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Abstract 
This thesis is concerned with single and multiple target visual tracking algorithms and their 

application in the real world. While they are both powerful and general, one of the main 

challenges of tracking using particle filter-based algorithms is to manage the particle spread. 

Too wide a spread leads to dispersal of particles onto clutter, but limited spread may lead to 

difficulty when fast-moving objects and/or high-speed camera motion throw trackers away 

from their target(s). This thesis addresses the particle spread management problem. Three 

novel tracking algorithms are presented, each of which combines particle filtering and Kernel 

Mean Shift methods to produce more robust and accurate tracking. 

The first single target tracking algorithm, the Structured Octal Kernel Filter (SOK), combines 

Mean Shift (Comaniciu et al 2003) and Condensation (Isard and Blake 1998a). The spread of 

the particle set is handled by structurally placing the particles around the object, using eight 

particles arranged to cover the maximum area. Mean Shift is then applied to each particle to 

seek the global maxima. In effect, SOK uses intelligent switching between Mean Shift and 

particle filtering based on a confidence level. Though effective, it requires a threshold to be 

set and performs a somewhat inflexible search. 

The second single target tracking algorithm, the Kernel Annealed Mean Shift tracker 

(KAMS), uses an annealed particle filter (Deutscher et al 2000), but introduces a Mean Shift 

step to control particle spread. As a result, higher accuracy and robustness are achieved using 
fewer particles and annealing levels. Finally, KAMS is extended to create a multi-object 

tracking algorithm (MKAMS) by introducing an interaction filter to handle object collisions 

and occlusions. 

All three algorithms are compared experimentally with existing single/multiple object 

tracking algorithms. The evaluation procedure compares competing algorithms' robustness, 

accuracy and computational cost using both numerical measures and a novel application of 

McNemar's statistic. Results are presented on a wide variety of artificial and real image 

sequences. 
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Chapter 1 

Chapter 1: Introduction 

1.1 Visual Tracking 

The goal of visual tracking is to recover from a time-ordered sequence of images a 
description of the dynamic behaviour of some target object or objects. Visual tracking 

is a major research area within computer vision. Though analysis of individual, static 
images is valuable in many application areas, the world we live in is naturally 

dynamic: time-varying image sequences are the norm. 

Visual tracking problems take a variety of forms. Image sequences might be captured 

by a static camera, but show a dynamic world. Though the background is fixed, 

objects will move across the image plane, possibly changing their 3D orientations to 

present different views to the camera. Some (e. g. humans) might change shape as they 

move, so that object velocity and configuration are combined in the image data. 

Alternatively, the camera might move through a static world, acquiring data from 

different viewpoints and, unless illumination is constant across the viewed scene, 
different lighting conditions. Highly likely in the real world, but less commonly 

considered in computer vision research, the camera might move through a dynamic 

environment, gathering images which combine changes in both viewpoint and object 
location. Each of these scenarios presents different challenges, but each requires some 
form of object tracking if the resulting image data is to be interpreted. 
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Chapter 1 

Current and potential practical applications of visual tracking algorithms are countless 

and growing. Object tracking is required and has been attempted in many domains, 

including surveillance (Suyu et al 2008, Chen et al 2007), sports analysis (Perlt and 

KovaW 2000), gesture recognition (Tennant R. 1998), medical applications such as 

microscopic sample analysis (Ratnalingam et al 2006), to study traffic and pedestrian 
flow dynamics for efficient designs of roads and pathways (Suyu et al 2007, Chen et 

a! 2007), growth patterns in plants and animal cells (French et al 2008), tracking and 

targeting applications and studying group behaviour in moving animals and humans 

(French et al 2007). 

Algorithms that aim to track single objects through image sequences have existed for 

more than two decades, and have been successful in some circumstances. The general 

tracking problem is, however, far from solved. No current tracker is perfect; all may 

safely be assumed to fail at some point due to the complexity of natural image 

sequences and the wide range of problems (movement noise, background clutter, 

target occlusion, illumination changes, etc) that can affect their performance. A 

tracker is generally considered to have failed if it becomes disassociated with its 

targets so that its motion no longer reflects theirs. Further difficulties arise when 

multiple targets must be tracked simultaneously. Targets can collide with and/or 

occlude each other, adding movement noise and/or reducing the information available 

for use during tracking. If they appear similar, targets may attract each others' 

trackers, distracting them from their true targets - it is common for multiple 

independent trackers tracking objects with resembling appearance models, to 

"coalesce" on a single target (Khan et al 2004). 

Visual tracking algorithms combine models of the appearance and motion of the 

object(s) they are required to track, using them to predict the future position (and 

other properties like speed and direction of motion) of the target(s) through a 

sequence of images (video). One way to improve tracking performance is to tune the 

models used to the task at hand. Many of the motion and appearance models 

employed in the literature are created for very specific tasks, and only work well 

under specific sets of circumstances, e. g. tracking a human being based on a stick 
figure model (Yilmaz et at 2006). 
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The overarching goal of the research reported here is to understand and develop 

single- and multi-target visual tracking algorithms which can be applied to a wide 

variety of tracking problems and situations, making them a good choice to employ in 

practical applications and products. As a result, generic motion and appearance 

models are used throughout. Instead of seeking to improve tracking performance 

through improved motion or appearance models, the work reported here considers the 

tracking engines used to apply those models. In particular, attention is focused on 
hybrid tracking algorithms obtained by combining the well-established particle filter 

and Kernel Mean Shift methods. 

1.2 Particle Filtering, Kernel Mean Shift and the 

Particle Management Problem 

Particle filtering is one of the most widely-adopted approaches to visual tracking. The 

defining characteristic of the particle filter is its use of a set of discrete particles to 

represent multi-modal probability distributions that capture and maintain multiple 
hypotheses about target properties. Particle filtering is iterative. Particles are 

repeatedly selected, projected forwards using a motion model, dispersed by an 

additive random component, and evaluated against the image data. Many particle 

filter trackers have appeared since Blake and Isard (Isard and Blake 1998a) first 

introduced Condensation. 

The ability of a set of particles to represent a wide variety of distributions is both the 

main strength and primary weakness of the particle filter. For effective tracking in 

real-world environments the particle set must sample widely enough to represent all 

reasonable alternatives in areas of ambiguity. It must not, however, become diffused, 

spreading across the image plane rather than clustering around the object of interest. 

When this happens particles tend to migrate towards local maxima in their evaluation 
function, becoming caught on clutter and losing track of the target. Similarly, particles 

should not become too focused. Though it is encouraging to see a particle set coalesce 

when a single, clearly distinguishable target moves across the image, the tracker 

should not however become irreversibly locked onto a single mode. 
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A key issue in the design of particle filter-based trackers is how to manage the spread 

of the particle set to balance these conflicting requirements. Some researchers seek to 

maintain a wider distribution, focusing on the problems caused as particles cluster, 

sometimes very quickly, around one target hypothesis. Other workers consider 

standard algorithms to spread the particle set too thinly across the image and 

concentrate effort on forcing particles to coalesce, reducing the number needed. The 

variance of the posterior is simply and elegantly maintained by the Kalman filter 

(Kalman 1960), but particle filters cannot assume a Gaussian, or indeed any specific, 
distribution. Moreover, balance must be achieved with as few particles as reasonably 

possible. Increasing the particle set improves representational accuracy, but adds 

significantly to computational overhead. 

Recently, Maggio and Cavallaro (Maggio and Cavallaro 2005) introduced the idea of 

embedding a Kernel Mean Shift tracker (Chang and Ansari 2005) within a particle 
filter algorithm. Kernel Mean Shift hill climbs towards the target, minimizing the 

distance between target and appearance model descriptions. A spatial kernel provides 

some robustness to noise and partial occlusion, and the algorithm provides fast and 

effective tracking as long as the target object does not move further than its own 
diameter between frames. The role of the Kernel Mean Shift in Maggio and 
Cavallaro's hybrid tracker is to move particles towards local maxima of the evaluation 

function on each iteration of Condensation. Though the authors focus on the 

computational savings made, Maggio's (Maggio and Cavallaro 2005) hybrid tracker 

can be viewed as attempting to manage particle spread by alternately diffusing the 

particle set using Condensation and clustering them with Kernel Mean Shift. 

Blake and Deutscher (Deutscher et al 2000) attempt to control the particle set spread 

using a multi stage annealed particle filter. Each stage consists of the probability 
density function with a smoothing filter applied to it. The first stage is the smoothest, 
ironing out the small local maxima, then the second stage is a more irregular one as 

smoothing effect is reduced and so on. Particles are added with random noise at each 

smoothing stage, and then the particles with highest weight are picked more often, 
this tends to guide the particles towards the global maxima, achieving an effect 

somewhat similar to the Kernel Mean Shift algorithm (Chang and Ansari 2005) as 

particles tend to move towards the global maxima after each smoothing stage. 
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1.3 Aims, Objectives and Achievements 
The research reported here builds upon the idea of hybrid particle filter/Mean Shift 

tracking, examining ways in which particle filtering and Kernel Mean Shift might be 

combined to produce single and multi-target tracking algorithms in which the particle 

set is well-managed and tracking consequently more robust. Annealing is a key 

ingredient of two of the novel algorithms developed. 

This thesis describes the development of and presents three novel and general hybrid 

object tracking algorithms. Two are single target trackers, while the last is a multi- 

target tracker. 

Recognizing the strength of the Kernel Mean Shift algorithm, early work considered 

making Kernel Mean Shift the dominant technology. This lead to the development of 
the Structured Octal Kernel (SOK) filter (Chapter 3). In the SOK algorithm, a small 

number of particles are generated, in a structured fashion, to explore further when 

confidence in Kernel Mean Shift becomes low. Though effective, SOK's search is 

somewhat crude, and it requires the user to specify both the conditions under which 

extra particles are spawned and the size of the region to be searched. 

To avoid these drawbacks an alternative approach was adopted in the second 

algorithm, which is termed the Kernel Annealed Mean Shift (KAMS) tracker. Here, 

rather than shift control away from the particle filter component and towards the 

Kernel Mean Shift tracker, Condensation is replaced with a more powerful particle 

filter. KAMS (Chapter 4) is created by combination of the Kernel Mean Shift 

algorithm with the Annealed Particle filter of Deutscher (Deutscher et al 2000). The 

hypothesis underlying this decision is that by flattening local maxima in the 

evaluation function the annealed particle filter will allow a greater spread in the 

particle set, and reduce the need for a possibly erroneous predictive motion model, 

while the Mean-Shift component will continue to successfully pull particles back 

towards the true target. The resulting tracker should, therefore, be more robust than 
both its component algorithms and previous particle filter/mean-shift hybrids. 
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Finally, KAMS is extended to multi-target tracking by addition of a multi-stage 
interaction filter (Chapter 5), building on that proposed by Khan et al (2004). While 

Khan's original algorithm (Khan et al 2004) simply reduces confidence in hypotheses 

which fall in close proximity to each other, the use of annealed particle filtering and 
Mean Shift in the multi-target KEIMS (MKAMS) algorithm allows the tracker to 

place hypotheses at maxima of a smoothed evaluation function. Though target 
interactions may prevent the algorithm from locating the unsmoothed maxima, it does 

place hypotheses at well defined locations. 

All three algorithms are tested and evaluated on both real world and artificially 

created, simulated data, against existing algorithms. Evaluation techniques are in an 

early stage of development, but are increasing in importance The evaluation 

procedure adopted here compares competing algorithms' robustness, accuracy and 

computational cost using both numerical measures and a novel application of 
McNemar's statistic. 

During the course of this research, eight conference papers have been published in 

reputed conferences including BMVC 2007, IVCNZ 2006, IEEE AVSS 2007 and 
IEEE ICCV PETS 2007. One journal paper was published in the Journal of Fertility 

and Sterility 2009, and another is under review by Pattern Recognition. 

1.4 Thesis Structure 

The remainder of the thesis is structured as follows 

Chapter 2: Background 

This presents an introduction to tracking and an overview of existing tracking 

algorithms, focusing attention on the methods exploited and combined to form the 

novel tracking methods described here. Evaluation methods are also considered, and 

an evaluation technique defined which will be employed throughout this thesis to 

gauge tracking algorithms against each other. 
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Chapter 3: Structured Octal Kernel Mean Shift Tracker (SOK) 
The first novel single target algorithm is presented and explained. It is evaluated 

against existing techniques including Maggio's previous hybrid tracker, and results 

are shown which indicate that SOK has advantages over the other algorithms 

considered. 

Chapter 4: Single Target Kernel Annealed Mean Shift Tracker (KAMS) 

The KAMS algorithm, developed for single target tracking, is presented in this 

chapter. Results of the evaluation process are also presented and discussed. KAMS is 

shown to be a significant improvement on SOK. 

Chapter 5: Multi Target Kernel Annealed Mean Shift Tracker (MKAMS) 

The extension of KAMS to multi-target tracking is discussed. Two possible multi- 

target KAMS algorithms are presented in this chapter along with evaluation results. 

Chapter 6: Conclusions and Future Work 

This final chapter reviews the advances made during this project, and proposes 

directions for future research. 

All implementations of all the algorithms used for evaluations throughout the thesis 

are my own. 
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Chapter 2: Background 

2.1 Introduction 
Computer Vision is the science that aims to let machines see. It is concerned with the 

theory, tools and techniques using which we can build systems that can extract useful, 

quantitative information from images of some aspect of the real world. The image 

data input to computer vision systems varies widely. Single grey level or colour 
images are often considered. These might show natural or man-made 3D physical 
environments (landscapes, offices, streets, etc), they might be portraits of individual 

or groups of people, medical images acquired using a variety of specialist imaging 

devices (e. g. MRI, CT), scanned documents, microscope images, etc. Sequences of 
images attract increasing amounts of attention. These might be live feeds obtained 
directly from cameras, carefully produced movies, CCTV footage showing everyday 

activities in inhabited environments, amateur or professionally produced records of 

sports events, etc. Whatever the details of the available data and task at hand, the goal 

of Computer Vision is to extract information implicit in the image(s) provided. 

Image data provides many cues which can be exploited by computer vision methods. 
Sharp changes in intensity, colour, or other image properties often mark the 
boundaries of objects and surfaces (Canny 1986, Pathegama and Gol 2004), allowing 
the image to be segmented into meaningful regions. Colour, shape, and other features 

of those regions can allow specific objects or materials to be identified (Ohlander et al 
1978, Shi et at 1997). Patterns of shading in a grey-level image can provide 
information about the 3D orientation of the surface being viewed and/or local 

illumination conditions (Salih et a! 2004). Multiple views of a given object can allow 
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its 3D position and shape to be recovered (Park 2005), while time-based image 

sequences provide descriptions of the motion and deformation of objects (Evans et al 
2007). 

Computer vision has many actual and potential applications. For instance it is used in 

industrial processes to control production assemblies; many industrial concerns use 

vision sensors as they perform different operations on production lines. Fault 

detection and quality control by visual inspection one of the most common uses of 

computer vision in industrial environments (Wallace A. M. 1988). A good survey of 
industrial applications of cognitive vision can be found in (Courtney and Böttcher 

2003). Other application areas include, but are not limited to: 

" Handwriting recognition and more general document image analysis; methods 
are being developed to extract text, diagrams and drawings from images of 

paper documents for input to a range of software systems. 

" Medical image analysis; medical applications use a wide variety of image 

sources and types including X-ray and MRI/CT scans, ultrasound analyses etc 
(Ratnalingam et al 2006) the emphasis being on segmentation and the analysis 

of shape. 

9 Interaction between computers and humans; this still relies heavily on special 
devices such as mice and keyboards, but vision-based interaction devices are 

now being introduced (e. g. Domaika and Ahlberg 2004, Green et at 
2005). Vision for interaction is a rapidly growing area of research. 

" Biometrics: fingerprint and face recognition have received the most attention 
in this area, though other modalities such as gait (Nixon and Carter 2004) also 

generate interest. 

" Human gesture and event recognition for communication: e. g. American Sign 

language recognition. 

" Automatic surveillance; given recent societal events and the spread of CCTV 

hardware, automatic surveillance is currently a major growth area for vision 

research (Suyu et al 2008, Chen et al 2007) Key issues include tracking and 
event recognition. 
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" Object modeling for multimedia and entertainment: here, 3D scanners use 

stereo vision to create 3D models of the object(s) of interest (e. g. Hahn and 
Duncan 2006). 

" Navigation of robots and vehicles through known and unknown terrain: vision 

sensors are being developed and used in both cars and robots. The MARS 

Rover, for example, uses a binocular stereo system to navigate on the alien 
terrain of the planet (Biesiadecki et a! 2001). 

Object recognition is a key challenge for computer vision and a very active research 

area. Here, after acquiring the image, vision algorithms try to find and identify 

different objects using 2D or 3D appearance models (Berg et al 2005, Lowe 2001). 

Object recognition may be used to identify and locate objects of interest in an 
individual image or image sequence. Object recognition, along with other computer 

vision methods, has been used to extract the parameters needed to organize 
information, e. g. when indexing databases of images and image sequences., 
Recognition may also be the first step in a larger process, such as object classification, 

quality assurance and inspection in industrial scenarios, etc. or visual tracking. 

Visual tracking requires the objects of interest to be identified and some description of 

their current state (e. g. location, pose, velocity) to be extracted from each frame of a 

time-ordered image sequence. Though recent advances in object recognition (Viola 

and Jones 2003) have suggested that this might be achieved by considering each 

image independently of the others, successful visual tracking requires access to 

several (at least two) images at a time. 

Section 2.2 discusses the motion analysis and tracking of objects of interest in image 

sequences, along with the main problems faced during tracking. Several ways to 

represent objects' appearance are also discussed. Section 2.3 describes the major 

single target algorithms and section 2.4 describes existing multi-target tracking 

algorithms. Some of these are created by combining the single target trackers 

mentioned in section 2.3, while others are based on explicit representations of the 

joint states of several targets. Section 2.5 describes some applications of tracking in 
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various areas and domains. Finally, section 2.6 discusses evaluation techniques and 

presents the methods that have been employed throughout this thesis to gauge 

algorithms against each other. 

2.2 Visual Motion and Object Tracking 

Computers have been used for decades to record image sequence data. Videos were 

stored on disks, tapes and other storage media, to be analyzed manually for intelligent 

inference. Applications include CCTV surveillance, medical sample analysis (e. g. of 

blood and semen under a microscope), sports team game analysis, human gesture 

analysis, traffic monitoring etc. For many years computers could record and store data 

from these domains in the form of videos, but could not extract information from this 

data. 

The need for automated video analysis has motivated much work in computer vision. 
In this field artificial intelligence techniques have been employed to analyse videos 

and infer or deduce facts. Motion analysis is one of the most important parts of 

computer vision as it deals with the extraction and analysis of object movement and 
behaviour, a major source of information about the viewed world. This information is 

valuable in a wide variety of situations, whether the image sequences concerned are 

available as pre-recorded video files or provided in real time via a camera system. 

Approaches to the extraction of motion information from image sequences can be 

broadly divided into two classes. The first of these assumes that the camera has a high 

frame rate relative to the motion in the scene. Successive images are then captured 
from very similar positions and/or depict very similar situations. The key assumption 
is that successive images are similar enough that gradients of image data can be 

estimated with respect to time, as well as the spatial dimensions of the image. These 

gradients can then be used to estimate the motion of pixels and other features across 

the image plane. This approach to the computation of a dense optic flow field was 

first introduced by Horn and Schunk (Horn and Schunk 1981), but many variations on 

the theme have been described. A good review of the field can be found in (Barron et 
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al 1994). Optic flow methods typically produce a motion estimate at each pixel, but 

can be computationally expensive and often rely on restrictive assumptions about the 

images and the motion they depict. The second approach to motion analysis assumes 
that the differences between successive images are too great to allow reliable 

estimation of gradient values. Instead, features of interest are extracted from each 
image independently and matched across frames. The coordinates of corresponding 
features then describe their motion across the image. 

Work in visual tracking assumes the input images vary enough to require some form 

of matching process. Trackers, however, do not attempt to match a comprehensive set 

of image features between frames. Instead, they focus on a small set of target objects; 

many track only a single target. 

An image sequence or video consists of consecutive sequences of images, often called 
frames. Objects moving through a scene appear at different positions in a scene and 

produce a trajectory. Simply defined, object tracking is the procedure which estimates 
the state of an object in the image plane as it moves around a scene. An object's state 
may include descriptions of any of its properties, though in most tracking work, 
including that reported here, the primary focus is on the position of the target(s) 

projection onto the image plane. 

Automated video/image sequence analysis involves four major steps. The first is the 

representation of the object(s) of interest, the second is the detection of those objects, 

the third step is to track detected objects by matching between frames, and the final 

stage involves analyzing the trajectories and other information obtained to deduce 

facts and recognise occurrences of events. For example, while performing gesture 

recognition on sequences showing a human moving his/her head and hands, the 
developer has to first define how to represent a person. That representation must 
describe both the appearance of the target - image features and properties that are 

associated with its presence - and its likely motion. The system must then use the 

appearance model to detect the head and hands of the person in the scene, use both the 

appearance and motion models to perform tracking and exploit the tracked output 

trajectories to support identification of events such as head nods, hand gestures etc. 
(Evans et al 2007, Knight et al 2008 ) 
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2.2.1 Problems in Object Tracking 
Object tracking is a challenging task. The performance of a given tracking method in 

a particular situation can be influenced by a large number of factors. Some of these 

are properties of the target object(s), some are properties of the surrounding 

environment, some are properties of the image data, and others are properties of the 

tracker. 

Fast and/or erratic target motion 

High speed targets increase the area of the image in which a target might appear. If its 

direction of movement is unknown, or poorly approximated, a target located at point 

P in frame N of a sequence can reasonably be expected to lie near the arc of a circle 

centred on P in frame N+1. The faster the target is moving, the greater the radius, and 

so the greater the circumference of that circle (or length of that arc). Erratic 

movement, incorporating large and unpredictable changes in velocity, increases the 

search area still further. Normal cameras with low shutter speeds may not be a good 

choice for fast or erratically moving objects as they may appear blurry, so to track 

them properly cameras with high shutter speeds are required. 

Clutter 

The presence of clutter - other, unrelated objects similar to the target - may play a 

major role in tracker failure. Suppose a tracking algorithm uses edge detection to find 

objects in a scene, in the presence of clutter additional, spurious edge data, will be 

generated. This will increase the computational complexity of the matching/tracking 

task and may make it hard to distinguish the true target from the distracting 

background. 

Occlusion 

Partial and complete occlusions are one of the biggest obstacles to object tracking. 

During occlusion obstacles come between the camera and the tracked object, hiding 

the object partially or completely behind them. The obstacles may be other tracked 

objects or surrounding structures of no interest. Many tracking algorithms have been 

designed with occlusion in mind (e. g. French et al 2007), but the problem remains 
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unsolved. As objects become occluded their appearance changes in ways that are 

unlikely to be captured by the tracker's appearance model; tracking then fails. 

Illumination changes 

Tracking applications may be affected by variations in either local or global 
illumination conditions. While tracking, if the lighting conditions change due to the 

target passing through shadows or because there is an overall change in illumination 

source(s), the object's appearance model may no longer reflect its actual appearance. 

If the appearance model is not sufficiently general, or the tracking algorithm cannot 

update the model used, the tracker may fail. 

Image noise 
Successful tracking relies on achieving a good match between models (of appearance 

and motion) and image data. Excessive image noise can make that matching difficult, 

unreliable, or even impossible. 

Appearance Models 

To track objects we have to represent them. If the assumptions made by the 

appearance model are incorrect or inaccurate, the tracker may fail. For example if we 

represent a car as a simple polyhedron, and the tracking algorithm uses edge detection 

to find an appropriate polygon and declares it a car, if the car turns and the camera 

now looks at a deformed shape, the appearance model that the algorithm is looking 

for may not be present any more. 

Motion Models 

Motion models describe the likely movement of the target between successive frames 

and are used to define the area in which a given target is expected to appear in the 

next image. Algorithms like the Kalman Filter (Kalman 1960) model motion using 

linear equations, and are effective when that assumption is true. However, if the 

motion model does not accurately capture the target's movement the tracking system 

may fail, losing the target due to incorrect assumptions. 

Hardware limitations 

Even if accurate motion and appearance models are available, hardware limitations 

may prevent successful tracking. For instance if objects move too fast, and camera 
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shutter speeds are not adequate, targets may be blurred and maybe vanish for a frame 

or two. When this happens tracking will most probably be lost. Similar effects can 

occur if the camera used is not of sufficient spatial or radiometric resolution, or 

introduces too much image noise. 

2.2.2 Appearance Models 

In order to track an object, it must be well-defined. An appearance model must be 

built or acquired that represents the object. The tracking algorithm will then match 

this model to future frames. Objects can be represented using their shapes, colour 

distributions or sometimes a combination of both. Object representation techniques in 

common use are discussed below. 

In Figure 2.1a, the object is represented by a point (Veenman et al 2001), and by a 

group of prominent points (Serby et al 2004) as in figure 2. lb. Usually the objects 

represented using points are very small in size, or appear very small in the image 

plane, like food particles in a fish tank, or very distant flying birds and aircraft. 

Objects detected in consecutive frames are represented by points and association of 

points is based on the objects' states, which may include motion and position. 

Tracking using point representations becomes difficult in the presence of noise, 

occlusion by other objects and when objects enter and exit the scene. Usually, if a 

point representation model is employed, then rigid rules are defined for point 

association and motion. 

Objects can also be represented using primitive shapes like squares, ellipses and 

rectangles as shown in figure 2.1c/2. ld (Comaniciu et al 2003). This representation is 

more suitable for rigid objects which are not expected to change shape drastically, as 

when tracking a ball, cars viewed from above etc. Tracking is typically performed by 

matching some description of the expected shape to features (e. g. edges) extracted 

from each image in the sequence. 
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Some objects (e. g. hands, the human body) have more complex structures which keep 

changing in shape as they move. Of course this cannot be captured by a simple 

primitive geometric shape like a rectangle or ellipse. Contour and silhouette 

representations (figure 2.1 g, 2.1 h) are employed to track such objects. The contour is 

the outer boundary of the tracked object and the region inside the contour is called the 

silhouette (figure 2.1 i). These representations are suitable for tracking complex non- 

rigid shapes (Yilmaz et al. 2004). Algorithms employing these representations 

maintain an appearance model of the object from previous frames and look for a 

corresponding object in the next frame, this model may be a colour histogram of 

pixels of the silhouette area, an edge map or the object contour. 

(a) (b) (c) (d) (e) 

(f) (g) (I') ý') 

Figure 2.1: Object representations (© Yilmaz 2006) 

Articulated shape models are composed of sub-parts held together by joints as shown 

in figure 2.1 e. Relationships between the various parts are governed by kinematic 

motion models which predict and constrain joint angles. Cylinders and ellipses are 

often used to represent the major components of such models. 
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In Figure 2.1 If a skeletal model represents the person. This alternative approach to 

representing articulated shapes is commonly used for recognising objects (Ali and 
Aggarwal 2001). This model is extracted by applying an axis to the object silhouette 
(Ballard and Brown 1982). 

Similarly, appearance models based on colour histograms have been used to represent 
the objects in video sequences. One of the advantages of this type of representation is 

that it is more robust to shape changes, but it may be prone to apparent colour changes 

caused by varying illumination. This may be handled by using colour spaces that are 
less prone to illumination changes, for example RGB space is more sensitive to 
illumination changes than HSI space. 

Templates are formed using simple geometric shapes or silhouettes (Fieguth and 
Terzopoulos 1997). They carry both spatial and appearance information. Active 

appearance models are generated by simultaneously modelling shape and appearance 
(Edwards et al. 1998). In general the object shape is represented by landmarks on the 

contour or inside it in the silhouette. They require a training phase in which examples 
of similar objects and dissimilar objects are provided (Viola and Jones 2003). 

2.3 Single Target Tracking Algorithms 

2.3.1 Data Association, Block Matching and Predictive Filters 

A crude, but potentially effective, way to track objects is to represent the object as a 

tight block of pixels which contains the object, and then search either the whole of the 

next image, or a predefined area around the previous position, for that pixel block. 

The search consists of scanning through the image trying to find a similar size block 

with the same characteristics as the tracked object. This technique is called block 

matching. Block matching is a form of data association (Bar-Shalom and Fortmann 

1988, Bar-Shalom and Li 1993, Grzegorz et al 2007). Image features expected to arise 
from the tracked object are extracted from each image independently and rules 
defined to associate the objects between frames. For instance one rule may be to 

accept the candidate in the next frame that lies closest to the target's old position in 

the previous frame. The data association approach however requires a distinction to 
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be made between the background and moving objects. This can be achieved by 

finding out which areas belong to moving targets using techniques like background 

subtraction. 

Perhaps the most widely adopted approach to visual tracking, however, is to view it as 

a predictive filter; a cyclic process in which the target's state in image N+l is 

predicted from its estimated state in image N, and that prediction is then used to 

initialize a localised search for the target. A local search window is usually employed, 

in which we search for the target's next position. If one target is found in the search 

area then the problem is trivial, but if multiple targets are found then we need some 

heuristic rules to identify the targets of interest. They may be minimum distance 

measures, appearance models like contour shapes or colour representations etc. This 

crude method will only succeed if the objects are small in number and almost never 

interact. The search window must also contain the targets of interest. If the targets 

move outside the search window, the approach fails. 

The success of a predictive tracker relies on the effective combination of a motion 

model, which determines where any search should commence, and a search area of 

appropriate size and shape. An accurate motion model greatly eases the tracking 

problem by reducing the size of the region that must be searched. However, when the 

motion model is not a good fit to the actual motion of the target, or noise introduces 

errors into estimates of target state, use of a small search area may lead to the target 

being missed. This can be compensated for by increasing the size of the search area to 

allow for prediction errors, but any increase in search area is accompanied by an 

increased risk that the tracker will become attracted to background clutter that forms a 

local maximum in its evaluation function The Kalman filter (Kalman 1960) resolves 

this dilemma well. 

2.3.2 Kalman Filter 

One of the earliest, but still most widely used predictive tracking algorithms is the 

Kalman Filter. The Kalman Filter (Kalman 1960) consists of an efficient 

computational (recursive) solution of the least squares method (Welch and Bishop 
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2001), and addresses the general problem of trying to estimate the state of a discrete 

time controlled process that is governed by a linear stochastic difference equation. 

The Kalman filter is quite efficient in several aspects; it supports estimation of past, 

present and future states, and it can do so even when the precise nature of the 

modelled system is unknown. The Kalman filter assumes that the posterior density at 

every time step is Gaussian, and hence parameterized by a mean and covariance. 

The Kalman filter estimates a process by using a form of feedback control; the filter 

estimates the process state at some time and then obtains feedback in the form of 

(noisy) measurements. As such, the equations for the Kalman filter fall into two 

groups: time update equations and measurement update equations. The time update 

equations are responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step. The 

measurement update equations are responsible for the feedback, i. e. for incorporating 

a new measurement into the a priori estimate to obtain an improved posteriori 

estimate. The time update equations can also be thought of as predictor equations, 

while the measurement update equations can be thought of as corrector equations. 
Indeed the final estimation algorithm resembles that of a predictor-corrector algorithm 

for solving numerical problems. 

One of the drawbacks of the Kalman filter is that it may fail or perform badly when 

the estimated problem's state cannot be modelled as a linear stochastic difference 

equation. This issue was addressed with the Extended Kalman Filter (Julier and 

Uhlmann 1997). A Kalman filter that linearizes about the current mean and 

covariance is referred to as an extended Kalman filter or EKF. In the extended 

Kalman filter the state distribution is approximated using a Gaussian random variable 

(GRV), which is then propagated analytically through the first order linearization of 

the non linear system. This can introduce large errors in the true posterior mean and 

covariance of the transformed GRV, this may lead to failure of the tracking in 

progress. 

The Unscented Kalman Filter (Wan and Merwe 2001) addresses this problem, by 

using a deterministic sampling approach, where the state is approximated by a 

Gaussian random variable, but it is now represented using a minimal set of carefully 
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chosen sample points which in theory completely capture the mean and covariance 

accurately. 

The Kalman filter was the de facto standard filtering algorithm for some time, despite 

its limitations. Advancements in particle filter-based tracking algorithms capable of 

supporting non-linear models and multiple hypotheses have, however, diminished the 

use of Kalman filters in recent years. 

2.3.3 Particle Filters 

While Kalman filtering has proved very effective as a visual tracking engine, it has 

two limitations. First, the original Kalman filter requires object motion to be linear. 

Though the EKF can handle non-linear motion models it is not guaranteed to 

converge. Second, and perhaps most importantly, the Kalman filter represents its 

hypothesis of target state as a single Gaussian. As a result, it can only maintain a 

single hypothesis. In many situations the data input to a tracker is ambiguous, and a 

successful algorithm must be able to maintain multiple hypotheses - i. e. a multi- not 

uni-modal probability density. Particle filters were created to support multiple 

hypotheses and work well in most situations. 

Particle filters are sequential Monte Carlo methods based on point mass of particles 

representations of probability densities, and they can be applied to any state space 

model. Sequential importance sampling (SIS) algorithms are Monte Carlo methods 

that form the basis for most sequential Monte Carlo filters (Doucet et at 2001). 

The sequential Monte Carlo approach is known by many names, including bootstrap 

filtering (Gordon et al 1993), interacting particle approximations (Crisanand et at 

1999), the Condensation algorithm (Isard and Blake 1998a), particle filtering 

(Carpenter et at 1999) and survival of the fittest (Kanazawa et al 1995). The key idea 

here is to represent the posterior density function (pdf) by a set of random samples 

with associated weight, and to obtain estimates based on these samples and their 

weights. Particle filtering is an iterative process and uses a set of discrete particles to 

represent multi-modal probability distributions that capture and maintain multiple 

hypotheses about target properties. Particles are repeatedly selected, projected 
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forwards using a motion model, dispersed by noise component, and evaluated against 

the image data. 

The basic particle filter works by spreading n number of particles around the tracked 

object, whose appearance model is known beforehand. This is effectively an object 

detection/recognition step. The weights of the particles are computed by matching 

individual particles' state with the appearance model and trying to assess the 

likelihood of that particle representing the true state (usually location) of the tracked 

object. In the next frame the object moves, and a new set of n particles is generated 

from the old one, in such a way that the particles with the higher weights in the 

previous frame are picked more often than the ones with a lower weight. To cater for 

the unpredictable nature of real world objects in motion, random noise is deliberately 

introduced to the particles' states in addition to motion characteristic data. This helps 

the filter to handle situations in which the object changes its path suddenly, not 

following any pre-defined motion model. After introducing noise into the particles we 

re-weight all n particles and find out where the objects has moved to by either 

selecting the highest weighted particle or, more commonly, taking the weighted 

average of the particles' states, which gives us the position of the object in the current 

frame. This phenomenon is shown in Figure 2.2. 

Since particles are placed randomly, many particles may be needed to cover a given 

state space. In the presence of background clutter that looks like the object, the 

particles may scatter widely across the image because particles falling on cluttered 

areas may have higher weights than the true target and so will be selected more often. 

This may result in the failure of the tracker. 

A standard problem in statistical pattern recognition is finding an object 

parameterized as x with prior p(x), using data z from a single image. The posterior 

density given by p(x I z) represents all the information about x that can be obtained 

from the data z. Posterior density can be obtained by applying Bayes' rule (Papoulis, 

A. 1990) 

P(x l z) = kp(z l x)P(x) (2.1) 
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Where k is a normalization constant that is independent of x. When p(z I x) becomes 

complex p(x I z) cannot be evaluated in simple closed form, so iterative sampling 

technique like factored sampling is used (Grenander et al 1991). This technique 

generates a random variate of x from a distribution P(x) that approximates the 

posterior p(x I --) .A sample set {s' ,s`,......., s'" } is first generated from the prior 

density p(x) and then an index of iE {1,..., N} is chosen with probability ir; where 

ir =y (2.2) 
1p_(SM) 

i=l 

and 

P. (x) = P(z 1 x) (2.3) 

the conditional observation density. The value x' = x, has a distribution which 

approximates the posterior p(x I z) increasing accurately as N increases (Figure 2.2). 

Probability 
_ posterior 

density 

weighted 
sample 

ýýý ýý State 

Figure 2.2: Factored Sampling. A set of points s, the centres of the blobs in the 

figure, is sampled randomly from the prior density p(x). Each sample is assigned a 

weight ir, proportional to the value of the observation density p(: I x) = s', this is 

also shown by the blob areas, as higher weight is shown as a larger blob. These 

weighted points serve as a representation of the posterior density p(x I z). 

The process at each time step is a self-contained iteration of factored sampling, the 

output of the iteration will be a weighted time stamped sample set {s, ", n =1,.... N} 
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with weights ire" , this weight represents the conditional state-density p(x, I z, ) at 

time t. Clearly the process will begin with a prior density, the prior for time (t) will be 

(t-1) and prior density will be given by p(xr_, I z1_, ) . This would have been derived 

from a prior sample set represented by {s, 
_, 

", 7r, _, 
", n =1,..... N) . 

Now when a new sample set is chosen from the one at time t-1, the probability of 

selection is proportional to ; r, , which represents the weights of particle set at time t- 1. 

So particles with high weights in the previous time step are picked more often. This 

particle set is then disrupted by additive random noise and reweighed using the data z 

at time t, giving the new distribution p(z, I xe) . 

Many particle filter-based trackers have been developed since Blake and Isard first 

introduced the Condensation algorithm. The Auxiliary Particle Filter (Pitt and 

Shephard 1999) selects particles in a more intelligent manner, making them 

concentrate around the true target and yielding better results. The approximation to 

the posterior is smoothed in the Regularized Particle Filter (Musso et at 2001), while 

ICondensation (Isard and A. Blake 1998b) uses importance sampling to combine high 

and low-level information within Condensation. A survey of commonly used particle 

filters can be found in (Arulampalam et at 2002 
, 
Ristic et at 2009). 

If an object shows more than one motion, simple Condensation, which assumes only 

one motion model, may fail. Mixed state Condensation (Isard and Blake 1998c) 

provides a mechanism for switching between multiple models. This work introduces 

an additional state variable that specifies which motion model should be used for 

tracking at a given instant. A matrix of model-state transition probabilities is 

provided, and used to process the discrete state label y forward in time. Using this 

model transition between states occurs automatically, as each state transition with 

non-zero probability contributes samples to the distribution. So the particle 

distribution is represented by all available motion models. As one model predicts the 

target position more accurately, it begins to dominate future predictions. This was 

successfully shown to track a bouncing ball with multiple motion models (Isard and 

Blake 1998c); the tracker switched motion models as the ball bounced from a racquet, 
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and at the top of its flight when it started to come down towards the racquet under the 
influence of gravity. 

For effective tracking in real-world environments the particle set must sample widely 

enough to represent all reasonable alternatives in areas of ambiguity. It must not, 
however, become diffused, spreading across the image plane rather than clustering 

around the object of interest. When this happens particles tend to migrate towards 
local maxima in their evaluation function, becoming caught on clutter and losing track 

of the target. Similarly, particles should not become too focused: the tracker should 
not become irreversibly locked onto a single mode. 

A key issue in the design of particle filter-based trackers is how to manage the spread 
of the particle set to balance these conflicting requirements. The variance of the 

posterior is simply and elegantly maintained by the Kalman filter, but particle filters 

cannot assume a Gaussian, or indeed any specific, distribution. Moreover, balance 

must be achieved with as few particles as reasonably possible. Increasing the particle 
set improves representational accuracy, but adds significantly to computational 
overhead. 

Several works have addressed aspects of this problem. Some point out that, in 

practice, the advantages of the particle filter approach are often lost as particles 

cluster, sometimes very quickly, around one target hypothesis. They focus on 

maintaining a wider distribution. The Annealed Particle Filter (Deutscher et al 2000) 

uses annealing to smooth out the evaluation function, making the global maximum 

clearer and allowing particles to be spread further, by increasing the process noise, 

without becoming caught on local clutter. Vermaak et al (Vermaak et al 2003) 

explicitly model the particle distribution as a Gaussian mixture model, forcing the 

resulting filter to sample an appropriate number of particles from each model 

component. This prevents a single, slightly more highly weighted, mode from 

dominating the particle distribution. A similar approach is taken in (Milstein et al 
2002), particles are clustered and each cluster tracked individually. 

Other workers consider standard algorithms to spread the particle set too thinly across 
the image and concentrate effort on forcing particles to coalesce, reducing the number 
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needed and so computational expense. The Kernel Particle Filter (Chang and Ansari 

2005) applies a Mean Shift operation to the particle set to pull the centre of the 

particle distribution towards the target centre. This is effective, but clusters weighted 

particles without further reference to the image data, taking no account of the actual 

shape of the evaluation function between the locations sampled by the particle set. 

The work reported in this thesis focuses on the problem of managing particle spread 

by creating hybrid trackers which combine particle filter methods with variational 

techniques, specifically the Kernel Mean Shift algorithm. The following section 

reviews Kernel Mean Shift tracking, before previous hybrids are considered in 

Section 2.3.5. 

2.3.4 Kernel Mean Shift 

The Kernel Mean Shift algorithm (Comaniciu et at 2003) is an effective and fast 

algorithm with which to track objects. Here, the target is represented by a feature 

distribution regularized by a spatial mask with an isotropic kernel. This masking 
induces spatially smooth similarity functions suitable for gradient based optimization. 

The Bhattacharya coefficient is used as the similarity measure and the Mean Shift 

algorithm is used to locate the optimal position. The Kernel Mean Shift algorithm hill 

climbs towards the target, minimizing the distance between the target and the model 

descriptions. 

The algorithm constructs a probability density function (pdf) using a histogram of the 

tracked area, and stores it as the model of the object being tracked. It then computes 

the likelihood of each pixel being the part of the object on the search grid which is a 

bigger area around the previous position of the object. After that the algorithm moves 

the target location to the local maxima. 

Consider the following 1- D example where x is the position on x-axis, p(x) is the 

probability or likelihood of that pixel on y-axis. 
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Figure 2.3 One-dimensional Mean Shift: an example. 

Figures 2.3(a) and 2.3(b) show how Mean Shift moves towards the higher weighted 

areas. Consider the high valued area as the current position of the object that moved 

recently from its old position shown by the blue line. In this figure we have used a1D 

case for simplicity, and use a sliding window of 3 units. In figure 2.3(a) we have 6 

blocks showing the weights, the blue line is the current centre, as the high weight area 

is between block 3 and block 4, we hope to shift the centre towards them. So 

assuming the 3 block window, we simply plug in the weights of block 1,2 and 3 (10, 

10 and 20 respectively) in equation 2.4. 

Ix, p(x,, )Iyp(x1)=(1*10+2*10+3*20)/40= 2.5 (2.4) 

where x; is the block number and P(xi) is the weight of each block. The 2.5 is the new 

centre shown by the red line in figure 2.3(b), and it is closer to the true centre which is 

in this case between block 3 and 4. This process is repeated until the tracker reaches 

the highest weighted position. 

If the window does not contain the high weighting region, as shown in figure 2.4, 

Mean Shift becomes ineffective. If the 3 blocks making up the sliding window lie 

over positions 1,2 and 3 
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finit mean 

Figure 2.4: Example in which Mean Shift fails due to incorrect window size or fast 

movement of the object. 

ýx; p(x, )IIp(x, )=(1*10+2*10+3*10)/40= 1.5 (2.5) 

The centre has not shifted due to the fact that no high weighted region was within the 

window. Hence, if the window is not sufficiently big, or the object jumps beyond the 

scope of the window, tracking fails. 

Kernel Mean Shift is effective, but simple. The spatial kernel provides some 

robustness to noise and partial occlusion, and the algorithm provides efficient and 

effective tracking of larger, slower moving targets. If, however, the target moves by 

more than its own diameter between frames, there is little chance that the hill 

climbing procedure will seek out the correct peak. Even if the tracker is in the vicinity 

of the target (i. e. the global maximum), the algorithm may climb the wrong hill and 

latch on to clutter if it lies on the slope of a local maximum (Figure 2.5). 
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Mean Shift 

Figure 2.5: Mean Shift can climb the wrong hill. 

Figure 2.5 shows two Mean Shift trackers trying to achieve the maximum peak by hill 

climbing. The top most peak represents the tracked object, and the lower peaks 

represent clutter that looks somewhat like the object. Now if the Mean Shift falls on a 

position as shown by the blue square then after hill climbing toward maximum will 

result in successful tracking, but if it was slightly towards the left it now falls on the 

slope of the wrong hill belonging to clutter, and now it will climb the wrong hill. 

Since Kernel Mean Shift only maintains one hypothesis of object's position, it may 

fail. 

A number of variations on this theme have been described; a variety of colour models 

and similarity measures (Yang et al 2005) have been used and arbitrary spatial 

weighting (Leung and Gong 2006) has been incorporated to represent objects with 

arbitrary or changing shapes. Collins (Collins 2003) has extended the approach to 

track blobs through scale space, alternating Mean Shift tracking in the spatial and 

scale axes. Zhao and Nevatia (Zhao and Nevatia 2004) employ a Mean Shift with an 

additional term which requires the target to be different from the local background, 

while Porikli and Tuzel (Porikli and Tuzel 2005) use a set of kernels of varying sizes 

to capture a wider range of target motion. 

2.3.5 Hybrid Tracking Algorithms 

A hybrid filter is formed when two or more existing tracking algorithms are combined 

to achieve a hopefully superior tracking algorithm. As discussed earlier, different 
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trackers have different strengths and weaknesses. Combing two or more in an 

efficient manner may exploit their strengths while reducing their drawbacks. For 

instance, Mean Shift maintains only one hypothesis, and usually fails when object 
jumps more than a specified distance in one frame, but it climbs the hill efficiently. 
Particle filters on the other hand need a lot of particles to cover a given space 

thoroughly as the particles are scattered randomly. In the remainder of this chapter 

attention is focused on hybrids of the Kernel Mean Shift and particle filter 

approaches. 

Maggio and Cavallaro's hybrid tracker (Maggio and Cavallaro 2005) combines 

Condensation with Mean Shift tracking to provide a system in which particles are 

alternately diffused by Condensation and clustered towards the local maxima by 

performing Mean Shift on each particle. Multiple hypotheses are maintained by 

projecting a number of particles randomly around the prior position, and then these 

particles hill climb towards the best target centre. This results in a smaller number of 

particles being required to carry out tracking successfully. 

"" 
" 

."" 

.f" 

" 
"f" 

" 
" H® 

condensation after mean shift 
Figure 2.6: Hybrid Filter stages for each frame. 

Figure 2.6 illustrates the outlines the operation of the hybrid filter, in the first stage 

the particles are distributed using a predictive motion model and a small random 

component, and then each particle is drawn towards the global maximum by 

application of Mean Shift. This as we can see gives us an accurate measure of the 

objects centre while maintaining multiple hypotheses. 
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The hybrid tracker shows performance advantages over both Condensation and Mean 

Shift tracking, but also has some drawbacks. As the particles are randomly projected 

we still need a good number to cover a given search space. Running N Mean Shift 

trackers, where N is the number of particles in the system, also makes the system 

computationally expensive. Furthermore, many of the particles coalesce during the 

Mean Shift phase, moving to the same hypothesis and making the representation 

redundant. If Condensation tends towards an incorrect local maximum, mean-shift 

will accelerate the process. 

Shan (Shan et al 2007) combine the two approaches in essentially the same way as 

Maggio and Cavallaro (Maggio and Cavallaro 2005), but argue that following Mean 

Shift the particle set samples a different distribution, in which the influence of the 

motion model is reduced. Shan et al view the Mean Shifted particles as arising from 

an importance function, rather than the temporal prior, and combine Mean Shifted and 

unprocessed particles together as in (Isard and Blake 1998b). Wang (Wang et al 2007) 

use CamShift (Bradski 1998) to move particles towards modes in the evaluation 

function, taking advantage of CamShift's ability to adaptively change the scale of the 

target sought. 

Chapter 3 of this thesis proposes a hybrid tracking algorithm (SOK) in which Kernel 

Mean Shift is the dominant technology. A small number of particles are generated, in 

a structured fashion, to explore further when confidence in Kernel Mean Shift 

becomes low. Following analysis of this initial algorithm another single target tracker, 

Kernel Annealed Mean Shift (KAMS) is developed. KAMS combines Annealed 

Particle Filtering (Deutscher et al 2000) with Kernel Mean Shift, achieving 

performance advantages over Condensation, Kernel Mean Shift, annealed particle 

filtering and Maggio and Cavallaro's hybrid algorithm. KAMS is described and 

discussed in chapter 4 of this thesis. 
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2.4 Multiple Target Tracking Algorithms 

The previous section considered single target tracking algorithms. Many situations, 

however, require multiple objects to be tracked. Examples include applications in 

surveillance, medical sample analysis, and traffic applications (Suyu et al 2007, Chen 

et a! 2007). 

In single target tracking the key problems are cluttering and occlusion of the target by 

surrounding objects, and the effects of noise in the motion and appearance estimates 

made, When multiple targets must be tracked concurrently, the situation becomes 

more complex. Simply applying a tracker, independently, to each target is 

problematic. Targets may pass close to, or even occlude, each other. The problem is 

greater if the targets appear similar. As each tracker employs a model of its target, 

those tracking similar targets will use similar, possibly identical models. In the 

presence of noise, it is almost inevitable that one target will be a closer fit to those 

models than the rest. Over time, as targets pass close to and/or collide with each other, 

trackers will tend to migrate onto that object. A set of N trackers associated with each 

of N targets will quickly coalesce into a set of N trackers all tracking one target, with 

N-1 targets being ignored. 

Multiple target tracking algorithms can be placed in two major categories. In the first, 

a single target tracker is attached to each object, and some intelligent interaction 

handling mechanism is introduced to mediate between them. This is there to handle 

possible occlusions and collisions. Other multi-target trackers may maintain a joint 

state in which every hypothesis contains information about all the targets. Multi-target 

tracking algorithms are the topic of the reminder of this section. 

2.4.1 Multiple Hypothesis Tracker 

If Kalman filtering is used to track many objects that may appear alike, then to the 

tracker responsible for any one object, others will appear and act like clutter. Multiple 

`correct' measurements (i. e. many targets) will exist and hence form a potentially 

non-Gaussian probability distribution function. A Kalman filter cannot represent this 

situation effectively. The Kalman filter has however been used as a component in 
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multi-object tracking algorithms like the Multiple Hypothesis Tracker (Reid 1979). 

The MHT algorithm maintains several correspondence hypotheses for each object at 

each time frame. The algorithm has the ability to create new tracks for objects 

entering the observed area and terminate tracks for objects exiting the field of view. It 

can also handle occlusions, that is, continuation of a track even if some of the 

measurements from an object are missing. In the MHT probabilities are employed to 

assign measurements to tracked objects and then a Kalman filter is used to derive the 

state estimation. This method has a number of drawbacks. It expects an inflow of new 

targets into the surveillance region, and can in fact initiate new target tracking from 

one measurement. This is problematic for any scenes with background clutter, or for 

any scenarios where the number of targets is fixed. The MHT algorithm is also 

computationally exponential both in memory and time. 

2.4.2 The Joint Probabilistic Data Association Filter 

The Joint Probabilistic Data Association Filter or JPDAF (Bar-Shalom and Fortmann 

1988) attempts to eliminate some of the problems of the Multiple Hypothesis Tracker. 

The number of tracked targets is fixed as JPDAF does not expect new objects to enter 

or existing objects to leave the scene. This algorithm handles the association of an 

arbitrary number of measurements at a given time to an arbitrary number of 

established targets, i. e. no new targets are accounted for. However, the algorithm 

itself has drawbacks, including its inability to handle occlusions well. As image 

likelihoods are evaluated independently, tracking can break down when targets 

become close to one another or overlap, and no mechanism is given to overcome this 

problem. 

2.4.3 Mixed state tracker 

Particle filters and other Monte Carlo methods are generally poor when the posterior 
is multi modal as a result of the ambiguity caused by the presence of multiple objects. 

Though particle filters can in principle represent multi-modal distributions, in practice 

the particles tend to cluster very quickly around a single (the most likely) hypothesis. 

The Mixed State Tracker (Vermaak et al 2003) addresses this problem by modeling 

the target distribution as a non-parametric mixture model. Vermaak and Doucet show 

that Monte Carlo implementation of a general recursive tracker leads to a mixture of 
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particle filters that interact only in the computation of the mixture weights, leading to 

an effective tracking algorithm. This algorithm maintains posterior multi-modality for 

each object. Usually the number of modes is limited to a threshold and a number of 

particles are assigned to each mode. For example, if 5 modes are computed and 

maintained for the object appearance, and 20 particles are assigned to each mode, then 

for each object we have 100 particles in total. The crucial design issues in mixture 

particle filters are the choice of the proposal distribution and the treatment of objects 

leaving and entering the scene. 

2.4.4 Boosted particle filtering 

A Boosted particle filter (Okuma et al 2004) which extends the approach of Mixed 

state tracker (Vermaak et al 2003) uses a cascaded Adaboost algorithm (Viola and 

Jones 2001) to train and learn models of the tracked objects, in this case hockey 

players. These detection models are used to guide the particle filter. The proposal 

distribution consists of a probabilistic mixture model that incorporates information 

from Adaboost and the dynamic models of the individual players. This enables them 

to quickly detect and track players in a dynamically changing background. 

2.4.5 Markov Chain Monte Carlo (MCMC) Algorithm 

Some of the most promising work on multi-target tracking was carried out by Khan et 

al (2003,2004). The basic hypothesis here is that objects in close proximity influence 

each other's behaviour. In their first paper (Khan et al 2003), a Markov random field 

(MRF) motion model is used to model the interactions between ants which were being 

tracked in a confined area. This similar target tracking problem is one of the most 

difficult to handle since all the targets have exactly the same appearance, no matter 

how they are represented. The tracking was very effective in their experiments, but, 

since the joint state space of all targets is required, the particle filter suffers from 

exponential complexity in the number of targets. Their second paper (Khan et al 

2004) replaces the traditional sampling step of particle filters with a Markov chain 

Monte Carlo (MCMC) step. This allows a more efficient representation of the joint 

space and along with the MRF interaction function produces good quality tracking of 

multiple targets. 
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One of the problems with single target trackers while tracking similar objects is that 

individual tracker has no information about other objects, and if the appearance model 

of one of them appears to be the best in a frame then all trackers coalesce on the best 

target representation. Khan's MCMC algorithm represents a joint state and is one of 

the most effective multi object trackers. Once objects start to interact or trackers try to 

coalesce on an object tracked by another tracker, the MRF-based interaction 

mechanism tries to prevent it. As well as being evaluated by a measurement from the 

image, the particles are also affected by the value of the interaction term as in the 

following equation 

P(Zlr I XidI1 
j¬E, 

V (X,, 
+X j1) 2.6 

where P(Zi, I X, ) is the image measurement and [J 
JEE, yi(X,,, Xj, ) is the interaction 

metric. E, is the set of Markov random field graph edges connected to the target 

i (i. e. target with which an interaction can occur), y' is the interaction function which 

takes the form of a Markov random field-based motion model, which produces a low 

probability score if targets are within a certain distance of each other. This prevents 

trackers from making very similar hypotheses, resisting the tendency of multiple 

trackers to latch on to the target with the best appearance match. 

2.4.6 Motion Parameter Sharing (MPS) 

Khan's MCMC algorithm is a very promising tracker though complete and partial 

occlusions may still cause some targets to be lost. Motion parameter sharing was 

developed by Andrew French (French et at 2007) to address this problem. MPS 

(French et al 2007) is similar to Khan's algorithm, but also uses the movement of 

objects in a group exhibiting similar motion characteristics to predict their future 

positions. 

The assumption underlying motion parameter sharing is that if it could be identified 

that some targets are exhibiting the same motion characteristics, e. g. speed and 
direction, then they would probably continue to move in the same way in the future. 

Even if an object moving in a group is occluded for some time, its state can be 
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estimated by considering the motion characteristics of visible members of the group it 

is believed to be moving in. 

In French's MPS, motion estimates are maintained for each object over a number of 

frames, this includes both speed and direction. Objects moving in groups are 

identified and their motion predicted using motion estimates associated with a 

randomly selected member of the group. Of course, after each frame the object's 

positions and group dynamics also changed as its motion history is also updated. So 

objects may leave and enter a group based on the motion they exhibit. Spearman 

correlation was used to determine if the motion characteristics of speed and angle of 

objects correlated enough to consider them members of the same group. French's 

MPS showed increased accuracy and robustness to situations when occlusions occur 

and results were published in the AVSS 2007 conference (French et al 2007). 

2.5 Major Applications of Tracking 

There are many applications of object tracking, it is actively used in automated 

surveillance applications for monitoring and security (Kerhet et al 2007), (French et al 

2007). Many applications analyzing gestures (Starner and Pentland 1995) and events 

including human behaviour (Nickel and Stiefelhagen 2007) use tracking. It has been 

used for the past decade in medical applications like microscopic sample analysis and 

joint movement studies, sports analysis (Perlt and KovaN6 2000) may also use object 

tracking to study team strategies and moves. Many human computer interfaces may 

use visual tracking and many companies are now developing HCI (human computer 

interaction) devices based on tracking. These range from web cameras for video 

conferencing to human input devices used in the gaming industry. Automated traffic 

flow and monitoring systems also employ these techniques. Many sensors and devices 

for vehicles are being produced and developed whose purpose ranges from pedestrian 

safety to vehicle navigation. 

2.6 Performance Evaluation of Tracking Algorithms 

As the number and variety of tracking algorithms grows, it becomes increasingly 

important that suitable performance evaluation and comparison techniques be 

available. Evaluation of visual tracking algorithms is a complex task requiring 
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consideration of the robustness, accuracy and computational cost of any proposed 

method. Estimation of accuracy requires some measure to be made of how well 

tracker output reflects the true path of the target, while robustness measures how well 

the tracker performs in a large number of different scenarios; the more scenarios and 

problems it can handle the more robust it is. A tracker is generally considered to have 

failed when it becomes dissociated from its target, and failure is usually detected by 

eye. Artificially generated image sequences may be used, providing a high level of 

control over the test data available. Artificial data, however, can only approximate 

real world tracking problems and so cannot support a complete assessment. Real 

image sequences must be included in any comprehensive evaluation protocol. 

2.6.1 Previous Work 

An increasing amount of work is being carried out in the field of performance 

evaluation of object tracking algorithms. Ellis (Ellis 2002) investigated major 

requirements for efficient and effective performance analysis for surveillance systems 

and proposed some methods for characterizing video datasets. Needham (Needham 

and Boyle 2003) proposed a set of metrics and statistics for comparing trajectories 

and evaluating tracking motion systems. Brown (Brown et al 2005) suggest a motion 

tracking evaluation framework that estimates the number of true positive, false 

positive and false negative, merged and split trajectories. 

Yin (Yin et al 2007) proposes a set of metrics that compare the output of motion 

tracking systems to a ground truth in order to evaluate performance. They present a 

set of statistical metrics to assess different aspects of performance of motion tracking. 

The proposed statistical metrics, such as track matching error, closeness of tracks and 

track completeness, indicate the accuracy of position estimates, the spatial and 

temporal extent of the objects respectively and are closely related to the motion 

segmentation module of the tracker. Metrics such as correct detection track, false 

alarm track and track detection failure provide a general overview of algorithm 

performance. Track fragmentation shows the temporal coherence of tracks. ID 

Change is useful to test the data association module of multi target trackers. 

The data used during evaluation must be carefully chosen. Several projects, typified 

by the i-LIDS programme in the UK (i-LIDS 2007), have sought to provide standard 
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test sets. I-LIDS have developed an image library to help academics and system 

manufacturers evaluate video analytics systems to meet Government requirements. i- 

LIDS currently consists of a video library of CCTV footage based on five different 

scenarios: abandoned baggage, parked vehicle, doorway surveillance, sterile zone and 

multiple camera tracking. Though it is a valuable resource for those developing 

tracking algorithms, i-LIDS is designed with higher level operations in mind. 

The remainder of section 2.6 describes the evaluation methods used to assess the 

visual tracking algorithms developed and reported here. To provide a thorough 

comparative evaluation of the different hybrid techniques proposed, and their 

component algorithms, estimates are made of computational cost (section 2.6.2), the 

accuracy of the target state descriptions produced (section 2.6.3) and robustness 

(sections 2.6.4 and 2.6.5). Robustness is measured in two ways. Numerical estimates 

of the sensitivity (proportion of targets correctly labelled) of the various algorithms 

provide fine-grained measurements (section 2.6.4), but the absolute difference in 

sensitivity between two algorithms can be hard to interpret. In contrast, McNemar's 

statistic (section 2.6.5) provides a principled, quantitative test of the relative 

robustness of tracking algorithms, reporting, with an associated confidence value, 

which of two algorithms has produced the best performance over a given test set. 

2.6.2 Evaluating Computational Cost 

Execution times provide an estimate of the computational costs of tracking 

algorithms. Execution times per frame were computed and are used for comparison 

throughout the thesis. All algorithms were run on a standard personal computer fitted 

with an Intel Pentium quad core 2.4 GHz Q6600 processor, 2 GB RAM, 7200rpm 

SATA HDD and windows XP. Care was taken to ensure that no other applications or 

extra services were running while execution time measurements were made. The 

average time taken per frame for each algorithm was computed and is reported. 

2.6.3 Evaluating Positional Accuracy 

When evaluating the positional accuracy of the tracking algorithms developed here, 

the positional frame by frame error between tracked path and ground truth, and root 

mean square (RMS) techniques are adopted. As discussed earlier, RMS gives quite 

accurate results when the image sequences are artificial, but real image sequences 
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must also be tested. Both real and artificial sequences are used here The ground truth 

of artificial videos is provided by the generating software, and the ground truth of the 

real world videos is obtained manually by clicking on the objects frame by frame, 

pointing out their locations very carefully. The trackers' outputs were matched to the 

appropriate ground truth and frame by frame squared error plots were created. 

2.6.4 Evaluation of Classification Accuracy 

The positional error measures outlined in section 2.6.3 assess the accuracy of the 

target state descriptions produced by tracking. Visual tracking can also be thought of 

as a process of classification, in which the tracker labels some image location(s) as 

containing target(s), and others not. Robust tracking therefore results in a higher 

proportion of correct classifications. Classification accuracy is traditionally evaluated 

by considering measures of sensitivity and specificity. 

In a recognition task, sensitivity is the proportion of occurrences of the target that are 

identified correctly, and specificity the proportion of non-occurrences of the target 

that are correctly identified. In a tracking scenario we define: 

True Negative, TN: The number of frames in which both ground truth and system 

results agree on the absence of any object, so no trackers are active and no objects 

are in view. 

" True Positive, TP: The number of frames in which both ground truth and system 

results agree on the presence of object(s), i. e. the trackers are on those objects 

respectively. 

" False Negative, FN: The number of frames in which ground truth contains some 

object(s), while the system sees no object(s) and hence no tracker is active. 

" False Positive, FP: The number of frames in which there is a tracker initialized 

for some object(s), while ground truth either does not contain any object(s) or 

none of the ground truth's objects fall under any tracker. 

Sensitivity and specificity are then defined as: 

Sensitivity = 
TP 

TP + FN 
(2.7) 
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Specificity = 
TN 

TN+FP 
(2.8) 

It is common when evaluating recognition systems to report both measures. The 

trackers reported here, however, do not include a target detection (i. e. recognition) 

step. All the trackers considered here are manually initialised at the beginning of each 

test run, so tracking begins with each tracker associated with a valid target. Target 

objects also never leave or enter the scene during the image sequences used. As a 

result, negatives are not reported by any of the algorithms being evaluated and TN 

and FN cannot be estimated. Only true positives (tracker still on its initial target) and 
false positives (tracker dissociated from its original target) can be counted. Specificity 

cannot, therefore, be computed directly. Sensitivity is calculated as the ratio between 

true positives and total number of frames, and so is available. The sensitivity of each 

algorithm implemented and compared is computed and reported throughout the thesis. 

2.6.5 Using McNemar's Statistic to Evaluate Robustness 

The robustness of a visual tracker is a measure of the extent to which it remains 

associated with the (correct) target throughout the test sequences. At present all 

trackers can reasonably be expected to lose their target at some point, the purpose of 

any performance evaluation scheme is to investigate the frequency with which and the 

conditions under which this occurs. A typical robustness test involves applying the 

algorithm to a set of image sequences, noting the points at which it fails and 

discussing why each failure, or a representative set of such failures occurred. 

Comparative analysis is achieved by pointing out situations in which tracker A lost 

the target while tracker B maintained its lock, and vice versa. Robustness analysis is 

therefore often qualitative, and largely subjective. 

French (French et at 2007) compares the particle filter with his MPS object tracker 

and reports the number of objects successfully tracked till the end by both algorithms. 

Khan (Khan et al 2004), counts the number of failures, when the trackers go off the 

target by more than 50 pixels and reports them for each algorithm for a very long 

image sequence consisting of 10400 frames with 20 tracked objects. 
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Estimates of sensitivity, and specificity when appropriate, go some way towards 

addressing these problems. They provide clear numerical measures of the robustness 

of target detection/tracking algorithms. They are naturally applied to each frame of 

the test sequences used and so provide fine-grained descriptions of performance. Care 

must be taken, however, when choosing test sequences. A tracker that fails early in a 

long sequence will generate a much lower sensitivity measure than one which fails the 

same number of frames into a short sequence, despite both having failed once. 

Perhaps more importantly, though the sensitivity measures obtained from competing 

algorithms identify the algorithm with the highest sensitivity, the absolute difference 

between sensitivity values is hard to interpret. Is a given difference in sensitivity 

significant, or not? 

To address these issues a further, complementary, evaluation technique is used. 

Statistical tests exist which can be applied to the results of tracking targets through a 

set of sequences to provide principled, quantitative statements of the relative 

robustness of tracking algorithms. McNemar's test is appropriate to this type of 

comparison (Clark et at 2008), and is applied here to evaluate robustness of 

competing pairs of algorithms at the image sequence, as opposed to frame, level 

McNemar's statistic is a form of chi-square test for matched paired data. Consider the 

following 2x2 table of results for two algorithms (Table 2.1): 

Algorithm A Algorithm A 

Failed Succeeded 

Algorithm B 
Nff Nsf 

Failed 

Algorithm B Nfs Nss 
Succeeded 

Table 2.1: Table showing different scenarios for McNemar's test. 
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Let Nxy give the number of times algorithm A produced result x and algorithm B 

produced result y, and f and s denote failure and success respectively. McNemar's 

statistic is then: 

XZ 
(INSf -Nft _1)2 

(Nsf +Nfs) 
(2.9) 

where the -1 is a continuity correction. If the number of tests is greater than about 30 

then the central limit theorem applies. In such a case, the Z score (standard score) is 

obtained from (2.10) as: 

(I Nf -N js 1-1) 

(Nsf+Nfs) 
(2.10) 

If the two algorithms give similar results then Z will tend to zero (though z tends to 

infinity if the two algorithms perform exactly the same). As their results diverge, Z 

increases. Confidence limits can be associated with the Z value (Table 2.2). 

Z Value Degree of confidence (one-tailed prediction) 

1.645 95% 

1.960 97.5% 

2.326 99% 

2.576 99.5% 

Table 2.2: Converting Z scores into confidence limits 

To apply McNemar's to compare two algorithms tracking some target(s) through a set 

of videos, a definition of success and failure is required. We consider tracker A to 

have succeeded and tracker B to have failed if algorithm A maintains tracking for a 

greater proportion of a given image sequence, measured from the beginning of the 

sequence and using the same starting parameters. In effect we define success to be 

tracking as long as the more successful of the two trackers, and employ test sequences 

that are long enough and complex enough to force failure. In our applications of 

McNemar's to date (Chapter 3,4,5) loss of target is identified by eye, but clearly 
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defined as there being no association between any part of the target and any aspect of 

the tracker. Future robustness tests in this thesis will all refer to McNemar's test. 

McNemar's statistic is computed over a representative, and ideally standard and 

publically available set of image sequences, requiring more than 30 sequences to 

produce a statistically reliable result. The image sequences used to evaluate the 

trackers developed here are described in Appendix A and Appendix B. Appendix A 

contains a single frame from test sequences showing a single moving target, 

Appendix B shows a single frame from videos showing multiple targets. Both include 

short descriptions of the videos. McNemar's test was employed for both single and 

multiple target tracking algorithms. 

Detailed qualitative analysis of the causes of tracking failure will always be required 

to identify the strengths and weaknesses of tracking algorithms and to identify 

directions for future research. We believe, however, that statistical tests are valuable 

in the formal assessment of performance, and that McNemar's statistic, used as 

described here, is a valuable tool in the comparative analysis of tracking algorithms. 
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Chapter 3: Structured Combination of 
Particle Filter and Mean Shift Tracking 

3.1 Introduction 

Tracking algorithms may maintain a single or multiple hypotheses of possible object 

positions. Algorithms like Kalman filtering and Kernel Mean Shift maintain a single 

hypothesis which, although efficient computationally, may lead to tracker failure. If a 

tracker maintaining only a single hypothesis loses the object due to high-speed 

motion, occlusion, clutter, or for any other reason, it may fail to recover. If the only 

hypothesis maintained is incorrect there is no other option to turn to. 

As discussed in earlier chapters, particle filters' main strength lies in the fact that they 

can represent multi-modal probability density functions that can capture and maintain 

multiple hypotheses. The particles in a particle filter are dispersed based on the 

current motion model, and random noise added to each particle. Even if the object 

suddenly changes its motion, some particles can reasonably be expected to fall on the 

new position of the object, provided the filter has sufficient particles to cover a decent 

area around the object. 

One of the potential weaknesses of the original particle filter, however, is that if 

clutter is present around the tracked object which matches the appearance model of 

the target, then dispersed particles falling on local maxima (clutter) may obtain high 

weights from the evaluation function. While generating a new particle set from the old 

54 



Chapter 3 

one based on those weights, particles on clutter may be selected more often than those 

on the target. Since particle filters are iterative processes in which the particle set is 

repeatedly selected from the previous one based on their weights, the particle set may 

become diffused across the image after several iterations. A number of solutions to 

the problem have been proposed, as discussed in Chapter 2. 

Recently, Maggio and Cavallaro (Maggio and Cavallaro 2005) used the Kernel Mean 

Shift tracking algorithm (Comaniciu et al 2003) to move particles towards local 

maxima on each iteration of Condensation (Isard and Blake 1998a). Kernel Mean 

Shift tracking is a hill climbing approach which first computes the likelihood of each 

pixel in a circular search space around the prior target centre being the next target 

centre, then moves the previous centre towards the maximum likelihood solution. The 

object model and candidate model both comprise probability density functions (pdfs) 

approximated by 2-D normalised histograms over the RGB colour space. The two 

dimensions are the ratios red/blue and green/blue. A kernel mask is used to give a 

higher weighting to pixels nearer the centre of the circular search region, making the 

algorithm more robust to target localisation errors and partial occlusions. The 

Bhattacharya distance is a measure of how close the tested appearance model is to the 

actual target model of the object, it lies between 1 and 0. A Bhattacharya distance 

close to zero means that the tested model is closer to the target model, while a 

distance closer to 1 means the similarity between the two is lower. Kernel Mean Shift 

tracking is an iterative process which continues until the Bhattacharya distance 

between the target pdf and the candidate pdf is either zero or a minimum value 

(Comaniciu et a! 2003). 

Kernel Mean Shift provides efficient and effective tracking as long as the target object 

does not leave the search area or move further than its own diameter between frames, 

this is due to the fact that the kernel mask used to cancel the effect of partial 

occlusions of nearby objects reduces the importance of outer pixels as compared to 

the centre pixels of the tracker area. If the target object jumps further than its diameter 

it will move beyond the kernel mask, and pixels beyond the kernel mask are ignored, 

so the Mean Shift tracker will fail. 
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Mean Shift is a competent tracker and in many situations can maintain tracking 

without the multiple hypotheses represented by the particle set. While valuable in 

areas of high ambiguity, in most cases the Condensation component of the hybrid 

tracker is an unnecessary overhead. These observations lead us to propose an 

alternative hybrid approach in which Kernel Mean Shift is the dominant technology, 

with a small number of particles being generated, in a structured fashion, to explore 

further when confidence in the Mean Shift algorithm becomes low. 

The proposed algorithm, which we term the Structured Octal Kernel (SOK) filter, is 

described in Section 3.2. Section 3.3 describes the algorithms that SOK was gauged 

against, and the tests conducted. Experimental results are presented in Section 3.4. 

Section 3.5 compares SOK's structured search with the random particle placement 

normally associated with particle filtering, and conclusions are drawn in Section 3.6. 

3.2 The Structured Octal Kernel Filter 

The Structured Octal Kernel (SOK) filter is a Kernel Mean Shift tracker augmented 

by a backup strategy triggered when confidence in the current location estimate is 

low. Confidence at time t is given by 

C, = (1.0 - bhata(t)) (3.1) 

where bhata(t) in equation 3.1 is the Bhattacharya distance between object model and 

image data at time t. 

C, may be defined as a confidence level, ranging from 0 to 1, that shows if the target 

is on the object or not. A high value (close to 1) of C, shows that target is on the object 

and vice versa. A user-defined threshold, T, is applied to C at each time step, If C, is 

below threshold a set of eight independent Kernel Mean Shift trackers are spawned, 

each with the same object model as the original but at locations designed to cover a 

search area around the current position estimate (Figure 3.1). When these additional 

trackers have also each converged, nine estimates of target location are available, each 

with an associated confidence level. The estimate with the highest confidence is 

selected, control is shifted to single Mean Shift algorithm and the process continues. 

This mirrors the hybrid tracker of (Maggio and Cavallaro 2005); the algorithm 

effectively generates eight evenly spaced particles when confidence in the Mean Shift 

is low. 
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Figure 3.1. The SOK particle distribution. A hatched circle shows the primary KMS 

tracker, light circles the secondary "particles", a dark circle the target. 

The appearance model used to represent the target object in all the implementations of 

tracking algorithms used in this chapter is a 2D colour histogram of size 50x50. The 

colour space used is RGB, with the red(r) and green (g) components normalized by 

the corresponding blue (b) value (r = rib; g= gib). This way the 2D histogram 

represents all the 3 colours with an added advantage. Division by the blue value 

reduces the effects of illumination changes, hence making the object model more 

robust to slight to medium lighting changes. Each red, blue and green component of 

each pixel is represented by 0-255 (256) values. Since we have only 50 bins for each 

r/b and g/b component, each bin represents a specific range, for instance the first bin 

represents r/b from 0-255/50 and g/b from 0-255/50. 
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1. Pick a target area (centre) 

2. Compute a Normalized 2-D Histogram for area to get the target. 

3. Loop { 

1. Get a frame. 

2. From the current centre compute the candidate normalized 2-D Histogram. 

3. Compute Bhattacharya distance between target and candidate 

4. Loop Till Bhattacharya distance becomes constant 

a. Hill climb towards the maxima 

b. Compute candidate histogram again 

c. Compute Bhattacharya distance again 

5. If Confidence < threshold value T 

a. Using current centre and radius place eight search areas in a structured 

manner as shown in the figure 3.1. 

b. Hill climbs each particle towards the nearest maxima. 

c. Choose the one with the lowest value of Bhattacharya distance 

d. The chosen particle is the new target centre. 

Figure 3.2: SOK algorithm. 

Normalisation ensures that the 2D histogram entries sum to 1, providing some 

robustness to movement along the line of sight. Note that radius of the object r and T 

remain fixed throughout and that bhata(i, j), and so C, varies between 0 and 1, easing 

selection of T, which is chosen empirically. 

The SOK algorithm combines the particle filtering with the Kernel Mean Shift 

algorithm in a simple, but effective manner. Recognising the strength of the Kernel 

Mean Shift algorithm in many situations it uses a single such tracker when confidence 

in the target location is sufficiently high. In areas of low confidence a burst of 

particles is emitted, allowing the tracker to search more widely. In the initial design 

the intention was to distribute these particles randomly. As there is no motion model 

in the Mean Shift tracker, however, and no prior distribution available to drive particle 

location, only a simple random distribution about the current location (e. g. uniform or 

Gaussian) is possible. 
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Noting the ability of the Kernel Mean Shift tracker to climb to a local maximum if 

and only if the tracking window overlaps the target object, we adopt the simple 

particle distribution of Figure 3.1. This uses a small, fixed number of particles to 

cover a regular search area around the current hypothesis. To be beyond this search 

area the object would have to move more than twice its own radius between frames, 

which is unlikely. If high velocity motion is expected the particle set can be extended 

to create a larger search area, though in such circumstances Kernel Mean Shift may 

not be the best approach and an explicit motion model may be required. 

The SOK algorithm tracks its target using the simple Kernel Mean Shift algorithm as 

long as the confidence level stays above a certain threshold. The threshold is chosen 

to reflect the level of mismatch expected between the target and its appearance model. 

In the real world there can be no guarantee that lighting changes, shifts in camera 

position, camera sensor noise and other factors like shadows, partial occlusions etc. 

will not affect the target object's appearance. We can therefore never assume that the 

target 2D colour histograms or any appearance model of the tracked object will 

always remain 100% similar to the object model extracted from the first frame, where 

tracking commenced. Note also that Kernel Mean Shift tracking algorithms are 

accurate to one pixel only, so there is a good chance that the Mean Shift's best 

position on the target is still one or two pixels away from the true centre. This 

positional inaccuracy also reduces the confidence scores that can be expected during 

successful tracking. 

If the confidence threshold is set too high, then there will be many outbursts of the 8 

subsidiary trackers. This greatly increases the size of the search area and so the danger 

of the tracker being caught on background clutter. If the threshold is too low, 

however, then there is a danger that the tracker will latch onto objects with a different 

appearance model to the tracked object. Experience suggests that the threshold should 

be within 0.6-0.8. The default value of 0.7 has been found to work best in most 

scenarios. 
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3.3 Experimental Evaluation 

3.3.1 Algorithms 

The proposed tracker has been experimentally compared with three existing 

algorithms; Kernel Mean Shift, Condensation, and Maggio and Cavallaro's hybrid. 

Here we briefly review the methods involved and describe their implementations. The 

image sequences used are presented and discussed in section 3.3.5. 

3.3.2 Kernel Mean Shift Tracker 

The Kernel Mean Shift tracker (Comaniciu et al 2003) hill climbs from the previous 

location estimate toward a local minimum in the Bhattacharya distance between 

normalised, kernel weighted colour histograms representing the object model and 

local image data. We use a linear kernel having maximum weight at the centre and 

zero weight at boundaries and beyond. The object model and candidate model are 256 

x 256 bin histograms recording red/blue against green/blue. This provides some 

robustness to changes in illumination. The histogram is normalised so the bin values 

sum to I. 

The Bhattacharya distance between model and candidate target is: 

MM 

bhata = 1- Z p(i, j) x d(t, j) 
iij 

(3.2) 

where M is the size of each dimension of the histogram (256), and p and d are the 

object and the candidate models respectively. Note that the object model is computed 

only once. The candidate model is calculated in each frame from the position of the 

object in the previous frame. 

The iterative Mean Shift operation is as follows: 

x= 

MM__ 
Xj) ýýý 

d(l, j) 
y= 

wt 

where 

p(=', j) xi ý 
ijd (i, j) 

wt 

(3.3) 
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M 

wr=Lrý 
p(`i) 
d(i, j) 

(3.4) 

And x and y are the coordinates of the next estimate of the position of the centre of the 

object, and M is again the resolution of the histograms modelling object p and 
candidate. 

3.3.3 Condensation 

The particle filter used in the experiments conducted here is a straightforward 
implementation of Isard and Blake's (Isard and Blake 1998a) Condensation. The 

object and candidate models are exactly the same as those employed in the Kernel 

Mean Shift filter, with Bhattacharya distance between them computed in the 

measurement phase. A simple motion model - constant velocity - is used throughout 

and, unless otherwise stated, all experiments use 100 particles. 

3.3.4 Hybrid Condensation/Kernel Mean Shift Tracker 

This again is a straightforward implementation of an existing technique - the hybrid 

tracker of Maggio and Cavallaro (Maggio and Cavallaro 2005). The Condensation 

algorithm outlined in section 2.3.3 provides a harness into which the Kernel Mean 

Shift tracker outlined in section 2.3.4 is slotted. At each time step 100 (unless stated 

otherwise) particles are evaluated by computing the Bhattacharya distance between 

the object and their candidate model. A further 100 particles are then selected with 

probability proportional to their measurement value and projected into the next image 

by a constant velocity motion model. A Kernel Mean Shift tracker is initialised at 

each particle location and run until its associated Bhattacharya distance becomes zero 

or constant. The process is then repeated. This disperses the particle set in the 

Condensation phase, then draws it together in the Mean Shift phase. 

3.3.5 Image Sequences and Evaluation Criteria 

The four trackers described above have been evaluated and compared using a variety 

of real and artificial image sequences: 

- Artificial sequences showing a multicoloured circular target moving across a white 

background allow the trackers' positional estimates to be compared to ground truth in 

the presence of controlled amounts of noise. 
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-A mixed set of 36 image sequences (some shown in Appendix A) allows evaluation 

of robustness. Sensitivity is measured across this data and reported, while McNemar's 

statistic provides principled, quantitative statements of the relative robustness of the 

competing algorithms. 

- The computational cost of each algorithm is estimated by measuring processing 
times over the same test set. 

- Numerical measures are supported with qualitative examination of selected image 

sequences. To examine robustness to background clutter a hand-held ball is moved in 

front of a complex environment and viewed by a fixed camera. The sequence 

comprises 220 384 x 288 pixel frames. To examine robustness to unpredictable 

motion, a hand-held camera is used to capture a 420 frame sequence of a child at play. 

Each frame is 720 x 576 pixels. 

3.4 Results 

3.4.1 Accuracy 

Figure 3.3 shows the result of applying the four trackers to an artificial sequence in 

which a multicoloured target followed the path shown in Figure 3.4. This path 

comprises a number of straight sections corrupted by high levels (o = 10 pixels) of 
Gaussian noise. Absolute error (in pixels) is plotted against frame number. 
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Figure 3.3. Absolute error (pixels) in four algorithms' tracking of a noisy (Gaussian, Cr 

= 10) synthetic sequence showing a multicoloured target. 

Figure 3.4. The multicoloured target moved over a white background to construct 

artificial test data. 

The four algorithms produce similar levels of positional accuracy during the periods 

when they all track the target successfully. These periods are, however, fragmented. 

In the typical example shown in figure 3.3, Kernel Mean Shift and Condensation both 

fail after the first sudden change in trajectory, and only Maggio and Cavallaro's 

(Maggio and Cavallaro 2005) Hybrid and the SOK filter track successfully. Note 
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however, that the SOK filter used only one or eight particles, depending on tracking 

confidence, while at least 50 particles were needed to gain the same level of 

performance from the Hybrid. 

3.4.2 Robustness 

To examine robustness more closely, each of the four algorithms was applied to all 36 

test videos (Appendix A). Results obtained from all 36 image sequences were 

examined by eye and the number of frames in which the tracker was able to correctly 
identify the object it was tracking was noted. Using these true positives and the total 

number of frames the sensitivity (Chapter 2) of each algorithm was computed and is 

reported in Table 3.1. 

Sensitivity 

Condensation Mean Shift Hybrid SOK 
0.46 0.70 0.72 0.76 

Table 3.1: Sensitivity reported for Condensation, Mean Shift, Hybrid and SOK 

As we can see from Table 3.1, Condensation is the least sensitive. If we use a larger 

number of particles for Condensation then sensitivity is likely to increase, but 

computational cost will increase accordingly. A similar effect might be expected from 

the Hybrid algorithm, though the Mean Shift stage may reduce it somewhat. Standard 

Mean Shift finds the target successfully in 70% of the frames it processes, Hybrid is 

slightly more sensitive than Mean Shift as it is a refinement to the Mean Shift 

algorithm, and SOK proves to be the most sensitive among the four algorithms tested. 

To help interpret the sensitivity measures, and provide further analysis of sensitivity at 

the image sequence, rather than frame, level, McNemar's test (Clark et al 2008) was 

applied to the output of the four trackers over the same set of 36 image sequences. To 

apply McNemar's, a definition of success and failure is required. Focussing on 

robustness, we define algorithm A to have succeeded and algorithm B to have failed if 

algorithm A maintains tracking for a greater proportion of a given image sequence, 

from the same starting parameters. In effect we define success to be tracking as long 
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as the better of the two trackers. The results of this exercise are presented in Table 3.2, 

and show: 

97.5% confidence that SOK is more robust than Mean Shift. 

96% confidence that SOK is more robust than the Hybrid filter. 

98% confidence that SOK is more robust than Condensation 

SOK vs. Mean Shift SOK vs. Hybrid SOK vs. Condensation 

Z 2.04 1.81 2.22 

Confidence 97.5% 96% 98% 

Table 3.2. McNemar's comparison of SOK with Mean Shift, Condensation and 
Hybrid trackers over the image sequences 

Figure 3.5 shows selected frames from the four algorithms' tracking of a quickly 

moving, hand-held ball. Condensation fails after frame 35, when the particles diffuse 

towards different false local extrema. Kernel Mean Shift hovers around a confined 

area and loses the ball as soon as it moves quickly. Though it recaptures the ball later, 

when it passes under the Mean Shift window, this is not a robust effect. The Hybrid 

filter tracks quite well, but slips away a couple of times around frame 40. SOK tracks 

very well, using its structured backup when the ball slips away, e. g. in frame 40. SOK, 
however, slips around frame 210 and regains the target by chance again around frame 

220, though it does track the object for the longest duration among the compared 

techniques. 
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Figure 3.6 summarises tracking of a young girl running and jumping in front of a hand 

held, moving camera. Condensation starts to fail before the camera Shifts suddenly 

around frame 180. Mean Shift and Hybrid track well until frame 180, then fail due to 

high levels of both camera motion and target acceleration. SOK uses its structured 

search strategy to lock on to the girl at frame 180 and tracks her for the remainder of 

the sequence. 
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Figure 3.6. Tracking a girl at play, the camera is also moving and follows the girl. 

3.4.3 Computational Cost 

As SOK mainly uses Mean Shift, its cost in normal mode (using just Mean Shift to 

track) is the same as the original Mean Shift algorithm. The worst case scenario for 

SOK is when the algorithm switches to 8 particles, spread in a structured manner and 

each running a Mean Shift, making the cost 8 times that of a single Mean Shift. SOK 

only switches to structured particle mode if the confidence falls below a threshold, as 

soon as the object is reacquired and confidence is restored, SOK switches back to 
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normal single Mean Shift tracking mode. This happens rarely and hence when we 

consider cost over a large data set, the difference between the average time SOK and 

Mean Shift take to process a frame becomes almost negligible. Figure 3.7 illustrates 

the time comparisons for all the 36 videos used in this chapter in order of increasing 

radius of the tracked object. As the radius increases the time to process each frame 

naturally increases as there is more area to process for each algorithm. 
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Figure 3.7. Average time in milliseconds taken to process one frame by each of the 

four algorithms, plotted against the radius of the target. 

As shown in Figure 3.7, SOK and Mean Shift have roughly the same, and the lowest, 

average costs. All four algorithms show increased time consumptions as the radius of 

the tracked object is increased. Hybrid is the most expensive as it uses both 

Condensation and Mean Shift during frame processing. 

3.5 Structured Search vs. Particle Filter 

It could be argued that instead of using a grid of eight trackers around the object we 

could switch to a simple particle filter, locate the position of the object and once it is 

found transfer back to the sole Mean Shift tracker. Such an algorithm would be very 

similar to the hybrid tracker of Deguchi (Deguchi et al 2004), which runs Kernel 

Mean Shift and Condensation algorithms in parallel and uses the highest confidence 
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particle to initialise Mean Shift at each time step. To do this effectively, however, 

would require a large number of particles to be spread around the previous position of 
the tracker to accurately locate the object, this can be quite expensive. Secondly, when 

using a particle filter, we are never sure exactly where the target object's centre is. 

Most implementations rely on the weighted average of the x and y coordinates of the 

particle set to provide an estimate of the location of the object. 

Were we to replace SOK's structured search with a particle filter, and compute the 

object position based on a weighted mean of the particle set, there is a good chance 
that the reported position would lie some distance from the centre of the target. When 

control is handed back to the Mean Shift tracker, it may then immediately call the 

particle filter again, due to the low confidence value associated with the particle 
filter's location estimate. It is reasonable to expect larger particle sets to produce more 

accurate position estimates. However, the effect of particle set size on the accuracy of 

position estimates can be shown by an experiment in which a stationary object is 

tracked using a particle filter with varying number of particles. 

An image sequence comprising 130 identical frames (Figure 3.8), each with resolution 
320x240 and showing a static multi coloured ball with a radius of 30 pixels at (x, y) = 
(100,100) was tracked with Condensation using particle sets of various sizes. The 

average error and the maximum error relative to the ground truth are reported in Table 

3.3, and shown graphically in Figures 3.9 and 3.10. 
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Figure 3.8: image sequence with resolution 320x240, with 130 frames, having a static 

multi coloured ball with a radius of 30 pixels at (x, y) as (100,100) 

20 50 100 200 300 500 1000 

Particles Particles particles particles particles particles particles 

Maximum 
30 22 18 12 12 12 12 

Error 

Average 
16 9 8 6 5 5 5 

Error 

Table 3.3: Showing maximum and average errors from particle filters with different 

number of particles. 
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Figure 3.9: Maximum error for the entire track of 130 frames is plotted for varying 

number of particles. 6 =1 
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Figure 3.10: Average error for the entire track of 130 frames is plotted for varying 

number of particles. a=1 

The number of particles used varied from 20 to 1000. We see that above 300 particles, 

the average error from the ground truth becomes almost constant for a given spread of 

particles. By spread we mean the random noise introduced in the chosen particles to 

scatter for tracking purposes. We repeated the experiments with several spreads of 
Gaussian noise (ß = 1,2,3 and 4) with similar results. 

It is natural to assume that by increasing the number of particles, we should be able to 

get a more accurate positional estimate. But, as the experiment shows, an increase in 

the number of particles only helps to an extent, then the error in the computation of 
the target centre becomes steady at 4-5 pixels. It is likely that an error of this 

magnitude would result a Mean Shift tracker initialised in this way having a low 

confidence value. 
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3.6 Conclusion 
The ability of a set of particles to represent a wide variety of distributions is both a 

strength and primary weakness of the particle filter approach. For effective tracking in 

real-world environments the particle set must sample widely enough to represent all 

reasonable alternatives in areas of ambiguity. It must not, however, become diffuse, 

spreading across the image plane rather than clustering around the object of interest. 

When this happens particles tend to migrate towards local maxima in their evaluation 
function, where they become caught on background clutter and so lose track of the 

true target. Similarly, particles should not become too focused. Though it is 

encouraging to see a particle set coalesce when a single, clearly distinguishable target 

moves across the image, the tracker should not become irreversibly locked onto a 

single mode. When this occurs tracking becomes brittle; as the area sampled by the 

particle set becomes smaller it is increasingly likely that noise or an unexpected 

movement of the target will cause it to become dissociated from the tracker. 

Maggio and Cavallaro's (Maggio and Cavallaro 2005) hybrid tracker can be viewed 

as attempting to manage particle spread by alternately diffusing the particle set using 
Condensation and clustering it with Kernel Mean Shift. The Kernel Mean Shift 

tracker (Comaniciu et al 2003) is a robust and effective tracker with a very low 

computational cost. It performs well as long as the target object does not jump 

suddenly beyond its radius, or become occluded by an object with a similar model. 
Condensation (Isard and Blake 1998a) outperforms Mean Shift during sudden object 

or camera motion, provided that a large enough particle set is employed. Increasing 

the number of particles used, however, quickly increases computational cost. Maggio 

and Cavallaro's Hybrid attempts to gain the best of both worlds. 

Maggio and Cavallaro's algorithm shows the performance expected of Condensation, 

but requires noticeably fewer particles, greatly reducing computational cost. The 

hybrid tracker typically requires 80-90% fewer particles than regular Condensation to 

achieve similar results (Maggio and Cavallaro 2005). Particle selection and initial 

posterior location is, however, managed by standard Condensation. If Condensation 

tends towards an incorrect local maximum, mean-shift will accelerate the process. 
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This chapter has proposed a hybrid tracker that makes explicit the iterative diffuse- 

cluster structure implicit in Maggio and Cavallaro's work, only diffusing when 

necessary and then carpeting a fixed area around the prior with particles. 

Experimental evaluation shows the proposed SOK filter to be more robust than the 

Condensation, Kernel Mean Shift, and Hybrid trackers over a statistically significant 

set of image sequences. SOK also provided more accurate tracking than Kernel Mean 

Shift and Condensation. Examination of computational cost showed SOK and Mean 

Shift to take 10-18 milliseconds on average to process a frame, depending on the 

radius of the tracked target. Both algorithms can easily be used at frame rates above 

30fps, i. e. in real time, while the other two quickly become costly as target radius 

increases. 
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Chapter 4: Kernel Annealed Mean Shift 
Tracking 

4.1 Introduction 

The success of a predictive tracker relies on the effective combination of a motion 

model, which determines where any search should commence, and a search area of 
appropriate size and shape. An accurate motion model greatly eases the tracking 

problem by reducing the size of the region that must be searched. However, when the 

motion model is not a good fit to the actual motion of the target, or noise introduces 

errors into estimates of target state, use of a small search area may lead to the target 
being missed. This can be compensated for by increasing the size of the search area to 

allow for prediction errors, but any increase in search area is accompanied by an 
increased risk that the tracker will become attracted to background clutter that forms a 
local maximum in its evaluation function. 

The SOK algorithm presented in Chapter 3 extended the Kernel Mean Shift tracking 

algorithm to increase the size of its search area whenever the algorithm's confidence 
in its lock on the target fell below a threshold value. Though the experimental results 
show SOK to be more effective than preceding hybrid particle filter/Mean Shift 

algorithms, the search patterns available to SOK are limited and its method of 

choosing between them is crude. 
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The SOK algorithm requires the user to specify the conditions under which extra 
particles are spawned and the size of the region to be searched. Though only a single 
threshold need be set, this is irksome and open to error. The need for a fixed threshold 

could be removed by recasting the SOK algorithm as a form of mixed-state particle 
filter (Isard and Blake 1998c). Instead of generating additional particles when 
confidence falls below threshold, the confidence value could be used to capture the 

transition probabilities between two states - one in which a single Mean Shift/particle 

is used, and one in which the larger search space is used. Regardless of the details of 
the switching mechanism, the larger search area used in the SOK algorithm is 

potentially very large. This, along with the simple hill-climbing search used, leads to a 

significant risk that SOK will climb to a local, rather than the global, maximum. 

The work reported in this chapter aims to produce a hybrid, particle filter-based 

tracker with a similar, but more refined and flexible, ability to shrink and expand its 

search area. Rather than shift control away from the particle filter component and 
towards the Kernel Mean Shift tracker, Condensation is replaced with a more 

powerful particle filter. 

A novel hybrid of the annealed particle filter (Deutscher et al 2000) and Kernel Mean 

Shift (Comaniciu et at 2003) tracking algorithms is presented, which we term Kernel 

Annealed Mean Shift tracking (KAMS). The use of a full particle-based 

representation allows KAMS to represent arbitrary, multimodal sets of hypotheses 

when searching for the target object. Kernel Mean Shift increases the robustness and 

accuracy of particle filtering by guiding particles towards maxima in the evaluation 
function; this allows particles to be spread over a larger area. Mean Shift, in turn, is 

complemented by annealing, which increases its effective range. The need for an 

accurate, predictive model of local motion is therefore reduced, increasing the 

generality of the approach. 

Like SOK and the annealed particle filter, KAMS does not use motion estimates to 

predict future state, but begins its search from the last estimated position of the target. 
We hypothesize that by flattening local maxima in the evaluation function the 

annealed particle filter will allow a greater spread in the particle set, and reduce the 
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need for a possibly erroneous predictive motion model, while the Mean Shift 

component will continue to successfully pull particles back towards the true target 

Annealed particle filtering (Deutscher et al 2000) is first reviewed in Section 4.2. The 

Kernel Annealed Mean Shift (KAMS) algorithm is then described in section 4.3. The 

robustness, accuracy, and computational costs of the algorithms are assessed in 

Section 4.4. KAMS is compared first with its constituent algorithms - Kernel Mean 

Shift (Comaniciu et al 2003) and annealed particle filtering (Deutscher et al 2000) - 
then with previous combinations of similar technologies. Results are discussed in 

section 4.5 before conclusions are drawn in section 4.6. 

4.2 Annealed Particle Filtering 

Annealed particle filtering (Deutscher et al 2000) relies upon a series of particle 

weighting functions wo(z, x) to wM(z, x) in which z is a measurement vector 

extracted from the image and x is the current model state. A given weighting function 

%, is obtained by raising the original weighting function w( a, x) to a power ßm 
, so 

that 

xm(Z, x)_n(Z, x)ß_ (4.1) 

where ßo = 1.0 and ßo > ß, > ß2 > ... > flu. As ßm increases, extrema in the 

weighting function become more pronounced. So wo(z, x) is the raw weighting 

function while WM(z, x) captures only the broad structure of the search space. In 

(Deutscher et al 2000) w(z, x) is the sum of squared differences between the model 

and image data. 

In annealed particle filtering each particle is evaluated at each time step using each 

wn, (z, x) , starting with wM (z, x) and moving to wo (z, x) . At a given time step tk the 

process begins with a set of N unweighted particles 

Sk, M -1 Sk, M 
(0) 

9 Sk, M 
(I) 

1...., Sk M 
(N) 

(4.2) 
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Each particle sk, M. '. is then assigned a weight 'rk. M(') where 

7tk, M(f) cC wm (Zk 9Sk) (4.3) 

and, in the first step, w, � 
(zk, sk`) = wM (zk, sk') , resulting in a set of weighted particles 

sM. N particles are now drawn randomly from sk M with replacement and used to 

create a set of un-weighted particles for evaluation using the next weighting function 

(i) (i) 
Sk, M-I = Sk, M 

+ Bm (4.4) 

where B. is a multi-variate Gaussian random variable with mean 0 and variance p,. 

5k M_1 is then weighted using Wm_t(zk, sk') . This is repeated until sk0 is produced 

(Figure 4.1). 
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Figure 4.1: Illustration of a4 stage annealed particle filter. The multi layered search 
allows particles to migrate towards the global maxima without getting stuck in the 
local maxima through each annealing stage. 

Annealed particle filtering was developed to address the problem of high-dimensional 

search spaces requiring an impractically large particle set. By introducing narrow 

peaks in the evaluation function gradually it reduces the likelihood that particles will 
become locked onto these local artefacts and so the number of particles needed to 
identify the true target. In lower dimensional spaces, annealing allows us to counteract 
the natural tendency of particle filters to cluster particles together by increasing the 

variance Pm, confident that the smoother weighting functions used in the early part of 
the annealing run will steer particles away from local extrema. Increasing the spread 

78 



Chapter 4 

of the particle set, however, potentially increases the number of particles required to 

effectively sample the search area. 

4.3 The Kernel Annealed Mean Shift Tracking 

Algorithm 
To make explicit and accelerate the process of seeking the global maxima we apply a 
Kernel Mean Shift tracking step to each particle at each stage in the annealing run. 
The resulting KAMS algorithm is given in Figure 4.2. 

Kernel Annealed Mean Shift Tracking: 

Acquire frame at time tk, having a set sk M of N un-weighted particles from the previous time step 

Set weighting function index m=M 

While (m>O) 

{ 

Assign each particle a weight 1tk mýtý 

Select N particles with replacement and add Gaussian noise: 
(i) U) 

Sk, 
m-1 = Sk 

m+ 
Bm 

Apply Kernel Mean Shift to each particle until the Bhattacharya distance between the model 

and image measured by the weighting function Wm_1(zk 93k m_Itr) 
) becomes stable or 

minimum. 

m=m-1 

figure 4.2. ine Kernet Anneaiea mean : 5ntrt (&Amb) tracxmg algorithm 

In the current implementation the object and candidate are 10 x 10 x 10 bin 
histograms (L=10) recording RGB colour values. The histogram is normalized to sum 
to 1. Experience has shown this to provide an effective compromise between 
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descriptive power and ability to generalise. Though any suitable kernel could be 

employed, for simplicity and generality we use a linear kernel having maximum 

weight at the centre of the circular target area and zero weight at boundaries and 
beyond. 

The original annealed particle filter (Deutscher et al 2000) used sum of squared 
difference as its base weighting function. The Kernel Mean Shift algorithm 
(Comaniciu et al 2003) relied upon Bhattacharya distance. To allow comparison we 

employ Bhattacharya distance throughout. Kernel Mean Shift is run until 
Bhattacharya distance either falls below a small threshold or becomes stable. 
Experience has shown that this usually occurs within five iterations, so a limit on the 

number of iterations applied can reasonably be used, if needed, to reduce 

computation. Note that we follow Maggio and Cavallaro (Maggio and Cavallaro 

2005) rather than Shan (Shan et al 2007) in that we sample directly from the Mean 

Shifted particle set. As annealed particle filtering is not a Bayesian technique there is 

no theoretical or practical reason to include the unshifted particles. 

Following the original description of the annealed particle filter we use four stages. 
Figure 4.3 illustrates the flow of the algorithm for one frame. 
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Figure 4.3: Visual representation of the KAMS filter in operation with four annealing 

stages. 

In figure 4.3 the first stage (p l <p2) has the smoothest evaluation function. Particles 

are spread, weighted and then selected and projected onto the next annealing level (p2 

< p3) based on their weights. After projection each particle is Mean Shifted towards a 

maximum in the second level's evaluation function. Once we have a concentrated set 

of particles around the target, particles are reweighed based on the p2 < p3 evaluation 

function and a further particle set selected based on the new weights. This set is 

projected onto the next level (p3 < p4), with a random component again added and 

Mean Shifted again.. This process focuses the particles on the global maximum in the 

base evaluation function and reduces the risk of them from getting stuck on local 

maxima. 
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4.4 Experimental Evaluation 
The key criteria upon which any proposed visual tracking algorithm must be 

evaluated are robustness to noise and background clutter, and the accuracy of the 

estimates of target state produced. The computational resources required are also an 
issue, but at their current state of development the speed of operation of tracking 

algorithms is secondary to their performance. In the remainder of this section we 

assess the robustness, accuracy and computational resources required by the Kernel 

Annealed Mean Shift (KAMS) algorithm presented above. As KAMS is a hybrid of 
Kernel Mean Shift (Comaniciu et al 2003) and annealed particle filtering techniques 

(Deutscher et al 2000), it is evaluated against these algorithms first. Attention then 

shifts to KAMS' performance relative to pre-existing particle filter/Mean Shift hybrid 

trackers. 

4.4.1 Annealed Particle Filtering and Kernel Mean Shift 

Robustness 

Quantitative, comparative analysis of the robustness of the proposed KAMS algorithm 
is achieved using McNemar's statistic (Clark et al 2008). McNemar's test, which 

requires 30 data items to provide a reliable result, was applied to a set of 36 assorted 
image sequences (some selected videos with description can be found in appendix A, 

the full set is available from the web-link (Link 2). The image sequences used were 

chosen to be representative of the type of data a general purpose tracking algorithm 

might be required to process. The test set contains both synthetic and real world data 

showing targets of varying size, shape, appearance and motion characteristics. The 

artificial sequences include varying levels of background clutter and motion noise. 
The real world data contains videos of different resolutions showing a range of 

scenarios. These include animals in the wild, sports (table tennis, soccer, basketball), 

children playing in a park, pedestrians, microscopic cells such as sperm and plant 

cells, and some surveillance data from the PETS (PETS Dataset 2007) test set. 

Comparing KAMS with Kernel Mean Shift and annealed particle filtering in this way 

gives Z-scores of 5.12 and 3.8 respectively. Kernel Annealed Mean Shift tracking is 

significantly more robust than both its two constituent algorithms, with a confidence 
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of 99.5%. All algorithms were manually initialized to the same point and both KAMS 

and annealed particle filtering used four annealing stages throughout. 

The strength of McNemar's test is that it provides a clear statement of the relative 
performance of competing algorithms. In isolation, however, this statement lacks 
detail. To provide a more fine grained assessment of the relative robustness of the 
Kernel Mean Shift, annealed particle filter and KAMS algorithms the results of 

applying each algorithm to all 36 image sequences were analyzed and the number of 
frames in which each tracker was able to correctly identify the object it was tracking 

was recorded. Using these counts of true positives and the total number of frames 

involved the sensitivity of each algorithm was estimated and given in Table 4.1. 
While Kernel Mean Shift displayed a sensitivity of 0.7, and annealed particle filtering 
0.6, the KAMS algorithm produced a value of 0.92. KAMS identified the tracked 

object successfully in 92% of the frames considered, a considerable improvement on 
its component algorithms. 

Mean Shift Annealed Particle Filter KAMS 

Sensitivity 0.7 0.6 0.92 

Table 4.1: Sensitivity reported for Mean Shift, Annealed particle filter and KAMS 

Figures 4.4 and 4.5 show selected frames from the results of applying these three 

algorithms to samples of the sequences used in the McNemar's test. Figure 4.4 shows 

a tiger sprinting through dense jungle. The animal's motion is smooth, but quite fast, 

with frequent changes in head direction. Surrounding trees generate many partial 

occlusions and the dark stripes on the animal and the shadows caused by the leaves 

are similar, generating high levels of potentially confusing background clutter. 
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Figure 4.4. KAMS and its component algorithms track a sprinting tiger. 

Mean Shift fails around the 15`h frame due to the tiger's high speed, but latches back 

onto the head by chance around frame 41. The annealed particle filter fares better, and 

keeps hold of the object until around the 50`h frame, when changes in lighting 

conditions temporarily make clutter within its search area appear more like the head 

model than the true head does. At this point there is a danger that any tracking 

algorithm will migrate to the background, as the annealed particle filter does here. Its 

selection mechanism quickly pulls the particle set towards the local spike in the 

evaluation function and tracking is lost. KAMS successfully tracks to the end of the 

sequence. Though its particles are also drawn towards the spike, the Mean Shift step 

keeps some locked onto the true target. When the spike disappears, and the true target 

again becomes apparent, these particles dominate once more. 
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Figure 4.5 shows the three algorithms tracking a ball moved by hand against a 

cluttered background. Though most of the ball is in view most of the time, the hand 

moves jerkily, and at a range of different velocities Annealed particle filtering fails 

around the 5`h frame as its particle set is too dispersed and so attracted to very heavy, 

and very similarly coloured, background clutter. A tight focus on the target allows the 

Kernel Mean Shift to track until the 58`h frame, when high target velocity throws it 

off. It does, however, regain the target around the 1 l8`h frame as the hand moves, by 

chance, underneath the wandering tracker. KAMS tracks the ball successfully 

throughout the sequence. Its particle filter stage spreads the search area over a large 

enough area to capture the high speed movement, while its Mean Shift stage keeps the 

particles over the target, despite a distracting background. 

Figure 4.5. KAMS and its component algorithms track a hand-held ball. 
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Accuracy 

Artificial sequences showing a multi-coloured circular target moving across a static 

background allow the trackers' positional estimates to be compared to ground truth in 

the presence of controlled amounts of measurement noise and clutter. Noise is 

simulated by perturbing the target's position in each frame with additive Gaussian 

noise. Clutter is added by randomly placing a user-defined number of similar circular 

objects on the otherwise white background. These distracting objects introduce local 

maxima into the evaluation function, while increased measurement noise raises the 

likelihood that a given tracker will come into contact with those maxima. Figure 4.6 

summarizes the four test sequences used here; each consists of 140 (320x240 pixel) 

frames. 

Figure 4.6. Artificial test sequences, a. 6=4 with 100 background objects, b. a=8 

with 300 objects, c. 6= 12 with 500 objects, and d. 6= 14 with 600 objects. Black 

lines show target path, with the target displayed at either end. 
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Figure 4.7 a-d give the error between the true target position and the estimates 

provided by the KAMS, Kernel Mean Shift and annealed particle filter algorithms 

over the four test sequences shown in Figure 4.6 a-d respectively. The mean error 

exhibited by each of these algorithms is shown in Table 4.2. The weighted mean of 
the particle set is calculated to generate a single position estimate from KAMS and 
annealed particle filtering, which again both employed four annealing stages. 

With ß=4 and 100 background objects (Figure 4.7a) all three algorithms track the 

object successfully through the sequence. The annealed particle filter's particle set is, 

however, spread out somewhat, giving a mean error of 11.02 pixels. Kernel Mean 

Shift is, as might be expected, the most accurate, with a mean error of 5.44 pixels. 
KAMS gives a mean error of 6.94 pixels, its Mean Shift step pulling the particle set 

towards the true target location and so reducing positional errors. With a=8 and 300 

background objects (Figure 4.7b), Kernel Mean Shift and KAMS again give 

comparable accuracy, with mean errors of 8.0968 and 8.9294 pixels respectively up 

until frame 115, when KAMS loses track of the target. Like annealed particle 
filtering, KAMS is a stochastic algorithm and some failures are inevitable. Annealed 

particle filtering loses track very quickly on this image sequence, and also fails to 

track any further sequences beyond the first few frames. Only KAMS tracks the 

sequences shown in Figure 4.6 c and d successfully (Figure 4.7 c, d). The errors in its 

positional estimates are however increased, by the extreme noise present, to 14.723 

and 17.303 pixels. Where data is available, KAMS is more accurate than annealed 

particle filtering, producing errors comparable to the Kernel Mean Shift algorithm. 

KAMS is, however, much more robust. 
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Figure 4.7. Errors in the position estimates provided by KAMS (dashed line) annealed 

particle filtering (light line) and Kernel Mean Shift (dark line) tracking, when applied 

to the image sequences summarized in Figure 4.6. 
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Kernel Mean Shift 

(Mean Error) 

Annealed Particle 

Filter (Mean Error) 

KAMS (Mean Error) 

Video 4.6a 5.44 11.02 6.94 

Video 4.6b 8.0968 Failed 8.9294 

Video 4.6c Failed Failed 14.723 

Video 4.6d Failed Failed 17.303 

Table 4.2: Table showing mean error in pixels, of Kernel Mean Shift, Annealed 

Particle filter and KAMS, while they track a ball in the 4 videos with increasing noise 
levels. If the algorithms fail to track till the end, then it is labelled as failed. 

4.4.2 Particles, Annealing Stages and Process Noise 

A key result of previous work on particle filter/mean shift hybrid trackers was that the 
inclusion of a Mean Shift stage reduced the number of particles, and so the 

computational resources, required for successful tracking. That result has been 

replicated here; in the experiments described above annealed particle filtering used 
200 particles throughout, while KAMS required only 20 to produce superior 

performance. These numbers are in line with those reported by Maggio (Maggio and 

Cavallaro 2005) and Shan (Shan et al 2007). 
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li 

Figure 4.? 5. t Aml ) ana ine anneaieu panicie niter track a bouncing ball using 4 

annealing stages. See text for details. 

KAMS' ability to track using a smaller particle set suggests that the algorithm is 

targeting its particles more effectively. This raises the possibility that fewer annealing 

stages might be needed in KAMS than in annealed particle filtering, reducing 

computational load further. To examine the effect of reducing the number of 

annealing stages employed in KAMS, the algorithm has been applied to a number of 

real and artificial test sequences, drawn from those described above. Figures 4.8-4.10 

show typical results when tracking a table tennis ball bounced repeatedly on a bat. In 

each figure the left column shows the particle set produced, at each annealing stage, 

by the annealed particle filter. The middle column shows the particle sets generated at 

the same point in the sequence, before Mean Shift, by KAMS. The right column 

shows those particles after KAMS' Mean Shift operation. 
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With 4 annealing stages, both KAMS and the pure annealed particle filter track 

successfully. The annealed particle filter's particles are still quite widely spread after 
the final annealing stage. KAMS' particles are more closely grouped, as is to be 

expected, and all lie on the target at the end of the third stage. 
Allu_eaY_c Ii. ý11IS 
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Figure 4.9. KAMS and the annealed particle filter track a bouncing ball using 3 

annealing stages. See text for details. 

Figure 4.9 shows the particle spread when both algorithms are run with 3 annealing 

stages. Particle placement in the annealed particle filters reduces in accuracy 

compared to KAMS. Annealing fails at stage 3 and loses track in the next frame. 

KAMS, on the other hand, continues to track well. Figure 4.10 shows tracking with 

two stages, though both the raw annealed particle filter struggle to hold onto the 

target, KAMS' Mean Shift step pulls several particles onto the ball and tracking 

continues. KAMS is more robust to reductions in annealing stages than the original 

annealed particle filter. 
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Stage# 
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Figure 4.10. KAMS and the annealed particle filter track a bouncing ball using 2 

annealing stages. See text for details. 

Underlying the development of Kernel Annealed Mean Shift tracking is the 

hypothesis that the combination of Mean Shift and annealing will allow the particle 
filter's process noise to be increased, spreading the particles over a wider area while 

still avoiding local maxima in the observation function. To test this, KAMS and pure 

annealed particle filtering were both run on the artificial image sequence of Figure 

4.6b with process noise settings of 6=1,2,4,8,10 and 12. 

With low process noise levels (6 = 1,2) annealed particle filtering cannot cope with 

the high speed motion of the target; the particle set lags behind and tracking is lost. 

KAMS tracks successfully, because some of the particles are close enough to the 

target to be pulled to the correct maximum by the Mean Shift step. The selection 

process then generates more particles from these at the next time step. With 6=4 the 

spread of the particle set neatly matches the speed and size of the target and both 

algorithms track safely. The particle spread is a little too large when a=8. Though it 

samples the area in which the target lies and tracks successfully, the distance between 

particles is too great to allow annealed particle filtering to track with confidence. 

Increasing the number of particles would, however, make the annealed particle filter 

robust here. KAMS tracks well, as Mean Shift moves the particles to high confidence 

locations. With higher levels of process noise annealed particle filtering fails - its 

particle set is spread over too large a search area. KAMS again pulls particles onto 
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high confidence locations and tracks each sequence successfully. KAMS is more 
robust than pure annealed particle filtering when high levels of process noise are 
required. 

4.4.3 Other Particle Filter/Mean Shift Hybrids 

Having established that Kernel Annealed Mean Shift tracking has advantages over its 

component algorithms, we now evaluate it in the context of Maggio's (Maggio and 
Cavallaro 2005) hybrid method, in which particle filtering is the dominant technology, 

and Structured Octal Kernel algorithm (Chapter 3), in which Mean Shift tracking is 

the core technique. To allow comparison the implementations employed here all use a 
10 x 10 x 10 RGB histogram to represent the target. 

Robustness 

A McNemar's comparison of KAMS with Maggio and Cavallaro's hybrid and SOK 

algorithms, using the 36 image data set described above, gives Z-scores of 4.83 and 
3.59 respectively. KAMS is significantly more robust than both algorithms with a 

confidence of 99.5%. 

Hybrid SOK KAMS 

Sensitivity 0.72 0.76 0.92 

Table 4.3: Sensitivity reported for Hybrid particle filter, SOK filter and KAMS. 

In Table 4.3, Maggio and Cavallaro's hybrid displays a sensitivity of 0.72, and SOK 

0.76, in comparison to KAMS' 0.92. Though it should be noted that both the hybrid 

and SOK algorithms fare better than raw Condensation, which achieves a sensitivity 

of only 0.46 over the same dataset, KAMS performs considerably better. KAMS has 

the highest sensitivity rate among all the single target tracking algorithms considered 
here. 

Figure 4.11 summarizes the result of applying KAMS, SOK and Maggio and 
Cavallaro's hybrid algorithm to the tiger sequence of Figure 4.4. 
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Figure 4.11. Three hybrid mean-shift/particle filtering algorithms track a sprinting 

tiger. 

In figure 4.11 Maggio's hybrid tracking algorithm fails at frame 12 as the frequent 

changes in head velocity, despite being quite smooth, violate its motion model. The 

SOK algorithm fares better, but its large search area covers the spike generated 

around frame 50. As it only maintains one hypothesis, the SOK filter latches 

irretrievably onto the spike and, when the spike disappears, tracking is lost. KAMS 

successfully tracks to the end of the sequence. 

Figure 4.12 shows the three algorithms' performance on the ball sequence of Figure 

4.5. Maggio's Hybrid fails around the 59`h frame. No motion model can adequately 

describe the near-random movement of the target, and the particle set becomes 
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increasing diffused until tracking is lost. SOK also loses track around the 210`h frame. 

High velocity disables the Mean Shift component and the particle set is too widely 

spread to avoid clutter. Again SOK reacquires the target by chance around frame 220. 

KAMS tracks the ball successfully throughout the sequence. Moreover, while 

annealed particle filtering failed using 200 particles, KAMS still succeeded when its 

particle set was reduced to only 50 particles. 

Figure 4.12. Three hybrid mean-shift/particle filtering algorithms track a hand-held 

ball. 
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Accuracy 

Hybrid completed the sequence of Figure 4.13a with a mean error of 6.32 pixels, but 

failed around frame 20 when noise and clutter increased. SOK completed Figures 

4.13a and 4.13b with mean errors of 5.66 and 9.60 pixels, but failed thereafter. Only 

KAMS managed to track through all the sequences summarised in Figure 5.6, with 

mean errors of 6.94,8.9294,14.723 and 17.303 pixels. While the algorithms produced 

similar levels of accuracy (where comparable data is available), KAMS is noticeably 

more robust. Note also that Hybrid required 100 particles and KAMS only 40. KAMS 

manages its particles more efficiently and so needs significantly fewer. The results are 

summarized in Table 4.4. 
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Figure 4.13. Errors in the position estimates provided by KAMS (dashed line), SOK 

(light line) and Maggio and Cavallaro's hybrid (dark line) algorithms, when applied to 

the image sequences summarised in Figure 4.6. 
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Hybrid (Mean Error) SOK (Mean Error) KAMS (Mean Error) 

Video 4.6a 6.32 5.66 6.94 

Video 4.6b Failed 9.6 8.9294 

Video 4.6c Failed Failed 14.723 

Video 4.6d Failed Failed 17.303 

Table 4.4: Table showing mean error in pixels, of Hybrid, SOK and KAMS, while 
they track a ball in the 4 videos with increasing noise levels. If the algorithms fail to 

track till the end, then it is labelled as failed. 

4.4.4 Execution Time Comparisons 

The discussion above has several times referred to the number of particles needed to 

achieve successful tracking. This provides a reasonable measure of computational cost 

when all the algorithms considered are particle-based. The original Kernel Mean 

Shift, however, is not, To provide a more complete assessment of computational cost, 
the six algorithms considered in this chapter were used to track the target objects in 

the test set of 36 image sequences (Appendix A, Link 2) and the average time each 

took to process one frame was calculated. The results are shown in Figure 4.14. As a 

region-based appearance model is used here, target radius invariably increases the 

computational cost of tracking. Execution times are therefore plotted against target 

radius for each algorithm. 

As might be expected, Kernel Mean Shift and SOK are the most efficient algorithms, 

with very similar average processing times. Condensation's use of a particle set makes 
it more costly, and cost increases with the multiple particles sets of the annealed 

particle filter and the additional Mean Shift operations of Maggio's hybrid algorithm. 
KAMS is the slowest algorithm, but given reasonable target radii can still track at 4-5 

frames/second, even if four annealing stages are used 
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Figure 4.14: Time in milliseconds to process one frame on the average for algorithms 

in increasing order of tracked object radius. 

4.5 Discussion 
The Kernel Mean Shift and annealed particle filtering algorithms each have their 

strengths and weaknesses. Kernel Mean Shift explicitly seeks a maximum in the 

evaluation function, and so can provide accurate tracking, but lacks robustness when 

targets move quickly. Annealed particle filtering allows particles to be spread further 

apart than earlier particle filters, and so can deal with high speed motion. Increased 

spread can, however, introduce errors into the reported target state. There is no 

guarantee that any particle will lie on the true maximum, and the standard weighted 

mean estimate will include measurements made some way from the true target. The 

stochastic nature of the particle filter also means that, unless an unfeasibly large 

particle set is used, it is possible for all the particles to miss the target, leading to 

robustness problems. 

The experiments reported here show that combining Kernel Mean Shift and annealed 

particle filter tracking gives an algorithm that is more robust than both of its 

components, with precision comparable to Kernel Mean Shift; the more accurate of 
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the two. Kernel Mean Shift increases the robustness and accuracy of particle filtering 

by guiding particles towards maxima in the evaluation function. Mean Shift, in turn, is 

complemented by annealing, which increases its effective range. The smoothed 

evaluation functions used in the early stages of annealing help Mean Shift to climb 

quickly into the vicinity of the target; this estimate is then refined as annealing 

progresses. As the effect of narrow peaks is introduced gradually, by the annealing 

process, the likelihood of particles becoming associated with spurious local maxima 

when they are spread out is reduced. KAMS typically generates slightly larger 

positional errors than Kernel Mean Shift, because its position estimates are computed 
by weighted mean of a particle set. Robustness is, however, noticeably better than raw 

annealed particle filtering. 

Figure 4.15 illustrates the key effect, showing the particles generated during a single 

annealing run in KAMS. A larger than necessary (200) particle set is used to clarify 

the operation of the algorithm. Each row shows the two particle sets created for a 

single value of M. The left image shows the particles after addition of Gaussian noise, 

the right after application of Kernel Mean Shift. Note the alternating expansion and 

contraction of the particle set; KAMS particles explore a sizeable area of the search 

space, while ensuring they each lay on, or very close to, a maximum value. 
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Figure 4.15. Dispersal and clustering of particles during an annealing run in KAMS. 

See text for details. 

Previous work on Mean Shift/particle filter hybrid trackers (Maggio and Cavallaro 

2005), (Shan et al 2007) and (Wang et al 2007) has noted that the inclusion of the 

Mean Shift step reduces the number of particles required for successful tracking. This 

result has been replicated here; KAMS typically needs only 20% of the particles 

required by raw annealed particle filtering. Combination with a Kernel Mean Shift 

also reduces the number of annealing stages required. Experience suggests that the 

four annealing stages used by Deutscher (Deutscher et al 2000) can be safely reduced 

to three in KAMS, and that two stages may suffice. 

Underlying the notion of Kernel Annealed Mean Shift tracking is the hypothesis that 

combining Mean Shift and annealing will allow the annealed particle filter's process 

noise to be increased, increasing the effective search of the algorithm and reducing the 

need for a potentially inaccurate motion model. The available evidence suggests that 

this is true - KAMS is more robust than pure annealed particle filtering when high 
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levels of process noise are required. In fact, KAMS is generally more robust to 

changes in process noise than annealed particle filtering. This is an important 

property. Process noise must be set by the user, and choosing the right value for a 

particular situation can be difficult. KAMS depends much less than annealed particle 
filtering on the right spread being chosen. 

Comparison with the previous particle filter/Mean Shift hybrid algorithms of SOK 

(Chapter 3) and Maggio (Maggio and Cavallaro 2005) also shows Kernel Annealed 

Mean Shift (KAMS) to have advantages. Though the accuracy of the tracking 

provided by these algorithms is comparable, there are significant differences in 

robustness. 

Maggio and Cavallaro's hybrid is based upon Condensation (Isard and Blake 1998a), 

and so relies on an accurate motion model. When the target moves unexpectedly, or 

noise affects the data input to the motion model, the robustness of the algorithm is 

impaired. Like SOK, KAMS does not rely upon a predictive motion model, but begins 

its search from the last estimated location of the target. For this strategy to be 

effective, the tracker's search area must be widened. SOK employs a large, fixed 

search pattern which does not reflect the underlying evaluation function. As a result, 

SOK is more likely to become trapped on a local extrema. KAMS also uses a large 

search area, created by the process noise step in the particle filter. However, KAMS' 

Mean Shift search clusters its particles around maxima in the evaluation function, 

with the annealing process reducing the likelihood of the tracker becoming caught on 

spurious, narrow peaks. KAMS' effective management of its particle set also allows it 

to track successfully using fewer particles than raw annealed particle filtering. 

KAMS' improved performance does, however, come at the price of increased 

processing time. The algorithm's use of multiple annealing stages, each of which 

employs multiple Mean Shift operations, makes it the slowest to process a frame, with 

processing time increasing with target size. Tracking at 5 frames/second can still be 

achieved, however, if target radii are less than 20 pixels. KAMS is efficient enough 

for real-time deployment in many applications. 
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4.6 Conclusion 
We have proposed a novel tracking algorithm, Kernel Annealed Mean Shift tracking 

(KAMS), which combines Kernel Mean Shift with the annealed particle filter. The 

key feature of KAMS is its effective exploitation of the natural tension between the 

particle dispersal caused by the process noise of the particle filter and the clustering 

performed by Kernel Mean Shift. The KAMS algorithm has been applied to a variety 

of artificial and real image sequences and found to have performance and efficiency 

advantages over both pure Kernel Mean Shift and annealed particle filtering 

algorithms and existing particle filter/Mean Shift hybrid trackers. Combining Kernel 

Mean Shift and annealed particle filter tracking gives an algorithm that is more robust 

than both of its components, with precision comparable to Kernel Mean Shift; the 

more accurate of the two. 
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Chapter 5: Multiple Target Tracking Using 

Kernel Annealed Mean Shift Tracking 

5.1 Introduction 

Much research has been carried out on single target tracking algorithms, and an 

introduction to the issues and common approaches has been given in chapter 2. Two 

novel single target tracking algorithms were presented in chapter 3 and chapter 4, 

named SOK and KAMS respectively, and it was shown experimentally that KAMS 

outperforms all the algorithms that were evaluated against it in chapter 4 both in 

robustness and accuracy. 

Although single target trackers are very important, most real world applications 

employing visual tracking require tracking of multiple objects. Effective surveillance 

requires multiple people and/or vehicles to be tracked to determine presence and 

detect events (French et al 2007, Suyu et al 2007, Chen et al 2007). Analysis of team 

sports like football involves tracking multiple players (Per§ and Kovadid 2000). 

Gesture recognition can involve tracking multiple body parts of one or more 

individuals (Starner and Pentland 1995, Nickel and Stiefelhagen 2007). Medical 

applications like microscopic sample analysis may rely on analysis of the motion of 

multiple, similar organisms like blood cells or sperm. 
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When tracking single targets occlusion only arises from surrounding objects which are 

not of interest, during multi-target tracking other tracked objects may also occlude a 

given target. Care must also be taken to make sure that the right trackers are on the 

right targets after occlusions and collisions. Coalescence of multiple trackers onto a 

single target is a particular problem when the tracked targets are similar, for example 

when analyzing team games, or tracking animals like ants. Moving from single to 

multiple target tracking may also mean a lot more computing power is required to 

achieve the same performance levels. New challenges arise when there arc multiple 

objects of interest. In many circumstances, e. g. when tracking people through a mall, 

the tracker must handle new objects entering and other objects leaving the scene. In 

some applications, e. g. when tracking cells, one target may divide into two objects of 

similar type. 

Multiple target tracking algorithms can be placed into two major categories. In the 

first each object is tracked using a separate single target tracker, and inter-object 

interactions are handled by some form of interaction handling mechanism which is 

introduced between these sets of trackers. This is there to handle possible occlusions 

and collisions. Other multi-target trackers may maintain a joint state in which 

information about all the trackers is made explicit in a single representation. 

In what follows the single target KAMS algorithm is extended to support multi-target 

tracking using a single KAMS tracker for each tracked object and an interaction filter 

to handle the occlusions and interactions. This puts the multiple target tracking 

version of KAMS in the first of the two categories of multi-target tracking algorithms 

discussed above. Attention is focused on the integration of Khan's (Khan et al 2004) 

interaction filter into the annealing process used by KAMS. Khan's (Khan et. al. 

2004) method is one of the most successful and widely adopted multi-target tracking 

algorithms, but is limited to simply reducing the weight of particles associated with 

interacting targets. The use of multiple evaluation functions during KAMS' annealing 

process allows for a wider range of more informed responses. Khan's approach is 

described in section 5.2., before two variations of multi-target KAMS are presented in 

section 5.3. Both multi-target KAMS algorithms are then experimentally evaluated 

against each other and Khan's (Khan et al 2004) algorithm in section 5.4. Finally, 

conclusions are drawn in section 5.5. 
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5.2 Multiple Targets and Khan et al's Interaction Filter 
Some of the best known and most promising work on multiple target tracking was 
done by Khan (Khan et al 2004). They use a joint state MCMC tracking algorithm in 

which every particle stores the state of every target. Their basic hypothesis was that 

objects in close proximity interact with each other and should influence each other's 
behaviour. 

The multiple target tracking problem can be expressed as a Bayes filter in which 

posterior distribution p(x, I z' ) is recursively updated over the joint state of all 

targets {x1, IiEI... n} given all observations z' = {z, ... z, } up to and including 

observation at time t. The following is a representation of a particle filter with the 

assumption that targets do not interact with each other. 

p(xr I z` )= kp(z, I x, ) jp(xr I x, -, 
)p(x, 

-, 
I zr-` ) (5.1) 

Ct_I 

p(z, x, ) is the likelihood expressed as the measurement model. z, is the 

measurement given the state x, at time t. p(x, I x, _, 
) represents the motion model 

which predicts the state x, at time t given previous state x, -,. 
Khan et. al. assume that 

the likelihood p(z, I x, ) factors across targets as p(z, I x, ) = fJ, " 
. 

p(z, l 
I x,, ). 

When targets do not interact, the exact Bayes filter can be approximated using 

multiple single target particle filters, so the motion model p(x, I x, _, 
) is factored as 

Iý_, p(x, I x;,, _, 
) . In the real world targets do interact, collide and overlap each other. 

Hence using multiple single trackers with the assumption that they do not influence 

each other may not always be true, and the system will fail when targets interact. 

Interaction may be as simple as two targets coming into close proximity. The major 

failure mode observed is that multiple trackers lock onto the same object. 
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To handle these interactions Khan et al proposed a more capable motion model based 

on Markov random fields (MRF). They model the interaction between objects using a 

graph-based MRF constructed on the fly, dynamically, at each time step. A MRF is a 

graph (V, E) with undirected edges between nodes. The joint probability is factored as 

a product of local potential functions at each node and interactions are defined on 

neighbourhood cliques. The most commonly used form is a pair wise MRF, in which 

cliques pairs of nodes (objects) that are connected by undirected arc. Khan (Khan et al 

2004) assumes the following pair wise MRF form where v (x,, 
, xj, ) are pair wise 

interaction potentials. 

P(x, 1 x, -, 
) x 1-1 P(x,, 1 x, (, -I) 

)JJcV (x r'x;, ) i i/EE 
(5.2) 

Khan (Khan et al 2004) express the interaction potential in terms of Gibbs distribution 

V(x,,, xj, ) a exp(-S(xt, xJ, )) (5.3) 

where g(x, r, x, 1) 
is a penalty function which depends (in Khan's case) entirely on the 

number of overlapping pixels of the bounding boxes of two tracked objects i and j in 

the pair. This increases with area of overlap and is minimal when the two objects are 

distinct. Khan et al compute the weight of the particles concerned based on this 

penalty function 

=11P(zu . ixu u )17VI(4 , x`s') ýý 
i=1 ijeE 

(5.4) 

where ; rr') is the weight at time t from sample set s. So each particle's weight also 

depends on the amount of interaction with other objects being tracked. If a given 

particle's state estimate accurate describes one of its targets and so has high weight, 

but that state also violates the temporal space of another tracked object, then the 

penalty function reduces the weight of the particle, making it less likely to be 

projected to the next particle set. 
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5.3 Multi-target Kernel Annealed Mean Shift Tracking 
The multi-target Kernel Annealed Mean Shift tracker (MKAMS) is an extension to 

the single target tracking algorithm (KAMS) discussed in chapter 4. Annealed particle 
filtering and Mean Shift are major components of KAMS and are discussed in section 
4.2 and section 2.3.4 respectively. 

While tracking multiple targets an interaction handling mechanism has to be 

introduced to guard against failures caused by many trackers acquiring the same target 

at the same time. This is commonly known as target `coalescence'. Khan (Khan et al 

2004) used an interaction filter based on a Markov random field to handle scenarios in 

which objects interact. However, in Khan's algorithm particles are projected 

randomly, and their weights computed once and then adjusted according to a penalty 

function as discussed in section 5.2. KAMS on the other hand incorporates multiple 

annealing stages, in each of which particles are projected, Mean Shifted towards the 

best match and weighted by some evaluation function. These evaluation functions are 

related by a smoothing operator (Chapter 4). After each of the 4 stages used, the 

tracker's estimates of the position of each target may change. A multi-target KAMS 

algorithm must check after each individual stage if one target has violated another 

object's boundaries. 

It is hoped that each stage in the annealing process used in KAMS (and MKAMS) 

will improve the tracker's estimate of target position. The estimates obtained at the 

end of each stage may therefore be thought of as successive approximations to the 

true position. If at some point in the annealing process an object starts to violate other 

objects' boundaries, the KAMS approach raises the possibility of retreating to an 

estimate provided by a previous stage. Keeping the best estimate obtained without 

occlusion seems to be a logical choice. In Khan et al's algorithm, in contrast, a 

target's position estimate is reset to its position in the previous frame when the 

interaction filter fires. In effect all data from the current image is ignored. 
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Given the notion of a multiple stage interaction filter two variations of MKAMS 

present themselves. One approach would be to apply an interaction filter at each stage 

and, as soon as a stage indicates occlusion, restore the tracker's position to the 

estimate obtained at the previous successful stage and move to the next object. This 

algorithm makes very conservative use of the annealing stages, only proceeding until 

interactions begin to appear. 

Alternatively, the annealing stage showing target interaction could be ignored. This 

could be achieved by restoring the target position to the estimate obtained in the 

previous stage, then projecting that onto the next stage hoping to get to a better 

position without occlusions. The effect is to seek estimates of target state in the 

closest approximation to the desired evaluation function that does not show target 

interactions. The first approach we call "Simple MKAMS", and the latter we name 

"Complex MKAMS". 

The MKAMS algorithm, in both variations, is stated in figure 5.1. 
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Kernel Annealed Mean Shift Tracking Algorithm: 

Acquire frame at time tk, having a set Skm of N unweighted particles from the previous time step, for 'x' 

number of objects. 

Set x= number of objects tracked 
Define variable to store information for one object `temp' 

While(x >0) This loop sN ill deal NN ith an object at each itei; ation 

{ 

Set weighting function index m=M 

While (m>O) fhi" loop X4111 deal výilh multiple vage. vv hue Oun"idciim! ( hic object 
{ 

a. temp = current state of object x before processing this stage. 

b. Assign each particle a weight 7rk, MU) 

c. Select N particles replacing the old particle set and add Gaussian noise: 

(1) (+) 
Sk. 

m-1 
= Sk 

m+B. 

d. Apply kernel Mean Shift to each particle until the Bhattacharya distance between the 

model and image measured by the weighting function Wm_I (Zk 
$Sk, m_tU)) 

becomes stable 

or minimum. 

e. Workout the new position p(x, y) for object x. 

f. Check if new position of object x violates the airspace of other objects 
i. If no, 

  Continue 

ii. If yes, 

  restore all information back from temp 
For MKAMS Simple version, break inner loop. 

For MKAMS Complex version, Continue. 

g. m=m-1 

} 

x=x-1 
I 

Figure 5.1: Multi-Object KAMS algorithm, showing both simple and complex 

MKAMS. 
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The algorithm described in figure 5.1, 

" saves the initial state of an object (which includes its particle set, initial 

position and other parameters) before each annealing stage, 

" undergoes that annealing stage 

" checks if, in its new position, the specific object occludes other objects (i. e. if 

it triggers Khan's interaction filter) 

" if it does and Simple MKAMS is desired then than the parameters saved 
before that stage are restored and attention moves to the next object 

" if it does and Complex MKAMS is desired then the parameters saved at the 

previous successful stage are restored and the target projected onto the next 

annealing stage, where the process is repeated. 

" if no interaction is detected, annealing proceeds as in KAMS. 

The two MKAMS algorithms presented above can be expected to have different 

strengths and weaknesses. Complex MKAMS proceeds as far through the annealing 

process as possible, producing estimates from the best evaluation function that it can. 

To achieve this, however, it skips any annealing stages in which interaction is 

detected. This reduces the effect of the annealing process, and may make the 

algorithm prone to becoming caught on local maxima. This is due to the fact that each 

smoothing stage may shift the detected maxima away from the true global maxima 

gradually and towards the higher clutter density (figure 5.2). If we study figure 5.2 we 

note that the actual distribution is in stage (a). As we smooth out the distribution, the 

peak shifts away from the true peak in each smoothed stage. This effect is dependant 

on the position of the clutter in the area; if most of the clutter is on the right side of the 

global maxima as in this case, than smoothing will shift the centre towards the right 

and vice versa. In the example shown in figure 5.2, skipping stages b and c will cause 

the tracker to move to the incorrect local maxima to the right of its initial position. If 

all four annealing stages are used, however, the tracker will move to the left. 
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Figure 5.2: Illustrating the shift in maxima as the evaluation function is smoothed. 

Simple MKAMS can be expected to produce estimates using smoother evaluation 
functions that are more distant approximations to the desired function. This might be 

expected to introduce some degree of positional error into the tracker's output. The 

annealing process used to identify them is, however, complete, reducing the danger of 
distraction by background objects. 

Both versions of the MKAMS algorithms have been implemented and compared 

against each other and Khan's MCMC filter. Results are given in section 5.4. 

5.4 Experimental Evaluation 

Real world applications of tracking algorithms usually require tracking multiple 

objects. To gauge different algorithms we must consider robustness, accuracy and 

computational cost.. To assess robustness we will measure sensitivity at the frame 
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level and apply McNemar's Test at the image sequence level, while for accuracy we 

compute the standard root mean square (RMS) error along with frame by frame error 

plots between ground truth and tracked paths. Computational cost is estimated by 

measuring the average time taken to process a frame over a sizeable set of (33) image 

sequences (Appendix B, Link 3). 

5.4.1 Accuracy 

Accuracy can only be tested reliably using artificial image sequences, as we cannot 

depend on the accuracy of the manual ground truth data typically extracted from real 

sequences. For this purpose a dozen artificial videos were formulated with known 

ground truth and varying noise levels introduced in both x and y coordinates at each 

frame for each object. 

Each video shows 5 objects, which are in close proximity at the start of each video. 

There is a definite path which each object is programmed to follow in each video 

(Figure 5.3). Since in multiple target tracking added problems of collisions and 

occlusions occur, we start with a sequence showing a smooth trajectory of 5 objects 

and then add increasing amounts of random noise to each object, causing them to 

collide and occlude. This will gradually test not only the algorithms ability to track 

speedy targets with irregular motion, but also how well an algorithm copes with 

collisions and occlusions. Figure 5.3 gives the exact path, without any random noise 

added, for each object in the original video. 

Figure 5.3: Original Video with no noise added. All original paths are drawn for all 

the five objects. 
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The only difference between each video is the level of noise introduced to the targets' 

x and y coordinates at each frame. Noise is generated by multiplying the output of a 
Gaussian random function with a constant. As we increase the constant value, the 

range gets bigger hence increasing the noise levels. The Gaussian function returns a 

real value by picking out random values from a Gaussian distribution of mean 0 (g = 
0) and standard deviation squared of 5 (o2 = 5). So by increasing the multiplying 

constant, and keeping the Gaussian random range the same, random noise is 

increased. 

With zero added noise the occlusions are very minor and only partial, but collisions 

between trackers will occur as most of the objects touch each other during motion and 

the trackers jitter over their targets, colliding with each other occasionally. As noise is 

increased, the objects paths become increasingly random (figure 5.4) and the number 

of occlusions is bound to increase. An increase is seen in both partial and complete 

occlusions. 
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Noise 4x Noise 5x Noise 6x Noise 7x 

Noise 8x Noise 9x Noise lOx Noise 12x 

Figure 5.4: The effects of varying the random noise added to each object's path at 

each frame 

Objects in each video were tracked using Khan's (Khan et al 2004) MCMC and the 

two versions of MKAMS (complex and simple). Estimates of the position of each 

object from all the 3 algorithms were compared with ground truth and RMS errors 

were computed. Table 5.1 shows RMS errors associated with each object when 

tracked by each algorithm in each video. Here average RMS error for each individual 

object is reported for each video and for each algorithm, and the total accumulated 

average RMS error per frame for all the objects in each video is also reported. All 

distances are in pixels. 
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Noise Levels (videos) 3 

Object# Ox 
J 

ix 2x 3x 4x 5x 6x 7x 8x 
= 

1x 12x 

1 4.53 8.07 80.61 1631 727 19.26 6.85 23 104.15 109 110.7 158.94 

2 4.02 8.51 5.66 4.84 19.75 15.91 376 2210 169.34 1309 2822 459 

U 3 5.88 4.77 381.9 211 30.23 2026 2337 117 1458 3330 7 36 1333 . 
U 

4 6.13 6.20 6.28 1403 7.74 2750 70 278 635 31.44 53.18 122 

5 3.70 3.94 4.20 5.11 7.03 6.41 7.45 8.26 1032 1676 11.97 440 

Average 4.85 6.30 95.75 651 158 964 559 527 679.81 1293 746.83 502 

1 3.97 5.60 4.61 6.07 6.23 7.21 8.24 9.52 94.19 97.16 77.59 120.31 

Cn 2 3.66 4.02 5.56 5.14 6.02 6.82 8.11 9.01 10.33 11.50 30.25 15.05 

3 4.03 4.55 6.24 5.95 6.53 7.83 9.08 10 10.55 11.36 54.50 15.43 

460 4 4.30 4.46 5.07 5.81 7.09 9.22 9.37 206 10.83 11.94 11.57 33 134 
. 

71 5 5.04 4.83 5.23 6.17 6.38 7.03 8.76 9.73 9.67 11.17 12.97 30.36 

Average 4.20 4.69 5.34 5.83 6.45 7.62 8.71 49 27.11 28.63 37.38 63.10 

1 3.83 5.77 4.60 6.25 6.22 7.41 8.39 9.52 10.84 11.63 13.29 41.41 

Cn 
19 

2 3.82 4.43 5.34 5.56 6.24 6.93 8.05 9.50 10.48 48.72 12.90 14.99 

3 4.51 4.60 5.35 6.12 7.08 8.06 9.43 10 10.57 13.01 14.36 131.09 

4 4.32 4.14 4.88 6.35 6.88 8.31 8.83 73 9.70 11.44 12.29 32.62 S 

5 5.05 4.66 5.21 6.09 6.93 8.15 9.38 10 10.08 11.90 13.13 132.67 

Avera e 4.31 4.72 5.08 6.07 6.67 7.77 8.82 22.72 10.34 19.34 13.20 70.56 

Table 5.1: Km, -) error of eacn uvJCLI III MI one tesLea viaeos, average error is also 

shown in the yellow fields. 

The individual object errors from the three algorithms in each video are plotted 

separately in figures 5.5 to 5.16. 
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Figure 5.5: No noise was added to the five objects in this video. The occlusions are minimal and only 

partial. All the three algorithms successfully tracked the 5 objects to the end of the sequence. 
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Figure 5.6: The video contains partial occlusions. All algorithms tracked the objects successfully to 

the end of the sequence, but Khan's MCMC is shaky while tracking objects 1,2 and 4 In several 

situations the error associated with Khan's MCMC is noticeably higher than that obtained from 

MKAMS. 
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Figure 5.7: The video contains many partial occlusions, Khan's MCMC failed to track objects I and 
3 to the end of the sequence. Both MKAMS algorithms track all 5 objects well. 
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Figure 5.8: This video contains both partial and complete occlusions. Khan's MCMC fails to track 

objects 1,3 and 4 to the end of the sequence. Both MKAMS algorithms track all 5 objects well. 
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Figure 5.9: Khan's MCMC loses lock on objects 1,2 and 3. Simple MKAMS begins to show greater 

errors than Complex MKAMS, although both algorithms successfully track all the 5 objects to the end 

of the sequence. 
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Figure 5.10: Khan's MCMC loses lock on objects 1,2,3 and 4 to the end of the sequence. Simple 

MKAMS loses lock on object 4, while Complex KAMS performs well. 
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Figure 5.11: Khan's MCMC fails to track objects 2,3 and 4 and Simple MKAMS loses lock on object 

4 briefly. Complex MKAMS tracks all the objects to the end of the sequence. 
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Figure 5.12: Khan's MCMC loses track of object 1,2,3 and 4. Simple MKAMS loses lock on 

object 4 near the 5th frame, Complex MKAMS fails 4th as well but after the simple MKAMS at 

around 35th frame. 
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Figure 5.13: Khan's MCMC loses track of all the objects. Simple MKAMS fails to track objects I 

and 4. Complex MKAMS tracks all the objects successfully to the end of the sequence. Although we 

note that the RMS is increasing with the increasing noise levels. 
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Figure 5.14: Khan's MCMC loses track of all the objects. Single MKAMS failed to track objects 

and 4 while Complex MKAMS lost lock on objects 2 and 6 before the end of the sequence. 
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Figure 5.15: Khan's MCMC fails to track objects 1,2,3 and 4. Simple MKAMS lost lock on objects 

1,2,3 and 4th object, while Complex MKAMS only failed to track object 3 before the end of the 

sequence. 
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Figure 5.16: Khan's MCMC loses all five objects near the start of the sequence. Complex and 

Simple MKAMS track object 2 successfully till the end of the sequence but show 

As noise levels are increased, the tracking problem becomes harder, and all three 

algorithms show some deterioration Figure 5.17 shows the average errors arising from 

each algorithm, for all tested videos. These are plotted in ascending order of noise 

level. 
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Figure 5.17: Average RMS errors obtained from each algorithm in each video. 

In figure 5.17 x-axis represents the noise levels 1,2,3,4 
... 

12x. In theory it should get 

harder for algorithms when tracking objects as x increases and this is of course due to 

increasing noise levels. Khan's MCMC performs badly after 2x noise levels, but 

MKAMS continues to perform well. At 7x noise levels we see that complex KAMS 

shows a slight advantage as compared to simple KAMS. All three algorithms fail at 

12x noise levels. 

5.4.2 Robustness 

As in Chapter 4, robustness is assessed via sensitivity estimates and McNemar's 

statistic. Measurement of sensitivity requires definitions of true positive and false 

positive outcomes. In single target tracking these are clear; a true positive is recorded 

at a given frame when the tracker is positioned over the target it was initialised to 

track, and a false positive otherwise. This measure can also be used in the evaluation 

of multi-target tracking, to provide an estimate of the proportion of correct target 

identifications across a data set. 
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A set of 33 real and artificial image sequences were gathered showing varying 

numbers of targets moving in different ways across a variety of backgrounds. The 

first frame of some of the videos are shown, with a textual description of their content 

and the trackers' initial positions marked, in Appendix B. The full set is available 
from the web link (Link 3). The frame-based sensitivity estimate described above and 

employed in Chapter 4 was computed and results are given in Table 5.2, for each 

algorithm, over this data set. Khan's MCMC algorithm produced a sensitivity of 0.7, 

simple MKAMS 0.84, and complex MKAMS 0.91. Both MKAMS algorithms 

identify a noticeably larger proportion of their targets than the benchmark. 

Khan's MCMC Simple MKAMS Complex MKAMS 

Sensitivity 0.7 0.84 0.91 

Table 5.2: Sensitivity based on frame by frame analysis is listed for Khan's MCMC, 

Simple MKAMS and Complex MKAMS algorithms. 

What this data does not give, however, is any indication of how many targets were 

tracked successfully, i. e. for the entirety of their trajectory, and for how many tracking 

failed. To assess this, a second definition of true and false positive was employed. A 

true positive was recorded when a given target was tracked successfully from the 

beginning to the end of one of the test sequences. When tracking failed, that target 

generated a false positive for that sequence. Computed in this way and reported in 

Table 5.3, Khan's MCMC algorithm displays a sensitivity of 0.69. Simple and 

complex MKAMS produce values of 0.83 and 0.90 respectively. Both MKAMS 

algorithms track considerably more targets to completion. 

Khan's MCMC Simple MKAMS Complex MKAMS 

Sensitivity 0.69 0.83 0.90 

Table 5.3: Sensitivity based on trajectories is listed for Khan's MCMC, Simple 

MKAMS and Complex MKAMS algorithms. 
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Note that, while the two measures are highly correlated, the sensitivities computed 
from frame by frame analysis are slightly higher than those based on trajectories. This 

is because frame by frame analysis is more sensitive than trajectory-based analysis. In 

trajectory-based analysis, if an object is tracked till almost the end of the sequence, 

and tracking then fails, it is not counted as a true positive. The frame by frame 

analysis, however, counts all the frames in which the tracking was successful as true 

positives, and only the last few are marked as failures. 

To provide a clear statement of relative robustness McNemar's test is again employed. 

McNemar's statistic (Chapter 2) requires a definition of success. When evaluating 

pairs of single target algorithms, the tracker which lost its lock on the target first was 

considered to have failed, and the competing algorithm was considered to have 

succeeded (Chapter 3 and 4). A logical way of comparing two multiple target tracking 

algorithms using McNemar's test is that the one tracking the most objects till the end 

of the specific video sequence is considered to be successful, and the other is 

considered to have failed. Using this definition, McNemar's test was employed to 

gauge the robustness of the 3 algorithms (Khan's MCMC, Simple MKAMS and 

Complex MKAMS) over the 33 test sequences described in Appendix B. Over 30 are 

required to make sure the central limit theorem starts to apply and z-score formula 

becomes valid. 

Results are given in table 5.4. 
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Objects Tracked Successfully Winners during comparisons 

Video 

Name 

Total 

Objects 
MCMC 

KAMS 

Simple 

KAMS 

Complex 

Simple 

vs 
MCMC 

Complex 

vs 
MCMC 

Simple 

vs 

complex 

Ox 5 5 5 5 

1x 5 5 5 5 

2x 5 3 5 5 Simple complex 

3x 5 2 5 5 Simple complex 

4x 5 4 4 4 Simple complex 

5x 5 3 4 4 Simple complex 

6x 5 3 4 5 Simple complex Complex 

7x 5 3 4 4 Simple complex 

8x 5 2 3 5 Simple complex Complex 

gx 5 2 3 4 Simple complex Complex 

10x 5 1 2 5 Simple complex Complex 

12x 5 1 3 4 Simple complex Complex 

11 5 3 4 4 Simple complex 

12 5 3 5 5 Simple complex 

13 3 1 3 3 Simple complex 

14 4 0 4 4 Simple complex 

15 3 1 2 3 Simple complex Complex 

16 5 4 5 5 Simple complex 

17 10 7 7 9 complex Complex 

18 10 9 9 10 complex Complex 

19 g 8 7 7 mcmc mcmc 

20 2 1 2 2 single complex 

21 5 5 4 4 mcmc mcmc 

22 3 3 3 3 

23 7 7 7 7 

24 18 15 16 16 single complex 

25 3 3 2 2 mcmc mcmc 

26 4 2 3 3 single complex 

27 3 2 3 3 single complex 

28 10 8 8 8 

29 3 2 0 1 mcmc mcmc Complex 

0 3 3 3 3 

3 6 5 6 6 single complex 

Table 5.4: Results of tracking 3.3 viaeos witn r nan s iviLivit, aimpie iviNtiiviD anu 

Complex MKAMS algorithms. Note that cells in the three rightmost columns are left 

blank when the algorithms concerned track the same number of targets successfully. 
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Based on this data McNemar's test was performed and the results of McNemar's test 
are listed in Table 5.5. 

Simple vs 
MCMC 

Complex 

vs MCMC 

Complex 

vs Simple 

Nsf 21 23 9 

Nfs 4 4 0 

I Z-score 3.20 3.46 2.67 

McNemar 

Results >99.5% >99.5% >99% 

Table 5.5: Table shows the results of Mcnemar's test, where Nsf is the number of 
times Algorithm A succeeds and Algorithm B fails, and Nfs is the number of times 

Algorithm A fails and B succeeds. 

Table 5.5 shows the results of the pair wise comparison of the three algorithms. The 

results show that 

Simple MKAMS is significantly more robust than Khan's MCMC algorithm 

with a confidence of 99.5% 

" Complex MKAMS is significantly more robust than Khan's MCMC with a 
confidence of 99.5 

Complex MKAMS significantly more robust than Simple MKAMS with a confidence 

of 99% 

5.4.3 Execution Time Comparison 

Khan's MCMC and the two MKAMS algorithms described above were used to track 

objects in the set of 33 image sequences described in Appendix B. The average time 

taken by each to process one frame was calculated and is reported here. Given the 

region-based appearance model used by the three trackers, it is expected that 

computational cost will increase with target size. In chapter 4 this was taken into 

account by plotting average execution time against target radius. As there are multiple 
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objects with varying radii in each of image sequences used here, the total area of the 

objects tracked in each image sequence was computed and used instead of the radius 

measure. The results are shown in Figure 5.18 in increasing order of total area of 
tracked objects. 
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Figure 5.18: Average time in milliseconds taken to process one frame in increasing 

order of total area tracked. 

Figure 5.18 shows complex MKAMS to be slightly more expensive on average as the 

simple MKAMS algorithm; this is because the complex version processes all four 

stages even if an intermediate annealing stage fails, while simple MKAMS abandons 

processing of the object in that frame as soon as a stage fails. Both MKAMS 

algorithms are computationally much more expensive than the benchmark Khan's 

MCMC algorithm. 

5.5 Conclusion 

The KAMS algorithm developed and presented in Chapter 4 has been extended to 

produce a multi-target Kernel Annealed Mean Shift (MKAMS) algorithm in which 

each target is tracked by an individual tracker and interactions are handled using an 

updated version of Khan's interaction filter (Khan et al 2004). Use of a multi-level 

interaction filter allows the trackers to retreat to an alternative local maxima it' 
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occlusion by another target is noted. Two versions of the MKAMS were identified, 

based on the type of interaction filter used. 

The experiments that Khan (Khan et at 2004) performed employed sequences of 

images of ants in a confined container. The height of the container was limited to the 

extent that ants could move easily in the container but were not able to get on top of 

each other, hence avoiding occlusions. The experiments reported here, with both 

variations of MKAMS, do not make that assumption; a wide range of artificial and 

real world videos with targets partially and completely occluding each other were 

tested. Results show that both variations of the MKAMS perform better than Khan's 

MCMC algorithm in both accuracy and robustness. The Complex MKAMS algorithm 

performs the same or better than Simple MKAMS in all tests. 

Though none of the implementations used here have been optimised, the multiple 

annealing stages and Mean Shift stages of MKAMS mean that the approach is likely 

to remain among the most costly. Execution times are, however, reasonable for small 

numbers of small targets, and the improved performance of these algorithms will 

make them attractive in applications that are not time-critical. 
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Chapter 6: Conclusions and Future Work 

6.1 Overview 

While tracking objects using particle filter-based algorithms, management of the 

spread of the particle set is a key issue. For effective tracking in real-world 

environments the particle set must sample widely enough to represent all reasonable 
alternatives in areas of ambiguity. It must not, however, become diffused, spreading 

across the image plane rather than clustering around the object of interest. When this 

happens particles tend to migrate towards local maxima in their evaluation function, 

becoming caught on clutter and losing track of the target. 

This thesis has addressed the particle management problem in visual tracking. 

Specifically, it has investigated the ability of hybrid kernel mean shift/particle 

filtering algorithms to control particle sets and provide accurate and robust tracking of 

single and multiple targets. 

The first kernel mean shift/particle filter hybrid was proposed by Maggio and 

Cavallaro (Maggio and Cavallaro 2005). This combines Condensation with mean shift 

tracking to produce a system in which particles are alternately diffused by 

Condensation and clustered towards the local maxima by mean shift. Maggio and 

Cavallaro's hybrid typically shows the performance expected of Condensation, but 

requires noticeably fewer particles, greatly reducing computational cost. The hybrid 

tracker typically requires 80-90% fewer particles than regular condensation to achieve 

similar results (Maggio and Cavallaro 2005). 
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Two approaches to the construction of hybrid tracking algorithm have been 

considered here. The first (SOK, Chapter 3), makes explicit the iterative diffuse- 

cluster structure implicit in Maggio and Cavallaro's original hybrid algorithm, only 
diffusing when necessary and then carpeting a large, fixed area around the prior with a 

small number of carefully placed particles. The second (KAMS, Chapter 4), integrates 

kernel mean shift into the annealed particle filtering algorithm. The use of annealing 

allows the process noise employed in the particle filter to be increased, spreading the 

particle set over a larger area, with mean shift again drawing them back together at 

each stage of the annealing process. The KAMS algorithm was subsequently extended 

to multi-target tracking (MKAMS, Chapter 5) by incorporating the interaction filter 

successfully employed by Khan et. al. (2004). 

6.2 Contributions 

The contribution of this thesis is to show that: 

" Manipulation of the natural diffuse-cluster structure of particle filter/mean 

shift hybrids can result in more robust and efficient tracking. In particular, 
larger search areas should and can be used, in the expectation that the mean 

shift stage will draw the particles towards the true target. 

" Careful particle placement within an enlarged search area improves 

performance still further; annealed particle filtering is a suitable mechanism 

for managing that placement. 

" Integrating Khan et al's interaction filter with annealed particle filtering and 

mean shift both allows the hybrid approach to be extended to multiple targets 

and supports a wider range of more informed responses to target interaction. 

Integrating kernel mean shift and particle filtering generally results in 

improved performance over the component algorithms involved. 
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6.3 Future Work 
Visual tracking is a longstanding and challenging problem in computer vision, and the 

need to produce techniques and algorithms that are less sensitive to the classic 

problems of noise, occlusion and clutter will continue for some time yet. A number of 

specific developments of the methods investigated here are, however, apparent: 

" Like the annealed particle filter, KAMS is not a Bayesian tracker. Annealing 

and mean shift steps change the particle distribution so that the new sample set 

is not drawn from the original. Although it performs very well against other 

algorithms, it would be interesting to attempt to develop a fully Bayesian 

version of KAMS. 

" Though the MKAMS algorithm displayed superior tracking performance, 

MKAMS processing time is prohibitive in many multi-target tracking 

applications. One way to reduce this cost may be to combine hill-climbing and 

interaction filtering with an annealed particle filter in a different way. It may 

be possible to introduce annealing and multi-level interaction filters into the 

MCMC sampling-based algorithm, replacing the mean shift with the MCMC 

algorithm's hill climbing patterns. This may reduce processing overheads and 

make MKAMS a useable option for real world applications. 
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Appendix A 

This describes and provides a selection of sample frames from a set of test image 

sequences used through out this thesis to assess the performance of algorithms that 

track single targets. A short description of each image sequence is given in the table. 

Video Frame Description 

A tiger sprints through the forest, with 

trees occluding it partially. The face is 

law 

- LO. " 

tracked. 

A table tennis ball is bounced on a 

racket and tracked. 

A basketball player makes quick 

a manoeuvres with the ball occluding his 

head twice. The head is tracked. 

y. - 
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_. fý_ 

The blue ball is tracked while the hand 

moves it around in the scene. 

The football is tracked while it is k 

kicked around by the boy. The camera 

is not fixed and moves as well. The 

ball gets occluded by the legs a couple 

of times. The camera also zooms in 

and out a little. 
`_ *; 

The girl is tracked while she runs and 

jumps around in the park. The camera 

is not stationary and moves with the 

girl as well. 
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A single cell is tracked while they all 

move and change shapes. 

A girl is tracked while she runs around 

occluded once by the man. The camcra 

is hand-held and not stationary. 

REV 

'F 

'*ý, 
-- 

.i 

ýý 

Ob 

A ball is tracked in this artificial video 

while it moves randomly through the 

clutter. The clutter is static. 
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Appendix B 

This describes and shows some selected sample frames from a set of test image 

sequences used to assess the performance of algorithms that track multiple objects. 

The number of targets and a short description of each image sequence are given in the 

table. 

Number 

of 
Video Frame Description 

Objects 

Tracked 

Head movement is 

recovered by 

tracking eyes and 

mouth. Hands are 

5 also tracked while 

the subject explains 
how fishing net was 

thrown in a 

Vietnamese river. 

The host's hands and 

head are tracked 

while he waves them 
3 

around very quickly 

with various hand 

gestures. 

... ... __ vý 
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Tý1 

fs 

5 people are tracked 

while moving away 

5 from the camera in a 

synthetic train 

station simulation. 

il 
People moving in 

ti 
ýý" 

ý various directions 

s causing collisions 

and occlusions in a 

simulated train 

station. 

a -zi 

POW 
ý- 

1-0 
10 people in various 

ý. "1 positions like sitting, 

/ý 
10 walking, stopping, 

chatting and then 

walking are tracked. 
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e* 

ýý Cj L, 
1 

qo 

ýý :ý ._ ý__ 
ýý ý 

ýý 

{ -- 

ý- 

2ýry 
l 

Ný 
ýJ 

8 People moving in a 

8 mall are tracked in 

this synthetic video. 

2 people at a train 

station are tracked 

while they occlude 

2 
each other having 

similar colour 

models to an extent, 

this was taken from 

PETS video data set. 

5 people are tracked 

while they move in 

5 
the scene, causing 

occlusions, taken 

from PETS video 

dataset. 

7 football players are 

tracked in this high 

7 
pace scene with 

occlusions and 

collisions with a 

moving camera. 
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ý, 

Q rý 

sa. ý, 

P 

er 

r 

_r 1 

. ý. 
ý° 

N 

I 
tj 

All players are 

tracked with a fixed 
17 

camera while the 

game commences. 

The three players are 

tracked particularly 

because they form a 

3 close tackle 

occluding and 

colliding with each 

other. 

3 person's heads are 

tracked while 

moving in a train 

3 
station, they move 

towards the train 

occluding each other 

both completely and 

partially. 
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Fast hand 

movements are 
4 

tracked during a PhD 

supervision meeting. 
iv.. 

r 

O0- 

10 sperm are tracked 

" while they swiftly 

10 move in the scene 

causing collisions 

and occlusions. 

2 sperm are tracked 

up-close while 

2 colliding with and 

occluding each 

other. 
a. 

ýair 
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"1 

/w 

Eyes of both kids are 

4 tracked as they move 

around. 

3 cars are tracked 

while they move 

3 towards the camera, 

this was taken from 

PETS video data set. 

Eyes and mouths are 

6 tracked during a PhD 

supervision meeting. 
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w 

AIL J6 

17 

1 ! i1 

.. 

Head of two people 

2 are tracked during a 

bumping car drive. 

r Two kids' heads are 
2 tracked during a 

funfair ride. 

e, 
T 
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