Structural evolution of massive galaxies in the last 11 GyrTools Buitrago Alonso, Fernando (2012) Structural evolution of massive galaxies in the last 11 Gyr. PhD thesis, University of Nottingham.
AbstractThis thesis describes the properties and evolution of massive ($M_{stellar}\geq10^{11} h_{70}^{-2} M_{\odot}$) galaxies at $0 < z < 3$, including their relationship to lower mass systems. Present-day massive galaxies are composed mostly of early-type objects, although it is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disk-like objects in the early Universe to spheroid-like galaxies at present. We first probe this theoretical expectation by compiling a large sample of massive galaxies in the redshift interval 0$<$z$<$3. Our sample of 1082 objects is composed of 207 local galaxies selected from the Sloan Digital Sky Survey, plus 875 objects observed with the HST from the POWIR/DEEP2 Survey and the GOODS NICMOS Survey. 639 of our objects have spectroscopic redshifts. Our morphological classification is done in the V-band restframe both quantitatively (using the S\'ersic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find a significant change in the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from $\sim$20-30\% at z$\sim$3 to $\sim$70\% at z=0. Spheroid-like galaxies have been the predominant morphological massive class only since z$\sim$1.
Actions (Archive Staff Only)
|