Data-driven fMRI data analysis based on parcellationTools Ji, Yongnan (2001) Data-driven fMRI data analysis based on parcellation. PhD thesis, University of Nottingham.
AbstractFunctional Magnetic Resonance Imaging (fMRI) is one of the most popular neuroimaging methods for investigating the activity of the human brain during cognitive tasks. As with many other neuroiroaging tools, the group analysis of fMRI data often requires a transformation of the individual datasets to a common stereotaxic space, where the different brains have a similar global shape and size. However, the local inaccuracy of this procedure gives rise to a series of issues including a lack of true anatomical correspondence and a loss of subject specific activations. Inter-subject parcellation of fMRI data has been proposed as a means to alleviate these problems. Within this frame, the inter-subject correspondence is achieved by isolating homologous functional parcels across individuals, rather than by matching voxels coordinates within a stereotaxic space. However, the large majority of parcellation methods still suffer from a number of shortcomings owing to their dependence on a general linear model. Indeed, for all its appeal, a GLM-based parcellation approach introduces its own biases in the form of a priori knowledge about such matters as the shape of the Hemodynamic Response Function (HRF) and taskrelated signal changes.
Actions (Archive Staff Only)
|