
Progress in DNP Theory and

Hardware

by

Anniek van der Drift, Dipl. Phys.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

July 2012



To my family



Abstract

DYNAMIC NUCLEAR POLARISATION is a technique that allows one to increase

the signal-to-noise ratio in an NMR experiment substantially, by transferring

the inherently larger electron polarisation to the nuclei. Quantum mechanical

models of this effect have thus far been limited to the description of only a few

nuclei. This is due to the exponential scaling of the matrices involved in the

description of the system. In this thesis methods of reducing the state space

needed to accurately describe the simulation of solid effect DNP were explored

and tested. Krylov Bogoliubov averaging has been used to remove high fre-

quency oscillations from the system Hamiltonian and confine the trajectory of

the dynamics to the zero quantum coherence subspace. Truncation of the basis

spanning the Liouville space to low spin correlation orders has been tested and a

condition for a minimum truncation level was found. A strategy based on a pro-

jection method, which allows one to describe the spin polarisation transient with

multi-exponential functions, is introduced. This results in a linear scaling of the

propagator with the number of spins. The influence of the parameters involved

in the solid effect on the dynamics of the polarisation build up is discussed.

The second part of this thesis is concerned with a novel approach to detecting

fast molecular dynamics with the use of multiple RF receive and transmit coils.

A proof of principle probe with two decoupled RF coils is presented, as well as

a field map based shimming strategy and fast 2D data acquired with the probe.

Lastly a probe with six RF coils, based on the design of the dual coil probe,

will be presented, and initial data shown. The potential for using this probe in

hyper-polarisation experiments for protein binding and folding studies will be

discussed.
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Introduction

In the past decades Nuclear Magnetic Resonance (NMR) spectroscopy has be-

come a versatile tool used in a wide range of areas, including chemistry, material

science, and biomedical research. It enables to measure molecular properties

such as inter-nuclear distances or torsion angles between bonds, diffusion con-

stants, correlation times and more.

A great advantage of NMR over other molecular structure determination meth-

ods is that it is non-invasive, hence the molecules can be studied in their natural

environment.

One drawback is the inherently low signal-to-noise ratio (SNR) due to the small

Boltzmann factor of the nuclei. This is aggravated when the experiment is per-

formed on NMR active nuclei of low natural abundance and gyromagnetic ratio,

like the biologically relevant 13C and 15N isotopes, or when limited sample vol-

umes are available, as is often the case for larger proteins in biomedical research.

Dynamic Nuclear Polarisation (DNP) is one strategy to overcome this limita-

tion. Using DNP, the nuclear signal can be greatly enhanced by doping the

sample with paramagnetic impurities, such as electrons. The intrinsically larger

electron polarisation is exploited by transferring it to the nuclei, a step which

is driven by microwave irradiation. This makes it possible to achieve a signal

enhancement of theoretically up to 660 for 1H nuclei, which can become even

larger depending on the polarisation strategy.
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In chapter 1 a brief introduction to the principles of NMR will be given, followed

by an overview of DNP theory and different polarisation strategies in chapter 2.

The polarisation step of the DNP-NMR experiment is rather time consuming,

its time scale is on the same order as the nuclear relaxation time T1, which can

be up to hours for a cooled solid state sample. Hence it is desirable to optimise

this stage to yield the largest polarisation in the shortest time possible. Cur-

rently DNP experiments are largely carried out in the continuous wave fashion,

where the microwave irradiation is constantly on and set to the same frequency.

The polarisation transfer could be accelerated by implementing suitable pulse

sequences incorporating field modulations and phase changes. To devise such

sequences, the availability of a quantum mechanical theoretical model of DNP

is paramount, whereas the description of DNP in the past has been based on a

thermodynamical approach.

Applying the full quantum mechanical treatment is challenging as the matrices

needed to describe the interactions within the system scale with 4N , N being the

number of nuclei considered plus the electron. This quickly yields unmanage-

able matrix sizes and long processing times. Simulations on a desktop computer

with 8 GB RAM are restricted to six nuclei and one electron, the processing of

which takes around 26 hours. Aside from time being the practical issue, in order

to make the picture more realistic more spins have to be included.

In chapter 3 three methods are presented, that greatly reduce the operator size

necessary to accurately describe the spin system. Coming back to the above

example of six nuclei and one electron, the two first methods reduce the oper-

ator size by a factor of 50 which results in a speed up of the processing time

by a factor of around 3000. This is achieved by using Krylov-Bogoliubov av-

eraging theory as well as truncation of the basis of the operators describing the

behaviour of the spin system. For 13C nuclei with their lower gyromagnetic

ratio, the interactions scale more favourably with regard to the matrix size re-

2
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duction techniques mentioned above, hence it is now possible to simulate up

to 25 13C nuclei and one electron within 26 hours as well as fewer nuclei on a

much faster time scale than before possible.

At the end of chapter 3 the performance of a new strategy will be tested, which

enables to reduce dimension of the state space even more dramatically to the

size N, where N is the number of spins involved in the simulation. This is based

on a projection method which results in a multi-exponential description of the

polarisation build up curves of the nuclei. Conditions for the validity of the

method as well as error analysis will be shown.

The second part of this thesis is concerned with a novel approach to detecting

fast molecular dynamics. Usually the repetition of an experiment is limited by

the relaxation time required for the sample to return to thermal equilibrium, a

time characterised by T1. As this can be on the order of seconds for liquid state

NMR it is impossible to observe faster protein dynamics in this way. In chapter

4 the feasibility of using more than just one radio frequency (RF) coil to acquire

spectroscopic data from various positions of the sample is explored. With the

availability of more than one RF coil, the experiment can be carried out in an

arrayed fashion, avoiding having to wait for one experiment to finish before the

next one is started. A prototype with two decoupled RF coils will be presented,

as well as shimming strategies and fast 2D data acquired with the prototype.

Additionally initial data from a six coil probe-head, developed in collaboration

with Bruker, will be shown. The possibility to combine this approach with DNP

in order to utilise more of the polarised sample as well as the potential for using

this technique in protein binding and folding studies will also be discussed in

this chapter.
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CHAPTER 1

Introductory NMR theory

NMR is a technique which is routinely used for sample analysis in chemistry,

biology and medicine. It relies on the manipulation of the intrinsic angular

momentum (spin) of the atomic nuclei in a magnetic field, using appropriate RF

transmitters and receivers. NMR signals reveal information about the electronic

and nuclear environment of the observed spins. Sophisticated experiments allow

to extract information like coupling strengths, distances, temperature, diffusion

coefficients and more.

In the following sections an introduction into the signal origin of the NMR

spectrum and useful concepts will be described. As the presence of a param-

agnetic impurity such as a radical containing a free electron is important for

DNP, some useful properties of the electron spin will also be discussed. A more

in depth review can be found in the textbooks of M. Levitt [1], R.R. Ernst and

G. Bodenhausen [2], and A.A. Abragam [3].

1.1 The nuclear spin

Spin is a quantum mechanical property that is described analogously to quan-

tum mechanical angular momentum. The total spin of a particle is hence given

4



CHAPTER 1: INTRODUCTORY NMR THEORY

by Itot = h̄[I(I +1)]
1
2 , where I can take integer or, unlike classical angular mo-

mentum, half integer values. A particle with spin I has then (2I+1) sub levels,

which take the values m = −I, . . . , I. Analogously to the case of the angular

momentum, m is the azimuthal angular momentum quantum number, which

indicates the projection of the total angular momentum onto the z-axis1. Not

all nuclei possess spin, and the value of I depends on the number of protons

and neutrons in the nucleus, where an uneven number of either or both results

in a non-zero spin. As a consequence of having spin, the nucleus possesses

a magnetic moment which interacts with the surrounding magnetic field. The

magnetic moment of the nucleus is given by

µ̂ = γ h̄Î (1.1.1)

where γ is the gyromagnetic ratio of the nucleus and h̄ is the Planck constant

divided by 2π . This thesis will only be concerned with spin 1
2 particles, for

which the allowed m are −1
2 and 1

2 . As the potential energy of a magnetic

dipole in an external magnetic field ~B0 is given by

E =−µ̂ ·~B0 (1.1.2)

there are two possible energy levels for a spin 1
2 particle:

E =−γ h̄|~B0|m, m = [−1
2
,
1
2
].

This energy level splitting, which is degenerate for ~B0 = 0, is called the Zeeman

splitting. Transitions between the two levels can be induced by applying an

electromagnetic field which matches the resonance condition

∆E =−h̄γ|~B0|= h̄ω. (1.1.3)

ω is called the Larmor frequency. For nuclei, ω lies in the radio frequency range

for typical high resolution NMR magnetic field strengths.

1Without loss of generality the z axis is chosen by convention.

5



CHAPTER 1: INTRODUCTORY NMR THEORY

1.2 The electron spin

Electrons possess spin analogously to the nuclear spin, with the difference that

m always equals ±1
2 . As opposed to the nuclei, which are assumed to be fixed

in space and have no orbital angular momentum, the electron spin is a super-

position of its intrinsic spin and the orbital angular momentum. The energy

difference between the two energy levels is given by

∆E = gµb|~B0|, (1.2.1)

where g is the Landè g factor which contains the spin and orbital angular mo-

mentum and µb =
eh̄

2me
is the Bohr magneton. For the free electron g is isotropic

and equal to 2.0023. The electron gyromagnetic ratio is obtained by comparing

equation (1.1.3) and (1.2.1): γe =
gµb

h̄ . The Bohr magneton is a constant but the

g factor is modified by the electronic environment of the free electron and can

become anisotropic, which in turn provides information on the surroundings of

the free electron. The electron gyromagnetic ratio has an opposite sign to most

nuclei, with the exception of a few which will not be encountered in this thesis.

1.3 Spin Precession

The bulk magnetisation of a sample can be modelled as the sum of the expecta-

tion values of all contributing magnetic moments:

~M = ∑
i
< µ̂i >

Exposed to an external magnetic field the magnetisation vector experiences a

torque ~T =−~M×~B0 towards the lowest energy conformation, parallel to the

field. With ~T = h̄
d Î
dt

this gives a differential equation describing the motion of

the magnetisation vector:
d
dt

~M = γ ~M×~B0. (1.3.1)

6



CHAPTER 1: INTRODUCTORY NMR THEORY

Transferring this equation to a coordinate system that rotates with angular fre-

quency ω , where ω is parallel to ~B0 one finds:

d
dt

~Mrot =
d
∂ t

~Mlab + ~M×~ω = ~M× (γ~B0 +~ω)

Evidently ~M becomes static in the rotating frame for ~ω = −γ~B0, which in turn

means that in the laboratory frame ~M rotates around the direction of ~B0 with a

precession frequency ~ω = −γ~B0, the Larmor frequency from (1.1.3). By con-

vention the external static magnetic field is aligned with the z-axis. The mag-

netisation vector ~M can be manipulated by adding an oscillating magnetic field

~B1, which is perpendicular to the main external magnetic field. This is done

with a coil positioned around the sample. When the magnetisation vector has

been tilted into the xy-plane, the precession of ~M induces an electromotive force

(emf ) which is measured as a voltage across the coil proportional to ~M(0)cosωt.

1.4 Density operator formalism

Interacting spins are not sufficiently described by one magnetisation vector, so

a quantum mechanical treatment has to be employed. The standard equation

of motion for a particle wave function |ψ(t)〉 is the Schrödinger equation, but

as NMR experiments are usually conducted on a large ensemble of spins this

is not practical. Instead the density matrix formalism is used, where ensemble

averages of the wave function are considered. The central limit theorem implies,

that while the state of an individual spin may be uncertain, for a collection of

many spins the average state may still be known to a high degree of accuracy [4].

This leads to the Liouville-von Neuman equation of motion, which describes the

evolution of the ensemble average.

7



CHAPTER 1: INTRODUCTORY NMR THEORY

1.4.1 From wave function to density operator

Each wave function |ψ(t)〉 representing the state of N interacting spins can be

written as a linear combination of orthonormal basis eigenfunctions:

|ψ(t)〉=
N

∑
n=1

cn|n〉 and its transposed complex conjugate is: 〈ψ(t)|=
N

∑
n=1

c∗n〈n|.

The coefficients cn, c∗n can be found using cn = 〈n|ψ〉 and c∗n = 〈ψ|n〉, where

〈a|b〉 is the Dirac notation for the scalar product
∫

a∗bdt. Operators can be

defined as n×n matrices with elements

Qmn = 〈n|Q̂|m〉.

The expectation value of the operator Q̂ for the spin system with wave function

|ψ〉 is

〈Q̂〉=〈ψ|Q̂|ψ〉= ∑
n

∑
m

cnc∗m〈m|Q̂|n〉

=∑
n

∑
m
〈n|ψ〉〈ψ|m〉〈m|Q̂|n〉

=∑
n
〈n|ψ〉〈ψ|Q̂|n〉

=Tr(|ψ〉〈ψ|Q̂).

The expression |ψ〉〈ψ| completely describes the state of the system and gives

the density operator. For a sample containing a large number of spins, the av-

erage over all the states is used and the matrix elements of the density operator

are:

ρnm = 〈n|ψ〉〈ψ|m〉= cnc∗m = 〈n|ρ̂|m〉

and the expectation value of an operator is given by

〈Q̂〉= Tr(ρ̂Q̂).

As an example, the general state of an ensemble of non-interacting spin-1
2 par-

ticles is given by:

|ψ〉= cα |α〉+ cβ |β 〉= cα

(
1
0

)
+ cβ

(
0
1

)
,

8



CHAPTER 1: INTRODUCTORY NMR THEORY

where |α〉 and |β 〉 are the orthonormal basis vectors of the density operator.

Hence the density operator corresponding to this state is:cαc∗α cαc∗
β

c∗αcβ cβ c∗
β

 . (1.4.1)

The state vector of N coupled spin 1
2 particles can be constructed by

|ψ〉= |ψ1〉⊗ |ψ2〉⊗ . . .⊗|ψN〉

and hence the density operator is a 2N×2N matrix, given by |ψ〉〈ψ|.

1.4.2 Time evolution - the Liouville-von Neuman equation of

motion

The equation of motion for |ψ(t)〉 is given by the Schrödinger equation:

− ı̇h̄
d
dt
|ψ(t)〉= Ĥ |ψ(t)〉, (1.4.2)

where Ĥ is the Hamiltonian operator describing the interactions within the spin

system, its eigenvalues are the energy levels. Hamiltonians will be described in

more detail in section 1.5. Using equation (1.4.2) and its transpose, one gets

d
dt
|ψ(t)〉〈ψ(t)|= (

d
dt
|ψ(t)〉)〈ψ(t)|+ |ψ(t)〉 d

dt
〈ψ(t)|

= ı̇h̄(−Ĥ |ψ(t)〉〈ψ(t)|+ |ψ(t)〉〈ψ(t)|Ĥ )

=− ı̇
h̄

[
Ĥ , |ψ(t)〉〈ψ(t)|

]
This relation is also true for linear combinations of |ψ(t)〉〈ψ(t)| and hence for

ρ̂(t):
d
dt

ρ̂(t) =− ı̇
h̄

[
Ĥ , ρ̂

]
, (1.4.3)

which is the Liouville-von Neuman equation of motion. If the Hamiltonian is

time-independent, the solution to equation (1.4.3) is

ρ̂(t) =U(t)ρ(0)U(t)−1 = e−
ı̇
h̄ Ĥ t

ρ̂(0)e
ı̇
h̄ Ĥ t . (1.4.4)

9
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For many encountered problems, if Ĥ varies with time, a frame of reference

can be found in which it becomes time independent. If the density operator is

expressed in the eigenbasis of the Hamiltonian the off diagonal elements indi-

cate a coherence between two states, whereas diagonal elements indicate the

fractional populations of the energy levels.

It is customary in NMR to speak of energies in terms of frequencies, hence as

E = h̄ω , the h̄ term will be absorbed into the Hamiltonian, which then contains

elements in units of angular frequency.

1.4.3 Spin operators and properties

Analogously to the classical angular momentum, spin also can be described by

operators which obey the same commutation relations:[
Îk, Îl

]
= ı̇εklmÎm, where k, l, m ∈ [x,y,z] ,

and εklm is the Levi Civita tensor. The single spin operators are given by Îk =

1
2σk, where σk is one of the Pauli matrices:

σx =

0 1

1 0

 σy =

0 −ı̇

ı̇ 0

 σz =

1 0

0 −1

 .

The quantum numbers m that were introduced at the start of this chapter are the

eigenvalues of the operator Îz, whereas I(I + 1) is the eigenvalue of the total

angular momentum operator Î = Î2
x + Î2

y + Î2
z .

The operator describing the energy of a spin-1
2 particle in a magnetic field

aligned along the z axis can be expressed in terms of the spin operator Îz:

Ĥ =−1
2

γB0σz =−γB0Îz

This operator is the Zeeman Hamiltonian, derived from (1.1.1) and (1.1.2). To-

gether with the unity operator Ê =
(

1 0
0 1

)
the operators Îx,Îy and Îz form a com-

plete basis, called the Cartesian basis, in which the density operator and Hamil-

tonians can be expressed. For a two spin-1
2 system, the Cartesian basis operators

10



CHAPTER 1: INTRODUCTORY NMR THEORY

can be constructed from Table 1.1. In general for an N-spin1
2 ensemble the basis

Table 1.1: Construction of the Cartesian two spin basis from the single spin

operator.

Ê2 Î2x Î2y Î2z

Ê1 Ê1⊗ Ê2 Ê1⊗ Î2x Ê1⊗ Î2y Ê⊗ Î2z

Î1x Î1x⊗ Ê2
1
2σ1x⊗σ2x

1
2σ1x⊗σ2y

1
2σ1x⊗σ2z

Î1y Î1y⊗ Ê2
1
2σ1y⊗σ2x

1
2σ2y⊗σ2x

1
2σ2y⊗σ2z

Î1z Î1z⊗ Ê2
1
2σ1z⊗σ2x

1
2σ1z⊗σ2y

1
2σ1z⊗σ2z

operators are given by [2]:

Bs = 2(q−1)
N

∏
k=1

(Ikα)
aks,

where α = x,y or z, q is the number of operators in the product and aks = 1 for

q of the spins and aks = 0 for the remaining N−q spins [2]. From Îx and Îy the

raising and lowering operators can be obtained, which increase or decrease the

quantum number m of a particular state |ψ〉 by one:

Î+ = Îx + ı̇Îy =

0 1

0 0

 and Î− = Îx− ı̇Îy =

0 0

1 0

 .

For example Î−|α〉= |β 〉. The operators Îz, Î+ , Î− and Ê also form a complete

basis for a single spin 1
2 , called the shift basis, which can be extended to a basis

for a higher number of spins by building product operators as in Table 1.1.

11
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1.4.4 Thermal equilibrium, spin polarisation and spin tem-

perature

The thermal equilibrium of the undisturbed spin system is given by the Boltz-

mann distribution:

ρeq =
N

∑
i=1

Z−1e−
Ei

kbT ,

where Z is the partition function of the system, kb the Boltzmann factor and

T the absolute temperature. For the spin-1
2 ensemble the thermal equilibrium

density operator is hence given by

ρeq = Z−1

exp
(
− h̄γB0

2kbT

)
0

0 exp
(

h̄γB0
2kbT

)
 ,

with

Z = exp
(

h̄γB0

2kbT

)
+ exp

(
− h̄γB0

2kbT

)
.

A high temperature approximation can be made when the Zeeman energy is

much smaller than the thermal energy, so when h̄γB0
kbT � 1. This is the case for

nuclei even down to temperatures of a few Kelvin. The exponential function can

then be expanded in a Taylor series and all higher order terms after the second

are neglected. Then the equilibrium density operator is

ρeq =
1
2

(
Ê +

h̄γB0

kbT
Îz

)
. (1.4.5)

Even though it was indicated in section 1.3 that all spins precess at the character-

istic Larmor frequency, this is not evident from the equilibrium density operator

as the precessing spins do not possess phase coherence (the off diagonal ele-

ments are averaged to zero). Phase coherence can be induced by applying a

time varying magnetic field perpendicular to the main magnetic field, as will be

shown in section 1.8.

The polarisation of a spin system is given by the fractional differences of the

12
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populations, so the equilibrium polarisation for a spin-1
2 ensemble is

P0 = Z−1
[

exp
(

h̄γB0

2kbT

)
− exp

(
− h̄γB0

2kbT

)]
= tanh

(
h̄γB0

2kbT

)
. (1.4.6)

The higher the polarisation, the larger the initial magnetisation M0 = NµP0 =

N
2 γ h̄P0 and hence the signal to noise ratio (SNR), which is proportional to

SNR ∝ M0η

√
QωVc

Tc
. (1.4.7)

Here η is the filling factor of the coil, Q is the quality factor of the coil, Vc the

volume of sample, and Tc the temperature of the coil. From the selection of

thermal polarisation values of 1H, 13C and electrons given in Table 1.2 it can be

seen that NMR is inherently insensitive, which is due to the small Boltzmann

factor h̄γB0
kbT .

Table 1.2: Equilibrium spin polarisations at B0=9.4 Tesla for 1H and 13C nuclei

as well as electrons.

Temperature [K] P0(
1H) P0(

13C) P0(e−)

300 9.7e-5 8.1e-6 2.1e-2

1 9.7e-3 2.4e-3 1

It can be seen from equation (1.4.6) and Table 1.2 that the spin polarisation is

temperature dependent. One can assign a spin temperature TS to the system,

which is equal to the external temperature T for a spin system, that is not po-

larised by means other than changing the temperature T or the external magnetic

field B0. If however the polarisation is increased, for example by DNP, the tem-

perature at which the same population difference would occur without DNP is

much lower than the external temperature T of the sample. Then the spin tem-

perature TS is smaller than the sample temperature T . The spin temperature can

also become larger than the sample temperature and even negative, for example

13
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when the populations are affected using RF pulses. The negative spin temper-

ature occurs for an RF inversion pulse. Instead of using TS, the inverse spin

temperature β = (kbTS)
−1 is often used.

1.5 Hamiltonians

Hamiltonians are the generators of time evolution [5]: it could be seen in sec-

tion 1.4.2 that the density operator undergoes changes under the influence of a

Hamiltonian operator. Hamiltonians are Hermitian operators that describe the

interactions in the system, such as the interaction of the spin with the exter-

nal magnetic field or with other spins. The spectrum of a sample is uniquely

determined by the Hamiltonians involved and hence information on coupling

strengths and distances can be deduced.

1.5.1 Zeeman Hamiltonian

Nuclear spins solely subjected to an external magnetic field evolve under the

aforementioned Zeeman Hamiltonian

ĤZ =−γB0Îz =−ω Îz.

For 1H nuclei γ = 42.57 MHz/T, and for 13C γ = 10.71 MHz/T. Electrons have

a much larger gyromagnetic ratio due to their small mass, as well as an opposite

sign which stems from the negative charge of the electron. For a free electron

the gyromagnetic ratio is γe = −gµb = −28.03 GHz/T. The electronic Zeeman

interaction can be anisotropic, in which case instead of one g factor the tensor g

has to be used:

ĤZ =−gµbB0Ŝz.

In order to avoid confusion, the electron spin operators are denoted as Ŝ.

14
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1.5.2 Chemical shift

In liquid state NMR the molecules are tumbling rapidly on a time scale much

faster than the acquisition time scale. Hence orientation dependent short dis-

tance interactions, which will be introduced in section 1.5.5, are averaged out

and only isotropic contributions remain. The most dominant interaction in liq-

uid state is the chemical shift. The nuclear Larmor frequency is modified by

the surrounding electron cloud of the atom. The external magnetic field induces

circular motion of the electrons in their orbitals, resulting in a small shielding

magnetic field in the opposite direction to the external field (Lenz rule). Hence

the resonance frequency is shifted by the isotropic shielding constant σ .

ω =−γ(1−σ)B0

As the electron cloud in a molecule is dependent on the electro-negativity of

the involved nuclei, the chemical shift is one indicator of the components in the

molecule. In order to enable comparison of data acquired at different external

magnetic fields a field independent expression for the chemical shift, measured

in parts per million (ppm), exists. It is given by

δ =
ω−ωre f

ωre f
, (1.5.1)

where ωre f is the resonance frequency of a reference compound, commonly

Tetramethylsilane (CH3)4 Si.

1.5.3 J-coupling

Another important interaction in the liquid state is J-coupling. This is an in-

direct interaction of neighbouring spins via their electronic environment. For

an s-type electron orbital there is a non-vanishing probability density at the nu-

cleus, known as the Fermi contact term. The electron spin state therefore has an

influence on the nuclear spin state. Consider a nuclear spin pair IA and IB co-

valently bonded via electrons with spins SA and SB. IA is aligned either parallel
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or anti-parallel to the external magnetic field and so the magnetic moment of its

electrons will align accordingly either parallel or anti-parallel to IA. Following

the Pauli exclusion principle the second electronic term will align anti-parallel

to SA. The two possible configurations of IB now have two different energies,

resulting in peak splitting in the spectrum. The strength of the J-coupling is

field independent. In liquids the rapid molecular tumbling averages out any

directional information so J is a scalar. The Hamiltonian for J-coupling is

ĤJ = 2πJÎ1zÎ2z,

where J is the coupling strength in Hz.

1.5.4 RF and microwave Hamiltonian

Transitions between energy levels levels can be introduced by applying a time

varying field perpendicular to the main magnetic field, that matches the reso-

nance condition. Depending on whether the spin species concerned are electrons

or nuclei, the resonance condition lies in the microwave or radio frequency range

respectively for magnetic fields of several Tesla. The nuclear RF Hamiltonian is

given by

Ĥr f = ω1e−ı̇ωirr Îzt Îxeı̇ωirr Îzt , (1.5.2)

where ω1 is the strength of the applied field and ωirr is the irradiation frequency.

Without loss of generality the ~B1 field in the given Hamiltonian is aligned along

the x axis, but this can easily be changed by replacing Îx with Îy or a superposi-

tion of both, if necessary. The structure of the microwave Hamiltonian is exactly

the same, just the irradiation frequency has to be changed.
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1.5.5 Orientation dependent spin-spin interaction Hamiltoni-

ans

In the solid state the direction dependency of the interaction between two spins

is conserved. As the DNP effect that is encountered in this thesis takes place in

the solid state, it is important to introduce the following two interactions, which

average out for liquid state experiments.

Hyperfine interaction

The first important interaction is that of the nuclei with free electron spins such

as free radicals. This is the hyperfine interaction and the Hamiltonian for one

electron and N nuclei is

Ĥh f i =
1
2

N

∑
k

γIγS

r3
k

[
Îk · Ŝ−3(Îk · r̂k)(Ŝ · r̂k)

]
,

where rk is the connection vector between the kth nucleus and the electron. This

can be brought into the form of the ‘dipolar alphabet’ [6]

Ĥh f i =
N

∑
k

γIγS

r3
k

(ak +bk + ck +dk + ek + fk) ,

where

ak = ÎkzŜz(1−3cos2
θk)

bk =−
1
4
[
Îk−Ŝ++ Îk+Ŝ−

]
(1−3cos2

θk)

ck =−
3
2
[
Îk+Ŝz + ÎkzŜ+

]
sinθk cosθke−ı̇φk

dk =−
3
2
[
Îk−Ŝz + ÎkzŜ−

]
sinθk cosθkeı̇φk

ek =−
3
4

Îk+Ŝ+ sin2
θke−2ı̇φk

fk =−
3
4

Îk−Ŝ− sin2
θke2ı̇φk ,

(1.5.3)

where θk is the angle between the z-axis and rk and φk the polar angle between

the x-axis and rk. At high magnetic fields the electron Zeeman interaction is
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much larger than the nuclear terms, hence first order perturbation theory can ap-

plied and only the secular parts with respect to the electron Zeeman interaction

need to be kept. These secular terms are the ones that commute with the electron

Zeeman Hamiltonian, so the hyperfine interaction Hamiltonian reduces to:

Ĥ ′
h f i =

N

∑
k

Ak ÎkzŜz +Bk+Îk+Ŝz +Bk−Îk−Ŝz,

with the constants

Ak =
γIγS

r3
k
(1−3cos2

θk)

and

Bk± =−3
2

γIγS

r3
k

sinθk cosθke∓ı̇φk .

(1.5.4)

The term containing Ak is responsible for level splitting and the one containing

Bk± indicates how well the levels are mixed. It is evident that Bk− = B∗k+. From

now on the truncated hyperfine Hamiltonian will be used and the prime will be

dropped. The modulation of the interaction constants Ak and Bk± with the angle

θ is shown in figure 1.1. The black lines, which indicate where the interaction

constant Ak is zero, mark the so called magic angles.

Figure 1.1: Modulation of the hyperfine interaction constants Ak and Bk± with

the angle θ .
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Nuclear dipole-dipole coupling

The second important interaction, the nuclear dipole-dipole interaction, has the

same structure as the hyperfine Hamiltonian:

ĤDD =
1
2

N

∑
i, j

γ2
I

r3
i j

[
Îi · Î j−3(Îi · r̂i j)(Î j · r̂i j)

]
,

where r̂i j is the internuclear distance unit vector. Again a secular approximation

can be made, as the nuclear Zeeman interaction is much larger than the dipo-

lar terms. As a result all terms that do not commute with the nuclear Zeeman

Hamiltonian can be neglected. The truncated Hamiltonian is then

Ĥ ′
DD =

1
2

N

∑
i, j

di j

[
2ÎizÎ jz−

1
2
(
Îi+Î j−+ Îi−Î j+

)]
, (1.5.5)

where di j =
1
2γ2

I (1−3cos2 θi j)r−3
i j is the dipolar coupling strength between spin

Îi and Î j in Hertz and θi j is the angle between the z axis and the internuclear

distance vector r̂i j. Again the prime will be dropped and from now on the dipolar

Hamiltonian from equation (1.5.5) will be used.

1.6 Typical interaction strengths

It is instructive to consider the typical strengths of the interactions mentioned

before. In Table 1.3 an overview of typical values for 1H nuclei can be found,

where for the field dependent interactions a magnetic field on the order of sev-

eral Tesla is assumed. 13C nuclei have an approximately four times smaller

gyromagnetic ratio, resulting in four times smaller hyperfine interaction con-

stants with respect to protons, a four times smaller Larmor frequency as well as

a sixteen times smaller nuclear dipole interaction.
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Table 1.3: Typical numerical values for interaction strengths.

Interaction type Typical range of values in Hz

J coupling 100−102

Nuclear dipole dipole coupling 100−103

Hyperfine interaction 103−106

Nuclear Zeeman 108

Electron Zeeman 1010

1.7 Interaction Representation of Hamiltonians

For Hamiltonians which contain a strong Ĥ0 and comparatively weak interac-

tion terms Ĥ1 one can remove the effect of the strong interaction by a transfor-

mation into an interaction or rotating frame:

Ĥ T (t) = eı̇Ĥ0tĤ1(t)e−ı̇Ĥ0t , (1.7.1)

where the index T indicates a transformation into an interaction frame. The

density matrix also has to be transformed into this frame:

ρ̂
T (t) = eı̇Ĥ0t

ρ̂(t)e−ı̇Ĥ0t ∂ ρ̂T (t)
∂ t

=−ı̇
[
Ĥ T (t), ρ̂T (t)

]
.

This has the effect that the terms in the new Ĥ T (t) are much smaller, which,

as the time step that is necessary to accurately calculate ρ̂(t) is on the order of
1
||Ĥ || , brings computational advantages. Additionally, in most cases it is possible

to remove explicit time dependence of a Hamiltonian by choosing the correct

rotating frame.

If the Hamiltonian is written in terms of irreducible tensor operators T̂lm (see

appendix A) one can transform it using the following commutation relation [7]:

[
Îz, T̂lm

]
= mT̂lm, (1.7.2)
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which results in the interaction frame transformation:

eı̇ω Îzt T̂lme−ı̇ω Îzt = e−ı̇mωt T̂lm (1.7.3)

A few examples will be shown in the next sections.

1.7.1 The Microwave Hamiltonian in the Electron Interac-

tion frame

The microwave Hamiltonian in the lab frame is given by:

Ĥmw = ω1e−ı̇ωµwŜzt Ŝxeı̇ωµwŜzt =
ω1

2
e−ı̇ωµwŜzt

(
Ŝ−+ Ŝ+

)
eı̇ωµwŜzt , (1.7.4)

where ω1 is the microwave field strength and ωµw the irradiation frequency.

Using (1.7.3) one can rewrite (1.7.4) as:

Ĥmw =
ω1

2
(
e−ı̇ωµwt Ŝ−+ eı̇ωµwt Ŝ+

)
The transformation into the electron Zeeman interaction frame H0 = ωSŜz,

where ωS is the electron Larmor frequency, gives:[
Ŝz, Ŝ−

]
=
√

2
[
Ŝz, T̂1−1

]
=−
√

2 T̂1−1 =−Ŝ−→ eı̇ωSŜzt S− e−ı̇ωSŜzt = eı̇ωSt Ŝ−[
Ŝz, Ŝ+

]
=
√

2
[
Ŝz, T̂11

]
=−
√

2 T̂11 = Ŝ+→ eı̇ωSŜzt Ŝ+e−ı̇ωSŜzt = e−ı̇ωSt Ŝ+

so

Ĥ T
mw =

ω1

2

(
eı̇∆t Ŝ−+ e−ı̇∆t Ŝ+

)
, ∆ = ωS−ωµw.

(1.7.5)

If ωµw =ωS the offset becomes zero and one obtains the microwave term Ĥ T
mw =

ω1

2
(
Ŝ−+ Ŝ+

)
= ω1Ŝx, which appears to be static in the rotating frame.
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1.7.2 Pseudo-secular Hyperfine Interaction Hamiltonian in

the doubly rotating frame

The pseudo-secular2 hyperfine interaction Hamiltonian Ĥh f i is already secu-

lar with respect to the electron Zeeman term, so one only has to calculate the

transformation into the nuclear rotating frame.

Ĥh f i =
N

∑
k

[
Ak ÎkzŜz +

1
2
(
Bk−Îk−+Bk+Îk+

)
Ŝz

]
.

Transformation into the nuclear Zeeman frame Ĥ0 = ωI Îz gives analogously to

(1.7.5):

Ĥ T
h f i =

N

∑
k

[
Ak ÎkzŜz +

1
2
(
eı̇ωItBk−Îk−+ e−ı̇ωItBk+Îk+

)]
Ŝz.

These examples will be encountered again in chapter 3.

1.8 The NMR experiment

The starting point, the equilibrium density operator, is given by equation (1.4.5).

In order to simplify calculations, the numerical factors and the unity matrix

are neglected and ρ̂eq is taken to be Îz. In order to bring the system out of

equilibrium an RF pulse has to be applied. In the rotating frame the density

matrix after an on resonant 90◦ pulse of duration τ is given by:

ρ̂(τ) =Ur f (τ)ρ̂eqU−1
r f (τ) = e−ı̇ π

2 Îx Îzeı̇ π

2 Îx =−Îy,

where the RF field strength ω1 has been chosen in such a way, that the flip angle

of the magnetisation is β = ω1τ = π

2 . In the laboratory frame the spins precess

with the Larmor frequency in the xy plane, which induces an emf in the detector

coil. The spectrometer mixes the recorded signal with a carrier frequency ωre f

2Secular with respect to the electron Zeeman Hamiltonian
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close to the Larmor frequency, in order to enable detection an an analogue digital

converter. The signal is then given by

ρ̂(t)=UZ(t)ρ̂(τ)U−1
Z (t)=−e−ı̇ΩÎzt Îyeı̇ΩÎzt =−Îy cos(Ωt)+ Îx sin(Ωt) (t > τ),

with Ω = (ω −ωre f ). Fourier transformation yields the spectrum with the fre-

quencies that are characteristic for the molecule. This is illustrated in figure 1.2,

where a spectrum of Ethanol is displayed. On the left one can see the signal in-

duced in the receive coil, the free induction decay (FID). Due to the presence of

more than one resonance frequency in the sample, modulations of the amplitude

are visible. On the right the Fourier transform displays the various chemical

shift frequencies and J coupling splittings.

Figure 1.2: FID and resulting spectrum of Ethanol.

Bloch equations with relaxation

The excited spins will eventually return to the thermal equilibrium due to relax-

ation processes. The simplest way to describe this is by employing the mag-

netisation vector model introduced in section 1.3 for uncoupled spins. Equation

(1.3.1) is modified by introducing a relaxation matrix which enables the return

of the magnetisation vector to the initial position ~M0.:

d
dt

~M = γ ~M(t)×~B(t)− R̂(~M(t)− ~M0),
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with

R̂ =


1
T1

0 0

0 1
T2

0

0 0 1
T2

 . (1.8.1)

1
T1

is the longitudinal relaxation rate which indicates how fast the thermal equi-

librium z-magnetisation is restored. Longitudinal relaxation is induced by fluc-

tuations of the surrounding magnetic field at the Larmor frequency, that have

a component in the xy plane. The transverse relaxation rate 1
T2

indicates how

fast the component of the magnetisation vector in the xy plane decays. This is

caused by a loss of coherence of the spins due to fluctuations of the surrounding

magnetic field with a component in the z direction. These fluctuations cause

some spins to precess faster and some slower, resulting in an overall dephasing

of the spins and hence loss of coherence. ~B(t) in equation (1.8.1) is now the sum

of the external static magnetic field ~B0 and the time varying excitatory magnetic

field ~B1. The separate x y and z components of equation 1.8.1 are well known

as the Bloch equations.

An important source of relaxation in the liquid state is molecular tumbling,

where the dipolar interaction between nuclei acts as the mediator of the resulting

fluctuations in the magnetic field. In the solid state the rapid fluctuations of the

electronic spin state are felt by the nuclei via the hyperfine interaction, which as

a result are a main cause of relaxation for the nuclei in this case [3].

1.9 Relaxation and the Liouville space

The Bloch equations (1.8.1) are only valid for uncoupled spin systems, for cou-

pled spins a more in depth treatment has to be employed. For a full description

of relaxation processes one would have to include the surrounding particles that

are the origin of local magnetic field fluctuations, such as phonons and elec-

trons, in the density operator. As this leads to a very large state space, and
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hence a large density operator, this is not practical. Instead, a treatment that is

called semi-classical by Ernst and Bodenhausen [2], where the influence of the

surroundings is represented by a randomly fluctuating term, is useful for most

applications. It is based on defining a Hamiltonian that represents the small ran-

dom fluctuations, and then perturbation theory is applied. An important concept

for the description of incoherent processes such as relaxation is the Liouville

space, the adjoint map to the Hilbert space in which the theory presented up to

this point has resided. Hilbert space in general is a vector space which has a

metric defined on it. The Liouville space is spanned by the 2N basis states of

the Hilbert space [8]. In Liouville space the density operator is represented by

a vector. Liouville space operators, also called superoperators and defined from

Hamiltonians, are acting on it to generate time evolution. One advantage of

making the transition to the Liouville space is: The commutator in the equation

of motion (1.4.3) is replaced by a left hand multiplication of the initial density

operator with a superoperator. This in turn means that the solution is given only

by a left hand multiplication with a propagator, very much analogous to the so-

lution to the Schrödinger equation. Additionally, commutators play a role in the

Redfield relaxation theory that will be introduced in this section, which can thus

be removed by a transition to the Liouville space.

1.9.1 Liouville space

Liouville space operators are derived from Hilbert space (‘normal’) operators

by
ˆ̂Ik =

[
Îk, Ê

]
= Îk⊗ Ê− Ê⊗ Îk.

The double hat above the operator indicates a Liouville space operator. The

Hamiltonian in the Liouville space is constructed in the same way. The dimen-

sion of the new superoperators and Hamiltonians is now 4N as opposed to 2N ,

which is a large penalty in computational terms but in order to describe relax-
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ation behaviour of coupled spins, the transition to Liouville space is necessary.

The density matrix has to be transformed into a density state vector with basis

operators. For example the equilibrium density matrix for a two spin system

ρ̂eq =
1
2

(
Ê +

h̄γB0

kbT
Îz

)
=

1
2 +

h̄γB0
kbT 0

0 1
2 −

h̄γB0
kbT


turns into

|ρ̂eq〉=


1
2 +

h̄γB0
kbT

0

0
1
2 −

h̄γB0
kbT

 , with the basis operators:


|α〉〈α|

|α〉〈β |

|β 〉〈α|

|β 〉〈β |

 .

Generally the density state vector can be expressed by the basis operators: | ˆρ(t)〉=
N2

∑
k=1

bk(t) ˆ̂Bk, where { ˆ̂Bk} is a complete set of basis superoperators. The Hamil-

tonian superoperator, also commonly called Liouvillian with symbol ˆ̂L , must

then be expressed in the same basis.

Equation of motion in the Liouville space

When making a transformation into the Liouville space the commutator in the

Liouville equation of motion, (1.4.3), is absorbed into the Liouvillian operator:

d
dt
|ρ̂(t)〉=−ı̇ ˆ̂L |ρ̂(t)〉. (1.9.1)

Equation (1.9.1) is now analogue to the Schrödinger equation in the way that ˆ̂L

is an operator acting on a vector. The solution for a time independent ˆ̂L is now

given by a left hand side multiplication with a propagator:

|ρ̂(t)〉= e−ı̇ ˆ̂L t |ρ̂(0)〉.

Interaction representation of Liouvillians

The Liouvillian can be transformed just as the Hamiltonian into an interaction

representation in order to remove large terms or time dependency. Analogously
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to equation (1.7.1) the effect of a large term ˆ̂L0 can be removed by

ˆ̂L T (t) = eı̇ ˆ̂L0t ˆ̂L1(t)e−ı̇ ˆ̂L0t

and the density state vector is transformed as

|ρ̂T 〉= eı̇ ˆ̂L0t |ρ̂〉.

So the Liouville space equation of motion in the interaction frame is:

d
dt
|ρ̂T (t)〉=−ı̇ ˆ̂L T |ρ̂T (0)〉.

1.9.2 Redfield relaxation theory

To start with, the Redfield relaxation theory will be presented in the Hilbert

space, then a transformation to the Liouville space will be made. The notation

used here was taken from [2]. The effect of the surrounding lattice is represented

by the fluctuation Hamiltonian

Ĥ1 = ∑
q

F(q)(t)Â(q),

where F(q)(t) is the function describing the fluctuations of the corresponding

operator Â(q). The index q indicates the coherence order. Ĥ1 is hermitian and

assumed to have zero time average. The total Hamiltonian is then given by the

sum of the spin interaction and Zeeman terms contained in Ĥ0 and the compar-

atively small random fluctuations Ĥ1. A transition into the interaction frame of

Ĥ0 removes the large interaction terms:

Ĥ T
1 (t) = eı̇Ĥ0tĤ1(t)e−ı̇Ĥ0t = ∑

p,q
e−ı̇ω(q)

p t Â(q)
p (1.9.2)

The last step is taken according to equation (1.7.3). If there are different oper-

ators with the same coherence order q involved, the additional index p is used

to distinguish the characteristic frequencies. As an example the basis operators
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ÎzŜz, Î+Ŝ− and Î−Ŝ+ all have the same coherence order q = 0 but their frequen-

cies are, according to (1.7.3), 0, −ωI +ωS and ωI−ωS respectively. The index

p is used to account for this. The equation of motion in the interaction frame is:

d
dt

σ̂
T (t) =−

[
Ĥ T

1 (t), σ̂T (t)
]
. (1.9.3)

The density operator is described by σ instead of ρ in order to emphasise the

fact that this is not the full but a reduced density operator, as the effect of the

lattice terms have been moved into Ĥ1(t) rather than being included explicitly.

Equation (1.9.3) can be integrated and the solution re-substituted in order to

yield a second order time dependent perturbation approximation:

d
dt

σ̂
T (t) =−

∞∫
0

[
Ĥ T

1 (t),
[
Ĥ T

1 (t− τ),σT (t)
]]

dτ. (1.9.4)

The time average of the fluctuation terms F(q)(t) in equation (1.9.4) are de-

scribed by the correlation functions g(q,q
′)(τ)=F(q)(t)F(q′∗)(t + τ). With (1.9.2)

the equation of motion becomes:

d
dt

σ̂
T (t) =−1

2 ∑
q,q′,p,p′

[
Â(q)

p ,
[
Â(q′)

p′ , σ̂
T (t)

]]
Jq,−q′

(
ω

(q′)
p′

)
exp(ı̇(ω(q)

p +ω
(q′)
p′ )t),

(1.9.5)

where Jq,−q′(ω
(q)
p′ ) is the spectral density at the frequency ω

(q′)
p′ which is defined

by

Jq,−q′(ω) =

∞∫
−∞

g(q,q
′)(τ)e−ı̇ωτdτ. (1.9.6)

Equation (1.9.5) can be simplified by two assumptions:

• There is no correlation between terms of different coherence order q. This

excludes cross correlation, which has the effect that all terms of different

index q are zero and the fluctuating terms that are left are F(q)(t)F(q∗)(t + τ)=

F(q)(t)F(−q)(t + τ).

• The terms that cause the oscillation exp(ı̇(ω(q)
p +ω

(q′)
p′ )t) are simplified

to exp(ı̇(ω(q)
p −ω

(q)
p′ )t) by the first assumption. If the difference (ω

(q)
p −
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ω
(q)
p′ ) is large, the exponential term is oscillating rapidly which means that

its contribution is insignificant. Only the terms for which p = p′, which

are the secular terms, will survive as the phase oscillation is zero.

Looking at equation (1.9.5) one can see the advantage of making the transforma-

tion to the Liouville space: the double commutator turns into a simple operator

multiplication:

d
dt
|σ̂T (t)〉=−1

2 ∑
q,p

ˆ̂A(q)
p

ˆ̂A(−q)
p Jq

(
ω

(q)
p

)
|σ̂T (t)〉= ˆ̂

Γ|σ̂T (t)〉, (1.9.7)

where the two assumptions have already been incorporated. ˆ̂
Γ is the relaxation

superoperator. As the terms in ˆ̂
Γ are secular a transformation back into the labo-

ratory frame does not change it and gives the equation of motion with relaxation

in the Liouville space:

d
dt
|σ̂(t)〉=−ı̇ ˆ̂L0|σ̂(t)〉− ˆ̂

Γ
(
|σ̂(t)〉− |σ̂eq(t)〉

)
. (1.9.8)

The difference term |σ̂(t)〉 − |σ̂eq(t)〉 ensures that the system relaxes back to

thermal equilibrium. A method developed by M.Levitt et al. enables to convert

equation (1.9.8) to a homogeneous equation of motion by modifying the relax-

ation operator ˆ̂
Γ [9]. This makes it possible to solve the differential equation

with the use of a simple matrix exponential.
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DNP - principles and strategies

As could be seen in section 1.4.4, NMR suffers from an inherently low sensi-

tivity due to the small Boltzmann factor. It was also shown that the spin polari-

sation, which is directly proportional to the SNR, scales with tanh( h̄γB0
2kbT ). From

this, two obvious strategies to boost the SNR are to increase the external mag-

netic field strength or decrease the temperature. It is possible to cool down sam-

ples to the Millikelvin regime but the resulting extremely long relaxation times

are a major experimental drawback [10]. There is also a limit to increasing the

magnetic field, a commercial 1GHz spectrometer has recently been developed

[11] but material costs increase substantially.

In 1953, only seven years after the first acquisition of NMR spectra in the liq-

uid and solid state by Bloch [12] and Purcell [13], Albert Overhauser proposed

the possibility of transfering polarisation from one spin species with high gy-

romagnetic ratio to another with low γ [14]. This was experimentally verified

by C. Slichter and T. Carver as a transfer of electron polarisation to metallic

Lithium nuclei within the same year [15], see figure 2.1. The effect was termed

Dynamic Nuclear Polarisation (DNP).

For the experiment temperatures of a few Kelvin1 are used in order to achieve

high electron polarisation which can then be transferred to the nuclei via the

1which increases the nuclear T1 to more practical values compared to the Millikelvin range
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Figure 2.1: First published DNP signal enhancement [15]. Original figure cap-

tion: "Oscilloscope picture of 50 kc/sec nuclear resonance absorption vs static

magnetic field. Field excursion 0.2 gauss. Top line: 7Li resonance (lost in

noise). Middle line: 7Li resonance enhanced by electron saturation. Bottom

line: Proton resonance in glycerine sample." The bottom line was recorded with

an identical receiver gain as the two others for reference. The ratio of proton to

lithium nuclei present in the sample was 8, which in combination with the fact

that the gyromagnetic ratio of protons is approximately 2.6 times larger than that

of Lithium nuclei, demonstrates the strong enhancement of the Lithium signal

(estimated to be ε ≈ 100).
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hyperfine interaction using appropriate microwave irradiation. The necessary

polarising agents - the free electron spins - were provided by the conducting

band. This strategy has since been extended to provide polarisation also di-

rectly in the liquid state as well as in insulators, where the sample is doped

with paramagnetic impurities in order to provide the polarisation source. The

precise polarisation transfer pathways differ in each case, and the major ones

will be introduced in this chapter. A few polarisation strategies combining the

introduced pathways with temperature or magnetic field jumps will be covered

briefly. A comprehensive review of the different DNP processes can be found,

for example, in [10] and [6].

Other polarisation techniques exist, for example parahydrogen induced polari-

sation (PHIP), where a polarised parahydrogen pair is transferred onto a target

molecule by a chemical reaction [16]. Although very high polarisation can be

generated, this procedure is limited to a small range of model systems. It is also

possible to use optical pumping in order to enhance the polarisation of Xe or He

gas [17] which is done by transferring the angular momentum of polarised laser

light onto the nuclear spins. The main application for this technique has become

lung imaging in magnetic resonance imaging and the study of surfaces.

DNP stands out as it is widely applicable to a large range of molecules in the

liquid and solid state at room temperature and under cryo-conditions. All that

is required is the presence of a paramagnetic impurity in the sample, with a

concentration on the order of mM.

2.1 Overhauser Effect

The transfer of polarisation from electrons to nuclei is possible through the hy-

perfine interaction (1.5.4), which enables cross relaxation. For this a time depen-

dent modulation of the hyperfine interaction on the times scale of the electron
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Larmor frequency is needed. Hence the Overhauser effect is only observed in

liquids, where the modulations originate from molecular tumbling, or metals,

where high electron mobility is given. The energy level diagram of a model

system containing one nucleus coupled to an electron is given in figure 2.2. The

lowest energy level is |βα〉 as the electron gyromagnetic ratio has an opposite

sign. Microwave irradiation equalises the populations of energy levels |αβ 〉 and

Figure 2.2: Energy level diagram of a coupled electron nucleus pair. The factors

Wi indicate the transition rates between the energy levels, WI and WS are the nu-

clear and electron transition rate respectively whereas W0 and W2 are the single

and double quantum rates. The states are shown in the form form |mSmI〉.

|ββ 〉 as well as |αα〉 and |βα〉. When the microwaves are switched off, relax-

ation takes place with the rates indicated in the figure, so the nuclear populations

return to their initial state with the rate WI and the electron populations with WS.

Additionally cross relaxation with the rates W0 and W2 occurs which is the driver

of the polarisation build up on the nuclei. Using the Solomon equation [18] one

can set up a system of coupled rate equations which lead to the enhancement

factor [19]

ε =
〈Îz〉
Îz0

= 1−ζ s f
|γS|
γI

,
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where 〈Îz〉 is the average of the dynamic nuclear polarisation, Îz0 is the equilib-

rium polarisation. The factor ζ

ζ =
W2−W0

W0 +W2 +2W1
∈ [−1,0.5]

is the coupling factor which becomes equal to -1 for a purely scalar reaction and

0.5 for a purely dipolar reaction, and takes a value in between for a mixture of

both. The factor s indicates how well the electron resonance is saturated:

s =
〈S0〉−〈Sz〉
〈S0〉

∈ [0,1]

and becomes equal to 1 for a full saturation. f indicates the amount of leakage

from the nuclear polarisation that is not caused by the electron:

f =
W0 +W2 +2W1

W0 +W2 +2W1 +W 0 = 1−
T+S

1n

T−S
1n

, (2.1.1)

where T−S
1n = 1

W 0 is the nuclear relaxation time in the absence of the electron spin,

and T+S
1n analogously the nuclear relaxation time in the presence of the spin.

Ideally the nuclear relaxation is much faster when electrons are present and the

leakage factor becomes 1. The Overhauser effect is also commonly used for

polarisation transfer from high γ nuclei, mostly protons, to low γ nuclei such as
13C and 15N. The enhancement scales with

1
r3 which makes molecular distance

measurements possible. This technique is routinely used in protein structure

determination.

2.2 Solid Effect

As opposed to the Overhauser effect, the solid effect does not depend on mod-

ulations of the hyperfine interaction by motion. Instead, the pseudosecular part

of the hyperfine Hamiltonian is used to drive the polarisation transfer from the

electrons to the nuclei. In the solid state the terms Bk ÎkxŜz are not averaged out

and the nuclear quantisation axis is no longer along the Zeeman axis. This is
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Figure 2.3: The nuclear spin has a different quantisation axis depending on the

electronic state.

illustrated in figure 2.3 for an electron coupled to a single nucleus. The AÎzŜz

term gives an energy level splitting for the nucleus along the Zeeman axis but

the BÎxŜz induces a different quantisation axis for the nuclear ‘up’ or ‘down’

state, depending on which state the electron is in. The factors from figure 2.3

are

ηα = arctan
−B

A+2ωI

ηβ = arctan
−B

A−2ωI
.

Hence the energy levels are not given by the pure product states anymore but

contain admixtures of other states of the same electronic but different nuclear

configuration (see figure 2.4). The new states are then given by:

|1〉= cos
ηβ

2
|βα〉+ sin

ηβ

2
|ββ 〉

|2〉= cos
ηβ

2
|ββ 〉− sin

ηβ

2
|βα〉

|3〉= cos
ηα

2
|αα〉+ sin

ηα

2
|αβ 〉

|4〉= cos
ηα

2
|αβ 〉− sin

ηα

2
|αα〉.

The transitions between the levels |1〉 and |4〉, as well as |2〉 and |3〉, that

were forbidden by the selection rule ∆m = ±1 are now slightly probable, with

W2, W0 ∝ sin2
(

ηα−ηβ

2

)
∝ ω

−2
I .So the solid effect efficiency decreases with
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Figure 2.4: Energy level diagram of a coupled electron nucleus pair for the

solid effect. As before, the factors Wi indicate the transition rates between the

energy levels, WI and WS are the nuclear and electron transition rate respectively

whereas W0 and W2 are the single and double quantum rates.

larger external magnetic fields. Microwave irradiation on the frequencies ωS±

ωI , which correspond to the transitions W2 and W0, causes the nuclear and elec-

tron spin to flip simultaneously, either as double or a zero quantum spin flips. In

the ideal case the continuous microwave irradiation equalises the populations of

the levels |1〉 and |4〉, or |2〉 and |3〉 depending on whether the frequency ωS+ωI

or ωS−ωI is used. This already leads to a relative increase of the nuclear pop-

ulation difference. The system then drives the nuclear polarisation up further as

it tries to maintain a Boltzmann distribution for the electrons, so between levels

(|1〉+|2〉) and (|3〉+|4〉), by using T1e relaxation. This is shown schematically

in figure 2.5, where the double quantum transition was irradiated. In order to

avoid cancellation of polarisation due to a simultaneous double and zero quan-

tum transition the line width of the electron transition δ has to be smaller than

the nuclear Larmor frequency ωI . This is the case for example for the polaris-

ing agent Trityl, which is very symmetric and, as a result, has a small g tensor

anisotropy and hence narrow line width (see section 2.5). A typical sweep curve,
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Figure 2.5: Left: Polarisation build up curves. Right: Fractional populations of

the four different states. States |3〉 and 1〉 are driven up and down in order to

maintain the electron Boltzmann factor between |1〉 and |4〉 respectively.

Parameters: ω1=80 kHz, the distance between electron and proton is 8Åand

azimuthal angle θ = π

4 , resulting in the hyperfine coupling constants A=94 kHz

and |B|=0.2 MHz. Relaxation parameters: r1n = 102 rad
s , r2n = 104 rad

s , r1e =

0.5 rad
s , r2e = 104 rad

s .

where the enhancement is plotted against the irradiation frequency is shown in

figure 2.6. For a single nucleus coupled to an electron Abragam and Goldman

derive the following rate equations [10]:

dPe

dt
=− 1

T1e
(Pe−P0)

dPn

dt
=− 1

T1n
Pn,

with P0 being the equilibrium Polarisation of the electron. The effects of mi-

crowave off resonance saturation of the electron single quantum transition has

been neglected for these equations but can be incorporated as well. The longi-

tudinal relaxation rates are derived from the transition probabilities of the spin

system. These are scaled by a thermal factor r = exp(−h̄(ωS±ωI)
kbT ) to ensure that a

transition towards a lower energy state has a higher probability than vice versa.

Then for example W0 is the probability for a transition from the higher energy

state to the lower, and rW0 indicates the likelihood of a transition the other way.
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Figure 2.6: Frequency dependency of the DNP enhancement. Sample: 1mM
13C-labelled Acetate with 15mM Ox63 Trityl in 1:1 water glycerol mixture. The

polarisation time was one minute. The fact that the maxima are 70 MHz apart,

which corresponds to approximately 2ωI , indicates that the main enhancement

mechanism is the solid effect.
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The relaxation times are given as

1
T1e
≈ (1+ r)WS

1
T1n
≈ (1+ r)W0(1−PeP0).

It is assumed that the nuclear dipole interaction distributes the polarisation evenly

throughout the sample.

The dynamics of the solid effect will be discussed in more detail in chapter 3.

2.3 Cross Effect

The cross effect (CE) is a three spin mechanism of two coupled electrons and

one nucleus. The condition for polarisation transfer is that the resonance fre-

quencies of the two electrons are separated by the nuclear Larmor frequency, so

[20]:

|ωS1−ωS2|= ωI. (2.3.1)

This condition is fulfilled when the EPR line of the polarising agent is broader

than ωI . This broadening has to be inhomogeneous, so it has to originate from

an overlay of separate electron resonances, whose line width is smaller than ωI

in order to avoid cancellation effects. Alternatively the condition can be met

with specially designed bi-radicals, which have electron resonances separated

by ωI . This has been done by connecting two nitroxide radicals, where the bond

length controls the coupling strength [21, 22]. In figure 2.7 the energy levels

of a three spin system obeying the condition (2.3.1) are shown, so the levels

|4〉 and |5〉 are degenerate. Unlike the solid effect, the cross effect is based on

allowed transitions, as it is based on three spin flips with ∆m =±1 [23]. Figure

2.7 shows a schematic for the case of positive and negative enhancement. The

polarisation build up is, just as in the case of the solid effect, a combination

of the equilibration of populations of energy levels spaced by the irradiation

frequency ωCE as shown in figure 2.7, as well as the electron populations trying

to obey the Boltzmann statistics. As the EPR lines spread out with higher field
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strength, condition (2.3.1) becomes harder to satisfy, so the enhancement scales

with ω
−1
I [23]. This is more favourable for higher field strengths as the ω

−2
I

scaling of the solid effect.

2.4 Thermal mixing

The thermal mixing effect is an extension of the cross effect with the inclusion of

more electrons and nuclei. It is currently described in thermodynamical terms

as a large number of spins is involved. The spin system is divided into three

interacting parts, the electron Zeeman bath (EZB), the nuclear Zeeman bath

(NZB) and the electron dipolar bath (EDB) each with their own inverse spin

temperature.The EPR line width δ is comparable to or larger than the nuclear

Larmor Frequency. Under microwave irradiation close to but slightly off the

electron resonance frequency the electron spins become more ordered and hence

the dipolar entropy decreases. As a result the spin temperature of the EDB

is lowered. Energy conserving three spin (electron-electron-nuclear) exchange

processes [24] with the electrons that have not been saturated by the microwaves

then cool the NZB, which means the nuclear polarisation is increased.

When the high temperature approximation can be made, thermal mixing can be

described quantitatively with Provotorov theory [25]. This is not possible any

more for lower temperatures.
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2.5 Polarising agents

Two frequently used carriers of paramagnetic impurities in DNP experiments

are the radicals Ox63 Trityl2 and 4-amino TEMPO3. The 4-amino TEMPO rad-

ical has a large ESR linewidth of approximately 411 MHz at 3.35 T compared to

the nuclear Larmor frequency of 144 MHz, making the cross effect and thermal

mixing the dominant mechanisms [24]. In contrast to this, the line width of the

Ox63-Trityl is very narrow, with a full width at half maximum of approximately

30 MHz at 3.35 T. This results in the solid effect being the main polarisation

transfer pathway. The narrow line width is caused by the near-isotropic g-tensor

(gxx = 2.0034, gyy = 2.0031, gzz = 2.0027), which originates from its high sym-

metry. The structure of the molecule shields the electron from the surrounding

nuclei, keeping line broadening due to hyperfine interaction with the surround-

ing magnetically active nuclei small (see figure 2.8). The closest distance of

approach for nuclei outside the radical is approximately 12Å, calculated from

in house density functional theorem (DFT) simulations using ORCA [26]. The

narrow line ensures a better EPR saturation compared to TEMPO and avoids

partial cancellation of the positive and negative enhancement maximum.

2.6 Polarisation strategies

In practice various polarisation strategies exist, owing to the wide applicability

of DNP. In the next section a brief overview over four approaches to DNP en-

hanced NMR are given. This is by no means a complete review of all available

techniques but it is instructive to consider the advantages and disadvantages of

these different strategies.

2tris (8-carboxyl-2, 2,6,6-tetra(hydroxyethyl) - benzo[1,2-d:4, 5-d]bis(1,3)-dithiole-4-yl)

methyl sodium salt
3(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl
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(a) Structure of Trityl Ox63, taken from [27].

(b) 3D model for Trityl with the probability density func-

tion |ψ|2 of the electron being depicted in pink. Image ob-

tained from ORCA DFT simulation by W. Köckenberger.

(c) ESR absorption spectrum, taken from [28]

Figure 2.8: Structure and ESR spectrum for the Trityl radical Ox 63.
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2.6.1 High field liquid state DNP

The polarisation is generated with Overhauser DNP at high magnetic field (9.4 T)

in the liquid state with the use of a high power (20W) gyrotron at 260 GHz. Main

investigator into this approach is the T. Prisner group [29]. The high field results

in high spectral resolution. The aim is to obtain spectra from biomolecules

and large proteins in aqueous solution. The main advantages are the possibil-

ity of repeating the experiments enabling averaging and 2D NMR. One of the

main difficulties encountered is sample heating. This is due to the fact that

high microwave powers are needed for efficient enhancement in order to satu-

rate the fast relaxing electrons in the liquid state but the high insertion loss in

water causes sample heating. In order to alleviate this effect the sample vol-

ume is kept small. A double resonant probe for simultaneous DNP and NMR is

used, which consists of a slotted cylindrical microwave cavity, where the slotted

cylinder serves also as the RF coil [30]. The probe has been designed to min-

imise sample heating. Enhancements of -29 have been reported in Fremy’s salt,

which interestingly is larger than was expected from low field extrapolations of

the Overhauser effect.

2.6.2 Field Jump Overhauser DNP

In this approach, used by the C. Griesinger group ([31, 32]), the higher efficiency

of the Overhauser effect at lower fields is exploited. The polarisation takes place

at 0.34 T, then the sample is shuttled to a 14 T observe magnet. An additional

benefit is the lower microwave frequency of 9.5 GHz, which is technically more

easy to achieve with standard ESR equipment. Heating is also not a serious issue

at lower field. The polarisation takes only a few seconds due to short relaxation

times. The transfer time of the sample is on the order of 110 milliseconds, which

includes the shuttling time plus time for the sample to settle. It is possible to

repeat the experiment, so averaging and 2D NMR are available. One drawback

44



CHAPTER 2: DNP - PRINCIPLES AND STRATEGIES

is that due to the shuttling from low to high field the effective enhancement is

scaled by
Bpol

Bobs
due to the smaller Boltzmann factor at lower field. The highest

enhancement reported so far is -3.7 although the system is still in development

and higher values are expected in the future.

2.6.3 Solid State MAS DNP

In the solid state SE, CE and TM DNP effects are exploited. The group of R.

Griffin has been working on optimisation of solid state MAS NMR with DNP

for biological samples at cryogenic temperatures of down to 85 K [33, 34]. Spe-

cially designed biradicals have been developed in order to optimise the cross

effect leading to enhancements of up to 300 [20, 21]. Due to the longer relax-

ation times at low temperatures the polarisation stage is more time consuming

than in the liquid state. By polarising 1H nuclei and transferring the polarisation

to the lower γ nuclei, which typically have slower polarisation build up rates,

time savings can be made with respect to directly polarising these nuclei. The

sample remains in situ during the experiment, which enables to use averaging

and 2D experiments. One potential disadvantage is, that the sample is frozen, so

investigated proteins and ligands are not in their native environment. This prob-

lem can be overcome by incorporating melting of the sample by an infra-red

laser after the polarisation step [35, 36]. This way samples are observed with

liquid state resolution at room temperature. Additionally this method benefits

from the larger Boltzmann factor at the lower temperature, hence increasing the

effective enhancement by a factor of
Tobs

Tpol
.

2.6.4 Dissolution DNP

Dissolution DNP is based on polarising the sample at very low temperature

(∼ 1.4 K) and magnetic fields in the range of 3.4 T to 5 T . This yields large
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polarisation factors on the order of hundreds using relatively inexpensive ESR

equipment. Then the sample is rapidly dissolved and transferred to a high field

observe magnet. Due to the temperature jump effective enhancements of more

than 10,000 have been reported [37]. Chemical reaction dynamics ([38, 39]),

and metabolomics [40] can been studied with this technique. It is also possible

to inject the sample into animals for in vivo NMR and MRI applications, which

is currently used for cancer and stroke research [41–43]. The group of S.J.

Nelson at the UCSF is working on establishing this technique for in vivo cancer

diagnostics in humans [44, 45].

In order to minimise the sample shuttling time as well as to avoid an unknown

magnetic field profile along the shuttling path a novel two centre spectrometer

has been built in Nottingham [46]. This has been shown to be able to resolve

resonances with very short T1 relaxation times due to the faster shuttling than

the typical stand alone polariser set up [47]. One drawback is the single shot

nature of the experiment, as the recycling of the sample after the dissolution is

not viable. One way to overcome this issue and to be able to obtain 2D spectra

is to use the ultra fast 2D sequences by L. Frydman [48–50]. Another way,

presented in this thesis, is the use of a probe with multiple RF coils at different

spatial positions of the sample tube, all tuned to the same resonance frequency.

Using this strategy makes it possible to take advantage of the polarised sample

that would otherwise lay outside the sensitive coil region. One can perform

independent experiments: Either all signals from the same experiment can be

used for averaging, or if the same experiment is repeated with a small delay

which is incremented for each coil, this could be used to resolve fast dynamical

processes in the sample for example protein-ligand binding or protein folding.

The multi-coil probe will be discussed in more detail in chapter 4. Another

drawback might be that not all molecules survive the freezing and dissolution

step, but many small ligands and biochemically relevant molecules have thus far

shown to be robust enough for this type of experiment [51, 52]. Larger proteins,
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that are more sensitive to the treatment during polarisation and dissolution, can

be placed in the sample tube in the observe magnet and binding can be observed

by NOE effects when the polarised ligand has been injected.

2.6.5 Summary

All the strategies introduced above are still undergoing development and opti-

misation. The large range of applications in the fields of chemistry, material

science and the biomedical sciences make all these DNP techniques well worth

exploring. Currently the theoretical understanding of the solid state DNP effects

is limited to qualitative statements, no quantitative predictions of the polarisa-

tion build up can be made as of date4. This is due to the difficulty of having a

large number of spins involved, which makes the density operator and Hamilto-

nians describing the system too large to compute. In the next chapter approaches

to tackling this issue will be presented.

4with the exception of the high temperature description of thermal mixing
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Solid effect simulations in the

Liouville space

Dynamic Nuclear Polarisation (DNP) has widely gained popularity in the recent

years for its ability to greatly increase the NMR signal available in an experi-

ment. In order to optimise the polarisation step of the experiment it would be

beneficial to be able to simulate the evolution of the spin system during DNP.

However, the full quantum mechanical treatment is challenging as the Liouvil-

lian operator describing the interactions within the spin system scales with 4N ,

where N is the number of spins in the system. This quickly yields unmanageable

matrix sizes.

Abragam and Goldman dealt with this issue by applying a thermodynamical

model [10]. The rate equations introduced in chapter 2 have been derived from

the transition diagram of a two spin system, assuming the nuclear dipole inter-

action mediates the distribution of polarisation to all nuclei. This description is

unable to incorporate properties of individual radicals. Recent progress in the

development of EPR hardware allows DNP with pulsed microwave fields [53]

and efforts are made to find appropriate optimised pulses for polarisation trans-

fer [54]. However, also here the thermodynamical model is not suitable to make

predictions and a quantum mechanical model has to be employed.
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Shimon Vega and co-workers published a quantum mechanical approach in the

Hilbert space, using rate equations for the populations. This reduces the system

dimensionality to 2N[55, 56].

It has been found that the propagator in the Liouville space is sparse for most

NMR applications. Not all of its components need to be considered in order

to obtain accurate simulation results. The concept of reducing the size of the

state space has first been used by R.R. Ernst and R. Brushweiler for short term

propagation [57]. Restricting the simulation to basis elements containing only

low order spin correlations has been investigated by I Kuprov [58, 59]. Further-

more it has been used by L. Emsley and co-workers [60, 61] for the investigation

into spin diffusion. Basis truncation to lower spin order correlations results in

polynomial as opposed to exponential scaling of the state space.

In this chapter, three methods are presented to reduce the dimension of the ma-

trices involved in the calculation of the system dynamics. The solid effect is

used as a test case, for it has the most simple Hamiltonian out of the three solid

state DNP mechanisms. The methods that will be presented have also been

found to be applicable to the cross effect, and an extension to thermal mixing is

very likely possible.

The first strategy uses an averaged Hamiltonian for the solid effect. The aver-

aged Hamiltonian that will be presented in section 3.4.1 confines the trajectory

of the density operator to the zero quantum subspace, hence all higher coherence

order subspaces can be discarded. The error introduced by using the averaged

Hamiltonian has been found to be less than 1% for a large range of parameters

that were tested.

The second strategy presented here is restriction of the basis size by truncation

up to a user specified spin correlation order. Whilst basis truncation as a strategy

for state space size reduction has been previously presented [58, 60, 61], con-

ditions for safe truncation, resulting in a certain error tolerance have now been
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found [62].

The methods described above allow the simulation of the evolution of spin sys-

tems comprising of up to 25 13C nuclei and one electron in the Liouville space,

where before the largest number reported was 10 spins in total. The reduction in

size of the spin system decreases the computation time, for example in the case

of six nuclei and one electron by up to a factor of 50.

At the end of the chapter a new and very promising approach based on subspace

projections will be presented. This method, recently proposed by A. Karabanov,

makes it possible to reduce the dimension of the propagator to the number of

spins involved in the simulation. The conditions for the validity of the method

as well as error analysis will be shown.

All simulations were carried out using the SPINACH package [59], which pro-

vides an easy to use library for the simulation of a large range of NMR experi-

ments. The theoretical framework presented here was developed by Alexander

Karabanov and Walter Köckenberger, all simulations were carried out by the

author.

3.1 Solid Effect Hamiltonian and Liouvillian

The full Hamiltonian for the solid effect, involving one electron and many nu-

clei, includes the Zeeman term of the nuclei and the electron, the coupling be-

tween all particles, as well as the microwave irradiation.

Ĥ = ĤZ +ĤIS +ĤII +ĤMW , (3.1.1)
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The expressions in 3.1.1 are given by:

ĤZ = ωSŜz +∑
k

ωI Îzk

ĤIS = ∑
k

(
Ak ÎzŜz +Bk ÎxŜz

)
ĤII = ∑

j<k
d jk

[
2Î jk Îzk−

1
2
(
Î j−Îk++ Î j+Îk−

)]
ĤMW =

ω1

2
(
e−ı̇ωµwt Ŝ−+ eı̇ωµwt Ŝ+

)
The concentration and hence the average separation of the electrons is assumed

to be small enough to allow for omission of electron-electron coupling terms,

which would otherwise result in CE or TM DNP. For a realistic 15 mM con-

centration of the Trityl radical the electron-electron distance is on average 48Å,

which results in a maximum electron dipole interaction of 1.15 MHz. This is on

the same order as some of the hyperfine interaction terms of nuclei close to the

electron. Hence it can be assumed that at this concentration the DNP mecha-

nism is not a pure solid effect. Nonetheless, in order to simplify the treatment at

this stage the electron dipole interaction will be neglected. As an additional sim-

plification the assumption of an isotropic g-tensor is made, hence the electron

has only one resonance frequency. Only the secular and pseudosecular terms

are included in the interaction Hamiltonians. The corresponding Liouvillian is

calculated from ˆ̂L = [Ĥ , Ê].

An electron rotating frame, with the electron having an offset of ±ωI , is chosen

as an interaction representation (see section 1.7). Then the Hamiltonian loses

the explicit time dependency:

Ĥ T = ωI
(
Îz± Ŝz

)
+∑

k

(
Ak ÎzSz +Bk ÎxŜz

)
+ ∑

j<k
d jk

[
2Î jk Îzk−

1
2
(
Î j−Îk++ Î j+Îk−

)]
+

ω1

2
(
Ŝ−+ Ŝ−

)
.

The sign of the electron Zeeman term in (3.1) determines whether a zero quan-

tum or a double quantum DNP irradiation takes place. The difference will be

the sign of the nuclear polarisation.
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3.2 Relaxation operator for solid effect simulations

During the DNP experiment the sample temperature is low (around 1.4 K),

hence the main source of nuclear relaxation is not the tumbling of nuclear

dipoles as it is in the liquid state. The electrons are assumed to relax via electron-

phonon coupling with the lattice and interaction with other electrons. For the

solid effect to occur, the electron concentration has to be low enough for the

electronic dipolar coupling to be negligible, hence this will be ignored as a re-

laxation pathway. The nuclear relaxation is dominated by electron fluctuations

which are mediated through the hyperfine interaction. Following Abragam and

Goldman [10], and neglecting secular terms with respect to the electron, the

electronic relaxation can be described by the following superoperator:

ˆ̂
ΓS = R1(

ˆ̂S+
ˆ̂S−+ ˆ̂S− ˆ̂S+)+R2

ˆ̂S2
z

which has the following effect on the longitudinal and transversal components

of the electron spin:

ˆ̂
ΓS

ˆ̂Sz =4R1
ˆ̂Sz = r1e

ˆ̂Sz =
1

T1e

ˆ̂Sz

ˆ̂
ΓS

ˆ̂S± =(R2 +2R1)
ˆ̂S± = r2e

ˆ̂Sz =
1

T2e

ˆ̂S±.

r1e and r2e are the electronic longitudinal and transversal relaxation rates, which

are taken from experimental data. As in a typical experiment ω2
S � r2

2e, the

nuclear relaxation is assumed to be caused by the random fluctuations of the

electron longitudinal component Ŝz, which is transferred to the nuclei via the

hyperfine interaction:

Ĥ ′
h f i =W Ŝz, with W = Ak Îkz +

1
2
(
Bk+Î++Bk−Î−

)
.

The prime over Ĥh f i indicates the restriction of the hyperfine interaction to the

longitudinal electronic components. These fluctuations have to be added to the

total Hamiltonian as:

γ(t)W + γ(t)W ∗,
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where γ(t) is a randomly fluctuating time function with a correlation time close

to the longitudinal electronic relaxation time: τc = T1e. Keeping only secular

terms with respect to the nuclear Zeeman interaction, the nuclear relaxation is

then described by:

ˆ̂
ΓI = ∑

k
r1

1
4

B2
k

[
ˆ̂Ik−

ˆ̂Ik+ + ˆ̂Ik+
ˆ̂Ik−

]
+∑

k
r2A2

k
ˆ̂I2
kz,

with

r1 =
δ r1e

r2
1e +ω2

I
+δτ

′, r2 =
δ

r1e
,

(3.2.1)

with B2
k = |Bk+|2 = |Bk−|2. The parameter δ is dimensionless and indicates the

squared amplitude of the fluctuations of the Ŝz components, while τ ′ is a spin

diffusion correction term with the dimension of time, containing the electronic

spin concentration, spin diffusion coefficient and the internuclear distance [10,

63].The full relaxation operator is obtained by adding the nuclear and electron

terms:
ˆ̂
Γ = ˆ̂

ΓS +
ˆ̂
ΓI.

So the average relaxation rates r1n =
1

T1n
and r2n =

1
T2n

are given by:

r1n = r1〈|Bk|2〉 r2n = r2〈A2
k〉+

r1n

2
. (3.2.2)

The ratio of the nuclear relaxation rates is given by

r1n

r2n
∼ r1

r2
∼ r1e

ωI
+ τ
′r1e,

so typically as r1e� ωI , the nuclear longitudinal relaxation rate is smaller than

the nuclear transversal relaxation rate. For example if one takes r1e = 103 rad
s ,

ωI ≈ 108 rad
s and τ−1 ≈ 106 rad

s then for r2n = 10 rad
s one gets r1n = 10−2 rad

s . One

can estimate δ by taking the above user defined values with (3.2.2)

δ ≈ r2nr1e

〈A2
k〉k

.

Assuming Ak ∼ 106 one gets δ ∼ 10−8.
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One can also introduce rates with which the double and zero quantum transi-

tions relax, resulting in a smaller overall enhancement, but in order to keep the

problem as simple as possible these have been ignored for the time being. Their

effect on the steady state polarisation has been shown to be similar to that of

the nuclear longitudinal relaxation rates by S. Vega and co-workers for cross

relaxation rates smaller than the electron longitudinal relaxation rate [56].

For some simulations it can be instructive to exclude the scaling of the nuclear

relaxation with the hyperfine interaction and assume the same relaxation rate for

all nuclei. The nuclear relaxation operator is then

ˆ̂
ΓI = r1(

ˆ̂I+ˆ̂I−+ ˆ̂I−ˆ̂I+)+ r2
ˆ̂I2
z , (3.2.3)

using empirical relaxation constants for r1 and r2. Whenever this relaxation

operator is used it will be referred to as the constant relaxation operator, as

opposed to the relaxation operator derived from the electronic fluctuations being

transferred to the nuclei via hyperfine interaction. This will be called the scaled

relaxation operator. If the specific operator used in a simulation is not explicitly

mentioned, the scaled relaxation operator was used by default.

The scaled relaxation operator results in unrealistically small nuclear relaxation

terms for large distances from the electron as well as for certain orientations. For

example is the nuclear longitudinal relaxation rate r1n equal to zero for θ = 0

and θ = π . One can circumvent this by using a combination of a relaxation

operator with constant and scaled terms. This has been done for example in

[56].

3.3 SPINACH

All simulations have been carried out in the SPINACH package developed by

I.Kuprov and co-workers [59]. This freely available MATLABr function li-

brary enables to define spin geometry, the type of nuclei and interactions in-
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volved as well as other parameters, then the trajectory of the spin system is

calculated in the Liouville space by propagating the system repeatedly by ∆t

|ρ̂(k∆t)〉= exp
(
−(ı̇L̂ + Γ̂)∆t

)
|ρ̂([k−1]∆t)〉 k ∈ [1,nsteps]

until the final time nsteps∆t defined by the user is reached. The inhomogeneity

of ˆ̂
Γ|ρ̂eq〉 in the equation of motion has been removed by using a relaxation

operator which has been modified in such a way that the system is relaxing

to thermal equilibrium without the inhomogeneous term |ρ̂eq〉 ([9, 64]). The

evolution of the spin system in SPINACH does not rely on diagonalisation of

the Liouvillian, instead the propagator exponential is calculated using Taylor

expansion [65]. The DNP Hamiltonian is now available in the library but in

order to keep flexibility it was defined by the author.

Processing time The time required for processing spin systems with a prop-

agator of dimension N is plotted in figure 3.1. The limit a computer with

8 GB RAM can process lies at around N=16 K, which enables to simulate the

dynamics of 7 spins using the full state space. Using a computer equipped

with a 2.6 GHz processor, this calculation is rather time consuming and takes

14 hours. The processing time depends largely on the magnitude of the entries

in the product of the Liouvillian and the time step −ı̇ ˆ̂L ∆t. This stems from the

aforementioned fact that SPINACH calculates the propagator exp(−ı̇ ˆ̂L ∆t) by

Taylor expansion. For the Taylor series to converge, the exponential term has to

be smaller than one. In SPINACH the term −ı̇ ˆ̂L ∆t is hence scaled down by a

factor s containing its largest Eigenvalue l: s = ln2 l, then the expansion is car-

ried out. Conversion is ensured by checking that the largest term in the highest

expansion order is smaller than a user defined tolerance, which is typically set

to 10−14.

After that, the obtained scaled propagator exp(−ı̇ ˆ̂L ∆t/s) has to be squared s

times to obtain the full propagator exp(−ı̇ ˆ̂L ∆t). It is these matrix multiplica-
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tions that are costly in time. The number of scaling steps hence depends also on

∆t. The rest of the processing time depends on the number of time steps set by

the user.

Figure 3.1: Propagator dimension versus processing time in hours. The variance

is caused by the difference in performance of certain computers in the cluster

and how many other jobs were carried out by the computer node at the same

time as the simulation was running.

Basis of the Liouville space in SPINACH The basis in which the Liouvillian

and the density operator are expressed in SPINACH is the shift basis comprising

of ˆ̂Iz, ˆ̂I−, ˆ̂I+ and ˆ̂E. Higher spin correlation orders are given by product operators

of the basis operators. The basis operators can be ordered by spin correlation

order and quantum coherence order as shown in figure 3.2. The symbol Lk

denotes the subspace containing all spin correlation orders k, the symbol Lk the

subspace containing all quantum coherence orders k.

It is worth noting that the choice of basis in terms of operators, rather than

Zeeman-states, is crucial for the truncation methods that will be presented. In
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Figure 3.2: Liouville space ordered by spin correlation order and coherence

order with example operators.
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the next section an averaged Hamiltonian will be introduced which restricts the

evolution of the density operator to the zero quantum subspace L0, so the first

column in figure 3.2. After that, the truncation of the basis to a certain spin

correlation order will be discussed.

3.4 Averaged Hamiltonian

The dynamics of the solid effect can be modelled by an averaged Hamiltonian

which restricts the system trajectory to the zero quantum subspace. The imple-

mentation of this reduces the dimension of the space by a factor of ∼
√

πN .

The full theory can be found in [66], here a brief overview of the main points

will be given.

3.4.1 Averaged Hamiltonian Theory

Starting point is the Hamiltonian given in section 3.1. The following theory is

equivalent for both the zero and double quantum DNP transition, for the double

quantum transition the nuclear spin polarisation occurs with an inverted sign.

As an example the zero quantum transition case is demonstrated. A second

transition of the initial Hamiltonian (3.1) into the doubly rotating frame frame

gives:

Ĥ ′ = ∑
k

[
Ak ÎkzŜz +

1
2

Bk
(
eı̇ωIt Îk−+ e−ı̇ωIt Îk+

)
Ŝz

]
+

ω1

2
(
eı̇ωIt Ŝ−+ e−ı̇ωIt Ŝ+

)
+ ∑

j<k
d jk

[
2Î jk Îzk−

1
2
(
Î j−Îk++ Î j+Îk−

)]
=: Ĥ0 + e−ı̇ωItĤ++ eı̇ωItĤ−,
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where

Ĥ0 = ∑
j<k

d jk

[
2Î jk Îzk−

1
2
(
Î j−Îk++ Î j+Îk−

)]
+∑

k
Ak Ŝz

Ĥ± =
1
2 ∑

k
Bk Îk±Ŝz +

ω1

2
Ŝ±.

A temporal transformation τ =ωIt of the equation of motion yields with
∂ |ρ̂〉
∂τ

∂τ

∂ t
=

ωI
∂ |ρ̂〉
∂τ

:

∂ |ρ̂(τ)〉
∂τ

=
1

ωI

[(
−ı̇ ˆ̂H ′(τ)− ˆ̂

Γ

)
|ρ̂(τ)〉+ ˆ̂

Γ|ρ̂th〉
]
. (3.4.1)

This can be rewritten as

∂ |ρ̂(τ)〉
∂τ

= ε

[(
ˆ̂h0 + e−ı̇τ ˆ̂h++ eı̇τ ˆ̂h−

)
|ρ̂(τ)〉+ ˆ̂γ|ρ̂th〉

]
(3.4.2)

introducing the positive, dimensionless parameter ε which indicates the order

of magnitude of the interactions, relaxation rates and microwave power. ˆ̂h0,
ˆ̂h±

and ˆ̂γ are given by:

ˆ̂h0 =−
ˆ̂
Γ+ ı̇ ˆ̂H0

εωI

ˆ̂h± =− ı̇ ˆ̂H±
εωI

ˆ̂γ =
ˆ̂
Γ

εωI

In this form the Krylov-Bogoliubov averaging method [67] can be applied, in

order to average out the fast oscillating terms, ˆ̂h− and ˆ̂h+, in (3.4.2). A more

detailed description of the averaging method can be found in appendix B. The

result is a Hamiltonian which only contains zero quantum coherence terms:

ˆ̂H av = ˆ̂H1 +
ˆ̂H2 +

ˆ̂H3,

where ˆ̂H1 =
ˆ̂H0,

ˆ̂H2 =
1

ωI

[
ˆ̂H+,

ˆ̂H−
]

=
1

4ωI

([
1
2 ∑

k
Bk+

ˆ̂I+,
1
2 ∑

k
Bk−

ˆ̂I−

]

+2ω
2
1

ˆ̂Sz−2ω1

(
1
2 ∑

k
Bk−

ˆ̂I− ˆ̂S++
1
2 ∑

k
Bk+

ˆ̂I+ ˆ̂S−

))
,

and ˆ̂H3 =
1

ω2
I

(
ˆ̂H+

[
ˆ̂H−,

ˆ̂L0

]
+ ˆ̂H−

[
ˆ̂H+,

ˆ̂L0

])
,

with ˆ̂L0 = ı̇ ˆ̂
Γ− ˆ̂H0.

(3.4.3)
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Note that the last term of ˆ̂H2 contains the expression for the effective microwave

strength sω1 =
1
2ω1|B±|ω−1

I , found by S.Vega and co-workers [56].

As the initial thermal equilibrium state belongs to the zero quantum subspace

the trajectory of the state vector will remain in this subspace for all times. In

SPINACH it is easy to discard the subspaces of higher coherence order by mul-

tiplication of the Liouvillian and density operator with a suitable projection op-

erator before the evolution is calculated. The effect of the averaged Hamiltonian

can be seen in figure (3.3): all the components of the density operator outside the

zero quantum coherence subspace remain zero, additionally the fast oscillations

are averaged out. Although it appears in figure (3.3) that the norm decreases,

this is just an initial dip. Over the course of a full DNP simulation to the steady

state, the norm of the density operator increases to values of larger than one.

This is expected as the nuclear polarisation builds up due to the system receiv-

ing energy in the form of microwaves.

3.4.2 Error associated with the averaged Hamiltonian

The Hamiltonian given in (3.4.3) contains up to 3rd order averaging terms. In

the following section it will be shown that the 3rd order approximation is in-

deed sufficient for all parameters encountered in the simulations. The averaged

Hamiltonian has been tested for a wide range of input parameters. This includes

the microwave power ω1, the interaction strengths Ak,Bk,d jk and the relaxation

parameters r1n,r2n,r1e,r2e. For error analysis a comparison to the evolution of

the system under the full Liouvillian is needed. Due to the memory requirements

of this full Liouvillian, the analysis was limited to spin systems containing up to

six spins, so five nuclei and one electron. Seven spins would have been possible

but the simulation time would have become unreasonably large. In figure 3.4

the polarisation build up for a spin system under the influence of a full Hamilto-

nian and the residual of |ρ(t)〉| ˆ̂H
−ρ(t)| ˆ̂H av , corresponding to the polarisation
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build-up under the influence of ˆ̂H minus the polarisation build-up under the

influence of ˆ̂H av is shown for three different sets of input parameters. The sim-

ulation parameters are given in the figure caption. The errors associated with

the simulations shown in 3.4 are listed in Table 3.1. The absolute error of the

spin system evolving under the averaged Hamiltonian is on the order of 10−3 or

smaller in all cases. Additional error analysis of a large range of input parame-

ters is given in appendix C. For these input parameters the largest absolute error

encountered is on the order of 10−3, in most cases the largest relative error is

around 1% or less. When the relative error is larger, it turns out that the polari-

sation build-up for the tested input parameters is very small, hence resulting in

a division by a small number, making the relative error large.

Table 3.1: Errors of the simulations shown in figure 3.4. The errors shown are

the largest error over the time of the simulation.

relative error [%] absolute error

a 0.7 4.5 ·10−3

b 0.6 2.4 ·10−3

c 0.8 2.5 ·10−3

3.4.3 Conclusions

The use of averaging Hamiltonians has previously been presented by Haeberlen

and Waugh [68]. Their approach was applied for the investigation of periodic

pulse sequences that would result in averaging of spin interactions. In their

strategy only coherent mechanisms are considered, whereas in the case of the

solid effect relaxation is caused by incoherent fluctuations of the local magnetic

field around the spins, as was discussed in section 3.2. The incoherent effects
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are accounted for using the KBA method described above.

The main advantage of using the averaged Hamiltonian is that it confines the

trajectory of the density operator to the zero quantum subspace. It can be shown

that the dimension of a subspace with coherence order q is given by

dim(Lq) =

(
N +q

2N

)
=

(2N)!
(N−q)!(N +q)!

, (3.4.4)

where N is the number of spins in the simulation. As a result, the dimension of

the Liouvillian can a priori be reduced to

dim(L0) =
(2N)!
(N!)2 ∼

4N
√

πN
.

For the last step the Stirling formula has been used. This truncation translates

into a significant reduction of processing time, for example for the simulations

shown in figure 3.4 from around 45 minutes to 30 seconds.

There is an additional factor that plays a role in the reduction in simulation

time. The largest terms in the full Hamiltonian are on the order of the nuclear

Larmor frequency ωI , whereas one can see from equation 3.4.3 that the aver-

aged Hamiltonian contains only the smaller spin spin interaction, relaxation and

microwave terms scaled by the inverse of ωI and higher orders thereof. This

has a positive effect on the calculation of the propagator by reducing the scaling

factor s and hence the number of squaring steps, so matrix multiplications, that

SPINACH has to carry out. The fact that the high frequency modulations have

been removed by the averaged Hamiltonian has also been seen in figure 3.3.

In the derivation of the averaged Hamiltonian the condition ∆ = ±ωI has been

assumed, which means the microwave frequency was chosen to be on resonant

with the DNP frequency. The application of the KBA strategy is not strictly

limited to this condition but can be used for slightly off-resonant irradiation, as

long as the deviation is small, for example up to 20% of |ωI|.

The KBA averaging method is not restricted to the application of the solid ef-

fect only. Progress has been made recently by A. Karabanov to also formulate
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the Cross Effect Hamiltonian in this way. The requirement using the averaged

method is, that all spin interactions and relaxation constants remain small with

respect to the nuclear Larmor frequency. The most critical parameter for the

cross effect is hence the electron dipole interaction constant but it has been found

in initial tests, that even with values of up to 25 MHz, accurate results are still

obtained, making it possible to consider bi-radicals. The subspace to which the

trajectory is confined to in this case contains all basis elements which commute

with ωI(∑k Îkz + Ŝk2), where Ŝk2 is the electron which is on the same offset fre-

quency as the nucleus. This work will be presented in a future publication after

systematic testing of all input parameters has been carried out.
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Figure 3.4: The polarization build-up and the corresponding error dynamics

for various input parameters. Left: evolution of polarisations under the initial

Hamiltonian. Right: difference between polarisation build up using initial and

averaged Hamiltonian. (a) ω1 = 1.5 MHz . (b) ω1 = 5 MHz. (c) Nucleus-

electron distances halved,which results in an eight times increase in the hy-

perfine interaction strength.The microwave strength has been set back to ω1 =

1.5 MHz. Simulation parameters: 5 protons and one e− in a pyramid configu-

ration (see appendix C.1 ), relaxation parameters: r1n = 0.01 rad
s , r2n = 10 rad

s ,

r1e = 103 rad
s , r2e = 106 rad

s .
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3.5 Basis truncation

Throughout the DNP process, higher spin correlations get populated due to the

action of the orientation dependent Hamiltonians. At the same time, the relax-

ation operator ensures the depletion of these higher correlation order states, so

that a steady state balance is reached. It turns out that due to relaxation, higher

spin correlation order states are weakly populated, making it possible to trun-

cate the basis of the density operator and Liouvillian to a certain order ([62, 66]).

As a result the propagator size scales polynomially as opposed to exponentially

(see figure 3.5). In this section the theory and numerical results justifying the

basis truncation are presented. Firstly the conditions for basis truncation to a

certain spin correlation order will be derived. It will be shown that the ratio of

the relaxation and interaction parameters for a given spin system plays an im-

portant role in determining the largest order to which the basis operators have to

be kept. Then numerical results, confirming the basis truncation conditions will

be presented.

3.5.1 Basis truncation theory

Hamiltonians in general can be divided into two categories, either containing a

single spin operator or products of two spin operators. Examples for the single

spin Hamiltonian are the Zeeman interaction and the Microwave or RF Hamilto-

nian. Two spin Hamiltonians describe couplings, for example the nuclear dipole

dipole coupling or the hyperfine interaction. One can section the Liouville space

into spin order subspaces such that the direct sum of these subspaces give the

full state space again:

L= L0⊕L1⊕ . . .⊕Lk⊕ . . .⊕LN ,

where N is the number of spins, and k is the number of operators in the product

basis. For example, L0 contains only the unity operator ˆ̂E, whereas the single
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Figure 3.5: Scaling of the propagator size with number of spins for the cases

of using the full basis in the Liouville space (a) and the averaged Hamiltonian

(b) as well as the averaged Hamiltonian plus basis truncation: (c) 5th order, (d)

4th order and (e) 3rd order basis truncation. The scaling for the Hamiltonian in

the Hilbert space is also shown (f). One can see that for eleven spins using the

averaged Hamiltonian and 3rd order basis truncation the scaling becomes more

favourable than the Hilbert space scaling. The black dashed line indicates the

limit for a computer with 8 GB RAM.

spin subspace contains ˆ̂S±, ˆ̂Sz and ˆ̂Ik±, ˆ̂Ikz(see figure 3.2). The result of a single

spin Hamiltonian ˆ̂HSO acting on a subspace of a given spin correlation remains

within this subspace:
ˆ̂HSOLk ⊂ Lk.

This is due to the fact that ˆ̂H =
[
Ĥ , Ê

]
, and a commutator containing two

single spin operators will never result in an operator containing more than one

spin. Using the same considerations one can see that a double spin Hamiltonian
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ˆ̂HDO can change the spin correlation order k by plus or minus one, or it can

leave it unchanged:
ˆ̂HDOLk ⊂ Lk−1⊕Lk⊕Lk+1.

The relaxation operator defined in section 3.2 contains only single spin orders,

so its action also remains confined to the same subspace.

ˆ̂
ΓLk ⊂ Lk.

The density operator can also be expressed as a sum of the different spin order

contributions: |ρ̂〉 = |ρ̂1〉+ |ρ̂2〉+ ...|ρ̂N〉. Using this notation one can rewrite

the Liouville-von-Neuman equation of motion as

d
d t
|ρ̂1〉=− ı̇ ˆ̂HSO|ρ̂1〉− ı̇ ˆ̂π1

ˆ̂HDO(|ρ̂1〉+ |ρ̂2〉)+ ˆ̂
Γ
(
|ρ̂1〉− |ρ̂eq〉

)
. . .

d
d t
|ρ̂k〉=− ı̇ ˆ̂HSO|ρ̂k〉− ı̇ ˆ̂πk

ˆ̂HDO (|ρ̂k−1〉+ |ρ̂k〉+ |ρ̂k+1〉)+ ˆ̂
Γ|ρ̂k〉

. . .

d
d t
|ρ̂N〉=− ı̇ ˆ̂HSO|ρ̂N〉− ı̇ ˆ̂πN

ˆ̂HDO (|ρ̂N−1〉+ |ρ̂N〉)+ ˆ̂
Γ|ρ̂N〉,

where ˆ̂πk is a superoperator projecting the Hamiltonian into the kth order sub-

space. As an approximation, the thermal equilibrium density operator resides

in L1, which is reasonable as the electron thermal polarisation is much larger

than the nuclear polarisation. Hence one can neglect the higher order terms and

assume that |ρ̂eq〉 = ˆ̂Sz. In order to investigate to which extent the higher spin

order terms become populated during the simulation, it is instructive to observe

the norm of the density operator in the various subspaces. With |ρ̂k|2 = 〈ρ̂k, ρ̂k〉,
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〈X ,Y 〉= Tr{X∗,Y} and ı̇〈X ,ĤDOY 〉=−ı̇〈Y,ĤDOX〉 one gets

d
d t
|ρ̂1|2 =−2Im

(
〈ρ̂2,

ˆ̂HDOρ̂1〉
)
+2〈ρ̂1,

ˆ̂
Γρ̂1〉−2Re

(
〈ρ̂1,

ˆ̂
Γρ̂eq〉

)
. . .

d
d t
|ρ̂k|2 =−2Im

(
〈ρ̂k,

ˆ̂HDO(ρ̂k−1 + ρ̂k+1)〉
)
+2〈ρ̂k,

ˆ̂
Γρ̂k〉

. . .

d
d t
|ρ̂N |2 =−2Im

(
〈ρ̂N ,

ˆ̂HDOρ̂N−1〉
)
+2〈ρ̂N ,

ˆ̂
Γρ̂N〉,

where Re(x) denotes the real part, and Im(x) the imaginary part of x. The

action of the single spin Hamiltonian has disappeared from the equations. One

can remove the double spin Hamiltonian and the relaxation operator from the

equations by using eigenvalue equations for the particular subspace. Then

〈ρ̂1,
ˆ̂
Γρ̂eq〉
|ρ̂1|

= g
〈ρ̂k,

ˆ̂
Γρ̂k〉
|ρ̂k|

= rkxk ı̇
〈ρ̂k,

ˆ̂HDOρ̂ j〉
|ρ̂k|

=Ck jx j,

where rk is the average eigenvalue of the projection of the relaxation operator

into the kth subspace and Ck j is a transfer rate between the kth and jth subspace.

With d
d t |ρ̂k|2 = 2|ρ̂k| d

d t |ρ̂k| and using the notation xk = |ρ̂k| one gets

d
d t

x1 =− c2x2− r1x1 +g

. . .

d
d t

xk =− ckxk−1− ck+1xk+1− rkxk

. . .

d
d t

xN =− cNxN−1− rNxN .

(3.5.1)

The parameters ck depend on the transition coefficients Ck j. In the next para-

graph it will be shown that the average eigenvalue of the kth subspace of the

relaxation operator is proportional to 2r0k, where r0 contains the dominant elec-

tron r2e of the relaxation operator. The coefficients ck can be replaced by a

constant c0, as the transition rates of ˆ̂HDO do not strongly depend on the spin

order. These parameters will be discussed in more detail below.
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Equations (3.5.1) can be combined into a single dissipative transport equation,

describing the flow of magnetisation through the spin order subspaces, if the

number of spins is large:

∂x
∂ t

=−c0
∂x
∂κ
−2r0κx+g(κ). (3.5.2)

The coefficient κ now describes the spin correlation order and g(κ) = g0δ (κ−

1) is the thermal correction factor which is only non-zero for κ = 1. The steady

state solution of 3.5.2 is obtained by setting the left hand side to zero and inte-

grating with respect to κ:

x∞(κ) = x0 exp
(
− r0

c0
κ

2
)
, (3.5.3)

with x0 =
g0

c0
H(x−1)exp

(
r0

c0

)
, where H(x−1) is the Heaviside step function.

It can be seen from equation(3.5.3) that the norm decreases quadratically with

spin correlation order. Hence it is possible to truncate the basis to a certain spin

correlation order without influencing the lower order dynamics appreciably. The

error ξ incurred from truncation at a certain spin correlation order level κ is then

given by

∞∫
m

exp
(
−χκ2)dκ

∞∫
1

exp(−χκ2)dκ

=
erfc(
√

χ m)

erfc(
√

χ )
≤ ξ using χ =

r0

c0
. (3.5.4)

The parameter χ , the ratio of relaxation to interaction strength in a spin system,

indicates the ratio of depletion and population of the correlation order subspaces.

The larger χ , the smaller the amount of magnetisation that can be expected

to be transferred to the higher correlation order subspaces and hence one can

expect to be able to truncate the Liouville space at a lower spin correlation order,

whilst incurring only a small error. In turn, for a small χ , corresponding to

small relaxation rates and a large transfer rate of magnetisation into higher spin

correlation orders, the basis truncation order can expected to be higher. This is

illustrated in figure 3.8.

70



CHAPTER 3: SOLID EFFECT SIMULATIONS IN THE LIOUVILLE SPACE

Coefficients of the basis truncation error estimate

As indicated above, in order to find the largest error that is incurred by truncat-

ing the basis to a certain spin correlation order k, one has to consider the largest

transfer rate of magnetisation into higher spin correlation orders by ˆ̂HDO and

the smallest relaxation from these higher orders, which means when χ is mini-

mal. The coefficients rk in (3.5.1) had been replaced by 2r0k in the dissipative

transport equation. r0 can be estimated using the following considerations: The

average relaxation rate for each subspace Lk can be calculated from

rk =

〈∣∣∣ ˆ̂Γ ˆ̂Ok

∣∣∣∣∣∣ ˆ̂Ok

∣∣∣
〉
, (3.5.5)

where the average is over all basis operators ˆ̂Ok contained in the kth subspace.

The electronic transverse relaxation rate by far dominates ˆ̂
Γ, hence rk can be

estimated by splitting the basis operators in terms containing ˆ̂S± and terms not

containing ˆ̂S±: ∣∣∣ ˆ̂Γ ˆ̂Ok

∣∣∣∣∣∣ ˆ̂Ok

∣∣∣ ≥ r2e for ˆ̂Ok =
ˆ̂S±

k−1

∏
j

ˆ̂Iα j

∣∣∣ ˆ̂Γ ˆ̂Ok

∣∣∣∣∣∣ ˆ̂Ok

∣∣∣ > 0 for ˆ̂Ok 6= ˆ̂S±
k−1

∏
j

ˆ̂Iα j

where α can be z and ±. As the number of ˆ̂S± operators contained in the

subspace grows linearly with the spin order this results in

rk ≥
2k
3N

r2e, so r0 ≥
r2e

3N
. (3.5.6)

From figure 3.6a it can be seen that rk is indeed linearly proportional to k and

that the relation from equation (3.5.6) is very close to being an equality. This

is due to the fact that the electronic relaxation rate r2e is much larger than the

other rates in the relaxation operator. The average eigenvalues of the relaxation

operator defined in section 3.2 do not depend very strongly on the hyperfine
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interaction constants as the electronic relaxation rates dominate over the nuclear

rates. For the relaxation operator from figure 3.6a r0 = 4.8 · 104 rad
s with r2e =

106 rad
s . When the averaged Hamiltonian from section 3.4.1 is used, the basis is

restricted to comprising only zero quantum coherence operators. This influences

the estimation for r0 but it can be seen from figure 3.6b that the slope of the curve

is then larger than
2r2e

3N
, hence the relation in 3.5.6 remains true.

(a) (b)

Figure 3.6: Average eigenvalue rk of the full (a) and the zero quantum truncated

(b) relaxation operator for the different spin order subspaces. The blue dots rep-

resent the calculated average eigenvalue in units of rad
s , the black line a linear fit

to the average eigenvalues and the orange dashed line the theoretically predicted

curve with slope
r2e

3N
.

For c0 one needs to find an upper limit in order to minimise χ and hence find

the upper limit for ξ . The transfer amplitudes from one spin order subspace to

another depend strongly on the hyperfine and dipolar interaction strengths. In

figure 3.7 the transfer amplitudes of an interaction Hamiltonian ˆ̂HDO of a chain

of nuclei with the electron at the origin is shown where the transition amplitude

is defined analogously as in [5], for example for the transition from L1 to L2:

〈 ˆ̂Ok| ˆ̂HDO| ˆ̂O j
ˆ̂Ok〉 j, k =∈[1,N]. (3.5.7)

The chain has been rotated from θ = 0, which corresponds to being aligned
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with the z axis, to θ = arccos
(

1√
3

)
, which corresponds to the magic angle.

One can see that for the magic angle and close to the magic angle the largest

transfer amplitude is equal for all spin orders, whereas for the angles where the

hyperfine constant Ak is non-zero a non trivial dependency of the transfer rate on

the spin order occurs. From figure 3.7 one can see that the transition amplitude

Figure 3.7: The largest transition amplitude in units of rad
s for the interaction

Hamiltonian ˆ̂HDO for a chain of six nuclei with one electron at the centre is

shown. The distance between the spins is 12Å. The angle is given in radi-

ans, where θMA = 0.9553. One can see that for the angles that corresponds

to small constants Ak in the hyperfine Hamiltonian the transition amplitude does

not change with spin order k. For terms where Ak is non-zero a non-trivial de-

pendency is present.

converges to a constant value for a large spin orders. The following estimate

holds well as an upper bound for the largest transfer amplitude. The terms of

the hyperfine and dipole dipole interaction can assumed to be smaller than or
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equal to

A = max
k

√
A2

k + |Bk|2 and d =
√

6 max
k
|d jk|.

The constant c0 has therefore got the bound

c0 <
2A(N−1)+2d

(N−1
2

)(N
2

) =
4A+2d(N−2)

N
. (3.5.8)

Table 3.2 summarises the largest Eigenvalue of ˆ̂HDO for the chain example of

figure 3.7 and the corresponding upper bound for c0 from (3.5.8). The relation

always holds, so is suitable as an upper limit.

Table 3.2: Comparison of the largest transfer amplitude of ˆ̂HDO with the upper

bound estimate 3.5.8 for c0.

θ [rad] largest transfer amplitude in ˆ̂HDO c0 from (3.5.8)

0 4.14 ·105 4.21 ·105

0.2 3.96 ·105 4.01 ·105

0.4 3.25 ·105 3.66 ·105

0.6 2.20 ·105 3.17 ·105

0.8 1.52 ·105 2.65 ·105

arccos
(

1√
3

)
1.44 ·105 2.32 ·105
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3.5.2 Basis truncation error analysis

Having obtained expressions for the parameters c0 and r0, that can be calculated

before the start of the simulation of the evolution of a spin system, one can

calculate the lowest spin correlation order m∗ that has to be kept in order to

obtain the result within a user defined tolerance ξ . This m∗ can be obtained

from equation (3.5.4):

m≥ m∗ =
1
√

χ
erfc−1 (ξ erfc(

√
χ )) (3.5.9)

with

erfc(x) =
2√
π

∫
∞

x
e−τ2

dτ.

In order to obtain the dissipative transport equation (3.5.2), the limit for N� 1

was taken, hence the bound m∗ for the basis truncation is only fully valid when

it is much smaller than the number of spins in the system. The lowest limit for

m∗ is three, as the spin interaction Hamiltonian which contains bilinear terms

would not be able to cause a transfer from the two spin order subspace to the

higher spin order spaces.

Scaling of χ

Equation (3.5.9) depends strongly on χ , as can be seen from figure 3.8, where

the tolerance ξ has been set to 0.05, corresponding to a relative error of 5 %.

For χ ≥ 0.29 third order basis truncation can safely be used as this is the lowest

limit. If m∗ becomes equal to or larger than the number of spins, safe truncation

is not possible. It will be discussed later that although equation (3.5.9) gives

the lower limit for truncation, in some cases a smaller basis does also produce

accurate results.

In order to test equation (3.5.9) a comparison with the full basis is necessary

for the error analysis. As the averaged Hamiltonian has been found to produce

a very good approximation also with restricted basis, it was used for all error
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Figure 3.8: The lower bound for basis truncation m∗ for different parameters

χ . The tolerance ξ is set to 0.05. In practice the basis truncation order m is an

integer, and in order to err on the side of caution m∗ should always be rounded

up.

analysis of the basis truncation. The largest number of spins that can be tested

within the constraints of the 8 GB memory card using the averaged Hamiltonian

is eight but this is involves long processing times, hence most analysis has been

carried out with six nuclei and one electron.

The estimate in equation (3.5.9) has been tested systematically by scaling the

parameter χ by a factor s, so χ = χ0/s. This was done either by dividing the

relaxation parameter r2e by s, keeping c0 constant or by scaling the coordinates

by s
1
3 , which translates into a linear scaling of c0. The factor s was chosen in

such a way that the resulting m∗ would cover the whole range of possible basis

truncations, so for a seven spin system from the third to sixth order.

Several random configurations were tested this way and to start with 1H nuclei
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were used in the simulation as a ‘worst case’ as the interaction constants are the

largest. The error that was calculated for each basis truncation level m ∈ [3,6],

and each scaling parameter s, is of the form

e =
∣∣∣∣max

i

∣∣∣∣P(i)∞|m
P(i)∞

∣∣∣∣−1
∣∣∣∣ , i ∈ [1,N] (3.5.10)

where P(i)∞ is the steady state polarisation of spin i and P(i)∞|m the steady

state polarisation for spin i obtained with basis truncation to level m. The error e

should not exceed the factor ξ in (3.5.4) for a fixed basis truncation level m. The

steady state polarisation was used because the solution to the transport equation

of magnetisation to higher ranks, equation (3.5.3), was given for the steady state.

The randomly generated configurations have the following boundary conditions:

The electron sits at the origin and the nuclei are distributed within an eighth of

a sphere of outer radius rmax = 24 Å and a minimum distance from the electron

of rmin = 12 Å. The individual positions where calculated using the MATLAB

pseudorandom integer generator, randi(), with the limits

r ∈ [12,24] θ ∈ [0,
π

2
] φ ∈ [0,

π

2
].

In order to circumvent nuclei accidentally being placed on the same position

and to avoid an unrealistically large nuclear dipole interaction, the minimum

distance between all nuclei was set to be larger or equal than 5 Å. The maxi-

mum and minimum radius where chosen to result in a range of realistic inter-

action constants. In figure 3.9 one can see the resulting error e for one of these

configurations, where ξ is also displayed for all scaling parameters s. One can

see that the error e always remains below the error estimate ξ for each χ , mean-

ing that if one calculates the lower limit for basis truncation m∗ according to

(3.5.9), one will obtain a basis truncation level that will reliably return an error

e smaller than a user defined ξ . One can see from figure 3.9 that for larger χ

the error tolerance estimate and the actual error e are similar but for small χ

the estimated error becomes much larger than the actually incurred error. This
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Figure 3.9: Error tolerance ξ and steady state error e for scaled χ for each

basis truncation level m. The top row shows a scaling of χ by changing c0, in

the bottom row the electron transversal relaxation rate r2e has been scaled.The

initial c0 was 15 kHz, the initial r0 = 7.5 kHz.

results in overestimation of the needed spin order level, for example if one takes

m=3 in figure 3.9, the parameter χ for which the error becomes larger than 5%,

χ(e & 0.05) = 0.019, results in a recommended truncation level of m∗ = 10.4,

which is larger than the number of spins. With some configurations this over-

estimation was less extreme than with others, but all configurations obeyed the

trend from figure 3.9 that e is smaller than ξ . Still, equation (3.5.9) is meant

to provide a lower estimate of the basis truncation level, which it reliably does.

In practice one would calculate χ for a given set of interaction and relaxation

parameters and decide on the level of basis truncation with equation 3.5.9.

Even although the error tolerance ξ is calculated from the the steady state distri-

bution of magnetisation across the spin orders, it turns out that the largest error

over the whole time course of the simulation, although larger than the steady
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Figure 3.10: Error tolerance ξ and error e for scaled χ for each basis truncation

level m over the full time course of the simulation. The top row shows a scaling

of c0, in the bottom row the electron transversal relaxation rate r2e has been

scaled.

79



CHAPTER 3: SOLID EFFECT SIMULATIONS IN THE LIOUVILLE SPACE

state error, also remains smaller than the error tolerance ξ , as can be seen in

figure 3.10.

The microwave field strength ω1, and the remaining relaxation parameters (r1n,

r2n , r1e) were also scaled but no significant dependency of the error was seen.

The dependency of the basis truncation level on the ratio r0
c0

was additionally

checked by simultaneously scaling r2e and c0 by the parameter s, keeping χ

constant. The starting parameters were chosen in such a way that the initial

χ = 0.29, ensuring that the third order basis truncation returned an error of less

than 5%. In figure 3.11 one can see that the error remains small and largely

constant for each basis truncation order, the largest absolute error encountered

is on the order of 10−3, the parameter is χ = 0.29 for all scaling factors s. This

confirms that indeed the ratio r0
c0

is the main indicator for the basis truncation

limit.

Figure 3.11: Relative error for different basis truncation levels of a spin system

containing six nuclei and one electron in the pyramid configuration. The trun-

cation level of the spin correlation order is indicated to the right of the graph.
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Additionally 13C nuclei have been tested in the random configurations. Due to

their lower gyromagnetic ratio the hyperfine interaction constants are four times

smaller and the nuclear dipole interaction even 16 times smaller than in the case

of the protons. Hence larger scaling parameters were used in order to obtain the

same range of χ-values as for the case of protons. Also here the errors remain

smaller than ξ in all cases.

Revisiting the configuration used in figure 3.4 , section 3.4.2, as a showcase

to demonstrate the accuracy of the averaged Hamiltonian, the deviation of the

polarisation build up curves calculated with fourth order basis truncation from

the curves obtained using the full state space are shown in figure 3.12. The left

column shows the evolution of the spin system for three different sets of input

parameters, the middle column again the error incurred from using the averaged

Hamiltonian only, and in the right hand column the residual for additionally

using the fourth order basis truncation is displayed. For row c, where the hy-

perfine interaction constants have been doubled, m∗(χ = 0.12) = 4.4, and the

largest error for the basis truncation remains less than 10−2.
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Figure 3.12: Simulation results for the pyramid configuration first mentioned

in section 3.4.2 and displayed in appendix C. The nuclear build up curves are

depicted in black, the electron is the dashed grey line. The constant relaxation

operator was used with the parameters: r1n = 0.01 rad
s , r2n = 10 rad

s , r1e = 103 rad
s ,

r2e = 106 rad
s . Left column: full basis, full Hamiltonian. Middle column: full

basis,averaged Hamiltonian. Right hand column: fourth order basis truncation,

averaged Hamiltonian. In row a: ω1=1.5 MHz and χ = 0.23. In row b: the

microwave power has been changed to ω1=7.5 MHz and remains χ = 0.23. In

row c: the hyperfine interaction constants have been doubled, χ = 0.12.

82



CHAPTER 3: SOLID EFFECT SIMULATIONS IN THE LIOUVILLE SPACE

Removing additional states

It was mentioned that in some cases it is possible to remove more states, addi-

tionally to the ones removed by truncation of the basis at spin correlation order

m∗, and still obtain a good approximation of the evolution of the spin system.

In order to investigate this, random configurations of five 13C nuclei and one

electron with basis truncation level 3 were simulated. For the chosen configura-

tions χ = 2, justifying the basis truncation at the 3 spin correlation order. The

averaged Hamiltonian was used, which resulted in a density operator contain-

ing 192 basis operators to describe the spin system. The time evolution of each

state was calculated, then a threshold is applied to cut out states with a maxi-

mum amplitude of Ath. The same configuration was then simulated again and

the relative error with respect to the simulation obtained using the initial state

space was calculated. This was repeated and on each repetition the threshold

was decreased, effectively cutting out more and more states until a relative error

of ∼100% was reached.

It was observed that for some configurations the error increases immediately

over the 5% tolerance, whereas for others the error stays largely the same until

it increases with one sudden jump to ∼100%. This indicates that for some con-

figurations, corresponding to certain sets of interaction constants, it is possible

to remove a large number of additional states without affecting the quality of

the simulation significantly. Figures 3.13 shows two representative simulations

for either case. On the left one can see that the error increases very quickly over

the 5% error tolerance, whereas on the left the error remains less than 5% with

only 50 out of the initial 192 states, or if one compares this to the full state space

50 out of 46 =4096 states. In order to demonstrate that the number of basis op-

erators included in the simulation did not decrease rapidly from one threshold

point to another, which could result in a large number of states being discarded

at once, and hence a large error jump, the number of states left in the simulation
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are plotted in blue, with their y axis on the right of each figure.

This clearly demonstrates the potential for additional compression, if one was

able to identify a-priori the redundant states. So far it has not been possible to

find a good prediction as to which states fall into this class.

SPINACH has a built in threshold setting called ‘zero-track elimination’ which

evolves the spin system for a few very small time steps and then cuts out all

states that have not been populated by more than a certain threshold within this

time. This setting was always disabled during simulations for basis truncation

tests and testing the average Hamiltonian as no analytical conditions for safe

thresholding have been found , but clearly this feature has a great potential to

reduce the dimension of the density state vector even further if such a condition

was obtained.

Figure 3.13: Size of the matrix describing the spin evolution (blue) and largest

relative error of the simulation(black).
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Basis truncation conclusions

The method of restricting the size of the propagator by reducing the state space

to basis operators containing product states of up to a user defined order results

in polynomial scaling, instead of the original exponential scaling. If third order

truncation is possible, the Liouville presentation of a spin system scales more

favourably than the Hilbert space description from 18 spin onwards, as could

be seen in figure 3.5. It was found that for most realistic nuclear and electronic

interaction parameters the basis could be truncated safely to fourth order for 1H

spins and to third order for 13C nuclei (see figure 3.14). The largest number

of nuclei that can then be simulated, in conjunction with using the averaged

Hamiltonian, is 13 for protons and 26 for 13C nuclei. The duration of simu-

lating the behaviour of a spin systems close to the upper limit can be up to 58

hours, so although it is possible to access Liouville space simulation results for

these spin systems it is tedious to probe the outcome for many different input

parameters. Staying slightly under the maximum limit can already drastically

reduce the simulation time, as it scales exponentially with the propagator size

(see figure 3.1). Despite the basis truncation theory being defined for the multi

spin limit, testing of the basis truncation condition has shown to still provide

accurate prediction of the minimum truncation level for smaller spin systems.

The considerations that lead to condition (3.5.9) are not just restricted to DNP

simulations. The same treatment can also be applied for any spin system, whilst

care has to be taken about the relaxation mechanisms involved [66].

The presented methods of truncating the basis in conjunction with the averag-

ing the Hamiltonian have increased the number of spins that could thus far be

simulated in the Liouville space. Whilst insight into the behaviour of nuclei

around the electron can be gained, for polarisation of samples with realistic spin

concentrations the numbers that can be achieved are not sufficient.
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Figure 3.14: Build up curves of 25 13C nuclei obtained with the averaged Hamil-

tonian and basis truncation order 3. A scaled relaxation operator was used with

r2e = 106 rad
s , r2e = 106 rad

s .
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3.5.3 ‘Multi-exponentiality’ of the polarisation build-up curves

Using the averaged Hamiltonian in conjunction with the lowest possible basis

truncation order of 3 makes it possible to carry out simulations with up to 26

spins using an 8 GB RAM memory card. This is an improvement on the pre-

vious limit of seven spins using the full system size in the Liouville space, or

the maximum of ten spins that are achievable when the Hilbert space method

presented in [55] and [56] is used. Nonetheless, a simulation reflecting realistic

sample conditions would have to include far more spins, which is only possible

if the dimension of the matrices involved in the calculations is further reduced.

In order to test whether it is possible to describe the build-up curves of the nuclei

with a mono-exponential function of the form Pn(t) = P0(1−exp(tτ−1
b )), where

an a priori knowledge of P0 and τb has yet to be obtained, nuclear polarisation

build-up curves of spin systems have been fitted with the aforementioned func-

tion and the error of the fit was analysed. For this, three regions were defined,

a core region, a bulk region and a mix of a core and bulk region following the

definition in [55] and [56]: Bulk nuclei are defined as the nuclei whose dipole

interaction is five times larger than the difference in their hyperfine interaction

constants, so

5|di j|> ∆Ai j =
1
2

∣∣∣∣Ak,i−Ak, j±
|B+,i|2−|B+, j|2

4ωI

∣∣∣∣ . (3.5.11)

As is acknowledged in the mentioned publications, the scaling factor before the

nuclear dipole dipole interaction is somewhat arbitrarily defined but has been

shown to ensure true ‘bulk behaviour’ of the spins in the simulation, meaning

that excluding dipole interaction between the nuclei results in very different

polarisation build-up curves for each nucleus. This indicates that the distribution

of polarisation via spin diffusion plays a big role in this region, as would be

expected. The transition from full bulk to full core nuclei is not clearly defined:

Nuclei that do not fall into the bulk classification of 3.5.11 do not necessarily

behave strictly as core nuclei, some can still have significantly different build-up
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curves when the nuclear dipole interaction is excluded.

In order to match the pure bulk condition 3.5.11, the nuclei in the examples

chosen have been far removed from the electron (minimum distance 30Å) to

reduce the strength of the hyperfine coupling and put close together for strong

nuclear dipole interaction. For the simulations of a pure core, the nuclei were

positioned in such a way that the hyperfine interaction quenched the nuclear

dipolar interaction, so only a small difference in the build-up curves was found

upon exclusion of nuclear dipolar interaction. For the mix region pure core and

bulk nuclei, as well as intermediate nuclei where included. Intermediate nuclei

are nuclei that fall by definition 3.5.11 into the class of core nuclei but still show

changes in the build-up curve when dipole interaction is excluded.

The constant relaxation operator was used, with the relaxation rates chosen to

be: r1e = 103, r2e = 106, r1n = 10−2 and r2n = 102 rad
s . The largest relative and

absolute error over the entire simulation were calculated for each fit of a build-

up curve, as well as the steady state relative and absolute error. The errors were

also calculated for the simulation of the same configuration with all nuclear

dipole interaction set to zero. Three randomly generated configurations with

five nuclei and one electron for each region were carried out.

It was found that steady state error in the fit remained small for all three scenar-

ios. The largest absolute steady state error of all three configurations was found

to be 1.6 · 10−3, and the largest relative error 0.2% ,when dipolar interaction

was included. When dipolar interaction was removed this reduced to a maximal

absolute error of 8.3 ·10−4 and relative error of 0.05%.

For the pure bulk region the largest relative error of all fitted build-up curves was

2.8% and the largest absolute error was 5 ·10−6 with dipolar interaction included

and 5 · 10−8 when the dipolar interaction was neglected. This error is small,

so a mono-exponential description of the build-up curves is justified, provided

one can find a priori expressions for P0 and τb. The exclusion of the dipolar
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interaction yields very different steady state polarisations but the difference in

the build-up time constants is less than 0.1%.

For the pure core region the errors also remain acceptably small, for example the

largest relative error was found to be 4.5% and the largest absolute error 0.02.

Obviously the errors remain the same when dipolar interaction is excluded.

When a configuration is chosen, where some nuclei fit the bulk description

3.5.11, some can be considered to be core nuclei and others are somewhere

in between, the errors become considerably large. The average relative error

over all build-up curves of all three configurations is 19%, with the largest error

found being 87%. The largest absolute error has been found to be 0.14, with

the average being 0.05. This reduces significantly when dipolar interaction is

neglected: the largest relative error reduces to 0.03% and the largest absolute

error to 0.7 ·10−3.

From the small number of configurations tested, the conclusion is that a mono-

exponential description of the build-up curve seems justified for a sample con-

taining purely bulk or purely core nuclei. When a sample contains a mixture of

both, or nuclei that do not belong strictly to either category, the deviation from

a mono-exponential build-up curve can become relatively large, mostly in the

initial stages of the simulation as can be seen in figure 3.15.

The error of a mono-exponential fit has been shown to reduce significantly for

the core - bulk mix region when dipolar interaction is neglected. One reason for

the deviation from a mono-exponential build-up curve might be explained from

the following observations, that can be made from Table 3.3 and figure 3.16:

• For the pure core configurations the build-up time constants are quite dif-

ferent for each nucleus, and the dipolar interaction is quenched.

• For the pure bulk configurations the build-up time constants are very sim-

ilar, and the dipolar interaction has a large effect on the final polarisation.
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Figure 3.15: Example build-up curve for a nucleus from a core-bulk mix (blue

line) that does not behave strictly mono-exponentially. The green line shows the

mono-exponential best fit, the orange line the difference between the fit and the

build-up curve. As one can see, the largest error occurs in the initial build-up

stage.

• The bulk-core mix configurations the build-up time constants are different

and the dipolar interaction has an effect on the build-up curves and the

final polarisation.

From this one can conclude that probably the multi-exponentiality stems from

the fact that nuclei, whose dipolar interaction plays a non-negligible role in the

build-up curves, are affected by the faster or slower build-up time constants of

their strongly coupled neighbouring nuclei. In the pure core sample the build-

up time constants are different for each nucleus but the dipolar interaction is

quenched so the nuclei do not experience each others different time constants.

In conclusion, for the examples containing only bulk or only core nuclei, the

nuclear polarisation build-up can be described very well by a mono-exponential

function. The polarisation rates in the bulk are close to the nuclear longitudinal

relaxation time. For samples, where the type of region is not clearly defined, and
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Figure 3.16: Evolution of the nulear polarisations for an example configuration

for each region: Pure core (a), pure bulk (b), and a mixture of core and bulk

nuclei (c). The build-up curves are shown with (top row) and without (lower

row) inclusion of nuclear dipole interaction.

one can assume that in a realistic sample the boundaries between the core and

bulk region are fuzzy, a mono-exponential function does not always describe

the build-up curves well, and in certain cases the error can become quite large.

One can reduce this error by excluding the nuclear dipole interaction but this

can change the final polarisation and build-up rates substantially, as can be seen

from figure 3.16 b) and c). Since the sample of configurations that were tested

is small, it may be possible that the large errors for the core-bulk mix could

average out when a larger number of geometries is considered, as well when a

large number of spins is included in the simulation. Nonetheless, if one wants

to obtain very accurate results a multi-exponential approach to the simulation is

needed.

Such an approach will be introduced in section 3.7. Before that, an excursion

into the parameters involved in the solid effect will be made in the next section.
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3.6 Solid Effect Observations

The parameter space involved in determining the final DNP enhancement and

build-up rates is very large and many factors interplay in the DNP mechanism,

which is the main problem that prevents a rigorous quantitative description of

the process to date. In order to shine a small light on a few of the important

factors determining the final enhancement and characteristic build-up time in

solid effect DNP a few observations from the simulations will be discussed here.

A similar and more in depth discussion can be found in [56].

3.6.1 Off resonance irradiation and microwave strength

Polarisation build-up by irradiation on the zero and double quantum transitions

does not strictly occur only at the offset frequencies ωS±ωI . Irradiating slightly

off-resonant from the DNP frequency ωS±ωI also results in some polarisation

build-up. In [56] it has been shown that one can view the double or zero quantum

transition as a fictitious spin 1
2 , so analogously to the off resonance behaviour for

a single quantum transition in a two level system with the steady state solution

to the Bloch equation for Mz:

Mz = M0
1+(∆ωT2)

2

1+(∆ωT2)2 + γ2B2
1T1T2

, (3.6.1)

where M0 is the initial magnetisation of the spin, T1 and T2 its longitudinal and

transversal relaxation times, ∆ω the offset term and B1 the amplitude of the

perturbing field. The line shape is then a Lorentzian of line width T−1
2 or, when

saturation is included [3]:

T ′2
−1 = T2

−1 (1+ γ
2B2

1T1T2
) 1

2 . (3.6.2)

In the case of the double or zero quantum transitions, γB1 has to be replaced by

the effective microwave field sω1 with s ' |B+|
2ωI

, which has been obtained from

diagonalisation of the two spin solid effect Hamiltonian [56]. The relaxation
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time constants have to be replaced by T1,ZQ/DQ and T2,ZQ/DQ, with which the

double and zero quantum states decay . In the relaxation operator defined in

3.2 and used in this work such terms are not explicitly defined but still a broad-

ened line in the frequency dependency of the steady state polarisation is present

(see figure 3.17). This can be explained by the following considerations: The

effect of T1,ZQ/DQ is relaxation of both the electron and nuclear spin. This can

be approximated by the sum of the relaxation times T1n and T1e and, as the elec-

tronic relaxation time is usually much smaller than the nuclear, T1,ZQ/DQ can

be replaced by T1n. It was observed that replacing T−1
2,ZQ/DQ with T−1

2e , so the

dominant transversal relaxation time, results in a relatively good prediction of

the line widths of the final polarisations using equation (3.6.2), as can be seen

in Table 3.4. The fact that T2e can be used makes sense intuitively, as it deter-

mines the electronic line width and the final DNP enhancement follows the EPR

spectrum closely.

Table 3.4: Comparison of line widths obtained from the simulation (left table)

and with equation (3.6.2) (right table). All line widths are given in units of MHz,

the relaxation rates are in rad
s . The simulation parameters are: |B|=0.17 MHz,

r1n = 3 ·10−3 rad
s , r1e = 103 rad

s , r2n = 30 rad
s . r2e in the tables is given in units of

rad
s

ω1/(2π)/106

1 0.5 0.1

r2e

106 2.40 1.24 0.4

5 ·105 1.71 0.86 0.25

2.5 ·105 1.22 0.5 0.15

ω1/(2π)/106

1 0.5 0.1

r2e

106 2.40 1.24 0.29

5 ·105 1.74 0.87 0.20

2.5 ·105 1.21 0.61 0.13

Using the scaled relaxation operator the offset sweep has been obtained for sev-

eral positions of the nucleus, with the electron sitting at the origin of the coordi-
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nate system. It can be seen from figure 3.17 that the line broadening decreases

for decreasing r2e and increases for larger microwave power ω1.

Figure 3.17: Offset behaviour of the steady state polarisation of the nucleus

P∞ for different electronic transversal relaxation rates T−1
2e (left) and microwave

powers ω1(right). The parameters that both figures have in common: |B| =

0.17 MHz, r1n = 3 ·10−3 rad
s , r1e = 103 rad

s , r1n = 30 rad
s . Parameters for left hand

figure: ω1=30 kHz; blue line: r2e = 106 rad
s ; green line: r2e = 0.5 ·106 rad

s ; orange

line: r2e = 0.25 · 106 rad
s . Parameters for the right hand figure: r2e = 106 rad

s ;

blue line: ω1=0.1 MHz; green line: ω1=0.5 MHz; orange line: ω1=1 MHz. The

offset ∆O is given in MHz

If the distance r between the electron and nucleus is kept constant and the an-

gle θ between the z axis and the electron-nuclear connecting axis is varied, one

always obtains the same frequency profile. This is consistent with the scaled

relaxation operator r1n is being scaled by |B+|2, and hence in equation (3.6.2)

the product of effective microwave amplitude squared times the inverse of r1n

remains constant. If a relaxation operator is used, in which the nuclear relax-

ation rates are not scaled by the hyperfine term |B|, the line shapes (and final

polarisations) do change but still obey equation 3.6.2.
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3.6.2 Frequency sweep

The Ak terms of the hyperfine interaction, as well as to a small extent the Bk

terms, cause a shift in the energy levels. For the case of a single nucleus coupled

to an electron this shift is in the same direction for both electronic levels. When

additional nuclei are added the DNP frequency for the nucleus i is modified by

the Ak terms of the other nuclei like [69]:

ωDNP(i) = ωS +ωI +∑
k 6=i
±Azk. (3.6.3)

Equation (3.6.3) is valid for the double quantum transition. The zero quantum

transition can be obtained by inverting the sign before ωI . According to equation

(3.6.3) a nucleus with a stronger hyperfine constant will split the DNP transition

frequency of a nucleus with a weak hyperfine constant to a greater extent than

the other way around. Figure 3.18 shows an example for a system with three

nuclei coupled to an electron. In the main figure, the black line shows the elec-

tron saturation for off resonance irradiation, whereas the light blue line shows

the average of all final polarisations of the nuclei. The inset b) shows the final

polarisation of the nuclei for different offset frequencies from ωS±ωI . The po-

sitions of the nuclei are shown in inset a) and the color of the plot corresponds

to the color of the spins in the coordinate system. One can see that the spin

depicted in dark blue,which has the strongest secular hyperfine interaction con-

stant, experiences the smallest splitting, whilst the spin depicted in orange with

the weakest Ak, is split into a quartet with frequencies corresponding to the other

hyperfine constants. In a realistic sample a large spread of hyperfine interaction

constants will result in a smooth distribution of DNP resonances, rather than a

band structure.
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Figure 3.18: Offset dependency of final polarisation for a spin system containing

3 nuclei and one electron. The average final polarisation of the nuclei is depicted

in light blue, whereas the electron saturation is shown in black. Figure inset a)

shows the geometry of the nuclei with the electron at the origin, inset b) shows

the offset dependency of the nuclei and inset c) shows a 160 times zoom into the

electron DQ or ZQ saturation. Interaction constants Ak of the spins: dark blue:

2.5 MHz , green: -1.2 MHz, orange: -0.1 MHz

3.6.3 Final Polarisation and build-up rates

The dependency of the final polarisation and rate with which the nuclear polari-

sation builds up on the microwave power and the ratio of |B+|
r1n

have been checked

for a simple two spin system involving one electron and a proton. For this, the

evolution of the system has been recorded for several positions of the proton,

keeping the electron at the origin of the coordinate system. The inter-spin dis-

tance is kept the same, but the angle θ with the z axis is varied, resulting in
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different interaction constants A and B±. The angle was changed between 0.1π

and 0.4π in order to avoid the infinitely long build-up times that occur at the

positions where |B±| = 0. The nuclear polarisation build-up rate constant τ
−1
b

was obtained by fitting an exponential to the polarisation curve. The resulting

nuclear steady state polarisations P∞ for different angles θ and microwave pow-

ers ω1 can be found in figure 3.19a). As was indicated in the previous section

the saturation of the double and zero quantum transition can be described by

Mz,DQ/ZQ = M0−Mz = M0

(
1− 1+(∆ωT2e)

2

1+(∆ωT2e)2 + s2ω2
1 T1nT2e

)
, (3.6.4)

which on resonance reduces to

Mz,DQ/ZQ = M0

(
1− 1

1+ s2ω2
1 T1nT2e

)
.

If for M0 the electronic steady state magnetisation Mz,e at the zero or double

quantum frequency is used, then the final polarisation of the nuclei is

P∞ = Mz,e

(
1− 1

1+ s2ω2
1 T1nT2e

)
. (3.6.5)

as can be seen in figure 3.19b), where the dashed grey lines follow equation

(3.6.5). When the microwave irradiation power becomes larger the electronic

longitudinal magnetisation Mze decreases, which reduces the population differ-

ence on the electrons, and hence the final polarisation of the nuclei.

When the angle θ is changed, this modifies the effective microwave field sω1,

which in turn shifts the saturation of the double and zero quantum transition, as

can also be seen in figure 3.19b). This effect is removed when the same simu-

lations are carried out using a relaxation operator, where the nuclear relaxation

rates are scaled by the hyperfine interaction. Then the final polarisation remains

constant for the different values of θ (see also figure 3.19c)). The same effect

can also be obtained by changing the nuclear longitudinal relaxation rate.

The build-up rate constants τ
−1
b for different angles θ and microwave powers

ω1 are shown in figure 3.20. For low ω1 the build-up rate equals the nuclear
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Figure 3.19: Dependence of the final polarisation on the microwave power ω1

and the azimuthal angle θ (a). The inset b) shows the final Polarisation for two

fixed angles, along with the predicted P∞ from equation 3.6.5 in grey dashed

lines. In c) one can see the angle dependency of the final nuclear polarisation

for three fixed microwave powers.

Figure 3.20: Dependence of the build-up rate constant τ
−1
b on the microwave

power ω1 and angle θ . On the left the rate constants vs the microwave for τ = π

4

is shown along with the build-up rate derived in [55].
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longitudinal r1n. When ω1 is larger than r1n the rate constant starts to follow

(sω1)
2T2e, which has been derived in [55] from the Bloch equations. This does

not hold any more when the microwave power becomes too large, as can be seen

in figure 3.20 on the right.

Equation 3.6.4 can also be used to predict the off resonance behaviour of the

final polarisation. To demonstrate this the angle θ of the nucleus has been set

to the magic angle and the microwave power to 0.5 MHz. Figure 3.21 confirms

indeed that the final polarisation follows equation 3.6.4. The dependency of the

build-up rate τ
−1
b on the offset was also tested. This was found to follow the

expression in [55] for the off resonant case (sω1)
2T2e

1+(∆ωT2e)2 very closely , although it

was found that in order to obtain a very good match the nuclear relaxation rate

r1n had to be added on to this expression. This demonstrates that the polarisation

process is a combination of coherent transfer effects and incoherent relaxation

effects.

3.6.4 Bridge nucleus

The question arose whether the polarisation build-up would benefit from selec-

tively labelling the Trityl radical with a ‘bridge nucleus’ inside the 12Å radius

for more effective polarisation transfer from the electron to the surrounding nu-

clei.

Using simulations with the averaged Hamiltonian and the basis truncation strat-

egy this idea was tested. An electron was placed in the center of the coordinate

system and four nuclei were placed in the first octant, with a minimum dis-

tance of rmin =12Å from the electron, and a maximum distance of rmax = 24Å,

representing a sample with 15mM electron concentration and 1M nuclear con-

centration. Then an additional nucleus was placed at r = rb, where rb ranged

from 5 to 11Å. Two angles were tested, θb =
π

4 , where the hyperfine interaction

constant Bk is maximal, and θb = θMA, where the hyperfine splitting is minimal.
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Figure 3.21: Dependence of the build-up rate constant τ
−1
b and the final polar-

isation on the offset. The left y axis corresponds to the final polarisation, the

right hand y-axis to the polarisation build-up rates.
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The angle φ was set to π

4 .

Two hundred different random configurations for the nuclei outside the 12Å

threshold were recorded and the average build-up curve of these nuclei was cal-

culated. In order to check convergence, the average build-up of the nuclei was

compared to the build-up of the first 150 random configurations and the differ-

ence was found to be less than 1.4% for all rb, which was deemed sufficient.

The smallest χ = r0
c0

for the bridge nucleus at 5,6 and 7Å was 0.05, 0.08 and

0.14 respectively. For these configurations the full basis was used. For rb = 8Å

the smallest χ was 0.21, justifying 4th order basis truncation. For all larger rb

and the configuration without a bridge nucleus 3rd order truncation was used

as χ ≤ 0.29. The simulations were carried out using a constant and a scaled

relaxation operator.

It turned out that for the chosen geometry the optimum final polarisation and

build-up time was for the position of the bridge nucleus at the 12Å boundary, so

no spin diffusion assistance was provided by the bridge nucleus. The hyperfine

interaction of the outside nuclei was too large and so spin diffusion is quenched.

If one increases the distance of the outside nuclei to rmin=24Å, and shifts the

bridge nucleus between 12 and 24Å one sees an optimum position for the bridge

nucleus at around 12Å as can be seen in figure 3.22 for the constant relaxation

operator and a bridge nucleus at the magic angle. This effect disappears if one

sets the interactions between the core and bulk nuclei to zero, confirming that

this is indeed a spin diffusion effect.

In figure 3.22 the polarisation build-up times are also displayed, which were ob-

tained from a mono-exponential fit. The caveats associated with such a mono-

exponential fit are described in section 3.5.3. In order to judge the accuracy of

the build-up time constant displayed in the figure, also the largest residual of the

fit is shown in orange. The bulk (‘outside’ nuclei) build-up rate is the largest

at the around 12Å, which also coincides with the highest final polarisation. As

102



CHAPTER 3: SOLID EFFECT SIMULATIONS IN THE LIOUVILLE SPACE

Figure 3.22: Top left: averaged build-up curves of the bulk with dipole interac-

tion between bridge nucleus and bulk included. Bottom left: average build-up

curves without the dipolar interaction between bridge nucleus and bulk. Note

the different color bar scale. Top right: average final polarisation of the bulk

nuclei, with and without including the dipolar interaction between the bridge nu-

cleus and the bulk. The asterisk indicates the curve obtained without the dipole

interaction between bridge nucleus and bulk. The error bars have been obtained

from the standard deviation of all build-up curves for one particular bridge nu-

cleus position. Optimum bulk polarisation at re−bridge = 12Å. Bottom right:

build-up rate in rad
s , obtained from a mono-exponential fit with (blue full line)

and without (blue dashed line) inclusion of dipole interaction between bridge

and bulk nuclei. To indicate quality of the mono-exponential fit the residual of

the fitting cure has been plotted in orange.
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the bridge nucleus moves further away from the electron, its own build-up rate

reduces and so the bulk also builds up polarisation slower. When the bridge

nucleus moves closer to the electron, its own build-up rate and final polarisa-

tion increase but the dipolar interaction to the bulk decreases, hereby reducing

the final polarisation and build-up rate of the bulk with respect to the optimum

position of the bridge nucleus.

The residual of the mono-exponential fit is the largest for the optimal position

of the bridge nucleus. In this position the polarisation of the bulk nuclei is

dictated by a superposition of the build-up time constant for the core nucleus

and the time constants of the bulk nuclei. In section 3.5.3 it was seen that the

mono-exponential fit becomes worse if different time constants are present in the

sample. As the bridge nucleus moves closer to the bulk, its own build-up rate

becomes similar to that of the bulk nuclei so the error of the mono-exponential

fit is smaller. For the positions of the bridge nucleus closer to the electron the

interaction with the bulk nuclei becomes smaller, and so the polarisation build-

up rate of the bulk is less influenced by the rate of the bridge nucleus. This also

reduces the mono-exponential fitting error.

When the angle θb of the bridge nucleus is set to π

4 , the optimum is shifted

towards a higher electron-bridge nucleus distance as the secular part of the hy-

perfine interaction of the bridge nucleus causes a splitting in the DNP transition

frequencies when it comes too close to the electron. In figure 3.23 one can see

this effect. All parameters apart form the angle θb have been kept the same with

respect to the data-set displayed in figure 3.22. The overall enhancement is de-

creased due to the splitting of the DNP transition frequencies and the maximum

has been shifted to 16Å. The polarisation times are also slower and the fastest

build-up rate coincides again with the highest final polarisation at 16Å. This

confirms that the faster build-up is indeed a result of the transfer of polarisation

of the bridge nucleus.
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Figure 3.23: The description for this figure is identical to that of figure 3.22,

only the angle θb is changed to π

4 , making the secular part of the hyperfine

interaction non-zero.
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Repeating the same simulations with the scaled relaxation operator showed that

on average all nuclei obtained the same final polarisation but there is an optimum

in the build-up rate also at around 12Å (data not shown). This can be explained

from the observations made in section 3.6 for a two spin system: The final polar-

isation of one spin coupled to an electron depends on the term
(

ω1
|B±|
2ωI

)2
T1nT2e.

As T1n is scaled with B± the final polarisation does not depend on the angle θ of

the nuclei. As spin diffusion does play a large role in the range between r=12Å

and r=24Å the final polarisations equilibrate for the different distances of the

nuclei to a single value across all the sample within these limits.

A radical with the mentioned outer dimensions does not exist but as a theoretical

consideration of spin diffusion it is pleasing to know that the concept works.

3.7 Further reduction of the state space using a

projection method

The development of a projection method for the description of nuclear polari-

sation build-up was developed by A. Karabanov. The author of this work has

carried out the error analysis by comparing the projection method to simulations

using SPINACH. The theory underlying the projection method will only be il-

lustrated in the main points, some additional details can be found in appendix

D. The full description will be presented in a future publication.

3.7.1 Principles of the projection method

The concept of dividing the Liouville space into subspaces and projecting the

equation of motion into these different subspace was introduced in 3.5.1. The

subspaces were defined based on spin correlation order, and the Hamiltonians

containing a two spin correlation were the operators that could transfer magneti-
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sation between the subspaces. The projection method is based on a similar idea

but instead of dividing the Liouville space into several subspaces corresponding

to spin correlation orders, it is split into just two. One subspace, L1 , is spanned

by the basis operators containing the Zeeman spin orders {Ŝz, Î1z, Î2z, Î1zÎ2z...},

and the other, L2 , is spanned by all remaining basis operators and thus:

L= L1⊕L2

As it was found to produce accurate results, the averaged Hamiltonian from

section 3.4.1 will be used in the equation of motion. This restricts the basis

of the non-Zeeman order subspace to the zero quantum coherence subspace,

L2 ⊂ L0, whereas the subspace containing the Zeeman orders already resides in

the zero quantum coherence subspace. The equation of motion

d
d t
|ρ̂〉= ˆ̂L |ρ̂〉+ l,

where ˆ̂L is the Liouvillian of the spin system and l contains the thermal correc-

tion, can in general be rewritten as

d
d t
|ρ̂1〉= ˆ̂L11|ρ̂1〉+ ˆ̂L12|ρ̂2〉+ l1

d
d t
|ρ̂2〉= ˆ̂L21|ρ̂1〉+ ˆ̂L22|ρ̂2〉+ l2,

(3.7.1)

using the projections

|ρ̂k〉= ˆ̂πk|ρ̂〉, lk = ˆ̂πkl,

ˆ̂L jk = ˆ̂π j
ˆ̂L ˆ̂πk : Lk→ L j, j,k = 1,2.

The superoperator ˆ̂πk, first defined in section 3.5.1, projects the operators into

the subspace Lk. The subspaces Lk are closed under the action of ˆ̂Lkk, whereas

the components ˆ̂L jk, with j 6= k, cause a transfer of magnetisation into the re-

spectively other subspace. Formally integrating the equation for d
d t |ρ̂2〉 in 3.7.1

and substituting the solution into the equation for d
d t |ρ̂1〉 results in an integro-
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differential equation:

d
d t
|ρ̂1(t)〉= f (t)+ ˆ̂L11|ρ̂1〉+

∫ t

0

ˆ̂K(t− τ)|ρ̂1(t)〉dτ

with ˆ̂K(T ) = ˆ̂L12e
ˆ̂L22T ˆ̂L21

and f (t) = l1 +
ˆ̂L12e

ˆ̂L22t
[
|ρ̂2〉(0)+

∫ t

0
e−

ˆ̂L11τ l2 dτ

]
.

(3.7.2)

Just as in section 3.5.1, the initial density operator |ρ(0)〉 lies in L1 and is as-

sumed to be equal to ˆ̂Sz. Hence l2 is zero, as well as |ρ̂2〉(0) and thus f (t) is

in fact a constant and equal to l1. The term |ρ̂2(t)〉 does therefore not appear in

equation (3.7.2) and the trajectory of the system is confined to the subspace L1.

The subspace L1, spanned by the Zeeman order basis operators, scales with 2N ,

where N is the number of spins in the sample.

One can define the polarisation subspace Lpol ⊂ L1 containing only the single

spin Zeeman orders ˆ̂Sz, ˆ̂I1z,...,ˆ̂INz. This is the subspace of interest for the DNP

simulations and its size is N. Noting that the initial density operator belongs

to Lpol , one can investigate the action of the operators ˆ̂L11 and ˆ̂K(T ) on the

operators of the polarisation subspace. The operators ˆ̂Lkk and ˆ̂L jk are given in

the appendix D.

The action of the operator ˆ̂L11 on an element of the polarisation subspace is

confined to this subspace: No higher Zeeman orders are generated when ˆ̂L11

is applied to a member of the polarisation subspace Lpol . The operator ˆ̂K(T ) is

not strictly closed in Lpol but if the following conditions are obeyed, the higher

Zeeman order terms that are generated by it, can be neglected:

ε1T0 < 1, with ε1 =
|A j|
2R′2k

and k, j ∈ [1,N−1], j 6= k,

ε2 =
d2

jk

2r′2jk
� 1, ε3 =

ω2
1 |B2

k |
8ω2

I R′22k
� 1

(3.7.3)

where r′jk = r2n( j)+ r2n(k) is the sum of the nuclear transverse relaxation rates

of spin j and k, R′22k = r2e + r2n(k) is the sum of the electronic transverse re-

laxation rate and the nuclear transverse relate of spin k. The factor T0 is ob-
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tained from an integral convergence condition in the operator ˆ̂K(T ), and due to

a transformation of variables used in the derivation it is dimensionless. T0 is not

dependent on the interaction and relaxation constants and its required value will

be determined from the error analysis. It is noteworthy that the conditions 3.7.3

are not dependent on the number of spins in the simulation, as it was the case

for the spin correlation order basis truncation method.

The precise steps made to arrive at the conclusion that the conditions (3.7.3)

ensure the trajectory remains in Lpol were not discussed, but they involve ap-

plying ˆ̂K to the operators spanning Lpol and analysing which resulting terms

cause leakage of magnetisation into L1. These terms can then be neglected if

the conditions (3.7.3) are fulfilled.

The equation of motion can now be described by the differential equation

d
d t
|ρ̂pol〉= ˆ̂M0|ρ̂pol〉+ l1,

with
ˆ̂M0 =

ˆ̂L11 +
ˆ̂K|pol.

ˆ̂K|pol is the component of operator ˆ̂K(T ) that is closed in Lpol if the conditions

3.7.3 hold. The action of the operator ˆ̂M0 on the single spin operators results in

only single spin components (see equation 3.7.4).

d
d t

ˆ̂Sz =−R′1
ˆ̂Sz−

ω2
1

8ω2
I

N−1

∑
k
|Bk|2 ck

(
ˆ̂Sz− ˆ̂Ikz

)
,

d
d t

ˆ̂Ikz =−r′1k
ˆ̂Ikz +

ω2
1

8ω2
I
|Bk|2 ck

(
ˆ̂Sz− ˆ̂Ikz

)
− 1

2

N−1

∑
j 6=k

d2
jkc′jk

(
ˆ̂Sz− ˆ̂Ikz

)
.

(3.7.4)

Hence the dynamics is closed in the polarisation subspace under the action of
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ˆ̂M0. The newly introduced coefficients are:

ck =
∫ +∞

0
e−R′2kT cos(ωIT )

N−1

∏
j 6=k

cos
(

A jT
2

)
dT

c′jk =
r′jk

r′2jk +
1
4(A j−Ak)2

,

R′1 =R1 +
ω2

1
ω2

I
(R2−R1) ,

and

r′1k = r1k +
|Bk|2

ωI
(R1− r2k− r1k)

The multi-exponential character of the polarisation build-up curves is introduced

via the constants ck. The evolution of the system can thus be described by

N coupled equations. Using a computer equipped with 8 GB RAM it is then

possible to simulate up to 16.000 spins. This treatment was based on the initial

condition being in the polarisation subspace , |ρ1(0)〉 ∈ Lpol , which holds to a

good approximation if the sample temperature is about 1 K or above. At lower

temperatures the initial density operator would contain higher Zeeman orders,

and thus not be an object of Lpol alone.

3.7.2 Error Analysis

In order to test the validity of the projection method, five random configurations

of five 13C - nuclei around an electron at the origin of the coordinate system

were defined. The maximum and minimum distance from the electron was 24Å

and 12Å respectively, which is the the same as was used for the investigation

of the spin correlation order basis truncation. The closest distance of approach

between the nuclei was set to 5Å. The number of nuclei was kept small in order

to enable the use of the full basis in SPINACH, making it possible to scale the

interaction constants and relaxation rates beyond the scope of the spin corre-

lation order basis truncation method. The interaction parameters Ak, Bk±, d jk
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were scaled separately, resulting in individual scaling of the constants ε1, ε2,

and ε2. The relaxation rates r2n and r2e were also scaled. For the tests a relax-

ation operator with the same relaxation rates for all nuclei was used to allow for

easier control of the ε constants. For each configuration the polarisation build-

up is calculated using SPINACH with the averaged Hamiltonian and the new

projection method. The results from SPINACH are used as a reference for the

projection method.

The results are summarised in figure 3.24, where the average absolute error with

error bars indicating the standard deviation is plotted. The average was taken

over all nuclear polarisation build-up curves and all configurations. As interac-

tion constants are scaled up, the standard deviation also becomes larger. This

is due to the fact that for some nuclei with strong interaction constants, the er-

ror increases more dramatically than for other nuclei, with interaction constants

close to zero. Overall this results in a larger spread of error values and hence a

larger standard deviation. The initial input parameters are summarised in Table

3.5. These are the starting conditions for each figure, with only the parameter

indicated in the figure being scaled.

Table 3.5: Initial conditions for the error analysis of the projection method

r1n 0.01 rad
s

r2n 104 rad
s

r1e 103 rad
s

r2e 106 rad
s

ω1 1 MHz

〈|Ak|〉 (5.7±3.3) kHz

〈|Bk|〉 (4.6±1.3) kHz

〈|d jk|〉 (45±38) kHz
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Average absolute errors for scaling of input parameters with error

bars indicating the standard deviation.

Scaling of the hyperfine interaction constant Ak (see figure 3.24a) results in a

change in ε1. In order for the error to remain below a tolerance level of 0.05 the

secular hyperfine interaction constants should not be larger than ∼=1.2 MHz, if

one takes the largest values of the error bars into account. For 13C nuclei this
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would correspond to a closest distance of approach to the electron of 3.5Å. If the

Trityl radical is considered in the simulation, this distance should in principle

not be reached. For the simulation of 1H nuclei this condition is more critical:

the closest distance of approach corresponding to Ak
∼= 1.2 MHz is 5.5Å.

From figure 3.24b it can be seen that the electron transverse relaxation constant

should not drop below 45 kHz if the error is to remain below 0.05. As scaling

the electron transverse relaxation rate affects ε1 as well as ε3, the scaling of both

constants is shown. Due to the division by ω2
I in the definition, ε3 it remains

very small and had to be scaled up by a factor of 103 in order to be visible.

Comparison of figures 3.24a and 3.24b reveals that the error is more sensitive

to scaling of ε1 via the electronic transverse relaxation rate than via scaling Ak:

The error tolerance of 0.05 is reached when ε1 ≈ 0.4 for a scaling of Ak but

when scaling r2e the same error is reached when ε1 is only 0.2. From this the

parameter T0 is determined to be approximately 1.25 and 2.5, obtained from the

scaling of A j and r2e respectively and using the condition forε1 in (3.7.3). The

numerical integration in operator ˆ̂K should be done up to the larger T0 in order

to err on the side of caution. The integration is done with the MATLAB function

quadgk(), which is very fast and increasing the upper limit of the integral does

not lead to a notable reduction in simulation speed.

Scaling of the nuclear dipole interaction displays very little change in the error,

even when scaling d up to unrealistically large values and ε2 becomes larger

than 1 (see figure 3.24c). The dependence of the error on scaling the transverse

nuclear relaxation rate is on the other hand noticeable. The nuclear transverse

relaxation rate should not drop below 200 Hz in order to keep the error below

the 0.05 tolerance.

The parameter ε3 was found to be least critical as it contains the nuclear Larmor

frequency ωI squared, and hence this parameter is always much smaller than 1

(see figures 3.24e and 3.24f).
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The projection method has also been tested with ten random configurations of

20 13C spins and one electron, where the nuclei are again positioned within

a distance of r∈[12,24]Å from the electron, and the internuclear distance is

not smaller than 3.5Å. For the simulation in SPINACH the averaged Hamil-

tonian as well as a truncation of the basis to third order spin correlation is used.

The largest absolute error of the build-up curves obtained from the projection

method, with respect to the simulation carried out in SPINACH, was found to

be 1.8 ·10−2, the average error over all ten configurations was (1.2±0.7) ·10−2.

The results of the simulation of one of the random configurations is shown in

figure 3.25.

For easier error analysis the constant relaxation operator was used. When using

the scaled relaxation operator it is possible that some of the nuclear transverse

relaxation rates r2e become too small and the error for the projection method

increases. However, as for example the average electron distance in a sample

containing 15mM Trityl is 48Å, the value for r2e should not become too small

because the next electron is not too far away. One could introduce a more real-

istic relaxation operator which adds a basic relaxation rate onto the scaled rates.

This avoids singularities of the nuclear relaxation times at the points where ei-

ther Ak or Bk are zero and ensures that ε2 in the conditions 3.7.3 remains small.

In summary, it was found that for a realistic set of input parameters the error

incurred when using the projection method remains small, i.e. below the toler-

ance level of 0.05. This is certainly true for the model system of 1M 13C nuclei

positioned around an electron with the closest distance of approach of 12Å as

is the case for the Trityl radical.
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Figure 3.25: (a) Polarisation build-up of 20 nuclei calculated with the pro-

jection method and (b) the difference to the build-up curves obtained from

SPINACH , using basis truncation of higher than third order spin correlations

and the averaged Hamiltonian. The processing time for calculating the simu-

lation with SPINACH was 4 hours, whereas with the projection method it was

less than a second. ω1=1 MHz and the constant relaxation operator was used

with: r1e = 103, r2e = 106, r1n = 0.01, r2n = 105. All relaxation rates are given

in rad
s .
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3.7.3 Visualisation of the propagation of nuclear spin polari-

sation

The projection method has been used to calculate the build-up and distribution

of polarisation in a sample of more than a thousand nuclei. The electron was

positioned at the origin of the coordinate system and the nuclei were placed on

a cubic lattice with a nearest neighbour distance of 12Å. The position of the

nuclei was randomised within 5% of the exact lattice position to avoid an overly

symmetric system. The number of nuclei in one edge of the cube was 11 re-

sulting in 1330 nuclei in total. The constant relaxation operator was used in

order to avoid very small transverse nuclear relaxation rates which would lead

to a larger error in the projection method. The same simulation was carried

out twice, once with and once without taking the nuclear dipole interaction into

account. The processing time was one minute for each case. The resulting po-

larisation build-up curves, as well as the difference between the two, are shown

in figure 3.26. For the difference,the positive curves correspond to the nuclei

gaining polarisation as a result of the inclusion of nuclear dipole interaction.

The negative curves correspond to the nuclei which have less polarisation when

nuclear dipole interaction is taken into account.

The drawback of displaying the polarisation build- up curves as in figure 3.26

is that one does not know the location of the spins corresponding to each curve.

A more informative way of visualising the polarisation build-up has been at-

tempted in figure 3.27. The configuration of the spin system is shown, with

the size of the dots, corresponding to the nuclei, indicate the level of polarisa-

tion. Three points in time (corresponding to the blue triangles in figure 3.26) are

displayed.

The polarisation of the nuclei further removed from the electron remains close to

zero when nuclear dipole interaction is excluded, demonstrating the importance

of spin diffusion for the polarisation build-up in the sample. The polarisation in
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(a) All spin-spin interactions included (b) Nuclear dipole interaction set to zero

(c) Difference of the above: Effect of spin diffu-

sion.

Figure 3.26: Polarisation build-up of 1330 nuclei, calculated with the projection

method. Simulation parameters: microwave strength ω1=2 MHz, the constant

relaxation operator was used with: r1e = 103, r2e = 106, r1n = 0.01, r2n = 105.

The red line shows the average polarisation build up of the nuclei with a hyper-

fine interaction constant Ak of less than 500 Hz, so the spins that can reasonably

be expected to be observable in an NMR experiment.
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Figure 3.27: Polarisation build-up through space visualised by the size of the

dots, corresponding to the nuclei. The electron is depicted in red. All axes

units are in Å. Top row: all interactions included. Middle row: nuclear dipole

interaction set to zero. Bottom row: difference between including and excluding

nuclear dipole interaction, where nuclei having relatively less polarisation when

nuclear dipole interaction is included are not shown.
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the xy-plane, as well as along the z-axis, remains zero due to the fact that the

hyperfine interaction constant Bk± is zero for the angles θ = π

2 and θ = 0, and

no indirect polarisation via the nuclear dipole interaction can take place. When

nuclear dipole interaction is included, the polarisation is distributed faster in the

z direction than the xy-plane as the nuclear dipole interaction constant scales

with 1−3cos2 θ .
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3.7.4 Discussion

It was shown that it is in principle possible to simulate 16,000 spins on a desktop

computer using a subspace projection method. If one were to tap into commer-

cially available cloud computing power, where the processor memory can be up

to one Terra-byte, simulations of spin systems containing on the order of 2 ·105

spins are within realistic reach. This makes it possible to compare the quantum

mechanical model to thermodynamical models of DNP. The processing time still

scales exponentially with the propagator size, but as the propagator itself now

scales linearly, the reduction in simulation duration is dramatic. For the case of

20 nuclei and one electron it was mentioned that the processing time reduced

from 4 hours to less than a second and it is worth noting that the simulation of

the 20 nuclei in SPINACH was carried out using an already reduced state space.

Adding electrons for a more realistic picture is also possible, as long as the

electron dipole interaction remains appreciably smaller than the nuclear Larmor

frequency. This requirement comes from the averaged Hamiltonian treatment,

where all interaction constants need to be smaller than ωI .

Projection methods might be applicable also for other NMR simulations prob-

lems, as the nuclear Larmor frequency usually dominates the spin-spin interac-

tion constants present in the sample. Depending on the case to be investigated,

one could pick a subspace of interest and use the integro-differential equation

to project the trajectory into it. One conceivable application is the simulation

of spin diffusion. L. Emsley and co-workers have previously presented simula-

tions with a reduced state space by using truncation to the zero quantum coher-

ence subspace and a basis containing only up to fourth order spin correlations

[60, 61, 70]. Using the projection method, simulation of spin diffusion could be

carried out using one equation per spin.
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NMR spectroscopy using multiple

coils and receivers

It was mentioned in chapter 2 that dissolution DNP experiments allow for only

a single full excitation to be carried out. After the hyper-polarised signal has

decayed to the Boltzmann equilibrium with the characteristic T1n constant, time

consuming re-polarisation has to be carried out before another experiment with

non-thermal polarisation can be performed . Investigations of molecular dynam-

ics are thus limited by the single shot nature of dissolution DNP. Nonetheless,

there are several possibilities to study time-transient dynamics using the hyper-

polarised NMR signal. Either a low flip angle excitation is used in consecutive

acquisitions of the signal, or the polarisation in the sensitive region of the coil

could be replenished in a stop-flow experiment. Low flip angle excitations of

samples undergoing a chemical reaction have successfully been used by the C.

Hilty group to study reaction rates with time constants on the order of seconds

to hundreds of milliseconds [38, 39].

A new possible approach for fast repetition of an experiment on a polarised sam-

ples will be examined in this chapter. The idea is to use more than just one RF

coil to acquire spectroscopic data from different locations of the sample. All RF

coils are tuned to the same frequency and able to independently perform experi-
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ments with the use of separate transmit and receive channels for each coil. This

strategy has the advantage that the signal acquisition from one coil can already

be started before another coil is finished. In order to observe dynamics stem-

ming from chemical reactions or protein-ligand binding, the substrate molecule

could be polarised, rapidly mixed with the target molecule or enzyme and in-

jected into the probe. Alternatively the target molecule could readily be placed

in the probe and mixing take place inside the probe upon substrate injection.

After a settling delay, the acquisition from the different coils could be started in

an arrayed fashion, enabling the fast study of the reaction. The goal is to imple-

ment a novel strategy for studies of molecular dynamics with time constants on

the order of a few milliseconds.

NMR probes that comprise multiple RF-coils tuned to the same resonance fre-

quency have previously been used to increase the speed of spectroscopic exper-

iments. For example, Raftery et al. constructed a probe that can acquire four

experiments simultaneously on different samples, which could be used to in-

crease throughput [71, 72]. Webb et al. reported the successful implementation

of 2D pulse sequences on a four coil probe, where the t1 evolution has been

divided between the coils [73]. This resulted in an increase in the speed of the

acquisition by a factor of four. In these examples solenoid coils are used as RF

coils, which require the sample tube to be aligned perpendicular to the external

magnetic field. The advantage for this configuration lies in the ability to com-

pletely shield the environment of the RF-coils with grounded copper plates that

act as RF shields. The drawback of such a configuration lies in a more com-

plex probe geometry with specially manufactured sample tubes that split into

multiple flow channels. Particularly with respect to the frequently observed gas

bubble formation, that is a known issue of dissolution DNP, a simple tube ge-

ometry is more desirable than a complex flow path. A further drawback of the

solenoid coil geometry is that for the fast 2D spectroscopic experiments, where

strong gradients are desired the weaker X or Y gradient would have to be used
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for spatial encoding of the t1 evolution. For these reasons, saddle coils were

chosen for the multiple RF-coil probes presented in this chapter.

In this chapter, first the prototype of a probe with two independent transmit

and receive coils tuned to the 1H frequency of 400 MHz, will be introduced. A

procedure for field map based simultaneous shimming of both coils has been

implemented and will be presented. Then the extension of the two coil probe

towards a six coil probe, tuned to the 13C frequency of 100 MHz which has

been developed in a collaboration with Bruker, will be discussed and initial data

shown.

4.1 Spectrometer

A Bruker Avance III spectrometer console with six independently controlled

transmit and receive channels, which are suitable for proton and broadband ex-

periments, is used. The six channels can either be set up as six broadband chan-

nels or as three proton and three broadband channels running in parallel. The

magnet, provided by Oxford Instruments , has two iso-centres (3.4 T and 9.4 T)

spaced 0.8 m apart. The 9.4 T region is used to perform NMR experiments, the

field strength corresponds to a proton Larmor frequency of 400 MHz. The 3.4 T

region can be used to hyper-polarise the sample. This is then rapidly shuttled

to the 9.4 T region with the use of an actuator. During the transfer the sample

is in the solid state, which in conjunction with a shuttling time of less than a

second, allows to maintain the level of polarisation to a high degree. After that

the dissolution and transfer into the sample tube follows. A detailed description

of the set up and procedure can be found in [46].
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4.2 Dual coil probehead

In order to test the idea of using multiple receive and transmit RF coils at dif-

ferent locations of the sample, first a probe containing two separate RF circuits

was built. The observe nucleus was chosen to be 1H for this pilot project for the

higher signal to noise ratio protons offer compared to lower-γ nuclei.

4.2.1 Design and Parameters

The probehead comprises two separate resonant circuits with RF saddle coils

tuned to the proton Larmor frequency of 400 MHz. A simple diagram of the

resonance circuit of one coil is shown in fig. 4.1. The impedance of the reso-

Figure 4.1: Diagram of the resonance circuit of one coil. The coil is displayed

as a saddle coil in order to point out the geometry and resulting B1 field. Ct and

Cm are the tuning and matching capacitors respectively and Cb is introduced

into the circuit for balancing.

nance circuit can be matched to the impedance of the connected electronic com-

ponents of the spectrometer with the use of the variable capacitor Cm, which
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enables maximum power transfer between them. Changing the capacitance of

the matching capacitor introduces a change in the resonance frequency, hence

the tuning capacitor Ct is used to re-tune the probe to the desired 400 MHz.

The capacitors Ct and Cm have a variable capacitance with range from (1-10) pF

and each RF coil has an inductance of (1.2± 0.5) µH. A single sample tube of

Figure 4.2: Photo of the dual coil probe.

2.5 mm outer diameter (and 2.1 mm inner diameter) extends through both coils

as is shown in figure 4.2. The coils have a diameter of 4 mm and the excited

sample length per coil is 6 mm. Saddle coils were chosen for their geometry,

which results in vertical positioning of the sample tube which in turn enables

easier sample injection from the top.

4.2.2 Coupling

Despite the strong coupling that was expected as a result of the close vicinity

of the coils, they were chosen to be positioned only 2 mm apart. This has two

reasons: Firstly the shimming of the magnetic field, so the cancellation of small

deviations in the external field with a set of orthogonal shim coils1, becomes

increasingly difficult with larger coil separation and secondly the extent of the

1More about shimming will be discussed in section 4.2.3.
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homogeneous field region in the z-direction is only on the order of 2 cm. Cou-

pling was minimised by choosing an orthogonal set up of the RF coils and a

grounded copper RF shield that was placed in the xy plane between the coils. In

order to allow the sample tube to extent into both coil regions a hole of the diam-

eter of the tube has to be placed in the RF shield. This inevitably allows a certain

degree of coupling between the two circuits. With a network analyser the cross

talk between the coils was found to be -24.5 dB, which is small enough so the

power absorption (‘wobble’) curve does not display a doublet due to coupling,

but instead a single absorption peak.

The probe was loaded with a sample of 20% H2O and 80% deuterated water.

When applying a π

2 pulse on one coil and detecting on both, a small peak also

appeared on the passive coil. The integral of the peaks of both coils was cal-

culated, and normalised to the integral of the active coil. The signal appearing

on the passive coil was found to be 14% with respect to the active coil signal.

Three possibilities were identified as a potential source for the cross talk:

• Inductive coupling between the coils. This would cause the second coil to

apply a pulse onto the sample in its region even when it does not receive

power from its own transmitter.

• The extend of the B1 field of one coil stretches into the region of the other

coil through the hole in the RF shield. Here the sample would be directly

excited by the other coil.

• Indirect non-resonant coupling of electronic components that allows power,

that was directed to one channel to be transferred to the other. Here signal

that is coming from one channel could be seen on the other.

The two first possibilities were eliminated by closing the hole in the RF shield

between the coils, and placing two separate,cut off sample tubes in either coil.

No change in the coupling strength was observed. To test the third possibility
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one coil was detuned and poorly matched and the other used for excitation. In

order to determine the signal origin a gradient echo z-projection experiment was

used, where the field of view was chosen large enough to extend over both coils.

In figure 4.3 the z-profiles of the two coils are displayed, the detuned coil is

on the left, and the active coil on the right. The dashed line depicts the profile

acquired on the active coil, the full line the acquisition on the detuned coil (no

pulse was applied on the detuned coil). It is clear that the detuned, passive,

coil picks up the signal from the active coil. As the passive coil is detuned and

so unable to acquire signal within the excited bandwidth this small, but visible

signal must be introduced into the passive coil circuit via non-resonant coupling

of the electronic components in the probe. This could probably be removed by

careful isolation of the circuits by introducing shielding.

4.2.3 Shimming

Although the main external magnetic field is designed to be very homogeneous,

small deviations as a result of imperfections of the magnet are inevitable. Ad-

ditional inhomogeneity is introduced upon insertion of an object into the field.

This ∆B0 originates at boundaries between materials of different magnetic sus-

ceptibility and can broaden the line width of the spectrum into a few hundred

Hertz. Evening out these deviations in the main field is called ‘shimming the

magnet’, which can be done with a set of resistive coils, that carry currents con-

trolled by the user. These coils are designed to produce magnetic fields in the

shape of the orthogonal spherical harmonic functions, as the field distribution

can be represented in this basis. In high resolution spectroscopy still mostly

manual shimming is used, where a simple small flip angle experiment is set up

in a loop and the effect of the shim fields on the free induction decay (FID) is

observed. The current in the shim coils is changed in order to minimise the rate

of signal decay (see figure 4.4).
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Figure 4.3: z projection along the sample tube. The passive coil is detuned be-

yond excitation bandwidth. The excitation of the active coil is visible in the

profile of the passive coil. The grey shaded area marks the location of the sensi-

tive region for each coil. The spikes in the sensitive region on the left has been

attributed to receiver noise due to the large spectral width.

Achieving good shim settings for both coils of the dual coil probe at the same

time proved to be difficult, as firstly the large amount of copper shielding that is

situated around the coils for decoupling introduces a lot of susceptibility bound-

aries and secondly these susceptibility effects can look very different for each

coil. Manual shimming is possible using a modified BRUKER acquisition soft-

ware which displays the two FIDs simultaneously but it is difficult and time

consuming to find the best possible compromise. Hence field map based shim-

ming appeared to be a useful solution. This is based on acquiring maps of the
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(a) (b)

Figure 4.4: Simulated FIDs received from (a) a poorly-shimmed sample and (b)

a well-shimmed sample.

distribution of the B0 field and calculating the contribution of each spherical

harmonic component to this field [74].

Mapping B0

The B0 field map can be obtained by acquiring gradient echo based images with

incremented echo times TE. For the acquisiton of B0 field maps on the two coil

probe the FLASH MRI sequence has been used [75]. The local field distortions

∆B0 modify the phase of the spins, so the phase difference ∆φ that is accumu-

lated in the time ∆T E due to these local deviations is related by

∆φ(r) =−γ∆B0∆T E. (4.2.1)

In principle, only two different echo times are required to obtain ∆φ(r) but to

account for phase wrapping a third experiment is acquired. The phase φ for

each complex image voxel with value a+ ıb was calculated with

φ = arctan(
b
a
).

After unwrapping in the phase, ∆B0 was calculated using equation (4.2.1).

129



CHAPTER 4: NMR SPECTROSCOPY USING MULTIPLE COILS AND

RECEIVERS

Calibration of the shims

The shim fields are calculated using spherical harmonics of up to second or-

der and additionally the third order Z shim. The following components were

included:
{

X , Y, Z, Z2, X2, Y 2, XY, X2−Y 2, XZ, Y Z, XY, Z3}. The shim

fields are calculated in MATLAB using the meshgrid() function to define a grid

of points, which then are used to calculate the spherical harmonics functions.

For calibration, first a reference field map was acquired and then each shim sep-

arately changed to obtain the modification in the ∆B0 field each shim causes for

a certain change in the shim units. Corrections were carried out for imperfec-

tions in the alignment of the gradient and shim coil configuration by shifting the

origin of the previously defined grid to match the obtained shim fields.

Shimming routine

For the shimming routine, written in MATLAB, the resolution and the field of

view (FOV) for the two coil unshimmed ∆B0 imaging datasets is read in and a

grid of points in real space. is calculated. From this the spherical harmonics

functions are determined. A mask is applied for the ∆B0 map of both coils to

cut out the regions extending outside the RF coil because an attempt to shim

the larger inhomogeneities in those regions might result in a worse shim at the

center of the coils. The two ∆B0 map are combined into one, and then divided

by a matrix describing the calibrated shim fields on the previously defined grid.

This yields the shim currents required to minimise the deviation from the homo-

geneous field.

The shims have been calibrated for the dual coil probe and a 10 mm BRUKER

micro-imaging probe. For both probes the agreement between simulation and

experiment is very good, i.e. less than 3% deviation of the resulting field from

the calculated prediction. In figure 4.5 and 4.6 the outcome of shimming the

dual coil probe is illustrated. The root mean square of the combined ∆B0 field
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before shimming is 1.38 mT, the simulation predicts 0.56 mT for after shim-

ming and obtained was = 0.59 mT. This is a shimming efficacy of 56.5%, which

becomes significantly larger (over 80%) if only one coil is shimmed. In order

Figure 4.5: Fieldmap profiles before and after shimming. On the y axis the ∆B0

field in units of Tesla is shown. The field of view was 5x5x20 mm3. (a) x axis,

upper coil (b) y axis, upper coil (c) z axis, both coils (d) x axis, lower coil (e) y

axis, lower coil

to test the line shape, a slice selective excitation has to be used as the field map

131



CHAPTER 4: NMR SPECTROSCOPY USING MULTIPLE COILS AND

RECEIVERS

Figure 4.6: Linewidths for before (green line) and after the autoshimming. (a)

upper coil, (b) lower coil. Linewidths at full width-half maximum δ are indi-

cated in the figure.
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was masked before the shimming routine. This was done to avoid shimming the

outer coil regions which are intrinsically more inhomogeneous. For slice selec-

tion a Gaussian RF pulse under a z-gradient was used, with the pulse duration

and gradient strength matched to excite the slice for which the shimming rou-

tine was carried out. The line width of the two coils could be reduced to 22 Hz

and 21 Hz respectively when each coil is shimmed separately. For simultane-

ous shimming a line width of around 35 Hz is reliably achieved in both coils,

with the lower coil always achieving a narrower line width than the upper. For

the Bruker imaging probe the line width was reduced to 26 Hz from originally

57 Hz.

Conclusion

The shimming procedure gives good predictions for the obtainable ∆B0 field.

However, the line widths that can be obtained are still quite broad in terms of

high resolution NMR, where sub-Hertz line widths are standard. It was tried

to incorporate higher order shims but the resulting line widths did not decrease

further. It can be seen from figure 4.5 that the field maps obtained from the

small sample volume are quite noisy. The fact that additional shim components

did not improve line widths was attributed to this. An additional problem is

that the local ∆B0 at each coil appears to be very different. The lower coil

consistently obtained a narrower line width and higher signal intensity compared

to the higher coil. This probably stems from the homebuilt nature of the probe

and coils, which are not perfectly shaped. In the next section it will be shown

that it was still possible to obtain fast 2D spectra form both coils simultaneously.

4.2.4 Fast 2D Experiments

In a one dimensional spectroscopic experiment the signal is collected as a func-

tion of a single time constant and sub-sequential Fourier transformation yields
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the NMR spectrum. Additional information on nuclear connectivity can be ex-

tracted by adding another time constant to the experiment. The signal then de-

pends on two different variables S(t1, t2) and Fourier transformation results in

a 2D spectrum. One effect of using additional dimensions is the reduction of

spectral overlap in samples containing many resonances. The general scheme

for a conventional 2D sequence is

excitation - evolution period t1 - mixing - detection t2.

The t1 dimension is sampled by repetition of the experiment with different evo-

lution delays. The duration of the whole experiment depends on the number of

t1 increments used. As the sample has to relax to thermal equilibrium between

each t1 data collection step, this can be on a time scale of minutes and up to

hours. Depending on the design of the scheme different homo- or heteronuclear

correlations can be recorded. These can then be used for molecular structure

determination and characterisation [2].

A new approach, which dramatically increases the speed of the acquisition of

multidimensional spectroscopy experiments, has been introduced by L.Frydman

[48]. In his ‘ultrafast’ 2D sequences the necessity for experiment repetition

with different t1 delays has been removed by spatially encoding the different

evolution times along the direction of the tube. This effectively divides the

sample into different sub-samples, where each evolves with a different t1 delay.

Such partitioning can be achieved by applying a field gradient G = dω

dz along the

sample tube, and then using frequency swept chirp pulses to subsequently excite

the different slices. In order to compensate for the de-phasing of the spins due to

the effect of the gradient this excitation element has to be followed by a reversed

gradient of the same duration and amplitude so only the internal frequencies of

the chemical shift and J-couplings are left to evolve. An excitation scheme of

this kind results in a helical winding of the magnetisation, with respect to the

rotating frame, where the pitch of the helix is given by exp iCΩi(z− z0). Ωi
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corresponds to the chemical shifts, z0 is the reference position at the middle of

the sample and C = ∆t1
z−z0

is a constant relating the local evolution delay to the

slice position.

These helices can be unwound by a read out gradient with echo times of the

single resonances depending on how tightly wound the helix was, as well as

its polarity. The t2 dimension is scanned by using the echoplanar spectroscopic

imaging (EPSI) technique developed by P. Mansfield [76]. During an oscillating

gradient train the helices are un- and rewound and at the same time evolve under

J-couplings and chemical shifts. This results in two complete data sets from the

positive and negative gradients that can be individually processed. The acquired

signal is given by [48]:

S(t1(z), t2) =
ρ0

4π2

∫
ω1

∫
ω2

dω1dω2I(ω1,ω2)expıCωi(z−z0) expıω2t2,

where ρ0 is the distribution of the spins in the sample, which is assumed to

be homogeneous and ω1,2 are the frequencies in the respective acquisition di-

mension. One striking feature of this kind of acquisition scheme is that Fourier

transformation is only needed in the t2 dimension because the timing of the

echoes appearing under the acquisition gradient is dependent on the frequencies

Ωi, and so the spectrum in this dimension appears without Fourier transforma-

tion. In figure 4.7 an example of the raw data is given, which shows the chemical

shift peaks appearing during the acquisition gradient train.

The acquisition time can be reduced to several tens of milliseconds, using this

ultra-fast technique. Due to the single shot nature this approach readily lends

itself to hyperpolarisation techniques such as dissolution DNP [49]. The fast 2D

acquisition scheme is very versatile, depending on the mixing sequence it can

be used for many different pulse programmes such as COSY, TOCSY, HSQC,

HETCOR ([48]) and in principle others.

For the dual coil probehead the fast 2D COSY sequence was implemented,

which gives information on homo-nuclear correlations. The conventional COSY
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Figure 4.7: Demonstration of the fact that Fourier transformation is not required

in the direct dimension. Signal of sample containing 1M Alanine-Glutamine

Dipeptide dissolved in D2O, acquired under a fast 2D acquisition gradient train

with Ga = 2.45 · 10−4 T
mm . The raw data belong to the lower coil spectrum dis-

played in figure 4.9.

consists of two π

2 pulses spaced by a t1 delay, which is incremented N times.

During the time t1 the magnetisation undergoes modulations under the Hamilto-

nian 2πJÎ1zÎ2z, with the coupling constant J. These modulations are probed and

projected out by the second hard pulse. The resulting 2D spectrum contains di-

agonal2 and cross peaks which indicate correlation of the nuclei corresponding

to these resonances.

For the fast 2D COSY the first π

2 hard pulse is replaced by the phase sensitive

excitation scheme presented in [50] and a read out gradient train is placed after

the second π

2 pulse. The spectral width for both dimensions is

SW1 =
1
Ta

SW2 =
∆OGaTa

2Geτp
, (4.2.2)

given that the excitation gradient and band width is matched to the sample
2 which just state the obvious that all peaks are correlated with themselves
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length. Ta is the duration of the acquisition gradient, ∆O the chirp excita-

tion bandwidth, Ga the acquisition gradient strength, Ge the excitation gradient

strength and τp the excitation pulse length.

The pulse sequence used is depicted in figure 4.8 for the simultaneous acquisi-

tion scheme. The chirp pulses, which are centered around z = 0 for a standard

probe, have been shifted into the coil regions by a frequency offset. As for the

dual coil probe the useful sample length is short compared to that of a standard

high resolution probe the acquisition gradient had to be large (≈ 0.25mT
m ) to be

able to obtain sufficient spectral width. The EPI style acquisition gradient was

cycled 64 times. Due to imperfections, the gradient reversals in the EPI acquisi-

tion train do not cancel each other out exactly, which causes the echoes to drift.

This has to be accounted for by shearing the matrix in post-processing to ensure

a straight line of echoes in the t2 dimension is obtained prior to Fourier transfor-

mation. The small gradient before the echo train in figure 4.8 is used to shift the

echoes to the center of the gradient lobes. It is also possible to use slightly dif-

ferent values for +Ga and −Ga to account for the drifting of the echoes during

acquisition. Figure 4.9 shows the spectra acquired simultaneously from the dual

coil probe for a sample of 1 M of an Alanine-Glutamine Dipeptide dissolved in

D2O. The acquisition time was 95 ms. It is obvious from figure 4.9 that the sig-

nal to noise ratio for the lower coil is better than for the upper, something that

has already been noticed for the auto-shimming procedure. Some cross peaks

are weakly or not resolved at all but it is shown that in principle it is possible to

carry out fast 2D experiments on a multi-coil probehead.
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Figure 4.8: Fast 2D COSY sequences for the dual coil probe. The parameters

used were Ta = 141µs+2x100µs ramping time, acquisition gradient Ga = 2.45 ·

10−4 T
mm , excitation gradient 0.2 ·10−4 T

mm , τp=5ms, ∆O=40kHz.

Figure 4.9: Phase sensitive fast 2D COSY Spectra of 1 M Alanine-Glutamine

Dipeptide in D2O acquired simultaneously on two channels within 90 ms. Left:

upper coil, right: lower coil. Sample volume: 25 mL per coil.
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Conclusions

It has been shown that it is possible to carry out fast 2D experiments using a dual

RF coil probe. It has also been found that there are limitations which leave room

for improvement. It should be possible to compensate for the low sensitivity of

the probe by using a hyperpolarised sample. The main problem is the fact that

shimming cannot be improved further with the field map based approach due to

the small sample volumes which make the ∆B0 maps very noisy. An inherent

problem for the fast 2D spectroscopy is the small sample length which then leads

to the requirement of using strong acquisition gradients. This constitutes a large

demand on the hardware. One issue that was mostly eliminated was the cross

talk between the coils. The residual signal from one RF-coil is not visible in the

spectrum of the other RF-coil in fast 2D experiments. A possible explanation

is the inherent signal to noise limitation of fast 2D experiments due to the short

acquisition time.

4.3 Towards a six coil probe

Building on the experience gained from work with the dual coil probe head, a

first prototype of a probe comprising six RF-coils has been constructed in col-

laboration with BRUKER Biospin. The observe nucleus was chosen to be 13C,

for its biological relevance as well as its low gyromagnetic ratio and natural

abundance. The latter two factors make it a nucleus that is normally difficult to

access for dynamical studies. Using the six RF-coil probe in conjunction with

DNP would make it possible to acquire data displaying dynamics in the sam-

ple. To aid the construction, simulations were carried out on Microwave Studio

from CST Studio SuiteTM 2010, which is based on finite element analysis. The

estimated inductance and capacitance of the coils as well as coupling parame-

ters and B1 field distributions were obtained from these simulations. The coil
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geometry was chosen to be an extension of the two coil probe, with three sad-

dle coils in a plane which is shielded from another plane with three coils by

a grounded copper sheet. A sketch of the coil geometry can bee seen in figure

4.10. Choosing this geometry means that the coils have to be shielded from each

other in-plane as well as through-plane. When choosing the coil dimensions one

Figure 4.10: Sketch of six shielded and stacked saddle coils. The thick black

line in the middle symbolises the shield between the two stacks. The flow path

for the sample injection is schematically drawn in blue.

has to take into account that a smaller sample volume enables easier shimming,

whereas a larger sample volume gives a better SNR. As a compromise the coil

inner diameter (ID) was chosen to be 1.5 mm, which can accommodate a rigid

carrier tube to affix the RF coil as well as a sample tube of 0.9 mm diameter.

The sample tube itself cannot function as the carrier as it is flexible to make it

possible to maintain a single flow path through all coils. The length of the coil

was then chosen to be 5 mm.
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4.3.1 Simulation results

CST simulation solvers

CST offers several solvers for the simulation of a resonant structure. The Eigen-

mode solver calculates a specified number of Eigenmodes of a given structure.

In order to avoid an infinite number of over-modes, a user defined frequency

range as well as the number of modes have to be set in the programme. In this

case the used frequency range was [0 ,1000] MHz and and the number of modes

was one. The resonance frequency and the corresponding magnetic and electric

fields are then calculated for the user defined resonant structure. The Eigenmode

solver is very fast but interpretation of its results is only straight forward if just

one resonant structure is calculated. When more circuits are to be considered

in the simulation, one can use the transient solver, where discrete ports of the

different resonant structures can be driven separately. A Gaussian input signal

is used, the parameters for the pulse are determined from the frequency range

defined at the start of the simulation. In all simulations the frequency range of

[0 ,1000] MHz was used. The circuit is tuned and matched with lumped ele-

ments, the parameters of which have to be determined by the user. This is done

in an iterative process until the power absorption of the resonant circuit becomes

maximal.

One coil

For the simulation of a single RF coil resonant circuit a saddle coil with the

aforementioned dimensions was constructed in CST. The RF coil was then con-

nected to a capacitor, that was also constructed in CST by the user. The capac-

itance was adjusted by modifying the size of the plates as well as the electric

permeability constant of the material between the plates until the desired reso-

nance frequency of 100 MHz was achieved. The capacitance will be discussed
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in more detail below.

In order to test the effect of the necessary shielding around the coil on the B1

field, four different simulations were carried out: one with a shield ID of 4 mm,

then 5 mm, 6 mm and for reference one simulation without a shield. The cal-

culated RF distribution was then masked by a tube of 1 mm diameter, which

defined the region of the sample. The values for the magnetic energy inside

this region as well as the magnetic field in the direction of the B1 field are sum-

marised in Table 4.1. The geometry of a coil without and with shield is shown

in figure 4.11. The magnetic energy and field strength decrease with the smaller

(a) (b)

Figure 4.11: Geometry of simulation coil with and without shield of ID 6 mm.

The blue cylinder inside the coils indicates the sample region for which the

magnetic field strength and energy density was calculated.

shield diameter. The sample volume for which these values have been calcu-

lated extends from one end of the coil to the other in the z direction. As the B1

field drops towards the ends of the coil, the standard deviations are quite large.

The ratio of the standard deviation and the mean of the magnetic field strength

for the three cases remains similar, at around 0.24, which means that the field

does not become significantly more inhomogeneous for a smaller shield diame-

ter. From figure 4.12, where the field profiles along the center of the coil in the
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direction of the B1 field are plotted, it is clear that the magnetic field strength

decreases with a smaller shield diameter.

Figure 4.12: Magnetic field profiles along the coil B1 field axis. The black lines

indicate the region of the sample. The legend denotes the shield inner diameter.

The resonance frequency of the circuit increases with decreasing shield diame-

ter. Starting of at 100.7 MHz for a coil with no shield the resonance frequency

increases to 116.7 MHz for the smallest shield diameter (see Table 4.2). This

Table 4.2: Change of the resonance frequency with shield diameter.

ID [mm] - 6 5 4

ω [MHz] 100.7 104.1 106.6 116.7

has to be taken into account when selecting the capacitance of the resonant cir-

cuit. The 6 mm ID shield has been chosen for use in the probe as a compromise

between drop in B1 field and spatial restrictions.

The capacitors needed to tune and match the circuit to 100 MHz were found

using the transient solver. This was done by changing the tuning and matching
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capacitance iteratively until the best power absorption was achieved by the cir-

cuit . The values that were obtained in this way are Ct=121 pF and Cm=13pF.

The coil inductance is then determined as 19 nH, which is a low value but not

unexpected considering the small dimensions of the coil. The variable capaci-

tors that will be used have a maximum value of 8 pF, this means that in order to

obtain the required Ct of 121 pF a second capacitance of 113 pF has to be put in

parallel. This results in a small tuning range, so the circuit has to be pre-tuned

very close to the spectrometer base frequency. An alternative would be to wind

the coil with two loops in order to increase the inductance. This would result

in a decrease of the required tuning capacitance, hence increasing the tuning

range. Winding a coil this way is mechanically very difficult to achieve due to

the small dimensions of the coil and the brittleness of the susceptibility matched

material. The exact geometry of the real probe will invariably differ slightly,

therefore these calculations are used to get starting values for the construction.

Two coils in different planes

The coil configuration in the dual RF-coil probe was such that the B1 field direc-

tions were perpendicular to one another to ensure decoupling. Due to the space

constraints of the six-coil probe it was checked whether a parallel set-up, which

would be easier to construct, would increase the coupling by a large amount.

Two simulations were carried out, using the transient solver to drive one RF-

circuit and detect the magnetic energy transferred to the other. The RF-circuits

were positioned on either side of the centre shield (which took into account the

hole for the sample tube) in a position that resulted in parallel or perpendicular

B1 field directions. The magnetic energy transfer from one sample region to the

other was found to be one order of magnitude lower for a perpendicular arrange-

ment than for a parallel setting (3.9 · 10−8 J
m3 instead of 2.29 · 10−7 J

m3 ). This is

not a dramatic decrease, indicating that the shield is responsible for most of the

decoupling. Considering the spatial restrictions within the coil and the easier ar-
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rangement of the coils in parallel, the gain in decoupling was deemed not to be

significant enough to justify the greater construction difficulty that would arise

from a perpendicular arrangement of the coils.

Six coils

The coupling for the complete six RF-coil configuration was calculated, includ-

ing the shields surrounding each RF-coil as well as a shield between the coil

planes which had 3 holes of 1 mm diameter to accommodate the sample tube.

For the simulation, one of the six RF-coils was driven with a Gaussian pulse and

the resulting magnetic energy density in the six sample regions was calculated.

For easier reference the coils where numbered, this is schematically shown in

figure 4.13. The transfer of energy from the active coil to the passive coil re-

gions is summarised in Table 4.3. These values are very small. From Table 4.3

Figure 4.13: Numbering of the coils. The active coil is number one.

it becomes clear that the decoupling of coils in the same plane is slightly more

critical than the decoupling of coils in opposite planes. The fact that coil 4 has a

higher value for the induced magnetic energy than coils 5 and 6 stems from the

fact that it lies exactly opposite to coil 1. The finished design of the six RF-coil

probe is shown in figure 4.14.
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Table 4.3: Transfer of magnetic energy from one coil to the others in % and

dB with respect to the energy in the first coil based on simulations using the

transient solver.

coil 2 3 4 5 6

transfer in % 1.8e−7 4.2e−5 1.3e−12 4.2e−5 1.3e−12

transfer in dB −201 −146 −319 −146 −319

Figure 4.14: 6 coil probe configuration. Each RF-coil is shielded from the others

by a concentrical shield. Three coils are in one plane, which is separated from

the second plane by a shield with holes in order to allow the sample coil to

extend through both planes. One of shields around the coil has been removed

in order to allow a better view on the coil. The sample tubes are depicted in

blue, and are also cut for easier viewing. Design by T. Marquardsen at Bruker

BioSpin GmbH.

Additional simulation details

The quality of the simulations depends on the mesh that is defined: the smaller

the mesh cells, the more accurate the result, but the longer the simulation dura-

147



CHAPTER 4: NMR SPECTROSCOPY USING MULTIPLE COILS AND

RECEIVERS

tion. In order to determine whether reasonable accuracy was achieved, the mesh

cell size was decreased iteratively to check whether the resonance frequency of

the circuit would change. When a change of less than 0.5 MHz was registered,

the meshing was deemed to produce sufficiently accurate results. The smallest

mesh step needed in order to resolve the coil structure was 0.02 mm, although

not all cells were the same size. CST determines a non-uniform mesh that al-

lows to speed up the simulation by finding the parts of the structure that are

uniform over a larger region and increasing the mesh cell size there. The energy

of the entire system is normalised to 1, so to test if the simulation has converged,

the integral of the energy was calculated. In all transient solver simulations the

integral added up to a value of around 1.14, which means that the results of the

simulations are accurate within a range of 14%. For the Eigenmode solver sim-

ulations the integral added up to 1.05, so here a slightly higher accuracy can be

assumed. As it was not the intention to find exact values but to make qualitative

statements and comparisons between simulations that would help to modify the

existing probe design, this accuracy was deemed sufficient3.

Summary

In the original design the shield diameter around the coil was 4 mm. From the

simulations it was seen that this would reduce the B1 field strength by 24%, so

as a compromise between space restrictions and B1 field strength a 6 mm ID

was chosen. In the simulations the tuning capacitance Ct , needed to obtain the

desired 100 MHz resonance frequency, was found to be 121 pF. In the real probe

the capacitances that were used ranged between 120 pF and 138 pF, thus the

simulated value was of the same order of magnitude. The matching capacitance

3Deviations of the constructed probe from the simulated circuit will probably change the

values for capacitance and inductance. Additionally there will probably be stray capacitance

and inductance present in the probe that is not considered in the simulations, hence there is little

point to try and make the simulation very accurate.
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in the simulations was 13 pF, whereas in the real probe the values used were

between 10 and 20 pF. Also here the correct order of magnitude was predicted

by the simulations. It was found that the coupling from one coil to another on the

other side of the shield in the xy plane is very small, whereas more care has to be

taken to decouple the three coils in the same plane. Judging from this ,it might

be beneficial to extend the shield around each coil all the way up to the plane

that mounts the capacitors in order to avoid coupling of the leads of the coils.

Alternatively one could consider to separate the coils by three compartments

arranged in an arrangement similar to a pie sliced in three parts.

4.3.2 Initial performance results

Figure 4.15 shows the probe before it was sealed with a protective cover. The

shielding around the coils is visible, as well as between them. The capacitors are

located on the platforms below and above the coils. All six channels were pre-

tuned to the same frequency using a network analyser. The matching efficiency

was very similar for all coils, implying a symmetric set-up of the electronics.

The probe was loaded with 13C labelled methanol for pulse power calibration.

The π

2 pulse durations for each coil are summarised in Table 4.4. The values

are very similar, indicating that the efficiency of power transfer is on the same

order for each coil. The first coil is fitted with an additional resonant circuit and

Table 4.4: π

2 -pulse duration in µs at an input power of 10 W.

1 2 3 4 5 6

11.5 11 10 10 10.5 9.0

double tuned to the 13C and deuterium frequencies. The deuterium signal can be

used by the lock channel to assist in shimming the probehead. The 13C channel

belonging to the double tuned RF coil is fitted with a high frequency filter, which
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Figure 4.15: Probe with six RF-coils. Designed and built by T. Marquardsen at

Bruker BioSpin GmbH.
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could be responsible for the slightly longer π

2 pulse duration compared to the

other coils.

It was found that when the probe is shimmed solely to the deuterium spectrum of

the first coil, the quality of the remaining five coils is severely degraded. Hence

the attempt was made to shim on the 13C spectrum of all coils, which is very

time consuming due to the low SNR of the carbon signal. The line width of

the spectrum of the well shimmed first coil is 2.5 Hz. The best compromise in

signal strength found to date resulted in line widths ranging from 18 to 55 Hz.

There is room for improvement if additional effort is made to find a compromise

in the shim settings. The spectra of all coils are depicted in figure 4.16, both for

simultaneous excitation on all coils as well as single excitation on each coil

separately. Small differences in the spectra for either case are apparent, which

indicate a certain amount of coupling. The coupling determined on the network

analyser was determined to be approximately -25 dB for the coils in one plane

and -35 dB through-plane, which is significantly larger than what was expected

from the simulations. The simulations took into account the probe-head region

including the tuning circuit but the capacitors were positioned closer to the coils

than they are in the real probe. This means that the part of the leads that was

unshielded was shorter in the simulation than in the actual probe, which prob-

ably leads to an underestimation of the coupling. In hindsight it would have

been better to extend the coil leads out further in the simulations. As was seen

in the two-coil probe project, the NMR spectra are a great deal more sensitive

to coupling than the network analyser, hence in order to test signal transfer be-

tween the coils an experiment was devised where a π

2 was applied to one coil

and the signal was recorded on all RF-coils. The signals were integrated and

normalised to the integral of the active coil. The results are summarised in Ta-

ble 4.5. The signal appearing on the channels where no excitation was applied

was found to be substantial (up to 40% signal transfer) in some cases. Table

4.5 confirms the simulation results that the coils in one plane couple strongest.
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Figure 4.16: Spectrum of 13C-methanol from all coils acquired separately in

single excitations (dark blue line) and at the same time (light blue line). Spectra

acquired with four averages.
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The through plane coupling of coil three and four stand out particularly, on all

other coils through plane coupling remains relatively small. The values given

in Table 4.5 lack the reciprocity which one would expect if signal spillage from

one coil to the other was the main reason for signal appearing on the non-active

coils. The shimming is not the same for each coil, and so the signal intensities

vary but the normalisation of the integral should have accounted for this if the

coupling was of purely inductive origin. As the shimming is different for each

Table 4.5: Integral of signal appearance in other coils after excitation on one coil

in % of spectrum integral of excitation coil. The active coil is indicated above

the Table.

active coil: 1 2 3 4 5 6

Observe coils

1 100 6 15 7 21 1

2 0 100 0 9 2 13

3 18 10 100 11 22 2

4 10 28 11 100 5 14

5 24 3 17 4 100 3

6 6 40 2 30 8 100

coil, most spectra have a different resonance offset. This can help to pinpoint

the origin of the signal appearance on the non-active coils. In figure 4.17 the

results for the experiment described above for the case when an excitation pulse

is applied on coil 3 and 4 are shown. It can be seen in the figure, that resonances

also appear outside the active coil peaks, particularly for coil number four being

active, which indicates that direct excitation of the sample in the passive coils

due to power transfer through the leads might take place. To test if this was the

case, a 45◦ pulse was applied to one coil, and a 180◦ pulse on another. This way,

the magnetisation of the sample in the second coil should be inverted and not

appear. If pulse power transfer takes place, the flip angle of the first coil should
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Figure 4.17: Comparison of signal transfers for active coil number 3 (left) and

4(right). The active coil is marked with an asterisk.

be increased with respect to no pulse being applied to the second coil. The same

can be repeated using a 180◦ pulse that is phase shifted by 180◦. In this case

the flip angle in the first coil should be reduced with respect to the experiment

where no pulse is applied to the second coil. The result of the experiment for

three and four is shown in figure 4.18. The ratio of the intensities Iin
I f in

is related

Figure 4.18: Modification of the 45◦ pulse on coil number four by a 180◦ pulse

on coil number six.
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to the flip angles β by:
Iin

I f in
=

sinβin

sinβ f in
.

For the experiment displayed in figure 4.18 the flip angle was increased by 16.7◦

for the in-phase 180◦ pulse and decreased by 14.3◦ for the anti-phase 180◦ pulse.

Using the B1 field obtained from the pulse calibration, one gets an additional

δω1 of 12.5 kHz. This translates into a power transfer of 8% of the 10W pulse

that is applied to the second coil. Combined with the fact that the initial signal

is stronger on coil four due to the better shimming, this could explain the larger

signal transfer from coil six to four than vice versa (see Table 4.5): The signal

appearance on the passive coil is a superposition of signal spillage from the

active coil and a small pulse being applied to the passive coil as a result of pulse

power transfer. As the shimming is better for the fourth coil, the signal that is

a result of the applied small pulse is larger than for coil six in the equivalent

experiment. The same experiment has also been carried out for coil 3 and 4 as

well as 3 and 4. The power transfer from 3 to 5 was found to be only 2%, the

transfer for coil 3 to 4 was 14%.

The coupling is quite substantial at the moment, hence it is not advisable to

perform sequential acquisition experiments, where one coil is applying a pulse

whilst another is still acquiring data, as this could damage the receiver.

The signal transfer from one RF-coil to another could stem from the fact that

the shielding around each coil does not extend completely over the leads going

from the RF-coil to the capacitors, as can be seen from figure 4.15. Another

possibility is coupling via the capacitors of the coils in the same plane as these

are in close vicinity to one another. Both of these origins of coupling could be

alleviated by adding shielding.
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4.3.3 Summary

A probe with six RF coils, tuned to the same resonance frequency, has been

presented. It was shown from the pulse calibrations that the efficiency of all

the coils is largely the same. As expected, shimming proved to be difficult but

a compromise that enabled to get a spectrum on all six coils has been found.

Additional effort can be made to improve the shimming but in order to test

the coupling between the coils the shimming was sufficient. The automatic

shimming procedure presented for the two-coil probe is not applicable due to the

different observe nucleus, which results in a much lower SNR, but a different

strategy could be devised, which uses the information of the different resonance

offsets of each coil.

The coupling was found to be quite large between certain coils. In-plane cou-

pling was found to be the most dominant, which was expected from the sim-

ulation results. The coupling expected from the simulations was much lower

than that found in reality. This could be due to the fact that the leads in the

simulations did not extend far enough out of the shields around the RF coils.

Investigations into the nature of the coupling has found a superposition of two

mechanisms: firstly the appearance of signal of a different coil in the first coil,

secondly the transfer of RF power from one coil to another, resulting in the

application of a small RF pulse in an otherwise passive coil. The coupling has to

be reduced before it is possible to carry out sequential acquisition experiments,

where one coil is still acquiring data whilst another is pulsing, in order to prevent

receiver damage.

4.4 Conclusions

It was shown that the concept of a probe with multiple coils tuned to the same

RF frequency is possible. As one might expect, great care has to be taken to
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minimise coupling. Once this is achieved the six-coil probe could be used with

hyper-polarised samples, acquiring data at different time points. One step to

improve the spectra and experiment flexibility further is to incorporate double

tuning to13C and 13H for the six coil probe. Then polarisation transfer schemes

such as HSQC or HMBC could be used, either in fast 2D fashion or in the small

flip angle style used by C.Hilty’s group [77].
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Outlook

Since the start of the work presented by the author, DNP has been transformed

from being an exotic topic to a focus point of major NMR conferences. This

was mainly driven by recent advances in hardware development, which led to

the development of commercially available polarisers. New opportunities in ap-

plied research, mainly in the areas of chemistry and biomedicine, have since

opened up. Despite DNP being widely used, the underlying mechanisms are

poorly described by a quantitative theory. As was mentioned at the start, for

true insight to be gained from theory, the models used have to be based on quan-

tum mechanics with its unfavourable scaling in propagator size. In this thesis

methods were introduced which allow to greatly reduce the size of the matrix

dimensions needed to describe the system dynamics. The latest development of

a projection method has allowed the scaling to be reduced to N from initially

4N .

Thus far the projection method has been devised for the solid effect, the ex-

tension to incorporate more electrons remains to be made in future work. In

principle there is no limitation on the inclusion of more electrons, as long as

the largest spin-spin interaction remains small compared to the nuclear Larmor

frequency.

Currently the number of spins accessible in simulations is on the order of 104,
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which is still much smaller than Avogadro’s number. In order to make com-

parisons of the results of the simulations to a real experiment, DNP could be

performed on crystals, allowing periodic boundary conditions to be introduced

in the simulation.

With the number of spins that can now be simulated, it should be possible to

make comparisons to thermodynamical models of DNP. Investigation into the

diffusion of spin polarisation through space is now also possible.

In the last chapter a novel way of data acquisition for NMR has been introduced.

It was seen that the principle of using several RF coils at different locations of

the sample is feasible. Practical limitations were thus far the coupling between

the coils as well shimming. A second generation probe with 6 RF coils is cur-

rently being build by BRUKER, in which the coils including all leads of the

coil circuit have been isolated carefully by a compartmented design. The mate-

rials used in this probe are highly adapted to high resolution NMR and should

introduce only small susceptibility effects, allowing for easier shimming.

With this probe in place, DNP experiments with molecules exhibiting dynamics

can be carried out using the fast shuttling spectrometer introduced in [46]. One

additional modification of the multi-coil probe could be the incorporation of

double tuning, to allow polarisation transfer schemes to be carried out and to

acquire on the more sensitive 13C nucleus.
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Irreducible spherical tensor

operators

The irreducible tensor (IST) operators can be constructed from the basis oper-

ators {Ê, Îz, Î−, Î+}. They are derived from the spherical harmonics which are

the eigenfunctions of the angular momentum operators [5]. As a reminder, the

angular momentum operators are

L̂x =−ı̇h̄(y pz− z py) L̂y =−ı̇h̄(z px− x pz) L̂z =−ı̇h̄(x py− y px),

which obey the well known commutation relation

[
L̂i, L̂ j

]
=−ı̇εi jkL̂k, where i, j,k ∈ [x,y,z] .

The total angular momentum operator L̂2 = L̂2
x + L̂2

y + L̂2
z obeys the commuta-

tion relation
[
L̂2,Li

]
= 0, which means that L̂2 shares its eigenfunctions with

L̂i. It is helpful to use the notation |l,m〉 for these shared eigenfunctions. The

eigenvalues of L̂z and L̂2 are:

L̂2|l,m〉= l(l +1)|l,m〉 and L̂z|l,m〉= m|l,m〉,

It turns out that the spherical harmonics functions Ylm(θ ,φ) are the eigenfunc-

tions |l,m〉. The irreducible tensor operators T̂lm associated with Ylm(θ ,φ) are
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obtained by transforming Ylm(θ ,φ) into Cartesian coordinates Ylm(x,y,z) and re-

placing the terms with the corresponding angular momentum operator [7]. For

example:

Y1−1(θ ,φ) =

√
3

8π
e−ı̇φ sinθ → Y1−1(x,y,z) =

√
3

8π

x+ ı̇y
r
→ T̂1−1 =

1√
2

Î−

The single spin IST are thus [2]:

T̂(1)
00 =Ê,

T̂(1)
1−1 =

1√
2

Î−, T̂(1)
01 =Îz, T̂(1)

11 =
1√
2

Î+

and the two spin IST operators are:

T̂(2)
20 =

√
2
3

[
Î1zÎ2z−

1
4
(
Î1−Î2++ Î1+Î2−

)]
T̂(2)

2±1 =∓
1
2
(
Î1zÎ2±+ Î1±Î2z

)
T̂(2)

2±2 =
1
2

Î1±Î2±

Higher order terms are not needed as all Hamiltonians encountered in this thesis

are bilinear at maximum. The advantage of using IST operators is that their

ranks do not mix under rotation, one IST simply gets transformed into a linear

combination of IST’s of the same rank:

ˆ̂R(α,β ,γ)T̂lm = ∑
m′

T̂lmD l
m′m(α,β ,γ),

where ˆ̂R(α,β ,γ) is a general rotation around the Euler angles and D l
m′m(α,β ,γ)

are the Wigner rotation matrices.
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Krylov Bogoliubov averaging

method

The Krylov Bogoliubov averaging method can be used on functions that can be

expressed as dx
d t = εX(t,x), where ε is a small parameter [67]. The equation of

motion was brought into this form in section 3.4.1:

∂

∂τ
|ρ̂(τ)〉= ε

[
ˆ̂A(τ)ρ̂(τ)+ ˆ̂y

]
,

with

ˆ̂A(τ) = ˆ̂h0 + e−ı̇τ ˆ̂h++ eı̇τ ˆ̂h− and ˆ̂y = ˆ̂γ|ρ̂th〉.

(B.0.1)

Equation (B.0.1) can then be rewritten using time independent coefficients if a

change of variables of |ρ̂〉 is performed:

|ρ̂(τ)〉=
[
1+ ε

ˆ̂C(ε,τ)
]
|ρ̂ ′〉+ ε ˆ̂c(ε,τ)

using |ρ̂ ′(τ)〉 for which

∂

∂τ
|ρ̂ ′〉=ε

[
ˆ̂B(ε)|ρ̂ ′〉+ ˆ̂b(ε)

]
.

(B.0.2)

The coefficients ˆ̂C(ε,τ), ˆ̂c(ε,τ), ˆ̂B(ε) and ˆ̂b(ε) have to be determined. To

achieve this, first the time derivative of |ρ̂〉 in (B.0.2) is taken and the expression
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for ∂

∂τ
|ρ̂ ′〉, also from (B.0.2), plugged in:

∂

∂τ
|ρ̂(τ)〉=

ε
∂

∂τ

ˆ̂C(ε,τ)|ρ̂ ′〉+
[
1+ ε

ˆ̂C(ε,τ)
]

∂

∂τ
|ρ̂ ′〉+ ε

∂

∂τ
ˆ̂c(ε,τ) =

ε
∂

∂τ

ˆ̂C(ε,τ)|ρ̂ ′〉+
[
1+ ε

ˆ̂C(ε,τ)
]

ε

[
(ε)|ρ̂ ′〉+ ˆ̂b(ε)

]
+ ε

ˆ̂B
∂

∂τ
ˆ̂c(ε,τ).

This can be equated to the original expression of ∂

∂τ
|ρ̂(τ)〉 in (B.0.1):

ε
∂

∂τ

ˆ̂C(ε,τ)|ρ̂ ′〉+
[
1+ ε

ˆ̂C(ε,τ)
]
ε

[
ˆ̂B(ε)|ρ̂ ′〉+ ˆ̂b(ε)

]
+ ε

∂

∂τ
ˆ̂c(ε,τ) =

ε

[
ˆ̂A(τ)|ρ̂(τ)〉+ ˆ̂y

]
.

Using B.0.2 one gets:

ε
∂

∂τ

ˆ̂C(ε,τ)|ρ̂ ′〉+
[
1+ ε

ˆ̂C(ε,τ)
]

ε

[
ˆ̂B(ε)|ρ̂ ′〉+ ˆ̂b(ε)

]
+ ε

∂

∂τ
ˆ̂c(ε,τ) =

ε
ˆ̂A(τ)

[
1+ ε

ˆ̂C(ε,τ)
]
|ρ̂ ′〉+ ε

2 ˆ̂A(τ) ˆ̂c(ε,τ)+ ε ˆ̂y.

One can split this into two independent equations, one with terms containing

|ρ̂ ′〉 and one with terms not containing |ρ̂ ′〉

∂

∂τ

ˆ̂C(ε,τ) = ˆ̂A(τ)
[
1+ ε

ˆ̂C(ε,τ)
]
−
[
1+ ε

ˆ̂C(ε,τ)
]

ˆ̂B(ε)

∂

∂τ
ˆ̂c(ε,τ) = ε

ˆ̂A(τ) ˆ̂c(ε,τ)+ ˆ̂y−
[
1+ ε

ˆ̂C(ε,τ)
]

ˆ̂b(ε)
(B.0.3)

The unknown coefficients can be expanded in terms of ε:

ˆ̂C(ε,τ) =
∞

∑
k=0

ε
k ˆ̂Ck(τ),

ˆ̂B(ε) =
∞

∑
k=0

ε
k ˆ̂Bk,

ˆ̂c(ε,τ) =
∞

∑
k=0

ε
k ˆ̂ck(τ),

ˆ̂b(ε) =
∞

∑
k=0

ε
k ˆ̂bk

and inserted into the equations B.0.3:

∂

∂τ

[
ˆ̂C0(τ)+ ε

ˆ̂C1(τ)+ ε
2 ˆ̂C2(τ)+ . . .

]
=

ˆ̂A(τ)
[
1+ ε

ˆ̂C0(τ)+ ε
2 ˆ̂C1(τ)+ . . .

]
−
[
1+ ε

ˆ̂C0(τ)+ ε
2 ˆ̂C1(τ)+ . . .

][
ˆ̂B0 + ε

ˆ̂B1 + . . .
]

∂

∂τ

[ ˆ̂c0(τ)+ ε ˆ̂c1(τ)+ ε
2 ˆ̂c2(ε)+ . . .

]
=

ε
ˆ̂A(τ)

[ ˆ̂c0(τ)+ ε ˆ̂c1(τ)+ . . .
]
+ ˆ̂y−

[
1+ ε

ˆ̂C0(τ)+ ε
2 ˆ̂C1(τ)+ . . .

][
ˆ̂b0 + ε

ˆ̂b1 + . . .
]
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Ordering into equations of the same order of ε gives:

∂

∂τ

ˆ̂C0(τ) =
ˆ̂A(τ)− ˆ̂B0

∂

∂τ

ˆ̂C1(τ) =
ˆ̂A(τ) ˆ̂C0(τ)− ˆ̂B1− ˆ̂C0(τ)

ˆ̂B0

. . .

∂

∂τ

ˆ̂Ck+1(τ) =
ˆ̂A(τ) ˆ̂Ck(τ)−

k

∑
j=0

ˆ̂Ck− j(τ)
ˆ̂B j

and

∂

∂τ
ˆ̂c0(τ) = ˆ̂y− ˆ̂b0

∂

∂τ
ˆ̂c1(τ) =

ˆ̂A(τ) ˆ̂C0(τ)− ˆ̂B1− ˆ̂C0(τ)
ˆ̂B0

. . .

∂

∂τ
ˆ̂ck+1(τ) =

ˆ̂A(τ) ˆ̂ck(τ)−
k

∑
j=0

ˆ̂Ck− j(τ)
ˆ̂b j.

The coefficients ˆ̂Ck(τ) and ˆ̂ck(τ) are periodic in time. Hence the time average

as well as the time average of the derivative of these coefficients has to be zero.

As an example, for k=0:
ˆ̂B0 =

ˆ̂A(τ) = ˆ̂h0

and

C0(τ) =
∫ (

ˆ̂A(τ)−A(τ)
)

dτ =∫ (
ˆ̂h0 + e−ı̇τ ˆ̂h++ eı̇τ ˆ̂h−− ˆ̂h0

)
dτ = ı̇

(
e−ı̇τ ˆ̂h+− eı̇τ ˆ̂h−

)
In general, the coefficients can be found with:

ˆ̂Bk+1 =
ˆ̂A(τ) ˆ̂Ck

ˆ̂bk+1 =
ˆ̂A(τ) ˆ̂ck

ˆ̂Ck+1 =
∫ [

ˆ̂A(τ) ˆ̂Ck− ˆ̂Bk+1−
k

∑
j=0

ˆ̂Ck− j
ˆ̂B j

]
dτ

ˆ̂ck+1 =
∫ [

ˆ̂A(τ) ˆ̂ck− ˆ̂bk+1−
k

∑
j=0

ˆ̂ck− j
ˆ̂b j

]
dτ
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The first three steps result in the following coefficiens

ˆ̂B0 =
ˆ̂l0, ˆ̂B1 = ı̇

[
ˆ̂l+,

ˆ̂l−
]
, ˆ̂B2 =−

(
ˆ̂l+
[

ˆ̂l−,
ˆ̂l0
]
+ ˆ̂l−

[
ˆ̂l+,

ˆ̂l0
])

ˆ̂b0 = 1, ˆ̂b1 = 0, ˆ̂b2 =
ˆ̂l+

ˆ̂l−+
ˆ̂l−

ˆ̂l+.

Inserting these coefficients in the equation of motion in (B.0.2) and returning to

the original time t = τ

ωI
one gets the Hamiltonian described in section 3.4.1.
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Error analysis data for averaged

Hamiltonian

The averaged Hamiltonian has been tested for a range of parameters. In sum-

mary, the absolute error is on the order of 10−3 or less, whereas the relative

error is mostly below 1%. On occasions where the relative error rises above

1% the polarisation build up for the input parameters was very small, effectively

yielding in a division by a very small number in the error calculation. Hence

in some instances the relative error is large, even when the absolute deviation

is still very small. Three different configurations were tested, hence convering

different interaction strengths. In addition the pyramid configuration (see figure

C.1) has been scaled, in order to account for stronger interactions. In the follow-

ing sections the range of parameters tested and the incurred errors are presented.

All the given errors are the largest errors over the time course of the simulation.

C.1 Pyramid

The configuration of the nuclei and electron is shown in figure C.1. The arrange-

ment has been chosen to result in a range of interaction strengths. The electron

is at the origin of the coordinate system, whereas spins I1 and I3 lie on the x axis
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at coordinates (l1,0,0) and (0,0,l3), spins I2 and I4 on the y axis at (0, l2, 0) and

(0, l4,0). The fifth spin lies on the z axis at (0,0,l5). The coefficients li are given

in the figure caption of C.1. The entire geometry is rotated around the x axis by

5deg. Keeping the following relaxation parameters fixed several microwave and

Figure C.1: Pyramid configuration. Axis units in Å. Nuclei are depicted in

black, the electron in blue. l1=-l2=12 Å, -l4=l5=18 Åand l3=-15 Å.

interaction strengths have been tested, which are summarised in table C.1.

r1e = 103 Hz r2e = 106 Hz r1n = 10−2 Hz r2n = 10 Hz (C.1.1)

For a fixed ω1 of 0.75 MHz the relaxation parameters have been varied. The

corresponding errors are summarised in table C.2.

C.2 Chain

The chain contains nuclei five that are spaced 11.1± 1.6 Å apart. The nuclei

have been chosen not to be exactly equidistant in order to have a slight variation

in the coupling parameters. The initial relaxation time parameters used are:

r1e = 103 Hz r2e = 106 Hz r1n = 10−2 Hz r2n = 103 Hz. (C.2.1)
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Table C.1: Errors using the relaxation parameters given in (C.1.1). When indi-

cated, the interaction parameters have been changed. The errors given are the

largest error over the time course of the simulation

ω1 in MHz absolute error relative error [%]

0.75 8.43 ·10−4 0.8

1.00 8.54 ·10−4 0.8

1.50 9.40 ·10−4 0.5

7.50 1.98 ·10−4 0.2

ω1=1.5MHz

interaction strengths scaled by factor 2 1.60 ·10−3 1.0

interaction strengths scaled by factor 8 4.50 ·10−3 4.2

Table C.2: Errors using relaxation parameters indicated in table. The high-

lighted terms have been changed with respect to the initial values from (C.1.1).

ω1=0.75 MHz and configuration the used is the initial configuration shown in

figure C.1.

relaxation rates in Hz absolute error relative error [%]

r1n = 10−2, r2n = 10, r1e = 10, r2e = 106 2.50 ·10−4 15.0

r1n = 10−2, r2n = 10, r1e =100, r2e = 106 7.14 ·10−4 5.4

r1n = 10−3, r2n = 10, r1e = 10, r2e = 106 3.03 ·10−3 0.7

r1n = 10, r2n = 10, r1e = 103, r2e = 106 8.75 ·10−5 0.7

r1n = 10−2, r2n =100, r1e = 10, r2e = 106 7.17 ·10−4 0.6

r1n = 10−2, r2n = 1000, r1e = 10, r2e = 106 7.01 ·10−4 0.3

r1n = 10−2, r2n = 10, r1e = 10, r2e = 104 8.42 ·10−4 0.7

r1n = 10−2, r2n = 10, r1e = 10, r2e = 108 9.41 ·10−4 1.1
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Figure C.2: Chain configuration. Axis units in Å. Nuclei are depicted in black,

the electron in blue.

Using these parameters the following ω1’s were tested:

Table C.3: Errors using the relaxation parameters given in (C.2.1).

ω1 in MHz absolute error relative error [%]

0.75 4.93 ·10−4 1.2

1.00 4.84 ·10−4 0.7

1.50 3.82 ·10−4 0.7

Additionally, for a fixed microwave power of ω1=1.5 MHz the relaxation pa-

rameters given in table C.4 have been tested.
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Table C.4: Errors using relaxation parameters indicated in table. The high-

lighted terms have been changed with respect to the initial values from (C.2.1).

ω1=1.5 MHz.

relaxation rates in Hz absolute error relative error [%]

r1n = 10−3, r2n = 10, r1e =10, r2e = 106 7.80 ·10−5 0.7

r1n = 10−3, r2n = 10, r1e =100, r2e = 106 4.6 ·10−4 0.7

C.3 Grid

The grid configuration is shown in figure C.3. Again several parameters have

been tested and the associated errors are summarised in tables C.5 and C.6. In

Figure C.3: Grid configuration. Axis units in Å. Nuclei are depicted in black,

the electron in blue.

table C.5 the errors for simulations using the relaxation parameters from (C.2.1)

and several values for ω1 are listed. In table C.6 the errors for several relaxation

parameters are listed, using a fixed microwave power of 1.5 MHz.
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Table C.5: Errors using the relaxation parameters given in (C.2.1).

ω1 in MHz absolute error relative error [%]

0.75 1.80 ·10−3 1.0

1.00 1.90 ·10−3 0.9

1.50 1.90 ·10−3 0.8

5 7.91 ·10−4 0.5

Table C.6: Errors using relaxation parameters indicated in table. The high-

lighted terms have been changed with respect to the initial values from (C.2.1).

ω1=1.5 MHz.

relaxation rates in Hz absolute error relative error [%]

r1n = 10−3, r2n = 10, r1e =10, r2e = 106 5.94 ·10−4 1.2

r1n = 10−3, r2n = 10, r1e =100, r2e = 106 3.30 ·10−3 1.13
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Operators for the projection

method

The operators for the projection method, ˆ̂Lii and ˆ̂Lik, are obtained from the ma-

trix representation of ˆ̂L in the respective basis: 〈 ˆ̂Oi| ˆ̂L | ˆ̂O j〉. ˆ̂Oi and ˆ̂O j are basis

operators belonging to either the Zeeman order subspace L1 or the non-Zeeman

subspace L2. For example if i = 1 and j = 2 one obtains a matrix element of
ˆ̂L12. As mentioned in 3.7 the basis of L1 is comprised of the operators {Ŝz,

Î1z, Î2z, Î1zÎ2z...}, whereas the subspace L2 contains all other basis operators.

When working with the averaged Hamiltonian, the basis of L2 contains only

zero quantum coherence basis operators. Using the averaged Hamiltonian de-

fined in 3.4.1 one gets the following matrix representations for the partitioned

Liouvillian:

ˆ̂L11 =−diag
(
R′1,r

′
11, ...,r

′
1n
)

with R′1 = R1 +
ω2

1
ω2

I
(R2−R1) and r′1k = r1k +

|Bk|2

ωI
(R1 + r2k− r1k)

k ∈[1,n]

n is the number of nuclei in the sample.

ˆ̂L21 =

(
Q
Q∗

)
with Qk1 =

ı̇ω1Bk+

4ωI
and Qk,k+1 =−

ı̇ω1Bk+

4ωI
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ˆ̂L12 = (Q′Q′∗) withQk1 =
ı̇ω1Bk−

4ωI
and Qk,k+1 =−

ı̇ω1Bk−
4ωI

ˆ̂L22 =

P 0

0 P∗

 , withP = diag(P1, . . . ,Pn).

the operators Pk are defined as

Pk =−R2− r2k + ı̇ ∑
j 6=k

A′jk
ˆ̂Iz, with A′jk = A j−2d jk
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