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Abstract

We consider various portfolio optimization problems when the stock prices follow jump-

di�usion processes. In the �rst part the classical optimal consumption-investment prob-

lem is considered. The investor's goal is to maximize utility from consumption and

terminal wealth over a �nite investment horizon. We present results that modify and

extend the duality approach that can be found in Kramkov and Schachermayer (1999).

The central result is that the optimal trading strategy and optimal equivalent martingale

measure can be determined as a solution to a system of non-linear equations.

In another problem a benchmark process is introduced, which the investor tries to outper-

form. The benchmark can either be a generic jump-di�usion process or, as a special case,

a wealth process of a trading strategy. Similar techniques as in the �rst part of the thesis

can be applied to reach a solution. In the special case that the benchmark is a wealth

process, the solution can be deduced from the �rst part's consumption-investment prob-

lem via a transform of the parameters. The benchmark problem presented here gives

a di�erent approach to benchmarks as in, for instance, Browne (1999b) or Pra et al.

(2004). It is also, as far as the author is aware, the �rst time that martingale methods

are employed for this kind of problem. As a side e�ect of our analysis some interesting re-

lationships to Platen's benchmark approach (cf. Platen (2006)) and change of numeraire

techniques (cf. German et al. (1995)) can be observed.

In the �nal part of the thesis the set of trading strategies in the previous two problems

are restricted to constraints. These constraints are, for example, a prohibition of short-

selling or the restriction on the number of assets. Conditions are provided under which

a solution to the two problems can still be found. This extends the work of Cvitanic and

Karatzas (1993) to jump-di�usions where the initial market set-up is incomplete.
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Chapter 1

Introduction

This thesis studies various portfolio selection problems when stock prices follow jump-

di�usion processes. In recent years jump-di�usion models as well as Lévy process models

have become increasingly popular in the academic and �nancial literature. This is mainly

due to the short-comings of the classical Black-Scholes model developed in Black and

Scholes (1973).

Empirical studied of stock market returns as have been carried out by Cont (2001),

Campbell et al. (1996), Pagan (1996), and others show that the distribution of stock

market returns is leptokurtic, i.e. returns have higher peaks and heavier tails. Often

jumps occur in the prices of stocks that cannot be explained by a Brownian motion driven

model. These jumps also have a gain/loss asymmetry, meaning that one has large down

movements in stock prices but not equally large up movements. Another feature often

observed in the stock price distributions is that of volatility clustering: Large changes

in prices are often followed by large changes and small changes tend to be followed by

small changes.

To accommodate these kind of empirical observations Lévy and jump-di�usion models

have been used which can capture many of the empirical features of stock price returns.

The di�erence between Lévy and jump-di�usion models is thereby broadly the follow-

ing. Lévy processes are Markov process that can have potentially in�nite active jumps.

When modelling a �nancial time series with a Lévy process model a Brownian motion

component is not necessary needed as the process can essentially move by jumps. Lévy

models can accommodate many empirical facts observed about stock price distributions

and are very popular. However, because of the independent increment property (i.e. the

Markov property) of Lévy processes they cannot model the e�ect of volatility clustering.

Jump-di�usion models on the other hand are generally assumed to have �nite jumps
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during a �nite time interval which represent rare events. The distribution of the jumps

is usually assumed to be known so that they are easy to simulate. Because the model

parameters can be time dependent and possibly random it is possible to model the e�ect

of volatility clustering with jump-di�usions. For the case of constant model parameters a

jump-di�usion becomes a Lévy process. Standard literature on Lévy process and jump-

di�usions and their application to �nance include Barndor�-Nielson et al. (2001), Cont

and Tankov (2003), and Hanson (2009).

In the academic literature there is a wide range of portfolio selection problems. Most

common are problems formulated either in the mean-variance framework pioneered by

Markowitz (1952) or problems of expected utility maximization type as �rst considered

by Merton (1969) and (1971) for a di�usion type model.

This thesis treats portfolio optimization problems of the later type which are formed in an

expected utility maximization setting. Of these problems two classes will be considered.

The �rst one is the classical problem of expected utility maximization of the terminal

wealth of an investor and his/her consumption during the investment horizon. The

second one is the problem of outperforming a benchmark process using again an expected

utility maximization approach.

The �rst problem has been fully solved in the complete market case by Karatzas et al.

(1987) and Cox and Huang (1989) among others. They use a martingale approach to

solve the optimal investment-consumption problem considered by Merton (1969, 1971).

This approach extends Merton's results as more general models can be considered that

do not need to be of Markovian type as in Merton's work. In this thesis the results of

Karatzas et al. (1987) and Cox and Huang (1989) and others for the geometric Brownian

motion model will be extended to a jump-di�usion model for the stock prices. The jump-

di�usion models lead to incompleteness in the market where the equivalent martingale

measure (EMM) can no longer be determined uniquely. The incomplete market case

is more delicate but results have been obtained in, for example, Cvitanic and Karatzas

(1992) when the incompleteness is produced by additional Brownian motions in the

model. Particularly Kallsen (2000) and Kramkov and Schachermayer (1999) developed

results for Lévy processes and general semimartingale models respectively. Important

relationships, similarities, and di�erences to their work will be pointed out whenever

relevant.

The main result of this part of the thesis is the extension and combination of the ideas of

the mentioned papers to obtain a solution to the consumption-investment problem when

stock prices are driven by jump-di�usion processes. In particular the duality approach
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by Kramkov and Schachermayer (1999) is modi�ed and extended in such a way that the

optimal trading strategy and optimal EMM can be found as a solution to a system of

non-linear equations.

In the next part of the thesis we consider the problem that an investor wants to outper-

form a benchmark. This benchmark can be a stock index, a stock portfolio, an exchange

rate, or a similar benchmark. The benchmark is assumed to follow a jump-di�usion

process and the investor's wealth process is given as in the previous parts of the thesis.

Again, it is assumed that the stocks are driven by jump-di�usions. The investor's way to

try to outperform the benchmark is to maximize expected utility from the ratio between

investor's wealth and the benchmark. This ratio will be called relative wealth and is

popular in the literature. However, as far as the author is aware, it hasn't been de�ned

in a jump-di�usion context.

A martingale approach will be developed to present a general approach to active portfolio

selection problem which has many parallels to the �rst part of the thesis. Benchmark

related problems have been treated mostly from a statistical point of view in the literature

assuming certain distributions for the stock returns rather than using a model for the

stock prices. A paper that probably comes closest to the approach presented here is

Browne (1999b). He uses a geometric Brownian motion model for the stock prices and

the benchmark process to solve the problem of reaching a performance goal before a

deadline. The solution is found using stochastic control methods. Other papers like

Popova et al. (2007) consider the problem of maximizing the probability of beating the

benchmark. However, a martingale approach hasn't been presented in the literature for

these kind of problems.

As a byproduct of the analysis some relationships to Platen's benchmark approach (cf.

Platen (2005)) can be found. Interpreting the model set-up as a change of numeraire

using change of numeraire techniques as developed by Geman et al. (1995) clari�es the

relationship between the discounted wealth process of an investor and his/her relative

wealth process.

In a �nal chapter the two previous problems are constrained in the sense that the un-

derlying trading strategy has to be in a closed convex set. This allows for example for

short selling constraints or prohibition of borrowing. It extends the approach developed

in Cvitanic and Karatzas (1992) and (1993) to the jump-di�usion framework, �rst for

the consumption-investment problem and later for the benchmark problem.

The thesis is structured as follows. Chapter 2 revises all necessary tools from stochastic

calculus and stochastic di�erential equation for jump-di�usion processes. The stock mar-
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ket model will be introduced and analysed in Chapter 3, with the �nal section of Chapter

3 introducing the concept of utility functions, which will accompany us throughout the

thesis. These two chapters will provide an extensive review of the martingale methods

used for the optimal portfolio problems. Chapter 4 presents the consumption-investment

problem in the jump-di�usion framework. Martingale methods will be developed to solve

the problem and will later relate to partial di�erential equations. The problem of out-

performing a benchmark process is solved in Chapter 5, and in addition, relationships

to change of numeraire techniques will be established in this chapter. Links to Platen's

benchmark approach (cf. Platen (2005)) will be highlighted and some extensions of his

approach towards jump-di�usion will be made. The constrained version of the problem

of Chapter 4 and 5 will be solved in Chapter 6, which concludes this thesis.
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Chapter 2

Results on Stochastic Calculus and

Stochastic Di�erential Equations

A stochastic process is a family of random variables (X(t))t∈[0,T ] indexed by time. The

time parameter can be either discrete or continuous, but we will only consider the con-

tinuous case. In this thesis we consider only processes that are of càdlàg type. That is

processes that have right continuous sample paths with left limits. The processes that

are introduced in this chapter either have càdlàg path or have a modi�cation that has

càdlàg paths. In what follows we always consider the càdlàg version of the process.

Throughout the thesis the space (Ω,A,P) is a probability space. On this probability

space there exists an increasing family of σ-algebras (Ft)t∈[0,T ] that forms an information

�ow or �ltration. The �ltration together with the probability space (Ω,A,P) are called
a �ltered probability space. A process X(t) is called adapted or non-anticipating with

respect to the �ltration (Ft)t∈[0,T ] if each X(t) is revealed at time t, i.e. each X(t) is Ft-

measurable. A process X(t) is always adapted to its history or natural �ltration which

is given by

FX
t = σ(X(t), C|s ∈ [0, t], C ∈ N )

where N is the set of all the null sets of the state space of the process. FX
t contains

all the information of Xt up to time t, that is, it contains all the information about

the realized sample path of X(t). If the �ltration that a process is adapted to is not

speci�ed, then the natural �ltration is assumed.
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2.1 Brownian Motion and the Poisson Process

Two fundamental examples of stochastic processes are the Brownian motion B(t) and the

Poisson process P (t). They form the toolbox to create jump-di�usion processes. Both

processes are Markov processes which means that they are without memory of all but the

prior state. If we want to make predictions about the future state then all that is needed

is the current state of the process, rather than the complete history of the process. Both

Brownian motion and Poisson process have càdlàg sample paths (right-continuous with

left limits) and are Lévy processes. The paths of a Brownian motion are continuous

whereas the paths of a Poisson process are piecewise constant.

De�nition 2.1. An adapted process (B(t))t≥0 taking values in Rn is called an n-

dimensional Brownian motion if

1. the process (B(t))t≥0 has independent and stationary increments;

2. the increments B(t)−B(s) are normally distributed with mean zero and variance

matrix (t− s)σ, for a given, non random matrix σ;

3. the sample paths of (B(t))t≥0 are a.s. continuous.

The last item (iii) is not essential if B is also separable. If instead of (iii) B is also

a separable stochastic process it it can be shown that every Brownian motion has a

modi�cation with continuous sample paths. It is then assumed that we always consider

the version with the continuous sample paths.

A Brownian motion is called standard if its variance matrix σ is equal to the unit matrix

I. For a one-dimensional Brownian motion B(t) it can be shown (cf. Hanson (2002))

that its auto-covariance is given by

Cov
[
B(t), B(s)

]
= min(t, s).

The Poisson process is a discontinuous process that counts the number of random oc-

currences of some events which happen in a certain time interval. The inter arrival time

between two events occurring is exponentially distributed.

De�nition 2.2. Let (τi)i≥1 be a sequence of independent exponential random variables

with parameter λ > 0 and Tn =
∑n

i=1 τi. The process (P (t))t≥0 de�ned by

P (t) =
∑
n≥1

1{t≥Tn}

is called a Poisson process with intensity λ. The function 1{·} is thereby the indicator

function.
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A Poisson process has piecewise constant sample paths and it increases by jumps of

size 1. Its increments P (t) − P (s) are independent and stationary and have a Poisson

distribution with intensity (t− s)λ for t > s ≥ 0, i.e.

P
[
P (t)− P (s) = n

]
= e−λ(t−s)

(
λ(t− s)

)n
n!

∀n ∈ N ∪ {0}.

From the de�nition the time between jumps of a Poisson process is exponentially dis-

tributed so that

P
[
τi ≤ t

]
= 1− e−λt,

where τi is the inter jump-time between the (i−1)th and ith jump. The auto-covariance

of a Poisson process P (t) is given by

Cov
[
P (t), P (s)

]
= λmin(t, s).

See Hanson (2002) for a proof and more details on Poisson processes.

2.2 Poisson Random Measures and Jump Measures

We will introduce the one dimensional Poisson random measure in this section. Most of

the material is borrowed from Cont and Tankov (2003) and additional information can

be found therein.

Given a probability space (Ω,A,P) and a measure space (E, E , µ) with E = [0, T ]×R\{0}
and E being the Borel σ-algebra of E, a Poisson random measure N is a integer valued

random measure

N : Ω× E → N ∪ {0}

such that

1. N(ω, ·) is a Random measure on E, that is N(A) = N(·, A) is an integer valued

random variable for bounded measurable A ⊂ E;

2. N(·, A) is a Poisson random variable with parameter µ(A) for each measurable

A ⊂ E ;

3. for disjoint measurable setsA1, . . . , An ∈ E , the random variablesN(A1), . . . , N(An)

are independent.

Given a certain sequence of non-anticipating random times (Tn)n≥1 and a sequence of

random variables (Yn)n≥1 that are revealed at the random times Tn (i.e. Yn is FTn

measurable) each Poisson random measure N can be represented as a counting measure.
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It counts the number of events that have occurred at times Tn if at these times the

corresponding Yn has hit a certain set. That is, if δ denotes the dirac delta function then

the Poisson random measure can be represented as

N =

n∑
n≥1

δ(Tn,Yn). (2.1)

The random times Tn can be seen as random jump times and Yn corresponds to the

jump-sizes at time Tn. If we take [s, t) ∈ [0, T ] and C ∈ B(R) the Poisson measure

counts the number of jumps between time s and t whose size lie in the set C:

N
(
ω, [s, t)× C

)
=

n∑
n≥1

δ(Tn(ω),Yn(ω))

(
[s, t)× C

)
.

It is important that each Poisson random measure corresponds to a sequence of processes

(Tn, Yn)n≥1 such that (2.1) holds. However, the converse is in general not true. That

means that for a sequence (Tn, Yn)n≥1, a measure formed by (2.1) is in general not a

Poisson random measure. This is because for A ⊂ E , N(·, A) is generally not a Poisson

random variable any more. Also often the independence property doesn't hold. Yet,

processes that are formed in such a way can be interesting and are called marked point

processes.

A way to construct a marked point process is by using a càdlàg stochastic process X(t).

Let us denote by ∆X(t) = X(t)−X(t−) the jump size (possibly zero) of X(t) at time t.

Then every such càdlàg process X has at most countable number of jumps, that is the

set

{t ∈ [0, T ]|∆X(t) ̸= 0} (2.2)

is countable (cf. Cont and Tankov (2003)). The elements of (2.2) can be arranged in

a sequence (Tn)n≥1 which are the random jump times of X. At the jump times X has

discontinuity of size

Yn := X(Tn)−X(Tn−) ∈ Rd \ {0}.

The jump times together with the jump sizes form a marked point process (Tn, Yn)n≥1

on [0, T ] × Rd \ {0} which contains all the information about the jumps of the process

X. Following the steps above the associated random jump measure of X is

JX =
∑
n≥1

δ(Tn(ω),Yn(ω)) =

∆X(t)̸=0∑
t∈[0,T ]

δ(t,∆X(t)). (2.3)

As mentioned before this jump measure is in generally not a Poisson random measure.

However, a case when the jump measure is in fact a Poisson measure is when the process

X is a Lévy process. We will come back to this when we discuss the Lévy-Itô representa-

tion of Lévy processes in Section 2.3. We have discussed how to construct jump measures
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and Poisson random measure from marked point processes and càdlàg process. On the

other hand it is possible to construct jump processes from Poisson random measures.

Let N be a Poisson random measure with intensity measure µ and let f : E → R be a

measurable function that satis�es∫ t

0

∫
R\{0}

|f(s, y)|µ(ds× dy) <∞.

Then a jump processes X(t) can be constructed as the stochastic integral with respect

to the Poisson measure N :

X(t) =

∫ t

0

∫
R\{0}

f(s, y)N(ds, dy) =
∑

{n≥1,Tn∈[0,t]}

f(Tn, Yn).

Probably the simplest example of a jump process constructed through a Poisson random

measure is a Poisson process. The Poisson process counts the numbers of jumps of size

1 with intensity λ. The corresponding Poisson random measure is given by

NP (ω, [s, t)× C) =

{
#{i ≥ 1|Ti(ω) ∈ [s, t)} if 1 ∈ C

0 if 1 /∈ C

for t > s ≥ 0 and C ∈ B(R) and where (Ti)i≥1 are the random jump times of the process.

The intensity measure µP of NP is then given by

µP ([s, t), C) = λ(t− s)

if C contains the jump size 1, and is equal to zero otherwise. The Poisson process is

thus,

P (t) =

∫ t

0
NP (ds, {1}) =

∫ t

0
NP (ds)

The intensity measure µ of a jump process can be time dependent µt or time homogeneous

µ. We will only consider the later case and moreover the intensity measure is assumed

to have the form µ(dt, dy) = ν(dy)dt.

2.3 Lévy Processes

A class of stochastic processes for which a lot of research has been carried out are Lévy

processes. Important examples of Lévy processes are Brownian motions and Poisson

processes.

De�nition 2.3. A càdlàg stochastic process (X(t))t≥0 on (Ω,F ,P) with values in R such

that X(0) = 0 is called a Lévy process if it possesses the following properties:
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1. independent increments: for t0 < t1 < . . . < tn the random variables X(t0), X(t1)−
X(t0), . . . , X(tn)−X(tn−1) are independent;

2. stationary increments: the law of X(t+ h)−X(t) does not depend on t;

3. stochastic continuity: ∀ϵ > 0 limh→0 P
(
|X(t+ h)−X(t)| ≥ ϵ

)
= 0.

The last property doesn't imply the continuity of sample paths but ensures that Lévy

processes don't have jumps at �xed (non-random) times.

Each Lévy process has a Lévy measure ν that characterizes the jumps of the process. It

is de�ned by

ν(C) := E
[
#{t ∈ [0, 1]|∆X(t) ̸= 0,∆X(t) ∈ C}

]
, C ∈ B(R). (2.4)

It counts the expected number of jumps between the time interval from 0 to 1 whose

size belongs to C. Notice that it doesn't depend on a time variable.

A Lévy process can be decomposed into a non-random drift part, a continuous random

part, represented by a Brownian motion, and a jump part, given by two integrals with

respect to a Poisson random measure. One of the Poisson integrals represent large jumps,

the other one integrates over small jumps. The big jumps are often restricted to be �nite

but the small jumps can occur in�nitely often. If that is the case the Lévy process is

called in�nitely active.

Theorem 2.4 (Lévy-Itô decomposition). Let X(t) be a Lévy process on R and ν it's

Lévy measure satisfying∫
|x|≤1

|x|2ν(dx) <∞,

∫
|x|≥1

ν(dx) <∞ (2.5)

and let JX be its associated jump measure from (2.3), which is in fact a Poisson random

measure. There exists a scalar α ∈ R and a Brownian motion B with variance σ such

that

X(t) = αt+B(t) +X l(t) + lim
ϵ↓0

Xϵ(t), where

X l(t) =

∫ t

0

∫
|x|≥1

xJX(ds× dx), and

Xϵ(t) =

∫ t

0

∫
ϵ≥|x|>1

x
(
JX(ds× dx)− ν(dx)dt

)
.

The triplet (σ, ν, α) completely characterizes the Lévy process and is therefore often

called the characteristic triplet. The condition (2.5) ensures that the processes doesn't

blow up because of in�nite number of jumps around zero. Also the second condition

ensures that the number of jumps of absolute size above 1 is �nite.
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An example of a Lévy process of pure jump type is the compound Poisson process.

De�nition 2.5. A compound Poisson process with intensity λ > 0 and jump size distri-

bution f is a stochastic process X(t) de�ned by

X(t) =

P (t)∑
i=1

Yi

where jump sizes Yi are i.i.d. with distribution f and P (t) is a Poisson process with

intensity λ independent from (Y )i≥1.

The sample paths of a compound Poisson process X(t) are càdlàg piecewise constant

functions and the jump times (Ti)i≥1 can be expresses as partial sums of independent

exponential random variables with parameter λ. Every compound Poisson process X(t)

can be associated to a random measure on [0,∞)× R that describe the jumps of X:

JX(B) = #{
(
t,X(t)−X(t−)

)
∈ A},

for measurable A ⊂ [0,∞) × R. The jump measure JX is in fact a Poisson random

measure with intensity measure µ(dx × dt) = ν(dx)dt = λf(dx)dt. The measure ν

is thereby the Lévy measure as in (2.4). The compound Poisson process can be thus

expresses as

X(t) =
∑

s∈[0,t]

∆X(s) =

∫ t

0

∫
Rd

xJX(ds× dx).

2.4 Jump-Di�usion Processes

In the following let B(t) =
(
B1(t), . . . , Bn(t)

)
be a n-dimensional Brownian motion,

whose components are mutually independent standard Brownian motions. Further there

aremmutually independent jump process given by the Poisson randommeasuresNh(dt, dy)

with corresponding jump size functions γh, and intensity measures νh(dy)dt which do

not depend on the time variable for h = 1, . . . ,m. The Brownian motions and jump

processes are assumed to be mutually independent too.

A jump-di�usion process is a stochastic process X(t) that follows a stochastic di�erential

equation of the form

dX(t) = α(t,X(t))dt+ β(t,X(t))ᵀdB(t) +

m∑
h=1

∫
R\{0}

γh
(
s, y,X(t−)

)
Nh(ds, dy), (2.6)

for some progressively measurable processes α,β, and γh, h = 1, . . . ,m. Note that the

name jump-di�usion has nothing to do with a di�usion even if we neglect the jumps. The

parameter functions are time dependent and random which does not hold for a di�usion.
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Nevertheless, the name jump-di�usion is very common in the literature for processes like

this.

In the case that the parameter functions are time homogeneous and non-random, i.e.

dX(t) = α(X(t))dt+ β(X(t))ᵀdB(t) +

m∑
h=1

∫
R\{0}

γh
(
y,X(t−)

)
Nh(ds, dy). (2.7)

we call a solution to (2.7) a Lévy di�usion. In that case X(t) is a Lévy process. Addi-

tionally, if there are also no jumps, then the process is a di�usion:

dX(t) = α(X(t))dt+ β(X(t))ᵀdB(t). (2.8)

The following theorem, borrowed from Øksendal and Sulem (2007), gives a result on the

existence and uniqueness of solutions to jump-di�usion stochastic di�erential equations.

If the parameter functions satisfy at most linear growth and Lipschitz continuity then a

solution exists and is unique.

Theorem 2.6. Consider the stochastic di�erential equation (2.6) with X(0) ∈ x0 ∈ R
where α : [0, T ] × R → R, β : [0, T ] × R → Rn, and γh : [0, T ] × R × R → R, for
h = 1, . . . ,m satisfy the following conditions

1. There exists a constant C1 <∞ such that

||β(t, x)||2 + |α(t, x)|2 +
∫
R\{0}

m∑
h=1

|γh(t, x, z)|2νk(dz) ≤ C1(1 + |x|2) (2.9)

for all x ∈ R.

2. There exists a constant C2 <∞ such that

||β(t, x)− β(t, y)||2 + |α(t, x)− α(t, y)|2

+

m∑
h=1

∫
R\{0}

|γh(t, x, z)− γh(t, y, z)|2νh(dz) ≤ C2|x− y|2
(2.10)

for all x, y ∈ R.

Then there exists a unique càdlàg adapted solution X(t) such that

E[|X(t)|2] <∞ for all t ∈ [0, T ].

We will often consider stochastic di�erential equations that have a geometric form which

means that parameter functions have the form α(t, x) = xα̃(t), β(t, x) = xβ̃(t), and

γh(t, y, x) = xγ̃h(t, y), h = 1, . . . ,m. The stochastic di�erential equation (2.6) becomes

then

dX(t) = X(t)α(t)dt+X(t)β(t)ᵀdB(t) +

m∑
h=1

∫
R\{0}

X(t−)γh
(
s, y)

)
Nh(ds, dy). (2.11)
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In this case the conditions for the existence and uniqueness of a solution to (2.11) given

in (2.9) and (2.10) simplify to

||β(t)||2 + |α(t)|2 +
∫
R\{0}

m∑
h=1

|γh(t, z)|2νk(dz) <∞ (2.12)

for all t ∈ [0, T ].

2.5 Stochastic Calculus with Jump-Di�usions

As before we are going to work with an n-dimensional Brownian motion B(t), whose

components are mutually independent standard Brownian motions, and m mutually

independent jump processes given by the Poisson random measures Nh(dt, dy) with cor-

responding jump size functions γh, and intensity measures νh(dy). In a general set up the

intensity measures can be time dependent, however this will not be the case in this thesis.

The Brownian motions and jump processes are assumed to be mutually independent.

For our purposes it is enough to consider one dimensional processes that are driven by

several sources of randomness:

dX(t) = α(t)dt+ β(t)ᵀdB(t) +
m∑

h=1

∫
R\{0}

γh(t, y)Nh(dt, dy), t ∈ [0, T ]. (2.13)

For convenience reasons we assume that the number of jumps that can occur during

any time interval is �nite. This allows us to neglect certain convergence problems when

dealing with in�nite active jumps (see Cont and Tankov (2003) for details).

For a jump-di�usion process X denote by Xc its continuous parts. Then Itô's formula for

jump-di�usions is basically the same as Itô's formula for continuous processes (Brownian

motion) but with adding the jump increments.

Theorem 2.7 (Itô's Formula for Jump-Di�usions). Let X(t) be a jump-di�usion process

as in (2.13). If f ∈ C1,2([0, T ],R) then

df
(
t,X(t)

)
=
∂f

∂t

(
t,X(t−)

)
dt+

∂f

∂x

(
t,X(t−)

)
dXc(t) +

1

2

∂2f

∂x2
(
t,X(t−)

)
β(t)β(t)ᵀdt

+
m∑

h=1

∫
R\{0}

{
f
(
t,X(t−) + γh(t, y)

)
− f

(
t,X(t−)

)}
Nh(dt, dy)

(2.14)
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for t ∈ [0, T ]. In other form, we have

df
(
t,X(t)

)
=
∂f

∂t

(
t,X(t−)

)
dt+

∂f

∂x

(
t,X(t−)

)
α(t)dt

+
∂f

∂x

(
t,X(t−)

)
β(t)ᵀdB(t) +

1

2

∂2f

∂x2
(
t,X(t−)

)
β(t)β(t)ᵀdt

+

m∑
h=1

∫
R\{0}

{
f
(
t,X(t−) + γh(s, y)

)
− f

(
t,X(t−)

)}
Nh(dt, dy).

Denote by ∆X(t) the size of the jump (possibly zero) at time t. Then Itô's formula can

also be expressed as

f
(
t,X(t)

)
= f

(
0, X(0)

)
+

∫ t

0

∂f

∂t

(
s,X(s−)

)
ds

+

∫ t

0

∂f

∂x

(
s,X(s−)

)
dX(s) +

1

2

∫ t

0

∂2f

∂x2
(
s,X(s−)

)
β(s)β(s)ᵀds

+

∆X(s)∑
0≤s≤t

[
f
(
s,X(s−) + ∆X(s)

)
− f

(
s,X(s−)

)
−∆X(s)

∂f

∂x

(
s,X(s−)

)]
.

Note, however, that in the case of an in�nitely active jump process the sum involving

the jump terms can be in�nite. In that case, the sum

∆X(s)∑
0≤s≤t

[
f
(
s,X(s−) + ∆X(s)

)
− f

(
s,X(s−)

)
−∆X(s)

∂f

∂x

(
s,X(s−)

)]
(2.15)

doesn't necessary converge. We therefore often assume that f and its two derivatives

are bounded by a constant C. Then

|f
(
s,X(s−) + ∆X(s)

)
− f

(
s,X(s−)

)
−∆X(s)

∂f

∂x

(
s,X(s−)

)
| ≤ C∆X(s)2

and the sum in (2.15) is indeed �nite. However, as the number of jumps are assumed

to be �nite in a �nite time interval there is no need to worry about these convergence

issues.

Itô's formula takes a similar form in the case that the underlying process is a geometric

jump di�usion Y (t):

dY (t) = Y (t−)
[
α(t)dt+ β(t)ᵀdB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)
]
. (2.16)

Theorem 2.8 (Itô's Formula for geometric Jump-Di�usions). Let Y (t) be a geometric

jump-di�usion process as in (2.16). If f ∈ C1,2([0, T ],R) then

df
(
t, Y (t)

)
=
∂f

∂t

(
t, Y (t−)

)
dt+ Y (t)

∂f

∂x

(
t, Y (t−)

)
α(t)dt

+ Y (t)
∂f

∂x

(
t, Y (t−)

)
β(t)ᵀdB(t) +

1

2
Y (t)2

∂2f

∂x2
(
t, Y (t−)

)
β(t)β(t)ᵀdt

+

m∑
h=1

∫
R\{0}

{
f
(
t, Y (t−)[1 + γh(t, z)]

)
− f

(
t, Y (t−)

)}
Nh(dt, dz).

(2.17)
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for t ∈ [0, T ].

A proof can be found in Øksendal and Sulem (2007).

Strongly related to Itô's formula is Itô's product rule that determines the dynamics of the

product of two stochastic processes. It is an immediate consequence of the multivariate

Itô's formula. As before we denote for a jump-di�usion process X(t) its change in the

continuous part by dXc(t) and its change in the discontinuous part by ∆X(t), so that

dX(t) = dXc(t) + ∆X(t).

Lemma 2.9. Let X(t) and Y (t) be two jump-di�usion processes. Itô's product rule

determines the change of the product of the two processes by

d
(
X(t)Y (t)

)
=X(t−)dY (t) + Y (t−)dX(t) + dX(t)dY (t)

=X(t−)dY c(t) + Y (t−)dXc(t) + dXc(t)dY c(t)

+X(t−)∆Y (t) + Y (t−)∆X(t) + ∆X(t)∆Y (t).

(2.18)

Remark.

1. Products that may arise in equation (2.18) are, in Itô's mean square sense, as the

following

dtdt = 0, dBi(t)dt = 0, dt

∫
R\{0}

γh(t, y)Nh(dt, dy) = 0,

and

dBi(t)

∫
R\{0}

γh(t, y)Nh(dt, dy) = 0,

for i = 1, . . . , n, and h = 1, . . . ,m.

2. Products of Brownian motions and Poisson measure integrals are, respectively,

dBi(t)dBj(t) =

{
0, if i ̸= j

dt, if i = j

for i, j = 1, . . . , n, and∫
R\{0}

γh(t, y)Nh(dt, dy)

∫
R\{0}

γ̃l(t, y)Nl(dt, dy)

=

 0, if h ̸= l∫
R\{0} γh(t, y)γ̃h(t, y)Nh(dt, dy), if h = l

for h, l = 1, . . . ,m.
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3. The last term of the �rst equation in (2.18), dX(t)dY (t) is the change of the

quadratic variation process. The quadratic variation process for two processes (at

least semimartingales) is de�ned through

[X,Y ]t := X(t)Y (t)−
∫ t

0
X(s−)dY (s)−

∫ t

0
Y (s−)dX(s), t ∈ [0, T ].

It is di�erent from the ⟨X,Y ⟩ process, which consists only of the continuous parts

of [X,Y ], i.e. ⟨X,Y ⟩ = [X,Y ]c.

As an example, if it is assumed that the two processes X and Y are geometric jump-

di�usions and have dynamics

dX(t) = X(t−)
[
α(t)dt+ β(t)ᵀdB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)
]
,

and

dY (t) = Y (t−)
[
α̃(t)dt+ β̃(t)ᵀdB(t) +

m∑
h=1

∫
R\{0}

γ̃h(t, y)Nh(ds, dy)
]
,

respectively, then their product is following the stochastic di�erential equation

d
(
X(t)Y (t)

)
= X(t−)Y (t−)

[ (
α̃(t) + α(t) + β̃(t)ᵀβ(t)

)
dt+

(
β̃(t) + β(t)

)ᵀ
dB(t)

+

m∑
h=1

∫
R\{0}

(
γ̃h(t, y) + γh(t, y) + γ̃h(t, y)γh(t, y)

)
Nh(dt, dy)

]
.

The section is concluded discussing a special form of a jump process which is a general-

ization of the compound Poisson process introduced in De�nition 2.5. Consider a pure

jump process X that is the solution to the stochastic di�erential equation

dX(t) =

∫
R\{0}

γ(t, y)N(dt, dy)

for some Poisson random measure N(t, ·). Assume further that the dynamics of the

processX can be written in the form dX(t) = Γ(t)dP (t) for a Poisson process P (t), where

Γ(t) represents the size of the jump at time t if a jump actually occurs. If t1, t2, . . . denote

the (random) jump times of the Poisson process, then the process X has the solution

X(t) = X(0) +

∫ t

0

∫
R\{0}

γ(s, y)N(ds, dy) = X(0)

∫ t

0
Γ(s)dP (s) = X(0) +

P (t)∑
ℓ=1

Γ(tℓ)

The process is a generalization of the compound Poisson process since the jump-sizes

are now time dependent Γ(t). If we are carrying out a similar analysis for a geometric

jump-process of the form

dY (t) = Y (t−)

∫
R\{0}

γ(s, z)N(ds, dz) = Y (t−)

∫
R\{0}

Γ(s)dP (s), (2.19)
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it is necessary to use Itô's formula for jump-di�usions to get to a solution. Applying Itô's

formula Theorem 2.17 to log(x) and Y (t) shows since log(y + yγ)− log(y) = log(1 + γ)

that

d log(Y (t)) =

∫
R\{0}

log
(
1+γ(t, z)

)
N(dt, dz) = log (1 + Γ(t)) dP (t) =

dP (t)∑
ℓ=1

log (1 + Γ(tℓ))

The solution to (2.19) can then be deduced to be

Y (t) = Y (0)

P (t)∏
ℓ=1

(1 + Γ(tℓ)) .

We will come back to this particular case when we discuss the stock market model in

Chapter 3.

2.6 Martingales, Compensated Jump Processes and Change

of Measure

Throughout this thesis the concept of a martingale will play a central role. A martingale

is a stochastic càdlàg process X(t) that is adapted to a �ltration Ft, E[|X(t)|] is �nite
for any t ∈ [0, T ], and

E[X(t)|Fs] = X(s), 0 ≤ s ≤ t ≤ T.

Typical examples for martingales are the Brownian motion B(t) or the geometric Brow-

nian motion exp(−1
2a

2t + aB(t)) for some a ∈ R. A Poisson process is in general not

a martingale. However a compensated version of a Poisson process can be formed that

is a martingale. For a Poisson process N(t) with intensity λ the compensated Poisson

process is

Ñ(t) = N(t)− λt.

It represents a centered version of the Poisson process. The martingale property follows

from

E[Ñ(t)|Fs] = E[N(t)−N(s)|Fs] +N(s)− λt

= E[N(t)−N(s)] +N(s)− λt = N(s) + λ(t− s)− λt = Ñ(s).

Similarly, a jump-process
∫
R\{0} γ(t, y)N(dt, dy) constructed through a Poisson random

measure N(·, ·) is in general not a martingale. However, integrating with respect to the

compensated Poisson random measure Ñ(dt, dy) := N(dt, dy)− ν(dy)dt, where ν is the

intensity measure of the Poisson random measure, makes the process a martingale (given

that γ satis�es the integrability condition). That is∫
R\{0}

γ(t, y)Ñ(dt, dy) =

∫
R\{0}

γ(t, y)N(dt, dy)−
∫
R\{0}

γ(t, y)ν(dy)dt
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is a martingale as long as
∫
R\{0} |γ(t, y)|ν(dy) <∞ for all t ∈ [0, T ].

Often a particular stochastic process is not a martingale but can be transformed into

a martingale by changing the underlying probability measure. This procedure is called

change of probability measure and its central result is the Girsanov theorem. The prob-

abilities of the possible paths of a stochastic process are thereby reweighed, which alters

the probability distribution of the random outcomes of the process. One thereby changes

the probability measure from the original measure P to the new measure Q. To do this it

is necessary that the new measure Q is equivalent to P . This means that all null sets of

P are also null sets of Q and vice versa. In other words that means that events that can

not happen in P can also not happen in Q and vice versa. For example, if we change the

probability law of a Brownian motion then the sample paths still have to be continuous

under Q. On the other hand, if we change the law of a jump process with �xed jump

size c then under the new measure the jump size also has to be of size c. However, the

intensity of a measure changed process may vary because it doesn't e�ect almost surely

properties of the sample paths.

Theorem 2.10 (Girsanov's theorem). Assume that there exist predictable processes

θD(t) = (θD1 (t), . . . , θDn (t)) ∈ Rn and θJ(t, y) = (θJ1 (t, y), . . . , θ
J
m(t, y)) ∈ Rm, with

θJk > 0, for k = 1, . . . ,m, such that the process

Zθ(t) := exp
(
− 1

2

∫ t

0
||θD(s)||2ds+

∫ t

0
θD(s)ᵀdB(s)

+
m∑

h=1

∫ t

0

∫
R\{0}

log θJh (s, y)Nh(ds, dy) +
m∑

h=1

∫ t

0

∫
R\{0}

(
1− θJh (s, y)

)
νh(dy)ds

)
(2.20)

exists for 0 ≤ t ≤ T and satis�es

E
[
Zθ(T )

]
= 1.

De�ne the probability measure Q on FT by

dQ = Zθ(T )dP.

De�ne the process BQ(t) ∈ Rn and the random measures ÑQ
h (dt, dy) ∈ N ∪ {0} by

dBQ(t) = dB(t)− θD(t)dt, (2.21)

and

ÑQ
h (dt, dy) = Nh(dt, dy)− θJh (t, y)νh(dy)dt, h = 1, . . . ,m. (2.22)

Then BQ is a n-dimensional standard Brownian motion with respect to Q and ÑQ
h ,

h = 1, . . . ,m, are compensated Poisson random measures under Q, in the sense that the
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processes

Mh(t) :=

∫ t

0

∫
R\{0}

ρh(s, y)Ñ
Q
h (ds, dy), t ∈ [0, T ], h = 1, . . . ,m,

are local Q-martingales, for all predictable process ρh(s, y) that satisfy∫ T

0

∫
R\{0}

ρh(s, y)
2θJh (s, y)

2νh(dy)ds <∞, a.s.

for all h = 1, . . . ,m.

For a proof see Øksendal and Sulem (2007).

Remarks.

1. In case that the processes θD and θJ satisfy θDj (t) = 0 for j = 1, . . . , n, and

θJh (t) = 1 for h = 1, . . . ,m and t ∈ [0, T ] a.s. the original probability measure can

be recovered. That is Zθ(t) = 1, t ∈ [0, T ], and Q = P a.s.

2. The measure transformation in Grisanov's theorem is often stated without given

explicit formulas for the martingale Zθ(t), t ∈ [0, T ], and the new Brownian motions

and Poisson random measures. That is, given a (Ft)-martingale Z(t) with Z(0) =

1, we can always change the probability measure from P to Q via dQ
dP |FT

= Z(T ).

Girsanov's change of measure theorem can be used to transform the jump-di�usion pro-

cess given in (2.13) into a local Q martingale. For processes θD and θJ as given in

the above theorem, the Brownian motion and Poisson random measure can be changed

according to (2.21) and (2.22). The dynamics of the jump-di�usion X(t) as de�ned in

(2.6) are then given in terms of the Q measure by

dX(t) =
(
α(t) + β(t)ᵀθD(t) +

m∑
h=1

∫
R\{0}

γh(t, y)θ
J
h (t, y)νh(dy)

)
dt

+β(t)ᵀdBQ(t) +

m∑
h=1

∫
R\{0}

γh(t, y)N
Q
h (dt, dy), t ∈ [0, T ].

If the process θ = (θD,θJ) actually satis�es for t ∈ [0, T ] the equation

α(t) + β(t)ᵀθD(t) +

m∑
h=1

∫
R\{0}

γh(t, y)θ
J
h (t, y)νh(dy) = 0,

then the process X(t) becomes a local Q-martingale:

dX(t) = β(t)ᵀdBQ(t) +

m∑
h=1

∫
R\{0}

γh(t, y)N
Q
h (dt, dy), t ∈ [0, T ].
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The martingale Zθ is essential in the change of probability measure as described in

Girsanov's theorem above. It will play a crucial role whenever we utilize martingale

methods in the following chapters. It will be important to understand the dynamics of

this process Zθ.

Lemma 2.11. The process Zθ(t) de�ned in (2.20) is a (local) martingale and it's dy-

namics are given by the SDE

dZθ(t) = Zθ(t−)
n∑

j=1

θDj (t)dBj(t)− Zθ(t−)
m∑

h=1

∫
R\{0}

(1− θJk (t, y))Ñh(dt, dy). (2.23)

Proof. From (2.20) follows that

d logZθ(t) = −1

2

n∑
j=1

|θDj (t)|2dt+
n∑

j=1

θDj (t)dBj(t)

+
m∑

h=1

∫
R\{0}

log θJh (t, y)Nh(dt, dy) +
m∑

h=1

∫
R\{0}

(
1− θJh (t, y)

)
νh(dy)dt.

Applying Itô's formula to f(x) = ex with x = logZθ(t) leads to the result.

Further, Itô's formula can be used to calculate the dynamics of the reciprocal of Zθ.

Taking the function f(x) = 1/x and applying Itô's formula Theorem 2.14 on Zθ and f ,

one can see since f ′(x) = −1/x2, f ′′(x) = 2/x3, and f(x+∆x)−f(x) = f(xθ))−f(x) =
1/x (1− θ)/θ that

d
1

Zθ(t)
= − 1

Zθ(t−)

n∑
j=1

θDj (t)dBQ
j (t)+

1

Zθ(t−)

m∑
h=1

∫
R\{0}

1− θJh (t, y)

θJh (t, y)
ÑQ

h (dt, dy). (2.24)

Independent from how the martingale Zθ in Girsanov's theorem looks like, as long as

Z(0) = 1 a.s. it can be used to change the measure. When calculating with conditional

expectations the so called generalized Bayes theorem can be used to change between Q

and P measure.

Lemma 2.12. Let Z be a Ft-martingale with Z(0) = 1 for which we change the prob-

ability measure from P to Q through dQ = Z(T )dP . For �xed t ∈ [0, T ] let Y be a

Ft-measurable random variable satisfying

EQ[|Y |] <∞.

Then Bayes' rule states that for s ≤ t

EQ[Y |Fs] =
1

Z(s)
E[Y Z(t)|Fs], P − a.s., Q− a.s.
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Proof. Let s ≤ t ≤ T and A ∈ Fs then

EQ
[
1A

1

Z(s)
E(Y Z(t)|Fs)

]
= E

[
1AE(Y Z(t)|Fs)

]
= E

[
1AE(Y Z(t))

]
= EQ[1AY ].

The section is concluded with the martingale representation theorem. The theorem

has a crucial role in the creation of replication strategies. It states that every (Ft)-

martingale can be represented in terms of a a sum of integrals with respect to the

Brownian motions and compensated Poisson ranom measures. For a Poisson measure

N(dt, dy) with Lévy measure ν(dy) denote as before the compensated Poisson random

measure by Ñ(dt, dy) := N(dt, dy)− ν(dy)dt.

Theorem 2.13 (Martingale Representation Theorem). Any (P,Ft)-martingale M(t)

has the representation

M(t) =M(0) +

∫ t

0

n∑
j=1

aDj (s)dBj(s) +

∫ t

0

m∑
k=1

∫
E
aJk (s, y)Ñk(ds, dy)

where aDj , j = 1, . . . , n, are predictable and square integrable, and aJk are predictable,

marked processes, that are integrable with respect to νk(dy), k = 1, . . . ,m.

For a proof (of the one dimensional case) see Runggaldier (2003). For a more generalized

treatment, including more information on Itô's formula and change of measure the reader

is referred to Jacod and Shiryaev (2003).
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Chapter 3

Stock Prices and Portfolio Models

under Jump-Di�usions

Models where the stock price follows a geometric Brownian motion have been very suc-

cessful in the �nancial literature. The �rst to use such a model was Samuelson (1969).

Later it was formulated within the framework of Itô's stochastic calculus by Merton

(1969, 1971) and the relationship to martingale methods have been developed by Harri-

son and Kreps (1971) and Harrison and Pliska (1981). First geometric Brownian motion

models, as in Black and Scholes (1971) and Merton (1973), had the simple form

dS(t) = αS(t)dt+ σS(t)dB(t).

They were then extended to allow parameters that are time dependent or random, and

Brownian motions that are multidimensional. Although a geometric Brownian motion

model is not necessary a very precise model for a stock price it remains a popular model

because of its simplicity. Measure change techniques as developed in Pliska (1986),

Cox and Huang (1989), and Karatzas, Lehoczky, and Shreve (1987) can be applied

to transform the discounted stock prices into martingales under a unique equivalent

martingale measure (EMM) Q.

Despite the great success of the Black-Scholes model it has several shortcomings. Sev-

eral empirical research have been shown that stock returns are not normal distributed.

Rather, empirical stock return distributions, as investigated in Anderson et al. (2002),

are skewed negatively and are leptokurtic, with higher peaks and heavier tails. The

volatility smile of option prices shows that implied volatility is not constant as in the

Black-Scholes model (cf. Bates (1996). Further, the Black-Scholes model can not incor-

porate sudden price movements as can be observed in crashes and rallies.

Several alternative models have been suggested to deal with these shortcomings. Stochas-
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tic and local volatility models have been developed in Cox and Ross (1976), Hull and

White (1987), Stein and Stein (1991) and Heston (1993) among others. They allow the

volatility change over time, either by using a random factor as in stochastic volatility

models or in a deterministic sense when using local volatility models. This allows the

volatility to vary over time, and allows periods of high volatility as well as periods with

relatively low volatility. Another type of model that has become popular is that of Lévy

process models. Lévy models have been investigated for example in Barndor�-Nielson

and Shephard (2001) and Eberlein (2002).

Similar to Lévy processes are jump-di�usions which also allow the volatility and the

distribution of jump-amplitudes to vary in time. Among the �rst to use jump-di�usion

models was Merton (1976) who suggested a model with log-normal distributed jumps. A

double exponential jump model is analysed in Kou (2002), and log-uniform distributed

jumps are considered in Yan and Hanson (2006). Their complexity ranges from com-

pound Poisson processes to processes that involve Poisson random measures. This chap-

ter will introduce the jump-di�usion model framework.

3.1 The Stock Price Model

In this section the stock price model that follows a jump-di�usion process is introduced.

It is assumed that there are k(6 m + n) stocks in the market that are driven by n

mutually independent Brownian motions B1(t), · · · , Bn(t) and m mutually indepen-

dent jump processes that are determined by homogeneous Poisson random measures

N1(dt, dy1), · · · , Nm(dt, dym) with intensities ν1(dy), · · · , νm(dy) (cf. Section 2.4), where

the m jump processes are also independent of the n Brownian motions. All of these pro-

cesses are assumed to be de�ned on a common probability space. The stock prices are

assumed to follow geometric jump-di�usion processes in the sense that they follow the

stochastic di�erential equations

dSi(t)

Si(t−)
= αi(t)dt+

n∑
j=1

ξij(t)dBj(t) +

m∑
h=1

∫
R\{0}

γih(t, y)Nh(dt, dy), (3.1)

for 1 6 i 6 k and t ∈ [0, T ]. Thereby represents T (> 0) the investment horizon which

will be assumed to be �nite. αi(t) represents the drift rate of the ith asset, ξij(t) the

volatility of the ith asset with respect to the jth Brownian motion, and γiℓ(t, y) is such

that
∫
R\{0} γij(t, y)Nj(dt, dy) describes the e�ect of the j

th jump process on the ith stock

price at time t. The model parameters αi, ξij , and γiℓ are assumed to be progressively

measurable processes such that all the involved integrals exist, and γiℓ are assumed

further to have the property that 1 +
∫
R\{0} γiℓNℓ(dt, dy) ≥ 0 so that all the Si remain
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non-negative in [0, T ] (cf. Runggaldier (2003)). In particular, that means that the model

parameters have to satisfy∫ T

0
|αi(t)|2dt <∞,

∫ T

0
|ξij(t)|2dt <∞, and

∫ T

0

∫
R\{0}

|γih(t, y)|2νh(dt, dy) <∞

(3.2)

for i = 1, . . . , k, j = 1, . . . , n, and h = 1, . . . ,m, to guarantee the existence and unique-

ness of a solution to (3.1). Note also that we have assumed that the Poisson random

measures are not in�nitely active to make the analysis simpler. If this assumption is

dropped then we could replace Nh by its compensated version Ñh. This would also

require some corresponding modi�cations later.

As the underlying �ltration (Ft), we take the canonical �ltration constructed by the

Brownian motions Bi, 1 6 i 6 n, the Poisson random measures Nj , 1 6 j 6 m, as well

as all null sets of the underlying probability measure P :

Ft := σ
{(
Bi(s), Nj((0, s], A), C

) ∣∣ A ∈ B(R \ {0}), C ∈ N , s ∈ [0, t],

1 6 i 6 n, 1 6 j 6 m},

with N being the collection of all P -null sets and B(R \ {0}) being the Borel-σ-algebra

on R \ {0}.

In the following let us discuss the e�ects that the jump processes have on the stock prices.

As mentioned before it is required that
∫
R\{0} γih(t, y)Nh(dt, dy) ≥ −1, a.s., to ensure

that the stock prices are non-negative. In a model driven by Brownian motions (without

jumps) the stock price is always positive. However, in the presents of jumps this is no

longer the case. Due to the nature of the model, the m underlying jump processes won't

jump at the same time almost surely. In fact, any two jump processes will not jump at

the same time almost surely. If, however, one of them jumps is so big that the stock price

jumps to zero, then the stock price will not recover and will stay at zero until the end

of the investment horizon [0, T ]. This is the case when
∫
R\{0} γih(t, y)Nh(dt, dy) = −1

occurs for any of the h = 1, . . . ,m. Then the �rm goes bankrupt and its stock is

worthless. This conditions on jump-size distributions is often stated in the literature

(e.g. Runggaldier (2003)), however a similar non-bankruptcy condition on the trading

strategy is often not clearly pointed out and will be discussed later.

A more restrictive condition on the jump process that guarantees positivity of the stock

process is that
∫
R\{0} γih(t, y)Nh(dt, dy) > −1 for all h = 1, . . . ,m νh-a.s. Then it is

guaranteed that the ith stock price is always positive and no bankruptcy can occur. Let

this be the case for a moment so that the stock price SDE (3.1) can be solved using a log
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transform. Using Itô's formula Theorem 2.17 applied to (3.1) for f(x) = log(x) leads to

d logSi(t) =
(
αi(t)−

1

2

n∑
j=1

ξ2ij(t)
)
dt+

n∑
j=1

ξij(t)dBj(t)

+

m∑
h=1

∫
R\{0}

log(1 + γih(t, y))Nh(dt, dy),

(3.3)

for i = 1, . . . , k. De�ne the log drift rate by

µi(t) := αi(t)−
1

2

n∑
j=1

ξ2ij(t).

Then the SDE (3.3) can be solved to

Si(t) =Si(0) exp

∫ t

0
µi(s)ds+

n∑
j=1

∫ t

0
ξij(s)dBj(s)

+

m∑
h=1

∫ t

0

∫
R\{0}

log(1 + γih(s, y))Nh(ds, dy)

)
,

(3.4)

for i = 1, . . . , k. Following the discussion at the end of Section 2.5 assume that the jump

processes can be written in the form∫
R\{0}

γih(t, y)Nh(dt, dy) = Γih(t)dPh(t) (3.5)

for some Poisson processes Ph and jump sizes Γih. Also, let th1, th2, . . . denote the jump

times of Nh(t). Then the stock prices can be written in the form

Si(t) = Si(0) exp
(∫ t

0
µi(s)ds+

n∑
j=1

∫ t

0
ξij(s)dBj(s)

) m∏
h=1

Ph(t)∏
ℓ=1

(
1 + Γih(thℓ)

)
,

for i = 1, . . . , k, and with the convention that
∏0

l=1 = 1.

Now consider the case when stock prices can actually jump to zero, i.e. 1 + Γih(t) = 0

is a possible outcome when a jump occurs. The time a company goes bankrupt and its

stock price jumps to zero is then the smallest t ≥ 0 such that

m∏
h=1

Ph(t)∏
ℓ=1

(
1 + Γih(thℓ)

)
= 0.

Denote the time of bankruptcy of the ith stock by τi, so that

τi = inf
{
t ≥ 0

∣∣∣ m∏
h=1

Ph(t)∏
ℓ=1

(
1 + Γih(thℓ)

)
= 0
}
.

Clearly, τi is a stopping time and since a stock that has jumped to zero won't recover,

the stock prices process Si(t) is actually a stopped stochastic process with Si(t) > 0 for

t < τi and Si(t) = 0 for t ≥ τi.
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The stock price model we consider is a fairly general one. If one makes some simpli�cation

one can obtain simpler models. For example, the stock prices become Lévy processes if

the model coe�cient are constant and γih are functions of y only, i.e.

dSi(t)

Si(t−)
= αidt+

n∑
j=1

ξijdBj(t) +

m∑
h=1

∫
R\{0}

γih(y)Nh(dt, dy).

If on the other hand, there are no jumps in (3.1),

dSi(t)

Si(t−)
= αi(t)dt+

n∑
j=1

ξij(t)dBj(t),

then one recovers the general Brownian motion driven model as used, for example, in

Karatzas et al. (1987).

3.2 The Risk-less Asset and State Price Densities

Apart from the k stocks it is assumed that there is a risk-less asset in the market. This

is often either assumed to be a bank account or a zero coupon bond with no default risk.

The risk-free asset is described by the ordinary di�erential equation

dS0(t) = S0(t)r(t)dt, t ≥ 0; S0(0) = 1, (3.6)

where r(t) is the risk-free rate process. The risk-free rate process r(t) is a progressively

measurable process w.r.t. (Ft) that satis�es
∫ T
0 |r(t)|dt <∞ a.s. The risk-less asset can

be written as

S0(t) = e
∫ t
0 rsds.

Remark. Since
∫ T
0 |r(t)|dt is a.s. �nite the process S0(t) as well as the process 1/S0(t),

t ∈ [0, T ], is a.s. �nite. This can be seen by observing for t ∈ [0, T ] that
∫ t
0 |rs|ds ≤∫ T

0 |rs|ds < ∞. But this shows that
∫ t
0 rsds ≤

∫ t
0 |rs|ds < ∞ as well as −

∫ t
0 rsds ≤∫ t

0 |rs|ds <∞ for t ∈ [0, T ].

The discounted stock prices are the stock prices divided by the risk-less asset price

process, i.e. Si(t)/S0(t) for i = 1, . . . , k. They are denoted by an over line, so that

Si(t) := Si(t)/S0(t). It can be easily veri�ed that

dSi(t)

Si(t−)
= αi(t)dt+

n∑
j=1

ξij(t)dBj(t) +

m∑
k=1

∫
R\{0}

γik(t, y)Nh(dt, dy) (3.7)

with

αi(t) = αi(t)− r(t),
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for all i = 1, . . . , k. In the �nancial literature it is common to change the measure from P

to Q using Girsanov's Theorem 2.10 such that the discounted stock prices become (local)

martingales. This measure change requires that the non-martingale drift in the expres-

sion (3.7) becomes zero. However, unlike models that are driven by Brownian motions

only the measure change is not unique so that there are several equivalent martingale

measures (EMM) Q under which the discounted stock prices become martingales. These

measure changes can be parametrized (as already discussed in Section 2.6) by a pair of

process θ =
(
θD,θJ

)
and the Radon-Nikodym density of the measure change is then

given by dQ
dP |FT

= Zθ(T ) for Zθ as de�ned in (2.20). The next de�nition makes this idea

more rigorous.

De�nition 3.1. A jump-di�usion Girsanov kernel is a pair of predictable vector pro-

cesses θ =
(
θD,θJ

)
such that the following properties are satis�ed:

(i) θD(t) = (θD1 (t), . . . , θDn (t)) ∈ Rn and θJ(t, y) = (θJ1 (t, y), . . . , θ
J
m(t, y)) ∈ Rm, with

θJh > 0, for h = 1, . . . ,m, y ∈ R \ {0}, and t ∈ [0, T ],

(ii) Zθ de�ned as in (2.20) is actually a martingale with E[Zθ(T )] = 1.

(iii)

αi(t) +

n∑
j=1

ξij(t)θ
D
j (t) +

m∑
h=1

∫
R\{0}

γik(t, y)θ
J
k (t, y)νk(dy) = 0, (3.8)

a.s. for i = 1, . . . , k and t ∈ [0, T ].

Further, Θ is de�ned as the set containing all jump-di�usion Girsanov kernels.

Conditions (i) and (ii) in the above de�nition are the same conditions on the process θ

as in Girsanov's theorem 2.10. This means in particular that for each θ ∈ Θ a probability

measure Q can be associated through dQ = Zθ(T )dP . Condition (iii) then guarantees

that the non-martingale drift in (3.7) vanishes. In the case that there are no jumps the

condition on θ in (3.8) becomes

αi(t) +

n∑
j=1

ξij(t)θ
D
j (t) = 0, a.s. (3.9)

Given that ξ = (ξij) has full rank the Girsanov kernel is uniquely determined and the

set of all Girsanov kernels Θ is a singleton. One then calls the market model complete.

In contrast, with jumps, the market is incomplete because the Girsanov kernel is not

uniquely determined. Financial products can not perfectly hedged any more.

The probability measure Q that has been constructed in the way above is called the

martingale measure associated to θ ∈ Θ. To parametrize martingale measures in terms
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of a θ has been very popular in the �nancial literature and θ is often called the market

price of risk. The use of market prices of risk to change the drift and jump-intensity

of one dimensional jump-di�usions has been demonstrated in Runggaldier (2003). The

following result extends it to the multi-dimensional case.

Proposition 3.2. Let θ ∈ Θ. Then the discounted stock prices Si(t) are local martingales

under the new probability measure Q:

dSi(t)

Si(t−)
=

n∑
j=1

ξij(t)dB
Q
j (t) +

m∑
h=1

∫
R\{0}

γih(t, y)Ñ
Q
h (dt, dy)

for t ∈ [0, T ].

Proof. The process θ ∈ Θ corresponds to a measure Q under which, following Girsanov's

theorem,

dBQ
j (t) = dBj(t)− θDj (t)dt, and

ÑQ
h (dt, dy) = Nh(dt, dy)− θJh (t, y)νh(dy)dt

(3.10)

are Brownian motions and Poisson random measures, respectively, for j = 1, .., n, h =

1, . . . ,m, and t ∈ [0, T ]. Substituting (3.10) into (3.7) and observing (3.8), the proposi-

tion follows.

It is possible to use measure change techniques but still work under the original proba-

bility measure P . This is done using a process often called the state price density.

De�nition 3.3. For θ ∈ Θ the process de�ned by Hθ(t) := Zθ(t)/S0(t) is called the state

price density of the jump-di�usion Girsanov kernel θ = (θD,θJ).

The state price density with Girsanov kernel θ is the discounted version of the process

Zθ. It follows the stochastic di�erential equation

dHθ(t) = −Hθ(t−)r(t)dt+Hθ(t−)θD(t)dB(t)

+Hθ(t−)
m∑

h=1

∫
R\{0}

(θJk (t, y)− 1)Ñk(dt, dy), t ∈ [0, T ].
(3.11)

and starts almost surely at one, Hθ(0) = 1. The state price density Hθ(t) can be used to

transfer Q-martingale measure results into the real world measure P . Since discounted

stock prices Si are local Q-martingales the product HθSi is a local P -martingale for

θ ∈ Θ.
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3.3 Portfolios and the Wealth Process

For a �nancial agent who wants to invest into the market a trading strategy can be

described in various ways. A portfolio can be described by the amount of money invested

into the k+1 assets (stocks and bond) or it can be expressed as the proportion of money

invested into each asset. A third way would be to specify the number of assets hold for

each asset class.

Considering the third option �rst and denote by ui(t), i = 1, . . . k the number of stocks

of type i hold at time t, and by u0(t) the number of risk-free zero bonds. If the initial

endowment of an investor is x > 0, and the value of a portfolio, which we call the

wealth process of the investor, is denoted by V x
u , then the wealth process should satisfy

V x
u (0) = x and

V x
u (t) =

k∑
i=0

ui(t)Si(t).

Further, if one assumes that an investor does not withdraw or deposit further money

into the investment portfolio (such a portfolio is called self-�nancing), then the change

in portfolio should be given by

dV x
u (t) =

k∑
i=0

ui(t)dSi(t).

Substituting (3.1) then gives the in�nitesimal change in wealth as

dV x
u (t) = u0(t)S0(t)r(t)dt

+

k∑
i=1

ui(t)Si(t−)

αi(t)dt+

n∑
j=1

ξij(t)dBj(t) +

m∑
h=1

∫
R\{0}

γih(t, y)Nh(dt, dy)

 .

The term just after the sum in the above equation, ui(t)Si(t−), is however, just the

amount of money that an investor holds in asset i at time t. If this amount of money is

denoted by ϕi such that ϕi(t) := ui(t)Si(t−) then the change in the wealth equation can

be rewritten as

dV x
ϕ (t) = ϕ0(t)r(t)dt

+

k∑
i=1

ϕi(t)

αi(t)dt+

n∑
j=1

ξij(t)dBj(t) +

m∑
h=1

∫
R\{0}

γih(t, y)Nh(dt, dy)

 .

(3.12)

On the other hand, the total of the amount invested into each asset should be equal to the

wealth process at each time t, i.e.
∑k

i=0 ϕi(t) = V x
ϕ (t), and if one considers the proportion

of wealth invested into the ith stock, denoted by πi(t) then clearly πi(t) = ϕi(t)/V
x
ϕ (t−).
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Consequently, πi(t)V
x
ϕ (t−) = ϕi(t) and the proportional amount of wealth invested into

the risk-less asset is
(
V x
ϕ (t−)−

∑k
i=1 ϕi(t)

)
/V x

ϕ (t−). Thus, if the trading strategy is

represented by the proportion invested in each asset then the dynamics of (3.12) can be

written as

dV x
π (t)

V x
π (t−)

= r(t)dt+

k∑
i=1

πi(t)
((
αi(t)− r(t)

)
dt

+
n∑

j=1

ξij(t)dBj(t) +
m∑

h=1

∫
R\{0}

γih(t, y)Nh(dt, dy)

 .

This will be the usually way how trading strategies will be described in this work. The

strategy vector π determines the proportions of wealth invested into the k stocks. Once a

strategy is set for all the stocks, the proportional amount of money invested into the risk-

less bond is uniquely determined by 1−
∑n

i=1 πi(t). A positive value for πi(t) represents

a long position whereas a negative πi(t) stands for a short position in the ith asset. This

is also true for the risk-less asset in the sense that whether 1−
∑n

i=1 πi(t) is positive or

negative determines whether the investment has deposited or borrowed money from the

bank account. If any of the πi(t) exceeds one, then the agent invests more money into

the ith stock than he/she posses and it becomes necessary to short a position in at least

one other stock or bond.

Formally, a proportional portfolio strategy π(t) = (π1(t), . . . , πn(t)) is a progressively

measurable process that is a.s. bounded on [0, T ]. To write the wealth process of a trading

strategy π into a more convenient vector form the following processes are introduced. The

discounted drift rate vector α(t) is de�ned by α(t) :=
(
α1(t) − r(t), . . . , αn(t) − r(t)

)ᵀ
,

and the Brownian motion volatility matrix ξ is the matrix process given by ξ(t) =

(ξij)(t). Further, if the vector process γh(t, y) :=
(
γ1h(t, y), . . . , γkh(t, y)

)ᵀ
is introduced

for h = 1, . . . ,m, then

dV x
π (t)

V x
π (t−)

= r(t)dt+ π(t)ᵀ
[
α(t)dt+ ξ(t)dB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)

]
, (3.13)

for t ∈ [0, T ]. For a proportional portfolio process π(t) the wealth process V x
π satis�es

the stochastic di�erential equation

dV x
π (t)

V x
π (t−)

=
(
1−

k∑
i=1

πi(t)
) dS0(t)
S0(t−)

+
k∑

i=1

πi(t)
dSi(t)

Si(t−)
, t ∈ [0, T ];

V x
π (0) = x.

(3.14)

In the previous section discounted stock prices where discussed which are the stock price

processes divided by the risk-less asset S0. Similarly, the discounted wealth process
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of a trading strategy π is the process V
x
π = V x

π /S0. Since dV
x
π(t) = dV x

π (t)/S0(t) −
r(t)V x

π (t)/S0(t)dt the dynamics of the discounted wealth process V
x
π are given by

dV
x
π(t)

V
x
π(t−)

= π(t)ᵀ
[
α(t)dt+ ξ(t)dB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)

]
, (3.15)

for t ∈ [0, T ]. Its relationship to the discounted stock prices Si is considering (3.7)

dV
x
π(t)

V
x
π(t−)

=
k∑

i=1

πi(t)
dSi(t)

Si(t−)
, t ∈ [0, T ].

De�ning a portfolio in terms of proportions makes only sense when the underlying wealth

process is bigger than zero. In the absence of jumps this condition is always satis�ed as

long as the initial wealth x is positive. However, in the presence of jumps an additional

condition is needed to satisfy the positivity or non-negativity of wealth. This requirement

will be that ∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy) ≥ −1, (3.16)

for all h = 1, . . . ,m. The set of strategies π that satisfy the above requirement (3.16)

will be denoted by Π. If further, the condition (3.16) on π is stronger so that∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy) > −1, (3.17)

then the wealth process is almost surely positive. The set of strategies that satisfy this

condition shall be denoted by Π+. Similar, how the stock price SDEs have been solved,

the wealth process SDE (3.13) can be solved for a trading strategy π ∈ Π+. Taking

f(x) = log(x) and using the Itô's formula Theorem 2.17 one can derive

d log(V x
π (t)) = µπ(t)dt+ π(t)ᵀξ(t)dB(t)

+
m∑

h=1

∫
R\{0}

log(1 + π(t)ᵀγh(t, y))Nh(dt, dy),

where µπ is de�ned by

µπ(t) := r(t) + απ(t)−
1

2
σππ(t), t ∈ [0, T ], (3.18)

and σππ by

σππ(t) := π(t)ᵀσ(t)π(t), t ∈ [0, T ].

Then the wealth SDE can be solved to

V x
π (t) = x exp

(∫ t

0
µπ(s)ds+

∫ t

0
π(s)ᵀξ(s)dB(s)

+

m∑
h=1

∫ t

0

∫
R\{0}

log(1 + π(s)ᵀγh(s, y))Nh(ds, dy)

) (3.19)
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If the jumps of the stock prices can be expressed in a form (3.5) and the vector of jump

sizes is de�ned by Γh(t) := (Γ1h(t), . . . ,Γkh(t))
ᵀ, then the jumps of the wealth process

can be expressed as∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy) = π(t)ᵀΓh(t)dPh(t),

for t ∈ [0, T ]. Further, the above solution of the wealth process SDE (3.19) can then be

written as

V x
π (t) = x exp

(∫ t

0
µπ(s)ds+

∫ t

0
π(s)ᵀξ(s)dB(s)

) m∏
h=1

Ph(t)∏
ℓ=1

(
1 + π(thℓ)

ᵀΓh(thℓ)
)
,

where th1, th2, . . . denote the jump times of the hth jump process.

So far, it was assumed that an investor does not withdraw money from his/her investment

portfolio during the investment horizon. This will be allowed in what follows and the

concept of consumption will be introduced in the next de�nition.

De�nition 3.4. A consumption process c(t) is a non-negative progressively measurable

process such that ∫ T

0
c(t)dt <∞, a.s.

For initial wealth x > 0 and a portfolio process π(t) the wealth process with consumption

c(t) is assumed to satisfy the stochastic di�erential equation

dV x
π,c(t) =

(
V x
π,c(t−)r(t)− c(t)

)
dt+ V x

π,c(t−)π(t)ᵀ [α(t)dt+ ξ(t)dB(t)]

+ V x
π,c(t−)

m∑
h=1

∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy), t ∈ [0, T ].
(3.20)

If the trading strategy is expressed in absolute terms ϕ, with ϕi representing the amount

of money invested into the ith stock, then the wealth process SDE changes to

dV x
ϕ,c(t) =

(
V x
ϕ,c(t−)r(t)− c(t)

)
dt+ ϕ(t)ᵀα(t)dt

+ ϕ(t)ᵀξ(t)dB(t) +

k∑
i=1

m∑
h=1

∫
R\{0}

ϕi(t)γik(t, y)Nh(dt, dy),
(3.21)

for all t ∈ [0, T ]. Because of the consumption a wealth process might become zero or

even negative. It should not be allowed to obtain negative wealth, but consumption

processes that lead to zero wealth will be allowed. A discussion of the consequences for

the trading strategy ϕ or π will be given in Section 3.4.

Like the discounted stock prices the discounted wealth process is given as the wealth
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process divided by the risk-less asset V
x
π,c(t) := V x

π,c(t)/S0(t), so that

V
x
π,c(t) = x−

∫ t

0

1

S0(s)
c(s)ds+

∫ t

0
V

x
π,c(s−)π(s)ᵀα(s)ds

+

∫ t

0
V

x
π,c(s−)π(s)ᵀξ(s)dB(s)

+
m∑

h=1

∫
R\{0}

V
x
π,c(t−)πi(s)

ᵀγh(s, y)Nh(ds, dy).

(3.22)

From (3.22) and (3.7) it can be verify that the discounted wealth process V
x
π,c(t) can be

related to the discounted stock prices Si(t) through

dV
x
π,c(t) =

k∑
i=1

V
x
π,c(t−)πi(t)

dSi(t)

Si(t−)
− 1

S0(t)
c(t)dt.

In the previous section it has been shown that the discounted stock prices are local Q-

martingales for a martingale measure Q de�ned by a process θ ∈ Θ. Thus, ignoring

consumption the wealth process should be a local Q martingale too.

Proposition 3.5. Let x ≥ 0 be some initial wealth and (π, c) a consumption-investment

strategy. Then for θ ∈ Θ the process MQ(t), t ∈ [0, T ], de�ned by

MQ(t) := V
x
π,c(t) +

∫ t

0

1

S0(u)
c(u)du, (3.23)

is a local Q-martingale, where Q is the martingale measure corresponding to the Girsanov

kernel θ de�ned in De�nition 3.1.

Proof. Substituting

dBj(t) = dBQ
j (t) + θDj (t)dt, and

Nh(dt, dy) = ÑQ
k (dt, dy) + θJk (t, y)νk(dy)dt,

into (3.22) and observing that

αi(t) +

n∑
j=1

ξij(t)θ
D
j (t) +

m∑
h=1

∫
R\{0}

γik(t, y)θ
J
k (t, y)νk(dy) = 0,

a.s. for t ∈ [0, T ] and i = 1, . . . , k together with θ ∈ Θ reveals that

MQ(t) = x+

∫ t

0

k∑
i=1

V
x
π,c(t−)πi(u)

[ n∑
j=1

ξij(u)dB
Q
j (u) +

m∑
k=1

∫
R\{0}

γik(u, y)N
Q
h (du, dy)

]
.

Clearly, MQ(t) is a local Q-martingale.
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The state price density can be used to derive a similar result for the state price modi�ed

wealth and consumption process. If θ ∈ Θ is a jump-di�usion Girsanov kernel and (π, c)

is a consumption-investment strategy then the process

M(t) := Hθ(t)V
x
π,c(t) +

∫ t

0
Hθ(s)c(s)ds (3.24)

is a (local) P -martingale. These two results extend the results for a generalized geometric

Brownian motion model in Karatzas et al. (1987) to a jump-di�usion model. Clearly, if

there is no consumption then the discounted wealth process is a (local) martingale under

the measure Q induced by a Girsanov kernel θ ∈ Θ:

dV
x
π(t) = V

x
π(t−)π(t)ᵀ

[
ξ(t)dBQ(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Ñ
Q
h (dt, dy)

]
. (3.25)

3.4 Admissible Strategies and Budget Constraints

When allowing stock prices to jump it is necessary to take some special care. There are

two interesting things that can happen when stock prices jump. First, a stock price can

jump to zero leading to bankruptcy of the company. This is the case when the event∫
R\{0}

γih(t, y)Nh(dt, dy) = −1

happens for at least one of the h = 1, . . . ,m. In such a case the ith stock company is

going bankrupt and the stock price will not recover from zero. Interestingly, when the

model has jumps one can construct trading strategies π that lead to possible zero or

even negative wealth even though the stock prices have only done `usual' jumps. This

phenomenon has brie�y been discussed in the last section. Consider, for clarity, the case

without consumption. The wealth process of a trading strategy π could jump to zero if

(cf. (3.16)) ∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy) = −1,

is a possible event. If
∫
R\{0} π(t)

ᵀγh(t, y)Nh(dt, dy) < −1 then the wealth process could

become negative and, clearly, this should not be allowed.

We explain in the following what will happen to the trading strategy π in the case that

either a stock or even the whole wealth process becomes zero. If a stock price jumps

to zero, then the investor immediately `sells' or `buys' all all remaining stocks and sets

its trading strategy to zero. That means if, for some i = 1, . . . , k, Si(t) jumps to zero

at (random) time τi ∈ [0, T ), then ϕi(t) = πi(t) = 0 for all t ∈ [τi, T ]. The investor

will only have k assets left, instead of the k + 1 assets that he had before (assuming of

cause that no other stock has gone bust yet). In the worst case, if all assets jump to zero
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during the investment period, the investor will have to put all his funds into the risk-less

asset. However, this is a rather theoretical observation as it will be hardly happening in

practice.

Consider what happens if the wealth process becomes zero. We mentioned earlier that

we won't allow negative wealth, however we allow the possibility of zero wealth. The

wealth process can become zero because of two reasons. First, it can become zero because

of jumping stock prices, that is the investor follows a trading strategy π(t) for which∫
R\{0} π(t)

ᵀγh(t, y)Nh(dt, dy) = −1, is a possible outcome and is actually happening

during the investment period [0, T ]. The second reason is that consumption is bringing

the portfolio value down to zero. The time of bankruptcy will in either case be denoted

by

τV := inf
{
t ∈ [0, T ] : V x

π,c(t) = 0
}
.

In the case of bankruptcy the investors wealth is zero V x
π,c(τV ) =

∑k
i=1 ϕi(τV ) = 0. In

that case the investor immediately sells all long positions and buys all short positions so

that ϕi(t) := 0 for all i = 1, . . . , k and t ∈ (τV , T ]. The same is true for the proportional

trading process, so that πi(t) := 0 for all i = 1, . . . , k and t ∈ (τV , T ]. Notice, however,

that since πi(t) is a proportion process it could be set equal to any �xed number in the

case of zero wealth. It will, however, turn out to be more convenient to set it equal to

zero too.

Summarizing the above, if the ith stock goes bankrupt, the ith trading strategy is set to

zero,

ϕi(t) = πi(t) = 0, t ∈ (min{τi, τV }, T ],

where τi is the time of bankruptcy of the ith stock as described above. If the portfolio

goes bankrupt, all trading strategies are set to zero.

We are only interested in trading strategies and consumption plans for which the wealth

process is non-negative. These strategies are called admissible.

De�nition 3.6. The investment-consumption pair (π, c) is called admissible if

V x
π,c(t) ≥ 0, t ∈ [0, T ], a.s. (3.26)

The set of all admissible investment-consumption pairs (π, c) will be denoted by A(x) .

For the case that there is no consumption the set of admissible trading strategies π will

be denoted by Π and is not dependent on the initial endowment x > 0. In that case a

condition for π to be in Π is (3.16), which is∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy) ≥ −1,
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for all h = 1, . . . ,m. Strategies π without consumption that lead to a.s. positive wealth

are collected in the set Π+. These are the strategies that satisfy∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy) > −1,

for all h = 1, . . . ,m.

For positive initial endowment x > 0, A(x) is clearly non-empty since an investor could

always invest all his funds into the risk-less asset, i.e. πi(t) ≡ 0, and not consume at all,

i.e. c(t) = 0, for all t ∈ [0, T ]. In this case the portfolio would evolve like the risk-less

asset.

Lemma 3.7. The set of all admissible investment-consumption pairs A(x) is convex,

i.e. for (π, c) ∈ A(x) and (π̃, c̃) ∈ A(x) we have λ(π, c) + (1 − λ)(π̃, c̃) ∈ A(x) for

λ ∈ [0, 1].

Proof. We need to show that for any (π, c), (π̃, c̃) ∈ A(x) the strategy (λπ+(1−λ)π̃, λc+
(1− λ)c̃) is also in A(x) for all λ ∈ [0, 1]. But clearly, for x > 0,

V x
λπ+(1−λ)π̃,λc+(1−λ)c̃(t) = λV x

π,c(t) + (1− λ)V x
π̃,c̃(t) ≥ 0, t ∈ [0, T ], λ ∈ [0, 1].

The set of admissible strategies constrains the set of all possible trading strategy - con-

sumption pairs. Yet, together with the measure change techniques from the previous

sections it is possible to give some constraint on the wealth process. These constraints

are often called budget constraints. To prove them the following lemma is needed.

Lemma 3.8. Let x > 0 be an initial endowment and let Q be a measure constructed

from the process θ ∈ Θ. The process MQ de�ned in (3.23) for (π, c) ∈ A(x) is a Q

supermartingale. Similar, the process M de�ned in (3.24) for (π, c) ∈ A(x) is a P

supermartingale.

Proof. Notice that MQ and M are local martingales that are bounded from below. By

Fatou's lemma they must be supermatinales.

The supermartingale properties proven above are crucial to derive the following budget

constraints.

Proposition 3.9 (Budget Constraint). Let x > 0 and let θ ∈ Θ be a jump-di�usion

Girsanov kernel with corresponding probability measure Q. Then every admissible pair
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(π, c) ∈ A(x) satis�es the budget constraint

EQ

[∫ T

0

c(s)

S0(s)
ds+

V x
π,c(T )

S0(T )

]
≤ x, (3.27)

or, equivalently,

E
[∫ T

0
Hθ(s)c(s)ds+Hθ(T )V

x
π,c(T )

]
≤ x. (3.28)

Proof. Lemma 3.8 shows thatMQ(t) = V
x,π,c

(t)+
∫ t
0

c(s)
S0(s)

ds is a supermartingale. Thus,

EQ

[
V

x,π,c
(T ) +

∫ T

0

c(s)

S0(s)
ds

]
= EQ

[
MQ(T )

∣∣F0

]
≤MQ(0) = x.

The above budget constraint states that under the Q measure the discounted terminal

wealth together with the discounted total consumption over the investment period [0, T ]

should not exceed the initial endowment x > 0. It gives therefore an indicator what to

expect from an optimal trading strategy.

Since consumption and the wealth processes of admissible strategies is almost surely

non-negative, the above budget constraint should also hold in the case of zero terminal

wealth and in the case of no consumption.

Corollary 3.10. Assume the same conditions as in Proposition 3.9. Then the budget

constraints for consumption and terminal wealth, respectively, given by

E
[∫ T

0
Hθ(s)c(s)ds

]
≤ x, and

E
[
Hθ(T )V

x
π,c(T )

]
≤ x,

respectively, are satis�ed.

Proof. The corollary follows immediately from Proposition 3.9 since the consumption

process and the terminal wealth of an admissible strategy is almost surely non-negative.

3.5 Utility Functions

Utility functions will play a central role in this thesis. They are a measure of relative

satisfaction from some good. In the framework of this thesis this good will be money.

This kind of formulation of preferences goes back to Bernoulli (1738), and an axiomatic

theory was initiated by von Neumann and Morgenstern (1947). This is why utility

functions are also often called von Neumann-Morgenstern utility functions.
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De�nition 3.11. A utility function U : (0,∞) → R is a strictly increasing and strictly

concave C1 function that satis�es the Inada conditions

U ′(0+) = lim
x↓0

U ′(x) = ∞, and U ′(∞) = lim
x→∞

U ′(x) = 0.

A utility function U is strictly increasing since an investor prefers higher to lower levels

of consumption or terminal wealth. It is concave since investors are assumed to be

risk-averse. Some examples of utility functions are the so called power and log utility

functions

U (p)(x) :=
xp

p
and U (0)(x) := log x,

for p ∈ (−∞, 1)\{0}.

De�nition 3.12. Let U be a utility function. The convex dual of U is de�ned as the

function

U∗(y) := sup
x>0

{
U(x)− xy

}
, y > 0. (3.29)

The convex dual of a utility function U is the Legendre-Fenchel transformation of the

function −U(−x). It will become important in Section 4.4 when dealing with the dual

problem.

Let the inverse of U ′ be denoted by I so that

x = I(U ′(x)) = U ′(I(x)), for x > 0.

Since U is strictly increasing and strictly concave, U ′ must be strictly decreasing, and

therefore I is also strictly decreasing.

Lemma 3.13. Let U be a utility function and let U∗ be the convex dual of U . Then

U∗ : (0,∞) → R is convex, nonincreasing, lower semicontinous, and satis�es

(i)

U∗(y) = U(I(y))− yI(y), y > 0; (3.30)

(ii)

U(x) = inf
y>0

{
U∗(y) + xy

}
, x > 0;

(iii)

U(x) = U∗(U ′(x)) + xU ′(x), x > 0;

(iv)

U(x) ≤ U∗(y) + xy, x, y > 0 (3.31)

Moreover, equality holds if x = I(y).
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For a proof and more details see Karatzas and Shreve (1998) and Rockafellar (1970).

Notice also that, combining (3.30) and (3.31) also shows that

U(I(y)) ≥ U(x) + y
(
I(y)− x

)
x, y > 0. (3.32)

Later we will also make use of the relationship that for b > a > 0

bI(b)− aI(a)−
∫ b

a
I(y)dy = U(I(b))− U(I(a)). (3.33)

This follows immediately from the integration by parts formula

U(I(b))− U(I(a)) =

∫ b

a
U ′(I(y))dI(y) =

∫ b

a
ydI(y) = yI(y)

∣∣b
a
−
∫ b

a
I(y)dy.
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Chapter 4

Optimization of the Expected

Utility of Consumption and

Investment

4.1 Introduction

One of the pioneering works in the �eld maximizing the expected utility of consumption

and terminal wealth was carried out by Merton (1969, 1971). He considers the problem

of the form

max E
[∫ T

0
U1(t, c(t))dt+ U2(V

x
π,c(T ))

]
, (4.1)

where c is a consumption rate and V x
π,c(T ) is the terminal wealth of a strategy (c,π) with

initial endowment x > 0. The stock price model that he is considering is of Markovian

type and has the form of a geometric Brownanian motion

dPi(t)

Pi(t)
= αi(t, P (t))dt+ σi(t, P (t))dZi(t)

where Zi are Brownian motions. The problem is solved using a stochastic control ap-

proach, which works well with the Markovian structure of the model.

The introduction of martingale methods and change of measure techniques for stock

prices by Harrison and Kreps (1979) and Harrison and Pliska (1981) made way for a

di�erent approach to tackle Merton's asset allocation problem (4.1). Instead of using

stochastic control theory, the problem was solved by using an equivalent martingale

measure together with convex analysis tools. The portfolio allocation problem can then

be solved in two steps in a complete market. First one determines the optimal terminal

wealth and optimal consumption, then one derives the optimal trading strategy using

40



the martingale representation theorem. These methods for portfolio optimization were

developed by Pliska (1985), Karatzas et al. (1987), Cox and Huang (1989), and others.

They, like Merton, use Itô processes to describe stock price movements and the market

they construct is complete. They consider the same stock market model as has been

introduced in Chapter 3 in (3.1) but without jumps. That is the stock prices are assumed

to follow the stochastic di�erential equations

dSi(t)

Si(t)
= αi(t)dt+

n∑
j=1

ξij(t)dBj(t),

for i = 1, . . . , k and t ∈ [0, T ]. In a complete market, the martingale approach to the

problem proceeds the following way. First, the measure is changed so that the discounted

stock prices and therefore the discounted wealth process (without consumption) become

martingales. One can then de�ne a budget constraint that every admissible consumption-

investment strategy has to satisfy. It is shown that any random variable that satis�es

the budget constraint can be replicated. Thus, one �nds the optimal consumption and

optimal terminal wealth and replicates them.

For an incomplete market, where the martingale measure is not unique, the solution to

the problem is more delicate. Karatzas et al. (1991), He and Pearson (1991) and Cvitani¢

and Karatzas (1992) consider the problem of constraint consumption and terminal wealth

where the incomplete market is a special case of this class of problems. A stochastic

control approach to the optimal consumption problem with jump-di�usions has been

carried out by Benth et al. (1999) and by Framstad et al. (1998). They use a Lévy type

jump di�usion model of the form

dP (t) = P (t−)

[
µdt+ σdB(t) +

∫ ∞

−1
zÑ(dt, dz)

]
,

to solve an in�nite time horizon maximum consumption problem

max E
[∫ ∞

0
e−δt c

γ(t)

γ
dt

]
for γ ∈ (0, 1) and δ > 0. As mentioned above, dynamic programming is used to �nd a

solution to the problem.

The case for either the consumption, or the terminal wealth, problem when the stock is

driven by a Lévy type model is treated by Kallsen (2000) using a martingale approach.

The optimization problem is stated in the form

max E
[∫ T

0
U(κ(t))dK(t)

]
,

where
∫ t
0 κ(s)dK(s) is the discounted consumption rate and K(t) is the consumption

clock, which determines the time of consumption. For instance, K(t) = t is denoting
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consumption uniform in time, or K(t) = 1[T,∞) represents terminal consumption. If

K(t) = t, then the problem considered is that in (4.1) but without terminal wealth.

If on the other hand K(t) = 1[T,∞), then the problem is that of maximizing terminal

wealth which is the one in (4.1) without consumption term. The model is a geometric

Lévy process of the form

Si(t) = Si(0)e
Li(t),

where Si are the discounted stock prices and Li are Lévy processes. Explicit solutions

for the cases of logarithmic, power and exponential utilities are derived.

An often cited paper that develops a general duality approach for a general incomplete

semimartingale model is that of Kramkov and Schachermayer (1999). The problem is

that of optimal terminal wealth when the risk-less interest rate is assumed to be zero.

The problem is then that of

max E [U (V x
π (T ))] ,

which is similar to Merton's problem (4.1) but without consumption. In their results,

they consider in particular the asymptotic elasticity of utility functions as condition for

several key assertions, like, for example, the existence and uniqueness of a solution to

the problem.

Callegaro and Vargiolu (2009) obtain results for HARA utility functions under multi-

dimensional models of pure jump type. Another paper involving jump-di�usion models

is that by Bardhan and Chao (1995) who use a Brownian motion model with Poisson

jumps for a problem of the form (4.1). However, the market they consider is actually

complete. They proceed similarly to Karatzas et al. (1990), but have a di�erent way of

changing the measure.

In this chapter we study optimal trading strategies for the problem of maximizing

expected utility of consumption and terminal wealth under a multidimensional jump-

di�usion model. This is the classical Merton problem (4.1) in a jump-di�usion frame-

work. For a pure di�usion model in a complete market, the unique auxiliary process

determined by the dual approach is the optimal consumption process and it, together

with the unique random variable determined similarly, gives the optimal trading strategy.

For our incomplete market, there does not always exist a corresponding trading strategy

for the pair determined in such a way. We modify the Karatzas and Shreve (1998) ap-

proach for the problem under a pure di�usion process in a complete market by showing

that the optimal consumption process and the optimal trading strategy are determined

by the martingale measure whose parameter is a solution to a system of (non-linear)

equations. This is in contrast with the standard duality approach, used in Kramkov and

Schachermayer (1999) for the terminal wealth and in Karatzas and Shreve (1998), where
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the optimal EMM is �rst obtained by solving the dual problem that uses the convex

conjugate of the utility function. Then the original problem is solved as a constraint op-

timization problem. The constraint is thereby the budget constraint. Our modi�cation

of the duality approach has the advantage that the optimal martingale measure, as well

as the optimal consumption process and trading strategy, can be directly obtained by

solving a system of non-linear equations. As a special case, we also derive the concrete

result for HARA utilities when the parameters in the model are deterministic functions.

It can be vari�ed that our approach also holds for either the consumption, or the termi-

nal wealth, problem. Since both the Lévy model and the pure jump model with constant

parameters are special cases of a general jump-di�usion model, the results presented here

extend the results of both Kallsen (2000) and Callegaro and Vargiolu (2009).

The chapter is structered as follows. Section 4.2 introduces the optimization prob-

lem. A set of auxiliary process will then be introduced in Section 4.3. These auxiliary

process have the special properties when compared with admissible consumption and

terminal wealth: expected utility from the auxiliary processes never underperforms ex-

pected utility from admissible consumption and terminal wealth. The actual investment-

consumption problem will be solved in Section 4.4 and applications follow in terms of

power utility in Section 4.5. The problem of either maximizing consumption or terminal

wealth is discussed in Section 4.7. The chapter is completed with a transition to partial

di�erential equation problems, making heavily use of Komogorov's equation in Section

4.8

4.2 The Investment-Consumption Problems

We consider a utility maximization problem where an investor obtains utility from con-

sumption and from terminal wealth of his/her investment. Utility functions are thereby

functions as introduced in Section 3.5.

It is assumed that there are k stocks in the market as introduced in Chapter 3. Each

of these stocks follow a stochastic jump-di�usion di�erential equation as in (3.1), which

was given there as

dSi(t)

Si(t−)
= αi(t)dt+

n∑
j=1

ξij(t)dBj(t) +
m∑

h=1

∫
R\{0}

γih(t, y)Nh(dt, dy),

for i = 1, . . . , k. The initial wealth of an investor is given by x > 0 so that following a

consumption-investment strategy (π, c) ∈ A(x) his/her wealth evolves according to the
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stochastic di�erential equation

dV x
π,c(t) =

(
V x
π,c(t−)r(t)− c(t)

)
dt+ π(t)V x

π,c(t−)ᵀ [α(t)dt+ ξ(t)dB(t)]

+ V x
π,c(t−)

m∑
h=1

∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy), t ∈ [0, T ],

which has been introduced in (3.20). Admissible strategy A(x) are thereby the strategy

that lead almost surely to non-negative wealth and have been introduced in De�nition

3.6.

Because of the jump processes the market is incomplete. There are more sources of ran-

domness than stocks in the market and so an equivalent martingale measure is not unique.

We have, however, parametrized each martingale measures by a pair θ = (θD,θJ) as in

De�nition 3.1 and denoted the set of all eligible parametrizations by Θ. An equivalent

martingale measure can be constructed by setting dQ = Zθ(T )dP , where Zθ(T ) as in

(2.20). The discounted asset prices become martingales under this measure and the state

price density Hθ de�ned in De�nition 3.3 for a θ ∈ Θ can be used to take advantage

of these martingale properties while still working under the original probability measure

P . A typical application of Hθ is Proposition 3.9, where it has been shown that all

admissible strategies (π, c) ∈ A(x) satisfy the budget constraint

E

[∫ T

0
Hθ(s−) c(s) ds+Hθ(T )V

x
π,c(T )

]
≤ x,

for some initial wealth x > 0. This budget constraint will work as an optimization

constraint when the investor is considering the optimal consumption-investment problem.

It is assumed that the investment horizon is �nite, i.e. T <∞. We will denote the utility

from consumption by U1 which will be a time dependent utility function, and the utility

from terminal wealth will be given by the utility function U2. The admissible strategies

need to be constraint to be adequate for the optimization problem. De�ne the set

Ã(x) :=
{
(π, c) ∈ A(x)

∣∣∣ E
[∫ T

0
U1

(
t, c(t)

)−
dt+ U2(V

x
π,c(T ))

−
]
> −∞

}
, (4.2)

where x− := min{0, X}, and further de�ne for initial wealth x > 0 and a strategy

(π, c) ∈ Ã(x) the objective function by

J(x;π, c) := E
[∫ T

0
U1

(
t, c(t)

)
dt+ U2(V

x
π,c(T ))

]
. (4.3)

The problem of maximizing consumption and terminal wealth, denoted by Φ(x), is that

of �nding an optimal pair (π̂, ĉ) ∈ Ã(x) such that

Φ(x) := sup
(π,c)∈Ã(x)

J(x;π, c) = J(x; π̂, ĉ). (4.4)
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With a slight abuse of notation we will also refer to the optimal performance function

Φ(x) as the optimization problem. This optimization problem consist of the problem of

�nding Φ(x) as well as of �nding an optimal strategy pair (π̂, ĉ).

The optimization problem is solved in two steps. First, for each martingale measure

represented by θ an `optimal' auxiliary terminal wealth and consumption process is

constructed. This pair outperforms, in the expected utility sense, every admissible con-

sumption - terminal wealth pair. In the second step it is checked under what conditions

the auxiliary terminal wealth and consumption performs exactly the same as an admis-

sible consumption - terminal wealth pair. This is the case when the EMM parameter θ

and the optimal trading strategy π satisfy a set of non-linear equations.

4.3 Auxiliary Processes

In the following we introduce for each martingale measure parametrized by θ a pair of

consumption and terminal wealth (cθ, Yθ). It turns out that the expected utility of these

pairs always performs at least as good as any admissible consumption - terminal wealth

pair. That means the expected utility of (cθ, Yθ) is never smaller than the objective

function J(x;π, c) of any admissible pair (π, c) ∈ Ã(x).

We write I1(t, ·) and I2 for the inverse of U ′
1(t, ·) and U ′

2 respectively, where U ′
1(t, ·)

denotes the partial derivative of U1 with respect to its (second) variable representing the

consumption. For θ = (θD, θJ) ∈ Θ recall that the state price density Hθ is de�ned by

(3.3) as Hθ(t) = Zθ(t)/S0(t), where Zθ is the Radon-Nikodym density of the measure

change as in (2.20). We can then de�ne the function

Xθ(y) := E
[∫ T

0
Hθ(t−)I1(t, yHθ(t−))dt+Hθ(T )I2(yHθ(T ))

]
, y > 0, (4.5)

and the set

Θ̃ :=
{
θ ∈ Θ | Xθ(y) <∞, for y > 0

}
.

Note that the subset Θ̃ of Θ depends on U1 as well as on U2 and that, for θ ∈ Θ̃, Xθ

maps (0,∞) into itself continuously and, by the properties of utility functions, is strictly

decreasing with Xθ(0+) = ∞ and Xθ(∞) = 0. For �xed x > 0 and θ ∈ Θ̃, we now de�ne

respectively the process cθ(t), for t ∈ [0, T ], and the random variable Yθ by

cθ(t) := I1
(
t,X−1

θ (x)Hθ(t−)
)
,

Yθ := I2
(
X−1
θ (x)Hθ(T )

)
.

(4.6)

Clearly, both cθ and Yθ are non-negative. Further, in the complete pure di�usion model

of Karatzas and Shreve (1998), the EMM parameter θ is unique, and the corresponding
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unique cθ(t) and Yθ are respectively the optimal consumption process and terminal wealth

random variable. However, in an incomplete market setting, θ is not unique and cθ as

well as Yθ depend on θ. The auxiliary consumption cθ and auxiliary terminal wealth

Yθ have the property that they outperform any admissible consumption-terminal wealth

pair - as can be seen in the next lemma.

Lemma 4.1. For any θ ∈ Θ̃, cθ(t), t ∈ [0, T ], and Yθ de�ned by (4.6) satisfy

(i) E
[∫ T

0 Hθ(t−)cθ(t)dt+Hθ(T )Yθ

]
= x;

(ii) E
[∫ T

0 U1(t, cθ(t))
−dt+ U2(Yθ)

−
]
> −∞;

(iii) J(x;π, c) ≤ E
[∫ T

0 U1(t, cθ(t))dt+ U2(Yθ)
]
for all (π, c) ∈ Ã(x),

where J is de�ned by (4.3).

Proof. (i) This follows from the de�nition (4.5) of Xθ and the construction of cθ and Yθ.

(ii) From (3.32), it follows that

U1(t, cθ(t)) ≥ U1(t, 1) + X−1
θ (x)Hθ(t)

{
cθ(t)− 1

}
≥ U1(t, 1)−X−1

θ (x)Hθ(t)

U2(Yθ) ≥ U2(1) + X−1
θ (x)Hθ(T )

{
Yθ − 1

}
≥ U2(1)−X−1

θ (x)Hθ(T ).

The second inequality in both cases follows from cθ(t) and Yθ, respectively, being non-

negative. Moreover, observe that U1(t, cθ(t))
− ≥

(
U1(t, 1)−X−1

θ (x)Hθ(t)
)− ≥ −|U1(t, 1)|−

X−1
θ (x)Hθ(t) for t ∈ [0, T ] and U2(Yθ)

− ≥ −|U2(1)| − X−1
θ (x)Hθ(T ) and so

E
[∫ T

0
U1(t, cθ(t))

−dt+ U2(Yθ)
−
]

≥ −
∫ T

0
|U1(t, 1)| dt−X−1

θ (x)E
[∫ T

0
Hθ(t) dt

]
−|U2(1)| − X−1

θ (x)E [Hθ(T )]

= −
∫ T

0
|U1(t, 1)| dt−X−1

θ (x)EQ

[∫ T

0

1

S0(t)
dt

]
−|U2(1)| − X−1

θ (x)EQ

[
1

S0(T )

]
> −∞,

where the last inequality follows from S0 being bounded away from zero.

(iii) Again from (3.32), it follows that for any (π, c) ∈ Ã(x)

U1(t, cθ(t)) ≥ U1(t, c(t)) + X−1
θ (x)Hθ(t)

{
cθ(t)− c(t)

}
, t ∈ [0, T ],

U2(Yθ) ≥ U2(V
x
π,c(T )) + X−1

θ (x)Hθ(T )
{
Yθ − V x

π,c(T )
}
.
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Then, the result (i) and Proposition 3.9 together give

E
[∫ T

0
U1(t, cθ(t)) dt+ U2(Yθ)

]
≥ J(x;π, c)

+X−1
θ (x)E

[∫ T

0
Hθ(t)

{
cθ(t)− c(t)

}
dt+Hθ(T )

{
Yθ − V x

π,c(T )
}]

= J(x;π, c) + X−1
θ (x)

{
x− E

[∫ T

0
Hθ(t) c(t) dt+Hθ(T )V

x
π,c(T )

]}
≥ J(x;π, c).

The above lemma has some similarities to a lemma appearing in Kallsen (2000). In

Kallsen's lemma, a consumption process is assumed to be given (he considers a gener-

alised optimal consumption problem). If a Girsanov martingale Z then satis�es certain

conditions similar to, for example Lemma 4.1(i), then it has been shown that a similar re-

sult as in Lemma 4.1 (iii) is satis�ed. However, in our approach the argument is slightly

di�erent. Instead, of �xing a consumption process and determining an eligible martingale

Z, a measure change marginal has already been �xed by θ. The corresponding cθ and

Yθ may or may not be an eligible consumption process and an eligible terminal wealth

respectively. Conditions under which these terms are actually admissible consumption

process and admissible terminal wealth will be given later. They represent the key result

of this chapter.

An important consequence of Lemma 4.1(iii) is that

sup
(π̃,c̃)∈Ã(x)

E
[∫ T

0
U1(t, c̃(t)) dt+ U2(V

x
π̃,c̃(T ))

]
≤ inf

θ̃∈Θ̃
E
[∫ T

0
U1(t, cθ̃(t)) dt+ U2(Yθ̃)

]
,

(4.7)

so that the expected utility corresponding to these auxiliary processes outperforms or is

at least equal to the expected utility of any admissible investment-consumption pair.

4.4 The Solution to the Optimal Investment-Consumption

Problem

We have used the set of jump di�usion Girsanov kernels Θ as in De�nition 3.1 to specify

the equivalent martingale measures. This set had to be constraint to Θ̃ to �t technical

requirements of our optimization problem Φ(x) as de�ned in (4.4). We are now interested

in a particular Girsanov kernel (or EMM) θ̂ ∈ Θ̃ for which the in�mum in (4.7) is attained
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and in fact equality holds. That is, θ̂ should satisfy

Φ(x) = inf
θ∈Θ̃

E
[∫ T

0
U1(t, cθ(t))dt+ U2(Yθ)

]
= E

[∫ T

0
U1(t, cθ̂(t))dt+ U2(Yθ̂)

]
We will call this measure the optimal martingale measure for the optimization problem

Φ(x). Recall thereby that with an abuse of notation we refer by Φ(x) not only to the

optimal performance function but also to the problem of �nding the optimal strategy

(π̂, ĉ). The optimal consumption process for the problem Φ(x) then turns out to be

the consumption process c
θ̂
as de�ned in (4.6) for the optimal measure represented by

θ̂. Furthermore, we will be able to derive a trading strategy π
θ̂
that is optimal for the

problem Φ(x) in the sense that the supremum of E
[∫ T

0 U1(t, c(t))dt+ U2(V
x
π,c(T ))

]
over

all (π, c) ∈ Ã is attained by (π
θ̂
, c

θ̂
). In fact, the trading strategy π

θ̂
together with the

optimal measure given by θ̂ are obtained by solving a system of (non-linear) equations.

De�nition 4.2. A martingale measure Q obtained by dQ
dP |FT

= Zθ(T ) in terms of a

θ̂ ∈ Θ̃ is called optimal for the optimization problem (4.4) if the in�mum in (4.7) is

attained, i.e.

E
[∫ T

0
U1(t, cθ̂(t))dt+ U2(Yθ̂)

]
= inf

θ∈Θ̃
E
[∫ T

0
U1(t, cθ(t))dt+ U2(Yθ)

]
,

where cθ and Yθ are de�ned by (4.6) respectively.

In the following such optimal martingale measures Q are linked to optimal investment-

consumption pairs which solve (4.4). This will allow us to derive a trading strategy π
θ̂

such that (4.4) is solved at (π
θ̂
, c

θ̂
). For this, we consider, for any θ ∈ Θ̃, the martingale

Mθ de�ned by

Mθ(t) := E
[∫ T

0
Hθ(s−)cθ(s)ds+Hθ(T )Yθ

∣∣∣ Ft

]
(4.8)

and the process Jθ de�ned by

Jθ(t) :=

∫ t

0
Hθ(s−)cθ(s)ds, t ∈ [0, T ], (4.9)

where cθ and Yθ are de�ned by (4.6) and Hθ is de�ned in De�nition 3.3 by

Hθ(t) = exp
(
−
∫ t

0
r(s)ds− 1

2

∫ t

0
||θD(s)||2ds+

∫ t

0
θD(s)ᵀdB(s)

+
m∑

h=1

∫ t

0

∫
R\{0}

log θJh (s, y)Nk(ds, dy) +
m∑
k=1

∫ t

0

∫
R\{0}

(
1− θJh (s, y)

)
νh(dy)ds

)
.

The martingale Mθ is non-negative and, by Lemma 4.1(i), Mθ(0) = x holds a.s. for

every θ ∈ Θ̃. Next, de�ne the process Vθ for θ ∈ Θ̃ by

Vθ(t) :=
1

Hθ(t)

{
Mθ(t)− Jθ(t)

}
, t ∈ [0, T ]. (4.10)
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Then Vθ(t) satis�es Vθ(0) = x, Vθ(T ) = Yθ as well as Vθ(t) ≥ 0 for all t ∈ [0, T ]. Further,

as Mθ de�ned in (4.8) is a martingale, the Martingale Representation Theorem 2.13 has

shown that every martingale can be written in form of two integrals, one with respect

to a Brownian motion and the other one with respect to a compensated Poisson random

measure. To get such a martingale representation let aD(t), and aJi (t, y), i = 1, ...,m,

be the essentially unique martingale representation coe�cients of Mθ(t) so that the

dynamics of Mθ can be written in the form

dMθ(t) = aD(t)ᵀdB(t) +

m∑
i=1

∫
R\{0}

aJi (t, y) Ñi(dt, dy). (4.11)

Although not explicitly stated, these martingale coe�cients depend also on θ ∈ Θ̃. We

can now formulate the central result of this chapter. The following result characterizes

the optimal strategies and shows that, under certain conditions, such strategies relate to

θ̂ ∈ Θ̃ with the corresponding Q being optimal. In particular, for such a θ̂ ∈ Θ̃, the corre-

sponding c
θ̂
de�ned by (4.6) is the optimal consumption strategy and the corresponding

V
θ̂
de�ned by (4.10) is the optimal portfolio wealth process.

Recall that in De�nition 3.6 the set Π of all trading strategies π for which

1 + π(t)ᵀγh(t, y) ≥ 0

holds for t ∈ [0, T ], h = 1, ...,m, and νh-almost all y ∈ R \ {0} has been introduced.

These are the trading strategies that guarantee that a jump in the stock prices does not

lead to negative wealth.

Theorem 4.3. Suppose that there exist a θ̂ ∈ Θ̃ and a trading strategy π
θ̂
∈ Π that

satisfy

V
θ̂
(t−)π

θ̂
(t)ᵀξ(t) =

1

H
θ̂
(t−)

aD(t)− V
θ̂
(t−) θ̂

D
(t),

V
θ̂
(t−)π

θ̂
(t)ᵀγh(t, y) =

1

H
θ̂
(t−)

aJh(t, y)

θ̂Jh (t, y)
− V

θ̂
(t−)

θ̂Jh (t, y)− 1

θ̂Jh (t, y)
,

(4.12)

for h = 1, ...,m, and νℓ-almost all y ∈ R \ {0}. Assume further that (3.20) has a

solution for (π, c) = (π
θ̂
, c

θ̂
), where c

θ̂
is de�ned by (4.6). Then (π

θ̂
, c

θ̂
) is a solution

to the problem (4.4) of maximizing expected utility of consumption and terminal wealth

under multi-dimensional jump-di�usion models and the corresponding wealth process is

given by

V x
π
θ̂
,c

θ̂
(t) = V

θ̂
(t), a.s. , t ∈ [0, T ],

where Vθ is de�ned by (4.10).
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Proof. To prove that V x
π
θ̂
,c

θ̂
= V

θ̂
a.s. we show that both process follow the same stochas-

tic di�erential equation. Let θ̂ ∈ Θ̃ and π
θ̂
∈ Π satisfy the system of equations (4.12).

It follows from the de�nition (4.10) of V
θ̂
that

dV
θ̂
(t) = d

M
θ̂
(t)

H
θ̂
(t)

− d
J
θ̂
(t)

H
θ̂
(t)
, t ∈ [0, T ]. (4.13)

The dynamics of Mθ in terms of its martingale representation can be found in (4.11).

The dynamics of the reciprocal of Hθ can be determined by Itô's formula for geometric

jump-di�usions (2.17) when applied to the function f(x) = 1/x and Hθ. From (3.11)

the dynamics of the state price density are

dHθ(t) = −Hθ(t−)r(t)dt+Hθ(t−)θD(t)dB(t)

+Hθ(t−)

m∑
h=1

∫
R\{0}

(θJk (t, y)− 1)Ñk(dt, dy), t ∈ [0, T ].

Clearly, f ′(x) = −1/x2, f ′′(x) = 2/x3, and f(x+(θ−1)x)−f(x) = 1
x
1−θ
θ so that df(Hθ)

can be calculated as

d
1

Hθ(t)
=

1

Hθ(t−)

(
r(t) + ||θD(t)||2 +

m∑
h=1

∫
R\{0}

(
θJk (t, y)− 1

)
νk(dy)

)
dt

− 1

Hθ(t−)
θD(t)ᵀdB(t)− 1

Hθ(t−)

m∑
h=1

∫
R\{0}

θJk (t, y)− 1

θJk (t, y)
Nk(dt, dy).

The dynamics of the productsM
θ̂
(t) 1

H
θ̂
(t) and Jθ̂(t)

1
H

θ̂
(t) in (4.13) can then be calculated

using Itô's product rule (2.18)

d
(
X(t)Y (t)

)
=X(t−)dY c(t) + Y (t−)dXc(t) + dXc(t)dY c(t)

+X(t−)∆Y (t) + Y (t−)∆X(t) + ∆X(t)∆Y (t).

Thus, the products are

d
M

θ̂
(t)

H
θ̂
(t)

=
M

θ̂
(t−)

H
θ̂
(t−)

([
r(t) + ||θ̂

D
(t)||2 − 1

M
θ̂
(t)

aD(t)ᵀθD(t)

+
m∑

h=1

∫
R\{0}

(
θ̃Jk (t, y)− 1− 1

M
θ̂
(t−)

aJh(t, y)

)
νk(dy)

]
dt

+

[
1

M
θ̂
(t−)

aD(t)− θ̂
D
(t)

]ᵀ
dB(t)

+

[
m∑

h=1

∫
R\{0}

1

M
θ̂
(t−)

aJh(t, y)

θ̂Jh (t, y)
−
θ̂Jh (t, y)− 1

θ̂Jh (t, y)

]
Nh(dt, dy)

)
,

(4.14)

and

d
J
θ̂
(t)

H
θ̂
(t)

= c
θ̂
(t) +

J
θ̂
(t−)

H
θ̂
(t−)

([
r(t) + ||θ̂

D
(t)||2 +

m∑
h=1

∫
R\{0}

(
θ̂Jk (t, y)− 1

)
νk(dy)

]
dt

−θ̂
D
(t)ᵀdB(t)−

m∑
h=1

∫
R\{0}

θ̂Jk (t, y)− 1

θ̂Jk (t, y)
Nk(dt, dy)

)
.

(4.15)
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We can now substitute (4.14) and (4.15) into (4.13) to obtain the dynamics of dV
θ̂
.

Notice also that because of (4.10) Vθ(t) =
1

Hθ(t)

{
Mθ(t)− Jθ(t)

}
. Thus,

dV
θ̂
(t) = − c

θ̂
(t)dt+ V

θ̂
(t−)

(
r(t) + ||θD(t)||2 +

m∑
h=1

∫
R\{0}

(
θJh (t, y)− 1

)
νh(dy)

)
dt

− 1

H
θ̂
(t−)

(
aD(t)ᵀθD +

m∑
h=1

∫
R\{0}

aJh(t, y)νh(dy)

)
dt

+

(
1

H
θ̂
(t−)

aD − V
θ̂
(t−)θ̂

D
(t)

)ᵀ
dB(t)

+

m∑
h=1

∫
R\{0}

(
1

H
θ̂
(t−)

aJh(t, y)

θ̂Jh (t, y)
− V

θ̂
(t−)

θ̂Jh (t, y)− 1

θ̂Jh (t, y)

)
Nh(dt, dy)

(4.16)

for t ∈ [0, T ]. Substituting (4.12) into (4.16) and also multiplying each equation by θ̂
D

and θ̂Jh respectively, and substituting into (4.16) shows that V
θ̂
is given by

dV
θ̂
(t) =

[
V
θ̂
(t−)r(t)− c

θ̂
(t) + V

θ̂
(t−)π

θ̂
(t)ᵀα(t)

]
dt+ V

θ̂
(t−)π

θ̂
(t) ᵀξ(t) dB(t)

+

k∑
i=1

m∑
j=1

∫
R\{0}

V
θ̂
(t−)π

θ̂,i
(t) γij(t, y)Nj(dt, dy), t ∈ [0, T ].

Thereby, we also used that θ̂ ∈ Θ̃ satis�es (3.8). Then this SDE coincides with the

stochastic di�erential equation (3.20) satis�ed by the portfolio wealth process V x
π
θ̂
,c

θ̂
that

follows the strategy (π
θ̂
, c

θ̂
). Observing further that V

θ̂
(0) = V x

π
θ̂
,c

θ̂
(0) = x, we conclude

that V
θ̂
(t) = V x

π
θ̂
,c

θ̂
(t) a.s. for all t ∈ [0, T ].

To show that (π
θ̂
, c

θ̂
) is a solution to (4.4), by Lemma 4.1 and (4.7), we only need to

show that

E
[∫ T

0
U1(t, c(t))dt+ U2(V

x
π,c(T ))

]
= E

[∫ T

0
U1(t, cθ̂(t))dt+ U2(Yθ̂)

]
for (π, c) = (π

θ̂
, c

θ̂
). However, this is true if V x

π
θ̂
,c

θ̂
(T ) = Y

θ̂
a.s. The latter follows

from the facts that V x
π
θ̂
,c

θ̂
(t) = V

θ̂
(t) a.s., t ∈ [0, T ], and that, by the construction of V

θ̂
,

V
θ̂
(T ) = Y

θ̂
a.s.

Theorem 4.3 shows that it is possible to obtain an optimal measure for the optimization

problem (4.4) as well as an optimal trading strategy π
θ̂
by solving the system of equations

given by (4.12). Recall however that the martingale representation processes aDi (t) and

aJh in (4.12) depend also indirectly on the unknown θ̂. Therefore the system of equation

can be di�cult to solve. In the next section, we will however give some examples for

cases where such a solution can indeed be found. Nevertheless, Theorem 4.3 does not

address the uniqueness issue as Kallsen (2000) did for the optimal consumption problem
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and Kramkov and Schachermayer (1999) did for the optimal terminal wealth problem,

both in the framework of a general incomplete semimartingale model.

We now turn to solutions for the dual problem of the `primal' optimization problem

(4.4). In (3.29) the convex dual U∗ of a utility function U has been de�ned as the

Legendre-Fenchel transform of the function −U(−x), that is

U∗(y) := sup
x>0

{
U(x)− x y

}
, y > 0.

The convex dual satis�es for x, y > 0, the Fenchel inequality (3.31) which was given by

U(x) ≤ U∗(y) + x y

Equality in the Fenchel inequality holds for x = I(y).

Theorem 4.4. For y > 0, assume that θy ∈ Θ̃ minimizes

J∗(y,θ) := E

[∫ T

0
U∗
1 (yHθ(t−))dt+ U∗

2 (yHθ(T ))

]
such that

Φ∗(y) := inf
θ∈Θ̃

J∗(y,θ) = J∗(y,θy) <∞. (4.17)

Assume further that, for such a θy, there exists a πθy ∈ Π+ such that (4.12) is satis�ed.

Then

Φ∗(y) = sup
x>0

{
Φ(y)− xy

}
, y > 0,

where Φ is de�ned by (4.4).

Proof. Note �rst that, by Theorem 4.3, (πθy , cθy) solves (4.4).

Fix y > 0. Then, for any x > 0, (π, c) ∈ Ã(x) and θ ∈ Θ̃, from (3.31) and Proposition

3.9 it follows that

J(x;π, c) = E
[∫ T

0
U1(t, c(t)) dt+ U2(V

x
π,c(T ))

]
≤ E

[∫ T

0
U∗
1 (t, yHθ(t−)) dt+ U∗

2 (yHθ(T ))

]
+ y E

[∫ T

0
Hθ(t−) c(t) dt+Hθ(T )V

x
π,c(T )

]
= J∗(y;θ) + y E

[∫ T

0
Hθ(t−) c(t) dt+Hθ(T )V

x
π,c(T )

]
≤ J∗(y;θ) + yx.

(4.18)

The arbitrariness of x > 0, (π, c) ∈ Ã(x) and θ ∈ Θ̃ implies that

Φ(x) ≤ Φ∗(y) + xy, x, y > 0,
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so that

sup
x>0

{
Φ(x)− xy

}
≤ Φ∗(y), y > 0. (4.19)

On the other hand, by (3.31), for given y > 0 equality holds in (4.18) if there exists

(π, c) ∈ Ã(x) such that

c(t) = I1(t, yHθ(t−)), t ∈ [0, T ],

V x
π,c(T ) = I2(yHθ(T )),

E
[ ∫ T

0
Hθ(t−) c(t) dt + Hθ(T )V

x
π,c(T )

]
= x.

Then, Xθ(y) = x, c = cθ and V x
π,c(T ) = Yθ. In particular, equality holds in (4.18) for

(π, c) = (πθy , cθy) and θ = θy:

J(x;πθy , cθy) = J∗(y;θy) + xy, x, y > 0.

Now, since (πθy , cθy) solves the optimization problem (4.4) and θy is optimal for the

dual problem of (4.4), we have

Φ∗(y) = J∗(y,θy) = J(x;πθy , cθy)− xy = Φ(x)− xy ≤ sup
z>0

{
v(z)− zy

}
,

for y > 0. This, together with (4.19), leads to the required result.

If the assumptions in Theorem 4.4 are satis�ed then θy represents the optimal martingale

measure of problem (4.4).

The dual problem (4.17) is very similar to the dual problem introduced in Kramkov

and Schachermayer (1999) but is slightly di�erent. The di�erence is that the Radon-

Nikodym density of the measure change is not parametrized in terms of θ in Kramkov

and Schachermayer's work as it is done here. Instead the measure change density is

left in a general form dQ/dP . They assume zero interest rates such that, in our case,

Hθ = Zθ. Further, they only consider the pure terminal wealth optimization problem

without consumption. In Kramkov and Schachermayer's work the dual problem is then

that of �nding an martingale measure Q out of a set of eligible measures M such that

Φ∗(y) = inf
Q∈M

E
[
U∗
(
y
dQ

dP

)]
, y > 0.

Then again the relationships hold that

Φ∗(y) = sup
x>0

{Φ(x)− xy} , y > 0, and

Φ(x) = inf
y>0

{Φ∗(y)− xy} , x > 0.

If we relate it to our work, the results coincide (neglecting consumption) when we sub-

stitute dQ/dP = Zθ. Yet, a major drawback of not parametrizing the Radon-Nikodym

density is that in the general case it can not guaranteed to �nd the density of the optimal

measure Q. In contrast, in our approach the density is always given by Zθ.
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4.5 Utility Functions of Power Type

The results of the previous section are now applied to the power and logarithmic utility

functions. The optimal trading strategy and martingale measure is obtained, and in

certain cases a closed form for the auxiliary consumption cθ and terminal wealth Yθ can

be stated. We introduce the convention that 1
βx

β = log(x) for β = 0 and x > 0 to allow

us to write the logarithmic utility function in terms of power utility.

For βi < 1, i = 1, 2, let the utility functions for consumption and for terminal wealth be

given by

U1(t, x) =
xβ1

β1
, and U2(x) =

xβ2

β2
, (4.20)

respectively. The inverse of U ′
1 is I1(t, y) = y1/(β1−1) and that of U ′

2 is I2(y) = y1/(β2−1).

The optimization problem (4.4) then takes the form

Φ(x) = sup
(π,c)∈Ã(x)

E
[∫ T

0

c(t)β1

β1
dt+

V x,c,π(T )β2

β2

]
,

for x > 0. As far as the author is aware, such a problem has never been treated in the

literature in the context of jump-di�usion processes or similar models.

To derive a condition for the optimal trading strategy π̂ and the optimal EMM θ̂ the

martingale representation coe�cients in Mθ in (4.8) needs to be calculated. To do this,

we decompose the state price density Hθ corresponding to θ ∈ Θ̃ as a product of a

deterministic process and a martingale

H
βi/(βi−1)
θ (t) = h

(i)
θ (t) H̃

(i)
θ (t), t ∈ [0, T ], i = 1, 2, (4.21)

where h
(i)
θ is the deterministic process given by

h
(i)
θ (t) := exp

{
− βi
βi − 1

∫ t

0
r(s) ds+

1

2

βi
(βi − 1)2

∫ t

0
||θD(s)||2ds

+

m∑
h=1

∫ t

0

∫
R\{0}

[
θJh (s, y)

βi/(βi−1) − 1 +
βi

(βi − 1)

(
1− θJh (s, y)

)]
νh(dy) ds

}
,

(4.22)

and H̃
(i)
θ is the martingale given by

H̃
(i)
θ (t) := exp

{
βi

βi − 1

∫ t

0
θD(s)ᵀdB(s)− 1

2

β2i
(βi − 1)2

∫ t

0
||θD(s)||2ds

+

m∑
h=1

∫ t

0

∫
R\{0}

log
(
θJh (s, y)

βi/(βi−1)
)
Nh(dy, ds)

−
m∑

h=1

∫ t

0

∫
R\{0}

[
θJh (s, y)

βi/(βi−1) − 1
]
νh(dy) ds

}
.
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To determine the dynamics of H̃
(i)
θ we can apply Itô formula (2.14) to the function f(x) =

ex and to the exponent of H̃
(i)
θ . Clearly, f ′(x) = f ′′(x) = ex and f(x+log θ

β
β−1 )−f(x) =

ex
[
θ

β
β−1 − 1

]
. Thus, for t ∈ [0, T ],

dH̃
(i)
θ (t) = H̃

(i)
θ (t−)

{
βi

βi − 1
θD(t)ᵀdB(t) +

m∑
h=1

∫
R\{0}

[
θJh (t, y)

βi/(βi−1) − 1
]
Ñh(dt, dy)

}
.

(4.23)

To derive a optimal condition on the Girsanov kernel and the trading strategy as in (4.12)

it is necessary to calculate Xθ and the martingale Mθ in its martingale representation

form. From the de�nition in (4.5) the function Xθ is de�ned by

Xθ(y) = E
[∫ T

0
Hθ(t−)I1(t, yHθ(t−))dt+Hθ(T )I2(yHθ(T ))

]
, y > 0,

Substituting I1(t, y) = y1/(β1−1) and I2(y) = y1/(β2−1) and using the decomposition

(4.21) leads to

Xθ(y) = E
[∫ T

0
y

1
β1−1h

(1)
θ (t)H̃

(1)
θ (t−)dt+ y

1
β2−1h

(2)
θ (T )H̃

(2)
θ (T )

]
.

Since H̃
(i)
θ are martingales the function Xθ has the form

Xθ(y) = y
1

β1−1E
[∫ T

0
h
(1)
θ (t)dt

]
+ y

1
β2−1E

[
h
(2)
θ (T )

]
.

Xθ has a unique inverse and we denote by ŷθ the unique point such that Xθ(ŷθ) = x for

given x. Next, the martingale Mθ is de�ned in (4.8) by

Mθ(t) = E
[∫ T

0
Hθ(s−)cθ(s)ds+Hθ(T )Yθ

∣∣∣ Ft

]
To calculate Mθ the optimal auxiliary consumption cθ and terminal wealth Yθ needs to

be calculated. They are given in (4.6) by

cθ(t) = I1
(
t,X−1

θ (x)Hθ(t−)
)
,

Yθ = I2
(
X−1
θ (x)Hθ(T )

)
.

Let ŷ denote the unique value for which Xθ(y) = x. Then substituting I1(t, y) = y1/(β1−1)

and I2(y) = y1/(β2−1) into the above equations shows that

cθ(t) = ŷ
1

β1−1

θ Hθ(t−)
1

β1−1 ,

Yθ = ŷ
1

β2−1

θ Hθ(T )
1

β2−1 .

De�ne the two functions

K1,θ(t) := E
[∫ T

t
hθ(s)ds

∣∣Ft

]
, t ∈ [0, T ], (4.24)
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and

K2,θ(t) := E
[
hθ(T )

∣∣Ft

]
, t ∈ [0, T ]. (4.25)

Substituting cθ and Yθ into the de�nition ofMθ as well as using the decomposition (4.21)

brings Mθ into the form

Mθ(t) = ŷ
1

β1−1

θ

(∫ t

0
Hθ(s−)

β1
β1−1ds

)
+ ŷ

1
β1−1

θ H̃
(1)
θ (t)K1,θ(t)

+ ŷ
1

β2−1

θ H̃
(2)
θ (t)K2,θ(t),

for θ ∈ Θ̃. The dynamics of Mθ are given by

dMθ(t) = ŷ
1

β1−1

θ K1,θ(t)dH̃
(1)
θ (t) + ŷ

1
β2−1

θ K2,θ(t)dH̃
(2)
θ (t),

which again can be written in the following form when considering (4.23):

dMθ(t) =

[
ŷ

1
β1−1

θ H̃
(1)
θ (t)K1,θ(t)

β1
β1 − 1

+ ŷ
1

β2−1

θ H̃
(2)
θ (t)K2,θ(t)

β2
β2 − 1

]
θD(t)dB(t)

+
m∑

h=1

∫
R\{0}

[
ŷ

1
β1−1

θ H̃
(1)
θ (t−)K1,θ(t)

(
θJh (t, y)

β1
β1−1 − 1

)
+ ŷ

1
β2−1

θ H̃
(2)
θ (t)K2,θ(t)

(
θJh (t, y)

β2
β2−1 − 1

)]
Ñh(dt, dy).

To simplify the above expression let us introduce the following two processes

Cθ(t) := E
[∫ T

t
Hθ(s−)cθ(s)

∣∣Ft

]
= ŷ

1
β1−1

θ H̃
(1)
θ (t)K1,θ(t), and

Wθ(t) := E [Hθ(T )Yθ|Ft] = ŷ
1

β2−1

θ H̃
(2)
θ (t)K2,θ(t).

Then the martingale representation coe�cients of Mθ are given by

aD(t) =

[
Cθ(t)

β1
β1 − 1

+Wθ(t)
β2

β2 − 1

]
θD(t), and

aJh(t, y) = Cθ(t)

(
θJh (t, y)

β1
β1−1 − 1

)
+Wθ(t)

(
θJh (t, y)

β2
β2−1 − 1

)
,

(4.26)

for h = 1, . . . ,m. They will be used in the next proposition.

Proposition 4.5. Under the assumptions set at the beginning of this section, the optimal

pair (π
θ̂
, θ̂) that solves the problem (4.4) of maximizing expected utility of consumption

and terminal wealth has to satisfy

ξ(t)π̂
θ̂
(t) =

1

C
θ̂
(t−) +W

θ̂
(t−)

{
1

β1 − 1
C
θ̂
(t−) +

1

β2 − 1
W

θ̂
(t−)

}
θ̂
D
(t)

γh(t, y)π̂θ̂
(t) =

1

C
θ̂
(t−) +W

θ̂
(t−)

{(
θ̂Jh (t, y)

1
β1−1 − 1

)
C
θ̂
(t−)

+
(
θ̂Jh (t, y)

1
β2−1 − 1

)
W

θ̂
(t−)

}
,

(4.27)
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for h = 1, . . . ,m. Further, if such an optimal pair exits then the optimal wealth process

is given by V
θ̂
(t) = 1

H
θ̂
(t)

(
C
θ̂
(t) +W

θ̂
(t)
)
.

Proof. The conditions on the optimal trading strategy and optimal martingale measure

(π
θ̂
, θ̂) in (4.12) simplify in the one dimensional case to

ξ(t)π(t) =
1

Hθ(t−)Vθ(t−)
aD(t)− θD(t), and

γh(t, y)π(t) =
1

θJ(t, y)

[
aJh(t, y)

Hθ(t−)Vθ(t−)
+ 1− θJh (t, y)

]
.

(4.28)

From (4.10) and the de�nition of Mθ in (4.8) and Jθ in (4.9) follows that the optimal

wealth process satis�es H
θ̂
(t)V

θ̂
(t) = C

θ̂
(t) +W

θ̂
(t). Substituting this together with the

martingale representation coe�cients (4.26) into (4.28) shows that the optimal strategy

and Girsanov kernel have to satisfy (4.27).

In the following, some special choices of the model parameters and the risk aversion

parameters β1 and β2 are discussed. Depending on the parameter choices, these results

relate to di�erent work by di�erent authors. Consider �rst the case when β1 = β2 = β.

In that case a closed form solution can be given for the optimal consumption, the optimal

terminal wealth, and the optimal wealth process. The next corollary gives a closed form

for the auxiliary processes de�ned in (4.6) and (4.10).

Corollary 4.6. Let x > 0 and let U1 and U2 be given by (4.20) for β1 = β2 = β < 1.

Further, de�ne for h
(i)
θ = hθ as in (4.22) the deterministic function

Kθ(t) := E
[∫ T

t
hθ(s)ds+ hθ(T )

∣∣Ft

]
, t ∈ [0, T ].

Then, the auxiliary processes (4.6) and (4.10) corresponding to θ ∈ Θ̃ for the investment-

consumption problem (4.4) are respectively

cθ(t) = x · Hθ(t)
1/(β−1)

Kθ(0)
,

Yθ = x · Hθ(T )
1/(β−1)

Kθ(0)
, and

Vθ(t) = x
H̃θ(t)

Hθ(t)

Kθ(t)

Kθ(0)
,

(4.29)

for t ∈ [0, T ].

Proof. Since I1(t, y) = y1/(β−1) and I2(y) = y1/(β−1), for y > 0 and t ∈ [0, T ], and since

the martingale part H̃θ of Hθ(t)
β/(β−1) satis�es H̃θ(0) = 1, for y > 0, it follows from
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(4.5) that

Xθ(y) = y1/(β−1)E
[∫ T

0
Hθ(t)

β/(β−1)dt+Hθ(T )
β/(β−1)

]
= y1/(β−1)Kθ(0).

Thus, the inverse of Xθ is given by X−1
θ (x) = xβ−1Kθ(0)

1−β , for x > 0, so that by (4.6)

cθ(t) = x
H(t)1/(β−1)

Kθ(0)
, Yθ = x

H(T )1/(β−1)

Kθ(0)
.

Finally we have, by (4.10), that

Vθ(t) =
1

Hθ(t)
E
[∫ T

t
Hθ(s)cθ(s) +Hθ(T )Yθ

∣∣ Ft

]
= x

1

Hθ(t)Kθ(0)
E
[∫ T

t
Hθ(s)

β/(β−1)ds+Hθ(T )
β/(β−1)

∣∣ Ft

]
= x

H̃θ(t)Kθ(t)

Hθ(t)Kθ(0)
, for t ∈ [0, T ].

Clearly, to get a representation for the optimal consumption, terminal wealth, and op-

timal wealth process one only has to substitute the optimal Girsanov kernel θ̂ into the

de�nitions in (4.29).

Let us consider the condition on the optimal trading strategy and optimal Girsanov

kernel in (4.27). For the case β1 = β2 = β these conditions simpli�es to

ξ(t)π
θ̂
(t) =

1

β − 1
θ̂
D
(t), and γh(t, y)πθ̂

(t) = θ̂Jh (t, y)
1/(β−1) − 1. (4.30)

Further, taking condition (3.8) on θ̂ into account, it can be seen that the optimal trading

strategy π̂ has to satisfy a non-linear equation that will be stated in the next corollary.

Corollary 4.7. Assuming that β1 = β2 = β, in addition to the hypothesis of Proposition

4.5, the optimal trading strategy π̂ has to satisfy the non-linear equation

α(t)− (1− β)σ(t)π̂(t) +
m∑

h=1

∫
R\{0}

γh(t, y){1 + π̂(t)ᵀγh(t, y)}β−1νh(dy) = 0. (4.31)

If, on the other hand, there are no jumps in the market, i.e. γ ≡ 0, then the above

condition simpli�es, and the optimal trading strategy π̂ is given by

π̂ =
1

(1− β)
σ(t)−1α(t), t ∈ [0, T ]. (4.32)
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Further, the Girsanov kernel θ under which the discounted asset prices are martingales is

uniquely determined by (3.8) and is given by θD(t) = −ξ(t)−1α(t). The optimal trading

strategy has then also the form

π̂(t) =
1

(β − 1)
ξ(t)−1θD(t), t ∈ [0, T ],

which con�rms the condition (4.30). This particular example, without a jump compo-

nent, has been thoroughly investigated in Karatzas et al. (1987) and numerous other

papers.

For the remainder of this section let us consider only the one-dimensional case, with

one dimensional parameters. This is mainly for clarity purposes and the results can

be extended to the multi-dimensional case with obvious changes. For the case that

the model parameters are constants, the model becomes a Lévy process. The Girsanov

kernels can then usually also assumed to be constant such that they need to satisfy a

simpli�ed version of (3.8) given by

α+ ξθD +

∫
R\{0}

γ(y)θJ(y)ν(dy) = 0.

Actually, since γ is just a function of the jump size y and the jump size distribution

is determined by the intensity measure ν, the model can be reformulated so that γ is

not needed. If one adjust the intensity measure ν (and with that the Poisson random

measure N) the stock prices actually follow the stochastic di�erential equation

dS(t) = S(t−)

[
αdt+ ξdB(t) +

∫
R\{0}

yN(dt, dy)

]
.

The condition on the Girsanov kernels becomes then

α+ ξθD +

∫
R\{0}

yθJ(y)ν(dy) = 0.

The optimal trading strategy π̂ is then also constant and has to satisfy the optimality

condition (4.31), which simpli�es to

α− r − (1− β)ξ2π̂ +

∫
R\{0}

y

(1 + π̂y)1−β
ν(dy) = 0. (4.33)

This compares with the results of Kallsen (1999), who analysed the case of power utility

in a Lévy model. In his version the utility function is given by U(x) = x1−p

1−p for p ∈
R+\{0, 1}, and the optimal trading strategy has to satisfy

α− r − p ξ2π̂ +

∫
R\{0}

[
y

(1 + π̂y)p
− h(y)

]
ν(dy) = 0, (4.34)

where h is some truncation function. The truncation function is needed as Kallsen also

allows in�nitely many small jumps that are not considered in our model framework. If
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these are taking away, h disappears, and the two conditions (4.33) and (4.34) coincide

since β = 1 − p. Notice that, although Kallsen considers the problem of maximizing

either consumption or terminal wealth, one can still make a comparison for the power

utility case. This is because it will turn out in the next section that for the power utility

case the optimal trading strategy is the same for all three problems.

The result can also be related to the paper from Goll and Kallsen (2003). In the paper

the authors present an explicit solution to the optimal portfolio problem under a semi-

martingale model with logarithmic utility. As in Kallsen (1999) the authors formulate

the problem in terms of an generalized optimal consumption problem. If the results

are stated in the above discussed Lévy model format, then Goll and Kallsen's optimal-

ity condition become equivalent to (4.33) for the log case (i.e. β = 0). Expressed in

the terms of this thesis, Goll and Kallsen's condition becomes that the optimal trading

strategy π̂ should satisfy

sup{Λ(π − π̂) : ψ ∈ Π} = 0,

where

Λ(π) = (α− r)π − π2ξ2 +

∫
R\{0}

[
πy

1 + π̂y
− πh(y)

]
ν(dy). (4.35)

h is thereby again some truncation function, which disappears in the framework of the

thesis. The supremum in (4.35) is in particular obtained if π satis�es (4.33) with β = 0.

For the case that the stock prices are governed by a pure jump model with drift but

without Brownian motion part, the condition on the optimal trading strategy π̂ changes

from (4.31) to

α(t)− r(t) +

∫
R\{0}

γ(t, y){1 + π̂(t)γ(t, y)}β−1ν(dy) = 0, a.s.

It is worth noting, however, that in that case the set of Girsanov kernels Θ is in general

not a singleton. The condition on the Girsanov kernels (3.8) becomes

α(t)− r(t) +

∫
R\{0}

γ(t, y)θJ(t, y)ν(dy) = 0, a.s., (4.36)

and has generally not a unique solution for all t ∈ [0, T ]. Yet, a case when there exists a

unique martingale measure, is when there is only one jump size at each time t ∈ [0, T ].

Denoting this single jump size by γ(t), the condition on θJ changes to

α(t)− r(t) + γ(t)θJ(t)ν = 0, a.s.,

where ν ≥ 0 is the constant intensity. The unique Girsanov kernel is then given by

θJ(t) = −α(t)− r(t)

γ(t)ν
, t ∈ [0, T ].
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In the case of a single jump size γ(t) at each time t ∈ [0, T ], the optimal trading strategy

takes the form, from (4.36), as

π̂(t) =
1

γ(t)

[(
−α(t)− r(t)

γ(t)ν

)1−β

− 1

]
, t ∈ [0, T ].

Expressed in terms of the Girsanov kernel θJ , the optimal trading strategy is π̂(t) =

1
γ(t)

[
θJ(t)β−1 − 1

]
, which again con�rms condition (4.30) for the jump part.

The case where the utility for consumption di�ers from the utility for terminal wealth can

be signi�cantly more complex. If there are no jumps in the market and the stock prices

are driven by a geometric Brownian motion and the condition on the trading strategy is

as in (4.27)

ξ(t)π̂(t) =
1

Cθ(t−) +Wθ(t−)

{
1

β1 − 1
Cθ(t−) +

1

β2 − 1
Wθ(t−)

}
θD(t) (4.37)

However, now the Girsanov kernel is known (cf. (3.9)) to be

θD(t) = −α(t)− r(t)

ξ(t)

and is therefore unique. This means that the expression on the right hand side of (4.37)

can be calculated easily as it depends on a unique θD.

On the other hand, if there is no Brownian motion in the model, the condition (4.27) is

γ(t, y)π̂
θ̂
(t) =

1

C
θ̂
(t−) +W

θ̂
(t−)

{(
θ̂J(t, y)

1
β1−1 − 1

)
C
θ̂
(t−)

+
(
θ̂J(t, y)

1
β2−1 − 1

)
W

θ̂
(t−)

}
.

(4.38)

In contrast to (4.37) the right hand side of (4.38) is not easily calculated analytically.

This is because, if there are several jump sizes in the model, the optimal Girsanov kernel

θ̂J is not easily determined since the set of Girsanov kernels is not a singleton. Instead

a jump Girsanov kernel θJ has to satisfy

α(t) +

∫
R\{0}

γ(t, y)θJ(t, y)ν(dy) = 0, a.s., t ∈ [0, T ], (4.39)

which has no unique solution and the market is incomplete. Thus, θ̂ has to be found

otherwise. If, however, there is only one jump size, then θJ is the unique solution of

(4.39) and the market is complete. Then the expression on the right hand side of (4.38)

can be calculated analytically.

The section is concluded by giving some graphical illustrations of the expected con-

sumption and wealth processes for a concrete model. Also it is shown how the expected

consumption and wealth evolve over time. The simplest model is assumed, namely that
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of constant parameters, with N being a Poisson process with parameter ν and single

jump size, and we take the parameters α = .1, r = .05, ξ = .3, ν = .2 and γ = −.1.
This means that the yearly drift is 10%, the riskless rate is 5%, the standard deviation

with respect to the Brownian motion is given by 30%, jumps are expected to happen

every 5 years (1/ν), and if a jump happens the stock price drops by 10%. It is further

assumed that investor's initial wealth is ¿100 and the investment horizon is 10 years, i.e.

T = 10. As utility function the logarithmic utility is chosen so that β = 0. Figure 4.1

shows the corresponding optimal expected portfolio value and expected consumption for

the optimization problem (4.4) with both utilities being logarithmic and with the given

constant parameters.

0 2 4 6 8 10
t

20

40

60

80

100

EHV HtLL, EHcHtLL

expected wealth and consumption level

Figure 4.1: Expected consumption (dashed line) and wealth over time when maximizing

consumption and terminal wealth with parameters α = .1, r = .05, ξ = .3, ν = .2,

γ = −.1, β = 0, T = 10

To see the impact of jumps on the optimal trading strategy we compare two optimal

trading strategies: one is for a jump-di�usion model and the other is in the absence

of jumps. For the jump di�usion case we use the same parameters as above. For the

di�usion model we drop the jump parameters with the remaining parameters unchanged,

so that αD = .1, rD = .05, ξD = .3, νD = 0, and γD = 0. It turns out that the optimal

strategy for the jump-di�usion model is π̂JD = .33 and the optimal strategy for the

di�usion model is π̂D = .56.
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Π = stock�Hbond+stockL

Figure 4.2: Optimal trading strategy in a jump di�usion and di�usion (dashed line) case

with parameters β = 0, α = .1, r = .05, ξ = .3, νJD = .2, γJD = −.1, and νD = 0,

γD = 0 respectively.

Figure 4.2 shows how much money an investor should invest in the stock for every unit

of money invested in the bond. Recall that the money invested in the stock is π/(1− π)

times the amount invested into the bond. The continuous line represents the optimal

strategy in the jump di�usion case π̂JD = .33, and the dashed line represents the optimal

strategy for the di�usion model π̂D = .56.

4.6 Several Examples of Jump Di�usion Models under Power

Utility

In this section we consider the existence and uniqueness of an optimal trading strategy in

the power utility case with constant parameters in a one dimensional framework. Thus

the stock price is assume to follow the stochastic di�erential equation

dS(t)

S(t−)
= αdt+ ξdW (t) +

∫
R\{0}

γ(y)ν(dy), t ∈ [0, T ].

The stock price is assume to be non-negative so that the jump size γ(y) has to satisfy

γ(y) ≥ −1 for all y ∈ R \ {0} (cf. Section 3.1). Let A denote the subset A ⊂ [−1,∞)

in which for the given model all jumps γ(·) of the stock price lie. Further, denote by a

and b the in�mum and, respectively, the supremum of the set A. For the purpose of the

following considerations introduce for a = 0 and b = ∞ the convention that 1/0 = ∞
and −1/∞ = 0, respectively.

For a trading strategy π to be admissible it needs to satisfy 1 + πγ(y) ≥ 0 for all

y ∈ R \ {0}. This leads to three possible forms of the set of admissible strategies:
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(a) If −1 ≤ a < 0 < b ≤ ∞ then an admissible strategy satis�es π ∈ [−1/b,−1/a].

(b) If −1 ≤ a ≤ b ≤ 0 then an admissible strategy satis�es π ∈ (−∞,−1/a].

(c) If 0 ≤ a ≤ b ≤ ∞ then an admissible strategy satis�es π ∈ [−1/b,∞).

For the remainder of this section assume that the stock jumps sizes are of the form

−1 ≤ a < 0 < b ≤ ∞ as in (a) above. For the following, the other two cases can be

treated in an analogue way to (a).

Proposition 4.8. Let a = infy∈R\{0} γ(y) and b = supy∈R\{0} γ(y), and let −1 ≤ a <

0 < b ≤ ∞. Further assume that the integrals∫
R\{0}

γ(y)

(
1− γ(y)

a

)β−1

ν(dy) and

∫
R\{0}

γ(y)

(
1− γ(y)

b

)β−1

ν(dy) (4.40)

are de�ned (possibly being ±∞). If the model parameters satisfy the conditions

α− 1

a
(β − 1)σ +

∫
R\{0}

γ(y)

(
1− γ(y)

a

)β−1

ν(dy) ≤ 0 and

α− 1

b
(β − 1)σ +

∫
R\{0}

γ(y)

(
1− γ(y)

b

)β−1

ν(dy) ≥ 0,

(4.41)

then there exists a unique optimal solution π̂ ∈ [−1/b,−1/a] to the optimal investment-

consumption problem under power utility with constant parameters with one stock in the

market. The unique solution can be found by solving

α+ (β − 1)σπ̂ +

∫
R\{0}

γ(y) (1 + π̂γ(y))β−1 ν(dy) = 0. (4.42)

Proof. In Proposition 4.5 condition (4.31) has been stated for an admissible trading

strategy to be optimal. This translates in the current model set up to (4.42). Using this

optimality condition, de�ne the function

g(π) := α+ (β − 1)σπ +

∫
R\{0}

γ(y) (1 + πγ(y))β−1 ν(dy), π ∈ [−1/b,−1/a]. (4.43)

Further consider its �rst derivative

∂g

∂π
(π) = (β − 1)σ + (β − 1)

∫
R\{0}

γ(y)2 (1 + πγ(y))β−2 f(y)dy.

Since (β − 1) is the only negative term, the �rst derivative of g is negative for all π ∈
[−1/b,−1/a]. That means in particular that g is downward sloping and a unique solution

π̂ to (4.42) must exists if g(−1/a) ≤ 0 ≤ g(−1/b). But this is exactly the condition stated

in the proposition.
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Remark 4.9. (i) The argument in the above proof is that the function g(·) in (4.43) has

a solution. A su�cient condition is condition (4.41). Thereby guarantees (4.40) that the

integrals in (4.41) actually exist. In the following examples we will give, if necessary,

explicit additional conditions on the model parameters to ensure that the integrals in

(4.40) are de�ned.

(ii) For the case that
∫
R\{0} γ(y)

(
1− γ(y)

a

)β−1
ν(dy) = −∞, the �rst condition in (4.41)

is still assumed satis�ed. The condition (4.41) is violated if∫
R\{0} γ(y)

(
1− γ(y)

a

)β−1
ν(dy) = +∞.

(iii) On the other hand, if
∫
R\{0} γ(y)

(
1− γ(y)

b

)β−1
ν(dy) = +∞, the second condition

in (4.41) is still treated as ful�lled. If however
∫
R\{0} γ(y)

(
1− γ(y)

b

)β−1
ν(dy) = −∞,

condition (4.41) is violated.

For the remainder of this section we check how the existence and uniqueness condition

in (4.41) manifest for various jump-di�usion models. Consider �rst the Kou model.

In the model suggested by Kou (2002), the logarithm of the asset price is assumed to

follow a sum of Brownian motion and a compound Poisson process where the jump sizes

are double exponentially distributed. Compound Poisson processes have been discussed

in De�nition 2.5. This allows to capture two empirical phenomena in stock prices. One

is the asymmetric leptokurtic feature of stock price returns, and the other one is the

feature to capture volatility smiles. In Kou's model the stock price follows the stochastic

di�erential equation

dS(t)

S(t−)
= αdt+ ξdW (t) + d

N(t)∑
l=1

(Vl − 1)

 , t ∈ [0, T ]. (4.44)

Thereby is N a Poisson process with rate λ > 0, (Vl) is a sequence of i.i.d. non-

negative random variables such that Y = log(V ) has an asymmetric double exponential

distribution with the density

f(y) = pη1e
−η1y1{y≥0} + (1− p)η2e

η2y1{y<0}, (4.45)

where η1 > 1, η2 > 0, and 0 ≤ p ≤ 1 represents the probability of an upward jump.

In other words, the random variable Y could be written as

Y = log(V ) =

{
ζ+, with probability p

−ζ−, with probability 1− p
(4.46)

where ζ+ and ζ− are exponential random variables with parameters η1 and η2 respec-

tively. The parameters α and σ in (4.44) are assumed to be positive constants. The
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parameters η1 and η2 describe the severity of the up- and downward jump respectively.

The bigger η1 the more likely it is that upward jumps are big, and the bigger η2 the

more likely it is that downward jumps are big.

The Kou model is an example of the generalised model set up of (3.1). It is a one

dimensional stock model for a market with a single stock. In the set up of (3.1), the

drift and di�usion parameters become constants and the jump part takes the form of a

compound jump process such that the
∫
R\{0} γ(t, y)N(dt, dy) translates to (V − 1) dN(t).

Alternatively, the jump part of the changing stock price can be written as
(
eY − 1

)
dN(t)

where Y is double exponential distributed with parameters η1, η2 and p, as described in

(4.46).

For the set up used in this thesis, this translates to γ(t, y) = ey − 1 and the jump

intensity measure takes the form ν(dy) = λf(dy) where f is given by (4.45). Since

the jumps don't allow the stock price to become negative or zero (cf. Section 3.1), the

stochastic di�erential equation (4.44) can be solved to

S(t) = S(0) exp
((
α− σ

2

)
t+ ξW (t)

)N(t)∏
l=1

Vl, t ∈ [0, T ].

This is using the same argument as has been used when (3.4) has been derived.

Example 4.10. Assume that the stock price follows the Kou model as given in (4.44). If

the model parameters satisfy 0 < β+ η2 < 1 then the existence and uniqueness condition

given in (4.41) becomes

λ

(
p

1− η1
+

1− p

1 + η2

)
≤ α. (4.47)

If the model parameters satisfy β + η2 > 1, in addition to (4.47), the the additional

condition

α+ λ

(
pη1

(β − η1)(β − 1− η1)
− (1− p)η2

(β + η2)(β − 1 + η2)

)
≤ 0 (4.48)

needs to be satis�ed to guarantee the existence and uniqueness of an optimal trading

strategy. The unique optimal solution π̂ ∈ [0, 1] to the optimal investment-consumption

problem under power utility in the Kou model can then be found by solving

α+ (β − 1)σπ̂ + λ

∫
R\{0}

(ey − 1)
(
1 + π̂ (ey − 1)

)β−1
f(y)dy = 0. (4.49)

Proof. The corollary follows from Proposition 4.8. Since in the Kou model the size

of jumps reaches from a = −1 to b = ∞, only trading strategies in the set [0, 1] are

admissible. The condition for existence and uniqueness derived in the proof Proposition

4.8 becomes therefore g(0) ≥ 0 ≥ g(1), with g as in (4.43). The �rst integral can be
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evaluated as

g(0) = α+ λ

∫
R\{0}

(ey − 1) f(dy)

= α+ λ

∫
R\{0}

(ey − 1)
(
pη1e

−η1y1{y≥0} + (1− p)η2e
η2y1y<0

)
dy

= α+ λpη1

∫ ∞

0
e(1−η1)ydy − λpη1

∫ ∞

0
e−η1ydy

+ λ(1− p)η2

∫ 0

−∞
e(1+η2)ydy − λ(1− p)η2

∫ 0

−∞
eη2ydy

= α− λp
η1

1− η1
− λp+ λ(1− p)

η2
1 + η2

− λ(1− p)

= α− λ

(
p

1− η1
+

1− p

1 + η2

)
.

(4.50)

The second integral, g(1), is given by

g(1) = α+ (β − 1)σ + λ

∫
R\{0}

(ey − 1) e(β−1)yf(dy)

= α+ λ

∫
R\{0}

(ey − 1) e(β−1)y
(
pη1e

−η1y1{y≥0} + (1− p)η2e
η2y1y<0

)
dy

= α+ λpη1

∫ ∞

0
e(β−η1)ydy − λpη1

∫ ∞

0
e(β−1−η1)ydy

+ λ(1− p)η2

∫ 0

−∞
e(β+η2)ydy − λ(1− p)η2

∫ 0

−∞
e(β−1+η2)ydy.

If 0 < β+η2 < 1 then the last integral in the above equation is in�nite so that g(1) = −∞.

Thus, g(1) < 0 as required in Proposition 4.8. If β + η2 > 1, then g(1) is �nite and can

be evaluated as

g(1) = α− λp
η1

β − η1
+ λp

η1
β − 1− η1

+ λ(1− p)
η2

β + η2
− λ(1− p)

η2
β − 1 + η2

= α+ λ

(
pη1

(β − η1)(β − 1− η1)
− (1− p)η2

(β + η2)(β − 1 + η2)

)
.

(4.51)

Thus, to guarantee that g(0) ≥ 0 ≥ g(1) the conditions as stated in (4.47) and (4.48)

need to be satis�ed. If they are satis�ed an optimal solution π̂ exists and is unique.

Remark 4.11. The conditions 0 < β + η2 < 1 and β + η2 > 1 in the above example

ensure that the integrals in (4.40) are actually de�ned. That means it is necessary and

su�cient that the model parameters satisfy either 0 < β+η2 < 1 or β+η2 > 1 to ensure

that the integrals in (4.40) are de�ned.

If the stock price follows a similar model as before but has now jumps following a Gamma

distribution, similar conditions can be given. Assume a stock model as in (4.44) but let

Vl be Gamma distributed such that for k, θ > 0 the probability density function is given

by

f(y) = yk−1 e
−y/θ

θkΓ(k)
, y ≥ 0, (4.52)
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whereby Γ is the Gamma function Γ(x) =
∫∞
0 tx−1e−tdt, x ∈ R.

Example 4.12. If the stock price follows the model as given in (4.44), but where jumps

follow a Gamma distribution as in (4.52) with intensity λ > 0, the existence and unique-

ness condition given in (4.41) becomes

α+ λ(kθ − 1) ≥ 0, and

α+ (β − 1)σ +
λ

Γ(k)

(
θβΓ(k + β)− θβ−1Γ(k + β − 1)

)
≤ 0.

(4.53)

If condition (4.53) is satis�ed, the unique optimal solution π̂ ∈ [0, 1] to the optimal

investment-consumption problem under power utility with Gamma distributed jumps can

be found by solving

α+ (β − 1)σπ̂ + λ

∫
R\{0}

(y − 1)
(
1 + π̂ (y − 1)

)β−1
f(y)dy = 0. (4.54)

Proof. This corollary is derived in the same way as Corollary (4.10). The jump parameter

becomes γ(y) = y − 1 and the jumps have the density (4.52). Conditions (4.53) will be

shown to be equivalent to g(0) ≥ 0 ≥ g(1), with g as in (4.43). First,

g(0) = α+ λ

∫ ∞

0
(y − 1)f(y)dy = α+ λ(kθ − 1).

Since it is needed that g(0) ≥ 0 a necessary condition is that α + λ(kθ − 1) ≥ 0.

Calculating the second condition gives

g(1) = α+ (β − 1)σ + λ

∫ ∞

0
(y − 1)yβ−1f(y)dy

= α+ (β − 1)σ +
λ

θkΓ(k)

(∫ ∞

0
yk−1+βey/θdy −

∫ ∞

0
yk−1+β−1ey/θdy

)
= α+ (β − 1)σ +

λ

θkΓ(k)

(
θk+βΓ(k + β)− θk+β−1Γ(k + β − 1)

)
= α+ (β − 1)σ +

λ

Γ(k)

(
θβΓ(k + β)− θβ−1Γ(k + β − 1)

)
As it is needed that g(1) ≤ 0, condition (4.53) needs to be satis�es for a unique optimal

strategy to exist.

As a �nal example log normal distributed jumps are considered. The stock model is

again assumed to follow a stochastic di�erential equation as in (4.44) but this time V is

log normal distributed with parameters (m, s) and density

f(x) =
1

xs
√
2π
e−

(ln(x)−m)2

2s2 , x ∈ R+. (4.55)
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Example 4.13. If the stock price follows the model as given in (4.44), but where jumps

follow a log normal distribution with density (4.55) with intensity λ > 0, the existence

and uniqueness condition given in (4.41) becomes

α+ λ

(
em+ s2

2 − 1

)
≥ 0, and

α+ (β − 1)σ + λ

(
e

s2β2

2
+βm − e

s2(β−1)2

2
+(β−1)m

)
≤ 0.

(4.56)

If condition (4.56) is satis�ed, the unique optimal solution π̂ ∈ [0, 1] to the optimal

investment-consumption problem under power utility with log normal distributed jumps

can be found by solving (4.54) with f being the log normal density as in (4.55).

Proof. As in the previous proofs. The values g(0) and g(1) needs to be calculated:

g(0) = α+ λ

∫
R
(y − 1)f(y)dy = α+ λ (E[V ]− 1) = α+ λ

(
em+ s2

2 − 1

)
.

This derives the �rst part of (4.56) since it is required that g(0) ≥ 0. To calculate g(1)

consider �rst only the integral part∫
R
(y − 1)yβ−1f(y)dy =

∫
R
yβf(y)dy −

∫
R
yβ−1f(y)dy

=
1

s
√
2π

(∫
R+

yβ−1e−
(ln y−m)2

2s2 dy −
∫
R+

yβ−2e−
(ln y−m)2

2s2 dy

)
.

To calculate the integrals apply the substitution x = ln y such that dy = exdx. After

simpli�cation, the integral takes then the form∫
R
(y − 1)yβ−1f(y)dy =

1

s
√
2π

(∫
R
e
− 1

2s2

(
[x−(s2β+m)]

2−(s2β)2−2s2βm
)
dy

−
∫
R
e
− 1

2s2

(
[x−(s2(β−1)+m)]

2−(s2(β−1))2−2s2(β−1)m
)
dy

)
= e

s2β2

2
+βm − e

s2(β−1)2

2
+(β−1)m.

Thus, g(1) can be calculated as

g(1) = α+ (β − 1)σ + λ

(
e

s2β2

2
+βm − e

s2(β−1)2

2
+(β−1)m

)
.

4.7 Optimizing the Expected Utilities of Consumption or

Terminal Wealth

The previous sections were focusing on the combined consumption-investment problem.

This is, the investor objective is to maximize his/her terminal wealth as well as the con-

sumption during the investment period. This combined problem can be naturally split
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into two problems where a �nancial agent is either interested in maximizing expected

utility from terminal wealth or expected utility from consumption only. The two prob-

lems can be solved in an analogue way as the combined investment-consumption problem

has been solved. The objective functions for the problems of consumption or terminal

wealth are given, respectively, by

J1(x;π, c) = E
[∫ T

0
U1(t, ct)dt

]
and J2(x;π) = E

[
U2(V

x
π,0(T ))

]
,

and the admissible strategies for both optimization problems are changing to

Ã1(x) =
{
(π, c) ∈ A(x)

∣∣∣ E
[∫ T

0
U1(t, ct)

−dt

]
> −∞

}
, and

Ã2(x) =
{
(π, c) ∈ A(x)

∣∣∣ E
[
U2(V

x
π,c(T ))

−] > −∞
}
.

The problem of maximizing consumption is then that of �nding an optimal pair (π̂1, ĉ1) ∈
Ã1(x) such that

Φ1(x) := sup
(π,c)∈Ã1(x)

J1(x;π, c) = J1(x; π̂1, ĉ1). (4.57)

The problem of maximizing terminal wealth, on the other hand, is that of �nding an

optimal strategy π̂2 such that (π̂2, 0) ∈ Ã2(x) and

Φ2(x) := sup
(π,0)∈Ã2(x)

J2(x;π) = J2(x; π̂2) (4.58)

Again with a slight abuse of notation, we refer to the performance functions Φ1 and Φ2

respectively as the optimization problems. These problems consist of �nding the optimal

performance functions, the optimal trading strategy, and the optimal consumption plan

for the consumption only problem.

The two problems relate naturally to the combined investment-consumption problem. If

one considers maximizing consumption only then terminal wealth should be zero, other-

wise the utility of consumption could be increased by consuming the positive terminal

wealth. However, maximizing J(x;π, c) under the constraint that V x
π,c(T ) = 0 is equiv-

alent to maximizing J1(x;π, c). On the other hand, if one is interested in maximizing

terminal wealth only then no consumption should take place since consumption only

reduces wealth. However, if consumption is zero, then maximizing J(x;π, 0) is equiva-

lent to maximizing J2(x;π). Thus, the problems of maximizing consumption or terminal

wealth can be related to (4.4) by introducing the constraints V x
π,c(T ) = 0, a.s., and c ≡ 0,

a.s., respectively.

To obtain analogue results as in Section 4.3 and 4.4 for the consumption only problem

it is necessary to make some modi�cations. For y > 0 de�ne the function

X1,θ(y) := E
[∫ T

0
Hθ(t)I1(t, yHθ(t))dt

]
, (4.59)
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which is the consumption only equivalent to (4.5). The set of jump-di�usion Girsanov

kernels is constraint to the set

Θ̃1 :=
{
θ ∈ Θ| X1,θ(y) <∞, y > 0

}
.

De�ning for θ ∈ Θ̃ the auxiliary consumption and terminal wealth pair

c1,θ(t) := I1(t,X−1
1,θ (x)Hθ(t)), and

Y1,θ := 0,
(4.60)

then the corresponding version of Lemma 4.1 is given as

(i) E
[∫ T

0 Hθ(t)c1,θ(t)dt
]
= x ,

(ii) E
[∫ T

0 U1(t, c1,θ(t))
−dt
]
> −∞,

(iii) J1(x;π, c) ≤ E
[∫ T

0 U1(t, c1,θ(t))dt
]
for all (π, c) ∈ Ã1(x).

It follows that

E
[∫ T

0
U1(t, c(t))dt

]
≤ sup

(π̂,ĉ)∈Ã1(x)

E
[∫ T

0
U1(t, ĉ(t))dt)

]
≤ inf

θ̂∈Θ̃1

E
[∫ T

0
U1(t, cθ̂(t))dt

]
≤ E

[∫ T

0
U1(t, c1,θ(t))dt

]
and, thus, in particular

E
[∫ T

0
U1(t, c(t))dt

]
6 E

[∫ T

0
U1(t, c1,θ(t))dt

]
for any (π, c) ∈ Ã1(x) and θ ∈ Θ̃1. Equivalent to De�nition 4.2 the optimal martingale

measure can be also de�ned for the consumption only problem.

De�nition 4.14. A martingale measure Q obtained by dQ
dP |FT

= Zθ(T ) in terms of

θ̂ ∈ Θ̃1 is called optimal for the optimization problem Φ1(x) in (4.57) if it satis�es

E
[∫ T

0
U1(t, c1,θ̂(t))dt

]
= inf

θ∈Θ̃1

E
[∫ T

0
U1(t, c1,θ(t))dt

]
where c1,θ as de�ned in (4.60).

For the terminal wealth problem the modi�cations are similar. The function Xθ needs

to be changed to

X2,θ(y) := E [Hθ(T )I2(yHθ(T ))] , y > 0, (4.61)

and the set of martingale measures is constraint to

Θ̃2 :=
{
θ ∈ Θ| X2,θ(y) <∞, y > 0

}
. (4.62)
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The auxiliary consumption has to be zero as already mentioned in the remarks above.

Further, the auxiliary terminal wealth is de�ned by

c2,θ(t) := 0, t ∈ [0, T ], and

Y2,θ := I2

(
X−1
2,θ (x)

)
.

(4.63)

The equivalent results from Lemma 4.1 are then given for θ ∈ Θ2 by

(i) E [Hθ(T )Y2,θ] = x,

(ii) E [U2(Y2,θ)
−] > −∞,

(iii) J2(x;π, c) ≤ E [U2(Y2,θ)] for all (π, c) ∈ Ã2(x).

Similarly, for the terminal wealth problem it follows that

E
[
U2(V

x
π,0(T ))

]
≤ sup

(π̂,ĉ)∈Ã2(x)

E
[
U2(V

x
π̂,0(T ))

]
≤ inf

θ̂∈Θ̃2

E
[
U2(Yθ̂)

]
≤ E [U2(Y2,θ)] ,

thus, in particular

E
[
U2(V

x
π,0(T ))

]
6 E [U2(Y2,θ)]

for any (π, c) ∈ Ã2(x) and θ ∈ Θ̃2. An optimal EMM can be de�ned for this problem

in the following way.

De�nition 4.15. A martingale measure Q obtained by dQ
dP |FT

= Zθ(T ) in terms of

θ̂ ∈ Θ̃2 is called optimal for the optimization problem Φ2(x) in (4.58) if it satis�es

E
[
U2(Y2,θ̂)

]
= inf

θ∈Θ̃1

E [U2(Y2,θ)]

where Y2,θ as de�ned in (4.63).

To apply the results from Theorem 4.3 to either the consumption or terminal wealth

problem. The processes Mθ, Jθ, and Vθ de�ned in (4.8), (4.9), and (4.10) respectively

need adjustment. For i = 1, 2 de�ne the following processes

Mi,θ(t) := E
[∫ T

0
Hθ(s)ci,θ(s)ds+Hθ(T )Yi,θ

∣∣Ft

]
,

Ji,θ(t) :=

∫ t

0
Hθ(s)ci,θ(s)ds, and

Vi,θ(t) :=
1

Hθ(t)

(
Mi,θ(t)− Ji,θ(t)

)
,

(4.64)

respectively. i = 1 represents thereby the consumption problem and i = 2 the terminal

wealth problem.
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Proposition 4.16. For the consumption problem i = 1 and for the terminal wealth

problem i = 2, the optimality condition in (4.12) on the optimal Girsanov kernel θ̂ and

the optimal trading strategy π
θ̂
takes respectively the form

π
θ̂
(t)ᵀξ(t) =

1

H
θ̂
(t−)V

i,θ̂
(t−)

a(i),D(t)− θ̂
D
(t),

π
θ̂
(t)ᵀγh(t, y) =

1

H
θ̂
(t−)V

i,θ̂
(t−)

a
(i),J
h (t, y)

θ̂Jh (t, y)
−
θ̂Jh (t, y)− 1

θ̂Jh (t, y)
,

(4.65)

for h = 1, ...,m, and νh-almost all y ∈ R \ {0}. Thereby is Vi,θ de�ned as in (4.64),

and a(i),D, and a(i),J are the martingale representation coe�cients of the martingale

Mi,θ de�ned in (4.64). If the conditions are satis�ed then the wealth process for the

corresponding problem is given by V
i,θ̂
(t).

As an application of the above proposition let us continue the power utility example

from the last section. Interestingly, it turns out that the optimal Girsanov kernel and

trading strategy
(
θ̂, π̂

)
have to satisfy the same conditions (4.31) in the individual

terminal wealth and consumption problems as they do in the combined terminal wealth

and consumption problem. There is no need to di�erentiate the risk aversion parameter

β for terminal wealth and consumption since they are now separate problems. So let

β < 1 the power utility risk aversion of the investor, so that U(t, x) = U(x) = xβ

β and

I(y) = y
1

β−1 .

Then the function X1,θ as de�ned in (4.59) takes the form

X1,θ(y) = y
1

β−1E
[∫ T

0
Hθ(t)

β
β−1dt

]
= y

1
β−1K1,θ(0),

where K1,θ is de�ned as in (4.24). Then the inverse of X1,θ is given by X−1
1,θ (x) =(

x
K1,θ(0)

)β−1
so that the martingale M1,θ de�ned in (4.64) can be calculated as

M1,θ(t) =

(
x

K1,θ(0)

)β−1

E
[∫ T

0
Hθ(s)

β
β−1ds

∣∣Ft

]
=

(
x

K1,θ(0)

)β−1 [∫ t

0
Hθ(s)

β
β−1ds+ H̃θ(t)K1,θ(t)

]
Clearly, the dynamics of M1,θ can be calculated as

dM1,θ(t) =

(
x

K1,θ(0)

)β−1

K1,θ(t)dH̃θ(t)

=

(
x

K1,θ(0)

)β−1

K1,θ(t)H̃θ(t−)

[
β

β − 1
θD(t)dB(t)

+

∫
R\{0}

(
θJ(t, y)

β
β−1 − 1

)
Ñ(dt, dy)

]
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On the other hand from (4.64) we have

Hθ(t)V1,θ(t) =

(
x

K1,θ(0)

)β−1

E
[∫ T

t
Hθ(s)

β
β−1ds

∣∣Ft

]
=

(
x

K1,θ(0)

)β−1

K1,θ(t)H̃θ(t),

so that the dynamics of M1,θ can be rewritten as

dM1,θ(t) = Hθ(t)V1,θ(t)

[
β

β − 1
θD(t)dB(t) +

∫
R\{0}

(
θJ(t, y)

β
β−1 − 1

)
Ñ(dt, dy)

]
(4.66)

Now, on the other hand consider the martingale for the terminal wealth problem. We

follow the same procedure. Then the function X2,θ as de�ned in (4.61) takes the form

X2,θ(y) = y
1

β−1E
[
Hθ(T )

β
β−1

]
= y

1
β−1K2,θ(0),

where K2,θ is de�ned as in (4.25).

The inverse of X2,θ is given by X−1
2,θ (x) =

(
x

K2,θ(0)

)β−1
so that the martingale M2,θ

de�ned in (4.64) can be calculated as

M2,θ(t) =

(
x

K2,θ(0)

)β−1

E
[
Hθ(T )

β
β−1
∣∣Ft

]
=

(
x

K2,θ(0)

)β−1

H̃θ(t)K2,θ(t).

Considering that from (4.64)

Hθ(t)V2,θ(t) =

(
x

K2,θ(0)

)β−1

E
[
Hθ(T )

β
β−1
∣∣Ft

]
=

(
x

K2,θ(0)

)β−1

K2,θ(t)H̃θ(t),

so that, as before, the dynamics of M2,θ can be calculated as

dM2,θ(t) =

(
x

K1,θ(0)

)β−1

K1,θ(t)dH̃θ(t)

= Hθ(t)V2,θ(t)

[
β

β − 1
θD(t)dB(t) +

∫
R\{0}

(
θJ(t, y)

β
β−1 − 1

)
Ñ(dt, dy)

]
(4.67)

Comparing the martingale coe�cients from (4.66) and (4.67) one clearly sees that the

martingale coe�cients that are given for i = 1, 2 by

a(i),D(t) = Hθ(t)V2,θ(t)
β

β − 1
θD(t), and

a(i),J(t, y) = Hθ(t)V2,θ(t)

∫
R\{0}

(
θJ(t, y)

β
β−1 − 1

)
,

and give the same condition on (θ̂, π̂) when substituted into (4.65). This condition is

the same as in (4.30), which is

ξ(t)π
θ̂
(t) =

1

β − 1
θ̂D(t), and γ(t, y)π

θ̂
(t) = θ̂J(t, y)1/(β−1) − 1.

74



Thus, the optimal trading strategy for all three problems and the case β1 = β2 = β has

to satisfy (4.31)

α(t)− r(t)− (1− β)ξ(t)2π̂(t) +

∫
R\{0}

γ(t, y){1 + π̂(t)γ(t, y)}β−1ν(dy) = 0.

Analogue to Corollary 4.6 it is possible to derive some results on the auxiliary consump-

tion, terminal wealth, and wealth process for θ ∈ Θ̃i, i = 1, 2. For the consumption

problem the auxiliary processes are given as

c1,θ(t) = x
Hθ(t)

1/(β−1)

K1,θ(0)
, t ∈ [0, T ],

Y1,θ = 0,

where K1,θ as de�ned in (4.24) with hθ de�ned by (4.22) and the auxiliary wealth process

V1,θ(t) is given by

V1,θ(t) = x · H̃θ(t)

Hθ(t)

K1,θ(t)

K1,θ(0)
, t ∈ [0, T ].

The corresponding auxiliary processes for the terminal wealth problem are given by

c2,θ(t) ≡ 0,

Y2,θ = x
Hθ(T )

1/(β−1)

hθ(T )

and the auxiliary wealth process V2,θ(t) as de�ned in (4.64) is given by

V2,θ(t) = x
H̃θ(t)

Hθ(t)
, t ∈ [0, T ]. (4.68)

These results can be proven analogously to the proof of Corollary 4.6. If the optimal

EMM can be obtained in form of θ̂, then the optimal consumption, terminal wealth,

and wealth process can be obtained by substituting θ by the optimal θ̂ in the above

equations.

When maximizing utility for consumption only the expected consumption and wealth

processes behave similarly to those in the investment-consumption problem. This is

shown in Figure 4.3, where all parameters are as given in the previous section.
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Figure 4.3: Expected wealth and consumption (dashed) over time when maximizing

consumption with parameters α = .1, r = .05, ξ = .3, ν = .2, γ = −.1, β = 0, T = 10

However, for the terminal wealth maximization problem the situation is very di�erent

from that in the investment-consumtion problem, since there is no consumption. It can

be seen in Figure 4.4 that the expected wealth increases exponentially in time, where

again all parameters are as given in the previous section.
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EHV HtLL

expected wealth

Figure 4.4: Expected wealth over time when maximizing terminal wealth with parame-

ters α = .1, r = .05, ξ = .3, ν = .2, γ = −.1, β = 0, T = 10

4.8 Relationship to Partial Di�erential Equations

In this section we relate the martingale results on optimal portfolios to partial di�eren-

tial equations. The key tool to make the transition from stochastic processes to partial
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di�erential equations is the Kolmogorov equation. The results of the Kolmogorov equa-

tion can particularly be applied to the optimal terminal wealth problem on which we are

going to restrict ourself in this section.

The model parameters α, ξ,γ and r are assumed to be deterministic, continuously dif-

ferentiable with bounded spacial gradients. In particular, it is assumed that all jump-

di�usion Girsanov kernels are deterministic too. That is the set of processes Θ shall

only contain deterministic processes. This means in particular that the stock prices

Si, i = 1, . . . , n, and the risk-less asset S0 become Markov processes. Further, the

Radon-Nikodym densities Zθ as well as the state price density Hθ are then also Markov

processes. However, the wealth process V x
π of a trading strategy π is Markovian if and

only if the trading strategy π is a Markov process. If this is the case π is called a Markov

or feedback strategy. Its value then depends on the current time t and the current level

of wealth.

To relate the martingale approach results to PDEs and �nally to the Hamilton-Jacobi-

Bellman equation of stochastic control it is necessary to modify the terminal wealth

problem of Section 4.7. For (s, v) ∈ [0, T ]× (0,∞) introduce the optimization problem

Φ(s, v) = sup
π∈A(s,v)

E
[
U
(
V s,v
π (T )

)]
, (s, v) ∈ [0, T ]× (0,∞), (4.69)

where V s,v
π is the wealth process of the strategy π that starts at v at time s, instead of

x at time 0. This wealth process was given as the solution to the SDE (3.13) by

dV s,v
π (t)

V s,v
π (t−)

= r(t)dt+ π(t)ᵀ
[
α(t)dt+ ξ(t)dB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)

]
,

with new initial condition V s,v
π (s) = v. The set of admissible trading strategies is thereby

A(s, v) := {π |V s,v
π ≥ 0, and E[min{0, U (V s,v

π (T ))}] > −∞} .

This extends naturally the problem Φ2(x) in (4.58) in the sense that the wealth problem

starts now at time s instead of time 0. In the case that s = 0 and v = x the optimization

problem Φ2(x) from (4.58) is recovered.

For θ ∈ Θ we allow the state price density Hθ from De�nition 3.3 to start at h at time

s and denote it in this case by Hs,h
θ . It then satis�es the properties

Hs,h
θ (t) = hHs,1

θ (t), and H0,1
θ (t) = H0,1

θ (s)Hs,1
θ (t),

for 0 ≤ s ≤ t ≤ T . Since for θ ∈ Θ the density Zs,z
θ that starts at point z at time s is

still a martingale since Z0,1
θ is a martingale, the state price density Hs,h

θ still preserves its

usual properties and behaves like Hθ but with a di�erent starting point. In particular,

for θ ∈ Θ, what holds true for Zθ and Hθ still applies to Z
s,z
θ and Hs,h

θ respectively.
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Analogue to the de�nition of X2,θ in (4.61) let the function Xθ(s, y) be de�ned for (s, y) ∈
[0, T ]× (0,∞) by

Xθ(s, y) := E
[
Hs,1

θ (T )I
(
yHs,1

θ (T )
)]
. (4.70)

To guarantee that Xθ has an inverse function X−1
θ the jump-di�usion Girsanov kernels

are restricted to the set

Θ̃T := {θ ∈ Θ | Xθ(s, y) <∞, (s, y) ∈ [0, T ]× (0,∞)} .

The above set Θ̃T relates to the set Θ̃2 introduced in (4.62) but is now time extended,

hence the T subscript. It is assumed that Θ̃T is not empty - which is the case if Θ̃2 is

non-empty.

Similar to the de�nition of Y1,θ in (4.63), de�ne for θ ∈ Θ̃T and (s, v) ∈ [0, T ] × (0,∞)

the random variable

Y s,v
θ = I

(
X−1
θ (s, v)Hs,1

θ (T )
)
, (4.71)

where I is, as usual, the inverse of the �rst derivative of the utility function U . From its

construction it clearly has to satisfy a budget constraint of the form

E
[
Hs,1

θ (T )Y s,v
θ

]
= v. (4.72)

This again relates to the budget constraint E[Hθ(T )Y2,θ] = x of the terminal wealth only

problem Φ2(x). Since Hθ(T ) = Hs,1
θ (T )Hθ(S) the above budget constraint can also be

written in the form E
[
Hθ(T )Y

s,v
θ |Fs

]
= Hθ(s)v.

Remark.

The idea for the de�nition of the random variable Y s,v
θ in (4.71) comes from considering

the constraint optimization problem

max
Y s,v
θ

E
[
U(Y s,v

θ )
]

s.t. E
[
Hs,1

θ (T )Y s,v
θ

]
= v.

A Lagrange multiplier technique L(Y s,v
θ , y) := E

[
U(Y s,v

θ ) + y
(
v −Hs,1

θ (T )Y s,v
θ

)]
can be

applied that leads to the optimal candidate

Y s,v
θ = I

(
yHs,1

θ (T )
)
.

If Y s,v
θ should satisfy the budget constraint (4.72) it has to be of the form (4.71).

Theorem 4.17 (Kolmogorov equation). Let X(t) be the solution of

dX(t) = a(t,X(t))dt+ b(t,X(t))dB(t) +

∫
R\{0}

c(t,X(t), y)N(dt, dy)

for smooth (continuously di�erentiable) a, b, and c with bounded spacial gradients. De�ne

u(s, x) := Es,x[f
(
X(T )

)
] (4.73)
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for a C2 function f with compact support. Then u satis�es the Kolmogorov equation

∂su(s, x) + a(s, x)∂xu(s, x) +
1

2
b2(s, x)∂xxu(s, x)

+

∫
R\{0}

[
u(s, x+ c(s, x, y))− u(s, x)

]
ν(y)dy = 0

(4.74)

with terminal condition u(T, x) = f(x).

A proof of the theorem can be found in Hanson (2009). A version where the stochastic

process follows a di�usion process can be found in Schuss (1980). The theorem shows

how stochastic processes link to the solution of certain partial di�erential equations.

The Kolmogorov equation can be modi�ed to allow a discounted version of the function

f(X(T )).

Corollary 4.18. Let X(t) be the solution of

dX(t) = a(t,X(t))dt+ b(t,X(t))dB(t) +

∫
R\{0}

c(t,X(t), y)N(dt, dy)

for smooth a, b, and c that are such that a unique solution exists. Let r be a continuous

integrable discount rate. De�ne

v(s, x) := Es,x[e−
∫ T
s r(u)duf

(
X(T )

)
] (4.75)

for a C2 function f with compact support. Then v satis�es the modi�ed Kolmogorov

equation

∂sv(s, x) + a(s, x)∂xv(s, x) +
1

2
b2(s, x)∂xxv(s, x)

+

∫
R\{0}

[
v(s, x+ c(s, x, y))− v(s, x)

]
ν(y)dy = r(s)v(s, x)

(4.76)

with terminal condition v(T, x) = f(x).

Proof. De�ne the function u(s, x) := e
∫ T
s r(w)dwv(s, x). Then it is known from Theorem

4.17 that u satis�es the equation (4.74). Di�erentiating u one obtains the derivatives

∂su(s, x) = − r(s)e
∫ T
s r(w)dwv(s, x) + e

∫ T
s r(w)dw∂sv(s, x),

∂xu(s, x) = e
∫ T
s r(w)dw∂xv(s, x), and

∂xxu(s, x) = e
∫ T
s r(w)dw∂xxv(s, x).

Substituting this into equation (4.74) and multiplying by e−
∫ T
s r(w)dw leads to equation

(4.76).

Before the �rst application of the Kolmogorov equation is presented, it is necessary to

determine an expression for Xθ(s, y) of (4.70) under Q expectation.
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Lemma 4.19. For θ ∈ Θ the function Xθ de�ned in (4.70) is given under Q-expectation

as

Xθ(s, y) = EQ
[
e−

∫ T
s r(u)duI

(
yHs,1

θ (T )
)]
. (4.77)

Proof. In the following the property Z0,1
θ (T ) = Z0,1

θ (s)Zs,1
θ (T ) is used. Consider the

right hand side of (4.77). Then

EQ
[
e−

∫ T
s r(u)duI

(
yHs,1

θ (T )
)]

= E
[
Z0,1
θ (T )e−

∫ T
s r(u)duI

(
yHs,1

θ (T )
)]

= E
[
Z0,1
θ (s)E

[
Hs,1

θ (T )I
(
yHs,1

θ (T )
)∣∣Fs

]]
= E

[
Z0,1
θ (s)

]
E
[
Hs,1

θ (T )I
(
yHs,1

θ (T )
)]

= E
[
Hs,1

θ (T )I
(
yHs,1

θ (T )
)]

= Xθ(s, y) as in (4.70).

The modi�ed Kolmogorov equation introduced in Corollary 4.18 can be applied to the

state price densityHs,1
θ under Q-dynamics and the function Xθ(s, y) under Q-expectation

as in (4.77)

Corollary 4.20. Let θ ∈ Θ̃T . Then the function Xθ(s, y) de�ned in (4.70) solves the

stochastic Dirichlet boundary value problem

∂sXθ(s, y) + y

(
−r(s) + ||θD(s)||2 −

m∑
h=1

∫
R\{0}

(
θJh (ds, dz)− 1

)
νh(dz)ds

)
∂yXθ(s, y)

+
1

2
y2||θD(s)||2∂yyXθ(s, y) +

m∑
h=1

∫
R\{0}

[
Xθ

(
s, yθJh (s, z)

)
−Xθ(s, y)

]
θJh (s, z)νh(dz)

−r(s)Xθ(s, y) = 0,

(4.78)

for (t, y) ∈ [0, T )× (0,∞), and

Xθ(T, y) = I(y), for Q almost all y ∈ (0,∞).

Proof. Consider the Q-dynamics of the state price density Hs,1
θ that starts almost surely

at 1 at time s. Since ÑQ(dt, dz) = N(dt, dz) − θJ(dt, dz)ν(dz)dt we have Ñ(dt, dz) =

ÑQ(dt, dz)+
(
θJ(dt, dz)− 1

)
ν(dz)dt. Thus, the dynamics of the state price density Hs,1

θ

under Q can be derived from 3.11 as

dHs,1
θ (t) = Hs,1

θ (t−)

[(
−r(t) + ||θD(t)||2 +

m∑
h=1

∫
R\{0}

(
θJh (dt, dz)− 1

)2
νh(dz)

)
dt

+θD(t)
ᵀdBQ(t) +

∫
R\{0}

(
θJh (dt, dz)− 1

)
ÑQ

h (dt, dz)

]
.
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The compensated Poisson measure ÑQ
h (dt, dz) has the intensity measure θJh (dt, dy)νh(dy).

That means that the jump related drift term in dHs,1
θ is given by∫

R\{0}

[(
θJh (dt, dz)− 1

)2 − (θJh (dt, dz)− 1
)
θJh (dt, dz)

]
νh(dz)

= −
∫
R\{0}

(
θJh (dt, dz)− 1

)
νh(dz)

for h = 1, . . . ,m. From (4.77), the function Xθ(s, y) has under Q-expectation the form

Xθ(s, y) = EQ
[
e−

∫ T
s r(u)duI

(
yHs,1

θ (T )
)]
.

Then the Kolmogorov backward equation for jump-di�usion processes Corollary 4.18 can

be applied to Xθ and H
s,1
θ to derive equation (4.78).

The partial di�erential equation (4.78) will help to derive a feedback form of the optimal

trading strategy for the problem Φ(s, v) in (4.69). In particular, it is shown that the

optimal trading strategy π̂ to Φ(s, v) is a Markov strategy and depends only on the

current time and the current level of wealth. The notion of the optimal martingale

measure will be used and is taken over from Section 4.7. As in De�nition 4.15 the

following is the time extended analogue.

De�nition 4.21. A martingale measure Q obtained by dQ
dP |FT

= Zθ(T ) in terms of

θ̂ ∈ Θ̃T is called optimal for the optimization problem Φ(s, v) in (4.69) if it satis�es

E
[
U2(Y

s,v

θ̂
)
]
= inf

θ∈Θ̃T

E
[
U2(Y

s,v
θ )

]
,

where Y s,v
θ is de�ned as in (4.71).

Lemma 4.22. Let θ̂ represent the optimal equivalent martingale measure for the problem

Φ(0, x) in (4.69) for x > 0. Then the optimal trading strategy π̂ can be written in feedback

form π̂(s, v) and satis�es for (s, v) ∈ [0, T ]× (0,∞)

π̂(s, v)ᵀξ(s) =
1

v

X−1

θ̂
(s, v)

∂xX−1

θ̂
(s, v)

θ̂D(s),

k∑
i=1

π̂i(s, v)γih(s, z) =
1

v
X
θ̂

(
s, θ̂Jh (s, z)X−1

θ̂
(s, v)

)
− 1,

(4.79)

for all z ∈ R \ {0} and h = 1, . . . ,m.

Proof. Let θ̂ be the optimal EMM. From (4.71) the optimal terminal wealth is then

given by

Y s,v

θ̂
= I
(
X−1

θ̂
(s, v)Hs,1

θ̂
(T )
)
.
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Since the discounted wealth process is a martingale under the martingale measure Q it

follows that, substituting Y s,v

θ̂
,

V x
π̂ (t) = e

∫ t
0 r(u)duEQ

[
e−

∫ T
0 r(u)duY 0,x

θ̂

∣∣Ft

]
= EQ

[
e−

∫ T
s r(u)duI

(
X−1

θ̂
(0, x)H0,1

θ̂
(T )
)∣∣Ft

] (4.80)

As has been seen in (4.77), the function Xθ de�ned in (4.70) can be written under Q-

expectation as

Xθ(s, y) := EQ
[
e−

∫ T
s r(u)duI

(
yHs,1

θ (T )
)]
.

Comparing this with the last expression and using that H0,1
θ (T ) = H0,1(t)Ht,1(T ), the

optimal wealth process, given in (4.80), has the form

V x
π̂ (t) = X

θ̂

(
t,X−1

θ̂
(0, x)H0,1

θ̂
(t)
)

(4.81)

For �xed x > 0 de�ne ŷ = X−1

θ̂
(0, x). It is known that the discounted wealth process is a

martingale and has dynamics given by (3.22). The same should be true when discounting

the process in (4.81). Itô's formula 2.17 is applied to
X

θ̂

(
t,ŷH0,1

θ̂
(t))

)
S0(t)

(under Q dynamics)

so that

dV
x
π̂(t) =d

X
θ̂

(
t, ŷH0,1

θ̂
(t)
)

S0(t)

=
1

S0(t)

{
∂sXθ̂

(
t, ŷH0,1

θ̂
(t−)

)
+ ŷH0,1

θ̂
(t−)

[
−r(s) + ||θ̂D(s)||2

−
m∑

h=1

∫
R\{0}

(
θ̂Jh (ds, dz)− 1

)
νh(dz)ds

]
∂yXθ

(
t, ŷH0,1

θ̂
(t−)

)
+

1

2
ŷ2H0,1

θ̂
(t−)2||θ̂D(s)||2∂yyXθ̂

(
t, ŷH0,1

θ̂
(t−)

)
+

m∑
h=1

∫
R\{0}

[
Xθ

(
s, ŷH0,1

θ̂
(t−)θ̂Jh (s, z)

)
−Xθ(s, ŷH

0,1

θ̂
(t−))

]
θJh (s, z)νh(dz)ds

− r(s)Xθ

(
t, ŷH0,1

θ̂
(t−)

)}
+

1

S0(t)
ŷH0,1

θ̂
(t−)∂yXθ̂

(
t, ŷH0,1

θ̂
(t−)

)
θ̂D(t)

ᵀdBQ

+
1

S0(t)

m∑
h=1

∫
R\{0}

[
X
θ̂

(
t, ŷH0,1

θ̂
(t−)θJh (t, z)

)
−X

θ̂

(
t, ŷH0,1

θ̂
(t−)

)]
ÑQ

h (dt, dz).

The term in the curly brackets is according to (4.78) zero, so that the above term

simpli�es to

dV
x
π̂(t) =

1

S0(t)
ŷH0,1

θ̂
(t−)∂yXθ̂

(
t, ŷH0,1

θ̂
(t−)

)
θ̂D(t)

ᵀdBQ

+
1

S0(t)

m∑
h=1

∫
R\{0}

[
X
θ̂

(
t, ŷH0,1

θ̂
(t−)θJh (t, z)

)
−X

θ̂

(
t, ŷH0,1

θ̂
(t−)

)]
ÑQ

h (dt, dz).

(4.82)
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Observing the term ∂yXθ̂

(
t, ŷH0,1

θ̂
(t−)

)
in the Brownian motion part of the above equa-

tion, it can be seen that since V x
π̂ (t−) = X

θ̂

(
t, ŷH0,1

θ̂
(t−)

)
it has to hold that

∂yXθ̂

(
t, ŷH0,1

θ̂
(t−)

)
= ∂yXθ̂

(
t,X−1

θ̂
(t, V x

π̂ (t−))
)
=

1

∂xX−1

θ̂

(
t, V x

π̂ (t−)
)

where the inverse function theorem has been applied in the last step. Thus, using that

ŷH0,1

θ̂
(t−) = X−1

θ̂

(
t, V x

π̂ (t−)
)
the equation (4.82) can be written as

dV
x
π̂(t) =

1

S0(t)

X−1

θ̂

(
t, V x

π̂ (t−)
)

∂xX−1

θ̂

(
t, V x

π̂ (t−)
) θ̂D(t)

ᵀdBQ

+
1

S0(t)

m∑
h=1

∫
R\{0}

[
X
θ̂

(
t,X−1

θ̂
(t, V x

π̂ (t−)) θJh (t, z)
)
− V x

π̂ (t−)
]
ÑQ

h (dt, dz).

The above equation can be compared with the dynamics of a discounted wealth process

of a trading strategy π, which are found in (3.22) as

dV
x
π(t) = V

x
π(t)π̂(t)

ᵀξ(t)dBQ + V
x
π(t)

m∑
h=1

∫
R\{0}

π̂(t)γh(t, z)Ñ
Q
h (dt, dz).

For these two processes to be the same, the optimal trading strategy has be a Markov

process that satis�es (4.79).

It becomes clear from the condition on the optimal trading strategy (4.79) that π̂ has to

be Markovian. The next corollary will be important, when the Hamilton Jacobi Bellman

equation is proven in Theorem 4.24.

Corollary 4.23. For θ ∈ Θ̃, the function Gθ(s, y) de�ned by

Gθ(s, y) := E
[
U
(
I
(
yHs,1

θ (T )
))]

(4.83)

satis�es the stochastic Dirichlet boundary value problem

∂sGθ(s, y)− y

[
m∑

h=1

∫
R\{0}

(
θJh (s, z)− 1

)
νh(dz) + r(s)

]
∂yGθ(s, y)

+
1

2
y2||θD(s)||2∂yyGθ(s, y) +

m∑
h=1

∫
R\{0}

[
Gθ

(
s, yθJh (s, z)

)
−Gθ(s, y)

]
νh(dz) = 0,

(4.84)

for (s, y) ∈ [0, T )× (0,∞), and

Gθ(T, y) = U
(
I(y)

)
, for P almost all y ∈ (0,∞).
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Proof. The dynamics of the state price density Hs,1
θ starting at s are given in (3.11) by

dHs,1
θ (t) = Hs,1

θ (t−)

[
−r(t)dt+ θD(t)dB(t) +

m∑
h=1

∫
R\{0}

(
θJh (t, z)− 1

)
Ñh(dt, dz)

]
.

Applying Kolmogorov backward equation Theorem 4.17 to the state price density Hs,1
θ

and the function Gθ(s, y) as in (4.83) shows that Gθ has to satisfy the stochastic Dirichlet

boundary value problem.

The function Gθ(s, y) de�ned in the above corollary gives an alternative way to express

the optimal performance function Φ(s, v). Since the optimal terminal wealth is given by

Y s,v

θ̂
= I
(
X−1

θ̂
(s, v)Hs,1

θ̂
(T )
)
,

for the optimal Girsanov kernel θ̂ and Xθ(s, y) as de�ned in (4.77), the optimal perfor-

mance function can be expressed as

Φ(s, v) = G
θ̂

(
s,X−1

θ̂
(s, v)

)
.

This will become useful in the proof of the next theorem.

Theorem 4.24. Let Φ(s, v) be the optimal performance function of the optimal termi-

nal wealth problem speci�ed in (4.69). Then Φ satis�es the Hamilton-Jacobi-Bellman

equations of stochastic programming

∂sΦ(s, v) + max
π∈Rk

{
v
(
r(s) + π(s)ᵀα(s)

)
∂vΦ(s, v) +

1

2
||π(s)ᵀξ(s)||2v2∂vvΦ(s, v)

+
m∑

h=1

∫
R\{0}

[Φ (s, v (1 + γπh (s, z)))− Φ(s, v)] νh(dz)

}
= 0,

(4.85)

on the set [0, T )× (0,∞) and satis�es the boundary condition

Φ(T, v) = U(v), v > 0.

Proof. The equation (4.85) is proven by calculating the derivatives of Φ and con�rming

that they indeed satisfy the above PDE. In the following let θ̂ ∈ Θ̃ represent the optimal

martingale measure of the problem Φ. Then the optimal terminal wealth is given by

(4.71)

Y s,v

θ̂
= I

(
X−1

θ̂
(s, v)Hs,1

θ̂
(T )
)
.

Since Φ(s, v) = E
[
U
(
Y s,v

θ̂

)]
it can be also written in terms of G

θ̂
from (4.83) as

Φ(s, v) = G
θ̂

(
s,X−1

θ̂
(s, v)

)
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To obtain the derivatives of Φ it is necessary to calculate the derives of G
θ̂
. From (3.33)

and the de�nition of Xθ and Gθ in (4.70) and (4.83) respectively, it can be deduced that

for y > a > 0 and s ∈ [0, T ]

yXθ(s, y) + aXθ(s, a)−
∫ y

a
Xθ(s, λ)dλ = Gθ(s, y) +G(s, a).

Di�erentiating the above equation, the derivatives of Gθ are

∂yGθ(s, y) = y∂yXθ(s, y), and ∂yyGθ(s, y) = ∂yXθ(s, y) + y∂yyXθ(s, y). (4.86)

The �rst derivative of Φ with respect to v can then be calculated as

∂vΦ(s, v) = ∂vX−1

θ̂
(s, v)∂yG

(
s,X−1

θ̂
(s, v)

)
= ∂vX−1

θ̂
(s, v)X−1

θ̂
(s, v)∂yXθ̂

(
s,X−1

θ̂
(s, v)

)
= X−1

θ̂
(s, v),

where we have used the inverse function theorem in the last equation. The second deriva-

tive with respect to v is therefore ∂vvΦ(s, v) = ∂vX−1

θ̂
(s, v). To obtain the maximum

in the curly brackets in (4.85) the �rst derivative with respect to π is set equal to zero.

De�ne the vector γh(t, y) := (γ1h(t, y), . . . , γkh(t, y)), for h = 1, . . . ,m, then the optimal

trading strategy has to satisfy the equations

α(s)∂vΦ(s, v) + vπ(s)ᵀξ(s)ξ(s)ᵀ∂vvΦ(s, v)

+

m∑
h=1

∫
R\{0}

γh(s, z)∂vΦ
(
s, v
(
1 + π(s)ᵀγh(s)

))
νh(dz) = 0.

Substitution the derivatives of Φ this becomes

α(s)X−1

θ̂
(s, v) + vπ(s)ᵀξ(s)ξ(s)ᵀ∂vX−1

θ̂
(s, v)

+

m∑
h=1

∫
R\{0}

γh(s, z)X−1

θ̂

(
s, v
(
1 + π(s)ᵀγh(s)

))
νh(dz) = 0.

The above expression is equal to zero if the optimal strategy satis�es the conditions in

(4.79) which con�rm the previous results.

Further, the derivative of Φ with respect to time can be calculated using again (4.86)

∂sΦ(s, v) = ∂sGθ̂

(
s,X−1

θ̂
(s, v)

)
+ ∂yGθ̂

(
s,X−1

θ̂
(s, v)

)
∂sX−1

θ̂
(s, v)

= ∂sGθ̂

(
s,X−1

θ̂
(s, v)

)
+

X−1

θ̂
(s, v)

∂vX−1

θ̂
(s, v)

∂sX−1

θ̂
(s, v).

Let us de�ne for notational convenience ζ := X−1

θ̂
(s, v) for a �xed pair (s, v). If the
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partial derivatives of Φ are substituted into the HJB equation one obtains

∂sGθ̂
(s, ζ) +

ζ

∂vX−1

θ̂
(s, v)

∂sX−1

θ̂
(s, v)

max
π∈Rk

{
v
(
r(s) + π(s)ᵀα(s)

)
ζ +

1

2
||π(t)ᵀξ(t)||2v2∂vX−1

θ̂
(s, v)

m∑
h=1

∫
R\{0}

[
G

θ̂

(
s,X−1

θ̂

(
s, v
(
1 + π(s)ᵀγh(s, z)

)))
−G

θ̂
(s, ζ)

]
νh(dz)

}
= 0,

Observing that because of (3.8), α(s) = −ξ(t)ᵀθ̂D(s) −
∫
R\{0} γ(s, y)θ̂J(s, z)ν(dz) the

optimal trading strategy can be substituted into the above equation using condition

(4.79):

∂sGθ̂
(s, ζ) +

m∑
h=1

∫
R\{0}

[
G

θ̂

(
s, θJh (s, z)ζ

)
−G

θ̂
(s, ζ)

]
νh(dz) +

ζ

∂vX−1

θ̂
(s, v)

∂sX−1

θ̂
(s, v)

+vr(s)ζ − 1

2

ζ2

∂vX−1

θ̂
(s, v)

||θD(s)||2 −
m∑

h=1

∫
R\{0}

ζ
[
X
θ̂

(
s, θJh (s, z)ζ

)
− v
]
θJh (s, z)νh(dz) = 0.

G
θ̂
has to satisfy (4.84) which changes the above equation to

ζ

[
m∑

h=1

∫
R\{0}

(
θJh (s, z)− 1

)
ν(dz) + r(s)

]
∂yGθ̂

(s, ζ)

−1

2
ζ2||θD(s)||2∂yyGθ̂

(s, ζ) +
ζ

∂vX−1

θ̂
(s, v)

∂sX−1

θ̂
(s, v) + vr(s)ζ

−1

2

ζ2

∂vX−1

θ̂
(s, v)

||θD(s)||2 −
m∑

h=1

∫
R\{0}

ζ
[
X
θ̂

(
s, θJh (s, z)ζ

)
− v
]
θJh (s, z)νh(dz) = 0.

From (4.86), we have that ∂yGθ̂
(s, ζ) = ζ∂yXθ̂

(s, ζ) and ∂yyGθ̂
(s, ζ) = ∂yXθ̂

(s, ζ) +

ζ∂yyXθ̂
(s, ζ). Further, v = X

θ̂

(
X−1

θ̂
(s, v)

)
= X

θ̂
(s, ζ). Substituting all this into the

above equation and dividing by ζ gives then[
m∑

h=1

∫
R\{0}

(
θJh (s, z)− 1

)
ν(dz) + r(s)

]
ζ∂yXθ̂

(s, ζ)

−1

2
ζ||θD(s)||2

(
∂yXθ̂

(s, ζ) + ζ∂yyXθ̂
(s, ζ)

)
+

1

∂vX−1

θ̂
(s, v)

∂sX−1

θ̂
(s, v) + X

θ̂
(s, ζ)r(s)

−1

2

ζ

∂vX−1

θ̂
(s, v)

||θD(s)||2 −
m∑

h=1

∫
R\{0}

[
X
θ̂

(
s, θJh (s, z)ζ

)
−X

θ̂
(s, ζ)

]
θJh (s, z)νh(dz) = 0.

Di�erentiating v = X
θ̂

(
X−1

θ̂
(s, v)

)
shows that

∂sXθ̂
(s, ζ) + ∂yXθ̂

(s, ζ)∂sX−1

θ̂
(s, v) = 0.

and therefore ∂yXθ̂
(s, ζ)∂sX−1

θ̂
(s, v) = −∂sXθ̂

(s, ζ). Further, since 1
∂vX−1

θ̂
(s,v)

= ∂yXθ̂
(s, ζ)
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the above equation becomes[
m∑

h=1

∫
R\{0}

(
θJh (s, z)− 1

)
νh(dz)− ||θD(s)||2 + r(s)

]
ζ∂yXθ̂

(s, ζ)

−1

2
ζ2||θD(s)||2∂yyXθ̂

(s, ζ)− ∂sXθ̂
(s, ζ) + X

θ̂
(s, ζ)r(s)

−
m∑

h=1

∫
R\{0}

[
X
θ̂

(
s, θJh (s, z)ζ

)
−X

θ̂
(s, ζ)

]
θJh (s, z)νh(dz) = 0.

but this equations is simply (4.78) mulitplied by −1. Hence, it has been proven to hold

true.

The HJB equation gives us an alternative tool to derive the optimal performance function

Φ(s, v) as a solution to a partial di�erential equation with boundary condition. This is

convenient when it is di�cult to derive Φ(s, v) through the martingale approach. Using

a PDE method bears also the advantage of being able to use numerical methods to solve

the HJB equation.

4.9 Conclusion

We have treated the problem of maximizing expected utility from terminal wealth and

consumption as de�ned in (4.4) in a general jump-di�usion framework. This modi�ed and

extended the approach of Karatzas and Shreve (1998) for the consumption-investment

problem. The problem has been tackled by de�ning a set of auxiliary variables cθ and Yθ

in (4.6), which have the property that expected utility from them is at least as high as

from any admissible consumption-terminal wealth pair (cf. Lemma 4.1). We have then

minimized over the set of Girsanov kernels Θ in order to �nd a trading strategy that

replicates a auxiliary terminal wealth Yθ and for which c = cθ. A condition under which

this is possible has been given in Theorem 4.3, requiring that π and θ solve a system

of non-linear equations (4.12). Relationships to the duality approach, as for example

studied in Kramkov and Schachermayer (1999) have been established in Theorem 4.4.

The results have been applied to the power utility case where we also considered various

model variations, like for example pure Brownian motion driven models, or pure jump

models with drift. Relationships have been established to similar work at that stage.

In similar manners the problem has been solved for the maximization of either con-

sumption or terminal wealth in Proposition 4.16, which is the equivalent of Theorem

4.3 for the individual problems. In the �nal section the martingale methods have been

related to PDE methods and a feedback form of the optimal trading strategy has been
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developed in Lemma 4.22. The �nal section has been concluded by establishing the

Hamilton-Jacobi-Bellman equation of dynamic programming in Theorem 4.24.
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Chapter 5

Active Portfolio Management:

Outperforming a Benchmark

Portfolio

5.1 Introduction

In the previous chapter an investor aim was to optimize his/her portfolio in the expected

utility sense. However, in reality an investor usually evaluates his/her performance by

comparing their performance to that of their peers or to a benchmark like for example

the FTSE 100. Active portfolio managers thus attempt to outperform mutual funds

or benchmarks. This is in contrast to passive portfolio managers who try to track the

performance of a benchmark. Often active portfolio managers claim that their skills allow

them to perform better than the market represented by a mutual fund or benchmark.

This claim allows them to charge a much higher fee than their passively managing peers.

There is a great controversy whether or not active portfolio management brings any

bene�t to the investor. Shukla and Trzcinka (1992) argue that actively managed port-

folios do not perform better than passively managed portfolios. Other researchers argue

that there are funds that outperform the benchmarks and, even after transaction costs,

perform better than passively managed funds. Papers supporting this idea are Keim

(1999), Chen et al. (2000), and Wermers (2000).

The e�ectiveness of actively managed funds will not be discussed in this chapter. Instead,

the aim is to provide tools for an investor to make decisions on how to optimize his/her

portfolio with respect to a benchmark portfolio. The problem will be formulated as

an expected utility maximization problem of maximizing expected utility from terminal
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relative wealth of the investor. Relative wealth is thereby de�ned as the ratio between the

investor's wealth process and the benchmark portfolio wealth process. In the literature

there are various papers on benchmark related problems.

Browne (1999a) considers the problem of reaching an investment goal before a �nite

deadline. In another paper, Browne (1999b), extends his previous work by considering

the problem of reaching a certain goal before falling below it to a prede�ned shortfall.

Other objectives include minimizing the expected time to reach a performance goal,

maximizing the expected reward obtained upon reaching the goal, as well as minimizing

the expected penalty paid upon falling to the shortfall level. The model that he is using

for the stock prices is that of Merton (1971), which is

dSi(t) = Si(t)

αi(t)dt+
k∑

j=1

ξij(t)dWj(t)

 , (5.1)

for i = 1, . . . , k. This is similar to the model (3.1) used in this thesis but with determin-

istic coe�cients and without jumps. The wealth stochastic di�erential equation is then

given by

dV x
π (t) = V x

π (t) [(r + π(t)ᵀα) dt+ π(t)ᵀξdW (t)] (5.2)

which is the same as in (3.13) but without jumps and with deterministic coe�cients.

The benchmark, which can be a stock index, an in�ation rate, an exchange rate, or any

other kind of benchmark, is described by the stochastic di�erential equation

dY (t) = Y (t)
[
adt+ bᵀdW (t) + βdW̃ (t)

]
, (5.3)

where W̃ is a Brownian motion independent from the multidimensional Brownian motion

W . Browne then de�nes a ratio process by Z(t) = V x
π (t)/Y (t), which is normalized to

start at 1 almost surely. This ratio process is then used in conjunction with stochastic

control to �nd answers to the problems mentioned above. Typical for Browne's work is to

work with an investment goal, than an investor tries to reach, and a shortfall level, which

an investor tries to avoid. In a di�erent paper Popova et al. (2007) also investigate the

problem of maximizing the probability of beating a benchmark within some investment

horizon. The authors also consider other problems related to minimizing the expected

shortfall relative to a benchmark. However, in contrast to the papers by Browne the

paper of Popova et al. (2007) does not specify a speci�c model for the stock prices but

instead assumes that the returns are normal distributed.

The same benchmark model framework as in Browne (1999b) is used in a paper by Pra et

al. (2004). They consider a benchmark tracking problem, where the benchmark process

is given as in (5.3). The same ratio process Zπ(t) = V x
π (t)/Y (t) is used to minimize a
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cost function that punishes variation of the investor's wealth from the benchmark. The

cost function is given in the form C(z) = (z−1)2 so that the optimization problem, that

they consider, is given as the problem of �nding a trading strategy π that minimizes

E
[∫ T

0
C
(
Zπ(t)

)
dt

]
Similar to Browne (1999b) the way the problem is solved is by applying stochastic control

techniques. The choice of constant parameters makes stochastic control a natural tool

of choice. A di�erent approach is chosen by Teplá (2001). In his paper the objective is

to maximize expected utility of the terminal wealth of the investor under the constraint

that the investor's wealth process always exceeds the benchmark process. All involved

processes are modelled again as geometric Brownian motions as in Merton (1971). The

problem is di�erent from all the others in the sense that it is a constraint optimization

problem.

A completely di�erent starting point is taken by Fernholz (1999). Rather than focusing

on optimization problems he investigates the relationship between a �nancial agent's

wealth process and a benchmark process which is again a portfolio's wealth process. The

wealth process of a �nancial agent is given thereby by

dV x
π (t) = V x

π (t) [(π(t)
ᵀα(t)) dt+ π(t)ᵀξ(t)dW (t)] .

Notice that this is slightly di�erent than (5.2) since Fernholz only considers pure stock

portfolios. Because there is no risk-less asset the drift is given by α rather than the

discounted version α. However, apart from the lack of a risk-less asset this is a gen-

eralization of the models used in Browne (1999b) and Pra et al.(2004) since now the

model parameters are time dependent and potentially non-deterministic. A benchmark

strategy, denoted by η, is a trading strategy like π and the benchmark process is then

the portfolio wealth process of the strategy η:

dV x
η (t) = V x

η (t) [(η(t)
ᵀα(t)) dt+ η(t)ᵀξ(t)dW (t)] .

Of central importance in Fernholz work is the concept of relative return. The relative

return of the ith stock price, driven by the stochastic di�erential equation (5.1) is de�ned

for a benchmark portfolio η by log
(
Si/V

x
η

)
. Similarly, the relative return of two port-

folio's π and η is de�ned by log
(
V x
π /V

x
η

)
, which is obviously independent of the choice

of x > 0. In contrast to other authors who consider various optimization problems,

Fernholz analyses general market behaviour. This includes the long term behaviour of

the market, market diversity, and the relationship between stocks with small and high

market capitalization (cf. Fernholz (1998), Fernholz (1999), Fernholz (2001)). When
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investigating market diversity he makes use of the entropy which favours the log frame-

work. Also the analysis of the long term behaviour of the stock market and portfolios

favours a log model since the long term behaviour of a portfolio's wealth process is just

the drift of the log wealth. We shall use a similar form of relative return to that of

Fernholz but will use the simple ratio process V x
π /V

x
η instead of log

(
V x
π /V

x
η

)
, which is

also more popular in the literature. Later we will call V x
π /V

x
η the relative wealth pro-

cess between π and η. This layout is more appropriate when considering optimization

problems in this chapter.

A di�erent approach to benchmarks, pioneered by Platen (2006), is his so called bench-

mark approach. In his approach the wealth process of the growth optimal portfolio

(GOP) is taken as a numeraire in the �nancial market. Financial derivatives can then be

priced under the real world probability measure P , hence, the pricing concept is called

real world asset pricing. For a portfolio π the wealth process V x
π is driven by (5.2) which

is the same as in (3.13) but without jumps. The growth rate of the wealth process is

then the drift of the logarithm of V x
π which can be read from the SDE

d log(V x
π )(t) = (r(t) + π(t)ᵀα(t)− π(t)ᵀσ(t)π(t)) dt+ π(t)ᵀξ(t)dW (t)

as µπ(t) = r(t) + π(t)ᵀα(t) − π(t)ᵀσ(t)π(t) and was de�ned in (3.18). If one chooses

π such that the growth rate µπ is maximized, then one obtains, by setting the �rst

derivative of µπ with respect to π equal to zero, the growth optimal portfolio by

π∗(t) = σ(t)−1α(t) = ξ(t)−1λ(t), (5.4)

where λ are the market prices of risk given by λ(t) := ξ(t)−1α(t). The portfolio π∗ as

de�ned in (5.4) is called the growth optimal portfolio process and maximizes the long

term performance of a wealth process (cf. Goll and Kallsen (2003), Long (1990), Artzner

(1997)). Its wealth process X = V x
π∗ satis�es the stochastic di�erential equation

dX(t) = X(t)
[(
r(t) + ||λ(t)||2

)
dt+ λ(t)dW (t)

]
.

This can be easily con�rmed by substituting π∗ into the wealth equation (5.2). Platen

describes then benchmarking as the procedure of discounting asset prices using X as the

numeraire. In this way a �nancial derivative C(t) can be priced using the pricing rule

C(t) = X(t)E
[
C(T )

X(T )

∣∣∣Ft

]
, t ∈ [0, T ].

The important property of this pricing approach is that the equivalent martingale mea-

sure is the original real world measure P . Although Platen's approach is mainly used

for pricing derivatives it has some interesting features that relate to the analysis carried

out in this chapter. It will be referred back to when it becomes relevant.
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In this chapter we are going to consider an optimization problem where an investor's aim

is to outperform a �nancial benchmark. This benchmark is given by a jump di�usion

process of the form

dVB(t)

VB(t−)
= a(t)dt+ b(t)ᵀdW (t) +

m∑
h=1

∫
R\{0}

ch(t, y)Nh(dt, dy). (5.5)

In contrast to Browne (1999b) we are not interested in reaching a performance goal,

neither are we interested in solving a tracking problem as in Pro et al. (2004). Instead,

the �nancial agent's aim is to maximize the expected utility from terminal relative wealth

Vπ(T )/VB(T ).

To do so martingale methods are applied to transform the relative wealth process into

a martingale. As will be seen in Section 5.3.1 and 5.3.2, this will relate to change of

numeraire techniques and the benchmark approach pioneered by Platen (2005) respec-

tively. The tools developed in Chapter 4 can then be applied to �nd a solution to the

expected utility optimization problem, which is done in Section 5.4. Section 5.5 discusses

the case of power utility functions. The chapter is concluded by linking the PDE results

of Section 4.8 to the special case when the benchmark is the wealth process of some

strategy η. This is carried out in Section 5.6.

5.2 Benchmarks and the Relative Wealth Process

The stock price processes are assumed to follow a jump-di�usion model as introduced

in Section 3.1. This means that the k stock prices follow the SDEs (3.1) and a risk-less

asset is given in the market that is the solution to the ordinary di�erential equation (3.6).

The wealth process of a �nancial agent that starts with initial endowment x > 0 and

that follows a trading strategy π is then following the stochastic di�erential equation

(3.13) which is given by

dV x
π (t)

V x
π (t−)

= r(t)dt+ π(t)ᵀ
[
α(t)dt+ ξ(t)dW (t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)

]
,

for t ∈ [0, T ]. The trading strategy π is assumed to be admissible in the sense of De�ni-

tion 3.6. This means that π ∈ Π and, in particular,
∫
R\{0} π(t)

ᵀγh(t, y)Nh(dt, dy) ≥ −1

a.s. for all h = 1, . . . ,m and t ∈ [0, T ]. There is no consumption in the model.

An investor's performance is compared to the performance of a benchmark process VB,

which is again a jump-di�usion process that satis�es the stochastic di�erential equation

(5.5) and with initial condition VB(0) = x. We made a slight change in notations. The

n-dimensional Brownian motion in the wealth process has been denoted by W instead
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of B. This is to avoid confusion since in this chapter B will be reserved for benchmark

related notations.

To guarantee the existence and uniqueness of a solution to the benchmark process SDE

(5.5) some integrability conditions are required (cf. (2.12)). For the process VB these

integrability conditions translate to∫ T

0
|a(t)|2dt <∞,

∫ T

0
||b(t)||2dt <∞, and

∫ T

0

∫
R\{0}

|ch(t, y)|2νh(dt, dy) <∞.

for h = 1, . . . ,m. As has been discussed in Section 3.3 and 3.4 some extra care has to

be taken when working with jump-di�usion process if one wants to guarantee positivity

of the process. From the discussions in the above two sections the jump parameters

c = (c1, . . . , cm)ᵀ need to satisfy∫
R\{0}

ch(t, y)Nh(dt, dy) > −1, a.s., t ∈ [0, T ], (5.6)

for all h = 1, . . . ,m to guarantee that the benchmark process VB is almost surely positive.

In many cases the benchmark process VB takes the form of a wealth process of a trading

strategy η. The model parameters a, b, and c take then the form

a(t) = r(t) + η(t)ᵀα(t),

b(t) = ξ(t)ᵀη(t), and

ch(t, y) = η(t)ᵀγh(t, y), y ∈ R \ {0}.

(5.7)

To ensure the positivity of the benchmark wealth (5.6) the benchmark portfolio strategy

η needs to be in Π+ as de�ned in De�nition 3.6. In particular, the trading strategy η

satis�es then
∫
R\{0} η(t)

ᵀγh(t, y)Nh(dt, dy) > −1 a.s. for all h = 1, . . . ,m and t ∈ [0, T ].

De�nition 5.1. Let π ∈ Π be a trading strategy with corresponding wealth determined

by the stochastic di�erential equation (3.13) and let VB be a benchmark process as in

(5.5).

1. The relative wealth process of a strategy π ∈ Π relative to the benchmark process

VB is de�ned as the process Vπ/B(t) := V x
π (t)/VB(t) for t ∈ [0, T ].

2. In case the benchmark VB is represented by a portfolio process η ∈ Π+, the relative

wealth of π relative to η is de�ned by Vπ/η(t) := V x
π (t)/V

x
η (t) for t ∈ [0, T ] and for

arbitrary x > 0.

The relative wealth process is thus just the ratio process between the investor's wealth

process and the benchmark process. It is always normalized in the sense that it starts

almost surely at 1. To determine the dynamics of the relative wealth process Vπ/B it
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is necessary to determine the dynamics of the reciprocal process 1/VB. This is done

by applying Itô's formula Theorem 2.14 on VB and the function f(x) = 1/x. Then

f ′(x) = −1/x2, f ′′(x) = 2/x3, and f(x(1 + c))− f(x) = − c
x(1+c) , and therefore

d
1

VB(t)
=

1

VB(t−)

(
− a(t) + b(t)ᵀb(t)

)
dt− 1

VB(t−)
b(t)ᵀdW (t)

− 1

VB(t−)

m∑
h=1

∫
R\{0}

ch(t, y)

1 + ch(t, y)
Nh(dt, dy).

By Itô's product rule Lemma 2.18, the dynamics of the product Vπ/B = V 1
π · 1/VB are

dVπ/B(t)

Vπ/B(t−)
=
(
r(t)− a(t) + b(t)ᵀb(t) + π(t)ᵀ

(
α(t)− ξ(t)b(t)

))
dt

+
(
π(t)ᵀξ(t)− b(t)ᵀ

)
dW (t) +

m∑
h=1

∫
R\{0}

π(t)ᵀγh(t, y)− ch(t, y)

1 + ch(t, y)
Nh(dt, dy).

(5.8)

The term in the jump-part of the above expression might need some explanation. From

the product rule Lemma 2.9 the jump terms are given by

∆
(
X(t)Y (t)

)
= X(t−)∆Y (t) + Y (t−)∆X(t) + ∆X(t)∆Y (t).

Thus, for each h = 1, . . . ,m the jump sizes must satisfy

π(t)ᵀγh(t, y)−
ch(t, y)

1 + ch(t, y)
− ch(t, y)π(t)γh(t, y)

1 + ch(t, y)
=

π(t)ᵀγh(t, y)− ch(t, y)

1 + ch(t, y)
.

Comparing the relative wealth equation (5.8) with the wealth equation (3.13) one can

see that we again obtain a stochastic di�erential equation that is driven by Brownian

motions and Poisson random measure jumps. In the relative wealth equation there are

now parts of the dynamics that can not be controlled by the trading strategy π. However,

it will be shown in (5.14) that if the benchmark is actually a wealth process of a trading

strategy η, then one can transform the relative wealth process into a wealth process

stochastic di�erential equation.

Following the previous considerations about the almost surely positivity of the bench-

mark and the non-negativity of the investor's wealth process, the following lemma can

be formed.

Lemma 5.2. The relative wealth process Vπ/B of a strategy π ∈ Π relative to a benchmark

process VB is non-negative. In particular, for all t ∈ [0, T ]

m∑
h=1

∫
R\{0}

π(t)ᵀγh(t, y)− ch(t, y)

1 + ch(t, y)
Nh(dt, dy) ≥ −1, a.s. (5.9)
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Proof. Since the relative wealth process is de�ned as the ratio of an non-negative process

and a positive process respectively it cannot be negative almost surely. If (5.8) is non-

negative then (5.9) must almost surely hold.

Remark.

The above result appears at �rst rather counter-intuitive. To get an intuitive under-

standing why it holds consider the informal argument. Since the benchmark jumps

are bigger −1 it must be that ch(t, y) > −1. But then 1 + ch(t, y) > 0 and so

−ch(t, y)/(1 + ch(t, y) > −1 since −ch(t, y) > −1 − ch(t, y). That π(t)ᵀγh(t, y) ≥ −1

is clear since π ∈ Π. Thus, it also holds that π(t)ᵀγh(t, y)/(1 + ch(t, y) ≥ −1 since

1 + ch(t, y) > 0.

For the case that the benchmark is the wealth process of a portfolio η, i.e. the model

parameters satisfy (5.7), the relative wealth Vπ/η follows the stochastic di�erential equa-

tion

dVπ/η(t)

Vπ/η(t−)
=
(
π(t)− η(t)

)ᵀ[(
α(t)− σ(t)η(t)

)
dt+ ξ(t)dW (t)

+

m∑
h=1

∫
R\{0}

γh(t, y)

1 + η(t)ᵀγh(t, y)
Nh(dt, dy)

]
.

(5.10)

This can be immediately veri�ed by substituting (5.7) into (5.8). Following Platen's

(2002) terminology it is now possible to perform benchmarking. Benchmarking is the

procedure of taking VB as the numeraire and expressing all asset prices in its terms.

For each i = 1, . . . , k, the ith stock price relative to the benchmark VB is de�ned by

Vi/B := Si/VB. The stock prices are determined by the dynamics (3.1). Itô's product

rule Lemma 2.18 can then be applied to dSi and d1/VB to derive the dynamics of the

relative stock prices by

dVi/B(t) = Vi/B(t−)

(r(t)− a(t) + αi(t) + ||b(t)||2 −
n∑

j=1

ξij(t)bj(t)
)
dt

+

n∑
j=1

(
ξij(t)− bj(t)

)
dBj(t) +

m∑
h=1

∫
R\{0}

γih(t, y)− ch(t, y)

1 + ch(t, y)
Nh(dt, dy)


(5.11)

Further, the risk-less asset is given by

dS0(t) = S0(t)r(t)dt, t ∈ [0, T ].

Thus, the risk-less asset relative to the benchmark VB is de�ned by V0/B = S0/VB and
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follows the dynamics

dV0/B(t) = V0/B(t−)
[(
r(t)− a(t) + ||b(t)||2

)
dt− b(t)dB(t)

−
m∑

h=1

∫
R\{0}

ch(t, y)

1 + ch(t, y)
Nh(dt, dy)

]
, t ∈ [0, T ]

(5.12)

The relative wealth process Vπ/B can be related to the relative stock price process via

the equation

dVπ/B(t)

Vπ/B(t−)
=
(
1−

k∑
i=1

πi(t)
)dV0/B(t)
V0/B(t)

+

k∑
i=1

πi(t)
dVi/B(t)

Vi/B(t)
, (5.13)

for any x > 0. Thus, its return is the weighted averaged (with possibly negative weights)

of the benchmarked asset returns. This, is a similar expression as has been obtained

in (3.14). However, now the part that was taken by the deterministic risk-less asset

dynamics dS0/S0 in (3.14) is now given by the benchmarked risk-less asset dV0/B/V0/B

in (5.13), which is driven by a stochastic di�erential equation which means in particular

that it is non-deterministic.

If the benchmark process is given by the wealth process of a trading strategy η ∈ Π+,

some interesting relationships can be established to the model discussed in Chapter 3.

First, if the benchmark portfolio only invests into the risk-less asset, i.e. η ≡ 0, then the

benchmark wealth process is equal to the discounted wealth process as given in (3.15).

The risk-less asset S0 is then the benchmark. Second, since the model parameters and

η are assumed to be exogenous given processes, the relative wealth process Vπ/η as in

(5.10) can be related to the wealth process SDE (3.13). The two processes coincide if

one chooses the following parameters in the wealth process equation:

r̃ = 0, α̃ = α− ση, ξ̃ = ξ, and γ̃ih =
γih(t, y)

1 + η(t)ᵀγh(t, y)
, (5.14)

x = 1 and the trading strategy is π̃ = π − η.

5.3 Relative Wealth under Martingale Measures

The change of measure methods that have been applied to discounted asset prices in

Section 3.2 can also be applied to the benchmark framework. The aim is to �nd a set of

EMMs Q represented by Girsanov kernels θ under which the relative asset prices are (lo-

cal) martingales. As in Section 3.2 this is done by introducing Q-Brownian motions dWQ

and Q-compensated Poisson measures ÑQ
h (dt, dy) as has been done in (2.21) and (2.22)

respectively. One can then eliminate the non-martingale drift term when substituting

dWQ and ÑQ
h (dt, dy) into the relative asset price SDEs (5.11) and (5.12).
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Consider �rst the benchmarked risk-less asset price process V0/B that has the dynamics

as given in (5.12). The non-martingale drift should be zero, thus, substituting dW (t) =

dWQ(t) + θD(t)dt and Nh(dt, dy) = ÑQ
h (dt, dy) + θJh (t, y) for h = 1, . . . ,m into (5.12)

it is required that

r(t)− a(t) + ||b(t)||2 − b(t)ᵀθD(t)−
m∑

h=1

∫
R\{0}

ch(t, y)

1 + ch(t, y)
θJh (t, y)νh(dt, dy) = 0, (5.15)

for V0/B to become a Q-martingale. If this condition is satis�ed then the Q-dynamics of

V0/B are given by

dV0/B(t) = V0/B(t−)

[
−b(t)dBQ(t)−

m∑
h=1

∫
R\{0}

ch(t, y)

1 + ch(t, y)
ÑQ

h (dt, dy)

]
,

for t ∈ [0, T ]. Taking the same considerations for Vi/B, a condition on the Girsanov

kernels of a measure change under which the benchmarked stock processes Vi/B as given

in (5.11) are martingales, is again when the non-martingale drift is zero. Thus,

r(t)− a(t) + αi(t) + ||b(t)||2 −
n∑

j=1

ξij(t)bj(t) +

n∑
j=1

(ξij(t)− bj(t)) θ
D
j (t)

+
m∑

h=1

∫
R\{0}

γih(t, y)− ch(t, y)

1 + ch(t, y)
θJh (t, y)νh(dt, dy) = 0.

However, taking also into account that the Girsanov kernels θ should satisfy (5.15),

because of the risk-less asset, the above condition simpli�es to

αi(t) +

n∑
j=1

ξij(t)
(
θDj (t)− bj(t)

)
+

m∑
h=1

∫
R\{0}

γih(t, y)

1 + ch(t, y)
θJh (t, y)νh(dt, dy) = 0, (5.16)

for all i = 1, . . . , k and t ∈ [0, T ]. If the two conditions (5.15) and (5.16) are satis�ed

then the relative stock prices Vi/B become martingales and have dynamics

dVi/B(t) = Vi/B(t−)

 n∑
j=1

(
ξij(t)− bj(t)

)
dBQ

j (t)

+

m∑
h=1

∫
R\{0}

γih(t, y)− ch(t, y)

1 + ch(t, y)
ÑQ

h (dt, dy)

]
, t ∈ [0, T ],

for i = 1, . . . , k. As in De�nition 3.1 let us de�ne the B-Girsanov kernels as follows.

De�nition 5.3. A B-Girsanov kernel is a pair of predictable vector processes θ =(
θD,θJ

)
that satis�es (i) and (ii) in De�nition 3.1, and for which conditions (5.15)

and (5.16) are satis�ed:

a(t)− r(t)− ||b(t)||2 + b(t)ᵀθD(t) +

m∑
h=1

∫
R\{0}

ch(t, y)

1 + ch(t, y)
θJh (t, y)νh(dt, dy) = 0,

αi(t) +

n∑
j=1

ξij(t)
(
θDj (t)− bj(t)

)
+

m∑
h=1

∫
R\{0}

γih(t, y)

1 + ch(t, y)
θJh (t, y)νh(dt, dy) = 0,

(5.17)
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a.s. for all i = 1, . . . , k and t ∈ [0, T ]. The set of all B-Girsanov kernels is denoted by

ΘB.

Thus, the B-Girsanov kernel is the benchmark equivalent to the Girsanov kernel from

De�nition 3.1. The main di�erence is that condition (3.8) has been changed into (5.17).

Clearly, for any such B-Girsanov kernel the relative wealth process Vπ/B of a portfolio

π ∈ Π is also a martingale under the EMM Q. It's dynamics are given by

dVπ/B(t) = Vπ/B(t−)
(
π(t)ᵀξ(t)− b(t)ᵀ

)
dWQ(t)

+ Vπ/B(t−)

m∑
h=1

∫
R\{0}

{
π(t)ᵀγh(t, y)

}
− ch(t, y)

1 + ch(t, y)
ÑQ

h (dt, dy),
(5.18)

for t ∈ [0, T ]. This can be easily veri�ed by observing (5.13). The above SDE (5.18) is

the benchmark equivalent to the discounted wealth process without consumption that

is a martingale under appropriate measure change (cf. (3.25)). For the case that the

benchmark is the risk-less asset, i.e. a = r, b ≡ 0, ch ≡ 0, the two equations (5.18) and

(3.25) coincide.

For the special case that the benchmark is a wealth process of a portfolio η ∈ Π+ the

relative wealth process is clearly also a Q-martingale as in (5.18). Additionally, condition

(5.17) simpli�es.

Corollary 5.4. Let θ ∈ ΘB be a B-Girsanov kernel with corresponding EMM Q. If the

benchmark is the wealth process of a benchmark strategy η ∈ Π+, then the relative wealth

dynamics are given by

dVπ/η(t) = Vπ/η(t−)
(
π(t)− η(t)

)ᵀ
ξ(t)dWQ(t)

+ Vπ/η(t−)
m∑

h=1

∫
R\{0}

(
π(t)− η(t)

)ᵀ
γh(t, y)

1 + η(t)ᵀγh(t, y)
ÑQ

h (dt, dy).
(5.19)

Further, the conditions (5.17) on θ ∈ ΘB simplify to the single condition

α(t)− σ(t)η(t) + ξ(t)θD(t) +

m∑
h=1

∫
R\{0}

γh(t, y)θ
J
h (t, y)

1 + η(t)ᵀγh(t, y)
νh(dt, dy) = 0, (5.20)

a.s. for i = 1, ..., k and t ∈ [0, T ].

Proof. The equation (5.19) can be derived by substituting (5.7) into (5.18). Similarly,

(5.20) is derived by substituting (5.7) into (5.16). Using the same substitution (5.15)

becomes

η(t)ᵀ
(
α(t)− σ(t)η(t) + ξ(t)θD(t)

)
+

k∑
i=1

m∑
h=1

∫
R\{0}

ηi(t)γih(t, y)θ
J
h (t, y)

1 +
∑n

j=1 ηj(t)γih(t, y)
νh(dt, dy) = 0.

But this is satis�ed if (5.20) is satis�ed.
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This section is concluded by providing a budget constraint similar to the one in Corollary

3.10.

Corollary 5.5. Let θ ∈ ΘB be a B-Girsanov kernel with corresponding martingale

measure Q. If π ∈ Π then

EQ
[
Vπ/B(T )

]
≤ 1. (5.21)

Proof. Because of Lemma 5.2 Vπ/B is a.s. bounded below by zero under P . Since P

and Q are equivalent the same is true under Q. According to (5.18) is also a local Q-

martingale. Thus, Vπ/B is a supermartingale and (5.21) follows from the supermartingale

property.

This budget constraint is a similar one as found in Corollary 3.10. However, this con-

straint is for benchmarks and has naturally the constraint 1 as all benchmark processes

are assumed to start at 1 a.s. Also there is no discounting needed since the benchmark

process acts as the numeraire.

5.3.1 Relationship to Change of Numeraire Techniques

In this section we analyse the relationship between the measure transformation of Chap-

ter 3 and 4 to the measure change carried out in this chapter. The transition of the

EMM in Chapter 3 to the EMM of this chapter is often called a change of numeraire in

the literature. In the previous chapters the numeraire was given by the risk-less asset

S0, whereas in this chapter the numeraire is a benchmark process VB. The set of mar-

tingale measure has been parametrized by the so called jump-di�usion Girsanov kernels

θ from De�nition 3.1 in Chapter 3. The Girsanov kernels thereby had to satisfy the

crucial condition (3.8). In contrast, in this chapter the measure has been changed such

that the benchmarked asset prices are martingales. The set of Girsanov kernels θ that

parametrize such a measure change has been called B-Girsanov kernels and have been

de�ned in De�nition 5.3. The main di�erence between the two Girsanov kernels is that

the B-Girsanov kernels have to satisfy the two conditions in (5.17), instead of (3.8).

For the purpose of the following considerations let Q0 denote EMMs obtained from a

Girsanov kernels under which the discounted asset prices are martingales, and let QB

denote EMMs obtained from B-Girsanov kernels under which the benchmarked asset

prices are martingales. What has been done in Chapter 3 and 4 is that the original

probability measure P has been changed to Q0, and in this chapter the measure has

been changed from P to QB. However, what really happened is that the numeraire has

changed from S0 to VB. Instead of changing measure from P to eiter Q0 or QB it is also
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possible to change the measure directly from Q0 to QB. This is a technique, developed

by Geman et al. (1995), called the change of numeraire and provides a way to make the

transition from the measure Q0 to the measure QB. We brie�y explain the technique for

our model set up.

From change of numeraire methods as introduced in Geman et al. (1995), it is known

that the martingale Z0,B that transforms the probability measure from Q0 to QB via

dQB

dQ0

∣∣∣
FT

= Z0,B(T )

is given by

Z0,B(t) :=
S0(0)

VB(0)

VB(t)

S0(t)
=

1

x

VB(t)

S0(t)
, t ∈ [0, T ],

for some x > 0. Z0,B is the discounted benchmark process, normalized to start at 1. Its

di�erential form can be deduces from (3.22) as being

dZ0,B(t) = Z0,B(t−)b(t)ᵀdWQ0 + Z0,B(t−)

m∑
h=1

∫
R\{0}

ch(t, y)Ñ
Q0

h (dt, dy);

Z0,B(0) = 1.

(5.22)

These are the dynamics of the density that makes the transition from the probability

measure Q0 under which the discounted stock prices are martingales to the probability

measure QB under which the relative stock prices are martingales. Rewriting (5.22)

in terms of its Girsanov kernel θ0,B =
(
θD
0,B,θ

J
0,B

)
(cf. (2.23)), the above stochastic

di�erential equation becomes

dZ0,B(t) = Z0,B(t−)θD
0,B(t)

ᵀdWQ0 − Z0,B(t−)

m∑
h=1

∫
R\{0}

(
1− θJ(0,B),h(t, y)

)
ÑQ0

k (dt, dy)

But comparing this with (5.22) shows that the Girsanov kernel for the measure trans-

formation from Q0 to QB must be given by

θD
0,B(t) := b(t), and θJ(0,B),h(t, y) = 1 + ch(t, y) (5.23)

for t ∈ [0, T ], y ∈ R \ {0}, and h = 1, . . . ,m. Thus, given a Q0 standard Brownian

motion WQ0 , a QB standard Brownian motion is constructed by

WQB (t) := WQ0(t)−
∫ t

0
θ0,B(s)ds, t ∈ [0, T ], (5.24)

and the QB compensated Poisson random measures are given by

ÑQB

h (dt, dy) := NQ0

h (dt, dy)− θJ(0,B),h(t, y)ν
Q0

h (dy)dt, h = 1, . . . ,m. (5.25)

Thus, the new Brownian motion WQB (t) of (5.24) and the discounted Poison random

measures of (5.25) enables us to change the equivalent measure from Q0 to QB. Let
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us recall what di�erent measure changes we have made. Under the original probability

measure P the relative wealth process Vπ/B follows the dynamics as given in (5.8). If

the relative wealth process were expressed in Q0-measure dynamics it would be

dVπ/B(t)

Vπ/B(t−)
=
[
r(t)− a(t) + ||b(t)||2 −

(
ξ(t)π(t) + θD

0 (t)
)ᵀ

b(t)

−
k∑

h=1

∫
R\{0}

ch(t, y)

1 + ch(t, y)
(1 + π(t)ᵀγh(t, y)) θ

J
0,h(t, y)νh(dy)

]
dt

+
(
π(t)ᵀξ(t)− b(t)ᵀ

)
dWQ0(t)

+
m∑

h=1

∫
R\{0}

π(t)ᵀγh(t, y)− ch(t, y)

1 + ch(t, y)
ÑQ0

h (dt, dy).

If, however, the substitution (5.24) and (5.25) are carried out to change the numeraire

from S0 to VB (thus changing the measure from Q0 to QB), then the relative wealth

process dynamics transform from the above SDE into the familiar form (5.18).

5.3.2 Relationship to Platen's Benchmark Approach

In the following we are going to link our work to the benchmark approach pioneered by

Platen (2005). In Platen's work the growth optimal portfolio plays a central role. This

is the portfolio that maximizes the growth rate of a portfolio, which is the expected log

wealth. It has been shown in the literature that such a portfolio has many interesting

properties. One of them is, for example, that it maximizes the long term performance of a

portfolio (cf. Goll and Kallsen (2003)). Platen considers the stock market model driven

by Brownian motions but without jump processes. He is working with the portfolio

that maximizes growth, which is, in a no-jump model given by η∗(t) = σ(t)−1α(t) =(
ξ(t)ᵀ

)−1
λ(t), were λ(t) := ξ(t)−1α(t) is called the market price of risk. He then takes

the wealth process of the GOP η∗ and takes it as the numeraire when pricing �nancial

assets. He calls the change of numeraire from S0 to V x
π∗ benchmarking. A �nancial

contract C can then be priced using the general pricing rule

C(t)

V 1
η∗(t)

= E

[
C(T )

V 1
η∗(T )

| Ft

]
, t ∈ [0, T ]. (5.26)

The very interesting property of this method of asset pricing is that the EMM is actually

the real world measure P , which is why he is calling it real world pricing.

As mentioned before, Platen's work is carried out assuming that stock prices are driven

by Brownian motions and the market is complete. Our aim here is to extend these results

to the incomplete market case with jump-di�usions. The satisfactory answer is that this

is possible.
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Recall from equation (4.31) that the optimal strategy for optimizing expected power

wealth is

α(t)− (1− β)σ(t)π̂(t) +

∫
R\{0}

γh(t, y){1 + π̂(t)ᵀγh(t, y)}β−1νh(dy) = 0.

a.s. for h = 1, . . . ,m. Thus, the portfolio η∗ that maximises log terminal wealth (β = 0)

has to satisfy

α(t)− σ(t)η∗(t) +

∫
R\{0}

γh(t, y)

1 + η∗(t)ᵀγh(t, y)
νh(dy) = 0, a.s. (5.27)

In Platen's results (cf. Platen (2005)), which does not include jumps, the asset pro-

cesses and wealth process, that are benchmarked by the wealth process of the GOP, are

martingales under the real world measure P . Let us verify that the same is true in a

jump-di�usion market. It follows from (4.30) that the optimal measure for the expected

log wealth maximization problem is given by the Girsanov kernels

θ∗,D(t) = −ξ(t)η∗(t), and θ∗,J
h (t, y) =

1

1 + η∗(t)ᵀγh(t, y)
(5.28)

From (4.68) we can derive the optimal wealth process of the power utility terminal wealth

problem if the optimal EMM is known. Substituting (5.28) into (4.68) and observing

that H̃θ ≡ 1 for β = 0 shows that

V x
η∗(t) = x

1

Hθ∗(t)
, t ∈ [0, T ].

From (3.3) and (5.28) the wealth process of the GOP η∗ is therefore given by

V x
η∗(t) = x exp

(∫ t

0
r(s)ds+

1

2

∫ t

0
||η∗(t)ᵀξ(t)||2ds+

∫ t

0
η∗(t)ᵀξ(t)dB(t)

+

m∑
h=1

∫ t

0

∫
R\{0}

log (1 + η∗(s)ᵀγh(s))Nh(ds, dy)

−
m∑

h=1

∫ t

0

∫
R\{0}

η∗(s)ᵀγh(s, y)

1 + η∗(s)ᵀγh(s, y)
νh(dy)

)
, t ∈ [0, T ].

It can also be expresses in di�erential form, where it looks almost similar to the wealth

process of a trading strategy

dV x
η∗(t) = V x

η∗(t−)

[
r(t)dt+ η∗(t)ᵀξ(t)dB(t) +

m∑
h=1

∫
R\{0}

η∗(t)ᵀγh(t, y)Ñh(dt, dy)

]
.

As a matter of fact, this is the evolution of a wealth process under risk-neutrality when

the risk-less asset is chosen as the numeraire. We summarize our analysis in the next

proposition.
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Proposition 5.6. If the benchmark process is given by the wealth process of the GOP η∗

as implicitly de�ned in (5.27), then all benchmarked (relative) asset prices are martingales

under the real world measure P :

V0/η∗(t) =
1

x
Hθ∗(t)S0(t) =

1

x
Zθ∗(t),

Vi/η∗(t) =
1

x
Hθ∗(t)Si(t) =

1

x
Zθ∗(t)Si(t),

for i = 1, . . . , k and t ∈ [0, T ]. Further, for a given portfolio π ∈ Π(x) the relative wealth

process is a martingale under P :

Vπ/η∗(t) =
1

x
Hθ∗(t)V

x
π (t) =

1

x
Zθ∗(t)V

x
π(t).

Using Platen's terminology one can now perform real world pricing in the jump-di�usion

market. That is if there is a �nancial claim C, we can use the growth optimal portfolio

as the numeraire and derive the pricing rule (5.26). We refer to Platen (2005) for more

details on the case where the stocks are driven by Brownian motions only.

5.4 Martingale Approach to Active Portfolio Selection

An investor is interested in �nding a trading strategy that maximizes expected utility

from terminal generalized relative wealth. That is to �nd

ΦB = sup
π∈ÃB

E
[
U
(
Vπ/B(T )

)]
, (5.29)

whereby

ÃB =
{
π ∈ Π |E

[
min

{
U
(
Vπ/B(T )

)
, 0
}]
> −∞

}
(5.30)

represents the set of admissible trading strategies for the above problem. As usual, the

optimization problem in (5.29) will be referred to by ΦB.

The way ΦB is solved is similar to the procedure in Chapter 4. First, an auxiliary random

variable Y θ
B is introduced for each B-Girsanov kernel θ. Each of these random variables

performs at least as good as any admissible trading strategy when comparing expected

utility from the auxiliary random variable and terminal relative wealth:

E[U(Y θ
B)] ≥ E[U

(
Vπ/B(T )

)
], π ∈ ÃB.

Then under some conditions a replication strategy π ∈ ÃB can be found that replicated

Y θ
B for some θ ∈ ΘB. Since non of the Y θ

B underperforms any admissible terminal

relative wealth the replication strategy must create terminal relative wealth that is not

outperformed by any other admissible relative wealth, thus is optimal.
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Let Q denote the EMM associated to the B-Girsanov kernel θ ∈ ΘB as de�ned in

De�nition 5.3. The analogue function to Xθ as de�ned in (4.5) is for this problem

de�ned by

X θ
B(y) := EQ

[
I
(
yZθ

B(T )
)]
, y > 0, (5.31)

for a B-kernel Girsanov θ ∈ ΘB. The set of θ ∈ ΘB for which the above function is

�nite is denoted by Θ̃B and is assumed to be non-empty:

Θ̃B :=
{
θ ∈ ΘB|X θ

B(y) <∞, for y > 0
}
.

Then for each θ ∈ Θ̃B the function X θ
B is continuous and maps (0,∞) into itself. Further,

X θ
B is strictly decreasing and satis�es X θ

B(0+) = ∞ and X θ
B(∞) = 0+. This means in

particular that there exists a unique ŷ > 0 for which X θ
B(ŷ) = 1.

This function X θ
B allows us to de�ne a random variable Y θ

B with some desirable properties.

Among others these are that Y θ
B never underperforms relative wealth (in the expected

utility sense) of any admissible trading strategy. The following lemma can be proven in

an analogue way as Lemma 4.1.

Lemma 5.7. Let θ ∈ Θ̃B with associated measure Q. De�ne a random variable Y θ
B :=

I
(
ŷZθ

B(T )
)
for ŷ as described above, then

(i) EQ[Y θ
B] = 1;

(ii) E
[
U(Y θ

B)
−] > −∞;

(iii) E[U
(
Vπ/B(T )

)
] ≤ E

[
U(Y θ

B)
]
, ∀π ∈ ÃB.

Remarks.

1. Lemma 5.7 (i) act as a budget constraint similar to be found in (5.21), giving an

indication that every replication strategy should be admissible.

2. Item (ii) guarantees that any replication strategy for Y θ
B is actually in the admis-

sible set ÃB from equation (5.30).

3. An inequality that immediately follows (iii) is that for all π ∈ ÃB

E[U
(
Vπ/B(T )

)
] ≤ sup

π̃∈ÃB

E[U
(
Vπ̃/B(T )

)
] = ΦB ≤ E

[
U(Y θ

B)
]
. (5.32)

Thus, Y θ
B never underperforms the terminal relative wealth of the optimal trading

strategy.
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The above Lemma is the version of Lemma 4.1 tailored to the benchmark problem ΦB in

(5.29). We have constructed a well behaved random variable Y θ
B that performs at least

as well as any admissible terminal relative wealth for the problem ΦB. If it is possible

to �nd a trading strategy whose relative wealth replicates for some θ ∈ Θ̃B the random

variable Y θ
B then this trading strategy should be optimal for the problem ΦB.

The objective is to �nd a trading strategy π and a B-Girsanov kernel θ for which equality

holds in equation (5.32). Such a B-Girsanov kernel should attain the in�mum on the

right hand side of (5.32). If it exists it will be called the optimal B-Girsanov kernel

for problem ΦB. Similarly to De�nition 3.1 we make for the benchmark framework the

following de�nition.

De�nition 5.8. An equivalent martingale measure Q represented by θ̂ ∈ Θ̃B is called

optimal for the problem ΦB in (5.29) if it satis�es

E
[
U(Y θ̂

B)
]
= inf

θ∈Θ̃B

E
[
U(Y θ

B)
]
.

Our aim is to �nd such an optimal martingale measure and to �nd a replication strategy

that leads to terminal relative wealth Y θ
B for some optimal θ̂. Thus, we need to de�ne a

martingale M θ
B for each θ ∈ Θ̃B which is the benchmark equivalent to Mθ in (4.8). Its

martingale representation coe�cients can then be used to construct a condition on the

optimal trading strategy and optimal B-Girsanov kernel. To do this de�ne for θ ∈ Θ̃B

the martingale M θ
B by

M θ
B(t) := E

[
Zθ
B(T )Y

θ
B|Ft

]
, t ∈ [0, T ]. (5.33)

Following the martingale representation Theorem 2.13 there must exist processes aD and

aJ that satisfy the integrability condition as in Theorem 2.13 and for which

M θ
B(t) = 1 +

∫ t

0
aD(s)ᵀdW (s) +

m∑
h=1

∫ t

0

∫
R\{0}

aJh(s, y)Ñh(ds, dy). (5.34)

These martingale representation coe�cients can be used to give conditions for a repli-

cation strategy and an optimal EMM. The next theorem is the benchmark equivalent

to Theorem 4.3. The proof is done in the same manner as in Theorem 4.3 but will be

carried out to clarify where the following optimality conditions on the optimal trading

strategy and optimal B-Girsanov kernel are coming from.

Theorem 5.9. If θ̂ ∈ Θ̃B and π̂ ∈ ÃB satisfy for all h = 1, . . . ,m and t ∈ [0, T ]

ξ(t)ᵀπ̂(t)− b(t) =
1

M θ̂
B(t−)

aD(t)− θ̂
D
(t),

π̂(t)ᵀγh(t, y)− ch(t, y)

1 + ch(t, y)
=

1

θ̂Jh (t, y)

(
aJh(t, y)

M θ̂
B(t−)

+ 1− θ̂Jh (t, y)

)
,

(5.35)
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for νh almost surely all y ∈ R \ {0}, h = 1, . . . ,m, then π̂ is an optimal strategy for ΦB

and

Vπ̂/B(T ) = Y θ̂
B. (5.36)

Thereby is M θ
B the martingale de�ned in (5.33) for θ ∈ Θ̃B and aD and aJ are its

martingale representation coe�cients as in (5.34). Further, θ̂ represents the optimal

EMM for the problem ΦB. The optimal relative wealth process is given by

Vπ̂/B(t) = V θ̂
B(t) = EQ

[
Y θ̂
B | Ft

]
, t ∈ [0, T ], (5.37)

where V θ̂
B is de�ned in (5.38).

Proof. We show that if π and θ are satisfying (5.35), then π is indeed replicating Y θ
B. If

this is the case, then because of (5.32), π must be optimal (given that it is admissible

for the problem) and equality holds in (5.32). De�ne for θ ∈ Θ̃B the process

V θ
B(t) :=

1

Zθ
B(t)

M θ
B(t), t ∈ [0, T ]. (5.38)

Then from Itô's product rule, equation (5.34), and (2.24), the process V θ
B follows the

stochastic di�erential equation

dV θ
B(t)

V θ
B(t−)

=
{
||θD(t)||2 − 1

M θ
B(t−)

aD(t)ᵀθD(t)−
m∑

h=1

( aJh(t, y)
M θ

B(t−)
+ 1− θJh (t)

)
νh(dy)

}
dt

+

(
1

M θ
B(t−)

aD(t)− θD(t)

)ᵀ
dW (t)

+

m∑
h=1

∫
R\{0}

1

θJh (t)

(
aJh(t, y)

M θ
B(t−)

+ 1− θJh (t)

)
Nh(dt, dy).

Under the to θ associated Q measure the process V θ
B becomes a martingale so that

dV θ
B(t)

V θ
B(t−)

=

(
1

M θ
B(t−)

aD(t)− θD(t)

)ᵀ
dWQ(t)

+

m∑
h=1

∫
R\{0}

1

θJh (t)

(
aJh(t, y)

M θ
B(t−)

+ 1− θJh (t)

)
NQ

h (dt, dy).

(5.39)

Notice further that V θ
B has the properties that V θ

B(0) = 1 a.s. and V θ
B(T ) = Y θ

B a.s. Since

all involved stochastic di�erential equations were assumed to have a unique solution, a

relative wealth process Vπ/B associated to the strategy π is equal to V θ
B (and is therefore

building a replication portfolio), if the two stochastic di�erential equations (5.18) and

(5.39) are equal. This, however, is exactly the case if (5.35) holds. Finally, the represen-

tation (5.37) follows from (5.36) since Vπ̂/B is a martingale under the optimal EMM Q.

Also observe that Vπ̂/B(T ) = Y θ̂
B a.s.
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The above theorem gives a tool to determine the optimal trading strategy for the in-

vestment problem ΦB. It is the benchmark equivalent of Theorem 4.3. However, the

main di�erence between the above theorem and Theorem 4.3 is that the benchmark Gir-

sanov kernels have to satisfy two conditions (cf. (5.17)) as opposed to only one condition

given by (3.8). This makes it more di�cult to �nd cases of utility functions for which

more explicit conditions on the optimal strategy and optimal Girsanov kernel can be

given. Fortunately, one class of utility functions for which this is the case are the already

familiar power utility functions. They will be discussed in more detail in Section 5.5

Corollary 5.10. Let the same assumptions as in Theorem 5.9 be satis�ed. For the case

that the benchmark is the wealth pocess of the benchmark strategy η ∈ Π+ the optimality

conditions on (θ̂, π̂) in (5.35) change to

ξ(t)ᵀ
(
π̂(t)− η(t)

)
=

1

M θ̂
B(t−)

aD(t)− θ̂
D
(t),(

π̂(t)− η(t)
)ᵀ
γh(t, y)

1 + η(t)ᵀγh(t, y)
=

1

θ̂Jh (t, y)

(
aJh(t, y)

M θ̂
B(t−)

+ 1− θ̂Jh (t, y)

)
,

for νh almost surely all y ∈ R \ {0}, h = 1, . . . ,m.

5.5 The Case of Power and Logarithmic Utility

Consider a power utility function U(x) = xβ

β for some β < 1, with the usual convention

that that xβ

β = log(x) for β = 0. If I denotes the inverse of the �rst derivative of U ,

then it is given as I(y) = y
1

β−1 for y > 0.

Proposition 5.11. Let β < 1. If π̂ ∈ ÃB satis�es(
α(t) + (β − 1)σ(t)π̂ − βξ(t)b(t)

)
i
+

m∑
h=1

∫
R\{0}

γih(t, z)
(1 + π(t)ᵀγh(t, z))

β−1

(1 + ch(t, z))β
νh(dz) =0,

a(t)− r(t) + (β − 1)b(t)ᵀξ(t)π̂(t)− βb(t)ᵀb(t)

+

m∑
h=1

∫
R\{0}

ch(t, z)
(1 + π̂(t)ᵀγh(t, z))

β−1

(1 + ch(t, z))β
νh(dz) =0,

(5.40)

a.s. for all i = 1, . . . k and t ∈ [0, T ], then it is optimal for the problem ΦB with power

or logarithmic utility U(x) = xβ

β (and U(x) = log(x) if β = 0).

Proof. To derive an optimality condition for the strategy in problem ΦB it is necessary to

compute X θ
B, Y

θ
B, and M

θ
B as de�ned in (5.31), in Lemma 5.7, and in (5.33) respectively.

For given θ ∈ Θ̃B the function X θ
B is given for the power utility case by

X θ
B(y) = EQ

[
I
(
yZθ

B(T )
)]

= y
1

β−1E
[
Zθ
B(T )

β
β−1
]
, y > 0.
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The process Zθ
B(T )

β
β−1 can be factorized into a martingale part ζM (t) and a non-

martingale part ζN (t) so that Zθ
B(T )

β
β−1 = ζM (t)ζN (t). The function X θ

B then simpli�es

to X θ
B(y) = y

1
β−1E[ζN (T )], so that the ŷ that solves the equation X θ

B(ŷ) = 1 is then

given by

ŷ :=
1

E[ζN (T )]β−1
.

The number ŷ can be used to derive an expression for the optimal terminal relative

wealth of the auxiliary problem, Y θ
B, as de�ned in Lemma 5.7. Substituting I and ŷ into

the de�nition of Y θ
B determines it as

Y θ
B = I

(
ŷZθ

B(T )
)
= ŷ

1
β−1Zθ

B(T )
1

β−1 .

What is left is to determine the martingale M θ
B from (5.33):

M θ
B(t) = E

[
Zθ
B(T )Y

θ
B|Ft

]
= ŷ

1
β−1E

[
Zθ
B(T )

β
β−1 |Ft

]
= ŷ

1
β−1E[ζN (T )]ζM (t) = ζM (t)

for t ∈ [0, T ]. As ζM (t) is the martingale part of Zθ
B(t)

β
β−1 it can be easily seen that it

follows the stochastic di�erential equation

dζM (t) = ζM (t−)
β

β − 1
θD(t)ᵀdW (t) + ζM (t−)

m∑
h=1

∫
R\{0}

(
θJh (t, z)

β
β−1 − 1

)
Ñh(dt, dz).

Thus, the martingale representation coe�cients of M θ
B are given by

aD(t) =M θ
B(t−)

β

β − 1
θD(t), and aJh(t, z) =M θ

B(t−)
(
θJh (t, z)

β
β−1 − 1

)
for t ∈ [0, T ], z ∈ R \ {0}, and h = 1, . . .m. Substituting the above martingale coe�-

cients into (5.35) shows that the optimal B-Girsanov kernel θ̂ and the optimal trading

strategy π̂ should satisfy

ξ(t)ᵀπ̂(t)− b(t) =
1

β − 1
θ̂
D
(t)

π̂(t)ᵀγh(t, y)− ch(t, y)

1 + ch(t, y)
=
(
θ̂Jh (t, y)

1
β−1 − 1

)
,

for h = 1, . . . ,m. Solving the above equations with respect to θD and θJ one obtains

θ̂
D
(t) = (β − 1) (ξ(t)ᵀπ̂(t)− b(t)) , and

θ̂Jh (t, y) =

(
1 + π̂(t)γh(t, y)

1 + ch(t, y)

)β−1

,
(5.41)

for h = 1, . . . ,m and νh-almost surely all y ∈ R \ {0}. However, a B-Girsanov kernel

has also to satisfy the additional constrains (5.17). Substituting the above optimal θ̂
D

and θ̂Jh , h = 1, . . . ,m into these conditions leads to the optimality condition (5.40).
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It is not always guaranteed to �nd an optimal trading strategy π that satis�es the

optimality condition in (5.40). In the following some conditions are considered under

which it can be guaranteed that an optimal trading strategy exists for the power utility

case. Consider �rst the case where there are no jumps in the wealth process of the

investor and in the benchmark process. Then the optimality conditions in (5.40) become

α(t) + (β − 1)σ(t)π̂ − βξ(t)b(t) = 0, and

a(t)− r(t) + (β − 1)b(t)ᵀξ(t)π̂(t)− βb(t)ᵀb(t) = 0, a.s., t ∈ [0, T ].
(5.42)

Lemma 5.12. Let there be no jumps in the market and the benchmark. If the drift of

the benchmark satis�es

a(t) = r(t) + b(t)ᵀξ−1(t)α(t), (5.43)

then the optimal trading strategy for the relative wealth problem ΦB in (5.29) with power

utility U(x) = xβ/β, β < 1, is given by

π̂(t) =
1

1− β
σ−1(t) (α(t)− βξ(t)b(t)) , t ∈ [0, T ]. (5.44)

Independent from (5.43), for the case that the benchmark follows a trading strategy η ∈
A+, the optimal trading strategy is

π̂(t) =
1

1− β

(
σ−1(t)α(t)− βη(t)

)
, t ∈ [0, T ]. (5.45)

Proof. Solving the �rst equation in (5.42) with respect to π̂ gives (5.44). Substiting the

solution of the �rst equation, i.e. (5.44), into the second equation in (5.42) leads to the

condition (5.43). For the case that the benchmark is a wealth process of a strategy η

the condition is (5.43) is automatically satis�ed and b(t) = ξ(t)ᵀη(t) as in (5.7).

The form of the optimal trading strategy π̂ in (5.44) for the power utility case without

jumps takes a very similar form as the solution in the non-benchmark framework, which

was given in (4.32) by

π̂ =
1

(1− β)
σ(t)−1α(t).

Consider now the case that the benchmark is given as the wealth process of the GOP,

thus η(t) = σ(t)−1α(t) as of (5.4). Then from (5.45) the optimal trading strategy is

also the GOP π̂(t) = σ(t)−1α(t). Thus, if an investor has preferences in form of power

utility and the benchmark is given by the GOP, then he/she should also choose the GOP

as optimal trading strategy. This is quite interesting as it supports arguments as in Goll

and Kallsen (2000), Kelly (1956), and other, that argue the GOP is the best portfolio of

a rational investor.
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If there are instead of the Brownian motion parts jump processes in the model the stock

market model becomes a jump-model with drift. In that case the optimality condition

in (5.40) is given by

αi(t) +

m∑
h=1

∫
R\{0}

γih(t, z)
(1 + π(t)ᵀγh(t, z))

β−1

(1 + ch(t, z))β
νh(dz) =0,

a(t)− r(t) +

m∑
h=1

∫
R\{0}

ch(t, z)
(1 + π̂(t)ᵀγh(t, z))

β−1

(1 + ch(t, z))β
νh(dz) =0,

a.s. for i = 1, . . . , k. For this to become a simpler condition in form of for example only

one equation, the ch should somehow relate to the k jump sizes γih. This is the case

if ch is a linear combination of the γih such that ch(t, y) =
∑k

i=1 µi(t)γih(t, y) for some

µ1, . . . , µk. But then it is also necessary that a(t)− r(t) =
∑k

i=1 µi(t)αi(t) such that µ

is actually a benchmark strategy (cf. (5.7)). If this is the case then the condition on the

optimal strategy simpli�es to

a(t)− r(t) +

m∑
h=1

∫
R\{0}

ch(t, z)
(1 + π̂(t)ᵀγh(t, z))

β−1

(1 + ch(t, z))β
νh(dz) = 0.

For the very special case when there is only one risky asset in the market and with only

one jump process with �xed jump size γ and intensity ν the optimal trading strategy

can be written in explicit form as

π̂(t) =
1

γ(t)

((
r(t)− a(t)

c(t)ν

)1−β

(1 + c(t))− 1

)
, t ∈ [0, T ].

Thus, we have seen that in the presents of jumps a simpli�ed condition on the optimal

trading strategy can be given when the benchmark is a portfolio wealth process. In

this case the drift has to satisfy a(t)− r(t) = η(t)ᵀα(t). From the consideration on the

no-jump case the drift also has to satisfy the condition a(t)− r(t) = b(t)ᵀξ−1(t)α(t) as

in (5.43). However, if both of these condition should be satis�ed then the di�usion term

must become b(t) = ξ(t)ᵀη(t).

Corollary 5.13. Let β < 1. If the benchmark is given by the wealth process of the

trading strategy η ∈ Π+ and π̂ ∈ ÃB satis�es

α(t)− βσ(t)η(t)− (1− β)σ(t)π̂(t)

+

m∑
h=1

∫
R\{0}

(1 + π̂(t)ᵀγh(t, y))
β−1

(1 + η(t)ᵀγh(t, y))
β

γh(t, y)νh(dy) = 0,
(5.46)

then π̂ is optimal for the problem ΦB(x) for the power utility case U(x) = xβ/β.
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5.6 Stochastic Control and Benchmark Portfolios

Let us consider the case when a benchmark process is given by a wealth process of a

portfolio η ∈ Π+, so that the relative wealth process Vπ/η has dynamics as given in

(5.10). This can be extended to a relative wealth process V s,v
π/η(t) that starts at v at time

s ∈ [0, T ]. Then V s,v
π/η satis�es also the stochastic di�erential equation (5.10) for t ∈ [s, T ]

with initial condition that V s,v
π/η(s) = 1.

From the discussion at the end of Section 5.2 the relative wealth can be transformed into

the wealth process stochastic di�erential equation if the substitutions (5.14) are carried

out. In such a case and if the trading strategy is π̃ = π − η, then the relative wealth

process is equivalent to

dV s,v
π̃ (t)

V s,v
π̃ (t−)

= r̃(t)dt+ π̃(t)ᵀ
[
α̃(t)dt+ ξ̃(t)dB(t) +

m∑
h=1

∫
R\{0}

γ̃h(t, y)Nh(dt, dy)

]
,

for t ∈ [s, T ].

Using this parallel between wealth process and relative wealth process it is possible to

transfer the results on partial di�erential equations from Section 4.8 to an extended

relative wealth problem where the parameters are Markov processes and the starting

point of the relative wealth is given by v at time s ∈ [0, T ]. In this section it is assumed

that all model parameters α, r, ξ, γ, as well as the benchmark strategy η are Markov

processes depending on time and current relative wealth v. Further, the set ofB-Girsanov

kernels is also assumed to contain only Markov kernels, i.e. kernels that are Markov

processes. Since we only going to work with benchmark strategies η in this section, let

us call the B-Girsanov kernels η-Girsanov kernels to emphasis the dependency on η.

De�ne for (s, v) ∈ [0, T ] × (0,∞) the optimization problem of maximizing terminal

relative wealth when starting in (s, v) by

Φη(s, v) := sup
π∈Aη(s,v)

E
[
U
(
V s,v
π/η(T )

)]
, (5.47)

where the set of admissible trading strategies is de�ned for the problem by

Aη(s, v) :=
{
π ∈ Π | E

[
min{0, U(V s,v

π/η(T )} > −∞
]}

.

As in Section 4.8 the function X θ
B in (5.31) is extended to accommodate time dependency.

Thus for (s, y) ∈ [0, T ]× (0,∞) de�ne

X θ
η (s, y) := EQ

[
I
(
Zs,y
η,θ(T )

)]
, y > 0.

Thereby is Zs,y
η,θ the Radon-Nikodym density of the change in probability measure from

P to Q of the η-Girsanov kernel θ ∈ Θη that starts almost surely at y at time s. The
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η-Girsanov kernel is thereby chosen out from the set for which the function X θ
η (s, y) has

an inverse which is

Θ̃T,η :=
{
θ ∈ Θη | X θ

η (s, y) <∞, (s, y) ∈ [0, T ]× (0,∞)
}
.

The state space inverse of the function X θ
η (s, y) will be denoted by Yθ

η (s, v) for (s, v) ∈
[0, T ]× (0,∞). In the θ ∈ Θ̃T,η auxiliary market let

Y s,v
η,θ = I

(
Zs,y
θ (T )

)
(5.48)

be the auxiliary terminal relative wealth. This construction of Y s,v
η,θ is directly taken

over from (4.71). The optimal equivalent martingale measure for the problem Φη(s, v)

in (5.47) can then be de�ned in the following way, similar to De�nition 4.21.

De�nition 5.14. A martingale measure Q obtained by dQ
dP |FT

= Zθ(T ) in terms of

θ̂ ∈ Θ̃T,η is called optimal for the optimization problem Φη(s, v) in (5.47) if it satis�es

E
[
U
(
Y s,v

η,θ̂

)]
= inf

θ∈Θ̃T,η

E
[
U
(
Y s,v
η,θ

)]
,

where Y s,v
η,θ is de�ned as in (5.48).

The results on partial di�erential equations from Section 4.8 can now be applied to the

problem Φη(s, v) of (5.47) using the transform (5.14). For the optimal trading strategy

and the optimal measure of the problem Φη(s, v) the equivalent condition as in Lemma

4.22 can be derived.

Lemma 5.15. Let θ̂ represent the optimal equivalent martingale measure for the problem

Φη(0, x) in (5.47) for x > 0. Then the optimal trading strategy π̂ can be written in

feedback form π̂(s, v) and satis�es for (s, v) ∈ [0, T ]× (0,∞) the equations

(π̂(s, v)− η(s))ᵀ ξ(s) =
1

v

Y θ̂
η (s, v)

∂xY θ̂
η (s, v)

θ̂
D
(s),

(π̂(s, v)− η(s))ᵀ γh(s, z)

1 + η(s)ᵀγh(s, z)
=

1

v
X
θ̂

(
s, θ̂Jh (s, z)X−1

θ̂
(s, v)

)
− 1,

(5.49)

for all z ∈ R \ {0} and h = 1, . . . ,m.

Thus, the optimal trading strategy is again Markovian and so the optimal relative wealth

process is also a Markov process. Using the same transformations (5.14), the main result

from Section 4.8, the Hamilton-Jacobi-Bellman equation, can also be transferred to the

benchmark problem.
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Theorem 5.16. Let Φη(s, v) be the optimal performance function of the optimal termi-

nal wealth problem speci�ed in (5.47). Then Φη satis�es the Hamilton-Jacobi-Bellman

equations of stochastic programming

∂sΦ(s, v) + max
π∈Rk

{
v
(
(π(s)− η(s))ᵀ (α(s)− σ(s)η(s))

)
∂vΦ(s, v)

+
1

2
|| (π(s)− η(s))ᵀ ξ(s)||2v2∂vvΦ(s, v)

+

m∑
h=1

∫
R\{0}

[
Φ

(
s, v

1 + π(s)ᵀγh(s, z)

1 + η(s)ᵀγh(s, z)

)
− Φ(s, v)

]
νh(dz)

}
= 0,

(5.50)

on the set [0, T )× (0,∞) and satis�es the boundary condition

Φη(T, v) = U(v), v > 0.

Proof. The Hamilton-Jacobi-Bellman equation (5.50) follows from Theorem 4.24 and the

substitution (5.14). The term in the jump-part of the HJB equation (5.50) follows from

1 + γ̃π̂h (s, z) = 1 + π̃(s)ᵀγ̃h(s, z) = 1 +
(π(s)− η(s))ᵀ γh(s, z)

1 + η(s)ᵀγh(s, z)
=

1 + π(s)ᵀγh(s, z)

1 + η(s)ᵀγh(s, z)
.

5.7 Conclusion

We have carried out an expected utility maximization problem where the objective was

to maximize the terminal relative wealth. To do this we have changed the probability

measure into an equivalent martingale measure Q such that the relative wealth became

a Q-martingale. The crucial condition on the B-Girsanov kernels, which are responsible

for the measure change, was thereby equation (5.17). Using the measure change, rela-

tionships to change of numeraire techniques, as developed by Geman et al (1995), has

been discussed in Section 5.3.1. The numeraire has been changed from the risk-less asset

S0 as used in Chapter 3 and 4 to the benchmark process VB of this chapter. Further

relationships to Platen's work on the benchmark approach have been established and

extended to the incomplete jump-di�usion framework in Section 5.4.

The martingale methods for portfolio optimization developed in Chapter 4 have been

applied to the benchmark problem, which has let to a condition on the optimal trading

strategy and the optimal martingale measure, which has been shown in Theorem 5.9. The

case of power utility has been analysed and we have investigated under which conditions

more closed form solutions to the problem exist. Conditions for that have been given in

Lemma 5.12 and Corollary 5.13.
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The chapter has been concluded by linking the PDE results from the previous chap-

ter to the benchmark problem so that the Hamilton-Jacobi-Bellman equation for the

benchmark problem could be derived in Theorem 5.16.
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Chapter 6

Expected Utility Maximization

under Constraints

6.1 Introduction

In this chapter we consider the problems of the previous two chapters when the investor's

trading strategy is constrained to a non-empty closed convex set K ⊂ Rk that contains

the origin. The set K represents the constraint on the trading strategy which could be

for example the constraint of no short selling, a restricting on the number of assets to

trade with, or some constraints in form of boundaries on the proportion strategies πi.

In the literature constraints of these kind have been treated by various authors. The

paper that is probably most relevant to the approach in this chapter is that by Cvitanic

and Karatzas (1992). They study the problem of optimal consumption and investment

when the portfolio is constrained to take values in a given convex set K. They model

the stock prices as continuous Itô process which is essentially the model that has been

used throughout this thesis but without jumps. The approach to solve the constrained

optimization problem is to embed it into a suitable family of unconstrained problems.

One then tries to single out a member of this family for which the optimal portfolio

actually obeys the constraint and thereby solves the original problem as well.

In a later paper Cvitanic and Karatzas (1993) transfer the results from the constrained

consumption-investment problem to contingent claim pricing and hedging. In a di�erent

paper, Bardhan (1993) extends the results from Cvitanic and Karatzas (1992) by consid-

ering additionally some minimum requirements on the consumption rate and the wealth

process of the investor over the investment horizon. The arguments for these additional

constraints are cash �ow and regulatory requirements.
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In this chapter, and in particular in the �rst part, the results of Cvitanic and Karatzas

(1992) are extended to the jump-di�usion model. The procedure is similar as in their

paper but now the additional requirement is to handle the market incompleteness that

arises from the jump-di�usion model. This is done by adding an addition layer of embed-

ding which deals with the jump-di�usion incompleteness. As in Cvitanic and Karatzas

(1992) the constrained problem will be transferred to a family of auxiliary problems that

are not constrained. Each of these auxiliary problems are solved by again relating them

to a family of auxiliary problems, each parametrized by a kernel of an equivalent mar-

tingale measure. This part will be using heavily the methods developed in Chapter 4.

One gets therefore two layers of auxiliary problems, one that deals with the constraints

and the other one that deals with the market incompleteness. The original problem is

then solved by �nding a strategy for which the solution of all layers coincide and that

obeys also the constraint K.

In the second part of the chapter constraints are applied to the benchmark optimization

problem of Chapter 5. It is assumed that the benchmark is the wealth process of a

benchmark strategy η. Again a �nancial agent's aim is to outperform the benchmark

portfolio. Now it is the di�erence of the two proportional trading strategies that is not

allowed to leave the convex setK. This allows to model various constraints. For example,

the trading strategy π could not be allowed to be too di�erent from η in absolute terms

say. Another constraint could be that an investor has to invest at least as much money

into a particular stock as strategy η does. The problem is solved by combining the

results from Chapter 4, Chapter 5, and the results from the �rst part of this chapter. As

far as the author is aware such kind of problem has not been treated in the literature.

Portfolio optimization in the context of benchmarks and constraints has been approached

rather di�erently in the academic literature. Often it is assumed that an investor's

portfolio should satisfy some tracking error constraints when trying to outperform a

benchmark. Examples for this kind of treatment are Bajeux-Bsnainou et al. (2007),

Jorion (2003), and El-Hassan and Kofman (2003). However, these problems are often

solved in a mean-variance framework rather than the expected utility maximization

approach used here. Also the authors make assumptions on the distributions of the

returns of the �nancial assets rather than specifying a continuous time model for the

stock price dynamics as it is done in this thesis with jump-di�usion processes.

Papers that consider drawdown constraints and value-at-risk constraints are Alexander

and Baptista (2006) and Alexander and Baptista (2008), respectively. They also consider

a mean-variance approach and work with the expected return and the variance of asset

returns. A paper that analyse the problem of index tracking with constrained portfolios
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is written by Maringer and Oyewumi (2007).

The chapter is outlines as follows. Section 6.2 introduces the constrained version of the

consumption-investment problem of Chapter 4. A family of υ-problems will be intro-

duced which will be solved in Section 6.3. The central result of the chapter, the solution

to the constrained consumption-investment problem, will also be presented in this sec-

tion. Section 6.4 deals with the problem of constrained relative wealth maximization

which is the constrained version of the problem treated in Chapter 5. In a �nal sec-

tion, Section 6.5, various constraints, namely upper and lower boundary constraints, are

applied to the problems in a power utility setting.

6.2 The Constrained Investment-Consumption Problem and

the Family of υ-Problems

In the following we solve the optimal consumption-investment problem of Chapter 4

which was given by Φ(x) in (4.4) under constraints. Our main reference for this work

will be the paper by Cvitanic and Karatzas (1992) who solve the problem without jumps.

Their results will be extended to the general jump-di�usion case. The stock market model

is as usual the model given in (3.1) such that the wealth process of an investor is the

solution of the stochastic di�erential equation (3.20):

dV x
π,c(t) =

(
V x
π,c(t−)r(t)− c(t)

)
dt+ π(t)V x

π,c(t−)ᵀ [α(t)dt+ ξ(t)dB(t)]

+ V x
π,c(t−)

m∑
h=1

∫
R\{0}

π(t)ᵀγh(t, y)Nh(dt, dy), t ∈ [0, T ].

The setA(x) is as usual the set of admissible strategies (π, c) for which the wealth process

is almost surely non-negative. It has been de�ned in De�nition 3.6 and is always non-

empty since the strategy (π, c) = (0, 0) is always in it. In the following we are interested

in restricting the portfolio strategies to certain convex sets that represent constraints.

De�nition 6.1. A closed convex set K ∈ Rk that contains the origin is called a con-

straint.

Examples of constraints are short-selling constraints K = [0,∞)k, prohibition of bor-

rowing K = {p ∈ Rk |
∑k

i=1 pi ≤ 1}, or restriction on the number of assets K = {p ∈
Rk | pM=1 = . . . = pk = 0} for a M ∈ {1, . . . , k − 1}. We introduce the convention that

π ∈ K if and only if π(t) ∈ K for almost surely all t ∈ [0, T ].

The problem of maximizing consumption and terminal wealth under the constraint K is

then that of �nding an optimal strategy pair (π̂, ĉ) and an optimal performance function

118



ΦK(x) de�ned by

ΦK(x) := sup
(π,c)∈AK

E
[∫ T

0
U1

(
t, c(t)

)
dt+ U2(V

x
π,c(T ))

]
= E

[∫ T

0
U1

(
t, ĉ(t)

)
dt+ U2(V

x
π̂,ĉ(T ))

]
,

(6.1)

where the set of admissible strategies for the problem is given by

AK(x) :=
{
(π, c) ∈ A(x)

∣∣∣ E
[∫ T

0
U1

(
t, c(t)

)−
dt+ U2(V

x
π,c(T ))

−
]
> −∞, π ∈ K

}
.

As usual, the constrained optimization problem of �nding an optimal strategy (π̂, ĉ) as

well as the optimal performance function given in (6.1) will be referred to, with a slight

abuse of notation, by ΦK(x).

To handle the constraint we need to heavily borrow tools from the theory of convex

analysis. A standard reference on convex analysis is Rockafellar (1970). Bismut (1973)

o�ers an application of convex analysis to stochastic control. A key concept of convex

analysis is that of the support function of a closed convex set.

De�nition 6.2. Let K be a closed convex set. The function ζ : Rk → [0,∞] de�ned by

ζ(υ) := sup
p∈K

{−pᵀυ}, υ ∈ Rk

is called the support function of the convex set −K. The e�ective domain, on which ζ is

�nite, will be denoted by K̃.

From the de�nition follows immediately that p ∈ K if

ζ(υ) + pᵀυ ≥ 0, ∀υ ∈ K̃.

Some examples of support functions for various constrains are (cf. Cvitanic and Karatzas

(1992)) no short selling K = [0,∞)k, ζ ≡ 0 on K̃ = K; no borrowing K = {p ∈ Rk |∑k
i=1 pi ≤ 1}, ζ(υ) = −υ1 on K̃ = {υ ∈ Rk | υ1 = . . . = υk ≤ 0}; or restriction on the

number of assets K = {p ∈ Rk | pM=1 = . . . = pk = 0}, ζ ≡ 0 on K̃ = {υ ∈ Rk | υ1 =

. . . = υM = 0}.

To apply the concept of support functions to stochastic process we need to make a further

introduction of a set of processes for which the support function is well behaved.

De�nition 6.3. De�ne by DK the set containing all (Ft)-measurable processes υ :

[0, T ]× Ω → K̃ that satisfy

E
[∫ T

0
ζ(υ(t))

]
<∞.
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Thus a trading strategy π satis�es the constraint K, i.e. π ∈ K, if

ζ(υ(t)) + π(t)ᵀυ(t) ≥ 0, t ∈ [0, T ], ∀υ ∈ DK . (6.2)

The equation (6.2) is thus the key tool to relate a trading strategy π ∈ K to the support

function ζ.

The idea how the constrained consumption-investment problem is solved is the following.

For each of the υ ∈ DK a so called υ-market is constructed. In such an υ-market an

υ-wealth process V
x,(υ)
π,c is constructed that has the property that as long as its trading

strategy π satis�es the constraint K it is always as least as big as the original wealth

process: V
x,(υ)
π,c ≥ V x

π,c if π ∈ K. Within the υ-market another optimization problem

is formulated which will be called the υ-problem. This υ-problem is an unconstrained

problem and can be solved using methods from Chapter 4. One then checks for what υ

the solution of the υ coincides with the solution with the constrained problem with the

trading strategy also satisfying π ∈ K. It will be seen that the inequality (6.2) will play

a central role.

To introduce the υ-market we follow the approach in Cvitanic and Karatzas (1992) by

changing the risk-less asset rate r and the stock drift rates α. This will lead to the

desired properties of the υ-wealth process V
x,(υ)
π,c as will be seen in Lemma 6.4. Thus,

for a υ ∈ DK de�ne the processes

rυ(t) := r(t) + ζ(υ(t))

αυ(t) := α(t) + υ(t) + ζ(υ(t))1,
(6.3)

where 1 = (1, . . . , 1)ᵀ is the k-dimensional unit vector. The υ-market is then the market

under which the asset prices have the parameters as de�ned in (6.3). That is the υ-stock

price processes S
(υ)
i are de�ned as the solution to the stochastic di�erential equations

dS
(υ)
i (t)

S
(υ)
i (t−)

= αυ,i(t)dt+

n∑
j=1

ξij(t)dBj(t) +

m∑
h=1

∫
R\{0}

γih(t, y)Nh(dt, dy),

for i = 1, . . . , k. Equivalently, the υ-risk-less asset S
(υ)
0 is de�ned as the solution to the

ordinary di�erential equation

dS
(υ)
0 (t) = S

(υ)
0 (t)rυ(t)dt, t ≥ 0; S0(0) = 1.

The original asset price process as in (3.1) and (3.6) can be recovered for υ ≡ 0.

The υ-wealth process V
x,(υ)
π,c of a strategy (π, c) is then simply the wealth process of the

strategy (π, c) when the asset prices are following the stochastic di�erential equations
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as above. Thus, V
x,(υ)
π,c is solving the stochastic di�erential equation

dV x,(υ)
π,c (t) =

(
V x,(υ)
π,c (t−)rυ(t)− c(t)

)
dt

+ π(t)ᵀV x,(υ)
π,c (t−)

[
αυ(t)dt+ ξ(t)dB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)

]
,

(6.4)

for t ∈ [0, T ]. This relates to the original wealth process SDE (3.20) but with r replaced

by rυ and α replaced by αυ := αυ − rυ = α + υ. Obviously, υ-wealth and original

wealth coincided if υ ≡ 0. For υ ∈ DK the set of strategies (π, c) that lead to almost

surely non-negative υ-wealth is denoted by Aυ(x) for initial wealth x > 0. Strategies in

Aυ(x) are called υ-admissible.

Notice that the di�erence of (6.4) to (3.20) becomes more clear when we substitute (6.3)

into (6.4). Then

dV x,(υ)
π,c (t) =

(
V x,(υ)
π,c (t−)r(t)− c(t)

)
dt+ V x,(υ)

π,c (t−) (ζ(υ(t)) + π(t)ᵀυ(t)) dt

+ π(t)ᵀV x,(υ)
π,c (t−)

[
α(t)dt+ ξ(t)dB(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Nh(dt, dy)

]
.

Neglecting the V
x,(υ)
π,c (t−) (ζ(υ(t)) + π(t)ᵀυ(t)) dt term this is exactly the normal wealth

equation (3.20). It should now be intuitively clear why V
x,(υ)
π,c ≥ V x

π,c. The following

lemma proofs it.

Lemma 6.4. Let K be a constraint and let υ ∈ DK . If (π, c) ∈ AK(x) then

V x,(υ)
π,c (t) ≥ V x

π,c(t), t ∈ [0, T ]. (6.5)

Proof. Let (π, c) ∈ AK(x). Consider the dynamics of an υ-wealth process discounted by

the (original) risk-less asset S0 under an EMM Q0 with corresponding Girsanov kernel

θ ∈ Θ:

d
V

x,(υ)
π,c (t)

S0(t)
= − c(t)

S0(t)
dt+ (ζ(υ(t)) + π(t)ᵀυ(t))

V
x,(υ)
π,c (t−)

S0(t)
dt

+
V

x,(υ)
π,c (t−)

S0(t)
π(t)ᵀ

[
ξ(t)dBQ0(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Ñ
Q0

h

]

De�ne the process

∆(t) :=
V

x,(υ)
π,c (t)− V x

π,c(t)

S0(t)
, t ∈ [0, T ].

If we can show that ∆(t) ≥ 0 almost surely then the lemma is proven. Consider the
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dynamics of ∆ which are

d∆(t) = ∆(t−)π(t)ᵀ
[
ξ(t)dBQ0(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Ñ
Q0

h (dt, dy)

]

+
V

x,(υ)
π,c (t−)

S0(t)
(ζ(υ(t)) + π(t)ᵀυ(t)) dt

= ∆(t−)
[
(ζ(υ(t)) + π(t)ᵀυ(t)) dt

+π(t)ᵀ
(
ξ(t)dBQ0(t) +

m∑
h=1

∫
R\{0}

γh(t, y)Ñ
Q0

h (dt, dy)

)]

+
V x
π,c(t−)

S0(t)
(ζ(υ(t)) + π(t)ᵀυ(t)) dt.

(6.6)

Further de�ne the jump-di�usion process J(t) as the solution to the stochastic di�erential

equation

dJ(t)

J(t−)
=

[
m∑

h=1

∫
R\{0}

||π(t)ᵀγh(t, y)||2

1 + π(t)ᵀγh(t, y)
θJ
h(t, y)νh(dy)

− π(t)ᵀσ(t)π(t)− (ζ(υ(t)) + π(t)ᵀυ(t))
]
dt

− π(t)ᵀξ(t)dBQ0(t)−
m∑

h=1

∫
R\{0}

π(t)ᵀγh(t, y)

1 + π(t)ᵀγh(t, y)
ÑQ0

h (dt, dy).

(6.7)

Notice that the process J(t) is non-negative since 1 − πᵀγh
1+πᵀγh

= 1
1+πᵀγh

> 0. Also the

dynamics of the process ∆J can be calculated through Itô's product rule Lemma 2.18

applied on (6.6) and (6.7) as

d (∆(t)J(t)) =
J(t−)V x

π,c(t−)

S0(t)
(ζ(υ(t)) + π(t)ᵀυ(t)) dt,

so that most terms cancel out. Since ∆(0) we have that

∆(t) =
1

J(t)

∫ t

0

J(s−)V x
π,c(s−)

S0(s)
(ζ(υ(s)) + π(s)ᵀυ(s)) ds, t ∈ [0, T ].

The above expression is non-negative if ζ(υ(t)) + π(t)ᵀυ(t) ≥ 0. But comparing with

(6.2) this is the case since π ∈ K.

The same result to (6.5) above can be found in Cvitanic and Karatzas (1992) for the

non-jump case. Hence, the above lemma naturally extends it to the jump-di�usion

framework.

In the following we want to apply the usual measure change techniques to the υ-markets.

Recalling the conditions under which the discounted original wealth process V
x
π,c becomes

a martingale if consumption is neglected, namely that a jump-di�usion Girsanov kernel

θ ∈ Θ has to satisfy condition (3.8). Then it is natural that the υ-wealth process
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V
x,(υ)
π,c becomes a Q-martingale if, again neglecting consumption, it is discounted by the

υ-risk-less asset and the Girsanov kernel θ satis�es

αi,υ(t) +

n∑
j=1

ξij(t)θ
D
j,υ(t) +

m∑
h=1

∫
R\{0}

γik(t, y)θ
J
k,υ(t, y)υk(dy) = 0, (6.8)

a.s. for all i = 1, . . . , k and t ∈ [0, T ]. For a given constraint K and υ ∈ DK as in

De�nition 6.3 a process pair θυ = (θD
υ ,θ

J
υ ) is called a υ-Girsanov kernel if it satis�es

conditions (i) and (ii) of De�nition 3.1 and additionally (6.8). Thus, an υ-Girsanov

kernel is exactly the same as the Girsanov kernel of De�nition 3.1 but tailored to the

υ-market. The set of all υ-Girsanov kernel shall be denoted by Θυ for υ ∈ DK .

Using the usual introduction of measure changed Brownian motion and Poisson random

measure

dBQ
j (t) = dBj(t)− θDj,υ(t)dt, and

ÑQ
h (dt, dy) = Nh(dt, dy)− θJh,υ(t, y)νh(dy)dt

for h = 1, ...,m. The discounted υ-asset prices S
(υ)
i = S

(υ)
i /S

(υ)
0 and the discounted υ-

wealth without consumption are Q martingales. Notice that discounting in an υ-market

is thereby using the υ-risk-less asset instead of the original risk-less asset.

Proposition 6.5. Let υ ∈ DK for a constraint K. Further let Q be an EMM constructed

through a υ-Girsanov kernel θ ∈ Θυ. The discounted υ-stock prices (discounted by the

υ risk-less asset) are martingales under Q:

dS
(υ)
i (t)

S
(υ)
i (t−)

=

n∑
j=1

ξij(t)dB
Q
j (t) +

m∑
h=1

∫
R\{0}

γih(t, y)Ñ
Q
h (dt, dy), t ∈ [0, T ].

Further, for a given strategy (π, c) ∈ Aυ(x) the process M
υ
θ de�ned by

Mυ
θ (t) := V

x,(υ)
π,c (t) +

∫ t

0

1

S
(υ)
0 (s)

c(s)ds, t ∈ [0, T ], (6.9)

is a Q martingale.

This section is concluded by introducing a set of auxiliary problems, henceforth called

υ-problems. Each υ ∈ DK has lead to an υ-stock market and in each of these stock mar-

kets an consumption-investment problem is considered. For �xed υ ∈ DK the problem

of maximizing consumption and terminal wealth in an υ-market is that of �nding an op-

timal strategy pair (π̂, ĉ) that maximizes the right hand side of the optimal performance

function

Φυ(x) := sup
(π,c)∈Ãυ

E
[∫ T

0
U1

(
t, c(t)

)
dt+ U2(V

x,(υ)
π,c (T ))

]

= E
[∫ T

0
U1

(
t, ĉ(t)

)
dt+ U2(V

x,(υ)
π̂,ĉ (T ))

]
,

(6.10)
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where the set of admissible strategies for the problem is given by

Ãυ(x) :=
{
(π, c) ∈ Aυ(x)

∣∣∣ E
[∫ T

0
U1

(
t, c(t)

)−
dt+ U2(V

x,(υ)
π,c (T ))−

]
> −∞

}
.

The above optimization problem Φυ(x) is the υ-market equivalent of the problem Φ(x)

in (4.4). It will help us to solve the constraint optimization problem ΦK(x) in (6.1).

Both problems will be solved in the next section.

6.3 Solving the υ-Problems and the Constrained Problem

In this section martingale methods are applied to solve the υ-problems de�ned in the

previous section. The consumption-investment problem in the υ-markets can be solved

in an analogue way to the problem Φ(x) of (4.4) that has been solved in Chapter 4.

However, there are some points that need clari�cation. Unlike problem Φ(x) there is now

a family of problems (Φυ(x))υ∈DK
for each constraint K. For each of these problems,

i.e. for each υ ∈ DK , there exists a set of EMMs parametrized by a υ-Girsanov kernel

θυ. This set of EMMs is given by the set of all υ-kernels Θυ. In problem Φ(x) some

υ-processes have been de�ned for each jump-di�usion Girsanov kernel θ ∈ Θ. Here

again some υ-processes representing auxiliary consumption and terminal wealth will be

de�ned again for each υ-Girsanov kernel θυ ∈ Θυ. However, the reader is reminded that

these sets of υ-processes will exist for each υ ∈ DK . That is unlike in problem Φ(x)

where there is not just one sub-problem, whereas here there are two sub-problems. The

�rst layer, given for each υ, will handle the constraint given by K. The second layer,

given by a θυ for each υ will handle the issues arising because of the incompleteness of

the market due to the jump-di�usion model.

For θυ ∈ Θυ, the concept of the state price density Hθ as de�ned in (3.3) for Girsanov

kernels is naturally extended to the υ-market by de�ning H
(υ)
θ (t) := Z

(υ)
θ (t)/S

(υ)
0 (t). It

follows the dynamics given by

dH
(υ)
θ (t)

H
(υ)
θ (t−)

= −rυ(t) + θD
υ (t)

ᵀdB(t) +

m∑
h=1

∫
R\{0}

(
θJk,υ(t, y)− 1

)
Ñh(dt, dy) (6.11)

for t ∈ [0, T ]. Equivalent to Proposition 3.9 in an υ-market the following budget con-

straint is satis�ed.

Corollary 6.6. Let K be a constraint and let υ ∈ DK . Given an υ-Girsanov kernel

θυ ∈ Θυ with corresponding EMM Q, every admissible pair (π, c) ∈ Aυ(x), x > 0,

satis�es the budget constraint

EQ

[∫ T

0

c(s)

S
(υ)
0 (s)

ds+ V
x,(υ)
π,c (T )

]
= E

[∫ T

0
H

(υ)
θ (s)c(s)ds+H

(υ)
θ (T )V x,(υ)

π,c (T )

]
≤ x,

(6.12)
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Proof. Equation (6.12) follows immediately from (6.9) and the non-negativity of V
x,(υ)
π,c ,

i.e. (6.9) is a supermartingale.

For �xed υ ∈ DK the problem of maximizing consumption and terminal wealth intro-

duced in (6.10) can be solved in an analogue way as the original consumption-investment

problem has been solved in Chapter 4. The procedure is analogue to Section 4.3 and

Section 4.4. Most proofs will be omitted since they are one to one analogue as in the

two sections. We brie�y state the υ-market analogue of the function Xθ as de�ned in

(4.5) and the υ-analogue of the variables cθ and Yθ from de�nition (4.6). As in (4.5), for

υ ∈ DK the function X (υ)
θ is de�ned by

X (υ)
θ (y) := E

[∫ T

0
H

(υ)
θ (t−)I1(t, yH

(υ)
θ (t−))dt+H

(υ)
θ (T )I2(yH

(υ)
θ (T ))

]
, y > 0,

The set of υ-Girsanov kernels are reduced to a set where X (υ)
θ is well behaved, i.e.

Θ̃υ :=
{
θυ ∈ Θυ | X (υ)

θ (y) <∞, for y > 0
}
.

For θυ ∈ Θ̃υ the function X (υ)
θ has an inverse, which will be denoted by Y(υ)

θ . In an

υ-market an auxiliary consumption process and auxiliary terminal wealth is de�ned for

initial wealth x > 0 and θυ ∈ Θ̃υ by

c
(υ)
θ (t) := I1

(
t,Y(υ)

θ (x)H
(υ)
θ (t−)

)
,

Y
(υ)
θ := I2

(
Y(υ)
θ (x)H

(υ)
θ (T )

)
.

(6.13)

These de�nitions are the υ-equivalent to (4.6). It is obvious that for a constraint K and

υ ∈ DK , the variables c
(υ)
θ and Y

(υ)
θ satisfy items (i) to (iii) in Lemma 4.1 in the υ-market

setting, that is with respect to the υ-state price density H
(υ)
θ , and trading strategies are

in (π, c) ∈ Ãυ(x). There is also a further property illustrating the relationship between

the three optimization problems (the original and the two auxiliary) which will be shown

in the next lemma.

Lemma 6.7. Let υ ∈ DK for some constraint K and let θυ ∈ Θ̃υ. Then c
(υ)
θ and Y

(υ)
θ

as de�ned in (6.13) satisfy

E
[∫ T

0
U1(t, c(t))dt+ U2

(
V x
π,c(T )

)]
≤ E

[∫ T

0
U1(t, c(t))dt+ U2

(
V x,(υ)
π,c (T )

)]
≤ E

[∫ T

0
U1(t, c

(υ)
θ (t))dt+ U2(Y

(υ)
θ )

]
,

(6.14)

for all (π, c) ∈ AK(x).

Proof. Only the �rst inequality needs to be proven in (6.14), since the second is analogue

to (iii) in Lemma 4.1. However, the �rst inequality follows from U2 being almost surely
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an increasing function and because V x
π,c(T ) ≥ V

x,(υ)
π,c (T ) since (π, c) ∈ AK(x), as shown

in Lemma 6.4.

An optimal EMM for the problem Φυ(x) in (6.10) is the υ-equivalent of De�nition 4.2.

That is, Q is optimal for Φυ(x) if its υ-Girsanov kernel representation θ̂υ ∈ Θ̂υ satis�es

E
[∫ T

0
U1(t, c

(υ)

θ̂
(t))dt+ U2(Y

(υ)

θ̂
)

]
= inf

θ∈Θ̃υ

E
[∫ T

0
U1(t, c

(υ)
θ (t))dt+ U2(Y

(υ)
θ )

]
.

Having introduced all processes and variables needed, we can transfer the results on the

optimal consumption-investment problem from Theorem 4.3 to the υ-market problem

Φυ(x).

Corollary 6.8. Let υ ∈ DK for a constraint K. For θυ ∈ Θ̃υ de�ne the processes

M
(υ)
θ (t) := E

[∫ T

0
H

(υ)
θ (s−)c

(υ)
θ (s)ds+H

(υ)
θ (T )Y

(υ)
θ

∣∣∣ Ft

]
J
(υ)
θ (t) :=

∫ t

0
H

(υ)
θ (s−)c

(υ)
θ (s)ds

V
(υ)
θ (t) :=

1

H
(υ)
θ (t)

{
M

(υ)
θ (t)− J

(υ)
θ (t)

}
,

(6.15)

where c
(υ)
θ and Y

(υ)
θ are de�ned as in (6.13). If there exist a υ-kernel θ̂υ ∈ Θ̃υ and a

trading strategy π
(υ)

θ̂
∈ Π that satisfy the set of non-linear equations

ξ(t)π
(υ)

θ̂
(t) =

1

H
(υ)

θ̂
(t−)V

(υ)

θ̂
(t−)

aD
υ (t)− θ̂

D

υ (t),

γh(t, y)π
(υ)

θ̂
(t) =

1

H
(υ)

θ̂
(t−)V

(υ)

θ̂
(t−)

aJh,υ(t, y)

θ̂Jυ,h(t, y)
−
θ̂Jυ,h(t, y)− 1

θ̂Jυ,h(t, y)
,

(6.16)

for h = 1, . . . ,m, and νh-almost all y ∈ R \ {0}, then
(
π
(υ)

θ̂
, c

(υ)

θ̂

)
is a solution to the

υ-problem Φυ(x) in (6.10). Thereby are, as usual, aD
υ and aJh,υ the martingale repre-

sentation coe�cients of M
(υ)
θ de�ned in (6.15). Further, the optimal υ-wealth process of(

π
(υ)

θ̂
, c

(υ)

θ̂

)
is given by

V x

π
(υ)

θ̂
,c

(υ)

θ̂

(t) = V
(υ)

θ̂
(t), a.s., t ∈ [0, T ].

We have formed a family of υ-problems wich parameterize the constraint K using the

processes υ ∈ DK . In each υ-problem a consumption-investment problem has been

solved in a jump-di�usion setting using the results from Chapter 4, and in particular

Theorem 4.3.

It is now possible to link the family of υ-problems to the original constraint investment-

consumption problem ΦK(x) in (6.1). Consider thereby the following. It is know from
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the proof of Lemma 6.4 that V
x,(υ)
π,c and V x

π,c coincide if

ζ(υ(t)) + π(t)ᵀυ(t) = 0, t ∈ [0, T ].

If a solution to a υ-problem satis�es this and in addition to that the υ-optimal trading

strategy π̂(υ) satis�es the constraint K, i.e. π̂(υ) ∈ K, then from (6.14) this must be

also an optimal trading strategy for the constrained problem ΦK(x). Hence, we have

just proven the following theorem.

Theorem 6.9. Let υ ∈ DK for a constraint K. Assume further that π
(υ)

θ̂
∈ Π satis�es

(6.16) for some optimal kernel θ̂υ ∈ Θ̃υ. If π
(υ)

θ̂
satis�es for t ∈ [0, T ]

ζ (υ(t)) + π
(υ)

θ̂
(t)ᵀυ(t) = 0, as well as π

(υ)

θ̂
∈ K,

then
(
π
(υ)

θ̂
, c

(υ)

θ̂

)
is an optimal trading strategy for the problem (6.1) given by

ΦK(x) := sup
(π,c)∈AK

E
[∫ T

0
U1

(
t, c(t)

)
dt+ U2(V

x
π,c(T ))

]
.

Further, if π
(υ)

θ̂
and θ̂υ satisfy all the above conditions then the optimal consumption

process and the optimal terminal wealth are given as in (6.13) for θ̂υ, and the EMM Q

associated to θ̂υ is optimal for the problem ΦK(x).

6.4 Benchmarks and Constraints

It has been seen that when a benchmark process is given as the wealth process of a

trading strategy η the results in Chapter 4 and Chapter 5 are strongly interlinked.

In this section the aim is to carry these relationships over to the case of constrained

portfolios. In the previous section a �nancial agent's aim was to maximize terminal

wealth and consumption when his/her trading strategy π is constrained to a convex set

K. Similar considerations can be made for the benchmark problem when one assumes

that the di�erence between the investor's trading strategy π and the benchmark strategy

η has to lie within a constraint. This can be interpreted as that an investor still wants to

outperform the benchmark strategy, but has now the constraint that the strategy π can

not be too di�erent from the benchmark's. Thus, the problem has become more similar

to a more passive problem but where one still tries to outperform a benchmark. Let us

formally de�ne the problem that we are going to solve in this section. Let again K be a

given constraint as of De�nition 6.1, and let η ∈ Π+ be a given benchmark strategy such

that the relative wealth process is given by Vπ/η as in (5.10). The optimization problem

of maximizing expected utility from terminal relative wealth under the constraint K is
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then the problem of �nding an optimal trading strategy π̂ that attains the maximum in

the optimal performance function

Φη
K = sup

π∈Aη
K

E
[
U
(
Vπ/η(T )

)]
, (6.17)

where the set of admissible trading strategies for the problem is given by

Aη
K :=

{
π ∈ Π | E

[
U
(
Vπ/η(T )

−)] > −∞; π − η ∈ K
}
.

The problem can be solved in the same style as problem ΦK(x) in the previous section.

Because of (5.7) most results can be immediately transferred to the problem Φη
K of this

section if consumption is equal to zero c ≡ 0. The support function ζ of the set −K as

de�ned in De�nition 6.2 can be used without changes since clearly π − η ∈ K if and

only if

ζ(υ(t)) + (π(t)− η(t))ᵀ υ(t) ≥ 0, t ∈ [0, T ], (6.18)

for all υ ∈ DK . Analogue to the υ-market introduced in Section 6.2 we will now introduce

a υ-η-market tailored to the constrained benchmark problem. To relate the wealth

process V x
π in (3.13) to the relative wealth process Vπ/η in (5.10) we have carried out the

substitution (5.14). In particular, for the risk-less rate and for the discounted α-rates

this substitution is

r̃(t) = 0, and

α̃(t) = α(t)− σ(t)η(t).

To now transfer the υ-wealth process V
x,(υ)
π into an υ-η-relative wealth process V

(υ)
π/η one

has to carry out the substitutions as in (6.3), which become

r̃υ(t) := r̃(t) + ζ(υ(t)) = ζ(υ(t)),

α̃υ(t) := α̃(t) + υ(t) = α(t)− σ(t)η(t) + υ(t),

ξ̃(t) := ξ(t),

γ̃ih :=
γih(t, y)

1 + η(t)ᵀγh(t, y)
,

(6.19)

x = 1 and the trading strategy is set to π̃ := π − η in the υ-wealth process. The

υ-η-relative wealth process V
(υ)
π/η satis�es then the stochastic di�erential equation

dV
(υ)
π/η(t)

V
(υ)
π/η(t−)

=
(
ζ(υ(t)) +

(
π(t)− η(t)

)ᵀ
υ(t)

)
dt

+
(
π(t)− η(t)

)ᵀ[(
α(t)− σ(t)η(t)

)
dt+ ξ(t)dW (t)

+

m∑
h=1

∫
R\{0}

γh(t, y)

1 + η(t)ᵀγh(t, y)
Nh(dt, dy)

]
, t ∈ [0, T ].
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Comparing the υ-η relative wealth with the original relative wealth in (5.10) one can

see that
dV

(υ)
π/η(t)

V
(υ)
π/η(t−)

=
dVπ/η(t)

Vπ/η(t−)
+
(
ζ(υ(t)) +

(
π(t)− η(t)

)ᵀ
υ(t)

)
dt.

In particular, it can be deduces from (6.18) that if π − η ∈ K then, clearly, V
(υ)
π/η(t) ≥

Vπ/η(t).

As usual in the υ-η-market we can perform a measure change such that the discounted(!)

relative υ-wealth process becomes a martingale. This is now di�erent from the procedure

in Chapter 5, since we derive our results from a transformation of the υ-wealth process of

the previous section. Before, when transforming a wealth process into a relative wealth

process the risk-less asset has become the constant process S0 ≡ 1 since we have set

r ≡ 0, however, now in the transformation (6.19) from the υ-market to the υ-η-market

the υ-η-risk-less asset is given as the solution of the ordinary di�erential equation

dS
(υ),η
0 (t) = ζ(υ(t))S

(υ),η
0 (t)dt, t ∈ [0, T ],

and S
(υ),η
0 (0) = 1. Thus, we have performed two substitutions. First, the wealth process

has been transformed into a relative wealth process through (5.14), and, second the

substitution in (6.3) transforms the relative wealth into an υ-type market as in the

previous sections. These two substitutions have been summarized in (6.19). We call the

newly constructed market a υ-η-market to emphasis the dependency on η.

The υ-η-Girsanov kernels are then a pair of processes θυ,η = (θJ
υ,η,θ

D
υ,η) de�ned like the

υ-Girsanov kernels in the previous section but with the condition

α(t) + υ(t)− σ(t)η(t) + ξ(t)θD(t) +

m∑
h=1

∫
R\{0}

γh(t, y)θ
J
h (t, y)

1 + η(t)ᵀγh(t, y)
νh(dt, dy) = 0,

instead of condition (6.8). This condition is basically the υ-η-equivalent of (5.20) but

has now an additional υ-term. For a given constraint K and a given υ ∈ DK the set

of all υ-η-Girsanov kernels will be denoted by Θη
υ. Clearly, if Q denotes the probability

measure associated to the υ-η-Girsanov kernel θυ,η ∈ Θη
υ, and if WQ and Ñ

Q
as de�ned

as in (2.21) and (2.22) for θυ,η respectively then the discounted relative wealth process

is a Q-martingale:

d
V

(υ)
π/η(t)

Sυ,η
0 (t)

=
V

(υ)
π/η(t−)

Sυ,η
0 (t−)

(
π(t)− η(t)

)ᵀ[
ξ(t)dWQ(t)

+

m∑
h=1

∫
R\{0}

γh(t, y)

1 + η(t)ᵀγh(t, y)
ÑQ

h (dt, dy)
]

It is possible to transfer the results from the previous section to the constrained relative

wealth problem Φη
K in (6.17)
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Proposition 6.10. Let K be a constraint and let υ ∈ DK . De�ne the function

X (υ),η
θ (y) = E

[
H

(υ),η
θ (T )I

(
yH

(υ),η
θ (T )

)]
, y > 0,

and the set for which it is �nite for all y > 0 by

Θ̃η
υ =

{
θ ∈ Θυ,η | X (υ),η

θ (y) <∞, y > 0
}
.

For θ ∈ Θ̃υ,η denote by Y(υ),η
θ the inverse of X (υ),η

θ and de�ne

M
(υ),η
θ (t) := E

[
H

(υ),η
θ (T )I

(
Y(υ),η
θ (x)H

(υ),η
θ (T )

)
| Ft

]
V

(υ),η
θ (t) :=

M
(υ),η
θ (t)

H
(υ),η
θ (t)

, t ∈ [0, T ].
(6.20)

If π̂ ∈ Π and θ̂ ∈ Θ̃η
υ satisfy the conditions

(π̂(t)− η(t))ᵀ ξ(t) =
1

H
(υ),η
θ (t)V

(υ),η
θ (t)

aD(t)− θ̂
D
(t)

(π̂(t)− η(t))ᵀ γh(t, y) =
1

H
(υ),η
θ (t)V

(υ),η
θ (t)

aJh(t, y)

θ̂Jh (t, y)
−
θ̂Jh (t, y)− 1

θ̂Jh (t, y)

and in addition to that satisfy

ζ(υ(t)) + (π̂(t)− η(t))ᵀ υ(t) = 0

π̂(t)− η(t) ∈ K,
(6.21)

then π̂ is optimal for the problem Φη
K in (6.17). The optimal relative wealth process is

then given by Vπ̂/η(t) = V
(υ),η

θ̂
(t) de�ned in (6.20). Hence, the optimal terminal relative

wealth is given by

Vπ̂/η(T ) = I
(
Y(υ),η

θ̂
(x)H

(υ),η

θ̂
(T )
)
.

6.5 Applications to various Constraints

In this section the results of the previous sections on constrained consumption-investment

problem and the constrained benchmark problem is tried on concrete constraints. As

usual, to get some closed form results we will be working with the power utility. Consider

the constrained consumption-investment problem from (6.1) �rst.

LetK be, as before, the convex set that contains the origin and represents the constraint.

DK is de�ned as in (6.3) so that υ ∈ DK speci�es a υ-market. The same utility functions

as in Section 4.5 are chosen so that the utility from consumption is U1(t, x) = xβ1

β1
for

β1 < 1 and the utility from terminal wealth is U2(x) =
xβ2

β2
for β2 < 1.
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The optimality condition (6.16) for an optimal trading strategy-Girsanov kernel pair

(π
(υ)

θ̂
, θ̂υ) in the υ-market has the same form as the optimality condition (4.12) in the

normal market. Thus, for the power utility case the optimality condition for an optimal

trading strategy and an optimal υ-Girsanov kernel for the υ-problem takes the same

form as condition (4.27), which is then in the υ-market

ξ(t)π
(υ)

θ̂
(t) =

1

C
(υ)

θ̂
(t−) +W

(υ)

θ̂
(t−)

{
1

β1 − 1
C

(υ)

θ̂
(t−) +

1

β2 − 1
W

(υ)

θ̂
(t−)

}
θ̂
D

υ (t)

γh(t, y)π
(υ)

θ̂
(t) =

1

C
(υ)

θ̂
(t−) +W

(υ)

θ̂
(t−)

{(
θ̂Jυ,h(t, y)

1
β1−1 − 1

)
C

(υ)

θ̂
(t−)

+
(
θ̂Jυ,h(t, y)

1
β2−1 − 1

)
W

(υ)

θ̂
(t−)

}
,

(6.22)

for h = 1, . . . ,m. Thereby are C
(υ)
θ and W

(υ)
θ de�ned by

C
(υ)
θ (t) := E

[∫ T

t
H

(υ)
θ (s−)c

(υ)
θ (s)

∣∣Ft

]
, and

W
(υ)
θ (t) := E

[
H

(υ)
θ (T )Y

(υ)
θ |Ft

]
,

respectively, with H
(υ)
θ as in (6.11), and c

(υ)
θ and Y

(υ)
θ as de�ned in (6.13) for θυ ∈ Θ̃υ.

Since we are going to work under constraints which in turn add complexity to the problem

it appears appropriate to restrict our analysis to the simpler case where the utility

from terminal wealth is the same as the utility drawn from consumption, such that

β1 = β2 = β. For this case the above condition (6.22) becomes for the optimal strategy

π̂υ

α(t) + υ(t)− (1− β)σ(t)π̂υ(t) +

m∑
h=1

∫
R\{0}

γh(t, y){1 + π̂υ(t)
ᵀγh(t, y)}β−1νh(dy) = 0.

(6.23)

This is the υ-equivalent to (4.31), which is not surprising since υ-Girsanov kernels need

to satisfy the condition (6.8) which has exactly the same form as the condition on the

Girsanov kernels in (3.8)

Proposition 6.11. Let K be a convex set containing the origin and let β < 1. If for

υ ∈ DK the condition (6.23) are satis�ed as well as

ζ(υ(t)) + π̂υ(t)
ᵀυ(t) = 0, t ∈ [0, T ], (6.24)

and π̂υ ∈ K. Then π̂υ is the optimal trading strategy for the problem ΦK(x) in (6.1)

with power utility U1(t, x) = U2(x) = xβ/β.
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Let us for the purpose of the following discussion write υ ∈ K̃ as a synonym for υ ∈ DK ,

which is in the same sense as we write π ∈ K. The procedure of solving the consumption-

investment problem under constraints for the power utility case is then the following.

First, one tries to �nd the solutions of the two equations (6.23) and (6.24) with respect to

(π,υ), then one checks for each solution if (π,υ) ∈ K× K̃. If this is the case for at least

one pair (π̂, υ̂) one has found a solution to the constrained optimization problem and the

optimal trading strategy is given by π̂. The optimal terminal wealth and consumption

process can be derived from υ̂.

Finding all solutions to (6.23) and (6.24) can quickly become a complex problem in the

multidimensional setting which should be solved using numerical methods. For the one-

dimensional case some further analytical results can be obtained. In a one-dimensional

model with one stock, one Brownian motion, and one Poisson measure, let us consider the

constraint of a lower bound, an upper bound, and a combination of both. A lower bound

constraint is de�ned by the set Kl := {p ∈ R | l ≤ p} for a l ∈ R. Then ζl(υ) = −l υ for

all υ ∈ K̃l = R+ := [0,∞). Denote by πβ the solution for the unconstrained power utility

consumption-investment problem as stated for the multidimensional case in (4.31). Then

πβ solves, in the one-dimensional case, the equation

α(t)− (1− β)σ(t)πβ(t) +

∫
R\{0}

γ(t, y){1 + πβ(t)γ(t, y)}β−1ν(dy) = 0.

For the problem with the lower boundary the possible solutions to the equations (6.23)

and (6.24), that are also in Kl × R+, are then

1. (πβ, 0) if πβ ≥ l, and

2. (l, υl) if υl(t) := −α(t) + (1− β)σ(t) l −
∫
R\{0} γ(t, y) (1 + l γ(t, y))β−1 ν(dy) > 0.

Thus, the optimal trading strategy for the lower boundary constraint consumption-

investment problem is given by

π̂(t) =

{
πβ(t), if πβ(t) ≥ l

l, if υl(t) > 0,

and can not be provided for all other cases. The optimal consumption and wealth

processes can then be calculated using the appropriate υ̂ of either υ̂(t) = 0 if π̂(t) = πβ ,

or υ̂(t) = υl(t) if π̂(t) = l at time t ∈ [0, T ].

In a similar manner an upper bound constraint of the form Ku := {p ∈ R | p ≤ u} can

be considered for u ∈ R. Then ζu(υ(t)) = −uυ(t) for υ ∈ K̃u = R−, and solution of

(6.23) and (6.24), that also lie in Ku × R−, are

1. (πβ, 0) if πβ ≤ u, and
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2. (u, υu) if υu(t) := −α(t)+(1−β)σ(t)u−
∫
R\{0} γ(t, y) (1 + u γ(t, y))β−1 ν(dy) < 0.

Thus, the optimal trading strategy for the upper boundary constrained consumption-

investment problem is given by

π̂(t) =

{
πβ(t), if πβ(t) ≤ u

u, if υu(t) < 0,

and does not exist otherwise. The optimal consumption and wealth processes can then

be calculated using the appropriate υ̂ of either υ̂(t) = 0 if π̂(t) = πβ , or υ̂(t) = υu(t) if

π̂(t) = u at time t ∈ [0, T ].

Notice that the constraint of no short-selling is just a special case of lower boundary

with l = 0. Equally, the constraint of no borrowing is the special case that there is an

upper boundary constraint with u = 1. Equal analysis as the above can be carried out

when one considers an upper and lower boundary of the form Klu = {p ∈ R | l ≤ p ≤ u}.
Then

ζlu(υ(t)) =

{
−l υ(t), if υ(t) > 0

−uυ(t), otherwise,

and K̃lu = R. Solutions of (6.23) and (6.24) that lie in Klu × R are

1. (πβ, 0) if l ≤ πβ ≤ u,

2. (u, υu) where υu(t) = −α(t) + (1− β)σ(t)u−
∫
R\{0} γ(t, y) (1 + u γ(t, y))β−1 ν(dy)

as above, and

3. (l, υl) with υl(t) = −α(t) + (1 − β)σ(t) l −
∫
R\{0} γ(t, y) (1 + l γ(t, y))β−1 ν(dy) as

above.

Thus, as long as it is possible to �nd a solution to the unconstrained problem it is always

possible to �nd a solution to the constraint problem and the optimal trading strategy is

given by

π̂(t) =


l, if πβ(t) < l

πβ(t), if l ≤ πβ(t) ≤ u

u, if u < πβ(t).

The optimal υ's are respectively, υl, 0, and υu.

In a very analogue way results can be obtained for the constrained benchmark problem

with power utility.
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Corollary 6.12. Let K be a constraint, β < 1, and let η ∈ Π+ be a benchmark strategy.

If for a υ ∈ DK the two conditions

α(t) + υ(t)− σ(t)η(t)− (1− β)σ(t) (π̂η
υ(t)− η(t))

+

m∑
h=1

∫
R\{0}

γh(t, y)
(1 + π̂η

υ(t)
ᵀγh(t, y))

β−1

(1 + η(t)ᵀγh(t, y))
β

νh(dy) = 0, and

ζ(υ(t)) + (π̂η
υ(t)− η(t))ᵀ υ(t) = 0,

a.s., are satis�ed and further π̂η
υ −η ∈ K, then π̂η

υ is an optimal trading strategy for the

problem Φυ
K in (6.17) for the power utility case U(x) = xβ/β.

Proof. The corollary follows from Proposition 6.11. In (6.23) the substitutions (5.14)

has to be carried out and condition (6.24) has to be replaced by (6.21).

It is now possible to apply the same constraints as before. Thus, for example with upper

and lower constraints Klu = {p ∈ R | l ≤ p ≤ u} the optimal trading strategy is given

by

π̂(t) =


l, if πηβ(t)− η(t) < l,

πηβ(t), if l ≤ πηβ(t)− η(t) ≤ u,

u, if u < πηβ(t)− η(t),

where πηβ denotes the solution to the unconstrained optimal relative wealth problem Φη

in (5.29) under power utility. It has to satisfy, in the one dimensional case (cf. (5.46)),

α(t)− βσ(t)η(t)− (1− β)σ(t)πηβ(t) +

∫
R\{0}

(
1 + πηβ(t)γ(t, y)

)β−1

(1 + η(t)γ(t, y))β
γ(t, y)ν(dy) = 0.

6.6 Conclusion

We have considered the optimal portfolio selection problem of the previous chapters

under constraints. To solve constrained investment-consumption problem it has been

embedded into a set of υ-problems which again has been associated to a family of θ-

problems that dealt with the market incompleteness arising from the jump-di�usion

model. The main result has been stated in Theorem 6.9. It gives a condition under

which a trading strategy is optimal. The results have been then transferred to the

benchmark problem and its main result is summarized in Proposition 6.10. Constraints

have been demonstrated in form of upper and lower boundaries on the trading strategy

for the power utility case.
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