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Abstract

In recent years there has been an increased interest in working with piece-wise linear

caricatures of nonlinear models. Such models are often preferred over more detailed

conductance based models for their small number of parameters and low computa-

tional overhead. Moreover, their piece-wise linear (PWL) form, allow the construc-

tion of action potential shapes in closed form as well as the calculation of phase re-

sponse curves (PRC). With the inclusion of PWL adaptive currents they can also sup-

port bursting behaviour, though remain amenable to mathematical analysis at both

the single neuron and network level. In fact, PWL models caricaturing conductance

based models such as that of Morris-Lecar or McKean have also been studied for some

time now and are known to be mathematically tractable at the network level.

In this work we proceed to analyse PWL neuron models of conductance type. In par-

ticular we focus on PWL models of the FitzHugh-Nagumo type and describe in detail

the mechanism for a canard explosion. This model is further explored at the network

level in the presence of gap junction coupling.

The study moves to a different area where excitable cells (pancreatic β-cells) are used

to explain insulin secretion phenomena. Here, Ca2+ signals obtained from pancreatic

β-cells of mice are extracted from image data and analysed using signal processing

techniques. Both synchrony and functional connectivity analyses are performed. As

regards to PWL bursting models we focus on a variant of the adaptive absolute IF

model that can support bursting. We investigate the bursting electrical activity of

such models with an emphasis on pancreatic β-cells.
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Chapter 1

Introduction

1.1 Motivation

For centuries people have been trying to understand how the brain works, how it cre-

ates our perceptions from physical properties of our environment and controls our

reactions and actions; how different thoughts, meanings and emotions emerge due to

different actions. They have devoted their careers to the goal of understanding the

anatomical, physiological and behavioural properties of the brain. Although consid-

erable progress in many disciplines of neuroscience has been made, more work needs

to be done [217].

Due to its complex structure; the human brain forms an enormous network of one

hundred billion nerve cells densely interconnected; and because of the continuously

re-adjusting property of the network, understanding the principles of brain function is

not an easy task. This problem can only be addressed by a multidisciplinary approach

where experimental disciplines including biology, medical sciences and psychology

and more technical ones including mathematics, physics, engineering or computer

sciences join their expertise to reveal the mechanisms of the brain [217].
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CHAPTER 1: Introduction

Mathematical neuroscience is an interdisciplinary field that uses mathematics as

a main tool to model neural processes. It has both practical and theoretical appli-

cations in neurobiology and often mathematical neuroscientists work hand-in-hand

with computational and theoretical neuroscientists to explore model behaviour. To

emphasise this point we mention the landmark work of Alan Hodgkin and Andrew

Huxley on a mathematical model of the action potential. Knowing that cell mem-

branes behave like electrical circuits and that the flow of ionic current is gated by

state-dependent conductances, they expressed (and subsequently fit) the dynamics of

these gating variables (representing membrane channels) using the mathematical for-

malism of nonlinear ODEs. Their model remains the basis of most conductance based

neuron models to date. For their work, together with Sir John Eccles, the pair received

the Nobel Prize in Physiology or Medicine in 1963.

Piece-wise linear caricatures of nonlinear models have been successfully used in

various areas of the applied science ranging from biology to mechanics as means to

bring new insights into the dynamics of smooth systems or as a convenient way to

analyse them when a general set of mathematical techniques is not available. For

example, in neuroscience the McKean model may be regarded as a substitute of the

FitzHugh-Nagumo model and allows for a number of results about the existence and

stability of periodic orbits to be obtained. In mechanics, piece-wise modelling revealed

new insights into the motion of rocking blocks, models of suspension bridges or im-

pacting systems in general. From a mathematical point of view, piece-wise linear sys-

tems permit the analysis of limit cycles and their bifurcations and have been shown

numerically to support canard solutions [65].

Arguably, oscillations are a fundamental property of living systems. Such repet-

itive variation in time of the electrical membrane potential of the cell is a signature

of excitability which characterises the natural phenomena. Excitable cells such as

neurons, cardiac cells and endocrine cells generate short-lasting and repetitive events

called action potentials. In some situations the cell may be silent if its membrane po-
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CHAPTER 1: Introduction

tential is at rest, it can exhibit small amplitude (subthreshold) oscillations or it can fire

spikes periodically (spiking activity) when a strong enough perturbation drives the cell.

In other situations the cell electrical activity may alternate between a quiescient state

and repetitive spiking and it is said to be bursting [123].

The main focus of this thesis is the investigation of two types of electrical be-

haviour of excitable cells using piecewise linear caricatures of nonlinear behaviour.

The dissertation is divided in two main parts; the first part remains in a neuroscience

context and is dedicated to the analysis of a generic neuron model (PWL) with a spe-

cific type of solution (canard).

Here using a PWL caricature of the FitzHugh Nagumo model we first analyse the

model at the single-cell level using dynamical systems techniques. This type of analy-

sis has already been used in [48] by Coombes. Here the author uses the McKean model

and a PWL approximation of the Morris Lecar model to investigate the activity of a

neuron at the single cell and network level. The main distinction lies in the number

of pieces of the cubic nullcline; in the above mentioned paper there were three pieces

whereas in the model used here we added a fourth piece in order to have canard so-

lutions.

Further, using geometrical features, such as the inflection point or isochrons, we

investigate the canard phenomenon. This type of solution appears in slow-fast sys-

tems and has applications in areas like chemistry or biology. In a neuroscience con-

text the canard phenomenon plays a significant role in the generation of mixed-mode-

oscillation patterns where small and large amplitude oscillations alternate to create a

complex pattern [162].

Electrical synapses, most commonly found in the brain of invertabrates, play sig-

nificant role for visual information processing, learning and ontogenesis. Moreover,

they are thought to be involved in the synchronisation of interneurons with major

impact in the generation of neural rhythms [48]. Gap junctions also interconnect many
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CHAPTER 1: Introduction

non-neural cells, epithelial cells, smooth and cardiac muscle cells, liver cells, and some

glandular cells [17]. It seems that, within the islet of langerhans, in response to elevated

glucose level, pancreatic β-cells coordinate and synchronise their electrical activity

through gap junctions.

The analysis continues at the network level where gap junction coupled-synchronous

and splay solutions are investigated in both weak and strong coupling regimes. Again,

we follow the work of Coombes and investigate network solutions linearly coupled

on both variables. The aim is to provide a mathematical framework for the analy-

sis of coupled oscillators linearly coupled on both variables, compared to the work

of Coombes where the oscillators were coupled only on the voltage variable [48]. We

find that results from the strong coupling regime are consistent with the ones from the

weak coupling regime.

Second part of the thesis is focused on the analysis of another excitable cell, namely

pancreatic β-cell. Motivated by the similarities found between the electrical activities

of nerve cells and pancreatic beta cells we investigate the calcium traces obtained from

image data of pancreatic β-cells of mice. We use statistical signal processing tools such

as Fourier analysis or wavelet analysis to investigate the synchronous behaviour and

functional connectivity between the cells. Last part of the thesis is dedicated to a

numerical investigation of bursting electrical activity using PWL models with an em-

phasis on pancreatic β-cells.

1.2 Outline of the thesis

Here we briefly present the outline of the thesis.

Chapter 2

We discuss the central nervous system, neurons and their forms of communication

4



CHAPTER 1: Introduction

with an emphasis on gap junctional coupling. In a mathematical context we briefly

introduce the language of dynamical systems and summarise the main facts about

piece-wise linear systems. We also discuss some common single neuron models in

mathematical neuroscience.

Chapter 3

Here a particular piece-wise linear model is introduced which supports a canard solu-

tion. We show why piecewise linear models with three pieces can not exhibit canard

solutions and then using geometrical techniques we explain the canard phenomenon

in a piecewise linear model with four pieces. We find solutions in closed form and

using Floquet theory we determine their stability. Further we compute isochrons

for such models which show a complicated structure similar to the one revealed by

Hodgkin-Huxley like models. Being analytically tractable, we are able to construct

phase response curves for such models (which will be used in the next chapter).

Chapter 4

In this chapter we continue the analysis of piece-wise linear model at the network

level. We study both synchronous and splay solutions in the weak and strong cou-

pling regime. We provide an overview of weak coupling theory; construct the phase

interaction function and determine the stability of synchronous and splay states. In

the strong coupling regime we use Floquet theory to determine stability of the syn-

chronous solution and a phase-density formalism to determine stability of the splay

state.

Chapter 5

Here we focus on pancreatic β-cells, namely their description and the mechanisms

involved in the insulin secretion phenomenon. We also introduce the main bursting

models encountered in this area. Further the statistical signal processing tools used in

a subsequent coupling analysis are introduced. This chapter ends with a discussion
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of synchrony measures, cluster algorithms and connectivity methods used in a later

chapter.

Chapter 6

In this chapter we analyse Ca2+-signals from pancreatic β-cells in mice. After present-

ing the methodology used to obtain such signals we use a mathematical formalism

based on statistical estimates to extract them. Further, an organisational structure of

the data-set is investigated through a cluster analysis. Using parameter-free metrics

based on inter spike intervals and events we look for synchronous behaviour within

the data. We end the study with an investigation of directionality within the data

using a Granger causality measure.

Chapter 7

In this chapter we numerically investigate bursting electrical activity using piece-wise

linear systems. Here, using the AIF model driven by a sinusoidal external force, we

study the functional characteristics of the bursting cell such as: the spike count, the

onset time of a burst, the plateau fraction and the bursting period. We also look at

mode-locked behaviour and construct the Arnol’d tongue structure. Based on the

role of gap junction coupling and noise on the insulin secretion phenomena in pan-

creatic β-cells we use the AIF model to quantify the effects of these on the firing rate

of cell. Further, we use the inter spike interval-distance measure (ISI) to quantify the

synchronous behaviour between two bursting cells, coupled by gap junctions as the

external periodic force parameters are varied.

Chapter 8

The last chapter of this thesis summarises my findings. The contributions from the first

part of this thesis were published in SIAM Journal of Applied Dynamical Systems [189].
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Chapter 2

Background-Part I

In this chapter we briefly introduce the relevant theory for the thesis. We start with

a few words about the central nervous system (CNS), neurons, the basic units, the

action potential and neuronal forms of communication with a focus on gap junction

coupling. Further, the language of dynamical systems will be used in the context

of neuroscience, followed by a brief introduction to piece-wise linear (PWL) models

(basic definitions, classification, structural stability and specific bifurcations) and the

main spiking neuron models found in the literature.

2.1 Neuronal Structure and Function

The Nervous System and the Basic Unit

The nervous system is composed of the brain and the spinal cord which make up

the CNS and the nerves, forming the peripheral nervous system (PNS), which connects

the CNS with the other organs of the body. The human brain is a complexly organised

tissue composed of living cells and occupies a volume of about 1350 cm3. It contains

up to 100 billion neurons connected to each other in a complicated pattern and with

7
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Figure 2.1.1: Structure of a typical neuron. Neurons are nerve cells that trans-

mit nerve signals to and from the brain at up to 200mph. Dendrites can occupy

up to 90% of the cell volume and have a large branching structure. They pro-

vide contact point for synaptic input. The axon is the ‘output’ line and can

regeneratively propagate an action potential to other cells. The myelin sheath

acts as a form of electrical insulation and gives the colouration in the term

‘white-matter’.

an estimated number of connections somewhere between 10 and 100 trillion [18,88].

The first magnified view of the nerve cells was achieved back in 1674 by the Dutch

scientist Anton van Leeuwenhoek. Back then, lenses and microscopes were unable to

provide a detailed microscopic investigation of nerve cells. Only later, in the late 18th

century, when low-distortion light microscopes were invented, did this became pos-

sible. The Spanish anatomist Santiago Ramón y Cajal was the first to explore neuronal

morphology, and conclude that neurons are the basic processing units in the CNS [18].

There are two broad classes of cells in the nervous system: neurons, which pro-

cess information, and glia, which provide the neurons with mechanical and metabolic

support. Among neurons, there are three categories commonly recognised: receptors,

8
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which act to encode sensory information, interneurons, which serve to process infor-

mation and effectors or motor neurons, which send signals to the muscles and glands of

the body [12,18,88].

‘There is no such thing as a typical neuron’, [12] but, as we can see in figure 2.1.1, it

contains three functionally distinct parts: the cell body or soma, dendrite and the axon.

Each of these regions has a distinct role to play in the generation of signals and the

transmission of signals between nerve cells [129]. The soma or the cell body is the ‘central

processing unit’ that provides an important non-linear processing step: if the total

input exceeds a certain ‘hidden’ threshold, then an output signal is generated. This

signal is delivered to the other neurons by the ‘output device’ called the axon. The

axon makes an average of two hundred synaptic connections with other neurons per

mm of length while the dendritic tree receives, on average, two synaptic inputs per

µm [59]. The dendrites play the role of the ‘input device’ that gathers signals from other

neurons and transmits them to the soma [88].

On the basis of ‘shape’ or morphology, neurons are classified into three large

groups (see figure 2.1.2): unipolar - dendrite and axon emerging from same process;

bipolar - axon and single dendrite on opposite ends of the soma and multipolar - more

than two dendrites.

Action Potential

Emil Du Bois-Reymond, the founder of electrophysiology, was the first person to

record an electrical potential from a nerve cell by measuring what he termed an injury

potential, the voltage between an intact region of the cell’s surface and a region of the

cell in which the membrane had been broken [17].

Nerve cells, like all living cells, maintain an electrical potential difference across

their outer membrane. At rest, the cytoplasm of the interior of the cell is more nega-

tive than the extracellular fluid outside the cell membrane. This is the resting potential.

9
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Figure 2.1.2: Some examples of neuronal morphologies. For example, the

Purkinje cell has a highly branched planar dendritic tree which is almost space-

filling. Sensory neurons or bipolar neurons carry messages from the body’s

sense receptors (eyes, ears, etc.) to the central nervous system. They account

for 0.9% of all neurons. Motorneurons or multipolar neurons carry signals

from the CNS to muscles and glands. They account for 9% of all neurons [69].

Apart from the resting potential there are another two types of electrochemical events,

local potentials (LP) and action potentials (AP), all arising from similar biophysical pro-

cesses [18].

Generally, APs occur in cells whose membrane contains voltage-gated ion chan-

nels and which are said to be electrically excitable. The AP is the standard event by

which information is transmitted between distant points within the nervous system.

Usually, an AP is triggered in the axon hillock at the junction between cell body and

axon and from there it spreads down the axon. An AP is an all-or-none event; either

it occurs or it does not. All APs are of about the same size making their occurrence

to be the information carrier. They are a short impulse (less than 1ms) and undergo

propagation along the axon [18].

10
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There are two main types of voltage-gated ion channels which are important in

the generation mechanism of the AP: Na+ and K+ channels. These channels are shut

when the membrane potential is near the resting potential of the cell, but they rapidly

begin to open if the membrane potential increases to a pre-defined threshold value. If

the channels are open, then the Na+ ions flow into the cytoplasm creating a change in

the electrochemical gradient. This change, in turn, causes a further rise in the mem-

brane potential, leading to the opening of more channels and production of a greater

current. The process takes place until all of the available ion channels are open, result-

ing in a large upswing in the membrane potential. The influx of Na+ ions takes place

until the polarity of the plasma membrane reverses. At this point the Na+ ion chan-

nels close, Na+ ions can no longer enter the neuron, ending the depolarization period

of the AP. K+ channels are then activated, and after the resting potential is reached,

the hyperpolarization period starts. There is an outward current of K+ ions, returning

the electrochemical gradient to the resting state. After an AP has occurred, there is a

transient negative shift, called the absolute refractory period, due to additional potas-

sium currents. The absolute refractory period lasts during the falling phase of the AP

at a time when the Na+ conductance is inactivated and when the K+ conductance is

high. At this time it is impossible to elicit another AP. Following the absolute refrac-

tory period is the relative refractory period, when it is possible to elicit another AP, but

greater depolarization than normal is required (the threshold is increased) because

the Na+ inactivation has not been completely turned off and K+ conductance is still

increased [34].

Spiking and Bursting Electrical Activity

The information-processing abilities of neurons lie in their ability to produce APs,

or spikes. Some cells, such as the pacemaker cells exhibit an intrinsic oscillatory be-

haviour; other cells need to be perturbed above a certain threshold to elicit such repet-

itive APs in what we name spiking electrical activity. Certain neurons under certain

conditions may exhibit the phenomenon of bursting, in which long periods of quies-
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Figure 2.1.3: Spiking and bursting electrical activity: Left panel shows an

example of spiking activity whilst the right panel shows an example of the

bursting electrical activity

cence are interrupted by a rapid firing of several spikes and a subsequent return to the

quiescent state.

Forms of Intercellular Communication

By the end of the nineteenth century, it was recognised that the transfer of infor-

mation from one neuron to another occurs at specialised sites of contact. In 1897, En-

glish physiologist Charles Sherrington gave these sites their name: synapses. Synapses

are generally directional in function, with activity at the endfoot of the presynaptic

cell affecting the behaviour of the postsynaptic cell. The average neuron forms about

1,000 synaptic connections and receives even more, perhaps as many as 10,000 con-

nections. Many of its axonal branches end in the direct vicinity of the neuron, but the

axon can also stretch over several centimetres so as to reach to neurons in other areas

of the brain [88].

The transfer of information is achieved, either by means of the passage of electri-

cal current (produced by the movement of ions), through electrical synapses, or by the

release of chemical transmitters from the presynaptic neuron onto the postsynaptic

target, through chemical synapses. In mammals, chemical synapses predominate, but

there is evidence of electrical ones in some parts of our nervous systems, such as the

retina of the eye [18].

12
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Presynaptic

Cell Postsynaptic

Cell

Connexon

Postsynaptic
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Presynaptic

Cell
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Figure 2.1.4: The difference between an electrical and chemical synapse is

the way conduction is passed from one cell to another. (a) Electrical synapses

occur mainly in cells such as the cardiomyocytes that make up the heart mus-

cle. (b) Chemical conduction occurs mainly in the nervous system at the ter-

minals of nerve fibres [7,229].

The chemical synapse is the most common type of synapse in the vertebrate brain.

The axon terminal comes near to the postsynaptic neuron, leaving only a tiny gap be-

tween pre- and postsynaptic cell membranes, called the synaptic cleft. When an AP

arrives at a synapse, it activates a complex chain of biochemical processing steps that

lead to a release of neurotransmitter from the presynaptic terminal into the synaptic

cleft. After the transmitter molecules have reached the postsynaptic side, they are de-

tected by specialised receptors in the postsynaptic cell membrane and open specific

channels that allow ions to flow into the cell. This causes a change of the membrane

potential at the postsynaptic site so that, consequently, the chemical signal is trans-

formed into an electrical response [88].

Electrical synapses (figure 2.1.4, left panel) are more commonly found in the brain

of invertebrates and their physical nature was argued for almost a century until in 1959

when Edwin Furshpan and David Potter, Harvard University physiologists who were

studying the nervous system of crayfish, prove their existence [17].

Electrical synapses are relatively simple in structure and function and allow the

direct transfer of ionic current from one cell-called the presynaptic cell, to the next cell,

called the postsynaptic cell. Also known as gap junctions due to the fine gap between the
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Figure 2.1.5: An electrical synapse is a mechanical and electrically conductive

link between two abutting nerve cells that is formed at a narrow gap between

the pre- and postsynaptic cells known as a gap junction. Each gap junction

contains numerous gap junctions channels which cross the membranes of both

cells. With a lumen diameter of about 1.2 to 2.0nm, the pore of a gap junction

channel is wide enough to allow ions and even medium sized molecules like

signalling molecules to flow from one cell to the next thereby connecting the

two cells’ cytoplasm.

two cells involved in the process, they are thought to be involved in the synchronisation

of interneurons such as the rhythmic patterns of activity in mammalian neocortex or

hippocampus [88]. It is clear that gap junctions play a substantial role in the generation

of neural rhythms, both functional [9,19,116], and pathological [71,230] and that they may

sub serve system level computations [155].

The precise roles of electrical synapses vary from one brain region to another. Gap

junctions between neurons are particularly common during early embryonic stages.

Evidence suggests that during brain development, gap junctions allow neighbour-

ing cells to share both electrical and chemical signals that may help coordinate their

growth and maturation. Gap junctions also interconnect many non-neural cells, ep-

ithelial cells, smooth and cardiac muscle cells, liver cells, and some glandular cells [17].

They are found in areas such as the vestibular nucleus, nucleus of terminal nerve, cerebel

cortex of vertebrates, spinal cord [184], thalamus [118], cerebellum and between Purkinje

neurons and Bergmann glial cells (astrocytes) [214]. Gap junctions occur in the heart,
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where they are thought to be particularly important in cardiac muscle: the signal to

contract is passed efficiently through gap junction, allowing the heart muscle cells to

contract in tandem [214]. Electrical synapses are present exclusively between GABAer-

gic interneurons [109]. Furthermore, retina is another area where neurons show exten-

sive coupling, both within the population of one cell type and between different cell

types, where it is thought that electrical synapses are abundant [19,84].

Apart from the nervous system and the cardiovascular system, it has been proved

that gap junctions are also found in the endocrine system. Pancreatic β-cells form a

well-communicating multicellular network that permits a co-ordinated and synchro-

nised signal transmission within the islet of Langerhans. This multicellular system

is highly coupled and exhibits complex spatiotemporal electrical activity in response

to elevated glucose levels. The emergent properties of islets, which differ from those

arising in isolated cells, are believed to arise in part by gap junctional coupling [20,180].

Isolated β-cells exhibit different electrical activity; some cells are electrically ‘silent’

and others continuously ‘bursting’ at any given glucose concentration. This variabil-

ity of electrical behaviour is believed to be due to an inability of quiescent cells to

clamp the membrane potential of other β-cells with low stimulation threshold. This

leads to a reduction of insulin release in isolated cells compared with the ones in the

intact islets. Furthermore, when cellular connections are detached or defective within

the islet, insulin secretion is greatly reduced. Thus, cell communication within the

islets of Langerhans mainly mediates signal synchronisation and leads to a more ef-

fective insulin release [20,180,186]. Otherwise, these differences in the electrical activity

may arise due to the existence of two different sets of connexin mediating intercellular

connections. Usually, connexin 36 in native islets and connexin 32 in transgenic cells,

provide different junctional conductances which can change synchrony, duration of

bursts, and electrical pattern of the islet network [180].

There are several mechanisms that control cell to cell communication within pan-

creatic islets, but the one mediated by gap junctions is believed to be fundamental for
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the engagement and synchronisation of insulin-secreting cells. Gap junctions improve

cell contacts and establish transmission pathways across the islet of Langerhans, al-

lowing for cell-to-cell interaction [180]. Different studies were performed to establish

the main path of communication between β-cells. Most of them conclude that pan-

creatic β-cells communicate via electrical coupling, the dye coupling being more re-

stricted and possibly much more limited for selected molecules [180]. Moreover, there

is evidence to support the agreement between the high incidence of electrical coupling

and the high degree of synchronisation of bursting electrical activity (BEA) through-

out the islet [175].

At a gap junction, the membranes of two cells are separated by only about 3nm,

and this narrow gap is spanned by clusters of special proteins called connexins. Six

connexins combine to form a channel called connexon, and two connexons (one from

each cell) combine to form a gap junction channel [17] (figure 2.1.5). Different connexins

assemble to form junctions that differ in single channel conductance, gating, perme-

ability depending on both size and charge, and temporal and spatial patterns of ex-

pression [38,107,193]. The channel allows ions to pass directly from the cytoplasm of one

cell to the cytoplasm of the other. The pore of most gap junction channels is relatively

large with a diameter around 1− 2nm, big enough not only for flow of electric cur-

rent, largely carried by K+ ions, but also for all the major cellular ions and many small

organic molecules, to pass through. These channels provide a low resistance (high

conductance) pathway for electrical current to flow between the two cells, equally

well in both directions, with little or no voltage or time dependence. Therefore, unlike

the vast majority of chemical synapses, electrical ones are bidirectional [17,89,129]. Thus,

some of the current injected in the presynaptic cell flows through these channels into

the postsynaptic cell, deposits a positive charge on the inside of the membrane of the

postsynaptic cell and depolarises it. It then flows out through resting ion channels

in the postsynaptic cell. If the depolarization exceeds threshold, voltage gated ion

channels in the postsynaptic cell will open and generate an AP [129].
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The latency, the time between the presynaptic spike and the postsynaptic poten-

tial, is remarkably short. The synaptic delay for a chemical synapse is typically in

the range 1− 100ms, while the synaptic delay for an electrical synapse may be only

about 0.2ms. Such a short latency is incompatible with chemical transmission, which

requires several biochemical steps: release of a transmitter from the presynaptic neu-

ron, diffusion of the transmitter to the postsynaptic cell, binding of the transmitter to

a specific receptor, and subsequent gating of ion channels [129].

2.2 Mathematical Neuroscience

Studying the central nervous system, including the brain or the spinal cord etc. is

a major scientific challenge. Neuroscientists are now using a wide range of tools to

tackle this problem. These include electrophysiology, neuropharmacology, anatomy,

magnetic resonance imaging (MRI), positron emission tomography (PET), conformal

microscopy, electroencephalography (EEG), magnetoencephalography (MEG), volt-

age sensitive dyes and more recently computational modelling. These techniques

have been combined in various ways to help determine how the brain develops, how it

computes, and how to treat neurological and psychiatric disorders (such as Alzheimer’s,

Parkinsonian tremor, depression, etc.), say with the novel technique of deep brain

stimulation. Moreover, Mathematics is another tool increasingly being used to explain

the fundamental mechanisms responsible for experimentally observed behaviour in

neural systems.

Dynamical Systems

A dynamical system consist of a set of variables that describe its state and a law

that describe the evolution of the state variables with time (i.e. how the state of the

system in the next moment of time depends on the input and its state in the previous

moment of time). Using notions such as equilibria or stability one can build phase
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portraits of the systems which can provide very useful information about the system

without knowing all the details that govern the system evolution.

Bifurcation Theory

Bifurcation theory is the study of how phase portraits of families of dynamical

systems change qualitatively as parameters of the family vary. The solution of a dy-

namical system is called a trajectory or an orbit. A fixed point, or equilibrium state, is

an orbit which is constant in time. A periodic solution (orbit) is a trajectory which after

a finite time, the period, comes back to its initial point. A Andronov-Hopf bifurcation

is a local bifurcation where the fixed point of the dynamical system loses stability as a

pair of complex conjugate eigenvalues of the linearised system around the fixed point

crosses the imaginary axis of the complex plane (from negative to positive), leading

to the appearance of a new branch of periodic solutions from a branch of fixed points.

A saddle node bifurcation is a local bifurcation in which two fixed points of a dy-

namical system collide and annihilate each other. A homoclinic bifurcation is a global

bifurcation which often occurs when a periodic orbit collides with a saddle point.

Isochrons

Oscillations are a fundamental property of living systems. From the internal clock

of fireflies, whose entrainment was observed in certain parts of South East Asia by the

biologist John Buck in 1960, to the complexity of biochemical reactions in a single

cell, repetitive biological activities are ubiquitous through the plant and animal king-

doms [83]. Such biological oscillators have been successfully modelled using ordinary

differential equations for a long time. An effective technique for analysing oscillators

is the reduction to a phase model, with a single variable describing the phase of the

oscillation with respect to some reference state. Using this reduction, in dimensional-

ity and complexity, the important features of the system are maintained. Moreover, it

can provide a useful understanding of oscillator dynamics.
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The reduction to a phase model is based on the notion of isochrons of the oscillator

for the system. Isochrons are sets in phase space that correspond to solution trajecto-

ries that asymptotically approach a stable periodic orbit of the oscillator at identical

phases. They are defined relative to the attractive periodic orbit and are valid only for

points in the basin of attraction of the orbit. Using isochrons one can explore further

the phase plane from a geometrical point of view. We are able to identify regions in the

phase space where trajectories spend more time compared to other regions. This clas-

sification of the phase space can help to determine the minimal or the suitable strength

and direction of perturbation to form a phase synchronisation [10].

We first consider the definition of an asymptotic phase and of an isochron. Con-

sider an autonomous N-dimensional vector field

dx
dt

= F(x), (2.2.1)

with solutions x = x(t) that satisfy x(0) = x0 ∈ RN where RN is the phase space of

system (2.2.1). With F sufficiently smooth, the vector field (2.2.1) induces a flow Φ :

R×RN →RN with Φ(t, x0) = Φt(x0). Further, we assume that (2.2.1) has a periodic

orbit Γ with period TΓ and Γ is a hyperbolic attractor (all Floquet multipliers of Γ

lie inside the complex unit circle, except for the trivial multiplier 1 associated with

the direction tangent to Γ). Let γ0 ∈ Γ be the point where the phase is zero; γ0 is

typically chosen as the global maximum of Γ with respect to the first coordinate. Then

Γ = {Φ(t,γ0)|0≤ t < TΓ} and a point γt = Φ(t,γ0) has phase θ(γt) = t/TΓ. The phase

θ(γt) takes values in [0,1) [170].

Isochrons are closely related to an extended notion of phase that is also defined

for points that do not lie on Γ:

Definition 2.2.1 Let x0 ∈ RN be an initial condition for (2.2.1) that lies inside the basin of

attraction of Γ. Then the unique asymptotic phase θ(x0) of x0 is given by the condition

lim
t→∞
‖Φ(t, x0)−Φ(t + θ(x0)TΓ)‖ = 0. (2.2.2)
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Figure 2.2.1: Example of isochrons: Stable limit cycle (black curve) with a few

isochrons. As time approaches the infinity the red dot on the isochron will end

up on the limit cycle (black dot). We say: the red and back dots are on the same

isochrons

Hence, the orbit through x0 converges asymptotically to Γ in the sense that it will be in phase

with the point Φ(θ(x0)TΓ,γ0) on Γ.

The asymptotic phase is only defined for points x0 ∈ RN that lie in the basin B(Γ) of

Γ. Here, B(Γ) is the entire phase space, with the exception of the unstable equilibria.

Definition 2.2.2 An isochron I is a level set of the asymptotic phase function θ : B(Γ) ⊂

RN → [0,1), that is, the collection of all points in the basin of attraction of Γ with the same

asymptotic phase (see figure 2.2.1). We tend to associate isochrons with their corresponding

phase points on Γ. In fact, for γ ∈ Γ,

I(γ) = {x0 ∈ B(Γ)|θ(x0) = θ(γ)}. (2.2.3)

More details about isochrons can be found in [170,233].

Remarks: Due to I(γ) being a level set of the asymptotic phase θ, the gradient5θ(γ)

evaluated at the base point γ is perpendicular to the tangent of I(γ) at γ. This gradient

is typically referred as the phase response curve (PRC), which will be introduced and

investigated in more detail in the next section.

Isochrons for a stable periodic solution cannot be calculated analytically, except

for simple cases where the vector field is described by functions independent of the

20



CHAPTER 2: Background-Part I

angle which defines the phase of the oscillator. Usually, they are computed using nu-

merical approximations. As for the infinitesimal PRC, which gives information about

the timing of the next spike after an small perturbation, they are approximated linearly

in the neighbourhood of the periodic orbit. Recently, interest has shifted to studying

the effect of larger perturbations on oscillators. Hence, it is necessary to know about

global isochrons, that is, isochrons extended into the full basin of attraction rather than

just a neighbourhood of the periodic orbit. The basic numerical approach is to start at

the periodic orbit and integrate backwards, using small enough steps and extending

the local approximation to larger regions of phase space. This method was first in-

troduced by Winfree and later implemented by Izhikevich [123]. Motivated by the fact

that the use of backward integration can be very sensitive, especially for systems with

multiple time scales, Osinga et. al. [170] introduced a new method to compute global

ischrons, based on the continuation of a two-point boundary value problem.

Phase Response Curve

Neurons are often modelled by systems of differential equations. A typical be-

havioural pattern of neurons is periodic spiking which corresponds to the presence

of stable limit cycles in the dynamical systems model. It is widespread practice in

neuroscience to characterise a neuronal oscillator in terms of its phase response to a

perturbation. This gives rise to the notion of a so-called phase response curve (PRC)

which can be calculated in three main ways, attributed to Winfree, Kuramuto and

Malkin [123]. The phase response curve describes the reaction of the spiking neuron to

an input pulse at each point of the cycle. When a neuron is firing a train of spikes

(APs), a short input pulse can modify the ongoing spike train. Even if the incoming

pulse is purely excitatory, depending on the model and the exact timing of the pulse, it

can either speed up or delay the next action potential. This affects properties of networks

such as synchronisation and phase locking.

The PRC quantifies the effect of an input pulse at a given point of the orbit on the
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following train of APs. If an input pulse does not affect the spike train, the period is

unchanged, and the PRC at that point of the curve is zero. If the input pulse delays

the next spike, the period increases, and the PRC is negative; if the pulse speeds up

the next spike, the PRC is positive. The PRC can be used to compute the effect of

any perturbing influence on the curve if the perturbation does not essentially change

the dynamics pattern of the neuron (it should not move the state of the neuron into a

domain of attraction different from that of the spiking orbit) [93].

Assuming weak perturbations, PRCs can be classified into type I and type II. In

type I, the phase is only advanced by a small depolarisation produced by excitatory

postsynaptic potentials, whereas, in type II either an advance or delay could be pro-

duced depending upon the timing of the perturbation. A small hyperpolarisation

similarly produces only delays in Type I PRCs but can produce either an advance or

delay in Type II [106].

Another point of view, when classifying PRCs, was introduced by Ermentrout [73],

which emphasised the analogy between Type I and Type II membrane excitability

and PRCs types. The membrane excitability type is defined by the bifurcation which

leads to the creation of the periodic solutions. Therefore, PRC Type I are associated

with SNIC bifurcations and Type II with Andronov-Hopf-like bifurcations [98]. The

second classification scheme is based on the assumption of strong perturbation and is

associated with the notion of global isochron, and will not be presented here (see [98]

for further discussion).

Two notions are used in the literature to characterise the responses of neurons to

transient inputs: the phase response curve and the phase resetting curve. Suppose

that a neuron is firing regularly with an interspike interval Told. The PRC measures

the degree to which the time of the next spike of a neuron is changed when it is briefly

stimulated at different times in the firing cycle. Let t denote the time since the last

spike and Tnew denote the time of the next spike after the stimulus. Then, the PRC is
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given by

PRC =
Told − Tnew

Told

[99]. (2.2.4)

Currently, there are two ways to compute PRCs. The simplest one, based on sim-

ulations, uses the definition given by equation (2.2.4); each time after perturbing the

limit cycle with a small input, the delay of the next spike is measured. This method

has the advantage of not requiring any special software (only a good time integrator is

needed). Moreover, it can be used for arbitrarily large perturbations, even if the next

spike would be delayed by more than the period of one cycle in which case the term

delay might be confusing.

The other one solves the adjoint equation to the dynamical system that describes

the activity of the neuron. The mathematical basis of this approach goes back to

Malkin [123]. This method is mathematically better defined and more general than the

simulation method because it does not use the notion of a spike. It is also more re-

stricted because it does not measure the influence of a real finite perturbation but

rather a linearisation of this effect that becomes more accurate if the perturbation gets

smaller.

There are some limitations which constrain the accuracy of the method based on

backward integration, as in [73]. First, the adjoint Jacobian of the dynamical system is

not available analytically and it has to be approximated by finite differences from a

previously numerically computed discretised form of the orbit. Second, the integra-

tion of the equations produces the usual numerical errors.

Malkin’s method

Consider a dynamical system ż = F(z) with a T-periodic solution Z(t) = Z(t + T)

and an infinitesimal perturbation ∆z0 to the trajectory Z(t) introduced at time t = 0.

This perturbation evolves according to the linearised equation of motion:

d∆z
dt

= DF(Z(t))∆z, ∆z(0) = ∆z0, (2.2.5)
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where DF(Z) denotes the Jacobian of F evaluated along Z. Introducing a time-dependent

phase shift ∆θ as θ(Z(t) + ∆z(t))− θ(Z(t)) we obtain

∆θ = 〈Q(t),∆z(t)〉, (2.2.6)

where 〈·, ·〉 defines the standard inner product, and Q =∇Zθ is the gradient of θ eval-

uated at Z(t).

Taking the time derivative of the above equation, we obtain〈
dQ
dt

,∆z
〉
= −〈Q,

d∆z
dt
〉 = −〈Q,DF(Z)∆z〉 = −〈DFT(Z)Q,∆z〉. (2.2.7)

Since the above equation must hold for arbitrary perturbations then the gradient Q =

∇Zθ satisfies the linear equation

dQ
dt

= D(t)Q, D(t) = −DFT(Z(T)), (2.2.8)

subject to ∆Z(0)θ · F(Z(0)) = 1/T and Q(t) = Q(t + T). The first condition ensures

θ̇ = 1/T (at any point on the periodic orbit), and the second gives periodicity. The

(vector) PRC, R, is related to Q according to R = QT.

Analysis Software

Unless stated otherwise, the analysis of dynamical systems (bifurcation diagrams,

phase planes and PRCs) presented throughout the thesis was performed using the

software package XPPAUT (http://www.math.pitt.edu/˜bard/xpp/xpp.html).

2.3 Piece-Wise Linear Models

2.3.1 Mathematically Tractable Neuron Models

Many natural phenomena are subject to nonlinear dynamics. For instance, in areas

such as fluid dynamics, celestial mechanics, population biology, cardiac dynamics or
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neuroscience, the mathematical interpretation of the process is given by a nonlinear

dynamical system. However, there are situations where in order to get analytically

tractable models one has to resort to the approximation of the nonlinearity using piece-

wise linear systems (PWL) [82,105].

In fact, PWL are very common in applications from electrical engineering, con-

trol theory, or mechanics. For example, in biology, integrate-and-fire type systems can

be used to model neural dynamics or in economics discrete time PWL systems can

describe the dynamics of the stock price. Mechanical engineers study stick-slip os-

cillations in systems with dry friction and the dynamics of impact phenomena with

unilateral constraints. Electrical circuits contain diodes and transistors, which ideally

behave in a non-smooth way. Control theorists have to deal with switching control

laws. Similar problems of switching systems arise in air traffic management, economic

models of markets and scheduling of automated railway systems [27,81,82,105,150].

Many real-world systems involve a discontinuity or sudden change which can

not be modelled using smooth dynamical systems. In these situations it becomes nec-

essary to incorporate a non-smooth component into the model. From a mathematical

viewpoint, problems of this kind are not easy to handle, since the resulting models are

dynamical systems whose right-hand sides are not continuous or not differentiable.

Moreover, in many cases the solutions have to adjust to additional restrictions that

can appear in the form of inequality constraints. This means that an extension of the

differential equations concept is needed to describe discontinuous behaviour [150,152].

The dynamics of non-smooth systems is a relatively young research field with

an increased interest in the past decades as modern engineering applications require

the PWL modelling of a wide range of problems. While PWL models are the natural

extension of the linear ones in order to understand the richness of complex phenomena

in the nonlinear world, they can also turn out to be the most accurate models in some

realistic applications [81,152].

25



CHAPTER 2: Background-Part I

Studies of piecewise-smooth systems prior to about twenty years ago are quite

rare. Perhaps this is because the 1970s and 80s saw significant advances in the theory

of smooth dynamical systems, such as an understanding of chaos. Several works have

been devoted to introducing the mathematical basis of non-smooth dynamical sys-

tems using various approaches, each good for different purposes [105]. The basic meth-

ods of qualitative theory are established and developed in the book by Di Bernardo

et.al. [65].

The behaviour of systems described by smooth vector fields has a long and im-

posing history, yet an understanding of the dynamics of systems that are not smooth is

still in its infancy. For instance, self-sustained oscillations are characteristics of nonlin-

ear autonomous dynamical systems, which appearance can be explained by the Hopf-

like bifurcation theorem if the vector field is sufficiently smooth. However, for PWL

systems the same mechanism cannot be implied since such systems are not smooth (in

fact, the equilibrium eigenvalues can have a discontinuous evolution as the bifurca-

tion parameter is moved) [66,81].

2.3.2 Literature Survey on PWL Systems

Definitions

The phase space of a piecewise smooth system can be divided into several regions

associated with different functional forms of the system vector field. Within every

region of the phase space, the dynamics can be very simple but the global dynamics

can be of great complexity and even chaotic [66,82].

Definition 2.3.1 A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi(x,λ), for x ∈ Ri, (2.3.1)

where ∪iRi =D ⊂Rn and eachRi has a non-empty interior. The intersection Σij = R̄i ∩ R̄j
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is either an Rn−1-dimensional manifold included in the boundaries ∂Ri and ∂Rj, or is the

empty set. Each vector field Fi is smooth in both the state x and the parameter λ, and defines a

smooth flow φi(x, t) within any open set U⊃Ri. In particular, each flow φi is well defined on

both sides of the boundary ∂Rj
[65].

A non-empty border between two regions Σij will be called a discontinuity set, discon-

tinuity boundary or, sometimes, a switching manifold.

Definition 2.3.2 The degree of smoothness at a point x0 in a switching set Σij of a piecewise-

smooth ODE is the highest order r such the Taylor series expansions of φi(x0, t) and φj(x0, t)

with respect to t, evaluated at t = 0, agree up to terms of O(tr−1). That is, the first non-zero

partial derivative with respect to t of the difference [φi(x0, t)− φj(x0, t)] |t=0 is of order r [65].

Remark: If we say that a piecewise-smooth flow has degree of smoothness r across a

discontinuity boundary, then it is Cr−1 but not Cr. The vector field is one degree less

smooth (because is by definition the time derivative of the flow).

Definition 2.3.3 We say that a point x = x∗ is an admissible fixed point of the system 2.3.1

if, for i = 1 or i = 2, x∗ = Fi(x∗,λ) and x∗ ∈ Rj with j = i. We say instead that x = x̃ is a

virtual fixed point of (2.3.1) if x̃ = Fi(x̃,λ) and x̃ ∈ Rj with i 6= j. [65]

Classification of non-smooth dynamical systems

There have been few attempts to classify piecewise linear systems. Such systems fall

into three broad and overlapping classes: non-smooth continuous systems, Filippov sys-

tems and systems which expose discontinuities in the state [66].

The first class of systems is described by differential equations with a continuous

but non differentiable right-hand side, i.e. Fi(x0,λ) = Fj(x0,λ), but ∃n∈N|∂
nFi

∂xn (x0,λ) 6=
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∂nFj

∂xn (x0,λ)∀x0 ∈ Σij. The simplest assumption is that the boundary Σij is never simul-

taneously attracting (or repelling) from both sides under the dynamics, hence all tra-

jectories either cross Σij transversally or both vector fields are simultaneously tangent

to it. Hence no sliding motion constrained to Σij can take place. Such systems arise

naturally as models of second-order bilinear oscillators [64,65,150].

Filippov systems are systems with discontinuous vector fields, i.e. Fi(x0,λ) 6=

Fj(x0,λ), ∀x0 ∈ Σij . In this case, there is the possibility that both flows in regions Ri

and Rj have their components normal to Σij and of opposite sign, which may lead

to a possible existence of a sliding flow inside the discontinuity surface Σij. Exam-

ples are systems with visco-elastic supports and dry friction or even models of power

electronic voltage converters [64,65].

Last, the class of impacting systems, is the class of systems exposed to disconti-

nuities (or jumps) in the state. Here Σij is a hard boundary and the region Rj is a for-

bidden region of the phase space so that the dynamics in Ri is governed by a smooth

flow, while on the boundary, Σij, the continuous dynamics is replaced by an instanta-

neous reset (or impact) map. Such systems are more commonly formulated as a hybrid

system. Examples are impacting systems with velocity reversals or vibro-impacting

machines [64,65].

Structural stability and bifurcation

A natural step in the analysis of piecewise smooth systems is the investigation of sta-

bility and corresponding bifurcations. The extension of well-established concepts for

smooth systems to the case of non-smooth systems is still ongoing. In [65], the au-

thors present the basic notions used to establish a pragmatic approach for studying

the asymptotic and structural stability (and bifurcation) for non-smooth systems. The

task to provide necessary and sufficient conditions which guarantee the asymptotic

stability of an invariant set of piecewise smooth system, especially near the switching
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manifold, is a difficult one. This difficulty arises from the geometric relationship be-

tween the eigenvectors of the matrices (Jacobians) on each piece. Basically, if the eigen-

vectors of the matrices were perfectly aligned, then stability of each matrix would be

sufficient to establish stability of the PWL system [65].

Before we proceed with a brief summary of bifurcations in piecewise smooth sys-

tems we define the notion of structural stability and also discuss the main issues con-

cerning the definition of bifurcation.

Definition 2.3.4 A piecewise-smooth system is piecewise-structurally stable if there is an ε >

0 such that all C1 perturbations of maximum size ε of the vector field F, that leave the number

and degree of smoothness properties of each of the boundaries Σij unchanged, lead to piecewise-

topological equivalent phase portraits [65].

There are in essence two approaches to defining bifurcations in smooth systems:

analytical or topological. In the analytical approach, the bifurcation is defined as a pa-

rameter value λ at which the implicit function theorem fails for a parametrised system

of equations. At such points, folding or creation of additional paths of solutions oc-

curs. The topological approach, in contrast, deals with vector fields and the topology

of their associated phase portraits. In this case a bifurcation is said to occur when, as a

parameter is varied, the phase portrait becomes structurally unstable in the topologi-

cal sense [64].

For non smooth systems, these concepts are not straightforward. In the analyti-

cal approach, a small change in parameter can cause the instantaneous creation of a

chaotic attractor together with infinitely many unstable periodic orbits. For the topo-

logical approach, there is a need for knowledge of the system topology. According

to this, for each class of non smooth system, there are likely to be several different

possible notions of bifurcation [64].

If we consider a general invariant set of a piecewise smooth dynamical system
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as defined before, bifurcations that involve invariant sets contained within a single

regionRi for all parameter values of interest can be studied using smooth bifurcation

theory. Also, the same theory can be applied in the cases where the invariant set of a

flow crosses several discontinuity boundaries, due to the smoothness of the Poincaré

map associated with the invariant set. Thus, all the bifurcations found in smooth

systems can also occur in piece-wise smooth systems [65].

However, other bifurcations are unique to piecewise smooth systems. These typ-

ically involve non-generic interactions of an invariant set with a discontinuity bound-

ary, from here the name discontinuity-induced bifurcation (DIB). For instance, if an equi-

librium crosses a switching manifold as a system parameter is continuously varied,

we expect the eigenvalues to change discontinuously because of the discontinuity in

the Jacobian. In this case the equilibrium may disappear or its stability may change;

this is a discontinuous bifurcation [27,65].

Many bifurcations caused by discontinuities have been previously studied. Feigin

first studied period-doubling bifurcations in piecewise continuous systems and gave

them the name ‘C-bifurcations’ and this term is often used more generally for any bi-

furcations that result from a discontinuity. The bifurcations caused by the collision of

a fixed point of a mapping with a discontinuity were also studied and given the name

‘border-collision’ bifurcations. Other examples of C-bifurcations include discontinu-

ous saddle-node bifurcations, grazing bifurcations, where a periodic orbit touches a

switching manifold, and sliding bifurcations, where a trajectory moves for some time

along the switching manifold [208].

In the next few lines, we briefly mention the types of bifurcation in piecewise

smooth systems as described by Di Bernardo et.al. in [65].

Border collisions maps: These are conceptually the simplest kind of DIB and occur when,

at a critical parameter value, a fixed point of a piecewise smooth map lies precisely on

a discontinuity boundary Σ.

30



CHAPTER 2: Background-Part I

Boundary equilibrium bifurcations: The simplest kind of DIB for flows occurs when an

equilibrium point lies precisely on a discontinuity boundary Σ. There is also the pos-

sibility that a limit cycle may be spawned under parameter perturbation of the bound-

ary equilibrium, in a Hopf-like transition.

Grazing bifurcations of limit cycles: One of the most commonly found DIBs in applica-

tions is caused by a limit cycle of a flow becoming tangent to (i.e. grazing) with a

discontinuity boundary.

Sliding and sticking bifurcations: There are several ways that an invariant set such as a

limit cycle, can do something structurally unstable with respect to the boundary of a

sliding region in a Filippov system.

Boundary intersection crossing/corner collision: Another possibility for a codimension-

one event in a flow is where an invariant set (i.e. limit cycle) passes through the (n−

2)-dimensional set formed by the intersection of two different discontinuity manifolds

Σ1 and Σ2.

Some possible global bifurcations: This type involves a connection between the stable and

the unstable manifolds of pseudo-equilibria, which are equilibria of a sliding flow but

not of the individual flows either side of a discontinuity boundary.

2.4 Modelling Neuronal Activity

Most of the roughly ten billion neurons in the human cerebral cortex are tiny, membrane-

bound bags of salt water, shaped like trees (including roots). Each is surrounded by

more salt water and by other neurons, many of which it is connected to. The vast

majority of them communicate by means of brief, all-or-none pulses (called spikes,

or action potentials), each lasting a bit less than a millisecond. Either for guiding a

neurobiological experiment or for constructing a functional network, researchers of-
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Figure 2.4.1: Hodgkin-Huxley model. Left: Action potential spike train under

constant current injection; Right: Action potential and the corresponding phase

response curve, numerically computed using the adjoint method. Parameters

are: I = 10µAcm−2, C = 1µFcm−2, gL = 0.3mmhocm−2, gK = 36mmhocm−2,

gNa = 120mmhocm−2, VL = 10.613mV, VK = −12mV, VNa = 115mV.

ten want to condense the complex shape and behaviour of a real neuron into a simpler

model [136].

To build a good model of a neuron, electrophysiologists apply different pharma-

cological blockers to tease out the currents that the neuron has and then apply differ-

ent stimulation protocols to measure the kinetic parameters of the currents, such as

the Boltzmann activation function, time constant, and maximal conductances.

Mathematical modelling is a powerful tool for studying the fundamental princi-

ples of information processing in the brain. Unfortunately, mathematical analysis of a

certain neural model could be of limited value, because the results might depend on

the particulars of that model: various models of the same neural structure could pro-

duce different results. A reasonable way to avoid this problem is to derive results that

are largely independent of the model and that can be observed in a class or a family of

models [115].
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2.4.1 Single Neuron ‘Tonic Firing’ Models

Hodgkin-Huxley Model

In 1952 Hodgkin and Huxley used a mathematical formalism to explain the ionic

mechanisms underlying the initiation and propagation of action potentials in the squid

giant axon. With the help of their work we now have much more accurate single-cell

models, biophysically speaking, that can account for the very complex, non stationary

behaviour of real neurons. The four nonlinear ordinary differential equations which

represent this model describes the initiation and propagation of AP in axons so well

that they are often treated as ‘gospel truth’, although they are technically imperfect phe-

nomenological fits rather than expressions derived from first principles [88]. Hodgkin

and Huxley started, by considering the conservation law of electric current, so that

C
dV
dt

= −F + IS + I, (2.4.1)

where C is the cell capacitance, F is the membrane current, IS the sum of external

synaptic currents entering the cell and I describes any external injected current. In the

Hodgkin-Huxley model the membrane current appears mainly through the conduc-

tion of Na+ and K+ ions through voltage dependent channels in the membrane. The

contribution from other ionic currents is assumed to obey Ohm’s law. Thus, we have

F(V,m,n, h) = gL(V−VL) + gKn4(V−VK) + gNahm3(V−VNa), (2.4.2)

where gL, gK and gNa are constants and VL, VK and VNa represent the constant mem-

brane reversal potentials associated with the leakage, K+ and Na+ channels respec-

tively. For the conductances variables we have

τX(V)
dX
dt

= X∞(V)− X, (2.4.3)

with X ∈ {m,n, h}, where τX(V) and X∞(V) are obtained from fits with experimental

data. Spike trains of the Hodgkin-Huxley model for constant input current I can be

seen in figure 2.4.1, left side, along with the corresponding phase response curve, on

the right side.
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Figure 2.4.2: Hodgkin-Huxley reduced model. Left: Phase plane repre-

sentation showing the cubic nonlinearity of the V-nullcline; Right: Action

potential and the corresponding phase response curve, numerically com-

puted using the adjoint method. Parameters are: I = 100µAcm−2, C =

1µFcm−2, gL = 0.3mmhocm−2, gK = 36mmhocm−2, gNa = 120mmhocm−2,

VL = −54.402mV, VK = −77mV, VNa = 50mV.

Reduction of Hodgkin-Huxley model

The behaviour of high dimensional non linear differential equations is difficult to

visualise and even more difficult to analyse. Two-dimensional differential equations,

however, can be studied in a transparent manner by means of phase plane analysis.

A reduction of the four-dimensional equations of Hodgkin-Huxley to a two-variable

neuron model is highly desirable.

Remarks: a) The time scale of the dynamics of the gating variable m is much faster

then that of the variables n, h and V. So we may treat m as an instantaneous variable

which can be replaced by its steady state m∞(V); b) The equations for h and n have

similar time-courses. In fact, the Na+ channel closing, h, occurs at the same rate but in

the opposite direction to K+, n. Hence, n and h may be slaved together [3].

f (V,U) = F(V,m∞(V),n∞(U), h∞(U)). (2.4.4)

Demanding that the evolution of V in the full and reduced model is equal gives the

reduced model:

C
dV
dt

= − f (V,U) + IS + I, (2.4.5)
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Figure 2.4.3: FitzhHugh Nagumo model: Left: Action potential spike train

under constant current injection; Right: Action potential and the correspond-

ing phase response curve, numerically computed using the adjoint method.

Parameters are: I = 0.5µAcm−2, µ = 0.01, a = 0.1 and γ = 0.5.

dU
dt

= g(V,U), (2.4.6)

where

g(V,U) =

∂F
∂h

(
h∞(V)−h∞(U)

τh(V)

)
+ ∂F

∂n

(
n∞(V)−n∞(U)

τn(V)

)
∂ f

∂h∞

dh∞(U)
dU + ∂ f

∂n∞

dn∞(U)
dU

, (2.4.7)

and ∂F/∂h and ∂F/∂n are evaluated at h = h∞(U) and n = n∞(U). The variable V

describes the capacitive nature of the cell whilst U describes the time-dependence of

the membrane conductances. In fact, U may be regarded as a variable responsible for

the refractory period of the neuron [2,48].

The reduction to a two-dimensional system allows a direct visualisation of the

dynamics by plotting the flow in the (V,U) plane. A plot of the nullclines dV/dt = 0

and dU/dt = 0 allows the visualisation of both the fixed points and the flow (see fig-

ure 2.4.2, left panel; right panel shows the membrane potential and the corresponding

phase response curve). In the reduced model g(V,V) = 0 and the nullcline for dU/dt

is simply the straight line U = V [129].

Simplified versions: the so-called FitzhHugh-Nagumo and van der Pol oscillator

equations yield qualitatively the same kind of subthreshold behaviour and limit cycle

oscillations as the original Hodgkin-Huxley equations, but their reduced parameters
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Figure 2.4.4: Phase Plane Representation. Left: FitzHugh-Nagumo model;

Parameters are: I = 0.5µAcm−2, µ = 0.01, a = 0.1 and γ = 0.5; Right: McKean

model; Parameters are: b = 1, I = 0.5µAcm−2, µ = 0.1, γ = 0.5, a = 0.25. In

both cases we distinguish the ‘cubic’ shape of the V-nullcline, the W-nullcline

is linear. The phase plane allow for a direct visualisation of the dynamics of

the system.

are more difficult to be interpreted biophysically.

FitzHugh-Nagumo Model

FitzHugh and Nagumo were probably the first to propose the replacement of

the four equations of the Hodgkin-Huxley model by two equations to generate an

AP. This reduction can facilitate a phase plane analysis of the model (see figure 2.4.4,

left side). Their approach was based on the fact that the gating variables n and h

have slow kinetics relative to m. Additionally, the Hodgkin-Huxley and Morris-Lecar

model (to be introduced in the next paragraph), share a common feature about their

nullclines. The V-nullcline has a cubic shape, while the recovery one (n for Hodgkin-

Huxley model and W for Morris Lecar model) is a monotonically increasing function

of the voltage. Taking into consideration all this, they developed a simplified model

which captures the essence of the cubic nature of the V-nullcline and has many of

the properties of the more complicated models that we have already discussed. The

equations have the form:

dV
dt

= V(V− a)(1−V)−W + I, (2.4.8)
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Figure 2.4.5: Morris-Lecar model. Left: Action potential spike train under

constant current injection; Right: Action potential and the corresponding phase

response curve, numerically computed using the adjoint method. Parameters

are: I= 0.25µAcm−2, C= 1µFcm−2, gL = 0.5mmhocm−2, gK = 2mmhocm−2,

gCa = 1.1mmhocm−2, VL = −0.5mV, VK = −0.7mV, VCa = 1mV, φ = 0.2,

v1 = −0.01mV, v2 = 0.15mV, v3 = 0mV, v4 = 0.3mV

dW
dt

= ε(V− γW), (2.4.9)

where 0 < a < 1, ε > 0 and γ ≥ 0. Here V is the membrane potential and W plays the

role of a recovery variable incorporating the dynamics of the three variables m,n, h.

In figure 2.4.3 the periodic spike train generated by the FitzHugh-Nagumo model is

presented along with the corresponding phase response curve.

The FitzHugh-Nagumo equation has been used to model many physiological sys-

tems from nerve to heart to muscle and is a favourite model for the study of excitabil-

ity. In most applications ε is small so that the recovery variable is much slower than

the voltage. When I = 0 and γ is small enough there is a unique fixed point at the

origin. As I increases, this fixed point becomes unstable through a Hopf bifurcation

and a limit cycle emerges.

Morris Lecar Model

Another, rather simple model for the production of action potentials is the one

proposed by Kathleen Morris and Harold Lecar. The model has three channels, a K+
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Figure 2.4.6: McKean model. Left: Action potential spike train under con-

stant current injection; Right: Action potential and the corresponding phase

response curve, numerically computed using the adjoint method; Parameters

are: b = 1, I = 0.5, µ = 0.1, γ = 0.5, a = 0.25.

channel, a leak, and a Ca2+ channel. In the version we present here, the Ca2+ current

depends instantaneously on the voltage, leading to model equations of the form:

C
dV
dt

= I− gKn(V− EK)− gCam(V− ECa) + gl(V− El), (2.4.10)

dn
dt

=
φ(n∞(V)− n)

τn(V)
, (2.4.11)

m = m∞(V), (2.4.12)

where, we have:

m∞(V) =
1
2

(
1 + tanh

V−V1

V2

)
, (2.4.13)

n∞(V) =
1
2

(
1 + tanh

V−V3

V4

)
, (2.4.14)

τn(V) =

(
cosh

(
V−V3

2V4

))−1

, (2.4.15)

and Vi, i = 1,2,3,4 are parameters chosen to fit the voltage clamp data. In figure 2.4.5

the periodic spike train generated by the Morris-Lecar model is presented along with

the corresponding phase response curve.
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McKean Model

Analysing the FitzHugh-Nagumo model, a PWL caricature of it can be taken,

which keeps the essential features of neuronal behaviour while allowing explicit cal-

culations, called the McKean model. It is a two-dimensional model of a spiking neuron

described by:

µ
dv
dt

= f (v)− w + I, (2.4.16)

dw
dt

= b(v− cw), (2.4.17)

where f is a PWL function of ‘cubic’ shape, v is the membrane potential, w is the

recovery variable, I is an input current and b, c and µ are constant parameters [224].

One of the PWL functions for f (v) proposed by McKean and used here is:

f (v) =


−v, for v < a/2,

v− a, for a/2 < v < (a + 1)/2,

−v− 1, for v > (a + 1)/2,

(2.4.18)

where 0 < a < 1 is a threshold. The phase plane for this model is displayed in fig-

ure 2.4.4, while the spike train and the phase response curve are in figure 2.4.6. The

McKean model has been used to investigate the propagation of waves in excitable me-

dia, such as heart tissue or nerve fibre [159]. To analyse the model, the decisive point

was to maintain the shape of the function f but its exact expression is not relevant.

Basically, the PWL approach allows a tractable analysis by calculating the solutions

in the linear regimes using standard techniques and connecting the solutions at the

boundaries.

Quadratic Integrate-and-Fire Model

The quadratic integrate-and-fire (QIF) model is the simplest spiking model where

each spike is a stereotyped event. Although it lacks a description of the biophysical

mechanisms for generating APs, it does reproduces all the neurocomputational fea-

tures of the neuron from the dynamical systems point of view. When the membrane
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Figure 2.4.7: QIF model. Left: Action potential spike train under constant

current injection; Right: Action potential and the corresponding phase re-

sponse curve, numerically computed using the adjoint method. Parameters

are: I = 0.5, Vth = 2, Vr = −2

potential reaches a threshold value Vth, the neuron is said to fire an AP, and V is reset

to a value Vr.

The QIF model can be written in the form:

dV
dt

= f (V) + I, (2.4.19)

where f (V) = V2, I is the external drive, additionally it is subject to condition: V→

Vr just after reaching the value Vth
[123]. In figure 2.4.7, on the left side there is the

numerically solved action potential generated, while on the right side, along with

the membrane potential we represent the phase response curve corresponding to the

membrane potential.

2.4.2 Gap Junction Model

Gap junction coupling can be modelled by introducing an extra current to the right

hand side of the current balance equation of the form:

Igap = ggap(Vpre −Vpost), (2.4.20)
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where ggap is the conductance of the gap junction and Vpre (Vpost) is the membrane

potential of the presynaptic (postsynaptic) neuron.

2.4.3 Summary

In this introductory chapter we presented the literature review used in the first part

of the thesis. Mainly we discussed about the CNS, neurons and forms of communica-

tion with a focus on gap junctional coupling. We also introduced dynamical systems

techniques which will be used in later chapters and summarised the main facts regard-

ing PWL systems. We ended this chapter with a discussion of some common single

neuron models in mathematical neuroscience.
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The dynamics of piecewise linear

single neuron models

In this chapter we introduce a piece-wise linear (PWL) model that, with a particular

choice of the v-nullcline, can support a ‘canard’ solution. The classical ‘canard’ phe-

nomenon explains the very fast transition upon variation of a parameter from a small

amplitude limit cycle via ‘canard’ cycles to a large amplitude relaxation cycle. In fact,

this type of solution is associated with a dramatic change in properties, such as the am-

plitude and the period, of the periodic orbit within a very narrow interval of a control

parameter [33,141,174]. It has been pointed out that the ‘canard’ behaviour is a general

feature of fast-slow dynamical systems and is associated with so-called mixed-mode

oscillations (MMOs) [178]. It accounts for synchronisation at low frequencies [70] and

clustering behaviour at the network level [75]. In fact, MMOs which are complicated

temporal activity patterns arise in a variety of physical systems. In a neuroscience

context they can be found at both individual neuron and neuronal population lev-

els. For example, intracellular recordings in the rat layer II medial entorhinal cortex

identify a class of neurons, called stellate cells, which generate clusters of spikes in-

terspersed with rhythmic subthreshold oscillations. At the network level, recordings
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from the pre-Botzinger complex of neonatal rat brainstem show periodic modulation

of the inspiratory component of the respiratory rhythm caused by an increase in neu-

ronal excitability [56].

Using dynamical systems theory, in particular geometrical features, we investi-

gate in detail how these solutions are created. Moreover, having a planar model de-

scribed by PWL functions, we are able to find such solutions in closed form. First,

following [13], we show that there are no such solutions for PWL systems with three

pieces. We continue by introducing a PWL model with four pieces (from now on

termed PWLC), which, in contrast, supports ‘canard’ solutions. This model is inves-

tigated in detail through phase plane analysis and the results are summarised in a

bifurcation diagram. Further, following [48], we calculate the exact solutions of the sys-

tem and determine their stability. The analysis continues with a brief explanation of

the ‘canard’ phenomenon using ‘points of inflection’; a method recently developed in

[63] and used by myself in [189].

Looking to move to the next step of our study, the investigation of weakly coupled

oscillators, we compute isochrons and construct phase response curves (PRCs) for

the PWLC model. Isochrons are foliations of the phase space that extend the notion

of a stable periodic orbit to the basin of attraction of the periodic orbit. Moreover,

they give a sense of how long a trajectory spends in different regions of the phase

space [170]. The PRCs are used in the theory of weakly coupled oscillators where small

perturbations are assumed to sum linearly, thus the phase resetting experienced by a

coupled oscillator is obtained by convolving the input waveform with the PRC [35].

3.1 PWL Neuron Model with ’Canards’

‘Canard’ explosions have been encountered in many applications ranging from chem-

istry, aerospace engineering to ecology. The classical ‘canard’ phenomenon was first
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identified in a two-dimensional system of fast-slow type, i.e., in a planar system with

one fast and one slow variable in the standard form

ε
dx
dt

= f (x,y,λ,ε), (3.1.1)

dy
dt

= g(x,y,λ,ε), (3.1.2)

where 0 < ε� 1 is the perturbation parameter, and λ denotes the control parameter.

Remarks: From now on, a dynamical system of the form (3.1.2) if approximated by

PWL functions, is divided into i regions (regimes), denoted Ri, i = 1 . . . N, subject

to the number of pieces within the f function. For example, figure3.1.1 shows the

phase plane of two systems with three linear pieces of the cubic nullcline. Also, the

invariant manifold corresponding to the smaller eigenvalue, λs is denoted as Ws (the

slow manifold), whilst the one corresponding to the larger eigenvalue, λ f , is denoted

as W f (the fast manifold).

Clearly, the system is singularly perturbed, with x fast and y slow. Setting ε = 0

in the equation above, one obtains the critical manifold, whose S-shape is essential for

the existence of a relaxation oscillation. Moreover, the critical manifold is normally

hyperbolic away from the fold points (‘knees’) and can thus be written as the union of

two normally attracting branches and a normally repelling branch. From geometric

singular perturbation (Fenichel) theory, it follows that normally hyperbolic segments

of the critical manifold will perturb smoothly to nearby segments of a slow manifold.

At the two fold points, however, normal hyperbolicity breaks down. Generically, the

reduced equation is singular at the origin, which leads to blow-up of solutions there.

Trajectories typically leave the slow manifold at such points subject to the fast flow of

the system, resulting in relaxation dynamics [178].

Since their first characterisation, back in 1981, by the French mathematicians,

Benoit, Callot and Diener, in the context of van der Pol system, ‘canards’ have been

analysed using different techniques: nonstandard analysis, matched asymptotic ex-

pansions, blow-up techniques, or geometric singular perturbation theory. The gener-
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Figure 3.1.1: PWL models with three pieces: In both cases there is no ‘ca-

nard’ solution. For both models the parameter values are: ε = 0.1, γ = 0.5

and a = 0.25. Left: The fixed point loses stability in R2 becoming an unstable

node and creating a periodic solution (I = 0.35). The trajectory evolves almost

horizontally when passing near the unstable manifold. Right: A limit cycle is

created via a Hopf-like bifurcation (the equilibrium point in R2 is an unstable

focus) ‘spiraling’ out until the the fixed point loses stability (I = 0.45).

ation mechanism of the canard phenomenon has been investigated not only in a non-

smooth context, but also using a PWL approach, replacing the cubic nullcline (func-

tion) by a PWL function with different segments. The flow in the PWL vector field can

be depicted and characterised by invariant manifolds corresponding to eigenvectors.

Therefore it can be expected that the generation mechanism of the canard is easily and

intuitively understood by the geometrical feature of the flow in the vector field.

Arima, [13], was the first to point out that to have a ‘canard’ solution, in this type of

system, the two-dimensional continuous PWL vector field needs at least four pieces.

He showed that ‘canard’ solutions are never generated in a PWL model with three

segments. Moreover, he emphasised the need to have an unstable focus as an equilib-

rium point around the local minimum (or the maximum) of the slow manifold, in the

PWL systems with four pieces.

Following Arima’s reasoning, we show that for a PWL model with three pieces

and for two types of equilibrium points in R2, the ‘canard’ solution does not ex-
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ist. In both cases, the function which describes the nullclines can be found in Ap-

pendix 9.A.1. For each model, the equilibrium points in R1 and R3 are stable nodes.

In the case of the first model, where the equilibrium point in R2 is an unstable node,

the two corresponding eigenvalues are real and positive, one larger than the other. Ex-

amples of such eigenvalues (significantly different) for various values of ε, are shown

in Table 3.1.1. The vector field in regionR2 is spanned by the eigenvectors correspond-

ing to them.

The slopes of the slow and fast manifolds are given by:

Rs = 1− λs(ε)ε (3.1.3)

R f = 1− λ f (ε)ε. (3.1.4)

Values of these slopes as the parameter ε tends to zero are shown in the Table 3.1.1, or

lim
ε→0

Rs = 1, (3.1.5)

lim
ε→0

R f = 0. (3.1.6)

Therefore, as ε→ 0, the slope of the Ws converge to the slope of the v-nullcline in R2.

On the other hand, the slope of the W f converges to zero, and the eigenvector becomes

parallel to the abscise coordinate. In this case, as we can see in figure 3.1.1, a solution

coming from R1 towards R2 will never approach the slow manifold located at the

right side of the equilibrium point. Instead, it will follow the fast manifold moving to

Table 3.1.1: Examples of eigenvalues and the slope of corresponding eigenvec-

tors

ε λs Rs λ f R f

0.1 0.5592 0.94408 8.9408 0.10592

0.05 0.5271 0.973645 18.9729 0.051355

0.02 0.5103 0.989794 48.9897 0.020206

0.005 0.5052 0.997488 198.9975 0.005012
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R3, changing direction and further closing the limit cycle.

Additionally, if the equilibrium point withinR2 is an unstable focus, the ‘canard’

solutions do not exist. Here the eigenvalues are complex numbers which conveys the

disappearance of the slow and fast manifolds in theR2. Basically the trajectory spirals

out from the equilibrium point forming a limit cycle. As we can see in figure 3.1.1,

right side, we only have limit cycle oscillations with no chance of seeing any canard

solutions.

In conclusion, in order to have ‘canard’ solutions we need to have a PWL system

with four pieces, where an unstable focus equilibrium is followed by an unstable node

equilibrium, in regions R2, respectively R3, as Arima et. al. originally suggested (e.g.

see figure 3.1.2 ). We leave the explanation of why we have ‘canard’ solutions in this

situation for a later section and we continue with the introduction of our model.

In general, a planar neural model is described by two coupled nonlinear ODEs,

one for voltage and the other for a single effective gating variable. The equations for a

single two-dimensional PWLC neuron take the form

ε
dv
dt

= f (v)− w + I, (3.1.7)

dw
dt

= g(v,w). (3.1.8)

To support a ‘canard’ solutions we choose the functions f (v) and g(v,w) as

f (v) =



−v, v < a/3,

v/5− 6a/15, a/3≤ v ≤ (1 + a)/3,

v− 2a/3− 4/15, (a + 1)/3≤ v ≤ (1 + a)/2,

−v + a/3 + 11/15, v > (1 + a)/2,

(3.1.9)

g(v,w) = v− γw. (3.1.10)

Here, ε > 0, is a time-scale separation parameter, γ > 0, and f (v) is a PWL caricature

with four pieces of the cubic FitzHugh–Nagumo nonlinearity, while g(v,w) describes

47



CHAPTER 3: The dynamics of piecewise linear single neuron models

the linear dynamics of the gating variable. The points where v-nullcline switches from

one branch to the other are called thresholds (though not in the sense of firing) and are

dependent of the value of a. The parameter I represents an external current applied to

the model, which in the next section will be considered as a bifurcation parameter.

3.1.1 Phase Plane Analysis and Bifurcation Diagram

A first glance over the qualitative behaviour of any dynamical system is given by

a phase plane analysis and the corresponding bifurcation diagram. The complexity

of the behaviour of the system can be explained by different snapshots of the phase

plane showing the dynamics of the model, for successive values of the control param-

eter. In the case of PWL systems, the dynamics of the model is divided in various

regions (regimes) Ri corresponding to the number of the switching manifolds (plus

one) present in the model, each regime having a virtual fixed point or an admissible

one if that is the regime where the nullclines intersect.

For our model, there are four regions,Ri, i = 1 . . . 4, corresponding to the number

of linear pieces of the v-nullcline. Increasing the control parameter, I, the v-nullcline

moves up letting the w-nullcline to pass through each regime and transforming each

virtual fixed point into an admissible one. For example, in R1 there is a virtual stable

node fixed point, in R2, the admissible fixed point is an unstable focus, while in R3 the

virtual fixed point is an unstable node and inR4, again, the virtual fixed point is a stable

node. Expressions of the eigenvalues corresponding to each fixed point can be found

in Appendix 9.A.2.

Analysing the phase plane, in the limiting case, ε→ 0, on the fast time scale, the

cubic shape v-nullcline is a curve of fixed points normally hyperbolic away from its

local minimum and maximum. Moreover, in R1 and R4 the v-nullcline is stable to

transverse perturbations, while in R2 and R3 it is unstable. For ε sufficiently small,

invariant manifolds persist within O(ε) of these normally hyperbolic pieces of the v-
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Figure 3.1.2: Phase plane for SAO, MAO and LAO: Left: In each case the

periodic orbit starts at the first switching manifold, and passes through each

linear regime, according to the strength of the drive; SAO spends time only in

R1 andR2, MAO inR1,R2 andR3, while LAO in all four regions. Right: The

solution is broken into two, four or six pieces determined by the moment of

‘crossing’ the thresholds (switching manifolds).
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nullcline and their stability depends on the stability of each piece of the v-nullcline.

Thus, there is a slow manifold MS, with stable foliation, within O(ε) on the ‘left’ side

of the v-nullcline, a different slow manifold, again with stable foliation, of the ‘right’

side of the v-nullcline, and a slow manifold MU , with unstable foliation, within O(ε)

of the middle part of the v-nullcline (R2 andR3).

These manifolds can be extended beyond the local minimum and maximum,

where they may loose their normal stability properties. In general, the distance be-

tween MS and MU is nonzero near the local minimum of the v-nullcline and, as param-

eters are varied, it converges to zero. For both smooth (FitzHugh Nagumo) and PWL

systems, these manifolds switch positions passing through a region where they con-

nect smoothly. This region corresponds to a small parameter window ofO(exp(−kε)),

where k > 0. Here, the periodic solutions are called ‘canards’ and they follow the un-

stable manifold for a substantial distance. In fact, if the trajectory follows the unstable

manifold up to the neighbourhood of the other extremum, the orbit is called a maximal

canard [72].

In the next lines, following [189], we explain how periodic orbits are created and

how they evolve as the control parameter increases. If the parameter is increased such

as the w-nullcline moves fromR1 toR2, there is a sudden change in the stability of the

fixed point. In fact, the fixed point loses stability as a pair of conjugate complex eigen-

values crosses the imaginary axis. At this point, and for a unique value of the control

parameter, through a Andronov-Hopf-like mechanism, which will be explained in a

future paragraph, a limit cycle emerges. Using more of a geometric approach, the cre-

ation and evolution of such limit cycles has been already used in [189], in particular, to

explain the mechanism under which the canard cycles are born.

For the PWLC model the admissible fixed point of the model is in R2. Therefore,

if the trajectory starts in R1, then it will be attracted along the stable manifold of the

virtual fixed point and will remain in R1 (see figure 3.1.3). Yet, if it starts at the first
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Figure 3.1.3: Plot showing the admissible (in R2) and virtual (in R1) fixed

points for PWLC model. The green lines represent the v- (PWL curve) and

w-nullclines. The vertical lines (black) separate between linear regimes and

intersect the v-nullcline at the joint points between the corresponding linear

pieces. The blue line represent the continuation of the linear piece L1 beyond

the boundaries of that linear regime. The actual fixed point of the PWLC sys-

tem is located in R2 and indicated with a brown square on the intersection

between the two nullclines. The virtual fixed point for R1 is located in R2

and indicated with a blue square (intersection between the blue line and the

w-nullcline). The red curve corresponds to a trajectory whose global dynamics

are governed byR1 and shows that the virtual fixed point is a stable node.

switching manifold, in particular, where R1 and R2 are connected, the trajectory is

governed by the dynamics of R2. Here the fixed point is an unstable focus, thus, the

trajectory will evolve spiralling out around the fixed point. Further, if its initial ampli-

tude is small enough, then, the trajectory crosses the second branch of the v-nullcline

and reverses direction. When the trajectory passes again through the switching man-

ifold (in the right-to-left direction), its dynamics becomes governed by R1 and the

cycle is completed after the trajectory crosses the v-nullcline (a SAO is created). In

this region, the orbit evolves close to the v-nullcline due to the fast-slow nature of the

system (ε� 1).

Similarly, both medium (MAO) and large amplitude oscillations (LAO) are formed.
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The difference between SAO, MAO and LAO, is in the number of regimes through

which the trajectory evolves and changes direction, and on the type of the virtual

fixed point encountered by the trajectory in each of these regimes. For example, SAO

passes through only R1 and R2, MAO, through R1, R2 and R3, while LAO passes

through all regimes [189].

Depending on the strength of the control parameter, there are differences among

MAO and LAO, either in shape or amplitude. For instance, for MAO, if I is increased

enough, the amplitude of the oscillation may grow, and the trajectory may evolve

very close to the unstable manifold up to the neighbourhood of the maximum of the

v-nullcline (where the third switching manifold exists). This is the case of the so called,

maximal canard, which, numerically is very hard to obtain. The parameter window for

which the system presents MAO (also called ‘canards without head’), is very small. In

fact, if we increase I from 0.435 to 0.436, for example, an explosion in the size of the

limit cycle occurs. This explosion in the amplitude of the oscillations is associated to

the ‘canard’ phenomenon.

The shape of the oscillation is another difference between MAO and LAO. If I =

0.436, for example, the LAO has a shape which could be termed as a ‘canard with head’

orbit. Here, as soon as the trajectory reaches R3, it follows the unstable branch of the

v-nullcline for a significant amount of time (depending on the strength of the drive).

Then, due to the strong, almost horizontal eigendirection created by the fixed point in

R3, it moves away, along that direction, and crosses the last switching manifold toR4.

For larger values if I, this orbit can develop into a relaxation oscillation or even can be

attracted to the stable virtual fixed point inR4, in which case the oscillation is blocked

(by excitation) (see figure3.1.2).

A plot of all these types of periodic solutions is shown in figure 3.1.4, left side.

The nullclines are plotted for I = 0.3, for which the system posses SAO. As the control

parameter is increased the nullclines change position, the v-nullcline moving upward
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Figure 3.1.4: Left: Plot of phase plane for the six piece-wise linear model for

parameter values: ε = 0.1, γ = 0.5, a = 0.25, and for different values of I:

I = 0.3 (small amplitude oscillations); I = 0.4325 (medium amplitude oscilla-

tions); I = 0.45 (large amplitude oscillations); The nullclines are plotted for

I = 0.3; Right: A fixed point loses stability in a supercritical Hopf-like bifur-

cation, with a ‘small’ unstable periodic orbit bifurcating to lower values of I.

As the periodic orbit branch is followed, it reaches a small interval of values

for I where the ‘canard’ solutions exist, changing rapidly to a ‘large’ periodic

orbit.

while the MAO and LAO emerge. As previously mentioned, SAO evolves in only the

first two regions, MAO, in the first three, whilst LAO passes through all four regions

of the phase plane.

Although numerically computed solutions of a mathematical model at particu-

lar parameter values can give some understanding of the dynamics associated with

the model, a more complete understanding relies on determining parameter values at

which the qualitative features of these solutions change in some fundamental way, i.e.

bifurcations.

One of the standard bifurcations that occur in piecewise smooth systems, is the

so-called, Hopf-like bifurcation, which describes the occurrence of periodic orbits in

such systems. In the smooth case, the Hopf-like bifurcation is characterised by a cross-

ing of a pair of complex conjugate eigenvalues of the linearised problem through the
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imaginary axis. While the stationary solution changes stability, non-trivial solutions

may arise. The analytical description of Hopf-like bifurcation requires smoothness of

the problem which is not valid for non-smooth problems, where, for example, the no-

tion of a linearised problem does not exist. Yet, there are situations of practical interest

where a similar mechanism of destabilisation seems can be inferred [143].

Kreigsmann was among the first who studied Hopf-like bifurcation in piecewise

smooth systems, which he termed as a rapid one, responsible for the abrupt appear-

ance of stable periodic oscillations. This bifurcation has similarities with the smooth

one, since it involves, in some sense, the crossing of a pair of complex conjugate eigen-

values through the imaginary axis, giving rise to a limit cycle. Yet, in this case, the

crossing is more like a jump across the imaginary axis. In particular, this occurs when

the equilibrium encounters a switching manifold [82,208].

Another characteristic of Hopf-like bifurcations, is concerning the amplitude be-

haviour versus the bifurcation parameter, which in the smooth case (super-critical bi-

furcation), the amplitude should evolve as O(I1/2), without having the jump that we

observe for PWL systems. Moreover, the amplitude of the limit cycle depends linearly

on the value of the parameter and its period is constant, not depending at all on this

parameter, if the limit cycle crosses only one switching manifold. Also, the criticality

of the bifurcation (i.e. the stability of the Hopf cycle) is determined by linear terms

instead of cubic terms, as in the case of Hopf cycle in smooth systems [81,82,208].

In figure 3.1.4, right side, the fixed points are plotted as a function of the control

parameter I. The stability of the fixed points is indicated by a thick line for stable and

dashed line for unstable ones. Around I=0.3, the stability of the fixed point changes,

and a Hopf-like bifurcation occurs, creating SAO. As I increases, the amplitude of

the oscillations increases linearly as a function of I passing through the parameter

window where the ‘canard’ explosion occurs. This explosion is highly connected with

the sudden transition from SAO to LAO, and is considered to be a ‘signature’ of the
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‘canard’ phenomenon. Around I = 1.12 the oscillations are killed ‘by excitation’ and

the fixed point becomes a stable node. Due to numerical reasons such orbits were

not captured in the bifurcation diagram shown in figure 3.1.4. Periodic solutions are

constructed using XPPAUT software. Moreover, these periodic solutions can be found

analytically using the approach introduced by Coombes [48], which will be derived in

the next section.

3.1.2 Solution of PWLC Model

Following Coombes [48], the PWLC model can be solved in each of its linear regimes

by demanding continuity and periodicity of solutions to construct orbits of the full

nonlinear flow. The solution for smooth linear systems in a general frame, can be

found in Appendix 9.A.3. We begin by considering a two-dimensional linear system

of the form

Żµ = Aµ Zµ + bµ, Zµ =

Vµ

Wµ

 , µ = 1 . . .N, (3.1.11)

where the 2 × 2 matrix Aµ has components aij, i, j = 1,2, and b is a constant 2 × 1

input vector. To determine a periodic orbit of the PWLC model the solution is broken

into pieces such that on each piece the dynamics are governed by a linear dynamical

system. For the model presented here, there are three cases to consider, depending on

the strength of the drive, so that N = 2, 4 or 6.

The ‘two pieces’ case (N = 2), for example, comes from the fact that, when cross-

ing the first threshold, the orbit can be broken into two pieces. Say, the orbit starts at

the first threshold, then it evolves up to the point where it ‘meets’ the threshold again;

this part of the orbit can be considered as the ‘one piece’ (of the orbit). The second

one is the missing part of the trajectory, as we can see in figure 3.1.2, upper panel,

left side. Using the same argument, the four and six piece cases can be explained (see

figure 3.1.2, middle and bottom panels). In all cases, the labelling starts in R2 (the

trajectory starts at the first threshold) and each case is associated with the periodic
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solutions described in the previous section.

Focusing on the case (N = 6), as an example, the time spent on each of these six

states is denoted Tµ. For each piece the solution of the system 3.1.11 is

Zµ(t) = Gµ(t)Zµ(0) + Kµ(t)bµ, (3.1.12)

with the forms for Gµ and Kµ given by:

Gµ(t) = eAµt, (3.1.13)

Kµ(t) =
∫ t

0
Gµ(s)ds, (3.1.14)

with µ = 1, . . . ,6, where A1 = A5, A2 = A4 and A3 = A6 (the Jacobian in each linear

regime), with

A1 =

 1/5ε −1/ε

1 −γ

 , A2 =

 1/ε −1/ε

1 −γ

 , A3 =

 −1/ε −1/ε

1 −γ

 .

(3.1.15)

Similarly, b1 = b5, b2 = b4, where

b1 =

 (I− 6/15a)/ε

0

 , b2 =

 (I− 2/3a− 4/15)/ε

0

 , (3.1.16)

b3 =

 (I + a/3 + 11/15)/ε

0

 , b6 =

 I/ε

0

 . (3.1.17)

In this case, by introducing three voltage thresholds (v1
th,v2

th,v3
th) = (a/3, (a +

1)/3, (a + 1)/2), the periodic orbit can be parametrised by choosing initial data such

that Z1(0) = (v1
th,w∗) (with w∗ as yet undetermined) and Zµ+1(0) = Gµ(Tµ)Zµ(0) +

Kµ(Tµ)bµ, for µ = 1, . . . 5. The ‘times-of-flight’ Tµ are determined by solving the thresh-

old crossing conditions: v1(T1) = v2
th, v2(T2) = v3

th, v3(T3) = v3
th, v4(T4) = v2

th, v5(T5) =

v1
th and v6(T6) = v1

th. A periodic solution can be found by solving w6(T6) = w1(0), thus

yielding w∗ and the period T = ∑6
µ=1 Tµ.
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3.1.3 Stability Analysis

There are various methods to determine the stability of a periodic solution: via Poincaré

maps or Lyapunov exponents. Here we study the stability of periodic solutions in

terms of the characteristic or Floquet multiplier. First, we review some of the major

results in stability of periodic orbits and Floquet theory (for more details and proof of

Floquet’s theorem the reader is referred to [45], chapter two).

Theorem 3.1.1 Consider a system of the form

ẋ = f (t)x, x ∈Rn, (3.1.18)

with a T periodic solution φ(t). Suppose that the linearised equation about φ(t)

u̇ = D f (φ(t))u, (3.1.19)

has characteristic exponents of which one has zero real part and the rest have negative real

parts. Then the periodic solution is asymptotically stable.

Theorem 3.1.2 Floquet’s Theorem: If Φ(t) is a fundamental matrix solution of T - periodic

system (3.1.18), then, for all t ∈R,

Φ(t + T) = Φ(t)Φ−1(0)Φ(T). (3.1.20)

In addition, there is a matrix B (which may be complex) such that

exp(TB) = Φ−1(0)Φ(T), (3.1.21)

and a T-periodic matrix function t→ P(t) (which may be complex valued) such that Φ(t) =

P(t)exp(tB) for all t ∈R. Also, there is a real matrix R and a real 2T-periodic matrix function

t→ Q(t) such that Φ(t) = Q(t)exp(tR) for all t ∈R.

The representation Φ(t) = P(t)exp(tB) in Floquet’s theorem is called the Floquet

normal form for the fundamental matrix Φ(t), and is used to study the stability of the
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zero solution of periodic homogeneous linear systems. The characteristic multipliers

of the system are the eigenvalues of exp(TB). A complex number σ is called a charac-

teristic exponent (or a Floquet exponent) of the system, if µ is a characteristic multiplier

and µ = exp(σT).

Theorem 3.1.3 Suppose equation (3.1.18) has characteristic multipliers µi and exponents σi

(µi = exp(σiT)), i = 1 · · ·n, n ∈Z+. Then

µ1µ2 · · ·µn = exp
(∫ T

0
TrA(t)dt

)
, (3.1.22)

σ1 + σ2 + · · ·+ σn =
1
T

∫ T

0
TrA(t)dt

(
mod

2ßi
T

)
. (3.1.23)

Further, using a time-ordering operator T the fundamental matrix solution of the T-

periodic system (the existence of the periodic solution is by construction; the crossing

times are obtained numerically), denoted as G(T) and obtained in Section (3.1.2), is

G(T) = T
{

e
∫ t

0 Df(Œ(s)ds)
}

, (3.1.24)

where T D(t)D(s) = Θ(t− s)D(t)D(s) + Θ(s− t)D(s)D(t). Letting µk be the (distinct)

eigenvalues of G(T) and writing σk = ln(µk)/T mod 2π we see that the periodic orbit

will be stable if all the Floquet exponents have negative real part, namely Re σk < 0

for all k = 1 . . . N. One of the exponents is always zero since it corresponds to pertur-

bations along the periodic orbit. For planar PWL models time-ordering is not an issue

(since DF is piece-wise constant) and for a large amplitude periodic solutions (also

called a ‘six pieces’ solution) we have that

G(T) = GT
6 (T6)GT

5 (T5)GT
4 (T4)GT

3 (T3)GT
2 (T2)GT

1 (T1). (3.1.25)

Using theorem 3.1.3 for n = 2 we obtain (σ1,σ2) = (0,σ), where

σ =
1
T

6

∑
µ=1

Tµ TrAµ. (3.1.26)
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Figure 3.1.5: Plot of the Floquet exponent σ for the large amplitude oscillation

of PWLC model. Since σ < 0 the solution branch is stable.

Periodic solutions are stable if σ < 0.

For the PWLC model, the LAO has a non-zero Floquet exponent σ = (T1/5 +

T2 − T3 + T4 + T5/5− T6)1/(εT)− γ. The Floquet exponent σ for LAO is plotted in

figure 3.1.5. Since σ < 0 the periodic solution is stable.

3.2 An Explanation of the ‘Canard’ Phenomenon using Points

of Inflection

In both smooth and PWL systems the fixed point may loose the stability via a Andronov-

Hopf bifurcation. Whether the Andronov-Hopf bifurcation is subcritical or supercriti-

cal an unstable, respectively stable small amplitude limit cycle emerges at a parameter

value I = IH. Their amplitude increases slowly for values of I close to I = IH. As the

parameter values increase, for the supercritical case, and decrease for the subcritical

case, the limit cycle ‘explodes. The range of values for which this explosion occurs

is exponentially small and is defined by a critical value. In fact, this value provides

information on whether the limit cycle trajectory of an unperturbed oscillator crosses

the unstable branch of the v-nullcline (SAO) or not (LAO) [189].
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The canard phenomenon for smooth two-dimensional systems has been inten-

sively investigated by various authors. It was discovered by Benoit for the Van der

Pol oscillator and investigated using non-standard or asymptotic techniques by Eck-

haus and Baer. In particular, they found expressions for the critical value of the pa-

rameter for which the canard explosion occurs (see [189]. The canard phenomenon has

also been studied by Dumortier and Roussarie and by Krupa and Szmolyan for more

general two-dimensional slow-fast systems.

From Arima et. al. [13], we know that the PWLC model introduced in Section 3.1

has a ‘canard’ solution. For some small value of I = IH = O(ε) > 0, the system under-

goes a Hopf-like bifurcation in a neighbourhood of the minimum of the v-nullcline.

For the parameters of the model studied here, the Hopf-like bifurcation is supercriti-

cal, so that the limit cycle created is stable. As I increases, the amplitude of the limit

cycle created at the Hopf-like bifurcation increases slowly for small enough values of

I. For these values, part of the trajectory is very close to the unstable middle branch of

the v-nullcline for a while, then it crosses the unstable branch and moves toward the

left branch of the v-nullcline. At a critical value Ic ≥ IH the trajectory moves towards

the right branch of the v-nullcline instead of moving towards the left branch. Then,

the limit cycle expands sharply, becoming a relaxation oscillator. The amplitude of the

limit cycle either increases slowly or remains constant as I is increased. SAO, MAO

and LAO are found in figure 3.1.2.

In the attempt to explore the ‘canard’ phenomenon further, we look for geometric

features of the periodic solutions in more detail. We observe that between SAO and

MAO there exists a point of inflection in the orbit [32,174]. SAO, born from a Hopf-

like bifurcation, typically encloses a convex area, thus the local curvature along the

cycle keeps a constant sign. In contrast, LAO, before becoming a relaxation oscillation,

enclose a non-convex area of a state space, so the local curvature along such a cycle

undergoes a change of sign. Hence, for ‘canard’ cycles, there must exist a set of zero-

curvature in between SAO and LAO [63].
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Before we proceed with our analysis, we briefly introduce the mathematical ex-

pressions of the inflection lines, where curvature changes sign, for a general planar

system. For a two dimensional system, we write

dv/dt = F(v,w), dw/dt = G(v,w), (3.2.1)

for which we have that dw/dv =G/F. A point of inflection is defined by d2w/dv2 = 0.

From equation (3.2.1) we have that

d
dv

(
dw
dv

)
=

F dG
dv −G dF

dv

F2 . (3.2.2)

Hence an inflection (assuming it exists) is determined by the differential geometric

condition

F
[

∂G
∂v

+
∂G
∂w

dw
dv

]
−G

[
∂F
∂v

+
∂F
∂w

dw
dv

]
= 0. (3.2.3)

For the PWLC model we have in any one region of phase-space that

F(v,w) = A11v + A12w + b1, G(v,w) = A21v + A22w + b2. (3.2.4)

In this case equation (3.2.3) defines two straight lines of the form w = w±(v), where

w±(v) =
v[A21κ± −A11] + b2κ± − b1

A12 −A22κ±
, (3.2.5)

and

κ± =
A11 −A22 ±

√
(TrA)2 − 4detA

2A21
. (3.2.6)

The inflection lines w± only exist if κ± are real, which is the case if the matrix A with

components Aµν, µ,ν = 1,2, has real eigenvalues. Note that for the singular value ε = 0

one of the inflection lines coincides with the voltage nullcline. We define the canard

inflection point as the set of parameters for which a convex periodic orbit develops a

point of inflection. This is prescribed by the tangential intersection of the T-periodic

orbit (v(t),w(t)) with an inflection line, namely the pair of equations w(t∗) = w± and

dw/dv|(t=t∗) = dw±/dv for some t∗ < T.

In our case, as we can see in figure 3.2.1, left side, the change in the curvature of

the periodic orbit occurs in R3, as expected (since here the fixed point is an unstable
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Figure 3.2.1: Inflection line story: Left panel shows all three types of oscilla-

tions, emphasizing the difference in curvature between SAO (red) and MAO

(blue) compared with LAO (green). Here the nullclines are plotted for the

value of I corresponding to the LAO. Right panel: Both limit cycles (four and six

pieces) follow a seemingly common path before they suddenly depart. There

is, however, an important qualitative difference in the trajectories: a change in

the sign of the curvature occurs in the large limit cycle, while no such change

is observed in the smaller limit cycle (blue). In both figures the inflection line

is the purple line.

node with positive real eigenvalues). Here, the eigenvalues are real. Therefore, in R3

there is an inflection line, which, locally, separates periodic solutions with different

curvatures. For example, for values of the control parameter larger than the Hopf

bifurcation value IH, the equilibrium point will move along the v-nullcline and will

be surrounded by a limit cycle. For values of I near IH, the limit cycle evolves near

the v-nullcline (due to the bending effect of the v-nullcline) and its form will be more

or less like a small duck’s body. In this parameter region the limit cycle surrounds a

convex domain [86].

As I goes away from IH the size of the limit cycle enlarges up to some I∗ when

it becomes tangent to the inflection line. For I > I∗, the limit cycle will intersect the

inflection line at two neighbouring points. As I becomes larger, the distance between

the inflection points situated on the limit cycle will increase, favouring the formation

of the large ‘body’, called a ‘maximal’ canard [86].
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At a certain value of I, namely I∗∗ > I∗, the limit cycle still follows the unstable

manifold of the v-nullcline for a certain time, but then it moves into the right direction,

forming a ‘canard with a head’ cycle. At this point the limit cycle hits the inflection line

at only one point and the stage of the non-convexity of the limit cycle starts, lasting

until the limit cycle becomes a relaxation oscillator (for I∗∗∗) [86].

The parameter window for which this stage exists is very small (I ∈ (I∗∗, I∗∗∗)),

being followed by a new parameter window for which the limit cycle surrounds again

a convex domain. Examples of inflection lines are shown in figures 3.2.1, where, under

variation of I, SAO and MAO exist to one side of the inflection line and LAO to the

other. The canard behaviour is associated with the first crossing of the inflection line

by a limit cycle trajectory [174].

For certain parameter regimes periodic behaviour it is possible to occur. In such

cases unstable periodic orbits that separate large and small orbits can be tracked in the

parameter space by considering the points where an unstable large oscillation passes

through the maximum of the v-nullcline and is maximal or when a medium unstable

orbit collides with a small stable orbit. Such constructions have been also explored

in [207] and [189]. However, to delineate canard transitions Rotstein et. al. tracked or-

bits which pass through points of inflection at the switching manifold. As a result, a

tongue of small but finite width that separates small from large amplitude oscillations

was defined but such curves (see figure 17 in [189]).

Remarks: The fast transition from small to large limit cycles, associated with the ‘ca-

nard’ phenomenon, can be seen as a strong instability of the system, although has

nothing to do with instability in the usual sense of the word. In fact, this instability is

indicated by the size of the control parameter interval (exponentially small) for which

the ‘canard’ explosion unfolds [32,141,178]. Also, a change of curvature of a limit cycle is

not generally associated with an explosive change of amplitude and period. The in-

flection line approach may be misleading, if no reference is made to whether the limit
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cycle crosses the inflection line ‘for the first time’ after a Hopf-like bifurcation [32].

3.3 Isochrons

In this section, using backward integration we compute isochrons for the PWLC model,

with different parameter values, yet remaining in the neighbourhood of the periodic

orbit. We found that the isochrons of the PWLC model are organised in complex struc-

tures, similar to the ones of the reduced Hodgkin-Huxley model, introduced and anal-

ysed in detail in [170].

The one-dimensional isochrons of this planar model, which are associated with

a unique globally attracting periodic orbit, foliate the phase space in a rather compli-

cated way. Each isochron has two branches, one on the outside of the periodic orbit

and one on the inside. The branches on the outside of the periodic orbit go off to in-

finity, while the ones inside end up, as Winfree suggested at the equilibrium point,

which is the phaseless set for the model [233]. There are regions on the phase plane

where the isochrons are very close to each other and the trajectories spend more time.

The isochrons come from outside the periodic orbit with asymptotes that are almost

horizontal, and converge to an area close to the slow repelling manifold. Furthermore,

as the control parameter increases, this region where the isochrons converge, changes

position (and shape), in the phase space, forming a spiral towards the equilibrium

point (see figure 3.3.1).

This process of ‘accumulation’ is rather complicated. The isochrons initially stay

almost horizontal until they come close to the v-nullcline. Then, instead of approach-

ing the equilibrium point directly (as the ones for van der Pol oscillator [123] or for

FitzHugh-Nagumo model, see figure 3.3.2, bottom panels), they bend around and

move away from the equilibrium point while it closely follow the v-nullcline. The

process is formed by the so-called ‘excursions’ and ‘boomerang turns’ of isochrons,
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Figure 3.3.1: Phase plane foliation with isochrons for the PWLC model: A

total of 50 isochrons uniformly distributed in time along the stable periodic

orbit (blue) of the PWLC model. From top left to bottom right, as the input

current is changed (top-left: I = 0.35, top-right: I = 0.4325, bottom-left: I = 0.437,

bottom-right: I = 0.45) the oscillations increase in amplitude passing through

the ‘canard’ regime. Along this path we observe major differences within the

structure of the isochrons forming a rather complex accumulation process. Top-

left: The isochrons are approaching the periodic orbit in a circular path, evolv-

ing very close to each other near the unstable manifold (middle branches of the

v-nullcline. Top-right and Bottom-left: Here we are in the neighbourhood of the

‘canard’ regime; the isochrons approach the periodic orbit in a circular path

converging towards the unstable fixed point. Here the isochrons evolve very

close, approach the stable manifold fromR1 and tend to bend towards the un-

stable manifold inR2. Bottom-right: In the LAO regime, the complex structure

of the isochrons is evident. The isochrons accumulate towards the phaseless

set forming, what looks like, a ‘spiral’. The rest of the parameters are: ε = 0.1,

γ = 0.5 and a = 0.25. In all figures, the red lines represent the nullclines, the

blue curve represents the stable periodic orbit whilst the black lines represent

the isochrons. 65
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introduced and investigated in detail for the reduced Hodgkin-Huxley model, in [170].

In figure 3.3.2, left panel, we observe the accumulation of the isochrons, forming, at

‘first glance’ a spiral leading to the equilibrium point. On the right panel five isochrons

are plotted for the PWLC model with the same parameter values. Here the ‘excur-

sions’ and ‘boomerang turns’ mentioned above are more clearly identified.

The aim of this section is not to investigate in detail the shape of these isochrons

and how they accumulate towards the phaseless set. Yet, we want to emphasise the

complex structure they posses, which may or may not be related to the slow-fast na-

ture of the model. Moreover, from a phase plane analysis point of view, the isochrons

provide a means to identify regions where trajectories spend more time in the phase

space.

A natural question is to investigate the canard phenomenon as the cause of this

complexity within the structure of isochrons. For this reason, we computed the isochrons

for the FitzHugh-Nagumo model (introduced in Chapter 2) that supports ‘canard’ so-

lutions. As we can see in figure 3.3.2, bottom panels, the isochrons approach the orbit

with asymptotes that are almost horizontal and converge to the equilibrium point al-

most tangentially to the slow repelling manifold. On the right-bottom panel, we com-

pute five isochrons for the same model; as we can see, there is no sign of ‘excursions’

or ‘boomerang turns’ as in the case of PWLC model or the reduced Hodgkin-Huxley

model.

Either for the PWLC or FitzHugh-Nagumo model, there is clearly a strong inter-

action between the isochrons and the corresponding repelling slow manifolds. More-

over, the geometry of the isochrons in a neighbourhood of the equilibrium point em-

phasises the extreme phase sensitivity that exists in the neighbourhood of a phaseless

set [170].
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Figure 3.3.2: The accumulation process of isochrons for the PWLC and

FitzHugh-Nagumo models: Top-left: An enlargement denoting the accumu-

lation of 50 isochrons for the PWLC model. Top-right: The same as in the top-

left panel for five isochrons. Here the ‘excursions’ and ‘boomerang turns’ are

distinguishable showing that the isochrons do not converge directly towards

the equilibrium point. Parameter values are as in figure 3.3.1 with I = 0.437.

Bottom-left: A total of 50 isochrons uniformly distributed in time along the sta-

ble periodic orbit (blue) for the FitzHugh-Nagumo model (see Chapter 2). The

isochrons are approaching the stable periodic orbit almost horizontally. The

ones which evolve in the lower or upper part of the phase plane, evolve hor-

izontally and turn back towards the orbit. After they cross the periodic or-

bit they converge to the equilibrium point, evolving almost tangentially to

the unstable manifold of the v-nullcline. Bottom-right: Five isochrons for the

FitzHugh-Nagumo model showing the simple path of isochrons towards the

phaseless set. For the FitzHugh-Nagumo model, the parameter values are:

I = 0.9, ε = 0.003, a = 1 and b = 0.5. In all figures, the red lines represent the

nullclines, the blue curve represents the stable periodic orbit whilst the black

lines represent the isochrons.
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3.4 Phase Response Curves

In this section, solving the adjoint equation to the dynamical system that describes the

activity of the PWLC neuron we compute the PRC. For PWL models DF(Z) is piece-

wise constant and the adjoint equation can be solved in closed form. Introducing a

labelling as for the periodic orbit the adjoint equations can be written in the form

Q̇µ = DµQµ, where Dµ = −AT
µ.

The solution of each subsystem is given by Qµ(t) =GT
µ(Tµ− t)Qµ(Tµ) with Qµ(Tµ) =

Qµ+1(0), for µ = 1, . . . 5. Denoting Q6(T6) = (q1,q2) we obtain the relation

q1/ε = [ f (v1
th)− w∗ + I] + q2g(v1

th,w∗) = 1/T, (3.4.1)

where w∗ is the second variable of the initial point (see section 3.1.2). From periodicity

and after introducing the 2 × 2 matrix

Γ = GT
1 (T1)GT

2 (T2)GT
3 (T3)GT

4 (T4)GT
5 (T5)GT

6 (T6) we have

(Γ11 − 1)q1 + Γ12q2 = 0. (3.4.2)

Solving the last two linear equations for (q1,q2) we obtain qi = det(Ψi)/det(Ψ), where

Ψ1 =

 1/T g(v1
th,w∗)

0 Γ12

 , Ψ2 =

 1/ε( f (v1
th)− w∗ + I) 1/T

Γ11 − 1 0

 , (3.4.3)

Ψ =

 1/ε( f (v1
th)− w∗ + I) g(v1

th,w∗)

Γ11 − 1 Γ12

 . (3.4.4)

Using the above equations we compute the PRC for all three types of periodic

solutions. Upon variation of the control parameter the orbits undergo transformations

in amplitude and shape, especially the medium and the large ones, where the ‘canard’

phenomenon has an influence. These transformations can be seen in the PRC as well,

changing the shape as the system passes through the ‘canard’ state.

For all periodic solutions, the corresponding PRCs (analytical) are shown in fig-

ure 3.4.1, for SAO top panel, MAO, middle panel and for LAO bottom panel. In the

68



CHAPTER 3: The dynamics of piecewise linear single neuron models

-10

-5

 0

 5

 10

 20

 0  0.5  1  1.5  

 0.06

 0.08

 0.1

 0.12

 0.14

 0.18

R V

t

-10

-5

 0

 5

 10

 20

 0  0.5  1  1.5  

R

t

-20

 0

 20

 40

 0  0.5  1  1.5  2

 0

 0.1

 0.2

 0.3

 0.5

R
V

t

-15

-10

-5

 0

 5

 10

 20

 0  0.5  1  1.5  

R

t

-4

-2

 0

 2

 

 0  0.5  1  1.5  2  3

-0.2

 0

 0.2

 0.4

 0.6

R V

t

-1.5

-1

-0.5

 0

 0.5

 

 1.5

 0  0.5  1  1.5  2  3

R

t

Figure 3.4.1: Left: Phase response curves(green lines) (first component of Q

scaled by T) for the PWLC model. The red line shows the underlying shape of

the periodic voltage solution. Parameters are ε = 0.1, γ = 0.5, a = 0.25, I = 0.3

for the top panel, I = 0.4325 for the middle panel and, I = 0.45 for the bottom

panel. This corresponds to SAO, MAO and LAO respectively. Right: Phase

response curves (first component of Q scaled by T) into pieces; each piece is

defined by the moment of crossing a threshold (switching manifold).
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left panel, both the membrane potential (in red) and the PRC (in green) are plotted

while on the right panel, the PRC is shown as a broken solution into two, four and six

pieces according to the number of thresholds that have been crossed by the orbit. In

all cases, the PRC is a Type II, being both positive and negative indicating an advance

and a delay for the next spike [106].

3.5 Conclusion

The aim of this chapter was to introduce a PWL planar model which supports ‘ca-

nard’ solutions. Before this, following Arima et.al. [13] we noted that PWL systems of

FitzHugh Nagumo type with three pieces have no such solutions. Further, using a

PWL model with four pieces we investigated briefly, using dynamical systems and

geometrical techniques, the ‘canard’ phenomenon. First, upon variation of the control

parameter we were able to identify the behaviour of the model using a phase plane

technique. We found values for which the model was in a resting state ( the associated

fixed point was a stable node) and values for which the model exhibited oscillatory

behaviour. Such results were summarised in a bifurcation diagram, a technique fre-

quently used in a dynamical system context because it clearly presents the state of the

system upon the variation of the control parameter. Both resting and oscillatory states

of the system were emphasised along with the existence of the ‘canard’ solutions (in

particular the small interval for which canard solutions exists).

Moreover, investigating the actual evolution of trajectories in each regime, influ-

enced by the distance between the initial point of the regime where the trajectory starts

and the fixed point of the regime where the trajectory evolves, we built up a picture of

the ‘canard’ phenomenon. Further we used points of inflection of the periodic orbits

to explain the ‘canard’ phenomenon. By working with PWL systems we were able to

compute the exact (analytical) solution in each regime.

70



CHAPTER 3: The dynamics of piecewise linear single neuron models

Isochrons were numerically computed for the PWLC model, using the backward

integration approach, and compared with the isochron structure of another model

which supports such solutions, namely, the FitzHugh-Nagumo model. We found an

interesting structure of isochrons for the PWLC model, similar with the one found

by Osinga in [170], for the reduced Hodgkin-Huxley model. As the control parameter

changes the process of accumulation of isochrons towards the equilibrium point be-

comes more clear. In particular the circular path the isochrons follow after approach-

ing the unstable manifold almost tangentially and crossing the periodic orbit, through

‘excursions’ and ‘boomerang’ turns is emphasised when just a few isochrons are plot-

ted. Furthermore, when comparing with the phase plane foliation with isochrons of

the FitzHugh-Nagumo model, we see no similarities between the accumulation pro-

cesses. Thus, the complicated structure of isochrons for the PWLC model, may not be

related with the ‘canard’ phenomenon; but further investigation is needed. Moreover,

being able to construct in closed form both periodic solutions and PRCs for the PWL

model, one wonders if there is the possibility to also determine isochrons locally in

closed form. Perhaps using linear or quadratic approximations to the isochron near

the limit cycle one will be able to find the exact solution for the isochrons of a PWL

model [221].

The chapter ends with a calculation of PRCs of the PWLC model in closed form.

These will be used in the next chapter, within the weakly coupled oscillator analysis.

This sort of investigation was necessary since knowledge of the behaviour of

the system at the single cell level is needed to understand how the cells will behave

when coupled. In particular, we wanted to know in which conditions the system is

in rest or in an oscillatory behaviour. Also, motivated by the influence of the ‘ca-

nard’ phenomenon at the network level we wanted to have a better understanding of

this phenomenon. Specifically, we were interested to know how the system will react

when it is weakly perturbed under different conditions (for different parameter val-

ues, namely SAO, MAO and LAO case). For this we computed both the isochrons and
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the PRCs.
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Chapter 4

The dynamics of coupled piecewise

linear single neuron models

Here, following Coombes [48], we will further explore the properties of PWLC models

linearly coupled in both variables. We start with a few words about coupled oscillator

theory, followed by the types of coupling used and a brief description of the two main

states investigated here. Then, through dimension reduction and exploiting the form

of the phase equations, we continue with the investigation of phase-locked states in a

weakly coupled regime. In particular, we look at the interaction between two weakly

coupled oscillators, and between N weakly coupled cells, where N� 2.

Further, we proceed beyond the weak coupling regime, and investigate the mech-

anisms that determine the existence and stability of synchronous and asynchronous

states. In particular, using Floquet theory we determine the stability of the synchronous

solution whilst adopting a phase density approach we are able to compute the eigen

spectrum of the splay solution. Finally, using numerical simulation we explore clus-

tering states.

73



CHAPTER 4: The dynamics of coupled piecewise linear single neuron models

4.1 Introduction

The theory of coupled oscillators dates back in 1665 when the great Dutch physicist

Christiaan Huygens, inventor of the pendulum clock, had an intuition about the mu-

tual influence of clocks. His finding was the beginning of nonlinear science. The theory

of coupled oscillators provides useful insights in the study of collective behaviour

of large complex systems. Under different conditions, coupled cells may have var-

ious dynamics, such as: in phase and out of phase entrainment, travelling waves,

frequency entrainment or even amplitude death in the strong coupling limit [219]. Cou-

pled oscillators are omnipresent in the natural world, but they are especially notice-

able in living things: pacemaker cells in the heart, insulin-secreting cells in the pan-

creas or neural networks in the brain and spinal cord that control such rhythmic be-

haviours as breathing, running and chewing [218].

Since about 1960, mathematical biologists have been studying simplified models

of coupled oscillators that maintain the essence of their biological prototypes. Among

the pioneers was Charles Peskin, who was the first to propose a schematic model for

pacemaker cells. He formulated two conjectures: the system would always eventually

synchronise, which he proved for two identical oscillators (pacemaker cells), and it

would synchronise even if the oscillators are not quite identical. Major progress was due

to Arthur Winfree, who considered for the first time a system of coupled limit cycles.

He ‘opened doors’ with his weak coupling approximations approach, considered only

phase variations for the analysis and also investigated global coupling between units.

Later, Kuramuto, developed further the model proposed by Peskin [219]. The break-

throughs in computers and computer graphics, collaborations with experimentalists,

developments in Mathematics, especially in dynamical systems theory, have made

possible a rapid progress in understanding the dynamics of networks of coupled os-

cillators [79,218].

In neuroscience, the dynamics of networks of neurons interacting via chemical
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synapses has been greatly studied. However, relatively a few theoretical studies have

addressed the dynamics of networks, in which neurons are coupled by electrical

synapses [177]. Many experimentally studies have shown the presence of gap junction

coupling between local interneuronal networks throughout the brain. In combination

with inhibitory synapses, gap junctions promote synchronous behaviour, although in

a weakly coupled regime, sometimes can foster antisynchronous activity as well. It is

also thought that gap junctions play a role in rhythmogenesis [48,151].

Global Coupling

Global coupling on the recovery variable has been used for chemical oscillators, in

particular for the Belousov-Zhabotinsky (BZ) reaction-diffusion systems. In these sys-

tems, occurrence of spatial domains of LAO on a background of SAO, called localisa-

tion, has been reported subject to global inhibitory feedback. These localised structures

are special cases of a more general phenomenon (oscillatory clusters), which consist

of a small number of (not necessarily connected) spatial domains each oscillating with

a common amplitude and phase. Apart from being based on the canard phenomenon

that occurs in single cells, this mechanism of localisation is a consequence of the global

coupling between cells [190,191].

The phenomenon of phase locking in networks of synaptically interacting neural

oscillators is common to many areas of neuroscience. For example, in thalamic and

hippocampal networks [216,232] synchronous activity is present whilst in central pat-

tern generators anti-synchronous rhythms are observed [36]. These phase-locked be-

haviours depend crucially upon the intrinsic mechanism of neural oscillation as well

as the nature of cell coupling.

Synchronous State

Synchronised systems have been widely observed in the natural world. For ex-

ample, thousands of fireflies in the jungles of South East Asia blink on and off in
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unison, the rhythm of the heart emerges from the collective dynamics of oscillating

cardiac cells and audiences clap together [169]. Many physiological control systems are

governed by coupled neural oscillators. In these systems, it is important to maintain

some degree of synchronisation. In fact, recent studies focused on the information

processing comprehension of the nervous system have been guided by the idea that

synchronisation of oscillatory neuronal units can provide a mechanism for the func-

tioning of neural systems [76,179].

Splay State

Another state of interest, in the study of globally coupled oscillators is the so

called splay state, or merry-go-round state. It is a state in which all oscillators follow the

same periodic dynamics but at different time shifts that are evenly distributed [37]. In a

neuroscience context, this is the state in which the neurons fire periodically and in reg-

ular sequence [46]. The original interest in splay states emerged from the phenomenon

of attractor crowding, wherein the observed dynamics is dominated by the coexis-

tence of a huge number (of order N!) of splay phase attractors [206]. Splay states were

first observed by Hadley and Beasly in numerical simulations of Josephson arrays [100].

Moreover, they have been found in globally coupled Ginzburg-Landau equations [101],

pulse-coupled neuronal networks [4] and coupled van-der-Pol oscillators [37,206].

4.2 Weakly Coupled Oscillator Theory

The theory of weakly coupled oscillators is now a standard tool of dynamical systems

theory and has been invoked by several authors to study networks with linear cou-

pling, in particular with gap junctions [48]. The behaviour of coupled neural oscillators

is very difficult to analyse. However limiting cases can be treated using the method

of averaging [137]. This method is one of the key features of the weakly coupled oscil-

lator theory. It can be used to predict phase-locking in neuronal networks with any
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form of coupling with the constraint of sufficiently ‘weak’ coupling for those predic-

tions to hold. Hence the coupling can only have small effects on cells dynamics over

any given period. However, these small effects can accumulate over time and lead

to phase-locking behaviour in the network [199]. Furthermore, the theory of weakly

coupled oscillators, allows one to reduce the dynamics of each cell, (which could be

of very high dimension) to a single differential equation describing the phase of the

cell. These ‘phase equations’ take the form of a convolution of the input to the cell via

coupling and the neuron’s PRC.

There are different ways to ‘derive’ the phase equations, each providing different

insight into the underlying dynamics of phase response properties and phase-locking

dynamics. Among them we find: ‘Seat-of-the-Pants’ derivation, which is the most acces-

sible and captures the essence of weak coupling theory; the geometric approach, which

provides deeper insight into the phase response dynamics of cells and uses the notion

of isochrons and the singular perturbation approach, which provides a clear derivation of

the phase equations and computes PRC as a solution of the ‘adjoint’ equations. More

details and mathematical insights about these methods can be found in [123,199].

Phase Model-Single Oscillator

Many physical, chemical and biological systems can produce oscillations [233], which

can be represented mathematically by a nonlinear dynamical system

dv
dt

= f (v), (4.2.1)

v ∈RN, f ∈RN having a periodic orbit γ of period T.

The phase of an oscillator (neuron) is a measure of the time that has elapsed as the

oscillator moves around its periodic orbit, starting from an arbitrary reference point in

the cycle. We define the phase of the neuron j at time t to be

θj(t) = (t + ϕj)modT, (4.2.2)

where θj = 0 is set to be at the peak of the neuron’s spike. The constant ϕj, called the
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relative phase of the jth neuron, is determined by the position of the neuron on the limit

cycle at time t = 0.

There is a correspondence between each phase of the neuron and each point on

the cell’s T-periodic orbit. Moreover, any solution of equation (4.2.1) that is on the

limit cycle γ can be written as

vj(t) = γ(θj(t)) = γ(t + ϕj), j = 1, . . .N. (4.2.3)

This change of variables transforms the nonlinear system in a neighbourhood of γ into

an equivalent phase model

θ̇ = 1. (4.2.4)

If the oscillator is weakly forced by a small perturbation of magnitude η, ηs(t) as an

input from other oscillators

v̇ = f (v) + ηs(t) (4.2.5)

then, the corresponding phase equation has the form

θ̇ = 1 + ηQ(γ) · s(t), (4.2.6)

where, Q(γ) is the linear response function (the sensitivity function) [199]. Q(γ) is the

solution to the adjoint problem

dQ
dt

= −{D(γ(θ))}TQ, (4.2.7)

where D is the Jacobian of f around the periodic orbit, γ, with the normalization con-

dition

Q(γ) · f (γ(θ)) = 1, (4.2.8)

and Q(t) = Q(t + T) for every θ.

Phase Model-Weakly Coupled Oscillators

Now, we consider a network of N weakly coupled oscillators given by

dvi

dt
= fi(vi) + η

N

∑
j=1

gij(vi,vj), i, j = 1 . . .N, (4.2.9)
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where fi ∈ RN and gij is the input from the network. Because the coupling is weak,

η� 1, the neurons’ intrinsic dynamics dominate the dynamics of the network and

vi(t) ' γi(θi(t)) = γi(t + ϕi(t)), i = 1, . . .N. (4.2.10)

Under these conditions the input can only affect the speed at which cells move around

their limit cycle and does not affect the amplitude of oscillations. The singular per-

turbation approach exploits the differences between the time scale of a single cell, and

the much slower one of the network. As we already mentioned, the effects of coupling

slowly accumulates on the slower time scale and can have a substantial influence on

the relative firing times of the neurons. Thus, the time is a function of the time scale of

the isolated cell, the ‘fast time’ t f = t, and that of the coupling effects on the network,

the ’slow time’, ts = ηt. Now, using
d
dt

=
∂

∂t f
+ η

∂

∂ts
and expanding solutions of the

system using power series in η that are dependent on both t f and ts as

vi(t) = v0
i (t f , ts) + ηv1

i (t f , ts) +O(η2), i = 1 . . .N, (4.2.11)

plus expanding the vector functions fi and gij using Taylor series, we introduce them

into equation (4.2.9). Equating the coefficients of like terms in η we obtain:

∂v0
i

∂t f
= fi(v0

i ), i = 1, . . .N. (4.2.12)

Equation (4.2.12) represents the equation for the uncoupled cell. Thus, each cell ex-

hibits the T-periodic limit cycle solution

v0
i (t f , ts) = γ(t f + ϕi(ts)T), i = 1, . . .N. (4.2.13)

For terms of O(η) we obtain

∂v1
i

∂t f
−D f (γi(t f ))v1

i =
N

∑
j=1

gij(γ(t f ),γ(t f − (ϕi(ts)− ϕj(ts))))− γ
′
(t f )

dϕi

dts
. (4.2.14)

Using Fredholm’s Alternative theorem (see the Appendix 9.B.3), equation (4.2.9) has a

solution if

1
T

∫ T

0
Q(t f ) ·

[
N

∑
j=1

gij(γ(t f ),γ(t f − (ϕi(ts)T− ϕj(ts)T)))− γ
′
(t f )

dϕi

dts

]
dt f = 0,

(4.2.15)
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where, as before Q is a T-periodic solution of the adjoint equation (4.2.7). Rearranging

the above equation we obtain

dϕi

dts
=

1
T

∫ T

0
Q(t f ) ·

[
N

∑
j=1

gij(γ(t f ),γ(t f − (ϕi(ts)T− ϕj(ts)T)))

]
dt f , (4.2.16)

where, as before Q(t f ) is normalized as in equation (4.2.8). Finally, recalling that ts =

ηt and t f = t, we obtain the phase model for the coupled neurons:

dϕi

dt
=

η

T

∫ T

0
Q(t̂) ·

[
N

∑
j=1

gij(γ(t̂),γ(t̂− T(ϕi − ϕj)))

]
dt̂ (4.2.17)

= η
N

∑
j=1

∫ T

0
hij(ϕi, ϕj), (4.2.18)

where hij = Q(t) · ∑N
j=1 gij(γ(t),γ(t− (ϕi − ϕj))), i, j = 1 . . .N. Therefore, the phase

model for the coupled system has the form

dθi

dt
=

1
T
+

η

N

N

∑
j=1

H(θi − θj), (4.2.19)

where the function H describes the interaction between oscillators and is given by

H(χ) =
1
T

∫ T

0
hij(t, t + χ)dt, (4.2.20)

while Q is the PRC and η is the vector of the perturbation magnitude.

4.2.1 Phase Interaction Function

Indexing neurons in a network with the label i = 1, . . . ,N we define the linear drive to

neuron i as

1
N

 g1 ∑N
j=1 vi − vj

g2 ∑N
j=1 wj

 , (4.2.21)

where η = (g1, g2)T is the vector magnitude of the coupling current. The coupling is

performed on both variables, with a gap junction coupling type on the voltage variable

v, and a linear coupling on the recovery variable w.
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Focusing on a phase locked state zi(t) = z(t + ϕi), z(t) = z(t + T), (for some con-

stant phases ϕi ∈ [0,1) with respect to the time scale of the isolated cell) and rescaling,

the coupling term becomes

η

N

N

∑
j=1

(
v(t + (ϕi − ϕj)T)− v(t)),w(t + ϕjT)

)
, i, j = 1, . . .N, i 6= j. (4.2.22)

In this case the phase interaction function has the form

H(θ) =
1
T

∫ T

0
QT(t) · (g1(v(t + θT)− v(t)), g2w(t + θT))dt, (4.2.23)

where (v(t),w(t)) is a periodic solution, and Q(t) is the associated adjoint.

Fourier Series Representation

It is convenient to introduce Fourier series for the 2× 1 vectors z = (v,w)T and Q

as

z(t) = ∑
n

zne2πint/T, Q(t) = ∑
m

Qme2πimt/T, (4.2.24)

or  v(t)

w(t)

 =

 ∑n vne2πint/T

∑n wne2πint/T

 ,

 Qv(t)

Qw(t)

 =

 ∑m Qv
me2πimt/T

∑m Qw
me2πimt/T

 , (4.2.25)

to compute the phase interaction function.

Therefore, the phase interaction function becomes:

H(θ) =
1
T

∫ T

0

 Qv(t)

Qw(t)

 ·
 g1(v(t + Tθ)− v(t))

g2w(t + Tθ)

dt (4.2.26)

=
1
T

∫ T

0
(Qv(t)g1(v(t + Tθ)− v(t)) + Qw(t)g2w(t + Tθ))dt. (4.2.27)

Further, dividing the integral in two parts, H1 and H2, so that H =H1 +H2, where

H1(θ) =
g1

T

∫ T

0
Qv(t)g1(v(t + Tθ)− v(t))dt (4.2.28)

and

H2(θ) =
g2

T

∫ T

0
Qw(t)g1(w(t + Tθ))dt, (4.2.29)
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and using
1
T

∫ T

0
e2πi(n+m)t/Tdt =

(
e2πi(n+m) − 1

)
= δm,−n, (4.2.30)

we obtain

H1(θ) = g1 ∑
n

Qv
nv−n

(
e−2πinθ − 1

)
, (4.2.31)

and

H2(θ) = g2 ∑
n

Qw
n w−ne−2πinθ . (4.2.32)

Adding together, the phase interaction function has the series expansion

H(θ) = g1 ∑
n

Qv
nv−n

(
e−2πinθ − 1

)
+ g2 ∑

n
Qw

n w−ne−2πinθ , (4.2.33)

where vn, wn denotes the first and the second component of zn, Qv
n and Qw

n are the first

and the second component of Qn. A more detailed computation of H1 and H2 can be

found in the Appendix 9.B.4.

4.2.2 Phase-Locked States and Their Stability

A phase-locked solution is defined as θi(t) = ϕi +Ωt, where ϕi is a constant phase and

Ω is the collective frequency of the coupled oscillators. Substitution into the averaged

system (4.2.19) gives

Ω =
1
T
+

1
N

N

∑
j=1

(
g1H1(ϕj − ϕi) + g2H2(ϕj − ϕi)

)
, i = 1, . . . ,N. (4.2.34)

After choosing some reference oscillator, these N equations determine the collective

frequency Ω and N − 1 relative phases. In order to analyse the local stability of a

phase-locked solution Φ = (ϕ1, . . . , ϕN), we linearise the system by setting θi(t) = ϕi +

Ωt + θ̃i(t) and expand to first order in θ̃i

dθ̃i

dt
=

g1

N ∑
(

H
′
1(ϕj − ϕi)(θ̃j − θ̃i)

)
+

g2

N ∑
(

H
′
2(ϕj − ϕi)(θ̃j − θ̃i)

)
. (4.2.35)

Writing

Ĥ1
ij(Φ) = g1

ijH
′
1(ϕj − ϕi)− δi,j

N

∑
k=1

g1
ikH′1(ϕk − ϕi) (4.2.36)
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and

Ĥ2
ij(Φ) = g2

ijH
′
2(ϕj − ϕi)− δi,j

N

∑
k=1

g2
ikH′2(ϕk − ϕi) (4.2.37)

we obtain
dθ̃i

dt
=

1
N

N

∑
j=1

(
Ĥij(Φ)

)
θ̃j, (4.2.38)

with Ĥij = Ĥ1
ij(Φ) + Ĥ2

ij(Φ) so that and equation 4.2.44 is defined, where H
′
(ϕ) =

dH(ϕ)/dϕ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the corre-

sponding eigenvector points in the direction of the flow, that is, (1,1, . . . ,1). The phase-

locked solution will be stable provided that all other eigenvalues have a negative real

part [48].

4.2.3 Two Weakly Coupled Oscillators

In this section, we analyse the effects of linear coupling on phase locking in a network

of two weakly PWLC coupled neurons. We consider three coupling situations: cou-

pling only on the first variable, only on the second variable and combination of the

two with varying coupling strengths. For the PRC we use the analytical expression

obtained in Chapter 3.

We first examine a network of two identical oscillators linear reciprocally con-

nected on both variables,

θ̇1 = Ω + g1H1(θ2 − θ1) + g2H2(θ2 − θ1), (4.2.39)

θ̇2 = Ω + g1H1(θ1 − θ2) + g2H2(θ1 − θ2), (4.2.40)

where H1 and H2 are given by 4.2.31, respectively 4.2.32. A phase-locked solution sat-

isfies θ2(t)− θ1(t) = ϕ where the constant phase difference ϕ is a zero of the function

G(ϕ) = g1G1(ϕ) + g2G2(ϕ), (4.2.41)
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Figure 4.2.1: Examples of the H(ϕ) and G(ϕ) functions for a pair of weakly

coupled PWLC models, with different coupling combinations. The parame-

ter values are: ε = 0.1, γ = 0.5 and a = 0.25. Upper Panel: SAO (I = 0.3); Inde-

pendent of the coupling type the synchronous solution is stable and the anti-

synchronous solution is unstable. Middle Panel: MAO (I = 0.4325) If coupling

is acting on w-variable or on both variables then the synchronous solution is

stable and the antisynchronous solution is unstable. If cells are coupled only

on v-variable, then both the synchronous and the antisynchronous solutions

are unstable. Moreover, there are other solutions which are stable. Lower Panel:

LAO (I = 0.45) ; Independent of the coupling type the synchronous solution is

stable whilst the antisynchronous solution is unstable.
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where

G1(ϕ) = H1(−ϕ)−H1(ϕ), (4.2.42)

G2(ϕ) = H2(−ϕ)−H2(ϕ). (4.2.43)

Using the expressions for the phase interaction function, found in the previous

section, we plot the H function for the PWLC model, in each of the three regimes: SAO,

MAO and LAO. The coupling has been taken, either only on one of the variables or on

both variables. The phase interaction function is plotted over a period of oscillations

and are shown in figure 4.2.1, left side.

To determine the stability of both states: synchronous and antisynchronous, we

plot G(ϕ) (see figure 4.2.1, right side). As the two coupled oscillators are identical, the

function G(ϕ) is always symmetric around ϕ = 1/2. The stability of the steady states

of G(ϕ) at ϕ = 1/2 and ϕ = 0,1 corresponds to the stability of the antisynchronous and

the synchronous state respectively. A phase-locked state at any given steady state ϕ is

stable if G′(ϕ) < 0 and unstable if G′(ϕ) > 0, [28]. For the PWLC model, especially for

SAO and LAO regime, the synchronous solutions are stable and the antisynchronous

solutions are unstable, whatever the coupling type. Yet, in the ‘canard’ regime (MAO),

the situation is different, mainly when the coupling is in the voltage variable. In this

case, both the synchronous and antisynchronous solutions are unstable. As we can

see in figure 4.2.1, middle panel, right side, if the coupling is only on voltage variable

there are other solutions, for ϕ ' 0.2 and ϕ ' 0.8, which are stable.

Simulations for two Cells

We numerically simulate a pair of weakly coupled PWLC cells to confirm pre-

dictions about the stability of synchrony and antisynchrony solutions given by the

weakly coupled oscillators theory. All parameters are set to be identical for the two

cells and simulations are initialised at a random phase difference. The simulations

were run for various values of g1 and g2. If the cells are coupled only on the voltage
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Figure 4.2.2: The firing behaviour of a pair of PWLC oscillators. The param-

eter values in all cases are: ε = 0.1, γ = 0.5, a = 0.25. Upper Panel: Cells are in

MAO regime (I= 0.4325) and are coupled only on the v-variable with g1 = 0.02.

Here the cells phase-locked in a solution different to the synchronous and an-

tisynchronous one. Lower Panel: Cells are in the LAO regime (I = 0.45) and are

coupled only on the v-variable with g1 = 0.02. The cells are synchronising.

variable, and the parameters are set to either SAO (not shown) or LAO regime, then

the cells eventually will synchronise, as expected [48] (see figure 4.2.2, lower panel).

If the parameters are set for the ‘canard’ regime, independent on the g1 strength, the

cells phase-lock in a solution different to the synchronous and antisynchronous one,

as figure 4.2.2, upper panel shows. These results are consistent with the one provided

by the G(ϕ) function (see figure 4.2.1, middle panel).

If we consider coupling on the second variable, either alone or in combination

with coupling on the first variable we observe a decrease in the amplitude of the
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Figure 4.2.3: Bifurcation diagram showing the decrease in the amplitude of

oscillations. Parameter values are: I = 0.45, µ = 0.1, γ = 0.5, a = 0.25 and

g1 = 0. As the coupling strength g2 increases, the amplitude of the oscillations

decreases. Stable fixed points are shown in black, thick line, whilst the unstable

fixed points in black, dashed line.

oscillations. For example, if parameters are set for LAO regime with I = 0.445 and

g2 ≥ 0.012 then at least one of the cells’ amplitude will decrease, in which case, the

cells will fail to synchronise. To see synchronous behaviour in this case, the value of

g2 has to be weak enough not to make cells to change the regime. Yet, in this situation,

they may never synchronise. In figure 4.2.3, we plot the amplitude of oscillations as

the coupling strength g2 is varied.

4.2.4 Network of N Weakly Coupled Oscillators

The results from the previous section can be extended to larger networks of weakly

coupled oscillators. We consider a network of globally weakly coupled N PWLC cells,

connected on both variables at once. For this network we investigate the stability of

the synchronous and the splay state.

For the synchronous state, defined by ϕi(t) = 0, the collective frequency is given

simply as Ω = 1/T, and

Ĥij(Φ) = g1H
′
1(0)[1−Nδij] + g2H

′
2(0)[1−Nδij]. (4.2.44)

Hence, there is a single zero eigenvalue and an eigenvalue of multiplicity N− 1 given
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by

λ = −2[g1H
′
1(0) + g2H

′
2(0)]. (4.2.45)

In the case of a splay state of the form ϕi = i/N, the eigenvalues of Ĥ are given by

λn = g1/N∑
j

H
′
1(j/N)(e2πinj/N − 1) + g2/N∑

j
H
′
2(j/N)(e2πinj/N − 1), (4.2.46)

for n = 0, . . . ,N− 1. Evaluating the sign of the eigenvalues given by equation (4.2.45),

we find that for SAO and LAO regimes the synchronous solutions are stable, either if

the coupling is taken on the v variable or on the w variable with g1,2 > 0.

The stability of the splay state, for N weakly coupled oscillators, is given by the

sign of the real part of λn for ∀n. In this case, independent on which coupling is

activated, we find that, as before, the splay solutions are unstable in each of the regime:

SAO, MAO or LAO.

4.3 Beyond Weak Coupling

The study of the temporal organisation of populations of coupled nonlinear oscilla-

tors has a long history. Much theoretical progress has been made in the case of os-

cillators with weak interaction. Yet, the ‘theory’ is built around the fact that, due to

the weakness of interactions, perturbations in directions orthogonal to the limit cycle

trajectory can be neglected. However, most systems of interest have stronger inter-

action between units. In this case, perturbation orthogonal to the limit cycle can no

longer be neglected. Strong interaction may destabilise modes in these directions re-

sulting in qualitatively different behaviour of the units activity and implicitly of the

network [228].

Extending work by Coombes, [48,54], we study the synchronous and splay state

in the strong coupling regime for global coupling on both variables. We construct

synchronous and asynchronous solutions and analyse the stability of the synchronous
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solution using Floquet theory, and that of the splay state using a phase-density formal-

ism. The standard method for analysis was accomplished by developing a mean-field

approach that is based on the introduction of the probability distribution of the neu-

ron phases, and is expected to work for N→∞ [37]. This method has been used by Van

Vreeswijk in [228], where he analysed a simple network of identical limit cycles with

all-to-all coupling. It has also been used by Ermentrout in the case of the interaction

of strong synaptic and gap-junctional coupling in an excitable system [74].

Here we consider N identical oscillators, linearly coupled on both variables. The

state of an oscillator labelled by the index i is described by

εv̇i = f (vi)− wi + I + Xi(t) (4.3.1)

ẇi = vi − γwi + Y(t), (4.3.2)

where the function F = [ f (vi)− wi + I,vi − γwi] characterises the behaviour of the os-

cillator i in the absence of coupling, i = 1 . . .N. The coupling term is given by

Ei =

Xi(t)

Y(t)

 =
1
N

g1 ∑j(vj − vi)

g2 ∑j wj

 , (4.3.3)

where g1, g2 > 0 are the coupling strengths on the voltage variable, respectively recov-

ery variable.

4.3.1 Existence and Stability of a Synchronous Solution

If the cells within the network are coupled only on the v variable, then a synchronous

network solution exists whenever a periodic orbit for an isolated oscillator exists (g1 =

0, g2 = 0), and will have the period of the uncoupled isolated oscillator [48]. If the cells

are coupled on both variables, or only on the second variable, the situation is different.

In this case, the input each cell receives from the rest of the cells, is felt through the

coupling on the second variable. Here, the small perturbations caused by the coupling

do not cancel as in the case of the coupling on the voltage variable. They add up and
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modify the dynamics of each cell within the network. In this situation, the existence

of the synchronous solution depends on the coupling strength g2.

For convenience, we define a matrix

Aµ(g1) = Aµ −

g1/ε 0

0 0

 (4.3.4)

and

B(g1, g2) =

g1/ε 0

0 g2

 , (4.3.5)

where µ = 1 . . . 6. Here µ is chosen according to µ = µ1 if t∈ [0,T1), µ = µ2 if t∈ [T1,T2),

µ = µ3 if t ∈ [T2,T3), µ = µ4 if t ∈ [T3,T4), µ = µ5 if t ∈ [T4,T5),µ = µ6 if t ∈ [T5,T6)

defining six distinct phases of the orbit. Using this notation, the Jacobian of the 2N× 2N

system has the form

DF =



A(g1) +
1
N B(g1, g2)

1
N B(g1, g2) . . . 1

N B(g1, g2)

1
N B(g1, g2) A(g1) +

1
N B(g1, g2) . . . 1

N B(g1, g2)

...
. . .

1
N B(g1, g2)

1
N B(g1, g2) . . . A(g1) +

1
N B(g1, g2)


.

(4.3.6)

The 2N Floquet multipliers are given as the eigenvalues of a 2N× 2N matrix G(T),

where G(T) has the form of (3.1.25), with DF given by equation (4.3.6).

On each of the six phases of the orbit, DF = DFµ is independent of time. More-

over, the shape of this matrix enhances the diagonalisation by Fourier transform and

computation of the eigenvalues. Following [48] we proceed with the computation of

the Floquet multipliers.

We write the N-dimensional linearised system of equations in the form Ż = DFZ.
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First, consider the two-dimensional system ż = Az, where A = A(g1) and observe that

Z =



z

−z

0
...

0


,



z

0

−z
...

0


, . . . ,



z

0

0
...

−z


(4.3.7)

are linearly independent solutions of Ż = DFZ. In this case the stability of the syn-

chronous solution depends on g1 (for a detailed explanation see Appendix 9.B.5).

Therefore, the two Floquet multipliers of ż = Az are also Floquet multipliers of

Ż = DFZ, with N− 1 degeneracy.

Further, we consider the two-dimensional system ż = Az, with A = A(g2) =

A(g1) + B(g1, g2). In this case, the solution

Z =



z

z
...

z


(4.3.8)

is also a solution of Ż = DFZ, with two Floquet multipliers. Here, the stability of the

synchronous solution depends on g2 (for a detailed explanation see Appendix 9.B.5).

Hence, we can account for all the 2N Floquet multipliers (including the one which

is unity). Using the same analysis as the one in Chapter 3 for

G(T)=G6(T6)G5(T5)G4(T4)G3(T3)G2(T2)G1(T1), and Gµ(Tµ) = exp(Aµ(g1, g2)Tµ) be-

ing a 2× 2 matrix, we perform the stability analysis. The condition for eigenvalues to

cross the unit circle along the real axis is det[G(T)± I] = 0, and off of the real axis is

detG(T) = 1.
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Particular case: fixed point of the network

If each neuron is defined as vi = v̄, wi = w̄ for any i, then 1/N∑i vj − vi = 0 and

1/N∑j wj = w̄. In this case the network dynamics are governed by equations:

f (v̄)− w̄ + I = 0, (4.3.9)

g(v̄, w̄) + g2w̄ = 0. (4.3.10)

As we have seen above, the stability of the fixed point of the network depends,

once on g1 through

Aµ −

g1/ε 0

0 0

 (4.3.11)

and, secondly on g2 through

Aµ +

0 0

0 g2

 , (4.3.12)

where µ = 1 . . . 6. Both the equations of the fixed points and the corresponding eigen-

values can be found in the Appendix 9.B.1, respectively the Appendix 9.B.2. In gen-

eral, to determine the stability, the conditions det(Ā) > 0 and Tr(Ā = 0) are imposed

where Ā is given either by equation (4.3.11) or equation (4.3.12).

Upon the position of the fixed point, the stability conditions transform to: g1 =

−1 − εγ, g2 = 1/ε + γ from the trace condition, and g1 < (−γ − 1)/γ, g2 < γ − 1

from the determinant condition, if the fixed point is either in R1 or R4 regime. If the

fixed point is found inR2, then we have the conditions: g1 = 1/5− εγ, g2 =−1/5ε +

γ, from the trace condition, and g1 < (γ − 5)/5γ, g2 < γ − 5, from the determinant

condition. Last, for R3, the conditions are: g1 = 1− εγ, g2 = −1 + γ from the trace

condition, while from the determinant condition we have: g1 < (γ − 1)/γ and g2 <

γ− 1/ε.
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4.3.2 Existence and Stability of a Splay Solution

Splay states are expected to be generic in globally coupled systems, by the equivariant

branching lemma [48]. Under the assumption that the uncoupled cells oscillate, there

is a splay solution for (g1, g2) = (0,0) which will persist for finite but sufficiently small

(g1, g2). For larger (g1, g2), a splay solution may not exist [228]. Here, we assume that

there is (g1, g2) such that a T-periodic splay solution exists with T constant. This type

of solution, will be explored in a globally coupled network regime in the large N limit.

Thus, the asynchronous state is a periodic solution and can be written as

(vi(t),wi(t)) = (v(t− iT/N), w(t− iT/N)) with (v(t),w(t)) = (v(t + T), w(t + T)) for

i = 1 . . .N. For large networks the asynchronous state is characterised by a coupling

variable that is independent of time, E0. The solutions being periodic with a period T,

using mean field approximation theory, E0 is given by

E0 =

v0

w0

 . (4.3.13)

The first coupling term is defined by

Xi(t) =
g1

N ∑
j
(vj − vi) =

g1

N ∑
j

vj −
g1

N
vi (4.3.14)

and using the fact that vj = v(t + j/NT) we obtain,

lim
N→∞

1
N

N

∑
i=1

v (t + j/NT) =
1
T

∫ T

0
v(t)dt = v0 (4.3.15)

Similarly,

Y(t) =
g2

N ∑
j

wj = g2w0, (4.3.16)

where w0 = 1/T
∫ T

0 w(t)dt.

Hence, for a splay state every neuron in the network is described by the same
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dynamical system, namely,

ε
dv
dt

= f (v)− g1v− w + I + g1v0 (4.3.17)

dw
dt

= v− γw + g2w0. (4.3.18)

Now, we write the system as żµ = Aµ(g1, g2)zµ + bµ(g1, g2), where bµ(g1, g2) =

bµ + b, with

b = JE0, J =

g1/ε 0

0 g2

 , E0 =

v0

w0

 . (4.3.19)

Following [48], a formal solution describing a T-periodic orbit can be obtained.

One natural way to establish the stability of the splay state is to determine the 2N

Floquet exponents of the linearised system. But, due to the fact that, now the states

are phase shifted, this approach becomes very cumbersome. Therefore, in order to

determine the stability for the splay state, for large N we use an alternative phase

density technique for networks of limit cycle oscillators with synaptic coupling devel-

oped by Van Vreeswijk [228] which was later used to study resonate-and-fire networks

by Miura, [166], and by Coombes to study PWL systems, in [48]. For this we first write

the coupling terms N−1(∑N
j=1 vj(t),∑N

j=1 wj(t)) in a more convenient form for studying

perturbations of the mean field; namely, we write

lim
N→∞

1
N

N

∑
j=1

vj(t) = lim
N→∞

1
N

N

∑
j=1

∑
m∈Z

u1(t− Tm
j ), (4.3.20)

where Tm
j = mT + jT/N. Similarly

lim
N→∞

1
N

N

∑
j=1

wj(t) = lim
N→∞

1
N

N

∑
j=1

∑
m∈Z

u2(t− Tm
j ), (4.3.21)

where Tm
j = mT + jT/N. Here u1,2(t) = 0 for t < 0 and is chosen such that v(t) =

∑m∈Z u1(t−mT) and w(t) = ∑m∈Z u2(t−mT), with (v(t),w(t)) = (v(t+T),w(t+T)).

For arbitrary values of Tm
j the coupling terms (4.3.20,4.3.21) are time-dependent, and
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we may write them in the form

Xi(t) =
g1

N ∑
j,m

u1(t− Tm
j ) =

g1

N

∫ ∞

0
∑
j,m

δ(s− Tm
j )u1(t− Tm

j )ds = g1

∫ ∞

0
f (s)u1(t− s)ds,

(4.3.22)

and

Y(t) =
g2

N ∑
j,m

u2(t− Tm
j ) =

g2

N

∫ ∞

0
∑
j,m

δ(s− Tm
j )u2(t− Tm

j )ds = g2

∫ ∞

0
f (s)u2(t− s)ds,

(4.3.23)

with

f (t) = lim
N→∞

1
N ∑

j,m
δ(t− Tm

j ), (4.3.24)

where f (t) is the firing rate.

We consider perturbations of the mean field such that Xi(t) (the average membrane

voltage) and Y(t) are split into a stationary part (arising from the splay state) and an

infinitesimal perturbation. Namely, we write Xi(t) = v0 + g1ζ1(t), and Y(t) = w0 +

g2ζ2(t), with small (g1, g2). Since this perturbation to the splay oscillator, defined

by equation (4.3.17), is small, we may use phase reduction techniques to study the

stability of the splay state. In terms of a phase θ ∈ [0,1) along the asynchronous state,

we may write the evolution of this phase variable in response to a perturbation in the

mean field as
dθ

dt
=

1
T
+ Γ(θ)Tζ(t), (4.3.25)

where

Γ(θ) =

Γv(θ)

Γw(θ)

 (4.3.26)

and Γv(θ) is the voltage component of the adjoint, and Γw(θ) is the recovery compo-

nent of the adjoint, for the splay oscillator.

In fact, we need to treat N phase variables θi, each described by an equation of the

form (4.3.25), which are coupled by the dependence of ζ(t) on these variables, where

ζ(t) =

g1ζ1(t)

g2ζ2(t)

 . (4.3.27)
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To make this more explicit we write

ζ1(t) =
∫ ∞

0
δ f (s)u1(t− s)ds (4.3.28)

ζ2(t) =
∫ ∞

0
δ f (s)u2(t− s)ds (4.3.29)

and use a phase-density description to calculate the dependence of the perturbed fir-

ing rate δ f on the phases. A phase-density function is defined as the fraction of active

neurons in the interval [θ,θ + dθ], namely, ρ(θ, t) = N−1 ∑j δ(θj(t) − θ). Introducing

the flux J(θ, t) = ρ(θ, t)θ̇, we have the continuity equation

∂ρ

∂t
= − ∂J

∂θ
, (4.3.30)

with boundary condition J(1, t) = J(0, t). The firing rate is the flux through θ = 1, so

that f (t) = J(1, t). Considering perturbations around the splay state, (ρ, J) = (1,T−1),

means writing ρ(θ, t) = 1 + δρ(θ, t), with a corresponding perturbation of the flux that

takes the form δJ(θ, t) = δρ(θ, t)/T + Γ(θ)ζ(t) where

ζ(t) =

g1ζ1(t)

g2ζ2(t)

 , Γ(θ) =

Γv(θ)

Γw(θ)

 . (4.3.31)

Differentiation of δJ(θ, t) gives the partial differential equation

∂tδJ(θ, t) = − 1
T

∂θδJ(θ, t) + Γ(θ)ζ ′(t), (4.3.32)

where

ζ(t) =

g1
∫ ∞

0 u1(s)δJ(1, t− s)ds

g2
∫ ∞

0 u2(s)δJ(1, t− s)ds

 , (4.3.33)

or

ζ(t) =

g1
∫ ∞

0 u1(s)δ f (t− s)ds

g2
∫ ∞

0 u2(s)δ f (t− s)ds

 . (4.3.34)

Assuming a solution of the form δJ(θ,T) = eλTδJ(θ) gives

ζ(t) = δJ(1)eλt(g1ũ1(λ), g2ũ2(λ))
T, (4.3.35)

96



CHAPTER 4: The dynamics of coupled piecewise linear single neuron models

where ũ1(λ) = g1
∫ ∞

0 u1(t)e−λtdt is the Laplace transform of u1(t) and

ũ2(λ) = g2
∫ ∞

0 u2(t)e−λtdt is the Laplace transform of u2(t). In this case ζ ′(t) = λζ(t).

Equation (4.3.32) becomes

λ[δJ(θ)]eλTθ = (Γv(θ),Γw(θ))
T(g1ζ

′
1, g2ζ

′
2)

T − 1
T

∂

∂θ
(eλTθδJ) (4.3.36)

giving

d
dθ

(δJ(θ)eλTθ) = g1Γv(θ)ũ1(λ) + g2Γw(θ)ũ2(λ))λTδJ(θ)eλTθ . (4.3.37)

Integrating the equation (4.3.37) from θ = 0 to θ = 1 and using the fact that δJ(1) = δJ(0)

yields an implicit equation for λ as

eλT − 1 = g1λTũ1(λ)
∫ 1

0
Γv(θ)eλθTδJ(θ)dθ + g2λTũ2(λ)

∫ 1

0
Γw(θ)eλθTδJ(θ)dθ. (4.3.38)

By taking the Laplace transform of v(t) = ∑m u1(t−mT), where u1(t) = 0 if t < 0 we

have, for t > mT

ṽ(λ) =
∫ ∞

0
v(t)eλtdt = ∑

m

∫ ∞

0
u1(t−mT)e−λtdt = ∑

m

∫ ∞

mT
u1(t−mT)e−λtdt, (4.3.39)

Taking t′ = t−mT we obtain

ṽ(λ) = ∑
m

∫ ∞

0
u1(t)e−λ(t+mT)dt = ∑

m
e−λmT

∫ ∞

0
u1(t)e−λtdt =

ũ1(λ)

1− e−λt , (4.3.40)

which gives

ũ1(λ) = (1− e−λT)ṽ(λ). (4.3.41)

Similarly, by taking the Laplace transform of w(t) we get

ũ2(λ) = (1− e−λT)w̃(λ). (4.3.42)

From the last equations we get:

eλT − 1 = g1λTṽ(λ)(1− e−λT)
∫ 1

0
Γv(θ)eλθTδJ(θ)dθ+ (4.3.43)

+ g2λTw̃(λ)(1− e−λT)
∫ 1

0
Γw(θ)eλθTδJ(θ)dθ, (4.3.44)
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or

eλT = g1λTṽ(λ)
∫ 1

0
Γv(θ)eλθTδJ(θ)dθ + g2λTw̃(λ)

∫ 1

0
Γw(θ)eλθTδJ(θ)dθ, (4.3.45)

and

E(λ) = eλT − g1λTṽ(λ)
∫ 1

0
Γv(θ)eλθTδJ(θ)dθ− (4.3.46)

− g2λTw̃(λ)
∫ 1

0
Γw(θ)eλθTδJ(θ)dθ = 0. (4.3.47)

Since ṽ(0) = 0, and w̃(0) = 0 we see that E(0) = 0, as expected. Writing λ = ν+ iω,

we may find the pair (ν,ω) by the simultaneous solution of ER(ν,ω) = 0 and EI(ν,ω) =

0, where ER(ν,ω) = ReE(ν + iω) and EI(ν,ω) = ImE(ν + iω). In terms of the Fourier

coefficients for Γv(θ), Γw(θ), v(t), and w(t) we may obtain a useful representation for

equation (4.3.47) using

∫ 1

0
Γv(θ)eλθTdθ = (eλT − 1)∑

n

Rv
n

2πin + λT
, (4.3.48)

∫ 1

0
Γw(θ)eλθTdθ = (eλT − 1)∑

n

Rw
n

2πin + λT
, (4.3.49)

ṽ(λ) = T∑
n

v−n

2πin + λT
, (4.3.50)

w̃(λ) = T∑
n

w−n

2πin + λT
. (4.3.51)

Examples of the spectrum obtained from zeros of the equation (4.3.47), for the

PWLC model coupled on w-variable, are shown in figure 4.3.1. First panel, left side

shows the spectrum of the splay state (in SAO regime) coupled on the w-variable

only with g2 = −0.2. Here the splay state is stable and the predictions from the weak

coupling theory are maintained. The right side shows the spectrum of the splay state

(SAO regime) coupled on the w-variable with g2 = 0.102. Similarly, the splay state is

stable confirming the predictions from the weak coupling theory. In the lower panels

we present results from simulations of N = 100 PWLC cells (SAO regime), first starting

near a splay state and then starting at a splay state.
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Figure 4.3.1: Spectrum for the splay state in the PMLC model (‘two-piece’

solution) coupled on the recovery variable. Eigenvalues are at the positions

where the red and blue curves intersect. The small circles denote the predic-

tions from weak coupling theory. Parameters as in figure 4.2.1. In all cases

g1 = 0 and Left side: g2 = −0.2 and Right side: g2 = 0.102. Upper Panel: Spec-

trum shows the splay state is stable (here predictions from weak coupling the-

ory break down). Middle Panel: Simulations of N = 100 cells starting near a

splay solution. Lower Panel: Simulations of N = 100 cells starting at a splay

solution. As expected eigenvalues from the weak coupling theory are close to

the zeros of the full stability analysis.
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Figure 4.3.2: A network of N = 100 PWLC cells globally coupled only on

the recovery variable. In the physiological case (right side), either if cells start

near a splay solution or at random initial data, the cells synchronise rapidly

for g2 = 0.2. For non-physiological coupling (g2 = −0.1) (left side), the cells

hardly synchronise if they start at random initial data, and partial synchronise

if they start near a splay state. Upper panel: The cells start at random initial

data. Lower panel: The cells start near a splay solution. Parameters: I = 0.4325,

µ = 0.1, γ = 0.5 and a = 0.25.

4.4 Network Simulations for N Oscillators

We run numerical simulations of N = 100 neurons, using the PWLC model, either

starting at random initial data or near a splay solution. We consider both physiolog-

ical and non-physiological scenarios with coupling acting either on one or on both

variables (weak and strong coupling). With cells receiving the same input we are

interested which type of coupling promotes synchronous behaviour, in particular if

coupling on the recovery variable adds more to this phase-locking behaviour.
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Figure 4.4.1: A network of N = 100 PWLC cells globally coupled on both

variables. In the physiological case (right side), either if cells start near a splay

solution or at random initial data, the cells synchronise rapidly for g1 = 0.1

and g2 = 0.1. For non-physiological coupling (left side), the cells hardly syn-

chronise if they start at random initial data and they partially synchronise if

they start near a splay solution. Here g1 = g2 = −0.1. Upper panel: The cells

start at random initial data. Lower panel: The cells start near a splay solution.

Parameters: I = 0.4325, µ = 0.1, γ = 0.5 and a = 0.25.

When cells were coupled only on the voltage variable, independent of the initial

data or the common input, they synchronise, as expected. We observe a faster syn-

chronisation if the cells start near a splay state. The same behaviour is noticed if the

linear coupling is acting on the recovery variable as well. In particular, if they receive

a common input corresponding to SAO regime (I = 0.3) the cells become inactive (see

figure 4.3.2).

If the linear coupling is acting only on the recovery variable, independent on the

common input, more time is needed in order to cells entrain their dynamics, especially

if cells start at random data (in which case a stronger coupling strength is needed as
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Figure 4.4.2: Stroboscopic plot of a network of N = 100 PWLC cells with

a shared input, coupled only on one variable: Upper panel, left side: Cells

start at random initial data and are coupled only on the voltage variable with

g1 = 0.1. The amplitude of the oscillations is smaller compared with the one of

the isolated cell (the black curve). Upper panel, right side: Cells start at random

initial data and are coupled only on the recovery variable with g2 = 0.1. The

amplitude of the oscillations is larger compared with the one of the isolated

cell (the black curve). Lower panel, left side: Cells start near a splay solution

and are coupled only on the voltage variable with g1 = 0.1. The amplitude of

the oscillations is smaller compared with the one of the isolated cell (the black

curve). Lower panel, right side: Cells start near a splay solution and are coupled

only on the recovery variable with g2 = 0.1. The amplitude of the oscillations

is larger compared with the one of the isolated cell (the black curve). In all

cases, the black curve represent the trajectory of an isolated cell, with the same

input as the cells within the network. Parameter values are: I = 0.4325, µ = 0.1,

γ = 0.5 and a = 0.25.

well). As previously stated, the coupling on the w-variable ‘kills’ the oscillations.

In the non-physiological case we notice that, whether the cells are in SAO, MAO

or LAO regime, if cells start at random initial data they hardly synchronise whilst
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Figure 4.4.3: Stroboscopic plot of a network of N = 100 PWLC cells with a

shared input, coupled on both variables: Upper panel, left side: Cells start at

random initial data and are non-physiologically coupled; g1 = g2 = −0.1. The

amplitude of the oscillations is larger compared with the one of the isolated cell

(the black curve). Upper panel, right side: Cells start at random initial data and

are physiologically coupled; g1 = g2 = 0.1. The amplitude of the oscillations

is smaller compared with the one of the isolated cell (the black curve). Lower

panel, left side: Cells start near a splay solution and are non-physiologically cou-

pled; g1 = g1 =−0.1. The amplitude of the oscillations seems larger compared

with the one of the isolated cell (the black curve). Lower panel, right side: Cells

start near a splay solution and are physiologically coupled g1 = g2 = 0.1. The

amplitude of the oscillations is smaller compared with the one of the isolated

cell (the black curve). In all cases, the black curve represent the trajectory of an

isolated cell, with the same input as the cells within the network. Parameter

values are: I = 0.4325, µ = 0.1, γ = 0.5 and a = 0.25.

starting near splay state brings partial synchronisation behaviour within the network.

Therefore, both coupling types promote synchronous behaviour in one way or

another with cells becoming inactive if the coupling is acting on the recovery variable.
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When cells are coupled on both variables in the same time, larger magnitude of the

coupling is needed to phase-lock the cells (see figure 4.4.1).

Cluster Behaviour

Additionally, we are interested in the effect of linear coupling on clustering be-

haviour within a network of 100 PWLC cells driven by a common input. Following

the same scenario as above we are interested to see how the initial data or the active

coupling may act on the network behaviour.

Therefore, if cells are coupled only on the voltage variable, (g1 > 0), the amplitude

of the cells tends to decrease independent of the initial data. Yet, if the coupling is

only on the recovery variable, an opposite effect is noticed, the cells evolve on a larger

amplitude trajectory (see figure 4.4.2). For non-physiological coupling (g1, g2 < 0),

either starting at random initial data or near a splay state, when coupled the cells have

an increased amplitude.

With coupling on both variables acting on the cells dynamics, different situations

may appear. For example, if the cells within the network start at random initial data

and are non-physiologically coupled the cells evolve on a larger amplitude trajectory.

However, if both g1 and g2 are positive, the cells evolve on a smaller amplitude oscilla-

tion. We found the same scenario for cells starting near a splay state (see figure 4.4.3).

We also looked for localisation phenomena within the network. Again, we con-

sidered the four scenarios: cells start either at random initial data or near a splay state

or the coupling is negative or positive. In this case the cells were coupled on both

variables and received different inputs: some were set to SAO, others to MAO and the

rest to LAO regime.

Thus, when g1 < 0 and g2 < 0 independent on the initial data the cells appear

evenly distributed between all three regimes with some cells inactive if they start near

the splay state. When the coupling is positive and the cells start at random initial data
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Figure 4.4.4: Stroboscopic plot of a heterogeneous network of N= 100 PWLC

cells coupled on both variables: Upper panel, left side: Cells start at random ini-

tial data and are non-physiologically coupled with g1 = g2 =−0.1. There is no

obvious cluster; the cells follow the path of the isolated cells (the closed curves)

with the corresponding input. Upper panel, right side: Cells start at random ini-

tial data and are physiologically coupled with g1 = g2 = 0.1. The cells split in

two clusters, one corresponding to SAO (red curve), and the other one corre-

sponding to MAO (black curve). Lower panel, left side: Cells start near a splay

solution and are non-physiologically coupled with g1 = g2 = −0.1. There are

three clusters, corresponding to the SAO, MAO and LAO, but the cells within

the cluster barely synchronise. Lower panel, right side: Cells start near a splay

solution and are physiologically coupled with g1 = g2 = 0.1. There are two

obvious clusters, in SAO and MAO regimes, and the cells within the cluster

might synchronise. In all cases, the red, black and green curve represent the

trajectory of an isolated cell, with inputs: I = 0.35, I = 0.4325 and I = 0.435 re-

spectively. The rest of the parameter values are: µ = 0.1, γ = 0.5 and a = 0.25.

most of the cells evolve in SAO and MAO regimes, whilst starting near a splay state

brings most of the cells to a fixed point and to MAO regime (see figure 4.4.4).
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4.5 Conclusion

After analysing the PWLC model at the single cell level in the previous chapter, we

continued with the analysis at the network level. Here, following Coombes [48], we in-

vestigated the properties of PWLC models linearly coupled on both variables. Using

coupled oscillator theory, both the synchronous and asynchronous state, were anal-

ysed in the weak and strong regime.

Such investigation has already been accomplished for planar piece-wise linear

models, respectively the McKean and PWL Morris Lecar model, in [48] by Coombes.

In this paper the author focused on the understanding of the dynamics of neuronal

networks with gap junction coupling on the voltage variable. The author exploited the

linearity of such models to construct periodic solutions and determined their stability

at the single cell level, whilst at the network level he studied the synchronous and

splay solutions in the strong coupling regime.

As a contribution to this study we investigated network solutions linearly cou-

pled on the recovery variable as well. The aim was to introduce a mathematical frame-

work for the analysis of network solutions of PWL cells linearly coupled on both vari-

ables. We were interested in the effect of the coupling on the second variable on the

existence of these states and their stability.

To begin with, we used a dimension reduction approach and exploited the form

of the phase equations to investigate the phase-locked behaviour of both states. In par-

ticular, we looked at the interaction between two weakly coupled oscillators, and that

of a network of N weakly coupled cells. In the case of two weakly coupled PWLC cells

we found that if the cells are set to be in the SAO or LAO regime the synchronous state

is stable whilst the asynchronous state is unstable independent of the coupling type

(only on one variable or on both variables). A similar result was found for the McKean

model coupled on the voltage variable by Coombes for which the synchronous solu-
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tion was stable [48]. Yet, if the single cells are set to the MAO regime and the coupling

is acting only on the voltage variable then both the synchronous and asynchronous

solutions are unstable. Similarly, the PWL Morris Lecar model shows an unstable

anti-phase solution when cells are weakly coupled on the voltage variable.

Further, we were interested in the existence and the stability of the synchronous

and asynchronous solutions beyond the weak coupling regime. Here, using Floquet

theory we were able to determine the stability of the synchronous solution. Addition-

ally, using a phase density approach we computed the spectrum of the splay solution

in SAO regime and we found that for both physiological and non-physiological cou-

pling the solution is stable. The same result was found for the McKean and PWL

Morris Lecar models by Coombes [48].

Moreover, using numerical simulation of N = 100 cells, we looked for the effects

of the coupling on the w-variable on the phase-locking behaviour. We considered

different scenarios from both physiological to non-physiological coupling to different

initial data. We found that, independent on the initial data, cells synchronise if they

are coupled by gap junctions. If the second coupling becomes active a stronger mag-

nitude of the coupling is needed in order to have a synchronous behaviour within

the network. For the non-physiological case, if cells start at random initial data they

hardly synchronise, whilst if they start near a splay solution they partially synchro-

nise.

We also looked for any localisation phenomena within the network either due to

the coupling type, within cells with a common input, or due to the heterogeneity of

the network. We found that, when cells within the network receive the same input,

they tend to cluster on a particular trajectory, either with smaller amplitude (if they are

coupled only on the voltage variable) or with a larger amplitude (if coupled only on

the recovery variable), compared with the amplitude of an uncoupled cell. If cells are

non-physiologically coupled they cluster on a larger amplitude trajectory independent
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on the initial data or the coupling type.

Finally, when cells within the network receive different inputs and are

non-physiologically coupled either starting at random initial data or near a splay state

they tend to evolve on the same trajectory as the uncoupled cell. Yet, when both g1 or

g2 are positive, most of the cells evolve on a smaller amplitude trajectory (compared

to the uncoupled cell), some of them become inactive and only few evolving on a large

amplitude trajectory.
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The next chapters will focus on the second part of the thesis. If in the first part of the

dissertation we focused on the investigation of excitable cells of neuronal type in this

second part we focus on another excitable cells, namely pancreatic β-cells. Motivated

by the similarities in the electrical activity of neurons and pancreatic β-cells and hav-

ing access to real data, we are first interested in the analysis of Ca2+ data obtained

from Dr Smith’s lab. Using statistical signal processing tools we aim to reveal any

connectivity structure between the cells. In the last part of this study we return to the

PWL framework and perform numerical analysis of a PWL bursting model. Here we

hope to gain some understanding of the model’s behaviour under constant and peri-

odic stimulation. Further, given the role of gap junction coupling between pancreatic

β-cells we quantify the synchronous behaviour between two bursting cells modelled

by a PWL-bursting model coupled by gap junction.
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Chapter 5

Background-Part II

In this chapter we continue the literature survey, started in Chapter 2. The first part

of the chapter is dedicated to pancreatic β-cells which will be presented in relation

to Diabetes Mellitus disease. Their electrical activity associated with glucose sensing

and the key role of gap junction coupling in this electrical activity is briefly introduced.

Further, modelling bursting electrical activity (BEA) of excitable cells, is emphasized

using basic models for β-cells or neurons. The last part of the chapter focuses on

statistical signal processing tools followed by synchrony measures which will be used

in Chapter 6. The chapter ends with details about cluster and connectivity analyses

which, again, will be later used in Chapter 6.

5.1 Pancreatic β-Cells

The islets of Langerhans are the regions of the pancreas that contain its endocrine

(i.e., hormone-producing) cells. They were discovered by the German pathological

anatomist Paul Langerhans in 1869 and make up approximately 1− 2% of the mass

of the pancreas. There are about one million islets in a healthy adult human pancreas,

which are distributed throughout the organ and their combined mass is 1 to 1.5 grams.
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Figure 5.1.1: β-cell as seen by electron microscopy. The nucleus is located at

the bottom left and insulin granules (dark spheres) are mostly towards the top

right. (Picture provided by Solimena Lab, Med. Fac., University of Technology,

Dresden, Germany)

Hormones produced in the islets of Langerhans are secreted directly into the blood

flow by (at least) five different types of cells, such as: α-cells (produce glucagon and

represent 15− 20% of the total islet cells), β-cells (produce insulin and represent 65−

80% of the total islet cells), δ-cells (produce somatostatin and represent 3 − 10% of

the total islet cells), PP-cells (produce pancreatic polypeptide and represent 3− 5% of

the total islet cells) and ε-cells (produce ghrelin and represent < 1% of the total islet

cells) [117,173].

The distribution of cells and the cytoarchitecture of pancreatic islets vary within

species. For example, rodent islets are characterised by a predominant proportion of

insulin-producing β-cells in the core of the cluster and by scarse α, δ and PP-cells in

the periphery, while human islets display α and β-cells in close relationship with each

other throughout the cluster. An example of a β-cell can be seen in figure 5.1.1, where

the nucleus and the insulin granules are easily distinguished [1,117].

The β-cell’s function is to make and release insulin, a hormone that controls the

level of glucose in the blood. There is a base line level of glucose maintained by the
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liver, but β-cells can respond quickly to spikes in blood glucose by releasing stored in-

sulin while simultaneously producing more. The response time is fairly quick, taking

approximately 10 minutes. Apart from having the ability to make and release insulin,

β-cells have features of releasing C-peptide too, which is a by-product of insulin that

has a major impact on diabetes. β-cell function depends on the normal regulation of

insulin synthesis and secretion and the maintenance of the functional β-cell mass, i.e.

the balance between β-cell renewal by de novo formation or replication, and destruc-

tion. Any disruption of this balance can lead to diabetes [1].

Electrical Activity Associated with Glucose Sensing

In the human body, blood glucose level is regulated by hormonal control to bring

it back to the normal range whenever there is a perturbation. This system is known as

glucose homeostasis, where cellular processes of glucose-related pathways in the whole

body are linked together by hormones such as insulin which is secreted by β-cells in

the pancreatic islets [44].

In their electrophysiologic studies, Dean and Mathews, [117], demonstrated that

β-cells produced APs and were electrically excitable, and that extracellular glucose

concentration controlled the electrical activity. Under normal circumstances, insulin

secretion is tightly coupled to membrane depolarization and intracellular Ca2+. A

large number of ion channels, pumps, and transporters contribute to the regulation of

intracellular Ca2+ and membrane potential. The resting potential of mouse β-cells in

the islet of Langerhans is approximately −70mV when the extracellular glucose is ap-

proximately 3mM. Elevation of glucose concentration to greater than 8 to 10mM leads

to depolarization, and regenerative electrical spiking arises. At high glucose level,

the membrane potential undergoes bursting, consisting of periods of spikes superim-

posed on depolarised plateaus, interrupted by quiet, hyperpolarized periods [117]. The

major pathway of glucose-stimulated insulin secretion (GSIS) involves metabolism of

the sugar, which raises the intracellular adenosine triphosphate (ATP) concentration
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Figure 5.1.2: Consensus model of glucose-stimulated insulin secretion

(GSIS): Glucose enters the cell through GLUT2 glucose transporters and is me-

tabolized to increase the ATP/ADP ratio, which in turn closes ATP-sensitive

K+(ATP) channels. This depolarizes the membrane, which opens Ca2+ chan-

nels and promotes Ca2+ influx. The resulting increase in the cytosolic Ca2+

concentration evokes exocytosis of insulin granules [26].

and lowers adenosine diphosphate (ADP) concentration. The higher ATP-to-ADP ra-

tio closes ATP-sensitive potassium (K+(ATP)) channels in the plasma membrane. This

causes depolarization of the cell membrane from −70mV due to the ionic gradient

induced. When this voltage reaches −40mV it opens up the voltage-dependant Ca2+

channels and initiates bursting action potential behaviour across the cell membrane.

An influx of Ca2+ into the cell results in a rise of concentration, triggers the fusion of

insulin-containing granules with the plasma membrane and allows insulin to escape

to the extracellular space and eventually enter the blood stream (see figure 5.1.2). The

increase in Ca2+ also opens up the Ca2+ sensitive K+ ionic channels bringing the cell

back to its original state [26,44,87,173].
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Gap Junctions Maintain Electrical Synchrony between β-Cells in an Islet

The difference between single, isolated β-cells and β-cells in situ coupled to their

neighbours within the islet has been another area where both mathematical and bio-

logical communities have been trying to test and provide possible explanations for

this dissimilarity in electrical activity. Some views suggest that stochastic fluctua-

tions (noise) of single ion channels are responsible for the disruption of the underlying

bursting behaviour in single cells, while in the case of coupled cells within the islets,

the noise intensity is reduced because of the effective sharing of the channels between

cells due to electrical coupling by gap junctions. Other views emphasise the emergent

intermediate bursting seen in islets using the so-called heterogeneity hypothesis as an

explanation [173].

Glucose-induced stimulation of single β-cells is reduced compared to cell clusters

and pharmacological blockage of gap junction channels clearly decreases insulin re-

lease. Furthermore, physiological heterogeneity found in individual β-cells is switched

to a coordinated and synchronised behaviour because of β-cell communication. Vari-

ous reports suggest that cells of the islet of Langerhans are interconnected by gap junc-

tions; with typical gap junction plaques between different types of islet cells. More-

over, it seems that gap junction mediated communication between β-cells is required

for the control of insulin secretion [213].

In mouse β-cells gap junctions are composed of connexin proteins of 36kDa size

(Cx36), forming gap junctions channels with some unique features (see also Chapter

2). These gap junctions exhibit the smallest unitary conductance value for gap junc-

tions known to date (the estimated gap junction conductance of the β-cells in intact

mouse islets at 10mM glucose is about 1.3nS), which may allow a more precise con-

trol of the extent of electrical coupling, by varying channel number. Furthermore,

Cx36 gap junctions lack voltage sensitivity which prevents uncoupling during elec-

trical activity. Thus, the features of Cx36 gap junctions assist a role in electrical cou-
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pling [117,213].

Although gap junctions mediate intercellular communication in islets, their role

in insulin secretion is unresolved. For example, 18-beta-glycyrrhetinic acid (AGA), a

gap junction inhibitor, had no effect on Ca2+ oscillations in islet cell monolayers or in

β-cell lines except at high concentrations. Yet, in general, the experimental evidence

strongly emphasises the pivotal role of gap junction-mediated communication for nor-

mal islet function [117]. In fact, disturbance of oscillations, both at the level of one islet,

or at the level of many synchronised islets, is detrimental and can play a major role in

diabetes (especially, Type 2) [25,87].

Diabetes as a Result of β-Cell Dysfunction

Knowledge of the underlying biochemical and biophysical mechanisms that cou-

ple β-cell glucose sensing and excitability can bring important contributions to the

understanding of insulin secretion and the pathophysiology of Diabetes Mellitus. In

Type 1 diabetes, the functional repression and autoimmune destruction of β-cell, while

in Type 2, hyper-responsiveness to stimulation or lack of Ca2+ channel expression, are

sufficient to cause the disease. Diabetes mellitus arises when β-cells are unable to meet

insulin demands in the body, due to failure and destruction of the β-cell mass or in-

creased insulin needs due to insulin resistance or growth that are greater than insulin

secretory capacity [1,117].

This diminished insulin release initiates a vicious cycle: prolonged exposure to

even modestly elevated glucose has been associated with β-cell desensitisation, in-

creased apoptosis, delays in first-phase β-cell response to oral glucose, and attenuated

second phase insulin release. All these lead to various studies in which electrophysiol-

ogy was used to characterise β-cell dysfunction and find ways to restore and preserve

β-cell function. Moreover, these studies hint at development of new therapies for both

Type 1 and 2 diabetes [1,117].
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5.2 Modelling Bursting Electrical Activity

5.2.1 Single Neuron ‘Bursting Firing’ Models

The term burst, referring to the repetitive spiking activity during the active phase,

was coined by Dean and Matthews [62]. Bursting electrical activity (BEA) is defined

by a periodic oscillation of the membrane potential consisting of silent phases and ac-

tive phases which alternate. The silent phases are characterised by a slowly changing

membrane potential, due to currents that modulate the activity, and the active phases

are characterised by a rapidly oscillating membrane potential, due to fast currents. A

burst of two spikes is called a doublet, of three spikes is called a triplet, four a quadruplet

etc. [62,123].

One reason to study bursting phenomenon is that bursting has a higher informa-

tional content than single spikes when analysed as unitary events and has a higher

signal-to-noise ratio than single spikes [154]. Bursting is manifested by a large range of

nerve, endocrine cells, secretory cells or muscle fibres [149], including pancreatic β-cells,

respiratory pacemaker neurons in the pre-Bötzinger complex, dopaminergic neurons

of the mammalian midbrain, thalamic relay cells, and pyramidal neurons in the neo-

cortex [49,149,154].

Bursting in pancreatic β-cells

The electrical activity of β-cells is reflected in the concentration of Ca2+ in the cytosol.

Therefore, during a typical bursting oscillation, Ca2+ internal concentration oscillates

in phase with the electrical activity [196]. An increase in intracellular Ca2+ is believed

to cause insulin release [192]. Moreover, during the active phase Ca2+ enters the cell

through voltage-dependent L-type Ca2+ channels [114], so that Ca2+ internal concen-

tration is elevated. During the silent phase, Ca2+ is removed from the cytosol by Ca2+
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pumps, lowering the internal concentration of Ca2+ [23,204].

It seems that in the case of pancreatic β-cells the electrical activity on their plasma

membranes is heavily influenced by glucose concentration in the perfusion medium.

Depending on that, the electrical activity has various characteristics. During low glu-

cose concentration, the membrane potential is at the resting potential of≈−70mV. For

intermediate levels of glucose concentrations β-cells presents a biphasic response. In

the first phase (i.e., transient phase) of this response, the potential climbs to a plateau

potential at ≈ −36mV and remains there for 2− 3min. Superimposed on this plateau

potential are rapid action potential spikes, which we refer to as a ‘burst’. The plateau

potential ends with a depolarisation to ≈ −45mV. The plasma membrane remains

there for 30s− 1min before it rises again to the plateau potential. The spikes of a burst

oscillate between −36mV and −20mV. When the plasma membrane depolarises to

below−45mV after a burst, it is said to enter the ‘silent phase’. In the next several min-

utes after the transient phase, short repetitive bursts occur and gradually stabilise to a

‘limit cycle’ (usually described by electrophysiologists as the ‘steady-state’), in which

bursts separated by silent phases (with the minimum potential between −50mV and

−55mV) occur at a regular interval. This second phase will continue for as long as

glucose remains at the elevated level [111].

The first biophysical model for BEA, in the case of pancreatic β-cells, was pro-

posed by Atwater et.al [15]. They started with the assumption that three types of ion

channels in the membrane of the β cell play an important role in producing the elec-

trical activity [62]. Moreover, Atwater et.al. proposed that changes in the membrane

potential which are induced by the presence of external glucose can be explained in

terms of changes in the intracellular Ca2+ concentration. In the absence of glucose, the

level of Ca2+ concentration is high. This leads to the opening of the Ca2+-activated K+

channel, and further in a membrane potential near the Nernst potential for K+. When

glucose is present, due to the activation of energy consuming processes the [Ca2+]i

is reduced. As [Ca2+]i decreases, the Ca2+-activated K+ channel is inhibited, causing
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the membrane potential to increase. When [Ca2+]i is sufficiently reduced, the Ca2+-

activated K+ channel has a low open probability and a rapid depolarisation occurs.

This leads to the activation of the voltage-gated K+ and Ca2+ channels, and in a burst

of spikes or action potentials. During this phase, Ca2+ flows into the cell. As [Ca2+]i

increases, the Ca2+-activated K+ channel becomes active again, depolarising the mem-

brane and inhibiting a further influx of Ca2+. As soon as Ca2+ internal concentration

is low, the cycle starts again. Their mechanism is based on voltage-gated K+ and Ca2+

channels and a Ca2+-activated K+ channel.

Classification of the models

Since 1952, when Hodgkin and Huxley built the first model for electrical activ-

ity in the squid giant axon using ion mechanism of the channels, conductance-based

models, have been widely used to model the electrical activity in different cells. Using

the ideas of Atwater et al., and modifying the classical model of Hodgkin and Huxley,

Chay and Keizer developed the first mathematical model of BEA in 1983 [43] (see later

paragraphs for more details). Although little electrophysiological data, such as chan-

nel densities, activation curves, or time constants, were available at that time, their

model was very successful in simulating BEA. [62]. As new channels are discovered, or

new data becomes available, these biophysical theories have been modified, resulting

in a wealth of mathematical models of BEA. [62].

Considering the underlying physiological assumptions, deterministic models can

be divided in two major groups. The first class, developed from 1983 to 1989, called

first-generation models, use the assumption that the slow variable in the system is [Ca2+]i.

These models differ according to the specific ionic currents that are thought to be im-

portant for producing BEA. [62]. Models from this class are: Chay 1986 [39], 1987 [40],

Chay and Cook 1988 [41], Chay and Kang 1987 [42], Himmel and Chay 1987 [112] and

Keizer and Magnus 1989 [133]. The second class of models, containing models built af-

ter 1989, and called second-generation models are characterised by the fact that the mod-
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els no longer depend on the assumption that a slowly varying [Ca2+]i is responsible

for burst termination. In fact, in these models, [Ca2+]i no longer oscillates slowly, but

varies rapidly and in synchrony with the rapidly oscillating membrane potential [62].

Chay Keizer Model

Like many other models for excitable cells, models for β-cells are based on Hodgkin-

Huxley equations for neuronal electrical activity, where the plasma membrane is rep-

resented as an RC circuit, with the ion channels providing the resistance and the lipid

bilayer providing the capacitance [203]. One channel involved in the electrical activity

of β-cells is the voltage-dependent Ca2+ channel which conducts Ca2+ ions into the

cell and causes the raise in the transmembrane voltage V. Another channel is the K+

channel which gates the efflux of K+ and brings the voltage to a low level. It seems

that the temporal interaction of the two channels is sufficient to explain the repetitive

spiking observed in β-cells. These two channels are typical of many endocrine cells,

but in the case of β-cells we need a third one, an additional metabolic module as a

connection of the level of electrical activity to plasma glucose concentration. The third

channel, the K(ATP) channel, which also has a great influence in the process of burst-

ing of β-cells, is closed due to the increase of the ratio of ATP to ADP influenced by

the metabolism of glucose [203].

In 1980s, using a mathematical formalism, for the first time Chay and Keizer pre-

sented a qualitative description of the bursting electrical activity, due to the interaction

of ionic currents and the changing intracellular Ca2+ concentration.

They included four basic features of the biophysical model, namely the three ionic

channels that were thought to be important in the generation of BEA and the dynamic

Ca2+ concentration. In the 1980s there were not so much electrophysiological data for

β-cells, so they used the classical Hodgkin and Huxley model for electrical activity in

the squid giant axon as a starting point for their model. The modifications made are:

the addition of the Ca2+-activated K+ channel, the replacement of the inward Na+

119



CHAPTER 5: Background-Part II

current by an inward Ca2+ current and the addition of a dynamical equation for the

intracellular Ca2+ concentration [62].

Remarks: The inward Ca2+ current is modelled by the Na+ current of the Hodgkin

Huxley equations and the third channel, the Ca2+-activated K+ channel, was mod-

elled using a scheme proposed by Plant [62]. This scheme assumes that Ca2+ binds

to the channel according to first-order Michaelis-Menten kinetics (i.e., one Ca2+ ion

bound to the channel will activate it) [62].

In this case, the conductance, which is an increasing function of the Ca2+ concen-

tration, c, has the form

gK,Ca = ḡK,Cac/(c + Kd), (5.2.1)

where gK,Ca is the maximum conductance of the channel, and Kd is the dissociation

constant for Ca2+ bound to the channel gate. Combining these ionic currents and

adding a leak current the conservation law becomes:

Cm
dV
dt

= −(gK,Ca + gK)(V−VK)− 2gCa(V−VCa)− gL(V−VL), (5.2.2)

where Cm is the membrane capacitance, VK, VCa and VL are the Nernst potentials for

Ca2+, K+, and the leakage, respectively. To complete the model, we need to add the

equation for the regulation of intracellular Ca2+, which is

dc
dt

= f (−k1ICa − kcc), (5.2.3)

where ICa is the Ca2+ current and k1 and kc are constants. The constant f is a scale

factor relating the total changes in Ca2+ concentration to changes in the free Ca2+

concentration and is usually a small number, while kc is the rate at which Ca2+ is

removed from the cytoplasm by the membrane ATPase pumps [62,130].

For this model it is assumed that glucose regulates the rate of removal of Ca2+

from the cytoplasm. Thus, kc is assumed to be an (unspecified) increasing function

of glucose concentration. Because the concentration of the glucose is not a dynamic

variable of the model, kc is regarded as fixed, and the behaviour of the model can be
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studied for a range of values of kc
[130]. The equations for the activation and inacti-

vation variables, m, h and n are the ones introduced by Hodgkin and Huxley. The

voltage dependencies of the steady-state functions m∞, h∞ and n∞, and the functions

τm, τn and τh corresponding to the time constants have exactly the same form as in the

Hodgkin and Huxley model, but are shifted along the voltage axis [62].

Equations (5.2.2, 5.2.3), plus the three equations for the activation and inactivation

variables, define the 5-dimensional model for BEA. Later, Chay and Keizer presented

a reduced model of BEA by replacing the activation and inactivation variables of the

voltage-gated Ca2+ channel, m and h by their respective steady-state values (m∞(V)

and h∞(V)) [62]. The reduced model produces essentially the same results as the 5-

dimensional model of Chay Keizer, except for some changes to the parameter values.

A numerically computed solution of the model, the membrane potential and the

calcium concentration can be seen in figure 5.2.1, left side, where we notice the same

behaviour as the one observed from experimental data. Also we observe the slow

oscillation in c underlying the bursts, with bursting occurring during the peak of the

Ca2+ oscillation. It seems that there are two oscillatory processes which interact to

give bursting, a fast oscillation in V superimposed on a slower oscillation in c [130]. The

values of the parameters used to obtain the numerical solutions of the model can be

found in table 5.2.1.

Table 5.2.1: Parameter values for Chay Keizer model: The units are: [Cm] =

1µFcm−2; [gx] = 1mmhocm−2, for x ∈ {Ca,K,L,KCa }; [Vx] = 1mV, for x ∈

{Ca,K,L } and for V
′
, V∗; [temp] = C◦.

Parameters: Cm gCa gK gL gK,Ca VCa VK

Values: 1 6.5 12 0.04 0.09 100 −75

Parameters: VL V′ V∗ temp f Kd kc

Values: −40 50 30 20 0.004 1 0.04
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Figure 5.2.1: Bursting electrical activity. Left: Chay Keizer model: parameters

values are in table 5.2.1; Right: R15 model: parameters values are in table 5.2.2;

Both models present repetitive spiking activity alternated by silent phases.

Over the years, many researchers have tried to understand the mechanism of

BEA, what causes the cell to burst and which channels of the cell membrane are in-

volved in the bursting process. At the beginning, when it was thought that only three

transmembrane ionic channels played key roles in β-cell electrical activity, the models

were rather ‘simple’. Later on, by discovering more mechanisms involved in BEA the

models became more complex. The complexity of the models can emerge from the

presence of more than one slow variable. For example, the models of Chay and Cook,

1988 [41], or Keizer and Smolen, 1991 [134], have as slow variable the slow inactivation of

a voltage-dependent Ca2+ current. Models of Keizer and Magnus, 1989, [133]; Smolen

and Keizer, 1992 [212], include slow changes in nucleotide concentrations [49]. A more

complex model where the main mechanism for oscillations is variation in the Ca2+

concentration in the ER, is the ‘phantom bursting model’ (PBM). The PBM is a general

paradigm for temporal plasticity in bursting in β-cells, in which bursting is driven by

the interaction of two slow variables with disparate time constants [22]. The PBM ac-

counts for a much wider range of phenomena, in the sense that it can produce bursting

with periods ranging from a few seconds to a few minutes. More details about this

model can be found in [24]. Moreover, as experimental data have accumulated and

the scope of phenomena to be explained has expanded, another complex model has

arisen, called the ‘dual oscillator model’ (DOM), which combines semiautonomous
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oscillations in glycocolysis with an already complex model of electrical activity. A

detailed description of the model can be found in [92].

5.2.2 Bursting Oscillations in Other Cell Types

The Plant Model

Many other types of excitable cells, such as neurons or neuroendocrine cells can

exhibit bursting behaviour. One of them is the R15 neuron of Aplysia which is a burst-

ing neuron whose electrophysiology has been studied by many researchers includ-

ing [80,127,158,220]. One of the simplest models of bursting in this neuron is given by

Rinzel and Lee, which is based on a model by Plant [96,130]. This model presents a

mathematical structure which is different from the one of the β-cell model [185]. The

β-cell model has two fast variables, one slow variable, bistability, and a hysteresis

loop. Plus, at the end of the burst, a homoclinic bifurcation is crossed, leading to an

increasing period through the burst. In the case of Plant’s model, which is a base

for the R15 neuron model, there is no bistability, and bursting arises from the pres-

ence of two slow variables with their own oscillation. The homoclinic bifurcation is

crossed at the beginning and end of the burst, and so the instantaneous period of

the burst oscillations starts high, decreases, and then increases again. There are some

similarities between the Plant model and the β-cell model, such as the Ca2+-activated

K+ channels and voltage-dependent K+ channels. However, the model also includes

a voltage-dependent Na+ channel that activates and inactivates in typical Hodgkin-

Huxley fashion and a slowly activating Ca2+ current. The Na+, K+ and leak currents

form the fast subsystem while the Ca2+ current and its activation x form the slow

system [130]. A detailed bifurcation analysis of the model can be found in [130].

The Plant model was one of the first conductance-based models of bursting con-

sistent with experimental observations, in particular parabolic bursting as observed

in the Aplysia R15 cell. Due to the accurate analysis of this model performed by
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Rinzel, [185] the bursting mechanisms become more understandable, leading to differ-

ent classification schemes of bursters [21,60,122,185].

The model is based on the current balance equation:

Cm
dV
dt

= −ḡIm3
∞(V)h(V−VI)− ḡTx(V−VI)−+ḡKn4(V−VK)+ (5.2.4)

+ ḡKCa
c(V−VK)

(0.5 + c)
− ḡL(V−VL), (5.2.5)

where m∞(V) is the instantaneous activation function for the fast inward current, x

and n are dimensionless activation variables, h is a dimensionless inactivation vari-

able, and c is the intracellular Ca2+ concentration. The ion currents responsible for the

active phase of bursting are similar as the Hodgkin-Huxley ones with the exception

that the inward current has an instantaneous activation and is assumed to be a com-

bined inward current due to both Na+ and Ca2+. One of the ion currents responsible

for the silent phase of bursting is a TTX-resistant inward current with slow activation

while the other one is an outward current by K+ ions, sensitive to an assumed slow

build up of intracellular Ca2+ ions. The last current is a generic inward leak current.

The equations for the activation and inactivation variables are, again, as the ones of

Hodgkin-Huxley. The fifth equation of the model, for the intracellular Ca2+ concen-

tration is
dc
dt

= ρ[Kcx(VCa −V)− c]. (5.2.6)

The expressions for steady state activation and inactivation functions can be found

Table 5.2.2: Parameter values for the Plant model: The units are: [Cm]

= 1µFcm−2; [gx] = 1mmhocm−2, for x ∈ {I,K,L,KCa,T}; [Vx] = 1mV, for

x ∈ {Ca,K,L, I}

Parameters: Cm gI gK gL gK,Ca gT VCa

Values: 1 4 0.3 0.003 0.03 0.01 140

Parameters: VK VL VI ρ kc τx

Values: −75 −40 30 0.0003 0.0085 235

124



CHAPTER 5: Background-Part II

in http://www.scholarpedia.org/article/Plant_model. A simulation of the Plant

model, using the parameter values from table 5.2.2 results in bursting behaviour as

we can see in figure 5.2.1, right side.

Hindmarsh-Rose Model

Examples of other cells that burst whose behaviour can be reproduced by the

Hindmarsh-Rose model are: the thalamic relay neuron, or the vasopressin cell, a neuron

involved in maintaining the fluid balance in the body. The Hindmarsh-Rose model is

one of the models which allows for rapid firing or bursting, and was developed dur-

ing 1982-1984 by JL Hindmarsh and RM Rose [113]. The initial project, that led to this

model, was to model the synchronisation of firing of two snail neurons in a relatively

simple way, but without using the full Hodgkin-Huxley equations. They started with

the FitzHugh-Nagumo equations type where one nullcline has cubic shape and the

other one is linear. These equations failed to reproduce the realistic description of the

rapid firing of the neuron. In order to have triggered firing, i.e., switch between a sta-

ble rest state and a stable limit cycle, bistability needs to be introduced in the model.

This can be done by deforming the ẇ = 0 nullcline so that it intersects the v̇ = 0 null-

cline in three places rather than only one [49]. The model has equations of the form:

dv
dt

= α(βw− f (v) + I), (5.2.7)

dw
dt

= γ(g(v)− δw), (5.2.8)

where I is the applied current and α, β, γ and δ are constants. By choosing f (v) =

−v3 + 3v2 and g(v) = 1− 5v2 we have bistability in the model.

There are three critical points: a stable node to the left at v = −1/2(1 +
√

5), a saddle

point in the middle at x =−1, and an unstable node to the right at v=−1/2(−1+
√

5),

which is surrounded by a stable limit cycle. The stable manifold of the saddle point

acts as a threshold. If the system is perturbed strongly enough to cross the stable

manifold then oscillations occur. If not, the system is maintained in the resting state.

In order to create bursting behaviour, apart from bistability, the system must have a
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Figure 5.2.2: Bursting electrical activity: Left: Hindmarsh-Rose model; Cal-

culated numerically form equation (5.2.11) for the applied current: I = 2; The

values of the other parameters are r = 0.001 and s = 4. The bursting arises via

the same mechanism as in the Chay-Keizer model. Right: Absolute integrate-

and-fire model; Parameter values are: I = 0.1, vth = 1 , vr = 0.2, τa = 75 and

ga = 2;

slow variable, also called the adaptation variable, so that the voltage can be moved

in and out of the bistable regime. This variable is added to terminate the firing by

lowering the effective current when the neuron is firing and returning to zero when v

has reached its rest state value vR. Thus,

dv
dt

= w− v3 + 3v2 + I− z, (5.2.9)

dw
dt

= 1− 5v2 − w, (5.2.10)

dz
dt

= r[s(v− vR)− z], (5.2.11)

where vR = −1/2(1 +
√

5) is the v-coordinate of the resting state in the two-variable

model. According to which parameter values are used, the model can fire in a ‘tonic’

or ‘bursting’ manner; here figure 5.2.2, left side, shows the bursting mode.

Other cells that burst and have been studied extensively are the leach heart in-

terneurons and a model which reproduce their behaviour can be found in [96], or the

neurons in the pre-Bötzinger complex, where again the models built to reproduce their

behaviour are based on Hodgkin-Huxley equations [96].
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Absolute-Integrate-and-Fire Model

A more generic ‘bursting’ model, named absolute integrate-and-fire (AIF), was in-

troduced by Coombes and Zachariou in [54]. This is a tractable nonlinear integrate-

and-fire model, for which the voltage equation is based on the model of Karbowski

and Kopell and posses a form of spike adaptation. The model has the form:

v̇ =| v | +I− a, (5.2.12)

ȧ = −a/τa, τa > 0, (5.2.13)

subject to v→ vr if v = vth, and the adaptive step a(Tm)→ a(Tm) + ga/τa, for some

ga > 0.

For sufficiently small ga the model fires tonically, while for larger values of ga the

model fires in a burst manner [54], as we can see in figure 5.2.2, right side.

5.3 Statistical Signal Processing Tools

5.3.1 ‘Sorting Cells’ Algorithm

Principal Component Analysis

Principal Component Analysis (PCA) is one of the simplest of the multivariate

statistical methods which has found applications in fields from neuroscience to com-

puter graphics. It was introduced back in 1901 by Karl Pearson and since then its ap-

plicability has expanded, due to its simplicity and it being a non-parametric method.

PCA gives a way of identifying patterns in data, helps to highlight similarities and

differences within the data. Moreover, PCA is a useful tool for dimensional reduction.

One of the advantages of PCA arises from quantifying the importance of each dimen-

sion for describing the variability of a data set. The measurement of the variance along

each principal component (p.c.) provides a means for comparing the relative impor-
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tance of each dimension. The assumption that the variance along a small number of

p.c. provides a reasonable characterisation of the complete data set, makes PCA a

suitable tool for dimension reduction [205]. Although PCA is a ‘strong’ method which

‘works’ on a multitude of real world problems, we have to mention its ‘weakness’. As

Shlens suggested in [205], the main reason for its ‘weakness’ comes from the fact that

PCA is a non-parametric technique making it susceptible to the source of the data.

More information and practical advice about PCA can be found in [205,210], while the

mathematical background behind it can be found in [142,157,215].

Why is PCA not enough? Because PCA ‘quantifies’ the uncorrelatedness within

the data, it cannot separate the signals. Uncorrelatedness is not enough to separate

the components. There is a need for a much stronger ‘characterisation’ of the data,

which is provided by the independence of variables (signals) (assumed in the ICA

algorithm).

Independent Component Analysis

Another very useful multivariate statistical tool, which is an extension to PCA

and factor analysis (not presented or used here), is Independent Component Analysis

(ICA). ICA was introduced in the early 1980s in the context of neural network mod-

eling. The main fields of application are: signal processing, artificial neural networks,

statistics, econometrics and information theory [120].

Although ICA was originally developed to deal with problems that are closely

related to the cocktail-party problem, recently its utility has emerged for other ap-

plications such as finding the original components of brain activity or image feature

extraction and signal separation (digital signal processing) [121]. ICA describes how

the observed data are generated by a process of mixing the components that cannot

be directly observed. There are some assumptions to be made, the components are

independent and must have non-Gaussian distribution. More details about the math-

ematical formulation and explanation of the algorithm can be found in [120,121].
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The Algorithm

In the next few lines we briefly describe an algorithm proposed and implemented

to identify cells location in a tiff image and the corresponding spike time series that

will be used later in the study. More details about this algorithm, and practical sug-

gestions can be found in [168]. The algorithm consists of four basic steps: PCA, ICA,

segmentation and signal acquisition.

Before proceeding with the algorithm some pre-processing steps have to be ap-

plied to the data. The signals are normalised in each pixel by dividing by their mean

value over all movie time frames and subtracting 1. Then, from each time frame the

mean fluorescence averaged over all pixels is subtracted.

The first step, PCA, is used to find and retain only the spatiotemporal components

that exhibit the smallest variance. Doing so, the dimensionality of the data is highly

reduced. PCA is applied to the data, which is in the form of a matrix M, of dimensions

Nx ×Nt, and the elements represent the normalised fluorescence intensity in pixel x

at time t. PCA gives us k-principal components, where each p.c. contains spatial filters,

Uk (a matrix of dimension Nx ×K), and signal time course, Vk (a matrix of dimension

Nt ×K), both these matrices have orthogonal columns.

The new data approximates the original as a linear combination of the p.c.

Mxt ∼= M̄xt =| USVT |xt, (5.3.1)

where, U are the spatial filters, V signal time courses and S is a diagonal matrix con-

taining the eigenvalues of the covariance matrix. Further, the algorithm continues

with the choice of which p.c. to keep, meaning selecting the interval [Klow,Khigh].

Klow can be determined by a visual examination of the 2D-display of the spatial fil-

ters (mixed filters) and is chosen to eliminate modes with large variances that do not

appear to contain biological signals. Then, to determine Khigh, the spectrum of each

p.c. (eigenvalues), is plotted along with the one of an artificial matrix built using an
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analytic formula for singular values of a Gaussian random matrix. The power of the

noise in the reference movie (artificial matrix) was chosen so that the highest order

p.c. variance match those of the data and the two spectra are compared in order to

determine which variances are well above the noise floor. Khigh is roughly the point at

which the slopes of the signal and noise spectra converge.

The next step is the one which applies the ICA to the reduced data. ICA seeks

pairs of spatial filters and time traces that are sparse and statistically independent

of one another. In this algorithm a version of the FastICA algorithm is used which

maximises the sparseness of extracted signals [121], and is expressed as a combination

of spatial and temporal skewness (see Appendix) [168].

There are three kinds of ICA from which one can choose which one to use: pure

temporal, where the aim is to maximise statistical sparseness (skewness) of the tempo-

ral signals, pure spatial, where the aim is to maximise statistical sparseness (skewness)

of the spatial signals, and the spatio-temporal one, in which case the aim is to maximise

statistical sparseness (skewness) of both the spatial and temporal signals.

Since ICA relies on statistical independence to identify cells and may not sepa-

rate cells within correlated signals, a further step, image segmentation, is added to the

algorithm. During this step, each spatial filter is smoothed and a binary threshold is

applied to find local regions with strong signal contributions. If necessary, this seg-

mentation step is applied in a ‘tree’ manner until there is only one image segment

corresponding to an individual cell.

The smoothing is done by a convolution with a Gaussian kernel of the original

filter and then transformed into a binary mask by applying a threshold above the

mean intensity of all pixels. All the spatially connected components within the binary

mask are labelled, leading to a good visual distinction of cells location, as we will see

in Chapter 6.
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To avoid excessively noisy signals, any image segments covering an area less than

a certain value of pixels are excluded. Moreover, for each image segment a spatial

filter filled by setting to zero the weights of all pixels outside of the connected region

is created. As a final step, the signals corresponding to specified spatial filters are

extracted by applying a filter to the movie data.

5.3.2 Fourier Based Analysis

Here we present the mathematical formulation of each measure used in the Fourier

based analysis and implemented in NeuroSpec software (http://www.neurospec.org/).

The Power Spectral Density (PSD)

PSD describes how the power of a signal or time series is distributed with fre-

quency; it is the Fourier transform (FT) of the autocorrelation function (ACF) of the

signal if the signal can be treated as a wide-sense stationary random process, and has

the form [183]:

S( f ) =
∫ +∞

−∞
ACF(t)e−2πi f tdt. (5.3.2)

The Coherence

This is used to quantify the presence (or absence) of correlations between fluctu-

ations at different frequencies and has the form:

ρxx( f , f ′) =
∑K

k=1 x̃k( f )x̃∗k ( f ′)√
∑K

k=1 | x̃k( f ) |2 ∑K
k=1 | x̃∗k ( f ′) |2

, (5.3.3)

where x̃k, and x̃∗k is the signal and its convolution respectively, k = 1, ...K.

The coherence provides a normative measure of the strength of correlation between

two signals on a scale from 0 to 1 (0 - independence) [103]. The calculation of coherence

is based on averaging the real and the imaginary part of the cross-spectra indepen-

dently in order to detect repeating phase relationships between the signals [188].
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The Phase

Information about the ‘timing’ can be obtained by examining the phase differ-

ence between two signals and is defined as the argument of the cross spectrum. The

phase estimates are only valid when there is significant correlation between the two

signals [102,103,188].

The Cumulant

In the time domain, the linear pairwise association between two processes can

be characterised by the second order cumulant density function and is defined by the

inverse FT of the cross-spectrum. If any of the processes under consideration is inde-

pendent of the other processes then the value of the cumulant is 0. Cumulant densities

can assume either positive or negative values. Cumulant density functions are dimen-

sional, i.e. the estimated value depends on the units of measurement.

Cumulant densities are unbounded measures of association which in practice

means that, although in the null case of independent processes the asymptotic value

is zero, there is no upper limit indicating a perfect linear relationship. The cumulant

density function can be defined and estimated directly in the time domain. However

the estimation via the frequency domain facilitates the construction of confidence lim-

its. Values of the estimated cumulant q̂xy(u) lying inside the upper and lower 95%

confidence limits can be taken as evidence of no linear correlation between the two

time series x and y at a particular value of lag u [102,103].

Short-time Fourier Transform

One of the shortcomings of the basic FT is that it does not give any information on

the time at which a frequency component occurs. This is not a problem for ‘stationary’

signals but, since most of the time biological signals are not stationary, a new solution

must be found. An appropriate approach, which can give information on the time

resolution of the spectrum, is the short time Fourier Transform (STFT). Here a moving
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window is applied to the signal and the FT is applied to the signal within the window

as it is moved. The window function is taken to be equal to the segment of the signal

where its stationarity is valid.

Using STFT, we not only know what frequency components are present in the sig-

nal, but also where they are located in time. A main concern of this approach could be

resolution, given by the width of the window function that is used. In STFT, the width

is of finite length, covering only a portion of the signal, which causes poor frequency

resolution. In this situation, we no longer know the exact frequency components that

exist in the signal, but we know a band of frequencies that exist and the time intervals

in which the band exists.

Spectrogram

The spectrogram is a time-frequency portrait of signals which displays the intensity

of the frequency content of the signal as time progresses. A spectrogram is built from a

sequence of spectral snapshots by stacking them together in time leading to a 3D view

of PSD. The spectrogram gives a good visualisation of the changes in the frequency

content in time. One way to create a spectrogram is to use the STFT approach. The

time series are transformed into a digital process and then broken into chunks, which

usually overlap. Further FT is applied to calculate the magnitude of the frequency

spectrum for each chunk. Each chunk then corresponds to a vertical line in the image;

a measurement of magnitude versus frequency for a specific moment in time [188].

The spectrogram is given by the squared magnitude of the STFT of the function:

spectrogram(t,ω) =| STFT(t,ω) |2 . (5.3.4)

Time-varying STFT coherence

One of the problems with the coherence measure described above is that it as-

sumes stationarity of the signals and is completely insensitive to the changes in cou-
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pling over time. In this case, a STFT approach is generally used to generate auto- and

cross spectrograms, which are in turn utilised to produce a ‘coherogram’. The cohero-

gram is coherence calculated around a number of time instants and results in a three

dimensional matrix of time and frequency versus coherence. For two signals x and y,

the coherogram is defined as:

coherogram(x,y) =
| spectrogram(x) · spectrogram(y)∗ |2
| spectrogram(x) · spectrogram(y) | , (5.3.5)

where ∗ denotes the complex conjugate.

5.3.3 Wavelet Based Analysis

To understand network dynamics one usually follow the temporal variations in the

coupling between cellular signals. Most methods, such as the ones based on Fourier

analysis presented above, used so far to estimate coupling have relied on the assump-

tion that biomedical signals are stationary. Yet, non-stationarity is the rule rather than

the exception in cellular processing, making it necessary to use coupling measures as

a function of time, a constraint that limits the application of Fourier analysis.

Wavelet analysis has been framed to analyse signals with rapidly changing spec-

tra and performs a time-frequency analysis of the signals. In some sense, wavelet

analysis is close to the windowed short-term Fourier transform, especially when us-

ing a Morlet wavelet (5.3.6). The difference between those two approaches is the size

of the window, which in the first case is fixed, while in the second one is adapted to

the frequency of the signal. This makes wavelet analysis have a more accurate time-

frequency resolution [145].

The basic idea of this approach is that the signals are decomposed along a wavelet

family. There are several choices regarding the wavelet family, such as Paul or Dog

wavelets, but in this study we choose the Morlet one. The advantage is that it is simple,

has complex values (returns information about both amplitude and phase), is well
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suited for spectral estimations, and has the form:

Ψτ, f (u) =
√

f · ei2π f (u−τ) · e

(
− (u−τ)2

σ2

)
, (5.3.6)

Ψτ, f (u) is simply the product of a sinusoidal wave at frequency f , with a Gaussian

function centred at time τ with a standard deviation σ proportional to the inverse of

f .

To be ‘admissible’ as a wavelet, this function must have zero mean and be lo-

calised in both time and frequency space [225]. The wavelet transform of a signal x(u)

is a function of time (τ) and frequency ( f ) given by the convolution of x with this

wavelet family:

Wx(τ, f ) =
∫ +∞

−∞
x(u) ·Ψ∗τ, f (u)du. (5.3.7)

Because the wavelet function Ψτ, f (u) is in general complex, the wavelet transform

Wx(τ, f ) is also complex. The transform can be divided into real part, <{Wx(τ, f )},

and imaginary part ={Wx(τ, f )}, or amplitude | Wx(τ, f ) |, and phase,

tan−1[={Wx(τ, f )}/<{Wx(τ, f )}]. The wavelet spectrum is defined by |Wx(τ, f ) |2.

The wavelet cross-spectrum between two signals x and y around time t and fre-

quency f is defined by:

SWxy(t, f ) =
∫ t+δ/2

t−δ/2
Wx(τ, f ) ·W∗y(τ, f )dτ, (5.3.8)

(* denotes the complex conjugate), where δ is a scalar that can depend of the frequency

and defines the temporal resolution of the wavelet coherence.

The wavelet coherence WCo(t, f ) is defined at time t and frequency f by:

WCo(t, f ) =
| SWxy(t, f ) |

[SWxx(t, f ) · SWyy(t, f )]1/2 , (5.3.9)

where SWxy(t, f ) is a scalar product between x and y defined above (see equation

(5.3.8)), and the Schwartz inequality (see Appendix 9.C) ensures that WCo(t, f ) takes

values between 0 and 1.
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One of the advantages of this approach is that we have a better resolution. In fact,

we can choose different values of δ, which provides the temporal resolution of the

wavelet coherence, for different frequencies. The way this method is devised helps us

to choose small values of δ for higher frequencies and vice-versa.

An extension to wavelet coherence is the so-called phase coherence, which helps to

focus the study on the phase-relationships between two signals. The phase coherence

(PhC) is used to detect phase-locking between two signals and is defined as a function

of time t by the following formula:

PhC( f , t) =
∣∣∣∣1δ
∫ t+δ/2

t−δ/2
ej(φy( f ,τ)−φx( f ,τ))dτ

∣∣∣∣ . (5.3.10)

Significance levels

Wavelet coherence gives us an estimate of the coherence between two signals in

the time-frequency domain. From this value of the coherence can we affirm whether

those two signals are independent or not? To determine whether the two signals are

independent, a statistical test will compare the coherence value obtained from our

signal with the distribution expected for independent signals. Usually the theoretical

estimates of wavelet power spectra, using either white noise (with a flat Fourier spec-

trum), or red noise (increasing power with decreasing frequency), are compared to

Monte Carlo results. These spectra are used to establish a null hypothesis for the signif-

icance of peaks [225]. The null hypothesis is defined as follows: if the observed value is

higher than a given proportion q of the distribution (95%), then the two signals under

consideration are said to be non-independent with a probability p = 1− q (in this case

5%) [145].

A detailed description of the approach and more information about the statistics of

wavelet coherence can be found in [145,225].
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Cone of influence

Most of the time the data one deals with is finite-length time series, leading to

the occurrence of errors at the beginning and end of the wavelet power spectrum. In

the Fourier analysis case, this problem does not occur because the Fourier transform

assumes cyclicity of the data. Padding the end of the time series with zeroes before ap-

plying the wavelet transform and then removing them afterwards is one solution. But

this operation introduces discontinuities at the endpoints and, as one goes to larger

scales, decreases the amplitude near the edges as more zeroes enter the analysis [225].

In other words, wavelet transforms (WTs) cannot be computed for the entire time-

frequency region; because it involves an integration window. The estimation of coher-

ence for a time t requires that data be recorded before and after t, in an interval that

depends on the frequency f . This makes the wavelet coherence (WCo) to be com-

puted only inside of the region called cone of influence (COI) which can be expanded

if the data is recorded during a broader interval [145]. COI is the region of the wavelet

spectrum in which edge effects become important.

5.4 Synchrony Measures; Cluster and Connectivity Analysis

The bivariate Inter Spike Interval (ISI)-distance and its extensions

Continuous time series can be transformed into a discrete series of spikes by using

different spike detection algorithms. For instance, each spike train can have the form:

S(t) =
M

∑
i=1

δ(t− ti), (5.4.1)

where δ is a Dirac delta function with t1 . . . tM being the series of spike times and M

being the number of spikes.

To obtain a time-resolved measure of the firing rate of the spike train tx
i , the value
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of the current inter-spike interval is assigned to each time instant,

xISI(t) = min(tx
i | tx

i > t)−max(tx
i | tx

i < t), tx
1 < t < tx

M, (5.4.2)

and accordingly to the second spike train ty
i . The second step implies the calculation

of the ratio between xISI and yISI which is done just once after every new spike in

either time series. Then, the final measure, named ISI-distance, can be obtained by

introducing a suitable normalisation,

I(t) =


xISI(t)
yISI(t)

− 1, if xISI(t) ≤ yISI(t)

−
(

yISI(t)
xISI(t)

− 1
)

, else.
(5.4.3)

In the case of iso-frequent behaviour this measure is zero, while if the firing rate of the

first (or second) train is infinitely high and the other infinitely low, it approaches −1,

respectively, 1.

There are two ways of averaging, in order to derive a measure of spike train dis-

tance. In the time-weighted variant, the absolute ISI-distance is integrated over time,

DI =
∫ T

0
| I(t) | dt, (5.4.4)

whereas in the spike-weighted variant, the ISI-distance is evaluated only after every

new spike in either time series,

Ds
I =

M

∑
i=1
| I(ti) | . (5.4.5)

The average instantaneous rate

From the instantaneous ISIs the average instantaneous rate can be defined as

R(t) =
1
N

N

∑
n=1

1
xn

ISI(t)
, (5.4.6)

where xn
ISI(t) is the value of the current interspike interval (ISI) of the spike train tn

i

(for cell n, n = 1, . . . ,N ), at time t [139].
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The averaged bivariate ISI-distance

Having the ISI for each spike train {tn
i } with n = 1, . . . ,N, as in equation 5.4.2, the

instantaneous average A(t) over all pairwise absolute ISI-ratios | Imn(t) | is:

A(t) =
2

N(N− 1)

N

∑
n=1

N

∑
m=n+1

| Imn(t) | . (5.4.7)

Averaging over time yields

Da
I =

1
T

∫ T

0
A(t)dt. (5.4.8)

Here, the averaging is done first over pairwise instantaneous ISI-ratios and then

over time [139].

The multivariate ISI-diversity based on coefficient of variation

The multivariate measure is defined by taking the instantaneous coefficient of vari-

ation (CV) taken across all neurons n = 1, . . . ,N at any given instant in time

CV(t) =
σ(xn

ISI(t))
〈(xn

ISI(t))〉n
, (5.4.9)

and again integrating over time:

Dm
I =

1
T

∫ T

t=0
CV(t)dt. (5.4.10)

If the spike trains are identical or periodic with the same period then the lower

bound of Dm
I is zero. When it comes to the upper bound, compared to the other mea-

sures, Dm
I does not possess one. Due to the sensitivity of the coefficient of variation

to outliers in the instantaneous ISI-distribution, the data needs to be log-transformed

before computing the back-transformed coefficient of variance [139]:

Clog
V (t) = 〈ln(xn

ISI(t))〉n exp
(

σ(ln(xn
ISI(t)))

〈ln(xn
ISI(t))〉n

)
− 1. (5.4.11)

The family of ISI-distances is based on the quantification of the ratio of instanta-

neous firing rates and can quantify the degree of similarity or dissimilarity between
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as few as two spike trains. There are a few advantages of these measures, which are

worth mentioning. No binning is used, leading to a maximum possible time resolu-

tion. They are parameter free and self-adaptive so that there is no need to fix a time

scale beforehand and they facilitate visualisation of the relative timing of pairs of spike

trains. Moreover, they can be applied to spike trains that include different time-scales

(i.e. regular spiking and bursting). Other measures, which are not parameter free,

may fail to represent either spiking or bursting behaviour, depending on the param-

eter chosen. To asses global synchronisation within the data or clusters, an extension

of the ISI-distance can be used, namely, the multivariate ISI-distance (the straightfor-

ward averaged bivariate ISI-distance and the multivariate ISI-diversity based on the

coefficient of variation), which is applied in a multivariate context [140].

The ES measure presents the same benefits as the ISI-distance-based ones; it gives

an easy visualisation of time-resolved synchronisation and delay patterns, it is simple,

has a straightforward implementation and is not computationally expensive. It is also

well suited for single-cell recording. The degree of synchronisation is obtained from

the number of quasi-simultaneous appearances of events, whereas delay is calculated

from the precedence of events in one signal with respect to the other. This is done

using a variable time scale that automatically adapts itself to the local spike rates. This

simple algorithm can be used for any time series in which the events can be defined.

Events can be spikes in single-neuron recordings, heart beats etc. Event synchronisation

does not require the notion of phase, is parameter free. It cannot distinguish between

different forms of phase-lockings, but it can show which of the two time series leads

the other [182].

Remarks: It is relevant to mention the importance of the ‘edge’ problem: how the first

and the last ISI are defined when applying ISI-distance measures, especially to data of

short length. There are three options available, all of which are well explained in the

supplementary material (http://inls.ucsd.edu/˜kreuz/Source-Code/Spike-Sync.

html) that comes with the main papers by Kreuz et. al. [139,140]. Independent of the
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option used, reasonable results can be obtained due to self-adaptation of this measure

to the time scale of the spikes. Here, we define the first ISI as the interval between the

start of the recording and the first spike and the last ISI as the interval between the last

spike and the end of the recording.

Event synchronisation based measure

Having two time series measured simultaneously, the events are considered to be

simply local maxima, subject to some further conditions. If the signals are synchro-

nised, many events will appear more or less simultaneously. Essentially, the fraction

of event pairs matching in time is counted, and also, how often each time series leads

in these matches. Allowing a time lag ±τ between two ‘synchronous’ events (which

should be smaller than half the minimum inter-event distance, to avoid double count-

ing), cτ(x | y) is the number of times an event appears in x shortly after it appears in

y.

In [182], a simple method based on the relative timings of events in the time series,

defined, e.g., as local maxima, was proposed to measure synchronisation and time-

delay patterns between signals. The degree of synchronisation is obtained from the

number of quasi-simultaneous appearances of events, and the delay is calculated from

the precedence of events in one signal with respect to the other. This simple algorithm

can be used for any time series in which the events can be defined. Events can be

spikes in single-neuron recordings, heart beats etc. This event synchronisation (ES) does

not require the notion of phase; it cannot distinguish between different forms of m : n

locking, but it can tell you which of the two time series leads the other. This measure is

derived from the event synchronisation measure proposed by [181] and quantifies the

overall level of synchronicity from the number of quasi-simultaneous appearances of

spikes. It was used before by Kreuz in [138,140].

This measure is scale-free because the maximum time lag τij up to which two

spikes tx
i and ty

j are considered to be synchronous is adapted to the local spike rates
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according to

τij = min
{tx

i+1 − tx
i , tx

i − tx
i−1, ty

j+1 − ty
j , ty

j − ty
j−1}

2
. (5.4.12)

Further, the function c(x | y) counts the number of times a spike appears in x shortly

after a spike appears in y,

c(x | y) =
Mx

∑
i=1

My

∑
j=1

Jij, (5.4.13)

where

Jij =


1 if 0 < tx

i − ty
j ≤ τij,

1
2 if tx

i = ty
j ,

0 else.

(5.4.14)

Finally, the event synchronisation can be written as

Q =
c(y | x) + c(x | y)√

MxMy
, (5.4.15)

and the measure of spike train distance based on event synchronisation can be defined

as DQ = Q− 1. With the above normalisation, 0 ≤ DQ ≤ 1, with DQ = 0 if and only if

all spikes of the signals are synchronous [140]. Or the delay behaviour is given by:

qτ =
c(y | x)− c(x | y)√

MxMy
. (5.4.16)

If the events in x always precede those in y, then qτ = 1. In cases where we want

to avoid a global time scale τ since event rates change during the recording, a local

definition τij is used for each event pair (ij) (similar with equation 5.4.12).

5.4.1 Cluster Analysis

Clustering deals with finding a structure in a collection of data and is the process of

organising objects into groups whose members are similar in some way. There are

two ways to define the similarity between the data, one is using the distance, and the

other is to use a common concept to all objects. In our study we use the distance as a

criterion for clustering.
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Cluster algorithms can be classified as: exclusive, overlapping, hierarchical or prob-

abilistic. An important component of the algorithm is the distance measure between

data points. Here we use the city-block (Manhattan) distance, which is simply the av-

erage difference across dimensions. In most cases, this distance measure yields results

similar to the simple Euclidean distance. However, note that in this measure, the ef-

fect of single large differences (outliers) is dampened (since they are not squared). The

city-block distance is computed as:

distance(x,y) = ∑
i
| xi − yi | . (5.4.17)

Hierarchical Clustering Algorithm

The hierarchical cluster algorithm, which will be used to compute the dendro-

gram in a later chapter, is based on the union between the two nearest clusters. The

basic idea behind this algorithm is: having a set of N points to be clustered and a dis-

tance measure of similarity, the first step is to assign each point to a cluster followed by

the computation of the distances between them. Then, find the closest (most similar)

pair of clusters and merge them into a single cluster and compute the distances (sim-

ilarities) between the new cluster and each of the old ones. This process is repeated

until we reach the optimal number of clusters.

The computation of the distance can be done in three ways, which is what distin-

guishes single-linkage from complete-linkage and average-linkage clustering. In the

computation of the dendrogram we used the single-linkage clustering, provided by

Matlab (http://www.mathworks.com/), in which case, the distance between one cluster

and another is considered to be equal to the shortest distance from any member of one

cluster to any member of the other cluster [125].

K - means clustering

This algorithm is one of the simplest unsupervised learning algorithms that solves

the well known clustering problem. The main idea is based on the definition of k
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centroids, one for each cluster. The place of these centroids matter, in that, placing

them in different locations leads to different results. A better choice is to place them

as far away from each other as possible. Then, each point belonging to a certain data

set is associated with the nearest centroid. This is followed by the re-calculation of the

k-new centroids as barycenter of the cluster resulting from the previous step. These

steps are repeated until we reach the minimum number of k clusters. Basically, the

k centroids do not change their location any more. Finally, this algorithm aims at

minimising an objective function, in this case a squared error function. The objective

function

J =
k

∑
j=1

k

∑
i=1
|| x(j)

i − cj ||2, (5.4.18)

where || x(j)
i − cj ||2 is a chosen distance measure between a data point x(j)

i and the

cluster centre cj, is an indicator of the distance of the n data points from their respective

cluster centres.

Remarks: Even though this algorithm will eventually converge it does not necessarily

find the most optimal configuration corresponding to the global objective function

minimum. The algorithm is sensitive to the initial randomly selected cluster centres.

A way to reduce this problem is to run the algorithm more than once, or to try a

number of different starting points. Also, the results depend on the metric used to

compute the distance between the centroids, and the value of k [156].

5.4.2 Granger Causality

In 1956 Wiener investigated the temporal ordering in the inference of causal relations

from a pure statistical point of view and proposed that, for two simultaneously mea-

sured time series, one series can be called causal to the other if we can better predict

the second time series by incorporating knowledge of the first one. This concept was

later adopted and formalised by Granger in 1969 in the context of linear regression

models of stochastic processes [128].
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Since its development, Granger causality has been applied in fields such as eco-

nomics, and neuroscience (for EEG or fMRI signals) to identify causal interactions

within the data [108]. Using functional MRI data, Roebroeck et.al. [187] applied G-causality

to data acquired during a complex visuomotor task, and Sato et. al. [197] used a wavelet

variation of G-causality to identify time-varying causal influences. G-causality has

also been applied to simulated neural systems in order to probe the relationship be-

tween neuroanatomy, network dynamics, and behaviour [200,202].

Granger causality is a statistical concept of causality that is based on prediction.

Thus, if a signal X ‘Granger-causes’ a signal Y, then past values of X should contain

information that helps predict Y above and beyond the information contained in past

values of Y alone. If the values of Granger causality measure is non-zero this does not

necessarily mean that the two channels interact directly. Here is where we benefit from

the multivariate model fitting which uses information from all the channels. Doing

this, we can investigate the existence of a direct causal influence between any two

channels, while the effect of all the other channels is taken into consideration [128].

Remarks: The basic idea behind the Granger causality algorithm is that the data is

represented by multivariate autoregressive (MVAR) models. To compute the regres-

sion coefficients, the method of ordinary-least-square is used. To estimate the MVAR

model we need the number of time-lags (p) to include, as a parameter. This parameter

is chosen by minimizing a criterion that balances the variance accounted for by the

model, against the number of coefficients to be estimated. There are two such criteria:

Bayesian information criterion (BIC) and Akaike information criterion (AIC) (for more

details see Appendix 9.C). In this study we have chosen AIC [201].

A pre-processing step is to ensure that the data is covariance stationary. If it is not,

then each time series is ‘differenced’ in order to obtain the stationarity. We mention

that this step may complicate the interpretation, since what is being assessed is now

causal connectivity among changes in each time series. An important step of the study
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is to verify if indeed the underlying MVAR model captures the data. There are three

methods to achieve this: the Durbin-Watson test, which assess whether the MVAR

residuals (the errors) are serially uncorrelated; the consistency test [67], which assesses

that the portion of the data captured by the MVAR model is more that 80%, and the

examination of the (adjusted) ‘sum square error’ of the regression, which should be

above 0.3 [201].
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Pancreatic β-Cells Analysis

Secretion is a fundamental cellular process involving the regulated release of intracel-

lular products from cells. Physiological functions, such as neurotransmission, or the

release of hormones and digestive enzymes, are all governed by cell secretion. Any

disruption of the mechanisms involved in secretion can lead to the development and

progression of diseases such as diabetes. To prevent these events, it is essential to un-

derstand how the biological mechanisms work, how the information is synthesised

and processed, and how their signals are recognised, amplified and transmitted by

intracellular signalling pathways in the target cells [227].

Ca2+ signals have been implicated in the regulation of many diverse cellular pro-

cesses. Among them is the glucose-insulin feedback cycle, where the cytosolic Ca2+

concentration plays a major role. Any disturbance in its signalling pathway can lead

to the malfunction of β-cells which in turn leads to the disruption of its proliferation,

survival and insulin secretion function [124].

In this chapter, using ISI-distance based and event synchronisation (ES) measures,

introduced in Chapter 5, we look for evidence of synchronous behaviour between the

signals within the data from the Smith lab. Furthermore, using various statistical sig-
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nal processing measures, we investigate correlation between pancreatic β-cells (Ca2+

concentration signals), and check the functional and effective connectivity within cell

signals.

In section 1 and 2, respectively, we present how the Ca2+ data were obtained in

the lab and how the signals were extracted using a mathematical formalism. This

procedure combines different mathematical tools, such as PCA and ICA, and was im-

plemented by Mukamel et.al. [168] (an overview of this method can be found in Chapter

5).

In section 3, we briefly investigate the organisational structure of the cells in this

data set by performing cluster analysis. Further, we study the synchronous behaviour

between the Ca2+ signals using measures based on inter-spike intervals (ISI-distance,

and its extensions) and event synchronisation. Section 4 is focused on identifying

feature dependency within the data. First, using Fourier analysis, we investigate the

correlation among the signals in the frequency domain. Later, we apply the short time

Fourier transform and the wavelet transform to find correlation between the signals in

both frequency and time domain. The last part of this chapter is devoted to the effec-

tive connectivity within the data, mainly using the Granger causality method (section

5). The last section of this chapter summarises our conclusions.

We have done our analysis using data obtained by Dr. P. Smith from the School of

Biomedical Sciences at University of Nottingham.

Software: For signal acquisition step we used Matlab codes provided by Mukamel

et. al. [168]. Later, the Fourier based analysis was done using the Neurospec toolbox,

which can be found at http://www.neurospec.org/. The wavelet based analysis was

achieved using the Cross Wavelet and Wavelet Coherence toolbox, found at http://www.

pol.ac.uk/home/research/waveletcoherence/. For the synchrony analysis, we used

Matlab codes provided by the author of [140] and found on http://inls.ucsd.edu/

˜kreuz/Source-Code/Spike-Sync.html. The connectivity analysis was done using the
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Granger Causal Connectivity Analysis toolbox implemented by Seth [201] (see http://

www.informatics.sussex.ac.uk/users/anils/aks_code.htm).

6.1 Methodology

Materials and Methods

For the majority of this study Dr. Smith utilized MIN6 cells, an insulin secret-

ing mouse cell line that is a well-established model for the study of pancreatic β cell

bioenergetics and signalling [58]. For fluorescent measurements, cells were plated onto

22mm glass coverslips (Size 0, BDH). Cells were maintained and grown in RPMI 1640

media supplemented with 11mM glucose, 10% FCS, 25mM HEPES and were incu-

bated at 37◦C in humidified air containing 5% CO2.

To monitor changes in intracellular Ca2+, Smith used the calcium fluophore FLUO-

4 with methods similar to those previously described for FLUO-3 [211]. Cells were

loaded with FLUO-4 AM at a concentration of 1µM in Hank’s solution with 0.01%

(w/v) BSA for 30 minutes at 21− 23◦C in the dark and in the absence of glucose.

For these experiments, cells were continuously illuminated and imaged with a

Zeiss PlanNeofluar 40X/1.3 oil objective (Carl Zeiss Ltd, Welwyn Garden City, Herts,

UK) heated to 32◦C with an Bioptechs objective heater (Intracel LTD, Royston, Herts,

UK). Cells were continuously illuminated at an excitation wavelength of 450− 490nm

with the lowest light intensity that gave a visible fluorescent signal without photo-

bleaching. The emitted light was filtered at 515− 565nm and the signal detected using

a Photonics Science ISIS camera with image intensification. Images were captured at a

frequency of 25Hz with a DT3155 frame grabber (Data translation, UK) and Imaging

workbench software (IW5.2 INDEC BioSystems, Santa Clara, CA, USA). Images were

exported as TIFF files for subsequent analysis [58,211].
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Remarks: The measure of Ca2+ activity using fluorescent measurements is just a sub-

stitute for the measure of electrical activity. There is non-linear relationship between

the concentration of the fluorescence used to measure the Ca2+ activity and the real

concentration of Ca2+. This relationship is approximately linear only for values of

Ca2+ concentration below a certain threshold Kd. Above this threshold, the analysis

becomes more complex. Thus, measurements are performed only in the linear regime.

The relationship between the fluorescent dye and Ca2+ concentration is given by:

Fluo =
Fluomax

1 + Kd
[Ca2+]

. (6.1.1)

In the case of FLUO-4, Kd≈ 1µM (10−6M), while at rest, Ca2+ concentration is around

100nM (10−7M). Thus, changes in fluorescence are expected to depend linearly on

Ca2+ concentration over the ranges expected in this study [58,211].

6.2 Signals Acquisition

As stated in the title of the book by Whitfield and Chakravarthy [231], Ca2+ is the

‘grand-master cell signaller’ used as messenger in a large number of vital processes,

such as secretion of hormones and neurotransmitters, muscle contraction and genetic

transcription [16,231].

Cellular activity can be acquired by optical imaging methods. Most of the compu-

tational techniques that extract cellular signals from Ca2+ imaging data are based on

region of interest (ROI) analysis. This type of analysis requires a tremendous amount

of time, is manual and is not automated. Moreover, ROI analyses are usually based

on heuristic definitions of the morphology of cells involved rather than general prin-

ciples for decomposing a data set into constituent signal sources. Ca2+ imaging data

has commonly been analysed by manual identification of cell bodies based on their

morphologies in static fluorescence images [68,91,94,168].

Most of the time, the data set under investigation is very large, and so an optimal
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choice is to use an algorithm that identifies cells and the infers spikes without human

supervision. One such algorithm, used in this study, was proposed and implemented

in [168] by Mukamel et. al.

1
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Figure 6.2.1: Location of cells obtained using the ‘Sorting Cells’ Algorithm

implemented by Mukamel et.al., [168]. Cells are grouped in four small clusters

with 3, 4 cells within the cluster. The algorithm, using statistical techniques,

identifies each cell and extracts the corresponding signal. Due to uncertainty

of PCA and the noise within the data, around 80% of the cells were depicted.

The results were visually compared with the TIFF file received from Dr P Smith

lab, which was scanned for the whole recording time.

The basic idea is to consider the manner in which intracellular Ca2+ transiently rises

above background levels during cellular events. Mukamel et.al. used statistical mea-

sures, such as skewness of amplitude distributions, to quantify the Ca2+ signals sparse-

ness in order to asses cell locations and activities. A brief introduction of this algorithm

and the principles behind it can be found in Chapter 5, section 5.3.

The efficiency of this algorithm depends on the initial parameters, such as the
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number of principal components used. Moreover, it seems that there is a better agree-

ment for images with a small field of view [144]. One possible way to get the optimal

results is to apply the algorithm to smaller parts of the data. In this way, the ICA part

of the algorithm would operate in a stable regime [144].

Before proceeding with the algorithm, the preprocessing steps mentioned in Chap-

ter 5 have to be applied to the data. In our study, the data were in a TIFF format, as

the algorithm required, with Nt time frames and Nx pixels ( m× n = pixw× pixh).

This array is organised in a matrix M, of dimensions Nx ×Nt, where the elements

represents the normalised fluorescence intensity in pixel x at time t. By applying PCA

to this matrix the dimensionality of the data is reduced, retaining only the first k p. c.

Due to the fact that the number of time frames is less than the number of pixels, in the

computation of PCA we use the temporal covariance matrix, which is computed as,

C = MT ×M, and has dimension Nt ×Nt.

Following the algorithm, we proceed with the selection of which p.c.s to retain.

Most of the time, we computed the first 2000 p.c. which account for 75− 85% of the

variance of the data (in the case of the data presented here the p.c. computed rep-

resents 76.6% of the variance of the data). The next step applies ICA to the reduced

data. ICA seeks pairs of spatial filters and time traces that are sparse and statistically

independent of one another. Here, the authors used a version of the FastICA algo-

rithm, which maximizes the sparseness of extracted signals, and was expressed by a

combination of spatial and temporal skewness [121,168].

Following suggestions from [168] we ran simulations using all three types of ICA:

pure spatial, pure temporal and spatio-temporal, in order to obtain the optimal result.

In the case of pure temporal and pure spatial ICA the results were not so satisfactory;

either the number of cells was higher than expected, or their locations were misplaced

(results not shown). As a solution, we varied µ, the parameter which assesses the

weight of temporal information in the spatio-temporal ICA. After trying different val-
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Figure 6.2.2: An example of Ca2+ activity of pancreatic β-cell. The cell ex-

hibits a bursting behaviour with irregular active and silent phases and random

amplitude.

ues for µ, we used 0.3 for the weight of temporal information in the ICA algorithm.

We chose to compute only the first 9 independent components.

Succeeding the ICA step is the image segmentation step, during which each spa-

tial filter is smoothed and a binary threshold (the value of the threshold is 0.5) is

applied to find local regions with strong signal contributions. If necessary, this seg-

mentation step is applied in a ‘tree’ manner until there is only one image segment

corresponding to an individual cell. The smoothing was done by a convolution with a

Gaussian kernel of the original filter and then transformed into a binary mask by ap-

plying a threshold above the mean intensity of all pixels. All the spatially connected

components within the binary mask were labelled, leading to a good visual distinction

of cells’ locations, as we can see in figure 6.2.1.

To avoid excessively noisy signals, any image segments covering an area less than

1152 pixels were excluded. Moreover, for each image segment, a spatial filter filled by

setting to zero the weights of all pixels outside of the connected region, was created.

As a final step, the signals corresponding to specified spatial filters were extracted
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by applying a filter to the movie data. One example of such a signal can be seen in

figure 6.2.2.

6.3 Cluster and Synchrony Analysis of Ca2+ data

Pancreatic β-cells are excitable cells which generate action potentials also known as

spikes. A succession of such events emitted by a single cell is called spike train. These

events can occur at regular or irregular intervals. As the action potential propagates

from one site to another the form of the pulse doesn’t change. Hence, the form of

action potential does not carry any information. Instead, the number and the timing

of spikes carry all the information in a spike train.

Synchrony between a pair of cells or islets could signify special events and con-

vey information that is not contained in the firing rate of the cells. The degree of

synchrony may quantify the reliability of responses upon repeated presentations of

the same stimulus or evaluate the information transfer between coupled cells. All of

these could bring important insights into understanding the biological mechanisms

active during the glucose-insulin feedback cycle, particularly when cells are grouped

in clusters [88].

In recent years, various measures of synchrony have been introduced and suc-

cessfully applied to different types of data. There are two main approaches. The first

is based on similarities of trajectories in phase space and the second one is based on

the measurement of the phase differences between signals [182]. Apart from the classi-

cal methods, such as the cross correlation and the coherence function, there are other

measures implemented to asses the synchrony between spike trains. Most of them

require considering a large number of trials. Some quantify the occurrence of given

spike patterns and measure their robustness (‘attractor reliability’, [223]), exploit the

deviation of the spike train statistics from a Poissonian distribution, [30,222], or measure
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the normalized variance of pooled exponentially convolved spike trains [119,140].

To quantify the degree of synchrony within the data, we used measures proposed

in [140] (also briefly presented in Chapter 5), which considers spike trains to be points in

an abstract metric space. The main idea is to use the interspike interval (ISI), instead

of the spikes as the basic elements of comparison. A second measure, named event

synchronisation (ES), is based on the relative timings of events in the time series, e.g.

as local maxima, and provides both the degree of synchronisation and the time-delay

patterns between signals.

Spike Detection Algorithm

A preceding step to any method, is the extraction of the spike times from the

time series. A standard spike detection algorithm uses a threshold criterion, either for

the time series itself or its derivative. In this case, the threshold was chosen as the

arithmetic average over the minimum and maximum value of the action potential as

was used in [140].

6.3.1 Cluster Analysis

It is believed that pancreatic β-cells are organised in small clusters of up to 4− 5 cells,

coupled by gap junctions. An initial step in our investigation will be to identify how

the cells within the data are organized, if they cluster and how many such groups they

form. As a definition, a cluster is a collection of objects which are similar to one an-

other and are dissimilar to objects belonging to other clusters. There are two similarity

criteria to use when performing a cluster analysis. One is to use the distance between

two objects and the second is to use a concept common to all objects. In our analysis,

we used the distance as a rule to define clusters.

Observing our data, we notice that the cells might be organised in four clusters,

as we can see in figure 6.2.1. Within each, the cells may or may not interact. We first
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Figure 6.3.1: Dendrogram of Ca2+ signals: A hierarchical cluster tree obtained

from 13 time-series employing the ISI-distance. The existence of two separated

cluster is showed.

want to confirm this organisation by computing the dendrogram, which is based on

ISI-distance and uses a hierarchical clustering algorithm (also briefly introduced in

Chapter 5). Therefore, using the pair-wise extension of the ISI-distance, we identified

two main clusters in this data-set, (see figure 6.3.1), which rather contradicts what we

intuitively expected. In particular, the two clusters are: CD
1 , formed by cells 1, 2, 4,

5, 6, 10 and 12; and cluster CD
2 , formed by cells: 3, 7, 8, 9, 11 and 13 (as labelled in

figure 6.2.1).

Further, we apply a k-means clustering algorithm to the same data (more details

about this algorithm can be found in Chapter 5). Different values of k, the desired

number of clusters, were used, ranging from 2 to 4.

For k = 2, the first cluster suggested by the algorithm, is formed by points (cells)
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that are quite distant from the neighbouring cluster (the value of the silhouette, func-

tion used in k-means algorithm, is around 0.5), while in the second cluster there are

some points (cells) about which we cannot say whether they are distinctly in one clus-

ter or another (the value of the silhouette is approaching zero for some points (cells)

from the data). In the k = 3 case, two of the clusters have silhouette values, close to

zero, leading to the hypothesis that most of the cells cannot be assigned to a certain

cluster. Similarly, for k = 4, two of the clusters have the silhouette values near zero,

making doubtful their adherence to a certain cluster. Moreover, in the case of the

fourth cluster, there are some negative silhouette values, indicating that some points

are probably assigned to the wrong cluster.

To compare these three results, we took a quantitative approach, looking at the

average of silhouette values for the three cases. For k = 2 the average is m2 = 0.2234,

for k = 3, the average is m3 = 0.2790 and for k = 4, the average is m4 = 0.3011. Thus,

our data can mostly be grouped in two clusters (the smallest average is for k = 2),

which is in agreement with the result given by the dendrogram (figure 6.3.1).

6.3.2 Synchrony Analysis

Following on from the cluster analysis in the previous section, we continue with a

synchrony analysis of the Ca2+ data used throughout this chapter. All the measures

mentioned above, either ISI-distance based ones or ES, have been applied to Ca2+ data

consisting of 13 cells. First, we obtained, from the signals given by the ‘cell sorting’

algorithm, the spike times of each cell using the above mentioned spike detection

algorithm. The ‘edge’ problem is treated by applying the measures to each recording

signal for a fixed interval. To obtain the ISI-distances, the averaging was done over time

using the time weighted mode option.

To start with, we applied ISI-distance (DI) and the ES measure in a pair-wise man-

ner to all cells within the data. The results are summarized in tables 9.D.1, 9.D.2
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Figure 6.3.2: Example of synchronous behaviour: Upper panel: ISI-distance

measure; The first panel shows the two recorded time series (cell 7 and 11). The

detected spikes are marked in blue (input) and red (output), respectively. Be-

low, the ISI-values according to equation ( 5.4.5) are depicted, followed by the

ISI-Ratio and | ISI-Ratio |. The positive values in ISI-Ratio shows the presence

of spike doublets. Lower panel: ES measure; The first panel displays the time-

resolved event synchronisation for cells 7 and 11. The second panel shows the

spike times for the two time series. The third panel shows that there is no delay

between the cells.
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and 9.D.3 in the Appendix 9.D. The values obtained for both metrics for all possible

pair-wise combinations show that only a few cells are in almost perfect synchrony

(their ISI distance being close to zero, and the ES metric value, almost one).

In figure 6.3.2, top panel, we computed the ISI distance between cells 7 and 11.

In the first panel, the spike times for both cells are shown, followed by the ISI and ISI

ratio. For the same pair of cells, figure 6.3.2, lower panel, displays the ES based metric.

In both cases, synchronous behaviour is emphasised, with no delay between the cells

activities. Moreover, we have to mention that for all pair-wise combinations of cells

within our data, there was no delay.

Additionally, we applied the ISI-multiple distance to signals within clusters both

the ones ‘visually’ observed (the results are summarized in table 9.D.4) and the ones

suggested by the dendrogram, with the results presented in table 9.D.5. At this point,

we can not conclude that there is any synchronous behaviour between clusters. Fur-

thermore, to check whether there is indeed no synchrony between clusters, we aver-

aged the signals within each cluster. In each case, we computed DI and ES metrics.

The results can be found in table 9.D.6. In all of these cases, ED = 0, where ED means

the event delay between the two signals.

Moreover, for the clustering case, suggested by dendrogram, there are only two

clusters CD1 and CD2. The averaged values are: DI = 0.834, ES = 0 and ED = 0, whilst

the multiple distance metric for each averaged signals within the clusters CV
1 , CV

2 , CV
3

and CV
4 are: Da

I = 0.799 and Dm
I = 1.21. Again, there is no obvious evidence that the

clusters, are synchronous.

6.4 Coupling Analysis

Until recently, the analysis of biological signals has mainly focused on filtering for re-

moval of noise, spectral analysis which provides the frequency characteristics of sig-

159



CHAPTER 6: Pancreatic β-Cells Analysis

nals and modelling for future representation and parametrisation. Nowdays, there is

a huge interest in providing quantitative or objective analysis of physiological systems

and phenomena via signal analysis [183].

Signals can be analysed as individuals, in which case the analysis can be per-

formed very easily, but most of the biological processes within a living organism are

not independent of one another. More typically, they are mutually correlated and

bound together by physical or physiological control and communication phenomena.

By taking into consideration, only single processes and not paying attention to the

other signals that are coupled with the process, there is a risk that the analysis will not

provide full information. This lack of information may pose difficulties in the compre-

hension of the process and may raise many questions, such as: how is the correlated

phenomena identified? How can the signals be obtained? How are the correlated fea-

tures distinguished? Can the strength of association between component signals be

measured? How can we asses their timing relations? [183,188].

An ideal approach would be the simultaneous analysis of all the phenomena in-

volved into the process, where multidisciplinary pathways are used to identify several

potential sources of information. Here, interrelationships between all types of signals:

electrical, mechanical, biochemical or physical, are used to to gain multi-faced infor-

mation about the process [183]. This has led to development of statistical signal pro-

cessing techniques (SSPT) that can provide information about the existing correlation

between processes, such as the one implemented in the NeuroSpec software.

In general, neurophysiological (biomedical) signals are noisy and, as a subject of

an analysis, are treated as random signals or stochastic processes [153]. Usually, the

information within the signal used to evaluate physiological and functional states of

different systems is extracted by means of spectral analysis (based on Fourier anal-

ysis). Fourier analysis has been widely used to provide spectral information about

the signals and, in recent years, has been focused on the study of correlated phenom-
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Figure 6.4.1: Coupling strength given by the maximum coherence between

β-cells: Most of the cells are weakly coupled with a maximum coherence be-

tween 0.2 and 0.5. The correlated activity ranges for the entire frequency band.

Few cells presents highly correlated activity, at low frequencies, with maxi-

mum coherence almost 1.

ena between two or more signals, such as synchronisation between brain areas [11] and

correlation between electroencephalogram (EEG), electromyogram (EMG) and mag-

netoencephalogram (MEG) [95,104,163,164,235].

When performing signal analysis, there is the assumption that the signals con-

sidered are stationary, in which case the statistical estimates can be rather easily per-

formed. However, most of the biomedical signals encountered in applications are

non-stationary, so that their statistical properties vary with time [235]. In this case, tra-

ditional Fourier analysis provides no information of frequency over time. To over-

come this limitation, a short-time Fourier transform (STFT) approach is suggested by

Zhan et. al., [234], and has been successfully applied in areas such as: neuroscience

(using EEG-EMG signals), cardiovascular and cardiorespiratory sciences (using heart

rate (HR), respiration and blood pressure (BP) signals) [132]. However, even though
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STFT overcomes the assumption of global stationarity, by splitting the signals into

segments [57], it still requires stationarity within each section [195]. More details of STFT

can be found in Chapter 5.

A further approach used to overcome non stationarity within the biological sig-

nals is based on wavelets (for more details see Chapter 5). Wavelets are localised in

both the time and frequency scale, making them a quite natural approach to model

stochastic processes with time varying spectral characteristics. Unlike time resolved

Fourier coherence, which employs a constant window width for all frequencies, the

wavelet transform uses shorter windows for higher frequencies, which leads to more

natural localisation [195].

6.4.1 Fourier Based Analysis

The periodicity of most of signals is more obvious if it is expressed in terms of fre-

quency rather than time units. In fact, by using the FT or other similar transforms,

the analysis of a signal can be switched from one domain to the other (time domain to

frequency domain and vice versa). Even though, it may be argued, there is no gain of

information by taking a signal from time domain and performing the analysis in the

frequency domain, due to the mathematical equivalence of statistical parameters, the

characteristics used to describe the signal in the frequency domain provide a better

analysis and description [183].

Moreover, the use of a Fourier based estimation framework has the advantage

that it provides a unified estimation procedure, both for constructing parameter es-

timates and for constructing confidence intervals [102]. The individual processes are

characterised by estimates of the power spectrum, or auto spectrum of each process. The

pairwise relationships between the processes are characterised in the frequency do-

main by estimates of coherence and phase, and in the time domain, by estimates of

cumulant density functions [103].
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Remark: In most practical applications, the random processes representing a signal

of interest and the noise affecting the signal are assumed to be statistically independent

processes [183].

Preprocessing the Data

A random process is said to be weakly stationary or stationary in the wide sense if

its ensemble mean and ACF do not vary with time. A physical or physiological sys-

tem, that is dynamic and produces nonstationary signals has limitation in the rate at

which it can change its characteristics. This limitation facilitates breaking a signal into

segments of short duration (typically a few tens of milliseconds) using the method of

disjoint sections for point process data, (see [188]), over which the statistics of interest

are not varying, or may be assumed to remain the same. This method provides sim-

ple expressions for confidence intervals for parameter estimates. The signal is then

referred to as a quasi-stationary process, leading to an approach known as short-time

analysis [103,165].

Analysis Type 0

We analysed signals which meet the assumption of weak stationarity, mixing con-

dition and orderliness for point process data and applied type 0 analysis, in which the

data are split into L non-overlapping segments, each containing T data points, anal-

ysed with the same DFT segment length, S = T. The total number of samples analysed

is R = LT. Only complete segments are analysed; data points at the end of the record

that do not make a complete segment are not included in the analysis.

The data-set contains 13 channels, 4851 points at 25000 samples/sec. All the pa-

rameters have been estimated using a segment length of T = 256 points in the FFT,

with a length of 10.24s. This defines the minimum frequency which can be resolved

(and thus the spectral resolution) according to the relationship ∆ f = 1/(Tdt)Hz, where

dt is the sampling interval for the data set. Here dt = 0.04s, which gives a spectral
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Figure 6.4.2: Sketch representation of correlated activity between Ca2+ sig-

nals: Left: Correlated activity between cells in cluster 1; Most of the cells ex-

hibit ‘in-phase’ synchronous behaviour (blue). The ‘half’ red line between cells

3 and 11 means that there is highly correlated activity only for a certain fre-

quency band. Right: Examples of correlated activity (red) and out-of-phase

synchronous behaviour (green) between the 13 cells;

resolution of ∆ f = 25Hz. The data-set is 194.0398s in duration, giving a total of 4851

points, giving the number of complete segments as L = 18 and the length of data used,

R = LTdt = 184.32s [103].

Interpretation of the Results

We applied Fourier based measures to all 13 cells found by the ‘cell sorting algo-

rithm’ and found a mixture of different activities among the signals. Some cells were

strongly correlated with each other, whilst some presented correlated activity only for

a certain frequency band. Some of the cells exhibit ‘in-phase’, others asynchronous

behaviour.

Before starting to introduce in more detail the Fourier analysis results, we refer

the reader to figure 6.4.1, which shows the maximum coherence values between the

13 cells. The coherence estimate emphasises how strongly correlated the cells are in
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the frequency domain. In this case, correlated activity is found throughout the entire

frequency band. As figure 6.4.1 shows, most of the cells are weakly coupled, with

maximum coherence between 0.2 and 0.4 and a mean value of 0.4368.

A sketch representation, showing examples of correlated activities and types of

synchronous behaviour between the cells is given by figure 6.4.2, right side. Even

though some cells may not form part of the same cluster (for example cells 5 and 13,

or 4 and 9), they may still be partially or weakly correlated in a certain frequency band

(results not shown in the figure) or they may synchronise out-of-phase. Other cells,

from the same cluster (even though they look rather apart in the plane given by the

‘cell sorting’ algorithm), are highly correlated and are synchronised in-phase (cells 7

and 11).

Furthermore, we notice strongly correlated activity among the cells within the

same cluster, as figure 6.4.2, left side shows. For example, cells 7 and 3 or cells 7 and

11 are highly correlated and synchronise in-phase. Other cells, such as 3 and 11, are

correlated only for a certain frequency band, and yet are synchronised in-phase. A

similar behaviour is observed between cells 1 and 11 and 1 and 7, even though, as

figure 6.3.1 shows, cell 1 is not from the same cluster as cells 7 or 11.

In figure 6.4.3, upper panel, left side, the power spectrum for cell 7 is plotted,

which shows the strength of the variations as a function of frequency. We observe that,

for low frequencies, the strengths are large, while for higher frequencies the strength is

just above zero. At this early stage of time series analysis, by looking at the time series

as a function of frequency instead of time we do not observe any significant peaks in

the spectral estimate that provide any valuable information.

Further, figure 6.4.3, lower panel, left side, shows the coherence estimate between the

two cells emphasizing the degree to which the two sets of time series, respectively cell

7 and 11, resemble each other. For lower frequencies the resemblance is almost perfect

but decays for higher frequencies, the value of coherence fluctuating around
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Figure 6.4.3: Fourier Based Analysis: Upper panel, left side: Individual spec-

tral estimate up to Nyquist frequency of 12500Hz for cell 7. The vertical bar

in top right indicates the significance level, used to asses whether local fluctu-

ations represent significant spectral components. Computation of the power

spectrum was done using FFT for different segments of the signal and then av-

eraged; Upper panel, right side: The cumulant density estimate for cells 7 and 11,

plotted against time lag in ms. The horizontal dashed line at zero indicates the

null value, the solid horizontal lines indicate the upper and lower 95% confi-

dence limits based on the assumption of independence. Lower panel, left side:

Coherence estimate for cells 7 and 11 showing a highly correlated activity for the

whole frequency band with a maximum coherence value almost one. The dot-

ted horizontal line is the 95% significance level for no coherence; Lower panel,

right side: Phase estimate for cells 7 and 11 with the horizontal line indicating

zero degree (no phase/time lag between these cells). For the first half of the

frequency band, the coherent behaviour is stronger, whilst the phase estimate

is near zero, indicating almost no phase difference between the cells.
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0.5. Similar results are given by the phase estimate, as we can see in figure 6.4.3, lower

panel, right side, where we observe fluctuations around zero for all the frequencies.

We note that the phase estimate is valid only when there is significant correlation be-

tween the signals. In the upper panel, right side of the same figure, the cumulant

density function is shown and gives information about the correlation between the

channels in the time domain. We observe that there is a large peak in the cumulant

which exceeds the upper confidence limit, and indicates that the two channels syn-

chronise. Moreover, the peak is at lag 0, which means that there is no delay between

the signals (the corresponding spike times).

6.4.2 STFT and Wavelet Based Analysis

STFT Based Analysis

A first approach used to overcome non-stationarity, a common ‘problem’ of bi-

ological signals, is based on the short time Fourier transform (for more details see

Chapter 5).

Choosing an appropriate width of the window function used in STFT, we inves-

tigate the correlated activity between the cells, not only in the frequency domain, but

also in the time domain. Thus, both power spectrum and coherence were computed

using the spectrogram function, implemented in Matlab and briefly presented in Chap-

ter 5.

In figure 6.4.4, left side, the power spectrum of cell 7 is shown as a function of

both frequency and time. All of the ’information’ is found in the low frequency band

and maintained throughout the whole interval time taken to compute the STFT. Fig-

ure 6.4.4, right side, displays the coherence between cells 7 and 11, and emphasizes

how the correlation is maintained in time. As before, we observe correlated activ-

ity between these cells, mostly at low frequencies. Moreover, the pulsatile nature of
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Figure 6.4.4: STFT Approach: Left: Spectral estimate of cell 7. The signal is

divided into small and overlapping segments; The FFT is applied to each seg-

ment, giving a time-frequency representation of the PS of the signal. Right:

The coherence estimate for cells 7 and 11. The resemblance between the cells

is given in both time and frequency domain. The correlated activity is at low

frequency and maintained for the entire time of recording. It shows a pulsatile

appearance, similar to the bursting pattern seen in figure 6.2.2. The windows

function is fixed for both time and frequency scales.

insulin secretion is noticed in the correlated activity of these cells, emphasising the

benefit of this approach.

Wavelet Based Analysis

Wavelet transforms have been previously used to tackle correlated behaviour

within data in areas such as wind engineering, [97], climatic and oceanic change, [226],

and cardiology [132]. Recently, in neuroscience, wavelet-based cross spectral and co-

herence analysis has been used to analyse spike train activity [31,135,148,176,195,235]. An

introduction to wavelet coherence can be found in [145], in which the authors provide

a theoretical background of the wavelet based analysis. More details about wavelet

based analysis can be found in Chapter 5.

Pre-processing step: Before proceeding with the wavelet based analysis, we checked if

our data are not too far from being normally distributed. Initially, the time series were
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Figure 6.4.5: Wavelet Approach: Wavelet Spectrum of cell 7, using the Mor-

let wavelet family. The wavelet transform shifts a window along the signal

and calculates the spectrum for each position. The windowing technique has

variable-sized regions, solving the resolution problem. The spectral estimate

is given in both time (here time step units) and frequency (here Fourier period)

domain.

lognormally distributed but after taking the logarithm, the data become normally dis-

tributed, as the null-hypothesis in the significance tests requires. The wavelet family

used in this study is the Morlet one, briefly presented in Chapter 5. Significance levels

are determined using Monte-Carlo simulations, provided by the toolbox.

The power spectrum is computed using the continuous wavelet transform (CWT),

which provides an expansion of the time series into both time and frequency space.

Figure 6.4.5 shows the power spectrum of cell 7, computed using wavelet approach.

As before, we notice that the higher power of the signal lies in the low frequency

band. The correlation in both time and frequency domain and any locally phase locked

behaviour between the two cells are given by the wavelet transform coherence.

In the example used here, (see figure 6.4.6) we notice that the signals are strongly

correlated for low frequencies and throughout the whole recording time. The phase
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Figure 6.4.6: Wavelet Approach: The wavelet coherence and phase between

cell 7 and 11. The thick black contour is the 95% significance level from a

Monte-Carlo simulation of wavelet coherence between 10,000 sets (two each)

of white noise time series. The vectors indicate the phase difference between

the two signals, showing synchronous behaviour for almost the entire record-

ing time. The correlated activity and the phase information is given in both

time (here time step units) and frequency (Fourier period) domain.

arrows, showing the relative phasing of the two time series, point mostly in the ‘left-to-

right’ direction, meaning that cells are synchronised ’in-phase’. For a few wavelengths

the direction of arrows changes; for instance, between 3,000 and 3,500 time steps (for

relatively low frequencies), in which case we believe that the signals might not be

‘linked’ for that wavelength.

Figure 6.4.7 shows the correlation between cells 1 and 7. The correlation is present

only for short periods of time and in a certain frequency band. Phase information

reveals that the cells are not synchronising all of the time. Moreover, synchronous

behaviour is found only for certain frequencies bands. For example, between 1,200

and 2,000 time steps, the cells are synchronising for a frequency band, however, for

the same period of time, but different frequency band, the cells are not synchronising.
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Figure 6.4.7: Wavelet Approach: Wavelet coherence and phase between cell 1

and 7. The thick black contour is the 95% significance level from a Monte-Carlo

simulation of wavelet coherency between 10,000 sets (two each) of white noise

time series. The vectors indicate the phase difference between the two signals,

showing an instability of synchronous behaviour. Moreover, the highly corre-

lated activity is present only for medium frequencies and is not consistent for

the entire recording time.The correlated activity and the phase information is

given in both time (here time step units) and frequency (Fourier period) do-

main.

6.5 Connectivity Analysis

Identification of connectivity patterns has gained a lot of attention in the last years

and plays a crucial role in determining the functional properties of cells and systems.

There are three different types of connectivity: structural, functional and effective.

Functional connectivity refers to a pattern of statistical dependencies between dis-

tinct units within the system, whilst effective connectivity refers to a pattern of causal

interactions between the units. The units correspond to cells, clusters of cells or even

anatomically segregated system regions.

Structural connectivity refers to networks of anatomical (e.g., axonal) links and has
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the aim to understand what brain structures are capable of influencing each other via

direct or indirect axonal connections.

By being a statistical concept, the functional connectivity captures deviations from

statistical independence between the elements of a system. It can be estimated through

the computation of cross-correlations in the time and frequency domain or through

spectral coherence. Although the functional connectivity is calculated between all

elements of a system, regardless of whether these elements are connected by direct

structural links, it does not make any explicit reference to specific directional effects

or to an underlying structural model.

The effective connectivity describes networks of directional effects of one element

to another. Causal effects can be inferred either through systematic perturbations of

the system, or through time series analysis, since causes must precede effects in time.

The extraction of causality from time series data is sensitive to choices of sampling

rates, windowing parameters and state spaces.

Computing the effective connectivity is more challenging than computing the

other types of connectivities. It is believed that the constraints of structural connection

patterns are captured by functional connectivity and effective connectivity, and are im-

portant for the dynamics of the systems. Moreover, the rapid temporal fluctuations in

functional connectivity and effective connectivity may reflect additional changes in

physiological variables or input. Thus, it is reasonable to believe that some structural

characteristics within the system are reflected in their functional interactions.

There are a number of ways to investigate the existence of causal relations among

a set of measured variables. These include the directed transfer function, partial di-

rected coherence and Granger causality.

Although Granger causality is a powerful technique for extracting directed func-

tional connectivity, identifying directed functional connectivity is not equivalent to
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identifying physically instantiated causal interactions in systems. The physically in-

stantiated causal structure can only be exactly identified be perturbing the system and

observing the consequences. Thus, Granger causality analysis it should be annotated

as a statistical relationship among observed variables that reflect, but may not be iden-

tical to, the underlying physical mechanism [201].

Application of Connectivity Analysis to Ca2+ data

When applying Granger causality to our data, we encounter various problems,

from non-stationarity of the data, to the choice of the model parameter. This made

us doubt the existence of any directional connectivity within the data. To overcome

the non-stationarity problem we split the data in small, overlapping segments in the

attempt to obtain local stationarity. Even though the validity tests within the algo-

rithm (see Chapter 5), were passed we obtained no directionality within the data. For

more information about Granger Causality and validity tests, please refer to Chapter

5 and [201].

For the whole length of the data, the validity test failed, which makes us inter-

pret with caution, the conclusion regarding causal connectivity. However, the output

showed some directionality in the structure of the data, as we can see in figure 6.5.1.

Causal density measures the total amount of causal interactivity sustained by a

network. The causal density values are relatively low, showing either the system is

not very coordinated in its activity, or it is not dynamically distinct.

The causal flow of a node (cell) in a G-causality network is defined as the difference

between its out-degree (number of outgoing connections) and its in-degree (number

of incoming connections). Causal flow can identify nodes that have distinctive causal

effects on network dynamics. For example, cell 7 is a causal ‘source’ (with a highly

positive value) while cell 13, which has a highly negative flow, is a ‘causal’ sink [201].

This structure was compared to a similar structure of the data obtained after
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Figure 6.5.1: Output of time-domain G-causality analysis for 13 β-cells. Top

panel, left side: Data after the ‘pre-processing’ steps; Top panel, middle: The G-

causality networks is given in a matrix form (column causes row); Top panel,

right side: The G-causality in a network form, showing all of the functional

connectivities between the cells. Bottom panel: Causal flow, left side, and causal

density, right side, by variable (node/cell) is displayed. The bar charts show

unweighted causal density/flow, and the lines show density/flow weighted

by magnitude as causal interaction. Nodes such as 5 or 6 are identified as a

causal source and nodes like 12 as causal sinks.

summarising the results from the coherence analysis (see previous section). It was

found that around 70− 80% of the connections (causal conductivities) obtained from

Granger causality analysis were detected in the structure provided by the coherence

analysis. However, the coherence analysis does not have a directional nature. It sim-

ply examines whether a link exists between two structures, by describing instances

when they are in synchronous activity, and it does not provide the direction of the

information flow [14]. We also compute the time of first spike for each cell in order to
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check the accuracy of the directionality suggested by Granger causality. From the 16

possible outcomes 7 were in agreement with the Granger causality display, 7 were not

and, for two of them, the cells fired at the same time.

6.6 Conclusion

Many physiological functions are governed by cell secretion, one of the fundamental

cellular processes. Any failure of this mechanism can lead to the development and

progression of diseases. In this chapter, we focused our analysis on pancreatic β-cells,

which are responsible for the creation and release of insulin. In particular, by analysing

the corresponding Ca2+ signals, we aimed to identify any synchronous behaviour and

correlated activity, in both time and frequency domain, as well as the functional and

effective connectivity between the cells.

We begin with a few observations about the ‘cell sorting’ algorithm used to ex-

tract Ca2+ signals from Smith’s lab data. The algorithm did not assure 100% accuracy

in its results, yet we believe some improvements can be made. When applying the

algorithm to Ca2+ data, we encountered obvious problems, such as the noise arising

from measurements, but also some particular difficulties such as: the number of p.c.

to compute and keep for further analysis, or which type of ICA to use in the analysis;

which threshold to apply in order to extract the signals; each of those being strongly

affected by human factor. By changing these parameters, we obtained different results

in our simulations.

Even though the algorithm is automated, we spent a considerable amount of time

trying to find the right parameters in order to obtain accurate results. We believe that

the algorithm needs some improvements from this point of view; intermediate steps

could be added to make the choice of parameters more intuitive. However, the results

were satisfactory: we located 80% of the cells correctly within the data.
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Synchronous behaviour between two pancreatic β-cells or islets can assess the

information transfer between the two. In fact, significant understanding about the

biological mechanisms that occur during the glucose insulin feedback cycle when cells

are grouped in clusters can be obtained.

Through the use of signal extraction techniques, we attempt to identify how cells

are organised in small clusters and if they synchronise or not. First, we applied two

clustering algorithms to 13 calcium signals and found that, for this data-set, cells are

mainly grouped in two clusters, even though the actual distance between their loca-

tions is not small in some cases. For the synchrony analysis, we used two metrics

which presented considerable advantages: they are parameter free, self adaptive and

can be applied to spike trains with different time scales. Using the metrics, namely

the ISI-distance based family and ES metric, we were able to identify in-phase (out-of-

phase) synchronous behaviour between the cells and clusters.

Remarks: The metrics used here rely on instantaneous inter-spike intervals which

suggest that these measures are complementary to methods that rely on spike timing.

Therefore, these measures may not be well suited to track changes in synchrony that

are purely based on the number of spike coincidences [139,140].

Next, using various statistical signal processing techniques, we investigated how

correlated the activity of cells is within this data-set. We started with a basic Fourier

analysis, which revealed the coupling features in the frequency domain. Further, us-

ing both STFT and a wavelets (which solves the resolution problem) approach, we

were able to identify not only what frequency components were present in the sig-

nal, but also where they were located in time. Using these methods, we were able to

emphasise the pulsatile nature of the pancreatic β-cell. We noticed more strongly cor-

related activity between the cells during the active phase of the BEA (see figures 6.4.4,

right side, or 6.4.6). Moreover, the evolution of synchronous behaviour in time was

identified through phase information given by both FA and WA.
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The last section of this chapter was focused on identifying connectivity patterns

within the data, which are believed to play significant roles in determining functional

properties of cells or systems. The previous section, through the identification of a

pattern of statistical dependencies, provided important insights into the functional

connectivity between the signals. Here, we attempted to identify a pattern of causal

interaction between the cells by using the Granger causality method.

This step of the investigation posed some problems, as we already explained in

the previous section. Thus, the results obtained may not be entirely accurate. We

found some directionality structure within the data set which was matched with the

FA results by 70− 80%. We mention that FA, in particular coherence estimate, does

not have a directional nature, it only defines a link between the cells.

Remarks: The data set we worked with was very noisy, and the recording time was

very short, which created a problem when dealing with non-stationary characteristics

of the signal. Also, more time was needed to investigate extra data sets or to try

different approaches, especially when identifying causality within the signals (a non

parametric approach could be an option).
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Numerical Analysis of Bursting

Electrical Activity using PWL

Systems

Bursting electrical behaviour is commonly observed in a variety of nerve and en-

docrine cells, including pyramidal neurons in neocortex (sometimes called chattering

neurons), or those found in CA1 in hippocampus; thalamocortical neurons if inhib-

ited and then released from inhibition; respiratory neurons in pre-Botzinger complex

or electrically coupled β-cells located in intact pancreatic islets [50,186]. In general, such

complex behaviour can be reproduced by Hodgkin-Huxley-type models. Yet, lower

dimensional integrate and fire-and-reset processes (IF) could also generate such be-

haviour [126].

The absolute-integrate-and-fire (AIF) model is a relatively simple system that ac-

cumulates incoming signals and generates an impulse (spike) as soon as a certain

threshold is reached. It produces a wide variety of spiking behaviours whilst still

being analytically solvable between firings. For different parameter values the AIF
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model can produce spiking, bursting and even fast spiking firing. To date it has been

used as a neuron model because it captures some fundamental properties of neurons

(absolute and relative refractoriness, synaptic delay of signal transmission, postsynap-

tic potential dynamics, noise component e.g. imitating remote dendrites or synaptic

noise, etc.). However it can also be used as a substitute for any excitable cell, such as

the pancreatic β-cell [28,161].

Understanding how excitable cells transform external stimuli into trains of elec-

trical pulses (spikes), the mechanisms behind this process and how properties of input

signals are encoded in output spike trains is important not only for neurobiology but

also for many other areas, such as: cryptography or telecommunications. Bursting and

tonic firing may encode different aspects of the process, for example, bursting firing

appears to be more efficient in signal detection, whereas tonic firing seems to be well

suited for encoding detailed evolution of time-varying stimuli [77].

In this chapter, using the AIF model driven by periodic forcing, we numerically

investigate what a spike-pattern code reveals about the stimulus. Using a spike count

measure (which gives the duration of each burst) and the time of burst onset, we hope

to gain a first glance of different stimulus features encoded in the signal [78]. From

the point of view of pancreatic β-cells signals it will be interesting to know how the

information is processed and transmitted to target organs (liver). It is known that

pancreatic β-cells respond to constant glucose stimuli, but also, there is evidence that

insulin secretion is enhanced if the cells receive pulsatile glucose stimulation. In fact,

several labs have examined the ‘entrainability’ of insulin secretion from the perfused

pancreas, groups of islets, and single islets. They found that in all three cases it is

possible to entrain the insulin secretion to an oscillating glucose stimulus [186].

Synchronised bursting electrical activity (BEA) exhibited by pancreatic β-cells in

intact islets of Langerhans is associated with the release of insulin from these islets.

Moreover, for normal β-cells under standard conditions, the plateau fraction (the ac-
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tive phase) has been (linearly) correlated to the rate of release of insulin as the glucose

concentration is varied [167]. Having said that, a next step will be to investigate how the

plateau fraction (and implicitly the burst period) is affected by the external periodic

force parameters.

Signal processing techniques lie at the heart of information theory and describe

the coding of excitable (neural) signals from a holistic standpoint. Therefore, the

phase-locking behaviour between the cell output and the external drive will be ex-

amined through a Fourier based analysis and the construction of Arnol’d tongues.

The auto-correlation function will be computed for different values of periodic force

parameters. The estimation of coherence between the output signal and the periodic

drive will be computed and the firing rate as the amplitude of the external drive is

varied will be plotted.

Compared to isolated β-cells, β-cells embedded within the islets of Langerhans

network exhibit a coordinated and greater insulin secretion response to glucose. It

seems that this coordinated activity relies on gap-junction coupling [160,236]. In fact,

isolated β-cells exhibit atypical bursting or continuous spike activity which can be in-

duced to bursting-like activity through gap junction coupling (weak), which in turn

leads to a better insulin release [61]. Moreover, gap junction coupling between pancre-

atic β-cells provides synchronous behaviour, essential for normal glucose-dependent

insulin secretion in intact islets. Furthermore, the coupling also helps the islet to syn-

chronise to an external glucose signal [186]. This leads to the next step of our analysis,

where we investigate a system of two identical cells driven by periodic external force

and show how the coupling strength affects the firing rate, the plateau fraction (and

the burst period), and measure of synchrony when periodic force parameters and gap

junction coupling strength are varied.

A further explanation for the dissimilarities between single and coupled cells’

electrical activity is given by the effects of stochastic fluctuations (seen as noise) of the
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plasma membrane ion channels, which are supposed to have a stronger effect on single

cells than on cells situated in clusters (the channel sharing hypothesis) [186]. Noise can

be beneficial or detrimental to normal electrical activity of the cells. For example,

noise can influence and enhance synchronisation and pattern formation; can induce

stabilisation of electrical bursting or can play the role of control parameter changing

the frequencies of coupled excitable cells. It can also disrupt the common electrical

activity breaking the natural pathways of signal transduction [160].

The last section of this chapter will be completed with a study of noise influence

on BEA, firing rate and its role in synchronisation of two gap junction coupled cells

driven by an external drive.

Remarks: Numerical integration of the deterministic AIF model was done using the

Euler Method, in Matlab (http://www.mathworks.com/); white Gaussian noise was

added to the voltage variable as a current noise and integrated using the Euler-Maruyama

Method, [110], and the gap junction coupling was modelled as a difference between the

voltages of the two cells.

7.1 Absolute-Integrate-and-Fire model Driven by a Sinusoidal

External Force

A rather convenient approach in computational neuroscience is to develop and use

minimal models of spiking neurons where reduction in dimensionality of both pa-

rameter and variable space aid effective simulation studies. One family of minimal

models is that of the ‘integrate-and-fire’ type. They are capable of generating realis-

tic and diverse spike trains (tonic, bursting or fast spiking) while being analytically

tractable [53].

We mention that one-dimensional IF models with a fixed voltage threshold are
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Figure 7.1.1: Membrane potential traces of the AIF model: Left: Driven by

constant input; Parameter values are: τa = 75, ga = 4,vth = 1,vr = 0.2 and

Ie = 0.1. Right: Driven by a periodic sinusoidal external force; The intrinsic

parameters are as in the above case, except ga = 2. The periodic force param-

eters are: α = 0.1,ω = 0.01,φ = 0 and Ie = 0.1. In both cases, the AIF model

(single cell) exhibits a bursting behaviour, alternating an active phase with a

silent phase.

not able to adequately capture some properties of real excitable cells, such as the re-

fractory property. There are a few ways in which this ‘problem’ can be solved, among

them is the introduction of an absolute time during which the cell can not fire after

reaching the threshold, or by developing the model with a time dependent threshold

that increases after a firing event and delays the next spike [53].

A recent review of IF models can be found in [53], where the authors, among other

studies, analyse a periodically forced leaky IF model and present a bifurcation analysis

of a new class of IF (called PWL-IF models) in response to constant current injection

focusing on local discontinuity induced bifurcations.

Due to its simplicity and ability to reproduce both tonic and BEA we analyse

the AIF model under an external periodic force given by a sinusoidal function plus

a constant external current (which assures the oscillatory behaviour of the system in

the absence of the periodic drive). Importantly, the AIF model captures the essential

shape of a real neuron (excitable cell), which is a benefit when studying gap junctional
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(linear) coupling, since in this type of coupling the action potential shape is commu-

nicated from one cell to the other [53].

AIF model driven by a sinusoidal external force in closed form

Following Coombes et. al. [54] the AIF model, with adaptation, driven by a sinu-

soidal force has the form:

v̇ = |v|+ Ie − a + αsin (ωt + φ) , (7.1.1)

ȧ = −a/τa, τa > 0, (7.1.2)

subject to the IF reset mechanism: v→ vr if v = vth, and the adaptive one: a (Tm)→

a (Tm) + ga/τa, for some positive ga. Ie represents the constant external drive; α, the

amplitude of the periodic force, ω its frequency, Tm the spiking times while φ the initial

phase of the stimulus.

For different parameter values and under constant stimulation the AIF model ex-

hibits tonic bursting and fast-spiking firing mode (not shown), as we saw in Chapter 5.

These firing modes are also maintained when the system is driven by a periodic force

as we can see in figure 7.1.1, where the left side shows the bursting behaviour when

the system is driven by a constant stimulation, while the right side, shows the burst-

ing behaviour when driven by a sinusoidal external force. In fact, a periodic force

with weak intensity is enough to switch the system from tonic mode to the burst-

ing one. For example, if the intrinsic parameters are set to have the cell in a tonic

regime, then a value of the amplitude of the external force, of α = 0.0040816, with

ω = 0.05, φ = 0, Ie = 0.1, will be enough to turn the cell into a bursting one. We also,

found the bursting-threshold value of the frequency (of the external drive), as being

ω = 0.018367, which switches the cell into bursting mode, if α = 0.005, φ = 0, Ie = 0.1.

Regarding the bursting-threshold value of the phase (of the external drive), we could

not find one, even though we kept the amplitude and the frequency at very low val-

ues, to be sure that the switching will take place due to the phase value of the external

drive. Apart from tonic and bursting spiking behaviour the cell also exhibits fast spik-
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ing (with a high firing rate) behaviour. We found that, under constant stimulation,

at a value of Ie = 0.40204, the cell will switch from a bursting mode to a fast spiking

mode, passing through a parameter window where the length of the active phase is

randomly increasing until it reaches the fast spiking mode.

Using the same approach as in [54], we solve the system (7.1.2), by breaking the

phase space into two regions separated by the line v = 0, so that in each region the

dynamics (up to threshold and reset) is governed by a linear system. Denoting by

v+ and v− the solution for v > 0 and v < 0 respectively, we obtain the solution of the

system in closed form:

v±(t) = v±(t0)e±(t−t0) +
∫ t

t0

e∓(s−t) [Ie − a(s) + αsin(ω(s− t) + φ)]ds, (7.1.3)

with initial data v±(t0) and t > t0. Further, considering the ∆-periodic tonic solution,

where v > 0 always, then we have a(t) = āe−t/τa , where

ā =
ga

τa

1
1− e−∆/τa

. (7.1.4)

Hence, from equation 7.1.3, we obtain

v+(t) = vret + Ie
(
et − 1

)
+

ga

1− e(−∆/τa)

[
e(−t/τa) − 1

]
+ (7.1.5)

+
1

1 + ω2

[
sinφ− et sin(ωt + φ)

]
+

ω

1 + ω2

[
cosφ + et cos(ωt + φ)

]
. (7.1.6)

The period of a fast spiking orbit with v > 0 can be found by demanding that v(∆) =

vth, where ∆ is the period of the spiking cell.

Remarks: The numerical investigations were done only by varying the external force

parameters. In all numerical simulations, if not otherwise specified, the intrinsic pa-

rameter values are: τa = 75, Ie = 0.1,vth = 1 and vr = 0.2.

7.2 Periodic Forcing Effects on Bursting Electrical Activity

There has been quite an interest in investigating biological oscillators subject to exter-

nal periodic forcing. For example, many studies focused on the periodically forced
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FitzHugh-Nagumo model, or van der Pol oscillator. These generated rhythms that

include periodic ‘phase-locked’, quasiperiodic, and chaotic rhythms [55].

Given the functional significance of plateau bursting firing, especially for en-

docrine cells, it is of central importance to understand the way in which it is organised

and how it emerges and dies. Here, we only focus on the immediate insights we could

obtain from spike count within a burst (which gives the duration of the active phase)

or the time of the burst onset (which could represent the temporal location of a certain

stimulus feature) about the essential physiological implications in the process [171].

In order to gain insight into the extremely complicated response of excitable mod-

els to periodic stimulation there are a few approaches: numerical continuation meth-

ods and bifurcation theory of the full differential system or fixed point investigation

of the stroboscopic maps of the systems [55]. Here, we focus on a more practical ap-

proach, to give us an immediate insight into the responses to periodic stimulation,

namely direct numerical integration of the full system. We will focus on obtaining

information about the stimulus from spike count measure, plateau fraction, the corre-

sponding bursting period and the onset of the burst, using an AIF model driven either

by a constant or periodic stimulation.

Periodically forced IF oscillators has been previously analysed; mainly by con-

structing firing maps, as in [51]. Single cell studies in response to periodic (natural)

stimuli are extremely relevant, especially for understanding information processing

and stimulus encoding [53].

7.2.1 Effects on Spike Count, the Onset Time of a Burst, Plateau Fraction

and Bursting Period

There are various studies focused on the stimulus encoding, and many suppositions

have been made about the features of stimulus encoded in the output signal or which
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type of code works best. Eyherabide et. al. [77], suggested that the number of spikes per

burst reliably conveys information about the amplitude and duration of sound tran-

sients, whereas their time of occurrence is reflected by the burst onset time. Moreover,

the time at which a burst is initiated and the intra-burst spike count n, would also

be good candidates to represent what in the literature has been distinguished as the

‘when’ and the ‘what’ in a stimulus [77].

Other studies, suggested that the length of each burst (given by intra-burst spike

count) is correlated with the orientation of the stimulus or can represent the slope

of the incoming visual stimulus at burst onset [78]. Samengo et. al. in [194], showed

that the number of spikes per burst varies systematically with the phase of the stim-

ulus at the time of burst onset. Therefore, by reading out the intra-burst spike count,

a downstream neuron can extract information about the temporal properties of the

input current exciting the cell, either the slope or the phase at the onset time of the

burst [194].

Through spike count measures, the onset time of burst, plateau fraction and burst-

ing period, we aim to gain an early understanding of the mechanisms that control the

timing and amount of Ca2+ entering the cell. This is directly related to the number of

spikes within a burst and, consequently, organised by the duration of the active phase.

Remarks: Spike Count (SC) measure was implemented in Matlab by simply count-

ing the number of times the voltage trace reaches (or crosses) a threshold. The onset

time of the burst, plateau fraction and the bursting period were computed in Mat-

lab by finding the global minimum and maximum of the slow variable a, within one

bursting period. The bursting onset (BO) is defined by the second global minimum of

the slow variable, since the first one was always zero in our simulations; the plateau

fraction is defined by the difference between the maximum and the minimum of the

slow variable, whilst the burst period is defined by the difference between the second

minimum and the first minimum of the slow variable found.
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Figure 7.2.1: Spike count (SC) and burst onset (BO) measures as external pe-

riodic force parameters are varied: In all figures, the SC measure is shown in

blue, while the BO in green. The units for the BO are the time steps of integra-

tion. Upper panel, left side: Constant external stimulation: here ga = 4 to assure

bursting activity. The number of spikes within the burst is increasing as the ex-

ternal drive is increased whilst the onset time of the burst is decreasing. Upper

panel, right side: The amplitude of the periodic external stimulation is varied;

parameters are: ω = 0.2,φ = 0 and ga = 2. The number of spikes fluctuates

between 16 and 20, while the BO, increases for small and large values of the

α, and increases for intermediate values. Lower panel, left side: The frequency

of the periodic external stimulation is varied; parameters are: α = 0.5,φ = 0

and ga = 2. Excepting the transient part for low values of ω, SC varies be-

tween 16 and 20, whilst BO fluctuates around 130. Lower panel, right side:

The initial phase of the periodic external stimulation is varied; parameters are:

α = 0.5,ω = 0.5 and ga = 2. Both SC and BO present a fluctuating pattern.
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We run simulations of the AIF model driven, first with a constant drive (α = 0),

such that the model bursts, and then with a periodic stimulation, varying the am-

plitude, the frequency and the initial phase of the stimulus. We computed SC, BO,

plateau fraction (Pf) and the corresponding burst period (BP), by integrating the full

system over one complete period. In such cases, burst-like responses arise as a con-

sequence of the interplay between the dynamical properties of the cell and particular

temporal properties of the stimulus. In this case, we found a great deal of variability

within the results, for example, the number of spikes within the burst, (if we ignore

the transient part), it randomly fluctuation as the external force parameters are varied.

In all cases, the number of spikes is between 16 and 20.

When the cell is driven by a constant stimulation (the cell is in a bursting mode),

we found that the number of spikes within the burst increases with the strength of

the stimulation (see figure 7.2.1, upper panel, left side). The other functional charac-

teristics, such as the onset time of the burst, the plateau fraction or the burst period,

decrease as the stimulation gets stronger (figures 7.2.1 and 7.2.2, upper panel, left side).

We found that, the plateau fraction (and the burst period, except for a small pa-

rameter window), smoothly decreases after reaching a maximum point for small val-

ues of α, when the amplitude is varied. When the frequency is varied, both the plateau

fraction and the burst period fluctuates around a constant value, while in the case of

the initial phase of the external drive, both Pf and BP increase until it reaches a maxi-

mum value and then slowly decreases (see figures: 7.2.1 and 7.2.2).

Overall, the main conclusion is that both burst probability and burst characteris-

tics are strongly influenced by temporal modulations of the periodic stimulus. Hence,

the tendency to burst could also be determined by the cells interaction with the stimu-

lus [77]. Essentially, under sinusoidal stimulation, the cell locks to the input oscillations,

presenting complex patterns dependent on the force parameters. This complexity can

be seen in the number of stimulus cycles missed, inequality in the space

188



CHAPTER 7: Numerical Analysis of Bursting Electrical Activity using PWL Systems

 50

 70

 90

 110

 0  0.05  0.1  0.2

 70

 90

 110

 130

 150Pf

BP

I

 35

 45

 55

 65

 0  0.2  0.4  0.6  1

 50

 60

 70

 80

Pf
BP

a

 30

 40

 50

 60

 0  0.5  1  2

 50

 60

 70

 80

Pf BP

w

 58

 60

 62

 64

 0  1  2  3  4   6
 80

 84

 88

 92
Pf

BP

f

Figure 7.2.2: Functional characteristics under periodic force parameters vari-

ation: In all figures, the Pf is shown in blue, while the BP is in green. The units

are the time steps of integration. Upper panel, left side: Constant external stim-

ulation: here ga = 4 to assure bursting activity. Both the Pf and BP are increas-

ing as the external drive is increased. Upper panel, right side: The amplitude of

the periodic external stimulation is varied; parameters are: ω = 0.2,φ = 0 and

ga = 2. Pf is decreasing after reaching a maximum value for low values of α,

BP follows the same trend as the active phase, until an intermediate value of

α, where it raises for the second time and then decreases to a minimum value.

Lower panel, left side: The frequency of the periodic external stimulation is var-

ied; parameters are: α = 0.5,φ = 0 and ga = 2. Except for the transient part

(low values of ω), both Pf and the BP fluctuates around 60, respectively, 90.

Lower panel, right side: The initial phase of the periodic external stimulation is

varied; parameters are: α = 0.5,ω = 0.5 and ga = 2. Both Pf and BP present a

fluctuating pattern.
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Figure 7.2.3: Firing rate of a single AIF bursting model, driven by a sinu-

soidal external force: Firing rate is computed as the number of spikes per unit

time, as both the amplitude of the external force, α and Ie are varied. The fre-

quency and the phase of the external force are set to 0.1, 0, respectively.

between the bursts or the variability of the spike number within a burst. We mention

that, if the stimulus time scales are much faster than the characteristic times of the cell,

the coding becomes difficult since the cell may not be able to adjust its response at the

same pace as the stimulus varies [194].

7.2.2 Mode Locking in a Periodically Forced AIF Model

A similar approach taken to investigate periodically driven excitable systems is to

study mode-locked states in which a repetitive regular output is entrained to some mul-

tiple of the forcing period. This phenomenon of mode-locking is well documented in

the literature and is most commonly studied in the context of the standard circle map.

This map is known to support regions of parameter space where the rotation number

(average rotation per map iterate) takes the value p/q, where p,q ∈ Z. These regions

are referred to as p : q Arnol’d tongues [53].

Arnol’d tongues are efficient tools in the theory of mode locking of driven cells

that provide a relationship between the output spike trains and the incoming sig-
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nal [51]. When the orbit repeats exactly after a fixed number, p, of spikes and a fixed

number, q, of forcing period 1/ω, the resulting train is called a p : q mode-locked so-

lution. With an increase of the coupling amplitude from zero Arnol’d tongues in the

standard circle map typically open as a wedge, centered at points in parameter space

where the natural frequency of the oscillator is rational. In between tongues quasi-

periodic behaviour, emanating from irrational points on the amplitude/frequency

axis, are observed [8,53].

There has been quite an interest in studying such solutions, starting with the early

work of Keener et. al. [131], or Boyland et. al. [29], continuing with more recent work of

Coombes and collaborators [47,51,52,146,147], and ending with an entire PhD project fo-

cused on mode locking in a periodically forced resonate-and-fire neuron model (both

the deterministic and stochastic cases) [8].

Here, focused on a purely numerical approach, we compute the firing rate of the

sinusoidal driven AIF model, when the amplitude and the constant part of the drive

is varied for a fixed frequency of the external drive (see figure 7.2.3). We found the

well known ‘stair-case’ feature of periodically driven bursting cells, with the firing

rate decreasing as the amplitude of external drive increases.

7.2.3 Fourier Analysis of the Output Signal

In recent years it became more common to use signal processing techniques in analysis

of biological signals. Such techniques can be used to provide a complete description

of the way signals are encoded. With the help of Fourier transforms, hidden recurrent

frequencies in a signal can be detected and tracked over time [5].

Using FTs we compute the autocorrelation of the output signal of the AIF model

for various parameter values of periodic forcing parameters. We hope to emphasise

the effects of the external drive on the repeating patterns found in the output of AIF
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Figure 7.2.4: Auto correlation function of the AIF model for different exter-

nal force parameters: In each cases, the distinction between the two time scales

is emphasized. Upper panel, left side: AIF driven by a constant stimulation; pa-

rameters are Ie = 0.1 and ga = 4. Upper panel, right side: AIF under periodic

stimulation: parameters are: α = 0.1,ω = 0.1,φ = 0 and ga = 2. Lower panel, left

side: AIF under periodic stimulation: parameters are: α = 0.15,ω = 0.1,φ = 0

and ga = 2. Lower panel, right side: AIF under periodic stimulation: parameters

are: α = 0.1,ω = 0.2,φ = 0 and ga = 2.

model. We computed the ACF when the system is driven by a constant current, see

figure 7.2.4, upper panel, left side, where the clear separation between the two time

scales shown by the AIF model can be found in the autocorrelation plot. As soon as

the external force parameters are activated, there is no clear distinction between the

two time scales. The randomness of the length of either active or silent phase, can be

seen in the autocorrelation plots (see figure 7.2.4).
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Figure 7.2.5: Maximum coherence between the AIF output and the external

periodic force: Parameters values are: Ie = 0.1, ga = 2 and φ = 0. The amplitude

is varied between 0 and 2, while the frequency of the drive between 0 and 0.2.

The output signal was divided in 16 segments of length 31.25s; on each of

them the STFT was applied and the coherence was computed. For almost the

entire parameter space there is a strong coherent activity between the input

and output signal.

Further we plot the maximum coherence between the output signal and the input

stimulation, in a 2-D parameter plane, varying the amplitude and the frequency of the

periodic forcing. Figure 7.2.5 shows the highly correlated activity between the signal

and the external drive for almost the entire parameter 2D-window. Only, for very

large values of the amplitude is the coherence between the input and output signal

low, possibly due to the fact that the cell is not able to keep up with the external drive.

Remarks: To compute the coherence we used Neurospec Software,

(http://www.neurospec.org/). The step of integration was dt = 0.1221; the FFT was

applied over 16 segments, each segment of length 31.25s giving a resolution of 0.032Hz.
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7.3 Noise and Gap Junction Effects on Bursting Electrical Ac-

tivity

In intact pancreatic cells, intercellular signalling can occur via both chemical and elec-

trical signals. There is evidence that the correlated activity within the islet occurs via

gap junction coupling. In fact, there is significant difference in the electrical activ-

ity exhibited by isolated and coupled β-cells. The isolated ones, displays an atypical

bursting or continuous spike activity, while the coupled ones present a much clearer

bursting behaviour. Moreover, the functional significance of intercellular signalling is

suggested in the secretory capacity of isolated cells vs. coupled cells [61,236].

In this section we look at the effect that gap junctional coupling has on BEA,

mainly on the active phase, the burst period and the onset time of burst. Further,

we investigate how the firing rate changes as the coupling strength is varied, when

the cells are driven by a constant and a periodic stimulation.

Noise has always been one of the main topics of mathematical and biological re-

search. Here, using numerical techniques, we look for possible effects of noise on BEA,

especially, if noise drives the bursting behaviour and on how the firing rate changes

with noise intensity. Lastly, we look for possible ‘beneficial’ roles of both gap-junction

coupling and noise for synchrony. First, we investigate synchrony, by computing the

ISI-distance measure (introduced in Chapter 5), when the coupling strength and the

external force parameters are varied (either constant or periodic). Then, we want to

see, which of the noise or gap junction coupling enhances synchrony, when the cells

are constantly or periodically driven.
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Figure 7.3.1: Gap junction effect on the functional characteristics: The cells

are under constant stimulation and are set to be in the bursting mode (ga = 4).

Left panel: Membrane potential trace of one of the cells, when the coupling

strength gc = 0.002 showing how the last spike within the burst is slowly mov-

ing away from the others. Middle panel: Plateau fraction (blue) and the bursting

period (green) as the gap junction coupling is varied. Both are decreasing until

reach a value of gc = 0.05, after which the start to increase. Right panel: Mem-

brane potential trace of one of the cells, when gc = 0.15 showing how the last

spike within the burst is away from the other spikes. Compared with the other

case (left panel), this time the distance between the last two spikes within the

burst is larger, increasing both the active phase and the bursting period.

7.3.1 Gap Junction Coupling

There are many papers about the role of gap junction coupling in the activity of pan-

creatic β-cells. Most of them suggest that gap junction enhances correlated activity

within an islet and that serves to synchronise the electrical activity and secretion in

β-cells in different parts of the islet, or to have a stabilising effect, if strong enough, on

bursting activity [209,236].

The gap junctional coupling not only synchronises the secretion within the islet

but also helps the islet to synchronise to an external glucose signal. Moreover, gap

junction coupling reduces the effects of cell-cell variation and provides resistance to

defects in excitability maintaining a normal electrical activity, respectively a normal
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Figure 7.3.2: Gap junction effects on onset time of bursting: In each case the

cells are set to bursting mode. Left: Cells are driven by a constant stimulation;

As in 7.3.1, the onset time is decreasing until it reaches a value of gc = 0.05, and

maintains the same onset time for few values of the coupling, and then starts

to increase. Right: Cells are under periodic stimulation with α = 0.5,ω = 0.5

and φ = 0. In this case the onset time of bursting is rather fluctuating as the

coupling strength increases. The difference between the onset times in these

two cases could be due to the different intrinsic parameters; in the first case,

ga = 4, while the second one, ga = 2.

glucose-dependent insulin secretion in the intact islet [186].

First, we wanted to see if gap junctional coupling can trigger the bursting be-

haviour. Thus, we coupled two cells, both driven by a constant stimulation and set to

a tonic regime and ran simulations for various coupling strengths. We found that for

a coupling strength larger than gc = 0.2449, at least one cell starts bursting. Also, we

looked for values of the coupling at which the bursting to fast spiking transition could

take place, under constant stimulation. We found that, even though the cells may not

burst at the same time for the entire parameter windows of the coupling strength, the

cells will not turn to a fast-spiking mode, but will become inactive (one sooner than

the other).

During the active phase of the BEA, Ca2+ enters the cells, raises the intracellu-

lar Ca2+ concentration and triggers insulin secretion. Therefore, Pf is decisive for the

intracellular Ca2+ and for the amount of insulin secreted. There is evidence that elec-
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trical coupling tends to increase Pf in the islet [186]. We ran simulations over a range

of gap junction coupling and we found that both Pf and BP decrease for small values

of the coupling until it reaches a minimum around gc = 0.05 and then slowly starts to

increase, emphasising the critical role of gap junction coupling in the insulin secretion

process.

Figure 7.3.1, left side shows how Pf and BP changes as the coupling strength is

varied. Here, cells are under constant stimulation. In the same figure, right side,

we plotted the membrane potential traces of one of the cells for two different values

of gc, showing how the increase takes place in the functional characteristics as the

coupling strength gets stronger. This increase is due to the fact that an extra spike,

slower compared with the other spikes within the burst, is added as the coupling

becomes stronger.

Further, we looked how the onset time of one of the cells within the network,

changes as the coupling strength is varied (see figure: 7.3.2). First, the cells are con-

stantly driven (left side of the figure), and then are periodically forced (right side of

the figure). In the first case, we notice the same pattern as before, while in the peri-

odically forced case, the onset time of the bursts fluctuates as the coupling intensity is

varied.

Lastly, we wanted to see how the firing rate changes with the gap junction cou-

pling strength. We computed the firing rate as the number of spikes over the entire

time of integration, first when cells receive a constant drive and then a periodic one.

We noticed that, in the first case, when both cells receive a constant stimulation the

firing rate is decreasing as the coupling strength becomes stronger. In fact, for a value

of gc > 0.6, the cells become inactive.

Figure 7.3.3, upper panel, left side, shows the firing rate as gc is varied. Also, we

plotted the membrane potential of one of the cells for two different values of gc. For a

small value of the coupling we see a bursting pattern with clearly defined active and
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Figure 7.3.3: Gap junction effects on firing rate: Upper panel, left side: The cells

are driven by a constant stimulation, and set to bursting mode. The firing rate

is decreasing as the coupling strength gets stronger; eventually the cells will

become inactive. For weak coupling, the cells exhibit a clear bursting pattern,

with regular active and silent phases. As the coupling is increased, the silent

phases increases while the active phases gets smaller. Upper panel, right side:

Membrane potential of a single cell (red) and the averaged signal (purple),

over the gap junction coupling, showing that the ‘bursting’ pattern is kept in

time, even for stronger coupling. Lower panel, right side: The cells are period-

ically forced with α = 0.1,ω = 0.05 and φ = 0. In this case, the firing rate is

randomly decreasing, but stronger gap junctional coupling is required to inac-

tivate the cells. For stronger coupling, the cells present a shorter active phase

and longer silent phase, compared to the weak coupling case. Lower panel,

right side: Membrane potential of a single cell (red) and the averaged signal

(purple), over the gap junction coupling, showing that the ‘bursting’ pattern is

not maintained in time, looking rather random.
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silent phases, while for a stronger value of the coupling the silent phases increases

while the active phases become shorter. As gc gets stronger, the silent phases increase

leading to a total inactivity of the cell. In the same figure, upper panel, right side we

plotted the averaged signal (membrane potential); the averaging is over the coupling

strengths and the membrane potential of one of the uncoupled cells. We notice that

the averaged signal has an amplitude smaller than the single one, decreasing in time,

but still maintaining the pulsatile behaviour of the single cell.

In the second case (see figure 7.3.3, lower panel) the firing rate is still decreasing,

but this time, a stronger value of the coupling strength is needed in order to ‘kill’ the

cells. We tried different values of both the amplitude and frequency of the external

force, and we noticed that, for example for large amplitude values (α = 1), the cells

exhibit a ‘fast spiking’-like behaviour, with two-three spikes within the burst and very

long and sharp silent phases. For α = 0.3, the ‘bursts’ are irregular, with two-three

spikes in one burst, long silent phases, similar to subthreshold oscillations. As the

amplitude increases, the coupling strength has to increase as well in order to ‘kill’

the cells. We also, varied the frequency of the external force, and we observe that for

small values, the bursting pattern is clearer, the silent phases are not so ‘noisy’, not

so ‘pacemaker’-like oscillations, but, again, stronger coupling is needed in order to

inactivate the cells. When the initial phase was varied, we saw no difference in the

firing rate pattern.

In the example presented here, we used α = 0.1, ω = 0.05 and φ = 0. The firing rate

looks rather random throughout the entire parameter window showing the variability

in the length of both the active and silent phase. This is also emphasised by the plot of

the averaged signal (again, over the coupling strengths), where, this time, the pulsatile

(bursting nature) of the averaged signal can not be seen as in the previous case. In this

case, the cells end up in the inactive stage not due to the increase of the silent phase

but rather due to the decrease in the active phase (the number of spikes in the active

phase gets smaller). Now, the bursting pattern is quite regular, with silent phases
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Figure 7.3.4: White Gaussian noise effects on firing rate: The cell is set to

bursting regime and is constantly driven with Ie = 0.1. Left panel: The firing

rate is increasing as more noise is added to the cell; for lower noise intensities,

the cells has a clear bursting pattern, the noise being depicted during the silent

phase rather than the active one. As the noise becomes stronger, both the active

and the silent phases are affected by random fluctuations. The active phase

presents different lengths while the silent phases, become longer and sharper.

Right panel: Membrane potential of a single cell (red) and the averaged signal

(purple), over the noise intensity, showing that the ‘bursting’ pattern is lost

throughout the entire length time.

looking like subthreshold oscillations (see figure 7.3.3).

7.3.2 White Gaussian Noise

The next part of the analysis concerns the effects of noise on the BEA of pancreatic β-

cells. De Vries et. al. [61], studied the electrical behaviour of coupled pancreatic β-cells

focusing on the beneficial influence of noise. They suggested that noise dramatically

increases the interval of coupling strengths for which bursting is seen for identical

cells. Later, it was pointed out that this beneficial influence is more likely due to the

variability found among cells disguised as noise [172,186].

First, we want to see if noise can trigger bursting oscillations in a single cell under

a constant stimulation. We found that a tonic firing cell can become a burster if, for ex-
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ample, white Gaussian noise of intensity, at least, σ = 0.020408 is added to the model.

We noticed that the noise can break the tonic firing activity of the cell, by adding a

small silent phase; for small values of the noise the active phases are longer but they

decrease in length as the noise intensity gets stronger.

Further, we investigated how the firing rate of a bursting AIF-cell is affected by

the amount of current noise received. We notice that, the firing rate increases as the

amount of noise added to the cell is increased. The firing rate shows a random be-

haviour, showing that as the more noise is added to the cell, the bursting behaviour

is hardly seen. Yet, the cells start to randomly spike, showing a very fast spiking be-

haviour with long and sharp silent phases, as we can see in figure 7.3.4, left panel. In

the same figure, we plot the membrane potential for two different values of the noise

intensity, showing how the spiking behaviour changes as the noise intensity increases.

In the right side of the same figure, we plot the averaged signal of the membrane po-

tential, over the noise intensity, and the membrane potential of the cell with no noise.

The amplitude of the averaged signal is smaller compared to the deterministic case, in

time, becoming very ‘noisy’ as expected.

7.3.3 Gap Junction Coupling and Noise Effects on Synchrony

Normal insulin secretion is maintained by highly correlated activity among pancreatic

β-cells within the intact islet. The last part of this section concerns the numerical in-

vestigation of the role of both gap junction coupling and noise on synchronisation. To

quantify the level of synchrony between two gap junction reciprocally coupled cells,

we use the ISI-distance measure, briefly introduced in Chapter 5 and already used in

Chapter 6.

Under constant stimulation, as we can see in figure 7.3.5, upper panel, left side,

cells are nearly synchronised, with ISI-distance value around zero. For small values

of the coupling strength or the drive intensity, cells barely synchronise. Some areas
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in the parameter space show asynchronous behaviour. In such cases, at least one cell

tends to become inactive creating discrepancy between the active phases of both cells.

As the amplitude of the external drive and gap junction coupling were varied,

an irregular pattern of asynchronous and synchronous behaviour was found, start-

ing with strong asynchronous behaviour for small amplitude values and ending with

a phase-locked behaviour for larger amplitude values (see figure 7.3.5, upper panel,

right side). It seems that the effects of the amplitude on the active phase (the plateau

fraction decreases as the amplitude increases) and gap junction on the firing rate (im-

plicit on the active phase) do not act simultaneously on both cells and create this on-

and-off phase-locked behaviour.

Furthermore, synchronous behaviour appears for low frequency values of the pe-

riodic drive and is maintained for the entire gap junction parameter window (see fig-

ure 7.3.5, lower panel, left side). As the initial phase of the sinusoidal stimulation

and the gap junction coupling are varied, synchronous behaviour is observed for rel-

atively low values of the coupling. This behaviour is maintained for the entire phase

parameter window. For increasing values of the coupling strength the cells stop syn-

chronising switching to phase-locked behaviour for stronger gap junction values (see

figure 7.3.5, lower panel, right side).

Lastly, we investigate if cells synchronise as noise intensity and gap junction cou-

pling strength are varied. If cells are under constant stimulation, they synchronise

only for very small values of the noise intensity (see figure 7.3.6). We obtain similar

results when cells are driven by a sinusoidal force. Hence, having too much noise in

the system, either due to biological or physical (measurements) reasons, is detrimental

to the synchronous behaviour between two bursting cells.
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Figure 7.3.5: Synchronous behaviour as the gap junction coupling and the

external force parameters are varied: The synchrony is emphasized by the

ISI-distance between the spike times of the two cells. Upper panel, left side: The

cells are constantly driven with Ie = 0.1 and set to a bursting regime (ga = 4).

The cells show synchronous behaviour almost in the entire parameter space.

Upper panel, right side: The cells are periodically driven with ω = 0.1 and φ = 0,

while the amplitude, α is varied between 0 and 2. An ‘on-and-off’ pattern

appears in the parameter space which is maintained for all coupling strengths.

As the amplitude of the external force is increased the synchronous behaviour

appears more frequently between the cells. Lower panel, right panel: The cells

are periodically driven with α = 2 and φ = 0, while the frequency, ω is varied

between 0 and 2. The phase-locking behaviour is seen only for low frequency

values and for the entire coupling parameter window. Lower panel, right side:

The cells are periodically driven with ω = 0.2 and α = 2, while the initial phase,

φ is varied between 0 and 2π. Synchronous behaviour is noticed for very low

and high values of the coupling strength and is maintained for all initial phases

of the external force.
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Figure 7.3.6: Gap junction coupling - white Gaussian noise ‘trade-off’ for

synchrony: The parameters are set such that both cells are bursting under con-

stant stimulation. Phase-locked behaviour is observed only for small values of

noise and mostly for higher values of the gap junction coupling strengths.

7.4 Conclusion

Bursting consists of the membrane potential alternating between a silent hyperpo-

larised phase, and an active phase of spiking rising from a depolarized plateau. Dur-

ing the active phase, Ca2+ enters the cells, raises the intracellular Ca2+ concentration

and triggers insulin secretion.

Moreover, given the importance of clarifying how excitable cells integrate exter-

nal stimuli into trains of electrical spikes independent of the nature of cells, using a

minimal model, AIF, under periodic external stimulation, we numerically analysed

what a spike-pattern code reveals about the stimulus. In particular, we used a spike

count measure, the time of burst onset, the plateau fraction and the burst period, to

gain insights about different stimulus features encoded in the signal.

Further, we investigated phase-locking behaviour between the bursting cell and
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the external drive, using a Fourier based analysis. We also constructed Arnol’d tongues

for a varying amplitude of the external force.

Given the difference in the electrical activity between single and coupled pancre-

atic β-cells, and the role of synchronous behaviour in insulin secretion process, we

studied the effects of gap junction coupling on the plateau fraction, firing rate and

phase-locking behaviour. Specifically, we evaluated the ISI-distance measure between

two reciprocally gap junction coupled cells when the periodic force parameters were

varied. Lastly, we considered noise effects on the firing rate of one cell and its role in

synchronous behaviour of two cells.
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Conclusion

In this thesis we have focused on understanding electrical activity of two types of ex-

citable cells, namely neurons and pancreatic β-cells, using piecewise linear systems. In

the case of the neuronal cells we were mainly interested in the spiking behaviour while

in the other case, pancreatic β-cells, we focused on the bursting behaviour. These cells,

apart from being excitable, share another common feature, namely, they interconnect

through gap junctions. In the case of neurons, gap junctional coupling plays signifi-

cant roles in brain rhythms, early development of the brain or even epilepsy disease;

in the case of the pancreatic β-cells, gap junctions are relevant in the insulin secretion

process. Apart from the mathematical modelling approach to understand the electri-

cal activity of such cells we also considered a signal processing approach to determine

any correlation structure among such cells. In particular, we used Fourier and Wavelet

analysis to reveal the functional connectivity between Ca2+ signals from pancreatic β-

cells of mice.

Detailed conductance-based neuron models (Hodgkin-Huxley-type models) can

reproduce electrophysiological measurements to a high degree of accuracy [126]. Given

that the CNS contains more than 1010 neurons highly interconnected and the intrinsic

complexity of these non-linear models, developing simpler models, able to generate
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the same behaviour as real nervous systems, became highly important [53]. Such mod-

els, piecewise linear (PWL), are able to reduce the complexity of the system by intro-

ducing PWL nullclines and are analytically tractable. Moreover, given the nature of

PWL systems, techniques from non-smooth dynamics can be used [53].

In the next paragraphs we summarize each chapter of this thesis, emphasise the

contributions and present future work.

Using a particular PWL model (PWLC) we were able to analyse the ‘canard phe-

nomenon which explains the fast transition from small amplitude limit cycles (SAO)

to large amplitude limit cycles (LAO) and relaxation oscillators. Given its nature we

were able to find solutions in closed forms and determine their stability. We used

geometrical techniques, such as points of inflection, to explain the generation mecha-

nism of this type of solutions in PWL systems with four pieces. We also numerically

computed the isochrons and found a complex structure similar to the one of Hodgkin-

Huxley reduced model. The ability to analytically construct the orbit of PWL models

facilitated the construction of the full phase response curve (PRC).

A further step was to investigate such models at the network level. Following

Coombes [48] we were able to investigate PWLC models at the network level, in partic-

ular linearly coupled on both variables. We used gap junction coupling on the voltage

variable and a global feedback type on the recovery variable and studied both syn-

chrony and splay solutions. We were able to determine the existence and stability

of the synchronous state using Floquet theory and of the splay solution using phase-

density formalism. The main contribution lies in the introduction of a mathematical

framework for the analysis of coupled cells on both variables.

The second part of this thesis involved the analysis of Ca2+ signals of pancreatic

β-cells of mice from the Smith lab at University of Nottingham. In particular, we used

interspike interval (ISI) measures to identify synchronous behaviour and cluster anal-

ysis to investigate the organisational structure within the data-set. Further, we focused
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on identifying feature dependency using both Fourier and Wavelet-based analyses.

We were able to investigate the correlation between the signals in both frequency and

time domains. We also looked for any directionality (effective connectivity) within the

data using the Granger causality method.

We finally numerically investigated bursting electrical activity (BEA) using PWL

systems. We used an integrate-and-fire type model, namely the absolute-integrate-

and-fire (AIF) model forced by a sinusoidal and we investigate the effects of such

force on BEA. In particular, we looked on the effect of periodic forcing on the func-

tional characteristics of the bursting cell. Given the role of gap junctional coupling

and noise over the insulin-secretion phenomena in pancreatic β-cells, we analysed

their influence on BEA, in particular on synchronous behaviour.

In the next lines we briefly discuss some ideas for future work:

• Study the ‘canard’ phenomenon influences over the network:

– Find a critical value of the canard (common to both oscillators) as a function

of the coupling types (could be coupled on only one variable or on both

variables);

– Understand and predict phase-locking behaviour of more complicated states,

such as clusters, and in particular examine the properties of mixed-mode

oscillation in large networks;

• Study the ‘canard’ phenomenon in a periodically forced system , or in stochastic

system [85,207];

• At the network level, work with other types of synapses; more complex ones

(such as described by second messengers) and study them in the strong regime

• Work with other PWL systems, such as Morris Lecar or 3D-PWL systems which

support canard solutions and investigate them at the network level (both weak

and strong coupling regime);
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• Ca2+ signals: if more accurate data is obtained, we will try to determine the

effective and functional connectivity within the data using other measures as

well (such as the entropy);

• Study the aIF model (under both constant and periodic force) coupled by gap

junctions and investigate cluster states;
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Appendix

9.A Appendix to Chapter 3

9.A.1 PWL model with three pieces and different equilibrium points

Here we introduce the PWL models with three pieces. Its general form is given by

ε
dv
dt

= f (v)− w + I, (9.A.1)

dw
dt

= g(v,w), (9.A.2)

where ε� 1, is the parameter which controls the slow-fast nature of the system, while

I is the drive. The v-nullcline is PWL while the w-nullcline is linear and given by:

g(v,w) = v − γw for both models. The f (v) function for the first PWL model with

three pieces and with an unstable node as an equilibrium point inR2 is given by

f (v) =


−v, v < a/3,

v− 2a/3, a/3≤ v ≤ (1 + a)/3,

−v + 2/3, v > (1 + a)/3,

(9.A.3)
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and the one which presents an unstable focus as an equilibrium point in the corre-

spondingR2 is given by

f (v) =


−v, v < a/3,

v/5− 2a/5, a/3≤ v ≤ (1 + a)/3,

−v + 2/5, v > (1 + a)/3.

(9.A.4)

9.A.2 Fixed point stability for PWLC model

The system ż =Aiz, i = 1, · · · ,6, with A1,· · · A6 from Section 3.1 and z = (v,w)T, has the

solution the form of z = exp(λt)z0. Introducing this solution into the above system,

we obtain the linear homogeneous equation:

(Ai − λI2)z0 = 0, (9.A.5)

where i = 1, · · · ,6 and I2 is the 2× 2 identity matrix. Solving the characteristic equa-

tion:

det(Ai − λI2) = 0, (9.A.6)

we obtain the eigenvalues:

λ± = 1/2{TrAi ±
√
(TrAi)2 − 4det(Ai)}, (9.A.7)

where i = 1, . . . ,6. For regimesR1 andR4, the eigenvalues are:

λ± = 1/2{(−(1 + γ)/ε±
√
(−(1 + γ)/ε)2 − 4/ε(1 + γ)}, (9.A.8)

for regimeR2:

λ± = 1/2{(1/(5µ)− γ)±
√
(1/(5ε)− γ)2 − 4/ε(−γ/5 + 1)}, (9.A.9)

while for regimeR3:

λ± = 1/2{(1/ε− γ)±
√
(1/ε− γ)2 − 4/ε(1− γ)}. (9.A.10)
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For parameters ε = 0.1 and γ = 0.5, in the first case the eigenvalues are real, have

the same sign, making the fixed point a stable node, for the second case, the eigenvalues

are complex, case in which the fixed point is unstable focus, while in the third case, the

eigenvalues are real, have the same sign, and the fixed point is unstable node.

9.A.3 Calculation of periodic orbits for smooth linear systems

Given the autonomous differential equation

ẋ = Ax + b, x ∈R2, (9.A.11)

where A is a constant 2× 2 matrix, b is constant 2× 1 vector, and the initial condition

x(0) = x0, the solution is easy to find if we set y = exp(−tA)x. In this case, the initial

condition becomes y(0) = x(0) = x0 and differentiating y with respect to t we obtain

ẏ = exp(−tA)ẋ−Aexp(−tA)x = bexp(−tA). (9.A.12)

Hence

y− x0 =
∫ t

0
exp(−sA)bds, (9.A.13)

or

x(t) = exp(tA)x0 + exp(tA)
∫ t

0
exp(−sA)bds. (9.A.14)

For more information about linear differential equations the reader is referred to [90].

9.B Appendix to Chapter 4

9.B.1 Fixed point equations of PWLC networks

Depending on the position of the w-nullcline we have four possibilities:
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If v < a/3 then the fixed point is determined by the equations:

−v− w + I = 0 (9.B.1)

v− γw + g2w = 0 (9.B.2)

and is given by

vss =
I(γ− g2)

γ + 1− g2
(9.B.3)

wss =
I

γ + 1− g2
. (9.B.4)

If a/3 < v < (a + 1)/3 then the fixed point is determined by the equations:

v/5− 2a/5− w + I = 0 (9.B.5)

v− γw + g2w = 0 (9.B.6)

and has the form

vss =
(2a− 5I)(γ− g2)

γ− 5− g2
(9.B.7)

wss =
2a− 5I

γ− 5− g2
. (9.B.8)

If (a + 1)/3 < v < (a + 1)/2 then the fixed point is determined by the equations:

v− 2a/3− 4/15− w + I = 0 (9.B.9)

v− γw + g2w = 0 (9.B.10)

and becomes

vss =
(10a + 4− 15I)(γ− g2)

15(γ− 1− g2)
(9.B.11)

wss =
10a + 4− 15I

15(γ− 1− g2)
. (9.B.12)

If v > (a + 1)/2 then the fixed point is determined by the equations:

−v + a/3 + 11/5− w + I = 0 (9.B.13)

v− γw + g2w = 0 (9.B.14)
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and is given by

vss =
(5a + 11 + 15I)(γ− g2)

15(γ + 1− g2)
(9.B.15)

wss =
5a + 11 + 15I

15(γ + 1− g2)
. (9.B.16)

9.B.2 Eigenvalues corresponding to fixed points of PWLC networks

First, in the case where the stability depends on g1, we determine the eigenvalues: For

A1 −

g1/ε 0

0 0

 (9.B.17)

the characteristic equation is

λ2 − ((1/5− g1)1/ε− γ)λ + 1/ε + γ/ε(g1 − 1/5) = 0, (9.B.18)

which has the solutions

λ±= 1/2{((1/5− g1)1/ε−γ)±
√
((1/5− g1)1/ε− γ)2 − 4(1/ε + γ/ε(g1 − 1/5))}.

(9.B.19)

For

A2 −

g1/ε 0

0 0

 (9.B.20)

the characteristic equation is

λ2 − ((1− g1)/ε− γ)λ + 1/ε + γ/ε(g1 − 1) = 0, (9.B.21)

which has the solutions

λ± = 1/2{((1− g1)/ε− γ)±
√
((1− g1)/ε− γ)2 − 4(1/ε + γ/ε(g1 − 1))}. (9.B.22)

For

A3 −

g1/ε 0

0 0

 (9.B.23)
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the characteristic equation is

λ2 − ((−1− g1)/ε− γ)λ + 1/ε + γ/ε(g1 + 1) = 0, (9.B.24)

which has the solutions

λ± = 1/2{((−1− g1)/ε− γ)±
√
((−1− g1)/ε− γ)2 − 4(1/ε + γ/ε(g1 + 1))}.

(9.B.25)

Then, in the case where the stability depends on g2, we determine the eigenvalues:

For

A1 +

0 0

0 g2

 (9.B.26)

the characteristic equation is

λ2 − (1/(5ε)− γ + g2)λ + 1/ε + (g2 − γ)/(5ε) = 0, (9.B.27)

which has the solutions

λ± = 1/2{(1/(5ε)− γ + g2)±
√
(1/(5ε)− γ + g2)2 − 4(1/ε + (g2 − γ)/(5ε))}.

(9.B.28)

For

A2 +

0 0

0 g2

 (9.B.29)

the characteristic equation is

λ2 − (1/ε− γ + g2)λ + 1/ε + (g2 − γ)/ε = 0, (9.B.30)

which has the solutions

λ± = 1/2{(1/ε− γ + g2)±
√
(1/ε− γ + g2)2 − 4(1/ε + (g2 − γ)/ε)}. (9.B.31)

For

A3 +

0 0

0 g2

 (9.B.32)
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the characteristic equation is

λ2 − (−1/ε− γ + g2)λ + 1/ε + (γ− g2)/ε = 0, (9.B.33)

which has the solutions

λ± = 1/2{(−1/ε− γ + g2)±
√
(−1/ε− γ + g2)2 − 4(1/ε + (γ− g2)/ε)}. (9.B.34)

9.B.3 Fredholm’s Alternative

Theorem 9.B.1 Consider the following equation

Lx =
dx
dt

+ A(t)x = f (t), x ∈RN, (9.B.35)

where A(t) and f (t) are continuous and T-periodic. Then, there is a continuous T-periodic

solution x(t) to equation (9.B.35) if and only if

1
T

∫ T

0
Z(t) · f (t)dt = 0, (9.B.36)

for each continuous T-periodic solution, Z(t), to the adjoint problem

L∗x = −dZ
dt

+ {A(t)}TZ = 0 [199]. (9.B.37)

9.B.4 Phase interaction function

In this section we present the computation of the phase interaction function corre-

sponding to each type of coupling in more detail. The first function is given by:

H1(θ) =
g1

T

∫ T

0
Qv(t)g1(v(t + Tθ)− v(t))dt, (9.B.38)

H1(θ) =
g1

T

∫ T

0
∑
m

Qv
me2πimt/T ∑

n
vn

(
e2πin(t+Tθ)/T − e2πint/T

)
dt, (9.B.39)

=
g1

T

∫ T

0
∑
m

Qv
me2πimt/T ∑

n
vne2πint/T

(
e2πinθ − 1

)
dt, (9.B.40)
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and finally

H1(θ) =
g1

T ∑
m,n

Qv
mvn

(
e2πinθ − 1

)∫ T

0
e2πi(n+m)t/Tdt. (9.B.41)

The second function is given by

H2(θ) =
g2

T

∫ T

0
Qw(t)g1(w(t + Tθ))dt, (9.B.42)

H2(θ) =
g2

T

∫ T

0
∑
m

Qw
me2πimt/T ∑

n
wn

(
e2πin(t+Tθ)/T

)
dt, (9.B.43)

and finally

H2(θ) =
g2

T ∑
m,n

Qw
mwne2πinθ

∫ T

0
e2πi(n+m)t/Tdt. (9.B.44)

9.B.5 Dependencies of the stability of the synchronous solution on g1, re-

spectively on g2 coupling strength

Dependence on g1

The solution given by equation (4.3.7) is a solution of the system Ż = DFZ following

Ż =



A(g1) +
1
N B(g1, g2)

1
N B(g1, g2) . . . 1

N B(g1, g2)

1
N B(g1, g2) A(g1) +

1
N B(g1, g2) . . . 1

N B(g1, g2)

...
. . .

1
N B(g1, g2)

1
N B(g1, g2) . . . A(g1) +

1
N B(g1, g2)





z

−z
...

0


(9.B.45)

and

ż = A(g1)z +
1
N

B(g1, g2)z−
1
N

B(g1, g2)z, (9.B.46)

which gives ż = Az, where A = A(g1).

Dependence on g2

The solution given by equation (4.3.8) Ż = DFZ following
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Ż =



A(g1) +
1
N B(g1, g2)

1
N B(g1, g2) . . . 1

N B(g1, g2)

1
N B(g1, g2) A(g1) +

1
N B(g1, g2) . . . 1

N B(g1, g2)

...
. . .

1
N B(g1, g2)

1
N B(g1, g2) . . . A(g1) +

1
N B(g1, g2)





z

z
...

z


(9.B.47)

or

Ż =



A(g1)z + 1
N B(g1, g2)z + 1

N B(g1, g2)z + . . . + 1
N B(g1, g2)z

1
N B(g1, g2)z + A(g1)z + 1

N B(g1, g2)z + 1
N B(g1, g2)z . . . + 1

N B(g1, g2)z
...

1
N B(g1, g2)z + 1

N B(g1, g2)z + . . . + A(g1)z + 1
N B(g1, g2)z + 1

N B(g1, g2)z

1
N B(g1, g2)z + 1

N B(g1, g2)z + . . . + 1
N B(g1, g2)z + A(g1)z + 1

N B(g1, g2)z


(9.B.48)

and

Ż =



A(g1)z + 1
N NB(g1, g2)z

A(g1)z + 1
N NB(g1, g2)z

...

A(g1)z + 1
N NB(g1, g2)z

A(g1)z + 1
N NB(g1, g2)z


(9.B.49)

so that ż = A(g2) z where A(g2) = A(g1)z + B(g1, g2)z.

9.C Appendix to Chapter 5

9.C.1 Skewness

In probability theory and statistics, skewness is a measure of the asymmetry of the

probability distribution of a real-valued random variable. Skewness has many ap-

plications; it can be a useful measure of the asymmetricity of the probability density
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function. In the case of normal distribution, the skewness is zero. The skewness of a

random variable X is the third standardised moment defined by:

γ1 = E

[(
X− µ

σ

)3
]
=

µ3

σ3 , (9.C.1)

where µ3 is the third moment about the mean µ, and σ is the standard deviation.

9.C.2 Schwartz Inequality

The Cauchy-Schwarz inequality states that for all vectors x and y of an inner product

space,

| 〈x,y〉 |2≤ 〈x, x〉 · 〈y,y〉, (9.C.2)

where 〈·, ·〉 is the inner product.

For random variables X and Y, the expectation of their product is an inner prod-

uct. That is, 〈X,Y〉 = E(X,Y), and so, by the Cauchy-Schwarz Inequality,

| E(XY) |2≤ E(X2)E(Y2). (9.C.3)

Moreover, if µ = E(X) and ν = E(Y), then

| Cov(X,Y) |2 =| E((X− µ)(Y− ν)) |2 (9.C.4)

=| 〈X− µ,Y− ν〉 |2 (9.C.5)

≤ 〈X− µ,X− µ〉〈Y− ν,Y− ν〉 (9.C.6)

= E((X− µ)2)E((Y− ν)2) (9.C.7)

= Var(X)Var(Y) (9.C.8)
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9.C.3 Akaike and Bayesian information criterion

Akaike information criterion

The Akaike information criterion (AIC) is a measure of relative goodness of fit of a

statistical model. It offers a relative measure of the information lost when a given

model is used to describe reality and can describe the trade-off between the accuracy

and complexity of the model.

Definition 9.C.1 In the general case, the AIC is

AIC = 2k− 2ln(L), (9.C.9)

where k is the number of parameters in the statistical model, and L is the maximised value of

the likelihood function for the estimated model [6].

Remarks: Although AIC can be used as a tool for model selection, it does not provide

a test of a model in the usual sense of testing a null hypothesis; i.e. AIC can not give

any warning if the model does not fit the data (in an absolute sense). The preferred

model is the one with the minimum AIC model.

Bayesian information criterion

Similarly, the Bayesian information criterion (BIC) is a criterion for model selection

among a finite set of models. It is based, in part, on the likelihood function, and

resolves the overfitting problem caused by increased number of parameters. BIC in-

troduces a penalty term for the number of parameters in the model which is larger

than in AIC.

The BIC is an asymptotic result derived under the assumptions that the data dis-

tribution is in the exponential family. Let: x-the observed data; n-the number of data
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points in x, k-the number of free parameters to be estimated, p(x|k)-the probability of

the observed data given the number of parameters and L-the maximised value of the

likelihood function for the estimated model [198].

Then, BIC is given by

−2 · ln p(x|k) ∼ BIC = −2 · ln L + l ln(n). (9.C.10)

Remarks: BIC can measure the efficiency of the parametrised model in terms of pre-

dicting the data and it penalises the complexity (the number of parameters) of the

model.
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9.D Appendix to Chapter 6

9.D.1 Data for ISI-distances

Table 9.D.1: ISI-Distance-ES-for all cells-part 1

Pair of cells DI ES

C1 −C2 0.489 0

C1 −C3 0.627 0.083333

C1 −C4 0.487 0

C1 −C5 0.602 0

C1 −C6 0.544 0

C1 −C7 0.65 0.083333

C1 −C8 0.817 0.028444

C1 −C9 0.853 0.022893

C1 −C10 0.486 0

C1 −C11 0.661 0.15713

C1 −C12 0.616 0

C1 −C13 0.872 0

C2 −C3 0.589 0

C2 −C4 0.465 0

C2 −C5 0.382 0

C2 −C6 0.372 0

C2 −C7 0.612 0

C2 −C8 0.84 0

C2 −C9 0.866 0

C2 −C10 0.461 0

C2 −C11 0.622 0

C2 −C12 0.347 0

C2 −C13 0.898 0.025565
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Table 9.D.2: ISI-Distance-ES-for all cells-part 2

Pair of cells DI ES

C3 −C4 0.753 0

C3 −C5 0.638 0

C3 −C6 0.579 0

C3 −C7 0.0785 0.5

C3 −C8 0.56 0.014222

C3 −C9 0.668 0.011447

C3 −C10 0.751 0

C3 −C11 0.101 0.29463

C3 −C12 0.589 0

C3 −C13 0.659 0.011669

C4 −C5 0.522 0

C4 −C6 0.619 0.1

C4 −C7 0.758 0

C4 −C8 0.896 0

C4 −C9 0.92 0

C4 −C10 0.0116 0.91287

C4 −C11 0.767 0

C4 −C12 0.636 0

C4 −C13 0.94 0

C5 −C6 0.579 0

C5 −C7 0.643 0

C5 −C8 0.795 0.098533

C5 −C9 0.837 0

C5 −C10 0.523 0

C5 −C11 0.647 0

C5 −C12 0.31 0.5

C5 −C13 0.84 0
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Table 9.D.3: ISI-Distance-ES-for all cells-part 3

Pair of cells DI ES

C6 −C7 0.604 0

C6 −C8 0.775 0

C6 −C9 0.776 0.017733

C6 −C10 0.62 0.091287

C6 −C11 0.616 0.030429

C6 −C12 0.488 0

C6 −C13 0.819 0

C7 −C8 0.536 0.028444

C7 −C9 0.65 0.022893

C7 −C10 0.756 0

C7 −C11 0.0376 0.53033

C7 −C12 0.597 0

C7 −C13 0.646 0

C8 −C9 0.503 0.0078412

C8 −C10 0.89 0

C8 −C11 0.527 0.026817

C8 −C12 0.712 0.21349

C8 −C13 0.435 0

C9 −C10 0.917 0

C9 −C11 0.652 0.010792

C9 −C12 0.784 0

C9 −C13 0.487 0.1167

C10 −C11 0.765 0

C10 −C12 0.628 0.068041

C10 −C13 0.935 0

C11 −C12 0.6 0

C11 −C13 0.642 0

C12 −C13 0.792 0 224
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9.D.2 Cluster analysis results

Table 9.D.4: ISI-Multiple-Clusters

Cluster Da
I Dm

I

CV
1 0.359 0.856

CV
2 0.417 0.481

CV
3 0.606 0.737

CV
4 0.75 1.28

Table 9.D.5: ISI-Multiple-Clusters from Dendrogram

Cluster Da
I Dm

I

CD
1 0.486 0.651

CD
2 0.479 0.628

Table 9.D.6: ISI-Distance and ES-for clusters ‘visually’ observed

Pair of clusters DI ES

CV
1 −CV

2 0.634 0

CV
1 −CV

3 0.53 0

CV
1 −CV

4 0.939 0

CV
2 −CV

3 0.815 0

CV
2 −CV

4 0.986 0

CV
3 −CV

4 0.887 0.069827
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