Large Rayleigh number thermal convection: heat flux predictions and strongly nonlinear solutions

Chini, Gregory P. and Cox, Stephen M. (2009) Large Rayleigh number thermal convection: heat flux predictions and strongly nonlinear solutions. Physics of Fluids, 21 . 083603-1. ISSN 1070-6631

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
391Kb

Official URL: http://pof.aip.org/phfle6/v21/i8/p083603_s1

Abstract

We investigate the structure of strongly nonlinear Rayleigh–Bénard convection cells in the asymptotic limit of large Rayleigh number and fixed, moderate Prandtl number. Unlike the flows analyzed in prior theoretical studies of infinite Prandtl number convection, our cellular solutions exhibit dynamically inviscid constant-vorticity cores. By solving an integral equation for the cell-edge temperature distribution, we are able to predict, as a function of cell aspect ratio, the value of the core vorticity, details of the flow within the thin boundary layers and rising/falling plumes adjacent to the edges of the convection cell, and, in particular, the bulk heat flux through the layer. The results of our asymptotic analysis are corroborated using full pseudospectral numerical simulations and confirm that the heat flux is maximized for convection cells that are roughly square in cross section.

Item Type:Article
Schools/Departments:Faculty of Science > School of Mathematical Sciences
ID Code:1258
Deposited By:Wharton, Dr Janet
Deposited On:25 Mar 2010 16:15
Last Modified:23 Jun 2011 07:55

Repository Staff Only: item control page