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Abstract 

This thesis presents an investigation on the churn to annular flow pattern 

boundary in an 11 m tall, 127 mm id vertical riser. Experimental data on film 

thickness, pressure drop and drop size and velocity was analysed and 

interpreted. Entrained fraction, interfacial and wall shear stresses and the 

interfacial friction were calculated from the experimental data. 

A new churn-annular flow transition boundary was derived based on 

trends, and in particular changes of slopes, observed in film thickness, pressure 

drop and structure velocity data. This is supported by observations made using 

high speed photography. Minima in slopes are found in plots of film thickness 

and pressure gradient with gas superficial velocity at low liquid flow rates. 

These minima are however not clearly visible at higher liquid flow rates in the 

data obtained.  

Dimensional analysis of this transition boundary and those proposed by 

other workers, using Froude and Weber numbers, resulted in a closer agreement 

between transition boundaries then was achieved till present. The correlation 

found, which describes the boundary, performs well for different pipe 

diameters, fluid properties and experimental flow conditions. 

It was observed that existing models for the calculation of interfacial and 

wall shear stresses, including the interfacial friction factor, do not perform well 

in churn type flows. Their performance and agreement with the present data at 

high gas flow rates, thus annular flow, was however better. This indicated that 

these models do not take some of the characteristics of the flow into account, 

e.g., gas core density. It was found that the latter parameter plays an important 

role in churn flow since the gas core density increases steeply with decreasing 



 

 ii 

gas flow rate. New relationships for these parameters are suggested for a more 

accurate prediction in large diameter pipes. 

The diameter, velocity, and entrained fraction of drops show similar 

trends to that of the liquid film thickness and pressure drop. The velocity and 

the entrained fractions show most profound information. The entrained fraction 

increases in churn flow with gas flow rate. It then shows a steep decrease in a 

transitional area. In this area it may be that the entrained fraction is more 

contained in large waves and wisps than in drops. At higher gas flow rates, the 

entrained fraction increases again, as is well reported by other researchers. Here 

the breakup and atomisation of large waves and wisps play an important role. 

From comparison between drop fractions deposited by diffusion and 

direct impaction in the CFD and experimental results, there is evidence that in 

large diameter pipes a third deposition mechanism applies: Transitional 

deposition. Analysis shows that transitional impaction occurs at medium sized 

drops at medium gas flow rates.  Around these conditions, large waves are 

present in the flow as described above. The third deposition mechanism 

probably occurs when the majority of entrained liquid is carried in large waves 

and wisps as reported above. Therefore, at the transition from churn to annular 

flow in large diameter vertical pipes, the behaviour of the flow is not typical to 

that observed in smaller diameter pipes. 
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Nomenclature 
A Area (m

2
) 

B Constant in curve fitting (-) 

C Drag coefficient (-) 
c Constant (-) 

D Diameter (m)/Deposition 
D32 Sauter mean diameter (µm) 

E Resistivity (-)/Entrainment (-) 

F Frictional pressure drop (Pa/m)/Force (N/m) 

Fr Froude number (-) 

Ge Dimensionless conductance (-) 

f Product modified Bessel function/Friction 

factor (-)/Frequency (Hz) 

g Gravitational constant (ms-1) 

h Height (mm) 

I Bessel functions/ Incident light (W/ m2) 

K Apparent conductance Ω/Bessel functions 

k Elliptic integral (-)/Mass transfer coefficient (-) 

Ku Kutateladze number (-) 

L Length (m) 
m Mass flux (kg/m2·s) 

N Number 
Oh Ohnesorge number (-) 

P Pressure (Pa) 
R Resistance Ω 

Re Reynolds number (-) 
S Slip velocity ratio (-) 

s Thickness or width (mm) 

t Time (s) 

U Velocity (ms
-1

) 

u Dimensionless gas number (-) 

V Voltage (V) 

v Velocity component (m/s) 

We Weber number (-) 

Greek Letters 
ρ Density (kg·m-3) 

η Viscosity (Pa·s) 

σ Surface tension (N·m
-1

) 

Θ, β  
Angle (°)/non dimensional time/fraction of 

liquid film (-) 

γ Liquid conductivity (S·m-1)/skewness (-) 

ε Fraction of fluid phase(-) 

δ  Film thickness (mm) 

Φ Doppler burst 

τ Interfacial shear stress (N·m-1) 

Г Equivalent to constant e 

α Dispersed phase hold-up (-) 

ζ Eddy lifetime (-) 

µ Kinematic viscosity (St) 

π Pi (-) 
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Subscripts 
app Apparent 

c Core 

cor corrected 

Diff diffusional 

d Drop/Drag 
f film 

full Full pipe 
g Gas/Gravitational 

gs Gas superficial 
i Interfacial/Intensity 

L Cross sectional area of liquid/wetted perimeter 
l Liquid 

ls Liquid superficial 

m Measuring volume 

max Maximum 

mix Mixture 

out Output 

Probe Probe resistance 

ref Reference resistance 

sm small 

s Blasius friction factor/frequency 

TP Two Phase 

t Transit time 

w Wave/Wall 

x Two phase flow resistance or voltage 
z Axial distance 

Superscripts 
* Dimensionless gas number 
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1 Introduction 

In contrast to single phase flow, multiphase flow is a complex 

simultaneous process of multiple fluids in the same geometry. In industrial 

applications, gas-liquid, gas-solid and liquid-liquid flow or any other 

combinations are encountered. Multiphase flows are encountered in the 

petroleum, power generation and chemical and process, industries. For 

instance, two phase flow occurs when single phase water flows through a pipe 

and is subject to a heat flux, water vapour (steam) then starts to form along the 

pipe and a two phase flow system is created. In the petroleum industry a two 

phase system is found in wells, risers and pipelines. 

The global energy demand is gradually increasing, partly due to the 

fast economical growth of developing countries. However, recently 

discovered hydrocarbon reserves are more often than not situated in 

geographical areas where aspects as production and processing get more 

challenging from an economical and engineering point of view. Modification 

of existing facilities on the other hand, to enhance production due to field 

depletion, comes with similar challenges. Hence, research in the field of 

multiphase flow is important from the latter perspectives in order to improve 

safety, reliability, sustainability, efficiency and a significant decreasing 

maintenance frequency of industrial processes. 

 

1.1 Two–phase gas liquid flow risers 

A hydrocarbon well can produce several fluids, i.e., oil, gas 

condensate, gas, water and sand. The design of the well, pipelines and risers 

systems must be carried out with caution because of the presence of 
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asphaltenes, waxes and hydrates which could cause blockage.  These might 

demand the application of appropriate inhibitors. Fluid extraction from a 

reservoir implies that the natural pressure in the field drops in time, i.e. 

depletion. The dominant phase in gas-liquid flow has a great influence in well 

performance and consequently, may affect the entire production process, e.g., 

a too high liquid hold-up can shut down a well. This could be due to the gas 

pressure being insufficient to overcome the liquid static head.  

Apart from slug flow, another problem encountered in some cases is 

severe slugging where a high quantity of accumulated liquid occupies the 

riser, usually associated with an inclined horizontal subsea pipeline. 

Eventually, when pressure behind the liquid slug builds up due to gas 

accumulation, the liquid slug will be pushed out at high momentum which 

may damage the process equipment. In addition large, expensive and space 

demanding slug catchers are thus required. Slugging in general is thus to be 

avoided if possible.  

Erosion is also a limiting factor for the design of process equipment. 

Liquid drops, containing a solid such as sand, can be abrasive when travelling 

at high velocities. Corrosion by water and dissolved carbon dioxide can also 

be encountered  and will require injection of corrosion inhibitors. 

Apart from steel jacket production facilities, semi-submersible and 

fully submersible facilities are designed and constructed to allow oil and gas 

production in greater water depths, e.g., drilling ships and production 

facilities, also known as Floating Production Storage and Offloading facilities, 

and subsea well-templates. Rather than a fixed configuration, large diameter 
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risers with idem lengths can adopt catenary shapes. Therefore, the orientation 

of one riser can go through various stages, i.e., from horizontal to vertical.  

All these challenges have to be addressed by the industry concerned 

with flow assurance and integrity. An additional problem is that there is 

evidence that gas-liquid flows in large diameter vertical risers behave 

differently compared to relative small diameter tubes. For example; there is 

consensus in vertical orientation on the non- existence of conventional slug 

flows in tube diameters >100mm. These differences can manifest themselves 

through different relationships between the phase flow rates and gas void-

fraction/liquid hold-up, liquid-film characteristics, the dispersed phase. 

pressure gradient and wall-shear stress. 

 

1.2 Aims 

Omebere-Iyari (2006) successfully carried out the first experiments on 

a new 127 mm diameter closed flow loop test facility at the University of 

Nottingham. Omebere-Iyari’s research campaign led to fundamental 

quantitative understanding of phase hold-up of both the gas and liquid phases 

in large diameter risers. 

The present study is part of the fourth cycle of Transient Multiphase 

Flows (TMF4). Carried out in the Department of Chemical and Environmental 

Engineering at the University of Nottingham, it aims to provide (i) more 

detailed information on the transition from the churn to annular flow regime in 

vertical gas-liquid flow in a 127 mm diameter riser. More specifically, this 

project aims to provide information on the cross-section averaged and local 

phase fractions, film thickness and the dispersed phase, i.e., drops. (ii) 
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Especially drop behaviour and deposition is considered key in the current 

study and investigated. Although the nature of gas-liquid flow may be 

different in larger than smaller diameter pipes, it will be analysed using 

generic statistical methods. 

There is yet no published material on the simultaneous measurements 

of the dispersed phase and liquid film thickness in the churn flow regime for 

pipe diameters >100 mm. For the first time, this study aims to perform 

measurements in this challenging flow environment. 

 

1.3 Objectives 

The objectives of this thesis are to concentrate on: (i) Vertical churn-

annular air-water flows at moderate pressures (1 to 3 bara). (ii) gas and liquid 

superficial velocities varied between 3 and 20 and 0.004 and 0.7 m/s 

respectively. (iii) void fraction/film thickness measurements performed with 

calibrated conductance ring probes and a Wire Mesh Sensor. (WMS). (iv) 

drop size and velocities measured using Phase Doppler Anemometry. (v) 

statistical analysis methods applied in order to extract more in depth 

information from the data gathered. (vi) Star-CD simulations on drop 

behaviour carried out to accompany the experimental data. Figure 1.1 

illustrates the area investigated in the present study. 
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Figure 1.1 Investigated area of flow conditions 

 

1.4 Scope of thesis 

With the gaps in the research history and literature identified, and in 

line with the current trends towards the use of larger pipe diameters in process 

installations, the scope of this thesis is outlined as follows. The first Chapter 

introduces the practical applications of multiphase and gas-liquid flows and 

the challenges faced in the industries. Moreover it provides the aim and 

objectives of this thesis. The second Chapter highlights the main efforts 

carried out in the past in the field of vertical gas-liquid flows and the existing 

gap of knowledge for large diameter pipes and particularly the churn-annular 

transition. The third Chapter presents the experimental facility. It also 

provides sections devoted to the instrumentation and measurement equipment 
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employed and the governing theoretical fundamentals. Chapter four is the first 

out of three results chapters and presents data on void fraction and film 

thickness measurements at 2 barg in the 127 mm riser at Nottingham. 

Subsequently an improved fraction factor relationship along with a new 

churn-annular flow transition boundary are proposed. Chapter five introduces 

visual observations made on the creation of drops and disturbance waves. It 

also presents drop sizes and velocity results, accompanied with film thickness 

measurements at atmospheric pressure. In Chapter six, the results obtained 

with Star-CD simulations on drops are described, concentrating on drop 

deposition. Chapter seven provides conclusions of this thesis and 

recommendation for future research.  
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2 Literature Survey 

For many years, multidisciplinary engineering research teams 

attempted to characterise and understand the behaviour of these types of fluid 

flows at a wide range of physical conditions, through various flow domains 

and geometries. A wealth of information is therefore available already. 

Consequently, a wide range of measurement techniques has been utilised to 

examine the characteristics and derive empirical models (the empirical 

approach). More recently, computer codes such as Computational Fluid 

Dynamics (CFD), originally developed for e.g. aerospace and aeronautical 

applications, are successfully further developed and applied in the simulation 

and prediction of multiphase flows (the modelling approach).  

Two phase gas-liquid flows are studied to a greater extend compared to 

any other multiphase flow. The nature of gas-liquid flow compared to single 

phase flow of either a gas or liquid is significantly different. This difference 

can be found in interfacial interaction between the two phases while subject to 

forces due to gravitation, friction and acceleration.  

This literature survey presents a brief overview of flow patterns 

occurring in vertical gas-liquid flows, including flow pattern maps. It will then 

highlight the past efforts made for derivation of those void fraction prediction 

performing reasonably in large diameter pipes. This is followed by flow 

pattern specific models for the transition from churn to annular flow in vertical 

pipes. More applied literature survey is provided in the concerning Chapters of 

this Thesis. 
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2.1 Vertical gas-liquid flow 

Vertical gas-liquid flows commonly adopt four main patterns or 

regimes (Figure 2.1). These regimes occur when the flow conditions are 

varied. A good example is starting with single phase liquid flow. When the 

liquid is pumped into a vertical pipe and gas is simultaneously injected into 

the base of the pipe bubble flow occurs. By increasing the gas flow rate and 

keeping the liquid flow rate constant, the pattern in the pipe changes from 

bubble to slug (or plug). This can be associated with the coalescence of small 

bubbles. By increasing the gas flow rate further, the patterns change to churn 

and finally annular flow. The characteristics of these regimes are as follows (i) 

Bubbly flow: dispersed gas bubbles travel with a complex motion through a 

dominating liquid flow. (ii) Plug flow, or slug flow where the gas bubbles size 

tends towards that of the channel and bullet shaped bubbles are formed. The 

bubble (also called a Taylor bubble) is surrounded by a thin film of liquid. 

Recent studies have shown that in larger diameter pipes this pattern does not 

occur but instead a direct transition from bubble to churn flow takes place. 

(Cheng et al (1998)) (iii) Churn flow is the case when the Taylor bubbles have 

an unstable motion. This regime is very chaotic and is a process of continuous 

break up and dispersion of liquid into gas and gas into liquid. For large 

diameter pipes, Prasser (2003) provided a good example of an unstable “slug” 

flow. Several definitions have also been proposed by Ohnuki and Akimoto 

(2000) for large diameter pipes (iv) Annular flow is characterised by a 

relatively thin liquid film travelling on the pipe walls. The interface between 

the phases is often rough due to formation of waves. More details on waves 

are provided in Chapter 4. The core is formed by the continuous gas phase and 
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liquid drops are dispersed in the core. At very high gas flow rates, the 

dispersed phase can carry the majority of the liquid. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Vertical gas-liquid flow patterns (gas in white, liquid in grey) 

 

2.2 Structuring flow patterns 

In the previous section, commonly encountered flow patterns in 

vertical gas liquid flow were described. Structuring these often chaotic 

processes is a challenging task in itself. Flow patterns, observed by analyses of 

trends occurring in quantitative and qualitative data are usually organised in a 

systematic manner. A much employed method is “mapping” of these patterns. 

For a range of flow conditions the boundaries, in between which a particular 

pattern dominates the flow, can be drawn. Flow pattern maps can be 

graphically categorised both for vertical and horizontal multiphase phase 

flows. Once all pattern boundaries observed are mapped, a clear overview of 

behaviour can be observed as a function of flow conditions. Figure 2.2 
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illustrates the well reported flow pattern map for upward vertical gas-liquid 

flow from Hewitt and Roberts (1969). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 Reproduced gas-liquid flow pattern map for vertical upward flow 

(Hewitt and Roberts, 1969) 
 

 
Sekoguchi and Mori (1997) performed a systematic study and re-

examined flow pattern occurrence in a 26 mm vertical tube by using advanced 

local measuring probes. For annular flow they proposed an alternative 

approach. By measuring the frequency of slugs, waves and their velocity 

behaviour, they found that there are two types of waves occurring 

simultaneously: disturbance and huge waves, in the annular flow area. The 

boundary between the area in which the simultaneous occurrence of these two 

wave types was observed and the where there only appeared to be disturbance 

waves is taken as the transition from churn to annular flow. Figure 2.3 below 

illustrates the churn to annular flow boundary proposed by Sekoguchi and 
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Mori (1997) plotted in a dimensional version of the flow pattern map from 

Hewitt and Roberts (1969) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Different flow pattern transitions to annular flow. 

 

 

It can be observed that the boundaries do not agree very well. This 

may imply that there is a difference between results obtained due to different 

variables and scales, i.e., fluid properties and or pipe diameters. Note that the 

annular flow boundary from Hewitt and Roberts could be not entirely 

represented by experimental data but are due extrapolation, introducing 

possible biases. Especially the importance of vertical churn flow is sometimes 
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underestimated and is perhaps still the least understood flow pattern of all. 

.Azzopardi and Wren (2004) investigated the mechanism of liquid entrainment 

and some interesting conclusions are drawn. Churn flow occupies a relatively 

large area in flow pattern maps. Especially since the typical slug flow Taylor 

bubble has not been observed till present in larger diameter vertical pipes, the 

churn flow pattern area actually became a lot larger then typically seen in 

small pipe flows. Experimental data and empirical models have however been 

crucial in the development for 1D and multi-dimensional CFD software 

packages such as SPT’s OLGA and CD-Adapco’s Star-CD etc. The 

occurrence of the flow pattern is however encountered numerously in the oil 

and gas industry. Accurate prediction from CFD for churn flow therefore 

remains a challenge leaves room for improvements. 

 

2.3 Dimensional analysis 

By dimensional analysis, many workers have attempted merging of 

experimental data originating from different set-ups. Some more successful 

than others but until present the search for a good solution is still in progress. 

This next section provides an introduction in how dimensional analysis is 

applied in multiphase flows. 

Dimensionless numbers are extensively employed in the area of fluid 

flows as they can be used in comparative analysis at different scales and 

properties, i.e., pipe diameter, density, surface tension, viscosity etc. Not only 

for flow pattern maps in general they can be used, but also for flow pattern 

specific analysis they are proven to be very useful. For instance, as it is a key 

motive for the present study, in the investigation of the transition from churn 
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to annular flows. In some cases, also the value of a dimensionless number can 

be a measure of the state of the flow. 

As for the original flow pattern map shown in Figure 2.2, it can be 

seen that the axes do not represent the superficial velocities directly but 

instead a momentum flux 2Uρ is suggested. This flow pattern map was 

constructed based on three data sets taken in vertical gas-liquid flow. The data 

originated from air-water experiments in a 32 mm pipe and steam-water in a 

12.7 mm pipe. The latter at pressures of 35 and 70 bar. Looking more closely 

at 2Uρ  results in the dimensionless Weber number (Eq 1.1) which is 

commonly employed in fluid flows in which an interface between the fluids is 

encountered. 

 

σ

ρ DU
We

2

=  
 

1.1 

In which ρ, U, D and σ are the density, velocity difference over the 

drop, pipe diameter and the surface tension respectively. Note that the physical 

properties of the respective phases can be employed for dimensional analysis. 

Scaling the Weber numbers for the case of Hewitt and Roberts, based 

on similarity between the different data sets, shows that the ratio σ/D for the 

cases of 32 and 12.7 mm pipe at 35 bar are very similar. For the 12.7 mm data 

at 70 bar σ/D  is a factor 1.7 greater than the former. Yet it brought the data 

sets together in the flow pattern map. Also for horizontal flow, the flow 

pattern maps suggested by Baker (1954) and Taitel and Dukler (1976) suggest 

the use of dimensionless numbers and groups thereof.  
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Another, very well known, example is the Reynolds number, a ratio 

between inertial and viscosity forces. Transition between laminar and 

turbulent flows can be determined by 

 

µ

ρUD
=Re  

 
1.2 

Where η is the fluid viscosity.  An additional dimensionless number 

used in scaling of fluid flows is a densimetric Froude number which relates the 

velocity to the gravitational behaviour of the gas-liquid interface. A modified 

version is better known for the analysis of multiphase flows and defined as 
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The Ohnesorge number is a dimensionless number which is a ratio of 

the viscosity, the density and surface tension forces. 
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=  
 

1.4 

A scaling rule in the form of a Kutateladtze number groups the 

Weber and modified Froude number  

 ( ) 412
WeFrKu =  

 

1.5 

Apart from the abovementioned dimensionless numbers, more 

groups of these numbers have been examined on their scaling ability of 

flooding data by Zapke and Kröger (2000).  
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2.4 Void fraction correlations: Examples of 

dimensionless numbers 

The previous section briefly covered the use and some examples of 

dimensionless numbers applied in the analysis and correlation of multiphase 

flows. This section outlines some of the well known correlations to predict the 

void fraction. In two-phase gas-liquid flows, void fraction is defined as the 

fraction of the cross-sectional area occupied by the gas. Void fraction is 

however not merely depending on the sum of input mass flow rates. A brief 

summary of empirically derived void fraction models, which give a 

fundamental understanding of the basics, is presented here. Except the 

correlations from Duns and Ros (1963), all correlations are comprehensively 

explained in Bertola (2003). In the practical field of flow assurance and 

integrity, the correlations from Duns and Ros (1963) are still used today. This 

is not surprising since the data is extracted from production wells and provide 

reasonable predictions. One of the correlations used for void fraction 

prediction is the homogeneous flow model. This one-dimensional equation 

does not allow for the slip between the gas and liquid phase. 

Chisholm (1972) proposed a correlation to allow for the slip ratio in 

the homogeneous model. Another slip ratio correlation from Smith (1971) 

seems slightly more complex, yet it does often not give more accurate 

predictions than the former.  

Premoli et al. (1970) at CISE, demonstrates a more complex approach 

to predict void fraction in vertical gas-liquid flow. Linking the previous 

sections with the current; they based correlation coefficients on Weber and 

Reynolds numbers. 
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Beggs and Brill (1973) provided correlations for the liquid hold up in 

oil and gas wells, based on correction factors for the homogeneous model as 

described above including a Froude number. 

Azzopardi and Hills provide a performance comparison of various 

flow pattern specific models in their lectures provided in Bertola (2003). 

Omebere-Iyari (2006) tested the models against data obtained in a 127 mm 

diameter pipe. This shows that the annular flow model (described below) 

provides the best predictions for experimentally obtained data, especially at 

low liquid flow rates and high void fractions. The Beggs and Brill model 

performs best at higher liquid flow rates. This is not surprising, considered the 

origin of the model. It is worth noting that the models derived by Chisholm 

(1972) and Premoli et al. (1970) were empirically developed for heat 

exchange and nuclear applications respectively 

 

2.5 Annular flow specific models 

Flooding, a phenomenon in churn/annular flow where the liquid film 

becomes gravity dominated, is associated with the transition where the film 

starts to move upwards. Some workers, e.g. Zabaras et al. (1986) define 

flooding as the point from which the liquid starts to show upward motion with 

increasing gas flow rate. Owen (1986) and Govan et al (1990) describe this 

phenomenon following Wallis (1961) in a similar manner and also provide 

detailed results on flooding. The correlation by Wallis (1961) is very popular 

in which two dimensionless groups for gas and liquid superficial velocities are 

suggested.  
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Eq. 1.7 is equal to Eq. 1.3, the Froude number, and the transition from 

churn to annular flow in smaller tubes can be expected to take place when C is 

around unity. Similar to the boundary suggested by Hewitt and Roberts, also 

here applies that the boundary is a straight line. 

For larger diameter pipes, the correlation from Pushkina and Sorokin 

(1969) has proven to be popular. For the inception of flooding, the gas phase 

Kutateladtze number equals 3.2. This is similar to the value of 3.1 as 

suggested by Turner et al. (1969) 

 ( ) 4122.3 WeFrKu ==  
 

1.8 

Dukler and Smith (1979) developed the Wallis parameter further for  

curve fitting to their experimental data.  

Taitel (1980) followed Turner et al. (1969) with a hydrodynamic state for 

transition in which the gas flow rate is just sufficient to suspend a drop, 

including a drag coefficient. The maximum stable drop size is found by the 

Hinze (1955) equation. However, this does not account for the liquid flow rate 

and thus is a straight line. 
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Where Dd  is the drop diameter defined by Hinze (1955) including a critical 

Weber number. 



Literature Survey 

 18

 
2

U

We
D c

d
ρ

σ
=  

 

1.10 

Barnea and Taitel (1985) extended the former model for inclined pipes 

and the effect of liquid flow rate was taken into account. The transition from 

churn to annular therefore perhaps became more applicable by curving to the 

right. 

Jayanti and Hewitt (1992) followed Dukler and Smith (1979) and extended the 

Wallis (1969) parameter by using their experiments on flooding. They found 

that there is a great influence due to the film length on the flooding point. 
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Where L is the pipe length.  

Zabaras et al (1986) followed the ideas of Moalem-Maron and Dukler 

in (1984). In a 50.8 mm pipe, they tested a theoretical film flow model 

proposed by the latter authors against experimental pressure drop, film 

thickness and wall shear stress. The model suggests that the film thickness 

varies between two processes at the transition from churn to annular flow, i.e, 

“switches”. From fully flowing upward to a sort of recirculation mechanism 

where the film can flow up and downward. The pressure drop goes through a 

minimum state with increase of gas flow rate. The latter was found earlier, 

amongst others, experimentally by Hewitt et al. (1965). Hewitt et al. proposed 

that this is a situation where the wall shear stress is zero and thus the film is 

theoretically static. Since the film thickness is the main contributor to pressure 
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drop and wall and interfacial shear stress, Zabaras et al, proved that all three 

parameters as a function of film thickness showed a minimum value. The 

ideas of Zabaras et al (1986) are taken further in Chapter 4. 

 More recently, Sawai et al (2004) performed experimental studies in a 

25.8 mm pipe in which the pressure drop was related to the liquid film 

thickness and in particular to the wave magnitude and motion. To examine the 

contribution of waves to the frictional component of pressure drop, which is 

thought to be dominant in annular type flows, they proposed a method to 

extract information on the difference in liquid fraction contained in waves to 

that in the liquid base film. By plotting the probability density function (PDF) 

of the time varying liquid holdup, they assumed that the base film distribution 

would be Gaussian. If the PDF tails towards higher liquid fractions, the 

fraction occupied by the tail was taken as wave holdup. A version of the 

widely used equation for the frictional component of pressure drop was then 

adjusted for waves only can be written in the form 
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1.12 

is the liquid phase friction factor, uw is the wave velocity, commonly obtained 

by cross correlating film thickness signals and µ l is the liquid viscosity. With 

increasing mixture velocity, they found that the contribution of waves to the 

pressure drop increased in the slug flow region, then a deacrease in the churn 

flow region. After the churn flow region, a minimum was observed after 

which the significance of the wave pressure drop increased again. Though the 
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method of analysis is very useful in order to examine the ratios of interfacial 

wave to the frictional pressure drop, the trends are not surprising since they 

follow the overall pressure drop as reported above. The method of Sawai et al. 

(2004) is further investigated in Chapter 4.  

Perhaps one of the most detailed models to predict annular flow in 

pipes is that first suggested by Whalley et al. (1974). In this model, mass 

balances are derived for three components of the flow: vapour, the liquid film 

and dispersed drops in the gas core, i.e., entrainment (Figure 2.4). The mass 

transfer coefficient between liquid and gas, film flow rate and interfacial 

friction are included in this model to be able to predict void fraction, drop 

entrainment, film thickness, and pressure drop. 

 

 

 

 

 

 

 

 

Figure 2.4 Concept of Whalley et al. (1974) 

 

For the dispersed phase and liquid film they proposed the following 

correlations 
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Where E and D are the entrainment and deposition flux of drops respectively. 

Deposition can be described by 

 kcD =  1.15 

Where k is a mass transfer, or deposition coefficient, and c is the concentration 

of drops. Hewitt and Govan (1990) determined k from experiments and 

suggest the following correlations 
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As can be seen this is in the form of a Weber number. 

In predicting the entrainment of drops, a maximum film flow rate was 

considered above which no entrainment would occur. This can be expressed 

by 
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For values exceeding this maximum the entrainment is described by 
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The interfacial friction factor plays an important role for the entrainment of 

drops. The equations for this proposed by Ambrosini et al. (1990) or Holt et 

al. (1999) prove to be popular 
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Holt et al (1999) 
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Where 

 

 

and 

 

and 

g

*
gU

g
η

δ
δ =+  

g

ggs
g

DtU

η

ρ
=Re  

σ

ρ tDgsUg
DWe

2

=  

 
1.21 

 
 

 

1.22 

 

 

 

1.23 

The film thickness can then be calculated  
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and the gravitational and friction pressure drop components can be obtained 

 ( )[ ]gglgg
gdz

dp
ερερ −+=








1  

tD

gsUgif

fdz

dp

2

24 ρ
=








 

 

1.26 

 

 
 

 
1.27 

 

 

 



Literature Survey 

 23

Due to the transition identification methods applied and findings, a number of 

publications are considered of key interest in Chapters 4 and 5. (i) Azzopardi 

and Wren (2004) (ii) Sekoguchi and Mori (1997). (iii) Zabaras et al. (1986). 

(iv) Sawai et al. (2001), (v) Omerbere-Iyari et al. (2007) and (vi) Zapke and 

Kröger (2000). 
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3 The Experimental Facility, Equipment and 

Instrumentation 

This chapter describes the experimental facility. It also covers the 

measurement equipment and instrumentation employed in this study, i.e. 

pressure transducers, thermocouples, flush mount conductance probes and a 

new proposed calibration method, and the data acquisition system. Moreover, it 

also describes the Phase Doppler Anemometry employed for drop size and 

velocity measurements. 

 

3.1 The experimental facility 

The experiments conducted in the present study were carried out on a 

large closed loop facility within the Department of Chemical and Environmental 

Engineering. Most of the piping is made of polyvinyl chloride (PVC), with 

some polymethyl methacrylate (acrylic resin or PMMA) sections included for 

visualisation purposes. 

Figure 3.1 shows a schematic flow sheet which also shows 

instrumentation. Liquid, stored in the stainless steel main separator, is pumped 

through 76mm piping into the riser base by a liquid pump (maximum capacity - 

68m3/hr). Before being directed into the riser base, the liquid flows through a 

metering section containing two liquid flow turbine meters, and temperature and 

pressure transducers. Depending on the liquid flow rate required, by operating 

valves, either a 76mm (3 inch) or 38 mm (1.5 inch) pipe section is used to 

control and meter the flow.  
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Two liquid ring pumps (compressors), operated in parallel, are liquid 

cooled and two-phase gas and cooling water flows through a cooling water tank. 

The compressed gas is directed vertically into the metering section, whilst the 

cooling liquid flows back to the bottom of the tank. The same principle of 

control and metering is applied as in the liquid side of the system. The two 

phases meet in the two phase mixer, the gas flows through a 76 x 600 mm (dxh) 

internal pipe and the liquid though a 51 x 400mm (effective diameter, dxh) 

annulus. After that the fluids flow upwards in the 11 meter tall riser, the flow is 

directed horizontally (approximately 4 m) to the top of the downcomer and 

thence back into the separator. Here the phases are separated by gravity and 

returned to the compressors and pump respectively. 

  The riser is equipped with a PMMA section ~2 m long, starting at 6 m 

from the riser base. This section is fitted with multiple measurement stations, 

including; flush mount conductance probes, flush mount pin probes, wall shear 

stress probe and a differential pressure device. The transparent material allows 

for visual observations and the use of high speed photography. For the latter a 

water-box is provided to minimise refraction. The measurement techniques and 

instrumentation employed in the present study are covered in more detail in the 

next section. 
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Figure 3.1 The 5 inch experimental facility.
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3.2 Differential pressure cell 

  In a number of experiments, the total, time averaged, pressure drop 

was measured by an electronic differential pressure detector/transmitter 

(Rosemount 1151 smart model), with a range of 0- 37.4 kPa and an output 

voltage from 1 to 5 V, i.e. a resolution of 9.35 kPa per volt.  

  Two pressure tappings, separated by an axial distance of 12.9 z/D, 

were provided on either side of the transparent viewing section, are connected to 

the differential pressure device via stainless steel lines. A known fluid density in 

the lines was established by purging to eliminate air bubbles. The latter 

procedure was repeated at the start of each set of the experiments. The 

calibration of the device was executed by Zangana (2011) and details provided 

in that thesis. 

 

3.3 Flow meters 

  Four Küppers turbine flow meters were used to monitor the flow of 

liquid and gas, as described at the start of this chapter, one pair for the liquid 

side of the system and one pair for the gas side. The liquid flow meter for small 

rates has a range of 6-60 L/min and the flow meter for the higher rates 40-500 

L/min. The gas side is, likewise, fitted with a small flow meter ranging from 2.5-

11 m
3
/hr and a large flow meter 35-1030 m

3
/hr. The calibration of the devices 

was performed by Omebere-Iyari (2006) and details are provided in that thesis. 

 

3.4 Pressure transducers 

  Two types of pressure transducers are employed here, one Messma 

type TD40 and two Gems Sensors type 1000, ranging from 0-16 bar and 0-11 
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bar respectively. Omebere-Iyari (2006) accurately calibrated the devices to 

return a 1-5V from the range supplied by the manufacturers of 4-20mA. Details 

on calibration can be found in that thesis. 

 

3.5 Temperature  

  T-type thermocouples were employed at the same locations as the 

pressure transducers to measure the temperatures. Omeberi-Iyari (2006) 

performed the calibration, by using ice and boiling water to relate voltage output 

to temperature. Details on calibration can be found in that thesis. 

 

3.6 Data Acquisition 

Pressure, differential pressure, temperature, flow rate and void fraction 

measurements are acquired using a PC equipped with a National Instrument 

(NI) DAQ card in combination with a Labview programme. Guglielmini (2002) 

had developed a data acquisition scheme in Labview to convert the voltage 

output of the all instrumentation through the regression data as determined by 

several calibration procedures or by volumetric equations. The present study 

employs a modified version of that developed by Guglielmini (2002). A general 

layout of the system is illustrated in Figure 3.2.  
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Figure 3.2 Labview data acquisition software user interface 
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3.7 Conductance Probes 

  In this study, an impedance technique to measure liquid hold-up was 

developed. This section describes the design and background of this technique, 

its basic theory and a new calibration method proposed.  

  The design of the probe rings as used in the present study was 

described comprehensively by Omebere-Iyari (2006). The six conductance 

probe rings, i.e. three probe pairs, are situated at 7963 mm, 8065 mm and 8319 

mm from the riser base. This corresponds to 62.7, 63.5 and 65.5 pipe diameters 

respectively. 

The probes are made of stainless steel and are mounted flush with the 

pipe wall. The latter is ensured by applying ¼ inch diameter dowels at either 

side of the centre of the individual parts. The thickness s of the rings is 3mm 

and the distance De between the probes is 25mm, insulated by non-conducting 

PMMA (Figure 3.3). This returns to a probe distance to pipe diameter ratio De/D 

of 0.20.  

 

 

 

 

 

        Probe rings 

 

Figure 3.3 The conductance probe pipe section. 

3.8 Probe Theory 

  The electrical properties of gas and liquid are such that, when subject 

to an electrical current, they can yield conductance in conducting fluids or the 
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capacitance in non-conducting fluids. From such measurements, the cross-

section averaged, liquid-hold up εl can be determined The gas void fraction is 

determined from εg = 1 - εl 

  In gas-liquid annular-type flow, the instantaneous wall film thickness 

can be determined by measurements of the electrical conductance between two 

electrodes in contact with the liquid film. Different types of electrodes such as 

parallel wires, flush-wires, flush-mounted pins and flush-mounted rings have 

been adopted (Miya et al. (1971), Brown et al. (1978), Asali and Hanratty 

(1985), Andreussi et al. (1988), Koskie et al. (1989), Kang and Kim (1992), 

Tsochatzidis et al. (1992), Fossa (1998), Conte and Azzopardi (2003). Amongst 

these probes, the flush-mounted parallel ring probe is attractive to researchers 

because, (i) it provides non-intrusive measurements, (ii) can pick up small 

impedance and (iii) allows the electric field to be efficiently confined. Coney 

(1973) proposed that the apparent conductance appK  for two parallel strips 

embedded flush onto a flat surface can be defined as; 

 γLKK appapp

∗=  3.1 
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Where, ∗
appK is the dimensionless apparent conductance, L  electrode length, 

s electrode width, γ  liquid conductivity h liquid film thickness and Function k  

the complete elliptic integral of the first kind, 
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  Furthermore Coney (1973) proposed that the conductance of annular 

liquid film can be quantified by above equations by replacing h  to a liquid 

equivalent thickness Eh ; 
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  Andreussi et al. (1988) defined 
LLE PAh /=  where 

LA  is the cross-

sectional area occupied by liquid and LP  the wetted length of electrode for the 

application of the annular and stratified flow. The analytical solution to the 

apparent conductance of the ring probe has been developed by Tsochatzidis et 

al. (1992) as, 
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with ( )[ ] ( )[ ]θθ sDesDebi −−+= coscos   

and if  the product of modified Bessel functions 1010 ,,, KKII , 
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where 
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3.8 

A different expression for ib was adopted by Fossa (1998);  

 ( )[ ] ( )[ ]θθ eDcosseDcosib −−= 2  3.9 
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3.9 Conventional Probe Calibration 

  The conductance probes require calibration before they can be 

employed for measurements. Annular-type flows are usually simulated by 

placing a non-conductive cylinder inside the pipe. The annulus between the 

cylinder and pipe wall is then filled with the conductive liquid. (Figure 3.4) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Impression of the calibration setup with the probe rings (in red), a 

water fragment (in blue) and the non-conducting cylinder (in grey). 

 

  The unique resistive characteristics of the individual conductance 

probes need to be quantified. When the probe pair is subject to an electrical 

current, the relationship between the dimensionless resistivity E  (Eq. 3.12) of 

the probe ring and its voltage output outV  should be linear in the form of; 

 baVE out +=  3.10 

Constants a and b can be obtained from this relationship. The resistance xR  of 

the two phase flow is being simulated by a variable resistor in between each of 

the probe pairs. Hence, the probe resistance probeR  is the product of the applied 
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voltage appV , the voltage measured subject to the applied variable resistor xV  

and refR , the internal circuit variable resistance, by using; 
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By plotting the 

expression; 

 

( )
( )1/

1/

+

−
=

refx

refx

RR

RR
E  

 

3.12 

against outV , values for equation 3.10 was obtained. The linear regression 

constants are 21.3=a and 042.0=b . Equation 3.10 can then be substituted into 

the expression for the dimensionless conductance 
*

eG of the two phase flow 
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3.13 

 

In which fullE  is the dimensionless resistance for the flow domain fully occupied 

by liquid )1( =lε  and TPE  the dimensionless resistance for two-phase flow. 

Ultimately, by decreasing the diameter of the insert and a systematic repetition 

of calibration steps, the phase distribution can be related to the dimensionless 

conductance. The relationship of the calibration curve can be expressed in the 

form;  

 dGaGbGc eeel +++= )()()(
*2*3*

ε  3.14 

 

Saturation of the system, i.e., too large liquid fractions, can cause erroneous 

results. The distance between the probes is technically a driver for the accuracy 

of the film thickness due to averaging over distance in time. Large distances 
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allow thicker films but the saturation error increases. An optimum has thus to be 

found. Figure 3.5 below shows the error expectancy of the current set-up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Typical error for present study 

 
In general it is advised to operate within the quasi-linear area of the error curve 

as illustrated. For instance, at 3 mm of film thickness, the error is approximately 

7 percent. 

 

3.10 Sources of discrepancy and improvements  

  The conventional probe calibration method is an ‘ideal’ scenario in 

which it is assumed that the liquid film is totally liquid. In reality, in gas-liquid 

annular-type flows, the continuous trapping and folding actions of the 

disturbance waves at the interface transport gas bubbles into the liquid film. The 

presence of a considerable amount of bubbles in the liquid film was reported in 

both air-water horizontal and vertical annular-type flows ((Jacowitz and 
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Brodkey (1964), Hewitt et al. (1990), Omebere-Iyari (2006)). Rodriguez and 

Shedd (2004) quantified the bubble size distribution, bubble mean diameter and 

bubble number concentration in the wall film of a horizontal annular flow in a 

pipe of 15.1 mm diameter. Bubbles had an exponential distribution of sizes with 

average diameters between 15% and 45% of the film thickness at gas superficial 

velocities ranging from 28 to 65 m/s and liquid superficial velocities from 0.019 

m/s to 0.14 m/s. Around 100 bubbles/cm
2
 exist in the wall film at the gas 

superficial velocity 28 m/s. A typical bubble size distribution obtained from the 

present flow facility was obtained from image analysis for a range a gas 

superficial velocities and a liquid superficial velocity of 0.04 m/s. The results 

are shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

Figure 3.6 Typical bubble distribution 

   

To account for this uncertainty, a new approach to probe calibration was 

devised. In order to simulate gas bubbles in the liquid film during annular-type 

flows, spherical glass beads were used (Figure 3.6)  
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Figure 3.7 Illustration of a pipe with insert only (lhs) and with insert and beads 

(rhs). 

 

  The diameter of the insert was decreased in steps and spherical glass 

beads were used to occupy a fraction of the annulus between the insert and pipe 

wall. The diameters of beads used were 3, 4 and 6mm. The calibration 

procedure, carried out off-line, was performed according the following steps;  

1. A conventional void fraction measurement was first made with the 

single insert only;  

2. The test section was then emptied, dried and the insert re-installed;  

3. A known volumetric amount of beads were added to the annulus;  

4.  The annulus was filled with water until the level of water was equal to 

the level of beads. The water left was then weighted and the in situ bead 

voidage calculated;  

5. A void fraction measurement was performed;  
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6. The difference between the void fraction measured with the single insert 

and the single insert-beads was verified by repeating the calibration with 

an additional cylindrical insert. The latter representing the volumetric 

fraction equal to the sum initial insert and beads.  

 

3.11 Results 

  In order to use the probes for the full range of flow patterns it is 

intended that a single calibration curve be produced, i.e. for bubbly to an annular 

flow regime. This might increase the  risk of discrepancies in the data obtained. 

Figure 3.7 shows a conventional calibration curve for one of the probes with 

data for bubbly flow included. The scatter was obtained using uniformly 

stringed spherical beads (19.5 mm diameter). The number of beads was 

increased from 7 to 24. 

  The resistive characteristics of the probes were determined first (Figure 

3.8). Not surprisingly, the data shows similar results to those obtained by 

Omerbere-Iyari (2006). Annular flow calibration data obtained from the 127mm 

pipe was plotted and compared to results by Tsochatzidis et al. (1992) and 

Coney (1973) (Figure 3.9). To obtain a well fitted polynomial, the liquid 

fraction was not increased greater than 0.26, according Costigan and Whalley 

(1997). 

  The differences between the initial calibration points by using the 

single insert for ideal annular-type flows and the new approach were not that 

apparent. Therefore, the error was determined using Equation 3.14. These results 

were plotted against the experimental 
*

eG obtained during calibration with single 

insert-bead combination. Figure 3.10 shows this absolute error. It should be 
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noted that this not directly explains the relative effect of bead diameter. 

Therefore the relative error between the bead diameters was determined, shown 

by Table 3.1. 

 

 

 

 

 

 

 

 

 

Figure 3.8 Conventional and bubbly flow probe calibration. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 The resistive character of the probes 
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Figure 3.10 Annular flow calibration curve. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Error between calibration procedures (note expanded axis) 
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Table 3.1 Relative error between bead diameters 

Bead diameter (mm) Change in bead voidage (%) Change in Error (%) 

3 20 624.9 

4 23.2 48.8 

6 12.9 3.5 

 

  The results of the present study show that the calibration of 

conductance ring probes needs to be approached carefully. The performance and 

accuracy of these probe types is strongly dependant on the calibration 

procedures. In churn and annular-type gas-liquid flows one may encounter gas 

bubbles entrained in the liquid film, particularly in the waves on the liquid film.  

  The comparison between the new approach for the calibration of 

conductance probes in annular-type flows to the conventional method, shows 

that the gas bubbles entrained in the liquid film can cause erroneous results. 

Therefore, an inappropriate calibration of the conductance probes can lead to an 

unrealistic view of the phase distributions in annular-type flow and the transition 

to churn flow. Furthermore it may be deduced that not only bead diameter 

affects the probe response but also the number of beads and consequently a 

higher bead voidage returns a different probe response. Simultaneous phase 

distribution measurements and visual observation (e.g. high speed photography) 

may therefore reduce the risk of experimental errors. However, in general, it 

may be concluded that conductance probes, calibrated for a specific flow 

regime, are producing invalid results when used otherwise. It should be noted 

however that the impact of gas bubbles still depends strongly on the bubble 

concentration between two probe rings. 
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3.12 Laser Doppler Velocimetry and Phase Doppler 

Anemometry 

  The Dantec LDA/PDA system (Figure 3.2) was made available for the 

present study by the CAMERA centre at the University of Nottingham.  

 

 

 

 

 

 

 

 

Figure 3.12 The LDA/PDA and traverse setup 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 The optical access section. On the left hand side the laser beam 

transmitter. 
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  In the application of laser methods for drop size and velocity 

measurements to annular gas-liquid flows in pipes, two problems need to be 

overcome. The first is the elimination of the curvature of the pipe by replacing 

pipe wall by flat windows. The second is diverting the wavy liquid film 

travelling on the pipe wall upstream of these windows so that it does not affect 

the visibility through the windows. These two problems were dealt with by 

using a specially designed optical access test section. 

  An existing test section, designed by Conte (2000), for measurements 

in T-junctions was modified and used here. The test section is depicted in Figure 

3.13. It was installed at 10.5 m (z/D = 83) from the riser base. The LDA/PDA 

system was installed around the test section, such that there was sufficient space 

to traverse the system along the pipe cross section. Upstream of the viewing 

section, a film withdrawal section was installed to extract the liquid film 

travelling about the pipe periphery. A perforated, 127 mm i.d. pipe was inserted 

into a 200 mm i.d. pipe to create an annulus to capture the liquid flowing 

through the porous section. The film was then drained to the main separator of 

the system. The measurements stopped in case the liquid fraction would be too 

high and heavy deposition on the viewing windows would occur. 

 

3.13 Fundamentals of Laser Doppler Anemometry  

  Laser Anemometry was initially invented for the purpose of measuring 

velocities by tracking drops in a gas stream which crossed a measurement area 

of a given size, formed by a fringe pattern of crossing laser beams. The fringe 

pattern is discussed later in this section. A typical two component LDA/PDA 

setup is shown in Figure 3.14.  
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Figure 3.14 Schematic of a typical two component LDA/PDA setup with three 
photo detectors. 

 

 

 

 

 

 

 

 

Figure 3.15 Single beam scattering principle 
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  A drop scatters light when subjected to incident light (Figure 3.15). 

The incident light Ii onto the drop has a speed vi and frequency fi. If the drop is 

moving it changes the frequency fs of light Is transmitted to the receiving optics. 

This change in frequency is the Doppler beat received by the optics and is 

proportional to the velocity of the drop. The probability that a drop measured by 

a LDA system travels near the speed of light in multiphase systems, such as the 

present study, is very small. Obviously, the ratio of the velocity of the drop and 

the speed of light ivpU  is therefore rather large and expression for the 

frequency fs as received by the photo detector then approximates; 
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  It is more common though, that a LDA system consists of two 

intersecting laser beams (Figure 3.16), i.e., the laser beam being split by a beam-

splitter. Since the angle of the two beams is different, consequently the 

frequency of the beams is not equal at the time the drop interferes and therefore 

the frequency shift is being distinguishable by the photo detector. 

 

 

 

 

 

 

 

 

Figure 3.16 Multiple beam scattering principle 
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  Eq. 3.16 then doubles since it is also valid for the second beam of 

incident light and the two can be combined to give the laser Doppler beat 

frequency which is caused by the continuous interference of the beam 

intersection; 
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3.16 

From Eq. 3.16, it can be seen that the Doppler frequency is proportional to the 

velocity of a drop travelling normal to the fringe direction (Figure 3.17) 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Laser beam intersection, measuring volume and fringes. 

 

  It is important to note however that this principle holds for multiple 

intersecting laser beams. In the present study a two component system was 
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Z 

Dw 

employed which is normally able to measure drop velocities in axial and radial 

directions relative to the measuring volume. 

 

  Argon-ion laser beams, as employed in the present study have a 

Gaussian intensity distribution (Figure 3.18).  

 

 

 

 

 

Figure 3.18 Gaussian beam character 

 

  When the curvature of the waves approach infinity at point Dw, the 

wave front adopts a straight line as indicated by the fringe pattern in Figure 3.17. 

Only in this case, when the beam waists intersect and adopt the smallest 

measuring volume possible, the fringe model (Eq. 3.16) holds. In case the beams 

do not intersect at Dw the problem gets more complicated due to the Gaussian 

distribution and the fringe spatial pattern will not be constant. In this case the 

Doppler beat will not be proportional to the velocity normal to the fringe 

direction. 

 

3.14 Phase Doppler Anemometry 

  As the previous section covered the basics of LDA, in the present study 

the system was used in the conventional PDA mode with three photo detectors. 

This is an optional extension supplied by Dantec to the LDA system. The 
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∆t 

Detector I 

Detector II 

principles of PDA are indissolubly linked with LDA as covered in the previous 

section. Therefore, a brief description of the mechanisms is described here. 

  The main difference between LDA and PDA normally is the number of 

photo detectors used. In this study, a setup with three detectors was used in 

combination with Mask C (Figure 3.19) for both LDA and PDA setups, again 

the LDA measures velocity in two components from a Doppler frequency 

returned by any of the photo detectors. 

 

 

 

 

 

 

Figure 3.19 Sketch of mask C with small apertures for larger drop diameters. 
 

  The Doppler phase shift as a function of the detector angles is 

illustrated in Figure 3.20 and returns the drop diameter. 

 

 

 

 

 

 

 

Figure 3.20 Doppler frequency shift due to the detector angular difference. 
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The Doppler burst received at any detector can be expressed as; 

 

where 
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3.17 
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  Where D is the drop diameter and βi is a geometrical factor. When 

using two photo detectors with an angular difference, the phase difference can 

then be expressed by; 
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3.15 Sources of discrepancy 

  There are four predominant sources of discrepancy associated with 

LDA/PDA measurements. The cause, effect and solutions to these problems will 

be briefly outlined here.  

1. 2π ambiguity effect 

2. Sphericity determination 

3. Trajectory effect 

4. Slit effect 

  The 2π ambiguity effect is associated with the curvature of the drop 

measured. Small drops are most likely to cause a frequency phase shift of within 

2π (360°). Large drops on the other hand can cause a larger phase shift and 

therefore it is hard to deduce whether the phase shift was greater than 2π and if 

so, to what extend. Therefore, the Dantec system employs a third sensor. As in 

the previous section shown by Figure 3.14 the detectors 1 and 2 have the largest 

separation distance, thus giving the greater slope in the linear diameter-phase 

shift relationship. Another instantaneous measurement is done by detectors 1 
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and 3 to give the smaller slope. The two shifts are then compared to find the 

matching intersecting values for the correct drop diameter. 

  The spericity determination works according similar principles as the 

2π ambiguity effect. As it is able to determine the correct drop size by 

comparing the frequency shift of two pairs of detectors, likewise it can 

determine the sphericity by comparing, and thereby closing, the curvature of a 

drop. This implies that if a drop is not spherical, it can be disregarded in the data 

and is unable to contribute to experimental error. In order to keep the 

experimental error low, a 15% threshold for spherical validation was set in the 

present study. 

  The trajectory effect (Figure 3.21) is a well reported problem. Teixeira 

(1988), Azzopardi (1988), Azzopardi and Teixeira (1988), Ziadi et al. (1998) all 

report comprehensively on the problem occurring when a drop is large relatively 

to the to the measuring volume. The problem is often related to the Gaussian 

distribution of the wave fronts of the laser beam, thus the intensity distribution is 

stronger affected by large drops compared to small drops since they tend to 

scatter and, more importantly for biased results, reflect more light.  

 

 

 

 

 

Figure 3.21 The Trajectory effect 

 

  A PDA system works on the basis of a threshold of received light 

trough the slit aperture in order to detect drops and thus the larger drops have a 
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Cut-off 

greater probability to be detected first when entering the probe volume 

boundaries. In fact, a large drop does not necessarily need be in the probe 

volume but, instead, very near the edge to already being detected by reflection. 

Teixeira (1988), compared laser diffraction and PDA techniques and found a 

large bias in the PDA data. The method postulated to overcome this problem is 

based on a distribution cut-off (Figure 3.22). When the “tail” of the distribution 

showed zero value, values for larger drops were disregarded from the data. 

 

 

 

 

 

 

 

Figure 3.22 Sketch of the principle suggested by Teixeira (1988) 
 

  However, it is worth to note that when the laser beams intersect at the 

beam waist, the Gaussian effect tends towards infinity as discussed in the 

previous section. It is therefore perhaps more appropriate to separate the 

problem from being solely Gaussian-affected. Nevertheless, the Dantec BSA 

Flow Software can correct the data based on the principle as postulated by 

Saffman (1987). This principle is based on an automated on-line measurement 

of burst length and an appropriate measuring volume determination. Figure 3.23 

illustrates the problem graphically and relates the drop counts to burst length  
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Figure 3.23 Sketch of the principle from Saffman (1987) 

 

  As can been seen from Figure 3.23 the burst length varies dramatically 

with increasing drop diameter, this is an unreliable measure and can thus not be 

processed. The Saffman (1987) method allows applying a curve fitting for the 

area to be smoothened in the form of; 

 22 vutL +∆=  
 

3.20 

For size classes containing significant counts of droplets, and 

 
BDlnAL +=2  

 

3.21 

For size classes above the classes used for the curve fitting. Regression 

constants A and B are to be determined from the measured data. 

 

 

 



The Experimental Facility, Equipment and Instrumentation 

 53

  The Slit effect is similar to the trajectory effect as discussed in the 

previous section. Due to the projected slit aperture, refracted light is somewhat 

suppressed for the photo detectors (Figure 3.24) if the drop is not fully in focus 

of the aperture. 

 

 

 

 

 

 

Figure 3.24 The slit effect 

 

  Durst et al. (1994) performed experiments to quantify the slit effect 

and proposed solutions to overcome the problem, such as the use of three or 

more photo detectors.  

 

3.16 Wire Mesh Sensor 

  The Wire Mesh Sensor design (WMS), as employed in the present 

study, was proposed by Prasser et al. (1998) for local two-phase fraction 

measurements (Figure 3.25). The Department of Chemical and Environmental 

Engineering collaborates closely with Foschungszentrum Rossendorf, Germany, 

where it was developed. The sensor is extensively used by Sharaf (2011). 
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Figure 3.25 Illustration of the WMS 

 

  The WMS works according similar principles as flush mount 

impedance probes as described previously, but more specifically as local 

impedance measurement methods such as needle probes. By using different 

electrical circuitry, the probe itself can be used in both resistive as well as 

capacitive modes.  

  The WMS used here consists of 32x32 wires, i.e. transmitter and 

receiver wires in two planes. Figure 3.26 illustrates the principle in more detail. 

  The axial spacing between the wires is 2 mm and each cross point of 

the wires represents a measurement point. This way an equally spaced mesh, 

with 1024 cross points, occupies the cross section of the 127 mm pipe. This 

returns to a spatial resolution of approximately 4 mm (x, y) across the majority 

of the pipe, which is a great advancement compared to more traditional phase 

fraction measurement techniques.  
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Figure 3.26 Section of the total cross sectional area of the pipe, with receiver 
wires horizontally and transmitter wires vertically. 

 

3.17 Sources of Discrepancy 

  As mentioned before, the spatial resolution is uniform across the 

majority of pipe cross section. However, near the periphery, the resolution drops 

as can be seen in Figure 3.26. This problem could be solved by using local film 

thickness measurement probes, such as that used by Belt (2007). 

  Cross talk between the transmitter wires can occur. Since the wires are 

positioned very close together, i.e., wNtD , where Dt and Nw are the pipe 

diameter and number of wires respectively, the driving current can travel 

between an activated wire and a (not yet) non-activated wire. This is dealt with 

in the electronics by keeping the transmitter drivers and receiving output 
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impedances lower than the working fluid impedance. This can be arranged 

during the calibration (full pipe of liquid and empty pipe). 

  The intrusiveness of the probe has been a subject for many discussions. 

The wires are exposed to the flow and, partly depending on the area occupied by 

the wires in relation to the total area of the pipe, do indeed disturb the flow in 

small extend. However, one important thing to note is that the flow, after 

passing the wires, is indeed disturbed. Therefore other measurements can not be 

performed just downstream of the WMS, of course this on the other hand 

depends on the development length available downstream. Tests have been 

performed at Nottingham in a 127 mm bubble column and high speed 

photography was employed to visualise the mechanisms of break-up of bubbles 

through the WMS. As expected, smaller bubbles were sliced up into smaller 

pockets but surprisingly, a Taylor bubble fully recovered after hitting the wires. 

Yet, still the principles of up and –downstream effects hold for accurate 

measurements. 
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4 Liquid Film Characteristics 

This Chapter presents the results on the void fraction (or liquid fraction) 

measured with conductance ring probes. To some extend, it reports 

measurements made simultaneously with these probes and a Wire Mesh Sensor 

(WMS). The first section introduces the background and motivation for this 

Chapter. The experimental matrix is then presented. The third section presents 

some of the general results. The last section focuses on the liquid film including 

more detailed and statistical analysis of the behaviour of the liquid film and 

pressure drop in churn and annular flow. A relationship for the interfacial 

friction factor is presented along with a relationship describing some of the 

churn annular transitions from different experimental setups and workers within 

reasonable accuracy. 

 

4.1 Background and motivation 

In vertical gas-liquid flow, annular and churn flow regimess are quite 

different when examining the cross sectional phase distribution. Both flow 

regimes show different hydrodynamic phenomena. However, re-occurring 

patterns can be observed for each of the regimes individually. Annular flow is 

characterised by a liquid film travelling at the pipe periphery and an entrained 

liquid fraction, in the form of drops, of the film is carried upward by the gas 

core (drop size experiments are presented in Chapter 5). When the liquid film is 

relatively thin, and the flow is friction dominated, the total film tends to move 

upward. When the liquid mass flux is increased, an increase in liquid film 

thickness is generally observed. The effect of gravity on the film becomes more 

dominant. In the latter case, one may encounter simultaneous upward and 



Liquid Film Characteristics 

 58

downward film flow. This switching mechanism is known as the flooding point 

reported by, e.g., Govan et al. (1990) amongst others. As a result, the entrained 

fraction of liquid in the gas core increases since the roughness of the gas-liquid 

interface increases as well as the interfacial shear stress ((Azzopardi (1997)). 

Also a phenomenon known as wispy flow can occur around this point of 

transition from churn to annular flow. The gas core in wispy annular flow 

contains relative larger liquid structures compared to the smaller droplets in 

annular flow.  

Churn flow typically occurs at higher liquid mass fluxes. It is 

characterised by a thicker liquid film relative to annular flow and a larger 

proportion of the liquid is entrained. The flow is gravity dominated and can 

have a strong pulsating nature. Another characteristic of churn flow is the 

mechanism of liquid bridging. Liquid bridging occurs when huge waves occupy 

a large fraction of the pipe cross sectional area, the liquid film collapses due to 

gravitation and the liquid structures in the gas core coalesce with the collapsing 

film (Sekoguchi and Mori (1997)). Due to these liquid bridges, often referred to 

as liquid plugs, gas accumulates and in smaller pipe diameters this is the onset 

of slug flow. In larger diameter pipes with air-water flow, slug flow with a 

classical Taylor bubble has hitherto not been reported. Due to the diameter of 

the pipe and the physical properties of the fluids, the large gas bubble is unable 

to stabilise and where a Taylor bubble is expected, instead, there are collapsing 

and break up mechanisms active. Figure 4.1 shows a typical spatial averaged 

film thickness time-trace.  
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Figure 4.1 Typical film thickness time series for a liquid superficial 

velocity of 0.2 m/s. Interesting is the very large peak for gas superficial 
velocity of 3 m/s. 

 
 

The rough wavy surface is caused by interfacial shear. There have 

been different types of waves reported: (i) ripple waves are small in magnitude, 

wavelength and velocity and travel on the liquid film in high gas and low liquid 

velocity flows; (ii) disturbance waves are characterised by a height greater than 

the mean film thickness. In addition, the wavelength is greater than that of 

ripples and the velocity is greater than that of the liquid base film; (iii) 

Sekoguchi and Takeishi (1989) and Sekoguchi and Mori (1997) reported waves 

larger in amplitude, wavelength and velocity than disturbance waves; they 

defined these as huge waves. These waves, in combination with wisps were 

found later by Hawkes and Hewitt (1995) in wispy annular flow which is 

evidence that might explain the hydrodynamic mechanisms of the transition area 
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between churn and annular flow. However, still little is known about this type of 

waves. 

The present study tries to address this question and strives to find a 

relationship between disturbance waves and drop creation and huge waves and 

wisp creation. However, at some conditions ripples, disturbance and huge waves 

co-exist and interact. Because the velocities of disturbance waves and huge 

waves are considerably higher than ripples, they tend to increase in magnitude 

with ripples superimposed.  

The physical occurrence of disturbance waves is some function of pipe 

diameter. In smaller diameter tubes the disturbance waves are uniformly 

distributed about the pipe circumference and are observed as liquid rings on the 

inner pipe wall. In large diameter pipes however, as reported by Azzopardi 

(1983) and confirmed by Omebere-Iyari (2006), the disturbance waves appear 

non-uniformly distributed about the pipe circumference and adopt a parabolic 

shape.  

The inception of disturbance waves is linked to a wave inception 

velocity. Azzopardi (1997) reviewed several empirical correlations that are able 

to predict the inception velocity of disturbance waves. However, pipe diameter, 

liquid viscosity and surface tension can be accounted for deviation of data. Data 

on pipe diameter shows that disturbance wave inception decreases with 

increasing pipe diameter. Azzopardi et al. (1983) correlated three groups using 

dimensionless numbers in the form a liquid film Reynolds number 

ltll Dm η=Re , an Ohnesorge number )( tll DOn σρη=  and a 

Weber/Reynolds number ratio ση gsgg uWe =Re . They suggested that 

OnlRe  should be combined. They showed that data from 50 and 125 mm 
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pipes did not correlate as good as that for smaller diameter pipes. 

The velocity of disturbance waves can be obtained experimentally 

from cross correlation of the two liquid fraction signals from consecutive 

measuring instruments. Furthermore, the approximate velocity of disturbance 

waves can be deduced from high speed photography as employed by for 

instance Barbosa et al. (2001) whom also proposed a model to give more insight 

into wave behaviour in vertical gas liquid flow and the physical mechanisms 

that are accountable. Some high speed photography data will be presented for 

the present study in this section. Since available data is still very limited for 

larger pipe diameters, it is useful to examine the effects of pipe diameter on the 

characteristics described above and compare results obtained in the past in 

smaller diameter pipes. 

4.2 Experimental outline 

The experimental matrix is illustrated by Table A1 in the appendices of 

this thesis. Including 10 repeatability experiments, a total of 700 experiments at 

2 barg were carried out on the facility and with the instrumentation defined in 

Chapter 3. The data acquisition rate of all instruments was 1 kHz. Higher 

sampling rates where assessed and no difference in data was obtained. 

Assuming that a wave would travel at 6 m/s, the wave would be sensed 4 times 

at a sampling rate of 1 kHz over the probe distance of 25 mm. The liquid 

superficial velocity was varied from approximately 0.005 to 0.7 m/s and the gas 

superficial velocity from 1.4 to 16.5 m/s. The experiments were carried out by 

varying the gas flow rate systematically from high to low values, keeping the 

liquid flow rate constant. The maximum gas flow rates achieved depended on 

the liquid flow rates. The gas flow rates were decreased until liquid blockage 
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was encountered i.e., the gas flow was unable to overcome the oscillating flow 

of liquid, well into the churn flow region. This is usually referred to as flooding. 

Moreover, high speed photography was employed to examine the flow visually. 

In addition, another but smaller set of experiments on the liquid film 

was carried out as part of the drop size measurements. This film data at 

atmospheric pressure is presented together with drop size data in the Chapter 5.  

 

4.3 Results 

In order to test the results against prior data, and to get an indication of 

the flow regimes, 5 sets of void fraction measurements have been plotted on 

the flow pattern maps from Hewitt and Roberts (1969). The results are shown 

in Figure 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Data for 2 barg plotted on flow pattern map from  

Hewitt and Roberts (1969) 
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As can be seen, the flow pattern map suggests that the majority of data 

are situated in the annular flow region. Visual observation is still a powerful 

technique to identify flow patterns. The next Figures 4.3 and 4.4 show high 

speed photographs of the flow at a frame rate of 1000 frames per second. 

Pictures were taken by using a flat-faced viewing section around the pipe to 

compensate for the pipe curvature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Annular flow. Gas superficial velocity 16 m/s, liquid superficial 

velocity 0.014 m/s. The non-coherence of the waves is clearly visible. 

The white ellipse marks a string of newly entrained drops from the 

marked wave. 
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Figure 4.4 Churn-annular flow. Gas superficial velocity 10 m/s, liquid 

superficial velocity 0.04 m/s. Waves are very irregular, moving “sideways” on 

the pipe wall. Also gas bubbles in the liquid film can be observed. 

 

It can be observed that the film at the wall is relative smoother in 

Figure 4.3, showing non uniform disturbance and ripple type waves. The film 

in Figure 4.4 is much rougher. Moreover, here air entrainment into the liquid 

film can be seen. This is possibly due to folding and trapping of the larger 

waves at these conditions. The waves are not moving merely perfectly in the 

axial direction but move around the periphery of the pipe, i.e., “sideways”. 

This may be an indication of the onset of a gravity dominated film flow. It is 

also observed that the quantity of liquid entrained in the gas core is higher than 

for Figure 4.3. 
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4.4 The liquid Film 

Here, a number of methods are applied in order to extract detailed 

information from the 700 time series obtained and to get an indication of the 

actual flow regimes during the experiments.  

The film thickness for all experiments is shown in Figure 4.5. Similar 

to Kaji and Azzopardi (2010), the spatially and temporally averaged thickness 

is calculated from the time series using 

 ( ))(1
2

g
tD

εδ −=  
 

4.1 

where Dt is the pipe diameter and εg the average void fraction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Film thicknesses for all experiments in the 

experimental matrix (conductance probes). 
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Three main regions can be observed in Figure 4.5; (1) the higher 

region of film thickness represent the higher liquid low rates (2) The 

intermediate region represent medium liquid flow rates (3) the lower region 

represents the lowest liquid flow rates. The slopes of the graphs indicate a 

systematic effect of the gas flow rate on the film thickness. In order to examine 

this more in detail, a selection of flow rates and regions, including the pressure 

drop, are described below. 

A selection of results for the film thickness and the frictional pressure 

drop are shown by Figures 4.6, 4.7 and 4.8 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Film thickness for selected experiments. 
WMS denotes data obtained with the wire mesh sensor. 
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Figure 4.7 Frictional pressure drop for selected experiments. 

 

For much higher liquid flow rates, the curves for both film thickness 

and pressure drop show trends different to those for lower liquid flow rates as 

illustrated by Figure 4.8 (a) and (b). These Figures are shown separately and 

rescaled. The change with gas velocity is of a more gradual nature than that for 

the lower liquid flow rates. However, a clear systematic effect of the 

superficial gas velocity on the film thickness and the pressure drop can be 

observed. There is a steep decrease of both film thickness and pressure drop at 

lower gas and liquid superficial velocities. For the conductance probe data, at 

higher gas superficial velocities there is a gradual increase and for the 

conductance probe data, minima can be observed around a gas superficial 

velocity of 13 m/s. The WMS data shows a much stronger increase. 
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Nevertheless, this increase exhibited by the output of both measurements, 

might be an indication of a transition of flow pattern from perhaps churn to 

annular flow. In contrast to the smaller diameter cases (Hewitt et al. (1965)), 

the pressure gradient in annular flow for this larger pipe increases only slowly 

with gas velocity. This is not surprising as frictional pressure gradient is 

inversely proportional to the pipe diameter. Therefore the expected minimum is 

not very clear. However, the trends do show similarities with those found by 

Govan et al. (1990) who studied the onset of flooding between the churn and 

annular flow regime. The pressure drop they reported also showed a steeper 

decrease for a liquid superficial velocity of 0.03 m/s and gas velocities ranging 

from 12 to 34 m/s. 

 

 

 

 

 

 

 

 

 

 

                      (a)                                                                              (b) 

Figure 4.8 Film thickness (a) and pressure drop (b), 

including higher liquid flow rates 
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An explanation of why the WMS shows a more profound increase 

may be found in the fact that the WMS is much more localised than the 

conductance probes. Therefore, due to averaging of data over a larger distance 

between the rings, lower values are expected for the conductance probes. In 

order to compare the two instruments, the calculated film thicknesses were 

plotted as illustrated by Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.9 Comparison of film thickness measured experimentally by 

conductance probes and WMS (symbols) and best fit line (bold line) 

 

From Figure 4.9 it can be observed that the WMS measures higher 

values, except for very thin films. This is however not surprising. The WMS 

sensor is able to sense the dispersed liquid phase in the gas core but the fraction 

is too small to be measured accurately due lack of spatial resolution. The drops 

at high gas flow rates, thus high void fraction, are smallest and the entrained 
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fraction is also relatively low. Further details on this are given in Chapter 6. 

Therefore, the liquid measured by the WMS in the gas core is being added to 

the liquid film, consequently returning a higher value for the film thickness. 

The conductance probes however can only measure the liquid at the pipe wall. 

In addition, error from the conductance probes would not be such to result in 

the difference between conductance and WMS probes. 

From examination of the evolution of the film a preliminary 

conclusion can be made that for the very low liquid velocities, due to the sharp 

change in slope, a possible inception of flow pattern transition is taking place 

around a gas superficial velocity of 10 m/s. Since the film thickness shows this 

clear trend, a more detailed analysis was performed for the selected 

experiments on the time traces from the conductance probes and structure 

velocities were obtained. Another popular method to identify flow patterns is 

the probability density function of the void fraction as suggested by Costigan 

and Whalley (1997). The latter was employed in a 32 mm pipe. Omebere-Iyari 

(2006) found poor agreement with those experiments conducted in a 127 mm 

pipe. This indicates that perhaps the former method may not aid in 

identification of flow patterns accurately in large diameter pipes. 

Though the analysis was performed in order to examine the interfacial 

structures, it is important to note that the circumferential non-coherency of 

waves in large diameter pipes, also reported by Azzopardi (1883) and 

Omerbere-Iyari (2006), introduces an additional complication since the 

conductance probes can only measure at one axial position. Zangana (2011) 

investigates this more elaborately. 
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Figure 4.10 shows the amplitude of the waves, i.e. the maximum base 

film thickness subtracted from the maximum wave height. The difference 

between the two is largest at low gas superficial velocities. It shows similar 

features to those observed in the overall film thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Wave heights for selected flow rates. 

 

Azzopardi et al. (1979) carried out studies on the velocity and 

frequency of waves occurring in annular gas-liquid flows. There have been a 

number of subsequent papers. Structure velocity is obtained by cross 

correlating the signals from two conductance probes, positioned (axially) 0.203 

m apart and dividing the physical distance between the probes by the time lag 

at the maximum correlation coefficient. From this, the average velocity over 

distance of the liquid film as an entity, including interfacial structures can be 
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determined. In previous work different trends of structure velocity with mixture 

velocity for different flow regimes have been found. For bubbly flow the 

structure velocity increases with mixture velocity, for slug and churn flow the 

structure velocity decreases with mixture velocity and finally for annular flow, 

the structure velocity tends show an increase with mixture velocity. From 

Figure 4.11 it can be seen that these trends are present in the data. However, the 

values are negative for lower liquid and gas flow rates and become positive 

around a mixture velocity of 13 m/s. This implies that there are possible 

features of counter and co-current flow. For a liquid superficial velocity of 0.04 

m/s, a drastic drop and thereafter recovery can be observed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Structure velocities for selected experiments. 
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In order to examine these features in more detail, the correlograms 

obtained from these structure velocity calculations were examined. Figure 4.12 

shows the maximum correlation coefficients obtained for the selected 

experiments. With gas flow rate, clear trends can be observed. The values 

decrease to a minimum, after which the slopes switch drastically to positive. 

From the correlograms it can be seen that dominant peaks with a positive time 

lag, indicating a co-current flow, can be seen for low gas flow rates. The 

correlograms show a more chaotic nature, both co-and counter-current flow, at 

medium gas flow rates. For higher gas flow rates the correlograms are higher 

in magnitude and gradually tend towards single peak positive values. For 

higher liquid flow rates the effect is less apparent but still marginally present.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Effect of gas flow rate on correlation coefficient and 
correlograms. 
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Cross correlation results from Zabaras et al (1986) show very similar 

features. For low gas flow rates they report single peak correlation curves at 

positive time lag. At intermediate gas flow rates they report peaks at negative 

time lag. The present data shows good similarity of trends at the change of 

slopes, which they suggest to be a stationary process that switches between 

states of the system. The same applies to higher gas velocity where the peaks 

gradually shift from near-zero negative to positive time lags, suggesting 

transition form roll type waves to propagating disturbance waves. The latter is 

thought to be due to full suppression of the switching mechanism indicating 

annular flow. As mentioned before, Zabaras et al. (1986) also measured wall 

shear stress and pressure drop simultaneous to the film thickness. Taking the 

ideas of Moalem-Maron and Dukler (1984) further, they tested their data 

against the findings by the latter authors. They found that there is a critical 

point in the film thickness where the wall and interfacial shear stress equal 

zero. At this point, the pressure drop and film thickness shows a minimum and 

the liquid film is relatively stationary but can drastically switch sign with 

increasing or decreasing gas flow rate. Since the pressure drop and film 

thickness in the present study do not show a very clear minimum, possible 

detail may be found in the behaviour of the interfacial shear stress. The 

interfacial shear stress is a strongly dependent on the roughness of the film and 

therefore a driving factor in the pressure drop, especially the friction dominated 

proportion. The interfacial shear stress was calculated from the experimentally 

obtained pressure drop and film thickness according the relationship first 

suggested by Dukler et al. (1983)  
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The results are shown in Figure 4.13. Unlike the trends in the film 

thickness as well as the pressure drop, the interfacial shear stress indicates a 

minimum. Yet not as strong as seen in smaller diameter pipes, also shown by 

Zabaras et al. (1986), but it may suggest a more conclusive level of detail. 

They defined the region at large film thickness (above minimum) as “up flow 

re-circulation” and at low film thickness (below minimum) as “up flow”. 

Figure 4.14 shows the minima as a function of liquid flow rate. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Interfacial shear stress vs. film thickness. 
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Figure 4.14 Interfacial shear stress vs liquid superficial velocity 

 

It can be seen that the slope of the interfacial shear stress changes 

rather sharply around a liquid superficial velocity of 0.07 m/s. This may be due 

a change of wave type i.e., from relatively small disturbance to larger rolling 

type waves, causing a change in the interfacial interaction between the gas and 

liquid, as suggested by Zabaras et al. (1986). More importantly, linking this to 

Figure 4.4, in which a photograph is presented of the flow at liquid superficial 

velocity of 0.04 m/s, may well be evidence that between 0.04 and 0.07 m/s for 

the liquid, the liquid film is semi-stationary since it is apparent that waves start 

to move sideways on the pipe wall.  
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However, Eq. 4.2 is rather simplified and should actually include 

terms to account for the gas core density as well, since the pressure drop can 

significantly be influenced by the dispersed phase. Especially when 

considering that the entrained fraction for the present study for high liquid flow 

rates, as presented in Chapter 6, is relatively high and therefore the flow 

‘resistance’ imposed on the gas core is significant due to drops. Therefore more 

elaborate equations are presented below for the interfacial and wall shear stress 

and the results compared with Eq. 4.2. In order to put this into the right 

context, firstly the different components of the total pressure drop are shown in 

Figure 4.15 and 4.16 for 0.02 and 0.7 m/s of liquid superficial velocity 

respectively. The entrained faction used to estimate the gas core density is 

adopted from Azzopardi and Wren (2006) and is valid if ugs>5 m/s. 
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And the gas core density is calculated by using 
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Where mg is the gas mass flux.  The core, gravitational and frictional 

pressure drop components are respectively calculated by using 

  

t

t

tc

c
D

D

D
g

P










 −

=∆

2)2( δρ

 

t

t

l

g
D

D
g

P










 −

=∆

22( δδρ

 

gcf PPPP ∆−∆−∆=∆  

 
4.5 

 
 

 

 

 

4.6 

 

 

 

4.7 



Liquid Film Characteristics 

 78

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Components of the pressure drop for annular type flow 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Components of the pressure drop for churn type flow 
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From Figure 4.15 it can be observed that the components of pressure 

drop more or less converge at the higher gas flow rates. Only at the lower end, 

the frictional pressure drop due to the liquid film tends to dominate. As can be 

observed in Figure 4.16, this switch is not profoundly present as such. 

Extending the trends would imply a convergence around 32 m/s for the gas In 

addition, it can be seen that the ratios between the components and total 

measured pressure drop are much greater than Figure 4.15. An interesting 

feature is that the gravitational core contribution is dominating the other 

components. The maximum core density obtained in 95 kg/m
3
. This indeed 

may be evidence of the major contribution of the core density to the overall 

pressure drop. Another is the negative frictional component due to the liquid 

film for the lower end of gas flow rates. This switches sign at approximately a 

gas superficial velocity of 10 m/s and may be due to what Zabaras et al. (1986) 

defined as the switch between up flow and up flow with “re-circulation”.  As 

stated above, the more elaborate equations for wall and interfacial shear stress 

are derived in the following manner 
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 Where P0, P1, Dc, ρc and Z are the pressures at a given axial 

location Z, the average gas core diameter and density respectively. 

Rearranging in terms of the interfacial shear stress τi then yields: 
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And for the derivation of the wall shear stress τw: 
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Rearranging in terms of the wall shear stress τw then yields: 
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Where Dt is the pipe diameter and Af is the cross section of the pipe 

occupied by the liquid film with thickness δ: 
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Figure 4.17 below presents the performance of Eq. 4.2 and 4.9. It can 

be observed that for the lower end of liquid flow rate, i.e., annular flow, the 

results from both equations show reasonable agreement. Moving to higher 

liquid flow rates shows a gradual increasing deviation up to 30 percent of Eq. 

4.2 to 4.9. This implies that indeed the inclusion of the gas core density has a 

great effect on the interfacial shear stress in non-annular flows and the validity 

of Eq. 4.2 is limited to annular flow. 

   

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Comparison of interfacial shear stress equations 
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Re-computing Figure 4.14 above then shows the deviation of 

interfacial shear stress minima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Comparison of interfacial shear stress minima (squares are 
data by Zabaras et al, diamonds are data from the present study) 

 

 Also the interfacial friction factor (Figure 4.19) was also examined by 
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Where fs is the Blasius friction factor and compared with that of Wallis 

(1969) 
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Figure 4.19 Comparison of interfacial friction factor equations 

 

It can be observed that Eq. 4.14 predicts reasonably well at very thin 

liquid films. With increasing film thickness, the data shows a large deviation. 

Regression analysis of the present data was performed in order to predict the 

interfacial friction factor more accurately for these larger diameter pipes. By 

curve fitting, the following friction factor relationship is suggested 
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Where Г is equal to the mathematical constant e. 
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The wall shear stress as calculated from the conductance probes and 

WMS as function of superficial liquid velocity were also compared, this is 

illustrated in Figure 4.20 below. It is not surprising that the two devices deviate 

due to the difference in film thickness initially calculated. Details are provided 

above. Therefore the results from the conductance ring probes are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Comparison of calculated wall shear stress of ring probes 

and WMS 

 

It can be observed that the ring probe wall shear stress first varies with 

gas flow rate at low liquid flow rates. Positive wall shear stress is for high gas 

velocities, negative wall shear stress is for low gas velocities. At around 0.4 
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m/s for the liquid this effect appears to be less, i.e., the data groups together 

disregarding the variation of gas flow rate. After this point, the data seems to 

show again a larger spread in terms of wall shear stress. This may indicate a 

point of switch for wave type and up flow and up flow with re circulation as 

identified by Zabaras et al. (1986). The interfacial and wall shear stress are also 

plotted. Figure 4.21 illustrates the results along with the some results from 

Zabaras et al. (1986) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Ring probe comparison of calculated wall vs. interfacial 

shear stress for different superficial liquid velocities along with selected data 

from Zabaras et al. (1986) 

 

It can be seen that the relationship between the two parameters shows 

profound trends but are different to the data calculated by the methods from 

Zabaras et al. (1986). For the lowest liquid flow rate (black squares), the data 

groups together and barely shows dependency. For the other lower liquid flow 
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rates (closed black symbols), the relationship is linear, i.e., with a decrease of 

gas flow rate, increase in interfacial shear stress, and the wall shear stress 

increases as well. For the intermediate liquid flow rates (open symbols), the 

wall shear stress remains semi-constant with an increase in interfacial shear 

stress. For higher liquid flow rates (closed grey symbols), the relationship 

shows the interfacial shear stress with a weak minimum around zero for wall 

shear stress as found by Zabaras et al. (1986). It should be noted however that 

the inlet geometry for the present study is not specially tailored in order to 

examine specific phenomena like Zabaras et al. (1986) with a sinter. This is 

also expected to be one of the important reasons of the differences observed in 

the present study. 

Sawai et al. (2004) suggest a method in order to predict the average 

contribution of waves to the pressure drop. Their suggested method is based on 

division of the liquid hold-up, i.e, film thickness, into two categories: the base 

film and the wavy surface. They suggested the following relationship for the 

total average contribution of the liquid to the frictional pressure drop: 
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where Dt, fs, ρl and ul are the pipe diameter, Blasius friction factor, 

liquid density and liquid velocity respectively. They suggested a correction 

factor Pw to account for the contribution of the waves only.  
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Where fwave is the wave friction factor 
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is the wave velocity as predicted through cross-correlation above. For 
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estimation of the liquid fraction contained in waves (Pw), they assumed that the 

base film probability is of Gaussian nature. Hence, if a given distribution tails 

off towards larger film thickness, the area outside the Gaussian base film 

distribution is assumed to be the fraction of film contained in waves. For the 

present study, a different approach is applied, quite similar to that of the de 

Jong and Gabriel (2003). By examination of the average liquid holdup time 

series, the average wave height was set at twice the standard deviation added to 

the time averaged liquid holdup. Likewise for the height of the base film, but 

subtracted from the time averaged liquid holdup.  The ratio of difference and 

the maximum holdup obtained was assumed to be the liquid contained by 

waves. Figures 4.22 and 4.23 show the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Calculated wave pressure drop vs superficial gas velocity. 
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Figure 4.23 Calculated pressure drop vs. measured pressure drop. 

 

Figure 4.22 presents a clearer view on the physical phenomena caused 

by the superimposed waves on the base film. The data tends to converge at low 

gas flow rates, hence high pressure drop. This is not surprising since at low gas 

velocities, larger roll type waves tend to form and perhaps owe a higher 

contribution to pressure drop. With increasing gas flow rate, a decrease in 

pressure drop can be observed. This trend is similar to the pressure drop as 

reported above in, e.g., Figure 4.8b. The difference however can be seen in the 

switch to positive slope from about a gas superficial gas velocity of 13 m/s in 

Figure 4.22. For high liquid flow rates this switch does not appear as such. 

Comparing the data with an example extracted from Sawai et al. (2004) shows 

that the switch for the present data occurs at a generally lower gas flow rate 
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and the magnitude of the pressure drop is lower as well. The former may be 

due to effect of gravity on the liquid. The latter is not surprising since pipe 

diameter plays an important role as denominator in pressure drop calculations. 

Figure 4.23 presents a comparison between calculated wave and measured 

pressure drop. Clearly the measured overall pressure drop is higher, but with 

decreasing gas flow rate, hence larger waves, the data shifts towards the 45 

degree line, suggesting a better agreement. Figure 4.23 may therefore suggest, 

also since a high liquid superficial velocity of 0.26 m/s shows a reasonable fit, 

that Eq. 4.17 from Sawai et al. (2004) predicts the pressure drop in churn flow 

reasonably well, also for the present study. 

In order to explore the aforementioned particular conditions in more 

detail, the results from the WMS were examined. Figure 4.24 (a), (b) illustrate 

the findings. The binary obtained data was converted using the accompanied 

software and the spatial and temporal data plotted. 
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Figure 4.24 Wire mesh spatial results. Superficial gas velocity 10 m/s 

and liquid superficial velocity 0.04 m/s (a) and superficial gas velocity 7.85 

and liquid superficial velocity 0.04 m/s (b) 

Red is gas, blue is liquid 
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Both results for the cross sectional as well as the axial phase 

distribution in time, in milliseconds, are displayed. The axial distribution is 

displayed as sliced in half. Red indicates gas and blue liquid. A large liquid 

structure in the gas core can be observed for (a) and a larger structure for (b). 

In addition, for (b), huge waves as reported by Sekoguchi and Mori (1997) can 

be observed. The huge waves give rise to the probability that large quantities of 

liquid are being torn from the waves and entrain the gas core. At higher gas 

velocities, no such large structures were observed, indicating a drastic and 

sudden change in flow phenomena around this particular liquid flow rate. It is 

not an unreasonable assumption that this condition also corresponds to the 

flooding point reported by Zabaras et al. (1986) and Govan et al. (1990) for the 

present experiments. This also correlates positively with the high speed 

photography analysis for the current experiments and the change in pattern 

observed for a gas superficial velocity from 10 m/s and a liquid superficial 

velocity of around 0.04-0.07 m/s. This is at much lower gas flow rates than 

reported in smaller diameter pipes. 

In order to put the above information into context systematically, the 

data (including high speed photographs) were re-examined to identify a 

probable churn to annular flow pattern transition boundary for the present 

experiments. Figure 4.25 illustrates this flow pattern map. Data from 

Sekoguchi and Mori (1997) was modified to compensate for the difference in 

gas and liquid flow rate, gas density and pipe diameter to obtain an estimate of 

the huge/disturbance wave transition for the present conditions. In addition, the 

conditions at which liquid structures in the gas core were observed are plotted. 
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Figure 4.25 Flow pattern map for the churn-annular transition in a 

127 mm pipe. CP boundary is obtained from conductance probes, 
CF boundary is estimated from cine film.  

 

From the flow pattern map a difference between conductance probes 

and high speed photography data can be observed. The difference is most 

probably due to the fact that the high speed photography data is based on visual 

observations for a smaller range of flow rates and extended by linear 

extrapolation. The new proposed boundary from the conductance probe data is 

based on the features observed in the detailed analysis described above. The 

transition from churn to annular flow in the present study starts at gas 

superficial velocities of 10 m/s i.e, the end of a negative slope representing the 

churn flow regime. The flow goes through a minimum for both film thickness 
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and pressure drop up to 15 m/s. From structure velocity and the interfacial 

shear stress results, possible changes in interfacial wave types occur around a 

gas superficial velocity of 13 m/s. It then adopts a positive slope, i.e., annular 

flow. 

The compensated data from Sekoguchi and Mori (1997) shows a 

deviation from the new proposed boundary. It is obtained through the 

assumption of equality of Weber number, similar to Hewitt and Roberts 

(1969), and obtained by 721.020.0262 UsmU = , for both liquid and gas 

superficial velocity. Where Usm represents the velocities from Sekoguchi and 

Mori (1997) and U the velocities from the present data. The deviation between 

the present boundary and Sekoguchi and Mori (1997) may be explained by the 

ratio between the different pipe diameters of 0.3 and the system pressure, 

hence gas density, in the two data sets. The data does however show a similar 

trend. The annular flow models by Taitel (1980) and Barnea and Taitel (1985) 

do show a good agreement for the gas, but not for the liquid dependencies. The 

Wallis (1969) parameter, ug* = 1 yields a vertical line on Fig 4.25 at a constant 

gas superficial velocity of 18.7 m/s for the transition from churn to annular. 

This does not agree with the observed transition. Although closer, the same 

applies to the widely used criterion of the Kutatelatdze number = 3.2, which 

yields a gas superficial velocity of 8.4 m/s for the present data.  

As reported in Chapter 2, Zapke and Kröger (2000) successfully 

converged flooding data obtained by different experimental setups from Clift et 

al. (1966) and Chung et al. (1980) by using dimensionless gas and liquid 

Froude numbers and a liquid Ohnesorge number. They found that the gas 

Froude number is some function of the liquid Froude and Ohnesorge number. 
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Differences between the data sets were based on different viscosity and surface 

tension as outlined in their paper. Pipe diameter was the same in the two 

experimental setups. They based their dimensional analysis on the following 

equations: 
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The liquid Froude Number 
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The Ohnesorge number. 

 

By multiplying the two terms for liquid, i.e, the liquid Froude and 

Ohnesorge number they created a dimensionless group as a function of the gas 

Froude number. A similar approach was applied to the churn/annular transition 

data of the present study. However, since different pipe diameters were used 

for comparison, accounting for the pipe diameter can only be achieved by 

division. Reasonably good convergence of the present and Sekoguchi and Mori 

(1997) data was obtained and in addition, data from other workers also came 

closer together as presented in Figure 4.26. 
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Figure 4.26 Dimensional analysis of churn/annular transition data. 

 

Since the data shows close similarity, a combined curve fit was 

applied to the present and Sekoguchi and Mori (1997) data. A new relationship 

was then derived and the model tested against other churn to annular transition 

data for a large range of liquid superficial velocities. In unrefined form, the 

relationship obtained can be expressed as 
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Substituting the properties and the gas superficial velocities from the 

various sets of data then allows prediction of the churn to annular boundaries, 

the results are shown in Figure 4.27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Performance of Eq. 4.21 (solid lines) versus experimental 

churn to annular transition data from different authors (symbols). 

 

It can be seen that the relationship shows a good agreement for most 

of the experimental data. Although most empirical correlations are tested 

against data they were derived from it predicts the transition curve from 

Omebere Iyari (2006) for naphta/nitrogen in the 189 mm SINTEF-riser 

reasonably within 36 percent error. The data from the present study and 
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Sekoguchi and Mori (1997) (air/water in a 26 mm pipe at 2 bara) data is 

predicted within 12 and 16 percent error respectively. In first instance, the 

model shows however less good agreement with data from Hewitt and Roberts 

(1969) (steam/water in a 12.7 mm pipe at 70 bar), Omebere-Iyari (2006) 

(naphta/nitrogen in a 189 mm pipe at 20 bar) and Szalinski et al. (2010) 

(silicon oil/air in a 67 mm pipe at ambient conditions). Evaluation of the 

variables shows that the correlation depends strongly on gas density, i.e, 

system pressure. Figure 4.28 illustrates this by two curves on the graph; one for 

original Omerbere-Iyari (2006) data, and one for the present study with an 

adjusted gas density to that from Omerbere-Iyari (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 Effect of gas density. 
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Taking the curve for the data from present study from Figure 4.27 and 

increasing the gas density with a factor 28 to match the gas density of the 

Omebere Iyari (2006) 90 bar experiments shows that the curves match very 

well. Thus suggesting that pipe diameter, liquid density, viscosity and surface 

tension differences are not significant. This is also the case when using the 

Sekoguchi and Mori (1997) data with adjusted gas density. By using the data 

from Szalenski et al. (2010) and increasing their gas density with a factor 3 to 

match the present properties shows a that the correlation curve tends to 

converge at the conditions where few data points are available as shown in 

Figure 4.29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 Effect of gas density on data from Szalenski et al. (2010) 
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The model therefore suggests that the accuracy of the churn to annular 

flow boundary prediction is reasonable rather independent of pipe diameter, 

liquid density, viscosity and surface tension. Gas density plays the most 

important role and the lower threshold for application should be 3.6 kg/m
3
. For 

the case of Szalinski et al. (2010), the boundary does show a good agreement 

but only when the gas density is increased to the lower threshold set by the 

present study. The deviation of the model with regard to the data from Hewitt 

and Roberts (1969) may be due to that what has been pointed out in Chapter 2, 

i.e, they annular flow area is not entirely described by experimental data per se.  

By summarising the results in this Chapter it may be concluded that 

the liquid film and pressure drop show that a possible transition from churn to 

annular flow takes place around a gas superficial velocity of 10 m/s in a 127 

mm diameter pipe.  

From film thickness, structure velocity and the associated 

correlograms there is evidence that at a gas superficial velocity of 13 m/s a 

change takes place between (part of) the liquid film flowing countercurrent to 

co-current; the sudden “jump”.  

At high liquid superficial velocities this phenomenon is not observed 

due to possible huge waves, hence churn flow.  

The latter is confirmed by computations of the interfacial shear stress 

calculated in relation with the pressure drop. This shows a minimum as a 

function of the film thickness and this is associated with “up flow” and “up 

flow re-circulation”, the latter is when the film re-circulates, i.e., simultaneous 

up and downward motion.  
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Relating the interfacial shear stress with liquid superficial velocity 

shows a change in slope, suggesting a switch between the main source of 

interfacial shear stress, i.e., different wave types in annular and churn flow. 

Calculation of the fraction of pressure drop due to waves also shows a 

switch at a gas superficial velocity of ~13 m/s. At higher liquid velocities this 

switch is fully suppressed by possibly huge type waves, typically associated 

with churn flow, similar to the trends of the structure velocity. 

A new interfacial friction factor relationship is suggested for the 

present data. 

From the work presented above it is suggested that the one-

dimensional smooth interface models commonly employed to describe these 

flows are inadequate. A second dimension must be considered so that the effect 

of the simultaneous upwards and down wards motion of waves on the interface 

can be taken into account 

The computations of the results and comparison of previous results 

obtained in smaller diameter pipes, shows similar trends, but different values in 

terms of the proposed churn annular transition boundaries.  

Dimensional analysis by relating the gas Froude number with the ratio 

between the liquid Froude and Ohnesorge numbers, brings data originating 

from different pipe diameters and with different physical properties closer 

together.  

Correlation of the relationship between these dimensionless numbers 

based on the present and Sekoguchi and Mori (1997) data shows a reasonable 

agreement with the present and other churn to annular flow regime boundaries 

originating from different pipe diameters, physical conditions and properties. 
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Although the relationship seems to produce promising results, it should be 

noted that there is still room for future improvements. 
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5 The Creation, Behaviour and Sizes of Drops 

This Chapter describes the results obtained in the 127 mm pipe on drop 

creation, size/velocity and the effect of gas and liquid flow rates on these 

parameters. The first section presents the background of the experiments. The 

second section covers the experimental outline. The third shows the results from 

pre-PDA experiments obtained by high speed photography on the creation of 

drops and disturbance waves. The fourth section focuses on the results obtained 

by simultaneous film thickness and (PDA) drop size measurements. The fore 

last section presents post PDA experiments with high speed photography. This 

is followed by the conclusion. 

 

5.1 Background on drops in gas-liquid flows 

Drops play an important role in annular flow since they contribute to 

various hydrodynamic parameters. In boiling, cooling and other applications 

where a liquid film on the pipe periphery is preferred, annular flow can cause 

difficulties when the film thickness reaches a state where full evaporation of the 

film occurs. This phenomena is referred to as “dry-out” and results in poor heat 

exchange characteristics and possible failure of equipment. Also erosion is 

associated with drops and particles. Fore and Dukler (1995) found that drop 

acceleration can have quite a significant contribution to the total pressure drop, 

up to about 20 percent. Azzopardi (1997) noted that rough films at the pipe wall, 

which occur in annular and churn flow, promote drop entrainment. More 

specifically, drops entrain from disturbance waves as discussed in the previous 

Chapter. The crests of disturbance waves are subject to shear from the gas phase 

flowing over it. Parts of the crests are then torn off to form drops which are then 
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dispersed in the gas core. Two major types of break up have been reported, 

namely ligament and bag break up as illustrated by Figure 5.1 (a) and (b) 

 

 

 

 

 

 

 

(a)    (b) 

Figure 5.1 Simplified break up mechanisms in vertical annular flow. 

Ligament break up (a) and bag break up (b) 

 

 

Ligament break up occurs when the crest of the wave breaks in the 

direction of the gas flow. Part of a wave crest is stretched to form a ligament, a 

filament of liquid. This then breaks into drops. Bag break up occurs when the 

gas undercuts the wave crest. Gravity helps this take the shape of a bag with a 

thin body and a thicker rim. It resembles a blown bubble gum. The body bursts 

first to produce fine drops. The rim then breaks down to form coarser drops. 

Krezyswoski (1980) showed that large drops introduced into gas flows break up 

by similar mechanisms. He identified that which of these mechanisms occurs 

depends on the values of a Weber number that employs the original drop 

diameter as its length scale. Azzopardi (1997), seeing the analogy to this drop 

break up, suggested that the boundary between bag and ligament break up in 

annular flow can be described by a Weber number  
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σ

ρ wgshU
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2

=  5.1 

Ugs is the gas superficial velocity, hw is the wave height, ρ is the gas 

density and σ is the surface tension. 

The rates of entrainment and deposition can be determined by a 

technique proposed by Leman et al. (1980). By injecting a tracer into the liquid 

film they found that the concentration of tracer in the film decreased with axial 

distance relative to the initial value because of entrainment and secondly, 

decreased more due to drops which contained no tracer. They found that both 

the rate of entrainment and deposition increased sharply with axial distance to a 

maximum and hereafter it decreases gradually to a semi-constant value. 

Azzopardi (1983) employed an experimental entrained fraction measurement 

technique first proposed by Cousins and Hewitt (1968) and further developed by 

Whalley et al. (1974). By extracting the liquid film from the pipe wall through a 

porous wall section, and measuring the fraction of liquid and gas taken off, a 

mass balance between inlet and measurement section can be made. 

The size of drops have been measured using a number of techniques, e.g. 

high speed photography, direct contact probes, Laser Diffraction and Phase 

Doppler Anemometry (PDA) techniques. The latter two became increasingly 

popular over the last two decades due to continuous improvements on the 

accuracy and ease of operation of the instruments. PDA and high speed 

photography has been employed in the present study. Azzopardi (1997) states 

that, in general, laser light techniques are perhaps most suitable for annular gas-

liquid flows. 
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5.2 Experimental outline 

A set of 80 experiments were carried out in which drop size/velocity and 

void fraction/film thickness experiments were measured simultaneously on the 

127 mm flow loop at atmospheric pressure. The experimental matrix is shown 

in Table A2 in the appendices of this thesis. The experiments for the PDA were 

taken for durations of 10 seconds or 10
4
 data points. The conductance probes 

were set at a sampling rate of 1 kHz. The experiments were carried out at 

atmospheric pressure since the viewing section for the PDA was equipped with 

relatively thin windows. Therefore it was not considered sensible to pressurise 

the facility.  
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5.3 Scoping experiments 

High speed photography experiments were carried out for annular flow 

with liquid superficial velocities of 0.014 and 0.04 m/s and gas superficial 

velocities of approximately 13 and 16 m/s. The camera was set up just upstream 

of the test section containing the conductance probes. A square –box shaped- 

viewing section filled with water mounted around the transparent section of the 

pipe was used to minimise refraction. 

High speed videos are analysed frame by frame. This is most productive 

at higher gas velocity than at lower ones. For the former films are thinner and 

less wavy. For the latter the thick films on the wall diminish visibility in to the 

pipe core. Drops, mainly near the film interface were tracked. From the position 

time data their size and velocity were calculated. In addition the wave 

behaviour, its direction and velocity, was determined. The impact of drops onto 

the film and the consequent creation of disturbance waves were also studied.  

Figure 5.2 show a sequence of photographs taken at a liquid superficial 

velocity 0.014 and gas superficial velocity 16 m/s. From the results presented in 

Chapter 4, this is considered to be annular flow. White lines and circles are used 

to mark disturbance waves to mark drops or impaction. 
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(a) (d) 

(b) 

(c) 

(e) 

Figure 5.2 Gas superficial velocity 16 m/s, 
Liquid superficial velocity 0.014 m/s 

 
(a) t = 0 ms, a disturbance wave and entrained 

string of drops 

(b) t = 2 ms, entrained string of drops 

coalescence and forming one drop 

(c) t = 4 ms, drop impaction and indentation in 

liquid film. 

(d) t = 29 ms, Disturbance wave creation. 

(e) t = 40 ms, Disturbance wave developed 
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From the sequence of photographs it can be observed that the impact of a 

drop of significant size (about 800 µm) can act as an inception of a new 

disturbance wave. In the sequence mentioned above, both a drop near the wall 

and nearer the pipe centre were followed. The velocities of the two drops and 

the disturbance wave plotted as a function of axial distance travelled. The 

results are illustrated in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 The velocity of a drop near the wall, a drop in the gas core 
and a disturbance wave. 

 

The drops have contrasting trends in velocity. The drop near the 

interface is subject to gas of a lower velocity (because of the radial velocity 

profile of the gas). Therefore it is accelerates less than the drop deeper in to the 

gas core. Therefore the velocity can adopt an almost constant value. A plausible 

explanation for the difference in behaviour between these two drops is that they 

were ejected at different angles in combination with a gas velocity profile. This 

will be developed further when discussing the work on drop simulations 
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(Chapter 6). The velocity of the disturbance wave shows a value similar to those 

obtained from the correlation of the ring probe signal which were reported and 

discussed in Chapter 4 of this thesis. 

Another set of stills is given in Figure 5.4. Here the gas superficial 

velocity was 13 m/s and the liquid superficial velocity was 0.014 m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

(a) 

(b) 

(c) 

(d) 

Figure 5.4 Gas superficial velocity 13 m/s, liquid superficial velocity 0.014 m/s 
 

(a) t = 0 ms, Sting of drops near wall 

(b) t = 3 ms, Impaction onto liquid and structure breakup. 

(c) t = 7 ms, Bouncing off, second impaction and spray formation 

(d) t = 10 ms, Bouncing off and third impaction 
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In contrast to the results from a gas superficial velocity of 16 m/s it is 

evident that the large entrained drop featured is very unstable. It can be seen to 

break up. Only a part of the drop continues to travel upwards, the rest of the 

drop bounces several times before it is deposited back onto the film. The total 

time for the process to complete does not exceed one hundredth of a second. 

The velocities of the objects observed in this sequence of stills are shown in 

Figure 5.5. 

As can be observed the events show reasonable constant velocities. This 

is different to what is reported in the previous sequence of photographs since the 

gas flow rate is lower and break up and bouncing of the drop contributes to 

lower drop velocities. It can be seen however that, from the increase in 

acceleration, the fraction of the drop that continues to travel upwards is being 

picked up by the gas phase at a later stage. Also here, the disturbance wave 

velocity shows similar velocities to what is reported in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5 The velocity of a drop breaking up near the wall, a drop 
reaching the gas core and a disturbance wave. 
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A third photograph is reported. The case presented in Figure 5.6 is also 

annular flow but at a higher liquid rate. One drop followed travelled near the 

interface whereas another drop was observed further into the gas core. At a gas 

superficial velocity of 16 m/s and a liquid superficial velocity of 0.04 m/s, the 

drops followed here showed no other features rather than moving upwards. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 t = 0 ms, drop travelling upwards near the wall. Liquid 
superficial velocity 0.04, gas superficial velocity 16 m/s. 

 

This condition has a gas superficial velocity of ~3 m/s greater than that 

for the transition condition point, reported in Chapter 4. In addition to the drops, 

also small gas bubbles entrained into the liquid film were observed. These 

bubbles were employed as flow followers for the base film, i.e., the fraction of 

the film below the wave troughs. It is appreciated that they will not necessarily 

be good film flow followers. The results are presented in Figure 5.7. 
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Figure 5.7 The velocity of a drop breaking up near the wall, a drop 

reaching the gas core, a disturbance wave, bubble in the film and the average 

disturbance wave velocity obtained from the conductance probes (dashed line). 

 

It can be observed that the drop does not accelerate as fast than that 

observed in Figure 5.3, this is perhaps size related. As expected the base film is 

slower than the disturbance waves. The values of the disturbance wave velocity 

obtained here agree well with that calculated from the cross-correlation of the 

time series of the conductance probes. 

From the photographs analysed there was evidence that the creation of 

disturbance waves does not only occur due to the interaction between the liquid 

and gas phase but also when a drop impacts on the liquid film. From Figure 5.2 

it can be seen that the drop causes an indentation in the film, resulting in a new 

rough surface on the liquid film. Possibly this rough surface is susceptible to the 

gas shear and so a new wave is created. Figure 5.8 presents a proposed cycle of 

drop and wave creation. One might ask; which came first, the drop or the wave? 
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Wave 

Drop Entrainment 

Impaction 

Indentation 

 

Most probably, since the flow is continuously developing, the waves are present 

due to the interaction of the phases at the riser entrance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Cycle of disturbance wave and drop creation 

 

5.4 Photography without the liquid film present 

A number of high speed videos were taken through the windows of the 

test section used for PDA measurements. The camera was set at 105 fps at a 

resolution of 128 x 128 (~60 µm/p) in order to be able to capture the high 

velocity drops in the gas core. Table 5.1 illustrates the results. The photographs 

were taken in order to quantitatively examine the effect of gas and liquid flow 

rates on the entrainment and to get an indication of drop size, i.e., no time 

interval between photos was taken into account. 
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Table 5.1 Drop size and entrainment behaviour 

  
Gas superficial velocity 20.19 m/s 

Liquid superficial velocity 0.0045 m/s 
Gas superficial velocity 14.12 m/s 

Liquid superficial velocity 0.0045 m/s 

  
Gas superficial velocity 19.12 m/s 

Liquid superficial velocity 0.03 m/s 

Gas superficial velocity 11.92 m/s 

Liquid superficial velocity 0.03 m/s 

  
Gas superficial velocity 18.28 m/s 

Liquid superficial velocity 0.05 m/s 

Gas superficial velocity 12.73 m/s 

Liquid superficial velocity 0.05 m/s 

7.7 x 7.7 mm 
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As can be seen from Table 5.1 the drop concentration and size changes 

quite profoundly for different conditions. For high gas flow rates, the number of 

drops per unit area is high and the size is small. With an increasing liquid flow 

rate it can be observed that the drop size increases. Note at a superficial velocity 

of 11.9 m/s for the gas and 0.03 m/s for the liquid a drop breaks up via the 

ligament break up mechanism (Azzopardi (1997)) 

 

5.5 Phase Doppler Anemometry Results 

Here drop size and velocity results obtained in the 127 mm pipe with 

PDA are presented. Measurements were taken at 50 points distributed about the 

cross section of the pipe. The centreline of the pipe was found by estimating the 

position of the measuring volume. With the facility running at maximum gas 

velocity, the approximate centre line was found by the maximum drop velocity 

in the pipe cross section. The maxima, in terms of outer boundaries, in the x and 

y directions were then found by traversing along the cross section and 

monitoring the data rate the instrument was measuring. The maxima in terms of 

coordinates were then saved in the traverse memory. The positions at which 

data were taken are shown in Figure 5.9. 
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Figure 5.9 Cartesian coordinates of measuring points across the pipe 

cross-section. 

 

 

Drop velocity and diameter profiles were taken over x -50 to 55 mm, 

keeping y constant at -5 mm. There are two areas where no data could be 

acquired due to the shape of the windows used (see Chapter 3). The parameters 

of the PDA setup are outlined in Table 5.2.  
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Table 5.2 Setup parameters of the Dantec PDA  

Property Green Yellow 

Wavelenth (nm) 532 561 

Beam diameter (mm) 1.35 

Beam spacing (mm) 38 

Expander ratio (-) 1.95 

Scattering angle (deg) 50 

Focal length receiving optics (mm) 500 

Focal length transmitting optics (mm) 310 

Refraction Yes 

Aperture mask C 

Fringe direction Negative 

Spherical validation band (-) 0.15 

Maximum drop diameter (µm) 437.1 

 

 

The data was acquired and then analysed using methods similar to those 

applied by van ‘t Westende (2008). Initially, the correction for drop diameter 

bias as described by Saffman (1987) and reviewed in Chapter 3 of this thesis, 

was applied. In addition, the distribution cut-off method proposed by Teixeira 

(1988) and described in Chapter 3 was tested. The drop size distributions 

obtained however did not show the latter bias.  

Zhang and Zaida (1999) used a Dantec system to measure mass fluxes of 

a water jet. They concluded that the diameter bias is not merely dependant on 

the diameter of a drop, as reported by Saffman (1987), but also on its direction 
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within the measuring volume. It is possible that a drop travels diagonally 

through the measuring volume. For a multi component velocity mechanism they 

suggested an expression for the projected cross sectional area of the measuring 

volume as used by van ‘t Westende et al. (2005). Since in the present study it is 

assumed that axial velocities are dominant and thus perpendicular relative to the 

measuring volume, the more complex expression to calculate the measuring 

volume cross sectional area reduces to 

 
mmm LDA =  5.2 

where, Am, Dm and Lm are the cross sectional area, the diameter and the 

length of the measuring volume respectively. There are two unknowns in the rhs 

term in Eq 5.2 for the present study. However, van ‘t Westende et al. (2005) 

suggested that the diameter of the measuring volume in relation to a given drop 

diameter could be measured from the instantaneous drop size and velocity data 

obtained by the PDA. Assuming that the direction of velocity of the drop is 

parallel to the pipe axis, then the distance that the drop travelled trough the 

measuring volume can be calculated by the transit time and its velocity 

 dUttdl =  5.3 

Where ld, tt and Ud are the length that the drop travelled, the transit time 

in the measuring volume and the drop velocity respectively. Similarly, for the 

length travelled by the drop, the expression  

 

4

π
mDdl =  5.4 

holds. One remaining unknown in Eq 5.2, Lm is taken from the properties 

of the PDA directly and has a value of 672 µm for the present study. It has to be 

noted that according Eq 5.4 the diameter of the measuring volume has been 
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made variable with drop size, the length has a negligible influence on the cross 

sectional area. Accordingly, the corrected Sauter mean diameters were 

calculated according aforementioned procedure from van ‘t Westende (2008). 

The volume and the area of the drops were calculated using 3
d  and 2

d , where 

d is the arithmetic drop diameter. The corrected volume and area of the drops 

was then calculated by using 
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In which d and T are the corrected drop diameter and the total duration 

of an experiment. 

The uncorrected and corrected Sauter mean diameter then follows from 
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An example of the difference between the uncorrected and corrected 

Sauter mean diameters at the centreline is shown in Figure 5.10. This shows that 

there is only a small difference. 

 

 

 

 



The Creation, Behaviour and Sizes of Drops 

 119

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Example of corrected and uncorrected Sauter mean diameter 

at the pipe centreline. 

 

It should be noted that the corrected Sauter mean diameter is referred to 

as the d32 for the remainder of this Chapter. 

The entrained fraction is calculated using the dispersed phase holdup at 

the centreline of the pipe. This has been expressed by van ‘t Westende et al. 

(2005) in the following manner 
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5.9 

 ∑= dαα  5.10 

The dispersed phase only holds at the centreline, where it is assumed that 

the drop axial velocity is dominant. 

The entrained fraction is an area fraction balance over the total cross 

section of the pipe. The film flow was not collected for the present data. 
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Therefore the film thickness, obtained from the conductance probes is included 

to calculate the fractions of the pipe obtained by each of the phases. The 

entrained fraction then follows from 

 

and pA

fA
f −= 1β  

)f(
fE

βα
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5.11 

 
 

 
5.12 

where βf, Af, Ap and Ef are the fraction of liquid film, area of the pipe 

occupied by the liquid film, the total area of the pipe and the entrained fraction. 

The Sauter mean diameter at the centreline is shown for all liquid 

superficial velocities in Figure 5.11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Sauter mean diameters for all liquid velocities. Note 

expanded axis 
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The Sauter mean diameter (Figure 5.11) decreases, though to a smaller 

extend compared to smaller pipes, with increasing gas flow rate as expected, the 

higher gas velocity and therefore momentum, the smaller the drops. There is 

evidence of a change of slope a gas superficial velocity of 10 m/s and a slight 

increase in diameter can then be observed from around 15 m/s for the gas. The 

liquid superficial velocity appears to have an influence on the condition of the 

latter changes as well. Another interesting feature observed is the increase, or 

“jump”, in size for the majority of graphs at around a gas superficial velocity of 

18 m/s. In fact, the trends show quite similar features to that observed in the 

film thicknesses in Chapter 4 but it appears that the drop diameter reacts at 

slightly higher gas superficial velocities. In general it can be observed that the 

Sauter mean diameter increases slightly with liquid flow rate. For the purpose of 

closer examination, four cases were selected and re-plotted as shown in Figure 

5.12. The explanation of Figure 5.11 then becomes clearer. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Selected cases for the evolution of the Sauter mean diameter 
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As aforementioned, the decrease in size is perhaps not as systematic as 

generally observed in smaller diameter pipes. This may be due to other, not yet 

identified mechanisms. The variation of the Sauter mean diameter about the 

pipe cross section has also been examined. Figure 5.13 illustrates this for gas 

superficial velocities of 18.3 and 14.5 m/s and the same liquid superficial 

velocity group as illustrated in the previous Figure. Radial positions are 

normalised with the pipe radius. As can be seen the profile is rather flat and 

there is little effect of gas and liquid flow rate. This agrees with the results 

obtained by Gibbons et al. (1983). Note that this is an expanded scale. It is 

interesting to observe that both the gas and liquid superficial velocities do not 

have a great effect on the Sauter mean diameter in cross-sectional terms. What 

can be argued is the fact that for a higher gas superficial velocity the diameter 

can vary significantly. This may be due to the fact that for higher gas flow rates, 

the turbulence intensity increases and hence an increase of the randomness 

probability. Some of the data show a very weak effect in the pipe centre by 

showing slightly smaller values. This has also been reported by van ‘t Westende 

(2008). This may be due to higher gas velocities, hence a higher atomisation 

rate of drops, at the pipe centre.  
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Figure 5.13 Sauter mean diameter in relation to the pipe cross section. 

Closed symbols represent a gas superficial velocity of 18.3 m/s, open symbols 

those for 14.5 m/s. 

 

The velocity profiles of the selected liquid flow rates are shown in 

Figure 5.14. Also shown are the mean velocities of drops with small diameter to 

act as faithful followers of the gas. The tracer drops were defined as ≤ 20 µm. In 

addition a gas velocity profile obtained through Computational Fluid Dynamics 

(CFD) as described in Chapter 6 is plotted for comparison. 
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Figure 5.14 Mean drop velocity for an average gas superficial velocity of 

18 m/s. Open symbols represent the overall mean velocity, closed symbols 

represent tracer drops. The straight line is the overall averaged gas superficial 

velocity. Dashed line is gas velocity profile from simulations for a gas 
superficial velocity of 20 m/s. 

 
 

In order to examine the performance of CFD simulations in more detail, 

PDA experiments in which a gas superficial velocity of 20 m/s was obtained, 

are illustrated by Figure 5.15 together with the gas velocity profile obtained 

with the CFD calculations. As can be seen, there is good agreement. 
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Figure 5.15 Experimental mean drop velocities for various superficial 

gas velocities. Solid line represents the Star-CD data obtained for a gas 
superficial velocity of 20 m/s. 

 

A second example for a gas superficial velocity of ~ 14.5 m/s is shown 

in Figure 5.16 

 

 

 

 

 

 

 



The Creation, Behaviour and Sizes of Drops 

 126

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Mean drop velocity for an average gas superficial velocity of 

14.5 m/s. Closed symbols represent the overall mean velocity. The straight line 
is the overall averaged gas superficial velocity.  

 

The mean drop velocities show a similar radial profile to the gas velocity 

profiles observed in these types of flows. The gas velocities as measured using 

tracer drops show a slightly smaller mean velocities than those of the rest of the 

drops. This could be due to the small size of the tracer sample sets. However, 

looking at the overall drop velocity profiles, it can be concluded that for higher 

liquid velocities, also a slightly higher drop velocity is measured. This could be 

due to a larger spread in the velocity probability as described later in this 

Chapter. It is in agreement with Teixeira (1988) and Altunbas (1999). In 

addition, Altunbas (1999) reported that the overall mean drop velocities 

measured over the cross-section were lower than the gas superficial velocity. As 
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can be observed, this is not the case for the current data. In fact, the drops from 

about r/R -0.5 to 0.5 actually show a much higher mean velocity.  

Figures 5.14-5.16 show that the mean drop velocity predominantly 

changes with gas velocity and a small effect of liquid velocity can be observed. 

As for Figure 5.16, the deviation of data between different liquid velocities 

becomes larger, indicating less dependence on gas velocity. An odd feature is 

observed for a liquid superficial velocity of 0.04 m/s. The mean drop velocity is 

much higher than the other data. As described in Chapter 4, this condition may 

be in the churn-annular transition area. Therefore it could be that the difference 

is caused by change of drop breakup mechanism. The standard deviation of the 

tracer drops was plotted and shown in Figure 5.17. It can be seen that for the 

tracer drops, the standard deviations show similar trends and as reported by 

Altunbas (1999) and Teixeira (1988). Note that the number of tracer drops 

measured is relatively low compared to van ‘t Westende (2008). A general 

increase with liquid superficial velocity. The effect of gas superficial velocity is 

seen to be secondary. However, for the highest liquid superficial velocity, the 

data would logically be expected to adopt higher values. This is however not the 

case and also this indicates that this particular liquid condition shows different 

features than the others. 
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Figure 5.17 Standard deviation for gas superficial velocities of 18.3 m/s 

(closed symbols) and 14.5 m/s (open symbols). 

 

The velocity results are compared with those from Altunbas (1999), 

Teixeira (1988) and Fore and Dukler (1995) in the form of values normalised by 

the maximum obtained. Figure 5.18 shows the results and Table 5.3 shows the 

comparison data. 
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Table 5.3 Experimental conditions comparison 

 

Gas 

superficial 

velocity (m/s) 

Liquid 

superficial 

velocity (m/s) 

Pipe 

diameter 

(mm) Fluids 

Altunbas (1999) 30 0.02 38 A/W 

Teixeira (1988) 24.3 0.015 32 A/W 

Fore and Dukler (1995) 23.3 0.014 50.8 A/W 

Present 18.3 

0.0045/0.0082 

0.0202/0.04 127 A/W 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Comparison with previous work.  
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Note that the data from Fore and Dukler (1995) and Teixeira (1988) is 

extended to negative r/R. 

From Figure 5.18 it can be seen that the data from Teixeira (1988) shows 

good agreement with the present data. Note that the present gas Reynolds 

numbers are a factor 2.5 times higher than those of Teixeira (1988) and 2 times 

higher than Fore and Dukler (1995). The data from Altunbas (1999) shows a 

much flatter profile over the cross-section. Perhaps the gas Reynolds number 

plays an important role on the drop velocity behaviour. 

Drop velocities at the centreline and near the pipe wall are plotted 

against gas superficial velocity (Figure 5.19), both for the drops travelling at the 

centreline and pipe wall. This covers all superficial liquid velocities studied. 

Centreline drop velocities are seen to be 0 to 30 percent greater than the gas 

superficial velocities. The drops travelling near the wall, are 60 to 80 percent 

lower. The liquid superficial velocity has almost to no effect on the drop 

velocity. For the centreline data, it can be seen that it actually starts to deviate 

from a gas superficial velocity of 13 m/s. This also applies to the data at the wall 

but in a less obvious manner. The group of points actually on the 45 degree line 

at low gas flow rates are interesting. Linking this with the Sauter mean diameter 

it can be observed that this is the point where a drastic change of slope occurs. 

Since van ‘t Westende (2008) observed counter-current features around these 

flow condition, it is therefore perhaps not an unreasonable assumption that this 

may indicate an inception point for the transition from churn to annular flow. 
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Figure 5.19 Overall mean drop velocity at the centreline and pipe wall. 
Marks represent data from Fore and Dukler (1995) for liquid superficial 

velocities from 0.015 to 0.045 m/s. Open symbols represent data from van ‘t 
Westende (2008) for liquid superficial velocities from 0.01 to 0.04 m/s 

 

The equivalent data from Fore and Dukler (1995) and van ‘t Westende 

(2008) are also plotted on this figure. It can be seen that the data at the 

centreline in general shows quite a different pattern compared to Fore and 

Dukler (1995). The data of van ‘t Westende (2008) shows good agreement with 

the present data at the lower gas superficial velocity end. It is interesting to 

observe that the present data does not show as much liquid flow rate 

dependence as the other data. This might be due to a pipe diameter effect. 
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Normalised probability distributions of diameter and velocity over the 

entire cross section are illustrated in Table 5.4. For high gas flow rates, the 

diameter distribution has a longer tail towards larger sizes. The distribution is 

less wide than for the lower gas velocity. The effect of longer tails can be 

quantified via the skewness of the distribution. This is the third moment of the 

distribution (the first being the mean and standard deviation). The above can be 

restated as: there is a positive skewness. The standard deviation is rather large 

for low gas flow rates and higher liquid flow rates, where the distribution shifts 

to negative skewness. Still being statistically representative, the data rate at low 

gas and high liquid flow rate are lower due to partial obstruction of vision 

through the viewing windows.  The drop velocity peaks are negatively skewed 

Most interesting is the observation that the drop velocities for the lower gas 

flow rates show a symmetrical probability distribution. To examine this further, 

the skewness was normalised with its maximum for each set of liquid flow rates. 

Hence, a symmetrical skewness of 0 becomes 1. This is depicted in Figure 5.20 

and shows that the normalised skewness tends to form a plateau around 1 and 

starts to deviate at a gas superficial velocity of approximately 13 m/s. By 

comparing this with for instance the overall mean drop velocity at the centreline 

(Figure 5.18) it can be seen that the group of data points at low gas and mean 

drop velocities are in the velocity ranges of this criterion. After this point, the 

data starts to deviate from the gas superficial velocity. Linking the skewness 

with the gas superficial velocity gives the following correlation: If the 

maximum normalised skewness for the drop velocity is equal or close to 1, then 

the ratio between gas superficial velocity and drop velocity is also 1. This can 

be expressed as 
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5.13 

 

Where γ is the skewness for each drop velocity distribution, γmax is the 

maximum skewness, Ud is the drop velocity and Ugs is the gas superficial 

velocity. It is interesting that this is the skewness condition where the slip 

velocity ratio, as commonly employed to calculate the drag force acting on a 

single drop, equals 1. This might be linked with the transition from churn to 

annular for the present study. In fact, the condition at which this change occurs 

is similar that as identified in Chapter 4, i.e., a change as defined by Zabaras et 

al. (1986) from “upward” to “upward re-circulation” and change of wave type, 

probably concerning huge waves. Similarly, with an increase of liquid flow rate, 

the skewness tends to react in positive terms as well.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Normalised skewness of drop velocity distributions. Closed 
symbols represent the selected experiments; open symbols represent all other 

experiments. 
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Table 5.4 Probability distributions 

Drop arithmetic mean diameter 

Normalised probability 

Drop velocity 

Normalised probability 

 

Liquid superficial velocity 0.0045 m/s 

  

 

Liquid superficial velocity 0.0082 m/s 
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Liquid superficial velocity 0.0202 m/s 

  

 

Liquid superficial velocity 0.04 m/s 

  

 

Note that some negative, i.e., downwards drop velocities were measured. 

There are only few of these falling drops which are probably associated with 

those travelling near the wall where there is less upwards drag. Furthermore, 

drop size measurement limitations and, to some extend, extrapolation methods 

are described in the appendices of this thesis.  
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5.6 The liquid film and entrained fraction 

The drop size and velocity data can be linked with the liquid film 

measurements taken simultaneously with the conductance ring probes. The 

analysis performed for this data set is similar to that carried out in Chapter 4. 

Figure 5.21 shows the cross section and time averaged results for the film 

thickness in relation to the gas superficial velocity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 The liquid film thickness for selected experiments. The 
Sauter mean diameter for liquid superficial velocity 0.0045 m/s is illustrated to 

examine the trends (open symbols). 

 

As can be seen from the film thickness plots, the film thickness shows 

similar trends to those observed in Chapter 4. However, film thicknesses from 

these atmospheric measurements are lower than those reported from 3 bara. 

Comparing the Sauter mean diameter behaviour with the liquid film behaviour 

shows a good agreement. It is evident that the Sauter mean diameter decreases 

with decreasing film thickness and increases with increasing film thickness. 
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Similar features have been reported by Alamu et al. (2010) in a 19 mm diameter 

pipe. As discussed in the beginning of this Chapter, the film thickness was also 

applied in order to calculate the entrained fraction for the selected experiments. 

Figure 5.22 illustrates the entrained fraction for the selected experiments. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Entrained fraction for selected experiments. 
 

Although the entrained fraction is related to the film thickness and the 

dispersed phase holdup, it can be observed that the entrained fraction increases 

when the film thickness decreases. This is possibly due to exchange of mass 

between the two phases due to interfacial shear stress. It is worthe noting that 

the entrained fraction is higher overall then has been reported in annular flow.  

However, at 0.04 m/s for the liquid a much different behaviour is 

observed. This may be because it is in the transitional area as found in Chapter 

4. At about a gas superficial velocity of 15 m/s, the slopes switch from positive 

to negative. This can be observed for all liquid flow rates, except for the highest 
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liquid flow rate where this switch seems to occur at a higher gas flow rate. As 

can be observed in the film thickness and drop size, this change of slope occurs 

at higher gas velocities since the gas to liquid ratio is lower. The change in slope 

count indicate a change from co-current to counter-current flow, i.e., the 

transition between churn and annular flow as also observed in the drop velocity 

section of this Chapter and Chapter 4. A comparison was made between data 

from Azzopardi (1983) and Verbeek (1992) and shown in Figure 5.23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 Comparison with the entrained fraction obtained by 

Azzopardi (1983) and Verbeek et al. (1992). Liquid superficial velocities are all 

0.01 m/s. 

 

Figure 5.23 shows that the data obtained for the present study does show 

a trend that may aid to the understanding of entrainment in the churn flow 
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region in these larger diameter pipes. The trend of the entrained fraction could 

complete the gap between the data sets. This has been verified by adopting the 

method from Ahmad et al. (2010). They propose a method to estimate the 

entrained fraction in churn flow, taking the ideas of Hewitt and Govan (1990) 

further. The latter model is evaluated in more detail in Chapter 6. By means of a 

correction factor to account for the higher entrained fraction in churn flow 

compared to annular flow they proposed the following relationship 

73.973.8
* +−= g

Churn

Annular u
E

E
 

 

5.14 

Where Ug
*
 is the Wallis (1969) parameter as described in Chapter 4. 

Similarly, the entrained fraction at higher gas velocities, i.e, ug
* >1 has been 

calculated by employing the method from Hewitt and Govan (1990). A 

comparison between the entrained fraction calculated from the PDA 

measurements and the method from Ahmad et al. (2010) for a liquid superficial 

velocity of 0.01 m/s is presented in Figure 5.24. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.24 Comparison of entrainment in churn flow 
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As can be observed from Figure 5.28, the Ahmad et al. (2011) method 

shows a reasonable resemblance of the present data. Therefore, also liquid 

superficial velocities of 0.01, 0.02 and 0.04 along with data from Azzopardi et 

al. (1983) and Verbeek et al. (1992) are computed as illustrated in Figure 5.29 

below. The results show a good agreement with the experimental data. Similar 

to the values calculated from the present experimental results, it shows a 

decreasing trend for the entrained fraction with increasing liquid flow rate in the 

churn flow area. This is a particularly interesting feature that is perhaps due to a 

higher rate of coalescence and deposition in churn flow. For values i.e, ug
* >1 it 

can be observed that the entrained fraction increases with increase in gas flow 

rate. This is generally accepted and is due to the increase of interfacial stress as 

described in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.25 Comparison of entrainment in churn flow including others. 
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Recalling Chapter 4, it is reported that the gravitational gas core pressure 

drop plays a dominant role at higher liquid flow rates (churn flow). Thus a high 

entrained fraction contributes more significantly to the total pressure drop 

relative to the liquid film. Fore and Dukler (1995) report a maximum figure of 

20 percent, whereas in the present study for the highest liquid flow rate (0.7 

m/s) the average contribution is 75 percent, being a large difference. In Figure 

4.16, Chapter 4, the pressure drop components are reported. At the point where 

the pressure drop due to the dense core would be zero, the gas superficial 

velocity would be 32 m/s. In Figure 5.25 above, this is switching point of 

slopes. The gas core density is at its minimum at this point. This may indicate 

that the onset of the transition from churn to annular flow is visible “earlier” in 

the liquid film and pressure drop characteristics from about 10 to 15 m/s for the 

gas. This ties in with the skewness analysis of the drop velocity described 

above. From Figure 5.25, this seems to trigger a mechanism from about 15 to 30 

m/s, causing drastic decrease in entrained fraction, hence the relative 

gravitational gas core pressure drop contribution. This mechanism may be 

evidence that indeed the flow does not simply switch between churn and annular 

flow, but a transitional region is present where entrainment still plays a 

dominant role. It seems plausible that the entrainment is carried in the form of 

huge waves or wisps, as described by Azzopardi and Wren (2004). In Chapter 4, 

huge wave are reported from the WMS results in churn conditions around and 

below 10 m/s for the gas superficial velocity.  
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Similar to Chapter 4, also here the liquid film is investigated in more 

detail. The mean film velocity was calculated by using  

 

δ4

)1( f
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5.15 

where Uf is the mean film velocity, Dt the pipe diameter, Ef the entrained 

fraction and δ the mean film thickness. Figure 5.26 illustrates the results for the 

selected experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Mean liquid film velocity 

 

 

Apart from the more obvious increase of the mean film velocity from 

about 15 m/s for the gas, a profound effect on the mean film velocity can be 

observed. For the three lower liquid flow rates, the trends show a minimum, 

after which it increases at a gas superficial velocity of 15 m/s. The magnitude is 
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similar for the two lowest liquid flow rates but then starts to increase for the two 

higher liquid flow rates. For a liquid superficial velocity of 0.02 m/s, the mean 

film velocity still shows a uniform trend but shows a factor 3 higher values, 

whereas this is not the case for 0.04 m/s which shows a larger scatter and a 

factor 12 higher values. The structure velocity was also examined and an 

example illustrated by Figure 5.27. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.27 The structure velocity (closed symbols). The mean liquid 

film velocity for 0.0045 m/s is also plotted for illustration. 

 

As in Chapter 4, also here negative structure velocities can be observed 

and a similar explanation may apply. In addition, for larger diameter pipes it can 

not be assumed that the waves travel uniformly about the periphery of the pipe 

wall. As mentioned, waves travelling sideways on the pipe wall have also been 

observed. This non-uniformity has an influence on the film thickness in general 

but also on the wave velocity, frequency, amplitude and spacing. Zangana 
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(2011) addresses this problem in more detail by employing local conductance 

probes in combination with wall shear stress probes.  

From the above, i.e., drop size, drop velocity and drop entrainment, a 

few main conclusions can be drawn.  

The drop size shows a weak but gradual decrease with gas flow rate, it 

then increases after which it again decreases. This may be linked inversely with 

the entrainment which seems to increase, then deceases and then again increases  

There is evidence in this Chapter along with Chapter 4 and 6. The 

possible inception point of the transition from churn to annular flow was 

observed by examination of the diameter and velocity distributions taken over 

the entire cross-section of the pipe. There is evidence that when the skewness of 

the drop velocity distribution is symmetrical, the ratio between drop velocity 

and gas superficial velocity is around unity. 

The latter occurs when the liquid film thickness, pressure drop and 

entrained fractions show their minima and maxima respectively. The 

gravitational pressure drop due to the dense core shows its maximum.  

This mechanism may be evidence that indeed the flow does not simply 

switch between churn and annular flow, but a transitional region is present 

where entrainment still plays a dominant role. This is described in Chapter 6. 

For this range, it seems plausible that the entrainment is carried in the 

form of huge waves or wisps, as described by Azzopardi and Wren (2004). For 

the present study, huge wave are reported from the WMS results in churn 

conditions around 10 m/s for the gas superficial velocity. 
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6 Drop Simulations 

This chapter presents the results of flow simulations performed using 

Star-CD. The first section introduces the motivation of the study followed by 

the outline. The third section describes the background of the predictions 

including the numerical method by James et al. (1980) and the current method. 

The next section covers the results of the simulations. The last section describes 

the lateral and axial development of drop trajectories and analysis of deposition 

mechanisms more detailed.  

 

6.1 Previous work 

The present simulation study follows from work carried out at AERE 

Harwell in the period 1970-1988. Those started with the study of liquid or solid 

dispersions in turbulent gas streams by Hutchinson et al. (1970) which 

developed a stochastic model to predict the interaction between the continuous 

and dispersed phase. This is based on the random walk process which a drop 

undergoes, random trajectories in a pipe when subject to forces such as 

turbulence. The model was tested and shown to perform satisfactory against 

experimental data obtained in pipe of 9.5 to 63.5 mm ((Alexander and Coldren 

(1951), Cousins et al. (1965) and Cousins and Hewitt (1968)).  

James and Hutchinson (1978) extended the model by simulating 

trajectories of individual drops. James et al. (1980), Andreussi and Azzopardi 

(1982) (Figure 6.1) and Wilkes et al. (1982) applied and further refined this 

method. James et al. (1980) particularly focussed on the mechanisms referred to 

as “direct impaction” and “diffusion” where drops deposit back onto the pipe 

wall by a linear trajectory and by a more random (walk) trajectory respectively. 



Drop Simulations 

 146

Star-CD incorporates such a random walk process. It is essentially a 

Lagrangian/Eulerian approach. The conservation of mass, momentum and 

energy equations are written for each single element in the dispersed phase. For 

the continuous phase, i.e. the gas phase, the Navier-Stokes equations are 

employed, taking into account several different terms associated with the 

dispersed/continuous phase interactions. Examples of the earlier simulations are 

given in Figure 6.1. Those results were replicated using Star-CD and then 

extended to the present pipe size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Example simulation of drop motion ((Andreussi and 

Azzopardi (1981)) (Dt = 32 mm, UI = 0.9 m/s, Ugs = 29 m/s) 
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6.2 Outline 

The objectives of the present work were: 

1. To reproduce the results of James and Hutchinson (1978) using Star-

CD; 

2. To simulate drop behaviour under conditions similar to those of 

James and Hutchinson (1978) by equivalent simulations for a 127 

mm pipe; 

3. The performance of the dispersed multiphase flow model and 

comparing results with a Reynolds Stress Model (RSM); 

4. To study the effect of multiple angle drop ejection; 

5. Comparing the effect of mesh design; 

6. Quantification of drops likely to deposit on the pipe wall by the 

diffusion or direct impaction mechanisms. 

 

Table 6.1 shows the different conditions at which simulations were 

performed. A gas superficial velocity of 29 m/s was simulated for comparison 

with the work of James et al. (1980) and Andreussi and Azzopardi (1981), 

further simulations were carried out at a gas superficial velocity of 20 m/s which 

represent the maximum achieved experimentally in the 127 mm pipe. In 

addition, a RSM (see next section for definition) simulation was performed for 

the case of Dt = 32 mm and Dd = 450 µm in order to determine whether eddy 

viscosity would affect the results compared to the k-ε model used in the rest of 

the simulations. Since it is important to gain understanding in the fundamentals 

of drop trajectories, performing all simulations with the RSM model is perhaps 

appropriate for future work. Moreover, another case, for Dt = 127 mm and Dd = 
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150, 450 and 750 µm, in which drops were injected at multiple angles of 33, 66, 

90, 123 and 156 degrees was carried out. That is, each angle being a separate 

injection point, injecting drops with an interval of 1 s. Most calculations were 

carried out with an injection velocity of 0.7 m/s. To examine the effect of 

ejection velocity one case with an ejection velocity of 0.2 m/s was simulated for 

the 127 mm pipe. Also, a simulation was performed to quantify the effect of gas 

superficial velocity using a value of 15 m/s instead of 29 or 20 m/s. 

Table 6.1 Simulation conditions 

 

The drop ejection velocity of 0.7 m/s was selected from analysis of cine 

film as discussed in chapter 5. This was based on liquid superficial velocities 

ranging from 0.014 to 0.04 m/s and gas superficial velocities from 13.14 to 16 

Drop diameter 

Dd 

µm 

Pipe diameter 

Dt 

mm 

Superficial gas 

velocity 

Ugs 

m/s 

Drop ejection 

velocity 

UI 

m/s 

Simulation 

 

# 

150 

150 

150 

150 

32 

127 

127 

127 

29 

29 

20 

20 

0.7 

0.7 

0.7 

0.7 

1 

5 

8 

17 

450 

450 

450 

450 

450 

450 
450 

32 

32 

127 

127 

127 

127 
127 

29 

29 

29 

20 

20 

15 
20 

0.7 

0.7 

0.7 

0.7 

0.2 

0.7 
0.7 

2 

3 

6 

9 

10 

11 

18 

650 127 20 0.7 12 

750 
750 

750 

750 

32 
127 

127 

127 

29 
29 

20 

20 

0.7 
0.7 

0.7 

0.7 

4 
7 

13 

19 

850 127 20 0.7 14 

1000 127 20 0.7 15 

1500 127 20 0.7 16 
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m/s. Drop ejection velocities were found to be in the in the range of 0.6 to 0.8 

m/s, the average being about 0.7 m/s. The drop ejection velocity ties in with the 

value of 0.9 m/s reported by Andreussi and Azzopardi (1981). It is perhaps not 

an unreasonable assumption that the latter drop ejection velocity value is 

slightly higher as the flow rates from which they were obtained were higher.  

 

6.3 Numerical drop trajectory experiments  

 The one equation method used by James et al. (1980) is described by 

the turbulence method of Hutchinson et al. (1970) with constants in the form of 

a eddy length scale Le, a eddy velocity scale Ue and an eddy/drop lifetime Te  

 

and 

 

 

and 
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6.2 
 

 
 

 

6.3 

 

 

 

6.4 

 

 
6.5 

Where R is the pipe radius, τ is the shear stress at the gas-liquid 

interface, ρg the gas density, Ugs the gas superficial velocity, f the (Blasius) 

friction factor and
geR the gas Reynolds number. The drag force acting over the 

drop is expressed by 

 2

4

250 d)dUeV(dcd.dF
π

ρ −= c 
 

6.6 

where cd is the drag coefficient of the drop, 
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deR
.dc

24
440 += c 

6.7 

where the drop Reynolds number includes the drag velocity of the drop. 

  By following aforementioned steps, they suggested the change of 

motion u,v relative to non-dimensional time θ, normal and tangential to a 

ejection point of a drop to be: 

 

and 

( ) ( )uSbuSuSa
d

du
−+−−= 111

θ
c 

( ) ( )vSbvSvSa
d

dv
−+−−= 222

θ
 

6.8 

 

 

 

6.9 

  Here, S is the position of a droplet relative to an imaginary straight line 

from the ejection point to the tube axis and a and b are constants described by: 

 

and ld

geL.
a

ρ
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6.10 

 
 

 

 

6.11 

  They proposed the following solutions for the interaction between drop 

and eddy. It is important to note that (i) these equations solve for the lateral 

direction in a pipe, (ii) they hold when assumed that the droplet passes through 

the eddy in a straight line and (iii) that the drag coefficient is constant over an  

o-th iteration. The velocity of the drop in radial and circumferential directions u, 

v respectively then becomes; 
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  and the displacements becomes: 
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6.14 

 

 

 
6.15 

  Hutchinson et al. (1970) suggested that the contact time between eddy 

and drop is td. Logically, it is assumed that the drop/eddy contact time can not 

exceed the eddy lifetime: 

 
dt

eUeL

eT
. ≥== 61ζ  

 

6.16 

  Star-CD employs a similar simulation. However, there are several 

differences between the Hutchinson et al. (1970) and the present study. First is 

that here a two-equation high Reynolds k-ε (turbulent kinetic energy and 

dissipation respectively) model is employed, which is contrary to the model by 

Hutchinson (1970). The latter being a single or “zero-equation” model since it 

finds its basis in the mixing length model. Second, the flow mechanisms are 

two-way coupled, i.e., the gas phase interacts with drops and vice versa. Third, 

the momentum energy and mass evolution is solved for lateral and axial 

directions. Fourth is that the number of droplets injected into the system is 100 

to 200 times greater compared to the studies carried out at Harwell. However, to 

keep the time required to complete a sufficient amount of iterations reasonable, 

neither coalescence nor deposition was included, i.e., droplets were unable to 

coalesce and disappeared from the domain outlet or hit the wall or evaporated 

from the system. The latter ties in with the work of James et al. (1980) 
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  Verification of the performance of the k-ε  model was achieved by 

running one case with the more complex Reynolds Stress Model. This model 

employs a more advanced turbulence model. The computational power required 

is however much higher, resulting in longer iteration times. The results are 

shown in the next section.  

  The mesh is designed by Tkaczyk (2011). Pipe lengths of 5 m (32 mm 

pipe) and 10 m (127 mm pipe) were used. Injection points were at 3 and 3.5 m 

from the pipe inlet respectively. This allows for development of the continuous 

phase flow prior to drop injection at with a time interval of 1 s. The lack of 

sensitivity of the calculation to mesh size was confirmed by using meshes with 

increasing numbers of cells. It is verified here by considering cases where the 

number of cells was increased by a factor 2 for both 32 and 127 mm diameter 

pipes; meshes used are shown in Figure 6.2 and 6.3. The gas velocity profiles 

obtained using both cases showed no significant differences (Figure 6.4 and 6.5) 

 

 

 

 

 

 

 

 

Figure 6.2 Initial Mesh 1        Figure 6.3 Refined mesh 2 
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Figure 6.4 Gas velocity profile in the 32 mm pipe. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5 Gas velocity profile in the 127 mm pipe. 
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6.4 Results 

  The results are presented as drop trajectories in Table 6.2. The results 

show trends similar to the earlier Harwell work. Differences might well be due 

to the fact that large numbers of drops are used in the present work than 

previously rather than be due to the employment of a different turbulence model. 

In addition, also here drops can move in a direction opposite to that in which the 

drops were injected.  However, because of higher number of drops, this is not 

always clearly visible.  

  Runs 1 to 4 are for the 32 mm diameter pipe. Run 1 shows different 

features when compared to James et al. (1980) for the same flow conditions. 

The lateral plot shows a significant scatter of droplets. The drops penetrate 

towards the centre of the pipe, but not to a great extend. After injection, they 

move both in the direction of the opposite semi circle as well as in negative 

direction relative to the injection direction. In contrast, the results by James et al. 

(1980) show a direct impaction mechanism. This is perhaps the first evidence 

that the performance of a “zero-equation” model gives a cruder estimate of the 

droplet trajectory. The results however show a better agreement with those from 

Andreussi and Azzopardi (1981). The differences could be due to difference in 

ejection velocity. This is supported by the fact that in Run 3, despite the much 

larger droplet size, the drops are not yet travelling in a perfectly straight line, 

indicating that there is still an effect of turbulence at this larger drop size. Run 2 

shows the results obtained with the RSM model. From this, it can be observed 

that the more complex turbulence model does not produce a significant 

difference from run 3. The results obtained with run 4 are in good agreement 

with the data by James et al. (1980). 
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  In order to compare those from the present work and earlier ones from 

Harwell, with those for the 127 mm diameter pipe, runs 5 to 7 were carried out. 

There are differences between runs 5 to 7 and runs 1 to 4; the turbulence 

intensity and residence time play a more dominant role in the 127 mm pipe. This 

can be linked to the Reynolds number being proportional to the pipe diameter, 

i.e. the Reynolds number increases with increasing pipe diameter, provided a 

constant gas flow rate. Run 5 also shows a more random motion compared to 

that in the 32 mm pipe. Not many droplets tend to travel beyond one radius 

centred on the injection point. Note, here all drops are injected radially inwards. 

Run 6 for medium sized drops is quite different from the equivalent case (run 3) 

in the 32 mm pipe. Here drops travel back towards the origin in the cross-

sectional sense. A similar feature may also occur in run 5 but is less clearly 

visible. However, the large mass and hence momentum of a larger droplet 

causes the droplets to penetrate further laterally. Another interesting feature of 

both runs 6 and 7, compared to 3 and 4, is illustrated by Figure 6.6. 

 

 

 

 

 

 

 

 

 

Figure 6.6 Cross sections presented in scaled manner run 7 and run 4 
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  Figure 6.6 highlights a quarter of the 127 mm pipe and the insert shows 

run 4 with the 32 mm pipe. If one considers that 32 mm is about four times 

smaller than 127 mm, then the one quarter part of run 7, in which the inertia is 

greater than the diffusive effect of the continuous phase, it shows similarities 

with runs 2, 3 and 4. This is perhaps a crude comparison, but, as stated earlier, it 

suggests that the turbulence intensity and residence time increases with pipe 

diameter, i.e., turbulence becomes more influential in a large diameter pipe, and 

this may aid in the explanation for the difference between flow phenomena in 

small and larger diameter pipes.  

  Runs 8 to 16 show a different set of runs with gas superficial velocities 

of 20 m/s. This lower gas flow rate corresponds to the maximum value studied 

in the current experiments. Run 8 shows features similar to run 5. In run 8, 

however, majority of the drops reach about 40 percent into the cross-section, 

whereas in 1 this is about 70 percent. Run 9 can be analysed in the same manner 

as applied to runs 7 and 4. Figure 6.7 shows the interpretation.  

 

 

 

 

 

 

 

 

 

 
 

Figure 6.7 Cross sections presented in scaled manner run 9 and run 3 
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Figure 6.8 below shows a simple illustration of the estimated drop (velocity) 

response time (Clowe et al. 2012) and the time required for a drop to travel from 

the injection side to the opposite side of the pipe at a constant velocity of 0.7 

m/s. This indicates that drops up to 150 µm could respond with a change in 

direction in a 32 mm pipe and drops up to 650 respond in a 127 mm pipe. This 

rough estimate ties in with the results presented in Table 6.2 further below. 

 

   

 

 

 

 

 

 

 

From run 3 it is evident that the relatively large 450 µm drops in the 32 mm pipe 

almost all show a direct impaction mechanism. In the 127 mm pipe there is more 

diffusion. The quarter highlighted in Figure 6.6 could be compared with the 

behaviour of drops in run 3. On the other hand, comparing run 9 with run 7, the 

gas superficial velocity and its effect on the turbulence intensity becomes 

obvious. The drops in run 9 do not have a high momentum compared to run 7 

but experience less influence of the continuous phase, and therefore penetrate 

further into the pipe before diffusion commences.  Runs 10 and 11 show the 

results keeping the drop size constant but changing the parameters of injection 

and gas superficial velocity respectively. The results are rather self-explanatory. 

Figure 6.8 Drop response 

time and the time required 
for a drop to travel 

radially at 0.7 m/s in a 32 

mm and 127 mm pipe 
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The results shown for runs 12 to 16 show the behaviour of the droplets with 

increasing drop size. The change in behaviour is very systematic from diffusion 

to direct impaction starting from run 13. It is worth noting that for longer pipes 

deposition would be noticed for smaller drop sizes. Run 12 could be a good 

example for the latter hypothesis. As mentioned, the drops start hitting the 

opposite semi-circle in run 13 and the band of droplets narrows to a smaller 

angle with increasing drop size through to run 16. Runs 17, 18 and 19 represent 

the results obtained by injecting the drops under various angles as outlined in the 

framework section of the study. The effect of the ejection angle does not appear 

to cause major differences in run 17 when compared to runs 1, 5 and 8. The 150 

µm drops are very susceptible to the continuous phase turbulence and spread out 

by diffusion from the start. The function of the trajectory length however plays 

an important role in the difference between direct impaction and diffusion. This 

ties in with the results reported for the 32 mm pipe. The drops with a diameter of 

450 and 750 µm show similar results to the simulation cases with equal drop 

sizes. However, the distances the drops travel decrease with increasing deviation 

from 90°. In order to quantify drops deposition the following relationship is 

proposed. If Ddiff is greater than this value deposition is by diffusion. 

 
4.0=≈

L
Ddiff

δ
  

 

6.17 

 

 

 

 
 

 
 

 
 

Figure 6.9 Quantification of 
diffusion, L and δ are the 

approximate length and width 
of the bulk of drops 



Drop Simulations 

 159

Table 6.2 Simulation results 

(Model, Dt , Dd ,Ugs and UI denote the turbulence model 

employed, pipe diameter, drop diameter, gas superficial velocity 

and drop ejection velocity respectively). 

 

 

 

 

 

 

 

Run Conditions Lateral view Axial view 

1 

model k-ε 

Dt 32 mm i.d. 

Dd 150 µm 

Ugs 29 m/s 

UI 0.7 m/s 

  

2 

model RSM 

Dt 32 mm i.d. 

Dd 450 µm 
Ugs 29 m/s 

UI 0.7 m/s 
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3 

model k-ε 

Dt 32 mm i.d. 

Dd 450 µm 

Ugs 29 m/s 

UI 0.7 m/s 

 
 

4 

model k-ε 

Dt 32 mm i.d. 

Dd 750 µm 

Ugs 29 m/s 

Ud 0.7 m/s 

  

5 

model k-ε 

Dt 127 mm i.d. 

Dd 150 µm 

Ugs 29 m/s 

UI 0.7 m/s 
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6 

model k-ε 
Dt 127 mm i.d. 

Dd 450 µm 
Ugs 29 m/s 

UI 0.7 m/s 

 
 

7 

model k-ε 

Dt 127 mm i.d. 

Dd 750 µm 

Ugs 29 m/s 

UI 0.7 m/s 

  

8 

model k-ε 

Dt 127 mm i.d. 

Dd 150 µm 

Ugs 20 m/s 

UI 0.7 m/s 
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9 

model k-ε 

Dt 127 mm i.d. 

Dd 450 µm 

Ugs 20 m/s 

UI 0.7 m/s 

  

10 

model k-ε 

Dt 127 mm i.d. 

Dd 450 µm 

Ugs 20 m/s 
UI 0.2 m/s 

  

11 

model k-ε 

Dt 127 mm i.d. 

Dd 450 µm 

Ugs 15 m/s 

UI 0.7 m/s 
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12 

model k-ε 

Dt 127 mm i.d. 

Dd 650 µm 

Ugs 20 m/s 

UI 0.7 m/s 

  

13 

model k-ε 

Dt 127 mm i.d. 

Dd 750 µm 

Ugs 20 m/s 

UI 0.7 m/s 

  

14 

model k-ε 

Dt 127 mm i.d. 

Dd 850 µm 

Ugs 20 m/s 
UI 0.7 m/s 
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15 

model k-ε 

Dt 127 mm i.d. 

Dd 1000 µm 

Ugs 20 m/s 

UI 0.7 m/s 

  

16 

model k-ε 
Dt 127 mm i.d. 

Dd 1500 µm 
Ugs 20 m/s 

UI 0.7 m/s 

  

17 

Multiple 

injection 

model k-ε 

Dt 127 mm i.d. 

Dd 150 µm 

Ugs 20 m/s 

UI 0.7 m/s 
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18 

Multiple 

injection 

model k-ε 

Dt 127 mm i.d. 
Dd 450 µm 

Ugs 20 m/s 
UI 0.7 m/s 

  

19 

Multiple 

injection 

model k-ε 
Dt 127 mm i.d. 

Dd 750 µm 
Ugs 20 m/s 

UI  0.7 m/s 

  



Drop Simulations 

 166

 

6.5 Quantitative information 

  In the material presented so far, the output of the simulations has been 

presented pictorially. However, Star-CD simulations provide a wealth of 

quantitative information. This data was analysed in order to attempt a more 

detailed quantification of droplets deposited by diffusion and direct impaction 

mechanisms. Star-CD is able to give a breakdown of drops active, stuck to the 

wall or otherwise disappeared through the outlet of the flow domain. This 

breakdown was analysed by means of quantifying the ratio of volume of drops 

which arrive at the wall and the total volume of drops present, referred to as 

fractional deposition. Figure 6.10 shows a comparison between runs 1, 3, 4 in 

the 32 mm pipe and runs 5, 6, 7 in the 127 mm pipe of this ratio. For given drop 

diameters the volume of drops deposited in the 32 mm pipe is larger than for the 

127 mm pipe. In general, this ties in with the analysis presented in the previous 

section. 

 

 

 

 

 

 

 

 

 

Figure 6.10 Volumetric fractional deposition rates in the 32 and 127 mm pipe. 

Superficial gas velocity, 29 m/s, drop ejection velocity, 0.7 m/s. 



Drop Simulations 

 167

  Figure 6.11 shows the data for gas velocity of 20 m/s for both pipe 

diameters. High levels of deposition are seen for the 150 mm diameter drops. 

This was not seen at higher gas flow rates in the 32 mm but it did appear in the 

127 mm pipe. The latter is probably due to those drops being sent back to the 

side of the pipe from whence they came by the gas turbulence. For the larger 

drop diameters, it can be seen that the deposition rate increases with increasing 

drop diameter. There is a minimum in the deposition rate/drop size curve at 650-

750 µm with diffusion dominating at the lower end and direct impaction at the 

higher.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Volumetric fractional deposition rates in the 127 mm pipe including 

multiple angle drop injection. Gas superficial velocity is 20 m/s, drop ejection 

velocity is 0.7 m/s. Solid line is an experimental size distribution for gas and 

liquid superficial velocity 20.2 and 0.0045 m/s respectively. 
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  For those simulations with injection at a number of angles there are 

slightly higher deposition rates than those injected radially. This is related to the 

distance a drop would have to travel for depositing. Radially injected should be 

the minimum and the data from the multiple angle injection (127 multi angle) 

should represent the maximum. All other data is then expected to fall in 

between. The solid line represents a typical drop size distribution found 

experimentally in this study, more details on this is presented in Chapter 5. The 

data suggests that about 60 percent of the small drops would be likely to deposit, 

whereas only a quarter of the medium diameter drops would deposit. As stated 

previously, in terms of reality, it should be noted that the multiple angle 

injection of the droplets can be interpreted as a more complex way of 

simulation, between one directional and Gaussian injection angles (Figure 6.12). 

It may be assumed that data for a Gaussian distribution of ejection would show 

slightly different values. 

 

 

Figure 6.12 Simple approach (a), more complex (b) and Gaussian (c) angular 

distributions 
 

θ 

(b) (c) (a) 
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  From the simulations it is possible to extract directional velocity data. 

The lateral trajectories for runs 1 to 4 are shown in Figure 6.13. The velocity u 

into the pipe is positive when the drop motion is towards the injection side. As 

can be seen, the smallest drop diameter shows a strong diffusional pattern. With 

drop diameter, hence momentum, the evolution smoothens and tends towards 

direct impaction. Apart from the strong fluctuations, it can be observed that the 

drop is cumulatively moving in the direction of the opposite quadrant of the 

injection point but also shows large peaks due to motion towards the wall of 

injection point. In general it can be noted that some drops adapt a terminal 

lateral velocity before leaving the pipe outlet without depositing. These are 

possibly drops that stay closer to the wall and are less affected by the turbulent 

gas core.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Lateral velocity, 32 mm pipe for one drop sample. Note for the 450 
µm drop the injection point was set at 3.5 m. 
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  Similarly, for the same conditions in the 127 mm pipe, runs 5, 6, and 7 

were plotted as illustrated by Figure 6.14 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Lateral velocity, 127 mm pipe for one drop sample 
 

  It is rather obvious, compared to the nature in the 32 mm pipe that the 

drops in the 127 mm pipe behave more irregular and the magnitude of 

oscillation for all drop diameters is more intense. This ties in with the 

observations in the previous section. Interestingly the magnitude of oscillation 

of the smallest drop diameter in the 32 mm pipe is relatively lower. For the 

largest drop diameter, a similar direct impaction pattern up to about 7 m can be 

observed compared to the 32 mm pipe. After this point turbulence plays a 

dominant role. 
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  The lateral velocities were also plotted for runs 8, 9, 13, 15 and 16, i.e. 

the 127 mm pipe with a superficial gas velocity of 20 m/s (Figure 6.15). This 

selection was made to present the data clearly. It can be observed that the 

lifetime of the 150 µm drop is rather short and impacts on the drop injection side 

of the pipe. The nature of the 450 µm is comparable with that of the 150 µm 

drop in run 1. For the remaining drop diameters, the plots start to smoothen and 

also show that they remain in the core until the outlet.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Lateral velocity, 127 mm pipe for one drop sample 

 

  Lateral velocities for the multiple angle case from runs 17, 18 and 19 

are shown in Figure 6.16. Although the direction of the initial momentum is 

different for these cases, it does still show a similar trend with runs 8, 9 and 13. 

Except, here the 450 µm drop adapts a terminal velocity after being injected. It 

is not fully clear why this happens and not a chaotic pattern occurs, but perhaps, 
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the drop does not travel far enough into the core to be subjected to higher 

turbulence intensity. 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.16 Lateral velocity, 127 mm pipe and multiple angle injection for one 

drop sample. 
 

  The axial velocities for the all simulations were also plotted as shown 

in Figure 6.17 - 6.20. Two features that stand out, (i) is the negative velocity 

gradient of the drops deposited just prior to impact. As can be seen, this 

deceleration feature is independent of drop diameter, gas velocity and ejection 

velocity. The magnitude of the deceleration seems however dependent on the 

drop size. The deceleration occurs most likely due to the gas velocity profile in 

the cross-section of the pipe. (ii)  the maximum velocities do not deviate so 

much for drop sizes up to 750 µm. The deviation then increases relatively more 

with drop diameter.  
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Figure 6.17 Axial velocity, 32 mm pipe for one drop sample. Note for the 450 

µm drop the injection point was set at 3.5 m. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Axial velocity, 127 mm pipe for one drop sample 
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Figure 6.19 Axial velocity 127 mm pipe, for one drop sample. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Axial velocity, 127 mm pipe and multiple angle injection for one 

drop sample. 
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  More detailed analysis was done by quantifying the distance of 

deposition. Figure 6.21 shows the data from runs 1,3 and 4, Figure 6.22 shows 

the runs 8, 9, 13, 15 and 16 and Figure 6.23 illustrates runs 17 to 19. The cut-off 

in the Figures is due to drops that leave the computational domain without 

depositing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21 Axial distance and axial velocity for runs 1, 3 and 4 
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Figure 6.22 Axial distance and axial velocity for runs 8, 9, 13, 15 and 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Axial distance and axial velocity for runs 17 to 19. For comparison 
“A” is run 10 and “B”is run 16. Solid line and solid line with marks denote 

experimentally obtained drop velocity distributions for gas superficial velocities 
of 16.86 and 20.19 m/s. Liquid superficial velocity 0.0045 m/s 
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  Values of axial drop velocity against axial deposition distance for 100 

drops were plotted for all drop diameters. The origin was chosen as the drop 

injection point. Some drop diameters show hardly any deposition. This is 

supported by the results in Table 6.2. Apart from the smallest drop size, which 

clearly shows a diffusional pattern, the former may indicate that some drop 

diameters have sufficient momentum to reach the core but are carried by the 

continuous phase until they leave the outlet. In first instance it can be observed 

that the smaller drop diameters show a considerable range of deposition 

distances. Also it can be seen that the deposited drops shows an exponential 

relationship between the two parameters, i.e. the distance travelled by the drop 

increases with axial drop velocity. The latter does not appear as strongly in the 

127 mm pipe. Figure 6.21 has therefore a different x-axis range to magnify this 

effect. For 1000 µm more data was recorded and also this starts to show an 

exponential trend. With increasing drop diameter, in general, it can be observed 

that the deposition distance decreases and is more localised.  

  Figure 6.24 illustrates data simulations of injections at several angles. 

These show greater deposition. Obviously, this is a more realistic case. There is 

a limit below which data is not found. In addition to the aforementioned 

features, it can be clearly observed that apart from the exponential relationship, 

the data also shows a minimum boundary (Fit) after which drop deposition only 

appears to occur. The boundary is formed by the larger drop diameters. As a test 

two other sets of data, from runs 10 and 16, were plotted to see the effect. Also 

these appear after the boundary. Although the boundary adopts a very steep 

slope, it does suggest that all drops for each drop diameter will eventually 

deposit. Data from smaller drops would shift to the right in the plot, adopting a 
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higher drop velocity; this implies that the deposition distance increases in a great 

extent before it touches the boundary, that is, a larger scatter. Larger drops will 

shift more to the left in the plot, suggesting that both drop velocity and 

deposition distance decreases. The velocity distribution for two experimental 

conditions, further described in chapter 5, show that for high gas flow rates, the 

data indeed skews negatively. Evidence shows that high gas flow rates cause 

higher rates of drop atomisation, thus the drop diameter is smaller. This works 

the other way around for low gas flow rates, thus larger drop diameters are 

expected. For a lower gas low rate, the positive slope of the distribution shows a 

very similar regression compared to the exponential fit from the simulations. 

The relationship between axial deposition distance and drop velocity can be 

approximated using: 

 
dr

U
depZ

3.0Γ≈  6.18 

  In Chapter 5 it is described that the axial drop velocity is about a factor 

of 1.3 greater than the gas superficial velocity. This factor could be built into Eq. 

6.18 for those cases where the axial drop velocity is unknown.  

  The lateral movement of drops are illustrated in Figures 6.23 and 6.24 

for 32 and 127 mm respectively. Note the small drop by depositing rather soon 

after injection.  
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Figure 6.24 Typical drop trajectories in the 32 mm pipe for runs 1, 3 and 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Typical drop trajectories in the 127 mm pipe for runs 17, 18, 19 and 
8, 9 and 13 
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  From Figures 6.24 and 6.25 it can be observed that there is a strong 

effect of injection angle on deposition distance. For runs 18 and 19 it can be 

seen that the some data are closely grouped at low deposition distances. It is not 

an unreasonable assumption that these data represent either angles of 33 or 66 

degrees or the equivalent in the opposite direction. The data was analysed in 

more detail for run 13, Figure 6.26 shows a Gaussian approximation of the 

relationship between angle and deposition distance. The points represent the 

inception of deposition. Most probably, data for larger drops will show lower 

values and data for smaller drops will show higher values. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 6.26 Effect of angle of injection on deposition distance. 

 

  In order to examine the exact injection angle effect, the data for runs 

17, 18 and 19 was categorised in the respective angles under which they were 

injected. Figure 6.27 shows the deposition results for 200 drops at each angle. 
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As can be seen the effect of angle on the fraction of drops deposited is indeed of 

a Gaussian nature. At small angles, i.e, 33 and 156 degrees, large drops show the 

highest rate of deposition. This switches at angles of 66 and 123 degrees. This 

suggests that diffusion is dominant and small and medium drops deposit due to 

diffusive behaviour. For large drops it van be seen, also from Figure 6.26, that 

they tend to follow the flow to further downstream at 90 degrees. In addition, 

data from Figure 6.11 for multiple angles was included (open symbols). It could 

be possible that small drops have diffusive, medium drops transitional and large 

drops direct impaction characters. However, the angle and thus the interfacial 

area have a significant effect on the deposition mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27 Drop deposition fractions for various ejection angles (closed 
symbols) and diameters (open symbols) 
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  One of the key studies considered important in terms of drop 

deposition is that by Cousins and Hewitt (1968). Azzopardi (1997) reports that 

the rate of deposition D consists of two components, the deposition coefficient k 

and the drop concentration in the core c. Several forms of equations for the rate 

of depositions were proposed but here the version by Azzopardi (1997) is used: 

 kcD =  6.19 

As reported by Schadel et al. (1988) the equation can also be expressed in the 

form of  

 
c

SgsUD

leW
dkD

2

4

π
=  

 

6.20 

where kd is a deposition coefficient, Wle is the total liquid fraction entrained, D 

the pipe diameter, Ugs the gas superficial velocity and S the slip velocity acting 

over the droplet. The latter is expressed by  

 

gsU

dU
S =  

 

6.21 

And k can be expressed by 

 

S

dk
k =  

 
6.22 

  The deposition coefficients for runs 8, 9 and 12 to 19 were quantified 

by using the square root of the drop velocity in the x and y direction, expressed 

by 

 22 vuk +=  
6.23 

  Of all values in the data range, a probability analysis was performed in 

order to determine the dominant frequency for k. The deposition coefficient for 

different drop diameters is illustrated by Figure 6.28. 
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Figure 6.28 Deposition coefficients for runs 8, 9 and 12 to 19 

 

  From Figure 6.28 it can be observed that for runs 8, 9 and 12 to 16 

there is a change of slope between 650 and 750 µm, indicating a possible 

transition between diffusion and direct impaction deposition mechanisms. For 

runs 17, 18 and 19, the results show, in first instance, a surprising downward 

trend. In combination with the results presented above, this may be due to that 

small drops show a higher deposition rate than larger drops. 

However, considered the results presented above, one may ask the question: 

Would the two deposition mechanisms suggested at Harwell, diffusional and 

direct impaction, explain the results obtained in a 127 mm pipe entirely, or is 

there another mechanism involved in larger pipe diameters? To answer this 

question, the experimentally obtained data (Chapter 5) was analysed. Azzopardi 

(2006) suggested a relationship that brings together diffusional deposition data 

from different fluids and pipe diameters.  
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6.26 

Where FD is the fraction of drops deposited by diffusion. To match the 

simulations, experiments in which a maximum gas superficial velocity of 20 m/s 

was obtained were selected. To determine the range of FD the lowest and highest 

gas superficial velocities were used from each selected experiment. The results 

in terms of gas flow rate are presented in Figure 6.29. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.29 Drop fraction deposited by diffusion. 
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  As can be observed, a linear relationship is obtained. This does 

however neither show a possible effect of drop diameter nor angle effect as 

observed previously in Figure 6.10 and 6.27. Therefore, the dominant arithmetic 

drop diameters were extracted from the processed data described in Chapter 5 

and the calculated FD plotted in terms of drop diameter. The results, along with 

the multiple angle simulation results from Figure 6.10, are shown in Figure 6.30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30 Simulation and predicted drop deposition fractions. Simulation 

results (squares), experimental results (circles) at gas superficial velocities of 20 

and 11 m/s and boundaries between the expected deposition mechanisms (solid 

lines). 

 

  As can be observed, the predicted data from experiments agree well 

with the multiple angle simulations. The most important feature in Figure 6.30 is 
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that, apart from diffusional and direct impaction deposition mechanisms, another 

possible mechanism applies to larger diameter pipes, i.e., transitional deposition. 

In this region, the drops are hindered to travel further radially than half the pipe 

diameter but instead are carried by the gas core over a large axial distance as can 

be observed from run 18. They only show a direct impaction mechanism at 

small injection angles. The predictions by Eq. 6.24 from the experimental data 

show this feature around the transition from churn to annular flow as proposed 

in Chapter 4. It could also be argued that, although drops at an experimental gas 

superficial velocity of 11 m/s are shown, it is generally accepted that drop 

diameters depend on the gas flow rate. Diffusional deposition occurs at high gas 

flow rates (annular flow), the drop diameters are smaller and tend to stay more 

concentrated in the interfacial area from which they were entrained and then 

deposit due to random motion. Direct impaction seems to depend low gas flow 

rates (churn flow) on the drop diameter. If the drop is large enough it seems to 

be able to cross the gas core in a radially straight trajectory to the opposite 

quadrant. The possible answer to the question asked is therefore that there is 

strong evidence that indeed a third deposition mechanism is active in larger 

diameter pipes, perhaps in the transitional area between churn and annular flow. 

Pipe diameter and thus the trajectory length travelled by a drop plays an 

important role in these mechanism. Figure 6.31 illustrates the difference 

between a 32 mm and a 127 mm pipe. 
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Figure 6.31 Pipe diameter effect 

 

  Figure 6.31 suggests that a drop must yield a substantial higher initial 

momentum in the present study in order to overcome the gas core (turbulence) 

and travel to the opposite quandrant of the pipe to that in a small diameter pipe.  
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  The above results on deposition, drop diffusion and direct impaction 

show that all drops in annular type flows will eventually deposit. Though the 

trajectory can be considerably long. 

  This is linked to the drop and gas momentum and the angle of 

injection. In addition, values for the deposition coefficient are reported which 

show high values for small drop diameters and low values for large drop 

diameters.  

  Lateral velocities overall show a chaotic nature for small drop 

diameters, i.e. sometimes travelling both towards the opposite side of the pipe 

and back towards the ejection side of the pipe. This chaotic behaviour decreases 

as drop diameters increase.  

  Diffusion only occurs for a drop diameter of 150 µm in the 32 mm 

diameter pipe, beyond this it is direct impaction, i.e., two deposition 

mechanisms apply: diffusional and direct impaction. This agrees with the results 

in a 32 mm pipe from studies carried out at Harwell.  

  In addition to diffusional and direct impaction, in a 127 mm pipe, there 

is evidence that a third deposition mechanism applies, i.e., transitional 

deposition. In this region, the drops are hindered to travel further radially than 

half the pipe diameter but instead are carried by the gas core over a large axial 

distance as can be observed from run 18. They only show a direct impaction 

mechanism at small injection angles. The predictions from the experimental data 

show this feature around the transition from churn to annular flow. This may  

support the observations of transition from churn to annular flow in Chapters 4 

and 5. 
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7 Conclusions and Recommendations 

The main aim of this thesis is to quantify the churn to annular flow 

transition for vertical gas-liquid flows in a 127 mm diameter riser. 

The experimentally obtained results for cross-section averaged and 

local phase fractions, film thickness and the dispersed phase, i.e., 

drops, are used. This chapter presents the conclusions drawn from the 

results and interpretation of experimental data obtained in this study. 

In addition, recommendations are made for future research. 

 

7.1 The liquid film and pressure drop 

It is observed that churn flow covers a wide range of flow rates in the 

large diameter pipe studied. 

Analysis and comparison of trends in the film thickness, structure 

velocity, pressure drop and its gravitational and frictional components 

show that the gravitational component of the gas core is dominant in 

churn flow. The density of the core increases significantly with 

increasing liquid flow rate. The interfacial shear stress is commonly 

calculated using a one-dimensional approach, i.e., the total pressure 

drop multiplied by some geometrical factor to account for the film 

thickness. This does hold in annular flow (at very high and low gas 

and liquid velocities) since the density of the gas core is insignificant. 

There is evidence that in churn flow this is not valid. The wall shear 

stress is calculated by including the interfacial shear stress.  

Therefore refined interfacial and wall shear stress equations are 

proposed to be used for churn flow in these large diameter pipes. 
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Consequently the results for the interfacial friction factor, showed that 

for annular flow the results agreed with e.g., the Wallis (1969) friction 

factor. For churn flow however the results did not agree well. 

Therefore, also a refined equation is proposed to be used for these 

large diameter pipes. 

A churn-annular flow transition boundary has been derived based on 

trends in film thickness, pressure drop and structure velocity data. It is 

supported by observations made using high speed photography. 

Minima are found in plots of film thickness and pressure gradient 

against gas superficial velocity at low liquid flow rates. These minima 

are not clearly visible at higher liquid flow rates. 

By extensive analysis of the boundary derived for the present study 

and comparison of boundaries proposed by other workers based on a 

range of different pipe diameter, physical properties of the fluids and 

experimental flow conditions, a more unified correlation is derived. 

The correlation is based on dimensional analysis by using 

dimensionless quantities.  

The correlation predicts the boundaries observed reasonably well 

 

7.2 Drop size, velocity and liquid entrainment 

Evidence has been observed of new waves being created by large 

drops impacting on the film surface.  

The profiles of the velocities of the drops as well as the gas (obtained 

using tracer drops <20µm) both show a maximum peak at the pipe 

centerline. This is typical for these types of turbulent flows. 
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From the analysis of the drop velocity probability distributions there 

is evidence that when the Gaussian shape of the probability is 

symmetrical, the ratio between the highest probable drop velocity 

obtained and the associated gas superficial velocity is around unity. 

This is evidence that the slip velocity is thus near-zero. This 

phenomenon occurs and finds support from and at the churn to 

annular flow boundary conditions identified above. 

The entrained fraction in the gas phase shows an increasing trend in 

churn flow with increasing gas flow rate. This entrained fraction in 

churn flow is instead perhaps due to large waves and wisps and not 

necessarily droplets only. This is supported by the occurrence of huge 

waves and wisps observed from the WMS data at these conditions. At 

higher gas flow rates the entrainment shows a decrease. Following the 

ideas of Azzopardi and Wren (2004), this is perhaps due to a higher 

rate of break-up and atomisation of large waves and wisps. This is 

expected to be an onset of annular flow. At the very high end of gas 

flow rate the entrainment predictions again shows an increasing trend. 

This may occur since no longer are large waves present and liquid 

mass transfer between the phases is only from the relatively thin 

liquid film. This is expected to be annular flow with a fairly 

homogenously-dispersed entrained liquid fraction. 

 

7.3 CFD drop simulations 

There is evidence that the axial trajectory of drops can be 

considerably 
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long. Drops of a large size class deposit sooner than drops of middle 

size classes. Small size classes show more diffusive characteristics, 

and would therefore take a longer distance to deposit. This is linked to 

the drop and gas momentum and the angle of injection.  

A relationship has been derived to estimate the deposition distance of 

drops of all sizes only depending on the drop velocity. 

The drop ejection angle and size were successfully related to the 

volumetric fraction of drops deposited back onto the pipe wall. There 

is evidence that the drop fraction deposited is larger for small ejection 

angles. The fraction deposited also shows dependence on size in the 

sense that it shows a minimum with increasing drop size. Small drops 

have high deposition fractions, middle sized show a minimum and 

towards larger sizes the fraction deposited shows an increase. 

From comparison between drop fractions deposited by diffusion and 

direct impaction in the CFD and experimental results, there is 

evidence that in large diameter pipes a third deposition mechanism 

applies: Transitional deposition. In the analysis the Reynolds and 

Weber number are the driving dimensionless numbers. These 

numbers are smaller for lower gas flow rates, implying that 

transitional impaction occurs at medium sized drops at medium gas 

flow rates. Around these conditions, large waves are present in the 

flow as described above. It may well be that the third deposition 

mechanism occurs since it is plausible that the majority of entrained 

liquid is carried in large waves and wisps as reported above. 

Therefore, at the transition from churn to annular flow in large 
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diameter vertical pipes, the behaviour of the flow is not typical to that 

observed in smaller diameter pipes. 

 

7.4 Recommendations for further work 

With the key areas of interest identified, the next recommendations 

can be made for  further investigation. Apart from the fact that a 127 

mm pipe diameter is considerably larger than in the majority of 

studies, even larger pipes could be investigated to examine the effect 

of pipe diameter on flow patterns and transitions. Especially drop size, 

velocity and the entrainment mechanisms in churn and the churn to 

annular flow transition could be further explored. A better 

understanding of the entrainment is of crucial importance for flow 

models. Studies in flexible risers could be undertaken to quantify 

differences between straight and pipe flow with different orientations 

simultaneously. Further and more detailed dimensional data analysis 

could bring datasets for small and large diameter pipes closer 

together.
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Appendix A 
 

 
 

Table A1 Experimental matrix for 2 barg (Indicative) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 39 

1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

3 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
4 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
5 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
6 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
7 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

8 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
9 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
10 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
11 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
12 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

13 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
14 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
15 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
16 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

17 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
18 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
19 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
20 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
21 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

22 X X X X X X X X X X X X X X X X X X X X X X X X X X X X   

23 X X X X X X X X X X X X X X X X X X X X X X X             

24 X X X X X X X X X X X X X X X X                           

25 X X X X X X X X X   X X X X                               



 

 

Appendix B 
 

Table B1 The PDA experimental matrix [superficial velocities (m/s)] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Liquid 

 

Gas 

0.0045 0.0082 0.01 0.014 0.02 0.025 0.03 0.04 

20 X X X X X X X X 

19 X X X X X X X X 

18 X X X X X X X X 

17.5 X X X X X X X X 

16.5 X X X X X X X X 

16 X X X X X X X X 

15 X X X X X X X X 

14 X X X X X X X  

13 X X X X X X X  

12 X X X X X X   

10 X X X X     



 

 

Appendix C 
 
 

Extrapolation of drop size distributions 

As can be seen from the drop diameter probability distributions, the 

values do not approach 0 at maximum drop size measured. This is probably due 

to that there are drops present of sizes larger than the PDA can measure. These 

missing drops might introduce error in the calculation of mean drop sizes. To 

examine the effect in more detail, an extrapolation was imposed A linear fit was 

applied to the distribution in order to estimate the drop size. This is illustrated in 

Figure C1 for a gas and liquid superficial velocity of 20.2 and 0.0045 m/s 

respectively. 

As can be observed this provides an estimate of the maximum drop size 

obtained for a given distribution. 

 

 

 

 

 

 

 

 

 

 

Figure C1 Extrapolated drop size distribution. Gas and liquid superficial 

velocity of 20.2 and 0.0045 m/s 

 



 

 

This linear extrapolation then allows calculation of a corrected Sauter 

mean diameter.The old and new Sauter mean diameters are compared in Figure 

C2. There are only small under predictions. A non linear extrapolation (inverse 

relationship) would perhaps be more correct. 

 

 

 

 

 

 

 

 

 

 

Figure C2 The effect of linear drop distribution extrapolation of selected 
experiments. 

 

In order to examine the difference between linear and inverse 

relationship extrapolation, a Weibull distribution was applied to the data. The 

Rosin Rammler equation, much used to describe size distributions of particles, 

is a simplified form of the Weibull distribution. Two conditions were selected to 

be illustrated at a liquid superficial velocity 0.0045 and gas superficial velocities 

of 13 and 19 m/s.  

 

 



 

 

The goodness of fit of a Weibull distribution depends on its scaling λ 

(the flatness and width of the distribution) and shape k (the slope) parameters. 

The sensitivity of the Sauter mean diameter on the Weibull distribution, for the 

optima extrapolation length and starting points, was first examined. Figure C3 

illustrates a typical effect of extrapolation length on the Sauter mean diameter 

obtained for different starting points of the extrapolation. The vector length for 

every diameter distribution was iterated until no effect on the Sauter mean 

diameter was observed. For the majority of data, the most suitable point for 

vector length was found to be at 550 vector points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C3 Effect of extrapolation length and start point on the Sauter 

mean diameter. Liquid superficial velocity 0.0045 and gas superficial velocity 

19 m/s 

 

Similar iterations were performed to find the optimum starting point. For 

the same condition as those in Figure C3, Figure C4 illustrates that the data 

converges to a constant of the Sauter mean diameter between approximately 280 



 

 

and 320 µm. This range was found to be similar for the majority of the data and 

used for iteration. 

 

 

 

 

 

 

 

 

 

 

 

Figure C4 Local minimum to determine extrapolation start point.  
Liquid superficial velocity 0.0045 and gas superficial velocity 19 m/s 

 

Figure C5 illustrates the mean drop size distributions and extrapolation 

results obtained for the flow conditions described above. The results perhaps 

show a more physically correct behaviour than those by linear extrapolation. In 

addition it is interesting to see that the extrapolated values show that it is 

plausible to obtain drops of very large sizes. It should be noted that these events 

are sporadic considered the occurrence probability. It is perhaps not 

unreasonable to assume that very large drops can be expected near the gas-

liquid interface since the rate of atomisation is smaller. This could link the 

results reported in the preliminary photography experiments discussed in earlier 

parts of Chapter 5. 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.C5 Optimised extrapolation of normalised arithmetic drop size 

distributions. 

 

 

A comparison between previous and present data (including Weibull 

extrapolation) is shown in Figure C6 and a good trend can be observed. 

 

 

 

 

 

 

 

 

 

Figure C6 Comparison between previous and present data. 

Azzopardi et al. (1980), Azzopardi et al. (1983), Jepson et al. (1989), 
Azzopardi et al. (1991). 



 

 

For the linear extrapolation, the Rosin Rammler parameters were 

quantified similar to those by e.g., Azzopardi et al. (1978). The Rosin Rammler 

fitting parameters, N and x̄ for the present data are illustrated in Table C1 along 

with values obtained by Azzopardi et al. (1978). 

Table C1 Experimental conditions and Rosin Rammler parameters 

 Present 

Liquid superficial 

velocity (m/s) 

Gas superficial 

velocity (m/s) 

x̄  

(µm) 

N 

(-) 

Sauter mean 

diameter 

11.72 
396.4 4.4 168.1 

0.0045 

20.19 
349.4 4.5 145.6 

10.83 
358.6 4.6 173.8 

0.0082 

20 
362.4 4.6 182.2 

11.52 
331.3 4.7 130.5 

0.0202 

19.61 
345.4 4.6 143.8 

14.5 
353.2 4.7 169.8 

0.04 

18.8 
357.9 4.6 177.4 

  Azzopardi et al. (1978) 

255 2.3 162 0.016 36 

253 2.5 170 

238 2.2 146 0.031 36 

247 2.4 161 

0.047 
241 2.3 153 

241 2.1 142 0.063 

36 

238 2.2 146 

0.079 36 
235 2.4 154 

 


