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Abstract

Algebraic equations on complex numbers and functional equations on generating func-
tions are often used to solve combinatorial problems. But the introduction of common
arithmetic operators such as subtraction and division always causes panic in the world of
objects which are generated from constants by applying products and coproducts. Over
the years, researchers have been endeavoring to interpretate some absurd calculations on

objects which lead to meaningful combinatorial results.

This thesis investigates connections between algebraic equations on compler numbers
and isomorphisms of recursively defined objects. We are attempting to work out condi-
tions under which isomorphisms between recursively defined objects can be decided by

equalities between polynomials on multi-variables with integers as coefficients.

As instances of recursively defined objects in computer science, especially in functional
programming languages, algebraic data types are adopted as objectives of our research.
By studying the algebraic structure of the quotient set of non-trivial'! polynomial types
under the least congruence relation that is generated from a given system of recursive
type isomorphisms, we develop a sufficient and necessary condition under which this
quotient set forms a ring. This is an extension of Fiore and Leinster’s work that for
a given single recursive type isomorphism, they gave a sufficient condition under which

the set of non-trivial polynomial types forms a ring. Further, the polynomial division

!We consider all type expressions that are generated from 0 (empty type) and 1 (unit type) by

applying products and coproducts as trivial polynomial types.
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algorithm on multi-variables can be used to decide isomorphisms between non-trivial

polynomial types.

On the other hand, combinatorial processes can be extracted from factorizations of poly-
nomials. As an illustration, we invent and study an infinite class of one-person board
games, so-called replacement-set games. There is a one-dimensional unbounded board
which is divided into squares. The aim of these games is to move a checker from the
initial square to the final square by using rules that are defined by a multiset of inte-
gers. It turns out that every solvable replacement-set game corresponds to a product of
cyclotomic polynomials with at most one negative coefficient. An algorithm is derived
to solve these games. That is, it restores combinatorial processes behind polynomial

factorizations on one variable.

This research is interesting because it builds a bridge between applied mathematics and
theoretical computer science. We believe that connections between algebraic equations
on complex numbers and isomorphisms of recursively defined objects will introduce ma-
ture methods in applied mathematics, e.g. Gaussian elimination and Grobner Basis,
into theoretical computer science as bases of descriptions and analysis of recursively de-
fined objects, e.g. data structures, languages, and algorithms. Specifically, some word
problems can be decided by polynomial division algorithm on multi-variables. On the
other hand, combinatorial explanations of algebraic equations on complex numbers can

be extracted from proofs of isomorphisms between recursively defined objects.

However, when primitive recursions are introduced to produce isomorphisms between
non-trivial polynomial inductive? types, the algebraic properties of the quotient set
of non-trivial polynomial inductive types are still unclear. As for two-dimensional
replacement-set games, whether there is an algorithm that can produce processes to
solve these games is still unknown. Also, the connections between algebraic equations
on complex numbers and functional equations on generating functions are obscure. All

of these need more investigation in future.

2The type expressions are defined by least fixed points.
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CHAPTER 1

Introduction

Recursively defined objects permeate all of computer science. Research into isomor-
phisms of recursively defined objects usually results in deeper understanding of their
underlying computational and combinatorial models. For very different reasons, iso-
morphisms of recursively defined objects have been studied. Isomorphic objects are
usually cardinality preserving. Hence, generating functions [Niv69, Hen74, SS78, GJ83,
JBR88, GKP94, Stad7, Sta99| and functional equations [Fla85, BLL88, BLL9S, FS08]
are useful mathematical models to formalize recursively defined objects. The relevant
literature is scattered in different branches of computer science. For instance, Schiitzen-
berger’s Methodology [CS63, BLFRO1] which determines generating functions of unam-
biguous context-free languages, Combinatorial Species [BLL88, BLLI8] which is useful
for formalizing data structures in functional equations, and Flajolet’s Symbolic Method
[F1a85, FS08| which translates specifications into functional equations for asymptotic

analysis [VF90, Od195]. These methods are reviewed in section 1.5 as related work.

Another interesting research line was developed by Blass [Bla95] and Fiore and Leinster
[Fio04, FLO5| from Schanuel’s Problem [Sch91| and Lawvere’s Remark [Law91| which
is also known as seven-trees-in-one [Bla95]. The idea is to build connections between

recursively defined objects and algebraic equations on complex numbers. Fiore and Le-
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inster gave a condition on single recursive type isomorphisms under which the quotient
set of non-trivial polynomial types forms a ring. It implies that the polynomial divi-
sion algorithm on one variable can be used to decide isomorphisms between non-trivial

polynomial types. More details are given in sections 1.1 and 1.2.

Following Fiore and Leinster’s research, by taking algebraic data types [Mal90, Ho096,
BM96] as objectives of our investigation, we extend their results from a single recursive
type isomorphism to a system of recursive type isomorphisms. This investigation builds
connections between algebraic equation systems on complex numbers and recursive type
isomorphism systems. It follows that the problem of deciding isomorphisms between non-
trivial polynomial types given by recursive type isomorphism systems can be reduced
to the problem of deciding equivalences between polynomials on multi-variables with
integers as coefficients. The latter problem is effectively the ideal membership problem
in computational algebra which can be solved by the polynomial division algorithm on

multi-variables [BW98, CLS07]. This contribution is discussed in section 1.3.

Seven-trees-in-one has been turned into a one-person board game, namely the nuclear
pennies game [Yor07, Pip07a, Pip07b]. As an illustration of the theory we have devel-
oped, we invent an infinite class of one-person board games which has the nuclear pennies
game as an instance, so-called replacement-set games [BCF10, BCF11]. The aim of these
games is to move a checker on a board n squares right using replacement rules given
by some multiset of integers which represent relative positions. The interesting thing
about these games is that they build connections between types and cyclotomic polyno-
mials [Isa94, Lan02]|. That is, every solvable non-trivial replacement-set corresponds to
a product of cyclotomic polynomials with at most one negative coefficient. We also give
several ad-hoc methods to construct subsets of all solvable non-trivial replacement-sets.

As another contribution, a brief explanation about this is given in section 1.4.
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1.1 Seven-Trees-In-One

The story started from a remark given by Lawvere [Law91]:

I was surprised to note that an isomorphism x =1+ 22 (leading to complex
numbers as Euler characteristics if they don’t collapse) always induces an
7

isomorphism x' = x.

An appropriate explanation of Lawvere’s Remark is:

A binary tree is an empty tree (1) or a pair of binary trees (z?); there is an
isomorphism between the set of seven-tuples of binary trees (27) and the set

of binary trees (z).

This is also known as seven-trees-in-one as named by Blass. He gave an explicit coding
between the set of seven-tuples of binary trees and the set of binary trees in [Bla95].
Notice that = in the above discussion is considered as an object not a number. However,
it is interesting that if we take x = 1422 as an algebraic equation on complex numbers,

by solving this equation, we have:

T LT,
xzcos§ +sin —7 .

3
Further,

=z x2’ =1 x (cosﬁ+sinzz’)6=xx (cos2m +sin2mi) = x .

3 3
It seems that there is a short cut to prove seven-trees-in-one by taking objects as complex
numbers. But, anyone who wants to do this must at least explain the following strange

phenomenon:

™ T
2% = (cos 3 + sin 51)6 = cos 27 +sin 27 = 1

is true in terms of complex numbers while the set of six-tuples of binary trees is not

isomorphic to the set of the empty tree because cardinalities of both sides are different.
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The cardinality of the set of six-tuples of binary trees is countable infinity while that of

the set of the empty tree is one.

1.2 Rings from Quotient Semirings

For clarity, let us use capital letters, e.g. R, S and T, to denote objects and lower
case letters, e.g. x, y and 2z, to denote complex numbers. We use the symbol =
for equalities between complex numbers and the symbol = for isomorphisms between
objects in a distributive category (see section 2.2) respectively. Operators + and x
are overloaded to denote respectively addition and multiplication of complex numbers

or coproduct and product of objects. Their meanings will be clear from context.

In order to understand seven-trees-in-one and, more generally, connections between com-
plex numbers and recursively defined objects, it is necessary to investigate the underlying
algebraic structure of all objects which are generated from a finite set of recursively
defined objects and the terminal object 1 by applying products and coproducts. This
structure is effectively a quotient semiring with the terminal object 1 and the initial

object 0 as unit and zero respectively.

As for seven-trees-in-one, for instance, the collection of all objects generated from 7T and
1 by applying products and coproducts is a quotient semiring under the least congruence
relation generated from the isomorphism 7 =~ 14 T2. By the congruence relation, we

mean an equivalence relation preserving products and coproducts.

In [Gat98], Gates showed that when polynomial P(7') has at least one constant term and
at least one nonconstant term, isomorphisms between objects in distributive category
subject to T" =~ P(T) are decided by equalities in any semiring subject to T = P(T).
By using this result, in order to study seven-trees-in-one, we can focus on the semiring
N[T] of all polynomials on 7' with natural numbers as coefficients with respect to the

congruence relation =, 2 which is generated from the identity 7' =1 + T2
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In [Bla95|, Blass studied the semiring N[7] with respect to the identity 7 = 1 + T2
and observed that 1 + T3 plays the role of zero for all polynomials in the quotient
set (N[T] —N)/=1,.72. Following Blass’s research, Fiore and Leinster investigated the
semiring N[T'] with respect to the identity 7 = 1+ T + T? in [FL0O4]. They showed
that 1+ T2 plays the role of zero in the quotient set (N[T] — N)/={ 7 72.

Fiore and Leinster generalised from these examples. Let « be a type which is generated
from T and 1 by applying products and coproducts and suppose « has a term T" for n
at least 2. With respect to the isomorphism 7" = 1+ «, based on the theory of maximal
subgroups within semigroups [Gre51|, Fiore and Leinster showed that the quotient set
of non-trivial polynomial types forms a ring [Fio04, FL05]. That is, subtraction is valid

in the quotient semiring of non-trivial polynomial types.

Returning to the seven-trees-in-one. The above investigation shows a way to decide the
isomorphism 77 = T without bothering to explicitly construct a coding between them.
Recall that 1+7? is a zero of polynomials in (N[T]—N)/=;, 2. This leads to the result
that T3 is a negative unit. Further, we have that the quotient set (N[T]—N)/=1,p2 has
the same algebraic properties as the quotient ring Z[z]/(xz = 1 4+ x?). It is the quotient
set of all polynomials with integers as coefficients under the equivalence relation which

2

is given by the principal ideal generated from x° — z + 1. This quotient ring can be

considered as the ring ertension Z[cos § + sin i] on the roots cos § £ sin i of the

equation = 1 + 22 as well. For instance, the equation:
a5 —1= (cosg isingi)G —1=cos2r +sin2wi—1=0
corresponds to the identity:
TS +T3 = g0 T3x(1+T3) =1 2 14+T3.
That is, 0, 1, and —1 correspond to 1 + 73, 2 + T3, and T2 respectively. Then,
seven-trees-in-one can be decided by the following factorization on Z[z]:
Tz =azx@-1)=sx@-D)x@+) =zx@-1)x(@+1)x(@®—z+1).

This factorization shows that 8 —1 and 27—z are in the principal ideal generated from

2?2 — 2 4+ 1. We have equations 2% = 1 and 27 = 2. Accordingly, we get isomorphisms
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T6 ~ 1+72 and T =~ T. Generally, Fiore and Leinster showed that the polynomial
division algorithm on Z[x] can be used to decide isomorphisms between non-trivial

polynomial types if subtraction is valid [Fio04, FLO5].

From the categorical view, Fiore and Leinster’s research gives an answer to the following

problem posed by Schanuel [Sch91]:

Though ill-posed, the question is suggestive: a good answer should complete

the diagram

N-—1I&

s
s

Z<~—1n

where S s the category of finite sets; we seek an enlargement E, the iso-
morphism classes of which should give rise to all integers, rather than just

natural numbers.

That is, subtraction is valid on F, which coincides with Fiore and Leinster’s result on

types that constructs rings from quotient semirings.

1.3 Rings of Recursive Type Isomorphism Systems

Without loss of generality, as concrete representations of recursively defined objects, we

choose algebraic data types [Mal90, Hoo96, BM96] as objectives of our investigation.

Fiore and Leinster’s investigation is on the algebraic structure of the quotient set of
non-trivial polynomial types which are generated from one recursively defined type T
and the wunit type 1 with respect to the least congruence relation generated from one
type isomorphism T =~ 1+ «. Moreover, when « has a term T™ for n at least 2, there
is a ring isomorphism between the above quotient set and the polynomial quotient ring

which is based on the principal ideal generated from the polynomial (7' — (1 + «)).
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Inspired by Fiore and Leinster’s research, it is natural to ask the following question:

Under what kind of condition does the quotient set of non-trivial polynomial
types which are generated from a finite set T of recursively defined types form
a ring, with respect to the least congruence relation which is generated from

a system & of recursive type isomorphisms on T ¢

Let ~g be isomorphisms in the free distributive category (see section 2.2) on T which
is equipped with the system &. Let N[T]"/=g be the quotient set of the N[T] — N
under the least congruence relation =g which is generated from the system &. Since
all semiring properties can be derived from this category, a straightforward consequence
is that for all polynomials p and ¢ in N[T]", p =g ¢ implies that p ~g ¢, written as
=g C ~g!. Thus, in order to answer the above question, we can focus on the algebraic

structure of the quotient set N[Z]"/=g.

As an example, given the following system of recursively defined types:

S ~ 1+717;
T

G =

12

1+85%xT,

we are interested in the algebraic structure of the quotient set N[S,T|"/=g. If the
quotient set N[S,T|* /=g forms a ring, then there is a ring isomorphism? between this
quotient set and the polynomial quotient ring Z[x,y]/=s where =g is the equivalence
relation given by the ideal Is which is generated from the algebraic equation system on

complex numbers:

r=1+y%;
s = !

y=1l+xzxy.

That is, they have the same algebraic properties with regard to equalities and operators

'"We still don’t know whether ~g C =g is true or not. Its proof can be a generalization of Gates’

result in [Gat98].
By theorem 2.1.1, there is a ring epimorphism from Z[z,y]/=s to N[S,T]"/=s. By the definition

of =g, we have =g © =g. This ensures the ring epimorphism is injective as well.



CHAPTER 1: INTRODUCTION

defined on them, denoted as:
(Z[z,y]/=s, +, %, Is, 1+Is, =1+1Is) < (N[S,T|"/=s, +, %, As, 1 + As, 75)

where Ag and 7jg are respectively equivalence classes of zero Ag and negative unit ng
with respect to the least congruence relation =g. By this ring isomorphism, we have

that for all polynomials p and ¢ in N[S,T|", p—q € Is implies that p ~g q.

To answer the above question is the first motivation of our research. The significance
of this investigation is that it builds connections between systems of recursive type
isomorphisms and systems of equations on complex numbers. That is, with respect
to defined equalities and operators, problems on types can be solved by taking them as

complex numbers.

Notice that the unit 1 and the zero 0 in N[Z] are not in N[Z]". Hence, the quotient
set N[T]*/=g inherits all properties of the semiring N[T] except for zero and unit. In
order to answer the question we propose above, the crucial step is to construct a zero
Ag for N[T]T with respect to the least congruence relation =g. By doing this, we
have that N[T]*/=g is a semiring with zero Ag and unit 1+ Ag. Further, Ag is so
constructed that it is isomorphic to 1+ ng for some type ng in N[T]T. It follows that

N[Z]T /=g forms a quotient ring with 7jg as negative unit.

We reproduce Fiore and Leinster’s result in sections 3.1 and 3.2 to illustrate the above
idea with the assumption on isomorphisms given by Fiore and Leinster in [Fio04, FLO05|.
That is, if the type « has aterm T™ for n at least 2, then the quotient set N[T|"/=1,4
with =1,, the least congruence relation generated from the isomorphism T =1 + «
forms a ring. To prove that the quotient set N[T|* /=1, is a ring through constructing
a zero Aiyo simplifies the proof given by Fiore in [Fio04| which is based on Green’s

Relations [Gre51| within semigroups.

As a careful extension, in section 3.3, we investigate mutually recursive type isomor-
phisms & on two types S and T. We show that if types S and T both generate 1, and

they generate each other and one of their recursive definitions has a term with degree at
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least 2, then the quotient set N[S,T|*/=g forms a ring. Here, for all types p and g,
p generates ¢ if and only if p =g ¢ + r for some type r. For instance, returning to the

previous example:

S
T =~ 1+5%xT.

12

1+77;
B =

2

We have:

S =¢ 1+7T% =¢ 1+Tx(1+SxT) =¢ 1+T+T xS xT;

T =¢ 1+SxT =¢ 1+Sx(1+T? =¢ 1+S+SxT*.

It follows that & satisfies the above condition. Further, the quotient set N[S,T]"/=¢
is a ring. The key step of the proof is the construction of the zero Ag which is analogous

with the construction of Ajiq.

By generalising the above condition on mutually recursive type isomorphisms & of two
recursively defined types to a condition on systems of recursive type isomorphisms &
on a finite set T of recursively defined types, we develop an algorithm to decide whether
the quotient set N[T]"/=g forms a ring with respect to the least congruence relation
generated from & in section 3.4. The main results are given in theorem 3.4.1 which is

an answer to the question we propose at the beginning of this section.

Notice that if N[¥]"/=g forms a ring, then the subtraction is valid on this quotient set.

As a reasonable extension, we may ask the following question:

How does one construct an extension of N[Z|" /=g such that division is

valid?

In categorical view, we want to finish the following diagram:

S E ¢ F
RN
N Z Q
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which is an extension of Schanuel’s Problem [Sch91|. That is, we are looking for an

enlargement F' of category of finite sets which gives rise to all rational numbers.

The exploration starts from a concrete example. Return to the isomorphism 7' =~ 14772,

Fiore [private communication, 2010] identified an interesting isomorphism:

ListT =nt, T.

In words, the set of all finite lists of binary trees is isomorphic to the set of all binary trees.
Here, we use g’i’idTQ to emphasize that the type T is the least fixed point pX . (1+ X x
X) and primitive recursions (on 7" and on List T') are allowed in the free distributive
category on 1. In our investigation into this isomorphism, we find that the following

isomorphism:

List T =%, 14717

is true as well. Combining the above two isomorphisms, since 1 + 72 plays the role of

zero in N[T|" /=1 2, the isomorphism:
T =~nd, ListT =P, 1+7°

we call trees-in-zero. By constructing explicitly functions behind this isomorphism, an

appropriate proof of this isomorphism is given in section 3.5.

The interesting thing is that by introducing the List type, we can construct multi-
plicative inverses for non-trivial polynomial inductive types. For instance, consider-
ing the type isomorphism 7 2~ 14 T2, we have that 1 4+ 72, 3+ 73, and T3 play
roles of zero, two, and negative one respectively. The productive inverse of 3 + 72 is

List (1 + T3 x (3 + T?)) which is verified by the following calculation:

List (1+T2 x (34 T%))) x (3+13)

~ind
=1+T2

(List (

(List (1 +T3 4273 +T%)) x (3 +1T3)
~ind , (List (2T% +T%)) x (3 + T%)
~ind o (List (T® +T% x (1+T%))) x (3+T%)
i (List (

=, List (T3)) x (3 +1T?)

10
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~ind o (List (T®)) + (List (T®)) + (List (T%)) + (List (T%)) x T*
~ind o 14 (List (T%)) x T% + (List (T®)) + (List (T®)) x (1+T%)
~ind, 1 (List (T°%) x (1+T°) + (List (T%)) x (1+T°)

~ind 1+ (14 TP .

However, when the List type and primitive recursions are introduced into the free
distributive category on the finite set T of polynomial inductive types (which are defined
as least fixed points) equipped with the system & of recursive type isomorphisms, the

algebraic structure of this category is still unclear. This needs more investigation.

1.4 Replacement-Set Games

The second motivation of our research is to generalize the isomorphism seven-trees-in-
one. Notice that 7" =~ 1 + T2 is not the only type isomorphism which generates the
isomorphism 7™ =, 2 T for some positive natural number n. For instance, the type
isomorphism 7' =~ 1+ T + T? generates the isomorphism T° =, .2 T, which was

studied in [FLO4, FL05, Fio04]. The question is:

How does one characterize the complete set of identities T* = B which gen-

erate TF = T™ % for natural numbers k and n?

In order to answer this question, we introduce an infinite class of one-person board games,
so-called replacement-set games, in section 4.2. The aim of these games is to move a
checker on a board n squares right according to replacement rules given by some multiset
R of integers which corresponds to the identity 7% = 5. For instance, the isomorphism
seven-trees-in-one has been turned into the nuclear pennies game [Yor07, Pip07a, Pip07b|
which is considered as a replacement-set game with replacement-set R ={ —1, 1|} and

displacement n = 6.

11
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Notice that to construct the identity 7% = 8 which generates T* =3 THE is equiv-
alent to constructing a solvable replacement-set game (R, n) where R corresponds
to the identity 7% = B. In section 4.3, we study trivial replacement-set games where
min.R > 0 or max.R < 0. In section 4.4, an algorithm is constructed to solve non-
trivial replacement-set games where min.R < 0 < max.R. Through these investigations,

a necessary and sufficient condition on the identity 7% = 3 is given.

It turns out that the solvable non-trivial replacement-sets correspond to products of cy-
clotomic polynomials [Isa94, Lan02] with at most one negative coefficient. This is an an-
swer to the problem we propose. Further, by using properties of cyclotomic polynomials,
several infinite classes of solvable non-trivial replacement-sets are explicitly constructed
in section 4.5. As far as we are aware, it is still an open problem to explicitly construct

the complete set of solvable non-trivial replacement-sets.

1.5 Related Work

Notice that our research is to formalise recursively defined objects as algebraic equation
systems on complex numbers. In this section, let us review three relevant methods:
Schiitzenberger’s Methodology, Combinatorial Species, and Flajolet’s Symbolic Method.
They are based on functional equation systems over gemerating functions. And they

translate recursively defined objects to generating functions for different purposes.

1.5.1 Schiitzenberger’s Methodology for Formal Languages

The generating function for formal languages is the formal power series:
(¥n :0<n : fpz™)

with coefficients f,, as numbers of words of length n. Here, we use the notation
(®i : R : P)

12
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for quantifiers (see section 2.5). For instance, the generating function of a* is:

1
1—=x

= (¥n :0<n : 2").

That is, the number of words of length n is 1 for all natural numbers n.

Chomsky and Schiitzenberger discovered the method which translates unambiguous
context-free languages into their generating functions [CS63]. It is well known that gen-
erating functions for unambiguous regular expressions are rational generating functions
[Sta97, FS08]. However, not all rational generating functions are generating functions
for unambiguous regular expressions. Given a rational generating function, whether it
is a generating function for some unambiguous regular expression was investigated in

[BLFROL1].

Let us focus on Schiitzenberger’s Methodology. The idea is: an unambiguous context-free
grammar is translated into a system of functional equations over generating functions;
by solving this algebraic system, one can get the corresponding generating function. And
if the given grammar is regular, then its corresponding algebraic system degenerates into
a linear system. For example, given the unambiguous regular expression (aa + b)*a, its
corresponding state transition system is as following:

Lo =0bLy+alq ;

Li=alog+1.
By replacing a and b by z, we get the following linear system:

Lo=xLg+xLq ;

Li=xLg+1.
By solving this linear system, we get the generating function for (aa + b)*a. That is,

X
F)=Lo=y——07"

Notice that F'(x) defines a linear recurrence relation. Expanding F'(z) by using power

series [Zor04], we have:
fO = Oa ;
fi=1, ;
fn:fn—1+fn—27 n

WV
V)

13
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That is, as for the language defined by the regular expression (aa + b)*a, the Fibonacci

Numbers are numbers of words of length n for all natural numbers n.

1.5.2 Combinatorial Species for Data Structures

A species of structures is a construction F, for each finite set U, to produce a finite
set F[U] which is independent of the nature of elements of U. In categorical terms, a
species is a functor between categories of finite sets and bijections [BLL98|. Species with
operators defined on them, e.g. addition, multiplication, substitution, and differentiation,
construct species algebra. For every operator between species, there is a corresponding
operator between their generating functions. Thus, specifications of combinatorial struc-

tures in species algebra can be translated into their generating functions directly.

For instance, considering the following definition of binary trees: a binary tree is an empty
tree or an element followed by a pair of binary trees. The empty tree is interpreted as

the empty set species, defined as:

{U}a itU=g ;
G, HU£G .

U] =

The element is characterized as the singleton species, defined as:

{U}, if [U=1;
@, iU #1 .

X[yl =
Disjoint union and cartesian product are considered as species addition and multiplica-
tion respectively. Now, the binary tree can be represented by the functional equation:
B = 1+X-B%.

By solving this equation as a quadratic equation on complex numbers, we have:

_1EV1l-4dx

B(z

® ;
Since coefficients of the power series of V1=« V;m contain negative natural numbers,
Lyl dw V;m is not the generating function of binary trees. Expanding 1—¥1-4% ”2174”3 by using

14
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power series, we have:

B(z)=(Sn : 0<n : — <2”>x">.

n+1\n
The coefficients of the above series are numbers of binary trees with n nodes for all

natural numbers n.

The significance of this generalisation is that it enables us to focus on algebraic operators
and structures of species, without getting too involved in the details of operators between
generating functions. Bergeron et al formalized tree-like data structures in species al-
gebra, such as AVL trees and 2-3 Trees in [BLL98|. However, it is hard to solve the

functional equations in a combinatorial sense.

1.5.3 Flajolet’s Symbolic Method for Asymptotic Analysis

Analysis of data structures and algorithms involves specifications and asymptotic anal-
ysis of combinatorial structures. The Symbolic Method was developed by Flajolet to
translate specifications into functional equations directly. These functional equations
are over generating functions. Through analyzing generating functions, one can charac-

terize statistical properties of data structures and algorithms.

Flajolet observed the relation between structural definitions of combinatorial structures
and their functional equations [Fla85]. In his research, combinatorial constructors are
admissible if they preserve cardinalities. And a combinatorial class is a closure set
constructed from initial sets by admissible constructors which can be translated into
functional equations explicitly. Further, complex analysis methods, for instance, singu-
larity analysis and saddle point analysis, are applied to evaluate statistical properties
of combinatorial structures [VF90, Odl95]. In [FS08|, Flajolet and Sedgewick defined
a set of elementary operators, e.g. disjoint union, cartesian product, sequence, cycle,
multiset, and powerset, as constructors of admissible combinatorial classes. For every
elementary operator, there is a corresponding operator on generating functions. This

makes automated asymptotic analysis possible.

15
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1.6 Applications

Data structures are in the center of computer science. Analysis and reasoning of data
structures are vital in all aspects of computer science, e.g. program optimization, algo-
rithm design and complexity analysis, and software testing and verification. In order to
analyze and reason about data structures, we need to choose appropriate mathemati-
cal models to formalize them and to design suitable algebraic operators to manipulate
them. Since we usually care about shapes of data structures rather than contents stored
in them, functional equations on generating functions, as we have seen in section 1.5,
are useful models to specify and manipulate data structures. Our research shows that
many recursively defined data structures which are generated from constants by apply-
ing cartesian products and disjoint unions can be considered as algebraic equations on
complex numbers and can be manipulated as polynomials on multi-variable with integers
as coefficients. It follows that methods in applied mathematics can be used to analyze

data structures.

To define and decide structural equalites between data structures is a fundamental prob-
lem in analysis and reasoning of data structures. Structural equalities are captured by
isomorphisms in our research. Our setting for isomorphisms is free distributive category.
This generalization ensures that deduced properties are true not only for data structures
but also for functions and algorithms which are generated from constants by applying
products and coproducts. More interestingly, isomorphisms between them can be auto-
matically extracted from proofs of their corresponding algebraic equations. This is useful
for program and data structures transformations that are usually required to preserve
some structural properties. The first interesting application of the theory we have devel-
oped is that it predicts that there is an algorithm to decide whether a replacement-set

game is solvable.

On the other hand, connections we have built between recursive polynomial type isomor-
phisms and algebraic equations show that it is possible to represent complex numbers

and polynomials with integers as coefficients as recursive polynomial types. This gives

16
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a clue to prove properties in computable algebra by using automated theorem provers.
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CHAPTER 2

Mathematical Preliminaries

In this chapter, we give a brief introduction to mathematics and notations used in this
thesis. The concepts of algebraic structures, e.g. semirings, rings, and ideals, are needed
to understand chapter 3. We give their definitions and some theorems without proofs
in section 2.1. More information can be found in any textbook of algebra, for instance,
[MB99]| and [Lan02]. Very small part of knowledge on categories and initial algebra is
used to characterize algebraic data types and define functions between types. We list
relevant information in sections 2.2 and 2.3. More details can be found in [BM96, Ho096].
Basic properties of cyclotomic polynomials [Isa94, Lan02] are given in section 2.4 which
are used for the construction of solvable replacement-sets. Finally, in section 2.5, some
examples are given to explain notations we use in this thesis. Similar notations are used

in [Gri98, Kal90, GS94, Bac03].

2.1 Algebraic Structures

Let S be a set which is closed for the binary operator @. The structure (S, @) is a

semigroup if @ is associative. That is, for all a, b, and ¢ in S,
(a®@b)Dc = ad (bdo.
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CHAPTER 2: MATHEMATICAL PRELIMINARIES

If there is an element 1g in S satisfying that for all a in S,
a®@lg = a = 1l @ a,

then the structure (S, @, lg) is a monoid. The element 1g is said to be the unit of this
monoid. For instance, the set of all natural numbers equipped with the arithmetic addi-
tion forms a monoid with 0 as the unit. A monoid is commutative if @ is commutative.

That is, for all @ and b in S,

a®b = b®a.

A group (S, ®, lg) is a monoid satisfying that for every element a in S, there is an

element b in S such that

We say that b is an inverse of a. A group is an abelian group if @ is commutative.

For example, the set of all integers equipped with arithmetic addition forms an abelian

group.

A semiring (S, ®, ®, lg, lg) is a set S equipped with two binary operators @ and

® which satisfies the following clauses:

a. (S, ®, lg) is a commutative monoid ;
b. (S, ®, lg) is a monoid ;
c. ® distributes through @, that is, for all a, b, and ¢ in S,

a® bdec) = (a®b @ (a ®c);
bdc)®a = b®a ®(c®a);

o

. 1g is the zero of ®, that is, for all a in 5,

a®1@ = 1@ = 1@@@.
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For instance, the set of all natural numbers equipped with arithmetic addition and
multiplication forms a semiring, written as (N, 4+, x, 0, 1). The power set of the set
3% of all words generated from an alphabet Y equipped with set union operator U
and concatenation operator - forms a semiring with the empty set ¢ and the set of
the empty string e as units of set union and concatenation respectively, denoted by
(p(X*), v, -, &, {€}). As another example, the structure (N[z], +, x, 0, 1) of
all polynomials on the indeterminate x with natural numbers as coefficients which is
equipped with polynomial addition and multiplication is a semiring as well. Generally,
given a finite set J of indeterminates, we use N[J] for the set of all polynomials which are
generated from indeterminates in J with natural numbers as coefficients. The structure
(N[J], +, x, 0, 1) forms a semiring. For instance, taking J to be {z, y}, the
polynomial 22 + 3zy is an element in N[J]. A semiring is commutative if the binary

operator ® is commutative.

A ring is a semiring satisfying that the structure (S, @, lg) forms an abelian group.
The structure (Z, +, x, 0, 1) of all integers with arithmetic addition and multipli-
cation is a ring which has 0, 1, and —1 as zero, unit, and negative unit respectively.
Given a commutative ring K, the structure (K[J], +, x, 0, 1) of all polynomials on

indeterminates in J with coefficients in K is a polynomial ring.

Given a commutative ring K, an ¢deal I is a subgroup of K satisfying that
K®IclI

where ® is extended to sets. An ideal is said to be principal if it is generated from a

fixed element. That is,
I=K ® {a}

for some element a in K. For instance, given a polynomial p in Z[x],
I, = Zlz] @ {p}

is a principal ideal of Z[z]. Generally, given a finite set P of polynomials in K[J] for
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some commutative ring K and some finite set J of indeterminates,
Iy = K[J] @ %

is an ideal of K[J]. Notice that an ideal I of a commutative ring K defines an equiv-

alence relation =; on K. That is, for all @ and b in K,
a =gb = a—-0bel.

Further, the quotient set K/=; is a quotient ring. We use the notation K[J]/=gq for the
polynomial quotient ring under the equivalence relation defined by the ideal Iyp. Notice
that K itself is an ideal as well. The ideal {0} and the ideal K are called improper

ideals.

A ring morphism is a function between two rings which preserves @ and ® and unit.

The kernel of a ring morphism is the set of elements which are mapped into zero.

Theorem 2.1.1 (Main Theorem on Quotient Ring). For all ring morphisms f : S - R
with an ideal I a subset of the kernel of f, there is a unique ring morphism f’ : S/=; —
R satisfying that f = " o p with p : S — S/=;. In particular, if I is equal to the

kernel of f, then f’ is a monomorphism.

2.2 Categories

A category C is a collection of objects and arrows equipped with the composite operator
o. Each arrow f connects two objects A and B which are domain and codomain of f
respectively, written as f: A — B. For all arrows f: A— B and g: B — C, there is
an arrow g o f: A — C. For each object A, there is an identity arrow id4 : A — A.

The composite operator o is associative and has identity arrows as units.

A functor F is a homomorphism between two categories. Given two categories C and
D, the functor F': C — D maps objects and arrows in C to objects and arrows in D

respectively and preserves identities and the composite operator. Specifically, for all f :

21



CHAPTER 2: MATHEMATICAL PRELIMINARIES

A — B, there is an arrow F'f : FA — FB. And F satisfies that F(f og) = Ffo Fg
and F(idy) = idpa. We write Id for the identity functor. We use the notation K4
for the constant functor whose codomain is a category consisted of only one object A

and its identity arrow id4.

A terminal object, written as 1, is an object satisfying that for each object A in C, there
is a unique arrow from A to 1. By duality, an initial object, denoted by 0, is an object

satisfying that for each object A, there is a unique arrow from 0 to A.

A product of two objects A and B consists of an object A x B and two arrows outl :
Ax B —> A and outr : A x B — B satisfying the universal property: given arrows

f:C— A and g:C — B, there is a unique arrow f 4 g: C — A x B such that
h=fasag = outloh = f Aoutroh = g.

Given a category C having products for each pair of objects, the product functor C x C —

C is defined by its mapping on arrows as: for all arrows f: A — C and g: B —> D,

fxg = (fooutl) 5 (gooutr) : AxB—->CxD.

A coproduct of two objects A and B consists of an object A + B and two arrows
inl: A—> A+ B and inr: B — A + B satisfying the universal property: given arrows

f:A— C and ¢g: B — C, there is a unique arrow f v g: A+ B — C such that
h=fvg = hoinl = f A hoinr = g.

Given a category C having coproducts for each pair of objects, the coproduct functor

C 4+ C — C is defined as: for all arrows f: A— C and g: B — D,

f+g = (imlof) v (inrog): A+B—>C+D.

An arrow f: A — B is an isomorphism if there is an arrow ¢g: B — A satisfying that

fog =14dg A gof = ida.
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A distributive category is a category which has initial and terminal objects, binary prod-
ucts and coproducts, and satisfies that for all objects A, B, and C, arrows 0 — A x 0

and Ax B+ AxC — A x (B+ C) are isomorphisms.

A free distributive category is a distributive category whose collection of objects is gen-
erated from a collection of objects, initial and terminal objects by binary products and
coproducts. The collection of arrows in a free distributive category on a finite set of

objects is generated from the following arrows by applying composite:

idg: A— A (tdentity)
4 A—>1 (terminal)
ia:0—> A (initial)
outl: Ax B— A (projection)
outr : Ax B— B (projection)
inl:A— A+ B (injection)
inr:B—> A+ B (injection)
0:Ax(B+C)—>AxB+AxC (distribution)
C:Ax0-0 (zero)
frg:C—>AXB (product)
hvi:A+B —C (coproduct)
with

f:C—oA ¢g:C—>B, h:A->C, i:A—>DB.

2.3 Initial Algebra

Let F' : C — C be an endofunctor on the category C. Given an object A in C, an
F-algebra on A is an arrow f: FFA — A. An F-homomorphism from the F-algebra
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f:FA— A tothe F-algebra g: FFB — B is an arrow h: A — B satisfying that
hof = goFh.

Let Alg(F) be the category with objects F-algebras and arrows F-homomorphisms.
An initial F-algebra « is an initial object in Alg(F'). For all F-algebras f, the arrow

from « to f is called the catamorphism, denoted by (f]), which satisfies the universal

property:

h =(f) = hoa = foFh.

Let F' be a polynomial endofunctor which is constructed from identity and constant
functors by finite products and coproducts. For instance, the type B of booleans is the
initial (K7 + K7p)-algebra and the type N of natural numbers is the initial (K7 + Id)-

algebra.

2.4 Cyclotomic Polynomials

The m-th cyclotomic polynomial is defined as:

2k ;

dm = (IIk : 0<k<m A kLlm:zxz—en?)

where k 1 m denotes that natural numbers k& and m are coprime. The first several

cyclotomic polynomials are as following:

P0=1;
Pl=x-1;
P2=x+1;

<I>.3=a:2+ﬂ:+1;
P4 =a2+1;
d5=at+3+22+a+1;

d6=0—a+1.
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From this definition, we have that for all positive natural numbers a,
2*—1 = (IIk : 1<k<a A k\a : ®k)

where k \ a denotes that k divides a. With the aid of the Mdbius function which is
defined as:

0, if p2 \ n for some prime p;
p-n =4 (=1)", if n is a product of r distinct primes ;
1, ifn=1,

cyclotomic polynomials can be calculated by the following formula:
dm = (Ik:1<k<m A k\m : (2 -1y

For instance,

6
-1 x-1 9
<I>.6=$3_1 xx2_1=x —x+1.
For all prime numbers p,
dp = (k:0<k<p: zF).

And for natural numbers m and a,

d.(m x a?) = [2%/z] D.(m x a) .

2.5 Notations

We use the following proof notation:

P
= { Why P=Q 7?7 }

Q

where P and @ are predicates and the hint is given in the middle which is surrounded

by curly braces.
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We use the following notation:
(®i: R : P)

for the quantifier @ where ¢ is a dummy, R is the range of ¢, and P is the term which

depends on the dummy.

The Dijkstra’s guarded command language is used to formalize algorithms. As an exam-

ple, in the following program:

{ P}

do —r<y — Yy = x4y
| y<—x — T = x+Y
od

{ @}

the predicates P and (@ are pre-condition and post-condition respectively, and —x <
y —> y = x+y and y < —z — x := 1z +y are non-deterministic guarded
commands within a loop. Notice that non-deterministic guarded command is different
from if-statement. Given a list of non-deterministic guarded commands, if more than
one of them is true, then one of them is non-deterministically chosen to be executed. If

none of them is true, the result is undefined.

We use the symbol £ to emphasize that its right-hand side is the definition of its left-
hand side. The notation f“ is for the inverse function of f. We use capital letters to
denote objects, types, algebraic structures, and functors. Lower case letters are usually
used for variables and functions. Greek letters are often used to denote polynomials,

morphisms, and specific functions.
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Rings of Recursive Type

Isomorphism Systems

Starting from the interesting isomorphism seven-trees-in-one, Fiore and Leinster gave a
condition on single recursive types under which the set of non-trivial polynomial types
forms a ring. In section 3.2, we reproduce Fiore and Leinster’s result by constructing a
zero for the quotient set of non-trivial polynomial types. The same idea is extended to
recursive type isomorphism systems. In section 3.4, we give a sufficient and necessary
condition on a given recursive type isomorphism system under which the set of non-trivial
types forms a ring. The significance of this investigation is not only that its underlying
algebraic structure is interesting, but also that it reveals connections between algebraic
equation systems and recursive type isomorphism systems. This theory predicts that
isomorphisms between types can be decided by the polynomial division algorithm on
multi-variables. In section 3.5, we investigate another interesting isomorphism, so-called

trees-in-zero.
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3.1 Seven-Trees-In-One

Let us consider the type T of binary trees:
T = leaf | node (T, T) .

That is, a binary tree is a leaf or a pair of binary trees. Given constructors leaf : 1 — T
and node : T x T' — T, by using coproduct, this type definition declares the following

function:
m = leaf vnode : 14+T xT —>1T .

This function is bijective. Its inverse function in” : T — 1 + T x T can be defined as:
inY o (leaf v node) = inl v inr.

To get rid of unnecessary details, we write:

(31) T = 1+TxT.

It is a surprise that there is an isomorphism between the type of binary trees and the

type of seven-tuples of binary trees. That is,
T ~T".
This is known as Lawvere’s Remark [Law91] or seven-trees-in-one [Bla95].
In order to understand seven-trees-in-one better, let us look at its proof. An important

and useful fact was given by Gates in [Gat98]|. That is,

Theorem 3.1.1 ([Gat98]). Given a polynomial P having at least one constant term
and at least one nonconstant term, then for two polynomials @ and R, the following

are equivalent:

e Q(T) = R(T) in any semiring such that P(T) =T ;
e Q(T) = R(T) in any distributive category such that P(T) =~ T .
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Our setting for type isomorphisms is the free distributive category C[T] on T. Objects
in C[T] are generated from T, 0 (initial object), and 1 (terminal object) by applying
binary products and coproducts. Arrows in C[T] are generated from the following arrows

by applying composite:

idg: A— A (identity)
l4:A—>1 (terminal)
ia:0—> A (initial)
outl: Ax B— A (projection)
outr : Ax B— B (projection)
inl:A—> A+ B (injection)
inr:B—> A+ B (injection)
0:Ax(B+C)—>AxB+AxC (distribution)
C:Ax0—>0 (zero)
frg:C—>AXB (product)
hvi:A+B —C (coproduct)
with

f:C—o>A ¢g:C—>B, h:A->C, i:A—>DB.

Let P be an object in C[T]. For all objects A and B in C[T], we say A is isomorphic
to B subject to T = P, written as A ~p B, if there is an isomorphism between A and
B in the category C[T] equipped with the axiom isomorphism 7" =~ P. That is, let in
and in“ be arrows between T and P, A ~p B denotes that there is an isomorphism

between A and B which is generated from the above arrows and in and in“.

In order to use theorem 3.1.1, we introduce the following semiring. Let N[T] be
the set of all polynomials in 7" with natural numbers as coefficients. The structure
(N[T], +, %, 0, 1) forms a semiring. Let =g be the least congruence relation on N[T|
generated from the identity 7=  where [ is a polynomial in N[T] — N and satisfies

that its constant term is not zero. That is, the relation =g is the least relation that
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includes the pair (7', ) and is an equivalence relation which is preserved by polynomial

products and additions.

With the above definitions, a straightforward consequence of theorem 3.1.1 is:

Corollary 3.1.2. Given [ in N[T] — N with constant term nonzero,

Specifically, we have:
T =y T = T =192 T .
By using semiring properties and the identity 7 = 1 + T2, we have:
32) TH+OA+T3) =2 T A TxA+T3 =1 p2 1+7T3
which follow respectively from
T+ (1+T% =12 14T x (1477
=2 14+ T7
=142 T
and
Tx(1+T3 =2 T+T!
=2 1+T2 4+ T4

=12 1+T? x (1+T7)

=1+T2 1 +T3 .

Let the notation N[T'|* denote the set N[T]—N. From the property (3.2), by induction
on the structure of polynomials, we have that the polynomial 1 + 73 is a zero of the
quotient set N[T']*/=1, p2 which is the set of equivalence classes of N[T']* under the

relation =q,72. That is,
(3.3) (Yp : peN[T]" : p+ (1 +T3) =140 p A px (1 +T3) =102 14+T%.
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As an example, the idempotence of 1 + 72 can be proven as follows:

(1+T3+1+7T3

{ (3.2), particularly, T x (1 + T3) =, p2 1+ T3, twice }
(1+T3+T*x (1+1T3)
= { semiring }

1+T? % (T+(1+1T3)

{ (3.2), particularly, T+ (1 + T3) =1 02 T }

1+73.

By using the property (3.3), we prove seven-trees-in-one as follows:

T =y T7
= { corollary 3.1.2 }
T =yiqe T
= { Aiming to equalise both sides, we use (3.3) to add 7% x (1 + T3)
on the left side and T x (1 +T3) on the right side. }
TH+T 5 (14+T3 =102 TT+T x (14T
= { semiring and reflexivity }

true .

More interesting, from the property (3.3), we have:
(Vp 2 peN[T]" @ p+T3xp =12 1+T3).

That is, for all polynomials p in N[T]T, there is an additive inverse T® x p. Thus, the
quotient set N[T|" /=1 2 forms a ring. The zero and unit of this ring are respectively

equivalence classes of 14+7% and 1+ (1+73) under the least congruence relation = 2.
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3.2 Recursive Type Isomorphisms

Generally, let us consider the following recursive type isomorphism:
34) T = 1l+a

where « is a polynomial in N[T'] with degree at least 2. Following Fiore and Leinster’s
lead [FLO04, Fio04, FLO05], in this section, let us show that the quotient set N[T|* /=14
forms a ring. The idea is to construct a zero Aj;, for N[T]"/=14a. And Ajiq
is so constructed that it is isomorphic to 14 714, for a polynomial 714, in N[T]*.
Since 1144 is effectively an additive inverse of the unit of N[T]|*/=1,,, the quotient

set N[T]"/=14+q is aring.
Lemma 3.2.1. There is a polynomial + in N[T'] such that

QO =140 14+2a+0a?+7.

Proof. Notice that o has degree at least 2. Let us rewrite o as T +r for k at least
2 and r in N[T].
T +r
=1ta  { (34) }
1+a) +r
=1ia { 2 <k, by the Binomial Theorem,
(1+a)f = 1+2a+a?+4, for some & in N[T]. }
1+2a+a*+36+7
=1ia { renaming, v = d+7r }

1+20+a?+7.

Define
(35) Alpa = 14+a+a®+7.
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We get a crucial lemma.

Lemma 3.2.2. a+Aiiq =140 «.

Proof. Tt directly follows from the definition of Aj,, and lemma 3.2.1.

By using this lemma, it is easy to prove the following properties:
(36) T+A1+a “l+a T A T x A1+a “l+a A1+a .
That is,

T+ A1+a

=1ta  { (34) }

(1+a)+Aia

=1ta { semiring and lemma 3.2.2 }
1+a
=1ta  { (34) }
T
and
T x A1+a

=lta { (3.4) and semiring }
Miyo+axAiiq

=1ta { definition (3.5) of A1y }
l+a+a?+7+axAiia

=lta { semiring }
l+a+y+ax(a+Aiia)

=1ia { lemma 3.2.2 and semiring }

l+a+a®+7y
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=140 { definition (3.5) of Aj1o }

A1+a .

Notice that the quotient set N[T]*/=1,, inherits all properties from the semiring N[T']
except for the unit and zero. Using the property (3.6), by induction on the structure of

polynomials, we have that Aj,, is a zero of N[T|"/=1,,. That is,
Vp - pEN[T]+ Pt Ara =14a P A DX Aja =14 Aita) -

And 1+A144 isaunit of N[T]*/=1,4. A straightforward consequence is that N[T]" /=14,

is a semiring. Recalling the definition (3.5) of Aj44, let us define
Mia = a+a2+’y.
That is, 1 + 14a =1+a Alia. Since Aj . is a zero of N[T|"/=1,4, it is easy to see
that
Vp : peN[T]" : p+mita xp =1+a Aita) -
It follows that
Theorem 3.2.3. Given the identity 7" = 1 + a with « in N[T] having degree at

least 2, the quotient semiring N[T]" /=14, forms a ring. The inverse of the unit is the

equivalence class of 714, under the least congruence relation =1 ,.

Return to the identity 7" = 1 4+ T2. Recall that 1+ 73 and T2 play the roles of zero
and negative unit respectively in N[T]*/=;,p2. We can use polynomials 1 + 7% + i

(i>0)and T3 x (=i) (i <0)in N[T]*/=1.p2 to represent integers i. Formally, let

14+ 73 and 2 + T3 be equivalence classes of 14+ 73 and 2+ T under the congruence
relation =; 72 respectively. We have the following ring monomorphism from the ring

Z to the ring N[T|" /=1 q2:
O : (Z, +, x, 0, 1) — (N[T]"/=1472, +, x, 1+ T3, 2+T3)
which is defined as: for all integers ¢ in Z,

, 14+T3+4, i>0;
0.7 =
T3 x (—i), i<0.
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More interesting, we can specify a monomorphism from a polynomial quotient ring to
the ring N[T|" /=1, 2. Specifically, let =2—(1+22) be the equivalence relation defined
by the principal ideal I,_(1,,2) which is generated from the polynomial z — (1 + z?),

that is,

L (1a2y 2= {px(z—(1+2%)|peZlz]}.

We have that the quotient set Z[z]/=,_(14,2) forms a polynomial quotient ring. The

kernel of this quotient ring is the principal ideal I,_(1,,2). By solving the equation:
r—(1+2%)=0,

we have that z = cos § & sin §4. Further, the above quotient ring can be considered as

the ring extension:
7T T
Z|cos — + sin —1
[cos = % sin o 4]
of complex numbers cos § + sin §i.
Now, elements in the polynomial quotient ring Z[z]/=,_(11,2) (or the ring extension

Z[cos § + sin §i] ) can be represented by elements in the ring N[T]"/=;, 12 by the

following ring isomorphism:

O : (Z[x]/:!rf(lJr:rQ)a +, X, T — (1 +$2)7 1+x— (1 + .%'2))

o (N[T]T/=1412, +, x, 1+ T3, 2+T3)

which is defined as: for all polynomials p and ¢ with natural numbers as coefficients,

©.p—q) = [T/z](Q+23+p+a3xq).
From the definition of =g, we have that for all polynomials p and ¢ in N[T]",
p=sq = B-T)\(p—q.

By theorem 2.1.1, © is an isomorphism. Hence, the range of © has the same alge-
braic properties as the polynomial quotient ring Z[z]/=,_(14,2) or the ring extension

Z[cos § + sin §i] with respect to defined operators and equalities.
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From this property, for instance, we have:

(=1 +a?)\ (=°~1)
= { definition of =, (11,2 }
af “z—(1+22) 1
— { ring isomorphism }
0.2° =, 6.1
= { definition of © }
1+ T34+ T% = 0 14T°+1
— { 1473 isazeroin N[T]" /=1, 2. }
6 =12 24713
= { corollary 3.1.2 }

TS = e 24713,
and

(- (1422 \ (@ — )
= { definition of = (1+a2) }
' =, (42 @
- { ring isomorphism  }
0.z" =1, O.2
= { definition of © }
L+ T+ T =2 1+ T° 4T
— { 1473 isazeroin N[T]"/=1, 2. }
T’ =1412 T
= { corollary 3.1.2 }

T" >~ T.

Generally, given an isomorphism 7 =~ 1 4 « with the degree of « at least 2, by

theorems 3.2.3 and 2.1.1 and the definition of =1;,, we can define the following ring
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isomorphism:

o : (Z[T]/:Tf(1+a)7 +, %, T—(1+a), 1+7T—(1+a))

< (N[T]+/:1+Oé7 +7 ) A1+oca T]l—i—a) .

Combining with corollary 3.1.2, isomorphisms between non-trivial objects in C|T| which
18 equipped with the aziom isomorphism T = 14« can be decided by polynomial division

algorithm on Z[x]. That is, for all non-trivial objects A and B in C[T],
A= B = T-(1+a)\(A-B).

This coincides with Fiore and Leinster’s result [Fio04, FLO5].

3.3 Recursive Type Isomorphisms on Two Types

Notice that the construction of the zero Aj,, is a crucial step to the proof that
N[T]"/=14+a isaring. Can we construct a zero for the quotient set of multi-variable poly-
nomials under the least congruence relation generated from identities on two variables?
Specifically, we use the notation N[S,T'] for the set of all multi-variable polynomials in
S and T with natural numbers as coefficients. Let o and ( be polynomials in N[S,T’]
satisfying that o has a term 7™ and § has a term S" with m and n at least 2.
Let the symbol =g denote the least congruence relation generated from the following

identities:

S =1+4+a;
T =1+75.

B =

That is, the relation =g is the least congruence relation that includes pairs (S, 1+ «)
and (T, 1+ ), and is preserved by polynomial products and additions. Let the notation
N[S,T]* denote the set N[S,T] —N. We are interested in the structure of the quotient
set N[S,T]"/=¢ .

Analogous with the construction of Aji,, we have:
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Lemma 3.3.1. There is a polynomial v in N[S,T] such that

o =¢ 1+204+>+8+6%+~.

Proof.
a
=g { o« has aterm T™ with m at least 2.
Rewrite a as T™ 4+ p with p in N[S,T]. }
™" +p
= { T =1+p5 }
1+ +p
=g { 2 < m, by the Binomial Theorem,
(1+8)™ = 1+28+ B2+ q for some ¢ in N[S,T7].
1+28+B%+p+gq
=g { B has aterm S™ with n at least 2.
Rewrite 8 as S™ +r with r in N[S,T]. }
1+8+B+S"+p+q+r
=g { S=1+a }
1+B8+82+(1+)"+p+q+r
=g { 2 < n, by the Binomial Theorem,
(14+a)" = 2a+a?+s for some s in N[S,T]. }
1+2a+a®+B+ B> +p+q+r+s
= { renaming, v := p+q+r+s }
1+2a+a?+B+B%+7.
Define

(3.7) As 2 l+a+®+5+5+7.
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From lemma 3.3.1, we have that
a+Asg =¢ a.

(3.8)
Symmetrically, we can construct
l+a+a?+8+6%+9".

AL

Ag
with +" in N[S,T] satisfying that
(39) B+As =6 5.
Notice that Ag =g Ag. That is,
Ag
=g { Ag hasaterm [ and (3.9). }
Ag + Ay
=g { Ay hasaterm a and (3.8). }
Ay
It follows that
Lemma 3.3.2. a+Ag =¢ a A [+Ag =¢ 0
By using this lemma and the definition (3.7) of Ag, we have:
S+As =6 S A TH+As = T A SxAs =6 As A T xAg =¢ Ag .
Let us prove S+ Ag =¢ S and S x Ag =¢ Ag as follows:
S+ Ag
=g { S = 1+a and semiring }
1+ (a+Ag)
=g { lemma 3.3.2 }
1+a
1+a }

(5=
S
39

=6
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and

S x Ag
=g { S = 1+« and semiring }
A +a x Ag
=¢  { definition (3.7) of Ay }
lta+a®+5+ 5 +7+axAs
=g { semiring }
L+a+B+5+7+ax(a+As)
=g { lemma 3.3.2 and semiring }
l+a+a’+5+p5 +7
=¢  { definition (3.7) of Ay }
Ag .

Similar arguments apply to the proofs of T'+ Ag =¢ 1T and T X Ag =¢ Ag.

Theorem 3.3.3. Let a and 8 be polynomials in N[S, T']. Given the following identities:

S =14a;
T =14+p5.

B =

which satisfies that « has a term 7" and [ has a term S™ with m and n at least 2,
the quotient set N[S,T|"/=¢ forms a ring. The inverse of the unit is the equivalence

class of ng under the congruence relation =g where 7y is defined as:
ne = a+adl+B+p14.
That is, Ag =@ 1+ ne. Moreover,

Vp : peN[S,T]" : p+As =¢ p A pxAs =6 Ag A D+ns xp =6 As) .

Generally, considering the following identities:

6 S = ps;

T = pr,
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with ps and pr in N[S,T]". (Note that if pg or pr has degree 0, then & degenerates
to an identity on one variable or constants.) We are interested in the problem of under
what condition the quotient set N[S,T]" /=g forms a ring since the condition on &

given in theorem 3.3.3 seems too strong. For example, consider the following identities:

S = T?%;
G =
T =1+5.
Notice that
S =¢ T?
=q (1+S)2
=c 1+25+ 82

=¢ 1+85+8*+ 712
and
T =¢ 1+ 5
= 1417
=¢ 1+ (1+9)?

—¢ 1+1+25+52.

Taking o and B to be S+ 52+ T2 and 14 25 + S? respectively, the polynomials «
and f satisfy that a has a term 7™ and [ has a term S™ with m and n at least 2.
From theorem 3.3.3, we have that the quotient set N[S,T]"/=¢ forms a ring under the

least congruence relation =g generated from G.

We are going to relax the condition in theorem 3.3.3. For our purposes, let us define the

binary relation =g on N[S,T] as: for all p and ¢ in N[S,T7],
pregq = @r :reNST]:p=¢ qg+r).

We say that p generates q with respect to &. From this definition and properties of

the relation =g, we have that the relation =g is reflexive, transitive, and compatible
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with products and additions. Specifically, for all p, ¢, r, and s in N[S,T],

P Bs P
pPPsqg AN qBsT = p Be T
p>s q AN T D>g S = p+r o> g+s A O pXT B> qXS.

Motivated by our investigation into the system G in the above example, the condition

given in theorem 3.3.3 can be generalized to

(310) Sl A Tregl A Amyn:2<mn: ScgT™ AT =g S").

Further, we want to show that the condition (3.10) is equivalent to the condition that
S and T both generate the term 1, S and T generate each other, and at least one of
ps and pr has degree at least 2. Specifically, let us use deg for the degree of a given

polynomial. For instance, deg. (1 + S?T) = 3. This condition is formalized as:
(311) (Sl AaTregl) A (SoegT AT>gS) A (2<deg.ps v 2<deg.pr).
That is, our goal is to show that
(3.10) = (3.11).
Notice that

Lemma 3.3.4.

(ST A TregS) A (2<deg.ps v 2<deg.pr)

= Am,n :2<m,n : S T" AT ¢ S™).

Proof. Suppose that 2 < deg.pg. Since S = pg, by the definition of =g , we have

Aa, b : 2<a+b A 0<a,b: S =g T°5°.
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Further,
ST A TregS A S g 1060
= { g is transitive and compatible with products. Specifically,
T o S = T° >g 8% = T0S° g S0t}
Seg T A TregS A Ssg 54
= { g is transitive and compatible with products. Specifically,
S > T = 89 g 100}
T e S A S sg 890 A 8§00 oy Totb
= { transitivity and weakening }

S g T A T =g S0
By symmetry, we have that
ST A TregS A Tog TS0 = S g T A T g 5970

Recall that 2 < a4+ b. We prove the lemma. O

From lemma 3.3.4,
(3.10) < (3.11).
Notice that

Sl ATegl) A Emyn :2<mn : S g T" AT =¢ S")
= { g is transitive and compatible with products. Specifically,
TieoglA2<m = T"logl = T"oe T,
S 1l A2<n = S"leogl = S"sgS. }

Sl A Tregl) A (ST A T=gS).
Since degrees of pg and pr are at least 1,

—(deg.ps =2 vdeg.pr=2) = —-{Am,n:2<mn: ScgT™ AT =g 5").
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In words, if degrees of pg and pr are 1, then it is impossible to generate S =g 1™

or T ¢ S™ for m and n at least 2. Combining the above discussions, we have that
(3.10) = (3.11).

Therefore, (3.10) is equivalent to (3.11).

The advantage of (3.11) over (3.10) is that the function deg is easier to calculate than

the relation =>g. How does one derive an algorithm to decide whether the conjunction

(S 1 AT g 1) A (S > T AT =g S) is true or not? Before we study

this problem, let us generalize the condition (3.11) on identities on two variables to the

condition on identity systems.

3.4 Recursive Type Isomorphism Systems

Given a finite set T of variables, let us consider the least congruence relation generated

from the following system & of identities:
S = (T :TeXT A preN[Z|t : T = pr)

where we use the notation N[%] for the set of all multi-variable polynomials in variables
from ¥ with natural numbers as coefficients. By generalizing the condition (3.11) in
section 3.3, we have the condition that for all types T in T, T generates the term 1,
variables in T generate each other, and at least one of pr has degree at least 2, written

as:

(312) VT eT::Tegly A NT,ReET :: T>g Ry A (IT €T :: 2<deg.pr) .

Generalizing the proof of that (3.10) is equivalent to (3.11), we have that the condition

(3.12) is equivalent to

(313) WVTe¥T :: T g 1) A (NT,ReT :: {3m :2<m: T =g R™)).
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It follows that for all variables 7" in ¥,

T > 1+4(ER,m :ReT A 2<m: R™).

By generalizing the construction of Ag in lemma 3.3.1 and the properties of Ag in
lemma 3.3.2, we can construct a zero Ag for the quotient set N[T]"/=g. The polynomial
Ag is so constructed that it is isomorphic to 1 + ng for a polynomial ng in N[Z]*.

Further,
Vp : peN[Z]T : p+As =6 p A pxAg =¢ As A p+1s xp =¢ As) .

Therefore, under the condition (3.12), the quotient set N[T]*/=g forms a ring.

Actually, the condition (3.12) is also a necessary condition as for that N[Z]"/=g forms
a ring with respect to polynomial addition and product. Suppose that N[Z]" /=g is a
ring. We can find polynomials Ag and ng in N[Z]" which play the roles of zero and

negative unit of N[T]*/=g respectively. Because for all 7' in ¥,
T =¢ TH+As =¢ T+1+ns,

by the definition of =g, we have:
(VT e% :: T g 1).

Notice that the structure (N[T]*/=g, +, As, Bg) is an additive group. We have that
forall T and R in ¥,

T =¢ R+ xR+T AN R =g T+nexT+R.
By the definition of =g, we have:
NT,Re¥ :: Tres R).
If the degree of ppr is 1 for all pr in &, then for all p and ¢ in N[T]T,

p = q = deg.p=deg.q.
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However, since for all 7" in %,

As xT =g As,
we have:

deg.(As xT) =deg.As +1 #deg.As .
By contradiction,

(ITeT :: 2<deg.pr) .

Combining the above discussions,

Theorem 3.4.1. Given a system
& 2 (T :Te¥X ApreNg|T : T = pr)
on the finite set T of variables, the quotient set N[T]* /=g forms a ring if and only if

NTeT ::Tegly n VTI,RET :: T>g R) A (3T €T :: 2<deg.pr) .

Now, we are going to derive an algorithm to decide the condition (3.12). In order to get

better understanding of the condition (3.12), let us consider the following example:

X =YZ;
H = Y = 1+2;
Z = X+Y.

We use t < p to denote that the monomial t is a term of the polynomial p. For instance,
1<2x14+2%xYZ and YZ<2x14+2xYZ. Let symb.t be the set of all constants
and indeterminates appearing in the monomial t. For example, symb.(1) = {1} and

symb.(YZ) = {Y, Z}. We have the following property: for all variables T,
(314) T reog 1l = @t :t<pr: (s :sesymb.t : s >g 1)).

That is, T' generates 1 if and only if there is a monomial t in pr satisfying that all

variables appearing in t gemerate 1.
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By using this property, we have that
Y > 1
= { Bl4)and Y =1+2 }
leog lv Z g1l
= { ©p isreflexive }
true .
Further, let us prove X =g 1 and Z >y 1 as following:
X > 1
= { B314)and X =YZ }
Yopgl A Z el
= { Y =g 1 (from the above proof) }

ZI>H1

{ 314)and Z = X +Y }
XeogplvY gl
= { Y =g 1 (from the above proof) }

true .

Motivated by the property (3.14), let us define the algorithm E.& as:
Algorithm 3.4.2.
A=
do
B:=A
for each type T in T—A
for each monomial t < pp
if symb.t <€ A v symb.t={1}
A = Au{T}; break

while A != B.
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We have:

(3.15) (VTeT :: Tregl) = E.6=%.

Further, let G.& be the graph (V, E) which is defined as:
V =% A (T,R)e E = {dt : t<pr : Resymb.t)y.
We have:

Lemma 3.4.3. That all variables in T generate 1 implies that

NT,Re¥ :: T s Ry = G.G6 isstrongly connected .

Proof. For all variables T" and R in ¥, we have that

T > R

= { T =pr }

@t t<pr:tes R

= { the structure of monomials }

Gt t<pr : S, p,qg: Sesymb.t n p,qeN[Z] : pSq¢ =5 R))
= { WTeT :: T r>g 1) = prel A qgrmel }
Gt t<pr : 38 : Sesymb.t : S =g R))
= { the definition of G.& }

(T,S)eE A S =g R.

That is, T' =g R is equivalent to that there is a path from 7" to R in the graph G.G&.

By the definition of strongly connected directed graphs, we prove the lemma. O

Combining (3.15) and lemma 3.4.3, the condition (3.12) is equivalent to

(3.16) E.6 =% A G.G isstrongly connected A (ITeT :: 2<deg.pr).
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Returning to our example system H. It is easy to show that the graph
G.H = (XY 2z} {(X,Y), (X, 2),(Y, 2),(Z X), (Z,Y)})

is strongly connected. Notice that E. & = {X, Y, Z} and deg.(YZ) = 2. That is, H
satisfies the condition (3.16). Let us show that the quotient set N[X, Y, Z]"/=p is a
ring through constructing the zero Az. We have that
Z =g X+Y
—y YZ4Y
=g 1+2)Z+Y
=y Z+72°4Y
=y Z+(X+Y)?2+Y
=g Z+(X+Y)Y +1+2Z
=g 1+2Z7+2XY + X2 +Y2.
By using this derived identity, we get
X =g YZ
=g 1+2)Z
=y Z+ 7
=g 1+2Z4+2XY + X2 +Y?24+ 272

and

Y =y 1+2
=y 1+1+2Z+2XY + X2 4+Y?
=y 1+1+42Z+2XY + X2+ (1 + 2)?
=y 14+24+4Z4+2XY + X%+ 2%

Taking a, 3, and 7 to be polynomials 2Z+2XY +X2+Y?24 22 244Z+2XY + X2+ 22,
and 27 +2XY + X? +Y? respectively. That is, the derived identities

X =5 1+a;
Y =g 1+75;
Z =g 1+4+~.
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satisfy that a, 8, and ~ have terms Y? and Z?, X2 and Z?, and X? and Y?
respectively. By generalizing lemmas 3.3.1 and 3.3.2, we have that there is a polynomial

p in N[X,Y, Z] satisfying that
Ap 2 14+a+B8+7+a®+5°++ +p

is a zero of the quotient set N[ X, Y, Z]|"/=p . Further, the quotient set N[X, Y, Z]*/=p

forms a ring. The inverse of the unit is the equivalence class of
g = a+BH+y+a’+ 87+ +p

under the least congruence relation =p.

In summary, we derive an algorithm to decide the condition (3.12). That is,

Corollary 3.4.4. Given a system & of identities on the finite set T of variables, the

quotient set N[¥]|"/=g forms a ring if and only if

E.6 =% A G.G isstrongly connected A (ITeT :: 2<deg.pr) .

We now suppose that & satisfies the above condition in corollary 3.4.4. Let Is and
=1s be respectively an ideal in Z[%] generated from & and the equivalence relation

defined by Ig. Let =g be the least congruence relation generated from &. Notice that
for all p and ¢ in N[Z]":

p=¢q = p—qc€ls.
By theorem 2.1.1, we can define the following ring isomorphism:
© : (ZIZ)/=Is, +, %, Is, 1+1s) < (N[T]"/=¢, +, x, As, As +1) .

That is, for all polynomials p and ¢ in N[T],

©.p—q) = As+p+nsxq.

Further, polynomial division algorithm on Z[%] can be used to decide identities in

N[E]"/=e.
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We would like to use polynomial division algorithm to decide isomorphisms =~g in the

free distributive category C[T] on ¥ which is equipped with axiom isomorphisms:
6 = T :Te%X ApreCl® : T = pr).

Notice that for all objects A, B, and C' in C[%], the following semiring properties are

derivable from arrows in C[%].

A+(B+C) = (A+B)+C (associativity of coproduct)
A+B =~ B+ A (symmetry of coproduct)
A+0 2 A >0+4 (unit of coproduct)
Ax(Bx(C) = (AxB)xC (associativity of product)
AxB ~ Bx A (symmetry of product)
Ax1l 2 A >x1xA (unit of product)
Ax0 =20 x=x0xA4 (zero of product)
Ax(B+C) @~ AxB+AxC (distribution)

A straightforward consequence of these properties is:

Corollary 3.4.5 (Soundness). =g < =g .

Combining with the above ring isomorphism ©, we have that for all polynomials p and

q in N[T]*,
p—q € ls = p =g q

when & satisfies the condition in corollary 3.4.4. That is, polynomial division algorithm

on Z[Z] can be used to decide isomorphisms ~g.

However, we don’t know whether the completeness:

12

e & =s

is true or not when & is not a single isomorphism 7 =~ P(T') such that P satisfies the
condition in theorem 3.1.1. Its proof can be a generalization of Gates’ result in [Gat98|.

Until now, we don’t know how to prove it.
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On the other hand, when & doesn’t satisfy the condition in corollary 3.4.4, whether
~g can be decided is not clear. In [Fio04|, Fiore discussed linear cases with respect to

single recursive types. As for recursive type systems, more investigations are needed.

3.5 Trees-In-Zero

Return to the type T of binary trees, i.e., the least fixed point puX . (1 + X x X). Let
List T be the type of all finite lists of T, i.e., the least fixed point puX .(1 + 7T x X).
In this section, we are going to show that 7' is isomorphic to List T and List T is
isomorphic to 14 7. Here, isomorphisms denote that there are inverse functions which
are generated from arrows in the free distributive category C[T] on T equipped with
the axiom isomorphism 7' =~ 1472 by applying functional compositions and primitive

recursions (on 7" or on List T'). We write:
T it ListT =", 1473,

Since 1+ T3 is a zero of N[T]* /=172, we refer to this isomorphism as trees-in-zero.

A crucial property used in our proof of trees-in-zero is:
(3.17)  (List (T°) x 1 +7T%) =ind, 1473,
For clarity, we give its proof in section 3.5.1. Define X, as:
Y, = (Xi:0<i<n:T').
Another useful property is:
List T =4, %, x (List (T™))
which follows from:
List T

~ind , { definition of List T }

uX.(1+7T x X)

;’ﬂdTg { generalization of square rule (specifically, uf = u(f™)) }
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uX . (X, +T" x X)
= { = (Bax), gi= (1) o (T"%), b= (Sa+) o (T7x),
Since f is a lower adjoint and fog=ho f,
we have that foug = ph. }
Yo xpuX.(1+T" x X)
;’ﬂdTg { definition of List (T™) }

Y, x (List (T")) .

Further, since

Y

~ind { definition of ¥,, }
1+ T+T*+T3+ 7" 4+ 1°

~ind { 1473 isazeroof N[T|*/=1 12 }
T+T?+ T+ 75

~ind {

=" semiring }

T+ T+ (1+T% x T?
~md o { 1+7T% isazero of N[T]% /=) 72. }

T+T%,
we get
List T =%, (List (T%) x (T +T%) .
Then, by using the property (3.17), we have:

(List (T%) x (T +T*%)

~ind {

=" semiring }

(List (T) x (1 +T%) x T
~ind o { 1473 isazeroof N[T]/=1 72. }

(List (T®) x (1 +1T?)

o3



CHAPTER 3: RINGS OF RECURSIVE TYPE ISOMORPHISM SYSTEMS

~ind . {0 (317) )

14713
and

(List (T®)) x (T +T%)
élﬁdTg { semiring and List T ;iﬁdp 1+T x ListT '}
T + (List (T%) x T" + (List (T%)) x T*

~ind {

=" semiring }

T + (List (T%) x (1 +T3) x T*

;’ﬂdTg { 1+7T3 isazeroof N[T|"/=1, 12 }
T + (List (T%) x (1 4+ T3)

SHe { 317) }
T+ (14173

~ind { 1473 isazeroof N[T|*/=1 12 }

T.

Combining the above results, we get a proof of trees-in-zero.

3.5.1 Catamorphisms

Now, let us prove the property (3.17) by explicitly constructing mutually inverse func-
tions (| fre]) and ( fre )~ which are shown in the following diagram:

1 Y

(List (T%)) x (1 + T3 ————= (1 + T%) + T x ((List (T%)) x (1 +T%))
wm
(fre D™ || (fre) idy g3 +idpe X (frpe ) | | idy 3 +idype X (fre )
76
1+73 - (14+T3) +T% x (1+1T3)
76
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o mn;

Here, functions in, in“, frs, and fr; are so constructed that they satisfy:

respectively as the following

in o in" id =
fre o fre = id = frs o frs .
By using these functions, we can define ( f7¢)) and ( frs )"

catamorphism and its inverse:

(fre) = fre o (idiyrs +idps x (frs)) o in™ ;
mn o (’id1+T3 +idT6 X (]fTS Du) @) f’]gs

Since (f7s) and (frs))“ are recursively defined, we need to show that they all termi-

are decided by the definitions of in“ and

A

(fre)” =

nate. The terminations of ( f7¢) and ( f7e)

J16 respectively.
Specifically, from the definition of the star operator, by ezplicitly defining constructors

one : 14 T% — (List (T°%) x (1 +1T°?)
and
peons : T® x ((List (T®)) x (1 +T3)) — (List (T°®)) x (1 +T3),

functions in and in“ can be defined as:

in = one v pcons ;

in” o (one v pcons) = inl v inr.

They satisfy:

Y o in.

Define the bound function
length : (List (T®) x (1 +T%) - N

as:

length (one a) = zero

(pcons (p, ps)) = succ (length ps)
25

length
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Because the function in“ decreases the length of its input, we have that the length of
the input of ( fre| is decreasing after each unfolding. Further, ( fre) terminates when

the length of its input is zero.

Since 1+ T2 is a zero of N[T]" /= 72, we have that
14+ T3 e A+T3)+Tx (1+T3).

Functions frs and fr can be constructed from one of proofs of this isomorphism. For

instance, suppose that we have the following functions:

tn_prod : (n:NT) 5TV x (14+T3) > 1+T3;

tn_prod” : (n:NT) 5> 14+T3 5T x (1+7T3);

idem n : (n:NY)snx (1+T%) >1+T3;

idem_n® : (n:NT) 5 14+T3 >nx(1+T%).
And they satisfy that for all n in N*,

(tn_prodn) o (tn_prod” n) = id = (tn_prod” n) o (tn_prod n) ;

(tdem _nmn) o (idem_n“"n) = id = (idem_n"n) o (idem_nn).
From the following proof:

(1+T%) +T%x (1+77)

> 72 { (idyyrs + (tn_prod 6)) and (idy ps + (tn_prod” 6)) }
(L+ T3+ (1 + 7%

>, 72 { (idem_n 2) and (idem_n“ 2) }

1+73,
functions fre and frs can be constructed as:

fre = (idem_n 2) o (idi ps + (tn_prod 6)) ;

fre %= (idy,ps + (tn_prod” 6)) o (idem_n" 2).

Functions appearing in hints of the above proof work as witnesses. Details about them

are given in the following sections.
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3.5.2 Product-Zero Functions

Firstly, from the following proof:

T x (1+1T%)

~72 { semiring }
T+T*

=2 { T = 1+7% }
(1+7%) +11

> 72 { semiring }
1+T%x (1+1?)

=~ { T = 1+7% }

1+713,
we can construct the function
t prod : T x(1+T3) —1+T3
and its inverse

t prod” : 14+T3 ST x (1+1T%)

as

t _prod (leaf, inl o) = inle

t _prod (node (a, b), inl ®) = inr (a, b, leaf)

t _prod (a, inr (b, ¢, d)) = inr (a, b, node (¢, d))
and

t _prod” (inl e) = (leaf, inl o)

t_prod” (inr (a, b, leaf)) = (node (a, b), inl e)

t_prod” (inr (a, b, node (¢, d))) = (a, inr (b, ¢, d))

o7
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respectively. Notice that these functions are effectively composite functions which are
generated from the identity function, functions corresponding to semiring properties,
and given functions behind the isomorphism T =~ 14 T? by applying finite function

compositions, products, and coproducts. For example, let

sl : Tx(1+T% >T+T*

s1YV : T+ T - T x (1+T3)
and

2 1+TH+T*>1+T?x (1+T?

s2° 1 1+ T?x (1+T%) - (1+7T%) +T*

be respectively functions corresponding to steps in the above proof which have “semiring”

as hints. Let

f 14T T
and

YT >1+T?

be given functions behind the isomorphism 7 =~ 1 4 T2. Functions ¢t prod and

t _prod“ can be defined as the following function compositions:

t _prod = (idy +idp2 X f) o s2 o (fY +idpa) o sl

t _prod” = s1Y o (f +idps) o s2Y o (idy +idp2 x fY) .
Name the constructors of T after

leaf = f o inl
and

node = f o inr

respectively. Then, simplify the above definitions. The resulting functions are as same
as we have shown before. For the convenience of the termination proof of ( f7¢])", we

prefer to use their explicit definitions.
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Further, by using ¢t prod and ¢t prod“ as bases, we can recursively define functions
tn_prod : (n:NV) > T" x (1+T3) - 1+1T°
and

tn_prod” : (n:NT) - 1+T% - T" x (1+T3)

as
tn_prod (succ zero) = t_prod
tn_prod (succn) = t_prod o (idp x (tn_prod n))
and
tn_prod” (succ zero) = t_prod”
tn_prod” (succn) = (idpn xt_prod”) o (tn_prod” n)

respectively. By mathematical induction on n in the above definitions, we have that for

all n in Nt

(tn_prod n) o (tn_prod” n) = id = (tn_prod” n) o (tn_prod n) .

3.5.3 Idempotence Functions

Similarly, from the following proof:
(L+ T3+ (1 +T?
72 { semiring and T =~ 1+72 }

(1+T3H+Q+T*+T"

=~ { semiring and T =~ 1+72 }
1+13+T+T1T"

=2 { semiring and T =~ 1+72 }
1+72+ 7%

=72 { semiring and T =~ 1+7? }
1+73,

29
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we can construct the function
idem @ (1+T*)+(1+T3% »14+T°
and its inverse

idem® : 14+T% - (1+T% + (1+T%

as
idem (inl (inl ®)) = inl e
idem (inl (inr (a, b, ¢))) = inr (a, node(b, c), leaf)
idem (inr (inl o)) = inr (leaf, leaf, leaf)
idem (inr (inr (a, b, leaf))) = inr (node (a, b), leaf, leaf)
idem (inr (inr (a, b, node (¢, d)))) = inr (a, b, node (¢, d))
and
idem" (inl o) = inl (inl e)
idem”  (inr (a, node(b, c), leaf)) = inl (inr (a, b, ¢))
idem”  (inr (leaf, leaf, leaf)) = inr (inl o)
idem"  (inr (node (a, b), leaf, leaf)) = inr (inr (a, b, leaf))
idem"  (inr (a, b, node (¢, d))) = inr (inr (a, b, node (c, d)))

respectively. Using the identity function, idem, and idem" as bases, we have functions

idem _n : (n:N") snx (1+T% >1+7T°
and

idem n” @ (n:NT) 5 14+T3 5nx (1+T3),
defined recursively as:

idem_n (succ zero) = idy 73

idem_n (succn) = idem o (idy,ps + (idem_n n))
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and

idem_n“  (succ zero) = idy s

idem_n" (succn) = (idiops + (idem_n" n)) o idem"

By mathematical induction on n, we have that for all n in N¥,

(idem_n n) o (idem_n“” n) = id = (idem_n" n) o (idem_n n).

3.5.4 Termination

In order to finish our proof of trees-in-zero, we still need to show that ( frs )~ terminates.

For reader’s convenience, we repeat the definitions of ( fre )" and frs as following:

(fre)” = in o (idyyrs +idps x (fre)”) o fre
fre %= (idy,ps + (tn_prod” 6)) o (idem_n" 2).

The termination of ( frs |

is decided by frg. Specifically, if the output of f; matches
with the pattern “inl 7 then ( fre)"“ always terminates. This is the base case. Sup-
pose that the output of fr5 matches with the pattern “inr (_, a)”. If there is a bound

function
size : 1+T% >N

satisfying that the size of a is less than the size of the input to f7s, and for the base

case, the size of the input to fys is zero, then the termination of ( fye )" is established.

Before defining the bound function size, in order to get better understanding of the
problem, let us do case analysis on inputs to frs. From the definition of idem_n",
we have that (idem_n“ 2) is effectively same as idem“. Thus, by using patterns

appearing in the definition of idem“, we can write frs explicitly as:

fre (inl o) = inl (inl e)
fré (inr (a, node (b, c), leaf)) = inl (inr (a, b, c))
fre  (inr (leaf, leaf, leaf)) = inr (leaf®, inl o)
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fre (inr (a, leaf, leaf)) = inr ((a, leaf?), inl o)

fre (inr (a, b, node (¢, d))) = inr ((tn_prod~ 6) (inr (a, b, node (c, d)))) .
For the first and the second patterns in the above definition, we have:

(fre)“ (inl o) = one (inl o)

(frs)” (inr (a, node (b, ¢), leaf)) = one (inr (a, b, c)) .
The third and fourth patterns will be reduced to the first pattern after unfolding. That
is,

Ifre)” (inr (leaf, leaf, leaf)) = peons (eafS, (( fro)” (inl +)))

Ifre)" (inr (a, leaf, leaf)) = peons ((a, Leaf), ({ fro)" (inl #)) .

Let us consider the last pattern. Recall the definition of ¢ prod“, repeated as following:

t _prod” (inl o) = (leaf, inl o)
t _prod” (inr (a, b, leaf)) = (node (a, b), inl e)
t _prod” (inr (a, b, node (¢, d))) = (a, inr (b, ¢, d)) .

Notice that when the input of ¢ _prod“ isnot “inl e”, the depth of the third tree decreases
after each unfolding of t _prod”. Since (tn_prod“ 6) isrecursively defined on ¢ _prod",
as for the last pattern, fr; decreases the depth of the third tree as well.

Based on above discussions, with the aid of the function
depth : T — N*
which is defined as:

depth leaf = succ zero

depth (node (a, b)) = succ (max (depth a) (depth b)),

we can define the bound function size as:

size (inl ®) = zero
size  (inr (_, node (_, ), leaf)) = zero
size  (inr (a, b, ¢)) = depth c.
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Here, the first and second patterns in the above definition correspond to the first and
second patterns in the explicit definition of frs respectively. The third pattern is used
to capture the property that fr; decreases the depth of the third tree. Notice that when
the third tree matches the pattern “leaf”, the size of the input is one. This corresponds
to the third and fourth patterns in the explicit definition of fr; which terminate after

unfolding once.

The size function meets our requirement: when the output of fr matches with the
pattern “inl _ 7, its value on the input to frs is zero; and if the output of f7; matches
with the pattern “inr (_, a)”, then the size of a is less than the size of the input to

Jye- Hence, ( fre)“ terminates.

In summary, we prove the isomorphism trees-in-zero by using List T as a bridge. The
crucial step is the explicit construction of the isomorphism between (List (T%))x (1+T3)
and 1+ T3, Technically, we construct them as a catamorphism and its inverse followed

by their termination proofs.
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Replacement-Set Games

It is interesting to notice that the isomorphism seven-trees-in-one can be illustrated
by a one-person board game, so-called “the nuclear pennies game”. In this chapter, we
introduce an infinite class of one-person board games which has the nuclear pennies game
as an instance. This class of games we call replacement-set games. Through developing
an algorithm to solve these games, we construct a necessary and sufficient condition on
the polynomial # under which identities T% = 3 generate T* =3 Tk+m for natural
numbers k£ and n. It is a surprise that this condition builds connections between type
isomorphisms and products of cyclotomic polynomials. Further, by using properties of
cyclotomic polynomials, we construct several infinite classes of solvable replacement-set
games. However, it is still an open problem to construct the complete set of solvable

replacement-sets.
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4.1 The Nuclear Pennies Game

“nuclear

The seven-trees-in-one isomorphism has been turned into a game called the
pennies game” [Pip07a, Pip07b|. There is an unbounded one-dimensional board which is
divided into squares. Initially there is only one checker on one of squares. The goal is to
move this checker six squares to the right leaving all other squares empty. Index these
squares by integers. There are two types of atomic moves: ezpansions and contractions.
An expansion on square i is to replace a checker on square ¢ by adding one checker on
each of the two squares ¢ —1 and 7+ 1. A contraction to square 7 is that two checkers,

one on square ¢ — 1 and one on square ¢ + 1, are replaced by adding one checker on

square 7. This game can be illustrated by the following figures:

i i i—1 141
el [ [ [[]] [ [ el [ ] [ [of [ef [ ]
IR VAN N
HEEEEEC [ o] le] | [ [ fel [ ||
1+6 1 —1 741 i
(a) Goal (b) Expansion (c) Contraction

Figure 4.1: The Nuclear Pennies Game

The connection between seven-trees-in-one and the nuclear pennies game is easy to see

if one considers an atomic move as replacing 7"~ x T by T%~! x (1+1T?) or vice-versa.

Notice that expansions are reversed procedures of contractions. There is a symmetric
solution to the nuclear pennies game. The solution can be decomposed into two stages:
the first stage is to ensure that there is a checker on the square six squares right to the
starting square and, symmetrically, there is a checker on the square six squares left to the

finishing square; and the second stage is to connect the above two intermediate states.

Achieving the first stage is easy. It is shown in the following figure. In fig 4.2a, six
expansions are used to ensure that a checker is added on the square six squares to the
right of the starting square. Symmetrically, in fig 4.2b, working from bottom to top, six

expansions ensure that a checker is added on the square six squares to the left of the
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finishing square.

o .

(a) Initial Phase

i

+

6

(b) Final Phase

i

|
|
|
|
|
|
|
6

+

Figure 4.2: The Nuclear Pennies Game — The First Stage

The second stage is to connect two intermediate states: the bottom state in fig 4.2a and

the top state in fig 4.2b. A possible solution is shown in the following figure:

|
|
|
|
o|o
|
|
6

i+

Figure 4.3: The Nuclear Pennies Game — The Second Stage

In fig 4.3, two intermediate states are repeated. The first and last moves (expansion on
square 7+ 6 and, symmetrically, expansion on square i) are used to ensure that there is
a checker on square 7+ 5 and a checker on square ¢+ 1 respectively . Then, expansions
on squares ¢ + 5 and i + 4 are used to produce the middle state and, symmetrically,

expansions on squares ¢ + 1 and ¢ + 2 are used to produce the middle state as well.

These expansions are from powers appearing in the following polynomial factorization:

-1 = ([T*+T3-T—-1)x(T*-T+1).
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More explanations about the connection between the above expansions and this factor-

ization will be given in later sections.

4.2 Replacement-Set Games

The seven-trees-in-one isomorphism is not an isolated example. For instance, the isomor-
phism T =y g, 72 T° appearing in [Fio04] and several classes of isomorphisms which
are similar with the seven-trees-in-one isomorphism given in [FL05|. We propose to con-
struct identities 7% = 3 which generate T* =5 T"* for polynomials 3 in N[T] for
natural numbers k£ and n. This is equivalent to solving the following games: there is
an unbounded one-dimensional board divided into squares with only a checker on one of
squares; the goal is to move this checker to the square which is n squares to the right of
the starting square leaving all other square empty; and atomic moves of this game are
identified by a multiset R. Specifically, an expansion on square ¢ is to replace a checker
on square ¢ by adding one checker into each square in the multiset {{i+a|a € R|} and

a contraction is the reversed procedure.

The connection between T* ~ 3 and the multiset R is straightforward. Let A be the

multiset of powers appearing in the polynomial 5. We have:
R = {a—-k|lacAl].

That is, the multiset R captures the relative replacement squares to the square k. As
an example, given an identity 7° =~ T2 + T° + T®, the corresponding multiset R is

{ —3,0, 3}

We call this class of games the replacement-set games. And the multiset R is called
the replacement-set and n is called the displacement. The nuclear pennies game, for
instance, is corresponding to the replacement-set game with replacement-set {| —1, 1|}

and displacement 6.
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In this chapter, we focus on the following problems: (a) given a replacement-set game, to
decide whether there is a valid sequence of expansions and contractions which solves this
game; (b) to construct such a sequence if the game is solvable; (c) given a displacement

n, to construct all solvable replacement-sets.

For questions (a) and (b), we will give complete answers in sections 4.3 and 4.4. In
section 4.5, we will give partial answers to question (c). By partial answers, we mean
that some interesting subsets of the set of all solvable replacement-sets are constructed

by using properties of products of cyclotomic polynomials.

4.3 Trivial Replacement-Set Games

Let min.R and mazx.R be the least and the greatest element of R respectively. A
replacement-set game (R, n) is trivial if min.R > 0 or maxz.R < 0. Because either
there is no solution or there are trivial solutions to these games. More details are given

as follows.

Suppose that min.R is 0. There is a solution to the game (R, n) if and only if n is 0.
When n is 0, the solution to the game is trivial — doing nothing or a valid sequence of
expansions and contractions satisfying that the number of expansions is the same as the
number of contractions, and for all prefixes of this sequence, the number of contractions
is at most the number of expansions. For instance, write Fi and C4i for expansion on

square ¢ and contraction to square ¢ respectively, the sequence
[EO0, E1, CO, E2, EO, C2, C1, CO]

is a solution to the replacement-set game ({0, 1[}, 0) with the initial checker on square
0. If n is not zero, since the initial checker is always on the board, there is no solution

to the game. The similar argument applies to the case: maz.R is 0.

Suppose that min.R is greater than 0. Without loss of generality, assume that the
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initial checker is placed on square 0. We want to show that there is a solution to the
replacement-set game (R, n) if and only if R = {a|} and a divides n. The if-part is
easy to prove. When n is zero, the only solution is an empty sequence. If n is not zero,
an appropriate solution is the following sequence of expansions:

[E0, Ea, E2a, ..., E(> —1)a] .
a

In order to prove the only-if-part, we need some formalization. Checkers on the board
at some stage of a game, called a state, can be modelled by a polynomial with natural
numbers as coefficients. For instance, the state with two checkers on square 2 and one
checker on square 3 can be characterized by the polynomial 272 + T3. For all states
p, an expansion on square i is wvalid if the coefficient of T% in p is not zero and i > 0.

A valid contraction is a reversed procedure of a valid expansion. Define the polynomial

Br as:
Br = BxT* = (i:ieR:TY

where TF =~ (. A valid expansion on square i can be formalized as the following state

transition:
p — p-T+T xpg.

Symmetrically, a valid contraction to square ¢ is formalized as the state transition:
p — p+T' =T xpBg.

A solution to the game is a finite sequence of valid expansions and contractions from the
starting state 1 to the finishing state T". Given a state p, after a valid expansion on
square 4, a polynomial T% x (B — 1) is added to p and, symmetrically, after a valid
contraction, a polynomial —T% x (8r — 1) is added to p. Thus, that a game is solvable
implies that there is a polynomial z in Z[T] satisfying that 1+ 2z x (Br — 1) = T™.
That is, Sr — 1 divides 7™ — 1 on Z[T], written as:

(Br =D\ (T"=1).
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From the polynomial long division algorithm, if Sz — 1 divides 7™ — 1, then Sr — 1
can be rewritten as 7% 4+ r — 1 for a positive natural number a and a polynomial r in
N[T]. And the polynomial r satisfies that r is 0 or its degree is less than a and its

constant term is zero. We have:

Lemma 4.3.1. (T +r—-1)\ (T"-1) = r=0 A a\n.

Proof. The if-part is established by the following fact:
™1 = (T°—1)x(2i:0<i<2 T,
a

Let us show the only-if-part. If T%+r—1 divides T" —1, then T%+7r—1 is a product of
cyclotomic polynomials. Since the only cyclotomic polynomial having negative constant
term is 7' — 1 and the constant term of 7% +r — 1 is negative, T'— 1 is a factor of
T%+r—1. Recall that a is a positive natural number. If a is 1 or 2, it is straightforward
that 7 =0 and a \ n. When a is greater than 2, we have that there is a polynomial p

in Z|T| with degree less than a — 1 and constant term zero such that
(T—-1)x (T 4+p+1) = T4r—1.
By simplifying the above equation, we have:
Txp+T-T"'—p =7
= { 7 isin N[T] with degree less than a and constant term zero. }
VWi : 1<i<a—1: [T)Txp+T-T""=p)=0)
= { The degree of p is less than @ — 1 and its constant term is zero. }
1=2[Tlp A~ Vi :2<i<a—2: [T p=[Tp) ~ [T* *]p=1
= { transitivity and [z <y<z = z=y| }
Vi 1<i<a—2: [Tp=1).

Further, T xp+T —T% ' —p = 0 = r. Also, from the polynomial long division

algorithm,
(T*—-1H\(T"-1) = a\n.
We prove the lemma. O
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By using lemma 4.3.1, we have that Sr must be 7% with a divides n if the game
is solvable. This completes the proof of: when min.R is greater than 0, there is a
solution to the replacement-set game (R, n) if and only if R = {{a|} and a divides n.

Symmetrically, a similar argument applies to the case: max.R is less than 0.

In summary, for trivial replacement-set games (R, n): (a) if min.R or max.R is 0,
then the game is solvable if and only if n is 0; (b) if min.R is greater than 0 or max.R
is less than 0, then the game is solvable if and only if R = {i|} and i divides n with i

an integer.

4.4 Non-trivial Replacement-Set Games

Now, let us consider non-trivial replacement-set games. That is, the replacement set R

satisfies that min.R < 0 < maz.R.

4.4.1 Polynomials

Without loss of generality, we assume that only squares indexed by natural numbers are
used and the initial checker is placed on the square m where —m is the smallest element
in R. With this assumption, checkers on the board can be modelled by a polynomial in
N[T]. For all states p, we say that there is a valid expansion on square i if the coefficient
of T% in p is not zero and i > m. Notice that a valid expansion on square i is to replace
a checker on square ¢ and to add one checker to each square in {{i+a |a € R}. Define

the polynomial Br as:
(41) Br = (i :ieR : TH™),

By using this polynomial, a valid expansion on square ¢ can be characterized by the

following state transition:
p — p-T'+T "xpg.
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Symmetrically, a valid contraction to square ¢ is corresponding to the state transition:
p — p+T —T"™xpBg.

Notice that 8 = Sr x TF~™. For instance, given an isomorphism 7° ~ T2 +T° + T%,
the corresponding multiset is {| — 3, 0, 3]} and Bg is 1 + T2 + T%. We have that
T2 +T5 + T8 = (1 + T3 +T%) x T°3. The constant term of B is not zero. This

property is useful later. Thus, in this subsection, we prefer Sr to .

Recall that we assume the initial checker is placed on square m with —m the smallest
number in R. A solution to the game is a finite sequence of valid expansions and
contractions from the starting state 7™ to the finishing state T™*". Given a state p,
after a valid expansion on square i, a polynomial 7%~ ™ x (Bg —T™) is added to p and,
symmetrically, after a valid contraction, a polynomial —T%"™ x (Bg —T™) is added to
p. Thus, that a game is solvable implies that there is a polynomial z in Z[T] satisfying
that T™ + 2 x (B —T™) = T™*™. That is, g — T™ divides (T™ — 1) x T™. Let
us do case analysis on m. If m is zero, we have that Sr — T divides T" — 1. When
m is not zero, since the constant term of [gr is not zero, we have that the common
factor of B — T™ and T™ is 1. Further, Br — T™ divides T™ — 1. Therefore, we
establish a necessary condition for the problem that a given non-trivial replacement-set

game (R, n) has a solution. That is,
(Br =T™)\ (T" = 1)

where the backslash symbol denotes divisibility on Z[T].

4.4.2 An Algorithmic Solution

We want to show that the above condition is a sufficient condition as well, by constructing
an algorithm to produce a sequence of valid expansions and contractions from the starting

state T™ to the finishing state T provided that Br —T™ is a factor of T™ — 1.

Notice that the game (R, n) with the initial checker on square m is solvable if and only
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if the game ({ m |ie R, ga%R) with the initial checker on square is solvable.

_m_
gcd.R

Here, gcd.R is the greatest common divisor of elements in R.

The if-part is established directly through replacing all expansions on squares ¢ by
expansions on squares ¢ x ged.R and all contractions to squares ¢ by contractions to
squares ¢ X gcd.R. Recall that a valid expansion on square ¢ is to replace a checker
on square i by adding one checker to each square in {7 +a | a € R|} and a valid
contraction is a reversed procedure of a valid expansion. Also, —m isin R since —m
is the least element in R. We have that the set of all squares ¢ on which a checker
can be placed during a game (R, n) with the initial checker on square m is the set of
linear combinations of elements in R. More precisely, they are multiples of the greatest
common divisor of R. Thus, given a solution to game (R, n) with the initial checker
on square m, it is valid to replace all expansions on squares ¢ by expansions on squares
i

'i . . . .
Jed B and all contractions to squares ¢ by contractions to squares Jed B This completes

the proof of the only-if-part.

It follows that a solution to a game (R, m) with ged.R # 1 can be constructed from
a solution to the game ({ gcd%% | i € R}, 5y5) through replacing square indexes i
by i x ged.R. Without loss of generality, let us consider the problem of constructing a
sequence of valid expansions and contractions from the starting state 7™ to the finishing

state T™*™ provided that Br —T™ is a factor of T™" — 1 and gcd.R = 1.

Reviewing The Nuclear Pennies Game

The idea is embodied in the solution to the nuclear pennies game. The corresponding
replacement-set game is identified by the pair ({ — 1, 1]}, 6). Since the least element
in the replacement-set {| —1, 1]} is —1, the starting square m is 1 and B4_; 1} is

1+T72. By using polynomials to characterize states of a game, the solution to the nuclear
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pennies game is formalized as follows:

{ p=T }

expansions on squares from 1 to 7 ;

{ p=T+(Xj : 1<j<7: TV xQ+T*-T)) }

expansions on squares 6 and 5 ;

{ p=T+(j : 1<j<7: TP x(1+T%*-1))
(T Yy x 1+ T2 -T) }

{ p=T"+(2j : 1<j<7 : V"' x(1+T*-1T))

+ (MY« (14T -T) )

contractions to squares 3 and 2 ;

{ p=T"+(2j : 1<j<7: TV xQ+T*-T7)) }

contractions to squares from 1 to 7 .

{ p=T"}

Because 1+ T2 — T is a factor of 76 — 1, from the following factorization:

-1 = (T*+71T3-T—-1)x(T*>-T+1),
we have that for all polynomial ~ in N[T7,

T+(y+T*+T)x(14+T>-T) = T +(+T°+THYx1+T?-T).
It follows that the two middle states are equal. Here, we take v to be

(5 :1<j<7 T

Further, the solution to the nuclear pennies game can be considered as the construction

of two valid expansion sequences starting from states 7' and 77 respectively satisfying:

(a) their corresponding polynomial characterizations are equal,
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b) the resulting states ensure respectively that expansions on squares 7% and T°
g p y p q )

and expansions on squares 72 and T2 are valid.

Specifically, the two valid expansion sequences are
[El, E2, E3, E4, E5, E6, ET]

and
[E7, E6, E5, E4, E3, E2, E1] .

Notice that an expansion on square ¢ adds one checker on each of squares 7 — 1 and
i+ 1. Hence, expansions on ¢—1 and ¢+ 1 following an expansion on ¢ are valid. This
property ensures the validity of the above expansion sequences. Further, they have the

same polynomial characterization:
() : 1<j<7 TV x1+T%-1)).

And the resulting states after the above expansions starting respectively from states T

and T7 are as follows:

S1 = T+(2j:1<j<7: T x14+1T*-1))
= (2§ :0<j<6: TH+T8,
S2 = TT4(%j :1<j<7: T x14+1T%-1))

= 1435 :2<j<8 : T9).
Let the notation [T*]p denote the coefficient of T* in state p. We have:
[T6]1S1>0 A [T°]S1>0
and
[T3]52>0 A [T%]S2>0.

That is, the above condition (b) is satisfied.

Then, we can do expansions on squares 6 and 5, and expansions on squares 3 and 2

respectively to get the middle state. Recall that contraction is the reversed procedure of
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expansion. The solution to the nuclear pennies game can be captured by an expansion

sequence followed by a contraction sequence, shown as:

[El, E2, E3, EA, E5, E6, ET, E6, E5, C3, C2, C1, C2, C3, C4, C5, C6, CT].

The Algorithm Outline

Generally, suppose that the given non-trivial replacement-set game (R, n) satisfies that
Br — T™ divides T™ — 1 and the initial checker is on square m with —m the least

element in R. Define the partial order = on N[T] as: for all polynomials p and ¢,
pEgq = MieN:1<[T'p : [T']p<[T']g).

One can construct least polynomials § and p in the poset (N[T'], ) satisfying that

for all polynomials v in N[T7,
(42) T+ (y+0)x(Br—T™) = T+ (y+p)x(Br—T")

by using the polynomial long division algorithm on Z[T].

Inspired by the symmetric solution to the nuclear pennies game, if we have two valid
expansion sequences v, and 7., starting from 7™ and T™"™ respectively which

satisfy:

(a) they have the same polynomial characterization v x (g —T™) ;

() §xT™ € T 4y x (Bp—T™) A pxT™ © T™ Ly x (B —T™),

the algorithm to solve the non-trivial replacement-set game (R, n) with the initial

checker on square m can be constructed as:
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Algorithm 4.4.1.

{ p=T" 1}

expansions on squares in ., ;

{ p=T"+yx(Br—-T") }

expansions on squares in the set of powers appearing in § x T™ ;
{ p=T"+(y+0)x (Br—T™) }

{ p=T""+(v+p)x (Br—T") }

contractions to squares in the set of powers appearing in p x T™ ;
{ p=T""+yx(Br-T") }

contractions to squares in v,4p -

{ p — Tm+n }

The equation (4.2) and the above condition (a) ensure that two intermediate states are
equal. The above condition (b) ensures that expansions according to ¢ and contractions

according to p are valid.

Constructing Valid Expansion Sequences

Assuming that ged.R = 1, we now consider the problem of constructing valid expansion
sequences Y, and v,,4, satisfying the above conditions. Notice that the equation (4.2)

can be rewritten as:
Mt _me = (6—p)x (Br—TM) .

And degrees and codegrees (the least powers) of polynomials on both sides of this equa-
tion are respectively same. Recall that min.R < 0 < maxz.R. According to the definition

(4.1) of SR, the degree of g —T™ is greater than m and the codegree is 0. Thus, the
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degree of § — p is less than n and its codegree is m. Further, we have:

SxT™ € Kx{(Xi:2m<i<m+n : T

pxT™ € Kx(%i:2m<i<m+n : T

where K s the greatest coefficient of 6 and p. By using these properties, the above
conditions (a) and (b) which the valid expansion sequences 7, and 7+, should satisfy

can be refined to:

(a) they have the same polynomial characterization v x (g —T™) ;

(b) K x{(Zi : 2m
Kx{Xi:2m<i<m+n : TH C T"" 4~ x(Bgp—-T").

<i<m4n : TH T T"+yx(Br—T™) A

Recall that the set of all squares on which one checker can be placed during a game
(R, n) with the initial checker on square m is the set of all multiples of the greatest
common divisor of R. With assumptions ged.R = 1 and min.R < 0 < maz.R, by
extending the Fuclidean Algorithm, it is possible to produce a compound expansion L;
which satisfies the following property: given a state p with [T%]p > 0, one can get a
state p’ by the following transition:

L;
43 p —
satisfying that
(44) [T >0 A [T >0.

For clarity, we will give the algorithm which produces L; later. Now, by using L;, we

construct the following compound expansion sequences:

(4'5) [Lm7 Lm+1a B Lm+n]
and
(46) [Lm+na Lm+n71, Ty Lm] .
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The property (4.4) ensures that the above sequences are valid expansion sequences from
the starting state 7™ and the finishing state T™*" respectively. Let [; x (Bg —T™) be
the polynomial characterization of the transition (4.3). The corresponding polynomial
characterizations of sequences (4.5) and (4.6) are equal to:

YV x(Br=T") = &i:m<i<m+n: lLyx(Br-=T").

Further, from the property (4.4), we have:

(i :m<i<m+n : TH © T4+~ x (Br—TM) ;

(Bi:m<i<m+4n : T = T™" 4+ x (B —T™) .

Because
[T™(T™ ++" x (B =T™)) >0 A [T™(T™ +4" x (B =T™)) >0,

sequences (4.5) and (4.6) can be repeated K times respectively. We now take ~,, and

Ymin t0 be:

(47) [Lm’ Lm+1a ) Lm+n ]K
and
(4.8) [Lm+na Lm+n71, Ty Lm]K

respectively. Let v be K x «'. Based on the above discussion, v x (g — T™) is the

polynomial characterization of v, and v,+n, and
Kx{Zi:m<i<m4n:TYC T"+yx(Bg—Tm);
Kx{(Xi:m<i<m+n : T = T"" +yx (Br—TM).

Since m is greater than 0 (—m is the least element of R and min.R <0 < max.R),

we have:
i 2m<i<mtn : TH S (8i:m<i<m+n : TY;
i :2m<i<mtn : TH S (8i:m<i<m+n : TY.

Combining the above results, the refined conditions (a) and (b) are satisfied. This

completes the construction of =, and v,,4n.
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Constructing Compound Expansions

We now focus on the construction of the compound expansion L; which is a valid
expansion sequence satisfying that given a state with at least one checker on square i,
the resulting state after the sequence of expansions has at least one checker on each of

squares ¢ — 1 and 7 + 1.

Recall that all squares on which a checker can be placed during a game (R, n) with
the initial checker on square m are linear combinations of elements in R as well as
multiples of the greatest common divisor of R. In particular, since min.R < 0 < maz.R
and gcd.R = 1, by extending the Fuclidean Algorithm, we can construct multisets A

and B whose elements are from R satisfying:

i+Xa:aceA :ay =i—gdR = i—1;

i+(Xb:beB :by =i+gcdR = i+1.
Further, the compound expansion L; is constructed by serializing A and B. Let us
illustrate the above idea by a simple example. For instance, taking R to be the multiset

{{—3, 5}}. Following the procedure of the Euclidean Algorithm, multisets A and B can

be constructed as follows:

x oy A B
-3 5 { =30 {5k
-3 2 { =30 { =350

-1 2 {| _37 _37 5|} {| _37 5|}
-1 1 {-3 =35} {-3 -3 -3,5 5}

By serializing multisets A and B, we get the following valid expansion sequence:
[i,i—3,1—3—-3,i+5, i+5+5, i+5+5—-3,i+5+5—-3—-3].

It is composed of a single expansion on square ¢ followed by two subsequences:
[i—3, i—3—3]

and
[i+5, i+5+5, i+5+5—3,i+5+5—-3—-3].
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These two subsequences are constructed from multisets A and B respectively. Note
that after the expansion on square i, there is at least one checker on each of squares
i—3 and 7—>5. And after expansions on squares i—3—3 and ¢+5+5—3—3, there is at
least one checker on each of squares i —1 =7—3—-3+5 and i+1=i+5+5—-3—-3—-3.

Hence, the above sequence satisfies the requirement on the compound expansion L; with

regard to R=1{ —3, 5]}.

Generally, we give the algorithm to construct multisets A and B as follows:

Algorithm 4.4.2.

{ min.R<0<maz.R }

x, y = min.R, maz.R ;

Q, A, B = set.R—{x, 0, y}, {«f}, {yl};

{ Invariant: (¥a : a€A : a) = x A (b :beB : b
A ged(Q v {z, y}) =ged.R }

do r#—gcd.R v y#gcdR —>

|
<

do —rx<y — y, B:=uzx+4+y, Aw B
I y<-v — x, A:=ax+y, A w B
od ;

{ ==y A Ga:a€A :a)y =2 A (Eb:beB :by=y }
if Qg A min@Q<0 — 2z := minQ ;
QA =Q—{az} {=z}
I Q# A mar.Q >0 — y := max.Q ;
Q, B = Q—{yl {yl
Q=g — skip

od

{ Za:a€l :a) = —gedR A (Xb:beB :by = gedR }
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This algorithm effectively calculates ged.R and —gcd.R by extending the Euclidean
Algorithm. We use the corresponding set set.R of the multiset R to avoid unnecessary
computation. It is worth to mentioning that 0 is removed from R to get rid of possible

meaningless computation.

The serializations of A and B are respectively done by ordering elements in ¢ + A
and ¢ + B (addition is extended to sets) then forming sequences of their partial sums.
Further, by arbitrarily interleaving these two sequences with an expansion on square ¢

headed, we get the needed compound expansion. In particular, by using the property:
a:aeA:ay <0< (&Zb:beB :b

which is maintained through the above algorithm, we give a specific algorithm to con-

struct the compound expansion L; from multisets A and B as follows:

Algorithm 4.4.3.

{ Za:a€el:a) = —gedR A (£b:beB : by = gcdR
A [Tp>0 A iz=m }

j, k = min.A, mazx.B ;

A, B := A—{min. A}, B—{mazx.B}} ;

Liyp = [il, p+ T x (Br = T™) ;

{ Invariant: [T7*]p>0 A [TF*p>0 A j<—-gcdR<0<gcdR<k

AN j+Ea i aeA :oa) —gcd R A k+(b:beB : by = ged.R }

do A+ — L := L; + [j+1i];

p o= p+TIH X (B —T™) ;
Jj = j+minA,;
A= A—{min. A}

| B+g — L := L, + [k+1];

= p TR (B — T ;

>3

= k+mazx.B ;

B := B—{maz.B|
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od

{ [Tz‘—gcd.R]p >0 A [Tz‘+gcd.R]p >0 }

Here, the initial checker is supposed to be on square m. We assume that ¢ is at least
m. This ensures that the running state p is a polynomial with natural numbers as
coefficients. Variables j and k are used to record partial sums. We always choose the
minimum of A and the maximum of B for increases on j and k respectively. This

maintains the property:
J < —gced.R<0<gedR<E
which avoids arguments on the case j = k. At the end of the algorithm, the property:
[Ti—gcd.R]p =0 A [Ti-i-gcd.R]p >0
ensures that the resulting sequence L; satisfies our requirement (4.4) on the compound
expansion.
Until now, we have finished the construction of the algorithm to solve non-trivial replacement-
set games. Combining our arguments in section 4.4.1, we have:

Theorem 4.4.4. A given non-trivial replacement-set game (R, m) with the initial

checker on square m is solvable if and only if
(Br =T™)\ (T" = 1)

where (p is defined by equation (4.1). And, when the game is solvable, an appropriate
solution is given by algorithm 4.4.1 where 7, and 74+, are equations (4.7) and (4.8)

respectively with the compound expansion L; produced by algorithms 4.4.2 and 4.4.3.

Combining results we get for trivial replacement-set games, we give complete answers to

questions (a) and (b) proposed in section 4.2.
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4.4.3 The Normalization

We call a sequence of expansions and contractions which solves a non-trivial replacement-
set game a walid sequence. And a valid sequence consisting of a sequence of expansions
followed by a sequence of contractions we call a normal sequence. The careful reader
may notice that we always construct normal sequences to solve non-trivial replacement-
set games. It is natural to ask whether for all valid sequences L, there is a normal
sequence which solves the same game as L does. The answer to this question is yes. In
this subsection, let us show that there is a valid sequence if and only if there is a normal

sequence.

For our purposes, we define the binary relation £ on N[T] as: for all states p and gq,
pEq = {(Fi:izm A [Tp>0: p+T" " x(Br—T") =q).

That is, there is a valid expansion from states p to ¢. Let F be the converse relation

of £ and Z be the identity relation. We have:

Lemma 4.4.5. F€ < EF u T.

Proof. For all states p and g,

pFEq
= definitions of £ and F and relation composition
{ D
(3r,i,7 : reN[T] A iz=m A j=m A [Tlr>0 A [T7]r >0 :

p=r+ T ) (Bp=T") A r+T7"" x (Brp=T") =q) .
If ¢ = j, we have that p = ¢. That is, F€ < Z. Suppose that ¢ # j. Notice that

i#j A [Tlr>0 A [T7]r>0
= { An expansion on square i (j)
does not remove any checker on square j (7). }

[T(r +T7™ x (Br —T™) >0 A [T +T7"™ x (Bg —T™)) > 0
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= [ p=r TR (Br—T™) A 4TI x (Bg—T™) = q }
[T]p>0 A [Tg>0
= { expansions on squares j and 7 in p and ¢ respectively
and p=r+ T x (B ~T™) A r+TI™ x (B —T™) =q }
[Tp>0 A [T%g>0
A p+TITT X (Br=T™) =r+ (T +T97™) x (B — T™)
AT (T T X (Br=T™) = ¢+ T ™ x (Bg = T™)
= { wittness : v+ (T"™+T9"™) x (Bg —T™) }
(Ar,i,§ : reN[T] A izm A j=m A [Tlp>0 A [Tqg>0 :
pHTI X (Bp—=T") =r=q+T" " x (Bg —=T™))
= { definitions of £ and F and relation composition }

pEF q.

This completes the proof. ]

Recall that contraction is the reverse procedure of expansion. The set of all sequences
of expansions and contractions can be identified by the regular expression (€ U F)*
where concatenation is replaced by relation composition. Likely, the set of all sequences
consisted of a sequence of expansions followed by a sequence of contractions is specified
by E£*F*. Then, the statement that there is a valid sequence if and only if a normal

sequence can be generalized to:

Theorem 4.4.6. For all states p and g,

AL : Le(E U F)* :pLqgy = (AL : Le&E'F* :pLyq).

Proof. Let us show (£ u F)* = E*F* as follows:

Eu F) =&*F"
( )
= { &*F* < (£ u F)* and anti-symmetry }

(& v F)f < &*F"
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= { (v F)y=uX 7T uXE&uF)) }
T u&EF(E v F)c EFF

= { T < &*F* and E*F*F < E&*F* }
EXFFE < EFFF

= { monotonicity and £*E* =&* }
FrE < E*FF

= { EF* U F* < &*F* and transitivity }
FrE € EFF U FF

= { F*&=(puX :: & v FX) }
E VU FEF* v F*) ¢ EFF U F*

= { &€ € EF* and FF* € F* }
FEF* < EF* U F¥

= { lemma 4.4.5, monotonicity, and transitivity }
(EF v I)F* < EF* U F*

= { EFF* € EF* and IF* =F* }

true .

4.5 Constructing Solvable Replacement-Sets

In this section, we focus on the question (c¢) proposed in section 4.2: given a displacement
n, to construct all solvable replacement-sets R. By solvable replacement-set, we mean

that the replacement-set game (R, n) is solvable.

As for trivial replacement-sets (min.R > 0 or max.R < 0), answers to the above
question are trivial: (a) if min.R or maz.R is 0, the replacement-set R is solvable if

and only if n is 0; (b) if min.R > 0 or maz.R < 0, then the replacement-set R is
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solvable if and only if R = {7 [} satisfying that ¢ divides n with ¢ an integer. This has

been shown in section 4.3.

Considering non-trivial replacement-sets (min.R < 0 < max.R). Theorem 4.4.4 tells

us that the replacement-set R is solvable if and only if
(Br =T™)\ (T" = 1)

where —m is the least element of R and
Br = (Xi:ieR : T"™).

That is, there is a corresponding between factors Sr — 7™ of T™ — 1 and non-trivial
solvable replacement-sets R. Recall that Sr is a polynomial with natural numbers
as coefficients. The polynomial Sr — T™ is a polynomial with natural numbers as
coefficients (7™ E fg) or a polynomial with only one negative coefficient (7" £ Bgr).
The first class of replacement-sets we call monotonic solvable replacement-sets. Because
in an expansion on square 4, the number of checkers on square ¢ will not change and the
number of checkers on board increases strictly. We call the second class of replacement-
sets true solvable replacement-sets. Because in an expansion on square ¢, a checker on
square 7 is always truly replaced (the number of checkers on square i decreases by one)

and the number of checkers on board does not change or increases strictly.

It is well-known that factors of T —1 are products of cyclotomic polynomials (irreducible
factors of 7" —1 on Z[T]). By using properties of cyclotomic polynomials, we construct
two infinite classes of monotonic solvable replacement-sets in subsection 4.5.1 and one
infinite class of true solvable replacment-sets in subsection 4.5.2. Unfortunately, as far as
we know, it is still an open problem to completely characterize the set of all non-trivial

solvable replacement-sets.

For our purposes, we introduce a specific class of products of cyclotomic polynomials.

Given positive natural numbers a and b, we define I'.(a, b) as:
L(a, ) 2 (Zk:0<k<a : TF?).
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From the geometric series and the following property of cyclotomic polynomials:

(49) Tr-1 = (IIk :1<k<n A k\n : ®k),
we have:
Taxb_l

4.5.1 Monotonic Solvable Replacement-Sets

Notice that coefficients of I'.(a, b) are natural numbers. Given a finite set A of pairs of

positive natural numbers, from the property (4.10), we have that the following product:
(4.11) (II(a, b) : (a, b)e A : T'.(a, b))

is a product of cyclotomic polynomials with natural numbers as coefficients.

However, not all such products are factors of 7™ — 1 for some positive natural number

n. From the property (4.9), we have that a factor of 7™ —1 is a product of non-repeated

cyclotomic polynomials. For instance,
Pyx®3 = (T+1)x(T*+T+1)
is a factor of 7% — 1, while
Oy x Py = (TH+1)x(T+1)

is not a factor of any 7™ — 1. Also, I'.(a, b) is a product of cyclotomic polynomials
indexed by elements in the set a x b — b which follows from the property (4.10). Here,
we use a x b and b for sets of positive divisors of a x b and b respectively and symbol

— for set difference. We have that if the set A satisfies:

(4.12)  (V(a, b),(c, d)e A :: (axb—=b) n (cxd—d)=T),

then the product (4.11) is a factor of 7™ — 1 for some positive natural number n with

natural numbers as coefficients.
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Further, let p be a product in form (4.11) with the set A satisfying the condition
(4.12). Let m be a positive natural number less than the degree of p. (Choosing
m in this way ensures that the resulting replacement-set R is non-trivial. That is,

min.R <0 < mazx.R.) We define Sr as:
Br = p+T™.

The corresponding multiset R of [Sr is a monotonic solvable replacement-set with the

displacement n positive multiples of the least common multiple of all elements in

(ula, b)e A :: axb—0b).

Let us look at an infinite class of examples. Take n to be a positive square-free natural

number. We define A as:
A = {(p, 1)]| p is a prime factor of n.} .

Since for all primes p and ¢ with p # ¢,

(px1-1) n(gxI-1) = {p} n{g}=0,

we have that A satisfies the condition (4.12). Further, Sz is constructed from A as:
Br = (II(p, )eA :: T'.(p, 1))+T™

where m satisfies that
0<m<{(X(p, 1)eA :: (p—1)).

The corresponding multiset R of (g is a monotonic solvable replacement-set. As an

instance of this class, by taking n to be 6 and m to be 2, we have:

Br = TI.(3, 1)xT.(2, 1) +T?
= (T°+T+1)x(T+1)+T?

= T3+37%+2T+1.
The corresponding multiset R is:
{|_2’2*(_1)’3*0’1|}
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where —2, —1, 0, and 1 are relative positions to the position m = 2. Further, the
game (R, n) is solvable which follows from:

76 —1

-7 = T.3,1)xI.(2 1 = P33 xd —
i (3. 1) L2 1) ix® = g

and theorem 4.4.4.

Lots of other examples can be constructed as above by using the product (4.11) with A

satisfying the condition (4.12). We list some of them in the following table:

A Br —T™ n
{(k, 1)} Tl (S - 0<i<k : T k
{(2, 2k)} Tl =T% 41 4k
{(a, ¥ 1)} T (%i i 0<i<a: Ty ok
(3, 1), (2,8)}) T x T2l (T2 T4 1) x (T8 +1) 48

The second class in the above table was previously identified by Marcelo Fiore [private

communication, 2010]. The third class was studied in [BCF10].

Notice that the condition (4.12) on the set A is equivalent to:
(4.13)  (V(a, b), (¢, d)e A :: ((axb) V(exd)\b v ((axb)V(cxd)\d)

where the symbol V denotes the greatest common divisor. The advantage of (4.13)
over (4.12) is that the computation of the greatest common divisor is cheaper than the
construction of the set of positive divisors. Now, let us show they are equivalent as

follows. By duality between propositional operators and set operators, we have that for

all sets A, B, C, and D:
(A-B)n(C-D)=g = (AnC)c B v (AnC)c<c D

which follows from that for all propositions p, ¢, r, and s:

~((p A —g) A (r A —s))
= { De Morgan rule }

-p VvV qgVv Tr v s
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{

idempotency and commutativity }
“p vV r VgV op vV or Vs

{ De Morgan rule

}

“pAT)Vvgv —(pArvs
{ defintion of =

}

(pAr)=10q9 vI(pArr)=s)

@ € b. We get:

Instantiating A, B, C,and D by a x b, b, ¢ x d, and d, we have that
(a xb=b) N (cxd—d) =&

(axbnex

d b v
Further, since for all positive natural numbers a and b, @ n b=a V b and a \ b
(a xb—b) n (cxd—d) =&

This completes the proof.

((axb) V (exd))\b

In summary, we have:

\

((axb) V (exd))\d
(V¥ (a, b), (¢, dye A

A

the corresponding multiset R of

(axb) V (¢ xd)\ b
Br

Theorem 4.5.1. Given a finite set A of pairs of positive natural numbers which satisfies

v ((axb) V(exd)\d),
(Il (a, b) e A L.(a, b)y+T™

(u(a, bye A :

with 0 < m < deg.fr is a monotonic solvable replacement-set with displacement n

axb—>b).

positive multiples of the least common multiple of elements in

Is theorem 4.5.1 the only way to define monotonic solvable replacement-sets? The answer
TV -1 T%-1
75 —1

is mo. In our investigation, we notice an interesting example:
X =1.(3, 5

.8, 1)
“T.63, 1)

=(I)15><‘1)8><‘1)4><(I)2
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Although
Py = T—-T +T°—T*4+T1T3-T+1
is not a cyclotomic polynomial with natural numbers as coefficients,
Pis X Py x Dy x Py = THO+T2470 479476475 47341

is a product of cyclotomic polynomials with natural numbers as coefficients.

Generally, we are interested in the problem of finding a natural number ¢ which satisfies

that

T 1 T¢—1 I.(c, 1)
4.14 = T.(a, b) x ==
e e il Ty (@, ) x 50

is a product of cyclotomic polynomials with natural numbers as coefficients provided

that positive natural numbers a and b are coprime, written as a L b.

Notice that by using the geometric series, we have:

1

7 (%i : 0<i @ Ty,

Further, the formula (4.14) can be rewritten as:

(Si:0<i<a: Y x(Si:0<i: T x (1-T°
= { polynomial arithmetic }

(Bk,j : 0<k A 0<j<a : Tk

(Skyi: 0<k A 0<i<a : TVHk+bxitey

= { factorization on powers }

(Zk, 7 : 0<k A0<j<a : ax(k+| 752 )+ (bxj) mod ay
(Sk,i: 0<k A 0<i<a : TEHLEDF0xite) mod ay

= { renaming: k:=k — 22| and k:=k — |2X£| respectively }

. bxj
Yk :

(Bk, j o« |

bxi+c

<Ek, i - lTJsk AO<i<a : Taxk+(b><i+c) moda>.

|<k A 0<j<a : THF+0x)) moday
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Considering the last line in the above calculation. By comparing terms on both sides of
the minus operator, we have that the formula (4.14) is a product of cyclotomic polyno-

mials with natural numbers as coefficients if and only if there is an injective function
f 10, a) > [0, a)

satisfying that

(4.15) (Vi :0<i<a: (bxi+c)moda=(bx fi)moda n bx fi<bxi+c).

Our goal is to construct a function f satisfying the above property.

A useful property is:

Lemma 4.5.2. For all positive natural numbers a, b, 7, and j,

alb = (((bxi)moda=(bxj)moda) (i mod a = j mod a)) .

Proof.

(b x i) mod a = (b x j) mod a
= { definition of modulo }
a\ ((z—j) xb)
= { alb }
a\ (i—j)
= { definition of modulo }

i mod a=j mod a .

This property implies that numbers from 0 to a — 1 appear one and only time in

remainders (b x i) mod a for 0 <1i < a provided a L b.
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Further, let r be a number satisfying that (b x r) mod a = 1. We have:

(bxi+c)moda=(bx f.i)moda

= { (xr)moda=1 }

(bxi+ecx ((bxr)moda)) moda=(bx fi)moda

= { [(i+7) moda=(imoda+jmod a) mod a] and
[(i x §) mod a = ((i mod a) x j) mod a] }

(bx (i +cxr)) moda=(bx fi)moda

= { lemma452and a Lb }

(i 4+c¢xr)moda= f.imoda

- { fief0.a) }

(t+cxr)moda=f.i.

Let us define f as: for all ¢ in [0, a),
fi = (i+cxr)moda.
Notice that for all iy and ¢; in [0, a),

Jio = fi
= { definition of f }
(g + ¢ x 1) mod a = (i1 + ¢ xr) mod a
= { definition of modulo }
a\ (igp+cxr—ig—cxr)
= { arithmetic and definition of modulo }
ig mod a = i1 mod a
= { 0<ip it<a }

10 =11 .

That is, f is bijective.
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It follows that the condition (4.15) is equivalent to:

Also,

(Vi :

0<i<a :bx((i+cxr)ymoda)<bxi+c).

2 0<i<a :bx((i+ecxr)moda)<bxi+c)

arithmetic }

2 0<i<a :bx((i+cxr)ymoda—i)<c)

—a<(i+ecxr)ymoda—i<a }

c0<i<a : bx(((i4+cxr)moda—i)moda)<c)

0<i<a }

i 0<i<a : bx(((i+cxr)moda—imoda) moda)<c)

[(i —j) mod a = (i mod a —j mod a) mod a] }

2 0<i<a : bx((cxr)moda)<c)

{ distribution and unit of ¥V }

bx ((¢xr)moda)<c.

We have that the formula (4.14) is a product of cyclotomic polynomials with natural

numbers as coefficients if and only if

(4.16)

bx ((¢xr)moda)<c

where r satisfies that (b x r) mod a = 1.

Of course, we need to make sure that the formula (4.14) is a factor of 7" — 1 for some

positive natural number n. By applying similar arguments which are used in the proof

of theorem 4.5.1, we get the following condition:

that is,

(axb—b) n (c—a) = &,

((axb)Vey\a v ((axb)Vey\b,
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under which the formula (4.14) is a factor of 7" — 1. Notice that

((axb)Ve)\a

= { definition of the greatest common divisor }
(axb)yVe = (axbVeVa

= { (axb)Va=a }

(axb)Ve = aVe

= { definition of the greatest common divisor }

(Vk : 1<k : k\(axb) Ank\e = k\a A k\c)
= {[prg = prr = ( = (@ = )] }
(Vk : 1<k : k\ec = (kE\(axb) = k\a))

= { alb A (k\(axb) = k\ a) implies —(k \ b) and transitivity }
(VEk : 1<k : k\c = =(k\b))
= { definition of the coprime }

clb.
Similarly,

((axb)Vey\b = cla.

Combining with the condition (4.16), we get:

Theorem 4.5.3. For all positive natural numbers a, b, and ¢ with a L b, the product

Texb —1  T¢—1 I.(c, 1)
e v RN G R oy y

is a factor of T™ — 1 with natural numbers as coefficients for some positive natural

number n if and only if
bx ((ecxr)ymoda)<c A ((c La) v (¢ L))

with r satisfying that (b x ) mod a = 1.
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Let us give an example to finish this subsection. Taking a and b to be 5 and 6
respectively. We have (6 x 1) mod 5 = 1. Thus, we can choose r to be 1. Notice that
¢ = 11 satisfies that

6% ((11x 1) mod 5) <11 A 11 16 .

By theorem 4.5.3, the following product

TW6—1XTH—1 I'.(c, 1)
T6—-1 "~ T5-1

= P39 x P15 X P19 x Py

= TO472 4724720478 75 712 4710 76 78 1

is a factor of 7339 — 1 with natural numbers as coefficients.

4.5.2 True Solvable Replacement-Sets

Recall that a true solvable replacement-set is based on a polynomial Sr —T" with only
one negative coefficient which divides 7™ — 1 for some positive natural number n. For
instance, the nuclear pennies game ({ — 1, 1]}, 6) is a true solvable replacement-set
game based on the polynomial 72 + 1 — 7. We are wondering whether this is the only
instance of true solvable replacement-set games. The answer to this question is no. In
this subsection, we give an infinite class of true solvable replacement-sets, although its

construction is in an ad-hoc way.
Lemma 4.5.4. For all distinct primes p and g, the product
Ppxg xT(pxg—p—gq, 1)

is a factor of 7™ —1 with only one negative coefficient. Moreover, n is a positive multiple

of the greatest common multiple of p x ¢ and p x ¢ —p — q.

Proof. By definitions of ® and I', the above product can be rewritten as:

MMk : k=pxqg v (k\(pxq—p—q) A k#1) : &y ).
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Since px ¢ is greater than p x ¢—p—q, we have that p x ¢ is not a divisor of pxg—p—q.
Further, there is no repeated cyclotomic polynomials in the above product. Thus, it is

a factor of T™ — 1 with n positive multiples of the least common multiple of p x ¢ and

pxqg—p—gq.

We now show that the above product has only one negative coefficient. Notice that
PpygxTpxqg—p—gq, 1)+TP*I7P71

= { definitions of ® and I' }

TPXa_1 T _1 TPXe—p=a_]
TP—1 “Ti—1 "  T-1

+ TPx4-p—4q

= { polynomial arithmetic }
T2XPXq—Pp—q _ TPXq _ TPXq—Pp—q 4 |  TPXq _ TPXq—q _ TPXq—P 4 TPXq—P—q
(TP —1) x (T7—1) * (TP —1) x (T7 = 1)

= { polynomial arithmetic }
T—1)xq+(g—1)xp _ plp—1)xq _ ple—)xp 4 1
(TP —1) x (T?—-1)

= { factorization }
T@-xp _ 1  pl-Lxq _1q
Tr—1  Ta—1
= { definition of T }

F(g—-1,p) xI.(p—1, q) .

That is,
PpygxTpxqg—p—gq, 1) +TP*I7P71
has no negative coefficients. Thus, if the (p x ¢ — p — ¢ )-th coefficient of

I'(g—1, p)xT.(p—1, q)
is 0, then ®,., xI'.(p x ¢g—p—gq, 1) has only one negative coefficient. By the definition
of ' and polynomial multiplication, powers of monomials in T'.(¢ — 1, p) x .(p—1, q)
are i Xxp+jxqfor 0<i<g—1and 0<j<p—1. But,
IXp+jXqg=pxqg—p—q

= { arithmetic }
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((+1) xp+(j+1)xg=pxg

= { p and ¢ are primes }

(i+1=qg A j+1=0) v (i+1=0 A j+1=p)
= { 0<i<g—-landO0<j<p-1 }

false .

That is, the (p x ¢ — p— q)-th coefficient of T'.(¢—1, p) x T'.(p—1, q) is indeed 0. This
completes the proof. O

As an example, by taking p and ¢ to be 2 and 5 respectively, we get:

Doy xT(2x5—-2—5, 1)

= @10XF.(3,1)

TY-1 T-1 T3-1
X X
5—-1 " "T2—-1" T-1
(T° +1) x (T? +T + 1)
T+1
= T°+T*-T*+T7%+1

is a factor of T30 —1. Further, ({ —3, —1, 1, 3}, 30) is a true solvable replacement-set

game.
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Conclusion

Lawvere’s Remark is the origin of this thesis. So far as we are aware, Blass gave the first
explanation of Lawvere’s Remark. As a milestone, Fiore and Leinster’s result generalizes

Lawvere’s Remark with respect to single recursive type isomorphims.

Inspired by Fiore and Leinster’s research, we extend their results to recursive type iso-
morphism systems on a finite set of types. We give a sufficient and necessary condition
under which a given recursive type isomorphism system forms a ring. This theory shows
that some isomorphisms between objects can be decided by using polynomial division

algorithm on multi-variables.

Another interesting aspect of Lawvere’s Remark is that it can be illustrated by a one-
person board game — the nuclear pennies game. Fiore and Leinster’s results predict that
there is a solution to the nuclear pennies game. However, how one derives an algorithm
to produce such a solution is not clear. We introduce an infinite class of one-person
board games, so-called replacement-set games, which has the nuclear pennies game as
an instance. An algorithm is constructed to give solutions to these games when they are

solvable.

Until now, our theory has built a clear connection between algebraic equations on com-
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plex numbers and recursive type isomorphism systems. The significance of this con-
nection is that methods in computational algebra can be introduced as short cuts to
solve some problems on recursively defined objects which are in every corner of com-
puter science. Conversely, we can give algorithmic explanations to some calculations in

computational algebra.

5.1 Further Work

5.1.1 Primitive Recursions on Inductive Types

As we have shown in section 3.5, some interesting isomorphisms can be constructed when
the List type and primitive recursions are introduced to the free distributive category
C[T] on the inductive type T of binary trees. Generally, we are interested in the al-
gebraic structure of the free distributive category C[%] on the finite set ¥ of inductive
types equipped with the system & of inductive type isomorphisms and primitive recur-
sions. It seems that multiplicative inverses of non-trivial polynomial inductive types can

be constructed. This needs more investigation.

5.1.2 Construction of Solvable Replacement-Sets

The set of all solvable replacement-set games can be characterized by the set of all prod-
ucts of cyclotomic polynomials with at most one negative coefficient. By using properties
of cyclotomic polynomials, several ad-hoc methods are developed to construct some sub-
sets of the set of all solvable replacement-sets. However, the problem of constructing the

complete set of all solvable replacement-set games is still open.

101



CHAPTER 5: CONCLUSION

5.1.3 Two-Dimensional Replacement-Set Games

Let us consider two-dimensional replacement-set games. For instance, the following

system of recursive type isomorphisms:

S
T

I

14+ S%2xT;
149 xT2.

12

can be considered as the two-dimensional replacement-set game:

{1, 00} < {(0,0), (2, 1)}
{0, D} < {(0,0), (1, 2)}

where terms S" x T™ are characterized by vectors (m, n) for all natural numbers m

and n.

Our theory predicts that to move an initial checker from square (1, 0) to square (0, 1)

by using the above replacement rules is possible. This can be proved by the factorization:
(51) z—y=azx(@xy?—y+1)—yx @ xy—z+1).
Also, we can verify it using the following calculation on types:

S 1+8%2xT

12

12

1+8 xT+8%xT?

12

1+T+8%xT?2+ 83 x T2

I

24+ 8 xT?+S5%2xT?+ 8% xT?

I

24+ 8 xT?+S2xT?+8%2xT3+ 8% xT?

I

24+ 82 xT+S2xT?+ 8% xT1°3

12

1+8S+82xT?24+82%xT13

12

1+SxT+8%xT3

12

1+8 xT?

12

T.
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How to derive an algorithm to give a solution to a solvable two-dimensional replacement-
set game could be a further research topic. On the other hand, in order to get factoriza-
tions such as (5.1), we need a polynomial division algorithm on Z[z,y]. Whether this

idea works for general case needs more investigation.
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One-Dimensional Replacement-Set

(Games

The algorithm to solve one-dimensional replacement-set games is implemented in Haskell

as following:

-- Create : 06/02/2010

-- Last Modification : 03/09/2011

-- Author : Wei Chen

-- Facility : University of Nottingham

-- Description: One-Dimensional Replacement-Set Games
import Prelude hiding (min, max, drop, repeat, pred, seq)
-- A. Polynomial Arithmetic with Integer as Coefficients
-- A polynomial is represented by a list of integer pairs.
-- For every pair, the first coordinate is the coefficient

-- and the second coordinate is the power.

type Poly = [(Int, Int)]

104



APPENDIX A: ONE-DIMENSIONAL REPLACEMENT-SET GAMES

-- polynomial addition

plus :: Poly — Poly — Poly

plus p [] P
plus [] q=gq
plus (x:p) (y:q)

| (snd x) < (snd y) = x : plus p (y:q)

| (snd x) > (snd y) =y : plus (x:p) q
| (snd x) = (snd y)=

if n = 0 then plus p q

else (n, snd x) : plus p q

where n = fst x + fst y

-- polynomial subtraction

minus :: Poly — Poly — Poly
minus p q = plus p (zip (map (((-1)#) o fst) q) (map snd q))

-- polynomial multiplication

mult :: Poly — Poly — Poly
mult p [1 =[]
(]
mult (x:p) q =

mult [] q

plus (time x q) (mult p q)
where
time x [1 = []
time x (y:q) =
((fst x) = (fst y), (snd x) + (snd y))

-- the degree of a polynomial

deg :: Poly — Int

deg = snd o last
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-- the codegree of a polynomial

cod :: Poly — Int

cod = snd o head

-- the coefficient of the highest term of a polynomial

hcof :: Poly — Int

hcof = fst o last

-- polynomial division

quotient :: Poly — Poly — Poly
quotient []1 q = []
quotient p [1 = [I
quotient p q =
if (deg p) < (deg @)
|| (hcof p ‘mod‘ hcof q # 0) then []
else plus r (quotient (minus p (mult r q)) q)

where r = [(hcof p ‘div‘ hcof q, deg p - deg q)]

remainder :: Poly — Poly — Poly

remainder p q = minus p (mult (quotient p q) q)

-- B. Cyclotomic Polynomials

-- prime number test

prime :: Int — Bool
prime 1 = False
prime n = least_divisor_from 2 = n
where { least_divisor_from d =
ifd=mn || n ‘mod* d = 0 then d

else least_divisor_from (d + 1) }
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-- the number of prime divisors of a given natural number

prime_divisor :: Int — Int
prime_divisor O = 0O
prime_divisor 1 = 0
prime_divisor n =
if prime n then 1
else iter 2 0
where { iter d ¢
| d=n=c
| n ‘mod® d = 0 && prime d = iter (d + 1) (c + 1)

| otherwise = iter (d + 1) c }

-- square-free test

-- e.g. 12 is not square-free, since 272 is a factor of 12.

square_free :: Int — Bool
square_free 0 = True
square_free 1 = True
square_free n =
if prime n then True
else iter 0 1 2 n
where { iter pre cur d m
| pre = cur = False
| m = 1 = True
| m ‘mod® d = 0 && prime d = iter cur d d (m ‘div‘ d)

| otherwise = iter pre cur (d + 1) m }

-- the Mobius Function

mu :: Int — Int

| n=1=1

| square_free n = (-1) ~ (prime_divisor n)

| otherwise = 0
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-- cyclotomic polynomials by using the Mobius Function

phi :: Int — Poly
phi n = iter 1 [(1,0)] [(1,0)]
where { iter d p q
| 4 > n = quotient p q
| n ‘mod® d =0
& mu (n ‘div¢ d) = 1 = iter (d + 1) (mult p r) q
| n ‘mod d =0
&& mu (n ‘div¢ d) = -1 = iter (d + 1) p (mult q r)
| otherwise = iter (d + 1) p q
where r = [(-1,0), (1,d)] }

-- C. Constructing Compound Expansions

-- the least element of a list

min :: [Int] — Int

min [x] = x

min (x:y:p) = if x < y then min (x:p)
else min (y:p)

-- the greatest element of a list

max :: [Int] — Int

max [x] = x

max (x:y:p) = if x > y then max (x:p)
else max (y:p)

-- membership test

member :: Int — [Int] — Bool

member x [] = False

member x (y:p) = if x = y then True
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else member x p

-- set difference

diff :: [Int] — [Int] — [Int]

diff [1 b =[]

diff (x:p) b = if member x b then diff p b
else x:(diff p b)

-- the base set of a multiset

set :: [Int] — [Int]
set [1 =[]
set (x:p) = if member x p then set p

else x:(set p)

-- Euclidean Algorithm for lists of integers

gged :: [Int] — Int
gged [x] =x
gged (x:p) = ged x (gged p)

where { gcd m n

| m=mn=m
| m=0=n
| n=0=m

| m<n=gcdm (n - m

| m>n=gecd (m - n) n}
-- multisets for compound expansions
-- The input is the replacement-set R
-- satisfying that min.R < 0 < max.R.

-- The outputs are two multisets A and B.

-- satisfying that the sum of A is -1 and the sum of B is 1.

109



APPENDIX A: ONE-DIMENSIONAL REPLACEMENT-SET GAMES

egged :: [Int] — ([Int], [Intl)
eggcd r = iter (diff (set r) [min r, max r])
[min r] [max r] (min r) (max r)
where { iter qa b x y

X = -g & y =g = (a,b)

iter q a (a+tb) x (xty)

|
| x <y
| -x >y = iter q (aHb) b (x+y) vy
| 9 # [
&& (min q) < 0 = iter (diff q [min q])
[min q] b (min q) y
| @ = [

&& (max q) > 0

iter (diff q [max ql)

a [max q] x (max q)
| g=1[1 =iterqabzxy
where g = ggcd (map abs (set r)) }

-- remove an element from a list

drop :: Int — [Int] — [Int]
drop x (y:p) = if x = y then p
else y: (drop x p)

-- serialization

serial :: ([Int], [Int]) — [Int]
serial (a,b) = iter [0] (drop (min a) a) (drop (max b) b)
(min a) (max b)
where { iter 1 a b i j
|a=[0&b=1[]=1
| a # [0 =iter (14++[i]l) (drop (min a) a) b
(i+(min a)) j
| b # [1

iter (14++[j1) a (drop (max b) b)
i (j+(max b)) }

-- the greatest coefficient of a polynomial
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max_coef :: Poly — Int
max_coef [x] = fst x
max_coef (x:y:p) = if fst x < fst y then max_coef (y:p)

else max_coef (x:p)

-- repeat a list for n times

repeat :: [Int] — Int — [Int]
repeat 1 0 = []

repeat 1 1 =1

repeat 1 n = 1 + (repeat 1 (n-1))

-- constructing a polynomial from a multiset of powers

pol :: [Int] — Poly
pol [1 =[]
pol (x:p) = plus [(1,x)] (pol p)

-- the multiset of all powers of a list

pow :: Poly — [Int]
pow [1 = []
pow (x:p) = (iter (abs (fst x)) [snd x]) ++ (pow p)
where
iter 1 p=p

iter n (x:p) = iter (n-1) (x:(x:p))
-- D. Expansion and Contraction Sequences
-- The inputs are a replacement-set and a displacement
-- which is supposed to be greater than 0.

-- The output is a solution sequence when the game is solvable.

seq :: [Int] — Int — ([Int], [Int])
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seq [] m = error "There is no valid seq!\n"
seq [x] m=if x > 0 & m ‘mod‘ x = 0
then ([ i | i « [0..m-1], i ‘mod¢ x = 01, [])
else if x < 0 & m ‘mod‘ x = 0
then ([1, [ i | i « [1..m], i ‘mod‘ x = 0])
else error "There is no valid seq!\n"
seq rm=
if min r < 0 && max r > 0
&& remainder [(-1,0),(1,m)] (minus (pol r) [(1,0)]) = []
then iter O (serial (eggcd r)) (serial (eggcd r))
else error "There is no valid seq!\n"
where {
iter k a b
| k <m=iter (k+g) (att+h) (b+b)
| otherwise =
((repeat a c) ++ la, reverse ((repeat b c) ++ 1b))
where

1 = (serial (eggcd r))

g = ggcd (map abs (set r))

h

(map (+(ktg)) 1)

u = (quotient [(-1,0),(1,m)] (minus (pol r) [(1,0)1))
la = pow (filter ((>0).fst) u)

1b = pow (filter ((<0).fst) u)

¢ = max_coef u }

-- E. Interface

show_poly [] = "O"
show_poly (x:p)
| fst x =1
&% snd x # 0 = "T™" ++ show (snd x) ++ iter p
| fst x =1
&% snd x = 0 = "1" ++ iter p
| fst x = -1

&& snd x # O
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+ "T~" ++ show (snd x) ++ iter p
| fst x = -1
&% snd x = 0 =" - 1" ++ iter p
| snd x # 0 =
show (fst x) ++ "T~" ++ show (snd x) ++ iter p
| snd x = 0 = show (fst x) ++ iter p
where
iter [1 =""
iter (x:p)
| fst x =1
& snd x # 0 ="+ "
+ "T~" 4+4 show (snd x) ++ iter p
| fst x =1
& snd x = 0 =" + 1" ++ iter p
| fst x = -1
& snd x # 0 =" - "
+ "T~" 4+4 show (snd x) ++ iter p
| fst x = -1
& snd x = 0 =" - 1" ++ iter p

| fst x > 1

&% snd x # O " + " 4+ show (fst x)

+ "T~" 4++ show (snd x) ++ iter p

| fst x > 1
&% snd x = 0 = " + " 4+ show (fst x) ++ iter p
| fst x < -1
&& snd x # 0 =" - " 44 show (abs (fst x))
+ "T~" 4+4 show (snd x) ++ iter p
| fst x < -1

& snd x =0=" - "
++ show (abs (fst x)) ++ iter p

out :: [([Int],Poly)] — I0Q)
out [] = putStr ""
out [x] = putStr (show (fst x))

> putStr "\t" » putStrLn (show_poly (snd x))
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out (x:p) = putStr (show (fst x))
> putStr "\t" » putStrLn (show_poly (snd x))

» (out p)

-- F. Main Function

move :: [Int] — Int — IDQ)
move ms n = out (iter (seq ms n) [([], pol [0]1)])
where
iter ([1, [1) ps = reverse ps
iter ([1, (x:cs)) (p:ps) =
iter ([1, cs)
(([x],
(plus (minus (snd p)
(pol (map (4x) ms)))
(pol [x1))) : (p : ps))
iter ((x:es), cs) (p:ps) =
iter (es, cs)
(([x1,
(minus (plus (snd p)
(pol (map (4+x) ms)))
(pol [x1))) : (p : ps))
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Trees-In-Zero

Following the idea in section 3.5, a proof of trees-in-zero is given by the following pro-

grams implemented in Haskell.

-- Create : 21/04/2011

-- Last Modification : 05/09/2011

-- Author : Wei Chen

-- Facility : University of Nottingham
-- Description: Trees-In-Zero

import Prelude hiding (id)

-- A. Components

-- unit type

data I = Unit deriving (Show, Eq, Ord)

-- binary tree

data T = Leaf | Node T T deriving (Show, Eq, Ord)

115



APPENDIX B: TREES-IN-ZERO

-- coproduct

data Sum a b = Inl a | Inr b deriving (Show, Eq, Ord)

type 1 + T2 = Sum I (T, (T, T))

type 1 + T + T% + T3 + T* + T5 =Sum I
(Sum T
(Sum (T,T)
(Sum (T, (T,T))
(Sum (T, (T, (T,T)))
(T, (T, (T, (T,T))))))))

type T + T* =Sum T (T, (T,(T,T)))

-- B. Semiring Functions

sbtol 4 :: 1 + T + 1% + T° + T* + T° - T + T
sbtol_4 (Inl Unit) = Inl Leaf
sbtol_4 (Inr (Inl a)) = Inr (a,(Leaf, (Leaf, Leaf)))
sbtol_4 (Inr (Inr (Inl (a,b)))) = Inl (Node a b)
sbtol_4 (Inr (Inr (Inr (Inl (a,(b,c))))))
= Inr (a,(Node b c, (Leaf, Leaf)))
sbtol_4 (Inr (Inr (Inr (Inr (Inl (a,(b,(c,d))))))))
= Inr (a,(b,(Node c d, Leaf)))
sbtol_4 (Inr (Inr (Inr (Inr (Inr (a,(b,(c,(d,e)))))))))
= Inr (a,(b,(c, Node d e)))

sbtol 4.i:: 1 + T + T*> + T3 +T* +1° - T 4+ T*
sbtol_4_i (Inl Leaf) = Inl Unit
sbtol_4_i (Inr (a, (Leaf, (Leaf, Leaf)))) = Inr (Inl a)
sbtol_4_i (Inl (Node a b)) = Inr (Inr (Inl (a,b)))
sbtol_4_i (Inr (a,(Node b c, (Leaf, Leaf))))

= (Inr (Inr (Inr (Inl (a, (b, c))))))

sbtol_4_i (Inr (a,(b,(Node c d, Leaf))))
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sbtol_4_i (Inr (a,(b,(c, Node d e))))

sl_4tol ::

sl_4tol
sl_4tol
sl_4tol

sl_4tol_

T + T > 1 + T3

(Inl Leaf) = Inl Unit

(Inl (Node a b)) = Inr (a,

= (Inr(Inr(Inr(Inr(Inl(a, (b, (c,d))))))))

= (Inr(Inr(Inr(Inr(Inr(a,(b,(c,(d,e)))))))))

(b, Leaf))

(Inr (a, (b, (c, 4)))) = Inr (a,

io::

1+ 735 > T + T

s1_4tol_i (Inl Unit) = Inl Leaf

si1_4tol_i (Inr (a,

si1_4tol_i (Inr (a,

(b, Node c d))

(b, Leaf))) = Inl (Node a b)
(b, Node ¢ d))) = Inr (a, (b, (c, d4)))

st61l_1_4tol _t61 :: (T%)* x (T + T*) - T + (T%)* x

st6l_1_4tol_t61 ([1, Inl a) = Inl a

st6l_1_4tol_t61 (x, Inr (Leaf,

(Leaf,

= Inr (x, Inl Unit)

(Leaf, Leaf))))

st6l_1_4tol_t6l ((a,(b,(c,(d,(e,£))))):x, Inl g)

= Inr (x, Inr (a,

(b,
(Node

C

(Node 4

(Node e

(Node £ g)))))))

st6l_1_4tol_t6l1 (x, Inr (a, (b, (c, Node d e))))

= Inr (x, Inr (a,

(b,
(Node

C

(Node 4

(Node e Leaf))))))

st6l_1_4tol_t6l1 (x, Inr (a, (b, (Node c d, Leaf))))

st6l_1_4tol_t61 (x, Inr (a,

= (Inr (x, Inr (a,

= Inr (x, Inr (a,

st6l_1_4tol_t61 (x, Inr (Node a b,

(Node b c,

(b, (Node c

(Node d Leaf))))))

(Leaf, Leaf))))

(b, (Node c Leaf))))

(Leaf,
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= Inr (x, Inr (a, (b, Leaf)))

st6l_1_4tol_t6l_i :: T + (T9)* x (1+7T3) — (T%)* x (T + T*)
st61l_1_4tol_t6l_i (Inl a) = ([], Inl a)
st6l_1_4tol_t61_i (Inr (x, Inl Unit))
= (x, Inr (Leaf, (Leaf, (Leaf, Leaf))))
st6l_1_4tol_t61_i (Inr (x, Inr (a, (b,
(Node ¢
(Node d
(Node e
(Node £ g))))))))
= ((a,(b,(c,(d,(e,£))))) : x, Inl g)
st6l_1_4tol_t6l1_i (Inr (x, Inr (a, (b,
(Node ¢
(Node d
(Node e Leaf)))))))
= (x, Inr (a, (b, (c, Node d e))))
st6l_1_4tol_t61_i (Inr (x, Inr (a, (b,
(Node ¢
(Node d Leaf))))))
= (x, Inr (a, (b, (Node c d, Leaf))))
st6l_1_4tol_t61_i (Inr (x, Inr (a, (b, (Node c Leaf)))))
= (x, Inr (a, (Node b c, (Leaf, Leaf))))
st6l_1_4tol_t6l1_i (Inr (x, Inr (a, (b, Leaf))))
= (x, Inr (Node a b, (Leaf, (Leaf, Leaf))))

siltol :: T + (1 + T3) - T

slltol (Inl a) = Node a Leaf

slltol (Inr (Inl Unit)) = Leaf

s1ltol (Inr (Inr (a, (b, c)))) = Node a (Node b c)

siltol i :: T — T + (1 + T3)
s1ltol_i (Node a Leaf) = Inl a
si1ltol_i Leaf = Inr (Inl Unit)

s1ltol_i (Node a (Node b c¢)) = Inr (Inr (a, (b, c)))
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-- C. Catamorphisms

ltot6l i :: 1+7% — 1+7% + T6 x (1+7%)
ltot6l_i (Inl Unit) = Inl (Inl Unit)
ltot6l_i (Inr (a,(b, Leaf))) = Inl (Inr(a,(b, Leaf)))
ltot6l_i (Inr (a,(b, Node c d))) = Inl (Inr(a,(b,Node c d)))
ltot6l_i (Inr (a, (b, (Node c Leaf))))
= Inr ((a,(b,(c,(Leaf, (Leaf, Leaf))))), Inl Unit)
ltot6l_i (Inr (a, (b, (Node c
(Node d Leaf)))))
= Inr ((a,(b,(c,(d,(Leaf, Leaf))))), Inl Unit)
ltot6l_i (Inr (a, (b,
(Node ¢
(Node d
(Node e Leaf))))))
= Inr ((a,(b,(c,((Node d e), (Leaf, Leaf))))), Inl Unit)
ltot6l_i (Inr (a, (b,
(Node ¢
(Node d
(Node e
(Node f Leaf)))))))
= Inr ((a,(b,(c,(d,((Node e f), Leaf))))), Inl Unit)
ltot6l_i (Inr (a, (b,
(Node ¢
(Node d
(Node e
(Node £
(Node g Leaf))))))))
= Inr ((a,(b,(c,(d,(e, Node f g))))), Inl Unit)
ltot6l_i (Inr (a, (b,
(Node ¢
(Node d

(Node e
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(Node f
(Node g
(Node h 1)))))))))
= Inr ((a,(b,(c,(d,(e,£))))), Inr (g,(h,i)))

ltot6l :: (14+73%) + T x (14732 —» 1473
ltot6l (Inl (Inl Unit)) = Inl Unit

1tot6l (Inl (Inr (a,(b, Leaf)))) = Inr (a,(b, Leaf))

1tot6l (Inl (Inr (a,(b, Node c d)))) = Inr (a,(b, Node c d))

ltot6l (Inr ((a,(b,(c,(Leaf, (Leaf, Leaf))))), Inl Unit))

= Inr (a,(b,(Node c Leaf)))

ltot6l (Inr ((a,(b,(c,(d,(Leaf, Leaf))))), Inl Unit))

= Inr (a,(b,(Node c
(Node d Leaf))))

ltot6l (Inr ((a,(b,(c,((Node d e), (Leaf, Leaf))))), Inl Unit))

= Inr (a,(b,(Node c
(Node 4
(Node e Leaf)))))

ltot6l (Inr ((a,(b,(c,(d,((Node e f), Leaf))))), Inl Unit))

= Inr (a, (b, (Node c
(Node d
(Node e
(Node f Leaf))))))

1tot6l (Inr ((a,(b,(c,(d,(e,Node f g))))), Inl Unit))

= Inr (a,(b,(Node c
(Node d
(Node e
(Node f
(Node g Leaf)))))))

1tot6l (Inr ((a,(b,(c,(d,(e,£))))), Inr (g,(h,1i))))

= Inr (a, (b, (Node c
(Node d
(Node e
(Node f

(Node g
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(Node h 1))))))))

-- identity function

id :: a —» a

id x = x

-- function coproduct

add :: (@ > b) - (¢ > d) —» (Sum a ¢ — Sum b d)
add f g (Inl x) = Inl (f x)

add f g (Inr x) = Inr (g x)

-- function product

time :: (a - b) —» (¢ - d) — ((a, c) — (b, d))

time f g (x, y) = (f x, g y)

inT6List :: (1+73) + T6 x ((T9)* x (1+47T3)) —» (T9)* x (1+7%)
inT6List (Inl a) = ([], a)

inT6List (Inr (a, (x, b))) = (a:x, b)

inT6List_i :: (79)* x (14+73) - (1+73) + T6 x (((T%)* x (1+73))
inT6List_i ([], a) = Inl a

inT6List_i (a:x, b) = Inr (a, (x, b))

cat_t6ltol :: (7%)* x (1+73) - 1473

cat_t6ltol = ltot6l o (add id (time id cat_t6ltol)) o inT6List_i

cat_tBltol_i :: 1473 — (T9)* x (14+73)

cat_tB6ltol_i = inT6List o (add id (time id cat_t6ltol_i)) o ltot61_i

-- D. Between Middle and T

t6lsi_4tot :: (T9)* x (T 4+ T*) - T
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tBlsl_4tot = sl1lltol o (add id cat_t6ltol) ost6l_1_4tol_t61

t6lsl dtot_i :: T — (TS)* x (T + T%)

tBlsl_4tot_i = st6l_1_4tol_t6l_io (add id cat_t6ltol_i) oslltol_i

-- E. Between Middle and 1+ 7%

t6lsi_4tol :: (T)* x (T + T%) - 1 + T3

tBlsl_4tol = cat_t6ltol o (time id si1_4tol)

t6lsi_4tol_i :: 1 + T2 — (T9)* x (T 4+ T%)

t6lsl_4tol_i = (time id s1_4tol_i) o cat_t6ltol_i

-- F. Main Functions

main :: T — 1473

main = t6lsl_4tol o t6lsl_4tot_i

main_i :: 1+7% > T

main_i = t6lsl_4tot o t6lsl_4tol_i
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