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Abstract 

 

Rheology involves the study and evaluation of the flow and permanent 

deformation of time-and temperature-dependent materials, such as bitumen, that are 

stressed through the application of a force. The fundamental rheological properties 

of bituminous materials including bitumen are normally measured using a dynamic 

shear rheometer (DSR), from low to high temperatures. DSR is a powerful tool to 

measure elastic, viscoelastic and viscous properties of binders over a wide range of 

temperatures and frequencies, provided the tests are conducted in the linear 

viscoelastic region. Therefore, the study of bitumen rheology is crucial since its 

reflects the overall performance of a flexible pavement. However, it is well known 

that the DSR also has limitations, where the measurements are exposed to 

compliance (testing) errors particularly at low temperatures and/or high frequencies. 

In addition, conducting laboratory tests are known to be laborious, time consuming 

and require skilled personnel. Therefore, this research is conducted to elucidate a 

better understanding of the rheological properties and modelling procedures of 

bitumens and bituminous binders.  

 

Various materials such as unmodified bitumens, polymer-modified bitumens 

(PMBs) and bitumen-filler mastics, unaged and aged samples, are used in this study. 

An extensive literature review was undertaken to identify reliable models that can 

be considered as a valuable alternative tool to describe or fit the rheological 

properties of bitumen. These properties are commonly presented in terms of 

complex modulus and phase angle master curves, together with the determination of 

shift factor values at a particular reference temperature. In general, the complex 

modulus and phase angle master curves can be modelled using different techniques; 

nomographs, mathematical equations and mechanical models. However, the 

nomographs have become obsolete in recent years and tended to be replaced by the 

two latter models. 

 

Those models are able to satisfactorily describe the rheological properties of 

unmodified bitumen. However, the observations suggest a lack of agreement 

between measured and predicted rheological properties for binders that contain a 
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phase transition, such as found for highly crystalline bitumen, structured bitumen 

with high asphaltenes content and highly modified bitumen. An attempt was made 

to evaluate the validity of several mathematical equations and mechanical element 

approach using unaged and aged unmodified bitumens and PMBs database. It is 

observed that the Sigmoidal, Generalised Logistic Sigmoidal, Christensen and 

Anderson (CA), and Christensen, Anderson and Marasteanu (CAM) Models are 

able to satisfactorily describe the rheological properties of unmodified bitumens. 

Nevertheless, they suffer from the same drawbacks where the presence of highly 

EVA semi-crystalline and SBS elastomeric structures render breakdowns in the 

complex modulus master curves. Similar discrepancies are observed when one of 

the mechanical models (the 2S2P1D Model) is used.  

 

To construct the master curves, different shifting methods are available. It is 

found that a numerical shift produced the best fit between measured and modelled 

data, followed by the Laboratoire Central des Ponts et Chaussées (LCPC) 

approach, William, Landel and Ferry (WLF), Modified Kaelble, Viscosity 

Temperature Susceptibility (VTS), Arrhenius and Log-Linear methods. A 

temperature range from 10 to 75
o
C is used in this study. It is worth mentioning that 

most of the methods are empirical and might not be applicable for all materials. 

Finally, the phase angle master curves must also not be neglected to yield a 

complete rheological properties of binders. The statistical analysis between 

measured and modelled data shows that the Fractional Model yielded the best 

correlation for a temperature range from10 to 75
o
C, followed by the Al-Qadi and 

Co-workers, CAM, CA and Kramers-Kronig relationships. An anomaly is observed 

between measured and descriptive data of the Kramers-Kronig relationship 

particularly at high frequencies and/or low temperatures. The Fractional Model is 

not considered suitable for practical purposes due to the high number of coefficients 

that need to be solved.  
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1 

Introduction 

 

 

 

 

 

1.1 Background 

 

Bitumen is a civil engineering construction material manufactured from 

crude oil through a series of distillation processes undertaken during the refining of 

petroleum. One of the characteristics and advantages of bitumen as an engineering 

construction and maintenance material is its great versatility. Although a semi-solid 

at ordinary temperatures, bitumen may be liquified by applying heat, dissolving in 

solvents, or emulsifying it. Bitumen is a strong cement that is readily adhesive and 

highly waterproof and durable, making it useful in road building. It is also highly 

resistive to the actions of most acids, alkalis, and salts [Minnesota Asphalt 

Pavement Association, 2003]. 

 

The principle use of bitumen is as a binder in the road construction industry 

where it is mixed with graded aggregate to produce asphalt mixture. This mixture is 

then laid as the structural pavement layers of a road. The main function of these 

'bitumen-bound' layers is to spread loads (caused by the trafficking of vehicles) 

evenly over the unbound pavement layers of the road and natural sub-grade to 

prevent overstressing. In addition to providing stiffness and bearing capacity, 

asphalt mixture must be able to resist two primary modes of flexible pavement 

distress, namely, excessive permanent deformation (rutting) and fatigue cracking. 

As the mechanical properties of asphalt mixture are strongly dependent upon the 

properties of the binder, it has to fulfil certain mechanical and rheological 

requirements to ensure the integrity of the road [Airey, 2009]. 

 

First, the bitumen must be fluid enough at high temperature (approximately 

160
o
C) to be pumpable and workable to allow for a homogeneous coating of the 
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aggregates upon mixing. Second, it has to become stiff enough at the highest 

pavement temperature to resist rutting deformation (approximately around 60
o
C, 

depending on the local climate). Finally, it must remain soft enough at lower 

temperatures (down to -20
o
C, depending on the local climate) to resist cracking. 

Therefore, it is difficult to obtain bitumen that would work under all possible 

climates. To surmount this problem, different types of bitumens including modified 

binders are available. The softer and harder binders are normally used for colder and 

hotter climate regions respectively [Lesueur, 2009].  

 

It should be noted that the word "bitumen" in the European sense is used, 

when referring to the binder, throughout this thesis and not "asphalt" or "tar". The 

word "asphalt" brings a similar meaning to "bitumen" in North America but in 

Europe, "asphalt" refers to the complex mixture composed of various selected 

aggregates bound together with different percentages of air voids. Meanwhile, "tar" 

is a liquid obtained when natural organic materials such as coal or wood are 

carbonised or destructively distilled in the absence of air [Read and Whiteoak, 

2003]. The world asphalt mixture is used in the whole thesis, not "hot mix asphalt 

concrete (HMA or HMAC)" or "asphalt (or asphaltic) concrete pavement (AC)" or 

"bituminous asphalt concrete (bituminous mixture)" when referring to the mixture. 

 

1.2 Bitumen Chemistry and Structure 

 

In general, bitumen can be divided into two broad chemical groups; namely 

asphaltenes (which are insoluble in n-heptane) and maltenes. The maltenes can be 

further split into saturates, aromatics and resins [Corbett, 1970]. The asphaltene 

content has a large effect on the rheological properties of bitumen and related to a 

number of physical parameters such as the glass transition and bitumen viscosity 

[Corbett, 1970; Halstead, 1987]. An increase of the asphaltenes content will 

generally produce harder bitumen with a lower penetration, higher softening point 

and higher viscosity [Scholz, 1995]. In general, asphaltenes represent between 5–

25% of the bitumen and are the heaviest constituents with molecular weights 

ranging from 600 to 30,000 [Read and Whiteoak, 2003; Lesueur, 2009]. Resins, 

with molecular weights ranging from 500 to 50,000, act as dispersing agents or 

peptisers for the asphaltenes and their proportion to asphaltenes determines the 
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structural character of the bitumen [Nellensteyn, 1924]. Aromatics are the major 

dispersion medium for peptised asphaltenes and constitute between 40–65% of the 

bitumen and have molecular weights ranging from 300 to 2000. Saturates are non-

polar viscous oils, consisting of 5–20% of overall bitumen [Read and Whiteoak, 

2003; Airey, 2009].  

 

 

 

Fig. 1.1: Schematic representation of (a) SOL type and (b) GEL type bitumen 

structure [Read and Whiteoak, 2003] 

 

In terms of its structure, bitumen is traditionally regarded as a colloidal 

system consisting of high molecular weight asphaltene micelles dispersed or 

dissolved in a lower molecular weight oily medium [Read and Whiteoak, 2003; 

Airey, 2009]. There are two distinct types of bitumens namely the well dispersed 

solution (SOL) type and the gelatinous (GEL) type, as shown in Fig. 1.1 [Pfeiffer 

and Saal, 1940]. SOL type bitumens are those which have sufficient quantities of 
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resins and aromatics of adequate solvating power leading to fully peptized, well-

dispersed asphaltenes that do not form extensive associations. GEL type bitumens 

are that which the resins are aromatic fraction is insufficient to fully peptize the 

micelles and the asphaltenes form large agglomerations or even continuous 

networks [Read and Whiteoak, 2003]. 

 

The Index of Colloidal Instability (CI), which is defined as the ratio of the 

amount of asphaltenes and saturates to the amount of resins and aromatics, is 

sometimes used to describe the stability of the colloidal structure. The higher the CI, 

the more the bitumen is regarded as GEL type bitumen. The lower the CI, the more 

stable the colloidal structure, therefore the bitumen is regarded as SOL type bitumen 

[Airey, 2009]. Other structural models had been proposed including a conceptual 

microstructural model during the Strategic Highway Research Program (SHRP) 

[Petersen et al., 1994] and a thermodynamic solubility model [Redelius, 2006]. 

Irrespective of their differences, all these models have one common goal of 

attempting to establish a correlation between the chemical composition of the 

bitumen and its physical properties. The physical, mechanical and rheological 

properties of bitumens are determined and defined by both the constitution 

(chemical composition) and the structure (physical arrangement of the molecules in 

the material) [Nellensteyn, 1924; Corbett, 1970; Petersen, 1984; Airey, 2009]. In 

this study, emphasis is given to the rheological properties of bituminous binders. 

 

1.3 Problem Statement 

 

The rheological properties of bituminous binders including bitumens are 

typically determined by means of dynamic mechanical analysis (DMA) using an 

oscillatory type, dynamic shear rheometer (DSR) tests. In general, the test is 

conducted within the linear viscoelastic (LVE) region [Airey, 2002a]. Research into 

the rheological properties of bitumen has been growing and importance in 

specifications in the USA since the early 1990's following the Strategic Highway 

Research Program (SHRP). The DSR instrument, however, does have its limitations 

where the measured rheological data are exposed to the measurement error 

particularly at low temperatures and/or high frequencies. Alternatively, other 
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equipments such as a bending beam rheometer (BBR) and a direct tension test (DT) 

can be used at this region. 

 

The use of models can be a valuable tool to fit or describe the rheological 

properties of bituminous binders and asphalt mixtures [Mohammad et al., 2005]. 

Development of the models started in the 1950s when Van der Poel developed his 

first nomograph [Van der Poel, 1954]. Since then, a reasonable number of studies 

have been conducted to describe dynamic data master curves of binders and asphalt 

mixtures. The dynamic data collected at different temperatures can be shifted 

relative to the frequency (time of loading), so that the various curves can be aligned 

to form a single and continuous line called a master curve [Pellinen et al., 2002]. 

The amount of shifting required at each temperature to form the master curve is 

termed as the shift factor, aT. It is found that different shift factor methods are 

available such as a random shift, William Landel and Ferry (WLF), Arrhenius, Log-

Linear, Viscosity Temperature Susceptibility (VTS) and Laboratoire Central des 

Ponts et Chaussées (LCPC) methods [Anderson et al. 1994; Pellinen et al. 2002; 

Chailleux et al. 2006]. 

 

In general, the rheology models established can be divided into three main 

groups; namely nomographs, mathematical and mechanical models. Some of the 

models are applicable for both viscoelastic liquids (binders) and viscoelastic solids 

(asphalt mixtures). One of them is the 2S2P1D Model developed by Di Benedetto et 

al. [Olard and Di Benedetto, 2003; Olard et al., 2003; Delaporte et al., 2007]. This 

model, a combination of two springs, two parabolic elements and one dashpot, is a 

unique model as its parameters are relatable to the construction of master curves, the 

Black diagram and the Cole-Cole diagram. Di Benedetto et al. conducted dynamic 

tests using an annular shear rheometer (ASR) and validated the data using the 

2S2P1D Model [Olard and Di Benedetto, 2003; Olard et al., 2003; Delaporte et al., 

2007]. However, none of the studies have been conducted to validate the dynamic 

test data from other rheometers like the DSR.  
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1.4 Objectives of Research 

 

In general, this research is conducted to elucidate a better understanding of 

the rheological properties and modelling procedures of bitumens and bituminous 

binders. Considering the problem statement above, the main objectives of this 

research can be summarised as follows: 

 

• Review the published literature on rheology models used to characterise the 

rheological properties of bitumens and bituminous binders. 

• To verify different shifting factor techniques on constructing complex 

modulus master curves using the Nottingham Transportation Engineering 

Centre (NTEC) DSR database. 

• To verify several mathematical and mechanical models using the NTEC 

DSR database. 

• To verify different phase angle models using the NTEC DSR database. 

 

1.5 Thesis Structure 

 

 The thesis structure is arranged as follows: 

 

• Chapter 1 provides a brief background on chemical and structural properties 

of bitumen are that normally used in asphalt mixture paving construction. 

The problem statement and research objectives are also included.  

• Chapter 2 deals with the basic concept of bitumen rheology and overview of 

the construction of a master curve. 

• Chapter 3 reviews various rheological models used to describing or fitting 

the rheological properties of bituminous binders. Three groups of models; 

namely the nomographs, mathematical and mechanical models, including 

their advantages and drawbacks, are discussed. 

• Chapter 4 describes the experimental design section and various types of 

materials used in this study, the introduction of the DSR tests, the use of 

Solver function and statistical analysis.  
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• Chapter 5 deals with six shifting techniques; namely a numerical, non-

functional form shift approach, the Williams, Landel and Ferry (WLF), a 

Laboratoire Central des Ponts et Chaussées (LCPC), a Viscosity 

Temperature Susceptibility (VTS), the Arrhenius and a Log-linear 

approaches have been used together with a large rheological database held 

by the NTEC laboratory.  

• Chapter 6 investigates the use of four mathematical models; namely the 

Sigmoidal Model, the Generalised Logistic Sigmoidal Model, the 

Christensen and Anderson (CA) Model and Christensen, Anderson and 

Marasteanu (CAM) Model to fit or describe the rheological properties of 

bituminous binders. Graphical and goodness-of-fit statistics methods are 

used to correlate between measured and descriptive data. 

• Chapter 7 evaluates the suitability of the 2S2P1D Model to describe the 

rheological properties of NTEC database. Correlations between measured 

and descriptive data are evaluated using both graphical and goodness-of-fit 

statistical analysis methods.  

• Chapter 8 attempts to evaluate the validity of several phase angle equations 

on NTEC DSR dataset. Correlations between measured and descriptive data 

are evaluated using both graphical and goodness-of-fit statistical analysis 

methods.  

• Chapter 9 summarises the conclusions obtained from this study and presents 

several potential recommendations for future work. 
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2 

Literature Review 

 

 

 

 

 

2.1 Background 

 

Physically, bitumen can be classified as a thermoplastic material that shows 

glass-like behaviour at (elastic and brittle response to loading) at low temperatures 

(<0
o
C) and fluid-like behaviour at high temperatures (>60

o
C). At intermediate 

temperatures (0
o
C

 
to 60

o
C), bitumen processing both elastic and viscous properties 

(viscoelastic response), with the relative proportion of these two responses 

depending on temperature and loading rate. It is this fundamental rheological (flow) 

property of bitumen that defines its physical nature and makes it such a versatile 

binder for paving mixture in virtually all of the habitable climates found on earth 

[Airey, 2009]. In the measurement of the physical properties of bitumen, emphasis 

is given to the characterisation of the rheological behaviour of bitumen.  

 

Rheology, by definition, involves the study and evaluation of the flow and 

permanent deformation of time–and temperature–dependent materials, such as 

bitumen, that are stressed (usually shear stress or extensional stress) through the 

application of force [Barnes et al., 1989; Airey, 1997; Saleh, 2007]. The word 

rheology is believed originally from the Greek words "ρεω", which can be 

translated as "the river, flowing, streaming", and "λογοο" meaning "word, science" 

and therefore literally means "the study of the flow" or "flow science" [Airey, 1997; 

Mezger, 2006]. Therefore, the rheology of bitumen can be defined as the 

fundamental measurements associated with the flow and deformation characteristics 

of bitumen. Understanding the flow and deformation (rheological properties) of 

bitumen in an asphalt mixture is important in terms of pavement performance. 

Asphalt mixture that deforms and flows too readily may be susceptible to rutting 
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and bleeding, whereas those that are too stiff may be susceptible to fatigue and 

cracking. 

 

The physical properties of bitumen are complex and to describe its 

properties over a wide range of operating conditions (temperature, loading rate, 

stress and strain) normally require a large number of tests. To avoid this and to 

simplify the situation, the mechanical behaviour and rheological properties of 

bitumen have traditionally been described using empirical tests and equations. Two 

consistency tests normally required to characterise different grades of bitumen are 

the needle penetration test and the ring and ball softening point test. These two tests 

provide an indication of the consistency (hardness) of the bitumen without 

completely characterising the viscoelastic response and form the basis of the 

bitumen specification [Airey, 2009]. 

 

2.2 Empirical Testing 

 

2.2.1 The penetration test 

 

The penetration test can be considered as an indirect measurement of the 

viscosity of the bitumen at 25
o
C, to specify different grades of bitumens. In the 

penetration test, a needle penetrates a sample of bitumen under a load of 100 grams 

at a temperature of 25
o
C for a known loading time of 5 seconds. The test apparatus 

is shown in Fig. 2.1. The definition of penetration, which is measured in tenths of a 

millimetre (decimillimetre, dmm) is the distance travelled by the needle into the 

bitumen sample under the loading conditions. Under these conditions, typical values 

for paving grade bitumen range between 15 and 200 dmm. For penetration less than 

30 dmm, the bitumen is generally said to be hard. On the contrary, penetration 

values higher than 100 dmm correspond to soft bitumens [Lesueur, 2009]. For 

example, a 40/60 penetration grade bitumen has a penetration value at 25
o
C ranging 

from 40 to 60 in units dmm. Therefore, a variety of bitumens can be easily graded 

and specified based on the penetration results.  
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Fig. 2.1: The penetration test [Read and Whiteoak, 2003] 

 

2.2.2 The softening point test 

 

The ring and ball softening point test is usually conducted to determine the 

consistency of bitumens by measuring the equi-viscous temperature at the beginning 

of the fluidity range of bitumens. In this test, a steel ball (weight 3.5 g) is placed on 

a bitumen sample contained in a brass ring that is suspended in a water or glycerine 

bath, in which the bath temperature is raised at 5
o
C per minute. Water is used for 

bitumen with a softening point of 80
o
C or below. Meanwhile, glycerine is used for 

softening points greater than 80
o
C [Read and Whiteoak, 2003]. 

 

 

 
 

Fig. 2.2: The ring-and-ball softening point test [Read and Whiteoak, 2003] 
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The softening point is the temperature measurement when the bitumen 

softens and eventually deforms slowly with the ball through the ring to touch a base 

plate 25 mm below the ring. The test set-up is shown in Fig. 2.2. Under these 

conditions, typical values for paving grade bitumen range between 35°C and 65°C. 

A hard bitumen generally has a softening temperature close to 60°C while a softer 

grade will typically have a softening temperature around 40°C [Lesueur, 2009]. 

 

2.2.3 Viscosity tests 

 

Viscosity is a measure of the resistance to flow of a liquid and is defined as 

the ratio between the applied shear stress and the rate of shear strain measured in 

units of pascal seconds (Pa.s). It is a fundamental characteristic of bitumens and 

determines how the material will behave at a given temperature and over a 

temperature range. In addition to absolute or dynamic viscosity, viscosity can also 

be measured as kinematic viscosity in units of m
2
/s or more commonly mm

2
/s with 

1 mm
2
/s is equal to 1 centistoke (cSt). The viscosity of bitumen can be measured 

with a variety of devices in terms of its absolute and kinematic viscosities. In 

general, specifications are based on a measure of absolute viscosity at 60
o
C and a 

minimum kinematic viscosity at 135
o
C using vacuum and atmospheric capillary 

tube viscometers respectively. Absolute viscosity can also be measured using a 

fundamental method known as the sliding plate viscometer. The sliding plate test 

monitors force and displacement on a thin layer of bitumen contained between 

parallel metal plates at varying combinations of temperature and loading time.  

 

The rotational viscometer test (ASTM D 4402-02) is presently considered to 

be the most practical means of determining the viscosity of bitumen. The Brookfield 

rotational viscometer and Thermocel system, as shown in Fig. 2.3, allows the testing 

of bitumen over a wide range of temperatures (more so than most other viscosity 

measurement system). The operation of the rotational viscometer consists of one 

cylinder rotating coaxially inside a second (static) cylinder containing the bitumen 

sample, all contained in a thermostatically controlled environment. The material 

between the inner and the outer cylinder (chamber) is therefore analogous to the thin 

bitumen film found in the sliding plate viscometer. The torque on the rotating 

cylinder or spindle is used to measure the relative resistance to rotation of the 
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bitumen at a particular temperature and shear rate. The torque value is then altered 

by means of calibration factors to yield the viscosity of the bitumen [Airey, 2009]. 

 

 

Fig. 2.3: Rotational viscometer 

 

2.2.4 The Fraass breaking point test 

 

The Fraass test (Fig. 2.4) is an empirical means of obtaining an estimate of 

the temperature at which a thin film of bitumen might crack. The test involves the 

flexing of a sample of bitumen contained on a spring steel plaque at successively 

lower temperatures until it cracks. The temperature at which the sample cracks is 

termed the breaking point and represents an equi-viscous temperature [Airey, 2009].  

 

 

 
 

Fig. 2.4: The Fraas breaking point test [Read and Whiteoak, 2003] 
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2.3 Fundamental Testing 

 

The performance of asphalt pavements are not easily characterised by 

physical properties as they are subjected to complex environmental and loading 

conditions. In addition, various modified binders cannot necessarily be 

characterised by empirical properties. It is important to understand the stress-strain 

behaviour of bituminous binders over a wide range of temperatures and loading 

time conditions. Thus, fundamental tests were introduced and developed to 

investigate mechanical properties and viscoelasticity of binders under different 

environmental conditions. The Strategic Highways Research Program (SHRP), 

developed in the United States of America, was a coordinated effort to produce 

binder specifications which were classified based on a performance-grade system in 

accordance with fundamental testing results [Petersen et al., 1994; Anderson et al., 

1994]. 

 

2.3.1 Dynamic shear rheometer test  

 

The dynamic shear rheometer (DSR) test (AASHTO T315–02) is used to 

measure the elastic, viscoelastic and viscous nature of bituminous binders within the 

linear viscoelastic (LVE) region over a wide range of temperatures and frequencies 

(time of loadings). The schematic diagram of DSR testing configuration is shown in 

Fig. 2.5. 

 

 

 

Fig. 2.5: Schematic of dynamic shear rheometer testing configuration  
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The oscillatory-type test is conducted on binders at different temperature, 

frequency, stress and strain levels. In the test, a bitumen sample sandwiched 

between two parallel plates is subjected to a sinusoidal torque or a sinusoidal 

angular displacement of constant angular frequency. Various rheological parameters 

are converted from the measurements of the torque applied to a specimen in 

response to the applied shear stresses or strains. The amplitude of the responding 

stress is measured by determining the torque transmitted through the sample in 

response to the applied strain. Therefore, the stress and strain parameters can be 

calculated as: 

 

3π

2

r

T
σ =          (2.1) 

 

and 

 

h

rθ
γ =           (2.2) 

 

where σ is a shear stress, T is a torque, r is radius of parallel discs, γ is shear strain, θ 

is deflection angle and h is a gap between parallel discs. They are shown in Fig. 2.6. 

 

 
 

Fig. 2.6: Definitions of T, θ, r and h 

 

The shear stress and strain in Equations 2.1 and 2.2 are dependent on the radius of 

the parallel discs and vary in magnitude from the centre to the perimeter of the disc. 

The shear stress, shear strain and complex modulus, which is a function of the 

radius to the fourth power, are calculated for the maximum value of radius. The 
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phase angle, δ, is measured by the instrument by accurately determining the sine 

wave forms of the strain and torque. 

 

The strains that are applied during the dynamic testing must be kept small to 

ensure that the test remains in the LVE region. Strain sweeps can be used to verify 

that testing occurs in the LVE region. In general, the strain must be less than 0.5 

percent at low temperatures but can be increased at high temperatures. Various 

parallel disc sizes can be used during dynamic mechanical testing. The size of the 

disc that should be used to test the bitumen decreases as the expected stiffness of the 

bitumen increases. In other words, the lower the testing temperature, the smaller the 

diameter of the disc that needs to be used to accurately determine the dynamic 

properties of bituminous binders [Goodrich, 1988]. 

 

2.3.2 Bending beam rheometer test 

 

The bending beam rheometer (BBR) test (AASHTO: T313-02) is used to 

measure the creep response of binders at low/cold temperatures. The testing mode 

of this equipment is illustrated schematically in Fig. 2.7. In the test, a constant load 

is applied to a prismatic bitumen beam measuring 125 mm by 12.5 mm by 6.25 mm 

in simple bending at its midpoint. 

 

 
 

Fig. 2.7: Bending beam rheometer [Rowe et al., 2001] 
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Creep stiffness values are obtained at several loading times ranging from 8 to 240 

seconds (six loading times: 8, 15, 30, 60, 120 and 240). The m value is the slope of 

the log creep stiffness versus log time curve. The stiffness and the slope of the 

stiffness curve (m-value have been used in the Superpave specification as illustrated 

in Figure 2.8 [Rowe et al., 2001].  

 

 
 

Fig. 2.8: Determination of S(60) and m-value [Rowe et al., 2001] 

 

The SHRP binder specification states if the creep stiffness is less than or 

equal to 300 MPa together with the m value being greater than 0.30, the binder 

meets the specification [Petersen et al., 1994]. 
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        (2.3) 

 

where S(t) is the creep stiffness modulus at time, t (t =60 seconds is used as 

standard), P is applied constant load (normally 100 g), L is distance between beam 

supports (102mm), h is beam thickness (6.25 mm) and ∆(t) is deflection at time (t).  

 

 Bouldin et al. [2000] and Rowe et al. [2001] provided a detailed discussion 

on the BBR data analysis. The steps are discussed as follows; First, S(t) master 

curve must be created. Next the S(t) master curve must be filled to a functional 

relationship before the relaxation modulus, E(t), can be determined. According to 

Rowe et al. [2001], by using two BBR data sets to obtain a master curve, best 
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results were obtained by fitting the Christensen, Anderson and Marasteanu (CAM) 

Model. Details of the CAM Model can be found later in Chapter 3. The relaxation 

modulus can be determined using an approximation method, known as Hopkins and 

Hamming [1957] technique. This technique provide a numerical solution to the 

convolution integral required to convert BBR creep stiffness (compliance, D(ζ) is 

first computed using the CAM parameters, with D(ζ) = 1/SBBR(ζ)) to E(t) [Bouldin 

et al., 2000]. 

 

Mathematically, the convolution integral can be shown as follows [Bouldin 

et al., 2000]: 

 

( ) ( ) 1
0

=−∫ ζζζ dtDE         (2.4) 

 

where E(ζ) is the relaxation modulus at reduced time (ζ) and t is the physical 

loading time. The Hopkins and Hamming solution is: 
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where 
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The initial value of f(t) at zero time is set as zero [Rowe et al., 2001]. Fig. 2.9 shows 

the importance of this step. According to Rowe et al. [2001], the simple inversion 

does not fit the data really well even though for much less complex materials when 

the material exhibit any real changes of the relaxation modulus (i.e. when the 

material becomes more viscous). Most binders show significant changes of the 

modulus with increasing time (or temperature) and consequently, the resulting error 

is significant [Bouldin et al., 2000; Rowe et al., 2001]. 
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Fig. 2.9: A comparison of inverse compliance to relaxation modulus of 

Polyisobutylene [Rowe et al., 2001] 

 

2.4 Ageing 

 

Bitumen is also affected by the presence of oxygen, ultraviolet radiation and 

by changes in temperature. These external influences result in the phenomenon 

known as ageing and cause changes in the chemical composition and therefore the 

rheological and mechanical properties of the bitumen [Petersen, 1984]. Ageing is 

primarily associated with the loss of volatile components and oxidation of the 

bitumen during asphalt mixture production (short-term ageing) and progressive 

oxidation of the in-place material in the road (long-term ageing). Both factors cause 

and increase in viscosity (or stiffness) of the bitumen and subsequently stiffening of 

the asphalt mixture. Other factors such as molecular structuring over time (steric 

hardening) and actinic light (primarily ultraviolet radiation, particularly in desert 

conditions) may also contribute to ageing [Traxler, 1963, Vallerga et al., 1957]. 

 

Ageing can have two effects, either increasing the load bearing capacity 

(strength) and permanent deformation resistance of the pavement by producing a 

stiffer material or reducing pavement flexibility. These result in the formation of 

cracks with the possibility of total failure. Therefore, ageing at moderate levels is 

generally accepted and can even enhance performance. However, ageing at 
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significant levels results in embrittlement of the bitumen, significantly affecting its 

adhesive characteristics and usually resulting in reduced cracking resistance of the 

asphalt mixture under repeated loading [Airey, 2009]. 

 

Test related to ageing of bitumen can be broadly divided into two categories; 

namely tests performed on neat bitumens and test performed on asphalt mixtures. 

Much of the research into the ageing bitumen utilises thin film oven ageing to age 

the bitumen in an accelerated manner. These tests are typically used to simulate the 

relative hardening that occurs during the mixing and laying process (short-term 

ageing). The thin film oven ageing is typically combined with the pressure oxidative 

one to include long-term hardening in the field [Airey, 2009].  

 

2.4.1 Thin film oven test 

 

The thin film oven test, TFOT (ASTM Test Method D1754 (ASTM, 1998)) 

is a method of ageing bitumen by subjecting it to conditions approximating those 

that occur during normal hot-mix plant operations. Samples of the bitumen are 

placed in pans on a rotating shelf in an oven at 163°C for five hours. The aged 

residue may be tested to determine the effects of hardening due to ageing. 

 

2.4.2 Rolling thin film oven test  

 

The rolling thin film oven test, RTFOT (ASTM Test Method D2872 

(ASTM, 1998)) is a modification of the thin film oven test. Instead of samples being 

placed in pans on a rotating shelf, they are poured into specially designed bottles. 

The bottles are placed horizontally into a vertically rotating rack in an oven 

maintained at 163°C for 75 minutes. As the bottles are rotated, fresh films of 

bitumen are exposed. Once during each rotation, the bottle opening passes before an 

air jet that purges accumulated vapours from the bottle and exposes the bitumen to 

additional air to intensify the ageing effect. The residue from the rolling thin film 

oven test is subsequently tested for the effects of ageing. A schematic diagram of 

the RTFOT is shown in Fig. 2.10. 
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Fig. 2.10: Schematic diagram of rolling thin film oven test 

 

2.4.3 Pressure ageing vessel test 

 

The pressure ageing vessel test (PAV), shown in Fig. 2.11, is used to 

simulate the physical and chemical property changes that occur in bitumens as a 

result of long-term, in-service oxidative ageing in the field [Petersen et al., 1994]. 

After the bitumen has first been aged in the rolling thin film oven, it may be aged in 

the PAV. This test consists of ageing 50 g of bitumen placed in a pan within a 

heated vessel pressurised with air to 2.1 MPa for 20 hours at temperatures of 90, 

100 and 110
o
C

1
. However, this particular ageing temperature is dependent on the 

climatic region where the binder will be put in service and is selected from the 

SHRP performance graded binder specification [Harrigan et al., 1994].  

 

                                                 
1
 Within the industry, there is considerable concern that ageing materials at temperatures in this 

range is too far removed from the temperature experienced in service and that such an approach may 

give misleading results [Read and Whiteoak, 2003]. 
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Fig. 2.11: Schematic diagram of vessel ageing pressure [Petersen et al., 1994] 

 

The PAV test accounts for temperature effects but is not intended to account 

for mixture variables such as air voids, type of aggregates and as well as aggregate 

adsorption [Petersen et al., 1994]. After the PAV test, the residue is normally used 

for DSR, BBR and direct tension tests. 

 

2.5 Viscoelastic Behaviour of Bitumen 

 

Bitumen is a thermoplastic liquid that behaves as a viscoelastic material. The 

term viscoelastic behaviour refers to the mechanical properties of the bitumen, 

which, in two extremes, can result in the bitumen behaving either as an elastic solid 

or a viscous liquid, depending on temperature and time of loading. At low 

temperatures elastic properties dominate. At high temperatures, the bitumen behaves 

like a liquid, usually with Newtonian viscous flow properties. At normal pavement 

temperatures, the bitumen has properties that are in the viscoelastic region [Dukatz 

and Anderson, 1980]. Therefore, at these temperatures the bitumen exhibits both 

viscous and elastic behaviour and displays a time dependent relationship between 

applied stress or strain and resultant strain or stress [Goodrich, 1988]. 
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The intermediate range of temperatures and loading times, at which the 

viscoelastic behaviour occurs, is indicative of the typical conditions experienced in 

service. Another viscoelastic representation of the behaviour of bitumen is 

represented in Figure 2.12, where three regions of behaviour is observed, namely 

linear elastic, delayed elastic and viscous regions [Airey, 1997]. 

 

 
 

Fig. 2.12: Viscoelastic response of bitumen under creep loading [Airey, 1997] 

 

The viscous portion is solely responsible for non-recoverable deformation 

experienced when the bitumen or asphalt mixture incorporating the bitumen loaded. 

However, the elastic and delayed elastic strain are totally recoverable once the load 

and applied stress are released. The elastic response of the bitumen dominates at 

short loading times and/or high temperatures. Meanwhile, at intermediate loading 

times and/or high temperatures, the delayed response dominates. The purely viscous 

and delayed elastic components constitute the time dependent deformation of the 

viscoelastic material [Airey, 1997].  

 

Although none of the viscous deformation is recovered once the load is 

removed, the delayed elastic deformation is recovered but not immediately as with 

the purely elastic deformation. Because the relative magnitude of the three 
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components change with loading time and temperature, both the magnitude and the 

shape of the creep curve in Fig. 2.13 will change with loading time and temperature 

[Anderson et al.,1991]. 

 

The descriptions given of elastic, viscous and viscoelastic response are for a 

linear response; that is the deformation at any time and temperature is directly 

proportional to the applied load. Non-linear response, especially for viscoelastic 

materials, is extremely difficult to characterise in the laboratory or to model in 

practical engineering applications [Anderson et al., 1994]. For this reason, models 

are generally limited to the LVE region. Within this region, the inter-relation of 

stress and strain and stiffness is not influenced by the magnitude of stress. To ensure 

the testing remains within this LVE region, the strain (or deformation), that is 

applied to the bitumen must remain within limits. 

 

2.6 Dynamic Mechanical Analysis  

 

Various forms of dynamic mechanical analysis (DMA) are used to measure 

the rheological properties of bituminous binders, usually by means of oscillatory-

type DSR testing. The principle used with the DSR is to apply sinusoidal, 

oscillatory stresses and strains to a thin disc of bitumen, which is sandwiched 

between the two parallel plates of the DSR (previously shown in Fig. 2.5). The test 

can be either stress or strain-controlled, depending on which of these variables is 

controlled by the test apparatus. The controlled-strain test is normally used to 

determine the dynamic rheological properties of the bitumen [Goodrich, 1988; Pink 

et al., 1980]. 

 

Normally the tests are conducted over a wide range of temperatures and 

frequencies if complete characterisation of the viscoelastic properties of binders 

needs to be obtained. In addition, the tests are usually conducted by inducing small 

strain (within the LVE region) to enable the rheological data to be transposed 

between frequencies and temperatures using the time-temperature superposition 

principle (TTSP) [Airey and Hunter, 2003] The TTSP will be discussed in greater 

detail in section 2.7.  
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The sinusoidally varying stress can be shown as [Airey and Hunter, 2003] 

 

( ) ωtσtσ sino=         (2.6) 

 

and the resulting strain as 

 

( ) ( )δωtγtγ += sino         (2.7) 

 

where σo is the peak stress (Pa), γo is the peak strain, ω is the angular frequency 

(rad/s), t is the time (seconds) and δ is the phase angle of the measured material 

response in degrees. The angular frequency, ω, also known as the rotational 

frequency, is expressed as 

 

fπω 2=          (2.8) 

 

where f is the frequency (Hz) at which the test was measured. The sinusoidally 

varying stress and strain can also be presented in complex notation as 

 

tiωσ*σ eo=          (2.9) 

 

and 

 

( )δωtiγ*γ += eo          (2.10) 

 

The phase angle, δ, is defined as the phase difference between stress and strain and 

is also called the loss angle or the phase lag. For purely elastic materials, the phase 

angle will be 0
o
, whereas for purely viscous materials, the phase angle will be 90

o
. 

Therefore, the phase angle is important in describing the viscoelastic properties of a 

material.  

 

The sinusoidal, oscillatory, stress and strain waveforms and the resulting 

dynamic test outputs are shown in Figs 2.13 and 2.14. 
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Fig. 2.13: Dynamic oscillatory stress-strain functions [Airey, 1997] 

 

 

 

Fig. 2.14: Dynamic test outputs from dynamic mechanical analysis (DMA) [Airey, 

1997] 

 

The ratio of the resulting stress to the applied strain is called the complex shear 

modulus, G*, defined as 
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Equation 2.11 can also be written as 
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+








=        (2.12) 

 

which corresponds to the definition for the complex shear modulus, |G*|, given in 

the Eurobitume glossary of rheological terms [Eurobitume, 1996].  

 

iG"G'*G +=          (2.13) 

 

where G' is the storage modulus (Pa), G" is the loss modulus (Pa) and the other 

symbols are as previously defined. 

 

The magnitude of the complex modulus, |G*| (Fig. 2.13) can be calculated as 

the square root of the sum of squares of the two components 

 

22
G"G'G* +=         (2.14) 

 

The in-phase component or the real part of |G*| is called the (shear) storage 

modulus. The storage modulus equals to the stress that is in phase with the strain 

divided by the strain, or: 

 

δG*G' cos=          (2.15) 

 

The storage modulus describes the amount of the energy that is stored and 

released elastically in each oscillation and is therefore also know as the elastic 

modulus, or the elastic component of the complex modulus [Airey, 1997].  

 

The (shear) loss modulus is the out-of-phase component or the imaginary 

part of |G*|. This equals the stress 90
o
 out of phase with the strain divided by the 

strain, or: 
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δG*G" sin=          (2.16) 

 

The loss modulus describes the average energy dissipation rate in the 

continuous steady oscillation found in the dynamic test. The loss modulus is also 

refereed to as the viscous modulus or the viscous component of the complex 

modulus. The loss tangent is defined as the ratio of the viscous and elastic 

components of the complex modulus or simply the tangent of the phase angle: 

 









= −

G'

G"
δ 1tan         (2.17) 

 

Fig. 2.15 shows a relationship between |G*|, G', G" and δ [Airey and Hunter, 2003]. 

 

 
 

Fig. 2.15: Relationship between |G*|, G', G" and δ [Airey and Hunter, 2003] 

 

The storage and loss moduli are sometimes misinterpreted as the elastic and 

viscous modulus respectively. In reality, the elastic component of the response only 

represents part of the storage modulus and the viscous response only part of the loss 

modulus. In addition, viscoelastic materials exhibit a significant amount of delayed 

elastic response that is time dependent but completely recoverable. The storage and 

loss modulus both reflect a portion of the delayed elastic response [Airey, 1997]. 
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In addition, a viscosity value for the bitumen can also be obtained from 

dynamic oscillatory test. The viscosity is known as the complex viscosity (Pa.s) and 

is defined as the ratio of the complex modulus and the angular frequency: 

 

ω
η

*G
* =          (2.18) 

 

Since the complex viscosity is a function of complex number pair, a real and an 

imaginary part of the complex viscosity can also be defined. The real part of the η* 

is termed the dynamic viscosity and defined as: 

 

ω
η

"G
' =          (2.19) 

 

where η' is dynamic viscosity (Pa.s) and the other parameters are as previously 

defined. The imaginary part of the η* is called out-of-phase component of η* and 

defined as: 

 

ω
η

'G
" =          (2.20) 

 

where η" is out of phase component of η* (Pa.s) [Airey, 1997]. 

 

2.7 Time-Temperature Superposition Principle 

 

In principle, the complete modulus versus time behaviour of any polymer at 

any temperature can be measured [Shaw and MacKnight 2005]. Work done by 

various researchers has shown that there is an inter-relationship between 

temperatures and frequencies (or temperatures and times of loading) through the 

time-temperature shift factor may bring measurements done at different 

temperatures to fit one overall continuous curve at a reduced frequency (or time 

scale) [Monismith et al. 1966; Dickinson and Witt, 1974; Goodrich, 1988; Airey, 

2002a]. This curve, known as a master curve, represents bituminous binders' or 

asphalt mixtures' behaviour at a given temperature over a wide range of frequencies. 

The principle that is used to relate the equivalency between frequency (time) and 

temperature and thereby produce the master curve is known as the time-temperature 
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superposition principle (TTSP or tTS) [Airey, 1997]. A material for which data can 

be reduced to a master curve in this way is said to be thermo-rheologically simple. 

This terminology was firstly introduced in 1952 by Schwarzl and Staveman [Dealy 

and Larson, 2006]. 

 

According to Airey [1997], modulus curves at low temperatures crowd 

together at high frequency/low temperature values and at very high frequencies they 

nearly all coincide with one horizontal asymptote. At this region, the modulus is 

called the glassy modulus, Gg. Under viscous conditions, however, there is no 

convergence to a single viscous asymptote as viscosity depends on temperature and 

therefore each temperature gives rise to a separate viscous flow asymptote. This is 

shown in Fig. 2.16. 

 

 

 
 

Fig. 2.16: Time-temperature superposition principle [Airey, 1997] 

 

Airey [1997] also noted that because the limiting viscous behaviour is 

strongly temperature dependent and the elastic behaviour is not, it is possible to 

separate the influence of frequency and temperature. The concept of time-

temperature superposition (Fig. 2.17) which shows an asymptote pair for an 

arbitrary reference temperature, Tref (or Tr). If the temperature is increased from Tref 

to T there is a decrease in viscosity by a factor aT. Therefore, the viscous asymptote 

at T lies an amount of log aT below that of Tref. However, the elastic asymptote is 

negligibly changed during the temperature rise. The result is that the asymptote pair 



 30 

appears to be shifted a distance log aT along the log ω axis, because the viscous 

asymptote has unit slope. The viscoelastic response of a bitumen is a transition 

between the asymptotic viscous and elastic response and is represented by the curve 

for Tref. If a change in temperature causes the modulus curve to shift together with 

its asymptotes over the same distance log aT, the material behaves as a thermo-

rheologically simple one [Airey, 1997].  

 

A reference temperature can be chosen and the next higher modulus curve 

shifted coincides with the reference temperature curve to obtain a value for the 

horizontal shift factor log aT and a more extended modulus curve. This procedure is 

repeated for all curves in succession to obtain a master curve. The effect of 

temperature on complex modulus is, therefore, to shift the curve of log |G*| versus 

log ω axis without changing its shape. This permits the reduction of isotherms of 

log |G*| versus log ω measured over a wide range of temperatures to a single master 

curve [Airey, 1997].  

 

The extended frequency scale used in a master curve is referred to as the 

reduced frequency scale and defined as: 

 

Tr aff logloglog +=         (2.21) 

 

where fr is reduced frequency (Hz), f is frequency (Hz) and aT is the shift factor. 

 

The amount of shifting required at each temperature to form the master 

curve is called the shift factor, aT. A log aT plot versus temperature with respect to 

the reference temperature curve is generally prepared in conjunction with a master 

curve. This plot gives a visual indication of how the properties of viscoelastic 

material change with temperature [Anderson et al., 1994]. Fig. 2.17 shows the 

process involved in constructing a master curve. 
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Fig. 2.17: Time-temperature superposition principle in the construction of a master 

curve [Anderson et al., 1994] 

 

2.8 Master Curves 

 

According to Rowe and Sharrock [2000], the construction of master curves 

is a powerful tool to understand how binder type and chemical make up affects the 

viscoelastic behaviour of the binders. As aforementioned, it is difficult to measure 

the dynamic data over a frequency (or time) window of more than about four 

decades in practical work [Shaw and MacKnight, 2005]. Once the master curve is 

established, it is possible to derive interpolated values of property of any 

combination of temperature (T) or frequency inside the range covered by the 

measurement. In addition, this gives the possibility of comparing the results 

obtained by two laboratories with different sets of test conditions such as 

frequencies and temperatures [Pellinen et al., 2002]. Additionally, master curves 

can also be used to describe the rheological properties of asphalt mixtures [Garcia 

and Thompson, 2007]. 
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Fig. 2.18: Construction of the |G*| and δ master curves 

 

Details of this |G*| master curve (Fig. 2.18) are described as follows. Firstly, 

the dynamic data was collected over a range of temperatures and frequencies (e.g. 

10–70
o
C with temperature intervals of 10

o
C and 0.10, 0.16, 0.25, 0.40, 0.63, 1.00, 

1.58, 2.51, 3.98, 6.31 and 10.00 Hz). This combination produced 77 data sets. 

Secondly, Tref is chosen, usually arbitrarily, say T40 (temperature at 40
o
C). Any 

temperature may be chosen as the reference temperature. All the curves at the 

temperature higher than T40 (i.e. T50, T60, and T70) are manually shifted to the left. 
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The temperatures lower than T40 (i.e. T10, T20 and T30) are manually shifted to the 

right. The shifting process is repeated until the curves merge into a smooth and 

continuous master curve. 

 

It has to be emphasised that at Tref, the shift factor is equal to 1 (or 0 in 

logarithmic scale). If T50 had been chosen with shift factor equal to 0, T60 and T70 

would have been shifted to the left with the shift factors larger than 0. Meanwhile 

T10, T20, T30 and T40 would have been shifted to the right with the shift factors 

smaller than 0. It is not necessary to use one of the experimental temperatures as the 

reference temperatures; any value within the temperature range can be used simply 

by interpolation [Shaw and MacKnight, 2005]. A similar procedure is also used on 

the other dynamic data such as δ (Fig. 2.19), G' and G".  

 

Master curves can also be determined from creep test data. The individual 

creep curves can be combined into a single master curve by translating the curves 

along the time axis to obtain a creep curve at a single reference temperature [Airey, 

1997]. 

 

2.9 Shift Factors Laws 

 

The temperature dependency of the viscoelastic behaviour of bitumen is 

indicated by means of shift factors and can be expressed as: 

 

( )
refTT T,Taa =         (2.23) 

 

and therefore depends, for a given system, only on the temperature. In general, 

several different aT functions can be used to model the TTSP relationship of 

bitumens and asphalt mixtures. Most of the functions only involve horizontal line 

movements and do not take vertical shifts into account. The vertical shift, bT, 

represents temperature induced density changes and involves shifts along the 

modulus axis [Rouse, 1953]. A vertical shift factor, bT can be shown by the 

following: 
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ρ

ρ

×

×
=

T

T
bT

00          (2.2.4) 

 

where bT is the vertical shift factor, T is temperature, T0 is reference temperature, ρ 

is density and ρ0 is density at reference temperature. However, most research to date 

on binders and bituminous materials master curve construction does not normally 

consider the vertical shift factor based on temperature adjustment. Horizontal 

shifting will be discussed in the following sections. 

 

2.9.1 Numerical, non-linear least squares shift 

 

In the numerical, non-functional form shift approach, all the shift factors are 

solved simultaneously with the coefficients of a model using a non-linear least 

squares fitting. This is achieved with the aid of the Solver function in the MS Excel 

Spreadsheet, without assuming any functional form for the relationship of aT versus 

temperature [Pellinen et al., 2002].  

 

2.9.2 The Williams, Landel and Ferry (WLF) equation 

 

The WLF equation, after it's discovers Williams, Landel and Ferry, has been 

widely used to describe the relationship between the aT and temperature dependency 

and thereby determine the aT of bitumens [Williams et al., 1955]: 

 

( )
( )ref2

ref1log
TTC

TTC
aT

−+

−−
=         (2.24) 

 

where T is temperature, Tref is the reference temperature, C1 and C2 are taken as 

constants. The other parameters are as previously defined. This method is found to 

be applicable for both bitumens [Dobson, 1969; Goodrich, 1988; Chailleux et al., 

2006; Garcia and Thompson, 2007] and asphalt mixtures [Levenberg and Shah, 

2008].  

 

The WLF equation requires three constants to be determined namely C1, C2 

and Tref. The constants C1 and C2 can be calculated with respect to the reference 
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temperature, Tref, from the slope and intercept of the linear form of the WLF 

equation [Airey, 1997]: 

 

( )ref

T

TT
CC

C

a

TT
−+=

−
−

11

2ref 1

log
       (2.25) 

 

The temperature dependency of bitumens can be described by one parameter, Tref if 

universal constants are used for C1 and C2 in the WLF equation. Williams et al. 

[1955] proposed that Tref is suitably chosen for each material then C1 and C2 could 

be allotted universal values of 8.86 and 101.6 respectively. Brodnyan et al. [1961] 

showed that for bitumens the universal parameters fitted the data for T – Tref > - 

20
o
C, but at lower temperatures the predicted shift factors were too great. 

 

Anderson et al. [1994] have found that for unaged and aged bitumens, the 

constants in the WLF equation are all essentially the same value, with C1 and C2 

equal to 19 and 92 respectively, based on a defining temperature, Td, which is 

bitumen specific. These values were also obtained by Jongepier and Kuilman 

[1975]. Unfortunately, Td is difficult to determine. Brodnyan et al. [1961] suggested 

that Tref is very similar to the softening point. Williams et al. [1955] proposed that 

Tref is related to the glass transition temperature (Tg) by the relationship: 

 

CTT gr

ο50=−         (2.26) 

 

Nielsen [1995] states that due to the nature of the WLF equation, the reference 

temperature cannot be chosen arbitrarily, but must be determined by iteration. 

 

2.9.3 The Arrhenius equation 

 

The Arrhenius equation can be described by the following: 

 









−=








−=

ref

a

ref

114347011
log

TTR

E.

TT
CaT      (2.27) 

 

where C is a constant, Ea is the activation energy (J/mol) and R is the ideal gas 

constant (8.314 J/mol.K). The other parameters are as previously defined. In the 



 36 

literature, different values such as 10920 K, 13060 K and 7680 K were reported for 

the constant C [Medani and Huurman, 2003]. The Arrhenius expression requires 

only one constant to be determined, Ea, which describes the minimum energy 

needed before any intermolecular movement can occur.  

 

Anderson et al. [1994] found that for aged and unaged bitumen, the 

Arrhenius equation is better than the WLF equation at relating shift factors to 

temperature at low temperatures, below a bitumen specific defining temperature, Td. 

Both the Arrhenius and WLF equations are based on the theoretical considerations 

and therefore their parameters provide some insight into the molecular structure of 

bitumen [Marasteanu and Anderson, 1996]. 

 

2.9.4 The Log-Linear Equation 

 

Equation 2.28 shows the form of the equation with the concept of reference 

temperature: 

 

( )ref

ref

log TTβ
T

T
a −=








       (2.28) 

 

where β is the slope of the straight line relationship between log aT and temperature 

[Pellinen et al. 2002]. As discussed by Garcia and Thompson [2007], the Log-

Linear equation is normally only used for asphalt mixture. However, this equation 

has been used in this study as a comparison to the other methods.  

 

2.9.5 The Viscosity Temperature Susceptibility (VTS) equation 

 

In the Mechanistic-Empirical Pavement Design Guide (MEPDG), aT was 

expressed as a function of binder viscosity to allow ageing over the life of the 

pavement to be considered using a global ageing model [Mirza and Witczak, 1995]. 

Later, Mirza and Witczak revised the shift factor equation used in the MEPDG, 

termed the viscosity temperature susceptibility (VTS) equation [Bonaquist and 

Christensen, 2005]: 
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( )( )0loglog 1010log RTVTSARTVTSA

T ca
++ −=      (2.29) 

 

where TR is temperature (Rankine), TR0 is the reference temperature (Rankine), A is 

the regression line intercept, VTS is regression line slope (called VTS coefficient) 

and c is a constant. 

 

2.9.6 The Laboratoire Central des Ponts et Chaussées (LCPC) approach 

 

Chailleux et al. [2006] from the LCPC, France, established a mathematical 

based procedure in order to construct master curves from dynamic measurements. 

Using the Kramers-Kronig relations
2
 and when two close frequencies are considered 

(fi and fj), they show that 

 

( )( ) ( )( )
( ) ( )

ij

ijj
f

i
f

ff

fT,G*fTG
δ

loglog

log,*log

π

2),(

avr
−

−
=⋅     (2.30) 

 

where 
),(

avr

ji ff

δ is the average of two angles measured at fi and fj (for temperature T) 

and |G*(T, f)| represents the complex modulus. A shift factor, a(T1,T2) = f2/f1 exists as 

the TTSP is presumably valid. For two close temperatures, Equation 4.7 can be 

written;  

 

( )
( )( ) ( )( )

( )( )
21

2221

2

)2,1(

avr
log

log,*log

π

2

T,T

TT

a

f,TG*fTG
fδ

−
=⋅     (2.31) 

 

where 
)2,1(

avr

TT
δ  is the average of two angles measured at T1 and T2 (for f2). Shift 

factors can be calculated using Equation 4.8 for close isotherms, at only one 

frequency. Considering the measurements are carried out at temperatures T1, T2…Ti, 

Ti+1…, Tn, master curve construction related to a Tref (with reference between 1 to n) 

will be made using the cumulative sum of log (a(Ti, Ti+1)). Hence, the shift factor 

needed to be applied for an isotherm Ti according to Tref will be: 

 

                                                 
2 The Kramers-Kronig relationship is the integral transform relationship between the real and imaginary parts of a complex 

function, and gives one of the several relations as; ( )
( )

( )ωlog

ωG*dπ
ωδ

d

log

2
⋅≈ . 
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The calculation of the shift factor using the LCPC approach derives only from 

measurements of (|G*(j, T)| and δ (j, T)) and does not need any adjustable 

coefficients. This technique is based on linear viscoelastic theory. 

 

2.10 Rheological Data Representation 

 

The DSR data obtained need to be represented in a useful form to enable 

study on the rheological properties of bituminous binders.  

 

2.10.1 Isochronal plots 

 

An isochronal plot is defined as an equation or a curve on a graph 

representing the behaviour of the system at a constant frequency (time of loading). 

Curves of |G*| (or δ) as a function of temperature at constant frequency are 

isochrones [Eurobitume, 1996]. Examples of the isochronal plots for |G*| and δ are 

shown in Fig. 2.19. 

 

 

Fig. 2.19: Isochronal plots for |G*| and δ [Airey, 2002a] 
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2.10.2 Isothermal plots 

 

An isothermal plot is described as an equation or a curve on a graph 

representing the behaviour of a system at a constant temperature. Curves of |G*| (or 

δ) as a function of frequency at constant temperature are isotherms [Eurobitume, 

1996]. Examples of the isothermal plots for |G*| and δ are shown in Fig. 2.20. 

 

 

 

 
 

Fig. 2.20: Isothermal plots for |G*| and δ [Airey, 2002a] 

 

2.10.3 Black diagrams 

 

For a dynamic experiment, a graph of the magnitude (or norm) of the 

complex shear modulus (|G*|) versus the phase angle (δ) is called a Black diagram 
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[Eurobitume, 1996]. An example of the Black diagram is shown in Fig. 2.21 [Airey, 

2002a]. 

 

 
 

 

Fig. 2.21: Example of the Black diagrams [Airey, 2002a] 

 

2.10.4 Cole-Cole diagrams 

 

In pavement engineering practise, a Cole-Cole diagram is defined as a graph 

of G" as a function of G' [Eurobitume, 1996; Airey, 1997]. The Cole-Cole diagram 

provides a means of presenting the viscoelastic properties of the bitumen without 

incorporating frequencies and/or temperatures as one of the axes [Airey, 1997]. An 

example of the Cole-Cole diagram is shown in Fig. 2.22. 

  

 
 

Fig. 2.22: The Cole-Cole diagram 
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2.11 Glassy Modulus  

 

The glassy modulus, Gg is defined as the value which |G*| approaches at low 

temperatures and/or high frequencies [Anderson et al., 1992]. However, it appears 

quite hard to obtain Gg via experimental work because materials such as bitumens 

become harder and subsequently brittle at a very low temperature. For example, Sui 

[2008] conducted rheological tests using the advanced rheometric expansion system 

(ARES) rheometer. He observed that the Gg value was approximately 0.5 910× Pa at 

a very low temperature. This value was a bit low as it is recommended to use the Gg 

values of 1 910×  (in shear) and 3 910× Pa (in extension or flexure) for most 

engineering purposes [Anderson et al., 1992; Christensen and Anderson, 1992]. 

 

Graphical and modelling methods are normally used to calculate the Gg 

value for bituminous binders and asphalt mixture, with the absence of dynamic data 

at a low temperature.  The graphical method is done by plotting the measured |G*| 

as a function of δ for the values of the phase angle less than approximately 10
o
. The 

intercept on such a plot is Gg [Anderson et al., 1992; Lu et al., 1998]. Lu et al. 

[1998] found the Gg values vary from 0.5 910×  to 1 910× Pa for unmodified 

bitumens and PMBs. The influence of polymer modification at a low temperature is 

too small and can be neglected. Edwards et al. [2006] observed the Gg values were 

between 0.42 910× and 0.56 910× Pa when they added commercial waxes and a 

polyphosphoric acid to three 160/220 penetration grade bitumens. 

 

Airey [2002a] used a similar method on unmodified bitumens, ethylene 

vinyl acetate (EVA) and styrene butadiene styrene (SBS) PMBs. The values of |G*| 

and δ, measured with the different sample geometries, have also been plotted in the 

form of a Black diagram in Fig. 2.23. The Black diagram shows a separation of the 

rheological data from the two plate geometries at |G*| values greater than 5 510× Pa 

(temperatures below 35°C and high frequencies). In addition, the Black diagram 

provides a reliable means of evaluating the suitability of the DSR testing 

configurations. Extrapolating lines to the y-axis indicate different values of limiting 

stiffness for the 25 mm and 8 mm geometries. The 25 mm configuration indicates a 

limiting stiffness of approximately 5 610× Pa, which is considerably lower than the 
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traditionally recognised value of 2 910× Pa (glassy modulus) indicated by the 8 mm 

configuration. The lower value of complex modulus indicates that the data are 

exposed to measurement error. 

 

The upper limit of stiffness can also be estimated by using a linear 

relationship between the logarithm of (1 + tan δ), within the range of 0 to 1, and the 

logarithm of |G*| [Dobson, 1969]. This approach allows more rheological data to be 

used in the estimation of limiting stiffness. The plot for the 50 penetration grade 

bitumen is shown in Fig. 2.24, where, firstly, the limiting stiffness can be readily 

extrapolated and secondly, the divergence of the two geometries can be identified.  

The 8 mm configuration can be extrapolated to a limiting stiffness of approximately 

2 910× Pa, but the value for the 25 mm configuration is limited to 2.5 710× Pa. The 

point of divergence of the 8 mm and 25 mm geometries occurs between 10
5
 to 10

6
 

Pa [Airey, 2002a]. 
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Fig. 2.23: Black diagram for two spindle geometries [Airey, 2002a] 
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Fig. 2.24: Complex modulus versus log (1 + tan δ) for two spindle geometries 

[Airey, 2002a] 

  

 Findings shown in Figs. 2.23 and 2.24 are in good agreement with Anderson 

et al. [1994]. Based on the work conducted on RMS 803, Anderson et al. [1994] 

recommend that 8 mm and 25 mm parallel plates should be used when 1 x 10
5
 < 

|G*| < 10 x 10
7
 Pa and 1 x 10

3
 < |G*| < 10 x 10

5
 Pa respectively. 

 

The DSR experiments with the 25 mm and 8 mm geometries show that with 

wide frequency sweeps at different temperatures it is necessary to use both spindle 

configurations when performing dynamic shear testing within the transitional 

stiffness region between 10
5
 Pa and 10

6
 Pa. This overlapping allows the differences 

in |G*| and δ, as measured by the two configurations, to be identified and the 

appropriate values to be selected for the rheological characterisation of the bitumen. 

Black diagrams of |G*| versus δ provide a useful means of identifying these 

appropriate values and, therefore, aid the selection of suitable disc configurations 

(testing geometries) [Airey, 2002a]. 

 

On the other hand, Gg can also be obtained using a rheological model. Di 

Benedetto et al., for example, used a model to describe the rheological properties of 

unmodified bitumens, PMBs and bitumen-filler mastics. They found that the Gg 
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values of unmodified bitumens and PMBs were between 0.8 910×  and 2 910× Pa 

[Olard and Di Benedetto, 2003; Olard et al., 2003; Delaporte et al., 2007]. 

However, the Gg values for bitumen-filler mastics were slightly higher, between 

1.9 910×  to 8.5 910× Pa. These values depend on the percentage of the mineral fillers 

used. Stastna et al. [1997] suggested allowing the Gg value to be a free parameter in 

order to obtain a better fit of master curves. This can be done with the aid of the 

Solver function in MS Excel, a tool for performing an optimisation with non-linear 

least squares regression technique. This method also has a disadvantage where the 

Gg value is determined statistically and in many cases, can be under or 

overestimated. If the data is affected by the measurement error, the shape of the 

model will follow that from original data and subsequently, the Gg will be lower 

than the suggested value.  

 

2.12 Bitumen Modification 

 

Conventional bituminous materials have tended to perform satisfactorily in 

most highway pavement and airfield runaway applications [Airey, 1997]. However, 

in recent years, increased traffic levels, larger and heavier trucks, new axle designs 

and increased type pressure, have added to the already severe demands of load and 

environment of the highway system, resulting in the need for enhancement of the 

properties of existing asphalt material [Brown et al., 1990]. The modifiers that are 

commercially available fall into various categories, including naturally occurring 

materials, industrial by products and waste materials as well as carefully engineered 

products. Some of the more common categories include reclaimed rubber products, 

fillers, fibres, catalysts, extenders and polymers (natural and synthetic) [Airey, 

1997]. Polymer-modified bitumen, normally abbreviated as PMB, tended to be the 

most popular. 

 

The PMB is produced by mixing bitumen and polymer using a low or high 

shear mixer. Typical polymers include styrene-butadiene-styrene (SBS), styrene-

butadiene-rubber (SBR), ethylene-vinyl acetate (EVA) and polyethylene among 

others [Isacsson and Lu, 1995]. In terms of overall performance, PMBs tend to have 

greater elastic response, improved cohesive and fracture strength, greater ductility 
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and are able to resist the pavement distress mechanisms of permanent deformation 

and fatigue cracking [Airey, 2009]. A wide range of additives and modifiers can be 

used to enhance the properties of conventional bitumen as listed in Table 2.1. 

 

2.13 Polymer-Modified Bitumens  

 

A polymer is defined as a substance composed of molecules with large 

molecular mass composed of repeating structural units called monomers, connected 

by covalent chemical bonds. The word polymer is originally derived from the Greek 

words, πολν, polu, "many" and µέρος, mares, means "part" [Taylor and Airey, 

2008a]. Meanwhile, the term "polymerisation" is used to describe the process of 

linking the small molecules or monomers together. PMBs that have been used in 

road construction can be divided into two main groups, namely the elastomeric and 

plastomeric substances.  

 

According to Airey [2003], and Taylor and Airey [2008b], approximately 

75% of PMBs can be classified as elastomeric, 15% as plastomeric with the 

remaining 10% being either rubber or miscellaneously modified used worldwide. 

The PMB is produced by mixing bitumen and polymer using a low or high shear 

mixer. The use of PMBs could be expected to have a resistance to traffic at least 

four times greater than unmodified bitumens and better performance in extreme 

climatic conditions [Lenoble and Nahas, 1994].  
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Table 2.1: General classification of bitumen additives and modifiers [Airey, 2009] 

Type Generic examples  

1 Fillers • Mineral fillers: Crusher fines 

• Lime 

• Portland cement 

• Fly ash 

• Carbon black 

2 Extenders  

(chemical modifiers) 
• Organo-metallic compounds 

• Sulphur 

• Lignin 

• Polymers 

3 Rubbers 

(thermoplastic elastomers) 

a. Natural latex 

b. Synthetic latex 

c. Block copolymer 

d. Reclaimed rubber 

• Natural rubber 

• Styrene-butadiene-rubber (SBR) 

• Polychloroprene latex 

• Styrene-butadiene-styrene (SBS) 

• Styrene-isoprene-styrene (SIS) 

• Crumb-rubber modifier 

4 Plastic 

(thermoplastic polymers) 
• Polyethylene (PE)/polypropylene (PP) 

• Ethylene acrylate copolymer 

• Ethylene vinyl acetate (EVA) 

• Polyvinyl chloride (PVC) 

• Ethylene propylene or EPDM 

• Polyolefins  

5 Combinations • Blends of polymers in 3 and 4 

6 Fibres • Natural: asbestos 

• Rock wool 

• Man-made: polypropylene 

• Polyester 

• Glass-fibre 

• Mineral 

• Cellulose 

7 Oxidants • Manganese salts 

8 Antioxidants • Lead compounds 

• Carbon 

• Calcium salts 

• Amines 

9 Hydrocarbons • Recycling and rejuvenating oils 

• Hard and natural asphalt (gilsonite, TLA) 

10 Anti-stripping agents 

(adhesion improvers) 
• Amides 

• Lime 

11 Waste materials • Roofing shingles 

• Recycled tyres 

• Glass 

12 Miscellaneous • Silicones 

• De-icing calcium chloride granules 
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2.13.1 Plastomer 

 

In general, a plastomer can be divided into thermosets (thermosetting resins) 

and thermoplastics (Table 2.1), where the latter is commonly used in pavement 

applications. Thermoplastics are characterised by softening on heating and 

hardening on cooling. Thermoplastic polymers, when mixed with a base bitumen, 

associate below certain temperatures increasing the viscosity of bitumen. However, 

they do not significantly increase the elasticity of the bitumen and when heated they 

can separate which may give rise to a coarse dispersion on cooling [Taylor and 

Airey 2008a]. Accepting these limitations, ethylene vinyl acetate (EVA) is the most 

widespread plastomer used with bitumen, because the less expensive polyethylene 

(PE) and polypropylene (PP) have been observed to exhibit low compatibility with 

bitumen [Polacco et al., 2003, 2004]. Yeh et al. [2010] found that the PE PMB 

increases rutting resistance at high temperatures but does not significantly improve 

elastic resilience. 

 

 

 

 

  

Fig. 2.25: EVA copolymer structures [SpecialChem, 2012] 

 

EVA is basically built from two monomers, ethylene and vinyl acetate, as 

shown in Fig. 2.25. Table 2.2 lists the advantages of using this EVA modifier. 

According to Sengoz et al. [2009], EVA characteristics lie between those of low 

density polyethylene (LDPE), semi rigid, translucent product and those of a 

transparent and rubbery material similar to plasticised polyvinyl chloride (PVC) and 

certain types of rubbers. EVA copolymer alters the rheological characteristics of 

unmodified bitumens by increasing the temperature and frequency (or time of 

loading) dependent binder stiffness (|G*|), binder elasticity (G') and elastic response 



 48 

(reduced δ) with the larger increases being experienced by polymeric dominant 

modified bitumens. 

 

Table 2.2: Advantages of the EVA PMBs 

Advantages References 

• Improves workability of the bitumen during 

compaction 

• Improves deformation resistance to rutting 

• Improves compatibility 

• Safer handling 

• Easily blended into bitumens using a simple low-

shear mixing machine 

• Thermally stable at normal temperatures 

• Increases the resistance to damage caused by fuel 

spillages 

• Increases stability and air voids 

• Improves stripping properties 

• Decrease flow value and unit weight 

• Heat stable and does not deteriorate at high 

temperatures 

Isacsson and Lu [1995]; 

Airey [1997]; Panda and 

Mazumdar [1999]; Read 

and Whiteoak [2003]; 

Asphalt Academy 

[2007]; Taylor and Airey 

[2008a] 

 

The properties of EVA vary for different grades depending on the chain length and 

molecular weight of the polymer, the vinyl acetate (VA) monomer content and the 

crystallinity. For the EVAs, the VA content and melt flow rate (MFR) are as 

important as the styrene content and linear or radial structure in SBS, when 

determining specific properties. EVA modified bitumen is also more heat stable and 

does not deteriorate at elevated temperatures during storage as fast as SBR and SBS 

modified bitumen products. Therefore, its storage stability is better compared to 

SBS and SBR [Asphalt Academy, 2007]. 

 

2.13.2 Elastomer 

 

An elastomer is a polymer capable of recovery after high deformation. It has 

been used to modify bitumen. Examples of elastomers are shown previously in 

Table 2.1. Of these groups, the styrenic block copolymers (e.g. styrene butadiene 

styrene, SBS) have the greatest potential when blended with unmodified bitumens 

[Airey, 1997]. Fig. 2.26 depicts the copolymer structure of SBS.  
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Fig. 2.26: SBS copolymer structures [Airey, 1997] 

 

When the SBS copolymer is added to hot bitumen, it absorbs maltenes from 

bitumen and swells by up to nine times its initial value [Sengoz et al., 2009]. A 

critical or continuous network can be formed throughout bitumen with a suitable 

concentration of SBS, normally around 5 to 6% (by mass) [Isacsson and Lu, 1995]. 

Once the critical networks begin to form, no significant property increase can be 

observed, even though the polymer content is elevated [Chen et al., 2002]. The use 

of more than 8% of SBS concentration is generally impractical in road construction 

[Wojciech and Mieczyslaw, 1996]. Cong et al. [2008] observed the addition of 

more than 8% of SBS in bitumen resulted in storage instability. The minimum 

content (or percentage) of polymer modification also depends on the nature of 

unmodified bitumens [Lu and Isacsson, 1999a; Airey, 2004]. Advantages of the 

SBS PMBs are shown in Table 2.3. 

 

Table 2.3: Advantages of the SBS PMB 

Advantages References 

• The ability to resist permanent deformation 

• Enhances low temperature crack resistance 

• Enhances high temperature rutting resistance of 

asphalt mixtures 

• Easily manufactured by blending powder with 

conventional bitumens using low to medium- shear 

mixing. 

• Improves the low temperature properties of bitumens 

• Reduces creep stiffness and limiting stiffness 

temperature of bitumens 

• Decreases the pavement layers by almost half 

Ait-Kadi et al. [1996]; 

Lu et al. [1998]; Lu 

and Isacsson [1999b]; 

Airey [1997, 2004]; Ho 

and Zanzotto [2005]; 

Asphalt Academy 

[2007]; Vlachovicova 

et al. [2007]; Yildrim 

[2007]. 
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The effect of an increase of SBS polymer on the softening point of a base 

bitumen with varying asphaltene contents is shown in Fig. 2.27. The rate of increase 

rate in the softening point and thus, the shape of the curve is dependent mainly on 

the asphaltene content of the base bitumen, the type and grade of the SBS polymer 

and the percentage thereof. Typically, the curve assumes an S shape as the SBS 

structure changes from a fragmented form to a continuous network in the modified 

binder [Asphalt Academy, 2007].  

 

 

 

Fig. 2.27: Typical effect of SBS on the softening point of bitumen with different 

content of asphaltenes [Asphalt Academy, 2007] 

 

There is a direct correlation between elastic recovery and deformation 

resistance where an increase in elastic recovery provides higher resistance to 

deformation. Cohesive strength also increases with the increase of elastic recovery. 

SBS PMBs are generally preferable due to the higher softening points and higher 

elastic recovery properties, which in turn can be applied at lower temperatures as a 

result of the lower relative viscosities. At these temperatures, the addition of SBS 

improves the flexibility of the bitumen which inhibits cracking and improves the 

resistance of the binder to crack reflection [Asphalt Academy, 2007]. 
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3 

Rheological Models 

 

 

 

 

 

3.1 Background 

 

The use of a model can be a valuable alternative tool to fit or describe the 

rheological properties of bituminous binders. Using this approach, the rheological 

parameters (|G*|, δ, etc.) at any particular temperature and frequency of a bitumen 

can be described using the rheological models to an accuracy that is acceptable for 

most purposes. In the 1950s and 60s, nomographs were used to describe the 

rheological properties of bitumen [Van der Poel, 1954; Heukelom and Klomp, 

1964]. These nomographs (for example the Van der Poel's Nomograph) use 

methods like a penetration test to estimate binder's stiffness. The penetration test has 

a very complex variable stress state and cannot be used reliably as a measure of 

stiffness that would relate to a test conducted in shear at a known rate. A significant 

change in measurement accuracy when compared to the 1950s and subsequently the 

invention of computational techniques have caused this method be replaced by 

mathematical and mechanical models. 

 

In the mathematical approach, a mathematical formulation is adjusted and 

fitted to the experimental main curve. On the other hand, in the mechanical element 

approach, use is made of the fact that the linear viscoelastic properties of material 

can be represented by a combination of spring and dashpot models, resulting in a 

particular mathematical formulation [Eurobitume, 1995]. Most of the rheological 

models rely on the construction of stiffness/complex modulus (|G*|) and phase 

angle (δ) master curves and the determination of temperature shift factor. They 

imply that the time-temperature superposition principle (TTSP) concept holds for 

the binders [Dobson, 1969; Jongepier and Kuilman, 1969; Dickinson and Witt, 

1974; Christensen and Anderson, 1992; Anderson et al., 1994; Lesueur et al., 1996]. 
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The use of nomographs will be firstly discussed, followed by the mathematical and 

mechanical models. In this study, stress is given to the use of models on viscoelastic 

liquids, even though some of them can be used for viscoelastic solids as well.  

 

3.2 Nomographs 

 

3.2.1 Van der Poel's Nomograph 

 

As early as the 1950's, Van der Poel introduced the concept of bitumen 

stiffness modulus as a function of temperature and time of loading into a 

nomograph [Van der Poel, 1954, 1955]. This model, based upon 20 years of 

laboratory work [Yoder and Witczak, 1975], used the empirical tests, penetration 

and ASTM Ring-and-Ball softening point (TR&B), as input parameters [Van der 

Poel, 1954, 1955]. According to Van der Poel, a simple concept of Young's 

modulus, E, can be applied to viscoelastic materials and can be shown as the 

following [Van der Poel, 1954; Heukolem 1966]: 

 

straintotal

stresstensile
==

ε

σ
E        (3.1) 

 

The "stiffness modulus" of bitumen, normally abbreviated as S, is defined as the 

ratio between stress and strain [Heukolem, 1966; Heukolem and Klomp, 1964; 

Yoder and Witczak, 1975]: 

 

( )
Tt,

Tt,
ε

σ
S 








=           (3.2) 

 

where S is denoted as stiffness modulus and depends on loading procedure, 

frequency (time of loading) and temperature. It is worth mentioning that the term S 

was firstly coined by Van der Poel and is now widely used among bitumen and 

asphalt mixture technologists [Heukolem, 1966; Airey, 1997]. 
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Fig. 3.1: Van der Poel's Nomograph [Van der Poel, 1954] 
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In this work, a total of 47 bitumen samples from different sources were tested 

with Penetration Index (PI) values ranging from –2.3 to +6.3 at different temperatures 

and frequencies. In addition, Van der Poel indicated that S depends on four variables: 

[a] time of loading or frequency, [b] temperature, [c] hardness of bitumen and [d] 

rheological type of bitumen. The rheological stiffness property of bitumen could 

therefore be estimated by entering the following information; [a] temperature, [b] 

softening point, [c] loading time and [d] PI into the nomograph. The hardness of 

bitumen can be completely characterised by the Ring-and-Ball softening point and the 

PI determines the rheological characteristics.  

 

Meanwhile, for purely viscous behaviour, differences in hardness can be 

eliminated by a choice of temperature where the viscosities of all bitumen are equal. 

The bitumen stiffness modulus, S, is a function of time of loading (s), the Tdiff = (TR&B 

–T) and PI. The PI can be used to characterise the rheological type and can be 

determined from the following equation: 

 










−

−
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+

−
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50

PI10
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     (3.3) 

 

where the TR&B is ring-and-ball softening point temperature (
o
C) and T is penetration 

temperature (normally taken at 25
o
C) and the penetration value of 800 dmm 

corresponds to the penetration at softening point temperature for bitumens. Therefore, 

obtaining test results from one penetration test and the ring-and-ball softening point 

test, S can be found from the nomograph for any given temperature. Van der Poel's 

Nomograph is shown in Fig. 3.1. 

 

It can be recapitulated that S at any temperature condition and time of loading, 

within a factor of two, can be described solely on penetration and softening point data 

[Van der Poel, 1954; Bonnaure et al., 1977]. Van der Poel employed the TTSP in the 

construction of his nomograph even though it was not clearly written in his paper 

[Anderson et al., 1994]. According to Van der Poel, the accuracy of this nomograph 

which covers a temperature range of 300
o
C, is amply sufficient for engineering 

purposes. It was found that at lower temperatures, all bitumens behaved elastically in 
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the classical sense, with S being equal to 3 910× Pa. This value is equal to the glassy 

modulus, in extension or flexure, of bitumen [Christensen and Anderson, 1992]. 

 

The precision of mathematical functions used by Van der Poel in developing 

the nomograph was never described in any publication [Anderson et al., 1994]. 

However, the following approximation formula (only) matches a limited portion of 

the nomograph [Ullidtz, 1979; Thom, 2008]: 

 

( )5

BR

PI36807 e101571 TTt.S &

. −××××= −−−      (3.4) 

 

where S is bitumen stiffness (in MPa), t is loading time (seconds) and T is temperature 

(
o
C). The other symbols are as previously defined. However, this equation is restricted 

to a range of input parameters; t between 0.01 and 0.1 seconds; PI between –1.0 and 

+1.0; and temperature difference (TR&B–T) between 10
o
C and 70

o
C [Ullidtz 1979; 

Ullidtz and Larsen, 1983]. 

 

Van der Poel's Nomograph has been widely adopted in pavement design by 

various researchers and in fact, efforts have been made to modify this nomograph 

[Heukolem, 1966, 1973; McLeod, 1972]. Those modifications, however, are largely 

minor and cosmetic and will be discussed in the following section [Anderson et al., 

1994]. As it stands, the nomograph is a convenient and easily accessible method for 

practical use. This model can be used to estimate S over a wide range of temperature 

and loading times to an acceptable accuracy [Gershoff et al., 1999].  

 

Nevertheless, Van der Poel and other researchers found several shortcomings 

when using this nomograph. For example, this nomograph is clearly unable to 

describe the behaviour of unmodified bitumen which contains more than 2% waxy 

elements [Van der Poel, 1954; Kong et al., 1979]. This model is principally developed 

on unmodified bitumens and not suitable to be used for polymer-modified bitumens 

(PMBs) [Anderson et al., 1992; Read and Whiteoak, 2003]. It is well known that 

modified bitumens are more complex in terms of their rheological behaviour and thus 

this nomograph could be misleading. The modified binder data lies almost exclusively 

below the equivalency line and clearly indicates the inability of the nomograph to 
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describe the stiffness of modified bitumen from the penetration and softening point of 

these materials [Airey, 1997].  

 

In addition, the discrepancies between stiffness values measured and predicted 

with the nomograph for modified bitumen tend to be more significant at the lower 

temperatures and longer loading times [Kong et al., 1979; Anderson et al., 1992, 

1994]. Moreover, this method is not readily amendable to numerical calculation since 

it involves the usage of a nomograph [Dobson, 1969]. Although the nomograph 

method seems to be effectively used, it is not convenient for analysis involving 

computers due to the lack of mathematical expressions [Zeng et al., 2001]. However, 

it must be noted that a computerised version of the nomograph produced by Shell is 

also available in the market. 

 

3.2.2 Modified Van der Poel's Nomograph 

 

As previously mentioned, Van der Poel's Nomograph has been widely used by 

various researchers for describing the stiffness of bitumen. In conjunction with this 

model, Heukelom and Klomp [1964] developed a relationship between stiffness of 

bitumen, S and the modulus of asphalt mixture, Sm, irrespective of the combination of 

loading time (frequency) and temperature underlying the value of S. A semi-empirical 

formula of this relation can be shown as follows:  
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where Sm is asphalt mixture stiffness (N/m
2
) and S is bitumen stiffness (N/m

2
). Cv 

(volume concentration of aggregates) and n are calculated using the following 

equations: 

  

BA

A

VV

V
C

+
=v          (3.6) 

 

and 

 



 57  








 ×
×=

S
.n

4104
log830        (3.7) 

 

where VA and VB are percentage volume of aggregate and bitumen respectively. 

Heukolem and Klomp [1964] studied Van der Poel's method in detail and then 

modified the relationship between S, Sm, and Cv using Equations 3.5 to 3.7, as shown 

in Fig. 3.2. However, the stiffness equation suffers from various shortcomings, one of 

which is that it is only applicable for air void contents of about 3% and Cv values from 

0.6 to 0.9.  

 

 
 

Fig. 3.2: Sm/S as a function of S and Cv [Heukolem and Klomp, 1964] 

 

It is recommended to use Cv' if the air voids content is larger than 3% 

[Bonnaure et al., 1977; Ullidtz, 1979; Ullidtz and Larsen, 1983]: 

 

( )( )BA

v
v

VV +−×+
=

10001.097.0

C
'C       (3.8) 

 

However, this correction is applicable only to asphalt mixture having bitumen volume 

concentration factor, Cb satisfying the following equation [Yoder and Witczak, 1975]: 
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In 1966, Heukelom re-shaped Van der Poel's Nomograph with a slight 

correction at very low PI values [Heukolem, 1966]. To validate the modification, 

Heukolem [1966] checked the model described against the data for hundreds of 

bitumens representing a variety of grades from different sources. He found that as in 

the original version, the accuracy is comparable with the distance between lines, or 

better.  

 

This new revised nomograph was used to describe stiffness of bitumen for 

roughly seven years until Heukelom found uncertainty when reviewing the original 

data on a few hundred bitumens. An extensive study of the penetration at the 

softening point revealed that considerable departures from 800 dmm penetration may 

occur with bitumen having high softening points and high PI values [Heukolem, 

1973]. In the few cases where there was a real departure, Heukolem replaced 

softening point (TR&B) with softening point temperature at penetration of 800 dmm. 

Consequently, PI (pen/pen) is preferred to PI (pen/R&B). Fig. 3.3 shows the revised 

nomograph [Heukolem, 1973]. Heukelom used this new nomograph to describe the 

stiffness of bitumen, particularly for blown bitumen
1
 The revised version of Van der 

Poel’s Nomograph is no different from the original ones but with additional or more 

adequate text as discussed by Heukelom. The key change is the TR&B axis becomes 

T800pen. 

 

Heukelom found that the results corresponded with the experimental values 

within 10 to 15%, which is the average of repeatability of the measurements. The use 

of TR&B and PI (pen/R&B), in contrast, gave errors which were 4 to 10 times larger. 

                                                 
1
Blown bitumen is produced via an oxidation process that involves passing air through the short 

residue, either on a batch or a continuous basis, with the short residue at a temperature between 240
o
C 

and 320
o
C) [Read and Whiteoak, 2003]. 
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The revised nomograph can be used for dynamic loading conditions if the frequency, f 

is replaced by an effective loading time of ft π2/1= .  

 

 

Fig. 3.3: Modified Van der Poel's Nomograph [after Heukelom, 1973]
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However, for a complete description of the dynamic behaviour of bitumen, the 

phase angle between stress and strain is needed; needless to say, its value cannot be 

obtained from the nomograph [Heukelom, 1973].  

 

3.2.3  McLeod's Nomograph  

 

McLeod found that it was impossible to obtain a fixed relationship between 

Pfeiffer and Doormaal's PI for bitumens and low temperature transverse pavement 

cracking performance due to penetration of many bitumens at their softening point 

varying widely from 800 dmm penetration [McLeod, 1972]. He established a 

different method to measure a quantitative difference of the variation in temperature 

susceptibility for bitumen. McLeod [1976] defines temperature susceptibility as the 

rate at which the consistency of bitumen changes with a change in temperature. This 

method uses the penetration of bitumen at 25
o
C and its viscosity in centistokes at 

135
o
C (or in poise at 60

o
C) [McLeod, 1972]. Therefore, the term "pen-vis number" 

(PVN) is used by McLeod instead of PI as a quantitative measure of temperature 

susceptibility. The PVN has been designated because the temperature susceptibility 

of bitumen is based on penetration and viscosity values. The PVNs are numerically 

similar to, and must be numerically identical with PI values for most types of 

bitumen because of the way in which it is derived. The PVN can be obtained by 

using the following equation [McLeod, 1972, 1976, 1987]: 

 

( )
( )ML

XL
51PVN

−

−
×−= .         (3.10) 

 

where X is log viscosity (centistokes) measured at 135
o
C, L is log viscosity in 

(centistokes) at 135
o
C for a PVN of 0.0 and M is log viscosity (centistokes) at 

135
o
C for a PVN of –1.5. Fig. 3.4 shows a correlation between viscosity at 135

o
C 

and penetration at 25
o
C for various PVN values. 

 

The following equations (based on a least squares line) could be used to 

calculate more accurate values of L and M [McLeod, 1976; Roberts et al., 1996; 

Saleh, 2007]: 
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( )C25atnPenetratiolog796702584L o.. −=     (3.11) 

 

and 

 

( )C25atnPenetratiolog610940462893M o.. −=     (3.12) 

 

 
 

Fig. 3.4: Correlation between viscosity at 135
o
C and penetration at 25

o
C [McLeod, 

1972] 

 

The lower PVN values indicate that bitumens are more susceptible to 

temperature [Roberts et al., 1996]. The PVN values for bitumen are normally 

between +0.5 and –2.0 with a good range between +1 and –1 [Saleh, 2007]. For 

example, bitumen has a penetration of 100 dmm at 25
o
C and a viscosity of 400 

centistokes at 135
o
C. From McLeod's chart (Fig. 3.4), L and M are taken as 450 and 

180 centistokes, respectively. Using Equation 2.12, the PVN value is calculated 

equal to –0.19. Fig. 3.5 shows the suggested modification of Heukolem's version of 

Pfeiffer and Doormaal's chart used to obtain the base temperature. Supposing that 

the penetration of bitumen and the PVN are 90 and –1.0, respectively (calculated 

from Equation 2.12), a straight line intercept gives a value of 20
o
C which is 25

o
C 

(the temperature at which the penetration test was made) below the base 

temperature of bitumen. Therefore, the base temperature for this sample is 45
o
C. 
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After having established the base temperature, the stiffness of bitumen for 

any specific temperature and rate of loading could be obtained using Fig. 3.6 

[McLeod, 1973, 1976]. Graphically, this model is more or less similar to Van der 

Poel's Nomograph, but has a slight modification where McLeod used the PVN and 

temperature correlation to obtain stiffness of bitumen. For instance, it is assumed 

that the loading time is 20 000 seconds at -28.9
o
C. The service temperature is 45 + 

28.9 = 73.9
o
C, with the base temperature of bitumen being 45

o
C. By drawing a 

straight line intercept at 20 000 seconds, 73.9
o
C and the PVN of –1.0, S is found 

equal to 49 MPa. Finally, McLeod used another graph that correlates the stiffness of 

bitumen with the stiffness of asphalt mixture via Cv curves [McLeod, 1976, 1987]. 

 

 
 

 

Fig. 3.5: Suggested modification of Heukolem's version of Pfeiffer's and Van 

Doormaal's Nomograph [McLeod, 1972]. 
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Fig. 3.6: Suggested modification to determine stiffness modulus of bitumen 

[McLeod, 1972] 

 

McLeod's suggestion of using the relationship between viscosity and base 

temperature rather than the Ring-and-Ball softening point temperature is a 

significant deviation from Van der Poel's Nomograph. The disadvantage of this 

model is its inability to describe the rheological properties of PMBs since it was not 

developed for that type of material. As discussed by Robert et al., [1996], one 

noticeable difference between PI and PVN is that the PI changes on ageing (during 

mixing and subsequently in service) whereas PVN remains substantially the same. 

In general, Van der Poel, Heukolem and McLeod's nomographs suffer from similar 
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shortcomings and their use should be avoided if other, more rational and accurate 

methods of characterisation are available. Anderson et al. [1994] found the 

discrepancies between measured and predicted values were more noticeable at 

lower temperatures and longer times of loading. When such nomographs are used, 

the proper metric and conversion values are essential [Yoder and Witczak, 1975]. 

 

3.3 Mathematical Models 

 

3.3.1 Jongepier and Kuilman's Model 

 

Various researchers have used explicit mathematical models to describe or 

fit master curves of complex modulus for bitumen. Among them, Jongepier and 

Kuilman [1969] developed a mathematical model, suggesting that the relaxation 

spectrum of bitumen is approximately log normal in shape. Based on this 

assumption, they derived various rheological functions [Jongepier and Kuilman, 

1969, 1970; Soleymani et al., 1999]. The relaxation spectrum was derived from 

experiments using the Weissenberg rheometer operating from –20
o
C

 
to 160

o
C at 

frequencies from 5×10
-4 

to 50 Hz (from 3×10
-3

 to 32 rad/s) [Lesueur et al., 1996]. 

A total of 14 samples from different sources such as "pitch type bitumens" (strongly 

temperature susceptible), "road bitumens" and "blown type bitumens" (rubbery 

grades) were used in this study.  

 

However, this approach requires the use of integral equations and/or 

transforms, which can only be solved using numerical methods. The relaxation 

spectra of bitumen, although close to a log normal distribution at long loading 

times, deviated significantly from a log normal distribution at short loading times 

[Anderson et al., 1994]. The Jongepier and Kuilman's Model is based on the 

distributions of relaxation time and expressed mathematically using a relatively 

complex set of equations.  

 

First, the frequency has been replaced by a (dimensionless) relative 

frequency: 

g

r
G

ωη
ω 0=          (3.13) 
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where ωr is reduced frequency (rad/s), η0 is zero shear viscosity (Pa.s) and Gg is the 

glassy modulus (Pa). The logarithmic relaxation time distribution of the log normal 

type is given by: 
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where H(τ) is the relaxation spectrum distribution, β is the width parameter, τ is 

relaxation time (s) and τm is a time constant (which determines the position of the 

spectrum along the relaxation time τ axis at a given temperature). Gg is defined as 

[Jongepier and Kuilman, 1970]: 
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and the parameter τm is given as: 
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Jongepier and Kuilman found the parameter β depends strongly on the type of 

bitumen. Moreover, β for a particular bitumen can only be found by curve fitting. 

The storage and loss moduli are expressed by Equations 3.17 and 3.18 after the 

following substitution: tu ωln=  and rx ω
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The tan δ (loss tangent), is simply the ratio of G" to G' [Jongepier and Kuilman, 

1969, 1970; Anderson et al., 1994].  

 

They numerically integrated Equations 3.17 and 3.18 for a range of β values 

to produce |G*| and δ master curves. The factor β was found to characterise the 

shape of the relaxation spectrum, and was thus determined to be a rational 

parameter for characterising bitumen. Additionally, β was observed to be strongly 

correlated with the composition of bitumen. It is reported that values from this 

model fit the observed data to within the experimental error; but that the accuracy of 

the model was not as good for bitumen with large β values as for bitumen with 

small β values [Anderson et al., 1994].  

 

Jongepier and Kuilman [1969] relied upon the WLF equation to describe the 

temperature dependence of bitumens. In general, the Jongepier and Kuilman's 

Model is reasonably accurate in its treatment of the viscoelastic properties of 

bitumens. Brodynan et al. [1960] suggested that the relaxation times are not log 

normally distributed since they found relaxation spectrum highly skewed on a 

logarithmic scale distribution. It is also reported that the Jongepier and Kuilman's 

Model makes use of integral equations which makes practical calculations with this 

model impossible [Christensen and Anderson, 1992; Anderson et al., 1994; Elseifi 

et al., 2002]. In addition, no details concerning the precise determination of the 

model parameters were presented by the researchers [Anderson et al., 1994].  

 

3.3.2 Dobson's Model 

 

Dobson developed a mathematical model for fitting a master curve, based on 

the empirical relationship between |G*| and δ for bitumen [Dobson, 1969, 1972; 

Soleymani et al., 1999]. However, Dobson does not express modulus in term of 

frequency, but the reverse. He presented the results in terms of a universal master 

curve, with the intention to characterise bitumen by graphical comparison with this 

master curve [Anderson et al. 1994]. He described how the stiffness of bitumen 

under any conditions of temperature and rate of loading may be calculated from 

three fundamental parameters; [a] a viscosity, [b] temperature dependence and [c] 

rate dependence [Dobson, 1969, 1972]. The temperature dependence and viscosity 
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parameters are obtained by using a new viscosity-temperature chart, and the rate 

dependent parameter is obtained from measurement of apparent viscosity at two 

levels of shear stress.  

 

The viscosity measurements were made at 60
o
C by a vacuum capillary 

viscometer and at 25
o
C by a coni-cylindrical viscometer. The fundamental 

assumption of this model, which was based on the empirical observations of 

dynamic data on a range of bitumens, is that the log-log slope of the |G*| with 

respect to loading frequency is a function of the loss tangent and the width of the 

relaxation spectrum [Dobson, 1969; Anderson et al., 1994]:  

 

( ) ( )δ.δ

δ

dx

dy

tan0101tan1

tan

×−+
=       (3.19) 

 

where y = log (|G*|/Gg), |G*| is the complex modulus magnitude, Gg is glassy 

modulus, x = log (η0ωaT/Gg), η0 is the steady state or Newtonian viscosity and aT is 

the shift factor. Dobson also observed a linear relationship between tan δ and |G*| 

which can be expressed in the following form: 

 

byδ −=+ )tan1(log         (3.20) 

 

where b is a parameter describing the width of the relaxation spectrum. It may also 

be regarded as a shear susceptibility index and is related to the PI [Dobson, 1969]. 

Equations 3.19 and 3.20 can be combined to give a new equation for relating 

reduced frequency and complex modulus: 
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or by rearranging: 
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where ωr = η0ωaT/Gg and Gr = |G*|/Gg. 
b

rω
−

is a unique function of Gr
–b

. All the 

equations above are applicable for the value of .5.9tan ≤δ  Dobson developed an 
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instrument to measure the complex shear modulus of 45-mg bitumen samples over a 

frequency range from 2 to 200 Hz and over a continuously variable temperature 

range [Dobson, 1967]. This equipment was based on a plate measuring geometry. 

He used the value of Gg as 9101×  Pa ( 10101× dynes/cm
2
) at 59tan .δ ≥ , dy/dx = 1. It 

was found that the model exhibited good agreement with experimental data. 

 

Like Jongepier and Kuilman, Dobson described the effect of temperature on 

viscoelastic properties using the WLF equation. He found that a single set of 

coefficients could be used to fit the shift factor data for a range of bitumens, but a 

different coefficient set was needed for two extreme temperatures. The simple form 

of the WLF equation with two sets of constants: For T – Ts < 0, C1 = 12.5 and C2 = 

142.5 has been used. Meanwhile for T – Ts > 0, use was made with C1 = 8.86 and C2 

= 101.6. Ts is equivalent to the reference temperature, with Ts = Tg – 50. Tg was 

probably determined from dilatometric measurements [Anderson et al., 1994]. 

 

In general, Dobson's method for describing the temperature dependency 

appears to be reasonably accurate. He also presents a practical means for applying 

this part of his model to rheological data on bitumen. Nevertheless, this model also 

has several shortcomings. Maccarrone [1987] studied the Dobson Model for 

describing temperature dependence of aT and found the WLF equation with 

Dobson's coefficients over described the aT at temperatures below 20
o
C when 

applied to aged bitumens. It is difficult to assess the accuracy of Dobson's Model 

since he only made a few comparisons of measured and described |G*| and δ values. 

In addition, the failure to express modulus as an explicit function of reduced 

frequency is a serious shortcoming, as is the lack of a well-defined procedure for 

determining the constants in his equation for the modulus [Anderson et al., 1994]. 

In addition, the development of this model was not applied to modified bitumen. 
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3.3.3 Dickinson and Witt's Model 

 

Dickinson and Witt performed dynamic mechanical testing on 14 different 

bitumens and developed analytical expressions for the |G*| and δ in terms of their 

frequency dependencies. They proposed the following equation [Dickinson and 

Witt, 1974; Christensen et al., 1992]: 
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where |Gr*| is relative complex modulus at frequency, ω (i.e., gr GG**G = ), ωr is 

the relative angular frequency ( gTr Gaωηω 0= ) and β is a shear susceptibility 

parameter, which is defined as the distance on a logarithmic scale between Gg and 

the modulus at .ωr 1=  Meanwhile the phase angle (δ) can be expressed as the 

following: 
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where δ is the phase angle and δ' is the limiting phase angle at infinite frequency 

[Dickinson and Witt, 1974; Anderson et al., 1994]. By eliminating log ωr in 

Equations 3.23 and 3.24 a relationship between complex modulus and phase angle 

was established by Dickinson and Witt, treated as a hyperbola model: 
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Because of the limited temperature range examined, they used the same 

coefficients as Dobson to describe temperature dependence of the aT for their 

bitumen (see Dobson's Model). The standard errors (SE) of fit of |G*| obtained 

ranged from 0.008 to 0.025 on the logarithmic scale, corresponding to a maximum 

error of about 10%. The accuracy of the δ was not reported by Dickinson and Witt 

although it can be seen that the accuracy was comparable to the experimental error 
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in determining the phase angle [Christensen et al., 1992; Anderson et al., 1994]. In 

addition, Dickinson and Witt observed that the spectra were unsymmetrical with 

respect to the maximum value and disputed Jongepier and Kuilman's assumption of 

a log Gaussian distribution of relaxation times. 

 

The reported values of log Gg (Gg in Pa), ranged from 9.5 to 10.6, which are 

similar to the values of 9.7 or 10, reported by other researchers like Dobson [1969] 

and Jongepier and Kuilman [1970]. Maccarrone evaluated various models for 

describing the dynamic properties of bitumen based on 39 aged and 2 original 

bitumen samples. It was found that the Dickinson and Witt's Model fits the 

rheological data quite well with a standard error of estimate (Se) of log |G*| ranging 

from 0.001 to 0.012 [Maccarrone, 1987]. In general, this model is more practical 

and simpler than either Dobson's Model or Jongepier and Kuilman's Model but Gg 

and viscosity in the model are determined statistically and in may cases, 

overestimated [Anderson et al., 1994; Airey, 1997].  

 

3.3.4 Christensen and Anderson (CA) Model 

 

During the Strategic Highway Research Program (SHRP) A-002A study, 

Christensen and Anderson performed dynamic mechanical analysis (DMA) on 8 

SHRP core bitumens for the purpose of developing a mathematical model that 

described the viscoelastic behaviour of bitumen. The model will be referred to as 

the Christensen and Anderson (CA) Model. They noted that four primary 

parameters (the glassy modulus, Gg, the steady state viscosity, η0, the crossover 

frequency, ωc, and the rheological index, R) are needed to fully characterise the 

properties of any bitumen [Christensen and Anderson, 1992; Anderson et al., 1994]: 

 

• The glassy modulus (Gg) is the value that the complex modulus or stiffness 

modulus approaches at low temperatures and high frequencies (short loading 

times). Gg is normally very close to 1 910× Pa in shear loading for most 

bitumens and can be used for most purposes. 

• The steady-state viscosity (η0) is the steady-state, or Newtonian viscosity. In 

dynamic testing, it is approximated as the limit of the complex viscosity, 
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|η*|, as the phase angle approaches 90°. The 45° line that the dynamic master 

curve approaches at low frequencies is often referred to as the viscous 

asymptote. It is indicative of the steady-state viscosity, and the value of η0 is 

binder specific. 

• The crossover frequency (ω) or crossover time (tc) is the frequency at a 

given temperature where tan δ is 1. At this point, the storage and loss moduli 

are equal. For most bitumens, the crossover frequency is nearly equal to the 

point at which the viscous asymptote intersects the glassy modulus. The 

crossover frequency can be thought of as a hardness parameter that indicates 

the general consistency of a given bitumen at the selected temperature and is 

binder specific. The crossover frequency is the reciprocal of the crossover 

time, tc = 1/ωc. 

• The rheological index (R) is the difference between the glassy modulus, Gg, 

and the dynamic shear complex modulus at the crossover frequency, 

|G*(ωc)|. The rheological index is directly proportional to the width of the 

relaxation spectrum and indicates rheologic type. R is not a measure of 

temperature but reflects the change in modulus with frequency or leading 

time and therefore is a measure of the shear rate dependency of bitumen. R is 

binder specific. 

 

Fig. 3.7 shows some of the parameters mentioned above. 

 

 

 
 

Fig. 3.7: Definition of the CA Model [Christensen and Anderson, 1992] 
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The CA Model is presented as a series of equations for the primary dynamic 

viscoelastic functions. For |G*|, the following mathematical function can be used: 
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where ωc is the crossover frequency and R is a rheological index. The other 

parameters are as defined previously. Bitumen with larger values of R exhibit wider 

relaxation spectra. Meanwhile δ (in degrees) can be taken as: 
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The other parameters are as defined above [Christensen and Anderson, 1992; 

Marasteanu and Anderson, 1996; Zeng et al., 2001; Silva et al., 2004]. Christensen 

and Anderson combined Equations 3.26 and 3.27 to define R as:  

 

( )









−














×

=

90
1log

G
log2log

δ

G

*

R
g

        (3.28) 

 

where the parameters are as previously defined. They found this equation is quite 

useful when the value of R is desired, but it is impossible to obtain data at the region 

when δ = 90
o
. In using this equation to calculate the R value, Gg can be taken as 

1 910×  Pa in shear and 3 910× Pa in extension (or flexure).  

 

It was reported that Equation 3.28 is reasonably accurate within the region 

where δ is between 10
o
 to 70

o
 and the best results are obtained near the crossover 

point, where δ = 45
o
 [Anderson et al., 1994]. This model is not recommended to be 

used at temperatures and frequencies where δ approximates 90
o
. The CA Model was 

validated using the SHRP core bitumens (unaged), thin film oven test (TFOT) aged 

and pressure ageing vessel (PAV) aged. It can generally be used over a wide range 
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of frequencies and temperatures extended well into the glassy region [Christensen 

and Anderson, 1992]. Silva et al. [2004] found the model presented lack of fit 

particularly at high temperatures and/or long loading times (Fig. 3.8). 

 

 

 
 

 

Fig. 3.8: Modelling using the CA Model [Silva et al., 2004] 

 

To surmount this inconsistency, Christensen and Anderson suggested 

calculating a second set of parameter values for the secondary region in which the 

value of R is set equal to 0.81 when Newtonian flow is approached. They have 

manipulated the equations above to generate a series of equations from which the 

LVE parameters for the secondary viscoelastic region can be calculated 

[Christensen and Anderson, 1992; Anderson et al., 1994]. The most important of 

these calculations is for determination of δv, which divides the primary and 

secondary regions: 
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where δv is transition phase angle (degrees), η0 is the steady-state viscosity (Pa.s), 

ωc is the crossover frequency (rad/s), Gg is the glassy modulus (Pa) and R is the 

rheological index.  
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From Equation 3.29, it is clear that the value of Gg/ωc must be equal to or 

less than the value of the steady-state viscosity, η0, which is always the case for 

unmodified bitumens. If the value of these parameters is equal, it means that the 

same LVE parameters apply throughout the entire region of behaviour. This 

phenomenon will sometimes occur in bitumens having very high asphaltene 

contents. Once δv is known, it can be used in conjunction with the primary LVE 

parameters to estimate the appropriate values for the viscous flow region [Anderson 

et al., 1994].  

 

For estimating, Ggv, 
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where Ggv is the limiting modulus in the viscous flow region and the other 

parameters are as previously defined. 

 

For estimating ωcv, 
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where ωcv is the location parameter for the viscous flow region (rad/s) and the other 

parameters are as previously defined. 

 

These two parameters, Ggv and ωcv can be used in conjunction with the 

standard value of R in the viscous region (0.81) to generate all viscoelastic functions 

at high temperatures and/or low frequencies. The primary set of parameters should 

be used when the phase angle is below δv, the secondary parameters (for viscous 

flow), when the phase angle is above δv In many cases, it is tedious to first estimate 

the phase angle, compare it with δv, and then determine if the proper set of 

parameters has been used. Therefore, a fourth parameter, the transition frequency, 

ωv is useful: 
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when estimating the modulus or phase angle from the LVE parameters, it is first 

necessary to check whether the loading frequency is above or below ωv. If the 

loading frequency is above the ωv, the primary LVE parameters are used. If the 

loading frequency is below ωv, the values for the viscous flow region are used.  

 

Although the division of the master curve into two regions with two set of 

parameters may seem unnecessarily complicated, it has been found that this method 

is the only way to achieve reasonable accuracy in mathematical modelling while 

still maintaining the use of the explicit parameters that characterise the master 

curve. In practice, the primary parameters are of more interest and can be applied 

with confidence to temperatures up to about 45
o
C under typical traffic loading 

times. At higher temperatures, the only property that is of practical interest is the 

steady-state viscosity, which is one of the explicit parameters from the master curve 

therefore, in practical applications, it is generally not necessary to use the 

parameters for the viscous flow region. These parameters were developed and 

presented here in the interest of completeness. In research and detailed pavement 

modelling applications, it may also be desirable to have a comprehensive and 

accurate model for the LVE behaviour of bitumens [Anderson et al., 1994]. 

 

The WLF equation is used above the defining temperature, Td and in the 

Newtonian region. Td is a characteristic parameter for each bitumen. It is reported 

that the values of C1 = 19 and C2 = 92 can be used for all bitumens. However, it is 

recommended to obtain the C1 and C2 by optimisation process from experimental 

data. No universal values can, a priori, be applied. Meanwhile, for the temperatures 

below Td and in the Newtonian region, an Arrhenius function is used to describe aT. 

The activation energy (Ea) for flow below Td was reported to be 261 kJ/mol. In 

general, the CA Model is relatively simple in shape and reasonably accurate as 

compared to the previous models. However, the sensitivity analysis showed the use 

of only parameters related to the shape of the relaxation spectrum (rheological 

index) is not enough to describe bitumen behaviour [Silva et al., 2004]. In addition, 
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the model is not able to model the rheological properties of modified bitumen 

[Airey, 1997]. 

 

3.3.5  Fractional Model 

 

Stastna et al. proposed a simple model for |G*| and δ to describe the 

behaviour of bitumen. The model, called the Fractional Model, is based on the 

generalisation of the Maxwell Model [Stastna et al., 1985, 1994, 1996, 1997, 1999a, 

1999b; Lesueur, 1999]. This model has a relatively low number of parameters and 

requires only half the parameters compared to the generalised Maxwell Model. |G*| 

represents the response function of viscoelastic materials and can be described by a 

general power of a rational fraction. Models of this type have been studied by 

Stastna et al. [1985] and comparison with experimental data for polymeric solutions 

can be found in the study of Stastna et al. [1994]. |G*| can be shown as the 

following: 
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where µk and λk are the relaxation times (µk > 0, λk > 0) and m and n are the numbers 

of relaxation time (n > m). Stastna et al. found the Fractional Model is much more 

flexible than the generalised Maxwell Model and is easily manageable. A phase 

angle, δ can be expressed as: 
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where a is the Fourier transform of the Dirac delta function. They performed DMA 

on 19 unmodified and 5 modified bitumen samples from different sources. For 

almost all cases and with the reference temperature set at 0
o
C, the Fractional Model 

generates excellent fitting of |G*| and δ master curves, for both the unmodified and 

modified bitumens (Fig. 3.9). 
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Fig. 3.9: Comparison between measured (dotted) and descriptive (lines) data using 

the Fractional Model [Stastna et al., 1997] 

 

Stastna et al. [1999] in their study employed both the WLF and Arrhenius 

equations for shifting purposes but stress was given to the earlier equation for a 

better fit. Nevertheless, no details concerning the precise determination of the 

parameters were presented in their papers. Marasteanu and Anderson [1999a] 

reported this model lacks statistical robustness because of the number of unknown 

parameters (10 to 15) approaches the number of observations. Indeed it is difficult 

to interpret a model with so many parameters on a phenomenological basis. 
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However, they found the degree of flexibility offered by the model is very useful 

when simulating plateaus or other irregularities in the master curves. This, however, 

can also lead to the fitting of anomalous portions of the master curve that are the 

result of testing error, rather than real rheological properties of binders [Marasteanu 

and Anderson, 1999a]. 

 

3.3.6  Christensen Anderson Marasteanu (CAM) Model 

 

Marasteanu and Anderson [1999a] developed a new model by modifying the 

CA Model to improve the fitting particularly in the lower and higher zones of the 

frequency range of bitumens. The model known as the CAM Model after 

Christensen, Anderson and Marasteanu, attempts to improve the descriptions of 

both unmodified and modified bitumen. The researchers applied the Havriliak and 

Nagami Model to the initial CA Model and proposed the following equation for |G*| 

[Marasteanu and Anderson, 1999a; Li et al., 2006]. 
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where v = log 2/R and R is the rheological index. δ is defined as: 
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 The introduction of w parameter addresses the issue of how fast or how slow 

the |G*| data converge into the two asymptotes (the 45
o
 asymptote and the Gg 

asymptote) as the frequency goes to zero or infinity [Marasteanu and Anderson, 

1999a]. 

 

During the work, Marasteanu and Anderson tested their model using 38 

unmodified and modified bitumens. The fitted |G*| values of the measured values 

for the CAM Model and CA Model were within 10–35%, respectively. They found 

that typically the lack of fit occurred at the two asymptotes of the master curves and 
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it was believed that the departure from the thermorheologically simplicity is 

bitumen dependent and is strongly related to bitumen composition, especially the 

presence of waxy elements and higher asphaltenes. Marasteanu and Anderson did 

not clearly specify the equation for describing the temperature dependence of 

bitumen. The degree of precision in modeling |G*| and δ was greater than the 

original CA Model. However, anomalies were still seen in the construction of a 

smooth master curve when test bitumens behaved as thermorheologically complex 

materials. Like the CA Model, Silva et al. [2004] found the CAM Model presented 

lack of fit particularly at high temperatures as shown in Fig. 3.10.  

 

 
 

 

 

Fig. 3.10: Modelling using the CAM Model [Silva et al., 2004] 

 

3.3.7 Bahia and Co-workers' Model 

 

Bahia and co-workers [Bahia et al., 2001; Zeng et al. 2001] developed 

mathematical equations to characterise the unmodified and modified bitumen and 

asphalt mixture with bitumen modification under dynamic shear loading over a 

wide range of frequencies, temperatures and strains. The model is composed of four 

formulations for the |G*| and δ master curves, temperature and strain dependencies. 

This model is capable of modelling the behaviour of bitumen as a viscoelastic fluid, 

and also for asphalt mixture as a viscoelastic solid in a universal form. However, in 

this study, stress is given to the use of a model on viscoelastic fluids. The |G*| 
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equation is based on a generalisation of the CAM Model and generalised law model 

[Bahia et al., 2001; Zeng et al., 2001]: 
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where ( )0→= fG*Ge  with 0=eG  for bitumen, ( )∞→= fG*Gg , fc is a location 

parameter with dimensions of frequencies and f’ is reduced frequency, function of 

both temperature and strain and k and me are the shape parameters (dimensionless). 

fc is equal to crossover frequency in the CA Model and CAM Model. Fig. 3.11 

shows a schematic diagram of the Modified CAM Model.  

 

 
 

Fig. 3.11: Definitions of the Bahia and Co-workers' Model [Bahia et al., 2001] 

 

It is seen that Gg and Ge are horizontal asymptotes when frequencies 

approach infinity and zero, respectively. The third asymptote is the one with the 

slope of me. The Gg and me asymptotes intercept at fc. Ge and me asymptotes 

intercept at: 
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For binders, fc' = 0. According to Bahia et al. [2001], the distance (one logarithmic 

decade being unity) between |G*| (fc) and Gg for bitumen is given by: 
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For binders, R = me/k log 2. The distance between |G*| (fc’) and Ge is given by: 
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For binders, R' = log 2. The physical meanings of the parameters are shown as the 

following [Bahia et al., 2001; Zeng et al., 2001]: 

 

• The glass modulus, Gg is the maximum asymptote modulus in shear that 

represents the response at very high frequencies or low temperatures of the 

material. 

• The equilibrium modulus, Ge is the minimum modulus that a mixture can 

offer in shear at very low frequencies and/or high temperatures. In the case 

of asphalt mixture, this asymptotic value is considered to represent the 

ultimate interlock between aggregates when the contribution of the binder in 

a mixture is negligible. 

• The location parameter, fc (also called crossover frequency) represents the 

frequency at which the storage component G' is approximately equal to the 

loss component G" of the complex modulus in the case of the binder. A 

higher fc value is an indication of a higher phase angle and thus a more 

overall viscous component in the behaviour. 

• The two shape parameters k and me are related to R in Equation 3.39, which 

is a shape or rheological index. This index is an indicator of the width of the 

relaxation spectrum. A higher value of R is an indication of a more gradual 

transition from the elastic behaviour to the viscous behaviour. This gradual 
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transition suggests less sensitivity to frequency changes, lower |G*| values 

and higher phase angles in the intermediate range of frequency.  

 

 Meanwhile, the phase angle, δ (in degrees) is shown as: 
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where δm is the phase angle constant at fd, the value at the inflexion (or inflection 

point) for bitumens, f' is the reduced frequency, fd is a location parameter with 

dimensions of frequency at which δm occurs and Rd and md are the shape 

parameters. Zeng et al. [2001] did not explicitly provide the definition of I but 

showed I = 0 if dff > and I = 1 if dff ≤ for bitumen. For asphalt mixture, I is 

always equal to zero. 

 

Equation 3.41 satisfies the requirement that δ varies from 90
o
 to 0

o
 when the 

frequency is elevated from zero to infinity for bitumen [Zeng et al., 2001]. Like 

others, Zeng et al. [2001] used the WLF equation to describe the shift factor of 

bitumens. In addition, they have suggested the Arrhenius function should be used if 

low temperatures are involved. Zeng et al. [2001] conducted the dynamic test by 

means of the DSR and Simple Shear Test (SST) for bitumen and asphalt mixture 

respectively. Analysis of data involving 9 modified bitumens, 36 asphalt mixtures 

and 4 types of aggregates over various ranges of frequency, temperature and strain 

indicated that the model fits the measurements very well. They found a good 

agreement between measured and modelled |G*| master curves. 

 

3.3.8  Al-Qadi and co-workers' Model 

 

Al-Qadi and co-workers proposed a new model of |G*| and δ for describing 

the rheological behaviour of unmodified and modified bitumens in the LVE region 

[Elseifi et al., 2002]. They performed DMA using a DSR with parallel plate 

geometry at frequencies between 0.01 and 30 Hz and temperatures ranging from 5–
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75
o
C. The proposed |G*| based on the Havriliak and Negami function as follows 

[Elseifi et al., 2002]: 
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where ω0 is the scale parameter that defines the location of the transition along the 

frequency axis, v and w are the dimensionless model parameters. In addition, the 

proposed δ model (in degrees) can be shown as: 
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where the symbols are as previously defined. Fig. 3.12 shows the comparison 

between measured and modelled |G*| and δ master curves.  
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Fig. 3.12: A comparison between measured and descriptive |G*| and δ master curves 

using Al-Qadi and Co-workers Model [Elseifi et al., 2002] 

 

The WLF equation has been used by Al-Qadi and co-workers to show the 

temperature dependency of bitumens. From the study, they found a good agreement 

between the measured and modelled values for |G*|. Meanwhile the δ model was 

found to be adequately described for unmodified bitumen with small percentage 

errors (< 5%). Nevertheless, anomalies can still be seen where the proposed model 

could not simulate the small plateau region observed in the δ master curve of 

modified bitumen in an accurate way. The difference, however, between the 

modelled and measured values was less than 10% which was within the acceptable 

range in such a test. 

(a) 

(b) 
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3.3.9  Polynomial Model 

 

The Polynomial Model was originally developed to describe the complex 

modulus master curves of asphalt mixture. For practical purposes, a simpler 

polynomial function may be used to express the |G*| master curve constructed from 

a dynamic modulus test [Mohammad et al., 2005]. This model, however, also can 

be used for describing the complex modulus for bituminous binders. In general, the 

form of the Polynomial Model can be shown as the following: 

  

( ) ( ) ( )fCfBfAG* loglogloglog
23

++=     (3.44) 

 

where f is reduced frequency and A, B and C are the shape parameters. This model 

generally can fit the test data from low to moderate temperatures satisfactorily. As 

the temperature increases or decreases, the curves tend to skew, depending on the 

degree of freedom in the equation used [Bonaquist and Christensen, 2005]. A single 

Polynomial Model cannot be used for fitting the whole master curve. The 

rheological properties of bitumen seem incomplete since the model does not take 

the behaviour of δ into account. 

 

3.3.10 Sigmoidal Model 

 

A new dynamic modulus function, the Sigmoidal Model, has been 

introduced in the Mechanistic-Empirical Pavement Design Guide (ME PDG) 

developed in the National Cooperative Highway Research Program (NCHRP) 

Project A-37A. In the ME PDG, the Sigmoidal Model is used to describe the rate 

dependency of the modulus master curve [Pellinen et al., 2002, Pellinen and 

Witczak, 2002; Bonaquist and Christensen, 2005; Medani and Huurman, 2003; 

Medani et al., 2004; Biswas and Pellinen, 2007]. Mathematically, the Sigmoidal 

Model can be shown as the following: 
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where log ω is log reduced frequency, υ is the lower asymptote, α is the 

difference between the values of the upper and lower asymptote, β and γ define the 
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shape between the asymptotes and the location of the inflection point (inflection 

point obtained from 10
(β/γ)

) [Rowe et al., 2009]. In the ME PDG, aT is expressed as a 

function of the bitumen viscosity to allow ageing over the life of pavement. The 

definition of each parameter is shown in Fig. 3.13. 

 

 

 
 
 

Fig. 3.13: Definition of the Sigmoidal Model [Pellinen et al., 2002] 

 

The Sigmoidal Model has been widely used by many researchers to describe 

the complex modulus master curve of asphalt mixture [Pellinen et al., 2002; 

Pellinen and Witczak, 2002; Bonaquist and Christensen, 2005; Medani and 

Huurman, 2003; Medani et al., 2004; Biswas and Pellinen, 2007]. However, in this 

study, the Sigmoidal Model is used for describing complex modulus master curve of 

bituminous binders. 

 

3.3.11 The LCPC Master Curve Construction Method 

 

Chailleux et al. from the Laboratoire Central des Ponts et Chaussées 

(LCPC), France adapted a mathematical equation in order to construct master 

curves from complex modulus measurements [Chailleux et al., 2006]. The 

researchers applied the Kramers-Kronig relations, based on previous work done by 

Booij and Thoone [1982], linking |G*| and δ of a complex function. The integral 
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transform relationships between the real and imaginary parts of this function are 

generally known as the Kramers-Kronig relations.  

 

Booij and Thoone [1982] carried out experiments on a polyvinyl-acetate 

sample involving oscillation measurements in a Mechanical Spectrometer at 5 

different frequencies and temperatures between 22.85 to 119.85
o
C. Superimposed 

curves of both G' and G" versus frequency were produced. This was done by means 

of time-temperature shift factors on both master curves at a reference temperature of 

34.85 
o
C. Booij and Thoone also tested this relation for other materials as well, 

including a number of dielectric data. It appears that the relation invariably holds 

with standard deviation (SD) never exceeding 5% [Booij and Thoone, 1982]. The 

Kramers-Kronig approximations give the following equations for |G*| and δ 

[Chailleux et al., 2006]: 
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and 
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where u is defined as a dummy variable. Equation 3.47 becomes exactly: 
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Chailleux et al. used the following shift factor relationship to characterise 

temperature dependence of bitumen: 
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where δavr is the average of two angles measured at ωj and ωj+1. In order to validate 

the possible use of this methodology, they applied the model to 3 unmodified 
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bitumens, 1 SBS PMB and 2 asphalt mixtures using DMA. They proposed to plot d 

log G*/d log ω versus δ/90 to verify both the Booij and Thoone equation and the 

Kramers-Kronig relations (Fig. 3.14).  

 

 
 
 

Fig. 3.14: Example of plot ωdGd  log *log versus 90/δ [Chailleux et al., 2006] 

 

Earlier, Marasteanu and Anderson applied the same Booij and Thoone 

approximation to analyse the dynamic shear data for a set of 71 unmodified and 

modified bitumens [Marasteanu and Anderson, 1999b]. The validity of the Booij 

and Thoone relation was examined by calculating the slopes of the logarithmic plots 

of |G*| versus ω, as the ratio of the difference of the logarithm of two consecutive 

|G*| values divided by the difference of the logarithm of their corresponding 

frequencies. The δ was, subsequently, calculated as the average of the two 

corresponding phase angles. No rheological model was assumed and the slope was 

obtained by means of simple calculations. This method is also known as 

approximate differential method. Furthermore, the Booij and Palmen approximation 

was also used to calculate the relaxation spectra. This approximation can be shown 

as below: 
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where τ is the relaxation time and H(τ) is the strength of relaxation at τ for discrete 

spectra. From this study, a smooth master curve was produced when applying this 
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equation to the data at different temperatures from frequency sweep tests. This 

approximation plays a significant role in modelling DSR data and in generating 

rheological master curves for bitumens. This model fits data ranging from 

intermediate to high temperatures satisfactorily [Marasteanu and Anderson, 1999b]. 

 

3.3.12 New Complex Modulus and Phase Angle Predictive Model 

 

To surmount the limitations of the current models used in the ME PDG, Bari 

and Witczak developed a new predictive model for |G*| and δ [Bari and Witczak, 

2007]. A database containing 8,940 data points from 41 different unmodified and 

modified bitumens was used in this study. The equation for |G*| is shown as 

follows: 

 

2
021104929015427)(sin00510 ssTfs f.f..δ,ηf.G*

s
+−=    (3.51) 

 

where fs is the dynamic shear loading frequency to be used with |G*| and δ, T,f s
η is 

viscosity of bitumen (cP) as a function of both loading frequency (fs) and 

temperature (T), and δ is the phase angle (degrees). The value of |G*| is limited to a 

maximum value of 1 910×  Pa. δ is obtained from a non-linear optimisation technique 

in the form of the following equation: 

 

( ) ( ) ( ) ( ){ }2

Tfs4321 s
flogVTSlog VTS90 ,T,fs ,'bbηf'bbδ

s
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where VTS' = 0.9699 fs
-0.0575

 ×VTS, fs is loading frequency in dynamic shear (Hz), 

b1, b2, b3, and b4 are the fitting parameters (–7.3146, –2.6162, 0.1124 and 0.2029). 

The fitting parameters will change slightly as a function of the type of bitumen 

(crude source and grade). 

 

To evaluate the model's performances, Bari and Witczak used the ratio of 

standard error of estimates over standard deviation (Se/Sy) and coefficient of 

determination (R
2
) to measure the goodness-of-fit statistics between measured and 

predicted data. The criteria of the goodness-of-fit statistics used will be discussed in 

Chapter 4. In general, Bari and Witczak found a good correlation between measured 

and model data. This new δ model has a very good correlation for unmodified 
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bitumens compared with that of the modified bitumens. They concluded that 

modified bitumens used in this study had higher variability in stiffness 

characteristics as a result of their type and amount of modification. However, the 

overall variation from all 41 bitumens is practically negligible and the predicted 

plots are very close to the equality line. More bitumen modifications are needed for 

future development as the current model only includes a small sample of modified 

bitumens [Bari and Witczak, 2007].  

 

3.3.13 Generalised Logistic Sigmoidal Model 

 

Rowe et al. introduced a generalisation of the Sigmoidal Model, called the 

Generalised Logistic Sigmoidal Model (or Richards Model) to describe the stiffness 

of asphalt mixture. This equation is also applicable to bituminous binders and other 

materials the Generalised Logistic Sigmoidal Model can be shown as the following 

[Rowe, 2008; Rowe et al., 2009]: 
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where the symbols are as previously defined. The λ parameter allows the curve to 

take a non-symmetrical shape for the master curve. When λ reduces to one, 

Equation 3.53 reduces to the standard sigmoidal function as represented in Equation 

3.45. 

 

3.4 Mechanical Models 

 

It is useful to consider the simple behaviour of analogue models constructed 

from linear springs and dashpots to get some feeling for LVE behaviour of bitumen. 

The spring (Hooke's Model) is an ideal elastic element obeying the linear force 

extension relation while the dashpot (Newton's Model) is an ideal viscous element 

that extends at a rate proportional to the applied stress. A number of different 

models with various arrays of spring and dashpot arrangements, such as the Jeffery, 

Zener and Burgers' Models, are available to facilitate the mathematical expression 

of the viscoelastic behaviour of engineering materials. However, none of these 
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models is itself sufficient to represent the behaviour of bitumens [Monismith et al., 

1969]. 

 

3.4.1  Huet Model 

 

The Huet Model was initially conceived by Christian Huet in order to 

describe the behaviour of both bitumens and asphalt mixtures [Huet, 1963]. This 

model consists of a combination of a spring and two parabolic elements (k and h) in 

series as illustrated in Fig. 3.15.  

 

 
 

Fig. 3.15: The Huet Model [Huet, 1963] 

 

According to Olard and Di Benedetto [2003], the parabolic element is an analogical 

model with a parabolic creep function with equations for creep compliance and 

complex modulus as follows: 
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        (3.55) 

 

where J(t) is the creep function, h is the exponent such as 10 << h , a is a 

dimensionless constant, Γ  is gamma function, t is the loading time, τ is the 

characteristic time (which value varies only with temperature), i is the complex 

number ( )1i2 −=  and ω is the angular frequency. 
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This model, in addition, has a continuous spectrum and can be presented by 

an infinite number of Kelvin-Voigt elements in series or Maxwell elements in 

parallel [Olard and Di Benedetto, 2003]. The analytical expression of G* can be 

shown as follows [Huet, 1963; Sayegh, 1967; Olard and Di Benedetto, 2003; Blab 

et al., 2006]: 
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++
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      (3.56) 

 

where G* is the complex modulus, ∞G  is the limit of the complex modulus, h and k 

are exponents such as 10 <<< kh , α is a dimensionless constant. The other 

symbols are as previously defined. The Huet equation accounts for the non-

symmetric shape of the frequency response.  

 

The WLF equation has been used by Huet to describe the temperature 

dependency of bitumen. He presented the results obtained under monotonic loading 

by means of the Cole-Cole diagram. It was seen that the Huet Model is well suited 

for the description of this kind of loading. However, it is believed that this model is 

unable to model modified bitumen correctly. Another drawback is that the original 

model does not contain a viscous element for simulating permanent deformation, in 

contrast with the Burger's Model, a combination of the Maxwell and a Kelvin-Voigt 

unit in serial connection (4 parameters model) [Pronk, 2003a, 2005]. 

 

3.4.2 The Huet-Sayegh Model 

 

Sayegh developed a model based on the generalisation of the Huet Model 

but modified by adding a spring of small rigidity compared with ∞G  in parallel 

[Sayegh, 1967]. This model consists of the combination of two springs (G0 and ∞G –

G0) and two parabolic creep elements (k and h) are presented in Fig. 3.16.  
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Fig. 3.16: The Huet-Sayegh Model [Sayegh, 1967] 

 

If the G0 is equal to zero, then the Huet-Sayegh Model is identical to the 

Huet Model. As a matter of fact, the Huet-Sayegh Model looks like a Zener Model 

but instead of one linear dashpot, it has two parabolic dashpots [Pronk, 2003a, 

2003b, 2005]. The model can be described mathematically using the following 

formula: 
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with G0 is the elastic modulus and α is a dimensionless constant. The other symbols 

are as previously defined. a, b, and c can be determined implicitly using τ which is 

referred to as the characteristic time and it is calculated using the following equation 

[Pronk, 2003a, 2003b; Adams et al., 2006]: 

 

2ln cTbTaτ ++=         (3.58) 

 

where a, b and c are regression parameters representing the material characteristics. 

This model was originally developed for asphalt mixture, but it can also be used for 

unmodified bitumens. 

 

Unlike the Huet Model, no analytical expression of the creep function of the 

Huet-Sayegh Model is available in the time domain. Olard and Di Benedetto 

attempted to fit the data both on bitumen and asphalt mixture using the Huet-Sayegh 

Model and they found the model is unsuitable for bitumens at the very low 
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frequencies where it is equivalent to a parabolic element instead of a linear dashpot 

[Olard and Di Benedetto, 2003]. 

 

3.4.3 Di Benedetto and Neifar (DBN) Model 

 

The DBN Model is a rheological model specially developed by Di 

Benedetto and Neifar for asphalt mixture [Olard and Di Benedetto, 2005a, 2005b; 

Blab et al., 2006; Di Benedetto et al., 2007]. However, this equation also can be 

used to describe the rheological properties of bituminous binders. The DBN Model, 

abbreviated from Di Benedetto and Neifar, takes into account the linear viscoelastic 

behaviour in the small-strain domain, as well as plastic flow for large strain values. 

To find a compromise between the complexity of the development and a close 

description of the material behaviour, the number of considered bodies must be 

reasonable.  

 

 
 
 

Fig. 3.17: The Di Benedetto and Neifar (DBN) Model [Di Benedetto et al., 2007] 

 

The DBN Model, which is depicted in Fig. 3.17, can also be used for 

describing the rheological properties of bitumens in the linear viscoelastic region. 

The G* function of the DBN Model can be written as: 
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where Go is the elastic modulus of the single spring, ηi is a viscosity function of the 

temperature (T) and ω = 2πf. The number n of the elementary body can be 

arbitrarily chosen.  
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Complex Modulus Master Curve
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Fig. 3.18: Calibration of the DBN Model using the 2S2P1D Model 

 

Di Benedetto and Neifar used the 2S2P1D Model (section 2.9.4) to calibrate 

the DBN Model and found good agreement between the two models and 

experimental data using an optimisation process. An example of the DBN and 

2S2P1D complex modulus master curves is shown in Fig. 3.18. However, as 

reported by Blab et al. the calibration of the DBN Model based on the 2S2P1D 

Model means that uncertainties associated with the 2S2P1D Model will also lead to 

uncertainties in the DBN Model [Blab et al., 2006].  

 

3.4.4 The 2S2P1D Model 

 

Normally, the rheological models used to describe the rheological properties 

of bituminous binders consists of three basic elements namely; a spring, dashpot (or 

damper) and parabolic (nonlinear dashpot) element. The spring is normally 

expressed as ( )iωG* . The parabolic element is an analogical model with a 

parabolic creep function [Olard and Di Benedetto, 2003]: 
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and the |G*| equation is shown as the following 
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        (3.62) 

 

where J(t) is the creep function, h is the exponent such as 10 << h  (h = 0 (elastic) 

and h = 1 (viscous)), a is the dimensionless constant (1/ λ ), λ  is a relaxation time, 

Γ  is gamma function
2
, t is the loading time, τ is the characteristic time (which value 

varies only with temperature), i is the complex number ( )12 −=i  and ω is 

frequency. The linear dashpot can be written as: 

 

a

τiω
*G =          (3.63) 

 

where the parameters are as previously defined. A large number of the constitutive 

models to describe the viscoelastic behaviour of bituminous binders and asphalt 

mixtures were developed over the last six decades including the 2S2P1D Model 

(Fig. 3.19). 

 

 

 
 
 

Fig. 3.19: The 2S2P1D Model [Olard and Di Benedetto, 2003] 

 

The 2S2P1D Model, an abbreviation of combinations of two springs, two 

parabolic creep elements and one dashpot, is a unique rheological model to describe 

                                                 

2
 Gamma function is defined as ( ) ∫

∞
−=

0

1
eΓ dttn

tn
[Olard and Di Benedetto, 2003] 
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the rheological properties for binders and asphalt mixtures [Olard and Di Benedetto, 

2003; Olard et al., 2003; Delaporte et al., 2007; Pellinen et al., 2007]. This model, 

based on the generalisation of the Huet-Sayegh Model, consists of seven parameters 

and the |G*| equation is shown as: 
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where k and h are exponents with 10 <<< hk , α a is constant, G0 is the static 

modulus when ω→0, Gg is the glassy modulus when ω→ ∞ . Meanwhile, β is a 

constant and is defined by: 

 

( )βτGGη 0g −=         (3.65) 

 

where η is Newtonian viscosity and τ is characteristic time and a function of 

temperature. τ evolution can be approximated by a shift factor function such as the 

William, Landel and Ferry (WLF) and Arrhenius equations in the range of 

temperatures observed in the laboratory [Delaporte et al., 2007]:  

 

( ) oτTaτ T ×=           (3.66) 

 

or using the WLF equation; 

 

( )
( )ref2

ref1

o 10
TTC

TTC

ττ
−+

−−

×=          (3.68) 

 

where ( )TaT  is the shift factor at temperature, Ti, and τ0 is τ(Tref) determined at Tref, 

and C1 and C2 are two constants to be determined (WLF equation). It is often 

sufficient to use a second order polynomial fitting function, shown as: 

 

2ln cTbTaτ ++=          (3.69) 

 

where a, b, and c are parameters which need to be determined. The |G*| equation 

can be separated into parts [Van Rompu, 2006]: 
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The imaginary and real parts of |G*| can be separated as the following: 
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where 0g GGG' −=  and ( )( ) ( )ωBωADEN 22
1 ++= . 

 

It has to be emphasised that this model only needs seven parameters to 

entirely determine the LVE rheological properties of the binders. However, G0 of 

bitumens is normally very close to zero and therefore, the parameters are reduced to 

six. G0, Gg, k, h, α and β are graphically illustrated in the Cole-Cole and Black 

diagrams, as depicted in Figs 3.20 and 3.21. Table 3.1 explains the functions of k, h, 

α and β in greater detail. 
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Fig. 3.20: Graphical representation of the model's parameters in terms of the Cole-

Cole diagram 

 

 
 

 

Fig. 3.21: Graphical representation of the model's parameters in terms of the Black 

diagram 

 

Table 3.1: The 2S2P1D parameters functions 

Parameter Function(s) 

h controlled the slope at low values of G" in the Cole-Cole diagram 

k controlled the slope at high values of G" in the Cole-Cole diagram 

δ 

controlled the slope at the low temperatures/high frequencies in the |G*| 

master curve and the height of the pinnacle point of the Cole-Cole 

diagram 

β 

controlled the slope at the high temperatures/low frequencies of the |G*| 

master curve where the higher the value of β, the higher the values of η 

and |G*| 
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Meanwhile the phase angle, δ, is shown as: 

 









= −

G'

G"
δ 1tan         (3.74) 

 

where G' and G" are storage modulus and loss modulus respectively. Di Benedetto 

et al. carried out dynamic tests on nine binders and four asphalt mixtures (with one 

mixture design). They found that the 2S2P1D Model fitted the experimental data 

reasonably well even though anomalies had been seen particularly for the δ values 

at 50 to 70
o
 [Olard and Di Benedetto, 2003; Olard et al., 2003].  

 

This model was also used to fit the rheological properties of bitumen-filler 

mastics. It was observed that the parameters such as k, h, and α yielded similar 

values for all studied samples [Delaporte et al., 2007]. Earlier, Pellinen et al. [2007] 

used the 2S2P1D Model and they found that the model showed a good agreement 

between measured and modelled data of asphalt mixtures. 

 

3.5 Summary 

 

Based on the literature review, several key observations can be drawn from 

this literature review study: 

 

• The rheological properties of bitumen are generally and conveniently 

represented in terms of complex modulus magnitude and phase angle master 

curves. The use of models to describe these curves can be classified into 

three groups; nomographs, mathematical and mechanical models. 

• In a mathematical model, the equation's parameters are adjusted to fit the 

experimental master curve. In the mechanical model, use is made of the fact 

that the linear viscoelastic properties of materials can be represented by a 

combination of simple spring and dashpot mechanical models, resulting in 

particular mathematical forms. The advantage of these approaches is that the 

elements might be relatable to structural features. 

• Some models like the Sigmoidal Model, Generalised Logistic Sigmoidal 

Model, DBN Model and 2S2P1D Model are very unique because they can 
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be used for describing the rheological properties of both viscoelastic fluids 

(binders) and viscoelastic solids (asphalt mixtures). 

• All the models are generally able to describe the rheological behaviour of 

bitumens satisfactorily if there are no major structural rearrangements with 

temperature and time, such as phase changes and, secondly, the tests are 

conducted within the linear viscoelastic region.  

• The behaviour of bitumen becomes more complex with the presence of 

waxy elements, high asphaltene contents and crystalline structures, as well 

as polymer modification, all of which can render a breakdown of the time-

temperature equivalency principle. 
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4 

Experimental Programs 

 

 

 

 

 

 

4.1 Background 

 

This chapter is divided into several sections. The first part describes various 

types of materials from the conducted experiments and also the Nottingham 

Transportation Engineering Centre (NTEC) DSR database that were used in this 

study. The second part discusses the use of a dynamic shear rheometer (DSR) in 

measuring the rheological properties of bituminous binders from low to high 

temperatures. The third part discusses the use of the Solver function and the final 

part covers the statistical analysis methods used to correlate between measured and 

modelled data.  

 

4.2 Materials 

 

Various types of materials from the conducted experiments and the NTEC 

DSR database were used in this study. These include unaged and aged unmodified 

bitumens, polymer-modified bitumens (PMBs) and bitumen-filler mastics. They are 

described as follows. 

 

4.2.1 Unaged unmodified bitumens 

 

In general, a total of 12 penetration grade bitumens were used in this study 

and can be divided into three main groups. The first group consists of 10/20, 35/50, 

40/60 100/150 and 160/220 penetration grade bitumens, covering from hard to soft 

bitumens. The second group of unmodified bitumens were taken from the previous 
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work done by Airey [1997]. Three bitumens from different crude sources namely a 

80/100 penetration grade bitumen from a Middle East crude, a 80 penetration grade 

bitumen from a Russian crude and a 70/100 penetration grade bitumen from 

Venezuelan crude were selected as the base bitumens. Finally, the third group 

consists of three 15 penetration grade bitumens and a 50 penetration grade bitumen, 

taken from the work of Choi [2005]. The rheological and chemical properties of the 

unaged unmodified bitumens can be found in previous publications [Airey, 1997; 

Choi, 2005]. The complex modulus and phase angle data from the DSR tests of the 

unaged unmodified bitumens are shown in Appendix A. 

 

4.2.2 Aged unmodified bitumens 

 

A total of 14 aged unmodified bitumens were used and can be divided into 

two main groups. The first group consists of a 80/100 penetration grade bitumen 

from a Middle East crude, a 80 penetration grade bitumen from a Russian crude and 

a 70/100 penetration grade bitumen from Venezuelan crude that underwent ageing 

processes via the rolling thin film oven test (RTFOT) and the pressure ageing vessel 

(PAV). Details of the ageing procedures can be found in the previous work done by 

Airey [1997]. The rheological properties of the aged unmodified bitumens can be 

found in previous publication [Airey, 1997]. The complex modulus and phase angle 

data from the DSR tests of the aged unmodified bitumens are shown in Appendix B. 

 

4.2.3 Unaged polymer-modified bitumens 

 

The unaged polymer modified bitumens (PMBs) used in this study were 

taken from previous work done by Airey [1997]. All three unmodified bitumens 

(second group of unaged unmodified bitumens) were mixed with a plastomeric 

ethylene-vinyl acetate (EVA) polymer and an elastomeric styrene butadiene styrene 

(SBS) polymer to produce various PMBs. Three polymer contents (by mass) at 3, 5 

and 7% were used to create 15 combinations of the EVA and SBS PMBs. However 

no Middle East–SBS PMBs were produced. The PMBs were all 100% miscible, 

homogeneous and storage stable, with no evidence of any phase separation. Details 

of the chemical and rheological properties of unaged PMBs can be found in 



 104 

previous publication [Airey, 1997]. The complex modulus and phase angle data 

from the DSR tests of the unaged PMBs are shown in Appendix C. 

 

4.2.4 Aged polymer-modified bitumens 

 

All 15 unaged PMBs were subjected to laboratory short term and long term 

ageing using the RTFOT and PAV. Airey [1997] produced a total of 30 

combinations of aged PMBs and subsequently a number of rheological and 

chemical tests were conducted to characterise their physical and chemical properties 

and investigate the effect of ageing on these properties. The fundamental and 

chemical properties of the binders can be found in a previous publication [Airey, 

1997]. The complex modulus, and phase angle data from the DSR tests of the aged 

PMBs are shown in Appendix D. 

 

4.2.5 Unaged bitumen-filler mastics 

 

The unaged bitumen-filler mastics were taken from research conducted by 

Liao [2007] and Wu [2009]. The first group consists of three different fillers namely 

gritstone, limestone and cement, mixed with bitumen at 40% (by weight) [Wu, 

2009]. The second group, originally from the work of Liao [2007], also consists of 

gritstone, limestone and cements mixed with bitumens. Two filler contents (by 

mass) at 35 and 65% were used to create six combinations of bitumen-filler mastics. 

Liao [2007] used a 50 penetration grade bitumen as the base bitumen. A total of 9 

unaged bitumen-filler mastics were used in this study. The rheological properties of 

the binders can be found in previous publications [Liao, 2007; Wu, 2009]. The 

complex modulus and phase angle data from the DSR tests of the unaged bitumen-

filler mastics are shown in Appendix E. 

 

4.2.6 Aged bitumen-filler mastics 

 

Wu [2009] used the thin film oven test (TFOT) to age the bitumen-filler 

mastics at 1, 3, 5, 10 and 20 hours of ageing times. Only gritstone and limestone 

were used to create 10 combinations of the aged bitumen-filler mastics. The 

fundamental and chemical properties of the aged bitumen-filler mastics can be 



 105 

found in a previous publication by Wu [2009]. The complex modulus and phase 

angle from the DSR tests data of the aged bitumen-filler mastics are shown in 

Appendix F. 

 

4.3 Dynamic Shear Rheometer 

 

4.3.1 Basic principle 

 

The first attempt to do oscillatory experiments to measure the elasticity of a 

material was by Poynting in 1909 [Menard, 1999]. Later, the development of a 

commercial rheometer started with the invention of the Weissenberg 

Rheogoniometer (~1950) and the Rheovibron (~1958). According to Menard 

[1999], the technique remained fairly specialised until the late 1960s when 

commercial instruments became more user-friendly. At the beginning, instruments 

developed were difficult to use, slow and limited in processing the data. Later, a 

dynamic shear rheometer (DSR), with either strain or stress control was developed. 

The DSR is a tool to characterise the elastic, viscoelastic and viscous properties of 

materials including bitumens over a wide range of temperatures and frequencies 

(times of loading).  

 

 

 
 

Fig. 4.1: Illustration of the DSR set-up [Airey, 1997] 

 

The principles involved in DSR testing are illustrated in Fig. 4.1, where the 

bitumen is sandwiched between a spindle and a base plate. The base plate is fixed. 

A torque is applied to the top plate so that it oscillates back and forth. One cycle is 
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completed when the top plate goes from point A to point B, then reverses direction 

and moves past point A to Point C, followed by a further reversal and movement 

back to Point A. This oscillation comprises one smooth, continuous cycle which can 

be continuously repeated during the test. DSR tests can be carried out in either 

controlled stress or controlled strain testing modes. In the controlled stress mode, a 

specific magnitude of shear stress is applied to the bitumen by application of a 

torque to the spindle and the resultant spindle rotation is measured, from which the 

magnitude of shear strain is calculated. In the controlled strain mode, the magnitude 

of spindle rotation is specified and the required torque to achieve is measured, from 

which the magnitude of shear stress is calculated [Airey, 1997]. 

 

Various geometries, such as cone and plate, parallel plates, and cup and 

plate, can be used in dynamic mechanical testing. For many materials, cone and 

plate geometry is preferred, as shear stress and shear rate are constant over the entire 

area of the plate, thereby simplifying calculations and giving accurate fundamental 

rheological properties. However, for bitumen testing, parallel plate geometry is 

almost invariably used to avoid the very small gap present at the centre of the cone 

and plate geometry [Airey 2002a, 2002b]. 

 

In this study, two testing (plate) geometries are used with the DSR: an 8 mm 

diameter plate with a 2 mm testing gap and a 25 mm diameter plate with a 1 mm 

testing gap. The selection of the testing geometry is based on the operational 

conditions, with the 8 mm plate geometry generally being used at low temperatures 

(-5 to 20
o
C) and the 25 mm geometry at intermediate to high temperatures (20 to 

80
o
C). It is also possible to use the same testing geometry over a wide temperature 

range, although the precision of the results may be limited as a result of compliance 

errors and reduction in the precision with which the torque can be measured at low 

stress levels [Airey 2002a, 2002b; Airey and Hunter, 2003]. 

 

4.3.2 Strain limit 

 

To keep the rheological response of the bitumen within its linear viscoelastic 

(LVE) region, the DSR tests are conducted with a relatively small strain, which is 

commonly achieved by adopting strain or stress limit [Wu, 2009]. The LVE limit is 
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defined as the point where the complex modulus, |G*| decreased to 95% of its initial 

value as prescribed during the SHRP study [Petersen et al., 1994]. This point was 

determined by conducting a strain (or amplitude) sweep test, as shown in Fig. 4.2. 

In this procedure, the strain level to which a specimen was subjected was gradually 

increased until significant non-linearity appeared in the response. The strain limits 

vary, dependent on |G*| of each material used. On the other hand, using the DSR 

conditions, the Strategic Highway Research Program (SHRP) research team found 

that the shear stress and strain LVE limits for penetration grade bitumens to be 

functions of |G*| as defined by [Petersen et al., 1994]: 

 

( ) 290
012

.
G*.γ =         (4.1) 

 

( ) 710
120

.
G*.τ =         (4.2) 

 

where τ is the shear stress (calculated at the circumference of the spindle), Pa, γ is 

the shear strain (calculated at the circumference of the spindle) and |G*| is the 

complex shear modulus, Pa. These functions were determined for a range of 

bituminous binders at different conditions by performing strain sweeps at selected 

temperatures at a frequency of 10 rad/s (1.59 Hz).  

 

 
 

Fig. 4.2: Strain sweep used to determine the LVE region [Anderson et al., 1994] 
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4.3.3 Testing procedure 

 

The rheological properties of the unmodified bitumens, PMBs and bitumen-

filler mastics blends, unaged and aged samples, were determined using dynamic 

mechanical methods consisting of temperature and frequency sweeps in an 

oscillatory-type testing mode performed within the linear viscoelastic region. The 

oscillatory tests were conducted on a Bohlin Gemini dynamic shear rheometer 

(DSR) using two parallel plate testing geometries consisting of 8 mm diameter 

plates with a 2 mm testing gap and 25 mm diameter plates with a 1 mm testing gap 

(Fig. 4.3). In this study, the samples were prepared using a hot pour method and a 

silicone mould method.  

 

   

Fig. 4.3: (a) The DSR body and (b) 8 mm and 25 mm plates 

 

In the hot pour method, the gap between the upper and lower plates was set 

to a desired height of 50 µm plus the required testing gap, either at the proposed 

testing temperature or at the mid-point of an expected testing temperature range. 

Once the gap has been set, a sufficient quantity of hot bitumen (typically between 

100–150
o
C) was poured onto the lower plate of the DSR to ensure a slight excess of 

material appropriate to the chosen testing geometry. The upper plate of the DSR 

was then gradually lowered to the required nominal testing gap plus 50 µm. The 

bitumen that has been squeezed out between the plates was then trimmed flush to 

the edge of the plates using a hot spatula or blade. After trimming, the gap was 

closed by a further 50 µm to achieve the required testing gap as well as a slight 

(a) (b) 

8 mm 25 mm 
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bulge around the circumference of the testing geometry (periphery of the test 

specimen) [Airey and Hunter, 2003]. 

 

For the silicone mould method, the hot bitumen is poured into either an 8 

mm or 25 mm diameter silicone mould of height approximately 1.5 times that of the 

recommended testing gap for the two geometries, namely 3 mm and 1.5 mm for the 

8 mm and 25 mm geometries. The testing gap is set at a height of 50 µm plus 1 mm 

or 2 mm. Once the bitumen has cooled, either by means of short-term refrigeration 

or by natural cooling, the bitumen disc (typically at ambient temperatures) is 

removed from the mould and centred on the lower plate of the DSR. The upper plate 

is then lowered to the required gap plus 50 µm, the excess bitumen is trimmed with 

a hot spatula and the gap further closed to its final testing height [Airey and Hunter, 

2003]. 

 

The DMA was performed using a Bohlin Gemini 200 DSR. First, amplitude 

sweep tests were conducted at 10 and 40 
o
C to determine the LVE region of the 

binders based on the point where |G*| had decreased to 95% of its initial value 

[Anderson et al., 1994]. After obtaining the limiting strain, frequency sweep tests 

were carried out under the following test conditions on each sample: 

 

• Mode of loading : controlled-strain 

• Temperature  : 10
 
to 75

o
C (with the interval of 5

o
C) 

• Frequencies  : 0.01 Hz to 10 Hz 

• Spindle geometries : 8 mm (diameter) and 2 mm gap (10
o
C to 35

o
C) and 

  25 mm (diameter) and 1 mm gap (25
o
C to 75

o
C) 

• Strain amplitude : within the LVE response, dependent on |G*| of each  

  materials used.  

 

Table 4.1: Linear viscoelastic strain limits (%) 

Penetration grade 10/20 35/50 40/60 100/150 160/220 

8 mm at 10
o
C 0.6 0.8 1.3 1.4 1.5 

25 mm at  40
o
C 0.8 1.0 2.0 3.0 4.0 
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Table 4.1 shows the linear viscoelastic strain limit obtained for several unaged 

unmodified bitumen samples using the 8 mm spindle at 10
o
C and 25 mm spindle at 

40
o
C respectively. The data for each sample was then collected, analysed and, based 

on the time-temperature superposition principle (TTSP), presented in the form of 

master curves of complex modulus and phase angle at a reference temperature either 

of 10
o
C or 25

o
C. 

 

4.4 Solver Function 

 

Solver is a program tool that helps users to find the best way to allocate 

scarce resources. The Solver function can be found in the Microsoft Excel (MS 

Excel) add-in tool. This function is suited to fitting data with a non-linear function 

via an alternative algorithm. The Solver function finds parameters to optimise 

objective value with multiple constraints. Therefore, MS Excel can be considered as 

a good alternative even though there are various computer programs available for 

non-linear data fitting. The Solver function, together with initial seed values for the 

coefficients, is used to obtain the optimum values of the coefficients using a number 

of minimisation runs [Morrison, 2005]. When no further changes are observed, the 

iteration process is terminated and the final values quoted for the coefficients. 

 

4.5 Statistical Analysis 

 

The overall reliability of a model compared to the measurement can be 

evaluated by means of a graphical method and goodness-of-fit statistics. Several 

goodness-of-fit statistic methods namely the correlation of determination, R
2
, 

standard error ratio, Se/Sy, discrepancy ratio, ri, mean normalised error (MNE) and 

average geometric deviation (AGD) were used in this study. However, it is worth 

mentioning that there are many possible solutions that have been used to find the 

goodness-of-fit statistical parameters. All of the rheological data will be assessed 

using both graphical method and goodness-of-fit statistics. 

 

 

 

 



 111 

4.5.1 Graphical method 

 

A graphical method is intended to visually and qualitatively show an 

agreement between model and measured values and to display the distribution error 

[Wu et al., 2008]. A graph of measured (x-axis) and model (y-axis) is plotted and an 

observation is made to see data distribution from the equality line. It shows that the 

model is in good agreement with the measured data if the points are distributed 

nicely on the equality line. On the other hand, if the points are scattered from the 

equality line, the model is not in good agreement with the measurements.  

 

4.5.2 Standard error ratio, Se/Sy 

 

The standard error of estimation, Se and standard error of deviation, Sy can be 

defined as the following:  
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( )
( )1

2

∑

−

−
=

n

YY
S y          (4.4) 

 

where n is sample size, k is number of independent variables in the model, Y is 

tested dynamic function, Ŷ is modelled dynamic function and Y is mean value of 

tested dynamic function. Therefore, the ratio Se/Sy is a measure of the improvement 

in the accuracy of modelling due to the descriptive equation. When the ratio is 

small, e.g. near zero, more variation in the dynamic data about their mean can be 

explained by the equation. The small value indicates a better description [Tran and 

Hall, 2005]. 
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4.5.3 Coefficient of determination, R
2 

 

The coefficient of determination, R
2
, is a measure of the model accuracy. R

2
 

is expressed as follows: 
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where the symbols are as previously defined. For the perfect fit, R
2
=1. Subjective 

criteria, which were used in the NCHRP project 9-19 Task C, were used to evaluate 

the performance of the model in this study, as shown in Table 4.2 [Tran and Hall, 

2005]. 

 

Table 4.2: Criteria of the goodness-of-fit statistics [Tran and Hall, 2005] 
 

Criteria R
2
 Se/Sy 

Excellent ≥ 0.90 ≤ 0.35 

Good 0.70 – 0.89 0.36 – 0.55 

Fair 0.40 – 0.69 0.56 – 0.75 

Poor 0.20 – 0.39 0.76 – 0.89 

Very Poor ≤ 0.19 ≥ 0.90 

 

4.5.4 The discrepancy ratio (ri) 

 

The discrepancy ratio, ri, indicates the accuracy of the goodness-of-fit 

between the measured and modelled data. For example, ri for the measured and 

descriptive dynamic function can be expressed as: 

 

i
T

i
T
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Y
r

m

p
=          (4.6) 

 

where 
iTY p  and 

i
TY

m
are the modelled and measured dynamic function, respectively. 

The subscript i denotes the data set number. The discrepancy ratio, ri is used to 

observe the model data's tabulation from the equality line with the perfect value of 

1. When the ri is larger or smaller than 1, it measures how much wider the 

description interval has to be to cover the observed number of cases [Wu et al., 
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2008]. The ri is being used for the data that are distributed on logarithmic scale and 

linear scale. 

 

4.5.5 The mean normalised error (MNE) 

 

The mean normalised error (MNE) is related to the overall discrepancy 

between descriptions and observations: 
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where J is the total number of the dataset. The other symbols are as previously 

defined. The MNE is being used for the data that are distributed on logarithmic scale 

For a perfect fit, MNE = 0 [Wu et al., 2008]. 

 

4.5.6 The average geometric deviation (AGD) 

 

The Average Geometric Deviation (AGD) can be calculated as follows: 
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For a perfect fit, AGD is equal to 1 [Wu et al., 2008]. The AGD is being used for the 

data that are distributed on logarithmic scale. As defined in the equation, the Ri 

values are always greater or equal to unity. Ri is equal to 1 when the calculated and 

measured values are identical. Thus the lowest possible value for AGD is 1. AGD is 

a measure of the average ratio between measured and calculated values. For 

instance if it is 2 it means that the calculated will be 2 (or 0.5) times the measured 

value. 
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5 

Shift Factor Equations 

 

 

 

 

 

5.1 Background 

 

Studies into the viscoelastic behaviour of bitumen have received increased 

interest from various researchers since the early 1990s, following the activities and 

campaign of the Strategic Highway Research Program (SHRP) [Harrigan et al., 

1994; Rowe et al., 2009]. The rheological properties of bitumens are normally 

presented in terms of the complex modulus (|G*|) and the phase angle (δ) master 

curves together with the determination of shift factors associated with temperature 

shifting of the rheological parameters. The temperature dependency of the 

viscoelastic behaviour of bitumens is indicated using shift factors and expressed as: 

 

f

f
a r

T =          (5.1) 

 

where aT is the shift factor, f is the tested frequency and fr is the reduced frequency 

at a reference temperature.  

 

The construction of master curves can be done using an arbitrarily selected 

reference temperature to which all rheological data are shifted. At the reference 

temperature, Tref, the value of aT is equal to one (log aT is equal to zero). Through 

the use of the master curve and shift factor relationships it is possible to interpolate 

stiffness at an expanded range of frequencies and temperatures compared with those 

at which the data was collected. If functional forms are fitted to the shape of the 

master curve plot and to the aT relationship this interpolation becomes rapid and 

easy to apply, for example, in computer software. In addition, if a functional form 

with some thermodynamic basis is used then the resulting equations can be 
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employed to extrapolate the data beyond the observed range of temperatures and 

frequencies [Rowe and Sharrock, 2011]. 

 

A considerable number of studies have been conducted using various shift 

factor equations in order to construct smooth and continuous |G*| and δ master 

curves [Goodrich, 1988; Airey and Brown, 1998; Pellinen et al., 2002; Olard and Di 

Benedetto, 2003; Olard et al., 2003; Shaw and MacKnight, 2005]. However, the 

different shift factor equations are usually used in isolation and no comparative 

study of the different shift factor functions or their applicability to different types of 

bituminous binders has been undertaken. The study is conducted to assess the 

validity of several different shifting functions for constructing |G*| master curves of 

different bituminous binders by applying the time-temperature superposition 

principle (TTSP).  

 

5.2 Results and Discussion 

 

5.2.1 Graphical comparisons 

 

In this study, only horizontal shift factor is used and do not involve with the 

vertical shift. Several different methods were used; namely (i) numerical, non-

functional form shifting (ii) the William, Landel and Ferry (WLF), (iii) Arrhenius, 

(iv) Log-Linear, (v) viscosity temperature susceptibility Details of these methods 

can be found in Chapter 2. (VTS) and (vi) the Laboratoire Central des Ponts et 

Chaussées (LCPC) methods. Correlations between the numerical, non-functional 

form (non-linear least squares) shift approach and other functions are assessed by 

means of graphical and goodness-of-fit statistical analysis methods.  

 

It also should be noted that this study only focuses on the comparison 

between measured and descriptive aT values and does not consider anomalies that 

can be seen in the construction of some of the |G*| master curves. This refers 

particularly to anomalies associated with the presence of highly crystalline bitumens 

(wax content > 7%), structured bitumen with high asphaltenes content and highly 

polymer-modified bitumens (PMBs) (> 5% polymer content) [Airey, 2003]. 
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Comparisons between descriptive (shift factor functions) and measured 

(numerical) shift factors are graphically shown in Figs 5.1 and 5.2. These plots are 

intended to visually and qualitatively show the agreement between model and 

experimental values and to display any errors associated with the model's equations 

and/or material combinations [Molinas and Wu, 2000]. The equations consist of the 

WLF, Arrhenius, Log-Linear, VTS and LCPC functions/procedures. The measured 

shift factor data consists of the numerical, non-functional form shift approach. This 

approach used non-linear least squares fitting with the aid of the Microsoft Excel 

Spreadsheet Solver function to simultaneously determine the coefficients associated 

with Equation 5.3. As discussed by Pellinen et al. [2002], the numerical shift 

approach produces the best results in terms of data shifting flexibility due to the fact 

that this method has the highest degree of freedom. This method, however, has no 

physical meaning (or functional form) and has simply been used as a comparison to 

the other shift factor methods.  

 

The numerical shifts are always plotted on the x-axis (Figs 5.1 and 5.2). A 

combination of comparisons between measured and descriptive aT for the unaged 

samples (i.e. unmodified bitumens, polymer-modified bitumens and bitumen-filler 

mastics) are shown in Fig. 5.1. Fig. 5.2 represents the combinations of these 

samples that have undergone various ageing processes. From Fig. 5.1, it can be seen 

that the WLF and Arrhenius equations show the best results with the descriptive aT 

values being close to the equality line. Reasonable good correlations can also be 

seen for the VTS and LCPC methods. The WLF equation, originally derived from 

the empirical Doolittle equation relating fractional free volume theory to 

temperature, is clearly applicable for all bituminous materials. As mentioned by 

Dealy and Larson [2006], the WLF equation generally provides a better fit of the 

data at temperatures lower than the glass transition temperature, Tg. However, the 

results in Figs 5.1 and 5.2 also show that the WLF equation is applicable at higher 

temperatures for bituminous binders.  

 

The Log-Linear equation showed the lowest correlation between measured 

and descriptive aT. According to Pellinen et al. [2002], below about 0
o
C, the shift 

factor varies linearly with temperature for many binders and the same equation has 

been proposed suitable for asphalt mixture at low to intermediate temperatures. 
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However, it is found in this study that the aT curve should be the same with 

temperature dependency of the binder since the binder is the only component in 

asphalt mixture which is temperature susceptible. Therefore, theoretically the shift 

factor curves for asphalt mixture should be in the same shape with the shift factor 

curves of bituminous binders. The VTS equation appears to be unsuitable for 

describing aT of the unmodified bitumen at low frequencies and/or high 

temperatures. Finally, the LCPC method showed a dispersion of descriptive aT data 

particularly for the unaged bitumen-filler mastics. Similar findings were observed 

by Chailleux et al. [2006] where anomalies had been seen particularly at higher 

frequencies. From their study, they found that the dispersion of aT data normally 

occurs at the transition between the highest tested frequency for a particular 

temperature and the lowest tested frequency for the next (higher) temperature. It is 

observed that all the shift factor equations are unable to describe the rheological 

properties of highly unaged modified bitumen with EVA. This can be seen where 

the data scattered from the equality line. This EVA PMB does not behave as a 

thermo-rheological simple material.  

 

Fig. 5.2 shows a comparison between measured and descriptive aT of the 

different shift factor equations for the aged unmodified bitumens, PMBs and 

bitumen-filler mastics samples. The results show a larger discrepancy between the 

descriptive and measured aT values, particularly at intermediate to high 

temperatures. The WLF, VTS, LCPC and Arrhenius methods produce almost 

identical results when comparing the measure and descriptive aT. The Log-Linear 

equation slightly overestimates the measured aT. In general, it is observed that all 

the models suffer from a similar drawback where they are unable to accurately 

describe the aT data. This lack of agreement between measured and descriptive aT 

for the aged mastics and PMBs can be attributed to the increased complexity of the 

rheological response of the materials following oxidation and increased structuring. 

An example of the Black diagram one of the PMBs is shown in Fig. 5.3. Moreover, 

most of the aT equations (functions) are empirical and are therefore unable to 

account for changes in the physicochemical properties of the materials after ageing. 
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Fig. 5.1: Comparisons between aT (numerical shift) and aT (equation) of different 

shift factor equations of the unaged samples (Tref = 25
o
C) 
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Fig. 5.2: Comparisons between aT (numerical shift) and aT (equation) of different 

shift factor equations of the aged samples (Tref = 25
o
C) 
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Fig. 5.3: Black diagram for unaged, RTFOT and PAV aged EVA PMB 

 

5.2.2 Goodness-of-fit statistics 

 

Tables 5.1 and 5.2 show the Se/Sy and R
2
 goodness-of-fit statistics associated 

with the different aT equations on unaged and aged samples. The unaged PMBs and 

bitumen-filler mastics shifted using the LCPC method show good correlation 

between measured and descriptive aT data. The Se/Sy and R
2
 parameters tend to 

indicate excellent correlation between measured and descriptive aT data for all 

material and shift factor combinations. However, according to Tran and Hall [2005], 

the correlation coefficient, R
2
 is a better measure for linear models with a large 

sample size
1
.  

 

In addition, it is questionable whether Se/Sy is a good tool to perform a 

comparison between measured and descriptive data with. For example, in the case 

of complex modulus measurements over a large temperature range, the standard 

                                                 
1
 It is necessary to graph the data and, if the trend is somewhat linear, compute the correlation 

coefficient. Second, the correlation coefficient is a single-valued index that cannot reflect all 

circumstances such as clustering of points, extreme deviant points, nonlinearity, and random versus 

systematic scatter. Third, the correlation coefficient may not be adequate to suggest a model form 

[McCuen, 2003]. 
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deviation (Sy) has no meaning. Sy is only scientifically founded for multiple |G*| 

measurements under the same experimental condition (i.e. at one temperature and 

one frequency). In this case, Sy corresponds to the average distance between the 

mean value and all the experimental data. 

 

A more microscopic statistical analysis is needed and therefore, the 

discrepancy ratio (ri), the mean normalised error (MNE) and the average geometric 

deviation (AGD) are introduced, as shown in Tables 5.1 and 5.2. As discussed by 

Wu et al. [2008], it is not straightforward to determine which method performs best 

since different statistical methods lead to different rankings. The discrepancy ratio, 

ri, is used to observe the descriptive data's tabulation from the equality line with a 

perfect value being one. When the ri is larger or smaller than one, it measures how 

much wider the description interval has to be to cover the observed number of cases 

[Wu et al,. 2008]. A smaller range means a closer range to the perfect agreement. In 

this study, an interval of ( )100and0800600400201 ..,.,.,.±  is used. An example is 

shown for the WLF equation of unmodified bitumens, with an understanding that 

the commentary applies to other equations, both on the unaged and aged samples.  

 

A value of 0.98–1.02 represents an area where the ratio between descriptive 

and measured aT data is taken 0.02 to each left and right side from the equality line. 

It is observed that the ri is equal to 42.25%. When the region widens with 0.02 more 

on each right and left sides (now the range between 0.96–1.04), another 18.31% of 

data is included. In this range, the data’s tabulation increased up to 60.56%. A 

similar process is repeated for the ri in the range of 0.94–1.06, 0.92–1.08 and 0.90–

1.10, resulting the data’s tabulation up to 73.24, 81.69 and 87.32%. In general, the 

improvement in ri happens in all ranges. The MNE is related to the overall 

discrepancy between measured and descriptive data. Meanwhile, the AGD is a 

measure of the average ratio between measured and descriptive aT data. As defined 

in the equation, the iR
~

values are always greater or equal to unity. iR
~

 is equal to one 

when the descriptive and measured aT are identical. Thus the lowest possible value 

for AGD is 1.  
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Taking the range of ri equal to 0.90–1.10 as an example, the LCPC method 

shows the best result, followed by the WLF, VTS, Arrhenius and Log-Linear 

equations. A similar finding is observed using the MNE goodness-of-fit parameter. 

No obvious difference in terms of the AGD values could be observed on the unaged 

samples. The Arrhenius equation might produce a better fit of |G*| master curves for 

low temperatures [Zeng et al., 2001; Pellinen et al., 2002]. With one coefficient 

needing to be determined, the Arrhenius equation shows a low degree of freedom in 

its equation. At low temperatures, the activation energy, Ea, associated with the 

Arrhenius equation varies. However, at higher temperatures, the Ea values become 

more constant. Since the Ea values are relatively consistent, the Arrhenius equation 

is only reliant on the temperature and that therefore explains why this equation 

becomes invalid at high temperatures. The use of one Ea value is obviously unable 

to yield a complete behaviour of |G*| and δ master curves of bituminous binders. 

 

In general, the LCPC equation shows the best correlation between measured 

and descriptive aT of the ri distribution in the range of 0.90–1.10 for the aged 

unmodified bitumens, as shown in Table 5.2. It was followed by the VTS, WLF, 

and Arrhenius equations. As expected, the Log-Linear shows the least correlation in 

term of goodness-of-fitting statistical analysis. It was proven that the ageing process 

results in an increase of asphaltenes content, rendering the breakdown in time-

temperature equivalency principle. It is interesting to note that the LCPC method 

shows the most outstanding results in terms of ri, MNE and AGD, respectively, 

followed by the WLF, VTS, Arrhenius and Log-Linear equations for the aged 

PMBs. The LCPC and WLF equations are well dispersed around the equality line 

for the aged bitumen-filler mastics. Meanwhile, the Arrhenius and Log-Linear 

equations show the largest scatter in descriptive results of ri in the range of 0.90–

1.10 for aged PMBs and bitumen-filler mastics. The |G*| data of aged bitumen-filler 

mastics was dispersed randomly at high temperatures and implies greater influence 

of granular skeleton which renders the TTSP invalid [Delaporte et al., 2007].  

 

It can be inferred that all the equations described are fundamentally 

empirical and may not be applicable for some materials [Dealy and Larson, 2006]. 

The AGD parameter shows comparable results for most of the aged samples.  
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Table 5.1: Summary of the Se/Sy, R
2
, ri, MNE and AGD goodness-of-fit for unaged samples 

 

Data in range of discrepancy ratio, ri (%) 

Method Binders n Se/Sy R
2
 0.98 - 

1.02 

0.96 - 

1.04 

0.94 - 

1.06 

0.92 - 

1.08 

0.90 - 

1.10 

MNE AGD 

WLF 71 0.086 0.993 42.25 60.56 73.24 81.69 87.32 5.10 1.05 

Arrhenius 71 0.110 0.988 23.94 38.03 50.70 60.56 69.01 8.58 1.10 

Log-Linear 71 0.307 0.906 7.04 15.49 26.76 38.03 46.48 16.41 1.18 

VTS 71 0.147 0.979 32.39 52.11 56.34 60.56 64.79 10.12 1.10 

LCPC 

Unmodified 

bitumens 

71 0.057 0.997 40.85 54.93 78.87 84.51 90.14 4.29 1.04 

WLF 106 0.050 0.998 40.95 71.43 82.86 90.48 93.33 3.67 1.04 

Arrhenius 106 0.106 0.989 11.43 28.57 38.10 52.38 58.10 10.09 1.12 

Log-Linear 106 0.173 0.970 3.81 11.43 14.29 16.19 21.91 17.45 1.22 

VTS 106 0.050 0.998 45.71 69.52 84.76 92.38 93.33 3.51 1.04 

LCPC 

PMBs 

106 0.410 0.831 13.33 31.43 49.52 58.10 69.52 11.36 1.10 

WLF 42 0.138 0.981 4.76 14.29 16.67 30.95 61.91 9.27 1.11 

Arrhenius 42 0.217 0.953 0.00 2.38 7.14 9.52 14.29 19.13 1.24 

Log-Linear 42 0.262 0.932 4.76 7.14 11.91 11.91 16.67 24.09 1.33 

VTS 42 0.133 0.983 11.91 14.29 21.43 45.24 71.43 8.47 1.09 

LCPC 

Bitumen-

filler 

mastics 

42 0.397 0.839 19.05 47.62 61.91 73.81 83.33 9.68 1.14 
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Table 5.2: Summary of the Se/Sy, R
2
, ri, MNE and AGD goodness-of-fit for aged samples 

 

Data in range of discrepancy ratio, ri (%) 

Method Binders n Se/Sy R
2
 0.98 - 

1.02 

0.96 - 

1.04 

0.94 - 

1.06 

0.92 - 

1.08 

0.90 - 

1.10 

MNE AGD 

WLF 71 0.091 0.992 15.49 43.66 64.79 74.65 84.51 6.99 1.07 

Arrhenius 71 0.200 0.960 0.00 0.00 0.00 5.63 15.49 17.20 1.21 

Log-Linear 71 0.276 0.924 0.00 0.00 0.00 4.23 8.45 25.46 1.35 

VTS 71 0.081 0.994 12.68 52.11 66.20 83.10 85.92 6.13 1.06 

LCPC 

Unmodified 

Bitumens 

71 0.022 0.999 70.42 85.92 94.37 100.00 100.00 1.84 1.02 

WLF 140 0.136 0.982 9.29 28.57 43.57 61.43 74.29 8.14 1.09 

Arrhenius 140 0.155 0.976 6.70 16.76 22.35 30.73 39.67 13.94 1.17 

Log-Linear 140 0.240 0.946 5.00 7.14 12.86 17.14 21.43 21.07 1.28 

VTS 140 0.168 0.972 9.29 23.57 39.29 54.29 65.71 9.98 1.12 

LCPC 

PMBs 

140 0.180 0.968 37.14 57.86 75.00 84.29 86.43 5.48 1.06 

WLF 179 0.085 0.993 26.26 45.25 62.01 74.30 79.33 6.57 1.07 

Arrhenius 179 0.209 0.957 1.43 3.57 7.14 12.86 20.00 17.21 1.21 

Log-Linear 179 0.222 0.951 3.91 10.06 15.64 18.99 22.91 21.57 1.29 

VTS 179 0.097 0.991 18.99 37.43 49.72 59.22 64.25 8.05 1.09 

LCPC 

Bitumen-

filler 

mastics 

179 0.128 0.984 23.46 43.58 56.43 63.13 71.51 8.06 1.10 
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This finding concludes that the AGD method is not always reliable at detecting the 

goodness-of-fit between measured and descriptive aT of bituminous binders, unaged 

and aged samples. Finally, it is worth mentioning that there are many possible 

solutions that have been used to find the goodness-of-fit statistical parameters. 

 

5.2.3 WLF coefficients 

 

For the WLF equation, two constants C1 and C2 are needed. Table 5.3 shows 

of C1 and C2 obtained from the study. It is shown that the values of C1 and C2 are 

inconsistent from one sample to the next. Similar results were obtained by Olard and 

Di Benedetto [2003] and Olard et al. [2003] with the values for C1 being more 

consistent than those for C2.  

 

Table 5.3: Shifting coefficients of the WLF equation 
 

unmodified 

bitumen 

bitumen-filler 

mastics 
PMBs 

Sample 

C1 C2 C1 C2 C1 C2 

Average 22 126 12 107 17 158 

Minimum 12 109 11 93 11 104 Unaged 

Maximum 46 162 14 130 51 479 

Average 15 131 13 114 17 136 

Minimum 14 124 11 90 11 67 Aged 

Maximum 16 150 21 191 39 304 

 

The C1 and C2 firstly thought to be universal constants where Williams et al. 

[1954] proposed if reference temperature is suitably chosen for each material then 

these constants could be allotted universal values of 8.86 and 101.6 respectively 

Brodynan et al. [1961] found the universal constants fitted well with the bitumen data 

for C20o

ref −>−TT  but at lower temperatures, the descriptive shift factors were too 

great. The study done by Christensen and Anderson [1992] indicates that at Tref equal 

to glassy temperature, Tg, the shift factors for the unaged and aged binders showed 

that the constants essentially had the same values: 19 for C1 and 92 for C2. Olard et al. 

[2003] used the WLF coefficients on various and the mean values obtained for C1 and 

C2 parameters are 19 and 143 respectively. The constants should be obtained by 

optimisation process from the experimental data. No universal values can, a priori, be 

applied. 
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5.3 Summary 

 

Based on this study, several key observations can be drawn; 

 

• For the range of temperatures from 10–75
o
C, the Generalised Logistic 

Sigmoidal Model is able to describe or model the complex modulus data 

obtained from frequency sweep tests undertaken with a DSR. With the 

exception of the LCPC method, all the factor equations can be used together 

with this model to construct complex modulus master curves at an arbitrary 

selected reference temperature.  

• The numerical, non-functional form shift function produces the most 

consistent set of results due to the high degree of freedom and overall 

flexibility of this non-linear least squares fitting approach.  

• In terms of functional form approaches, the LCPC and WLF equations 

generally produced the best results compared to the numerical shift approach 

(model versus measured shift factor data) for all the material combinations 

studied, followed by the VTS and Arrhenius equations. The Log-Linear 

equation showed the lowest correlation with measured shift factor data. 

• The Log-Linear equation is not suitable to be used for binders and asphalt 

mixtures. The aT curve of Log-Linear equation should be the same with 

temperature dependency of the binder since the binder is the only component 

in asphalt mixture which is temperature susceptible. Therefore, the shift factor 

curves for asphalt mixture should be in the same shape with the shift factor 

curves of the binders. 

• All of the shift factor equations are unable to satisfactorily describe the 

rheological properties of highly modified binder. 

• In terms of comparing the different shift factor function and methods, both a 

graphical and a number of goodness-of-fit statistics were used. The graphical 

plots are intended to visually observe the agreement between descriptive 

values and measurements; however, this method is unreliable to detect small 

changes. 

• It is found that the R
2
 and Se/Sy are not really good enough to be used for 

describing the mismatch. The R
2
 is more applicable for linear models and 

subsequently both R
2
 and Se/Sy are not really independent. The average 
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geometric deviation (AGD) is also not always reliable to check the goodness-

of-fit even though it was meant for data scattered over a logarithmic scale. 

Therefore, it is suggested to use the other goodness-of-fit statistics such as the 

discrepancy ratio (ri) and the mean normalised error (MNE) since both of them 

provide better observation between measured and descriptive data.  
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6 

Mathematical Models 

 

 

 

 

 

6.1 Background 

 

In principle, the complete modulus versus frequency (or time of loading) 

behaviour of any polymer at any temperature can be measured [Shaw and 

MacKnight, 2005]. This principle also can be applied for bituminous binders. Data 

can be shifted relative to the reduced frequency (ωr), so that the various curves can 

be aligned to form a single curve. This curve is called as a master curve. A master 

curve represents a binder's behaviour at a given temperature for a large range of 

frequencies. The rheological behaviour of bituminous binder is bounded by two 

main transitions. At high frequencies and/or low temperatures, the elastic modulus 

approaches a limiting value, called a glassy modulus, Gg. At low frequencies and/or 

high temperatures, a material behaves as a Newtonian (viscous) fluid [Herh et al., 

1999].  

 

Once the master curve is established, it is possible to derive interpolated 

values of property for any combination of temperature or frequency inside the range 

covered by the measurements [Pellinen et al., 2002]. All of these methods, however, 

only involve the horizontal shifting. A good rheological model should be able to 

describe as completely as possible the linear viscoelastic functions of the studied 

materials. Complex modulus magnitude, |G*| and phase angle, δ functions are 

needed to yield complete information about materials in a rheological study [Stastna 

et al., 1997].  

 

This study investigates the use of four mathematical models; namely the 

Sigmoidal Model, the Generalised Logistic Sigmoidal Model, the Christensen and 

Anderson (CA) Model and the Christensen, Anderson and Marasteanu (CAM) 
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Model to describe the rheological properties of bituminous binders. Details of these 

models can be found in Chapter 3. The rheological data of unaged and aged 

unmodified and polymer-modified bitumens (PMBs) are measured using a dynamic 

shear rheometer (DSR) in the linear viscoelastic region. A correlation between 

measured and descriptive |G*| data is assessed using graphical and goodness-of-fit 

statistical methods.  

 

6.2 Detailed Procedure 

 

The construction of the |G*| master curve was done with the aid of the 

Solver function in MS Excel. This function is used for performing optimisation of 

data with non-linear least squares regression techniques. The procedure consisted of 

minimising the sum of square error (SSE) between measured |G*| (hereafter called 

measured) and modelled (hereafter called descriptive) as shown in Equation 6.1: 

 

( )
( )

2

2
*

exp

refref

*

pre

*

exp

),(log

),),((log),(log
SSE ∑

⋅−
=

TfG

TfTTaGTfG T
   (6.1) 

 

where |G*exp (f, T)| is measured complex modulus, |G*pre (f, T)| is descriptive 

complex modulus, T is temperature (°C), Tref is the reference temperature, f is 

frequency (Hz) and aT (T, Tref) is shift factor. In this study, the Tref was arbitrarily 

taken as 10
°
C. For example (in the case of the Generalised Logistic Sigmoidal 

Model), by combining the model and Equation 6.1, the following equation is 

obtained: 
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The coefficients α, δ, β, λ, and aT (T, Tref) are fitted in the minimisation procedure 

between measured and modelled data. The shift factor functions were used together 

with the master curve model. For example, when the lines are shifted manually, 

Equation 6.2 becomes: 
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The coefficients that need to be determined are now α, δ, β, λ, and log aT . The 

Solver function, together with initial seed values for the coefficients, is used to 

obtain the optimum values of the coefficients using a number of minimisation runs 

[Morrison, 2005]. When no further changes are observed, the iteration process is 

terminated and the final values quoted for the coefficients.  

 

6.3 Results and Discussion 

 

6.3.1 The Sigmoidal Model 

 

The Sigmoidal Model is originally sought to be used for fitting the complex 

modulus of asphalt mixtures [Pellinen and Witczak, 2002]. However, this model has 

been modified to be used for bituminous binders (unmodified and polymer-modified 

bitumens) data. Three fitting parameters; β, δ, and γ are estimated using a numerical 

optimisation technique. The optimisation process is done with the aid of the Solver 

function in MS Excel. Data at high frequencies and/or low temperatures are no 

longer needed since Gg can be taken as 1 910× Pa. For modelling purposes, the 

following initial values are used; β = -1, δ = 1 and γ = 1. The selected initial values 

must be reasonable  

 

Table 6.1: The Sigmoidal parameters for unmodified bitumens 
 

Parameters 
Source Condition 

δ Β γ 

Unaged -4.75 -1.74 0.29 

RTFOT -5.35 -1.87 0.28 Middle East 

PAV -5.91 -2.09 0.27 

Unaged -3.98 -1.64 0.31 

RTFOT -4.50 -1.76 0.30 Russian 

PAV -5.17 -2.04 0.28 

Unaged -6.08 -1.65 0.27 

RTFOT -5.68 -1.74 0.27 Venezuelan 

PAV -6.95 -2.02 0.25 
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The Solver function replaces the initial guesses with optimised values for the 

unaged and aged unmodified bitumens, as shown in Table 6.1. The rheological data 

used in this section can be found in Appendices A and B. It is observed that the δ 

values are negative. The negative value indicates |G*| of bitumens is really small at 

high temperatures and/or low frequencies. This finding is in good agreement with 

previous research done by Olard and Di Benedetto [2003]. The δ in the analysis will 

be small since most of these materials will behave like a viscoelastic liquid, only the 

part of the sigmoid above the inflection point will be fitted – resulting in small 

values of δ. Therefore, the inflection point will be to the left of all data. β, which 

controls the horizontal position of the turning point, decreases from unaged to aged 

unmodified bitumens regardless of the crude source. This can be attributed to the 

fact that ageing increases the asphaltenes content and subsequently produces harder 

bitumens. The γ values are observed to be consistent for all samples, showing that 

the ageing did not play a significant role in influencing master curve's slope from 

intermediate to high temperatures. At high frequencies and/or low temperatures, 

|G*| approaches a limiting value of 1 910× Pa. Examples of |G*| master curves for 

the unaged and aged Venezuelan 70/100, Middle East 80/100 and Russian 80 

penetration grade bitumens are shown in Fig. 6.1. 
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Fig. 6.1: Comparisons between measured and model of unaged and aged 

unmodified bitumen data using the Sigmoidal Model  
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Table 6.2: The Sigmoidal parameters for the EVA PMBs 
 

Parameters 
Source Condition Modifier % 

δ Β γ 

3 -6.99 -1.93 0.25 

5 -8.85 -2.06 0.23 Unaged 

7 -12.81 -2.32 0.20 

3 -7.14 -2.03 0.25 

5 -10.48 -2.28 0.22 RTFOT 

7 -13.10 -2.40 0.20 

3 -9.42 -2.30 0.23 

5 -7.75 -2.33 0.23 

Middle East  

PAV 

7 -10.24 -2.48 0.21 

3 -5.73 -1.82 0.26 

5 -13.91 -2.27 0.21 Unaged 

7 -14.88 -2.28 0.17 

5 -11.32 -2.23 0.21 
RTFOT 

7 -15.16 -2.43 0.19 

5 -8.18 -2.26 0.23 

Russian 

PAV 
7 -16.11 -2.66 0.19 

3 -6.58 -1.76 0.25 

5 -15.08 -2.27 0.19 Unaged 

7 -21.92 -2.52 0.18 

5 -14.74 -2.58 0.17 
RTFOT 

7 -26.98 -3.73 0.14 

5 -9.75 -2.27 0.20 

Venezuelan 

PAV 

EVA 

7 -21.26 -2.77 0.16 

 

Table 6.3: The Sigmoidal parameters for the SBS PMBs 
 

Parameters 
Source Condition Modifier % 

δ Β γ 

3 -2.70 -1.53 0.30 

5 -2.08 -1.45 0.29 Unaged 

7 -0.53 -1.20 0.31 

3 -4.18 -1.78 0.28 

5 -4.18 -1.78 0.28 RTFOT 

7 -10.28 -2.11 0.21 

3 -7.32 -2.15 0.24 

5 -8.20 -2.18 0.23 

Russian 

PAV 

7 -7.83 -2.22 0.23 

3 -6.15 -1.71 0.26 

5 -6.77 -1.77 0.24 Unaged 

7 -5.91 -1.75 0.24 

3 -7.93 -1.91 0.23 

5 -7.99 -1.89 0.22 RTFOT 

7 -11.68 -2.16 0.20 

3 -7.83 -2.09 0.23 

5 -6.19 -1.91 0.25 

Venezuelan 

PAV 

SBS 

7 -7.36 -2.06 0.21 



 134 

The model parameters of the EVA and SBS PMBs, unaged and aged 

samples, are shown in Tables 6.2 and 6.3 respectively. Figs 6.2 to 6.5 show an 

example of |G*| master curves for the unaged and aged EVA and SBS PMBs, using 

the 70/100 penetration grade bitumens from a Venezuelan crude as base bitumens. 

Like the unaged and aged unmodified bitumens, the δ values obtained for the 

unaged and aged PMBs are small. The δ in the analysis will be small since most of 

these materials will behave like a viscoelastic liquid and only the part of the sigmoid 

above the inflection point will be fitted – resulting in small values of δ. Therefore, 

the inflection point will be to the left of all data. This indicates that |G*| at low 

frequencies and high temperatures is very small. It is also observed that the presence 

of both EVA and SBS polymers in unaged samples decreases the β values. The 

presence of semi-crystalline EVA (different crystalline structures at different 

temperatures) and elastomeric SBS (enhanced high temperature and/or low 

frequency elastic response due to the polymer network) may attribute to the 

difference in the coefficient values. 
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Fig. 6.2: Comparisons between measured and model of the unaged EVA PMBs data 

using the Sigmoidal Model 
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Fig. 6.3: Comparisons between measured and model of the RTFOT and PAV EVA 

PMBs data using the Sigmoidal Model 

 

In general, the values for most tested PMBs are similar to the unmodified 

bitumens except for several samples. For instance, the difference observed between 

the Venezuelan RTFOT 5% and 7% EVA PMBs are quite significant where the 

values for certain parameters deviate significantly compared to the other samples. 

Previous findings suggested the critical network forms around 5% of modification 

and this may lead to the suggestions that the partial breakdown of a polymer 

network occurs in the PMB [Chen et al., 2002]. Moreover, the presence of "waves" 

in certain |G*| curves cannot be described by the Sigmoidal Model. This observation 

indicates that the Sigmoidal Model is unable to fit the rheological properties of 

highly modified binders. The anomalies are shown in Figs 6.2 to 6.3. No critical 

observations, however, can be observed for the unaged and aged Venezuelan SBS 

PMBs (Figs 6.4 to 6.5). 
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Fig. 6.4: Comparisons between measured and model of the unaged SBS PMBs data 

using the Sigmoidal Model 
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Fig. 6.5: Comparisons between measured and model of PAV SBS PMBs data using 

the Sigmoidal Model 
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6.3.2 The Generalised Logistic Sigmoidal Model 

 

The Generalised Logistic Sigmoidal Model (or Richards Model) introduces 

the addition of λ parameter that allows a curve to take a non-symmetrical shape. 

This means – as a minimum when the additional parameter = 1, the generalised 

version will have the same error as the normal Sigmoidal Model. It is expected that 

if the Sigmoidal Model has any non-symmetric behaviour, the Generalised Logistic 

Sigmoidal Model will have a better fit. The following initial values are used for the 

modelling program; δ = 0, β = 1, γ = 1 and λ = 1. The Solver function is used with 

this model to minimise the sum of square errors (SSE) between measured and 

modelled |G*|. The results are shown in Table 6.4. The glassy modulus is fixed 

equal to 1x10
9
 Pa (or equal to 9 in log scale).  

 

Table 6.4: The Generalised Logistic Sigmoidal parameters for unmodified bitumens 
 

Parameters 
Source Condition 

δ β γ λ 

Unaged -6.08 -1.55 0.26 0.96 

RTFOT -7.38 -1.70 0.24 0.96 Middle East  

PAV -6.56 -2.05 0.26 0.99 

Unaged -6.58 -1.35 0.24 0.93 

RTFOT -4.64 -1.74 0.29 1.00 Russian 

PAV -5.04 -2.06 0.29 1.00 

Unaged -11.33 -1.35 0.19 0.92 

RTFOT -7.58 -1.63 0.24 0.97 Venezuelan 

PAV -9.00 -1.96 0.22 0.98 

 

Like the Sigmoidal Model, the δ values are observed to be negative values. The δ in 

the analysis will be small since most of these materials will behave like a 

viscoelastic liquid only, if part of the sigmoid above the inflection point will be 

fitted – resulting in small values of δ. The β and λ values are slightly decreased and 

increased from unaged to aged samples. This indicates that the ageing influences 

bitumen microstructure, where the changes in bitumen rheology will reflect the 

changes in structure. A slight change of λ values can be observed particularly from 

unaged to PAV samples. This indicates that the presence of λ plays a significant role 

in the shape of master curve. This parameter is also useful for fitting the viscoelastic 

properties of asphalt mixtures [Rowe et al., 2009]. An example of the |G*| master 
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curves for the unmodified bitumens (Middle East), unaged and aged samples, is 

shown in Fig. 6.6. 
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Fig. 6.6: Comparisons between measured and model of the unaged and aged 

unmodified bitumen data using the Generalised Logistic Sigmoidal Model 

 

Table 6.5 shows the Generalised Logistic Sigmoidal Model parameters for the EVA 

PMBs. Similar discussion is made with the unmodified bitumens, where the δ 

values are found to be negative. The anomaly is detected since this model is not able 

to describe the presence of the "waves" in the EVA |G*| master curve particularly at 

intermediate to high temperatures, as shown in Fig. 6.7. This affects the 

inconsistency of γ and λ values. This EVA PMB does not behave not as a thermo-

rheologically simple material. However, as the temperature increases, the curve 

reverts back to a unit slope associated with the Newtonian asymptote found for 

unmodified bitumens. The β values are observed to decrease from the unaged to the 

aged samples due to ageing.  
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o
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Table 6.5: The Generalised Logistic Sigmoidal parameters for EVA PMBs 
 

Parameters 
Source Condition Modifier % 

δ β γ λ 

3 -12.45 -1.78 0.19 0.95 

5 -15.34 -2.03 0.18 0.97 Unaged 

7 -33.67 -2.63 0.15 0.98 

3 -8.60 -1.97 0.23 0.98 

5 -12.26 -2.24 0.21 0.99 RTFOT 

7 -111.55 -3.85 0.14 0.99 

3 -8.85 -2.31 0.23 1.00 

5 -21.18 -2.69 0.18 0.99 

Middle 

East  

PAV 

7 -117.77 -4.08 0.14 1.00 

3 -14.15 -1.40 0.15 0.89 

5 -53.70 -2.31 0.10 0.94 Unaged 

7 -77.83 -3.16 0.11 0.98 

5 -26.56 -2.29 0.15 0.96 
RTFOT 

7 -177.11 -4.14 0.12 0.99 

5 -21.16 -2.52 0.17 0.98 

Russian 

PAV 
7 -90.97 -3.71 0.14 0.99 

3 -11.19 -1.60 0.19 0.95 

5 -73.75 -2.94 0.12 0.98 Unaged 

7 -84.62 -3.28 0.12 0.99 

5 -129.12 -3.73 0.13 0.99 
RTFOT 

7 -126.06 -3.83 0.12 1.00 

5 -28.65 -2.56 0.14 0.98 

Venezuelan 

PAV 

EVA 

7 -77.66 -3.50 0.13 0.99 
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Fig. 6.7: Comparisons between measured and model of the unaged EVA PMBs data 

using the Generalised Logistic Sigmoidal Model 

 

Like the EVA PMBs, the δ, β, γ and λ values are inconsistent for the SBS PMBs, as 

shown in Table 6.6. This could be explained by the presence of the elastomeric 

behaviour of SBS. As discussed by Airey [1997, 2002a], the effect of ageing on the 

polymer dominant regions of behaviour for the SBS PMBs relate to a shifting of the 

rheological properties towards greater viscous response as a result of the thermo-

oxidative degradation of the SBS polymer (Fig. 6.8).  
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Table 6.6: The Generalised Logistic Sigmoidal parameters for SBS PMBs 
 

Parameters 
Source 

Conditio

n 

Modifie

r 
% 

δ β γ λ 

3 -2.86 -1.49 0.30 0.99 

5 -3.23 -1.20 0.25 0.94 Unaged 

7 -0.22 -1.36 0.34 1.04 

3 -6.02 -1.59 0.24 0.95 

5 -6.03 -1.59 0.24 0.95 RTFOT 

7 -60.68 -2.79 0.12 0.97 

3 -11.30 -2.09 0.20 0.97 

5 -17.91 -2.25 0.17 0.97 

Russian 

PAV 

7 -46.64 -2.78 0.13 0.97 

3 -12.85 -1.55 0.18 0.93 

5 -18.65 -1.75 0.15 0.94 Unaged 

7 -12.07 -1.66 0.18 0.95 

3 -29.43 -2.11 0.14 0.95 

5 -37.67 -2.33 0.13 0.96 RTFOT 

7 -81.69 -3.07 0.12 0.98 

3 -21.18 -2.18 0.16 0.96 

5 -15.21 -1.79 0.17 0.94 

Venezuela

n 

PAV 

SBS 

7 -60.06 -2.84 0.11 0.97 
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Fig. 6.8: Comparisons between measured and model of PAV SBS PMBs data using 

the Generalised Logistic Sigmoidal Model 
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6.3.3 Christensen and Anderson (CA) Model 

 

Stastna et al. [1997] used the CA Model in their study and fixed Gg value at 

1.1 910× Pa and left ωc and R as free parameters. However, they found that the 

model overestimated |G*| at high frequencies and/or low temperatures. Later, they 

allowed Gg to be a free parameter and observed that the overall fits were better than 

the one with fixed Gg, with the new Gg value being approximately 0.4 910× Pa. In 

the initial work, the Gg values are set by the Solver function. However, |G*| values 

at low temperatures and/or high frequencies underestimate Gg. Therefore the Gg 

value in this study is taken as 1 910× Pa to avoid the underestimation of its value 

during the optimisation process. The model parameter values for unaged and aged 

unmodified bitumens are shown in Table 6.7. Meanwhile, Fig. 6.9 shows an 

example of modelling the complex modulus master curve using the CA Model. 

 

Table 6.7: The CA Model parameters for unmodified bitumens 
 

Parameters 
Source Condition 

Gg (
910× ) Log 2 ωc R 

Unaged 1.00 0.30 1.36 10.79 

RTFOT 1.00 0.30 1.48 4.47 Middle East 

PAV 1.00 0.30 1.67 0.58 

Unaged 1.00 0.30 1.29 18.55 

RTFOT 1.00 0.30 1.43 7.19 Russian 

PAV 1.00 0.30 1.55 0.98 

Unaged 1.00 0.30 1.33 43.28 

RTFOT 1.00 0.30 1.55 10.05 Venezuelan 

PAV 1.00 0.30 1.79 0.98 
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Fig. 6.9: Comparisons between measured and descriptive unmodified bitumens 

(unaged and aged) data using the CA Model 

 

Table 6.8 shows the CA Model parameter values for the unaged and aged 

EVA PMBs. Similar observations have also been made on the SBS PMBs (Table 

6.9). The ωc values are increased from unaged to aged samples, from 3–7% 

modification. This indicates that the samples become harder as the modification 

increases. On the other hand, the width of the relaxation spectrum becomes smaller. 

This behaviour supports some authors who relate R to the binder asphaltene content, 

finding that it reduces as those polar molecules increase [Silva et al., 2004]. 

However, like the previous models, the CA Model is not able to describe the 

presence of special elements such as the semi-crystalline structure in the EVA 

PMBs. This is shown in Fig. 6.10.  
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Table 6.8: The CA Model parameters for the EVA PMBs 
 

Parameter(s) 
Source 

Conditio

n 
Modifier % 

Gg (
910× ) Log 2 ωc R 

3 1.00 0.30 1.66 3.40 

5 1.00 0.30 2.00 0.80 Unaged 

7 1.00 0.30 2.00 0.80 

3 1.00 0.30 1.78 1.05 

5 1.00 0.30 2.00 0.27 RTFOT 

7 1.00 0.30 2.36 0.07 

3 1.00 0.30 2.01 0.13 

5 1.00 0.30 2.22 0.02 

Middle 

East 

PAV 

7 1.00 0.30 2.56 0.00 

3 1.00 0.30 1.78 2.51 

5 1.00 0.30 2.42 0.18 Unaged 

7 1.00 0.30 2.80 0.02 

5 1.00 0.30 2.21 0.22 
RTFOT 

7 1.00 0.30 2.74 0.01 

5 1.00 0.30 2.28 0.03 

Russian 

PAV 
7 1.00 0.30 2.57 0.00 

3 1.00 0.30 1.80 6.25 

5 1.00 0.30 2.24 0.74 Unaged 

7 1.00 0.30 2.74 0.11 

5 1.00 0.30 2.40 0.14 
RTFOT 

7 1.00 0.30 2.99 0.02 

5 1.00 0.30 2.70 0.01 

Venezuela

n 

PAV 

EVA 

7 1.00 0.30 3.20 0.00 
 

Table 6.9: The CA Model parameters for the SBS PMBs 
 

Parameter 
Source Condition Modifier % 

Gg (
910× ) Log 2 ωc R 

3 1.00 0.30 2.02 1.51 

5 1.00 0.30 2.45 0.25 Unaged 

7 1.00 0.30 3.08 0.02 

3 1.00 0.30 1.82 1.18 

5 1.00 0.30 1.82 1.18 RTFOT 

7 1.00 0.30 2.14 0.57 

3 1.00 0.30 1.97 0.20 

5 1.00 0.30 2.14 0.11 

Russian 

PAV 

7 1.00 0.30 2.25 0.03 

3 1.00 0.30 1.78 7.53 

5 1.00 0.30 2.03 2.45 Unaged 

7 1.00 0.30 2.21 0.83 

3 1.00 0.30 1.94 2.20 

5 1.00 0.30 2.25 0.74 RTFOT 

7 1.00 0.30 2.36 0.25 

3 1.00 0.30 2.22 0.13 

5 1.00 0.30 1.98 0.70 

Venezuelan 

PAV 

SBS 

7 1.00 0.30 2.70 0.01 
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Fig. 6.10: Comparisons between measured and model of RTFOT and PAV EVA 

PMBs data using the CA Model 

 

6.3.4 Christensen Anderson and Marasteanu (CAM) Model 

 

The CAM Model is proposed to improve the CA Model and by comparing 

these, it can be noted that log 2/R is equivalent to the v of the CAM Model [Silva et 

al., 2004]. In this study, the Gg value is taken as 1 910× Pa for all materials. The 

CAM model parameter values are shown in Table 6.10. It is observed that the v 

values decrease from unaged to aged samples. As frequency approaches zero, the 

PAV samples reach the 45
o
 asymptote faster than unaged bitumens. Silva et al. 

[2004] observed that the v values for two AC-20
1
 bitumens (low and high 

asphaltenes contents) were 0.2568 and 0.2068. This result is expected because the 

unmodified bitumens used in these two studies are different. R increases from 

unaged to aged unmodified bitumens, suggesting that the asphaltenes content 

increases. In the CAM Model, the R values are opposite compared to the CA Model 

                                                 
1
 AC-20 is a bitumen grade which is specified by the original viscosity at 60

o
C (140

o
F) poise for use 

in pavement construction. 

Tref = 10
o
C 
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where higher values of R indicate a smaller width of the relaxation spectrum. 

Meanwhile, the ωc values decrease from unaged to aged unmodified bitumens. This 

could be attributed to the ageing influence on the values of ωc. As mentioned 

before, ageing relatively increased the asphaltenes content. This finding is in good 

agreement with the work of Silva et al. [2004] where they found that ωc values for 

their two bitumens were 1.034 and 0.994 respectively.  

 

Table 6.10: The CAM Model parameters for unmodified bitumens 
 

Parameters 
Source Condition 

v w ωc R 

Unaged 0.17 1.09 1.26 1.78 

RTFOT 0.16 1.11 0.40 1.89 Middle East 

PAV 0.14 1.20 0.01 2.20 

Unaged 0.18 1.08 3.63 1.63 

RTFOT 0.17 1.10 0.96 1.79 Russian 

PAV 0.15 1.14 0.05 1.98 

Unaged 0.17 1.10 4.40 1.81 

RTFOT 0.15 1.14 0.55 2.03 Venezuelan 

PAV 0.13 1.23 0.01 2.39 

 

Fig. 6.10 shows an example of |G*| master curves of a Middle East 80/100 

penetration grade bitumen, unaged and aged samples. It is observed that the CAM 

Model is able to satisfactorily describe the rheological properties of unaged and 

aged unmodified bitumens. 
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Fig. 6.11: Comparisons between measured and model of the unaged and aged 

unmodified bitumen data using the CAM Model 

 

Table 6.11 shows the CAM Models parameters for unaged and aged EVA 

PMBs. The parameters for unaged and aged SBS PMBs are shown in Table 6.12. 

Except for the PAV Middle East EVA PMBs, the v values for all samples generally 

depict constant values. The R values increase as the asphaltenes content increases. 

In contrast, w decreases from 3–7% modification, showing that the 3% PMB 

reaches the 45
o
 asymptote faster than the 7% PMB. However, the CAM Model is 

also not capable of describing the inconsistencies of PMBs data, as shown in Fig. 

6.12.  

 

 

 

 

 

 

 

Tref = 10
o
C 
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Table 6.11: The CAM Model parameters for the EVA PMBs 

Parameters 
Source Condition Modifier % 

v w ωc R 

3 0.16 1.07 0.94 1.85 

5 0.16 1.00 0.96 1.92 Unaged 

7 0.16 0.95 0.95 1.91 

3 0.17 1.02 0.94 1.76 

5 0.17 0.96 0.94 1.75 RTFOT 

7 0.15 0.91 0.94 1.98 

3 0.20 0.93 0.94 1.68 

5 0.14 0.97 0.94 2.10 

Middle East  

PAV 

7 0.15 0.84 0.45 1.98 

3 0.16 1.01 1.75 1.85 

5 0.14 0.93 0.96 2.10 Unaged 

7 0.13 0.83 0.97 2.31 

5 0.15 0.95 0.94 1.96 
RTFOT 

7 0.14 0.84 0.96 2.12 

5 0.17 0.86 0.90 1.82 

Russian 

PAV 
7 0.16 0.81 0.94 1.87 

3 0.14 1.12 0.42 2.22 

5 0.14 0.97 0.97 2.15 Unaged 

7 0.12 0.91 0.96 2.47 

5 0.14 0.92 0.97 2.10 
RTFOT 

7 0.12 0.84 0.97 2.54 

5 0.15 0.82 0.95 2.07 

Venezuelan 

PAV 

EVA 

7 0.13 0.74 0.95 2.33 

 

Table 6.12: The CAM Model parameters for the SBS PMBs 
 

Parameters 
Source Condition Modifier % 

v w ωc R 

3 0.14 1.00 1.09 2.10 

5 0.14 0.92 1.50 2.20 Unaged 

7 0.12 0.84 1.39 2.60 

3 0.17 1.00 1.17 1.82 

5 0.17 1.00 1.17 1.82 RTFOT 

7 0.15 0.99 0.96 2.04 

3 0.17 0.95 0.93 1.70 

5 0.17 0.91 0.95 1.82 

Russian 

PAV 

7 0.17 0.88 0.93 1.77 

3 0.13 1.16 0.22 2.31 

5 0.13 1.11 0.19 2.38 Unaged 

7 0.13 1.06 0.19 2.40 

3 0.15 1.04 0.97 2.04 

5 0.14 0.99 0.97 2.20 RTFOT 

7 0.14 0.93 0.97 2.16 

3 0.16 0.93 0.95 1.92 

5 0.16 1.00 0.89 1.94 

Venezuelan 

PAV 

SBS 

7 0.14 0.84 0.97 2.12 
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Fig. 6.12: Comparisons between measured and model of unaged EVA PMBs data 

using the CAM Model 

 

It is worth mentioning that Marasteanu [1999] found the CAM Model 

improves the curve fitting particularly at higher and lower temperatures. This 

phenomenon is shown in Fig. 6.13 where the descriptive data at low temperatures 

and/or high frequencies are improved using the CAM Model compared to the CA 

Model. Silva et al. [2004] observed that this model did not fit |G*| master curves 

really well at both extreme temperatures. It is believed that the use of different 

sources of binders plays a significant role in modelling work since different 

materials yield different chemical compositions and different rheological properties 

[Silva et al., 2004].  

 

 

Tref = 10
o
C 
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Fig. 6.13: Comparisons between measured and model of unaged unmodified 

bitumen data using the CA and CAM Models 

 

An example of |G*| master curves for the unaged and PAV Venezuelan SBS PMBs 

are shown in Figs 6.14 and 6.15 respectively. No unusual results can be observed 

from these samples. Therefore, these are thermo-rheological simple materials. 
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Fig. 6.14: Comparisons between measured and model of unaged SBS PMBs data 

using the CAM Model 

10
-10

10
-5

10
0

10
5

-2

0

2

4

6

8

10

Reduced Frequency)

L
o

g
 C

o
m

p
le

x
 M

o
d

u
lu

s
 (

P
a

)

Aged SBS PMBs (Venezuelan)

PAV 3% SBS (exp)
PAV 3% SBS (model)
PAV 5% SBS (exp)
PAV 5% SBS (model)
PAV 7% SBS (exp)
PAV 7% SBS (model)

 
 

Fig. 6.15: Comparisons between measured and model of PAV SBS PMBs data 

using the CAM Model 

Tref = 10
o
C 

Tref = 10
o
C 



 152 

6.5.5 Statistical analysis 

 

 Comparisons between measured and model |G*| for unmodified bitumens 

and PMBs, unaged and aged samples, are graphically shown in Figs 6.16 and 6.17. 

These plots are intended to visually and qualitatively show the agreement between 

measured and descriptive values and to display any errors associated with the 

models and/or materials combinations [Molinas and Wu, 2000]. No obvious 

differences can be observed graphically for the unaged and aged bitumens, where all 

the samples show similar consistencies (Fig. 6.16). In Fig. 6.17, the Sigmoidal 

Model, the Generalised Logistic Sigmoidal Model and the CAM Model show 

outstanding correlations between measured and descriptive data. The CA Model 

slightly over-estimated the measured |G*| at high temperatures. For the aged PMBs, 

all the results are graphically consistent. 

 

 Tables 6.13 to 6.19 show the SSE values for the unaged and aged 

unmodified and PMBs. It is observed that the Generalised Logistic Sigmoidal 

Model shows the most consistent results for all the studied unaged and aged 

samples. Meanwhile on the other hand, the CA Model shows the least SSE 

correlation between measured and model data. The SSE values for the Sigmoidal 

Model and CAM Model are inconsistent. In general, the Sigmoidal Model shows 

the lower SSE values of unaged and aged EVA PMBs compared to the CAM 

Model. However, for the unaged and RTFOT SBS PMBs, both of these models 

show a comparable result. And for the PAV SBS PMBs, the Sigmoidal Model 

shows a smaller SSE values compared to the CAM Model.  

 

To evaluate the performance of the models studied, a correlation between 

measured and descriptive |G*| is further assessed using the goodness-of-fit statistics. 

The ratio of standard error of estimation and standard error of deviation (Se/Sy) and 

coefficient of correlations (R
2
) goodness-of-fit statistics showed that all the models 

used in this study showed excellent correlations. An analysis is also done by means 

of the discrepancy ratio (ri), average geometric deviation (AGD) and mean 

normalised error (MNE) goodness-of-fit statistics. The ri is used to observe the 

calculated data dispersion from the equality line. In this study, the interval of 0.99–

1.01 from the equality line was used until ri reaches an interval of 0.95–1.05. Table 
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6.20 shows the goodness-of-fit statistics for unaged and aged unmodified bitumens 

in general. It is observed that all of the models studied show good correlations with 

ri equal to 0.95–1.05. This observation inferred that all models used in this study are 

able to satisfactorily describe the rheological properties of the unaged and aged 

unmodified bitumens.  

 

For the unaged unmodified bitumens, the Generalised Logistic Sigmoidal 

Model shows the most outstanding correlation between measured and calculated 

|G*| with the smallest and highest values of AGD and MNE, respectively. It is 

followed by the Sigmoidal Model, CAM Model and CA Model. For the aged 

unmodified bitumens, the Sigmoidal, Generalised Logistic Sigmoidal Model and 

CAM Model show the most outstanding correlation with 0.95–1.05 of ri. However, 

it also can be seen that the CA Model data dispersed closely to the equality line. The 

Generalised Logistic Sigmoidal Model shows the most outstanding correlation with 

low AGD and high MNE values indicating that the presence of λ plays an important 

role for the aged samples. Meanwhile the Sigmoidal Model and CAM Model also 

described the measured data really well. 

 

Table 6.21 shows the goodness-of-fit statistics for unaged and aged PMBs in 

general. It is observed that for the unaged PMB, the Generalised Logistic Sigmoidal 

Model and Sigmoidal Model show comparable result at the ri of 0.95–1.05, 

followed by the CAM Model and CA Model. The Sigmoidal Model describes 

satisfactorily the properties of the PMBs with the lowest AGD and the highest MNE 

values. The CA Model, originally developed for unmodified bitumens was observed 

not to be suitable for the unaged PMBs, particularly of highly modified binders. The 

Generalised Logistic Sigmoidal Model shows the most outstanding correlation in 

terms of MNE for the aged PMBs, even though it shows comparable results for the 

ri of 0.95–1.05 and AGD with the Sigmoidal Model. The CA Model also shows a 

good correlation with the lower and higher values of AGD and MNE, respectively. 

The CAM Model with five unknown parameters was unable to describe the 

complex behaviour of the aged PMBs. In general, it can be inferred that all the 

models used in this study suffer from similar drawbacks where they were unable to 

precisely describe the rheological properties of unaged and aged PMBs. 
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Fig. 6.16: Comparisons between measured and modelled of unmodified bitumens 
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Fig. 6.17: Comparisons between measured and modelled of PMBs 
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Table 6.13: SSE for the unaged and aged unmodified bitumens 

 

Unaged bitumen RTFOT Aged bitumen PAV Aged bitumen 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
0.0054 0.0015 0.0157 0.0020 0.0034 0.0022 0.0004 0.0021 0.0014 

Sigmoidal 0.0074 0.0045 0.0221 0.0034 0.0034 0.0031 0.0005 0.0021 0.0018 

CA 0.0147 0.0053 0.0358 0.0142 0.0164 0.0151 0.0144 0.0194 0.0154 

CAM 0.0083 0.0019 0.0151 0.0018 0.0056 0.0027 0.0010 0.0047 0.0018 

 

 

Table 6.14: SSE for the unaged EVA PMBs 

 

Unaged EVA PMBs (3%) Unaged EVA PMBs (5%) Unaged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
0.0028 0.0307 0.0075 0.0032 0.1855 

0.0177 
0.0027 0.4819 0.0522 

Sigmoidal 0.0058 0.0441 0.0100 0.0048 0.1539 0.0372 0.0043 0.1495 0.3065 

CA 0.0196 0.0335 0.0157 0.0178 0.1663 0.0432 0.0178 0.1776 0.0848 

CAM 0.0087 0.0333 0.0084 0.0201 0.6340 0.0520 0.0363 0.3784 0.1008 

 

 

 

 



 157 

 

 

 

 

Table 6.15: SSE for the RTFOT Aged EVA PMBs 

 

RTFOT Aged EVA PMBs (3%) RTFOT Aged EVA PMBs (5%) RTFOT Aged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
0.0010 - - 0.0019 0.0134 

0.0164 
0.0044 0.1063 0.0438 

Sigmoidal 0.0015 - - 0.0025 0.0201 0.0607 0.0059 0.0443 0.1730 

CA 0.0160 - - 0.0205 0.0299 0.0456 0.0360 0.0741 0.0689 

CAM 0.0144 - - 0.0330 0.0393 0.0614 0.0540 0.1083 0.0908 

 

 

Table 6.16: SSE for the PAV Aged EVA PMBs 

 

PAV Aged EVA PMBs (3%) PAV Aged EVA PMBs (5%) PAV Aged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
0.0012 - - 0.0009 0.0007 

0.0455 
0.0020 0.0029 0.0062 

Sigmoidal 0.0012 - - 0.0013 0.0014 0.0748 0.0028 0.0054 0.0176 

CA 0.0151 - - 0.0127 0.0056 0.0485 0.0147 0.0160 0.0104 

CAM 0.0300 - - 0.0164 0.0177 0.0578 0.0326 0.0434 0.0222 
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Table 6.17: SSE for the unaged SBS PMBs 

 

Unaged SBS PMBs (3%) Unaged SBS PMBs (5%) Unaged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Generalised Logistic Sigmoidal 0.0149 0.0040 0.0365 0.0085 0.0097 0.0120 

Sigmoidal 0.0149 0.0074 0.0379 0.0128 0.0101 0.0140 

CA 0.0355 0.0103 0.0623 0.0132 0.0737 0.0137 

CAM 0.0372 0.0058 0.0379 0.0101 0.0533 0.0130 

 

 

Table 6.18: SSE for the RTFOT aged SBS PMBs 

 

RTFOT Aged SBS PMBs (3%) RTFOT Aged SBS PMBs (5%) RTFOT Aged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
0.0010 0.0027 0.0010 0.0054 0.0226 0.0056 

Sigmoidal 0.0027 0.0066 0.0027 0.0079 0.0283 0.0117 

CA 0.0013 0.0145 0.0013 0.0109 0.0357 0.0169 

CAM 0.0013 0.0105 0.0013 0.0117 0.0382 0.0249 
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Table 6.19: SSE for the PAV aged SBS PMBs 
 

PAV Aged SBS PMBs (3%) PAV Aged SBS PMBs (5%) PAV Aged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Generalised Logistic Sigmoidal 0.0012 0.0020 0.0017 0.0021 0.0028 0.0040 

Sigmoidal 0.0021 0.0051 0.0030 0.0071 0.0063 0.0082 

CA 0.0094 0.0071 0.0090 0.0059 0.0079 0.0068 

CAM 0.0194 0.0136 0.0210 0.0063 0.0199 0.0124 

 

 

Table 6.20: The goodness-of-fit statistics for unmodified bitumens 
 

Discrepancy ratio, ri (%) 
Models Condition 

0.99-1.01 0.98-1.02 0.97-1.03 0.96-1.04 0.95-1.05 
Se/Sy R

2
 AGD MNE 

Sigmoidal 89.13 97.52 99.07 99.38 99.38 0.0180 0.9997 1.0059 0.5819 

Generalised Logistic 

Sigmoidal 
95.65 97.83 99.07 99.38 99.38 0.0092 0.9999 1.0035 0.3446 

CA 84.78 98.45 99.07 99.38 99.38 0.0170 0.9997 1.0053 0.5269 

CAM 

Unaged 

96.27 98.14 98.76 99.07 99.38 0.0102 0.9999 1.0041 0.4111 

Sigmoidal 96.43 98.96 99.55 100.00 100.00 0.0139 0.9998 1.0029 0.2892 

Generalised Logistic 

Sigmoidal 
97.32 98.96 99.70 100.00 100.00 0.0119 0.9999 1.0025 0.2487 

CA 59.67 92.11 98.81 99.41 99.70 0.0342 0.9988 1.0095 0.9412 

CAM 

Aged 

95.83 99.11 99.70 99.85 100.00 0.0145 0.9998 1.0033 0.3300 
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Table 6.21: The goodness-of-fit statistics for PMBs 
 

Discrepancy ratio, ri (%) 
Models Condition 

0.99-1.01 0.98-1.02 0.97-1.03 0.96-1.04 0.95-1.05 
Se/Sy R

2
 AGD MNE 

Sigmoidal 65.42 83.51 90.83 94.76 97.32 0.0476 0.9977 1.0115 1.1388 

Generalised Logistic 

Sigmoidal 
74.23 86.96 92.50 95.66 97.50 0.0376 0.9986 1.0097 0.9595 

CA 50.95 75.00 85.24 90.24 92.86 0.0572 0.9967 1.0171 1.6771 

CAM 

Unaged 

56.43 79.94 89.52 93.75 95.71 0.0479 0.9977 1.0141 1.3889 

Modified Sigmoidal 80.36 95.36 98.56 99.52 99.79 0.0315 0.9990 1.0067 0.6692 

Generalised Logistic 

Sigmoidal 
88.61 96.29 98.62 99.42 99.76 0.0242 0.9994 1.0051 0.5071 

CA 70.83 90.95 96.63 97.87 99.00 0.0345 0.9988 1.0087 0.8659 

CAM 

Aged 

54.52 80.01 89.75 93.57 95.73 0.1463 0.9786 1.0173 1.6316 
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6.3.6 Measurement Error 

 

The DSR is often known as a useful tool to determine the elastic, viscoelastic 

and viscous properties of bitumen. The rheometer, however, has its limitation where it 

is unable to reach extreme temperatures and frequencies. In the SHRP A-369 Report, 

Anderson et al. [1994] recommended using the following guidelines although the 

ranges of moduli that can be successfully measured with different size plates vary 

according to the design (resolution and compliance) of each rheometer.  

 

• if a complex modulus, |G*| value is greater than 1 x 10
7
 Pa, it is suggested that 

measurements are done using either the bending beam rheometer (BBR) or 

torsion bar geometry.  

• use the 8 mm parallel plate with a 2 mm gap when 1 x 10
5
 Pa <|G*| < 1x10

7
 Pa 

• use 25 mm parallel plate with a 1 mm gap when 1 x 10
3 

< |G*| <1 x 10
5
 Pa 

• use 50 mm parallel plate when |G*| < 1 x 10
3
 Pa 
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Fig. 6.18: Error from DSR measurements 

 

Fig. 6.18 shows an example of a comparison between the CA Model and 

experimental data of complex modulus master curve. As can be seen from this figure, 

the log |G*| measurements started to deviate from the model from 1 x 10
7

 Pa. The 
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deviation can be associated with the measurement error from the DSR. To calculate 

the measurement error, the following approach is taken. As previously shown in Table 

6.13, the SSE of the 70/100 Middle East penetration grade bitumen is 0.01467. The 

experimental value of 1 x 10
7

 Pa and higher is deleted and the SSE value is re-

calculated. By deleting these values, the new SSE value obtained is 0.01259. 

Therefore, the error (in percent) is calculated as the following; 

 

%.. 2114100142080                               

0.01467

0.1259 - 0.01467
 error tMeasuremen

=×=

=

 

 

The measurement error can be taken as 14.21% for the 70/100 Middle East 

penetration grade bitumen. The same process is done for other samples. Tables 6.22 to 

6. 28 show the measurement error values for all the studied samples. It is observed 

that the measurement error values are affected by the selection of a model. The 

Generalised Logistic Sigmoidal Model shows the most consistent results for all 

samples, followed by the CAM Model, CA Model and Sigmoidal Model. In general, 

the Generalised Logistic Sigmoidal Model, the CAM Model and the CA Model 

satisfactorily fit the complex modulus master curves for a temperature range from 10 

to 75
o
C. It is found that the Sigmoidal Model satisfactorily fit for a temperature range 

from 15 to 75
o
C. 
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Table 6.22: Measurement error (%) of the unaged and aged unmodified bitumens 

Unaged bitumen RTFOT Aged bitumen PAV Aged bitumen 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
1.1643 13.6041 0.3590 5.6153 1.6671 6.4460 2.9920 1.6902 4.3783 

Sigmoidal 7.8229 14.1125 4.3332 7.5162 2.5661 27.9123 12.2133 1.3729 23.5618 

CA 14.2084 27.4090 2.2264 17.9791 16.1015 4.6118 16.7918 18.4327 6.7335 

CAM 1.3244 3.3598 0.1500 12.7476 5.4561 4.0260 6.3628 7.5351 4.4823 

 

Table 6.23: Measurement error (%) of the unaged EVA PMBs 

Unaged EVA PMBs (3%) Unaged EVA PMBs (5%) Unaged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
0.6161 1.0934 0.7934 1.0344 0.8599 3.5093 0.60017 3.0987 6.2993 

Sigmoidal 20.2007 8.6179 11.5767 16.9180 8.9834 10.0067 16.5142 12.7961 0.9720 

CA 5.2633 3.3509 0.3646 3.6056 1.7057 0.2195 3.6044 3.0313 1.5928 

CAM 2.0420 1.3752 1.5323 6.7428 0.2821 0.3643 8.5288 1.0144 0.6051 
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Table 6.24: Measurement error (%) of the RTFOT aged EVA PMBs 

RTFOT Aged EVA PMBs (3%) RTFOT Aged EVA PMBs (5%) RTFOT Aged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
6.0644 - - 8.1856 2.0463 5.7366 3.8670 11.2224 6.7023 

Sigmoidal 27.2660 - - 23.3747 14.8665 2.4800 16.3145 19.1773 0.9847 

CA 8.7360 - - 5.7232 0.0344 0.0530 2.8282 0.4293 1.1606 

CAM 9.0959 - - 11.5552 0.5615 1.5862 4.2228 1.4013 0.0559 

 

Table 6.25: Measurement error (%) of the PAV aged EVA PMBs 

PAV Aged EVA PMBs (3%) PAV Aged EVA PMBs (5%) PAV Aged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
2.0967 - - 1.3446 2.1769 0.1079 1.1106 1.3988 2.9134 

Sigmoidal 1.4782 - - 14.1468 13.6101 0.3250 12.0261 18.6612 1.2973 

CA 15.5284 - - 7.6402 4.8671 0.2396 5.0821 2.5552 0.5263 

CAM 19.6074 - - 6.2222 10.7362 2.2669 9.1243 6.1338 2.5465 
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Table 6.26: Measurement error (%) of the unaged SBS PMBs 

Unaged SBS PMBs (3%) Unaged SBS PMBs (5%) Unaged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
1.4122 1.1085 0.2466 0.3309 0.0156 0.6350 

Sigmoidal 2.4307 17.8594 0.8857 9.4601 1.5334 5.4671 

CA 3.2374 0.1013 3.9492 0.1281 3.1469 0.6897 

CAM 2.5613 12.3963 0.9910 4.4117 1.5735 2.8477 

 

Table 6.27: Measurement error (%) of the RTFOT aged SBS PMBs 

RTFOT Aged SBS PMBs (3%) RTFOT Aged SBS PMBs (5%) RTFOT Aged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
8.3619 1.5553 8.4387 0.9220 0.3622 1.3771 

Sigmoidal 17.7663 24.5888 17.7718 13.9019 4.0616 14.9067 

CA 6.3125 0.3251 6.2948 0.0835 0.7558 0.0249 

CAM 6.2005 0.1472 6.1724 0.1469 1.5552 2.3348 
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Table 6.28: Measurement error (%) of the PAV aged SBS PMBs 

PAV Aged SBS PMBs (3%) PAV Aged SBS PMBs (5%) PAV Aged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Generalised Logistic 

Sigmoidal 
11.2295 1.9801 5.4757 6.6165 8.5935 1.9235 

Sigmoidal 6.9131 15.4206 11.6605 16.9758 10.8843 9.6364 

CA 14.3978 1.0410 6.6169 0.8681 1.3608 2.3758 

CAM 14.4622 4.9871 11.6903 1.1773 6.9107 4.1954 
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6.4 Summary 

 

Based on this study, several observations can be drawn: 

 

• In general it is observed that all the rheological models can satisfactorily 

describe the rheological properties of unaged and aged unmodified bitumens.  

• However, the models suffer from the drawback where they are unable to 

describe the rheological properties of the unaged PMBs due to the presence of 

semi-crystalline EVA and SBS modifiers, rendering a breakdown in the time-

temperature superposition principle (TTSP). 

• The glassy modulus, Gg, for unaged and aged unmodified bitumens and PMBs 

can be taken as 1 910× Pa for modelling purposes. On the other end, the elastic 

modulus is too small and can be neglected for bituminous binders. 

• In terms of SSE, the Generalised Logistic Sigmoidal Model generally shows 

the best correlation between measured and modelled data, followed by the 

Sigmoidal Model, CAM Model and CA Model. 

• When the measurement errors are taken into account, the Generalised Logistic 

Sigmoidal Model, the CAM and CA Model can be used for a temperature 

range from 10 to 75
o
C. A temperature range from 15 to 75

o
C is found suitable 

for the Sigmoidal Model. 

• It is observed that for the unaged and aged unmodified bitumens, the Modified 

Generalised Logistic Sigmoidal Model shows the most outstanding 

correlations between measured and modelled |G*| data, followed by the 

Sigmoidal, CA and CAM Models. 

• For the unaged and aged polymer-modified bitumens, the Generalised Logistic 

Sigmoidal and Sigmoidal Models show the outstanding correlation between 

measured and modelled |G*| data.  

• The use of different types of bitumens plays a crucial rule in modelling work, 

as different binders bring different chemical compositions and different 

rheological properties in the linear viscoelastic region. However, most of the 

models are basically empirical and cannot be used universally.  
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7 

Mechanical Model 

 

 

 

 

 

7.1 Background 

 

In general, the rheological properties of binders can be fitted using a model 

[Ferry, 1980]. The models are used to describe complex modulus, |G*|, and phase 

angle, δ, master curves. The technique of the determination of the master curve is 

based on the time-temperature superposition principle (TTSP). A standard reference 

temperature (Tref) is normally selected in the range of the tested temperatures. The 

amount of shifting required at each temperature to form the master curve is termed 

the shift factor, aT [Airey, 2002a]. Through the use of the master curve and shift 

factor relationships, it is possible to interpolate stiffness at an expanded range of 

frequencies and temperatures compared with those at which the data was collected. 

If functional forms are fitted to the shape of the master curve plot and to the shift 

factor relationship this interpolation becomes rapid and easy to apply in computer 

software. In addition, if a functional form with some thermodynamic basis is used 

then the resulting equations can be employed to extrapolate the data beyond the 

observed range of temperatures and frequencies [Rowe and Sharrock, 2011]. 

 

Among them, the 2S2P1D Model is found to be a unique model which it is 

used to fitting the rheological properties of bituminous binders and asphalt mixtures. 

The model was originally developed and calibrated at the Ecole Nationale des 

Travaux Publics de l’Etat (ENTPE), France using an annular shear rheometer 

(ASR) [Olard and Di Benedetto, 2003; Olard et al., 2003; Delaporte et al., 2007]. 

This model, based on the generalisation of the Huet-Sayegh Model, consists of 

seven parameters and the |G*| equation is shown as: 
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where k and h are exponents with 10 <<< hk , α a is constant, G0 is the static 

modulus when ω→0, Gg is the glassy modulus when ω→ ∞ . Details of the model 

can be found in Chapter 3. 

 

However, the validity of this model has yet to be assessed by other types of 

rheometers. This study attempts to evaluate the suitability of the model to describe 

the rheological properties of a large dynamic shear rheometer (DSR) database. This 

consists of unaged and aged unmodified bitumens, polymer-modified bitumens 

(PMBs) and bitumen-filler mastics. Correlations between measured and modelled 

data are evaluated using graphical and goodness-of-fit statistical analysis methods. 

In this study, the model's parameters are changed using a trial-and-error method 

until a good master curve is obtained. The Solver function is not used in this 

section. Meanwhile, the model's parameters are fitted manually where the initial 

values of those parameters were selected based on the works done by Di Benedetto 

et al. The trial-and-error process is done using the Excel spreadsheet until the most 

suitable parameters are obtained. The reference temperature, Tref is arbitrarily 

chosen in this study at a temperature of 10
o
C. A selective result obtained is then 

compared with the work of Di Benedetto et al.  

 

7.2 Results and Discussion 

 

7.2.1 Unaged unmodified bitumens 

 

Table 7.1 shows the model parameters for different types of penetration 

grade of unaged unmodified bitumens used in this study. As previously mentioned, 

the parameters are fitted manually using a trial-and-error method until a good curve 

is obtained. The same parameters are used for plotting the complex modulus and 

phase angle master curves, a Black diagram and a Cole-Cole diagram. However, the 

Cole-Cole diagram is not shown here because this study did not involve 

measurements at very low temperatures. The unaged bitumens tend to show 

Newtonian behaviour at low frequencies (high temperatures). G0 is too small and 
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can be neglected and only six parameters of the 2S2P1D Model need to be 

determined. Interestingly, five of the model's parameters; Gg, G0, k, h and α are the 

same for all samples, regardless of the penetration grade of bitumens. It is found 

that the β values for 10/20, 40/60 and 70/100 penetration grade bitumens are the 

same due to the fact that they have the same slope at low frequencies and high 

temperatures. As expected a 160/220 penetration grade bitumen with the lowest 

viscosity value has the smallest value of β. The presence of higher asphaltene 

contents plays a significant role to determine the β value. The value of β increases 

as the asphaltenes content increases.  

 

Table 7.1: The model parameters for unaged unmodified bitumens 
 

Pen Grade G0 (Pa) Gg (Pa) k h α τ β 

10/20 0 1.00E+09 0.22 0.64 4.00 6.00E-03 90 

35/50 0 1.00E+09 0.22 0.64 4.00 1.50E-03 90 

40/60 0 1.00E+09 0.22 0.64 4.00 3.00E-04 90 

70/100 0 1.00E+09 0.22 0.64 4.00 6.00E-05 90 

160/220 0 1.00E+09 0.22 0.64 4.00 3.50E-05 45 

 

Table 7.2 shows a comparison between the NTEC dataset and the works of 

Di Benedetto et al. [Olard and Di Benedetto, 2003; Olard et al., 2003; Delaporte et 

al., 2007]. Several values are noticeably different when examining the NTEC 

dataset and Di Benedetto et al.'s.  

 

Table 7.2: Comparisons between NTEC and Di Benedetto et al.'s model parameters 
 

Source* 
PG 

G0 

(Pa) Gg (Pa) k h α τ β 

1 0 1.00E+09 0.22 0.64 4.00 6.00E-03 90 

2 
10/20 

0 2.00E+09 0.19 0.52 2.20 2.50E-03 800 

1 40/60 0 1.00E+09 0.22 0.64 4.00 1.00E-04 200 

2 50/70 0 2.00E+09 0.18 0.55 2.00 1.90E-03 320 

3 50/70 0 9.00E+08 0.21 0.55 2.30 8.00E-05 400 
 

*1 – NTEC, 2 – Olard et al. [2003], 3 – Delaporte et al. [2007] 

 

For instance, the Gg values obtained by Di Benedetto et al. vary from 0.9 910×  to 

2 910× Pa, whilst the value of 1 910× Pa had been used in this study. The k and h 

values are almost the same, even though a slightly higher value of h is observed. Di 

Benedetto et al. show higher and lower values of β and δ compared to the NTEC 

dataset. These findings might be attributed to several factors. First, different crude 
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sources used by the respective studies might play a significant rule in influencing 

viscosities of the unaged unmodified bitumens. Secondly, the use of different types 

of rheometers may affect the precision of rheological data. Di Benedetto et al. used 

the annular shear rheometer (ASR) while the dynamic shear rheometer (DSR) is 

used in this study. Delaporte et al. [2009] showed that the use of ASR allows 

continuous measurements of |G*| over 7 decades (in norm), from about 1 310×  to 

1 1010× Pa. 

 

It is worth mentioning that α can be of thought as an appropriate parameter 

to assess the occurrence of measurement errors of |G*|. A higher value of α 

indicates that |G*| is exposed to measurement errors and vice versa. Finally, an 

example of the 2S2P1D Model of |G*| and δ master curves and the Black diagram 

for some of the tested unaged unmodified bitumens (10/20, 40/60 and 160/220) are 

presented in Fig. 7.1. From these figures, it is observed that the 2S2P1D Model 

satisfactorily fits the experimental results.  

 

10
-10

10
-5

10
0

10
5

10
10

10
0

10
2

10
4

10
6

10
8

10
10

Reduced Frequency (Hz)

C
o

m
p

le
x
 M

o
d

u
lu

s
, 
|G

*|
 (

P
a

)

Complex Modulus Master Curve (Tref = 10 C)

10/20

10/20 (2S2P1D)

40/60

40/60 (2S2P1D)

160/220

160/220 (2S2P1D)

 
 

a 



 172 

10
-10

10
-5

10
0

10
5

10
10

0

10

20

30

40

50

60

70

80

90

Reduced Frequency (Hz)

P
h

a
s
e

 A
n

g
le

 (
D

e
g

re
e

s
)

Phase Angle Master Curve (Tref = 10 C)

10/20

10/20 (2S2P1D)

40/60

40/60 (2SP1D)

160/220

160/220 (2S2P1D)

 
 

10
0

10
2

10
4

10
6

10
8

10
10

0

10

20

30

40

50

60

70

80

90

Complex Modulus, |G*| (Pa)

P
h

a
s
e

 A
n

g
le

 (
D

e
g

re
e

s
)

Black Diagram

10/20

10/20 (2S2P1D)

40/60

40/60 (2S2P1D)

160/220

160/220 (2S2P1D)

 

 

Fig. 7.1: (a) Complex modulus, (b) phase angle and (c) Black diagrams of unaged 

unmodified bitumens  
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7.2.2 Unaged bitumen-filler mastics 

 

Mastics, composed of bitumen and filler, is an intermediate material 

between bitumen and asphalt mixture [Delaporte et al., 2007]. The presence of 

mineral filler cannot be neglected as it brings important effects such as improved 

strength, plasticity, amount of voids, resistance to water action and resistance to 

weathering [Liao, 2007]. Three types of fillers; cement, gritsone and limestone are 

used in this study [Liao, 2007; Wu, 2009]. The model parameters for each sample 

are shown in Tables 7.3 (by volume) and 7.4 (by weight). Meanwhile, Fig. 7.2 

shows the plot of |G*| and δ master curves and the Black diagram of measured and 

modelled data of the unaged bitumen-filler mastics (by volume). 

 

Table 7.3: The model parameters for bitumen filler mastics (40% by volume) 
 

Material* G0 (Pa) Gg (Pa) k h α τ β 

Gritstone 6000 4.00E+09 0.21 0.55 4.00 1.10E-04 250 

Limestone 10 2.00E+09 0.21 0.55 2.30 4.00E-04 250 

Cement 120 2.00E+09 0.21 0.55 2.30 3.00E-04 250 
 

*fillers were mixed with a 100/150 penetration grade bitumen  

 

Table 7.4: The model parameters for bitumen-filler mastics (by weight) 
 

Filler* (%) G0 (Pa) Gg (Pa) k h α τ β 

35 0 1.00E+09 0.21 0.59 2.30 7.00E-04 100 
Gritstone 

65 8 1.00E+09 0.21 0.59 2.30 5.20E-03 100 

35 0 1.20E+09 0.21 0.59 2.30 7.00E-04 150 
Limestone 

65 5 1.50E+09 0.21 0.59 2.30 2.00E-03 150 

35 0 1.30E+09 0.21 0.55 2.30 1.50E-04 250 
Cement 

65 5 1.40E+09 0.21 0.55 2.30 1.50E-03 250 
 

*fillers were mixed with a 50 penetration grade bitumen 

 

 

In general, the k, h and β values are found to be the same for all samples 

used in this study. This indicates that the samples have the same slope at low 

frequencies and high temperatures. The presence of mineral filler is clearly 

observed where the G0 values are higher than those of the unaged unmodified 

bitumens. Results show that the G0 values are double for limestone and cement 

bitumen-filler mastics, whereas the G0 values for gritstone bitumen-filler mastics 

are four times higher compared to the unaged unmodified bitumens. The G0 values 

for bitumen-filler mastics cannot be neglected anymore. Delaporte et al. [2007] 
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found that the G0 values are higher due to the existence of solid contacts between 

particles. 

 

Further investigation is done to fit the 2S2P1D Model using the bitumen-

filler mastics at different percentages of 35 and 65% (by weight). The results are 

shown in Table 7.5. At 35%, all samples tend to behave in a Newtonian behaviour 

at very low frequencies where the Gg values are equal to zero. However, as the 

percentage increases up to 65%, the presence of mineral filler slowly appears at low 

frequencies even though these values are apparently small. This indicates that the 

considerably higher |G*| for the 65% bitumen-filler mastics might be caused by the 

filler skeleton being present in the bitumen-filler system. Like the unaged 

unmodified bitumens, the 2S2P1D Model is also able to satisfactorily describe the 

rheological properties of the bitumen-filler mastics (Fig. 7.2). 
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Fig. 7.2: (a) Complex modulus, (b) phase angle and (c) Black diagram of unaged 
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Delaporte et al. [2009] used different types of bitumen-filler mastics to 

evaluate the influence of different fillers on the 2S2P1D Model parameters. Fillers 

such as limestone (noted as LS), a mixture of limestone and ultrafine particles 

(noted as LSS) and a new type of filler composed of ultrafine particles (noted as S) 

mixed with a 50/70 penetration grade bitumen effect the model parameters as shown 

in Table 7.5.  

 

Table 7.5: The model parameters for bitumen filler mastics obtained by Delaporte et 

al. [2009] (40% by volume) 
 

Material G0 (Pa) Gg (Pa) k h α τ β 

B5070 0 9.00E+08 0.21 0.55 2.30 1.00E-04 400 

B5070LS40 150 6.00E+09 0.21 0.55 2.30 6.00E-05 400 

B5070LSS40 200 7.00E+09 0.21 0.55 2.30 6.00E-05 1200 

B5070S40 500 9.00E+09 0.21 0.55 2.30 5.00E-04 30000 

 

It was observed that α, k and h are the same regardless of the selected filler 

mastics when a comparison between the NTEC (Table 7.3) and Delaporte et al. 

[2009] (Table 7.5) dynamic data was made. These three parameters were not 

dependent on the filler content and they were fixed by the binder. The G0 values are 

different, depending on the type of filler and binder used. Delaporte et al. [2009] 

observed higher Gg compared to the values obtained in Table 7.4. This result is 

expected since Delaporte et al. [2009] used a harder bitumen (50/70 penetration 

grade) compared to the softer 100/150 penetration grade bitumen used in this study. 

The β values reported by Delaporte et al. [2009] were also higher compared to the 

NTEC data. 

 

7.2.3 Unaged polymer-modified bitumens 

 

Table 7.6 shows the 2S2P1D Model's parameters of the EVA and SBS 

PMBs. For simplification, Gg is taken as 1 910× Pa. The results show that the Gg, G0, 

k and h values are the same for all unaged PMBs but α, τ and β vary. The α value is 

more consistent for the SBS PMBs than those of the EVA PMBs. This is probably 

due to the presence of semi-crystalline structure at different temperatures which 

increases the complexity of a mixture. A thorough discussion on the rheological 

characteristics of the EVA and SBS PMBs can be found in previous publications 
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[Airey, 2002a, 2002b, 2003]. Results show that the 2S2P1D Model is able to 

simulate the effect of polymer modification as the β value increases when the 

percentage of a modifier is increased. The presence of polymer modification 

increases the viscosity of the mixture.  
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      Table 7.6: The model parameters for unaged polymer-modified bitumens 
 

Percent Modifier Source G0 (Pa) Gg (Pa) k h α τ β 

Middle East 0 1.00E+09 0.21 0.55 2.30 5.00E-05 300 

Russian 0 1.00E+09 0.21 0.55 3.50 5.00E-05 150 0 

 

Control 

Venezuelan 0 1.00E+09 0.21 0.55 2.30 1.50E-05 200 

3 0 1.00E+09 0.21 0.55 3.50 7.00E-05 900 

5 0 1.00E+09 0.21 0.55 5.00 7.00E-05 2500 

7 

Middle East 

 0 1.00E+09 0.21 0.55 5.00 1.00E-04 6000 

3 0 1.00E+09 0.21 0.55 3.50 5.00E-05 600 

5 0 1.00E+09 0.21 0.55 3.00 6.00E-05 1000 

7 

Russian  

 0 1.00E+09 0.21 0.55 2.30 6.00E-05 6000 

3 0 1.00E+09 0.21 0.55 2.30 2.00E-05 1200 

5 0 1.00E+09 0.21 0.55 2.30 2.00E-05 7000 

7 

EVA 

 

Venezuelan 

 0 1.00E+09 0.21 0.55 2.30 2.00E-05 10000 

3 0 1.00E+09 0.21 0.55 2.30 3.00E-05 1500 

5 0 1.00E+09 0.21 0.55 2.30 3.00E-05 3000 

7 

Russian 

 0 1.00E+09 0.21 0.55 2.30 5.00E-06 20000 

3 0 1.00E+09 0.21 0.55 2.30 2.00E-05 700 

5 0 1.00E+09 0.21 0.55 2.30 2.00E-05 1300 

7 

SBS 

 

VE 

 0 1.00E+09 0.21 0.55 2.30 2.00E-05 2500 
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Fig 7.3: (a) Complex modulus, (b) phase angle and (c) Black diagrams of unaged PMBs 

 

The plot of |G*| and δ master curves and of the Black diagram one of the unaged 

PMB (EVA) used in this study are shown in Fig. 7.3. It is observed that the 2S2P1D 

Model is only capable to satisfactorily describe |G*| master curves but not for δ master 

curves. This finding is expected as other constitutive models are also not able to 

describe the viscoelastic properties of highly modified bitumens. The quality of data is 

normally further evaluated using the Black diagram. 

 

 

7.2.4 Aged unmodified bitumens 

 

It is experimentally observed that there is an important change in behaviour due 

to the binder's ageing mainly at high temperatures and low frequencies (Table 7.8). Fig. 

7.8 shows |G*| and δ angle master curves and the Black diagram of aged unmodified 

bitumens. The parameters such as Gg, G0, k and h are consistent for all materials. This 

indicates that these parameters are independent of the ageing process. Moreover, the β 

value that is linked to the Newtonian viscosity, η, of the 2S2P1D Model has a large 

c 
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influence in this domain. The influence of the binder ageing on the model's parameters 

mainly affected the β value. The values of β increase from unaged to aged unmodified 

bitumens.  

 

The α value is increased as a material becomes harder. Delaporte et al. [2007] 

disclosed the same findings where the α values increased from 2.3 to 3.0 when the curve 

is plotted using an aged 50/70 penetration grade bitumen. Therefore, it can be inferred 

that the α value can be used as an ageing indicator, where the aged samples show a 

higher α value compared to the unaged samples. 
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Fig. 7.4: (a) Complex modulus, (b) phase angle and (c) Black diagrams of aged 

unmodified bitumen
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7.2.5 Aged bitumen-filler mastics 

 

An attempt is also made to fit the aged bitumen-filler mastics using the 2S2P1D 

Model (Table 7.9). Only two filler mastics (gritstone and limestone) are used in this 

ageing study as cement bitumen-filler mastics did not produce good data. It is found that 

the 2S2P1D Model is able to describe the aged bitumen-filler mastics with the same 

quality of the aged unmodified bitumens. The gritstone and limestone bitumen-filler 

mastics show the same values of k, h, α and β with ageing times from 1 to 10 hours. 

However, as the ageing time is increased to 20 hours, the β values increase to 600 

(gritstone) and 800 (limestone). Like the unaged bitumen-filler mastics, the values of Gg 

are also taken into account due to the existence of solid contacts between particles in a 

mixture. The acidic gritstone bitumen-filler mastic shows a slight difference of Gg with 

ageing time compared to the limestone bitumen-filler mastic.  

 

As expected, |G*| of the gritstone bitumen-filler mastic increases as the ageing 

time increases. However, an initial reduction is observed for the limestone bitumen-

filler mastic |G*|, with the lowest value after an hour of ageing time. This phenomenon 

is believed to be caused by the adsorption of heavier fractions from bitumen to the 

mineral surface of the limestone bitumen-filler mastics [Wu, 2009]. Fig. 7.5 shows an 

example of the dynamic data (|G*| and δ) and the Black diagram of the aged cement 

bitumen-filler mastic. It is observed that the 2S2P1D Model satisfactorily describes the 

measurements.  
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   Table 7.8: The model parameters for the aged unmodified bitumens 
 

Method* Source G0 (Pa) Gg (Pa) k h α τ β 

Unaged 0 1.00E+09 0.21 0.55 2.30 5.00E-05 300 

RTFOT 0 1.00E+09 0.21 0.55 4.00 7.00E-05 700 

PAV 

Middle East 

0 1.00E+09 0.21 0.55 5.00 4.00E-04 1000 

Unaged 0 1.00E+09 0.21 0.55 3.50 5.00E-05 150 

RTFOT 0 1.00E+09 0.21 0.55 5.00 5.00E-05 400 

PAV 

Russian 

0 1.00E+09 0.21 0.55 5.00 4.00E-04 1500 

Unaged 0 1.00E+09 0.21 0.55 2.30 1.50E-05 200 

RTFOT 0 1.00E+09 0.21 0.55 3.50 3.20E-05 500 

PAV 

Venezuelan 

0 1.00E+09 0.21 0.55 4.50 1.00E-04 1500 
   *RTFOT – Rolling Thin Film Oven test, PAV – Pressure Ageing Vessel 

 
 

  Table 7.9: The model parameters for the aged bitumen-filler mastics (40% by volume) 
 

Material Time (h) G0 (Pa) Gg (Pa) k h α τ β 

1 200 1.40E+09 0.21 0.55 2.30 9.50E-04 150 

3 12000 1.60E+09 0.21 0.55 2.30 6.00E-04 150 

5 8000 1.70E+09 0.21 0.55 2.30 8.00E-04 150 

10 600 1.40E+09 0.21 0.55 2.30 2.00E-03 150 

Gritstone 

20 600 1.00E+09 0.21 0.55 2.30 1.00E-02 600 

1 8 1.50E+09 0.21 0.55 2.30 5.50E-04 150 

3 10 1.50E+09 0.21 0.55 2.30 8.00E-04 150 

5 10 1.50E+09 0.21 0.55 2.30 1.00E-03 150 

10 10 1.20E+09 0.21 0.55 2.30 2.00E-03 150 

Limestone 

20 3000 1.30E+09 0.21 0.55 2.30 2.00E-03 800 
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Fig. 7.5: (a) Complex modulus, (b) phase angle and (c) Black diagrams of aged 

bitumen-filler mastic 

 

7.2.6 Aged polymer-modified bitumens 

 

The model parameters for all the aged PMBs are shown in Table 7.10. 

Meanwhile, Fig. 7.6 shows the simulations of |G*| and δ master curves and the Black 

diagram of one of the aged SBS PMB used in this study. The Gg, G0, k and h values are 

the same for all samples. The β value which is linked to the Newtonian viscosity η of 

the 2S2P1D Model has a large influence in this domain of behaviour, where β increases 

as polymer modification is increased. For some samples, the changes of the α value 

depends on the percentage of modification and the crudes source. As the temperature 

increases, the polymer-rich phase plays a more dominant role in determination of the 

LVE rheological properties of bitumens. The effect of ageing can be seen as an 

alteration of the Black diagram waves associated with the different EVA crystalline 

structures and a general reduction in polymer modification [Airey, 2002a].  

c 
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Table 7.10: The model parameters for the aged polymer-modified bitumens 
 

Method % Modifier Source G0 (Pa) Gg (Pa) k H α τ β 

3 0 1.00E+09 0.21 0.55 4.50 1.00E-04 1500 

5 0 1.00E+09 0.21 0.55 5.00 3.00E-04 2000 RTFOT 

7 0 1.00E+09 0.21 0.55 5.00 2.00E-04 10000 

3 0 1.00E+09 0.21 0.55 7.00 5.00E-04 2500 

5 0 1.00E+09 0.21 0.55 7.00 2.00E-03 3000 PAV 

7 

ME 

 

0 1.00E+09 0.21 0.55 7.00 2.00E-03 10000 

5 0 1.00E+09 0.21 0.55 5.00 8.00E-05 8000 
RTFOT 

7 0 1.00E+09 0.21 0.55 5.00 2.00E-04 20000 

5 0 1.00E+09 0.21 0.55 5.00 8.00E-04 3000 
PAV 

7 

RU 

0 1.00E+09 0.21 0.55 7.00 9.00E-04 25000 

5 0 1.00E+09 0.21 0.55 5.00 1.00E-04 8000 
RTFOT 

7 0 1.00E+09 0.21 0.55 3.00 3.00E-05 60000 

5 0 1.00E+09 0.21 0.55 7.00 5.00E-04 10000 
PAV 

7 

EVA 

 

VE 

0 1.00E+09 0.21 0.55 7.00 4.00E-04 60000 

3 0 1.00E+09 0.21 0.55 5.00 8.00E-05 1500 

5 0 1.00E+09 0.21 0.55 5.00 9.00E-05 1000 RTFOT 

7 0 1.00E+09 0.21 0.55 5.00 3.00E-05 5000 

3 0 1.00E+09 0.21 0.55 7.00 4.50E-04 1500 

5 0 1.00E+09 0.21 0.55 7.00 2.00E-04 3000 PAV 

7 

RU 

0 1.00E+09 0.21 0.55 5.00 3.00E-04 5000 

3 0 1.00E+09 0.21 0.55 4.00 3.00E-05 1800 

5 0 1.00E+09 0.21 0.55 5.00 1.50E-05 8000 RTFOT 

7 0 1.00E+09 0.21 0.55 5.00 3.00E-05 8000 

3 0 1.00E+09 0.21 0.55 5.00 1.00E-04 6000 

5 0 1.00E+09 0.21 0.55 5.00 3.00E-05 5000 PAV 

7 

 

SBS 

VE 

0 1.00E+09 0.21 0.55 5.00 3.00E-04 8000 
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Fig. 7.6 (a) Complex modulus, (b) phase angle and (c) Black diagrams of aged PMBs 

 

Olard and Di Benedetto [2003] found an identical problem for the PMBs and 

they called this property the partial time-temperature superposition principle (PTTSP) 

as shifting procedures give only a unique and continuous |G*| master curves. However, 

it is found that the PTTSP might be or not be applicable for certain conditions (or 

percentage) of polymer modifications and not suitable to be used on highly polymer-

modified bitumens. Airey [2002a, 2002b] showed that both the TTSP and PTTSP are 

unable to describe the branching and discontinuous waves in the master curves that 

show the presence of highly semi-crystalline EVA copolymer. 

 

7.3 Statistical Analysis 

 

7.3.1 Graphical comparisons 

 

Comparisons between measured and modelled |G*| and δ of all samples are 

shown in Figs 7.7 and 7.8. The measured and modelled values are equated by matching 

two values in a normal scale graph. If the matching points are fairly distributed around 

c 
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the equality line, then the model should have a good correlation to the measured data 

[Tran and Hall, 2005]. Graphically, it is observed that the 2S2P1D Model is able to 

describe |G*| values for the unaged and aged unmodified bitumens and bitumen-filler 

mastics well (Fig. 7.6). However, the modelled |G*| of the unaged PMBs are slightly 

scattered from the equality line particularly for samples of high modification.  
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Fig. 7.6: Graphical comparison between measured and modelled |G*| 

 

Meanwhile Fig. 7.7 shows a comparison between measured and modelled δ. It is 

found that the unaged and aged unmodified bitumens show good correlation between 

measured and model data. However, the modelled unaged and aged PMBs, and aged 

bitumen-filler mastics are slightly scattered from the equality line. Di Benedetto et al. 

also found the same problem where this model was partially satisfied in fitting |G*| and 

δ master curves of PMBs [Olard and Di Benedetto, 2003; Olard et al., 2003].  
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Fig. 7.7: Graphical comparison between measured and modelled δ 

 

7.3.2 Goodness-of-fit statistics 

 

The goodness-of-fit statistics between measured and modelled |G*| and δ are 

shown in Tables 7.10 and 7.11, respectively. In summary, the Se/Sy for all samples are in 

"excellent" correlations between measured and modelled |G*| data. Similarly, the Se/Sy 

for δ of unaged and aged unmodified bitumens and unaged bitumen-filler mastics show 

"excellent" correlations. Conversely, the Se/Sy for aged bitumen-filler mastics and PMBs 

are in "good" correlations, whereas the Se/Sy for unaged PMBs shows "poor" correlation 

between measured and modelled data. All samples show "excellent" correlations of R
2
 

for |G*| data. However for δ, it is found that the R
2 

is in "good" correlations of unaged 

and aged PMBs. As expected, the unaged PMBs show "poor" correlations. However, it 

is observed that the use of R
2
 and Se/Sy is not really suitable for describing mismatches 

between measured and modelled data. 

 

The discrepancy ratio, ri is used to observe the model data's tabulation from the 

equality line. A perfect value is equal to 1. When the discrepancy ratio is larger or 
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smaller than 1, it measures how much wider the model interval had to be to cover the 

observed number of cases [Wu et al., 2009]. With the interval of 1 + 0.04 used in this 

study, the unaged unmodified bitumen data dispersed close to the equality line, 

followed by the aged unmodified bitumens, unaged bitumen-filler mastics, aged filler 

mastics and aged PMBs. As expected, the unaged PMBs showed the worst correlation 

between measured and modelled |G*|. As discussed earlier, the 2S2P1D Model is 

unable to satisfactorily fit the rheological properties of highly modified polymers. 

 

Like the ri, the MNE and AGD are also used to observe the difference between 

measured and modelled data. The unaged unmodified bitumens show the most 

outstanding correlation for both |G*| and δ, followed by the aged unmodified bitumens, 

unaged bitumen-filler mastics, aged PMBs, aged bitumen-filler mastics and unaged 

PMBs. An observation is made where the ageing process renders the aged PMBs more 

stable compared to the unaged samples. The ageing process may also possibly affect the 

breakdown in polymer structures, therefore decreasing the effect of polymer-rich phase 

network in the mixtures. Based on Tables 7.10 and 7.11, it is found that the AGD is not 

always reliable at detecting the goodness-of-fit as only small differences between 

measurements and model are observed. It is therefore recommended that the ri and MNE 

provide the best means of identifying the goodness-of-fit statistics for model and 

experiment associated with the rheological data over a wide range of temperatures and 

frequencies.  
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Table 7.10: Statistical analysis for the complex modulus magnitude master curves 
 

Discrepancy ratio, ri (%) 
Sample Condition 

0.96 – 1.04  0.92 – 1.08 0.88 – 1.12 0.84 – 1.16 0.80 – 1.20 
Se/Sy R

2
 AGD MNE 

unaged 26.43 48.87 72.10 87.78 96.27 0.171 0.971 1.090 8.733 unmodified 

bitumen aged 39.29 64.88 75.00 80.51 82.89 0.069 0.995 1.092 9.421 

unaged 25.30 47.82 65.55 76.31 84.93 0.145 0.979 1.116 11.318 bitumen-filler 

mastics aged 12.62 25.00 35.27 45.55 57.30 0.114 0.987 1.212 19.197 

unaged 13.69 29.46 41.43 51.13 59.05 0.102 0.990 1.253 25.631 
PMBs 

aged 17.37 35.19 50.19 62.75 71.96 0.171 0.971 1.161 16.034 

 
 

Table 7.11: Statistical analysis for the phase angle master curve 
 

Discrepancy ratio, ri (%) 
Sample Condition 

0.96 – 1.04  0.92 – 1.08 0.88 – 1.12 0.84 – 1.16 0.80 – 1.20 
Se/Sy R

2
 AGD MNE 

unaged 88.81 98.96 99.91 100.00 100.00 0.107 0.989 1.018 1.787 unmodified 

bitumen aged 71.28 90.63 98.96 100.00 100.00 0.163 0.974 1.032 3.064 

unaged 61.06 81.79 91.05 96.03 97.48 0.294 0.914 1.063 5.500 bitumen-filler 

mastics aged 40.10 69.31 87.50 92.39 93.94 0.405 0.837 1.107 10.395 

unaged 36.81 65.16 76.47 83.80 89.10 0.808 0.345 1.110 12.893 
PMBs 

aged 40.57 67.69 85.03 93.60 96.73 0.357 0.873 1.069 6.736 
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7.4 Summary 

 

Based on this study, several key observations can be drawn; 

 

• The 2S2P1D Model is quite simple in its formulation, as a combination of 

springs, dashpot and parabolic elements. The calibration of this model is not a 

very difficult task and is good for bituminous binders over a wide range of 

frequencies and/or temperatures. The model can be thought of as a unique model 

as its parameters are relatable to the construction of complex modulus and phase 

angle master curves, the Black diagram and the Cole-Cole diagram. It also takes 

into account the presence of polymers, mastics and ageing. 

• It is observed that this model is able to fit the rheological properties of 

unmodified bitumens (unaged and aged), bitumen-filler mastics (unaged and 

aged) and polymer-modified bitumens (aged). However, the model failed to fit 

the rheological properties of unaged polymer-modified bitumens particularly 

with high modifications. The fit is even worse when a comparison is made for 

measured and modelled δ.  

• For modelling purposes, the Gg values can be taken as 1×10
9 

Pa (in shear) and 

3×10
9 

Pa (in extension or flexure) for unmodified and PMBs, for both unaged 

and aged samples. They approach a limiting maximum modulus at very low 

temperatures. However, for the unaged and aged bitumen-filler mastics, the Gg 

values vary. The Gg values depend on the percentage and a type of mineral 

fillers used. This phenomenon occurs due to the existence of physical interaction 

in the mixture.  
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8 

Phase Angle Equations 

 

 

 

 

 

8.1 Background 

 

The principal viscoelastic parameters that are obtained from the DSR are the 

magnitude of the complex modulus (|G*|) and the phase angle (δ). |G*| consists of 

two components namely the storage modulus (G') and loss modulus (G"). 

Meanwhile δ is the phase, or time difference between stress and strain in harmonic 

oscillation [Eurobitume, 1995]. The δ is also known as phase angle (or loss tangent) 

and shown as the following: 

 

G'

G"
δ 1tan−

=          (8.1) 

 

Tan δ is the ratio of loss energy to stored energy. An elastic behaviour is defined as 

in-phase strain response to an applied load and δ is 0
o
 and marks the coordinated 

long chain molecular mobilisation. Viscous behaviour is a strain response that is 90
o
 

out-of-phase from the applied load and indicates full molecular mobilisation 

[Gardiner, 1996]. Viscoelastic behaviour of material including bitumen occurs when 

δ is greater than 0
o
 but less than 90

o
. It is worth mentioning that δ can be thought of 

as the second part of |G*| to yield complete information about the linear viscoelastic 

function of the binders.  

 

Complex modulus test procedures and models developed in the early 1950s. 

Contrarily, the development of δ models to describe the viscoelastic behaviour of 

the binders is rarely seen. To obtain δ information from an experimental data set 

using a simple method would be advantageous and increase the utility of the data 

[Rowe, 2009]. A reasonable number of studies had been done to evaluate various δ 
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equations covering a wide range of temperatures and frequencies [Dickinson and 

Witt, 1974; Stastna et al. 1997; Chailleux et al., 2006]. However, none of those 

studies were devoted to evaluate the applicability of different δ equations on 

different types of binders.  

 

This study attempts to evaluate the validity of several δ equations based on 

the data set that is held at the Nottingham Transportation Engineering Centre 

(NTEC). This data set included different combinations of the dynamic shear 

rheometer data of unmodified bitumens and PMBs [Airey, 1997]. Correlations 

between equations and measurements are evaluated using a graphical method and 

goodness-of-fit statistical analysis.  

 

8.2 Phase Angle Equations 

 

8.2.1 Kramers-Kronig relationship 

 

Booij and Thoone [1982] carried out experimental work on polyvinyl-

acetate (PVA) samples using oscillatory type measurements, on a mechanical 

spectrometer at 5 different frequencies and temperatures between 22–120
o
C. Using 

the Kramers-Kronig relationship, they showed that δ can be determined as follows: 

 

( ) 







≅

ωd

G*d
ωδ

log

log

2

π
        (8.2) 

where the symbols are as previously defined. However, Booij and Thoone 

suggested the above equation needed to be supported by the experimental data. Eq. 

8.2 can be re-written as [Chailleux et al., 2006]: 

 

( )








=

ωd

Gdωδ

log

*log

90
        (8.3) 
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8.2.2 Christensen and Anderson (CA) Model 

 

During the Strategic Highway Research Program (SHRP) A-002A 

campaign, Christensen and Anderson [1992] developed the |G*| and δ equations that 

describe the viscoelastic behaviour of bitumen. The |G*| equation is shown in 

Chapter 3. For δ, the following equation applies: 

 

( )
( )( )R/
ωω

ωδ
2log

o1

90

+
=        (8.4) 

 

where δ is the phase angle, ω is the reduced frequency, ωo is the crossover 

frequency and R is the rheological index. Equation 8.4 is followed the form of 

Equation 8.3. 

 

8.2.3 Fractional Model 

 

Stastna et al. [1997] developed the Fractional Model to describe the LVE 

behaviour of unmodified bitumens and PMBs. The phase angle equation, δ is given 

as: 

 

( ) ( ) ( )





−









−
+= ∑ ∑

m n

kk ωλωµ
mn

ωδ
1 1

tanarctanarc
1

2

π
   (8.5) 

 

where µk and λk is the relaxation time (µk > 0, λk > 0), m and n are the numbers of 

relaxation time (n > m). 

 

8.2.4 Christensen, Anderson and Marasteanu (CAM) Model 

 

In 1999, Marasteanu and Anderson developed a new model with the 

modification of the CA Model to improve the curve fitting particularly at lower and 

higher frequencies. The δ equation can be shown as [Marasteanu and Anderson, 

1999a]: 

 

( )
( )( )v

ωω

w
ωδ

o1

90

+
=         (8.6) 
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where the symbols are as previously defined. The new parameter in the CAM 

Model, w addresses the issue of how fast or slow δ converged to the two asymptotes 

(90 or zero degrees, respectively), as the frequency goes to zero or infinity. The v 

has resemblance to log 2/R in the CA Model. Equation 8.6 is followed the form of 

Equation 8.3. 

 

8.2.5 Al-Qadi and Co-workers Model 

 

Elseifi et al. [2002] proposed the |G*| and δ equations to describe the LVE 

behaviour of unmodified bitumens and PMBs, called the Al-Qadi and Co-workers 

Model. Like the CAM Model, they used the Havriliak and Negami function form to 

develop the |G*| equation and the details of this function can be found in Chapter 3. 

The δ equation proposed is as follows: 

 

( )
( )( )wv
ωω

ωδ

o1

90

+
=         (8.7) 

 

where ω is the reduced frequency, ωo is the reduced frequency value that defines the 

location along the x-axis, v and w are the fitting parameters. This equation was 

found to adequately describe the unmodified bitumens and PMBs with error less 

than 5 and 10%, respectively [Elseifi et al., 2002]. Equation 8.7 is also followed the 

form of Equation 8.3. 

 

8.2 Construction of the Phase Angle Master Curves  

 

The δ data collected at different temperatures can be shifted relative to the 

frequency (or time of loading), so that the various curves can be aligned to form a 

single line called a master curve [Pellinen et al., 2002]. The amount of shifting 

required at each temperature to form the master curve is termed the shift factor, aT. 

The master curve can be constructed using an arbitrarily selected reference 

temperature, Tref to which all data are shifted. In this study, the δ curves were shifted 

randomly (highest degree of freedom), without assuming any function for the shift 

factors. Tref was arbitrarily chosen at 10
o
C. The construction of δ master curves was 

done with the aid of the Solver function in Microsoft Excel, a function for 
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performing optimisation with a non-linear least squares regression technique. This 

process was done by minimising the sum of square errors (SSE) between measured 

and modelled δ: 

 

( )
( )

( )∑
−

=
2

measured

2

modelmeasured
SSEerrorsquareofSum

i

ii

δ

δδ
    (8.8) 

 

where 
i

δmeasured  and 
i

δmodel are the measured and modelled phase angles and the 

subscript i denotes the data set number. The Solver function replaced the initial 

guesses with optimised values. In order to check the best possible solution, this 

Solver solution can be kept and the Solver function run again; this runs another 

minimisation using the values from the last search to produce values for the new 

search. When no more changes can be observed, the iteration process was 

terminated.  

 

8.4 Results and Discussion 

 

8.5.1 Graphical comparisons 

 

Comparisons between measured and descriptive δ for the unaged and aged 

unmodified bitumens and PMBs are graphically displayed in Figs 8.1 to 8.4. These 

plots are intended to visually and qualitatively show an agreement between 

measured and descriptive values and to display the distribution error [Wu et al., 

2008]. It is observed that in Fig. 8.1, the Al-Qadi and Co-workers, CA, CAM and 

Fractional and Models are able to describe the viscoelastic behaviour of unaged 

unmodified bitumen satisfactorily. However, the Kramers-Kronig relationship 

shows some dispersion of descriptive δ data from the equality line particularly at 

high frequencies and at the changes between the end of one temperature and next. 

Chailleux et al. [2006] also found a similar problem for asphalt mixtures where the 

Kramers-Kronig relationship cannot precisely describe δ at high frequencies.  

 

A similar observation is made for the aged unmodified bitumens (Fig. 8.2). 

The Al-Qadi and Co-workers, CAM and Fractional equations describe δ 

satisfactorily. In contrast, δ is found to be bit dispersed from the measurement data 
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when comparing with the CA Model, showing that the ageing effect plays a 

significant role in the model's precision. As samples undergo ageing, the 

asphaltenes content increase and δ becomes more elastic. In a previous study, 

Christensen and Anderson [1992] found that the CA Model can be used over a wide 

range of temperatures and frequencies extended well into the glassy region. 

However, this model does not generate consistent results as viscous flow is 

approached. Therefore, they recommended using two sets of parameter values for 

primary (glassy to transition) and secondary (viscous) regions. A comparison 

between measured and modelled δ for the unaged unmodified bitumen and aged 

PMB are shown graphically in Figs 8.3 and 8.4. It is observed that most of the δ 

equations are unable to describe the viscoelastic behaviour of unaged and aged 

PMBs, particularly with the polymer modification exceeds 5%.  
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(a) The Kramers-Kronig Relationship  (b) The Al-Qadi and Co-workers 

                                                                            Model 

 

 

                 (c) The CAM Model      (d) The CA Model 

 

 

   

 

 

 

 

 

 

 

(e) The Fractional Model 

 

Fig. 8.1: Measured versus descriptive of δ data of the unaged unmodified bitumens 
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(a) The Kramers-Kronig Relationship  (b) The Al-Qadi and Co-workers  

                                                                                 Model 

 

 

 

(c) The CAM Model         (d) The CA Model 

 

 

 

 

 

 

 

 

 

 

(e) The Fractional Model 

 

Fig. 8.2: Measured versus descriptive of δ data of the aged unmodified bitumens 
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(a) The Kramers-Kronig Relationship (b) The Al-Qadi and Co-workers Model 

 

 

 

 

(c) The CAM Model             (d) The CA Model 

 

 

 

 

 

 

 

 

 

 

(e) The Fractional Model 

 

Fig. 8.3: Measured versus descriptive of δ data of the unaged PMBs 
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 (a) The Kramers-Kronig Relationship  (b) The Al-Qadi and Co-workers  

                                                                              Model 

 

 

   (c) The CAM Model                  (d) The CA Model 

 
 

 

 

 

 

 

 

 

 

(e) The Fractional Model 

 

Fig. 8.4: Measured versus descriptive of δ data of the aged PMBs 
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A significant observation has been made for the unaged unmodified 

bitumen, where the models are capable of fitting the δ values pretty well with the δ 

values decreasing from 90
o
 to approximately around 40

o
 as the frequency increases. 

The δ values keep decreasing to a low value (Fig. 8.5). This phenomenon describes 

a thermorheological simple material obeying the TTSP. 
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Fig. 8.5: A comparison between measured and the CA Model δ of the unaged 

unmodified bitumen 

 

Figs 8.6 and 8.7 shows a comparison of the δ master curves between 

measured and modelled (Fractional Model and Al-Qadi and Co-workers Model) 

values of an aged PMB. There is a significant change observed in the shape of the δ 

master curve of PMB with the appearance of a plateau in the master curve. The 

appearance of a plateau is believed to be associated with the polymer modification 

of the binders. According to Silva et al. [2004], this plateau means that in this 

region the elastic (G') and viscous (G") complex modulus components vary in the 

same proportion, in such a way that the phase angle does not change (tan δ = 

G"/G'). Then, this plateau indicates that the polymer addition decreases the asphalt 

thermal susceptibility. This does not mean that the PMB complex modulus does not 

decrease when temperature is increased, but that the elastic component is constant in 

a broader range of temperature than that of the pure binder. Besides, plateau 

rheological curves are a characteristic of the viscoelastic response of rubbers. Thus 

this plateau indicates that in this range of frequency the modified binder presents a 

Tref = 10oC 
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rubber-like behaviour, which indicates a more effective contribution of the 

elastomeric modifier to the binder mechanical response. So, the appearance of this 

plateau in phase angle curves can be taken as an indicative of a better interaction 

between the polymeric modifiers and the binders, leading to an effective 

modification of the asphalt relaxation mechanisms. The width of this plateau could 

be related to the compatibility between polymer and asphalt phases [Silva et al., 

2004]. 
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Fig. 8.6: A comparison between measured and the Fractional Model δ of the aged 

PMB 

 

In this study, the values of m = 2 and n = 10 were used for the Fractional 

Model, similar to the values used in Stastna et al. [1997]. As discussed by 

Marasteanu and Anderson [1999a], the degree of flexibility offered by this model is 

really useful when simulating a plateau or other irregularities in the master curves. 

When a high number of parameters are being used, this is actually conceptually 

close to fitting a discrete spectrum to the data. Similar findings were observed in 

this study and shown in Fig. 9.8. Marasteanu and Anderson [1999a], in addition, 

reported that the model lacked statistical robustness because the number of 

unknown coefficients approached the degree of freedom in the data. This can lead to 

the fitting of anomalous portions of the master curve that are the result of testing 

error, rather than real rheological behaviour [Marasteanu and Anderson, 1999a]. In 

Tref = 10oC 
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addition, this model is not really suitable for practical purposes due to the high 

number of coefficients that need to be solved simultaneously. 

 

Fig. 9.8 shows a comparison between the experimental data of δ and the Al-

Qadi and Co-workers Model. It is observed that this model suffers from the 

drawback of being unable to describe δ values with the appearance of a plateau in 

the δ master curve. The same observations can be expected for the CA and CAM 

Models because they use the same form of equation, based on the Havriliak and 

Negami function. This can be explained where the Havriliak and Negami function 

takes the form of a sigmoidal shape. However, the δ curve of modified binders was 

not in the sigmoidal shape. Therefore, it can be inferred that these models (CA, 

CAM and Al-Qadi and Co-workers) are unable to describe the presence of more 

than one transition curve in the δ master curves. 
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Fig. 9.8: A comparison between measured and the Al-Qadi and Co-workers Model δ 

of the aged PMB 

 

8.5.2 Statistical Analysis 

 

Table 8.1 to 8.7 shows the SSE values for the unaged and aged unmodified 

and PMBs. For the unaged and aged unmodified bitumens, the Fractional Model, 

the Al-Qadi and Co-workers Model, the CA and the CAM Model show almost 

comparable results. The Kramers-Kronig relationship shows the least correlation 

Tref = 10oC 
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between measured and model data. For the unaged EVA PMBs, the Fractional 

Model shows the best correlation, followed by the Kramers-Kronig relationship. 

The Al-Qadi and Co-workers Model, CA Model and CAM Model show comparable 

results for all the unaged samples. However, as the EVA PMBs undergone the 

short-term (RTFOT) and long term (PAV) ageing, the SSE values become smaller 

and are generally comparable for every model. Similar observation also can be 

made for the unaged and aged SBS PMBs, as shown in Tables 8.5 to 8.7. 

 

The goodness-of-fit statistics between measured and model δ overall data for 

all samples are shown in Tables 8.8 and 8.9. The discrepancy ratio, ri is used to 

observe the modelled data's tabulation from the equality line with the perfect value 

of 1. When the ri is larger or smaller than 1, it measures how much wider the 

prediction interval has to be to cover the observed number of cases. With the 

interval of 1 + 0.01 used in this study, it is observed that all of the models except the 

Kramers-Kronig relationship show a good correlation with ri more than 90% in the 

range of 0.95–1.05. Moreover, their Se/Sy and R
2
 also show an 'excellent' correlation. 

The Se/Sy and R
2
 goodness-of-fit for the Kramers-Kronig relationship are shown to 

be 'good' and 'fair', respectively. For the aged unmodified bitumens, the Fractional 

Model shows the most outstanding correlation between measured and modelled 

data, followed by the Al-Qadi and Co-workers, CAM, CA and the Kramers-Kronig 

relationship.  

 

 

As shown in Table 8.9, the Fractional Model is found to be the most 

outstanding model with ri more than 70% in the range of 0.95–1.05 of the unaged 

PMBs. However, in terms of Se/Sy and R
2
, the models' correlations vary from 'fair' to 

'poor' and from 'good' to 'poor'. This finding indicates that most of them are unable 

to satisfactorily describe the viscoelastic properties of unaged PMBs. The Al-Qadi 

and Co-workers, CA and CAM Models show comparable results of ri in the range 

of 0.95–1.05. This, as discussed earlier, could relate to the reason why these models 

cannot support the appearance of a plateau in the δ master curves. Similarly, the 

Fractional Model correlates well between measured and  δ data of the aged PMBs 

with ri in the range of 0.95–1.05. For Se/Sy, the Fractional, Al-Qadi and Co-workers 

and CAM Models show 'excellent' correlations, followed by the CA and Kramers-
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Kronig relationship (good). Except for the Fractional Models which show an 

'excellent' correlation, all other models show 'good' correlations in terms of R
2
 

(Table 9.9).  

 

Traditionally phase angle of binder and mixtures has presented a complex 

verification of properties. Only recently an article in the Society of Rheology 

commented on the difficulty that occurs due to a lack of calibration standards for 

phase angle measurement [Velankar and Giles, 2007]. However, accepting the 

relationships that exist and using these to verify and check the adequacy of phase 

angle measurements will assist in this aspect [Rowe, 2009]. 
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Table 8.1: SSE values for the unaged and aged unmodified bitumens 
 

Unaged bitumen RTFOT Aged bitumen PAV Aged bitumen 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Kramers-Kronig 6.5629 3.4428 36.6203 7.9943 7.6777 7.7410 11.6734 10.4890 10.9048 

Al-Qadi and Co-

workers 
0.0233 0.0102 0.0203 0.0176 0.0074 0.0342 0.1803 0.0271 0.0552 

CAM 0.0268 0.0131 0.0120 0.0136 0.0064 0.0227 0.3098 0.0255 0.0371 

CA 0.0372 0.0137 0.0214 0.0289 0.0138 0.0383 0.9351 0.0503 0.0897 

Fractional 0.0285 0.0291 0.0137 0.0169 0.0078 0.0102 0.0219 0.0206 0.0232 

 

 

Table 8.2: SSE values for the unaged EVA PMBs 
 

Unaged EVA PMBs (3%) Unaged EVA PMBs (5%) Unaged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Kramers-Kronig 0.0054 10.6185 0.0081 0.0032 3.5125 0.0234 0.0033 0.9046 0.0530 

Al-Qadi and Co-

workers 
0.0522 48.2519 0.0519 0.0778 85.6407 

3.1779 
0.1240 84.9081 12.0482 

CAM 0.0394 62.0445 0.0489 0.0686 60.8253 3.3506 0.1006 73.5512 12.0501 

CA 0.0592 48.2920 0.0495 0.0904 95.3341 3.6068 0.1721 77.4921 12.0110 

Fractional 0.0248 52.2994 0.0559 0.0325 72.8857 0.9741 0.1287 51.6524 0.6915 
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Table 8.3: SSE values for the RTFOT aged EVA PMBs 
 

RTFOT Aged EVA PMBs (3%) RTFOT Aged EVA PMBs (5%) RTFOT Aged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Kramers-Kronig 0.8207 - - 2.1610 1.0441 1.9520 3.2868 2.6873 3.1462 

Al-Qadi and Co-

workers 
0.6596 - - 0.9575 2.5052 1.8166 0.1025 3.2435 3.9225 

CAM 0.1055 - - 0.9049 5.8784 0.6458 0.9375 3.2567 1.5590 

CA 0.3424 - - 1.4520 4.5138 0.5399 6.6103 2.6955 2.4808 

Fractional 0.1609 - - 0.5295 0.9830 0.5562 0.6385 2.1834 1.1133 

 

  Table 8.4: SSE values for the PAV aged EVA PMBs 
 

PAV Aged EVA PMBs (3%) PAV Aged EVA PMBs (5%) PAV Aged EVA PMBs (7%) 
Model 

Middle East Russian Venezuelan Middle East Russian Venezuelan Middle East Russian Venezuelan 

Kramers-Kronig 1.7502 - - 5.9655 8.8326 6.2326 7.5738 5.9943 7.7519 

Al-Qadi and Co-

workers 
0.4864 - - 0.1077 0.1060 0.3951 1.9839 1.0165 0.1548 

CAM 1.0483 - - 0.6123 1.2331 0.1492 1.7240 1.2121 0.3450 

CA 0.6424 - - 1.9294 0.2305 0.9260 0.4198 1.4215 0.8337 

Fractional 0.2212 - - 0.0934 0.0770 0.1069 0.0805 0.0838 0.1483 
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Table 8.5: SSE values for the unaged SBS PMBs 
 

Unaged SBS PMBs (3%) Unaged SBS PMBs (5%) Unaged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Kramers-Kronig 0.3485 0.2850 0.9135 0.6208 1.9126 1.2750 

Al-Qadi and Co-workers 4.0984 0.0956 7.0305 0.2783 18.4378 0.4696 

CAM 4.3088 0.0843 7.5797 0.2754 19.7091 0.5194 

CA 4.1706 0.0954 6.8121 0.2852 13.6127 0.4270 

Fractional 3.9231 0.0300 0.5529 0.1445 2.1756 0.1385 

 

Table 8.6: SSE values for the RTFOT aged SBS PMBs 
 

RTFOT Aged SBS PMBs (3%) RTFOT Aged SBS PMBs (5%) RTFOT Aged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Kramers-Kronig 0.2952 0.5729 0.2952 1.7851 1.3862 2.3778 

Al-Qadi and Co-

workers 
0.4594 0.1092 0.4445 0.5920 0.2810 0.2207 

CAM 2.8061 0.4113 0.4615 0.2162 0.5542 0.2810 

CA 0.1593 0.1233 0.3989 0.2289 0.3212 0.2810 

Fractional 0.1514 0.0240 0.0366 0.0926 0.2689 0.0862 

 

Table 8.7: SSE values for the PAV aged SBS PMBs 
 

PAV Aged SBS PMBs (3%) PAV Aged SBS PMBs (5%) PAV Aged SBS PMBs (7%) 
Model 

Russian Venezuelan Russian Venezuelan Russian Venezuelan 

Kramers-Kronig 2.2858 3.3551 3.3447 0.8760 4.4642 4.9864 

Al-Qadi and Co-

workers 
0.4244 0.2977 0.4974 1.1782 1.0025 2.0310 

CAM 0.3811 0.1171 0.5232 0.1629 0.7117 0.3469 

CA 0.0736 0.1060 0.4379 0.6318 0.8031 0.5674 

Fractional 0.0210 0.0456 0.0389 0.0661 0.1026 0.0551 
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Table 8.8: The goodness-of-fit statistics for the unaged and aged unmodified bitumens 
 

Discrepancy ratio (ri) (%) 
Model Condition 

0.99 – 1.01  0.98 – 1.02 0.97 – 1.03 0.96 – 1.04 0.95 – 1.05 
Se/Sy R

2
 

Kramers-Kronig 26.65 46.40 57.68 69.28 74.30 0.552 0.694 

Al-Qadi and Co-workers 63.67 88.20 97.83 99.07 99.38 0.074 0.995 

CAM 68.63 89.13 98.45 98.76 99.38 0.071 0.995 

CA 55.28 84.16 95.96 98.76 99.07 0.087 0.992 

Fractional 

unaged 

50.60 84.23 96.73 98.81 99.41 0.090 0.992 

Kramers-Kronig 24.21 42.56 53.53 62.26 69.62 0.423 0.821 

Al-Qadi and Co-workers 48.07 77.98 88.84 94.20 95.98 0.087 0.992 

CAM 54.32 80.21 89.14 92.41 94.05 0.094 0.991 

CA 36.76 63.10 78.57 85.71 88.10 0.159 0.975 

Fractional 

aged 

61.46 92.41 98.07 99.41 99.55 0.054 0.997 
 

 

Table 8.9: The goodness-of-fit statistics for the unaged and aged PMBs 
 

Discrepancy ratio (ri) (%) 
Model Condition 

0.99 – 1.01  0.98 – 1.02 0.97 – 1.03 0.96 – 1.04 0.95 – 1.05 
Se/Sy R

2
 

Kramers-Kronig 21.74 37.78 49.61 59.10 66.19 0.719 0.482 

Al-Qadi and Co-workers 15.44 32.72 46.19 53.64 59.30 0.841 0.294 

CAM 16.51 32.54 43.80 50.95 56.14 0.807 0.349 

CA 13.65 27.53 39.09 47.20 53.40 0.831 0.310 

Fractional 

unaged 

29.07 48.30 60.81 67.66 71.77 0.584 0.660 

Kramers-Kronig 14.50 29.70 41.57 50.16 57.57 0.501 0.749 

Al-Qadi and Co-workers 14.87 28.02 39.94 50.21 58.41 0.336 0.887 

CAM 13.19 26.25 38.51 49.26 57.13 0.352 0.876 

CA 11.92 25.09 36.53 46.12 53.81 0.362 0.869 

Fractional 

aged 

33.22 56.65 71.83 81.21 86.53 0.247 0.939 
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8.4 Summary 

 

Several key observations can be drawn from this study: 

 

• In general, the phase angle, δ can be thought of as the second part of the complex 

modulus in order to yield complete information about the linear viscoelastic 

function of bituminous binders. 

• The Al-Qadi and co-workers, CA and CAM Models follow the form of the 

Kramers-Kronig relationship - 
( )











=

ωlogd

*Glogd

90

ωδ
. 

• For the unaged and aged unmodified bitumens, the Fractional Model, the Al-Qadi 

and Co-workers Model, the CA and the CAM Model show almost comparable SSE 

results. The Kramers-Kronig relationship shows the least SSE correlation between 

measured and model data.  

• For the unaged EVA PMBs, the Fractional Model shows the best SSE correlation, 

followed by the Kramers-Kronig relationship. The Al-Qadi and Co-workers Model, 

CA Model and CAM Model show comparable results for all the unaged samples. 

However, as the EVA PMBs that undergone the short-term (RTFOT) and long term 

(PAV) ageing, the SSE values become smaller and generally comparable for every 

model. Similar observation also can be made for the unaged and aged SBS PMBs 

• From this study, it is observed that most of the tested models; the Fractional, Al-

Qadi and Co-workers, Christensen and Anderson (CA) and Christensen, Anderson 

and Marasteanu (CAM) Models are able to fit or describe the linear viscoelastic 

region of unmodified bitumen satisfactorily. Except for the Fractional Model, most 

of the models are unable to describe the appearance of a plateau in the δ master 

curves of unaged PMBs.  

• The Fractional Model is resemblance to the discrete spectrum method and fit the 

viscoelastic properties of many materials really well.  
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9 

Conclusions and Recommendations 

 

 

 

 

 

9.1 Conclusions 

 

This chapter summarises the principal conclusions that can be drawn from 

the study and makes recommendations for future work. They are discussed as 

follows:  

 

Shift Factor Equations 

 

• It is observed that the random, non-functional form shift function produces 

the most consistent set of results due to the high degree of freedom and 

overall flexibility of this non-linear least squares fitting approach.  

• In the shift factor equations study, in a temperature range from 10–75
o
C, the 

LCPC and WLF equations generally produced the best results compared to 

the random shift approach (measured versus model) for all the material 

combinations studied, followed by the VTS and Arrhenius equations. The 

Log-Linear equation showed the lowest correlation with measured shift 

factor data. 

• However, most of the equations are unable to describe the master curves of 

highly modified bitumen – in this case, the unaged EVA polymer-modified 

bitumens. 

 

Mathematical Models 

 

• In a range of temperature from 10–75
o
C, It is observed that the Sigmoidal, 

Generalised Logistic Sigmoidal, Christensen and Anderson (CA), and 
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Christensen, Anderson and Marasteanu (CAM) Models are able to 

satisfactorily describe the rheological properties of unaged and aged 

unmodified bitumens.  

• From this study, it is found that the Generalised Logistic Sigmoidal and 

Sigmoidal Models which are generally used for asphalt mixtures also can be 

used for describing the complex modulus master curves of bituminous 

binders. 

• The glassy modulus for unaged and aged unmodified bitumens and polymer-

modified bitumens can be taken as 1 910× Pa. On the other hand, the elastic 

modulus tends to be too small and can be neglected.  

• All the models suffer from the drawback that they are unable to describe the 

rheological properties of the unaged polymer-modified bitumens due to the 

presence of highly semi-crystalline EVA substances. This EVA PMB does 

not behave as a thermo-rheological simple material. 

• For the unaged and aged unmodified bitumens, the Generalised Logistic 

Sigmoidal Model shows the best correlation between measured and 

modelled data, followed by the Sigmoidal, CA and CAM Models. 

Meanwhile, for the unaged and aged PMBs, the Generalised Logistic 

Sigmoidal Model and Sigmoidal Model show the best correlation between 

measured and modelled data.  

 

A Mechanical Model 

 

• The 2S2P1D Model can satisfactorily describe the rheological properties of 

unmodified bitumens (unaged and aged), bitumen-filler mastics (unaged and 

aged) and polymer-modified bitumens (aged).  

• The model can be thought of as a unique model as its parameters are 

relatable to the construction of complex modulus and phase angle master 

curves, the Black diagram and the Cole-Cole diagram. 

• However, like mathemactical models, the 2S2P1D Model failed to describe 

the rheological properties of highly modified of unaged polymer-modified 

bitumens. 
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Phase Angle Equations 

 

• It is observed that most of the tested models; the Fractional, Al-Qadi and co-

workers, Christensen and Anderson (CA) and Christensen, Anderson and 

Marasteanu (CAM) Models are able to fit the response of unmodified 

bitumen satisfactorily for the temperature range from 10 to 75
o
C.  

• It is worth mentioning that the Al-Qadi and co-workers, CA and CAM 

Models follow the form of the Kramers-Kronig relationship - 

( )










=

ωlogd

*Glogd

90

ωδ
. 

• Except for the Fractional Model, most of the models are unable to describe 

the appearance of a plateau in the δ master curves of unaged PMBs. This can 

be attributed to the fact that these models are unable to describe the presence 

of more than one transition of the δ master curve.  

• The Fractional Model is resemblance to the discrete spectrum model which 

has been found to work well with different types of materials. 

 

9.2 Recommendations for Future Work 

 

• Chapter 3 discusses various models used to describe the rheological 

properties of bituminous binders. Similarly, a reasonable number of studies 

found from literature have been conducted to develop rheological models for 

asphalt mixtures. Like the binder's model, most of the asphalt mixture 

models are presented in terms of dynamic (complex) modulus, |E*| and 

phase angle, φ, master curves. They also can be classified into three main 

groups; nomographs, mathematical and mechanical models. Therefore, it is 

recommended that asphalt mixture models be reviewed as well.  

• It is accepted that the use of polymer-modified bitumens in road paving 

provides many advantages compared to unmodified bitumens. However, 

despite real achievements, many challenges and opportunities remain. It is 

therefore important to review the challenges and solutions taken to improve 

polymer-modified bitumens characteristics and its storage stability problem. 
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• Chapter 5 discusses various shift factor equations used to construct master 

curves for bituminous binders. These methods are also can be used for 

asphalt mixtures. It is recommended to assess the suitability of different 

shifting methods on the construction of master curves of asphalt mixtures.  

• From literature, it was found that the 2S2P1D Model (Chapter 6) is 

applicable for both binders and asphalt mixtures. Therefore, this model is 

recommended to be used to describe the rheological properties of NTEC 

asphalt mixture database.  

• Different phase angle equations are available for asphalt mixtures and it is 

also recommended to conduct a comparison study of phase angle equations 

of asphalt mixtures.  

• The research in this thesis has concentrated on moderate to high temperature 

testing of binders. To obtain a broader understanding of the rheological 

properties of unmodified and modified binders, low temperature rheological 

testing using testing equipments such as the bending beam rheometer (BBR) 

and the direct tension tester (DTT) are recommended.  
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Table A1: complex modulus and phase angle data of a 10/20 penetration grade bitumen 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 24677000 9502300 1164600 148800 20999 3567.6 715.95 161.54 82.764 

0.15849 Hz 30225000 12170000 1619100 216290 30995 5382.5 1126.7 255.38 131.38 

0.25119 Hz 36793000 15678000 2232500 313060 46149 8355.3 1757 404.08 211.93 

0.39811 Hz 44066000 19814000 3071500 451010 67815 12667 2752.2 642.85 334.19 

0.63096 Hz 52149000 24770000 4176200 647100 99283 19035 4259.9 1004.6 525.56 

1 Hz 61024000 30644000 5621400 921640 146030 28777 6542.4 1566.5 830.14 

1.5849 Hz 68679000 37016000 7500500 1304000 213110 43058 9963.8 2435.3 1297.8 

2.5119 Hz 80152000 44553000 9869100 1831200 307010 64579 15211 3766.5 2035.4 

3.9811 Hz 86105000 52284000 12869000 2547500 438870 94931 22978 5820.5 3157.4 

6.3096 Hz 100320000 62064000 16581000 3519900 620880 140060 34538 8965.6 4872.4 

10 Hz 109040000 71838000 21121000 4804100 855740 205020 51626 13714 7452.7 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 41.29 50.61 65.71 73.19 78.82 84.13 87.09 88.16 87.89 

0.15849 Hz 40.29 49.42 63.84 72.33 77.7 83.3 86.25 87.57 88.06 

0.25119 Hz 38.02 47.39 62.29 71.4 76.41 81.77 85.7 87.57 87.92 

0.39811 Hz 35.86 45.4 60.68 70.23 75.02 80.67 85.21 87.2 87.67 

0.63096 Hz 33.75 43.01 58.79 69.09 74.35 80.1 83.79 87.08 87.98 

1 Hz 31.77 40.47 56.93 67.88 72.45 78.56 83.38 86.11 87.29 

1.5849 Hz 30.67 38.73 54.93 66.61 70.78 78.04 82.01 85.4 86.44 

2.5119 Hz 28.08 36.72 53.01 65.1 68.98 76.68 81.24 84.61 85.89 

3.9811 Hz 27.93 35.33 51.01 63.67 66.53 75.55 80.44 83.98 85.18 

6.3096 Hz 24.87 32.76 49.05 62.1 63.52 74.52 79.62 83.45 84.49 

10 Hz 23.66 31.28 47.09 60.59 60.12 73.12 78.95 82.93 83.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 234 

 

Table A2: Complex modulus and phase angle data of a 35/50 penetration grade bitumen 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 7923400 2904300 346250 44575 5890.8 1038.6 217.82 56.726 29.88 

0.15849 Hz 10230000 3906500 491430 66194 8909.2 1625.3 343.35 91.756 51.921 

0.25119 Hz 13327000 5269700 700500 97370 13426 2509.8 543.14 143.34 78.91 

0.39811 Hz 17155000 7064900 994460 143080 20326 3890.6 848.78 228.05 125.79 

0.63096 Hz 21819000 9319900 1393700 210010 30318 5967.3 1317.6 361.47 198.59 

1 Hz 27466000 12181000 1945500 304940 45110 9165 2062.3 566.51 310.84 

1.5849 Hz 33867000 15746000 2701400 443120 66622 13901 3201.4 888.46 490.92 

2.5119 Hz 42047000 20221000 3708800 639400 98865 21051 4940.4 1399 775.54 

3.9811 Hz 51205000 25644000 5056600 917570 144800 31578 7557.1 2187.2 1216 

6.3096 Hz 61005000 32071000 6832000 1306200 211570 47444 11577 3397.4 1896.8 

10 Hz 72345000 39668000 9115500 1841500 304930 70745 17653 5220.8 2944.1 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 53.15 59.96 69.93 77.02 82.59 86.6 88.7 88.46 88.88 

0.15849 Hz 52.29 58.9 69.25 76 81.43 85.46 88.09 88.05 87.83 

0.25119 Hz 50.24 57.15 68.15 74.98 80.66 84.91 87.36 88.91 88.75 

0.39811 Hz 48.1 55.44 66.97 74.1 79.81 83.83 86.95 88.18 88.06 

0.63096 Hz 46.16 53.49 65.62 73.22 78.31 82.91 86.13 87.54 87.98 

1 Hz 43.9 51.66 64.17 72.37 77.57 81.98 85.6 87.44 88.16 

1.5849 Hz 42.28 49.57 62.69 71.3 76.07 81.12 84.93 87.12 87.67 

2.5119 Hz 40.07 47.46 61.18 70.32 75.05 80.32 84.19 86.43 87.03 

3.9811 Hz 38.07 45.9 59.61 69.29 73.91 79.43 83.34 85.8 86.59 

6.3096 Hz 36.41 43.94 57.97 68.21 72.46 78.67 82.57 85.21 86.04 

10 Hz 34.71 41.95 56.41 67.15 70.94 77.82 81.99 84.67 85.25 
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Table A3: Complex modulus and phase angle data of a 40/60 penetration grade bitumen 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 1540000 1240000 127000 18900 2450.6 556.42 134.68 37.533 21.774 

0.15849 Hz 4490000 1570000 182000 28000 4429.8 867.56 212.47 58.009 33.969 

0.25119 Hz 6000000 2170000 264000 41600 6785.2 1347.3 336.09 91.459 52.747 

0.39811 Hz 7960000 2980000 381000 61700 10335 2091.2 530.96 145.11 83.448 

0.63096 Hz 10500000 4080000 547000 91200 15612 3228.1 830.07 229.26 132.22 

1 Hz 13600000 5500000 782000 135000 23537 4979.5 1295.6 359.09 208.33 

1.5849 Hz 17600000 7360000 1110000 197000 35342 7632 2013.4 564.92 327.33 

2.5119 Hz 22400000 9770000 1570000 287000 52572 11647 3104.1 887.55 516.33 

3.9811 Hz 28100000 12800000 2200000 416000 78178 17614 4786.5 1391.7 807.39 

6.3096 Hz 34900000 16500000 3060000 602000 115350 26612 7376.6 2163.5 1256.9 

10 Hz 42400000 21000000 4210000 861000 169110 39979 11250 3333 1941.4 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 46.05 68.6 72.78 78.9 76.94 87.12 88.2 86.69 85.72 

0.15849 Hz 57.86 64.14 72.33 78.22 82.89 86.41 88 87.15 85.49 

0.25119 Hz 56.48 62.7 71.48 77.26 82.1 85.89 87.75 87.41 86.84 

0.39811 Hz 54.69 61.16 70.52 76.38 81.08 85.04 87.28 87.57 87.18 

0.63096 Hz 52.75 59.53 69.5 75.5 80.13 84.16 86.69 87.41 87.26 

1 Hz 50.83 57.81 68.38 74.63 79.08 83.32 86.15 87.22 87.37 

1.5849 Hz 48.9 56.13 67.19 73.79 78.13 82.52 85.41 87.02 87.12 

2.5119 Hz 47 54.26 65.94 72.92 77.19 81.73 84.72 86.59 86.89 

3.9811 Hz 44.89 52.48 64.62 72.06 76.21 80.9 84.1 86.13 86.5 

6.3096 Hz 43.04 50.74 63.33 71.12 75.22 80.22 83.52 85.64 85.94 

10 Hz 41.52 49.07 62.02 70.13 74.1 79.6 82.97 85.1 85.23 
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Table A4: Complex modulus and phase angle data of a 70/100 penetration grade bitumen 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 2808600 1129300 148340 20463 2884.4 541.27 116.54 33.689 19.832 

0.15849 Hz 3614100 1495600 205100 29489 4308 834.49 183.45 53.922 30.837 

0.25119 Hz 4684400 2001400 285740 44256 6436.9 1280.1 288.72 85.16 48.05 

0.39811 Hz 5990700 2658500 397440 64082 9586 1951.9 452.56 133.26 76.079 

0.63096 Hz 7614200 3487800 549810 91267 14166 2951.9 707.09 209.59 121.96 

1 Hz 9585800 4537800 757000 128700 20814 4455.7 1091.8 331.26 193.42 

1.5849 Hz 11946000 5791800 1035500 181240 30372 6705.3 1680.6 515.53 299.95 

2.5119 Hz 14627000 7342100 1403400 253430 44263 10012 2576.8 803.01 472.68 

3.9811 Hz 17755000 9041000 1893600 355290 64001 14865 3923.1 1245.5 737.73 

6.3096 Hz 21637000 11021000 2540900 493210 92178 21899 5936.1 1910.4 1140 

10 Hz 25942000 13692000 3357000 681420 132350 32104 8916.2 2901.9 1741.6 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 53.37 58.35 65.98 73.85 79.83 84.74 87.55 89.12 89.71 

0.15849 Hz 52.86 58.01 65.62 72.73 78.8 83.73 87.13 87.77 89.05 

0.25119 Hz 51.47 56.64 64.83 70.99 77.62 82.82 86.51 87.22 89.33 

0.39811 Hz 49.84 55.25 63.98 69.96 76.89 81.71 85.45 87.86 87.38 

0.63096 Hz 48.19 53.93 63.1 69.34 75.52 80.79 84.72 87.39 88.17 

1 Hz 46.52 52.38 62.17 68.89 74.55 79.67 83.87 86.28 87.26 

1.5849 Hz 45.04 50.95 61.17 67.85 73.53 78.58 82.79 85.85 86.95 

2.5119 Hz 43.45 49.48 60.06 67.25 72.62 77.74 81.92 84.94 85.69 

3.9811 Hz 42.03 47.92 58.97 66.36 71.86 76.96 80.99 84.03 84.87 

6.3096 Hz 40.73 46.55 57.81 65.41 71 76.14 80.24 83.18 83.86 

10 Hz 39.43 45.27 56.7 64.59 70.28 75.48 79.49 82.18 82.65 
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Table A5: Complex modulus and phase angle data of a 100/150 penetration grade bitumen 

 
 

Freq/Temp 10
o
C 20

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 749880 76716 25742 3449.3 10298 1545 283.71 56.742 33.346 

0.15849 Hz 1052600 112510 38172 5330.6 15381 2355.6 424.91 89.128 50.691 

0.25119 Hz 1464200 164750 56671 7982.7 22762 3597.8 659.55 145.28 87.444 

0.39811 Hz 2008000 239180 83847 12190 33714 5479 1035 229.69 139.04 

0.63096 Hz 2733000 343480 123560 18227 49772 8264.1 1611.6 363.69 214.72 

1 Hz 3686600 493560 180750 27287 72968 12424 2449 563.94 336.18 

1.5849 Hz 4944200 702860 263900 40714 106940 18665 3774.4 893.35 529.36 

2.5119 Hz 6543400 991510 382540 60848 155420 28023 5754 1372 815.21 

3.9811 Hz 8580800 1390600 547130 90760 224560 41693 8753.8 2146 1261 

6.3096 Hz 11126000 1936900 782450 135140 322930 62271 13392 3355.8 1951.7 

10 Hz 14058000 2621800 1087500 194370 454410 90703 19901 5096.2 2985.9 

          

          

Freq/Temp 10
o
C 20

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 65.6 74.4 77.9 83.2 78.3 82.2 83.4 85.2 87.3 

0.15849 Hz 64.0 73.5 77.0 82.1 77.3 81.9 84.9 86.2 84.7 

0.25119 Hz 62.4 72.3 76.0 81.7 76.6 81 84.6 87.6 85.3 

0.39811 Hz 60.8 71.4 74.9 80.8 75.8 80.8 84 86.4 86.9 

0.63096 Hz 59.0 70.2 74.0 79.9 74.8 80 83.7 86.8 87.7 

1 Hz 57.3 69.0 73.1 78.7 74 79.5 83.5 86.3 87.5 

1.5849 Hz 55.5 67.8 71.9 77.4 72.8 78.7 83 86 86.5 

2.5119 Hz 53.6 66.4 70.9 76.2 71.4 78 82.5 86 86.6 

3.9811 Hz 51.9 65.0 69.8 74.7 70 77.3 82 85.5 86.3 

6.3096 Hz 50.2 63.7 68.7 72.9 68.2 76.7 81.6 84.9 85.6 

10 Hz 48.9 62.5 67.5 69.7 66.4 76.1 81.2 84.4 84.8 
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Table A6: Complex modulus and phase angle data of a 160/220 penetration grade bitumen 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 401150 131250 15144 2153.1 365.69 87.68 22.709 7.5377 4.8519 

0.15849 Hz 577270 194250 23107 3358.3 579.65 138.88 37.217 12.794 7.4724 

0.25119 Hz 834390 286560 34970 5201.9 914.55 221.96 58.244 19.558 12.29 

0.39811 Hz 1199600 420370 52664 8013.6 1440 350.45 92.756 30.642 19.482 

0.63096 Hz 1706800 612790 79254 12330 2246.1 556.01 147.67 49.706 31.206 

1 Hz 2413900 887490 118770 18975 3506.5 876.94 233.12 77.08 49.499 

1.5849 Hz 3388600 1279200 177270 28979 5438 1380.2 371.91 124.4 78.297 

2.5119 Hz 4703300 1826900 263420 43878 8405.3 2161.8 590.8 197.7 124.06 

3.9811 Hz 6445400 2587800 389340 66566 12941 3368.4 938.99 312.77 196.74 

6.3096 Hz 8728500 3629900 570570 99854 19856 5223.4 1481.4 491.35 308.9 

10 Hz 11658000 5028500 831640 148250 30316 8072.2 2314.9 761.86 477.34 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 72.86 76.55 81.77 85.59 88.61 89.57 89.69 89.97 89.84 

0.15849 Hz 72.07 75.56 80.91 84.93 88.03 89.54 89.3 87.35 87.02 

0.25119 Hz 70.82 74.6 80.13 84.29 87.55 89.01 89.18 89.19 86.84 

0.39811 Hz 69.54 73.68 79.44 83.64 87.1 88.84 89.58 89.33 89.49 

0.63096 Hz 68.09 72.54 78.66 82.82 86.31 88.26 88.91 88.26 89.08 

1 Hz 66.5 71.33 77.86 82.01 85.74 87.9 88.78 88.33 87.81 

1.5849 Hz 64.81 70.04 77.1 81.14 85.12 87.44 88.6 87.92 87.15 

2.5119 Hz 63.08 68.65 76.25 80.23 84.51 86.94 88.13 87.25 86.6 

3.9811 Hz 61.3 67.19 75.37 79.36 83.91 86.46 87.95 86.52 85.93 

6.3096 Hz 59.54 65.68 74.46 78.27 83.37 86.02 87.66 85.53 85.26 

10 Hz 57.79 64.2 73.45 78.21 82.92 85.69 87.56 84.05 85.28 
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Table A7: Complex modulus and phase angle of a 15 penetration grade bitumen I [Choi, 2005] 

 
Fre/Temp 10

o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.10 Hz 15375000 6414100 652560 222035 33812 8705.475 1899.7 379.52 195.84 

0.14 Hz 18028000 8521600 1441150 283555 53306 11799.53 2649.763 548.2 281.71 

0.20 Hz 20982500 10244750 1806000 361815 69210 15766.5 3635.375 770.45 398.14 

0.29 Hz 24728500 12258500 2241350 456250 89263 20980 4973.863 1070.45 560.145 

0.41 Hz 29082000 14536500 2768100 578135 116575 27909.13 6760.9 1482.45 786.545 

0.59 Hz 33937000 17148000 3410350 733400 152610 36964 9118.525 2045.9 1098.75 

0.84 Hz 39057500 20413500 4209950 930130 197685 48865.63 12371.13 2805.9 1530.1 

1.20 Hz 45371500 24009500 5168450 1180050 255085 64393.5 16638.75 3847.85 2126.3 

1.70 Hz 51881500 28110000 6315850 1493550 327310 84701.25 22371.5 5270.8 2937.25 

2.44 Hz 59505500 32956000 7679050 1878700 422230 111218.9 29654.63 7204.95 4048.05 

3.49 Hz 67555500 38398500 9315750 2360000 544850 145892.5 39530.75 9809.85 5547.6 

5.00 Hz 76618500 44518000 11178500 2936000 699795 190410 51863 13294 7570 

7.14 Hz 86625500 51341000 13391000 3664450 892445 247415 68468.5 17905 10246 

10.00 Hz 96064000 58336500 15727500 4463600 1114100 313868.8 87994.25 23391.5 13513 

          

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.10 Hz 43 50.4 61.8 53 75.2 76.9875 81.7125 84.5 86.65 

0.14 Hz 42.2 47.55 56.6 62.15 67.9 74.5125 80.2375 83.9 85.1 

0.20 Hz 41.05 45.5 55.55 61.7 67.35 73.45 79.0875 83.2 84.45 

0.29 Hz 40.2 45.25 54.7 60.85 66.25 72.2625 78.1875 82.3 83.85 

0.41 Hz 39.1 43.9 53.65 60.4 65.65 71.3625 77.0125 81.55 83.2 

0.59 Hz 38.5 42.75 52.7 59.55 65.05 70.35 76.1125 80.8 82.5 

0.84 Hz 37.25 42.05 51.85 59.15 64.45 69.55 75.1125 79.9 81.85 

1.20 Hz 35.8 41.05 50.8 58.4 63.85 68.575 74.125 79 81 

1.70 Hz 34.95 39.8 49.85 57.7 63.35 67.7875 73.225 78.1 80.3 

2.44 Hz 33.55 38.85 48.8 57 62.9 66.9875 72.4125 77.2 79.3 

3.49 Hz 32.65 37.9 47.8 56.3 62.5 66.3 71.625 76.4 78.6 

5.00 Hz 31.4 37 46.85 55.5 62.05 65.6 70.925 75.65 77.9 

7.14 Hz 30.5 35.95 45.85 54.95 61.75 64.9125 70.4875 75 77.25 

10.00 Hz 30.05 35.3 45 54.45 61.6 64.4 70.2 74.65 76.85 
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Table A8: Complex modulus and phase angle of a 15 penetration grade bitumen II [Choi, 2005] 

 
Fre/Temp 10

o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.10 Hz 21958500 10806750 2596600 527880 99155 12624 3927 1008 505 

0.14 Hz 25546625 13265250 3195500 654520 134010 28019 5513 1422 742 

0.20 Hz 28979875 15848750 3876200 817010 166580 37122 7369 1937 1042 

0.29 Hz 33280625 18382375 4674800 1024600 210270 48272 9998 2674 1451 

0.41 Hz 38349625 21258500 5664800 1276300 268850 62960 13373 3649 2012 

0.59 Hz 44206000 24566000 6854900 1585500 342880 81709 17830 4959 2782 

0.84 Hz 50249625 28216250 8249100 1970700 423930 105670 23667 6719 3794 

1.20 Hz 56841875 32425500 9893200 2447600 535130 136225 31235 9047 5183 

1.70 Hz 63892125 37659875 11815000 3022700 683690 175080 41052 12098 7014 

2.44 Hz 70811875 43900375 14095000 3694300 869810 223675 53965 16180 9476 

3.49 Hz 78749125 50778000 16652000 4538500 1104700 286460 70406 21470 12719 

5.00 Hz 87187500 57339750 19544000 5548600 1385400 362955 91925 28488 16990 

7.14 Hz 96106000 64013250 22779000 6730500 1727100 459405 118625 37376 22440 

10.00 Hz 104712500 70239000 26109000 7994400 2083500 564675 150240 48205 29118 

          

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.10 Hz 39.63 43.83 51.10 58.40 63.60 78.15 79.70 82.95 83.65 

0.14 Hz 38.20 42.58 50.50 57.10 63.20 69.25 76.35 81.05 82.00 

0.20 Hz 37.43 41.55 49.50 56.50 62.60 68.25 75.05 79.85 81.05 

0.29 Hz 36.20 40.48 48.60 55.80 61.70 67.15 73.70 78.85 80.25 

0.41 Hz 35.00 39.50 47.60 55.20 61.10 66.20 72.75 78.00 79.25 

0.59 Hz 34.15 38.83 46.70 54.40 60.50 65.20 71.55 76.90 78.20 

0.84 Hz 33.05 37.73 45.70 53.80 59.90 64.25 70.55 75.80 77.10 

1.20 Hz 32.15 36.93 44.70 53.00 59.20 63.25 69.55 74.70 76.05 

1.70 Hz 31.15 35.70 43.70 52.20 58.70 62.30 68.50 73.70 74.95 

2.44 Hz 30.13 34.80 42.30 51.50 58.10 61.40 67.55 72.65 73.85 

3.49 Hz 29.10 33.85 41.70 50.70 57.60 60.45 66.70 71.70 72.95 

5.00 Hz 28.13 32.95 40.70 50.00 57.10 59.50 66.00 70.85 72.10 

7.14 Hz 27.23 32.15 39.90 49.30 56.70 58.60 65.25 70.10 71.50 

10.00 Hz 26.68 31.53 39.20 48.80 56.50 57.55 64.75 69.65 71.10 
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Table A9: Complex modulus and phase angle of a 15 penetration grade bitumen III [Choi, 2005] 

 
Fre/Temp 10

o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.10 Hz 20573750 8197175 706335 95640 21967 3392 778 196 94 

0.14 Hz 24210750 10834375 1638550 217150 30789 5041 1145 283 133 

0.20 Hz 28295000 13086000 2180800 284805 42214 7052 1615 403 188 

0.29 Hz 33021500 15760500 2766450 380255 57180 9824 2261 577 268 

0.41 Hz 38432250 18826000 3544950 499780 77103 13583 3151 818 377 

0.59 Hz 44656250 22482250 4502650 663350 103840 18748 4380 1155 532 

0.84 Hz 51372250 26587750 5718500 871750 139745 25691 6154 1636 756 

1.20 Hz 58514750 31297250 7241300 1141350 187758 35152 8602 2312 1060 

1.70 Hz 66609500 36558000 9114100 1491650 251335 47896 12014 3250 1494 

2.44 Hz 75366000 42484750 11411500 1943750 336118 65186 16739 4608 2098 

3.49 Hz 84497250 49071500 14168000 2515150 447598 88543 23218 6469 2945 

5.00 Hz 93974250 56233000 17513000 3245350 592363 119960 31977 9073 4118 

7.14 Hz 103901500 63868500 21377000 4134400 777575 161455 43846 12567 5729 

10.00 Hz 113040000 71347750 25501000 5158800 995600 212010 58688 17056 7768 

          

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.10 Hz 46.60 57.90 69.55 84.90 78.65 85.30 80.30 88.55 89.10 

0.14 Hz 44.45 52.45 65.80 72.50 77.95 83.35 86.70 88.30 88.40 

0.20 Hz 42.80 50.65 63.10 71.35 76.90 82.40 86.05 88.10 88.55 

0.29 Hz 41.35 48.80 61.85 70.55 76.35 81.70 85.55 87.80 88.35 

0.41 Hz 39.70 47.40 60.65 69.60 75.65 80.80 84.90 87.35 88.15 

0.59 Hz 38.10 45.40 59.20 68.65 74.95 80.10 84.30 86.85 87.80 

0.84 Hz 36.50 43.95 57.70 67.95 74.35 79.30 83.65 86.45 87.30 

1.20 Hz 34.85 42.45 56.00 66.95 73.65 78.50 82.95 86.05 87.00 

1.70 Hz 33.25 40.85 54.40 65.80 73.10 77.75 82.20 85.60 86.55 

2.44 Hz 31.85 39.10 52.65 64.70 72.30 77.00 81.65 85.10 86.15 

3.49 Hz 30.35 37.65 50.90 63.50 71.60 76.25 81.00 84.80 85.60 

5.00 Hz 28.90 36.20 49.10 62.25 70.90 75.40 80.40 84.40 85.20 

7.14 Hz 27.60 34.80 47.45 61.10 70.25 74.60 80.00 84.25 84.80 

10.00 Hz 26.55 33.55 45.95 60.05 69.50 73.85 79.70 84.25 84.45 
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Table A10: Complex modulus and phase angle of a 50 penetration grade bitumen [Choi, 2005] 

 
Fre/Temp 10

o
C 15

o
C 25

o
C 35

o
C 40

o
C 45

o
C 50

o
C 55

o
C 60

o
C 

0.10 Hz 2737875 811003 83012 15114 5182 2234 929 429 216 

0.14 Hz 3638325 1316775 147355 20268 7604 3204 1311 601 310 

0.20 Hz 4602275 1712250 196990 27861 10878 4456 1838 858 438 

0.29 Hz 5827475 2234000 263195 38528 15659 6194 2586 1206 603 

0.41 Hz 7380600 2894100 350700 52572 21887 8528 3630 1707 837 

0.59 Hz 9286325 3729800 467075 71580 30385 11730 5077 2400 1167 

0.84 Hz 11523750 4786200 622165 97084 41778 16257 7078 3380 1640 

1.20 Hz 14275250 6087875 825375 131878 57158 22433 9868 4749 2305 

1.70 Hz 17494250 7725550 1092000 177983 77590 30909 13708 6650 3229 

2.44 Hz 21333000 9709100 1443400 239295 104542 42440 19037 9290 4504 

3.49 Hz 25901500 12131750 1892850 322735 140628 58419 26355 12967 6321 

5.00 Hz 31096750 14998000 2471050 432318 187900 80018 36410 18035 8808 

7.14 Hz 36874250 18461000 3188000 574588 250108 109205 50015 24842 12307 

10.00 Hz 42956750 22220750 4019450 743410 324368 145300 66811 33598 16704 

          

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 40

o
C 45

o
C 50

o
C 55

o
C 60

o
C 

0.10 Hz 71.55 69.00 75.05 82.25 88.40 85.70 87.25 84.95 78.40 

0.14 Hz 63.10 67.25 75.15 80.00 82.65 84.70 86.00 87.10 87.85 

0.20 Hz 60.85 66.35 73.80 79.25 81.75 83.90 85.50 86.55 87.35 

0.29 Hz 59.40 64.70 73.25 78.50 81.05 83.30 84.85 86.25 87.05 

0.41 Hz 58.05 63.85 72.30 77.85 80.25 82.50 84.35 85.75 86.85 

0.59 Hz 56.35 62.80 71.70 77.30 79.55 81.90 83.85 85.40 86.40 

0.84 Hz 55.05 61.20 70.85 76.60 78.85 81.25 83.25 84.75 86.10 

1.20 Hz 53.40 60.10 69.95 76.15 78.10 80.55 82.60 84.20 85.60 

1.70 Hz 51.85 58.75 69.00 75.50 77.35 79.85 82.00 83.65 85.15 

2.44 Hz 50.25 57.05 67.95 74.80 76.60 79.25 81.35 83.10 84.65 

3.49 Hz 48.55 55.55 66.90 74.40 75.75 78.60 80.85 82.65 84.25 

5.00 Hz 47.05 54.45 65.80 73.85 74.85 77.95 80.35 82.25 83.80 

7.14 Hz 45.50 52.50 64.70 73.35 73.90 77.35 79.85 81.85 83.55 

10.00 Hz 44.10 51.40 63.70 72.90 72.85 76.80 79.65 81.50 83.20 
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Table A11: Complex modulus and phase angle of aMiddle East 80/100 penetration 

grade bitumen [Airey, 1997] 
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Table A12: Complex modulus and phase angle of a Russian 80 penetration grade 

bitumen [Airey, 1997] 
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Table A13: Complex modulus and phase angle of a Venezuelan 70/100 penetration 

grade bitumen [Airey, 1997] 
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Appendix B 
 

 

Dynamic Shear Rheometer Data for the Aged 

Unmodified Bitumens 
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Table B1: Complex modulus and phase angle of the RTFOT aged Middle East 

80/100 penetration grade bitumen [Airey, 1997] 
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Table B2: Complex modulus and phase angle of the PAV aged Middle East 80/100 

penetration grade bitumen [Airey, 1997] 
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Table B3: Complex modulus and phase angle of the RTFOT aged Russian 80 

penetration grade bitumen [Airey, 1997] 
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Table B4: Complex modulus and phase angle of the PAV aged Russian 80 

penetration grade bitumen [Airey, 1997] 

 

 
 

 

 

 
 

 

 

 
 



 250 

Table B5: Complex modulus and phase angle of the RTFOT aged Venezuelan 

70/100 penetration grade bitumen [Airey, 1997] 
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Table B6: Complex modulus and phase angle of the RTFOT aged Venezuelan 

70/100 penetration grade bitumen [Airey, 1997] 
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Appendix C 
 

 

Dynamic Shear Rheometer Data for Unaged 

Polymer-Modified Bitumens 
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Table C1: Complex modulus and phase angle of 3% EVA with 97% Middle East 

80/100 penetration grade bitumen [Airey, 1997] 
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Table C2: Complex modulus and phase angle of 5% EVA with 95% Middle East 

80/100 penetration grade bitumen [Airey, 1997] 
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Table C3: Complex modulus and phase angle of 7% EVA with 93% Middle East 

80/100 penetration grade bitumen [Airey, 1997] 
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Table C4: Complex modulus and phase angle of 3% EVA with 97% Russian 

penetration grade bitumen [Airey, 1997] 
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Table C5: Complex modulus and phase angle of 5% EVA with 95% Russian 

penetration grade bitumen [Airey, 1997] 
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Table C6: Complex modulus and phase angle of 7% EVA with 93% Russian 

penetration grade bitumen [Airey, 1997] 
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Table C7: Complex modulus and phase angle of 3% EVA with 97% Venezuelan 

70/100 penetration grade bitumen [Airey, 1997] 
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Table C8: Complex modulus and phase angle of 5% EVA with 95% Venezuelan 

70/100 penetration grade bitumen [Airey, 1997] 
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Table C9: Complex modulus and phase angle of 7% EVA with 93% Venezuelan 

70/100 penetration grade bitumen [Airey, 1997] 
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Table C10: Complex modulus and phase angle of 3% SBS with 97% Russian 80 

penetration grade bitumen [Airey, 1997] 
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Table C11: Complex modulus and phase angle of 5% SBS with 95% Russian 80 

penetration grade bitumen [Airey, 1997] 
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Table C12: Complex modulus and phase angle of 7% SBS with 93% Russian 80 

penetration grade bitumen [Airey, 1997] 
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Table C13: Complex modulus and phase angle of 3% SBS with 97% Venezuelan 

70/100 penetration grade bitumen [Airey, 1997] 
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Table C14: Complex modulus and phase angle data of 5% SBS with 95% 

Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table C15: Complex modulus and phase angle data of 7% SBS with 93% 

Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Appendix D 
 

 

Dynamic Shear Rheometer Data for Aged 

Polymer-Modified Bitumens 
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Table D1: Complex modulus and phase angle data of RTFOT aged 3% EVA with 

97% Middle East 80/100 penetration grade bitumen [Airey, 1997] 
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Table D2: Complex modulus and phase angle data of PAV aged 3% EVA with 97% 

Middle East 80/100 penetration grade bitumen [Airey, 1997] 
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Table D3: Complex modulus and phase angle data of RTFOT aged 5% EVA with 

95% Middle East 80/100 penetration grade bitumen [Airey, 1997] 
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Table D4: Complex modulus and phase angle data of PAV aged 5% EVA with 95% 

Middle East 80/100 penetration grade bitumen [Airey, 1997] 
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Table D5: Complex modulus and phase angle data of RTFOT aged 7% EVA with 

93% Middle East 80/100 penetration grade bitumen [Airey, 1997] 
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Table D6: Complex modulus and phase angle data of PAV aged 7% EVA with 93% 

Middle East 80/100 penetration grade bitumen [Airey, 1997] 
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Table D7: Complex modulus and phase angle data of RTFOT aged 3% EVA with 

97% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D8: Complex modulus and phase angle data of RTFOT aged 5% EVA with 

95% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D9: Complex modulus and phase angle data of PAV aged 5% EVA with 95% 

Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D10: Complex modulus and phase angle data of RTFOT aged 7% EVA with 

93% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D11: Complex modulus and phase angle data of PAV aged 7% EVA with 

93% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D12: Complex modulus and phase angle data of RTFOT aged 3% EVA with 

97% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 285 

Table D13: Complex modulus and phase angle data of RTFOT aged 5% EVA with 

95% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D14: Complex modulus and phase angle data of PAV aged 5% EVA with 

95% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D15: Complex modulus and phase angle data of RTFOT aged 7% EVA with 

93% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D16: Complex modulus and phase angle data of PAV aged 7% EVA with 

93% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D17: Complex modulus and phase angle data of RTFOT aged 3% SBS with 

97% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D18: Complex modulus and phase angle data of PAV aged 3% SBS with 

97% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D19: Complex modulus and phase angle data of RTFOT aged 5% SBS with 

95% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D20: Complex modulus and phase angle data of PAV aged 5% SBS with 

95% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D21: Complex modulus and phase angle data of RTFOT aged 7% SBS with 

93% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D22: Complex modulus and phase angle data of PAV aged 7% SBS with 

93% Russian 80 penetration grade bitumen [Airey, 1997] 
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Table D23: Complex modulus and phase angle data of RTFOT aged 3% SBS with 

97% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D24: Complex modulus and phase angle data of PAV aged 3% SBS with 

97% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D25: Complex modulus and phase angle data of RTFOT aged 5% SBS with 

95% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D26: Complex modulus and phase angle data of PAV aged 5% SBS with 

95% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D27: Complex modulus and phase angle data of RTFOT aged 7% SBS with 

93% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Table D28: Complex modulus and phase angle data of PAV aged 7% SBS with 

93% Venezuelan 70/100 penetration grade bitumen [Airey, 1997] 
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Appendix E 
 

 

Dynamic Shear Rheometer Data for the Unaged 

Bitumen-Filler Mastics 
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Table E1: Complex modulus and phase angle of 15% limestone bitumen-filler mastic (by mass) 
 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 5206600 1930800 216020 33557 5277.3 1020 231.83 62.491 35.316 

0.13216 6480200 2335200 269080 42522 6814.1 1329.7 304.39 82.659 47.003 

0.17467 7361700 2829300 334290 53833 8803.2 1738 400.67 109.1 62.204 

0.23085 8721100 3427600 415500 68103 11369 2270.8 526.84 144.4 82.652 

0.30509 10317000 4150200 515390 86197 14622 2955.8 692.2 191.18 109.22 

0.40321 12163000 4961000 639750 108570 18782 3838.2 907.86 252.2 143.36 

0.53289 14341000 6012400 792120 136710 24031 4964.6 1189.9 332.2 189.25 

0.70428 16831000 7150600 975320 171600 30710 6436.9 1554.9 437.81 250.15 

0.9308 19582000 8510800 1201300 215070 39112 8296.9 2029.1 575.48 329.1 

1.2302 22786000 10133000 1475000 269340 49737 10696 2644.7 756.71 433.72 

1.6258 26294000 11986000 1804800 336580 63162 13757 3444.1 994.22 571.82 

2.1487 30412000 14120000 2202300 419160 80026 17613 4474.6 1302.4 752.05 

2.8398 34966000 16540000 2680200 521220 101000 22538 5801.8 1701.5 986.91 

3.7531 40343000 19381000 3247400 647030 127140 28759 7504 2217.5 1292.2 

4.9602 46016000 22646000 3918600 799390 159470 36695 9687.2 2888.6 1688.1 

6.5555 52192000 26271000 4712500 987430 199990 46771 12468 3757.1 2195.4 

8.6638 59229000 30427000 5661000 1215600 249180 59416 16029 4862.2 2856 

11.45 66785000 35055000 6757300 1488700 306140 75226 20559 6277.8 3684.3 

15.133 74898000 40197000 8016300 1810800 370920 95316 26317 8054 4732.4 

20 83484000 45853000 9452000 2177100 428200 120030 33493 10256 5985.5 

 

 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 59.1 64.1 72.5 77.9 83.1 86.6 88.6 89.3 89.5 

0.13216 57.4 62.6 71.2 76.8 82.1 85.9 88.3 89.4 89.7 

0.17467 56.1 61.8 70.7 76.3 81.5 85.4 88 89.2 89.4 

0.23085 54.7 60.9 70 75.7 80.9 85 87.7 88.9 89.5 

0.30509 54 60.1 69.5 75.2 80.4 84.5 87.3 89 89.3 

0.40321 52.6 58.5 68.9 74.6 79.8 84 86.9 88.7 89.2 

0.53289 51.7 58.2 68.2 74.1 79.2 83.4 86.6 88.5 89.1 

0.70428 50.7 56.9 67.5 73.6 78.7 82.9 86.1 88.3 88.9 

0.9308 49.4 55.9 66.9 73.2 78.3 82.3 85.7 88 88.8 

1.2302 48.2 55 66.1 72.6 77.7 81.7 85.2 87.6 88.5 

1.6258 47.4 53.7 65.4 72.2 77.4 81.1 84.7 87.3 88.2 

2.1487 46.1 52.8 64.6  77 80.6 84.3 86.9 88 

2.8398 44.9 51.8 63.9   80.1 83.9 86.6 87.8 

3.7531 43.9 50.6 63.3   79.7 83.5 86.3  

4.9602 42.7 49.6 62.6   79.2 83.2   

6.5555 41.6  61.7   78.8 82.9   

8.6638   61   78.4    

11.45   60.4   78.1    

15.133      77.9    

20      77.9    



 302 

           Table E2: Complex modulus and phase angle of 35% limestone bitumen-filler mastic (by mass) 
 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 8930100 3552300 359520 53942 8892.9 1449.2 294.15 89.012 47.24 

0.13216 9937400 4391400 446120 68557 11421 1896.7 385.98 118.96 62.729 

0.17467 12834000 5193500 553590 86751 14686 2473.5 511.93 156.17 83.699 

0.23085 14797000 6215700 687930 109380 18916 3223.5 671.87 206.81 110.48 

0.30509 17556000 7497200 849910 138330 24309 4199.1 886.12 273.69 145.65 

0.40321 19774000 8968400 1050700 174200 31206 5459.4 1159.2 358.77 192.06 

0.53289 24150000 10705000 1298200 218870 39890 7081.3 1518.4 473.14 253.83 

0.70428 28085000 12726000 1598700 274550 50740 9168.8 1988 625.26 334.46 

0.9308 32658000 15030000 1957200 344400 64417 11857 2597.9 827.11 443 

1.2302 37809000 17714000 2403700 430490 81613 15246 3385.3 1090.6 583.45 

1.6258 43672000 20832000 2929300 536840 103200 19551 4411.4 1428.9 765.96 

2.1487 49494000 24462000 3565500 667210 130280 25086 5734.3 1864.6 1011.7 

2.8398 56908000 28724000 4317200 827720 164290 32145 7434.8 2431.9 1333.5 

3.7531 64539000 33426000 5207300 1025100 206630 40958 9617.2 3177 1743 

4.9602 73129000 38470000 6286200 1265500 258870 52275 12430 4130.9 2278.7 

6.5555 82350000 44253000 7583200 1557100 322670 66464 15999 5346.7 2953.5 

8.6638 92178000 50913000 9084200 1920200 403700 84414 20554 6931.5 3829.6 

11.45 103240000 58023000 10837000 2349400 481110 106800 26386 8951.2 4948.2 

15.133 114890000 66054000 12850000 2860400 608870 135260 33739 11502 6349.6 

20 126840000 74571000 15145000 3450600 727550 170250 42961 14638 8065.7 

 
Fre/Temp 10

o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 57.9 63.2 71.9 77.5 82.6 86.6 88.7 89.7 89.8 

0.13216 54.4 61.4 70.7 76.5 81.6 85.9 88.2 89.4 89.6 

0.17467 54.8 60.9 70.1 76 80.9 85.5 88.2 89.4 89.3 

0.23085 52.6 59.3 69.6 75.2 80.4 85 87.8 89.2 89.4 

0.30509 52.4 58.7 69 74.8 79.8 84.5 87.5 88.9 89.4 

0.40321 48.3 57.6 68.3 74.2 79.2 84 87  89.1 

0.53289 49.8 56.5 67.7 73.6 78.5 83.4 86.6 88.6 89.1 

0.70428 48.1 55.5 67 73.1 78.1 82.9 86.2 88.3 88.9 

0.9308 48.2 54.5 66.3 72.7 77.5 82.4 85.8  88.8 

1.2302 46.2 53.3 65.4 72.1 76.9 81.7 85.3  88.4 

1.6258 44.4 52.4 64.8 71.6 76.5 81.1 84.8  88.2 

2.1487 45.7 50.9 64 71.1 76 80.6 84.4  87.9 

2.8398 43 49.7 63.3 70.7 75.7 80 83.9  87.7 

3.7531 41.6 48.7 62.5 70.3 75.4 79.6 83.5  87.4 

4.9602 40.2 47.6 61.7   79.1 83.2  87.4 

6.5555 38.6 46.6 60.8   78.6 82.8  87.1 

8.6638 37.6  60.1   78.2 82.5   

11.45 36.7     77.8    

15.133 35.8         

20 35.2         
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  Table E3: Complex modulus and phase angle of 65% limestone bitumen-filler mastic (by mass) 
 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 27254000 10470000 1568000 245210 45902 8456.5 1802.7 495.9 279.44 

0.13216 29473000 13004000 1889700 305200 57837 10939 2280.7 643.22 370.04 

0.17467 38410000 15019000 2323300 378480 73826 14071 3006.7 852.17 496.14 

0.23085 44060000 17967000 2834600 471140 94023 18217 3991.7 1110.1 641.81 

0.30509 50811000 21590000 3455800 590360 118520 23516 5273.9 1456.8 822.56 

0.40321 59952000 24625000 4226800 738950 152000 30327 6732.9 1898.6 1101.2 

0.53289 69454000 28758000 5255700 922140 190640 39329 8866.2 2453 1435 

0.70428 83710000 35336000 6361500 1144600 242910 50167 11336 3254.1 1909.1 

0.9308 92915000 42271000 7693100 1424300 307570 63901 14782 4273.5 2500.8 

1.2302 107600000 49207000 9303300 1768200 385360 82087 19082 5592 3254.2 

1.6258 122620000 57394000 11254000 2186700 485240 105410 24739 7243.3 4263.8 

2.1487 135630000 70089000 13448000 2700800 606550 133010 31885 9431.6 5555.7 

2.8398 151730000 77360000 16287000 3333300 760620 169740 41463 12263 7270.6 

3.7531 166220000 87930000 19526000 4093300 949550 218730 52888 15970 9462.6 

4.9602 186410000 101370000 23424000 5010300 1188000 264310 67823 20710 12334 

6.5555 205940000 115410000 27821000 6166500 1472100 342470 86765 26776 15969 

8.6638 226750000 130310000 32990000 7546600 1831200 426460 110860 34479 20648 

11.45 247960000 146940000 38917000 9185400 2265600 530960 140830 44505 26728 

15.133 269930000 164510000 45632000 11163000 2793300 659430 178810 57074 34501 

20 291920000 182640000 53178000 13459000 3412900 794650 225970 73200 44131 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 54.5 61.8 68.6 74.3 79.2 82.4   87.4 

0.13216 53.5  68 73.4 78.6 82.6 85.8 86.7 86.7 

0.17467 52.7 58.4 68 73.1 78.2 82.1   88.4 

0.23085 50.7 57.7 67.1 72.2 78.1 82.6 86.2 86.8 87.9 

0.30509 49.9 56.8 66.7 72.3 77.3 81.8 85.7 86.9 86.7 

0.40321   66 71.6 76.7 81.4 85.1 86.7 89.2 

0.53289 47.2 54.4 65.5 71.4 76.1 81 84.4 85.6 87 

0.70428  52.8 64.7 70.9 75.9 80.4 83.5 86.5 87.8 

0.9308  53.1 64.1 70.6 75.5 80 83.5 86.1 86.5 

1.2302 43.9 50.7 63.2 70 74.9 79.4 83 86.4 86.8 

1.6258 44.2 49.4 62.3 69.6 74.4 78.9 82.7 85.7 86.7 

2.1487 39.6 50.2 61.6 69.1 74.1 78.9 82.1 85.3 86 

2.8398 37.7 46.7 60.5 68.4 73.7 78.6 81.6 84.8 86.1 

3.7531 36.6 45.4 59.8 68.2 73.5 78.5 81 83.8 86 

4.9602 34.9 43.9 58.4 67.4 73.2  80.5 84 85.2 

6.5555 33.6 42.4 57.3 66.9   79.9   

8.6638 32.4 41 56.4    79.4   

11.45   55.4    78.9   

15.133   54.3       

20   53.4       



 304 

   Table E4: Complex modulus and phase angle of 35% cement bitumen-filler mastic (by mass) 
 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 6089400 2908600 334740 49399 7522.1 1516.2 370.92 113.18 62.614 

0.13216 7427600 3593000 416190 62681 9673.1 1982.8 486.08 150.14 82.078 

0.17467 8482500 4291600 516960 79117 12481 2586.6 642.07 196.6 108.52 

0.23085 10068000 5180000 641070 100260 16058 3385.3 843.72 259.21 143.91 

0.30509 11770000 6244800 796750 127090 20708 4402.9 1113.5 340.84 190.47 

0.40321 13693000 7524700 985600 159630 26546 5731.9 1453.8 449.87 251.84 

0.53289 16502000 9015200 1217300 200890 34004 7427.5 1901 594.52 333.34 

0.70428 18979000 10806000 1503400 253090 43473 9589.3 2487.5 782.95 439.16 

0.9308 21948000 12813000 1845200 316470 55526 12406 3247.1 1029.7 578.26 

1.2302 25246000 15204000 2259400 396450 70724 15963 4249 1351.2 760.63 

1.6258 29136000 17913000 2767900 494620 89535 20541 5514.4 1774 998.19 

2.1487 33489000 21077000 3366600 615920 112920 26403 7157.6 2323.4 1313 

2.8398 37601000 24696000 4077700 765100 142480 33833 9293 3031.6 1723.3 

3.7531 43309000 28674000 4920900 947790 179150 43319 12016 3958.5 2245.6 

4.9602 48932000 33441000 5943600 1170300 225400 55291 15530 5148.8 2937.9 

6.5555 55061000 38624000 7183300 1440400 281330 70491 19938 6686.2 3833.6 

8.6638 61522000 44342000 8611800 1773500 350510 89814 25626 8662.9 4975.9 

11.45 68295000 50669000 10276000 2171100 430420 114160 32831 11170 6474.6 

15.133 75222000 57555000 12184000 2641700 525070 144370 41982 14367 8325.3 

20 82622000 64872000 14377000 3181700 618270 181950 53404 18396 10620 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 58.6 64.7 72.3 77.9 83.2 86.5 88.3 89.5  

0.13216 56.7 62.9 71 76.9 82.3 86.2 88.3 89.3 89.4 

0.17467 54.8 62.2 70.6 76.3 81.8 85.7 88.1 89.1 89.2 

0.23085 53.9 60.8 69.8 75.7 81.2 85.4 87.6 89 89.5 

0.30509 53.2 60.1 69.3 75.2 80.6 84.7 87.4 88.8 89.2 

0.40321 50.7 59.2 68.6 74.6 79.9 84.3 87.1 88.5 89 

0.53289 51.4 57.8 67.9 74 79.4 83.7 86.5 88.3 89 

0.70428 49.5 56.8 67.2 73.6 78.9 83.1 86.1 88.1 88.8 

0.9308 47.6 55.7 66.5 73.1 78.3 82.7 85.6 87.8 88.5 

1.2302 47.3 54.5 65.7 72.4 77.8 81.9 85.1 87.4 88.2 

1.6258 45.5 53.4 64.9 71.9 77.3 81.2 84.7 87.1 87.9 

2.1487 44.1 52.1 64.1 71.5 76.9 80.8 84.1 86.7 87.7 

2.8398 43.4 50.9 63.3 71 76.6 80.2 83.8 86.5 87.4 

3.7531 41.7 49.6 62.6 70.6 76.4 79.7 83.4 85.9 87.1 

4.9602 40.5 48.3 61.8 70.2 76.3 79.1 83 85.7 86.9 

6.5555 39.4 47 60.9   78.5 82.6 85.4  

8.6638   60.2   78.1 82.4 85.3  

11.45   59.5   77.6 82.1   

15.133      77.1    

20      77    
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              Table E5: Complex modulus and phase angle of 65% cement bitumen-filler mastic (by mass) 
 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 27784000 11186000 2157700 358310 66781 12696 2093.7 584.28 325.58 

0.13216 30912000 14182000 2615400 446920 82822 16295 2765.5 727.63 419.92 

0.17467 37124000 15768000 3180300 555620 102850 20490 3539.6 981.03 551.06 

0.23085 44386000 18608000 3867600 684340 129840 26107 4617.5 1308.2 719.4 

0.30509 49062000 21886000 4661300 842520 165060 33245 6127.5 1674 944.89 

0.40321 55294000 26820000 5752500 1054600 205060 42116 7770.6 2244.5 1231.8 

0.53289 67142000 30190000 7029500 1288800 255550 52639 10178 2932.2 1629 

0.70428 64001000 35080000 8448500 1596900 319640 67764 13451 3759.9 2110.5 

0.9308 77280000 29395000 10186000 2002000 398800 84812 17279 4938.9 2795.3 

1.2302 88049000 48256000 12239000 2445000 496450 108370 22267 6442.2 3644 

1.6258 108230000 53383000 14664000 2983400 623910 137140 28879 8422 4798.8 

2.1487 123550000 66934000 17462000 3650200 777260 173210 36898 10982 6262.9 

2.8398 136460000 71848000 20726000 4437300 968690 219850 47114 14262 8114.2 

3.7531 148980000 82289000 25015000 5474000 1203400 272970 60584 18352 10581 

4.9602 166610000 93531000 29461000 6623300 1499800 336630 76955 23823 13756 

6.5555 182610000 105760000 34682000 8079300 1842600 439070 98258 30614 17810 

8.6638 199750000 118970000 40875000 9806400 2287700 543510 125290 39507 23022 

11.45 217290000 132810000 47764000 11893000 2817900 673020 157850 50894 29832 

15.133 237560000 147560000 55535000 14278000 3449900 852520 200820 65213 38238 

20 255630000 162760000 64026000 17225000 4220600 1034900 252370 83152 49141 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1   65 72.8   85.7  86.7 

0.13216   65.2 70.7   86.4  86.6 

0.17467 49.1 56.2 64.1 70.5   85.1 87.1 87.3 

0.23085  55.5 63.2 69.3 74.7  84.7 87.7 86.7 

0.30509 46.1 53.7 62.9 69.3 74.7  85 86.5 86.9 

0.40321  51.4 61.5 68.9 74.7  83.9 87.3 86.4 

0.53289 47.2 51.3 61.7 67.9 73.3  83.8 86.4 87.3 

0.70428  49.5 60.9 67.6 73.3  83.5 86 87 

0.9308 44.1  60.2 68.7 72.6  83.1 85.7 86.7 

1.2302 44.3 46 59.1 67 71.7  82.1 85.5 86.5 

1.6258 38 46.4 58.2 66.3 72.1 76.4 81.2 85 85.9 

2.1487 35.8 44.9 57.7 65.8 71.4 75.6 81 84.6 85.6 

2.8398 35.7 43.5 56.3 65.3 70.8 73.7 80.4 84 85.5 

3.7531 34.4 42.5 55.5 64.5 70.4 75.4 79.5 83.4 84.7 

4.9602 33.1 40.8 54.3 64.1 70 75.5 78.9 83.2 84.5 

6.5555 31.9 40 53 63.4 69.7 73.9 78.6 82.5 84.3 

8.6638 30.6 38.5 52.1  69.2 73.2 77.8 82.4 83.6 

11.45 30  51.1   72.1 77.3   

15.133 28.9     71.5 76.5   

20 28.3     69.5 75.9   
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Table E6: Complex modulus and phase angle of 35% gritstone bitumen-filler mastic (by mass) 
 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 8408000 3109200 484850 76131 8412.7 1757.2 445.79 119.28 67.679 

0.13216 10354000 3816400 600920 96340 10882 2296.7 587.63 156.88 89.718 

0.17467 11851000 4582100 744160 121110 14066 3009.3 769.56 207.48 118.3 

0.23085 14007000 5525400 921450 152270 18142 3914 1013.1 273.4 156.54 

0.30509 15184000 6664800 1140200 192160 23315 5099.9 1333.5 360.27 206.82 

0.40321 19451000 7974300 1408200 240760 29833 6619.5 1741.8 477.14 272.33 

0.53289 22743000 9528300 1739300 301230 38183 8580.8 2284.7 630.47 360.16 

0.70428 26495000 11369000 2137000 377450 48723 11070 2990.4 829.4 475.05 

0.9308 30857000 13493000 2614000 471460 62129 14338 3877.9 1088.1 626.84 

1.2302 35593000 15969000 3197700 587650 78800 18463 5053.4 1424.7 823.63 

1.6258 40991000 18712000 3889600 729850 100020 23700 6566.5 1861.6 1083.9 

2.1487 47298000 22000000 4720600 905880 126680 30309 8499.8 2434.9 1420.9 

2.8398 53306000 25768000 5691200 1120600 160500 38745 10983 3176.8 1860.1 

3.7531 60608000 29970000 6874800 1383800 201930 49367 14168 4145.4 2433.1 

4.9602 68874000 34575000 8290000 1705900 252180 62593 18251 5396.6 3182.8 

6.5555 77581000 39842000 9953300 2092100 315360 79486 23364 7018.6 4144.5 

8.6638 86641000 45582000 11896000 2566100 391170 100870 29958 9077.5 5367.5 

11.45 96175000 51776000 14162000 3130500 480410 127810 38240 11693 6925.2 

15.133 105670000 58634000 16767000 3806000 584260 161060 48705 15051 8880.7 

20 115470000 65828000 19733000 4592100 693400 201570 61811 19178 11282 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 59.1 64.5 71.5 76.8 83.2 86.4 88.5 89.4  

0.13216 57 62.5 70.2 75.7 82.4 85.8 88.1  89.6 

0.17467 55.5 61.8 69.6 75.1 81.6 85.4 87.7 89.3 89.4 

0.23085 54.4 60.6 68.8 74.4 81.2 84.8 87.5 89.2 89.4 

0.30509 53.9 59.6 68.4 74 80.6 84.3 87.1 88.9 89.2 

0.40321 52 58.2 67.5 73.4 80 83.9 86.5 88.7 89.1 

0.53289 51 57.4 67 72.9 79.5 83.2 86.3 88.3 89 

0.70428 49.5 56.1 66.3 72.4 79 82.6 85.8 88.1 88.8 

0.9308 48.3 55.1 65.5 71.9 78.5 82.1 85.4 87.9 88.7 

1.2302 46.9 53.9 64.7 71.3 78 81.3 84.9 87.4 88.3 

1.6258 45.6 52.7 63.9 70.8 77.6 80.8 84.4 87 88 

2.1487 44.1 51.4 63.1 70.3 77.2 80.2 83.9 86.7 87.7 

2.8398 43.1 50.3 62.2 69.8 77 79.7 83.5 86.4  

3.7531 42 49 61.3 69.3 77 79.2 83 86.1  

4.9602 40.4 47.7 60.4 68.9  78.6 82.7 85.8  

6.5555 39.1 46.5 59.4 68.5  78 82.3   

8.6638 38 45.3 58.6   77.5 82   

11.45  44.3    77.1 81.8   

15.133  43.3    76.7    

20      76.3    
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Table E7: Complex modulus and phase angle of 65% gritstone bitumen-filler mastic (by mass) 
 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 23668000 11807000 4751200 715560 113300 19196 3427.1 906.1 484.4 

0.13216 26406000 13780000 5658100 854370 138320 23963 4350.6 1195.3 630.1 

0.17467 31087000 16032000 6397300 1014300 168880 30251 5709 1538.2 838.51 

0.23085 35977000 18630000 7481800 1224900 206150 38069 7479 2013.8 1083.7 

0.30509 41031000 21862000 8757800 1484800 258190 48697 9534.8 2628.4 1430.1 

0.40321 46288000 26790000 10398000 1776200 317320 61082 12342 3472.2 1856.7 

0.53289 53908000 29803000 12385000 2141500 394380 78159 16229 4539.9 2434.6 

0.70428 50440000 30973000 14536000 2630600 490740 98838 20886 5850.1 3200.5 

0.9308 66574000 40887000 16953000 3219100 619850 124890 26750 7643 4187.5 

1.2302 74502000 46558000 19827000 3853100 759780 156590 34553 10051 5457.4 

1.6258 85717000 53560000 23287000 4644000 932340 202470 43984 12970 7129.5 

2.1487 101090000 61842000 28146000 5627400 1149100 252060 56519 16714 9311.1 

2.8398 106340000 70585000 32757000 6736300 1425300 317650 71996 21549 12113 

3.7531 116950000 79569000 38783000 8193000 1765300 398480 92131 27864 15602 

4.9602 130440000 89246000 45125000 9991300 2191500 511770 117760 35831 20336 

6.5555 141520000 99967000 52446000 12044000 2689300 637050 149900 46063 26341 

8.6638 154460000 110630000 60618000 14527000 3313300 801270 188640 59539 33933 

11.45 165490000 121390000 69648000 17394000 4084800 987180 238510 76077 43935 

15.133 178450000 128970000 79556000 20853000 4998700 1231600 300460 97535 56280 

20 189550000 135710000 90702000 24756000 6093200 1493100 375390 123400 71612 

 

Fre/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1       85.2  86.6 

0.13216       84.6  87 

0.17467      77.9 84.3 87.2 87.7 

0.23085      77.8 84.9 87.2 87.3 

0.30509   59 67 72.9 77.8 84 86.6 87.6 

0.40321   59.6 66.8 72.3 77.3 82.2 86.9 86.6 

0.53289 44.4  58.8 66.4 72.5 77.4 83.4 86.2 86.9 

0.70428  54.3 57.8 66.2 72.5 77.2 82.9 85.2 87.1 

0.9308 40.8 47.1 57.8 66 72.4 77.1 82.3 85.3 86.7 

1.2302 40.2 47.1 56.9 65.5 71.6 77 81.6 85 85.9 

1.6258 37 44.6 56 65.3 71.4 75.7 80.5 83.9 86.2 

2.1487 35.4 43.7 54.5 64.8 71.1 75.8 80.1 84.2 85.3 

2.8398 34.7 42.1 53.4 64.6 70.7 75 79.7 83.9 85 

3.7531 33.5 41.8 52.1 63.9 70.2 75.1 78.9 83 84.8 

4.9602 33.1 40.2 50.9 63.1 70.2 74.7 78.3 82.7 84.3 

6.5555 31.7 39.2 49.8 62.4 69.7 74.3 77.1 82 83.8 

8.6638 30.3 38.1 48.6 61.8 69.2 74.1 76.7 81.6 83.5 

11.45 29.6 37 47.5 61 69 73.9 75.9  83.3 

15.133 28.7 36.6 46.2 60.3 68.8 74 75   

20 28 35.6 45.3 59.8 68.6 72.9 74.2   
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        Table E8: Complex modulus and phase angle of 40% gritstone bitumen-filler mastics (by volume) 
 

 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 60

o
C 65

o
C 70

o
C 

0.1 Hz 16787000 7038000 954540 121710 19580 5764.1 7252.3 9139.6 10171 

0.15849 Hz 19750000 10062000 1317100 173210 27935 6463.8 7349.4 9231.4 9794.5 

0.25119 Hz 27893000 12004000 1827400 250460 40510 8143.9 7944.4 8894.5 9201.9 

0.39811 Hz 34039000 15933000 2517400 361810 59409 11492 8366 9318.5 9585.4 

0.63096 Hz 43731000 20726000 3490300 517870 86926 15480 10870 10068 10172 

1 Hz 54758000 26583000 4784200 741480 128650 22066 14134 11683 11131 

1.5849 Hz 68455000 34213000 6491800 1059600 188920 31550 19487 14369 12741 

2.5119 Hz 83522000 43811000 8764200 1504000 276620 46471 28640 19620 15395 

3.9811 Hz 100770000 55245000 11820000 2130300 404600 69489 39841 26177 18874 

6.3096 Hz 119870000 68416000 15825000 2996500 592930 104630 60055 37549 25073 

10 Hz 141000000 84044000 21005000 4198600 850970 155610 88453 54749 35991 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 60

o
C 65

o
C 70

o
C 

0.1 Hz 53.99 58.25 67.27 74.22 75.48 49.94 35.34 26.7 23.97 

0.15849 Hz 51.48 62.97 66.08 73.29 75.94 56.34 37.79 29.5 24.42 

0.25119 Hz 49.04 56.01 65.48 73.02 76.61 63.45 43.64 31.92 24.36 

0.39811 Hz 47.05 54.5 64.62 72.7 76.91 69.76 50.51 35.25 28.43 

0.63096 Hz 46.96 52.52 63.35 71.8 76.99 72.59 60.62 43.61 32.67 

1 Hz 44.5 51.22 62.58 71.12 76.83 75.52 66.88 51.53 38.83 

1.5849 Hz 41.69 49.21 61.68 70.3 76.22 78.57 71.67 60.06 46.16 

2.5119 Hz 39.91 47.46 60.6 69.46 76.09 79.66 73.97 66 53.4 

3.9811 Hz 37.43 45.69 58.9 68.74 75.25 79.49 77.73 71.36 62.3 

6.3096 Hz 35.26 43.5 57.71 68.03 75 78.96 78.25 74.51 68.59 

10 Hz 33.41 41.66 56.36 67.23 74.27 78.56 79.03 76.8 72.34 
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          Table E9: Complex modulus and phase angle of 40% limestone bitumen-filler mastics (by volume) 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 14164000 6129500 840970 110940 17907 2409.5 638.84 210.1 124.78 

0.15849 Hz 19808000 8603900 1193100 162390 26031 3755.4 979.5 317.39 186.55 

0.25119 Hz 24087000 10850000 1667300 233500 38871 5843.7 1542.3 487.12 279.66 

0.39811 Hz 30313000 14564000 2301700 340320 57479 8998.2 2416.1 762.71 435.91 

0.63096 Hz 39772000 19227000 3244400 489620 84251 13785 3697.1 1182.2 680.08 

1 Hz 50060000 25001000 4489500 707090 125820 20877 5716 1829.2 1060.2 

1.5849 Hz 63296000 32671000 6157000 1011000 184880 32447 8836.2 2859.4 1662.6 

2.5119 Hz 79228000 42299000 8366600 1445400 273300 49515 13607 4435.5 2554.7 

3.9811 Hz 96508000 53686000 11359000 2056700 397320 74896 20942 6922.6 4047.9 

6.3096 Hz 117140000 67295000 15395000 2900300 588010 113090 32156 10772 6275.8 

10 Hz 139250000 83777000 20506000 4080000 845760 167950 49190 16579 9665.3 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 56.54 60.48 69.82 76.15 78.88 85.53 86.38 83.64 83.86 

0.15849 Hz 62.17 59.51 67.79 74.89 78.6 85.52 85.85 83.92 84.44 

0.25119 Hz 52.46 58.38 67.09 74.47 78.48 84.59 85.69 85.02 85.71 

0.39811 Hz 49.51 56.69 65.71 73.95 78.79 85.32 87 86.33 85.43 

0.63096 Hz 48.87 54.77 64.94 72.9 78.57 84.07 85.99 86.22 86.76 

1 Hz 47.05 53.37 63.9 71.64 77.4 82.25 85.94 86.6 86.57 

1.5849 Hz 44.14 51.44 62.93 71.23 77.11 82.51 85.45 86.5 86.92 

2.5119 Hz 42.13 49.26 61.89 70.47 76.58 81.68 85.23 86.86 86.91 

3.9811 Hz 39.96 47.47 60.46 69.67 76.04 80.62 84.55 86.7 87.1 

6.3096 Hz 38 45.67 59.16 68.89 75.39 79.6 84.09 86.34 86.84 

10 Hz 36.21 43.65 57.89 68.15 74.61 78.54 83.51 86.25 87 
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         Table E10: Complex modulus and phase angle of 40% cement bitumen-filler mastics (by volume) 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 14616000 6453200 904310 113620 16563 2490.6 657.58 257.71 222.49 

0.15849 Hz 17897000 9116300 1271300 165880 24679 3898.4 1042.2 366.22 273.55 

0.25119 Hz 25150000 11336000 1766900 241360 36744 6150.8 1573.4 530.05 374.56 

0.39811 Hz 31022000 15150000 2454800 351980 55614 9386.7 2442.7 800.08 533.34 

0.63096 Hz 40334000 19921000 3422300 511390 83474 14198 3786.5 1205.8 788.47 

1 Hz 51282000 25783000 4721000 735130 124370 21873 5881.5 1893.9 1197.1 

1.5849 Hz 64103000 33570000 6469500 1055400 185020 33520 9205 2971.4 1847.5 

2.5119 Hz 80999000 43555000 8746600 1502600 273490 51297 14248 4575.7 2832.2 

3.9811 Hz 97744000 54716000 11879000 2133100 403770 77809 21962 7158.9 4432.7 

6.3096 Hz 118150000 68502000 15940000 3010100 588950 116830 33684 11056 6814 

10 Hz 140810000 84316000 21186000 4225600 854000 174950 51299 17053 10492 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 55.25 59.8 68.23 76.03 80.37 84.51 84.04 69.69 53.81 

0.15849 Hz 54.29 58.85 67.03 75.03 79.91 85.55 84.69 73.81 61.72 

0.25119 Hz 50.84 57.35 66.39 74.32 79.89 84.73 85.82 78.35 67.67 

0.39811 Hz 48.47 55.73 65.3 73.51 79.39 85.7 86.66 81.92 73.58 

0.63096 Hz 48.75 53.84 64.26 72.32 78.56 84.45 86.24 84.76 78.15 

1 Hz 46.01 52.56 63.03 71.65 77.98 83.45 85.86 85.39 80.92 

1.5849 Hz 43.34 50.46 61.97 70.74 77.19 82.86 85.62 85.56 83.07 

2.5119 Hz 41.54 48.07 60.93 69.95 76.66 81.92 85.26 86 84.65 

3.9811 Hz 39.24 46.59 59.57 69.13 75.69 80.95 84.51 86.25 85.53 

6.3096 Hz 37.42 44.74 58.17 68.3 75.05 79.9 84.22 86.24 86.09 

10 Hz 35.52 43.08 56.92 67.49 74.74 78.82 83.86 86.09 86.39 

 

 

 

 



 310 

 

 

 

Appendix F 
 

 

Dynamic Shear Rheometer Data for the Aged 

Bitumen-Filler Mastics 
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Table F1: Complex modulus and phase angle of the 1 hour aged gritstone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 16401000 7211400 1063400 139830 22261 3783.6 1159.7 463.26 365.16 

0.15849 Hz 19356000 10345000 1466400 199870 31932 5383 1618.9 617.05 443.76 

0.25119 Hz 27022000 12406000 2035900 287450 46398 8199.1 2349.5 846.53 580.89 

0.39811 Hz 32968000 16334000 2804900 413070 67768 12274 3421.2 1189.7 799.94 

0.63096 Hz 42393000 21168000 3843400 591830 99359 18392 5050.8 1736.8 1103 

1 Hz 53505000 27164000 5245400 845280 145420 27823 7709.1 2596.2 1650.4 

1.5849 Hz 66550000 35534000 7073400 1197900 214590 41891 11536 3909.4 2416.6 

2.5119 Hz 82113000 44851000 9485100 1697700 313490 62803 17817 5868.9 3586.4 

3.9811 Hz 99584000 56450000 12860000 2387700 459480 94538 27045 9028.5 5538 

6.3096 Hz 119450000 70191000 17161000 3341500 663150 141990 41055 13789 8383.9 

10 Hz 141350000 86228000 22607000 4664400 956430 212170 62463 21149 12840 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 53.71 58.19 66.86 73.84 76.57 78.67 76.7 66.49 59.64 

0.15849 Hz 51.4 62.46 65.44 72.91 76.35 81.96 77.91 69.7 62.12 

0.25119 Hz 49.33 55.57 64.72 72.56 76.79 81.99 79.82 73.39 66.47 

0.39811 Hz 47.47 54.21 63.93 72.07 76.58 83 81.66 76.77 71.39 

0.63096 Hz 47.34 52.48 62.93 70.95 76.58 82.28 83.68 79.09 75.44 

1 Hz 44.81 51.4 61.86 70.58 76.03 81.24 83.32 81.15 76.99 

1.5849 Hz 42.24 49.04 61.2 69.66 75.55 81.28 83.79 82.63 79.98 

2.5119 Hz 40.48 47.31 59.76 68.78 75.25 80.6 83.57 84.07 82.57 

3.9811 Hz 37.91 45.36 58.51 68.06 74.72 79.58 83.14 84.43 83.01 

6.3096 Hz 36.25 43.58 57.04 67.41 73.92 78.44 83.11 84.87 84.3 

10 Hz 34.48 41.87 55.84 66.61 73.36 77.41 82.5 84.75 84.75 
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Table F2 Complex modulus and phase angle of the 3 hour aged gritstone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 18980000 8721500 1366500 189350 29941 10253 12917 14786 14620 

0.15849 Hz 21874000 12411000 1866700 269760 43158 12592 13220 16006 15377 

0.25119 Hz 31083000 14477000 2551800 380380 62583 15435 13072 15232 14131 

0.39811 Hz 36976000 18832000 3455400 537640 91655 20668 13725 15155 15099 

0.63096 Hz 46945000 24192000 4701100 764100 132930 29664 15332 16237 16845 

1 Hz 58375000 30632000 6315200 1076600 193120 42161 18239 16457 15995 

1.5849 Hz 72165000 38972000 8451300 1508500 280840 60437 24139 17399 17053 

2.5119 Hz 87901000 49054000 11150000 2108100 405610 87675 32272 19574 17781 

3.9811 Hz 105230000 61140000 14837000 2931200 583500 130580 41751 22808 18862 

6.3096 Hz 124910000 74692000 19508000 4034800 838090 191770 61487 29799 23022 

10 Hz 145990000 90665000 25331000 5547000 1195500 275340 88010 39930 29293 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 51 55.48 64.49 71.94 76.47 45.47 17.22 9.77 10.54 

0.15849 Hz 44.74 57.34 62.86 70.77 75.98 57.22 18.63 10.64 9.03 

0.25119 Hz 46.41 53.14 62.17 70.3 75.87 63.27 24.46 9.2 8.07 

0.39811 Hz 43.99 51.4 60.98 69.42 75.38 67.82 29.93 11.34 8.47 

0.63096 Hz 44.92 49.64 60.68 68.48 75.18 71 39.43 13.84 11.21 

1 Hz 43.17 48.58 58.91 68 74.39 74.12 48.64 22.04 13.01 

1.5849 Hz 39.65 46.42 57.9 66.95 73.87 75.58 55.16 27.21 19.18 

2.5119 Hz 38.15 44.69 56.81 66.12 73.07 75.93 62.51 36.06 25.39 

3.9811 Hz 35.88 43.3 55.42 65.34 72.32 75.53 70.56 47.08 35.18 

6.3096 Hz 34.06 41.03 54.23 64.57 71.58 74.09 72.1 55.99 44.55 

10 Hz 32.5 39.46 53.01 63.79 71.15 73.45 74.37 63.18 54.06 
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Table F3: Complex modulus and phase angle of the 5 hour aged gritstone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 70

o
C 75

o
C 

0.1 Hz 24348000 11197000 1749500 240870 37098 11402 10454 8119.9 7884.3 

0.15849 Hz 25166000 12812000 2367100 340000 53576 15605 11406 8346.1 7966.1 

0.25119 Hz 38047000 18589000 3197700 480860 77869 17808 11330 8308 7446.7 

0.39811 Hz 45798000 23052000 4275600 680760 114080 24621 12383 8509.5 7573.3 

0.63096 Hz 56833000 29697000 5795000 956590 166490 34246 14436 9527.9 8237.1 

1 Hz 67375000 37258000 7719900 1336700 241900 49023 17720 10909 8569 

1.5849 Hz 86280000 46556000 10124000 1862700 349390 68941 24435 13915 9891.2 

2.5119 Hz 103130000 56181000 13431000 2576600 502530 101900 34234 19232 12467 

3.9811 Hz 119700000 70522000 17567000 3533200 721560 147710 45798 26225 16565 

6.3096 Hz 139920000 85830000 22830000 4847500 1028200 214000 66861 37845 22809 

10 Hz 162290000 102700000 29456000 6606500 1450400 308450 97527 55257 33401 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 70

o
C 75

o
C 

0.1 Hz 48.13 53.41 62.97 70.99 76.47 41.6 18.32 16.51 15.43 

0.15849 Hz 15.87 44.61 61.3 69.72 75.94 55.02 23.18 17.54 15.27 

0.25119 Hz 44.33 49.79 60.56 69.09 75.56 59.35 28.61 22.39 19.16 

0.39811 Hz 40.67 48.28 59.19 68.19 74.93 66.42 37.2 27.35 21.32 

0.63096 Hz 41.32 47.56 58.36 67.08 74.21 70.26 45.84 37.27 27.1 

1 Hz 39.9 45.82 57.34 66.49 73.46 72.84 55.64 47.07 35.8 

1.5849 Hz 38.55 44.01 56.29 65.33 72.67 74.62 61.22 56.96 45.74 

2.5119 Hz 35.45 42.83 54.68 64.53 71.84 74.42 66.56 63.17 54.74 

3.9811 Hz 33.47 40.4 53.45 63.71 70.91 73.94 73.41 71.21 64.62 

6.3096 Hz 32.1 38.92 52.31 62.87 70.4 73.13 74.23 74.47 71.72 

10 Hz 30.5 37.32 51.04 62.06 69.71 72.42 75.06 76.18 74.71 
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Table F4: Complex modulus and phase angle of the 10 hour aged gritstone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 26623000 12813000 2190300 331850 52823 10346 2692.4 1046.6 987.83 

0.15849 Hz 28481000 17496000 2931500 461120 74570 14835 3779.3 1387.7 1094.2 

0.25119 Hz 40682000 20059000 3966300 642930 105970 22222 5592.4 1824.7 1408.5 

0.39811 Hz 47901000 25246000 5129400 889730 153070 33038 8124.6 2580.8 1819.8 

0.63096 Hz 58322000 31736000 6834400 1240400 221010 49289 11992 3723.8 2452.6 

1 Hz 69143000 39490000 8944700 1712100 316650 72275 17915 5549.2 3528.7 

1.5849 Hz 86291000 49632000 11644000 2339400 451600 105730 26730 8309.3 5191.7 

2.5119 Hz 102860000 60756000 15099000 3183800 641790 153940 40317 12444 7716.3 

3.9811 Hz 120160000 73735000 19634000 4304300 909680 222650 59438 18721 11499 

6.3096 Hz 140180000 88589000 25181000 5834900 1276900 316980 88128 28192 17268 

10 Hz 160880000 104830000 32115000 7829900 1789000 453030 129810 42330 25934 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 47.22 52.34 61.35 69.23 73.57 77.84 69.86 54.92 44.32 

0.15849 Hz 33.38 52.49 59.64 67.72 73.65 78.37 74.42 60.51 50.66 

0.25119 Hz 43.42 49.89 58.13 67.17 73.71 78.99 75.95 68.42 55.23 

0.39811 Hz 41.29 48.12 57.85 66.27 72.94 77.97 78.69 73.3 63.65 

0.63096 Hz 41.71 46.8 56.97 65.12 72.28 76.74 79.83 77.59 70.65 

1 Hz 42.45 45.19 55.89 64.66 71.79 75.51 80.02 79.81 74.92 

1.5849 Hz 36.64 43.57 54.83 63.82 70.99 74.55 79.93 80.31 77.65 

2.5119 Hz 34.78 41.56 53.8 62.93 70.29 73.47 78.44 81.31 79.44 

3.9811 Hz 33.72 39.82 52.81 62.24 69.56 71.85 78.3 81.42 81.05 

6.3096 Hz 31.64 38.32 51.44 61.42 68.95 70.31 77.32 81.34 81.63 

10 Hz 30.15 36.93 50.12 60.64 68.33 68.19 76.54 81.16 82.05 
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Table F5: Complex modulus and phase angle of the 20 hour aged gritstone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 51400000 27888000 6094900 1157200 211040 21028 4521.7 1710.4 1044.9 

0.15849 Hz 42011000 26230000 7516800 1553700 292180 32484 6775.9 2172.6 1293.5 

0.25119 Hz 72323000 40982000 10018000 2040100 402530 44757 10321 3094.9 1862.5 

0.39811 Hz 85763000 48667000 12367000 2708300 556400 68618 15280 4612.9 2650 

0.63096 Hz 100300000 59090000 15672000 3536700 764610 96766 23121 6786.1 3863.6 

1 Hz 109600000 66949000 19557000 4635700 1039200 140030 34508 10231 5834.8 

1.5849 Hz 137050000 84199000 24368000 6008500 1405200 200730 50842 15268 8796.5 

2.5119 Hz 145970000 98932000 30329000 7769500 1900400 278180 75373 23019 13211 

3.9811 Hz 170690000 113670000 37738000 10042000 2545900 401840 109770 34360 19933 

6.3096 Hz 191180000 131260000 46011000 12958000 3402400 558950 159510 51396 30021 

10 Hz 213500000 150630000 55737000 16515000 4522300 766000 229980 75926 44920 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 37.61 42.43 51.65 59.51 67.07 78.36 79.44 57.46 49.67 

0.15849 Hz 1.47 3.9 53.93 57.28 65.14 78.29 80.71 64.09 60.95 

0.25119 Hz 33.84 38.83 47.99 56.65 64.31 76.25 79.94 71.76 67.33 

0.39811 Hz 32.81 36.22 47.07 55.93 63.44 75.58 79.45 75.28 72.33 

0.63096 Hz 30.58 36.26 46.69 54.92 61.75 71.3 78.7 77.89 77.48 

1 Hz 28.76 36.21 45.78 53.93 61.3 71.02 77.51 79.21 78.74 

1.5849 Hz 30.76 33.33 44.34 53.13 60.4 69.34 76.68 79.91 80.42 

2.5119 Hz 26.85 32.05 43.25 52.46 59.42 67.87 75.33 79.56 80.5 

3.9811 Hz 25.79 30.46 42.29 51.45 58.87 65.5 73.84 79.07 80.49 

6.3096 Hz 24.15 29.67 41.26 50.63 58.18 63.31 72.64 78.27 80.12 

10 Hz 23.19 28.5 40.09 50.05 57.71 60.74 71.4 77.47 79.62 
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Table F6: Complex modulus and phase angle of the 1 hour aged limestone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 13134000 5931200 875490 115720 17310 2206.2 598.29 178.81 105.44 

0.15849 Hz 17366000 8553900 1217400 166390 25393 3449.5 926.71 271.71 163.48 

0.25119 Hz 21900000 10177000 1672500 240920 37186 5434 1411.6 419.79 252.01 

0.39811 Hz 27506000 13564000 2280700 342150 55056 8379.8 2236.4 664.45 392.02 

0.63096 Hz 35475000 17698000 3170800 489990 81349 12506 3418.8 1028.4 611.59 

1 Hz 44746000 22834000 4348700 702180 120470 19240 5306.3 1616.6 973.01 

1.5849 Hz 56346000 29312000 5876900 993490 176530 29306 8138.8 2527.4 1514.2 

2.5119 Hz 70551000 37927000 7904300 1403800 257810 44316 12540 3942.3 2374.6 

3.9811 Hz 85056000 48100000 10647000 1978500 379640 67140 19246 6093.1 3780.3 

6.3096 Hz 102840000 60012000 14286000 2768100 547480 100190 29511 9499.6 5825.4 

10 Hz 122730000 74233000 18909000 3861600 782310 150100 44933 14591 8980.7 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 54.37 58.05 66.39 74.05 78.12 85.59 85.1 85.13 85.2 

0.15849 Hz 59.81 60.94 64.9 72.49 77.5 84.89 85.42 85.23 84.38 

0.25119 Hz 50.34 56.04 64.45 71.86 77.48 83.89 85.99 86.27 85.87 

0.39811 Hz 48.89 54.61 63.34 71.25 77.24 85.4 86.75 86.7 87.02 

0.63096 Hz 47.92 52.94 62.58 70.74 76.8 83.08 85.41 87.6 87.77 

1 Hz 45.86 51.96 62.08 70.25 76.17 83.17 86.08 87.17 87.69 

1.5849 Hz 43.75 49.97 61.01 69.13 75.39 81.66 85.12 86.51 87.56 

2.5119 Hz 43.69 47.97 59.89 68.52 75.06 80.79 84.74 86.53 87.17 

3.9811 Hz 39.73 45.97 58.65 67.82 74.37 79.68 83.91 86.41 87.25 

6.3096 Hz 38.04 44.68 57.45 67.16 74.04 79.06 83.35 85.96 87.24 

10 Hz 36.05 43.21 56.37 66.44 73.52 77.7 83.1 85.76 87.34 
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Table F7: Complex modulus and phase angle of the 3 hour aged limestone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 14241000 6484800 993290 136440 21131 2974.5 759.95 230.48 132.18 

0.15849 Hz 16537000 9037300 1373000 194760 30916 4657.5 1180.2 354.9 194.68 

0.25119 Hz 23817000 11283000 1893900 280470 45174 7273.9 1797.7 538.82 313.33 

0.39811 Hz 28993000 14763000 2605900 399910 66397 10784 2817.6 845.19 487.4 

0.63096 Hz 37525000 19123000 3569100 570070 97634 16576 4324.7 1297.3 741.06 

1 Hz 47061000 24592000 4867500 810510 142830 25167 6639.8 2041.5 1179.4 

1.5849 Hz 58571000 31710000 6596700 1146600 208500 38351 10261 3157.6 1815 

2.5119 Hz 69923000 40748000 8797100 1607300 303200 57513 15510 4922.7 2875.6 

3.9811 Hz 87554000 50778000 11816000 2256600 437900 85848 24014 7619 4498.6 

6.3096 Hz 105620000 63245000 15669000 3136300 631250 127730 36397 11777 6947.6 

10 Hz 125590000 77684000 20603000 4343900 902160 188140 54952 18070 10720 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 53.52 58.07 66.2 73.54 77.22 84.37 85.58 83.97 84.57 

0.15849 Hz 44.82 63.55 64.54 72.13 76.95 84.44 85.05 85.14 84.63 

0.25119 Hz 49.33 54.64 63.9 71.42 76.71 82.91 85.38 85.84 85.39 

0.39811 Hz 46.88 53.67 62.75 70.54 76.35 83.51 85.76 86.46 86.89 

0.63096 Hz 46.72 52.36 62.11 69.84 75.67 82.04 84.8 86.85 87.63 

1 Hz 44.94 50.87 60.86 69.06 75.04 80.73 84.7 87.19 86.94 

1.5849 Hz 42.49 49.01 59.83 68.19 74.48 80.27 84.16 86.28 87.18 

2.5119 Hz 41.59 47.11 58.86 67.49 73.67 79.42 83.42 86.16 86.64 

3.9811 Hz 38.87 45.28 57.61 66.64 73 78.43 82.87 85.71 86.43 

6.3096 Hz 37.08 43.68 56.41 66.05 72.37 77.25 82.26 85.36 86.2 

10 Hz 35.28 41.99 55.19 65.32 71.8 76.1 81.64 84.98 85.97 
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Table F8: Complex modulus and phase angle of the 5 hour aged limestone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 20367000 9033300 1342000 184750 28815 4574.4 1062.8 295.15 174.93 

0.15849 Hz  11188000 1824600 262190 41779 6927.2 1617.8 458.41 262.16 

0.25119 Hz 32416000 15379000 2493600 370830 60995 10665 2511.7 703.75 409.57 

0.39811 Hz 39076000 19423000 3390500 526740 89708 15738 3864.4 1092.7 633.23 

0.63096 Hz 49040000 24902000 4591000 744200 130390 24435 5936.7 1690.2 983.93 

1 Hz 60664000 31451000 6158900 1045800 190360 36716 9177.1 2629 1552.3 

1.5849 Hz 74614000 39955000 8230100 1460100 275240 55660 14100 4104 2394.8 

2.5119 Hz 90617000 49902000 10875000 2029100 397400 83323 21420 6355.9 3736.3 

3.9811 Hz 108160000 61905000 14372000 2814600 570790 123860 32460 9827.3 5784.6 

6.3096 Hz 127950000 75464000 18870000 3875200 813890 182750 49383 15181 8982.1 

10 Hz 148760000 91882000 24351000 5314700 1155100 267750 74461 23181 13887 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 49.89 54.83 63.9 71.97 76.89 83.04 84.78 85.77 84.56 

0.15849 Hz  56.72 62.52 70.42 76.31 83.64 85.59 85.79 85.61 

0.25119 Hz 45.95 51.15 61.76 69.86 76.08 82.48 85.34 86.14 86.07 

0.39811 Hz 43.21 50.44 60.69 69.02 75.55 82.17 85.7 86.87 87.29 

0.63096 Hz 44.07 48.95 59.82 67.92 74.8 80.63 85.56 86.72 87.35 

1 Hz 42.78 47.76 58.55 67.26 74.14 80.04 84.83 86.52 87.74 

1.5849 Hz 38.81 45.72 57.27 66.42 73.28 79.44 83.79 86.19 87.04 

2.5119 Hz 36.84 43.18 56.57 65.46 72.5 78.07 83.3 85.89 86.96 

3.9811 Hz 35 41.87 55.13 64.65 71.78 77.05 82.47 85.45 86.38 

6.3096 Hz 33.36 40.61 53.75 63.88 71.08 75.64 81.64 85.08 85.94 

10 Hz 31.78 38.99 52.73 63.21 70.58 74.16 80.92 84.72 86.04 
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       Table F9: Complex modulus and phase angle of the 10 hour aged limestone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 21366000 9804100 1637600 243740 37873 6340.8 1589 454.73 256.56 

0.15849 Hz 22529000 11266000 2201500 340970 55208 9614.3 2429.6 691.01 392.11 

0.25119 Hz 33392000 16283000 2944900 476720 80120 14594 3741.7 1077.9 603.69 

0.39811 Hz 39657000 20136000 3913000 667740 116290 21829 5813.5 1647.7 923.05 

0.63096 Hz 49580000 25725000 5249500 924980 167860 33067 8571 2548.1 1439.6 

1 Hz 60110000 32269000 6950400 1280700 241990 49110 13078 3932.7 2239.3 

1.5849 Hz 74499000 40528000 9093500 1761600 346310 72436 19734 6065.3 3443.6 

2.5119 Hz 89240000 48205000 11877000 2418600 491730 106410 30087 9242.8 5292.6 

3.9811 Hz 105490000 61177000 15601000 3287700 697250 155410 44782 14058 8173 

6.3096 Hz 123680000 74611000 20144000 4460000 980800 226740 66282 21424 12539 

10 Hz 143430000 89534000 25839000 6032900 1373100 321980 98500 32311 18966 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 65

o
C 75

o
C 80

o
C 

0.1 Hz 47.46 52.56 60.96 68.86 75.81 81.16 83.77 84.51 83.09 

0.15849 Hz 31.31 47.39 59.28 67.08 74.43 81.51 83.74 84.73 84.81 

0.25119 Hz 43.87 48.79 58.64 66.51 73.87 80.57 83.07 84.75 84.87 

0.39811 Hz 40.99 47.95 57.57 65.77 72.86 79.13 84.56 84.94 86.27 

0.63096 Hz 41.4 46.9 56.72 64.76 72.02 77.85 83.13 84.64 85.18 

1 Hz 40.17 45.32 55.67 64.09 70.81 78 81.67 84.12 86.05 

1.5849 Hz 38.04 44.06 54.8 63.12 70.16 75.97 81.01 83.98 85.12 

2.5119 Hz 35.83 44.46 53.91 62.33 69.39 74.7 80.17 83.59 85.06 

3.9811 Hz 34.43 40.76 52.62 61.67 68.66 73.46 79.14 82.86 84.26 

6.3096 Hz 32.56 39.43 51.38 60.92 68.07 71.84 78.23 82.33 84.22 

10 Hz 31.35 37.7 50.5 60.29 67.71 70.44 77.32 81.89 83.34 
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      Table F10: Complex modulus and phase angle of the 20 hour aged limestone bitumen-filler mastics 

 
 

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 60

o
C 65

o
C 75

o
C 

0.1 Hz 31681000 14638000 2622300 435870 82606 22671 14641 10322 4282.8 

0.15849 Hz 30952000 19950000 3457400 585800 112730 32688 20143 13779 4691.7 

0.25119 Hz 46504000 23042000 4797900 796280 155720 39610 23779 14499 5434.3 

0.39811 Hz 54860000 28086000 5936600 1094200 214770 56412 31724 19899 6757.6 

0.63096 Hz 67242000 35752000 7867300 1482800 300810 79820 45520 27135 8897.7 

1 Hz 77458000 44294000 10266000 2016600 418280 112450 62942 37208 12017 

1.5849 Hz 97843000 55659000 13220000 2740600 580850 158180 87446 51086 16886 

2.5119 Hz 116050000 69684000 17345000 3688800 808970 222070 122140 70350 24097 

3.9811 Hz 135690000 82477000 22398000 4959100 1124500 312810 173790 99644 34068 

6.3096 Hz 156880000 99348000 28687000 6675700 1551500 438630 245200 142610 49210 

10 Hz 180400000 117590000 36294000 8922200 2142100 601960 342120 199810 71555 

          

          

Freq/Temp 10
o
C 15

o
C 25

o
C 35

o
C 45

o
C 55

o
C 60

o
C 65

o
C 75

o
C 

0.1 Hz 44.87 50.99 58.8 64.77 68.78 67.65 60.1 56.28 53.46 

0.15849 Hz 18.16 57 57.36 63.56 68.31 70.17 68.61 62.97 60.43 

0.25119 Hz 42.65 48.2 55.33 63.57 68.22 70.84 67.99 67.85 62.1 

0.39811 Hz 39.79 46.6 56.26 63.37 67.88 69.72 68.28 67.27 67.43 

0.63096 Hz 40.06 46.18 55.54 62.73 67.5 69.58 69.61 68.32 68.47 

1 Hz 42.22 44.89 54.83 61.95 67.33 69.22 69.33 69.78 71.16 

1.5849 Hz 35.96 43.02 54.06 61.41 67.19 68.27 69.51 69.91 72.54 

2.5119 Hz 34.69 42.49 53.17 61.06 66.93 66.94 70.12 70.92 73.9 

3.9811 Hz 32.53 39.9 51.8 60.49 66.57 65.95 68.8 71.07 74.18 

6.3096 Hz 31.15 37.89 50.57 59.79 66.27 64.24 68.02 70.52 74.73 

10 Hz 29.63 36.55 49.72 59.35 66.12 62.68 67.14 70.46 74.54 

 

 

 

 

 


