similar frequencies (see Chapter 4) revealed a T 0.5 dependence, in disagree-

ment with the results presented here. Furthermore, a temperature indepen-

dent dissipation mechanism, indicated by Q−1
0 (0), is also likely to play a

key role. The value of Q−1
0 (0) scales inversely with the length of the res-

onator (see Figure 5.9), therefore this dissipation mechanism is most likely

to be clamping loss [26], however, the lack of a suitable theory on clamping

losses in high-stress nanomechanical resonators makes it difficult to do any

further analysis. Q−1
0 (0) also becomes larger with mode number, which can

be qualitatively explained in terms of the bending of the particular flexural

mode. The bending points in the beam increase with mode number, hence
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Figure 5.9: Q−1
0 (0) (denoted by the filled circles) versus length for the thicker gold res-

onators, showing the difference between the clamping loss theory ( 1
L5 ) described in refer-

ence [26] and the experimental behaviour ( 1
L1.66 ).

a higher flexural mode is expected to lose more energy than a lower mode

[81].

The STM also predicts a shift in frequency of the oscillator that increases

logarithmically with temperature T < T ∗ due to the resonant interaction

between the TLS and the acoustic excitation, with a gradient given by C

[33, 36]. For T > T ∗, a logarithmic decrease in frequency is expected, with a

gradient that depends on the dominant relaxation mechanism. We observe

a logarithmic increase in frequency at the lowest temperatures for all the

devices, with C ∼ 10−5 − 10−6, an order of magnitude below the range typ-

ical for amorphous solids [39], though similarly low values are seen in some

disordered metals [37] as well as in stressed silicon nitride micromechanical

resonators [71] and in polycrystalline gold resonators (Chapter 4). Further-

more, the frequency dependence of C is not well understood, and it cannot

be explained in the framework of the STM.
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5.4.2 Effect of metallic layer

The presence of a gold electrode on the silicon nitride resonators makes the

interpretation of the results very challenging, specially as we have no data for

a bare silicon nitride resonator (without any metal on top). Nevertheless,

we measured two nanomechanical beams of very similar dimensions (25.5

µm long) but with two different gold thicknesses, which can be compared to

understand the effect of the gold layer, at least to a qualitative level.

The first aspect to notice is that the gold electrode severely diminishes

the resonant frequency and Q-factor of the resonators due to its heaviness;

the thicker the gold, the lower the Q-factor and f0. At base temperature (40

mK), the Q-factor of the 5.45 MHz beam is about 1 × 106 whereas for the

7.5 MHz beam it is about 4× 106 (note that these are only lower bounds).

However, the most important feature to notice is that the temperature de-

pendence of both the dissipation and frequency differ for the two thicknesses

of gold. For the 5.45 MHz resonator, the dissipation only increases linearly

up to 800 mK, with the frequency saturating at 400 mK whereas for the

7.5 MHz resonator, the dissipation increases linearly over the whole temper-

ature range measured and the peak in resonant frequency too shifts up to

800 mK. This is a remarkable result as it clearly indicates the TLS in the

gold layer are contributing to the overall dissipation of the nanomechanical

resonator. As mentioned previously, experiments on bare silicon nitride res-

onators would help to separate the contributions to the energy dissipation

from the silicon nitride and gold layers, and then to determine the origin of

TLS in these resonators.

5.4.3 Recent studies on Si3N4 resonators

The work described in this Chapter is the first systematic study of low tem-

perature dissipation in high-stress silicon nitride doubly-clamped nanome-

chanical beams. Only a couple of other research groups have studied the

energy loss in this material in the recent years.

In a recent publication [71], Southworth et al, reported low temper-

ature dissipation measurements on LPCVD, high-stress Si3N4 membrane

resonators with f0 = 1.5 MHz. It is worth noting that our silicon nitride

layers were grown in the same growth chamber as theirs [52], therefore a

similar tensile stress for both is expected (∼ 1000-1200 MPa). Southworth
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et al, studied the energy dissipation in their high-stress membranes from

room temperature down to 1 K, with the dissipation being in the range

10−7 ≤ Q−1 ≤ 10−6 as shown in Figure 5.10 [71], three orders of magnitude

below the glassy range, but close to the values we obtain in our nanome-

chanical resonators. They also measured the energy loss in stress relieved

LPCVD Si3N4 cantilevers with f0 = 3.5 MHz, with a dissipation closer to

the usual glass plateau (10−4−10−3). This indicates that the tension in the

structure can significantly enhance the Q-factor. Furthermore, the authors

carried out X-ray diffraction measurements and TEM imaging to confirm

that Si3N4 is indeed glassy, as is SiO2, in contrast to the Si lattice.

Dissipation in Si3N4 nanomechanical resonators has also been briefly

mentioned in references [9, 82]. J. B. Hertzberg measured the dissipation

in a Al-Si3N4 sample: the nanomechanical resonator was 30 µm long, 170

nm wide and 140 nm thick, formed of 60 nm of stoichiometric, high-stress,

LPCVD Si3N4 and 80 nm of aluminium, with a frequency f0 = 6.3 MHz. A

linear temperature dependence of dissipation in the resonator was observed

from base temperature up to 600 mK with Q ∼ 106 at 100 mK [82], similar

to that for our 25.5 µm long resonator with a thin gold electrode.

5.5 Summary and Conclusions

The dissipation and resonant frequency in gold-coated high-stress silicon

nitride nanomechanical resonators was measured at temperatures below 1.5

K. The data can be qualitatively explained in the framework of the STM,

however quantitative agreement with theory is not obtained. Throughout

most of the temperature range measured, the dissipation decreased linearly

with temperature, with a non-zero value at T = 0 suggesting the presence

of a temperature independent mechanism in our resonators, the most likely

candidate being a tension dependent clamping loss. The resonant frequency

increased logarithmically with temperature at the lowest temperatures, with

saturation observed at the higher temperatures observed for the flexural

modes of the 25.5 µm long beams. The values of C obtained from the fits

to the frequency data are roughly two orders of magnitude smaller than

those for bulk amorphous solids (glassy range). Nevertheless, the strong

variation of the damping and the logarithmic dependence of the resonant

frequency on temperature suggest that tunnelling TLS are indeed a source
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Figure 5.10: Temperature dependence of internal friction measured in high stress LPCVD
Si3N4 membranes. Results from measurements in a-SiO2, Si, e-beam deposited a-Si, stress
relieved Si3N4 cantilevers are shown for comparison [71].
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of dissipation in nanomechanical resonators, although their origins are not

very well known.

Our results also confirm that a metallic layer on top of a dielectric res-

onator can have significant effects in the overall dissipation in the system,

not just in the magnitude but also in the temperature dependent behaviour,

as illustrated by the different results obtained from similar size beams with

different thicknesses of gold. Discrepancies between our results and theories

based on bulk amorphous solids are to be expected, not just because TLS

relaxation rates should be rather different in nanomechanical resonators [70],

but also because of the very small volume of the samples [75] together with

the effects of tension [71] may lead to a distribution of TLS quite different

to that usually assumed for bulk solids.

Further experiments on high-stress silicon nitride resonators are required

to be able to draw more firm conclusions about the dissipation mechanisms in

such structures. Measurements on beams with different metallic layers (for

example alumnium) and thickness and on bare silicon nitride nanomechan-

ical resonators would help to quantify the contributions from the dielectric

and metallic layers to the overall dissipation in the system.



Chapter 6

Nonlinear dynamics of a

silicon nitride

nanomechanical beam at low

temperatures

The theory and results described in Chapters 2-5 have been limited to the

linear regime of operation. However, in real oscillating structures various

types of nonlinearities exist. Sources of nonlinearities in small vibrating

elastic beams include material, inertial, geometric and damping effects. In

the case of a doubly-clamped beam, a common source of nonlinearity is

the lengthening of the structure as it is displaced which causes a nonlinear

restoration force to be introduced in the equation of motion of the system

[83].

The nonlinear dynamics of nanomechanical resonators have been investi-

gated in a range of recent studies [13, 84, 85]. Recently, experiments on the

nonlinear modal interactions in a single doubly-clamped macroscopic silicon

beam were carried out at room temperature. These experiments focused

on the nonlinear coupling between the first and third mode of the beam

[14]. Anharmonic modal coupling has also been studied in bulk microme-

chanical resonators, with both flexural and longitudinal modes coupling to

each other [15]. In this chapter we present a low temperature study on the

nonlinear dynamics of several vibrational modes of a single doubly-clamped

pre-stressed silicon nitride nanomechanical beam. We demonstrate that the

101
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different modes of the same resonator are coupled by the displacement in-

duced tension in the beam.

A theoretical model describing the nonlinear coupling between the dif-

ferent modes is derived using the Euler-Bernoulli equation, extended with a

displacement induced tension, as a starting point. A fairly good quantitative

agreement is observed between the theoretical model and the experimental

results in the low amplitude (weakly nonlinear) regime.

6.1 Theoretical model

We derive the general relations describing the nonlinear behaviour of a single

mode of the beam and outline the main equations describing mode coupling,

a full derivation for the latter is given in Appendix B. To simplify the

derivation, dimensionless quantities have been used. We start by considering

a doubly-clamped beam, similar to the one illustrated in Figure 2.2 (Chapter

2), but with the direction of flexure in the y-direction, along the width of

the beam. The beam is under an intrinsic tension, T0, and we assume that

the motion of the beam entails a stretching which leads to an additional

nonlinear tension term [11].

6.1.1 Geometry of mode functions

In this section we derive an expression for the mode function of a doubly-

clamped beam under the influence of tension, which will be used later for

the nonlinear analysis. The equation of motion of such a system is just the

Euler-Bernoulli equation including the displacement induced tension [11]:

ρA
∂2y

∂t2
+ η

∂y

∂t
+ EI

∂4y

∂x4
−
[

T0 +
EA

2L

∫ L

0

(

∂y

∂x

)2

dx

]

∂2y

∂x2
= FL, (6.1)

where FL is the external drive force per unit length. The displacement y(x, t)

can be divided into a spatial and a time dependent part using separation of

variables:

y(x, t) = u(t)g(x). (6.2)

The beam profile g(x) has the form

g(x) = c1 sinh

(

k1x

L

)

+ c2 cosh

(

k1x

L

)

+ c3 sin

(

k2x

L

)

+ c4 cos

(

k2x

L

)

,
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or in terms of the dimensionless parameter X = x
L ,

g̃(X) = c1 sinh(k1X) + c2 cosh(k1X) + c3 sin(k2X) + c4 cos(k2X), (6.3)

where the roots

k1 =

√

U +
√

U2 +Ω2

k2 =

√

−U +
√

U2 +Ω2

depend on the tension in the beam. The dimensionless tension parameter

U = T0L2

2EI and dimensionless frequency parameter Ω = ω0L
2
√

ρA
EI have al-

ready been defined in Chapter 2 but are included here for completeness.

The boundary conditions (relations 2.14, Chapter 2) imply that c2 = −c4

and c1 = −k2
k1
c3 which leads to the simultaneous equations:

c1[k2 sinh(k1)− k1 sin(k2)] + c2k2[cosh(k1)− cos(k2)] = 0 (6.4)

c1k1[cosh(k1)− cos(k2)] + c2[k1 sinh(k1)− k2 sin(k2)] = 0. (6.5)

Assuming c1 = 1, c2 can be expressed as

c2 =
k1 sin(k2)− k2 sinh(k1)

k2[cosh(k1)− cos(k2)]
= Γ.

The normalized mode function can then be written as

g̃(X) = c0[sinh(k1X) + Γ cosh(k1X)− k1
k2

sin(k2X)− Γ cos(k2X)], (6.6)

where c0 is a normalization constant which is determined by the requirement
∫ 1
0 g̃2(X)dX = 1.

6.1.2 Single modes

We now derive the equations which describe the nonlinear behaviour of the

n-th flexural mode. We start with the equation of motion without any drive

(FL = 0) and substitute in for the displacement y = Wũng̃n, where W is the

width of the beam and ũn, g̃n are both dimensionless. Equation 6.1 becomes

ρA¨̃ung̃n+η ˙̃ung̃n+[EIg̃′′′′n −T0g̃
′′
n]ũn−

EAW 2

2L

[
∫ L

0
(g̃′n)

2dx

]

g̃′′nũ
3
n = 0, (6.7)
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and for an eigenmode we have the relation

[EIg̃′′′′n − T0g̃
′′
n] = ω2

0nρAg̃n. (6.8)

The spatial derivative is denoted by the prime symbol (u′) and the time

derivative is denoted by the dot (u̇). Substituting equation 6.8 into 6.7,

multiplying through by g̃n and integrating over X gives the following ex-

pression:

¨̃un + ω2
0nũn + γ ˙̃un + λI2nnũ

3
n = 0, (6.9)

with the following parameters defined as: γ = η
ρA , λ = EW 2

2ρL4 and the integral

Inn =

∫ 1

0
(g̃′n)

2dX, (6.10)

which determines the coupling strength between the modes and, at least to

a good approximation, only depends on tension. In deriving equation 6.7,

we have used the fact that
∫ 1
0 g̃2ndX = 1.

Adopting dimensionless units for time, t∗ = ω0nt, means that
(

∂2ũn
∂t2

)

=

ω2
0n

(

∂2ũn
∂t∗2

)

, and so using this transformation leads to

¨̃un +
˙̃un
Qn

+ ũn + λ
I2nn
ω2
0n

ũ3n = 0, (6.11)

where Qn = ω0n
γ .

Now we consider the driven case, FL = F0 cos(ω̃nt
∗), where ω̃n = ωn

ω0n

and ωn is the frequency of the external drive. The driven motion is described

by

¨̃un +
˙̃un
Qn

+ ũn + λ
I2nn
ω2
0n

ũ3n =
ξnF0 cos(ω̃nt

∗)

WρAω2
0n

= f cos(ω̃nt
∗), (6.12)

where ξn =
∫ 1
0 g̃ndX is known as the mode parameter which indicates the

average displacement of the mode per unit deflection and f is the dimen-

sionless force. To solve equation 6.12, the general solution

ũn = an cos(ω̃nt
∗) + bn sin(ω̃nt

∗) (6.13)
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is used where an and bn are the dimensionless amplitudes of the two quadra-

ture responses of the resonator, with the total dimensionless response am-

plitude being r2n = a2n + b2n. Substituting equation 6.13 into 6.12, and using

standard trigonometric identities leads to the following equation:

(1− ω̃2
n)(an cos(ω̃nt

∗) + bn sin(ω̃nt
∗))

+
ω̃n

Qn
(−an sin(ω̃nt

∗) + bn cos(ω̃nt
∗))

+λ
3Inn
4ω2

0n

[b3n sin(ω̃nt
∗) + a3n cos(ω̃nt

∗)

+a2nbn sin(ω̃t
∗) + b2nan cos(ω̃nt

∗)] = f cos(ω̃nt
∗), (6.14)

where we have dropped the terms that oscillate at higher multiples of ω̃n as

they are expected to have little effect.

The amplitudes an and bn are obtained by equating the coefficients of

cos(ωt) and sin(ωt), determined through Fourier analysis (multiplying both

sides of equation 6.14 by cos(ωt) (sin(ωt)) and integrating over the period)

[86], which translates to

a2n =
f2

H2

(

1 +
(

ω̃n
HQn

)2
) (6.15)

b2n =
ω̃2
n

H2Q2
n

a2n, (6.16)

where

H = (1− ω̃2
n) +

3

4

I2nn
ω2
0n

λr2n. (6.17)

The response amplitude rn is given by

r2n =
f2

[

(1− ω̃2
n) +

3
4
I2nn

ω2
0n
λr2n

]2
+
(

ω̃n
Qn

)2 , (6.18)

which is the usual behaviour of a Duffing oscillator [86]. At small amplitudes,

on resonance, the relationship between the amplitude and f is linear as long

as the Q-factor does not change much. For a high Q-factor and a relatively

small rn, the effect of the nonlinearity is to produce a frequency shift. From
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equation 6.18 we can extract the relation:

ω2
1n = ω2

0n

(

1 +
3

4

I2nn
ω2
0n

λr2n

)

. (6.19)

By taking the square root of 6.19 and carrying out a binomial expansion of

the right hand side, the frequency is, to a first approximation, given by

f1n = f0n +
3

32π2

I2nn
f0n

λr2n, (6.20)

where only the first two terms in the expansion have been kept as the rest

are deemed to be negligible. Notice how the frequency of the resonator shifts

as the amplitude increases, an effect known as ‘frequency pulling’, one of the

signatures of nonlinear behaviour.

6.1.3 Coupled modes

We now consider the situation where two modes (m and n) are driven simul-

taneously close to the bare mode frequencies ω0m and ω0n. The case where

one mode is driven weakly (linear) whilst the second mode is slowly driven

into the strongly nonlinear regime, is of particular interest, as it allows us

to quantify the mode coupling. In a similar expression to the single mode

analytical model (equation 6.20), the frequency of a weakly driven mode n

as a function of amplitude of the strongly driven mode m is

f2n = f1n + r2m
λ

8π2f1n

(

InnImm

2
+ I2nm

)

. (6.21)

The above analysis provides a way of calculating the amplitude at the drive

frequencies of both, n and m modes, with higher harmonics being neglected.

It also assumes that the resonances are resolvable: |ω0m − ω0n| ≫ ω0m
Qm

+
ω0n
Qn

for m 6= n. Within this approximation, the amplitudes are given by the

relations:

r2n =
f2
n

[

1− ω̃2
n + 3

4
I2nn

ω2
0n
λr2n + r2m

λ
ω2
0n

(

InnImm
2 + I2nm

)

]2
+
(

ω̃n
Qn

)2 (6.22)

r2m =
f2
m

[

1− ω̃2
m + 3

4
I2mm

ω2
0m

λr2m + r2n
λ

ω2
0m

(

InnImm
2 + I2nm

)

]2
+
(

ω̃m
Qm

)2 . (6.23)
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These equations give rn and rm as functions of the two drive frequencies ωn

and ωm; the full derivation is shown in Appendix B.

6.2 Relationship between beam displacement and

measured signal

In sections 6.1.2 and 6.1.3, we derived equations for the dimensionless am-

plitude r, which can be related to a physical amplitude (R) via the mode

function g(x) and the width of the beam: R = Wrg(x). The signal measured

is a voltage VS , proportional to the VEMF generated by the motion of the

beam. Here, we establish the relationship between the dimensionless ampli-

tude and the measured voltage, which will be used later when analyzing the

experimental results.

The measured signal is related to the EMF generated by the device

through the equation

VS = GVemf = GWξnLBω
∂ũ

∂t∗
, (6.24)

where G is just a constant of proportionality that quantifies the signal gain

from the sample to the the network analyzer (output transmission line).

The behaviour of ũ is assumed to be purely harmonic at the drive frequency

(see equation 6.13), and the measured signal is assumed to have the form

VS = V1 cos(ω̃t
∗) + V2 sin(ω̃t

∗). Expanding equation 6.24 leads to

V1 cos(ω̃t
∗) + V2 sin(ω̃t

∗) = GWξnLBω[b cos(ω̃t∗) + a sin(ω̃t∗)], (6.25)

and a relationship between r and VS is obtained by equating the coefficients

for cos(ω̃t∗) and sin(ω̃t∗):

r2 =
1

G2

(

1

WξnLBω

)2

V 2
S = DS2, (6.26)

where D = 1
G2 and S is the dimensionless measured signal.

It has to be noted that the gain in the transmission line will actually

vary slightly with frequency and will therefore be slightly different for each

mode. Once D is known, it is possible to convert the signal measured VS

into a physical displacement using equation 6.24, and hence determine the
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amount by which the nanomechanical resonator is moving when driven.

6.3 Experimental techniques and results

Measurements were conducted on the first, third and fifth flexural mode of

a beam with dimensions: L ∼ 25.5 µm, W ∼ 170 nm, h ∼ 170 nm and

a 40 nm thick layer of gold on top. Results for the nonlinear response of

each individual mode and the nonlinear modal coupling are presented with

comparisons to the theory.

6.3.1 Measurement set-up

The nonlinear studies were carried out after the dissipation experiments

described in Chapter 5. Measurements were performed at a field of 3 T,

at 115 mK, using the magnetomotive technique to measure the mechanical

motion of the beam. A schematic diagram of the experimental arrangement

is shown in Figure 6.1, which is very similar to that used for the dissipation

studies (see Chapter 3)1. The different modes of the beam were driven with

two separate signal generators, one mode with the Agilent 8712ET network

analyzer and the other with the Agilent E4420B signal generator. The two

signals were fed into a Mini-Circuits ZSC-2-1 power combiner and the sum

of the signals was sent to the device. A voltage signal, proportional to the

EMF generated by the beam, was detected at the input of the network

analyzer after passing through two rf pre-amplifiers [60, 62].

6.3.2 Device Parameters

To compare the theory and experimental data, the parameters ξn and Inn

need to be determined as they are required for the analysis. The parameters

ξn and Inn were calculated using Matlab, with σ ≈ 1020 MPa assumed for

the beam at low temperatures. The values for the three modes measured are

shown in Table 6.1 along with generic theoretical values for nanomechanical

devices in the limit of zero and high tension [87]. Our values of Inn and ξn

lie close to the high tension limit as expected due to the large tensile stress

experienced by the beam. Furthermore, neither quantity Inn or ξn vary much

between the two limits. The coupling strengths between the different modes

1Figure 6.1 is just a simpler version of Figure 3.12
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Figure 6.1: Schematic diagram of the measurement set-up used for the nonlinear studies.
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Table 6.1: Eigenfrequencies and other device parameters for the three measured eigen-
modes of the silicon nitride beam. Theoretical values for the integrals Inn and mode
parameters ξn for nanomechanical devices calculated in reference [87] in the limit of zero
and high tension are also shown here for comparison with our data.

Mode σ = 1020 MPa Bending limit Tension limit

n f0n (MHz) ξn Inn ξn Inn ξn Inn

1 7.50 0.88 10.4 0.83 12.3 0.90 9.9
3 22.85 0.30 93.3 0.36 98.9 0.30 88.8
5 39.28 0.19 257.9 0.23 264.0 0.18 246.7

are also determined: I13 = I31 = −1.88, I15 = −2.98 and I35 = −8.81.

These will be used when analyzing the nonlinear modal coupling data.

6.3.3 Nonlinear behaviour of a single mode

Measurements on each individual mode were performed first, observing the

response of the resonator as the driving frequency was swept through the

mechanical resonance frequency. This was done for a range of driving ampli-

tudes by systematically decreasing the attenuation in the input transmission

line to the sample: 100 → 50 dB for mode 1 and 100 → 60 dB for modes 3

and 5 (in steps of 5 dB).

Figure 6.2 shows the amplitude response of each mode (with the offsets

zeroed) for attenuations of 100 → 60 dB. Several features can be pointed

out. Firstly the shape of the curves, which look Lorentzian for the smallest

drives, become increasingly asymmetric as the beam is driven harder. At the

largest drives, the device enters a regime of bistability depicted by the sharp

drop seen in the measured signal, illustrated clearly by the curves at 65 and

60 dB, meaning that the resonator behaviour is completely nonlinear for

these drives. The phenomenon of ‘frequency pulling’ is also clearly visible,

with the peak frequency of the resonator shifting up as the drive is increased.

Furthermore, notice how the third mode becomes nonlinear before the first,

whereas the fifth mode response seems to be slightly nonlinear even at the

lowest amplitudes. This behaviour is expected as the Inn values increase

with n (I55 > I33 > I11).

All the parameters related to the device and which are relevant for the

analysis have been determined, however, the quantity D(= 1
G2 ) is still an

unknown. From the resonance curves in Figure 6.2 we extract the peak
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Figure 6.2: Resonant response of (a) & (b) mode 1 (7.5 MHz), (c) & (d) mode 3 (22.85
MHz), and (e) mode 5 (39.28 MHz) for a range of attenuations. Features to notice are
the increase in response amplitude with increasing drive, the ‘frequency pulling’ and the
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amplitudes and frequencies (f1n) which are then used, along with equations

6.20 and 6.26 to determine D. The relationship between f2
1n and βn =

3
16π2 I

2
nnλS

2
n should be linear with a gradient D and an intercept f2

0n. Figures

6.3(a), (c) and (e) show plots of f2
1n as a function of βn and the corresponding

linear fits over the whole data range, from which we extract f0n and Dn. As

can be seen, the fits to the full data range for modes 1 and 3 are not very

good and therefore we decide to fit to a narrower range (weakly nonlinear

regime) where the data and the model have a much better agreement, as

shown in Figures 6.3(b) and (d). The fit parameters are displayed in Table

6.2 along with their respective errors.

In the transmission line from the sample to the network analyzer, there

are two room temperature rf pre-amplifiers which provide a total gain of

about +62 dB (+31 dB each). The total loss in the cables and other rf

components inside the fridge was measured to be about -2 to -3 dB at room

temperature, in the frequency range relevant here. However, the measure-

ments were made at 115 mK, and the attenuation inside the cryostat changes

with temperature; unfortunately we have no low temperature measurements

for the losses in the cables so it is reasonable to assume that the amplifica-

tion in the transmission line is known to an accuracy of ± 3 dB. Within this

error, it is acceptable to say that the values of G obtained from the fits are

consistent with each other. For the rest of the analysis, we use the values of

D1 and and D3 obtained from fitting to the lower drive range of data.

Table 6.2: Parameters extracted from the linear fits to the data shown in Figure 6.3 where
Dn is the gradient and f0n the intercept along with their respective errors obtained from
the fits. The gain G = 1/D2.

Figure n f0n (MHz) Dn Gn Gn (dB)

6.3(a) 1 7.498280 (1.11 ± 0.04)×10−6 948 ± 16 59.5 ± 0.4
6.3(b) 1 7.499099 (7.15 ± 0.06)×10−7 1183 ± 5 61.5 ± 0.1
6.3(c) 3 22.846794 (1.14 ± 0.06)×10−6 935 ± 23 59.4 ± 0.5
6.3(d) 3 22.846666 (1.79 ± 0.01)×10−6 748 ± 2 57.5 ± 0.1
6.3(e) 5 39.276863 (8.80 ± 0.09)×10−7 1066 ± 6 60.5 ± 0.1

The physical displacement of each mode (at a given drive) was obtained

through expression 6.24 and the current passing through the device was de-

termined by fitting the response curves (Figure 6.2) to equation 6.18 with the

drive current I0 and the Q-factor as the only fit parameters. On resonance,

for small response amplitudes, the theory predicts a linear relationship be-
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Figure 6.3: Plots of f2
1n versus βn for the full range of data for (a) mode 1, (c) mode 3, (e)

mode 5 and in the small amplitude region for (b) mode 1 and (d) mode 3. The smooth
red lines are fits to the data from which f0n and Dn are extracted.
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tionship in the low amplitude regime. The dashed blue lines represent linear behaviour
and the slight deviations of the experimental data, for modes 3 and 5, from this behaviour
are due changes in their Q-factor.
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tween the force (F0 = BI0L) and the amplitude and our data confirms

this as illustrated in Figure 6.4. At larger amplitudes, the Q-factor of the

resonator starts to change and the linear relationship no longer holds. In

Figures 6.4(b) and (c), the slight discrepancies between the measurements

and linear behaviour (denoted by the dashed blue line) seen for modes 3 and

5 are due to minor changes in the Q-factor with drive.

The fits to the experimental data suggest a fairly good quantitative

agreement between the nonlinear response of an individual mode and the

theoretical model, as the fitted values of D are within the range expected.

6.3.4 Nonlinear modal coupling

The nonlinear interactions between the different modes of the beam were also

probed. Measurements were performed where we looked at frequency shifts

in a weakly driven mode whilst the amplitude of another mode was gradually

increased. We looked at the effects of the amplitude of the first mode (driven

at 7.499 MHz) on f3 and f5 and the amplitude of the third mode (driven

at 22.84665 MHz) on f1 and f5. In Figure 6.5 the frequency response of

the third mode is shown for three different response amplitudes of the first

mode. The third mode is driven weakly and its drive amplitude is kept

constant. Note that its resonant frequency increases when the amplitude

of the first mode becomes larger, but no significant change is seen in the

amplitude or the shape of the f3 response curve.

The resonant frequencies of the third mode and fifth modes (f3 and

f5) as a function of the amplitude of the first mode are shown in Figures

6.6(a) and (b). Similarly, Figures 6.7(a) and (b) show the effect of the

amplitude of the third mode on the resonant frequency of the first and fifth

modes. Jumps in the resonant frequencies f21 and f25 were observed when

carrying out the latter measurements. The resonant frequencies f2n for

Sm = 0 were measured at a different time to the rest of the data, and in

between measurements, frequency jumps of ∆f21 ∼ 150 Hz and ∆f25 ∼ 45

Hz occurred which have been accounted for in the plots. The blue dashed

lines represent the theoretical model using the Dn value obtained from the

single mode analysis (see Table 6.2). The red lines are quadratic fits to the

data (using equations 6.21 and 6.26) withDn as the only free parameter. The

fitted values are displayed in Table 6.3. Within the error margins assumed

for the gains, good agreement is found between the observed frequency shift
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and the quadratic behaviour predicted by the theoretical model.

Table 6.3: Parameters extracted from the quadratic fits to the data shown in Figures 6.6
and 6.7 where Dn is the only free quantity.

Figure n Dn Gn (dB)

6.6(a) 1 (1.01 ± 0.01)×10−6 60.0 ± 0.1
6.6(b) 1 (8.26 ± 0.30)×10−7 60.8 ± 0.4
6.7(a) 3 (1.96 ± 0.10)×10−6 57.1 ± 0.2
6.7(b) 3 (1.53 ± 0.10)×10−6 58.2 ± 0.1

The nonlinear modal coupling between the first and third mode was

further investigated by driving the first (third) mode at a fixed amplitude,

with an attenuation of 63 dB (73 dB), varying its drive frequency f1 (f3)

and sweeping through the third (first) mode (which is driven weakly) at

each frequency step. This is illustrated in Figures 6.8(a) and (b), showing

both forward and backward sweeps. From the plots we can confirm that

the modes interact with each other as the nonlinear line shape of one mode

is reflected in the response of the other mode. In both cases, the strongly

driven modes are completely in the nonlinear regime as can be noticed from
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Figure 6.6: Resonant frequency of (a) mode 3 and (b) mode 5, as a function of S1. Within
the error margins assumed for G1, a quadratic dependence over the whole data range is
observed, in good agreement with theory. The blue dashed lines represent the model using
the Dn value obtained from the single mode analysis (see Table 6.2).
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Figure 6.7: Resonant frequency of (a) mode 1 and (b) mode 5, as a function of S3. Within
the error margins assumed for G3, a quadratic dependence over the whole data range is
observed, in good agreement with theory. The blue dashed lines represent the model using
the Dn value obtained from the single mode analysis (see Table 6.2).
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the hysteretic behaviour and bistability.

The quadratic curve (red line) in Figure 6.6(a) was used to map the

resonant frequencies f23 into amplitudes S1. As the input attenuation for

this measurement was 63 db, this curve should lie in between the first mode

resonance sweeps (see Figure 6.2(b)) measured at attenuations of 60 and 65

dB. This is the case as shown in Figure 6.9 (forward sweep curves). The

curve at 63 dB is slightly deceiving because of the lack of points, indicated

by the sharp drop seen at the peak frequency, which is not quite as vertical

as for the other two curves.

6.4 Heating effects

The temperature of a nanomechanical resonator can change depending on

the amount of current that passes through it. For the experiments described

in this chapter, the larger drives can cause substancial heating of the device

and lead to a change in resonant frequency of the beam. It is important

to therefore determine whether the frequency shifts we observe are due to

heating effects or purely from the stretching of the sample. Figure 5.8 in

Chapter 5 clearly shows that the frequencies of the flexural modes measured

do not vary much with temperature as the frequency shifts observed are

of the order of tens of Hertz and saturation is observed above about 1 K.

Nonetheless, we carry out a very simple calculation to estimate how much

the fundamental mode of the device (7.5 MHz) heats up with increasing

driving power.

The heat transfer is dominated by the conduction along the beam. The

temperature of the beam can raise through electrical heating as well as

through stretching. We first estimate the electrical heating contribution.

Assuming the temperature at the clamping points is fixed at Tp, and that

maximum heating occurs at the centre of the beam, the heat conduction

from the centre of the beam to a clamping point is given by [88]

P = 2kA
∆T

L
, (6.27)

where P = I2R is the power generated, k is the thermal conductivity of

the beam, A its cross-sectional area and ∆T is the temperature difference

between the centre of the beam and the clamping point. At this point we
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Mode 3 is driven weakly with an attenuation of 100 dB whereas as mode 1 is driven
strongly with an attenuation of 63 dB. (b) Resonant frequency of mode 1 as a function of
mode 3 drive frequency. Mode 1 driven weakly (attenuation: 100 dB) and mode 3 driven
strongly (attenuation: 73 dB).
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Figure 6.9: Frequency response is plotted for the amplitude of mode 1 (forward sweep).
The amplitude at 63 dB of attenuation obtained through the conversion of f23 into S1.

make another assumption which is that all the heating takes place in the

gold layer, and therefore we completely neglect the effect of the nitride layer.

The Wiedemann-Franz law relates the thermal conductivity (k) and elec-

trical resistivity (ρe), at temperature T , according to kρe = L0T , where

L0 = 2.44× 10−8 WΩ/K2 is a universal constant known as the Lorenz num-

ber [88]. Substituting this into equation 6.27 and rearranging for ∆T leads

to:

∆T =
V 2

2L0T
, (6.28)

where V is the voltage across the resonator. Using equation 6.28 we estimate

that the temperature of the sample heats up by less than 1 mK at the lowest

drives, but can heat up by more than 1 K for the highest drive. Nevertheless,

these values are only very rough estimates as the calculations are not very

rigorous. This type of heating can cause frequency shifts but cannot lead to

the bistable behaviour we observe at the highest drives.

The heating from the elongation of the resonator depends on energy lost

per cycle in the system, ∆E ≈ E
Q0

, where E = 1
2mv2 is the energy stored

in the resonator. The velocity v can be estimated from relation 6.24 and
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Q0 ≈ 106 at 100 mK (temperature at which measurements were performed).

Using these values we found that the temperature of the sample increased

by a few microkelvin, even for the largest drives.

It has to be noted that the calculations described here are only approx-

imations, as there are so many unknowns which make it difficult to obtain

more accurate estimates of the heating. As mentioned previously, however,

it is unlikely that the observed nonlinear behaviour is due to heating effects

as the results match fairly well with our theoretical model.

6.5 Summary and Conclusions

In this chapter we have derived equations describing the nonlinear response

of pre-stressed nanomechanical resonators, taking the Euler-Bernoulli equa-

tion with an added displacement induced tension term, as a starting point.

A time dependent equation of motion with a cubic term in displacement

(Duffing nonlinearity) is obtained which is solved for the situations when

only one mode is driven and when two modes are driven simultaneously.

The theory predicts a quadratic dependence of the resonant frequency on

the amplitude in both cases.

Our measurements prove that all three resonances belong to the same

nanomechanical beam and not to another slightly shorter resonator which

was in series with the one being measured (see bridge arrangement in Fig-

ure 6.1). We have observed the nonlinear behaviour of the three individual

modes and also measured the coupling between them by driving the beam at

multiple frequencies. This interaction is very important in nanomechanical

resonators and has to be included when describing the mechanical motion of

the higher flexural modes of such devices. The model is in good agreement

with the measurements and quantitatively captures the observed nonlinear

behaviour, with D as the only free parameter. The fitted values of D trans-

late to gains of about +60 dB which is close to what is expected. As the

attenuation in the output line of the dilution fridge is not known at low

temperatures, we assume that at best the gain G will have an error of about

2-3 dB.

The nonlinear coupling can be used to detect the effect of different reso-

nance modes on each other. The amplitude of one mode can be determined

by looking at the frequency shift in another. The fact that the silicon ni-
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tride beam investigated here has a stress of about 1020 MPa (which leads

to a high Q) makes it easier to probe the nonlinear coupling which would

otherwise be difficult to measure in un-stressed nanomechanical resonators.



Chapter 7

Summary and future work

In this thesis, the dissipation and nonlinear dynamics in nanomechanical

resonators at low temperatures have been studied. The nanomechanical

resonators were fabricated as doubly-clamped beams using a combination

of optical and electron-beam lithography followed by dry/wet etching tech-

niques. Their motion was actuated and detected using the magnetomotive

transduction scheme. The samples were placed in dilution refrigerators and

all measurements were carried out at temperatures below 2 K. The resonance

characteristics of the doubly-clamped beams were measured as a function

of magnetic field and temperature. By fitting the raw data to a Lorentzian

function, we extracted the resonant frequency and Q-factor of the devices.

The field dependence study allowed us to extrapolate to the B = 0 limit

and infer the intrinsic quality factor of the resonators at any temperature.

We investigated the energy loss mechanisms in two polycrystalline gold

doubly-clamped beams. The dissipation in gold nanomechanical resonators

varies with temperature as Q−1
0 ∝ T 0.5 between 30 and 500 mK, saturating

above 600 mK. The resonant frequency of the beams increase logarithmi-

cally with temperature below 400 mK, but at higher temperatures, each

resonator behaves differently which makes it difficult to draw any firm con-

clusions for that regime. The observation of features such as the plateau,

and the variation of Q−1
0 and f0 with temperature suggest that tunnelling

TLS are a source of dissipation in metallic nanomechanical resonators at low

temperatures.

In order to obtain more information about the origin of TLS in metallic

structures as well as their location (surface or bulk), it would be necessary
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to study more resonators with a wider range of resonant frequencies. The

effects of the fabrication processes can be investigated simply by measuring

devices made using different techniques, for example, compare wet etched

and dry etched devices. Furthermore, thermal annealing or coating the sur-

face of the resonator with a polymer layer will help determine the importance

of surface effects and the nature of the TLS there.

We also carried out measurements on gold-coated high-stress silicon ni-

tride resonators. The dissipation (frequency) in these devices increases lin-

early (logarithmically) with temperature. Experiments on two beams of

similar dimensions but different gold thickness reveal that tunnelling TLS

in the gold layer have an important role to play in the overall dissipation of

the system.

To allow us to separate the contributions to the damping from the metal-

lic and dielectric layers, it is necessary to carry out further studies on res-

onators with thinner layers of gold, although a beam without a metal layer

on top would be even better. Furthermore, measurements on high-stress

membrane oscillators and stress-relieved cantilevers [71] clearly indicate that

tension can substantially increase the Q-factor of a resonator. A more es-

tablished theory on the effects of tension in nanomechanical structures is

therefore required to analyze the data more quantitatively.

We also investigated the nonlinear dynamics of a single silicon nitride

beam, both theoretically and experimentally. It is demonstrated theoreti-

cally that the different flexural modes of a beam are coupled to each other

through the amplitude dependent tension in the beam. We performed mea-

surements on the first, third and fifth mode, observing shifts in the frequency

of one mode when the drive of another mode was varied, in good agreement

with theory.

In conclusion, the experiments described in this thesis provide a good

base for a phenomenological understanding of the behaviour of nanomechan-

ical resonators at low temperatures. However, additional measurements are

needed to get a full picture of the dissipation mechanisms along with a more

established theory to describe some of the observed features quantitatively.

Also, a good understanding of the nonlinear dynamics of nanomechanical

resonators is vital when describing their motion as well as being able to

exploit or avoid these nonlinearities when necessary.



Appendix A

Device fabrication details

In this Appendix, the technical details of the fabrication process for both

the gold and silicon nitride nanomechanical beams are described.

A.1 Gold beams on gallium arsenide

The fabrication of the gold nanomechanical resonators can be separated into

two parts:

1. Lithography for contact pads and nano-wires.

2. Defining a suitable etch window to release the beams

A.1.1 Lithography for contact pads and nano-wires

Trilayer resist coating After being cleaned in solvents ethyl lactate,

acetone, methanol and isopropanol (IPA) in ultrasound for five minutes

each, the GaAs chip was first coated with a 400 nm layer of lift-off resist

LOR5B, which was spun at a speed of 4000 rpm for 45 s followed by a 5

minute bake on a hot plate at 180◦C. The chip was then covered with a 35

nm thick layer of Ge, thermally evaporated with a deposition rate of 0.5

nms−1 keeping the evaporator chamber pressure below 10−6 mbar. Finally,

the sample was spun coated with two layers of 950K PMMA A2 (2% solution

of PMMA in anisole) at 4000 rpm for 45 s; each layer was baked on a hot

plate for 30 s at 180◦C and had a thickness of about 40 nm.
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Electron beam lithography The nano-wires and contact pads were pat-

terned via e-beam lithography using a JEOL JSM-7000F field emission scan-

ning electron microscope, with a Xenos XPG-2 pattern generator. An ac-

celeration voltage of 30 kV along with a beam current of 500 pA was used,

with a working distance of 9 mm. The patterns were written in a 250 µm

field size using doses of 120 µC/cm2 for the pads, and 280 µC/cm2 for the

nano-wires. After the lithography process, the sample was developed in

MIBK:IPA (Methyl Iso-butylketone:Isopropanol) solution in the volume ra-

tio 1:3 for 2 minutes at room temperature, rinsed in IPA and blown dry.

The Ge was isotropically etched in reactive ion etching (RIE) mode using

an SF6 plasma (flow rate: 20 sccm and RF power: 60 W) for 20 s. The LOR

was isotropically etched in RIE mode using an oxygen plasma (flow rate: 25

sccm and RF power: 60 W) for 5 minutes to provide a Ge/LOR stencil. An

inductively coupled plasma system (CORIAL 200IL) was employed for the

dry etching.

Metallization The sample was then loaded into a thermal evaporator

and metallized with 3 nm of titanium followed by 60 - 80 nm of gold. The

evaporator chamber pressure was kept below 10−6 mbar and the deposition

rates were between 0.3 - 0.5 nms−1.

Lift-off The sample was then soaked in a photo-resist stripper (1165 Mi-

croposit Remover) for 30 minutes at 60◦C to remove the Ge/LOR stencil

leaving the metallized pattern on the GaAs substrate.

A.1.2 Releasing the beams

Bilayer resist coating The sample was coated with a PMMA/LOR bi-

layer resist. The spin speeds and times along with the baking times were

the same as before.

Defining an etch window A window was patterned in the area of interest

via e-beam lithography using an acceleration voltage of 30 kV, a 165 pA

beam current, a 25 µm field size and a dose of 220 µC/cm2. The sample

was then developed in MIBK:IPA (1:3) for 110 s to remove the exposed

PMMA. The LOR was developed in AZ 400K:DI water (1:4) solution for 15

s. The underlying GaAs was then wet etched to release the beams, rinsed
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in methanol and blown dry. A standard wet etch recipe H2SO4:H2O2:H20

in the ratio 1:8:100 by volume was used. Any remaining resist was removed

in an oxygen plasma asher.

A.2 Gold-coated high-stress silicon nitride beams

The fabrication of the silicon nitride nanomechanical resonators was slightly

more complicated than the bare gold beams as the whole design was defined

using a combination of optical and e-beam lithography which increases the

number of fabrication steps. However, some of the steps were common in

both, such as the dry etching of Ge and LOR. This section is again divided

into two parts, the first explaining the lithography steps and the second one

describing the method to release the doubly-clamped beams.

A.2.1 Lithography for contact pads and nano-wires

Contact pads: optical lithography The sample was coated with a 400

nm layer of LOR5B, 35 nm of thermally evaporated Ge followed by 1.2 µm

of photo-resist AZ6612 which was spun at 4000 rpm for 30 s and baked on a

hot plate for 45 s at 110◦C. A custom made optical mask was used to expose

the contact pads using optical lithography with an exposure time of 7.8 s

at 12 mW/cm2. The photo-resist was developed in AZ 400K:DI water (1:4)

solution for about 30 s. The Ge in the exposed areas was plasma etched

using SF6 as described previously. Only about 50 - 100 nm of LOR was

etched away in an oxygen plasma. The sample was then soaked in acetone

to remove any remaining photo-resist.

Nano-wires: e-beam lithography The sample was then coated with

two layers of 950K PMMA A2 and the wires were patterned using e-beam

lithography. Optical alignment marks were used to make sure that the con-

tact pads and the wires overlapped each other to guarantee good electrical

contact. An acceleration voltage of 30 kV and a beam current of 225 pA

was chosen. The wires were written in a field size of 100 µm using a dose

of 400 µC/cm2. The PMMA was developed in MIBK:IPA (1:3) for 110

s and the remaining Ge/LOR in the exposed areas was plasma etched as

previously explained. Before metallization, the sample was dipped in N-

methyl-2-pyrrolidone [89] for 1 s in order to remove any remaining LOR in
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the exposed areas. In the course of producing a number of devices, it was

found that the 5 minute etch in an oxygen plasma did not remove the LOR

entirely as traces of the resist could still be observed under an optical mi-

croscope after the etch process. N-methyl-2-pyrrolidone is a concentrated

solvent and can be used as a photo-resist stripper.

Metallization Next, the sample was loaded into a thermal evaporator

and metallized with 3 nm of titanium followed by 90 - 130 nm of gold. The

evaporator chamber pressure was kept below 10−6 mbar and the deposition

rates were between 0.3 - 0.5 nms−1.

Lift-off The sample was then soaked in a photo-resist stripper (1165 Mi-

croposit Remover) between 30 - 40 minutes at 60◦C to remove the Ge/LOR

stencil, rinsed in IPA and blown dry.

A.2.2 Releasing the beams

Instead of using a bilayer resist to define the etch windows, the trilayer

PMMA/Ge/LOR was chosen as it provided a better control over the width

of the window. The etch windows were written using a voltage of 30 kV, a

current of 180 pA in a 100µm field size with a dose of 240 µC/cm2. The

PMMA was developed and the Ge/LOR layer etched in the usual manner.

Etching The silicon nitride beams were released via dry etching. This

involved an anisotropic etch in RIE mode of Si3N4 in a CHF3 plasma for

240 s (flow rate: 100 sccm, RF power: 150 W). The underlying Si was then

isotropically etched, using an inductively coupled plasma (ICP), with SF6

for 45 s (flow rate: 24 sccm, RF power: 50 W, LF power: 250 W). The RF

power was kept low in order to minimize gold sputtering. After releasing

the beams, any remaining resist was removed in an oxygen plasma asher.

A.3 Sample bonding

All the samples were attached onto standard 12-pin headers using GE var-

nish. As the gold nanomechanical resonators are very sensitive to static

charges, connections from the contact pads to the header pins was made us-

ing indium coated 0.1 mm diameter gold wires. The ends of the wires were
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pressed onto the pads/pins using a wooden cocktail stick. Whilst bonding

the samples, it was absolutely essential to be connected to ground (earth)

to avoid breaking the beams. On the other hand, the silicon nitride devices

were connected to the pins using a 17 µm diameter aluminium wire and a

commercial wedge bonder.



Appendix B

Theory for modal coupling

In this Appendix, we derive the equations which describe the nonlinear

coupling between two different flexural modes of the same doubly-clamped

beam. The two modes, labelled m and n are driven at frequencies close

to the bare mode frequencies, ω0n and ω0m. All parameters used in the

derivation are dimensionless.

The external driving force per unit length is given by

FL = F0m cos(ωmt) + F0n cos(ωnt), (B.1)

and the displacement is

y = W (ũmg̃m + ũng̃n). (B.2)

Substituting the expressions above into equation 6.1 leads to

ρA[¨̃umg̃m + ¨̃ung̃n] + η[ ˙̃umg̃m + ˙̃ung̃n] + [ω2
0mρAg̃m]ũm + [ω2

0nρAg̃n]ũn

−EAW 2

2L

[
∫ L

0
(g̃′mũm + g̃′nũn)

2dx

]

(g̃′′mũm + g̃′′nũn) = 0,

(B.3)

where

ω2
0nρAg̃n = EIg̃′′′′n − T0g̃

′′
n

for any given eigenmode. We now focus on one mode by multiplying both

sides of B.3 by g̃n and integrate over X (recall that orthonormality requires
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∫ 1
0 g̃mg̃ndX = δmn) which translates to the following relation

¨̃un + ω2
0nũn + γ ˙̃un

+λ[ũ3nI
2
nn + ũ3mInmImm + 3ũ2nũmInnInm + ũ2mũn(InnImm + 2I2nm)]

= [F0n cos(ωnt) + F0m cos(ωmt)]
ξn

ρAW
, (B.4)

where Imn =
∫ 1
0 g̃′mg̃′ndX. Adopting dimensionless units for time, t∗ = ω0nt,

and dividing through by ω2
0n, equation B.4 transforms into

¨̃un + ũn +
˙̃un
Qn

+
λ

ω2
0n

[ũ3nI
2
nn + ũ3mInmImm + 3ũ2nũmInnInm + ũ2mũn(InnImm + 2I2nm)]

= fn cos(ω̃nt
∗) + fm cos(ω̃mt∗).

(B.5)

The general solution

ũn(m) = an(m) cos(ω̃n(m)t
∗) + bn(m) sin(ω̃n(m)t

∗) (B.6)

is substituted into equation B.5 and terms oscillating at ωn are collected,

neglecting the higher harmonics and assuming that ωm 6= 3ωn. This leads

to the characteristic equation

(1− ω̃2
n)(an cos(ω̃nt

∗) + bn sin(ω̃nt
∗))

+
ω̃n

Qn
(−an sin(ω̃nt

∗) + bn cos(ω̃nt
∗))

+
λ

ω2
0n

[
3

4
r2nI

2
nn(an cos(ω̃nt

∗) + bn sin(ω̃nt
∗))

+
r2m
2
(InnImm + 2I2nm)(an cos(ω̃nt

∗) + bn sin(ω̃nt
∗))] = fn cos(ω̃nt

∗),

(B.7)

which is used to define

H = (1− ω̃2
n) +

λ

ω2
0n

3

4
r2nI

2
nn +

λ

ω2
0n

r2m
2
(InnImm + 2I2nm). (B.8)

The coefficients an and bn are extracted by carrying out a Fourier analysis
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which gives the response amplitude as:

r2n =
f2
n

H2 + ω̃2
n

Q2
n

(B.9)

and the angular frequency renormalization:

ω2
2n = ω2

0n

[

1 +
3

4

I2nn
ω2
0n

λr2n + r2m
λ

ω2
0n

(

InnImm

2
+ I2nm

)]

, (B.10)

which translates into

f2n = f1n + r2m
λ

8π2f1n

(

InnImm

2
+ I2nm

)

. (B.11)

The amplitudes rm and rn are dimensionless, but can be related to a

physical displacement (Am(n)) via a mode function:

Am(n)(x) = Wrm(n)gm(n)(x) (B.12)

which is most sensibly defined at the antinode at x = L
2 for n(m) = 1, 3, 5, ...

(odd modes are symmetric about the centre of the beam).
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