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Abstra
t
Algebrai
 equations on 
omplex numbers and fun
tional equations on generating fun
-tions are often used to solve 
ombinatorial problems. But the introdu
tion of 
ommonarithmeti
 operators su
h as subtra
tion and division always 
auses pani
 in the world ofobje
ts whi
h are generated from 
onstants by applying produ
ts and 
oprodu
ts. Overthe years, resear
hers have been endeavoring to interpretate some absurd 
al
ulations onobje
ts whi
h lead to meaningful 
ombinatorial results.This thesis investigates 
onne
tions between algebrai
 equations on 
omplex numbersand isomorphisms of re
ursively de�ned obje
ts. We are attempting to work out 
ondi-tions under whi
h isomorphisms between re
ursively de�ned obje
ts 
an be de
ided byequalities between polynomials on multi-variables with integers as 
oe�
ients.As instan
es of re
ursively de�ned obje
ts in 
omputer s
ien
e, espe
ially in fun
tionalprogramming languages, algebrai
 data types are adopted as obje
tives of our resear
h.By studying the algebrai
 stru
ture of the quotient set of non-trivial1 polynomial typesunder the least 
ongruen
e relation that is generated from a given system of re
ursivetype isomorphisms, we develop a su�
ient and ne
essary 
ondition under whi
h thisquotient set forms a ring. This is an extension of Fiore and Leinster's work that fora given single re
ursive type isomorphism, they gave a su�
ient 
ondition under whi
hthe set of non-trivial polynomial types forms a ring. Further, the polynomial division1We 
onsider all type expressions that are generated from 0 (empty type) and 1 (unit type) byapplying produ
ts and 
oprodu
ts as trivial polynomial types.ii



algorithm on multi-variables 
an be used to de
ide isomorphisms between non-trivialpolynomial types.On the other hand, 
ombinatorial pro
esses 
an be extra
ted from fa
torizations of poly-nomials. As an illustration, we invent and study an in�nite 
lass of one-person boardgames, so-
alled repla
ement-set games. There is a one-dimensional unbounded boardwhi
h is divided into squares. The aim of these games is to move a 
he
ker from theinitial square to the �nal square by using rules that are de�ned by a multiset of inte-gers. It turns out that every solvable repla
ement-set game 
orresponds to a produ
t of
y
lotomi
 polynomials with at most one negative 
oe�
ient. An algorithm is derivedto solve these games. That is, it restores 
ombinatorial pro
esses behind polynomialfa
torizations on one variable.This resear
h is interesting be
ause it builds a bridge between applied mathemati
s andtheoreti
al 
omputer s
ien
e. We believe that 
onne
tions between algebrai
 equationson 
omplex numbers and isomorphisms of re
ursively de�ned obje
ts will introdu
e ma-ture methods in applied mathemati
s, e.g. Gaussian elimination and Gröbner Basis,into theoreti
al 
omputer s
ien
e as bases of des
riptions and analysis of re
ursively de-�ned obje
ts, e.g. data stru
tures, languages, and algorithms. Spe
i�
ally, some wordproblems 
an be de
ided by polynomial division algorithm on multi-variables. On theother hand, 
ombinatorial explanations of algebrai
 equations on 
omplex numbers 
anbe extra
ted from proofs of isomorphisms between re
ursively de�ned obje
ts.However, when primitive re
ursions are introdu
ed to produ
e isomorphisms betweennon-trivial polynomial indu
tive2 types, the algebrai
 properties of the quotient setof non-trivial polynomial indu
tive types are still un
lear. As for two-dimensionalrepla
ement-set games, whether there is an algorithm that 
an produ
e pro
esses tosolve these games is still unknown. Also, the 
onne
tions between algebrai
 equationson 
omplex numbers and fun
tional equations on generating fun
tions are obs
ure. Allof these need more investigation in future.2The type expressions are de�ned by least �xed points.iii
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Chapter 1
Introdu
tion

Re
ursively de�ned obje
ts permeate all of 
omputer s
ien
e. Resear
h into isomor-phisms of re
ursively de�ned obje
ts usually results in deeper understanding of theirunderlying 
omputational and 
ombinatorial models. For very di�erent reasons, iso-morphisms of re
ursively de�ned obje
ts have been studied. Isomorphi
 obje
ts areusually 
ardinality preserving. Hen
e, generating fun
tions [Niv69, Hen74, SS78, GJ83,JBR88, GKP94, Sta97, Sta99℄ and fun
tional equations [Fla85, BLL88, BLL98, FS08℄are useful mathemati
al models to formalize re
ursively de�ned obje
ts. The relevantliterature is s
attered in di�erent bran
hes of 
omputer s
ien
e. For instan
e, S
hützen-berger's Methodology [CS63, BLFR01℄ whi
h determines generating fun
tions of unam-biguous 
ontext-free languages, Combinatorial Spe
ies [BLL88, BLL98℄ whi
h is usefulfor formalizing data stru
tures in fun
tional equations, and Flajolet's Symboli
 Method[Fla85, FS08℄ whi
h translates spe
i�
ations into fun
tional equations for asymptoti
analysis [VF90, Odl95℄. These methods are reviewed in se
tion 1.5 as related work.Another interesting resear
h line was developed by Blass [Bla95℄ and Fiore and Leinster[Fio04, FL05℄ from S
hanuel's Problem [S
h91℄ and Lawvere's Remark [Law91℄ whi
his also known as seven-trees-in-one [Bla95℄. The idea is to build 
onne
tions betweenre
ursively de�ned obje
ts and algebrai
 equations on 
omplex numbers. Fiore and Le-1



Chapter 1: Introdu
tioninster gave a 
ondition on single re
ursive type isomorphisms under whi
h the quotientset of non-trivial polynomial types forms a ring. It implies that the polynomial divi-sion algorithm on one variable 
an be used to de
ide isomorphisms between non-trivialpolynomial types. More details are given in se
tions 1.1 and 1.2.Following Fiore and Leinster's resear
h, by taking algebrai
 data types [Mal90, Hoo96,BM96℄ as obje
tives of our investigation, we extend their results from a single re
ursivetype isomorphism to a system of re
ursive type isomorphisms. This investigation builds
onne
tions between algebrai
 equation systems on 
omplex numbers and re
ursive typeisomorphism systems. It follows that the problem of de
iding isomorphisms between non-trivial polynomial types given by re
ursive type isomorphism systems 
an be redu
edto the problem of de
iding equivalen
es between polynomials on multi-variables withintegers as 
oe�
ients. The latter problem is e�e
tively the ideal membership problemin 
omputational algebra whi
h 
an be solved by the polynomial division algorithm onmulti-variables [BW98, CLS07℄. This 
ontribution is dis
ussed in se
tion 1.3.Seven-trees-in-one has been turned into a one-person board game, namely the nu
learpennies game [Yor07, Pip07a, Pip07b℄. As an illustration of the theory we have devel-oped, we invent an in�nite 
lass of one-person board games whi
h has the nu
lear penniesgame as an instan
e, so-
alled repla
ement-set games [BCF10, BCF11℄. The aim of thesegames is to move a 
he
ker on a board n squares right using repla
ement rules givenby some multiset of integers whi
h represent relative positions. The interesting thingabout these games is that they build 
onne
tions between types and 
y
lotomi
 polyno-mials [Isa94, Lan02℄. That is, every solvable non-trivial repla
ement-set 
orresponds toa produ
t of 
y
lotomi
 polynomials with at most one negative 
oe�
ient. We also giveseveral ad-ho
 methods to 
onstru
t subsets of all solvable non-trivial repla
ement-sets.As another 
ontribution, a brief explanation about this is given in se
tion 1.4.
2



Chapter 1: Introdu
tion1.1 Seven-Trees-In-OneThe story started from a remark given by Lawvere [Law91℄:I was surprised to note that an isomorphism x � 1� x2 (leading to 
omplexnumbers as Euler 
hara
teristi
s if they don't 
ollapse) always indu
es anisomorphism x7 � x.An appropriate explanation of Lawvere's Remark is:A binary tree is an empty tree (1) or a pair of binary trees (x2); there is anisomorphism between the set of seven-tuples of binary trees (x7) and the setof binary trees (x).This is also known as seven-trees-in-one as named by Blass. He gave an expli
it 
odingbetween the set of seven-tuples of binary trees and the set of binary trees in [Bla95℄.Noti
e that x in the above dis
ussion is 
onsidered as an obje
t not a number. However,it is interesting that if we take x � 1�x2 as an algebrai
 equation on 
omplex numbers,by solving this equation, we have:
x � cos

π

3
� sin

π

3
i .Further,

x7 � x� x6 � x� pcos π
3
� sin

π

3
iq6 � x� pcos 2π � sin 2πiq � x .It seems that there is a short 
ut to prove seven-trees-in-one by taking obje
ts as 
omplexnumbers. But, anyone who wants to do this must at least explain the following strangephenomenon:

x6 � pcos π
3
� sin

π

3
iq6 � cos 2π � sin 2πi � 1is true in terms of 
omplex numbers while the set of six-tuples of binary trees is notisomorphi
 to the set of the empty tree be
ause 
ardinalities of both sides are di�erent.3



Chapter 1: Introdu
tionThe 
ardinality of the set of six-tuples of binary trees is 
ountable in�nity while that ofthe set of the empty tree is one.
1.2 Rings from Quotient SemiringsFor 
larity, let us use 
apital letters, e.g. R, S and T , to denote obje
ts and lower
ase letters, e.g. x, y and z, to denote 
omplex numbers. We use the symbol �for equalities between 
omplex numbers and the symbol � for isomorphisms betweenobje
ts in a distributive 
ategory (see se
tion 2.2) respe
tively. Operators � and �are overloaded to denote respe
tively addition and multipli
ation of 
omplex numbersor 
oprodu
t and produ
t of obje
ts. Their meanings will be 
lear from 
ontext.In order to understand seven-trees-in-one and, more generally, 
onne
tions between 
om-plex numbers and re
ursively de�ned obje
ts, it is ne
essary to investigate the underlyingalgebrai
 stru
ture of all obje
ts whi
h are generated from a �nite set of re
ursivelyde�ned obje
ts and the terminal obje
t 1 by applying produ
ts and 
oprodu
ts. Thisstru
ture is e�e
tively a quotient semiring with the terminal obje
t 1 and the initialobje
t 0 as unit and zero respe
tively.As for seven-trees-in-one, for instan
e, the 
olle
tion of all obje
ts generated from T and
1 by applying produ
ts and 
oprodu
ts is a quotient semiring under the least 
ongruen
erelation generated from the isomorphism T � 1� T 2. By the 
ongruen
e relation, wemean an equivalen
e relation preserving produ
ts and 
oprodu
ts.In [Gat98℄, Gates showed that when polynomial P pT q has at least one 
onstant term andat least one non
onstant term, isomorphisms between obje
ts in distributive 
ategorysubje
t to T � P pT q are de
ided by equalities in any semiring subje
t to T � P pT q.By using this result, in order to study seven-trees-in-one, we 
an fo
us on the semiring
NrT s of all polynomials on T with natural numbers as 
oe�
ients with respe
t to the
ongruen
e relation �1�T 2 whi
h is generated from the identity T � 1� T 2.4



Chapter 1: Introdu
tionIn [Bla95℄, Blass studied the semiring NrT s with respe
t to the identity T � 1 � T 2and observed that 1 � T 3 plays the role of zero for all polynomials in the quotientset pNrT s � Nq{�1�T 2 . Following Blass's resear
h, Fiore and Leinster investigated thesemiring NrT s with respe
t to the identity T � 1 � T � T 2 in [FL04℄. They showedthat 1� T 2 plays the role of zero in the quotient set pNrT s �Nq{�1�T�T 2 .Fiore and Leinster generalised from these examples. Let α be a type whi
h is generatedfrom T and 1 by applying produ
ts and 
oprodu
ts and suppose α has a term T n for nat least 2. With respe
t to the isomorphism T � 1�α, based on the theory of maximalsubgroups within semigroups [Gre51℄, Fiore and Leinster showed that the quotient setof non-trivial polynomial types forms a ring [Fio04, FL05℄. That is, subtra
tion is validin the quotient semiring of non-trivial polynomial types.Returning to the seven-trees-in-one. The above investigation shows a way to de
ide theisomorphism T 7 � T without bothering to expli
itly 
onstru
t a 
oding between them.Re
all that 1�T 3 is a zero of polynomials in pNrT s�Nq{�1�T 2 . This leads to the resultthat T 3 is a negative unit. Further, we have that the quotient set pNrT s�Nq{�1�T 2 hasthe same algebrai
 properties as the quotient ring Zrxs{px � 1� x2q. It is the quotientset of all polynomials with integers as 
oe�
ients under the equivalen
e relation whi
his given by the prin
ipal ideal generated from x2 � x � 1. This quotient ring 
an be
onsidered as the ring extension Zrcos π
3
� sin π

3
is on the roots cos π

3
� sin π

3
i of theequation x � 1� x2 as well. For instan
e, the equation:

x6 � 1 � pcos π
3
� sin

π

3
iq6 � 1 � cos 2π � sin 2πi� 1 � 0
orresponds to the identity:

T 6 � T 3 �1�T 2 T 3 � p1� T 3q �1�T 2 1� T 3 .That is, 0 , 1, and �1 
orrespond to 1 � T 3, 2 � T 3, and T 3 respe
tively. Then,seven-trees-in-one 
an be de
ided by the following fa
torization on Zrxs:
x7�x � x�px6�1q � x�px3�1q�px3�1q � x�px3�1q�px�1q�px2�x�1q .This fa
torization shows that x6�1 and x7�x are in the prin
ipal ideal generated from

x2 � x� 1. We have equations x6 � 1 and x7 � x . A

ordingly, we get isomorphisms5



Chapter 1: Introdu
tion
T 6 � 1 � T 3 and T 7 � T . Generally, Fiore and Leinster showed that the polynomialdivision algorithm on Zrxs 
an be used to de
ide isomorphisms between non-trivialpolynomial types if subtra
tion is valid [Fio04, FL05℄.From the 
ategori
al view, Fiore and Leinster's resear
h gives an answer to the followingproblem posed by S
hanuel [S
h91℄:Though ill-posed, the question is suggestive: a good answer should 
ompletethe diagram

S
�

� //

��

E

��
N

�

� // Zwhere S is the 
ategory of �nite sets; we seek an enlargement E, the iso-morphism 
lasses of whi
h should give rise to all integers, rather than justnatural numbers.That is, subtra
tion is valid on E, whi
h 
oin
ides with Fiore and Leinster's result ontypes that 
onstru
ts rings from quotient semirings.
1.3 Rings of Re
ursive Type Isomorphism SystemsWithout loss of generality, as 
on
rete representations of re
ursively de�ned obje
ts, we
hoose algebrai
 data types [Mal90, Hoo96, BM96℄ as obje
tives of our investigation.Fiore and Leinster's investigation is on the algebrai
 stru
ture of the quotient set ofnon-trivial polynomial types whi
h are generated from one re
ursively de�ned type Tand the unit type 1 with respe
t to the least 
ongruen
e relation generated from onetype isomorphism T � 1�α. Moreover, when α has a term T n for n at least 2, thereis a ring isomorphism between the above quotient set and the polynomial quotient ringwhi
h is based on the prin
ipal ideal generated from the polynomial pT � p1� αqq.6



Chapter 1: Introdu
tionInspired by Fiore and Leinster's resear
h, it is natural to ask the following question:Under what kind of 
ondition does the quotient set of non-trivial polynomialtypes whi
h are generated from a �nite set T of re
ursively de�ned types forma ring, with respe
t to the least 
ongruen
e relation whi
h is generated froma system S of re
ursive type isomorphisms on T ?Let �S be isomorphisms in the free distributive 
ategory (see se
tion 2.2) on T whi
his equipped with the system S. Let NrTs�{�S be the quotient set of the NrTs � Nunder the least 
ongruen
e relation �S whi
h is generated from the system S. Sin
eall semiring properties 
an be derived from this 
ategory, a straightforward 
onsequen
eis that for all polynomials p and q in NrTs�, p �S q implies that p �S q, written as�S � �S
1. Thus, in order to answer the above question, we 
an fo
us on the algebrai
stru
ture of the quotient set NrTs�{�S.As an example, given the following system of re
ursively de�ned types:

S � $&% S � 1� T 2 ;

T � 1� S � T ,we are interested in the algebrai
 stru
ture of the quotient set NrS, T s�{�S. If thequotient set NrS, T s�{�S forms a ring, then there is a ring isomorphism2 between thisquotient set and the polynomial quotient ring Zrx, ys{�S where �S is the equivalen
erelation given by the ideal IS whi
h is generated from the algebrai
 equation system on
omplex numbers:
S � $&% x � 1� y2 ;

y � 1� x� y .That is, they have the same algebrai
 properties with regard to equalities and operators1We still don't know whether �S � �S is true or not. Its proof 
an be a generalization of Gates'result in [Gat98℄.2By theorem 2.1.1, there is a ring epimorphism from Zrx, ys{�S to NrS, T s�{�S. By the de�nitionof �S, we have �S � �S . This ensures the ring epimorphism is inje
tive as well.7



Chapter 1: Introdu
tionde�ned on them, denoted as:pZrx, ys{�S , �, �, IS , 1�IS , �1�ISq �Ñ pNrS, T s�{�S, �, �, ΛS, 1� ΛS, ηSqwhere ΛS and ηS are respe
tively equivalen
e 
lasses of zero ΛS and negative unit ηSwith respe
t to the least 
ongruen
e relation �S. By this ring isomorphism, we havethat for all polynomials p and q in NrS, T s�, p� q P IS implies that p �S q.To answer the above question is the �rst motivation of our resear
h. The signi�
an
eof this investigation is that it builds 
onne
tions between systems of re
ursive typeisomorphisms and systems of equations on 
omplex numbers. That is, with respe
tto de�ned equalities and operators, problems on types 
an be solved by taking them as
omplex numbers.Noti
e that the unit 1 and the zero 0 in NrTs are not in NrTs�. Hen
e, the quotientset NrTs�{�S inherits all properties of the semiring NrTs ex
ept for zero and unit. Inorder to answer the question we propose above, the 
ru
ial step is to 
onstru
t a zero
ΛS for NrTs� with respe
t to the least 
ongruen
e relation �S. By doing this, wehave that NrTs�{�S is a semiring with zero ΛS and unit 1� ΛS. Further, ΛS is so
onstru
ted that it is isomorphi
 to 1� ηS for some type ηS in NrTs�. It follows that
NrTs�{�S forms a quotient ring with ηS as negative unit.We reprodu
e Fiore and Leinster's result in se
tions 3.1 and 3.2 to illustrate the aboveidea with the assumption on isomorphisms given by Fiore and Leinster in [Fio04, FL05℄.That is, if the type α has a term T n for n at least 2, then the quotient set NrT s�{�1�αwith �1�α the least 
ongruen
e relation generated from the isomorphism T � 1 � αforms a ring. To prove that the quotient set NrT s�{�1�α is a ring through 
onstru
tinga zero Λ1�α simpli�es the proof given by Fiore in [Fio04℄ whi
h is based on Green'sRelations [Gre51℄ within semigroups.As a 
areful extension, in se
tion 3.3, we investigate mutually re
ursive type isomor-phisms G on two types S and T . We show that if types S and T both generate 1, andthey generate ea
h other and one of their re
ursive de�nitions has a term with degree at8
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tionleast 2, then the quotient set NrS, T s�{�G forms a ring. Here, for all types p and q,
p generates q if and only if p �G q � r for some type r. For instan
e, returning to theprevious example:

G � $&% S � 1� T 2 ;

T � 1� S � T .We have:
S �G 1� T 2 �G 1� T � p1� S � T q �G 1� T � T � S � T ;

T �G 1� S � T �G 1� S � p1� T 2q �G 1� S � S � T 2 .It follows that G satis�es the above 
ondition. Further, the quotient set NrS, T s�{�Gis a ring. The key step of the proof is the 
onstru
tion of the zero ΛG whi
h is analogouswith the 
onstru
tion of Λ1�α.By generalising the above 
ondition on mutually re
ursive type isomorphisms G of twore
ursively de�ned types to a 
ondition on systems of re
ursive type isomorphisms Son a �nite set T of re
ursively de�ned types, we develop an algorithm to de
ide whetherthe quotient set NrTs�{�S forms a ring with respe
t to the least 
ongruen
e relationgenerated from S in se
tion 3.4. The main results are given in theorem 3.4.1 whi
h isan answer to the question we propose at the beginning of this se
tion.Noti
e that if NrTs�{�S forms a ring, then the subtra
tion is valid on this quotient set.As a reasonable extension, we may ask the following question:How does one 
onstru
t an extension of NrTs�{�S su
h that division isvalid?In 
ategori
al view, we want to �nish the following diagram:
S

�

� //

��

E

��

�

� //

��

F

��
N

�

� // Z
�

� // Q 9



Chapter 1: Introdu
tionwhi
h is an extension of S
hanuel's Problem [S
h91℄. That is, we are looking for anenlargement F of 
ategory of �nite sets whi
h gives rise to all rational numbers.The exploration starts from a 
on
rete example. Return to the isomorphism T � 1�T 2.Fiore [private 
ommuni
ation, 2010℄ identi�ed an interesting isomorphism:
List T �ind

1�T 2 T .In words, the set of all �nite lists of binary trees is isomorphi
 to the set of all binary trees.Here, we use �ind
1�T 2 to emphasize that the type T is the least �xed point µX . p1�X�

Xq and primitive re
ursions (on T and on List T ) are allowed in the free distributive
ategory on T . In our investigation into this isomorphism, we �nd that the followingisomorphism:
List T �ind

1�T 2 1� T 3is true as well. Combining the above two isomorphisms, sin
e 1 � T 3 plays the role ofzero in NrT s�{�1�T 2 , the isomorphism:
T �ind

1�T 2 List T �ind
1�T 2 1� T 3we 
all trees-in-zero. By 
onstru
ting expli
itly fun
tions behind this isomorphism, anappropriate proof of this isomorphism is given in se
tion 3.5.The interesting thing is that by introdu
ing the List type, we 
an 
onstru
t multi-pli
ative inverses for non-trivial polynomial indu
tive types. For instan
e, 
onsider-ing the type isomorphism T � 1 � T 2, we have that 1 � T 3, 3 � T 3, and T 3 playroles of zero, two, and negative one respe
tively. The produ
tive inverse of 3 � T 3 is

List p1� T 3 � p3� T 3qq whi
h is veri�ed by the following 
al
ulation:pList p1� T 3 � p3� T 3qqq � p3� T 3q�ind
1�T 2 pList p1� T 3 � 2T 3 � T 6qq � p3� T 3q�ind
1�T 2 pList p2T 3 � T 6qq � p3� T 3q�ind
1�T 2 pList pT 3 � T 3 � p1� T 3qqq � p3� T 3q�ind
1�T 2 pList pT 3qq � p3� T 3q 10
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tion�ind
1�T 2 pList pT 3qq � pList pT 3qq � pList pT 3qq � pList pT 3qq � T 3�ind
1�T 2 1� pList pT 3qq � T 3 � pList pT 3qq � pList pT 3qq � p1� T 3q�ind
1�T 2 1� pList pT 3qq � p1� T 3q � pList pT 3qq � p1� T 3q�ind
1�T 2 1� p1� T 3q .However, when the List type and primitive re
ursions are introdu
ed into the freedistributive 
ategory on the �nite set T of polynomial indu
tive types (whi
h are de�nedas least �xed points) equipped with the system S of re
ursive type isomorphisms, thealgebrai
 stru
ture of this 
ategory is still un
lear. This needs more investigation.

1.4 Repla
ement-Set GamesThe se
ond motivation of our resear
h is to generalize the isomorphism seven-trees-in-one. Noti
e that T � 1 � T 2 is not the only type isomorphism whi
h generates theisomorphism T n �1�T 2 T for some positive natural number n. For instan
e, the typeisomorphism T � 1 � T � T 2 generates the isomorphism T 5 �1�T�T 2 T , whi
h wasstudied in [FL04, FL05, Fio04℄. The question is:How does one 
hara
terize the 
omplete set of identities T k � β whi
h gen-erate T k � T n�k for natural numbers k and n?In order to answer this question, we introdu
e an in�nite 
lass of one-person board games,so-
alled repla
ement-set games, in se
tion 4.2. The aim of these games is to move a
he
ker on a board n squares right a

ording to repla
ement rules given by some multiset
R of integers whi
h 
orresponds to the identity T k � β. For instan
e, the isomorphismseven-trees-in-one has been turned into the nu
lear pennies game [Yor07, Pip07a, Pip07b℄whi
h is 
onsidered as a repla
ement-set game with repla
ement-set R � t| �1, 1 |u anddispla
ement n � 6. 11
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tionNoti
e that to 
onstru
t the identity T k � β whi
h generates T k �β T n�k is equiv-alent to 
onstru
ting a solvable repla
ement-set game pR, nq where R 
orrespondsto the identity T k � β. In se
tion 4.3, we study trivial repla
ement-set games where
min.R ¥ 0 or max.R ¤ 0. In se
tion 4.4, an algorithm is 
onstru
ted to solve non-trivial repla
ement-set games where min.R   0   max.R. Through these investigations,a ne
essary and su�
ient 
ondition on the identity T k � β is given.It turns out that the solvable non-trivial repla
ement-sets 
orrespond to produ
ts of 
y-
lotomi
 polynomials [Isa94, Lan02℄ with at most one negative 
oe�
ient. This is an an-swer to the problem we propose. Further, by using properties of 
y
lotomi
 polynomials,several in�nite 
lasses of solvable non-trivial repla
ement-sets are expli
itly 
onstru
tedin se
tion 4.5. As far as we are aware, it is still an open problem to expli
itly 
onstru
tthe 
omplete set of solvable non-trivial repla
ement-sets.
1.5 Related WorkNoti
e that our resear
h is to formalise re
ursively de�ned obje
ts as algebrai
 equationsystems on 
omplex numbers. In this se
tion, let us review three relevant methods:S
hützenberger's Methodology, Combinatorial Spe
ies, and Flajolet's Symboli
 Method.They are based on fun
tional equation systems over generating fun
tions. And theytranslate re
ursively de�ned obje
ts to generating fun
tions for di�erent purposes.1.5.1 S
hützenberger's Methodology for Formal LanguagesThe generating fun
tion for formal languages is the formal power series:xΣn : 0 ¤ n : fnx

n ywith 
oe�
ients fn as numbers of words of length n. Here, we use the notationx` i : R : P y 12
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tionfor quanti�ers (see se
tion 2.5). For instan
e, the generating fun
tion of a� is:
1

1� x
� xΣn : 0 ¤ n : xn y .That is, the number of words of length n is 1 for all natural numbers n.Chomsky and S
hützenberger dis
overed the method whi
h translates unambiguous
ontext-free languages into their generating fun
tions [CS63℄. It is well known that gen-erating fun
tions for unambiguous regular expressions are rational generating fun
tions[Sta97, FS08℄. However, not all rational generating fun
tions are generating fun
tionsfor unambiguous regular expressions. Given a rational generating fun
tion, whether itis a generating fun
tion for some unambiguous regular expression was investigated in[BLFR01℄.Let us fo
us on S
hützenberger's Methodology. The idea is: an unambiguous 
ontext-freegrammar is translated into a system of fun
tional equations over generating fun
tions;by solving this algebrai
 system, one 
an get the 
orresponding generating fun
tion. Andif the given grammar is regular, then its 
orresponding algebrai
 system degenerates intoa linear system. For example, given the unambiguous regular expression paa� bq�a, its
orresponding state transition system is as following:$&% L0 � bL0 � aL1 ;

L1 � aL0 � 1 .By repla
ing a and b by x, we get the following linear system:$&% L0 � xL0 � xL1 ;

L1 � xL0 � 1 .By solving this linear system, we get the generating fun
tion for paa� bq�a. That is,
F pxq � L0 � x

1� x� x2
.Noti
e that F pxq de�nes a linear re
urren
e relation. Expanding F pxq by using powerseries [Zor04℄, we have:$'''&'''% f0 � 0, ;

f1 � 1, ;

fn � fn�1 � fn�2, n ¥ 2 . 13
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tionThat is, as for the language de�ned by the regular expression paa� bq�a, the Fibona

iNumbers are numbers of words of length n for all natural numbers n.1.5.2 Combinatorial Spe
ies for Data Stru
turesA spe
ies of stru
tures is a 
onstru
tion F , for ea
h �nite set U , to produ
e a �niteset F rU s whi
h is independent of the nature of elements of U . In 
ategori
al terms, aspe
ies is a fun
tor between 
ategories of �nite sets and bije
tions [BLL98℄. Spe
ies withoperators de�ned on them, e.g. addition, multipli
ation, substitution, and di�erentiation,
onstru
t spe
ies algebra. For every operator between spe
ies, there is a 
orrespondingoperator between their generating fun
tions. Thus, spe
i�
ations of 
ombinatorial stru
-tures in spe
ies algebra 
an be translated into their generating fun
tions dire
tly.For instan
e, 
onsidering the following de�nition of binary trees: a binary tree is an emptytree or an element followed by a pair of binary trees. The empty tree is interpreted asthe empty set spe
ies, de�ned as:
1rU s � $&% tU u, if U � H ;H, if U � H .The element is 
hara
terized as the singleton spe
ies, de�ned as:
XrU s � $&% tU u, if |U | � 1 ;H, if |U | � 1 .Disjoint union and 
artesian produ
t are 
onsidered as spe
ies addition and multipli
a-tion respe
tively. Now, the binary tree 
an be represented by the fun
tional equation:
B � 1�X �B2 .By solving this equation as a quadrati
 equation on 
omplex numbers, we have:
Bpxq � 1�?1� 4x

2
.Sin
e 
oe�
ients of the power series of 1�?1�4x

2

ontain negative natural numbers,

1�?1�4x
2

is not the generating fun
tion of binary trees. Expanding 1�?1�4x
2

by using14
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tionpower series, we have:
Bpxq � xΣn : 0 ¤ n :

1

n� 1

�
2n

n



xn y .The 
oe�
ients of the above series are numbers of binary trees with n nodes for allnatural numbers n.The signi�
an
e of this generalisation is that it enables us to fo
us on algebrai
 operatorsand stru
tures of spe
ies, without getting too involved in the details of operators betweengenerating fun
tions. Bergeron et al formalized tree-like data stru
tures in spe
ies al-gebra, su
h as AVL trees and 2-3 Trees in [BLL98℄. However, it is hard to solve thefun
tional equations in a 
ombinatorial sense.1.5.3 Flajolet's Symboli
 Method for Asymptoti
 AnalysisAnalysis of data stru
tures and algorithms involves spe
i�
ations and asymptoti
 anal-ysis of 
ombinatorial stru
tures. The Symboli
 Method was developed by Flajolet totranslate spe
i�
ations into fun
tional equations dire
tly. These fun
tional equationsare over generating fun
tions. Through analyzing generating fun
tions, one 
an 
hara
-terize statisti
al properties of data stru
tures and algorithms.Flajolet observed the relation between stru
tural de�nitions of 
ombinatorial stru
turesand their fun
tional equations [Fla85℄. In his resear
h, 
ombinatorial 
onstru
tors areadmissible if they preserve 
ardinalities. And a 
ombinatorial 
lass is a 
losure set
onstru
ted from initial sets by admissible 
onstru
tors whi
h 
an be translated intofun
tional equations expli
itly. Further, 
omplex analysis methods, for instan
e, singu-larity analysis and saddle point analysis, are applied to evaluate statisti
al propertiesof 
ombinatorial stru
tures [VF90, Odl95℄. In [FS08℄, Flajolet and Sedgewi
k de�neda set of elementary operators, e.g. disjoint union, 
artesian produ
t, sequen
e, 
y
le,multiset, and powerset, as 
onstru
tors of admissible 
ombinatorial 
lasses. For everyelementary operator, there is a 
orresponding operator on generating fun
tions. Thismakes automated asymptoti
 analysis possible.15
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tion1.6 Appli
ationsData stru
tures are in the 
enter of 
omputer s
ien
e. Analysis and reasoning of datastru
tures are vital in all aspe
ts of 
omputer s
ien
e, e.g. program optimization, algo-rithm design and 
omplexity analysis, and software testing and veri�
ation. In order toanalyze and reason about data stru
tures, we need to 
hoose appropriate mathemati-
al models to formalize them and to design suitable algebrai
 operators to manipulatethem. Sin
e we usually 
are about shapes of data stru
tures rather than 
ontents storedin them, fun
tional equations on generating fun
tions, as we have seen in se
tion 1.5,are useful models to spe
ify and manipulate data stru
tures. Our resear
h shows thatmany re
ursively de�ned data stru
tures whi
h are generated from 
onstants by apply-ing 
artesian produ
ts and disjoint unions 
an be 
onsidered as algebrai
 equations on
omplex numbers and 
an be manipulated as polynomials on multi-variable with integersas 
oe�
ients. It follows that methods in applied mathemati
s 
an be used to analyzedata stru
tures.To de�ne and de
ide stru
tural equalites between data stru
tures is a fundamental prob-lem in analysis and reasoning of data stru
tures. Stru
tural equalities are 
aptured byisomorphisms in our resear
h. Our setting for isomorphisms is free distributive 
ategory.This generalization ensures that dedu
ed properties are true not only for data stru
turesbut also for fun
tions and algorithms whi
h are generated from 
onstants by applyingprodu
ts and 
oprodu
ts. More interestingly, isomorphisms between them 
an be auto-mati
ally extra
ted from proofs of their 
orresponding algebrai
 equations. This is usefulfor program and data stru
tures transformations that are usually required to preservesome stru
tural properties. The �rst interesting appli
ation of the theory we have devel-oped is that it predi
ts that there is an algorithm to de
ide whether a repla
ement-setgame is solvable.On the other hand, 
onne
tions we have built between re
ursive polynomial type isomor-phisms and algebrai
 equations show that it is possible to represent 
omplex numbersand polynomials with integers as 
oe�
ients as re
ursive polynomial types. This gives16
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tiona 
lue to prove properties in 
omputable algebra by using automated theorem provers.

17



Chapter 2
Mathemati
al Preliminaries

In this 
hapter, we give a brief introdu
tion to mathemati
s and notations used in thisthesis. The 
on
epts of algebrai
 stru
tures, e.g. semirings, rings, and ideals, are neededto understand 
hapter 3. We give their de�nitions and some theorems without proofsin se
tion 2.1. More information 
an be found in any textbook of algebra, for instan
e,[MB99℄ and [Lan02℄. Very small part of knowledge on 
ategories and initial algebra isused to 
hara
terize algebrai
 data types and de�ne fun
tions between types. We listrelevant information in se
tions 2.2 and 2.3. More details 
an be found in [BM96, Hoo96℄.Basi
 properties of 
y
lotomi
 polynomials [Isa94, Lan02℄ are given in se
tion 2.4 whi
hare used for the 
onstru
tion of solvable repla
ement-sets. Finally, in se
tion 2.5, someexamples are given to explain notations we use in this thesis. Similar notations are usedin [Gri98, Kal90, GS94, Ba
03℄.
2.1 Algebrai
 Stru
turesLet S be a set whi
h is 
losed for the binary operator `. The stru
ture pS, `q is asemigroup if ` is asso
iative. That is, for all a, b, and c in S,pa ` bq ` c � a ` pb ` cq . 18



Chapter 2: Mathemati
al PreliminariesIf there is an element 1` in S satisfying that for all a in S,
a ` 1` � a � 1` ` a ,then the stru
ture pS, `, 1`q is a monoid. The element 1` is said to be the unit of thismonoid. For instan
e, the set of all natural numbers equipped with the arithmeti
 addi-tion forms a monoid with 0 as the unit. A monoid is 
ommutative if ` is 
ommutative.That is, for all a and b in S,
a ` b � b ` a .A group pS, `, 1`q is a monoid satisfying that for every element a in S, there is anelement b in S su
h that
a ` b � 1` � b ` a .We say that b is an inverse of a. A group is an abelian group if ` is 
ommutative.For example, the set of all integers equipped with arithmeti
 addition forms an abeliangroup.A semiring pS, `, b, 1`, 1bq is a set S equipped with two binary operators ` andb whi
h satis�es the following 
lauses:a. pS, `, 1`q is a 
ommutative monoid ;b. pS, b, 1bq is a monoid ;
. b distributes through `, that is, for all a , b , and c in S,

a b pb ` cq � pa b bq ` pa b cq ;pb ` cq b a � pb b aq ` pc b aq ;d. 1` is the zero of b, that is, for all a in S,
a b 1` � 1` � 1` b a .19
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al PreliminariesFor instan
e, the set of all natural numbers equipped with arithmeti
 addition andmultipli
ation forms a semiring, written as pN, �, �, 0, 1q. The power set of the set
Σ� of all words generated from an alphabet Σ equipped with set union operator Yand 
on
atenation operator � forms a semiring with the empty set H and the set ofthe empty string ǫ as units of set union and 
on
atenation respe
tively, denoted byp℘pΣ�q, Y, �, H, t ǫ uq. As another example, the stru
ture pNrxs, �, �, 0, 1q ofall polynomials on the indeterminate x with natural numbers as 
oe�
ients whi
h isequipped with polynomial addition and multipli
ation is a semiring as well. Generally,given a �nite set I of indeterminates, we use NrIs for the set of all polynomials whi
h aregenerated from indeterminates in I with natural numbers as 
oe�
ients. The stru
turepNrIs, �, �, 0, 1q forms a semiring. For instan
e, taking I to be tx, y u , thepolynomial x2 � 3xy is an element in NrIs. A semiring is 
ommutative if the binaryoperator b is 
ommutative.A ring is a semiring satisfying that the stru
ture pS, `, 1`q forms an abelian group.The stru
ture pZ, �, �, 0, 1q of all integers with arithmeti
 addition and multipli-
ation is a ring whi
h has 0, 1, and �1 as zero, unit, and negative unit respe
tively.Given a 
ommutative ring K, the stru
ture pKrIs, �, �, 0, 1q of all polynomials onindeterminates in I with 
oe�
ients in K is a polynomial ring.Given a 
ommutative ring K, an ideal I is a subgroup of K satisfying that

K b I � Iwhere b is extended to sets. An ideal is said to be prin
ipal if it is generated from a�xed element. That is,
I � K b t a ufor some element a in K. For instan
e, given a polynomial p in Zrxs,
Ip � Zrxs b t p uis a prin
ipal ideal of Zrxs. Generally, given a �nite set P of polynomials in KrIs for20
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al Preliminariessome 
ommutative ring K and some �nite set I of indeterminates,
IP � KrIs b Pis an ideal of KrIs. Noti
e that an ideal I of a 
ommutative ring K de�nes an equiv-alen
e relation �I on K. That is, for all a and b in K,
a �I b � a� b P I .Further, the quotient set K{�I is a quotient ring. We use the notation KrIs{�P for thepolynomial quotient ring under the equivalen
e relation de�ned by the ideal IP. Noti
ethat K itself is an ideal as well. The ideal t0u and the ideal K are 
alled improperideals.A ring morphism is a fun
tion between two rings whi
h preserves ` and b and unit.The kernel of a ring morphism is the set of elements whi
h are mapped into zero.Theorem 2.1.1 (Main Theorem on Quotient Ring). For all ring morphisms f : S Ñ Rwith an ideal I a subset of the kernel of f , there is a unique ring morphism f 1 : S{�I Ñ

R satisfying that f � f 1 � ρ with ρ : S Ñ S{�I . In parti
ular, if I is equal to thekernel of f , then f 1 is a monomorphism.
2.2 CategoriesA 
ategory C is a 
olle
tion of obje
ts and arrows equipped with the 
omposite operator�. Ea
h arrow f 
onne
ts two obje
ts A and B whi
h are domain and 
odomain of frespe
tively, written as f : AÑ B. For all arrows f : AÑ B and g : B Ñ C, there isan arrow g � f : A Ñ C. For ea
h obje
t A, there is an identity arrow idA : A Ñ A.The 
omposite operator � is asso
iative and has identity arrows as units.A fun
tor F is a homomorphism between two 
ategories. Given two 
ategories C and
D, the fun
tor F : C Ñ D maps obje
ts and arrows in C to obje
ts and arrows in Drespe
tively and preserves identities and the 
omposite operator. Spe
i�
ally, for all f :21
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al Preliminaries
AÑ B, there is an arrow Ff : FAÑ FB. And F satis�es that F pf � gq � Ff � Fgand F pidAq � idFA. We write Id for the identity fun
tor. We use the notation KAfor the 
onstant fun
tor whose 
odomain is a 
ategory 
onsisted of only one obje
t Aand its identity arrow idA.A terminal obje
t, written as 1, is an obje
t satisfying that for ea
h obje
t A in C, thereis a unique arrow from A to 1. By duality, an initial obje
t, denoted by 0, is an obje
tsatisfying that for ea
h obje
t A, there is a unique arrow from 0 to A.A produ
t of two obje
ts A and B 
onsists of an obje
t A�B and two arrows outl :

A � B Ñ A and outr : A � B Ñ B satisfying the universal property: given arrows
f : C Ñ A and g : C Ñ B, there is a unique arrow f � g : C Ñ A�B su
h that

h � f � g � outl � h � f ^ outr � h � g .Given a 
ategory C having produ
ts for ea
h pair of obje
ts, the produ
t fun
tor C� C Ñ
C is de�ned by its mapping on arrows as: for all arrows f : AÑ C and g : B Ñ D,

f � g � pf � outlq � pg � outrq : A�B Ñ C �D .A 
oprodu
t of two obje
ts A and B 
onsists of an obje
t A � B and two arrows
inl : AÑ A� B and inr : B Ñ A�B satisfying the universal property: given arrows
f : AÑ C and g : B Ñ C, there is a unique arrow f � g : A�B Ñ C su
h that

h � f � g � h � inl � f ^ h � inr � g .Given a 
ategory C having 
oprodu
ts for ea
h pair of obje
ts, the 
oprodu
t fun
tor
C � C Ñ C is de�ned as: for all arrows f : AÑ C and g : B Ñ D,

f � g � pinl � f q � pinr � gq : A�B Ñ C �D .An arrow f : AÑ B is an isomorphism if there is an arrow g : B Ñ A satisfying that
f � g � idB ^ g � f � idA . 22



Chapter 2: Mathemati
al PreliminariesA distributive 
ategory is a 
ategory whi
h has initial and terminal obje
ts, binary prod-u
ts and 
oprodu
ts, and satis�es that for all obje
ts A, B, and C, arrows 0Ñ A� 0and A�B �A� C Ñ A� pB � Cq are isomorphisms.A free distributive 
ategory is a distributive 
ategory whose 
olle
tion of obje
ts is gen-erated from a 
olle
tion of obje
ts, initial and terminal obje
ts by binary produ
ts and
oprodu
ts. The 
olle
tion of arrows in a free distributive 
ategory on a �nite set ofobje
ts is generated from the following arrows by applying 
omposite:
idA : AÑ A pidentityq
!A : AÑ 1 pterminalq½A : 0Ñ A pinitialq
outl : A�B Ñ A pprojectionq
outr : A�B Ñ B pprojectionq
inl : AÑ A�B pinjectionq
inr : B Ñ A�B pinjectionq
δ : A� pB � Cq Ñ A�B �A�C pdistributionq
ζ : A� 0Ñ 0 pzeroq
f � g : C Ñ A�B pproductq
h � i : A�B Ñ C pcoproductqwith
f : C Ñ A, g : C Ñ B, h : AÑ C, i : AÑ B .

2.3 Initial AlgebraLet F : C Ñ C be an endofun
tor on the 
ategory C. Given an obje
t A in C, an
F -algebra on A is an arrow f : FA Ñ A. An F -homomorphism from the F -algebra23
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al Preliminaries
f : FAÑ A to the F -algebra g : FB Ñ B is an arrow h : AÑ B satisfying that

h � f � g � Fh .Let AlgpF q be the 
ategory with obje
ts F -algebras and arrows F -homomorphisms.An initial F -algebra α is an initial obje
t in AlgpF q. For all F -algebras f , the arrowfrom α to f is 
alled the 
atamorphism, denoted by LfM, whi
h satis�es the universalproperty:
h � LfM � h � α � f � Fh .Let F be a polynomial endofun
tor whi
h is 
onstru
ted from identity and 
onstantfun
tors by �nite produ
ts and 
oprodu
ts. For instan
e, the type B of booleans is theinitial pK1 �K1q-algebra and the type N of natural numbers is the initial pK1 � Idq-algebra.

2.4 Cy
lotomi
 PolynomialsThe m-th 
y
lotomi
 polynomial is de�ned as:
Φ.m � xΠ k : 0 ¤ k   m ^ k K m : x� e

2kπ
m

iywhere k K m denotes that natural numbers k and m are 
oprime. The �rst several
y
lotomi
 polynomials are as following:
Φ.0 � 1 ;

Φ.1 � x� 1 ;

Φ.2 � x� 1 ;

Φ.3 � x2 � x� 1 ;

Φ.4 � x2 � 1 ;

Φ.5 � x4 � x3 � x2 � x� 1 ;

Φ.6 � x2 � x� 1 . 24



Chapter 2: Mathemati
al PreliminariesFrom this de�nition, we have that for all positive natural numbers a,
xa � 1 � xΠ k : 1 ¤ k ¤ a ^ k z a : Φ.kywhere k z a denotes that k divides a. With the aid of the Möbius fun
tion whi
h isde�ned as:
µ.n � $'''&'''% 0, if p2 z n for some prime p ;p�1qr, if n is a produ
t of r distin
t primes ;

1, if n � 1 ,
y
lotomi
 polynomials 
an be 
al
ulated by the following formula:
Φ.m � xΠ k : 1 ¤ k ¤ m ^ k z m : pxk � 1qµ.pmk qy .For instan
e,
Φ.6 � x6 � 1

x3 � 1
� x� 1

x2 � 1
� x2 � x� 1 .For all prime numbers p,

Φ.p � xΣ k : 0 ¤ k   p : xk y .And for natural numbers m and a,
Φ.pm� a2q � rxa{xsΦ.pm� aq .

2.5 NotationsWe use the following proof notation:
P� t Why P � Q ? u
Qwhere P and Q are predi
ates and the hint is given in the middle whi
h is surroundedby 
urly bra
es. 25



Chapter 2: Mathemati
al PreliminariesWe use the following notation:x` i : R : P yfor the quanti�er ` where i is a dummy, R is the range of i, and P is the term whi
hdepends on the dummy.The Dijkstra's guarded 
ommand language is used to formalize algorithms. As an exam-ple, in the following program:{ P }do � x   y ÝÑ y :� x� yrs y   �x ÝÑ x :� x� yod{ Q }the predi
ates P and Q are pre-
ondition and post-
ondition respe
tively, and �x  
y Ñ y :� x � y and y   �x Ñ x :� x � y are non-deterministi
 guarded
ommands within a loop. Noti
e that non-deterministi
 guarded 
ommand is di�erentfrom if-statement. Given a list of non-deterministi
 guarded 
ommands, if more thanone of them is true, then one of them is non-deterministi
ally 
hosen to be exe
uted. Ifnone of them is true, the result is unde�ned.We use the symbol � to emphasize that its right-hand side is the de�nition of its left-hand side. The notation fY is for the inverse fun
tion of f . We use 
apital letters todenote obje
ts, types, algebrai
 stru
tures, and fun
tors. Lower 
ase letters are usuallyused for variables and fun
tions. Greek letters are often used to denote polynomials,morphisms, and spe
i�
 fun
tions.

26



Chapter 3
Rings of Re
ursive TypeIsomorphism Systems

Starting from the interesting isomorphism seven-trees-in-one, Fiore and Leinster gave a
ondition on single re
ursive types under whi
h the set of non-trivial polynomial typesforms a ring. In se
tion 3.2, we reprodu
e Fiore and Leinster's result by 
onstru
ting azero for the quotient set of non-trivial polynomial types. The same idea is extended tore
ursive type isomorphism systems. In se
tion 3.4, we give a su�
ient and ne
essary
ondition on a given re
ursive type isomorphism system under whi
h the set of non-trivialtypes forms a ring. The signi�
an
e of this investigation is not only that its underlyingalgebrai
 stru
ture is interesting, but also that it reveals 
onne
tions between algebrai
equation systems and re
ursive type isomorphism systems. This theory predi
ts thatisomorphisms between types 
an be de
ided by the polynomial division algorithm onmulti-variables. In se
tion 3.5, we investigate another interesting isomorphism, so-
alledtrees-in-zero.
27



Chapter 3: Rings of Re
ursive Type Isomorphism Systems3.1 Seven-Trees-In-OneLet us 
onsider the type T of binary trees :
T � leaf | node pT, T q .That is, a binary tree is a leaf or a pair of binary trees. Given 
onstru
tors leaf : 1Ñ Tand node : T � T Ñ T , by using 
oprodu
t, this type de�nition de
lares the followingfun
tion:
in � leaf � node : 1� T � T Ñ T .This fun
tion is bije
tive. Its inverse fun
tion inY : T Ñ 1� T � T 
an be de�ned as:
inY � pleaf � nodeq � inl � inr .To get rid of unne
essary details, we write:(3.1) T � 1� T � T .It is a surprise that there is an isomorphism between the type of binary trees and thetype of seven-tuples of binary trees. That is,
T � T 7 .This is known as Lawvere's Remark [Law91℄ or seven-trees-in-one [Bla95℄.In order to understand seven-trees-in-one better, let us look at its proof. An importantand useful fa
t was given by Gates in [Gat98℄. That is,Theorem 3.1.1 ([Gat98℄). Given a polynomial P having at least one 
onstant termand at least one non
onstant term, then for two polynomials Q and R, the followingare equivalent:

• QpT q � RpT q in any semiring su
h that P pT q � T ;
• QpT q � RpT q in any distributive 
ategory su
h that P pT q � T .28



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsOur setting for type isomorphisms is the free distributive 
ategory CrT s on T . Obje
tsin CrT s are generated from T , 0 (initial obje
t), and 1 (terminal obje
t) by applyingbinary produ
ts and 
oprodu
ts. Arrows in CrT s are generated from the following arrowsby applying 
omposite:
idA : AÑ A pidentityq
!A : AÑ 1 pterminalq½A : 0Ñ A pinitialq
outl : A�B Ñ A pprojectionq
outr : A�B Ñ B pprojectionq
inl : AÑ A�B pinjectionq
inr : B Ñ A�B pinjectionq
δ : A� pB � Cq Ñ A�B �A�C pdistributionq
ζ : A� 0Ñ 0 pzeroq
f � g : C Ñ A�B pproductq
h � i : A�B Ñ C pcoproductqwith
f : C Ñ A, g : C Ñ B, h : AÑ C, i : AÑ B .Let P be an obje
t in CrT s. For all obje
ts A and B in CrT s, we say A is isomorphi
to B subje
t to T � P , written as A �P B, if there is an isomorphism between A and

B in the 
ategory CrT s equipped with the axiom isomorphism T � P . That is, let inand inY be arrows between T and P , A �P B denotes that there is an isomorphismbetween A and B whi
h is generated from the above arrows and in and inY.In order to use theorem 3.1.1, we introdu
e the following semiring. Let NrT s bethe set of all polynomials in T with natural numbers as 
oe�
ients. The stru
turepNrT s, �, �, 0, 1q forms a semiring. Let �β be the least 
ongruen
e relation on NrT sgenerated from the identity T � β where β is a polynomial in NrT s � N and satis�esthat its 
onstant term is not zero. That is, the relation �β is the least relation that29



Chapter 3: Rings of Re
ursive Type Isomorphism Systemsin
ludes the pair pT, βq and is an equivalen
e relation whi
h is preserved by polynomialprodu
ts and additions.With the above de�nitions, a straightforward 
onsequen
e of theorem 3.1.1 is:Corollary 3.1.2. Given β in NrT s � N with 
onstant term nonzero,�β � �β .Spe
i�
ally, we have:
T �1�T 2 T 7 � T �1�T 2 T 7 .By using semiring properties and the identity T � 1� T 2, we have:(3.2) T � p1� T 3q �1�T 2 T ^ T � p1� T 3q �1�T 2 1� T 3whi
h follow respe
tively from
T � p1� T 3q �1�T 2 1� T � p1� T 2q�1�T 2 1� T 2�1�T 2 Tand
T � p1� T 3q �1�T 2 T � T 4�1�T 2 1� T 2 � T 4�1�T 2 1� T 2 � p1� T 2q�1�T 2 1� T 3 .Let the notation NrT s� denote the set NrT s�N. From the property (3.2), by indu
tionon the stru
ture of polynomials, we have that the polynomial 1 � T 3 is a zero of thequotient set NrT s�{�1�T 2 whi
h is the set of equivalen
e 
lasses of NrT s� under therelation �1�T 2 . That is,(3.3) x� p : p P NrT s� : p� p1� T 3q �1�T 2 p ^ p� p1� T 3q �1�T 2 1� T 3y .30



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsAs an example, the idempoten
e of 1� T 3 
an be proven as follows:p1� T 3q � p1� T 3q� t (3.2), parti
ularly, T � p1� T 3q �1�T 2 1� T 3, twi
e up1� T 3q � T 2 � p1� T 3q� t semiring u
1� T 2 � pT � p1� T 3qq� t (3.2), parti
ularly, T � p1� T 3q �1�T 2 T u
1� T 3 .By using the property (3.3), we prove seven-trees-in-one as follows:
T �1�T 2 T 7� t 
orollary 3.1.2 u
T �1�T 2 T 7� t Aiming to equalise both sides, we use (3.3) to add T 4 � p1� T 3qon the left side and T � p1� T 3q on the right side. u
T � T 4 � p1� T 3q �1�T 2 T 7 � T � p1� T 3q� t semiring and re�exivity u
true .More interesting, from the property (3.3), we have:x� p : p P NrT s� : p� T 3 � p �1�T 2 1� T 3y .That is, for all polynomials p in NrT s�, there is an additive inverse T 3 � p. Thus, thequotient set NrT s�{�1�T 2 forms a ring. The zero and unit of this ring are respe
tivelyequivalen
e 
lasses of 1�T 3 and 1�p1�T 3q under the least 
ongruen
e relation �1�T 2 .
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Chapter 3: Rings of Re
ursive Type Isomorphism Systems3.2 Re
ursive Type IsomorphismsGenerally, let us 
onsider the following re
ursive type isomorphism:(3.4) T � 1� αwhere α is a polynomial in NrT s with degree at least 2. Following Fiore and Leinster'slead [FL04, Fio04, FL05℄, in this se
tion, let us show that the quotient set NrT s�{�1�αforms a ring. The idea is to 
onstru
t a zero Λ1�α for NrT s�{�1�α . And Λ1�αis so 
onstru
ted that it is isomorphi
 to 1 � η1�α for a polynomial η1�α in NrT s�.Sin
e η1�α is e�e
tively an additive inverse of the unit of NrT s�{�1�α, the quotientset NrT s�{�1�α is a ring.Lemma 3.2.1. There is a polynomial γ in NrT s su
h that
α �1�α 1� 2α � α2 � γ .Proof. Noti
e that α has degree at least 2. Let us rewrite α as T k � r for k at least

2 and r in NrT s .
T k � r�1�α t (3.4) up1� αqk � r�1�α t 2 ¤ k, by the Binomial Theorem,p1� αqk � 1� 2α � α2 � δ, for some δ in NrT s. u
1� 2α� α2 � δ � r�1�α t renaming, γ :� δ � r u
1� 2α� α2 � γ .

De�ne(3.5) Λ1�α � 1� α� α2 � γ . 32



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsWe get a 
ru
ial lemma.Lemma 3.2.2. α� Λ1�α �1�α α .Proof. It dire
tly follows from the de�nition of Λ1�α and lemma 3.2.1.By using this lemma, it is easy to prove the following properties:(3.6) T � Λ1�α �1�α T ^ T � Λ1�α �1�α Λ1�α .That is,
T � Λ1�α�1�α t (3.4) up1� αq � Λ1�α�1�α t semiring and lemma 3.2.2 u
1� α�1�α t (3.4) u
Tand
T � Λ1�α�1�α t (3.4) and semiring u
Λ1�α � α� Λ1�α�1�α t de�nition (3.5) of Λ1�α u
1� α� α2 � γ � α� Λ1�α�1�α t semiring u
1� α� γ � α� pα� Λ1�αq�1�α t lemma 3.2.2 and semiring u
1� α� α2 � γ 33



Chapter 3: Rings of Re
ursive Type Isomorphism Systems�1�α t de�nition (3.5) of Λ1�α u
Λ1�α .Noti
e that the quotient set NrT s�{�1�α inherits all properties from the semiring NrT sex
ept for the unit and zero. Using the property (3.6), by indu
tion on the stru
ture ofpolynomials, we have that Λ1�α is a zero of NrT s�{�1�α. That is,x� p : p P NrT s� : p� Λ1�α �1�α p ^ p� Λ1�α �1�α Λ1�αy .And 1�Λ1�α is a unit of NrT s�{�1�α. A straightforward 
onsequen
e is that NrT s�{�1�αis a semiring. Re
alling the de�nition (3.5) of Λ1�α , let us de�ne

η1�α � α� α2 � γ .That is, 1 � η1�α �1�α Λ1�α. Sin
e Λ1�α is a zero of NrT s�{�1�α , it is easy to seethat x� p : p P NrT s� : p� η1�α � p �1�α Λ1�αy .It follows thatTheorem 3.2.3. Given the identity T � 1 � α with α in NrT s having degree atleast 2, the quotient semiring NrT s�{�1�α forms a ring. The inverse of the unit is theequivalen
e 
lass of η1�α under the least 
ongruen
e relation �1�α.Return to the identity T � 1 � T 2. Re
all that 1 � T 3 and T 3 play the roles of zeroand negative unit respe
tively in NrT s�{�1�T 2 . We 
an use polynomials 1 � T 3 � i( i ¥ 0 ) and T 3 � p�iq ( i   0 ) in NrT s�{�1�T 2 to represent integers i. Formally, let
1� T 3 and 2� T 3 be equivalen
e 
lasses of 1� T 3 and 2� T 3 under the 
ongruen
erelation �1�T 2 respe
tively. We have the following ring monomorphism from the ring
Z to the ring NrT s�{�1�T 2 :

Θ : pZ, �, �, 0, 1q ãÑ pNrT s�{�1�T 2 , �, �, 1� T 3, 2� T 3qwhi
h is de�ned as: for all integers i in Z,
Θ . i � $&% 1� T 3 � i, i ¥ 0 ;

T 3 � p�iq, i   0 . 34



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsMore interesting, we 
an spe
ify a monomorphism from a polynomial quotient ring tothe ring NrT s�{�1�T 2 . Spe
i�
ally, let �x�p1�x2q be the equivalen
e relation de�nedby the prin
ipal ideal Ix�p1�x2q whi
h is generated from the polynomial x � p1 � x2q,that is,
Ix�p1�x2q � t p� px� p1� x2qq | p P Zrxs u .We have that the quotient set Zrxs{�x�p1�x2q forms a polynomial quotient ring. Thekernel of this quotient ring is the prin
ipal ideal Ix�p1�x2q. By solving the equation:
x� p1� x2q � 0 ,we have that x � cos π

3
� sin π

3
i. Further, the above quotient ring 
an be 
onsidered asthe ring extension:

Zrcos π
3
� sin

π

3
isof 
omplex numbers cos π

3
� sin π

3
i.Now, elements in the polynomial quotient ring Zrxs{�x�p1�x2q (or the ring extension

Zrcos π
3
� sin π

3
is ) 
an be represented by elements in the ring NrT s�{�1�T 2 by thefollowing ring isomorphism:

Θ : pZrxs{�x�p1�x2q, �, �, x� p1� x2q, 1� x� p1� x2qqØ pNrT s�{�1�T 2 , �, �, 1� T 3, 2� T 3qwhi
h is de�ned as: for all polynomials p and q with natural numbers as 
oe�
ients,
Θ . pp� qq � rT {xs p1� x3 � p� x3 � qq .From the de�nition of �β, we have that for all polynomials p and q in NrT s�,
p �β q ñ pβ � T q z pp� qq .By theorem 2.1.1, Θ is an isomorphism. Hen
e, the range of Θ has the same alge-brai
 properties as the polynomial quotient ring Zrxs{�x�p1�x2q or the ring extension

Zrcos π
3
� sin π

3
is with respe
t to de�ned operators and equalities.35



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsFrom this property, for instan
e, we have:px� p1� x2qq z px6 � 1q� t de�nition of �x�p1�x2q u
x6 �x�p1�x2q 1� t ring isomorphism u
Θ . x6 �1�T 2 Θ . 1� t de�nition of Θ u
1� T 3 � T 6 �1�T 2 1� T 3 � 1� t 1� T 3 is a zero in NrT s�{�1�T 2 . u
T 6 �1�T 2 2� T 3� t 
orollary 3.1.2 u
T 6 �1�T 2 2� T 3 ,and px� p1� x2qq z px7 � xq� t de�nition of �x�p1�x2q u
x7 �x�p1�x2q x� t ring isomorphism u
Θ . x7 �1�T 2 Θ . x� t de�nition of Θ u
1� T 3 � T 7 �1�T 2 1� T 3 � T� t 1� T 3 is a zero in NrT s�{�1�T 2 . u
T 7 �1�T 2 T� t 
orollary 3.1.2 u
T 7 �1�T 2 T .Generally, given an isomorphism T � 1 � α with the degree of α at least 2, bytheorems 3.2.3 and 2.1.1 and the de�nition of �1�α, we 
an de�ne the following ring36



Chapter 3: Rings of Re
ursive Type Isomorphism Systemsisomorphism:
Θ : pZrT s{�T�p1�αq, �, �, T � p1� αq, 1� T � p1� αqqØ pNrT s�{�1�α, �, �, Λ1�α, η1�αq .Combining with 
orollary 3.1.2, isomorphisms between non-trivial obje
ts in CrT s whi
his equipped with the axiom isomorphism T � 1�α 
an be de
ided by polynomial divisionalgorithm on Zrxs. That is, for all non-trivial obje
ts A and B in CrT s,
A �1�α B � pT � p1� αqq z pA�Bq .This 
oin
ides with Fiore and Leinster's result [Fio04, FL05℄.

3.3 Re
ursive Type Isomorphisms on Two TypesNoti
e that the 
onstru
tion of the zero Λ1�α is a 
ru
ial step to the proof that
NrT s�{�1�α is a ring. Can we 
onstru
t a zero for the quotient set of multi-variable poly-nomials under the least 
ongruen
e relation generated from identities on two variables?Spe
i�
ally, we use the notation NrS, T s for the set of all multi-variable polynomials in
S and T with natural numbers as 
oe�
ients. Let α and β be polynomials in NrS, T ssatisfying that α has a term Tm and β has a term Sn with m and n at least 2.Let the symbol �G denote the least 
ongruen
e relation generated from the followingidentities:

G � $&% S � 1� α ;

T � 1� β .That is, the relation �G is the least 
ongruen
e relation that in
ludes pairs pS, 1� αqand pT, 1�βq , and is preserved by polynomial produ
ts and additions. Let the notation
NrS, T s� denote the set NrS, T s �N. We are interested in the stru
ture of the quotientset NrS, T s�{�G .Analogous with the 
onstru
tion of Λ1�α , we have:37



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsLemma 3.3.1. There is a polynomial γ in NrS, T s su
h that
α �G 1� 2α� α2 � β � β2 � γ .Proof.

α�G t α has a term Tm with m at least 2.Rewrite α as Tm � p with p in NrS, T s . u
Tm � p�G t T � 1� β up1� βqm � p�G t 2 ¤ m, by the Binomial Theorem,p1� βqm � 1� 2β � β2 � q for some q in NrS, T s . u
1� 2β � β2 � p� q�G t β has a term Sn with n at least 2.Rewrite β as Sn � r with r in NrS, T s . u
1� β � β2 � Sn � p� q � r�G t S � 1� α u
1� β � β2 � p1� αqn � p� q � r�G t 2 ¤ n, by the Binomial Theorem,p1� αqn � 2α� α2 � s for some s in NrS, T s . u
1� 2α� α2 � β � β2 � p� q � r � s�G t renaming, γ :� p� q � r � s u
1� 2α� α2 � β � β2 � γ .

De�ne(3.7) ΛG � 1� α� α2 � β � β2 � γ .38



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsFrom lemma 3.3.1, we have that(3.8) α� ΛG �G α .Symmetri
ally, we 
an 
onstru
t
Λ1G � 1� α� α2 � β � β2 � γ1 .with γ1 in NrS, T s satisfying that(3.9) β � Λ1G �G β .Noti
e that ΛG �G Λ1G. That is,

ΛG�G t ΛG has a term β and (3.9). u
ΛG � Λ1G�G t Λ1G has a term α and (3.8). u
Λ1G .It follows thatLemma 3.3.2. α� ΛG �G α ^ β � ΛG �G β .By using this lemma and the de�nition (3.7) of ΛG, we have:

S�ΛG �G S ^ T �ΛG �G T ^ S�ΛG �G ΛG ^ T �ΛG �G ΛG .Let us prove S � ΛG �G S and S � ΛG �G ΛG as follows:
S � ΛG�G t S � 1� α and semiring u
1� pα� ΛGq�G t lemma 3.3.2 u
1� α�G t S � 1� α u
S 39



Chapter 3: Rings of Re
ursive Type Isomorphism Systemsand
S � ΛG�G t S � 1� α and semiring u
ΛG � α� ΛG�G t de�nition (3.7) of ΛG u
1� α� α2 � β � β2 � γ � α� ΛG�G t semiring u
1� α� β � β2 � γ � α� pα� ΛGq�G t lemma 3.3.2 and semiring u
1� α� α2 � β � β2 � γ�G t de�nition (3.7) of ΛG u
ΛG .Similar arguments apply to the proofs of T � ΛG �G T and T � ΛG �G ΛG .Theorem 3.3.3. Let α and β be polynomials in NrS, T s. Given the following identities:

G � $&% S � 1� α ;

T � 1� β .whi
h satis�es that α has a term Tm and β has a term Sn with m and n at least 2,the quotient set NrS, T s�{�G forms a ring. The inverse of the unit is the equivalen
e
lass of ηG under the 
ongruen
e relation �G where ηG is de�ned as:
ηG � α� α2 � β � β2 � γ .That is, ΛG �G 1� ηG. Moreover,x� p : p P NrS, T s� : p�ΛG �G p ^ p�ΛG �G ΛG ^ p� ηG � p �G ΛGy .Generally, 
onsidering the following identities:
G � $&% S � pS ;

T � pT , 40



Chapter 3: Rings of Re
ursive Type Isomorphism Systemswith pS and pT in NrS, T s�. (Note that if pS or pT has degree 0, then G degeneratesto an identity on one variable or 
onstants.) We are interested in the problem of underwhat 
ondition the quotient set NrS, T s�{�G forms a ring sin
e the 
ondition on Ggiven in theorem 3.3.3 seems too strong. For example, 
onsider the following identities:
G � $&% S � T 2 ;

T � 1� S .Noti
e that
S �G T 2�G p1� Sq2�G 1� 2S � S2�G 1� S � S2 � T 2and
T �G 1� S�G 1� T 2�G 1� p1� Sq2�G 1� 1� 2S � S2 .Taking α and β to be S � S2 � T 2 and 1� 2S � S2 respe
tively, the polynomials αand β satisfy that α has a term Tm and β has a term Sn with m and n at least 2.From theorem 3.3.3, we have that the quotient set NrS, T s�{�G forms a ring under theleast 
ongruen
e relation �G generated from G.We are going to relax the 
ondition in theorem 3.3.3. For our purposes, let us de�ne thebinary relation �G on NrS, T s as: for all p and q in NrS, T s,
p �G q � xD r : r P NrS, T s : p �G q � ry .We say that p generates q with respe
t to G. From this de�nition and properties ofthe relation �G, we have that the relation �G is re�exive, transitive, and 
ompatible41



Chapter 3: Rings of Re
ursive Type Isomorphism Systemswith produ
ts and additions. Spe
i�
ally, for all p, q, r, and s in NrS, T s,
p �G p ;

p �G q ^ q �G r ñ p �G r ;

p �G q ^ r �G s ñ p� r �G q � s ^ p� r �G q � s .Motivated by our investigation into the system G in the above example, the 
onditiongiven in theorem 3.3.3 
an be generalized to(3.10) S �G 1 ^ T �G 1 ^ xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Sny .Further, we want to show that the 
ondition (3.10) is equivalent to the 
ondition that
S and T both generate the term 1 , S and T generate ea
h other, and at least one of
pS and pT has degree at least 2. Spe
i�
ally, let us use deg for the degree of a givenpolynomial. For instan
e, deg . p1� S2T q � 3. This 
ondition is formalized as:(3.11) pS �G 1 ^ T �G 1q ^ pS �G T ^ T �G Sq ^ p2 ¤ deg . pS _ 2 ¤ deg . pT q .That is, our goal is to show that(3.10) � (3.11) .Noti
e thatLemma 3.3.4.pS �G T ^ T �G Sq ^ p2 ¤ deg . pS _ 2 ¤ deg . pT qñ xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Sny .Proof. Suppose that 2 ¤ deg . pS . Sin
e S � pS , by the de�nition of �G , we havexD a, b : 2 ¤ a� b ^ 0 ¤ a, b : S �G T aSby .

42



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsFurther,
S �G T ^ T �G S ^ S �G T aSbñ t �G is transitive and 
ompatible with produ
ts. Spe
i�
ally,

T �G S ñ T a �G Sa ñ T aSb �G Sa�b . u
S �G T ^ T �G S ^ S �G Sa�bñ t �G is transitive and 
ompatible with produ
ts. Spe
i�
ally,

S �G T ñ Sa�b �G T a�b . u
T �G S ^ S �G Sa�b ^ Sa�b �G T a�bñ t transitivity and weakening u
S �G T a�b ^ T �G Sa�b .By symmetry, we have that

S �G T ^ T �G S ^ T �G T aSb ñ S �G T a�b ^ T �G Sa�b .Re
all that 2 ¤ a� b . We prove the lemma.From lemma 3.3.4,(3.10) ð (3.11) .Noti
e thatpS �G 1 ^ T �G 1q ^ xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Snyñ t �G is transitive and 
ompatible with produ
ts. Spe
i�
ally,
T �G 1 ^ 2 ¤ m ñ Tm�1 �G 1 ñ Tm �G T ;
S �G 1 ^ 2 ¤ n ñ Sn�1 �G 1 ñ Sn �G S . upS �G 1 ^ T �G 1q ^ pS �G T ^ T �G Sq .Sin
e degrees of pS and pT are at least 1, pdeg . pS ¥ 2 _ deg . pT ¥ 2q ñ  xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Sny .43



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsIn words, if degrees of pS and pT are 1, then it is impossible to generate S �G Tmor T �G Sn for m and n at least 2. Combining the above dis
ussions, we have that(3.10) ñ (3.11) .Therefore, (3.10) is equivalent to (3.11).The advantage of (3.11) over (3.10) is that the fun
tion deg is easier to 
al
ulate thanthe relation �G. How does one derive an algorithm to de
ide whether the 
onjun
tionpS �G 1 ^ T �G 1q ^ pS �G T ^ T �G Sq is true or not? Before we studythis problem, let us generalize the 
ondition (3.11) on identities on two variables to the
ondition on identity systems.
3.4 Re
ursive Type Isomorphism SystemsGiven a �nite set T of variables, let us 
onsider the least 
ongruen
e relation generatedfrom the following system S of identities:

S � xT : T P T ^ pT P NrTs� : T � pT ywhere we use the notation NrTs for the set of all multi-variable polynomials in variablesfrom T with natural numbers as 
oe�
ients. By generalizing the 
ondition (3.11) inse
tion 3.3, we have the 
ondition that for all types T in T , T generates the term 1,variables in T generate ea
h other, and at least one of pT has degree at least 2, writtenas:(3.12) x�T P T : : T �S 1y ^ x�T, R P T : : T �S Ry ^ x DT P T : : 2 ¤ deg . pT y .Generalizing the proof of that (3.10) is equivalent to (3.11), we have that the 
ondition(3.12) is equivalent to(3.13) x�T P T : : T �S 1y ^ x�T, R P T : : xDm : 2 ¤ m : T �S Rmyy .44



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsIt follows that for all variables T in T,
T �S 1� xΣ R, m : R P T ^ 2 ¤ m : Rmy .By generalizing the 
onstru
tion of ΛG in lemma 3.3.1 and the properties of ΛG inlemma 3.3.2, we 
an 
onstru
t a zero ΛS for the quotient set NrTs�{�S. The polynomial

ΛS is so 
onstru
ted that it is isomorphi
 to 1 � ηS for a polynomial ηS in NrTs�.Further,x� p : p P NrTs� : p� ΛS �S p ^ p� ΛS �S ΛS ^ p� ηS � p �S ΛSy .Therefore, under the 
ondition (3.12), the quotient set NrTs�{�S forms a ring.A
tually, the 
ondition (3.12) is also a ne
essary 
ondition as for that NrTs�{�S formsa ring with respe
t to polynomial addition and produ
t. Suppose that NrTs�{�S is aring. We 
an �nd polynomials ΛS and ηS in NrTs� whi
h play the roles of zero andnegative unit of NrTs�{�S respe
tively. Be
ause for all T in T,
T �S T � ΛS �S T � 1� ηS ,by the de�nition of �S, we have:x �T P T : : T �S 1 y .Noti
e that the stru
ture pNrT s�{�S, �, ΛS, ηSq is an additive group. We have thatfor all T and R in T,
T �S R� ηS �R� T ^ R �S T � ηS � T �R .By the de�nition of �S, we have:x�T, R P T : : T �S Ry .If the degree of pT is 1 for all pT in S, then for all p and q in NrTs�,
p �S q ñ deg . p � deg . q . 45
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ursive Type Isomorphism SystemsHowever, sin
e for all T in T,
ΛS � T �S ΛS ,we have:
deg . pΛS � T q � deg .ΛS � 1 � deg .ΛS .By 
ontradi
tion,x DT P T : : 2 ¤ deg . pT y .Combining the above dis
ussions,Theorem 3.4.1. Given a system
S � xT : T P T ^ pT P NrTs� : T � pT yon the �nite set T of variables, the quotient set NrTs�{�S forms a ring if and only ifx�T P T : : T �S 1y ^ x�T, R P T : : T �S Ry ^ x DT P T : : 2 ¤ deg . pT y .Now, we are going to derive an algorithm to de
ide the 
ondition (3.12). In order to getbetter understanding of the 
ondition (3.12), let us 
onsider the following example:
H � $'''&'''% X � Y Z ;

Y � 1� Z ;

Z � X � Y .We use t ¤ p to denote that the monomial t is a term of the polynomial p. For instan
e,
1 ¤ 2� 1� 2� Y Z and Y Z ¤ 2� 1� 2� Y Z. Let symb . t be the set of all 
onstantsand indeterminates appearing in the monomial t. For example, symb . p1q � t1u and
symb . pY Zq � tY, Zu. We have the following property: for all variables T ,(3.14) T �S 1 � xD t : t ¤ pT : x� s : s P symb . t : s �S 1yy .That is, T generates 1 if and only if there is a monomial t in pT satisfying that allvariables appearing in t generate 1. 46



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsBy using this property, we have that
Y �H 1� t (3.14) and Y � 1� Z u
1 �H 1 _ Z �H 1� t �H is re�exive u
true .Further, let us prove X �H 1 and Z �H 1 as following:
X �H 1� t (3.14) and X � Y Z u
Y �H 1 ^ Z �H 1� t Y �H 1 (from the above proof) u
Z �H 1� t (3.14) and Z � X � Y u
X �H 1 _ Y �H 1� t Y �H 1 (from the above proof) u
true .Motivated by the property (3.14), let us de�ne the algorithm E .S as:Algorithm 3.4.2.

A :� Hdo
B :� Afor ea
h type T in T�Afor ea
h monomial t ¤ pTif symb . t � A _ symb . t � t1u

A :� AY tT u; breakwhile A ! � B . 47



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsWe have:(3.15) x�T P T : : T �S 1y � E .S � T .Further, let G .S be the graph pV, Eq whi
h is de�ned as:
V � T ^ pT, Rq P E � xD t : t ¤ pT : R P symb . ty .We have:Lemma 3.4.3. That all variables in T generate 1 implies thatx�T, R P T : : T �S Ry � G .S is strongly 
onne
ted .Proof. For all variables T and R in T, we have that
T �S R� t T � pT uxD t : t ¤ pT : t �S Ry� t the stru
ture of monomials uxD t : t ¤ pT : xDS, p, q : S P symb . t ^ p, q P NrTs : pSq �S Ryy� t x�T P T : : T �S 1y ñ p �S 1 ^ q �S 1 uxD t : t ¤ pT : xD S : S P symb . t : S �S Ryy� t the de�nition of G .S upT, Sq P E ^ S �S R .That is, T �S R is equivalent to that there is a path from T to R in the graph G .S.By the de�nition of strongly 
onne
ted dire
ted graphs, we prove the lemma.Combining (3.15) and lemma 3.4.3, the 
ondition (3.12) is equivalent to(3.16) E .S � T ^ G .S is strongly 
onne
ted ^ x DT P T : : 2 ¤ deg . pT y .48



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsReturning to our example system H. It is easy to show that the graph
G .H � ptX, Y, Zu, tpX, Y q, pX, Zq, pY, Zq, pZ, Xq, pZ, Y quqis strongly 
onne
ted. Noti
e that E .S � tX, Y, Zu and deg . pY Zq � 2. That is, Hsatis�es the 
ondition (3.16). Let us show that the quotient set NrX, Y, Zs�{�H is aring through 
onstru
ting the zero ΛH . We have that
Z �H X � Y�H Y Z � Y�H p1� ZqZ � Y�H Z � Z2 � Y�H Z � pX � Y q2 � Y�H Z � pX � Y q2 � 1� Z�H 1� 2Z � 2XY �X2 � Y 2 .By using this derived identity, we get
X �H Y Z�H p1� ZqZ�H Z � Z2�H 1� 2Z � 2XY �X2 � Y 2 � Z2and
Y �H 1� Z�H 1� 1� 2Z � 2XY �X2 � Y 2�H 1� 1� 2Z � 2XY �X2 � p1� Zq2�H 1� 2� 4Z � 2XY �X2 � Z2 .Taking α, β , and γ to be polynomials 2Z�2XY �X2�Y 2�Z2, 2�4Z�2XY �X2�Z2,and 2Z � 2XY �X2 � Y 2 respe
tively. That is, the derived identities$'''&'''% X �H 1� α ;

Y �H 1� β ;

Z �H 1� γ . 49



Chapter 3: Rings of Re
ursive Type Isomorphism Systemssatisfy that α, β , and γ have terms Y 2 and Z2 , X2 and Z2 , and X2 and Y 2respe
tively. By generalizing lemmas 3.3.1 and 3.3.2, we have that there is a polynomial
p in NrX,Y,Zs satisfying that

ΛH � 1� α� β � γ � α2 � β2 � γ2 � pis a zero of the quotient set NrX, Y, Zs�{�H . Further, the quotient set NrX, Y, Zs�{�Hforms a ring. The inverse of the unit is the equivalen
e 
lass of
ηH � α� β � γ � α2 � β2 � γ2 � punder the least 
ongruen
e relation �H .In summary, we derive an algorithm to de
ide the 
ondition (3.12). That is,Corollary 3.4.4. Given a system S of identities on the �nite set T of variables, thequotient set NrTs�{�S forms a ring if and only if
E .S � T ^ G .S is strongly 
onne
ted ^ x DT P T : : 2 ¤ deg . pT y .We now suppose that S satis�es the above 
ondition in 
orollary 3.4.4. Let IS and�IS be respe
tively an ideal in ZrTs generated from S and the equivalen
e relationde�ned by IS. Let �S be the least 
ongruen
e relation generated from S. Noti
e thatfor all p and q in NrTs�:
p �S q ñ p� q P IS .By theorem 2.1.1, we 
an de�ne the following ring isomorphism:
Θ : pZrTs{�IS , �, �, IS, 1� ISq Ø pNrTs�{�S, �, �, ΛS, ΛS � 1q .That is, for all polynomials p and q in NrTs,
Θ . pp� qq � ΛS � p� ηS � q .Further, polynomial division algorithm on ZrTs 
an be used to de
ide identities in

NrTs�{�S. 50



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsWe would like to use polynomial division algorithm to de
ide isomorphisms �S in thefree distributive 
ategory CrTs on T whi
h is equipped with axiom isomorphisms:
S � xT : T P T ^ pT P CrTs : T � pT y .Noti
e that for all obje
ts A, B, and C in CrTs, the following semiring properties arederivable from arrows in CrTs.
A� pB � Cq � pA�Bq � C (asso
iativity of 
oprodu
t)
A�B � B �A (symmetry of 
oprodu
t)
A� 0 � A � 0�A (unit of 
oprodu
t)
A� pB � Cq � pA�Bq � C (asso
iativity of produ
t)
A�B � B �A (symmetry of produ
t)
A� 1 � A � 1�A (unit of produ
t)
A� 0 � 0 � 0�A (zero of produ
t)
A� pB � Cq � A�B �A� C (distribution)A straightforward 
onsequen
e of these properties is:Corollary 3.4.5 (Soundness). �S � �S .Combining with the above ring isomorphism Θ, we have that for all polynomials p and

q in NrTs�,
p� q P IS ñ p �S qwhen S satis�es the 
ondition in 
orollary 3.4.4. That is, polynomial division algorithmon ZrTs 
an be used to de
ide isomorphisms �S.However, we don't know whether the 
ompleteness:�S � �Sis true or not when S is not a single isomorphism T � P pT q su
h that P satis�es the
ondition in theorem 3.1.1. Its proof 
an be a generalization of Gates' result in [Gat98℄.Until now, we don't know how to prove it.51



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsOn the other hand, when S doesn't satisfy the 
ondition in 
orollary 3.4.4, whether�S 
an be de
ided is not 
lear. In [Fio04℄, Fiore dis
ussed linear 
ases with respe
t tosingle re
ursive types. As for re
ursive type systems, more investigations are needed.
3.5 Trees-In-ZeroReturn to the type T of binary trees, i.e., the least �xed point µX . p1 �X �Xq. Let
List T be the type of all �nite lists of T , i.e., the least �xed point µX . p1 � T � Xq.In this se
tion, we are going to show that T is isomorphi
 to List T and List T isisomorphi
 to 1�T 3. Here, isomorphisms denote that there are inverse fun
tions whi
hare generated from arrows in the free distributive 
ategory CrT s on T equipped withthe axiom isomorphism T � 1�T 2 by applying fun
tional 
ompositions and primitivere
ursions (on T or on List T ). We write:

T �ind
1�T 2 List T �ind

1�T 2 1� T 3 .Sin
e 1� T 3 is a zero of NrT s�{�1�T 2 , we refer to this isomorphism as trees-in-zero.A 
ru
ial property used in our proof of trees-in-zero is:(3.17) pList pT 6qq � p1� T 3q �ind
1�T 2 1� T 3 .For 
larity, we give its proof in se
tion 3.5.1. De�ne Σn as:

Σn � xΣ i : 0 ¤ i   n : T i y .Another useful property is:
List T �ind

1�T 2 Σn � pList pT nqqwhi
h follows from:
List T�ind

1�T 2 t de�nition of List T u
µX . p1 � T �Xq�ind

1�T 2 t generalization of square rule (spe
i�
ally, µf � µpfnq) u52
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ursive Type Isomorphism Systems
µX . pΣn � T n �Xq�ind

1�T 2 t f :� pΣn�q, g :� p1�q � pT n�q, h :� pΣn�q � pT n�q,Sin
e f is a lower adjoint and f � g � h � f ,we have that f � µg � µh. u
Σn � µX . p1� T n �Xq�ind

1�T 2 t de�nition of List pT nq u
Σn � pList pT nqq .Further, sin
e
Σn�ind

1�T 2 t de�nition of Σn u
1� T � T 2 � T 3 � T 4 � T 5�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T � T 2 � T 4 � T 5�ind

1�T 2 t semiring u
T � T 4 � p1� T 3q � T 2�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T � T 4 ,we get

List T �ind
1�T 2 pList pT 6qq � pT � T 4q .Then, by using the property (3.17), we have:pList pT 6qq � pT � T 4q�ind

1�T 2 t semiring upList pT 6qq � p1� T 3q � T�ind
1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . upList pT 6qq � p1� T 3q 53
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ursive Type Isomorphism Systems�ind
1�T 2 t (3.17) u

1� T 3and pList pT 6qq � pT � T 4q�ind
1�T 2 t semiring and List T �ind

1�T 2 1� T � List T u
T � pList pT 6qq � T 7 � pList pT 6qq � T 4�ind

1�T 2 t semiring u
T � pList pT 6qq � p1� T 3q � T 4�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T � pList pT 6qq � p1� T 3q�ind

1�T 2 t (3.17) u
T � p1� T 3q�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T .Combining the above results, we get a proof of trees-in-zero.3.5.1 CatamorphismsNow, let us prove the property (3.17) by expli
itly 
onstru
ting mutually inverse fun
-tions L fT 6 M and L fT 6 MY whi
h are shown in the following diagram:pList pT 6qq � p1� T 3q inY //

L f
T6 M

��

p1� T 3q � T 6 � ppList pT 6qq � p1� T 3qq
in

oo

id
1�T3�id

T6�L f
T6 M

��

1� T 3

fY
T6 //

L f
T6 MY OO

p1� T 3q � T 6 � p1� T 3q
f
T6

oo

id
1�T3�id

T6�L f
T6 MY OO

54
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ursive Type Isomorphism SystemsHere, fun
tions in, inY, fT 6 , and fY
T 6 are so 
onstru
ted that they satisfy:

in � inY � id � inY � in ;

fT 6 � fYT 6 � id � fYT 6 � fT 6 .By using these fun
tions, we 
an de�ne L fT 6 M and L fT 6 MY respe
tively as the following
atamorphism and its inverse:
L fT 6 M � fT 6 � pid1�T 3 � idT 6 � L fT 6 Mq � inY ;

L fT 6 MY � in � pid1�T 3 � idT 6 � L fT 6 MYq � fYT 6 .Sin
e L fT 6 M and L fT 6 MY are re
ursively de�ned, we need to show that they all termi-nate. The terminations of L fT 6 M and L fT 6 MY are de
ided by the de�nitions of inY and
fY
T 6 respe
tively.Spe
i�
ally, from the de�nition of the star operator, by expli
itly de�ning 
onstru
tors

one : 1� T 3 Ñ pList pT 6qq � p1� T 3qand
pcons : T 6 � ppList pT 6qq � p1� T 3qq Ñ pList pT 6qq � p1� T 3q ,fun
tions in and inY 
an be de�ned as:
in � one � pcons ;

inY � pone � pconsq � inl � inr .They satisfy:
in � inY � id � inY � in .De�ne the bound fun
tion
length : pList pT 6qq � p1� T 3q Ñ Nas:
length pone aq � zero

length ppcons pp, psqq � succ plength psq .55



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsBe
ause the fun
tion inY de
reases the length of its input, we have that the length ofthe input of L fT 6 M is de
reasing after ea
h unfolding. Further, L fT 6 M terminates whenthe length of its input is zero.Sin
e 1� T 3 is a zero of NrT s�{�1�T 2 , we have that
1� T 3 �1�T 2 p1� T 3q � T 6 � p1� T 3q .Fun
tions fT 6 and fY

T 6 
an be 
onstru
ted from one of proofs of this isomorphism. Forinstan
e, suppose that we have the following fun
tions:
tn_prod : pn : N�q Ñ T n � p1� T 3q Ñ 1� T 3 ;

tn_prodY : pn : N�q Ñ 1� T 3 Ñ T n � p1� T 3q ;
idem_n : pn : N�q Ñ n� p1� T 3q Ñ 1� T 3 ;

idem_nY : pn : N�q Ñ 1� T 3 Ñ n� p1� T 3q .And they satisfy that for all n in N�,ptn_prod nq � ptn_prodY nq � id � ptn_prodY nq � ptn_prod nq ;pidem_n nq � pidem_nY nq � id � pidem_nY nq � pidem_n nq .From the following proof:p1� T 3q � T 6 � p1� T 3q�1�T 2 t pid1�T 3 � ptn_prod 6qq and pid1�T 3 � ptn_prodY 6qq up1� T 3q � p1� T 3q�1�T 2 t pidem_n 2q and pidem_nY 2q u
1� T 3 ,fun
tions fT 6 and fY

T 6 
an be 
onstru
ted as:
fT 6 � pidem_n 2q � pid1�T 3 � ptn_prod 6qq ;
fYT 6 � pid1�T 3 � ptn_prodY 6qq � pidem_nY 2q .Fun
tions appearing in hints of the above proof work as witnesses. Details about themare given in the following se
tions. 56
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ursive Type Isomorphism Systems3.5.2 Produ
t-Zero Fun
tionsFirstly, from the following proof:
T � p1� T 3q�1�T 2 t semiring u
T � T 4�1�T 2 t T � 1� T 2 up1� T 2q � T 4�1�T 2 t semiring u
1� T 2 � p1� T 2q�1�T 2 t T � 1� T 2 u
1� T 3 ,we 
an 
onstru
t the fun
tion

t_prod : T � p1� T 3q Ñ 1� T 3and its inverse
t_prodY : 1� T 3 Ñ T � p1� T 3qas
t_prod pleaf, inl 
q � inl 

t_prod pnode pa, bq, inl 
q � inr pa, b, leaf q
t_prod pa, inr pb, c, dqq � inr pa, b, node pc, dqqand
t_prodY pinl 
q � pleaf, inl 
q
t_prodY pinr pa, b, leaf qq � pnode pa, bq, inl 
q
t_prodY pinr pa, b, node pc, dqqq � pa, inr pb, c, dqq57



Chapter 3: Rings of Re
ursive Type Isomorphism Systemsrespe
tively. Noti
e that these fun
tions are e�e
tively 
omposite fun
tions whi
h aregenerated from the identity fun
tion, fun
tions 
orresponding to semiring properties,and given fun
tions behind the isomorphism T � 1 � T 2 by applying �nite fun
tion
ompositions, produ
ts, and 
oprodu
ts. For example, let
s1 : T � p1� T 3q Ñ T � T 4

s1Y : T � T 4 Ñ T � p1� T 3qand
s2 : p1� T 2q � T 4 Ñ 1� T 2 � p1� T 2q
s2Y : 1� T 2 � p1� T 2q Ñ p1� T 2q � T 4be respe
tively fun
tions 
orresponding to steps in the above proof whi
h have �semiring�as hints. Let
f : 1� T 2 Ñ Tand
fY : T Ñ 1� T 2be given fun
tions behind the isomorphism T � 1 � T 2. Fun
tions t_prod and

t_prodY 
an be de�ned as the following fun
tion 
ompositions:
t_prod � pid1 � idT 2 � f q � s2 � pfY � idT 4q � s1 ;

t_prodY � s1Y � pf � idT 4q � s2Y � pid1 � idT 2 � fYq .Name the 
onstru
tors of T after
leaf � f � inland
node � f � inrrespe
tively. Then, simplify the above de�nitions. The resulting fun
tions are as sameas we have shown before. For the 
onvenien
e of the termination proof of L fT 6 MY, weprefer to use their expli
it de�nitions. 58



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsFurther, by using t_prod and t_prodY as bases, we 
an re
ursively de�ne fun
tions
tn_prod : pn : N�q Ñ T n � p1� T 3q Ñ 1� T 3and
tn_prodY : pn : N�q Ñ 1� T 3 Ñ T n � p1� T 3qas
tn_prod psucc zeroq � t_prod

tn_prod psucc nq � t_prod � pidT � ptn_prod nqqand
tn_prodY psucc zeroq � t_prodY
tn_prodY psucc nq � pidTn � t_prodYq � ptn_prodY nqrespe
tively. By mathemati
al indu
tion on n in the above de�nitions, we have that forall n in N�,ptn_prod nq � ptn_prodY nq � id � ptn_prodY nq � ptn_prod nq .3.5.3 Idempoten
e Fun
tionsSimilarly, from the following proof:p1� T 3q � p1� T 3q�1�T 2 t semiring and T � 1� T 2 up1� T 3q � p1� T 2 � T 4q�1�T 2 t semiring and T � 1� T 2 u

1� T 3 � T � T 4�1�T 2 t semiring and T � 1� T 2 u
1� T 2 � T 4�1�T 2 t semiring and T � 1� T 2 u
1� T 3 , 59



Chapter 3: Rings of Re
ursive Type Isomorphism Systemswe 
an 
onstru
t the fun
tion
idem : p1� T 3q � p1� T 3q Ñ 1� T 3and its inverse
idemY : 1� T 3 Ñ p1� T 3q � p1� T 3qas
idem pinl pinl 
qq � inl 

idem pinl pinr pa, b, cqqq � inr pa, nodepb, cq, leaf q
idem pinr pinl 
qq � inr pleaf, leaf, leaf q
idem pinr pinr pa, b, leaf qqq � inr pnode pa, bq, leaf, leaf q
idem pinr pinr pa, b, node pc, dqqqq � inr pa, b, node pc, dqqand
idemY pinl 
q � inl pinl 
q
idemY pinr pa, nodepb, cq, leaf qq � inl pinr pa, b, cqq
idemY pinr pleaf, leaf, leaf qq � inr pinl 
q
idemY pinr pnode pa, bq, leaf, leaf qq � inr pinr pa, b, leaf qq
idemY pinr pa, b, node pc, dqqq � inr pinr pa, b, node pc, dqqqrespe
tively. Using the identity fun
tion, idem, and idemY as bases, we have fun
tions
idem_n : pn : N�q Ñ n� p1� T 3q Ñ 1� T 3and
idem_nY : pn : N�q Ñ 1� T 3 Ñ n� p1� T 3q ,de�ned re
ursively as:
idem_n psucc zeroq � id1�T 3

idem_n psucc nq � idem � pid1�T 3 � pidem_n nqq60



Chapter 3: Rings of Re
ursive Type Isomorphism Systemsand
idem_nY psucc zeroq � id1�T 3

idem_nY psucc nq � pid1�T 3 � pidem_nY nqq � idemY .By mathemati
al indu
tion on n, we have that for all n in N�,pidem_n nq � pidem_nY nq � id � pidem_nY nq � pidem_n nq .3.5.4 TerminationIn order to �nish our proof of trees-in-zero, we still need to show that L fT 6 MY terminates.For reader's 
onvenien
e, we repeat the de�nitions of L fT 6 MY and fY
T 6 as following:

L fT 6 MY � in � pid1�T 3 � idT 6 � L fT 6 MYq � fYT 6 ;

fYT 6 � pid1�T 3 � ptn_prodY 6qq � pidem_nY 2q .The termination of L fT 6 MY is de
ided by fY
T 6 . Spe
i�
ally, if the output of fYT 6 mat
heswith the pattern � inl _�, then L fT 6 MY always terminates. This is the base 
ase. Sup-pose that the output of fY

T 6 mat
hes with the pattern � inr p_, aq �. If there is a boundfun
tion
size : 1� T 3 Ñ Nsatisfying that the size of a is less than the size of the input to fY

T 6 , and for the base
ase, the size of the input to fY
T 6 is zero, then the termination of L fT 6 MY is established.Before de�ning the bound fun
tion size, in order to get better understanding of theproblem, let us do 
ase analysis on inputs to fY

T 6 . From the de�nition of idem_nY,we have that pidem_nY 2q is e�e
tively same as idemY. Thus, by using patternsappearing in the de�nition of idemY, we 
an write fY
T 6 expli
itly as:

fYT 6 pinl 
q � inl pinl 
q
fYT 6 pinr pa, node pb, cq, leaf qq � inl pinr pa, b, cqq
fYT 6 pinr pleaf, leaf, leaf qq � inr pleaf6, inl 
q61
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ursive Type Isomorphism Systems
fYT 6 pinr pa, leaf, leaf qq � inr ppa, leaf5q, inl 
q
fYT 6 pinr pa, b, node pc, dqqq � inr pptn_prodY 6q pinr pa, b, node pc, dqqqq .For the �rst and the se
ond patterns in the above de�nition, we have:
L fT 6 MY pinl 
q � one pinl 
q
L fT 6 MY pinr pa, node pb, cq, leaf qq � one pinr pa, b, cqq .The third and fourth patterns will be redu
ed to the �rst pattern after unfolding. Thatis,
L fT 6 MY pinr pleaf, leaf, leaf qq � pcons pleaf6, pL fT 6 MY pinl 
qqq
L fT 6 MY pinr pa, leaf, leaf qq � pcons ppa, leaf5q, pL fT 6 MY pinl 
qqq .Let us 
onsider the last pattern. Re
all the de�nition of t_prodY, repeated as following:
t_prodY pinl 
q � pleaf, inl 
q
t_prodY pinr pa, b, leaf qq � pnode pa, bq, inl 
q
t_prodY pinr pa, b, node pc, dqqq � pa, inr pb, c, dqq .Noti
e that when the input of t_prodY is not � inl 
 �, the depth of the third tree de
reasesafter ea
h unfolding of t_prodY. Sin
e ptn_prodY 6q is re
ursively de�ned on t_prodY,as for the last pattern, fY

T 6 de
reases the depth of the third tree as well.Based on above dis
ussions, with the aid of the fun
tion
depth : T Ñ N�whi
h is de�ned as:
depth leaf � succ zero

depth pnode pa, bqq � succ pmax pdepth aq pdepth bqq ,we 
an de�ne the bound fun
tion size as:
size pinl 
q � zero

size pinr p_, node p_, _q, leaf qq � zero

size pinr pa, b, cqq � depth c .62



Chapter 3: Rings of Re
ursive Type Isomorphism SystemsHere, the �rst and se
ond patterns in the above de�nition 
orrespond to the �rst andse
ond patterns in the expli
it de�nition of fY
T 6 respe
tively. The third pattern is usedto 
apture the property that fY

T 6 de
reases the depth of the third tree. Noti
e that whenthe third tree mat
hes the pattern � leaf �, the size of the input is one. This 
orrespondsto the third and fourth patterns in the expli
it de�nition of fY
T 6 whi
h terminate afterunfolding on
e.The size fun
tion meets our requirement: when the output of fY

T 6 mat
hes with thepattern � inl _ �, its value on the input to fY
T 6 is zero; and if the output of fY

T 6 mat
heswith the pattern � inr p_, aq�, then the size of a is less than the size of the input to
fY
T 6 . Hen
e, L fT 6 MY terminates.In summary, we prove the isomorphism trees-in-zero by using List T as a bridge. The
ru
ial step is the expli
it 
onstru
tion of the isomorphism between pList pT 6qq�p1�T 3qand 1� T 3. Te
hni
ally, we 
onstru
t them as a 
atamorphism and its inverse followedby their termination proofs.
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Chapter 4
Repla
ement-Set Games

It is interesting to noti
e that the isomorphism seven-trees-in-one 
an be illustratedby a one-person board game, so-
alled �the nu
lear pennies game�. In this 
hapter, weintrodu
e an in�nite 
lass of one-person board games whi
h has the nu
lear pennies gameas an instan
e. This 
lass of games we 
all repla
ement-set games. Through developingan algorithm to solve these games, we 
onstru
t a ne
essary and su�
ient 
ondition onthe polynomial β under whi
h identities T k � β generate T k �β T k�n for naturalnumbers k and n. It is a surprise that this 
ondition builds 
onne
tions between typeisomorphisms and produ
ts of 
y
lotomi
 polynomials. Further, by using properties of
y
lotomi
 polynomials, we 
onstru
t several in�nite 
lasses of solvable repla
ement-setgames. However, it is still an open problem to 
onstru
t the 
omplete set of solvablerepla
ement-sets.
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Chapter 4: Repla
ement-Set Games4.1 The Nu
lear Pennies GameThe seven-trees-in-one isomorphism has been turned into a game 
alled the �nu
learpennies game� [Pip07a, Pip07b℄. There is an unbounded one-dimensional board whi
h isdivided into squares. Initially there is only one 
he
ker on one of squares. The goal is tomove this 
he
ker six squares to the right leaving all other squares empty. Index thesesquares by integers. There are two types of atomi
 moves: expansions and 
ontra
tions.An expansion on square i is to repla
e a 
he
ker on square i by adding one 
he
ker onea
h of the two squares i� 1 and i� 1 . A 
ontra
tion to square i is that two 
he
kers,one on square i � 1 and one on square i � 1 , are repla
ed by adding one 
he
ker onsquare i. This game 
an be illustrated by the following �gures:
i+ 6

i

(a) Goal
i

i− 1 i+ 1(b) Expansion i

i− 1 i+ 1

(
) Contra
tionFigure 4.1: The Nu
lear Pennies GameThe 
onne
tion between seven-trees-in-one and the nu
lear pennies game is easy to seeif one 
onsiders an atomi
 move as repla
ing T i�1�T by T i�1�p1�T 2q or vi
e-versa.Noti
e that expansions are reversed pro
edures of 
ontra
tions. There is a symmetri
solution to the nu
lear pennies game. The solution 
an be de
omposed into two stages:the �rst stage is to ensure that there is a 
he
ker on the square six squares right to thestarting square and, symmetri
ally, there is a 
he
ker on the square six squares left to the�nishing square; and the se
ond stage is to 
onne
t the above two intermediate states.A
hieving the �rst stage is easy. It is shown in the following �gure. In �g 4.2a, sixexpansions are used to ensure that a 
he
ker is added on the square six squares to theright of the starting square. Symmetri
ally, in �g 4.2b, working from bottom to top, sixexpansions ensure that a 
he
ker is added on the square six squares to the left of the65
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ement-Set Games�nishing square.
i+ 6

i

(a) Initial Phase i+ 6

i

(b) Final PhaseFigure 4.2: The Nu
lear Pennies Game � The First StageThe se
ond stage is to 
onne
t two intermediate states: the bottom state in �g 4.2a andthe top state in �g 4.2b. A possible solution is shown in the following �gure:
i+ 6

i

Figure 4.3: The Nu
lear Pennies Game � The Se
ond StageIn �g 4.3, two intermediate states are repeated. The �rst and last moves ( expansion onsquare i�6 and, symmetri
ally, expansion on square i ) are used to ensure that there isa 
he
ker on square i� 5 and a 
he
ker on square i� 1 respe
tively . Then, expansionson squares i � 5 and i � 4 are used to produ
e the middle state and, symmetri
ally,expansions on squares i � 1 and i � 2 are used to produ
e the middle state as well.These expansions are from powers appearing in the following polynomial fa
torization:
T 6 � 1 � pT 4 � T 3 � T � 1q � pT 2 � T � 1q .66



Chapter 4: Repla
ement-Set GamesMore explanations about the 
onne
tion between the above expansions and this fa
tor-ization will be given in later se
tions.
4.2 Repla
ement-Set GamesThe seven-trees-in-one isomorphism is not an isolated example. For instan
e, the isomor-phism T �1�T�T 2 T 5 appearing in [Fio04℄ and several 
lasses of isomorphisms whi
hare similar with the seven-trees-in-one isomorphism given in [FL05℄. We propose to 
on-stru
t identities T k � β whi
h generate T k �β T n�k for polynomials β in NrT s fornatural numbers k and n. This is equivalent to solving the following games: there isan unbounded one-dimensional board divided into squares with only a 
he
ker on one ofsquares; the goal is to move this 
he
ker to the square whi
h is n squares to the right ofthe starting square leaving all other square empty; and atomi
 moves of this game areidenti�ed by a multiset R . Spe
i�
ally, an expansion on square i is to repla
e a 
he
keron square i by adding one 
he
ker into ea
h square in the multiset t| i� a | a P R |u anda 
ontra
tion is the reversed pro
edure.The 
onne
tion between T k � β and the multiset R is straightforward. Let A be themultiset of powers appearing in the polynomial β. We have:

R � t| a� k | a P A |u .That is, the multiset R 
aptures the relative repla
ement squares to the square k. Asan example, given an identity T 5 � T 2 � T 5 � T 8, the 
orresponding multiset R ist| � 3, 0, 3 |u.We 
all this 
lass of games the repla
ement-set games. And the multiset R is 
alledthe repla
ement-set and n is 
alled the displa
ement. The nu
lear pennies game, forinstan
e, is 
orresponding to the repla
ement-set game with repla
ement-set t| � 1, 1 |uand displa
ement 6. 67



Chapter 4: Repla
ement-Set GamesIn this 
hapter, we fo
us on the following problems: (a) given a repla
ement-set game, tode
ide whether there is a valid sequen
e of expansions and 
ontra
tions whi
h solves thisgame; (b) to 
onstru
t su
h a sequen
e if the game is solvable; (
) given a displa
ement
n, to 
onstru
t all solvable repla
ement-sets.For questions (a) and (b), we will give 
omplete answers in se
tions 4.3 and 4.4. Inse
tion 4.5, we will give partial answers to question (
). By partial answers, we meanthat some interesting subsets of the set of all solvable repla
ement-sets are 
onstru
tedby using properties of produ
ts of 
y
lotomi
 polynomials.
4.3 Trivial Repla
ement-Set GamesLet min.R and max.R be the least and the greatest element of R respe
tively. Arepla
ement-set game pR, nq is trivial if min.R ¥ 0 or max.R ¤ 0. Be
ause eitherthere is no solution or there are trivial solutions to these games. More details are givenas follows.Suppose that min.R is 0. There is a solution to the game pR, nq if and only if n is 0.When n is 0, the solution to the game is trivial � doing nothing or a valid sequen
e ofexpansions and 
ontra
tions satisfying that the number of expansions is the same as thenumber of 
ontra
tions, and for all pre�xes of this sequen
e, the number of 
ontra
tionsis at most the number of expansions. For instan
e, write Ei and Ci for expansion onsquare i and 
ontra
tion to square i respe
tively, the sequen
erE0, E1, C0, E2, E0, C2, C1, C0 sis a solution to the repla
ement-set game pt| 0, 1 |u, 0q with the initial 
he
ker on square
0. If n is not zero, sin
e the initial 
he
ker is always on the board, there is no solutionto the game. The similar argument applies to the 
ase: max.R is 0.Suppose that min.R is greater than 0. Without loss of generality, assume that the68



Chapter 4: Repla
ement-Set Gamesinitial 
he
ker is pla
ed on square 0. We want to show that there is a solution to therepla
ement-set game pR, nq if and only if R � t| a |u and a divides n. The if-part iseasy to prove. When n is zero, the only solution is an empty sequen
e. If n is not zero,an appropriate solution is the following sequen
e of expansions:rE0, Ea, E2a, . . . , Epn
a
� 1qa s .In order to prove the only-if-part, we need some formalization. Che
kers on the boardat some stage of a game, 
alled a state, 
an be modelled by a polynomial with naturalnumbers as 
oe�
ients. For instan
e, the state with two 
he
kers on square 2 and one
he
ker on square 3 
an be 
hara
terized by the polynomial 2T 2 � T 3. For all states

p, an expansion on square i is valid if the 
oe�
ient of T i in p is not zero and i ¥ 0.A valid 
ontra
tion is a reversed pro
edure of a valid expansion. De�ne the polynomial
βR as:

βR � β � T�k � xΣ i : i P R : T iywhere T k � β. A valid expansion on square i 
an be formalized as the following statetransition:
p Ñ p� T i � T i � βR .Symmetri
ally, a valid 
ontra
tion to square i is formalized as the state transition:
p Ñ p� T i � T i � βR .A solution to the game is a �nite sequen
e of valid expansions and 
ontra
tions from thestarting state 1 to the �nishing state T n. Given a state p, after a valid expansion onsquare i, a polynomial T i � pβR � 1q is added to p and, symmetri
ally, after a valid
ontra
tion, a polynomial �T i � pβR � 1q is added to p. Thus, that a game is solvableimplies that there is a polynomial z in ZrT s satisfying that 1 � z � pβR � 1q � T n.That is, βR � 1 divides T n � 1 on ZrT s, written as:pβR � 1q z pT n � 1q . 69



Chapter 4: Repla
ement-Set GamesFrom the polynomial long division algorithm, if βR � 1 divides T n � 1, then βR � 1
an be rewritten as T a � r � 1 for a positive natural number a and a polynomial r in
NrT s. And the polynomial r satis�es that r is 0 or its degree is less than a and its
onstant term is zero. We have:Lemma 4.3.1. pT a � r � 1q z pT n � 1q � r � 0 ^ a z n .Proof. The if-part is established by the following fa
t:

T n � 1 � pT a � 1q � xΣ i : 0 ¤ i   n

a
: T iay .Let us show the only-if-part. If T a�r�1 divides T n�1, then T a�r�1 is a produ
t of
y
lotomi
 polynomials. Sin
e the only 
y
lotomi
 polynomial having negative 
onstantterm is T � 1 and the 
onstant term of T a � r � 1 is negative, T � 1 is a fa
tor of

T a�r�1. Re
all that a is a positive natural number. If a is 1 or 2, it is straightforwardthat r � 0 and a z n. When a is greater than 2, we have that there is a polynomial pin ZrT s with degree less than a� 1 and 
onstant term zero su
h thatpT � 1q � pT a�1 � p� 1q � T a � r � 1 .By simplifying the above equation, we have:
T � p� T � T a�1 � p � r� t r is in NrT s with degree less than a and 
onstant term zero. ux� i : 1 ¤ i ¤ a� 1 : rT ispT � p� T � T a�1 � pq ¥ 0y� t The degree of p is less than a� 1 and its 
onstant term is zero. u
1 ¥ rT sp ^ x� i : 2 ¤ i ¤ a� 2 : rT i�1sp ¥ rT ispy ^ rT a�2sp ¥ 1� t transitivity and rx ¤ y ¤ x � x � ys ux� i : 1 ¤ i ¤ a� 2 : rT isp � 1y .Further, T � p � T � T a�1 � p � 0 � r. Also, from the polynomial long divisionalgorithm,pT a � 1q z pT n � 1q � a z n .We prove the lemma. 70



Chapter 4: Repla
ement-Set GamesBy using lemma 4.3.1, we have that βR must be T a with a divides n if the gameis solvable. This 
ompletes the proof of: when min.R is greater than 0, there is asolution to the repla
ement-set game pR, nq if and only if R � t| a |u and a divides n.Symmetri
ally, a similar argument applies to the 
ase: max.R is less than 0.In summary, for trivial repla
ement-set games pR, nq: (a) if min.R or max.R is 0,then the game is solvable if and only if n is 0; (b) if min.R is greater than 0 or max.Ris less than 0, then the game is solvable if and only if R � t| i |u and i divides n with ian integer.
4.4 Non-trivial Repla
ement-Set GamesNow, let us 
onsider non-trivial repla
ement-set games. That is, the repla
ement set Rsatis�es that min.R   0   max.R.4.4.1 PolynomialsWithout loss of generality, we assume that only squares indexed by natural numbers areused and the initial 
he
ker is pla
ed on the square m where �m is the smallest elementin R. With this assumption, 
he
kers on the board 
an be modelled by a polynomial in
NrT s. For all states p, we say that there is a valid expansion on square i if the 
oe�
ientof T i in p is not zero and i ¥ m. Noti
e that a valid expansion on square i is to repla
ea 
he
ker on square i and to add one 
he
ker to ea
h square in t| i� a | a P R |u. De�nethe polynomial βR as:(4.1) βR � xΣ i : i P R : T i�my .By using this polynomial, a valid expansion on square i 
an be 
hara
terized by thefollowing state transition:

p Ñ p� T i � T i�m � βR . 71



Chapter 4: Repla
ement-Set GamesSymmetri
ally, a valid 
ontra
tion to square i is 
orresponding to the state transition:
p Ñ p� T i � T i�m � βR .Noti
e that β � βR � T k�m. For instan
e, given an isomorphism T 5 � T 2 � T 5 � T 8,the 
orresponding multiset is t| � 3, 0, 3 |u and βR is 1 � T 3 � T 6. We have that

T 2 � T 5 � T 8 � p1 � T 3 � T 6q � T 5�3. The 
onstant term of βR is not zero. Thisproperty is useful later. Thus, in this subse
tion, we prefer βR to β.Re
all that we assume the initial 
he
ker is pla
ed on square m with �m the smallestnumber in R. A solution to the game is a �nite sequen
e of valid expansions and
ontra
tions from the starting state Tm to the �nishing state Tm�n. Given a state p,after a valid expansion on square i, a polynomial T i�m�pβR�Tmq is added to p and,symmetri
ally, after a valid 
ontra
tion, a polynomial �T i�m � pβR � Tmq is added to
p. Thus, that a game is solvable implies that there is a polynomial z in ZrT s satisfyingthat Tm � z � pβR � Tmq � T n�m. That is, βR � Tm divides pT n � 1q � Tm. Letus do 
ase analysis on m. If m is zero, we have that βR � Tm divides T n � 1. When
m is not zero, sin
e the 
onstant term of βR is not zero, we have that the 
ommonfa
tor of βR � Tm and Tm is 1. Further, βR � Tm divides T n � 1. Therefore, weestablish a ne
essary 
ondition for the problem that a given non-trivial repla
ement-setgame pR, nq has a solution. That is,pβR � Tmq z pT n � 1qwhere the ba
kslash symbol denotes divisibility on ZrT s.4.4.2 An Algorithmi
 SolutionWe want to show that the above 
ondition is a su�
ient 
ondition as well, by 
onstru
tingan algorithm to produ
e a sequen
e of valid expansions and 
ontra
tions from the startingstate Tm to the �nishing state T n�m provided that βR � Tm is a fa
tor of T n � 1.Noti
e that the game pR, nq with the initial 
he
ker on square m is solvable if and only72
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ement-Set Gamesif the game pt| i
gcd.R

| i P R |u, n
gcd.R

q with the initial 
he
ker on square m
gcd.R

is solvable.Here, gcd.R is the greatest 
ommon divisor of elements in R.The if-part is established dire
tly through repla
ing all expansions on squares i byexpansions on squares i � gcd.R and all 
ontra
tions to squares i by 
ontra
tions tosquares i � gcd.R. Re
all that a valid expansion on square i is to repla
e a 
he
keron square i by adding one 
he
ker to ea
h square in t| i � a | a P R |u and a valid
ontra
tion is a reversed pro
edure of a valid expansion. Also, �m is in R sin
e �mis the least element in R. We have that the set of all squares i on whi
h a 
he
ker
an be pla
ed during a game pR, nq with the initial 
he
ker on square m is the set oflinear 
ombinations of elements in R. More pre
isely, they are multiples of the greatest
ommon divisor of R. Thus, given a solution to game pR, nq with the initial 
he
keron square m, it is valid to repla
e all expansions on squares i by expansions on squares
i

gcd.R
and all 
ontra
tions to squares i by 
ontra
tions to squares i

gcd.R
. This 
ompletesthe proof of the only-if-part.It follows that a solution to a game pR, nq with gcd.R � 1 
an be 
onstru
ted froma solution to the game pt| i

gcd.R
| i P R |u, n

gcd.R
q through repla
ing square indexes iby i � gcd.R. Without loss of generality, let us 
onsider the problem of 
onstru
ting asequen
e of valid expansions and 
ontra
tions from the starting state Tm to the �nishingstate T n�m provided that βR � Tm is a fa
tor of T n � 1 and gcd.R � 1.Reviewing The Nu
lear Pennies GameThe idea is embodied in the solution to the nu
lear pennies game. The 
orrespondingrepla
ement-set game is identi�ed by the pair pt| � 1, 1 |u, 6q. Sin
e the least elementin the repla
ement-set t| � 1, 1 |u is �1, the starting square m is 1 and βt| �1, 1 |u is

1�T 2. By using polynomials to 
hara
terize states of a game, the solution to the nu
lear
73



Chapter 4: Repla
ement-Set Gamespennies game is formalized as follows:t p � T uexpansions on squares from 1 to 7 ;t p � T � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy uexpansions on squares 6 and 5 ;t p � T � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� pT 6�1 � T 5�1q � p1� T 2 � T q ut p � T 7 � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� pT 3�1 � T 2�1q � p1� T 2 � T q u
ontra
tions to squares 3 and 2 ;t p � T 7 � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy u
ontra
tions to squares from 1 to 7 .t p � T 7 uBe
ause 1� T 2 � T is a fa
tor of T 6 � 1 , from the following fa
torization:
T 6 � 1 � pT 4 � T 3 � T � 1q � pT 2 � T � 1q ,we have that for all polynomial γ in NrT s,
T � pγ � T 2 � T q � p1� T 2 � T q � T 7 � pγ � T 5 � T 4q � p1� T 2 � T q .It follows that the two middle states are equal. Here, we take γ to bexΣ j : 1 ¤ j ¤ 7 : T j�1y .Further, the solution to the nu
lear pennies game 
an be 
onsidered as the 
onstru
tionof two valid expansion sequen
es starting from states T and T 7 respe
tively satisfying:(a) their 
orresponding polynomial 
hara
terizations are equal;74
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ement-Set Games(b) the resulting states ensure respe
tively that expansions on squares T 6 and T 5,and expansions on squares T 3 and T 2 are valid.Spe
i�
ally, the two valid expansion sequen
es arerE1, E2, E3, E4, E5, E6, E7 sand rE7, E6, E5, E4, E3, E2, E1 s .Noti
e that an expansion on square i adds one 
he
ker on ea
h of squares i � 1 and
i� 1. Hen
e, expansions on i� 1 and i� 1 following an expansion on i are valid. Thisproperty ensures the validity of the above expansion sequen
es. Further, they have thesame polynomial 
hara
terization:xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy .And the resulting states after the above expansions starting respe
tively from states Tand T 7 are as follows:

S1 � T � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� xΣ j : 0 ¤ j ¤ 6 : T jy � T 8 ;

S2 � T 7 � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� 1� xΣ j : 2 ¤ j ¤ 8 : T jy .Let the notation rT ksp denote the 
oe�
ient of T k in state p. We have:rT 6sS1 ¡ 0 ^ rT 5sS1 ¡ 0and rT 3sS2 ¡ 0 ^ rT 2sS2 ¡ 0 .That is, the above 
ondition (b) is satis�ed.Then, we 
an do expansions on squares 6 and 5 , and expansions on squares 3 and 2respe
tively to get the middle state. Re
all that 
ontra
tion is the reversed pro
edure of75



Chapter 4: Repla
ement-Set Gamesexpansion. The solution to the nu
lear pennies game 
an be 
aptured by an expansionsequen
e followed by a 
ontra
tion sequen
e, shown as:rE1, E2, E3, E4, E5, E6, E7, E6, E5, C3, C2, C1, C2, C3, C4, C5, C6, C7 s .The Algorithm OutlineGenerally, suppose that the given non-trivial repla
ement-set game pR, nq satis�es that
βR � Tm divides T n � 1 and the initial 
he
ker is on square m with �m the leastelement in R. De�ne the partial order � on NrT s as: for all polynomials p and q,

p � q � x� i P N : 1 ¤ rT isp : rT isp ¤ rT isqy .One 
an 
onstru
t least polynomials δ and ρ in the poset pNrT s, �q satisfying thatfor all polynomials γ in NrT s,(4.2) Tm � pγ � δq � pβR � Tmq � Tm�n � pγ � ρq � pβR � Tmqby using the polynomial long division algorithm on ZrT s.Inspired by the symmetri
 solution to the nu
lear pennies game, if we have two validexpansion sequen
es γm and γm�n starting from Tm and Tm�n respe
tively whi
hsatisfy:(a) they have the same polynomial 
hara
terization γ � pβR � Tmq ;(b) δ � Tm � Tm � γ � pβR � Tmq ^ ρ� Tm � Tm�n � γ � pβR � Tmq ,the algorithm to solve the non-trivial repla
ement-set game pR, nq with the initial
he
ker on square m 
an be 
onstru
ted as:
76
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ement-Set GamesAlgorithm 4.4.1.t p � Tm uexpansions on squares in γm ;t p � Tm � γ � pβR � Tmq uexpansions on squares in the set of powers appearing in δ � Tm ;t p � Tm � pγ � δq � pβR � Tmq ut p � Tm�n � pγ � ρq � pβR � Tmq u
ontra
tions to squares in the set of powers appearing in ρ� Tm ;t p � Tm�n � γ � pβR � Tmq u
ontra
tions to squares in γm�n .t p � Tm�n uThe equation (4.2) and the above 
ondition (a) ensure that two intermediate states areequal. The above 
ondition (b) ensures that expansions a

ording to δ and 
ontra
tionsa

ording to ρ are valid.Constru
ting Valid Expansion Sequen
esAssuming that gcd.R � 1, we now 
onsider the problem of 
onstru
ting valid expansionsequen
es γm and γm�n satisfying the above 
onditions. Noti
e that the equation (4.2)
an be rewritten as:
Tm�n � Tm � pδ � ρq � pβR � Tmq .And degrees and 
odegrees (the least powers) of polynomials on both sides of this equa-tion are respe
tively same. Re
all that min.R   0   max.R. A

ording to the de�nition(4.1) of βR, the degree of βR � Tm is greater than m and the 
odegree is 0. Thus, the

77
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ement-Set Gamesdegree of δ � ρ is less than n and its 
odegree is m. Further, we have:
δ � Tm � K � xΣ i : 2m ¤ i   m� n : T iy
ρ� Tm � K � xΣ i : 2m ¤ i   m� n : T iywhere K is the greatest 
oe�
ient of δ and ρ. By using these properties, the above
onditions (a) and (b) whi
h the valid expansion sequen
es γm and γm�n should satisfy
an be re�ned to:(a) they have the same polynomial 
hara
terization γ � pβR � Tmq ;(b) K � xΣ i : 2m ¤ i   m� n : T iy � Tm � γ � pβR � Tmq ^
K � xΣ i : 2m ¤ i   m� n : T iy � Tm�n � γ � pβR � Tmq .Re
all that the set of all squares on whi
h one 
he
ker 
an be pla
ed during a gamepR, nq with the initial 
he
ker on square m is the set of all multiples of the greatest
ommon divisor of R. With assumptions gcd.R � 1 and min.R   0   max.R, byextending the Eu
lidean Algorithm, it is possible to produ
e a 
ompound expansion Liwhi
h satis�es the following property: given a state p with rT isp ¡ 0, one 
an get astate p1 by the following transition:(4.3) p

Li�ÝÑ p1satisfying that(4.4) rT i�1sp1 ¡ 0 ^ rT i�1sp1 ¡ 0 .For 
larity, we will give the algorithm whi
h produ
es Li later. Now, by using Li, we
onstru
t the following 
ompound expansion sequen
es:(4.5) rLm, Lm�1, � � � , Lm�n sand(4.6) rLm�n, Lm�n�1, � � � , Lm s . 78
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ement-Set GamesThe property (4.4) ensures that the above sequen
es are valid expansion sequen
es fromthe starting state Tm and the �nishing state Tm�n respe
tively. Let li�pβR�Tmq bethe polynomial 
hara
terization of the transition (4.3). The 
orresponding polynomial
hara
terizations of sequen
es (4.5) and (4.6) are equal to:
γ1 � pβR � Tmq � xΣ i : m ¤ i ¤ m� n : liy � pβR � Tmq .Further, from the property (4.4), we have:xΣ i : m ¤ i   m� n : T iy � Tm � γ1 � pβR � Tmq ;xΣ i : m   i ¤ m� n : T iy � Tm�n � γ1 � pβR � Tmq .Be
auserTmspTm � γ1 � pβR � Tmqq ¡ 0 ^ rTm�nspTm�n � γ1 � pβR � Tmqq ¡ 0 ,sequen
es (4.5) and (4.6) 
an be repeated K times respe
tively. We now take γm and

γm�n to be:(4.7) rLm, Lm�1, � � � , Lm�n sKand(4.8) rLm�n, Lm�n�1, � � � , Lm sKrespe
tively. Let γ be K � γ1. Based on the above dis
ussion, γ � pβR � Tmq is thepolynomial 
hara
terization of γm and γm�n, and
K � xΣ i : m ¤ i   m� n : T iy � Tm � γ � pβR � Tmq ;
K � xΣ i : m   i ¤ m� n : T iy � Tm�n � γ � pβR � Tmq .Sin
e m is greater than 0 (�m is the least element of R and min.R   0   max.R ),we have:xΣ i : 2m ¤ i   m� n : T iy � xΣ i : m ¤ i   m� n : T iy ;xΣ i : 2m ¤ i   m� n : T iy � xΣ i : m   i ¤ m� n : T iy .Combining the above results, the re�ned 
onditions (a) and (b) are satis�ed. This
ompletes the 
onstru
tion of γm and γm�n.79
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ement-Set GamesConstru
ting Compound ExpansionsWe now fo
us on the 
onstru
tion of the 
ompound expansion Li whi
h is a validexpansion sequen
e satisfying that given a state with at least one 
he
ker on square i,the resulting state after the sequen
e of expansions has at least one 
he
ker on ea
h ofsquares i� 1 and i� 1.Re
all that all squares on whi
h a 
he
ker 
an be pla
ed during a game pR, nq withthe initial 
he
ker on square m are linear 
ombinations of elements in R as well asmultiples of the greatest 
ommon divisor of R. In parti
ular, sin
e min.R   0   max.Rand gcd.R � 1, by extending the Eu
lidean Algorithm, we 
an 
onstru
t multisets Aand B whose elements are from R satisfying:
i� xΣ a : a P A : ay � i� gcd.R � i� 1 ;

i� xΣ b : b P B : by � i� gcd.R � i� 1 .Further, the 
ompound expansion Li is 
onstru
ted by serializing A and B. Let usillustrate the above idea by a simple example. For instan
e, taking R to be the multisett|�3, 5 |u. Following the pro
edure of the Eu
lidean Algorithm, multisets A and B 
anbe 
onstru
ted as follows:
x y A B�3 5 t| � 3 |u t| 5 |u�3 2 t| � 3 |u t| � 3, 5 |u�1 2 t| � 3, �3, 5 |u t| � 3, 5 |u�1 1 t| � 3, �3, 5 |u t| � 3, �3, �3, 5, 5 |uBy serializing multisets A and B, we get the following valid expansion sequen
e:r i, i� 3, i� 3� 3, i� 5, i� 5� 5, i� 5� 5� 3, i� 5� 5� 3� 3 s .It is 
omposed of a single expansion on square i followed by two subsequen
es:r i� 3, i� 3� 3 sand r i� 5, i� 5� 5, i� 5� 5� 3, i� 5� 5� 3� 3 s .80
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ement-Set GamesThese two subsequen
es are 
onstru
ted from multisets A and B respe
tively. Notethat after the expansion on square i, there is at least one 
he
ker on ea
h of squares
i�3 and i�5. And after expansions on squares i�3�3 and i�5�5�3�3, there is atleast one 
he
ker on ea
h of squares i�1 � i�3�3�5 and i�1 � i�5�5�3�3�3.Hen
e, the above sequen
e satis�es the requirement on the 
ompound expansion Li withregard to R � t| � 3, 5 |u.Generally, we give the algorithm to 
onstru
t multisets A and B as follows:Algorithm 4.4.2.{ min.R   0   max.R }

x, y :� min.R, max.R ;

Q, A, B :� set.R� tx, 0, y u, t|x |u, t| y |u ;{ Invariant: xΣ a : a P A : ay � x ^ xΣ b : b P B : by � y^ gcd.pQ Y tx, y uq � gcd.R }do x � �gcd.R _ y � gcd.R ÝÑdo � x   y ÝÑ y, B :� x� y, A Z Brs y   �x ÝÑ x, A :� x� y, A Z Bod ;{ �x � y ^ xΣ a : a P A : ay � x ^ xΣ b : b P B : by � y }if Q � H ^ min.Q   0 ÝÑ x :� min.Q ;

Q, A :� Q� t|x |u, t|x |urs Q � H ^ max.Q ¡ 0 ÝÑ y :� max.Q ;

Q, B :� Q� t| y |u, t| y |urs Q � H ÝÑ skip�od{ xΣ a : a P A : ay � �gcd.R ^ xΣ b : b P B : by � gcd.R }81



Chapter 4: Repla
ement-Set GamesThis algorithm e�e
tively 
al
ulates gcd.R and �gcd.R by extending the Eu
lideanAlgorithm. We use the 
orresponding set set.R of the multiset R to avoid unne
essary
omputation. It is worth to mentioning that 0 is removed from R to get rid of possiblemeaningless 
omputation.The serializations of A and B are respe
tively done by ordering elements in i � Aand i�B ( addition is extended to sets ) then forming sequen
es of their partial sums.Further, by arbitrarily interleaving these two sequen
es with an expansion on square iheaded, we get the needed 
ompound expansion. In parti
ular, by using the property:xΣ a : a P A : ay   0   xΣ b : b P B : bywhi
h is maintained through the above algorithm, we give a spe
i�
 algorithm to 
on-stru
t the 
ompound expansion Li from multisets A and B as follows:Algorithm 4.4.3.{ xΣ a : a P A : ay � �gcd.R ^ xΣ b : b P B : by � gcd.R^ rT isp ¡ 0 ^ i ¥ m }
j, k :� min.A, max.B ;

A, B :� A� t|min.A |u, B � t|max.B |u ;
Li, p :� ris, p� T i�m � pβR � Tmq ;{ Invariant: rT j�isp ¡ 0 ^ rT k�isp ¡ 0 ^ j ¤ �gcd.R   0   gcd.R ¤ k^ j � xΣ a : a P A : ay � �gcd.R ^ k � xΣ b : b P B : by � gcd.R }do A � H ÝÑ Li :� Li �� rj � is ;

p :� p� T j�i�m � pβR � Tmq ;
j :� j �min.A ;

A :� A� t|min.A |urs B � H ÝÑ Li :� Li �� rk � is ;
p :� p� T k�i�m � pβR � Tmq ;
k :� k �max.B ;

B :� B � t|max.B |u82
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ement-Set Gamesod{ rT i�gcd.Rsp ¡ 0 ^ rT i�gcd.Rsp ¡ 0 }Here, the initial 
he
ker is supposed to be on square m. We assume that i is at least
m. This ensures that the running state p is a polynomial with natural numbers as
oe�
ients. Variables j and k are used to re
ord partial sums. We always 
hoose theminimum of A and the maximum of B for in
reases on j and k respe
tively. Thismaintains the property:

j ¤ �gcd.R   0   gcd.R ¤ kwhi
h avoids arguments on the 
ase j � k. At the end of the algorithm, the property:rT i�gcd.Rsp ¡ 0 ^ rT i�gcd.Rsp ¡ 0ensures that the resulting sequen
e Li satis�es our requirement (4.4) on the 
ompoundexpansion.Until now, we have �nished the 
onstru
tion of the algorithm to solve non-trivial repla
ement-set games. Combining our arguments in se
tion 4.4.1, we have:Theorem 4.4.4. A given non-trivial repla
ement-set game pR, nq with the initial
he
ker on square m is solvable if and only ifpβR � Tmq z pT n � 1qwhere βR is de�ned by equation (4.1). And, when the game is solvable, an appropriatesolution is given by algorithm 4.4.1 where γm and γm�n are equations (4.7) and (4.8)respe
tively with the 
ompound expansion Li produ
ed by algorithms 4.4.2 and 4.4.3.Combining results we get for trivial repla
ement-set games, we give 
omplete answers toquestions (a) and (b) proposed in se
tion 4.2.
83
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ement-Set Games4.4.3 The NormalizationWe 
all a sequen
e of expansions and 
ontra
tions whi
h solves a non-trivial repla
ement-set game a valid sequen
e. And a valid sequen
e 
onsisting of a sequen
e of expansionsfollowed by a sequen
e of 
ontra
tions we 
all a normal sequen
e. The 
areful readermay noti
e that we always 
onstru
t normal sequen
es to solve non-trivial repla
ement-set games. It is natural to ask whether for all valid sequen
es L, there is a normalsequen
e whi
h solves the same game as L does. The answer to this question is yes. Inthis subse
tion, let us show that there is a valid sequen
e if and only if there is a normalsequen
e.For our purposes, we de�ne the binary relation E on NrT s as: for all states p and q,
p E q � x D i : i ¥ m ^ rT isp ¡ 0 : p� T i�m � pβR � Tmq � q y .That is, there is a valid expansion from states p to q. Let F be the 
onverse relationof E and I be the identity relation. We have:Lemma 4.4.5. FE � EF Y I .Proof. For all states p and q,
p FE q� t de�nitions of E and F and relation 
omposition ux D r, i, j : r P NrT s ^ i ¥ m ^ j ¥ m ^ rT isr ¡ 0 ^ rT jsr ¡ 0 :

p � r � T i�m � pβR � Tmq ^ r � T j�m � pβR � Tmq � q y .If i � j, we have that p � q. That is, FE � I . Suppose that i � j. Noti
e that
i � j ^ rT isr ¡ 0 ^ rT jsr ¡ 0ñ t An expansion on square i ( j )does not remove any 
he
ker on square j ( i ). urT jspr � T i�m � pβR � Tmqq ¡ 0 ^ rT ispr � T j�m � pβR � Tmqq ¡ 084



Chapter 4: Repla
ement-Set Games� t p � r � T i�m � pβR � Tmq ^ r � T j�m � pβR � Tmq � q urT jsp ¡ 0 ^ rT isq ¡ 0� t expansions on squares j and i in p and q respe
tivelyand p � r � T i�m � pβR � Tmq ^ r � T j�m � pβR � Tmq � q urT jsp ¡ 0 ^ rT isq ¡ 0^ p� T j�m � pβR � Tmq � r � pT i�m � T j�mq � pβR � Tmq^ r � pT i�m � T j�mq � pβR � Tmq � q � T i�m � pβR � Tmq� t wittness : r � pT i�m � T j�mq � pβR � Tmq ux D r, i, j : r P NrT s ^ i ¥ m ^ j ¥ m ^ rT jsp ¡ 0 ^ rT isq ¡ 0 :

p� T j�m � pβR � Tmq � r � q � T i�m � pβR � Tmq y� t de�nitions of E and F and relation 
omposition u
p EF q .This 
ompletes the proof.Re
all that 
ontra
tion is the reverse pro
edure of expansion. The set of all sequen
esof expansions and 
ontra
tions 
an be identi�ed by the regular expression pE Y Fq�where 
on
atenation is repla
ed by relation 
omposition. Likely, the set of all sequen
es
onsisted of a sequen
e of expansions followed by a sequen
e of 
ontra
tions is spe
i�edby E�F�. Then, the statement that there is a valid sequen
e if and only if a normalsequen
e 
an be generalized to:Theorem 4.4.6. For all states p and q,x DL : L P pE Y Fq� : p L q y � x DL : L P E�F� : p L q y .Proof. Let us show pE Y Fq� � E�F� as follows:pE Y Fq� � E

�
F
�� t E�F� � pE Y Fq� and anti-symmetry upE Y Fq� � E

�
F
� 85
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ement-Set Gamesð t pE Y Fq� � xµX : : I Y XpE Y Fq y u
I Y E

�
F
�pE Y Fq � E

�
F
�� t I � E�F� and E�F�F � E�F� u

E
�
F
�
E � E

�
F
�ð t monotoni
ity and E�E� � E� u

F
�
E � E

�
F
�ð t EF� Y F� � E�F� and transitivity u

F
�
E � EF

� Y F
�ð t F�E � xµX : : E Y FX y u

E Y FpEF� Y F
�q � EF

� Y F
�� t E � EF� and FF� � F� u

FEF
� � EF

� Y F
�ð t lemma 4.4.5, monotoni
ity, and transitivity upEF Y IqF� � EF
� Y F

�� t EFF� � EF� and IF� � F� u
true .

4.5 Constru
ting Solvable Repla
ement-SetsIn this se
tion, we fo
us on the question (
) proposed in se
tion 4.2: given a displa
ement
n, to 
onstru
t all solvable repla
ement-sets R. By solvable repla
ement-set, we meanthat the repla
ement-set game pR, nq is solvable.As for trivial repla
ement-sets (min.R ¥ 0 or max .R ¤ 0 ), answers to the abovequestion are trivial: (a) if min.R or max.R is 0, the repla
ement-set R is solvable ifand only if n is 0; (b) if min.R ¡ 0 or max.R   0, then the repla
ement-set R is86
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ement-Set Gamessolvable if and only if R � t| i |u satisfying that i divides n with i an integer. This hasbeen shown in se
tion 4.3.Considering non-trivial repla
ement-sets (min.R   0   max.R ). Theorem 4.4.4 tellsus that the repla
ement-set R is solvable if and only ifpβR � Tmq z pT n � 1qwhere �m is the least element of R and
βR � xΣ i : i P R : T i�my .That is, there is a 
orresponding between fa
tors βR � Tm of T n � 1 and non-trivialsolvable repla
ement-sets R. Re
all that βR is a polynomial with natural numbersas 
oe�
ients. The polynomial βR � Tm is a polynomial with natural numbers as
oe�
ients (Tm � βR ) or a polynomial with only one negative 
oe�
ient (Tm � βR ).The �rst 
lass of repla
ement-sets we 
all monotoni
 solvable repla
ement-sets. Be
ausein an expansion on square i, the number of 
he
kers on square i will not 
hange and thenumber of 
he
kers on board in
reases stri
tly. We 
all the se
ond 
lass of repla
ement-sets true solvable repla
ement-sets. Be
ause in an expansion on square i, a 
he
ker onsquare i is always truly repla
ed (the number of 
he
kers on square i de
reases by one)and the number of 
he
kers on board does not 
hange or in
reases stri
tly.It is well-known that fa
tors of T n�1 are produ
ts of 
y
lotomi
 polynomials (irredu
iblefa
tors of T n�1 on ZrT s ). By using properties of 
y
lotomi
 polynomials, we 
onstru
ttwo in�nite 
lasses of monotoni
 solvable repla
ement-sets in subse
tion 4.5.1 and onein�nite 
lass of true solvable repla
ment-sets in subse
tion 4.5.2. Unfortunately, as far aswe know, it is still an open problem to 
ompletely 
hara
terize the set of all non-trivialsolvable repla
ement-sets.For our purposes, we introdu
e a spe
i�
 
lass of produ
ts of 
y
lotomi
 polynomials.Given positive natural numbers a and b, we de�ne Γ.pa, bq as:
Γ.pa, bq � xΣ k : 0 ¤ k   a : T k�b y .87
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ement-Set GamesFrom the geometri
 series and the following property of 
y
lotomi
 polynomials:(4.9) T n � 1 � xΠ k : 1 ¤ k ¤ n ^ k z n : Φ.k y ,we have:(4.10) Γ.pa, bq � T a�b � 1

T b � 1
� xΠ k : 1 ¤ k ¤ a�b ^ k z pa�bq ^  pk z bq : Φ.k y .4.5.1 Monotoni
 Solvable Repla
ement-SetsNoti
e that 
oe�
ients of Γ.pa, bq are natural numbers. Given a �nite set A of pairs ofpositive natural numbers, from the property (4.10), we have that the following produ
t:(4.11) xΠ pa, bq : pa, bq P A : Γ.pa, bq yis a produ
t of 
y
lotomi
 polynomials with natural numbers as 
oe�
ients.However, not all su
h produ
ts are fa
tors of T n � 1 for some positive natural number

n. From the property (4.9), we have that a fa
tor of T n�1 is a produ
t of non-repeated
y
lotomi
 polynomials. For instan
e,
Φ2 �Φ3 � pT � 1q � pT 2 � T � 1qis a fa
tor of T 6 � 1, while
Φ2 �Φ2 � pT � 1q � pT � 1qis not a fa
tor of any T n � 1. Also, Γ.pa, bq is a produ
t of 
y
lotomi
 polynomialsindexed by elements in the set a� b� b whi
h follows from the property (4.10). Here,we use a� b and b for sets of positive divisors of a� b and b respe
tively and symbol� for set di�eren
e. We have that if the set A satis�es:(4.12) x � pa, bq, pc, dq P A : : pa� b� bq X pc� d� dq � Hy ,then the produ
t (4.11) is a fa
tor of T n � 1 for some positive natural number n withnatural numbers as 
oe�
ients. 88
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ement-Set GamesFurther, let p be a produ
t in form (4.11) with the set A satisfying the 
ondition(4.12). Let m be a positive natural number less than the degree of p. (Choosing
m in this way ensures that the resulting repla
ement-set R is non-trivial. That is,
min.R   0   max.R .) We de�ne βR as:

βR � p� Tm .The 
orresponding multiset R of βR is a monotoni
 solvable repla
ement-set with thedispla
ement n positive multiples of the least 
ommon multiple of all elements inxY pa, bq P A : : a� b� b y .Let us look at an in�nite 
lass of examples. Take n to be a positive square-free naturalnumber. We de�ne A as:
A � t pp, 1q | p is a prime fa
tor of n. u .Sin
e for all primes p and q with p � q,pp� 1� 1q X pq � 1� 1q � tpu X tqu � H ,we have that A satis�es the 
ondition (4.12). Further, βR is 
onstru
ted from A as:
βR � xΠ pp, 1q P A : : Γ.pp, 1q y � Tmwhere m satis�es that
0   m   xΣ pp, 1q P A : : pp� 1q y .The 
orresponding multiset R of βR is a monotoni
 solvable repla
ement-set. As aninstan
e of this 
lass, by taking n to be 6 and m to be 2, we have:
βR � Γ.p3, 1q � Γ.p2, 1q � T 2� pT 2 � T � 1q � pT � 1q � T 2� T 3 � 3T 2 � 2T � 1 .The 
orresponding multiset R is:t| � 2, 2 � p�1q, 3 � 0, 1 |u 89



Chapter 4: Repla
ement-Set Gameswhere �2, �1, 0, and 1 are relative positions to the position m � 2. Further, thegame pR, nq is solvable whi
h follows from:
βR � Tm � Γ.p3, 1q � Γ.p2, 1q � Φ3 �Φ2 � T 6 � 1

Φ1 � Φ6and theorem 4.4.4.Lots of other examples 
an be 
onstru
ted as above by using the produ
t (4.11) with Asatisfying the 
ondition (4.12). We list some of them in the following table:
A βR � Tm nt pk, 1q u T k�1

T�1
� xΣ i : 0 ¤ i   k : T i y kt p2, 2kq u T 4k�1

T 2k�1
� T 2k � 1 4kt pa, ak�1q u Tak�1

Tak�1�1
� xΣ i : 0 ¤ i   a : T i�ak�1 y akt p3, 1q, p2, 8q u T 3�1

T�1
� T 16�1

T 8�1
� pT 2 � T � 1q � pT 8 � 1q 48The se
ond 
lass in the above table was previously identi�ed by Mar
elo Fiore [private
ommuni
ation, 2010℄. The third 
lass was studied in [BCF10℄.Noti
e that the 
ondition (4.12) on the set A is equivalent to:(4.13) x � pa, bq, pc, dq P A : : ppa� bq ∇ pc� dqq z b _ ppa� bq ∇ pc� dqq z d ywhere the symbol ∇ denotes the greatest 
ommon divisor. The advantage of (4.13)over (4.12) is that the 
omputation of the greatest 
ommon divisor is 
heaper than the
onstru
tion of the set of positive divisors. Now, let us show they are equivalent asfollows. By duality between propositional operators and set operators, we have that forall sets A, B, C, and D:pA�Bq X pC �Dq � H � pA X Cq � B _ pA X Cq � Dwhi
h follows from that for all propositions p, q, r, and s: ppp ^  qq ^ pr ^  sqq� t De Morgan rule u p _ q _  r _ s 90



Chapter 4: Repla
ement-Set Games� t idempoten
y and 
ommutativity u p _  r _ q _  p _  r _ s� t De Morgan rule u pp ^ rq _ q _  pp ^ rq _ s� t de�ntion of ñ uppp ^ rq ñ qq _ ppp ^ rq ñ sq .Instantiating A, B, C, and D by a� b, b, c� d, and d, we have thatpa� b�bq X pc� d�dq � H � pa� b X c� dq � b _ pa� b X c� dq � d .Further, sin
e for all positive natural numbers a and b, a X b � a ∇ b and a z b �
a � b. We get:pa� b�bq X pc� d�dq � H � ppa�bq ∇ pc�dqq z b _ ppa�bq ∇ pc�dqq z d .This 
ompletes the proof.In summary, we have:Theorem 4.5.1. Given a �nite set A of pairs of positive natural numbers whi
h satis�es:x � pa, bq, pc, dq P A : : ppa� bq ∇ pc� dqq z b _ ppa� bq ∇ pc� dqq z d y ,the 
orresponding multiset R of

βR � xΠ pa, bq P A : : Γ.pa, bq y � Tmwith 0   m   deg.βR is a monotoni
 solvable repla
ement-set with displa
ement npositive multiples of the least 
ommon multiple of elements inxY pa, bq P A : : a� b� b y .Is theorem 4.5.1 the only way to de�ne monotoni
 solvable repla
ement-sets? The answeris no. In our investigation, we noti
e an interesting example:
T 15 � 1

T 5 � 1
� T 8 � 1

T 3 � 1
� Γ.p3, 5q � Γ.p8, 1q

Γ.p3, 1q � Φ15 � Φ8 �Φ4 � Φ2 .91
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ement-Set GamesAlthough
Φ15 � T 8 � T 7 � T 5 � T 4 � T 3 � T � 1is not a 
y
lotomi
 polynomial with natural numbers as 
oe�
ients,
Φ15 � Φ8 � Φ4 � Φ2 � T 15 � T 12 � T 10 � T 9 � T 6 � T 5 � T 3 � 1is a produ
t of 
y
lotomi
 polynomials with natural numbers as 
oe�
ients.Generally, we are interested in the problem of �nding a natural number c whi
h satis�esthat(4.14) T a�b � 1

T b � 1
� T c � 1

T a � 1
� Γ.pa, bq � Γ.pc, 1q

Γ.pa, 1qis a produ
t of 
y
lotomi
 polynomials with natural numbers as 
oe�
ients providedthat positive natural numbers a and b are 
oprime, written as a K b.Noti
e that by using the geometri
 series, we have:
1

1� T a
� xΣ i : 0 ¤ i : T a�i y .Further, the formula (4.14) 
an be rewritten as:xΣ i : 0 ¤ i   a : T b�i y � xΣ i : 0 ¤ i : T a�i y � p1� T cq� t polynomial arithmeti
 uxΣ k, j : 0 ¤ k ^ 0 ¤ j   a : T a�k�b�j y �xΣ k, i : 0 ¤ k ^ 0 ¤ i   a : T a�k�b�i�c y� t fa
torization on powers uxΣ k, j : 0 ¤ k ^ 0 ¤ j   a : T a�pk�t b�j

a
uq�pb�jq mod a y �xΣ k, i : 0 ¤ k ^ 0 ¤ i   a : T a�pk�t b�i�c

a
uq�pb�i�cq mod a y� t renaming: k :� k � t b�j

a
u and k :� k � t b�i�c

a
u respe
tively uxΣ k, j : tb� j

a
u ¤ k ^ 0 ¤ j   a : T a�k�pb�jq mod a y �xΣ k, i : tb� i� c

a
u ¤ k ^ 0 ¤ i   a : T a�k�pb�i�cq mod a y .92
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ement-Set GamesConsidering the last line in the above 
al
ulation. By 
omparing terms on both sides ofthe minus operator, we have that the formula (4.14) is a produ
t of 
y
lotomi
 polyno-mials with natural numbers as 
oe�
ients if and only if there is an inje
tive fun
tion
f : r0, aq Ñ r0, aqsatisfying that(4.15) x � i : 0 ¤ i   a : pb� i� cq mod a � pb� f.iq mod a ^ b� f.i ¤ b� i� c y .Our goal is to 
onstru
t a fun
tion f satisfying the above property.A useful property is:Lemma 4.5.2. For all positive natural numbers a, b, i, and j,
a K b ñ pppb � iq mod a � pb� jq mod aq � pi mod a � j mod aqq .Proof. pb� iq mod a � pb� jq mod a� t de�nition of modulo u
a z ppi� jq � bq� t a K b u
a z pi� jq� t de�nition of modulo u
i mod a � j mod a .

This property implies that numbers from 0 to a � 1 appear one and only time inremainders pb� iq mod a for 0 ¤ i   a provided a K b.
93
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ement-Set GamesFurther, let r be a number satisfying that pb� rq mod a � 1. We have:pb� i� cq mod a � pb� f.iq mod a� t pb� rq mod a � 1 upb� i� c� ppb� rq mod aqq mod a � pb� f.iq mod a� t r pi� jq mod a � pi mod a� j mod aq mod a s andr pi � jq mod a � ppi mod aq � jq mod a s upb� pi� c� rqq mod a � pb� f.iq mod a� t lemma 4.5.2 and a K b upi� c� rq mod a � f.i mod a� t f.i P r0, aq upi� c� rq mod a � f.i .Let us de�ne f as: for all i in r0, aq,
f.i � pi� c� rq mod a .Noti
e that for all i0 and i1 in r0, aq,
f.i0 � f.i1� t de�nition of f upi0 � c� rq mod a � pi1 � c� rq mod a� t de�nition of modulo u
a z pi0 � c� r � i1 � c� rq� t arithmeti
 and de�nition of modulo u
i0 mod a � i1 mod a� t 0 ¤ i0, i1   a u
i0 � i1 .That is, f is bije
tive. 94
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ement-Set GamesIt follows that the 
ondition (4.15) is equivalent to:x � i : 0 ¤ i   a : b� ppi� c� rq mod aq ¤ b� i� c y .Also, x � i : 0 ¤ i   a : b� ppi � c� rq mod aq ¤ b� i� c y� t arithmeti
 ux � i : 0 ¤ i   a : b� ppi � c� rq mod a� iq ¤ c y� t �a   pi� c� rq mod a� i   a ux � i : 0 ¤ i   a : b� pppi � c� rq mod a� iq mod aq ¤ c y� t 0 ¤ i   a ux � i : 0 ¤ i   a : b� pppi � c� rq mod a� i mod aq mod aq ¤ c y� t r pi� jq mod a � pi mod a� j mod aq mod a s ux � i : 0 ¤ i   a : b� ppc � rq mod aq ¤ c y� t distribution and unit of � u
b� ppc� rq mod aq ¤ c .We have that the formula (4.14) is a produ
t of 
y
lotomi
 polynomials with naturalnumbers as 
oe�
ients if and only if(4.16) b� ppc� rq mod aq ¤ cwhere r satis�es that pb� rq mod a � 1.Of 
ourse, we need to make sure that the formula (4.14) is a fa
tor of T n � 1 for somepositive natural number n. By applying similar arguments whi
h are used in the proofof theorem 4.5.1, we get the following 
ondition:pa� b� bq X pc� aq � H ,that is,ppa� bq ∇ cq z a _ ppa� bq ∇ cq z b ,95
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ement-Set Gamesunder whi
h the formula (4.14) is a fa
tor of T n � 1. Noti
e thatppa� bq ∇ cq z a� t de�nition of the greatest 
ommon divisor upa� bq ∇ c � pa� bq ∇ c ∇ a� t pa� bq ∇ a � a upa� bq ∇ c � a ∇ c� t de�nition of the greatest 
ommon divisor ux � k : 1   k : k z pa� bq ^ k z c � k z a ^ k z c y� t r p ^ q � p ^ r � pp ñ pq � rqq s ux � k : 1   k : k z c ñ pk z pa� bq � k z aq y� t a K b ^ pk z pa� bq � k z aq implies  pk z bq and transitivity ux � k : 1   k : k z c ñ  pk z bq y� t de�nition of the 
oprime u
c K b .Similarly,ppa� bq ∇ cq z b � c K a .Combining with the 
ondition (4.16), we get:Theorem 4.5.3. For all positive natural numbers a, b, and c with a K b, the produ
t
T a�b � 1

T b � 1
� T c � 1

T a � 1
� Γ.pa, bq � Γ.pc, 1q

Γ.pa, 1qis a fa
tor of T n � 1 with natural numbers as 
oe�
ients for some positive naturalnumber n if and only if
b� ppc � rq mod aq ¤ c ^ ppc K aq _ pc K bqqwith r satisfying that pb� rq mod a � 1. 96



Chapter 4: Repla
ement-Set GamesLet us give an example to �nish this subse
tion. Taking a and b to be 5 and 6respe
tively. We have p6� 1q mod 5 � 1. Thus, we 
an 
hoose r to be 1. Noti
e that
c � 11 satis�es that

6� pp11 � 1q mod 5q ¤ 11 ^ 11 K 6 .By theorem 4.5.3, the following produ
t
T 5�6 � 1

T 6 � 1
� T 11 � 1

T 5 � 1
� Γ.pa, bq � Γ.pc, 1q

Γ.pa, 1q� Φ30 � Φ15 � Φ10 � Φ11� T 30 � T 25 � T 24 � T 20 � T 18 � T 15 � T 12 � T 10 � T 6 � T 5 � 1is a fa
tor of T 330 � 1 with natural numbers as 
oe�
ients.4.5.2 True Solvable Repla
ement-SetsRe
all that a true solvable repla
ement-set is based on a polynomial βR�Tm with onlyone negative 
oe�
ient whi
h divides T n � 1 for some positive natural number n. Forinstan
e, the nu
lear pennies game pt| � 1, 1 |u, 6q is a true solvable repla
ement-setgame based on the polynomial T 2 � 1 � T . We are wondering whether this is the onlyinstan
e of true solvable repla
ement-set games. The answer to this question is no. Inthis subse
tion, we give an in�nite 
lass of true solvable repla
ement-sets, although its
onstru
tion is in an ad-ho
 way.Lemma 4.5.4. For all distin
t primes p and q, the produ
t
Φp�q � Γ.pp� q � p� q, 1qis a fa
tor of T n�1 with only one negative 
oe�
ient. Moreover, n is a positive multipleof the greatest 
ommon multiple of p� q and p� q � p� q.Proof. By de�nitions of Φ and Γ, the above produ
t 
an be rewritten as:xΠ k : k � p� q _ pk z pp� q � p� qq ^ k � 1q : Φk y .97



Chapter 4: Repla
ement-Set GamesSin
e p�q is greater than p�q�p�q, we have that p�q is not a divisor of p�q�p�q.Further, there is no repeated 
y
lotomi
 polynomials in the above produ
t. Thus, it isa fa
tor of T n� 1 with n positive multiples of the least 
ommon multiple of p� q and
p� q � p� q.We now show that the above produ
t has only one negative 
oe�
ient. Noti
e that

Φp�q � Γ.pp� q � p� q, 1q � T p�q�p�q� t de�nitions of Φ and Γ u
T p�q � 1

T p � 1
� T � 1

T q � 1
� T p�q�p�q � 1

T � 1
� T p�q�p�q� t polynomial arithmeti
 u

T 2�p�q�p�q � T p�q � T p�q�p�q � 1pT p � 1q � pT q � 1q � T p�q � T p�q�q � T p�q�p � T p�q�p�qpT p � 1q � pT q � 1q� t polynomial arithmeti
 u
T pp�1q�q�pq�1q�p � T pp�1q�q � T pq�1q�p � 1pT p � 1q � pT q � 1q� t fa
torization u
T pq�1q�p � 1

T p � 1
� T pp�1q�q � 1

T q � 1� t de�nition of Γ u
Γ.pq � 1, pq � Γ.pp� 1, qq .That is,

Φp�q � Γ.pp� q � p� q, 1q � T p�q�p�qhas no negative 
oe�
ients. Thus, if the ( p� q � p� q )-th 
oe�
ient of
Γ.pq � 1, pq � Γ.pp� 1, qqis 0, then Φp�q�Γ.pp�q�p�q, 1q has only one negative 
oe�
ient. By the de�nitionof Γ and polynomial multipli
ation, powers of monomials in Γ.pq� 1, pq �Γ.pp� 1, qqare i� p� j � q for 0 ¤ i   q � 1 and 0 ¤ j   p� 1. But,
i� p� j � q � p� q � p� q� t arithmeti
 u 98



Chapter 4: Repla
ement-Set Gamespi� 1q � p� pj � 1q � q � p� q� t p and q are primes upi� 1 � q ^ j � 1 � 0q _ pi� 1 � 0 ^ j � 1 � pq� t 0 ¤ i   q � 1 and 0 ¤ j   p� 1 u
false .That is, the ( p� q� p� q )-th 
oe�
ient of Γ.pq� 1, pq�Γ.pp� 1, qq is indeed 0. This
ompletes the proof.As an example, by taking p and q to be 2 and 5 respe
tively, we get:

Φ2�5 � Γ.p2� 5� 2� 5, 1q� Φ10 � Γ.p3, 1q� T 10 � 1

T 5 � 1
� T � 1

T 2 � 1
� T 3 � 1

T � 1� pT 5 � 1q � pT 2 � T � 1q
T � 1� T 6 � T 4 � T 3 � T 2 � 1is a fa
tor of T 30�1. Further, pt| �3, �1, 1, 3 |u, 30q is a true solvable repla
ement-setgame.
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Chapter 5
Con
lusion

Lawvere's Remark is the origin of this thesis. So far as we are aware, Blass gave the �rstexplanation of Lawvere's Remark. As a milestone, Fiore and Leinster's result generalizesLawvere's Remark with respe
t to single re
ursive type isomorphims.Inspired by Fiore and Leinster's resear
h, we extend their results to re
ursive type iso-morphism systems on a �nite set of types. We give a su�
ient and ne
essary 
onditionunder whi
h a given re
ursive type isomorphism system forms a ring. This theory showsthat some isomorphisms between obje
ts 
an be de
ided by using polynomial divisionalgorithm on multi-variables.Another interesting aspe
t of Lawvere's Remark is that it 
an be illustrated by a one-person board game � the nu
lear pennies game. Fiore and Leinster's results predi
t thatthere is a solution to the nu
lear pennies game. However, how one derives an algorithmto produ
e su
h a solution is not 
lear. We introdu
e an in�nite 
lass of one-personboard games, so-
alled repla
ement-set games, whi
h has the nu
lear pennies game asan instan
e. An algorithm is 
onstru
ted to give solutions to these games when they aresolvable.Until now, our theory has built a 
lear 
onne
tion between algebrai
 equations on 
om-100



Chapter 5: Con
lusionplex numbers and re
ursive type isomorphism systems. The signi�
an
e of this 
on-ne
tion is that methods in 
omputational algebra 
an be introdu
ed as short 
uts tosolve some problems on re
ursively de�ned obje
ts whi
h are in every 
orner of 
om-puter s
ien
e. Conversely, we 
an give algorithmi
 explanations to some 
al
ulations in
omputational algebra.
5.1 Further Work5.1.1 Primitive Re
ursions on Indu
tive TypesAs we have shown in se
tion 3.5, some interesting isomorphisms 
an be 
onstru
ted whenthe List type and primitive re
ursions are introdu
ed to the free distributive 
ategory
CrT s on the indu
tive type T of binary trees. Generally, we are interested in the al-gebrai
 stru
ture of the free distributive 
ategory CrTs on the �nite set T of indu
tivetypes equipped with the system S of indu
tive type isomorphisms and primitive re
ur-sions. It seems that multipli
ative inverses of non-trivial polynomial indu
tive types 
anbe 
onstru
ted. This needs more investigation.5.1.2 Constru
tion of Solvable Repla
ement-SetsThe set of all solvable repla
ement-set games 
an be 
hara
terized by the set of all prod-u
ts of 
y
lotomi
 polynomials with at most one negative 
oe�
ient. By using propertiesof 
y
lotomi
 polynomials, several ad-ho
 methods are developed to 
onstru
t some sub-sets of the set of all solvable repla
ement-sets. However, the problem of 
onstru
ting the
omplete set of all solvable repla
ement-set games is still open.
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Chapter 5: Con
lusion5.1.3 Two-Dimensional Repla
ement-Set GamesLet us 
onsider two-dimensional repla
ement-set games. For instan
e, the followingsystem of re
ursive type isomorphisms:$&% S � 1� S2 � T ;

T � 1� S � T 2 .
an be 
onsidered as the two-dimensional repla
ement-set game:t p1, 0q u Ø t p0, 0q, p2, 1qut p0, 1q u Ø t p0, 0q, p1, 2quwhere terms Sm � T n are 
hara
terized by ve
tors pm, nq for all natural numbers mand n.Our theory predi
ts that to move an initial 
he
ker from square p1, 0q to square p0, 1qby using the above repla
ement rules is possible. This 
an be proved by the fa
torization:(5.1) x� y � x� px� y2 � y � 1q � y � px2 � y � x� 1q .Also, we 
an verify it using the following 
al
ulation on types:
S � 1� S2 � T� 1� S � T � S3 � T 2� 1� T � S2 � T 2 � S3 � T 2� 2� S � T 2 � S2 � T 2 � S3 � T 2� 2� S � T 2 � S2 � T 2 � S2 � T 3 � S3 � T 2� 2� S2 � T � S2 � T 2 � S2 � T 3� 1� S � S2 � T 2 � S2 � T 3� 1� S � T � S2 � T 3� 1� S � T 2� T . 102



Chapter 5: Con
lusionHow to derive an algorithm to give a solution to a solvable two-dimensional repla
ement-set game 
ould be a further resear
h topi
. On the other hand, in order to get fa
toriza-tions su
h as (5.1), we need a polynomial division algorithm on Zrx, ys. Whether thisidea works for general 
ase needs more investigation.
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Appendix A
One-Dimensional Repla
ement-SetGames

The algorithm to solve one-dimensional repla
ement-set games is implemented in Haskellas following:-- Create : 06{02{2010-- Last Modifi
ation : 03{09{2011-- Author : Wei Chen-- Fa
ility : University of Nottingham-- Des
ription: One-Dimensional Repla
ement-Set Gamesimport Prelude hiding (min, max, drop, repeat, pred, seq)-- A. Polynomial Arithmeti
 with Integer as Coeffi
ients-- A polynomial is represented by a list of integer pairs.-- For every pair, the first 
oordinate is the 
oeffi
ient-- and the se
ond 
oordinate is the power.type Poly � [(Int, Int)℄ 104



Appendix A: One-Dimensional Repla
ement-Set Games-- polynomial additionplus :: Poly Ñ Poly Ñ Polyplus p [℄ � pplus [℄ q � qplus (x:p) (y:q)| (snd x)   (snd y) � x : plus p (y:q)| (snd x) ¡ (snd y) � y : plus (x:p) q| (snd x) �� (snd y)�if n �� 0 then plus p qelse (n, snd x) : plus p qwhere n � fst x � fst y-- polynomial subtra
tionminus :: Poly Ñ Poly Ñ Polyminus p q � plus p (zip (map (((-1)�) � fst) q) (map snd q))-- polynomial multipli
ationmult :: Poly Ñ Poly Ñ Polymult p [℄ � [℄mult [℄ q � [℄mult (x:p) q �plus (time x q) (mult p q)wheretime x [℄ � [℄time x (y:q) � ((fst x) � (fst y), (snd x) � (snd y)) : time x q-- the degree of a polynomialdeg :: Poly Ñ Intdeg � snd � last 105



Appendix A: One-Dimensional Repla
ement-Set Games-- the 
odegree of a polynomial
od :: Poly Ñ Int
od � snd � head-- the 
oeffi
ient of the highest term of a polynomialh
of :: Poly Ñ Inth
of � fst � last-- polynomial divisionquotient :: Poly Ñ Poly Ñ Polyquotient [℄ q � [℄quotient p [℄ � [℄quotient p q �if (deg p)   (deg q)| | (h
of p `mod` h
of q � 0) then [℄else plus r (quotient (minus p (mult r q)) q)where r � [(h
of p `div` h
of q, deg p - deg q)℄remainder :: Poly Ñ Poly Ñ Polyremainder p q � minus p (mult (quotient p q) q)-- B. Cy
lotomi
 Polynomials-- prime number testprime :: Int Ñ Boolprime 1 � Falseprime n � least_divisor_from 2 �� nwhere { least_divisor_from d �if d �� n | | n `mod` d �� 0 then delse least_divisor_from (d � 1) } 106



Appendix A: One-Dimensional Repla
ement-Set Games-- the number of prime divisors of a given natural numberprime_divisor :: Int Ñ Intprime_divisor 0 � 0prime_divisor 1 � 0prime_divisor n �if prime n then 1else iter 2 0where { iter d 
| d �� n � 
| n `mod` d �� 0 && prime d � iter (d � 1) (
 � 1)| otherwise � iter (d � 1) 
 }-- square-free test-- e.g. 12 is not square-free, sin
e 2^2 is a fa
tor of 12.square_free :: Int Ñ Boolsquare_free 0 � Truesquare_free 1 � Truesquare_free n �if prime n then Trueelse iter 0 1 2 nwhere { iter pre 
ur d m| pre �� 
ur � False| m �� 1 � True| m `mod` d �� 0 && prime d � iter 
ur d d (m `div` d)| otherwise � iter pre 
ur (d � 1) m }-- the Möbius Fun
tionmu :: Int Ñ Intmu n| n �� 1 � 1| square_free n � (-1) ^ (prime_divisor n)| otherwise � 0 107



Appendix A: One-Dimensional Repla
ement-Set Games-- 
y
lotomi
 polynomials by using the Möbius Fun
tionphi :: Int Ñ Polyphi n � iter 1 [(1,0)℄ [(1,0)℄where { iter d p q| d ¡ n � quotient p q| n `mod` d �� 0&& mu (n `div` d) �� 1 � iter (d � 1) (mult p r) q| n `mod` d �� 0&& mu (n `div` d) �� -1 � iter (d � 1) p (mult q r)| otherwise � iter (d � 1) p qwhere r � [(-1,0), (1,d)℄ }-- C. Constru
ting Compound Expansions-- the least element of a listmin :: [Int℄ Ñ Intmin [x℄ � xmin (x:y:p) � if x   y then min (x:p)else min (y:p)-- the greatest element of a listmax :: [Int℄ Ñ Intmax [x℄ � xmax (x:y:p) � if x ¡ y then max (x:p)else max (y:p)-- membership testmember :: Int Ñ [Int℄ Ñ Boolmember x [℄ � Falsemember x (y:p) � if x �� y then True 108



Appendix A: One-Dimensional Repla
ement-Set Gameselse member x p-- set differen
ediff :: [Int℄ Ñ [Int℄ Ñ [Int℄diff [℄ b � [℄diff (x:p) b � if member x b then diff p belse x:(diff p b)-- the base set of a multisetset :: [Int℄ Ñ [Int℄set [℄ � [℄set (x:p) � if member x p then set pelse x:(set p)-- Eu
lidean Algorithm for lists of integersgg
d :: [Int℄ Ñ Intgg
d [x℄ � xgg
d (x:p) � g
d x (gg
d p)where { g
d m n| m �� n � m| m �� 0 � n| n �� 0 � m| m   n � g
d m (n - m)| m ¡ n � g
d (m - n) n }-- multisets for 
ompound expansions-- The input is the repla
ement-set R-- satisfying that min.R   0   max.R.-- The outputs are two multisets A and B.-- satisfying that the sum of A is -1 and the sum of B is 1.109



Appendix A: One-Dimensional Repla
ement-Set Gamesegg
d :: [Int℄ Ñ ([Int℄, [Int℄)egg
d r � iter (diff (set r) [min r, max r℄)[min r℄ [max r℄ (min r) (max r)where { iter q a b x y| x �� -g && y �� g � (a,b)| -x   y � iter q a (a��b) x (x�y)| -x ¡ y � iter q (a��b) b (x�y) y| q � [℄&& (min q)   0 � iter (diff q [min q℄)[min q℄ b (min q) y| q � [℄&& (max q) ¡ 0 � iter (diff q [max q℄)a [max q℄ x (max q)| q �� [℄ � iter q a b x ywhere g � gg
d (map abs (set r)) }-- remove an element from a listdrop :: Int Ñ [Int℄ Ñ [Int℄drop x (y:p) � if x �� y then pelse y:(drop x p)-- serializationserial :: ([Int℄, [Int℄) Ñ [Int℄serial (a,b) � iter [0℄ (drop (min a) a) (drop (max b) b)(min a) (max b)where { iter l a b i j| a �� [℄ && b �� [℄ � l| a � [℄ � iter (l��[i℄) (drop (min a) a) b(i�(min a)) j| b � [℄ � iter (l��[j℄) a (drop (max b) b)i (j�(max b)) }-- the greatest 
oeffi
ient of a polynomial110



Appendix A: One-Dimensional Repla
ement-Set Gamesmax_
oef :: Poly Ñ Intmax_
oef [x℄ � fst xmax_
oef (x:y:p) � if fst x   fst y then max_
oef (y:p)else max_
oef (x:p)-- repeat a list for n timesrepeat :: [Int℄ Ñ Int Ñ [Int℄repeat l 0 � [℄repeat l 1 � lrepeat l n � l �� (repeat l (n-1))-- 
onstru
ting a polynomial from a multiset of powerspol :: [Int℄ Ñ Polypol [℄ � [℄pol (x:p) � plus [(1,x)℄ (pol p)-- the multiset of all powers of a listpow :: Poly Ñ [Int℄pow [℄ � [℄pow (x:p) � (iter (abs (fst x)) [snd x℄) �� (pow p)whereiter 1 p � piter n (x:p) � iter (n-1) (x:(x:p))-- D. Expansion and Contra
tion Sequen
es-- The inputs are a repla
ement-set and a displa
ement-- whi
h is supposed to be greater than 0.-- The output is a solution sequen
e when the game is solvable.seq :: [Int℄ Ñ Int Ñ ([Int℄, [Int℄) 111



Appendix A: One-Dimensional Repla
ement-Set Gamesseq [℄ m � error "There is no valid seq!\n"seq [x℄ m � if x ¡ 0 && m `mod` x �� 0then ([ i | i � [0..m-1℄, i `mod` x �� 0℄, [℄)else if x   0 && m `mod` x �� 0then ([℄, [ i | i � [1..m℄, i `mod` x �� 0℄)else error "There is no valid seq!\n"seq r m �if min r   0 && max r ¡ 0&& remainder [(-1,0),(1,m)℄ (minus (pol r) [(1,0)℄) �� [℄then iter 0 (serial (egg
d r)) (serial (egg
d r))else error "There is no valid seq!\n"where {iter k a b| k   m � iter (k�g) (a��h) (h��b)| otherwise �((repeat a 
) �� la, reverse ((repeat b 
) �� lb))wherel � (serial (egg
d r))g � gg
d (map abs (set r))h � (map (�(k�g)) l)u � (quotient [(-1,0),(1,m)℄ (minus (pol r) [(1,0)℄))la � pow (filter ((¡0).fst) u)lb � pow (filter (( 0).fst) u)
 � max_
oef u }-- E. Interfa
eshow_poly [℄ � "0"show_poly (x:p)| fst x �� 1&& snd x � 0 � "T^" �� show (snd x) �� iter p| fst x �� 1&& snd x �� 0 � "1" �� iter p| fst x �� -1&& snd x � 0 � " - " 112



Appendix A: One-Dimensional Repla
ement-Set Games�� "T^" �� show (snd x) �� iter p| fst x �� -1&& snd x �� 0 � " - 1" �� iter p| snd x � 0 �show (fst x) �� "T^" �� show (snd x) �� iter p| snd x �� 0 � show (fst x) �� iter pwhereiter [℄ � ""iter (x:p)| fst x �� 1&& snd x � 0 � " � "�� "T^" �� show (snd x) �� iter p| fst x �� 1&& snd x �� 0 � " � 1" �� iter p| fst x �� -1&& snd x � 0 � " - "�� "T^" �� show (snd x) �� iter p| fst x �� -1&& snd x �� 0 � " - 1" �� iter p| fst x ¡ 1&& snd x � 0 � " � " �� show (fst x)�� "T^" �� show (snd x) �� iter p| fst x ¡ 1&& snd x �� 0 � " � " �� show (fst x) �� iter p| fst x   -1&& snd x � 0 � " - " �� show (abs (fst x))�� "T^" �� show (snd x) �� iter p| fst x   -1&& snd x �� 0 � " - "�� show (abs (fst x)) �� iter pout :: [([Int℄,Poly)℄ Ñ IO()out [℄ � putStr ""out [x℄ � putStr (show (fst x))� putStr "\t" � putStrLn (show_poly (snd x))113



Appendix A: One-Dimensional Repla
ement-Set Gamesout (x:p) � putStr (show (fst x))� putStr "\t" � putStrLn (show_poly (snd x))� (out p)-- F. Main Fun
tionmove :: [Int℄ Ñ Int Ñ IO()move ms n � out (iter (seq ms n) [([℄, pol [0℄)℄)whereiter ([℄, [℄) ps � reverse psiter ([℄, (x:
s)) (p:ps) �iter ([℄, 
s)(([x℄,(plus (minus (snd p)(pol (map (�x) ms)))(pol [x℄))) : (p : ps))iter ((x:es), 
s) (p:ps) �iter (es, 
s)(([x℄,(minus (plus (snd p)(pol (map (�x) ms)))(pol [x℄))) : (p : ps))
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Appendix B
Trees-In-Zero

Following the idea in se
tion 3.5, a proof of trees-in-zero is given by the following pro-grams implemented in Haskell.-- Create : 21{04{2011-- Last Modifi
ation : 05{09{2011-- Author : Wei Chen-- Fa
ility : University of Nottingham-- Des
ription: Trees-In-Zeroimport Prelude hiding (id)-- A. Components-- unit typedata I � Unit deriving (Show, Eq, Ord)-- binary treedata T � Leaf | Node T T deriving (Show, Eq, Ord)
115



Appendix B: Trees-In-Zero-- 
oprodu
tdata Sum a b � Inl a | Inr b deriving (Show, Eq, Ord)type 1 � T 3 � Sum I (T, (T, T))type 1 � T � T 2 � T 3 � T 4 � T 5 � Sum I(Sum T(Sum (T,T)(Sum (T,(T,T))(Sum (T,(T,(T,T)))(T,(T,(T,(T,T))))))))type T � T 4 � Sum T (T,(T,(T,T)))-- B. Semiring Fun
tionss5to1_4 :: 1 � T � T 2 � T 3 � T 4 � T 5 Ñ T � T 4s5to1_4 (Inl Unit) � Inl Leafs5to1_4 (Inr (Inl a)) � Inr (a,(Leaf, (Leaf, Leaf)))s5to1_4 (Inr (Inr (Inl (a,b)))) � Inl (Node a b)s5to1_4 (Inr (Inr (Inr (Inl (a,(b,
))))))� Inr (a,(Node b 
, (Leaf, Leaf)))s5to1_4 (Inr (Inr (Inr (Inr (Inl (a,(b,(
,d))))))))� Inr (a,(b,(Node 
 d, Leaf)))s5to1_4 (Inr (Inr (Inr (Inr (Inr (a,(b,(
,(d,e)))))))))� Inr (a,(b,(
, Node d e)))s5to1_4_i :: 1 � T � T 2 � T 3 � T 4 � T 5 Ñ T � T 4s5to1_4_i (Inl Leaf) � Inl Units5to1_4_i (Inr (a,(Leaf, (Leaf, Leaf)))) � Inr (Inl a)s5to1_4_i (Inl (Node a b)) � Inr (Inr (Inl (a,b)))s5to1_4_i (Inr (a,(Node b 
, (Leaf, Leaf))))� (Inr (Inr (Inr (Inl (a, (b, 
))))))s5to1_4_i (Inr (a,(b,(Node 
 d, Leaf))))116



Appendix B: Trees-In-Zero� (Inr(Inr(Inr(Inr(Inl(a,(b,(
,d))))))))s5to1_4_i (Inr (a,(b,(
, Node d e))))� (Inr(Inr(Inr(Inr(Inr(a,(b,(
,(d,e)))))))))s1_4tol :: T � T 4 Ñ 1 � T 3s1_4tol (Inl Leaf) � Inl Units1_4tol (Inl (Node a b)) � Inr (a, (b, Leaf))s1_4tol (Inr (a, (b, (
, d)))) � Inr (a, (b, Node 
 d))s1_4tol_i :: 1 � T 3 Ñ T � T 4s1_4tol_i (Inl Unit) � Inl Leafs1_4tol_i (Inr (a, (b, Leaf))) � Inl (Node a b)s1_4tol_i (Inr (a, (b, Node 
 d))) � Inr (a, (b, (
, d)))st6l_1_4to1_t6l :: (T 6 )� � ( T � T 4 ) Ñ T � (T 6 )� � (1� T 3 )st6l_1_4to1_t6l ([℄, Inl a) � Inl ast6l_1_4to1_t6l (x, Inr (Leaf, (Leaf, (Leaf, Leaf))))� Inr (x, Inl Unit)st6l_1_4to1_t6l ((a,(b,(
,(d,(e,f))))):x, Inl g)� Inr (x, Inr (a, (b,(Node 
(Node d(Node e(Node f g)))))))st6l_1_4to1_t6l (x, Inr (a, (b, (
, Node d e))))� Inr (x, Inr (a, (b,(Node 
(Node d(Node e Leaf))))))st6l_1_4to1_t6l (x, Inr (a, (b, (Node 
 d, Leaf))))� (Inr (x, Inr (a, (b, (Node 
(Node d Leaf))))))st6l_1_4to1_t6l (x, Inr (a, (Node b 
, (Leaf, Leaf))))� Inr (x, Inr (a, (b, (Node 
 Leaf))))st6l_1_4to1_t6l (x, Inr (Node a b, (Leaf, (Leaf, Leaf))))117



Appendix B: Trees-In-Zero� Inr (x, Inr (a, (b, Leaf)))st6l_1_4to1_t6l_i :: T � (T 6 )� � (1� T 3 ) Ñ (T 6 )� � ( T � T 4 )st6l_1_4to1_t6l_i (Inl a) � ([℄, Inl a)st6l_1_4to1_t6l_i (Inr (x, Inl Unit))� (x, Inr (Leaf, (Leaf, (Leaf, Leaf))))st6l_1_4to1_t6l_i (Inr (x, Inr (a, (b,(Node 
(Node d(Node e(Node f g))))))))� ((a,(b,(
,(d,(e,f))))) : x, Inl g)st6l_1_4to1_t6l_i (Inr (x, Inr (a, (b,(Node 
(Node d(Node e Leaf)))))))� (x, Inr (a, (b, (
, Node d e))))st6l_1_4to1_t6l_i (Inr (x, Inr (a, (b,(Node 
(Node d Leaf))))))� (x, Inr (a, (b, (Node 
 d, Leaf))))st6l_1_4to1_t6l_i (Inr (x, Inr (a, (b, (Node 
 Leaf)))))� (x, Inr (a, (Node b 
, (Leaf, Leaf))))st6l_1_4to1_t6l_i (Inr (x, Inr (a, (b, Leaf))))� (x, Inr (Node a b, (Leaf, (Leaf, Leaf))))s1lto1 :: T � ( 1 � T 3 ) Ñ Ts1lto1 (Inl a) � Node a Leafs1lto1 (Inr (Inl Unit)) � Leafs1lto1 (Inr (Inr (a, (b, 
)))) � Node a (Node b 
)s1lto1_i :: T Ñ T � ( 1 � T 3 )s1lto1_i (Node a Leaf) � Inl as1lto1_i Leaf � Inr (Inl Unit)s1lto1_i (Node a (Node b 
)) � Inr (Inr (a, (b, 
)))118
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-- C. Catamorphismsltot6l_i :: 1� T 3 Ñ 1� T 3 � T 6 � (1� T 3 )ltot6l_i (Inl Unit) � Inl (Inl Unit)ltot6l_i (Inr (a,(b, Leaf))) � Inl (Inr(a,(b, Leaf)))ltot6l_i (Inr (a,(b, Node 
 d))) � Inl (Inr(a,(b,Node 
 d)))ltot6l_i (Inr (a,(b, (Node 
 Leaf))))� Inr ((a,(b,(
,(Leaf, (Leaf, Leaf))))), Inl Unit)ltot6l_i (Inr (a,(b,(Node 
(Node d Leaf)))))� Inr ((a,(b,(
,(d,(Leaf, Leaf))))), Inl Unit)ltot6l_i (Inr (a,(b,(Node 
(Node d(Node e Leaf))))))� Inr ((a,(b,(
,((Node d e), (Leaf, Leaf))))), Inl Unit)ltot6l_i (Inr (a, (b,(Node 
(Node d(Node e(Node f Leaf)))))))� Inr ((a,(b,(
,(d,((Node e f), Leaf))))), Inl Unit)ltot6l_i (Inr (a, (b,(Node 
(Node d(Node e(Node f(Node g Leaf))))))))� Inr ((a,(b,(
,(d,(e, Node f g))))), Inl Unit)ltot6l_i (Inr (a, (b,(Node 
(Node d(Node e 119



Appendix B: Trees-In-Zero(Node f(Node g(Node h i)))))))))� Inr ((a,(b,(
,(d,(e,f))))), Inr (g,(h,i)))ltot6l :: (1� T 3 ) � T 6 � (1� T 3 ) Ñ 1� T 3ltot6l (Inl (Inl Unit)) � Inl Unitltot6l (Inl (Inr (a,(b, Leaf)))) � Inr (a,(b, Leaf))ltot6l (Inl (Inr (a,(b, Node 
 d)))) � Inr (a,(b, Node 
 d))ltot6l (Inr ((a,(b,(
,(Leaf, (Leaf, Leaf))))), Inl Unit))� Inr (a,(b,(Node 
 Leaf)))ltot6l (Inr ((a,(b,(
,(d,(Leaf, Leaf))))), Inl Unit))� Inr (a,(b,(Node 
(Node d Leaf))))ltot6l (Inr ((a,(b,(
,((Node d e), (Leaf, Leaf))))), Inl Unit))� Inr (a,(b,(Node 
(Node d(Node e Leaf)))))ltot6l (Inr ((a,(b,(
,(d,((Node e f), Leaf))))), Inl Unit))� Inr (a,(b,(Node 
(Node d(Node e(Node f Leaf))))))ltot6l (Inr ((a,(b,(
,(d,(e,Node f g))))), Inl Unit))� Inr (a,(b,(Node 
(Node d(Node e(Node f(Node g Leaf)))))))ltot6l (Inr ((a,(b,(
,(d,(e,f))))), Inr (g,(h,i))))� Inr (a,(b,(Node 
(Node d(Node e(Node f(Node g 120



Appendix B: Trees-In-Zero (Node h i))))))))-- identity fun
tionid :: a Ñ aid x � x-- fun
tion 
oprodu
tadd :: (a Ñ b) Ñ (
 Ñ d) Ñ (Sum a 
 Ñ Sum b d)add f g (Inl x) � Inl (f x)add f g (Inr x) � Inr (g x)-- fun
tion produ
ttime :: (a Ñ b) Ñ (
 Ñ d) Ñ ((a, 
) Ñ (b, d))time f g (x, y) � (f x, g y)inT6List :: (1� T 3 ) � T 6 � ((T 6 )� � (1� T 3 )) Ñ (T 6 )� � (1� T 3 )inT6List (Inl a) � ([℄, a)inT6List (Inr (a, (x, b))) � (a:x, b)inT6List_i :: (T 6 )� � (1� T 3 ) Ñ (1� T 3 ) � T 6 � ((T 6 )� � (1� T 3 ))inT6List_i ([℄, a) � Inl ainT6List_i (a:x, b) � Inr (a, (x, b))
at_t6ltol :: (T 6 )� � (1� T 3 ) Ñ 1� T 3
at_t6ltol � ltot6l � (add id (time id 
at_t6ltol)) � inT6List_i
at_t6ltol_i :: 1� T 3 Ñ (T 6 )� � (1� T 3 )
at_t6ltol_i � inT6List � (add id (time id 
at_t6ltol_i)) � ltot6l_i-- D. Between Middle and Tt6ls1_4tot :: (T 6 )� � ( T � T 4 ) Ñ T121



Appendix B: Trees-In-Zerot6ls1_4tot � s1lto1 � (add id 
at_t6ltol) � st6l_1_4to1_t6lt6ls1_4tot_i :: T Ñ (T 6 )� � ( T � T 4 )t6ls1_4tot_i � st6l_1_4to1_t6l_i � (add id 
at_t6ltol_i) � s1lto1_i-- E. Between Middle and 1� T 3t6ls1_4tol :: (T 6 )� � ( T � T 4 ) Ñ 1 � T 3t6ls1_4tol � 
at_t6ltol � (time id s1_4tol)t6ls1_4tol_i :: 1 � T 3 Ñ (T 6 )� � ( T � T 4 )t6ls1_4tol_i � (time id s1_4tol_i) � 
at_t6ltol_i-- F. Main Fun
tionsmain :: T Ñ 1� T 3main � t6ls1_4tol � t6ls1_4tot_imain_i :: 1� T 3 Ñ Tmain_i � t6ls1_4tot � t6ls1_4tol_i
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