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SUMMARY. 

Many components in conventional and nuclear power plants and 

chemical plants are likely to be subjected to 'severe' loading 

conditions, i. e. loads which would cause cyclic plastic 

straining and/or incremental deformation (i. e. ratchetting). 

For operating temperatures above the creep threshold, creep 

strain also occur., which may exacerbate the ratchetting of 

components. If ratchetting occurs, the components may fail 

either due to excessive deformation so that the components 

cannot function properly or due to incremental collapse. 

For simple component geometries, loadings and material 

behaviour models, the mechanism of ratchetting and the 

behaviour of components are well understood and analytical 

solutions (closed form or simplified model) are available. 

However, for components with complicated stress distributions, 

loading and material behaviour, the mechanisms of ratchetting 

are not fully understood and closed form solutions , in 

general, cannot be obtained. An understanding of the 

mechanisms of ratchetting is important as an aid to the design 

process and to apply bounding techniques. Also information on 

the effect of the material ratchetting phenomena on the 

ratchetting of components is still scarce. 

Components with different geometries and loading conditions 

have been analysed by using the finite element method. The 

results have been used to investigate ratchetting mechanisms 

and to obtain ratchet strain data. The effects of complete 
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stress redistributions due to creep have also been 

investigated. The effects of material ratchetting on the 

behaviour of components were also investigated. 

Comparison between experimental results, for a component made 

of lead alloy material, and finite element predictions, using 

simple and sophisticated material behaviour models, iS also 

presented. The results show the improvement in accuracy which 

'S possible if more realistic material behaviour models are 

used. 
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NOTATION AND ABBREVIATION. 

A, A1, A2 Constants in creep law 

D plate stiffness 

E Young's modulus 

FC First compressive 
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LMFBR Liquid Metal Fast Breeder Reactor 
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r, q q, t constants for Goodman and Goodall model 
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time in creep law 

local thickness for the eccentric tube 

plate deflection 
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stress deviator tensor 
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Q, t 
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strain 

stress 
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angle, circumferential direction 
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plastic 
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ave average 
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eq equivalent 

o yield 

R range 

s saturation 

t thermal 

xx, yy, zz direct 

xy shear 

r radial 
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All other symbols are defined in the text where used. 



CHAPTER 1 

INTRODUCTION 

Many components in chemical plant, conventional and nuclear 

power plants and aero engines are subjected to combinations of 

steady and cyclic mechanical and thermal loads. Under these 

conditions, the response of the components depends upon the 

severity of the loading. Under moderate loads, components may 

either behave elastically, or shakedown after a few cycles, 

having experienced permanent inelastic deformation. Under 

severe loading conditions, reverse plastic straining and/or 

incremental deformation (i. e. ratchetting) may occur. When the 

operating temperatures are high enough creep may also occur, 

which may exacerbate the ratchetting process. 

The failure modes for components under the above loading 

conditions can be divided into three classifications (e. g. 1) 

namely: - 

i) failure due to excessive deformation (usually as a result 

of ratchetting or creep) such that the component cannot 

function properly, 

ii) failure due to buckling and 

iii) failure due to rupture (caused by creep or fatigue or a 

combination of both creep and fatigue) 

This thesis is mainly concerned with the analyses associated 



with the first type of failure. In particular, ratchetting 

which can be the major contributor to the deformation of 

components subjected to severe loading, is studied. Failure 

due to ratchetting is a gradual process but if ratchetting is 

not restricted, incremental collapse will eventually occur. 

However, prior to incremental collapse, the component may fail 

due to excessive deformation. There are two ways of designing 

such components. Firstly, the components may be designed to 

operate within the shakedown region, i. e. ratchetting is 

avoided altogether. This type of design procedure prevents the 

possibility of incremental collapse. However, some inelastic 

deformation may be accumulated before shakedown occurs. In 

some cases this accumulated inelastic deformation may be too 

large for the components to function properly. Hence, design 

for shakedown is not necessarily an entirely satisfactory 

procedure. Also, cyclic plastic straining may occur and this 

may result in failure due to fatigue. Alternatively, components 

may be designed so that the deformation accumulated throughout 

the design life of the component is within a specified safe 

limit. This method is the more realistic, but the possibility 

of fatigue failure due to cyclic plastic straining must also be 

taken into account. 

If the first option is adopted, the problem becomes that of 

determining the shakedown limit of the component. The 

assesment of deformation at the design stage is usually not 

necessary provided a sufficiently large factor of safety with 

respect to shakedown is imposed to ensure that the design is 

safe. The second option, on the other hand, requires that the 
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deformations (strains, curvature and/or deflections) are 

estimated or predicted at the initial design stage. 

Whichever design route is taken, there are three main methods 

available to the designer. Firstly, experiments can be 

performed on either prototype or model components subjected to 

the loading conditions which would be experienced by the 

service component (e. g. 2,3 and 4). The components geometry 

and its loading need to be accurately modelled if this 

procedure is adopted. Experimentation and model testing are 

usually expensive. Secondly, design codes (1) can be used. 

However, the procedures are often restricted to simple 

components and loadings and their interpretation is not always 

unambiguous. Thirdly, analytical or computational methods can 

be used. For simple component geometries and loadings, closed 

form analytical solutions are available 

(see 5,6,7,8,9,10 and 11). Also, approximate bounding 

techniques are available for predicting the behaviour of 

components under cyclic loading conditions (i. e. 7,12 and 13). 

These techniques are based upon simple material behaviour model 

and sometimes, the mechanism of deformation needs to be 

assumed. These analytical and bounding techniques can 

sometimes produce unnecessarily conservative designs. For 

components with a more complicated geometries (such as those 

with stress raisers, imperfections etc. ), complicated loading 

conditions (e. g. combination of steady and cyclic loading and 

operation above the creep threshold temperature) and complex 

material behaviour (real materialS exhibit cyclic hardening, 

softening, relaxation and material ratchetting) closed form and 
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bounding techniques are difficult to perform. As an 

alternative, more sophisticated prediction methods such as the 

finite element method (e. g. 14,15,16 and 17) can be used. The 

finite element method is adopted here. Even though, in 

principle, it is possible to use the finite element method to 

predict the elastic-plastic-creep behaviour of any component 

subjected to any general loading conditions, major difficulties 

do arise. 

Some of these are: - 

i) The details of the loading histories are often unknown at 

the design stage. This problem could be overcome by 

considering the worst possible case. 

ii) A relatively large number of elements may be required to 

model some component geometries. The computer storage 

and time requirements may therefore be prohibitive. 

However, with the current rate of development of 

computers, this problem will become less significant in 

the future. 

iii) Accurate constitutive equations, for predicting the 

elastic-plastic-creep behaviour of materials, subjected 

to complex stress-strain-temperature-time histories do 

not exist. Unfortunately this is likely to be the 

situation for the forseeable future. 
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The main objectives of this project are: - 

i) To identify and quantify the parameters which influence 

ratchetting and to determine the shakedown/ratchetting 

boundaries of some components, 

ii) To study and classify the mechanism of ratchetting of 

components subjected to combined steady and cyclic, 

mechanical and thermal loads, with and without dwell 

periods during which creep occurs. 

iii) To incorporate a more complex constitutive equations 

(18,19) into the finite element programs so that the 

effects of material ratchetting can be assessed by 

comparing predictions with experimental data. 

In order to achieve objectives (i) and (ii), three components 

were used. The components used are concentric and eccentric 

tubes subjected to a steady internal pressure and cyclic linear 

through thickness temperature gradients and a circular plate 

clamped at its edges and subjected to steady transverse 

pressure and cyclic linear radial temperature distribution. 

The effects of creep on the behaviour of eccentric tubes and 

clamped circular plates are bounded by the 'no-creep' and 

'complete redistribution' conditions. 

Objective (iii) was achieved by using a uniform beam subjected 

to a steady axial mechanical load. Cyclic loading was applied 

to the beam by either applying linear through the depth 
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temperature variations or by applying fully reversed cyclic 

bending moments. The latter results were compared directly 

with experimental results (3). 

A lot of time and effort was also devoted to developing the 

constitutive equations and the associated computer coding to 

allow the Goodman and Goodall (18,19) material ratchetting 

model to be used under multi-axial conditions. An entirely new 

subroutine for this model was written and existing relevant 

subroutines needed to be significantly modified. A detailed 

description of the model and its equations are given in Chapter 

2 section 2.2.2.1 (B) (for the uniaxial case) and in Appendix 

III (for the multi-axial case). The program modifications are 

also described in detail in Appendix III. 

The thesis is divided into 7 Chapters. Chapter 2 reviews the 

literature, with particular attention given to the material 

behaviour as observed experimentally and various models 

proposed to describe the experimental observations. The 

behaviour of components and prediction methods are also 

reviewed in Chapter 2. Chapters 3 and 4 present the finite 

element results obtained for the concentric and eccentric tubes 

" and clamped circular plate with particular attention given to 

the mechanism of ratchetting. An elastic-perfectly-plastic 

material model was used in the analyses presented in 

Chapters 3 and 4. In Chapter 5 the behaviour of a uniform beam 

subjected to a steady axial load and cyclic fully reversed 

bending moment is described . The Goodman and Goodall (18) 

material ratchetting model was used in the calculations. The 
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necessary material constants for lead alloy were used. This 

allowed a direct comparison between experimental and finite 

element result to be made. Also in Chapter 5, results obtained 

for the behaviour of a uniform beam subjected to a steady axial 

load and cyclic linear through the depth temperature gradient 

are presented. 'The results for a linear kinematic hardening 

and Goodman and Goodall (18,19) material ratchetting model 

applicable to stainless steel, are compared. A general 

discussion and conclusion are given in Chapters 6 and 7 

respectively. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

As stated in Chapter 1, this thesis is concerned with methods 

of predicting failure of components due to excessive 

deformation. The review is, therefore restricted to literature 

directly related to this method of failure. The predictions 

accuracy depends on the accuracy with which the real material 

is modelled. For this reason, a great deal of attention is 

given to describing the experimentally observed material 

behaviour and the method by which it is modelled. This is 

described in section 2.2. In the remainder of this chapter, 

literature relating to the experimental observations' of 

component behaviour and the methods of predicting component 

behaviour is reviewed. 

2.2 Material Behaviour 

All materials, including metals and metallic alloys, deform 

when subjected to stress. At low stress and temperature, the 

behaviour is elastic and the deformation is recoverable. When 

the stress is high, plastic deformation occurs in addition to 

the elastic deformation. The plastic deformation is not 

recoverable. Time dependent creep deformation may also occur 

when the temperature is high. For metals, creep may occur when 

the temperature is above about 0.3 of the absolute melting 

temperature. Generally creep and plastic deformation interact. 
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2.2.1 Experimental Observations. 

2.2.1.1 Elastic-Plastic Behaviour. 

(i) Monotonic Loading. 

The behaviour of metals under monotonic loading has been 

extensively studied (20,18,21,22). The simplest, most common 

and important test is the tensile test in which a specimen 

having a uniform cross section is subjected to either 

increasing load or increasing deformation. A typical 

load/extension or stress/strain curve is shown in Fig 2.1. In 

the region OA, elastic deformation occurs and if the load is 

reduced to zero, the line AO is traced. The line OA is the 

elastic line with the modulus of elasticity E. When the stress 

is increased further, the strain is no longer linearly related 

to the stress. The curve AB is traced which departs from the 

elastic line OA. The point of departure is called the elastic 

limit and the stress at the point of departure is the yield 

stress of the material. Along AB the strain is increasing with 

increasing stress until point B is reached. From B to C, the 

stress decreases with increasing strain due to necking prior to 

failure at C. The maximum stress reached at B is called the 

ultimate tensile strength, UTS. The shape of the curve, the 

values of E, the yield stress and the UTS are the parameters 

which distinguish, in an engineering sense, one material from 

another. For the same material, the yield stress and UTS also 

depend on the temperature and the strain rate (22,23). 



In the plastic range, the total strain is the sum of elastic 

strain and plastic strain. That is 

st = se + ep 2.1 

where elastic strain, ce , is given by Hooke's Law, a/E (ais the 

stress) and plastic strain, cp, is a function of stress f(a). 

The stress strain curve with a smooth elastic plastic 

transition can be represented by 

e= a/E + f(a) 

Ramberg and Osgood approximate the function f(a) by 

f(a) = K(a/E) n 

2.2 

2.3 

where K and n are constants. Voce (24) used the concept of 

saturation stress and f(a) is approximated by 

f(a) = K(Q _Q 

go 

n 
2. u 

where Qs is the saturation stress 

a0 is the yield stress 

K and n are constants. 

Equation 2.4 fitted very well with the experimental data for 

copper alloy as shown in (24). More recently, Swindeman (21) 

applied Voce's (24) equation to describe large strain behaviour 

of 304 Stainless Steel. The results in reference (21) show 

that for 304 Stainless Steel, Voce's (24) equation fitted the 

data well for strain about . 001 to the strain at failure. 
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Since engineering components are most likely to be subjected to 

a multi-axial stress state, tests using monotonic multi-axial 

stress systems are of practical relevance. However, it is 

necessary to define a relationship for multi-axial stress 

systems which is equivalent to the uniaxial state of stress. 

In multi-axial stress systems, stress, a becomes stress 

tensor, aij; and strain, e, becomes strain tensor, eij. 

Equation 2.. 1 becomes 

TeP 
Eij sij + eij 2.5 

and elastic strain tensor is related to stress tensor by the 

generalized Hooke's Law: - 

e 
Eij - Eijkl akl 2.6 

It is also often convenient to use the deviatoric stress 

tensor Sij = cij! - 3öijokk rather than the actual stress tensor. 

It is also necessary to define the yield conditions so that 

elastic-plastic analyses can be performed. Various theories 

were proposed and the most widely used are those due to Tresca 

and von-Mises. The von-Mises yield criterion which is used 

throughout this work, can be written as, 

aeq = 711.5SijSij 
i 

2.7 

Equation2.7 defines the equivalent stress. The increment of the 

equivalent plastic strain can be defined in terms of the 

plastic strain increments. 



That is 

eEp __ 
2PP 

eq 
3 EiýýeU 2.8 

Some tests on lead alloy material subjected to a monotonic and 

cyclic biaxial stresses were performed (e. g. in 20 and 25). 

When the equivalent stress is plotted against the equivalent 

plastic strain, the curves for different biaxiality ratios 1: 1 

and 2: 1 show that the shapegof the curves are similar to the 

uniaxial case except that the effective yield stress reduces 

for the biaxial stress system. The equivalent stress versus 

equivalent plastic strain curves are shown here in Fig. 2.2(i). 

(ii) Cyclic Loading. 

The response of material subjected to cyclic loading differs 

considerably from that obtained with monotonic loading. Cyclic 

loading can cause reverse plastic flow in the material and 

fatigue failure may occur. The behaviour of material subjected 

to cyclic loading is usually investigated by considering either 

strain or stress cycling. Different materials react differently 

when subjected to cyclic loading. In general, the yield stress 

of material reduces during reverse loading after an initial 

plastic deformation. Also, during stress reversal, an elastic 

range exists within which Hooke's Law can be applied. 

Fig. 2.2(ii) shows the stress-strain behaviour during a load 

reversal. The yield stress during reversal, generally occurs 

at a point such as C which is in between of -2c 0 
and -v 0 

(see 

Fig. 2.2(ii) for notation). The lower yield stress obtained 

during load reversal is due to the anisotropy induced during 
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previous plastic loading. This effect is called the 

Bauschinger effect. This behaviour is important in cyclic 

plasticity. Since the Bauschinger effect causes complications 

in the analysis of structural problems, it is often ignored or 

simplified in the developments of material behaviour models and 

constitutive equations for cyclic plasticity. Some tests on 

materials subjected to cyclic loading had been performed (e. g. 

in 20,18,3,26). At this stage, it is appropriate to describe 
Su ch 

certain phenomena, (as cyclic hardening, cyclic softening, cyclic 

relaxation and material ratchetting, which are observed in 

materials subjected to cyclic loading. 

(a) Cyclic Hardening and Cyclic Softening. 

In a cyclically hardening material the resistance to 

deformation in the material increases with cycles. This means 

that the increment of strain reduces for the same stress 

increment. For stress and strain controlled cycling, the 

behaviours. are shown in Figs. 2.3(i) and 2.3(11) respectively. 

The reverse occurs if the material cyclically softens. In this 

case, the resistance to deformation decreases with cycles and 

hence the increment of strain increases for the same increment 

of stress. Figs. 2.11(i) and (ii) show the stress-strain curves 

for material that cyclically softens for stress and strain 

controlled cycling respectively. In real material, these are 

transient phenomena and usually stabilize. 



(b) Cyclic Relaxation and Material Ratchetting. 

If a material is cycled between two fixed strains with an 

offset mean strain, it is often observed that the peak stress 

reduces until a stable hysteresis loop, about a zero mean 

stress, is obtained. This is called cyclic relaxation. If the 

material cyclically hardens at the same time, the amount of the 

reduction of peak stress decreases and vice-versa. 

If the material is cycled between two fixed stress levels, 

about a non-zero mean stress, it is often observed that there 

is an increment of strain with cycle. This is called material 

ratchetting or cyclic creep. For a non-cyclically hardening 

material, a steady increment of strain occurs. For a 

cyclically hardening material there is a reduction in ratchet 

strain before a steady ratchet strain per cycle is achieved. 

The behaviour ;S illustrated,, schematically, in Figs. 2.5(i) 

and (ii) for cyclic relaxation and material ratchetting 

respectively. 

These definitions of cyclic hardening and softening, cyclic 

relaxation and material ratchetting will be used throughout the 

rest of this thesis without further explanations. 

Yahiaoui (3) performed a number of cyclic reverse plastic 

uniaxial tests on a lead alloy material. His tests included 

stress controlled cycling, strain controlled cycling with an 

enforced ratchet strain. Yahiaoui (3) observed that for a 



strain range cycling about a zero mean strain, a stable loop 

was reached after the first cycle of loading. For cycling 

about a positive non-zero mean strain, it was also observed 

that the loop shifted downwards towards zero mean stress. A 

small softening effect occurs in the material. The stress 

strain loops obtained in a typical test are shown in 

Figs. 2.6(i) and 2.6(11). In stress controlled cycling tests, 

with non-zero mean stress, the results show that material 

ratchetting occurs. The ratchet strain reduces in the first 

cycle and after this a practically constant ratchet strain 

occurs. This is shown by the results in Fig. 2.6(iii), these 

results are typical of those obtained from all of the lead 

alloy tests. 

Hyde (20) performed cyclic plastic tests on lead alloy material 

similar to that used by Yahaioui (3) under biaxial loading. 

Biaxiality ratios of 1: 1 and 2: 1 were used. Most tests were 

performed with strain controlled cycling. The results were 

plotted using effective stress and effective plastic strain, 

taking into account the sign of the stresses. The shape of the 

curves were similar to those obtained for the uniaxial case. 

Hyde (20) also observed that stable loops occurred after the 

first cycle. In addition he also observed that the biaxial 

stress 'caused a reduction in the effective stress range 

compared with uniaxial data having the same effective stress 

range'. There was a small change in elastic strain range with 

cycle which has also been observed by Jhansale (27) for other 

materials. 



The cyclic plastic behaviour of Type 316 Stainless Steel have 

been reported in reference (28). Cyclic hardening is 

significant in stainless steel. In the test conducted by 

Goodall (28), however, cyclic hardening was stabilized first by 

strain controlled cycling, without strain accumulation, before 

enforced ratchet strains were applied. The subsequent results 

obtained indicate that kinematic hardening occurs and the 

displacement of the hysteresis loops indicate that cyclic 

relaxation also occurs. For stress controlled cycling, 

material ratchetting would occur. 

2.2.1.2 Creep Behaviour. 

It is generally-known that for temperatures above about 0.3 Tm 

(where Tm is the absolute melting point of metals), time 

dependent creep behaviour occurs. When creep occurs, a structure 

continues to deform even under constant load. For many years 

the creep phenomenon has been investigated under both steady 

and variable loading conditions. 

(i) Creep Under Steady Load. 

Creep data is usually obtained from constant load or stress, 

uniaxial tests under constant temperature conditions. A 

typical creep curve is shown in Fig. 2.7(i) where the total 

strain or deformation is plotted against time. Initially, 

there is a strain, sl , obtained from the initial loading. If 

the stress is below the yield stress of the material, e1 

consists of elastic strains. For stress above the yield stress 



Elis composed of elastic and plastic strains. After this, the 

strain continues to increase with time. The shape of the curve 

can be divided into three regions, as shown in Fig. 2.7(i). 

These regions are: - 

a) Primary creep. In this region the strain rate 

decreases. 

b) Secondary creep. In this region the strain rate is 

constant. 

c) Tertiary creep. In this region the strain rate 

increases until creep rupture occurs. 

The amount of creep deformation obtained depends on both the 

stress and temperature at which the tests are conducted. 

Generally, creep strains are increased by increasing either 

stress levels or temperatures. 

The creep curves obtained under isothermal condition but 

different stress levels are shown in Fig. 2.7(ii). Fig. 2.7(iii) 

shows the creep curves obtained at constant stress but at 

different temperatures. Experimental data for creep in metals 

under steady loads are reported in many papers and books (e. g. 

in 3,11,29). 

(ii) Creep Under Variable Load. 

As in the case of elastic plastic behaviour, the behaviour of 

creep under variable load is different from the behaviour under 

steady load. When the load is removed after creep has 

occurred, a phenomena known as creep recovery occurs (11,30). 



On the other hand, when creep occurs at a constant strain, 

stress relaxation occurs (11,30). To illustrate these two 

behaviours, consider first, a material which is subjected to a 

stress a1and allowed to creep for some time t1 when creep strain 

ecwas attained. The stress is then removed completely and the 

resulting strain is observed. Fig. 2.8(i) shows the response of 

the material. From OAB, creep under steady load occurs. When 

the stress is removed at B, the elastic strains due to the 

stress a1 is recovered instantaneously. After this, the strain 

continues to drop in a time dependent manner until a steady 

value a is obtained as shown in Fig-2-8(i). The time dependent 00 

drop in strain is a result of the creep recovery which has 

Co 
occurred and e consists of plastic strain and non-recoverable 

creep strain. The second phenomenon occurs when the material 

is subjected to a stress a and is then allowed to creep at a 

constant strain. Fig. 2.8(ii) shows the response of the 

material. The stress reduces with time to a steady value. 

This phenomenon is referred to as. a creep relaxation. 

2.2.1.3 Creep/Plasticity Interaction. 

Experiments have been conducted to investigate the effects of 

plastic strain on the creep behaviour (31,32,33,28). A number 

of tests were reported by Fessler, Hyde and Webster (31) on 

lead alloy models in which the specimens were loaded 

plastically before creep occurs. However, in some cases, part 

of the load was removed so that creep occurs at a stress which 

is below the yield stress. The creep curve was compared to 

the creep curve of the virgin material, without pre-plastic 
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straining, at the same stress level. The results show that at 

stress levels below the yield stress, the creep strain is 

reduced when plastic pre-strain occurs. Reverse creep may also 

occur for some period before forward creep reappears. When 

creep occurs at a stress level above yield, the creep strain 

rate was increased due to plastic pre-strain and the fracture 

times were reduced. Tests were also carried out (31) in which 

intermittent plastic strains were applied to a specimen under 

creep conditions. This is particularly relevant to power plant 

components during starting-up and shutting-down and under 

emergency conditions. Experiments to investigate 

creep/plasticity interaction in 316 Stainless Steel at high 

temperatures (at temperatures of 550 C) are also in progress at 

Nottingham University (32). Early results indicate that when 

creep is interrupted by plastic strain, the creep strains are 

reduced compared to the creep strains under constant load creep 

test at the same stress levels. The tests are still in 

progress at the present time. 

2.2.2 Material Behaviour Models. 

2.2.2.1 Elastic Plastic Models. 

A) Simple Models 

a) Elastic-Perfectly-Plastic. 

The most commonly used model for elastic plastic analysis is 

the elastic-perfectly-plastic model. The model assumes that 

there is no hardening at all. The model will predict an 

indefinite plastic strain whenever the applied stress is above 



the yield stress. For strain controlled cycling, the model 

cannot describe hardening or softening, see Fig. 2.9(i). Though 

it is simple and does not usually describe real material 

behaviour very accurately, the model can be used to accurately 

predict the load bearing capacity of some structures (314,35). 

The model is used here to analyse the mechanisms of ratchetting 

of components. 

b) Isotropic Hardening. 

In this model, hardening of the material is included. It is 

assumed that the yield range varies during plastic deformation. 

For a uniaxial stress case, the behaviour of a linear isotropic 

hardening model under strain controlled cycling is illustrated 

by Fig. 2.9(ii). OAB represents the monotonic stress-strain 

curve with the initial yield stress at A. Reverse loading from 

B is represented by BCD and yield occurs at C. If the stress 

at B is OB and at C is QC, the model is based on the assumptions 

that IacI = taBI 

Reloading from D will yield at E such thatlCT ' IQDI and so on. 

For continued cycling, an elastic behaviour will eventually be 

reached. Fig. 2.9(iii) shows the behaviour under stress 

controlled conditions; elastic behaviour is reached after a 

reloading from the first plastic reversal. In the multi-axial 

case, the yield surface expands during plastic deformation 

without any translations in the stress space. For a von-Mises 

yield criterion, the changes in the yield surface, in the 

it -plane, are shown in Fig. 2.9(iv). The points A and B in 

Fig. 2.9(iv) corresponds to the points A and B in Figs. 2.9(ii) 



and 2.9(iii). The model does not describe the Bauschinger 

effect. The non-linearity in the plastic behaviour can be 

approximated by a number of linear segments. It does not show 

any softening behaviour and cannot predict material 

ratchetting. 

c) Kinematic Hardening. 

To include the Bauschinger effect with the hardening model, 

Prager (36) used the kinematic hardening model. In this model, 

the yield range remains constant at twice the yield stress of 

the material. For strain controlled cycling the uniaxial 

behaviour is shown in Fig. 2.9(v). A steady state cyclic 

plastic loop is obtained after the first cycle. Fig. 2.9(vi) 

shows the effect of stress controlled cycling for the "model. 

Again a steady state loop is obtained after the first cycle. 

The phenomena of cyclic hardening, softening and material 

ratchetting cannot be represented using this model. In a 

multi-axial state, the yield surface translates in . stress 

space during plastic deformation, with the size of the surface 

remaining constant. For von-Mises yield criterion, the 

movement of the yield surface in the N -plane is shown in 

Fig. 2.9(vii) and is denoted by the parameter da ij The 

direction of daij is in the direction of the plastic strain 

increment during plastic deformation, which is normal to the 

yield surface. This rule has been modified by Ziegler (37). 

Ziegler (37) specified that the movement of the yield surface 

should be in the direction of the vector joining the centre of 

the yield surface and the current stress in the stress space. 



Experimental data for the subsequent yield surfaces of annealed 

mild steel, obtained by Michno and Findley(38), indicate that 

the Ziegler model is more accurate than the Prager model. 

So far, only the situation in which the plastic modulus remains 

constant during plastic deformation has been considered. To 

describe non-linear kinematic hardening model, 

Zienkiewicz et al (39) proposed the overlay model, which uses 

simple constitutive equations to describe complex material 

behaviour. In this model, the component is divided into a 

number of sub-elements having identical deformation but 

different material behaviour. This technique offers an 

unlimited material behaviour laws. The main difficulty is 

perhaps in choosing the number of sub-layers and their 

corresponding material behaviour to give the desired material 

behaviour. However, material ratchetting phenomena cannot be 

described. 

B) Complex Models. 

Since the simple models cannot describe material ratchetting, 

more complex models are required. To formulate constitutive 

equations for complex models, two basic ingredients are 

necessary. Firstly, the flow rule which relates the increments 

of plastic strains to the increments of stress. Secondly, the 

hardening rule which defines the movement of the loading 

surface during plastic deformation. The development of complex 

models (usually non-linear models) can be based on allowing the 

plastic modulus to change during plastic deformation. This 



approach was followed by several investigators such as 

Mroz (40,41), Mroz et al (42), Eisenberg and Phillips (43), 

Green and Naghdi (44), Dafalias and Popov (45) and Goodman and 

Goodall (18). Mroz (40,41) and Mroz et al (42) used the 

concept of fields of work hardening. In the uniaxial case, the 

monotonic stress-strain curve is approximated by a number of 

linear segments as shown in Fig. 2.10(i). The discontinuities 

of the uniaxial monotonic stress-strain curve are represented 

for convenience, by circles in multi-axial stress space, 

initially centred at the origin as shown in Fig. 2.10(ii). The 

inner circle corresponds to the initial yield surface so that 

elastic changes only takes place in this circle. The yield 

surface is given by (40): - 

fo = f(Qii-CL 
ij 

)- Co =0 2.9 

where aijis the position of the centre of öf with respect to the 

origin; initially, aij- 0 

Other surfaces tj and f1+1(where 1 ; 1,2 etc. ) are given by: - 

fl = f(aiý -aiý) -(1)=0 

and 

f1+1 2 f(aij- aiý1) -0 
o+1 

_0 

2.10 

2.11 

with centres aid and ai+1 respectively and radii aö and 

Qä+1 respectively. Also, initially aand 
iiare 

zero. 

For a loading path OABC of Fig. 2.10(i) elastic changes occur 

along the path OA until the stress point is at A. From A to B, 



the yield surface f0 moves together with the stress point until 

point B is reached on the surface, f1. The plastic modulus 

during this process is given by the gradient of the line AB. 

From B to C, both surfaces f0 and f1 move together with the 

stress point until point C is reached. The plastic modulus is 

now the gradient of the line BC. The surfaces are not allowed 

to intersect but only touch one another. When the stress point 

is at D the positions of the surfaces are shown in 

Fig. 2.10(iii). For non-proportional loading histories such as 

PHK of Fig. 2.10(iii), the motion of the yield surface dais is in 

the direction PR until the stress point reaches H. The lines 

OOP and 01R are parallel where O0and 01are the positions of the 

centre of surfaces fo and f1 , respectively. 0 P is normal to f at 
00 

P. The translation of the surface daij is given mathematically 

by: - 

dai 
j= vo ( Qö -QO )a ( 

ij _ ai ja1 o_a1 i ja 
) 

0 
2.12 

where du is a scalar determined from the condition that the 

stress point always lies on the yield surface. That is 

(dai, ) - daij ) 2fo 
-0 ecrij 

2.13 

The simultaneous translation, dal , of two surfaces, e. g. 
ij 

fl and fl+1, can be generalised from equation 2.12 to give 

d a1 - 
du (( a1+1 - a1) a1 

1 1+1 1+1 al 
ij -Qoo ij-iaijao o)) 

2.14 

0 



similarly, equation 2.13 can be written as: - 

(daii- dQij)ýij =0 2.15 

Equations 2.14 and 2.15 give the generalised translation rule. 

When the stress point reaches K, the relative positions of the 

surfaces are shown in Fig. 2.10(iv). The hardening rule 

proposed by Mroz (40,41) is different from that of Prager (36) 

and Ziegler (37). In another paper Mroz et al (42) proposes a 

non-linear model in which the hardening modulus depends on the 

vector joining the stress point and the centre of the yield 

surface and plastic strain vector, 

(S -a). eP 
h= e(ep) - d(c)' ýv 

0 

ij ý+ 
32 00 2.16 

where a and d are functions of total plastic strain cp. It was 

shown in reference (12) that the phenomena of material 

ratchetting can be qualitatively described by this model. The 

hardening rule (Equation 2.14) is different from that proposed 

by Prager (36) which is 

daiý = adeij 2.17 

where a is a constant and from that due to Ziegler (37) which 

is 

)dý daij _ (Qij - aij 2.18 

where d¢ is a scalar constant determined also using equation 

2.13 . 



To describe the cyclic hardening, cyclic softening and material 

ratchetting phenomena, Jhansale (27,46) proposed a model based 

on the change of 'elastic' part of the stress-strain curve 

called the Yield Range Increment (YRI). In this model, during 

constant stress amplitude or strain amplitude cycling, the 

non-linear (plastic) part of the curve does not change in shape 

during consecutive cycles. Using this model, cyclic hardening 

and softening are associated with either an increase or 

decrease in the yield range. Experimental data for aluminium 

and steel are used to support the model in the uniaxial case 

(46). However, the model has not been extended to multi-axial 

stress cases. Material ratchetting can be predicted by using 

this model. 

The concept of bounding surface in the stress space to describe 

cyclic behaviour of metals, was proposed by Dafalias and 

Popov (45) and Dafalias (47). In this 'model, the loading 

surface is enclosed by the bounding surface. When the loading 

surface touches (surfaces are not allowed to intersect) both 

surfaces move simultaneously. The plastic modulus depends on 

the relative positions of the two surfaces. On the bounding 

surface, the plastic modulus is a constant value. 

Fig. 2.10(v) shows the uniaxial stress-strain curve. The 

bounding surfaces become line bounds X'X in the tensile 

direction and Y'Y in the compressive direction. The gradient 

of X'X and Y'Y are equal and the tangent modulus of the 

stress-strain curve approaches this value during loading. The 

model proposed in (45) was also generalised to multi-axial 

stress cases. The model is capable of describing cyclic 



relaxation, cyclic hardening and material ratchetting for 

strain controlled and stress controlled cycling due to the 

changes in plastic moduli. 

Goodman and Goodall (18) proposed a saturation stress model. 

The concept of saturation stress has also been used by 

Voce (24) and Swindeman (21). The model describes a non-linear 

kinematic hardening. It predicts a steady ratchet for cycling 

between a fixed stress level and non-zero mean stress. It is 

assumed that both hardening and softening mechanisms exist. 

The model incorporates both these mechanisms whereby the 

softening mechanism opposes the hardening mechanism. At a 

saturation stress, ßs, the two mechanisms balance one another. 

The model was developed by Goodman and Goodall to describe the 

behaviour of 316 Stainless Steel. 

Two functions U and V are used to describe hardening and 

softening mechanisms respectively so that monotonic and cyclic 

stress-strain curves can be described. The plastic strain 

during a monotonic loading is given, empirically, as: - 

ep = (j)Qt 

where 
a- v 

U=o 
as vo 

v- 
as- vo 

asQ 

2.19 

2.20 

2.21 

In equation (2.19), r and t are material constants, but q is 

treated as a quasi -steady parameter for the purpose of 

differentation. Goodman and Goodall allows q to increase to 



describe cyclic hardening. By differentiating equations (2.19) 

with respect to a, the tangent plastic modulus, Ep, is obtained 

and 

Ep 
da 

(as - ao) U 

de p (rU)gVt(q + tUV) 
2.22 

In modelling for a cyclic plasticity, it is required that the 

plastic modulus at a stress a= m is equal to the plastic modulus 

at a=- am. That is symmetry of the stress-strain curve is 

preserved for cycling with a zero mean stress. am is the 

maximum stress reached during the previous loading history. 

This condition could be written as 

Ep)Q=a Ep) 
a= - ým 2.23 

For cyclic loading, it is necessary to define a parameter, n, 

such that 

n=+1 for deT >, O (forward loading) 2.24 

and n=-1 for deT <0 (reverse loading) 2.25 

where öcTis the change in total strain during the current 

increment. Equations-2.24 and 2.25 imply that forward loading 

occurs if n is positive, reverse loading if n As less than zero 

and neutral loading for n=0. The functions U and V depends on 

whether the current stress, a , is greater or less than the 

maximum stress Qm . The following expressions are used: - 

Q- na 
U= ° for na >, a 2.26 

Qs - CIO m 



or 

U=! 
Q- nQ0 -ak I 

for na < am 2 Qs - 00 

and 

a-a s°I for na >, 0 
na -a 8 

or 

as _ aO I 

as a as o 
fornQ<0 

2.27 

2.28 

2.29 

A factor of 1/2 is introduced in equation 2.27 to satisfy the 

condition given by equation 2.23. The quantity ak is only 

updated whenever a reversal of plastic straining occurs and is 

given by 

ak = a- nvo 2.30 

The subsequent yield condition during cyclic loading become 

Q- ak I= oa 2.31 

since a kinematic hardening is assumed. The maximum stress 

reached during the previous loading history, am, is updated 

when the current stress is above a, that is 

a =lal for 14>, am 2.32 

These formulations indicate that the previous loading history 

influences the evolution of the cyclic plastic stress-strain 

curves of the material. The significance of 0m will become 
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important in the development of the model in multi-axial stress 

space given in Appendix III. 

The effect of cycling between two stress levels, a1 and a2, with 

a non-zero mean stress is shown in Fig. 2.10(vi). A previous 

loading brought the material to a state at Po. From Po, 

unloading occurs to a stress a2followed by reloading to a 

stress level at a1. With respect to 
sa, 

the loop is not 

symmetric. The compressive branch of the plastic stress strain 

curve is steeper than the tensile branch. Reloading from P1 to 

the same strain as at P. results in a reduction in stress by an 

amount 6a as shown in Fig. 2.10(vi). For a strain controlled 

cycling with a fixed strain range and a strain offset, this 

represents a stress relaxation. If reloading to the same 

stress a,, occurs, the stress-strain curve continues to the 

R 
point P3 giving a ratchet strain e For cycling about a 

non-zero mean stress and a fixed stress range, 6R , this 

corresponds to material ratchetting. 

The plastic strain increment Aep for this special case is simply 

given by: - 

. _p eQ ne = 
Ep 

2.33 

where Epis the plastic modulus from equation 2.22 calculated 

using the value of stress at the beginning of the current 

increment. Cyclic hardening is denoted by an increase in 

q from an initial value of q. Goodman and Goodall (18) 

suggested that the variation of q depends on the cyclic plastic 



strain path, P*, according to the relation 

ý 
q= golg(10 +H 1g(1 + 100p )) 

where 

P* =E 
IdEPI 

-I EP I 
and H is the material hardening constant. 

2.34 

2.35 

Goodman and Goodall (18) described the model in the uniaxial 

stress case. An attempt has also been made to extend the model 

for use in the multi-axial stress systems and non-proportional 

loading (19). However, in practice there were problems 

associated with this multi-axial formulation and further 

developments were necessary. The development of the model 

equations for multi-axial stress systems and general loading 

conditions are described in Appendix III. Also included in 

Appendix III is a method for determining the necessary 

material constants and illustrative results obtained for 

simple, non-proportional, biaxial stress case. 

2.2.2.2 Creep. 

Uniaxial creep curves, obtained under constant load conditions, 

as shown in Fig. 2.7(i), can be represented by an equation of 

the form 

ec = F(a, T, t) 

where a is the stress 

2.36 

T is the absolute temperature and 



t is the time 

If the effects of stress, temperature and time are assumed to 

be separable, then Equation 2.36 can be expressed in the form 

eý = F1((Y)F2(T)F3(t) 

and F1 (a) is a function of stress only. 

F2(T) is a function of temperature only and 

F3(t) is only a function of time. 

2.37 

A number of different functions of stress, temperature and time 

have been suggested (e. g. 11,30). The most commonly used creep 

law is the combination of Norton's stress function and Bailey's 

time function (11,30). The Norton-Bailey creep law can be 

expressed as 

sý _ A1Qntm 

where A,, n and m are material constants. 

2.38 

To include the effect of temperature, Dorn (30) suggested a 

separate temperature function of the form 

F (T) =A e(-Q/RT) 22 2.39 

Hence combining equations 2.38 and 2.39 gives the 

Norton-Bailey-Dorn creep law which can be expressed as 

cc = Aunt e(-Q/RT) 2.40 

and A, n, m and Q are material constants. An alternative to 

Norton stress function is a 'sink law' proposed by 
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McVetty (30). This could be combined with Bailey's time 

function to give the following creep law: - 

ec= A3sinh(Q/QO)tm 2.41 

where A3'a0 and m are constants. The values of m can be 

used to model the different parts of the creep curve, namely, 

m<1 primary creep 

m=1 secondary creep and 

m>1 tertiary creep. 

Most creep curves are obtained at constant load. However, 

during creep, the stresses-in the structure often change. To 

cope with the resulting changes in stress, three laws are 

usually used (22,11,30). Firstly, the time hardening law which 

assumes that the creep rate of the material depends on the 

current stress and the time. Secondly, the strain hardening 

law which assumes that the creep rate depends on the current 

stress and the current creep strain. Finally, a law which is 

intermediate between the time hardening and strain hardening 

laws. This is known as the combined law (30) or the 

life-fraction law (22). Overall, the strain hardening law 

appears to give the best fit to experimental data. 

2.2.2.3 Creep-Plasticity Interaction Model. 

The effects of plastic strains on the subsequent creep 

behaviour as observed experimentally, were reviewed, in section 

2.2.1.3. The results indicate that creep behaviour can be 
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affected by either prior plastic strain or intermittant plastic 

strain, i. e. some form of interaction exists between creep and 

plasticity. The present commonly used constitutive equations 

do not include such interaction effects. Modelling the 

interaction between creep and plasticity has, however, been the 

subject of recent research by a small number of investigators 

(48,49,50). 

Since creep is time dependent, Krempl (51) argued that equation 

of state approach is not particularly suitable. In particular 

equations of state cannot hold if during loading there is a 

change in material structure (51). During loading, unloading 

and reloading or cyclic loading, changes in material structure 

due to slip processes during deformation, do occur. 

Krempl (52) and Liu (48) have proposed that strain rates can be 

obtained from a non-linear differential equation of the form 

m(a- 
n, 

e-e 
n , 

Ma, Mo)dt + g(e-e ,M ,M)= na0 

a- 0n+ k( (1-an'e en'Ma'Mo)dt 2.42 

where a, c, and t are the stress, strain and time respectively. 

an, en, ä and Mo are the values stored for history dependence. 

By choosing suitable functions for m, g and k, the equation 

could be used to model creep and plasticity behaviour without 

decomposing the total strain into elastic and inelastic 

components. The results indicated that an accurate prediction 

was obtained. The procedure was not applied to situations 

where creep occurs. Miller (49,50) developed the 

creep-plasticity interaction model from a unified standpoint. 

Miller (49) proposed the rate of inelastic strain (plastic plus 



creep), 6, in the unified model of the form: - 

fýQ=D RI , 2.43 

In equation 2.43, a is the applied stress. D is the variable 

which represent the isotropic hardening properties. 

Miller (49), describes D as the characteristic drag stress and 

R as the 'rest stress'. The development of the model involved 

the determination of a suitable function, f, and the form of 

variables D and R so that the behaviour of creep and plasticity 

could be predicted. D and R depend on the entire previous 

deformation history. The model has been used to simulate 

tensile tests, strain sensitivity tests, creep, strain 

controlled cycling and creep-fatigue interaction (50). The 

qualitative agreements was generally good and Miller (50) 

recommended that quantitative improvements should be pursued. 

The development of creep/plasticity interaction models is at an 

early stage and research such as that described above, 

particularly the unified approach, is of significance and needs 

to be explored further. 

2.3 Component Behaviour. 

The behaviour of components subjected to applied load depends 

on the nature of loading (e. g. monotonies cyclic or 

combination of steady and cyclic) and the operating conditions 

(e. g. at temperatures below and above the creep threshold). 



Under monotonic loading, the behaviour is elastic if the 

stresses everywhere in the component are below the yield stress 

of the material and if temperatures are below the creep range. 

At temperatures above the creep threshpld, elastic-creep 

behaviour occurs which could lead to creep rupture. For 

stresses above the yield stress, elastic, plastic and creep 

deformation may occur. Under monotonically increasing load, 

plastic collapse will eventually occur. This problem has been 

exhaustively studied (e. g. in 53,54,34 and 35). 

The loadings which are most likely to be encountered in 

practical situations are the combination of steady and cyclic 

load. Under these conditions, the following response could 

occur: - 

a) Elastic. 

In this case, the stresses at every point in the structure are 

below the yield stress at any instant. A recoverable elastic 

deformation is obtained. 

b) Shakedown. 

The stresses in some parts of the structure are above the yield 

stress during the transient cycles. Increments of inelastic 

deformation occur during these transient cycles and at the same 

time, residual stresses develop in the structure. After the 

transient behaviour, a situation arises when in the subsequent 

cycles of loading, only elastic changes of stress occurs. When 

this happens, there is no increment of deformation in the 

structure and complete shakedown occurs. 



c) Cyclic Plasticity. 

In this case, plastic yielding occurs in the structure which 

produces an increment of plastic strain in one half cycle and 

an equal but opposite plastic strain in the other half cycle. 

The net increment of plastic strain over a cycle is zero. 

Consequently, the structure does not suffer incremental 

deformation but in some parts of the structure, the material 

undergoes cyclic plastic straining. The behaviour could lead 

to failure by fatigue. 

d) Ratchetting. 

In this situation, the structure deforms incrementally in each 

cycle of applied load. This results in an increment of 

inelastic deformation during each cycle. If this is allowed to 

continue indefinitely, collapse will occur. However, in the 

process, the structure may cease to function properly due to 

excessive deformation. 

2.3.1 Experimental Observation. 

2.3.1.1 Below the Creep Threshold. 

A number of investigators have obtained experimental data for 

the behaviour of components subjected to combined steady and 

cyclic loads below the creep range (e. g. 3,11,55). The loads 

applied to the components should be such that either the mean 

operating temperatures are below those which would cause creep 



or the mean sustained stresses are below yield stress so that 

cold creep does not occur. Most of the experiments however, 

have been performed such that the dwell periods between each 

cycle of load were 'short' (i. e. rapid cycling), so that the 

effects of creep are insignificant (4). 

The behaviour of a two bar structure such as that shown in 

Fig. 2.11(1) has been the subject of interest of a number of 

investigators (56,57,5,58,7,10). Some workers extended the 

structure to a3 and multi-bar structures (59,9). In terms of 

structural behaviour the behaviour of 2-bar structure is not 

significantly different from the behaviour of a 3-bar 

structure. For this reason only the behaviour of a two-bar 

structure investigated by Ponter (7) is described here. 

In Ponter's work (7), the structure shown in Fig. 2.11(i) was 

made of copper; the bars were of different lengths. The 

structure was subjected to 'a steady axial load and cyclic 

temperature variations were applied to one of the bars. Both 

bars suffered incremental deformation in the direction of the 

mechanical load (incremental elongation for tensile mechanical 

load). The rate of accumulation was found to decrease with 

cycles during the first few cycles. Afterwards, a steady 

ratchet state was achieved. Ponter (7) argued that the steady 

state ratchet strains were entirely due to material 

ratchetting. The effects of the magnitude of the 'mechanical 

and thermal load combinations were also investigated by 

Ponter (7). The effect of a stress concentration was simulated 

by having bars of unequal lengths and cross-sectional areas. 



In general, the ratchet strains increased with increasing 

mechanical load. Elastic shakedown and ratchetting behaviours 

were also observed depending on the magnitudes of the applied 

loads. 

The behaviour of thin and thick tubes subjected to a steady 

mechanical load such as axial load or an internal pressure, and 

cyclic thermal loads has also recieved considerable attention 

(8,60,61,10,16,3,4,62,63,64,65,66,67). 

Yahiaoui (3) and Hyde (4) performed ratchetting tests on a 

flanged tube component made of a lead alloy. The components 

contains a plain tube section and a fillet (stress 

concentration region). The ratchetting behaviour of the 

component when subjected to a steady axial load and cyclic 

transient thermal loading was studied. The thermal load was 

applied by varying the temperature of water flowing through the 

bore. Results were obtained for different values of mean axial 

stress. The results indicate that the ratchet strains in the 

plain section and in the fillet increase with an increase in 

either the axial or the thermal load. The ratchet strains in 

the fillet region (i. e. region of stress concentration) and in 

the plain tube region reduced with cycle number and reached a 

steady value after 15 to 20 cycles. 

Yahiaoui (3) and Megahed et al (55) peformed tests on beams 

subjected to a steady axial load and cyclic bending moment. In 

(3), the beam contains a uniform section (shank) and a stress 

concentration region (a fillet). A load controlled cyclic 



mechanical bending moment was applied. The beam was made of 

lead alloy material. This test is of particular relevance in 

the present work when the effect of material ratchetting on the 

finite element prediction is investigated. A number of load 

combinations were used. In general, increasing any of the 

loads results in an increase in ratchet strains. 

Megahed et al (55) on the other hand investigated the behaviour 

of a uniform beam, made of copper; cyclic curvature controlled 

tests were performed. The material used in (3) and (55) 

exhibit material ratchetting but cyclic hardening is less 

significant in the lead alloy (3) compared to the copper (55). 

The results also indicated that increasing the magnitude of the 

applied load causes an increase in the steady state ratchet 

strain. For the case of the lead alloy beam (3) a steady 

ratchet strain was achieved after about ten cycles of bending 

moment but for copper (55) about one hundred cycles were 

required. Megahed (55) argued that the transient ratchetting 

was due to structural ratchetting and the steady state 

ratchetting was caused by material ratchetting. 

2.3.1.2 Above the Creep Threshold. 

Practical engineering components often operate at high 

temperatures, typically above the creep threshold. Also the 

time between thermal cycles is usually long. Therefore, 

significant creep strains are inevitable, particularly because 

these long dwell periods often occur when the plant is under 

operating conditions. Experiments to simulate rapid cycle 

conditions in reality require finite cycle times and 



consequently they may include small creep strains. It is 

therefore difficult to exclude completely creep from 

experimental ratchetting tests. The most practical way of 

interpretting the experimental results is to try to quantify 

the effects of the creep dwell period on the component 

behaviour. The effect of creep on the behaviour of components 

has been studied by a number of workers 

(e. g. 2,68,3,69,14,23,62,63,70,65,66,67). 

Experimental investigation of 2 and 3 bar structures has 

received considerable attention (2,23,69). Creep ratchetting 

tests on a 2-bar structure made of aluminium specimen was 

investigated by Ponter et al (69). The structure shown in 

Fig. 2.11(i) was subjected to a steady mechanical load P and 

cyclic temperature variations. The results were compared with 

the theoretical predictions using various constitutive 

relationship. In another paper, Megahed and Ponter (71) 

reported tests on a 2-bar structure made of copper. The tests 

were conducted such that bar 1 (see Fig. 2.11(i) for notation) 

was heated and cooled during a cycle whereas bar 2 remained at 

a constant temperature. Dwell periods were allowed both during 

isothermal and non-isothermal conditions. The mechanical load, 

area ratio and dwell period were the test parameters. The 

results showed that the stress amplitude in bar 2 increased 

initially and subsequently reached a constant value. The 

strain increment reduced with cycle number to a steady value. 

The steady state ratchet strains increased with increasing 

dwell period. Following the same approach as in (69), 

Megahed et al (23) studied the behaviour of a 2-bar structure 



made of 316 Stainless Steel. Apart from the numerical values 

obtained, the observed behaviour was similar to that for 

aluminium (69). The load condition imposed in the 316 

Stainless Steel tests (23) however allowed the interactions 

between creep and plasticity to be studied. Ainsworth (2) 

investigated the behaviour of a 316 Stainless Steel 3-bar 

structure subjected to a steady axial load and cyclic thermal 

load in the creep range. The effect of creep is similar to 

those observed by Ponter (69) and Megahed (23). 

Many authors (3,4,62,63,65,66) have investigated the effect of 

creep on the behaviour of tubes subjected to a steady 

mechanical and cyclic thermal loads. Yahiaoui (3), Hyde et al 

(4,65,66) have reported tests on ratchetting of tubes. The 

component geometry and loading has already been described in 

the previous section. In the experimental investigation of 

shouldered tube component (66), the effect of creep dwell 

period is to increase the ratchet strains at low mean axial 

stresses. However, for the load combination considered in the 

experimental study of flanged tube component (3,4), the effect 

of increasing the creep dwell period, reduced the ratchet 

strains. 

Corum et al (62) performed tests on a stainless steel pipe 

subjected to a steady internal pressure and cyclic thermal 

loading. The thermal loading was induced by intermittently 

flowing liquid sodium through the bore. Dwell periods were 

allowed to occur at high temperature to simulate creep during 

on-power conditions. The response of the pipe indicates that 



substantial ratchetting due to creep and plastic strains occurs 

but the incremental deformation decreases with increasing 

cycles. 

Yamamoto et al (63) performed tests on a tube made of' 304 

Stainless Steel subjected to a steady mechanical axial load and 

cyclic thermal load. The thermal load was applied using liquid 

sodium flowing through the bore. 

Some tests were also performed for which both the steady and 

cyclic loads were mechanical. Yahiaoui (3) investigated the 

behaviour of beams subjected to steady tension and cyclic 

mechanical bending moment. Cousseran et al (70) investigated 

the behaviour of a thin tube subjected to a steady axial load 

and cyclic torsion. Creep was allowed to occur between each of 

the cycles. Cousseran et al (70) devised a technique whereby 

the creep ratchetting data from various tests for different 

materials could be correlated. The method involved defining 

two parameters called the efficiency index, V, and secondary 

stress ratio, SR. When the data, obtained from various 

experiments and different materials, were plotted on an SR-V 

diagram (called the efficiency diagram) the points lie within a 

narrow band as shown in Fig. 2.11(ii). On this diagram the data 

is relatively insensitive to the detail of the material 

behaviour. The secondary stress ratio SR is defined as follows 

SR = eQ/(P+eQ) 2,44 

where tQ is the secondary stress range and P is the primary 

stress. 
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The efficiency index V is defined by 

V= P/P 
eff 

2.45 

where Peff is the effective stress defined as the equivalent 

primary stress that give the same inelastic strain as the 

combined primary and secondary stresses for a ratchetting test 

over the same duration of test. 

2.3.2 Prediction Methods. 

2.3.2.1 Below the Creep Range. 

In the study of ratchetting in engineering components it is 

first necessary to have a method of predicting the combinations 

of load which would cause ratchetting to occur. The normal 

approach is, initially, to assume that the material is 

elastic-perfectly-plastic and the effects of creep are ignored. 

For simple structures, such as 2 or 3-bar structures, subjected 

to axial load and temperature variation and uniform beam 

subjected to axial load and through the depth temperature 

distribution, complete analytical solutions can be obtained. 

Some components, such as plain tubes subjected to an internal 

pressure and through thickness temperature distribution, can be 

simplified to a beam so that a complete analysis could-be made. 

From these analyses the effects of hardening could also be 

, assessed. For more complicated structures, complete analytical 

solutions cannot be performed and other techniques and 

numerical methods (e. g. the finite element method) had to be 

used. 



Due to its simplicity, the behaviour of a 2-bar structure has 

recieved a considerable attention by several authors 

(56,57,5,58,66). Parkes (56) used a 2-bar structure to analyse 

the incremental deformation of an aircraft wing. In another 

paper Parkes (57) investigated the effect of the variations of 

yield stress with temperature on the behaviour of a2 bar 

structure subjected to thermal loadings only. It was found 

that ratchetting could occur even though there was no applied 

mechanical load (57). Burgreen (5) investigated the behaviour 

of a 2-bar structure subjected to a steady axial load and 

cyclic thermal load. A perfectly plastic material with the 

yield stress independent of temperature was used. Depending on 

the magnitudes of the loads, the structure may behave either 

purely elastically, shakedown to an elastic behaviour after an 

increment of plastic deformation, cyclic plasticity on one bar 

without structural incremental deformation or suffer 

incremental deformation. Megahed (6) and Ponter (7) also 

observed similar behaviour. These different behaviours could 

be distinguished by using an interaction diagram such as 

Fig. 2.12(i) for a perfectly plastic material and bars with 

identical sizes. Similar diagrams can be obtained when the 

bars have different lengths and areas. Miller (59), 

Mulcahy (58) and Megahed (6), investigated the effects of 

material hardening on the structural behaviour. Both linear 

kinematic hardening and linear isotropic hardening models give 

bounded ratchet strains. For a linear kinematic hardening 

model, the steady state behaviour is either elastic shakedown 

or cyclic plasticity without ratchetting. For a linear 

isotropic hardening model, the steady state behaviour is always 

elastic after transient ratchetting behaviour. 



A significant contribution in this field is that due to 

Bree (8) who predicted the behaviour of a nuclear fuel can 

subjected to steady internal pressure and cyclic through 

thickness temperature distribution. The can is modelled using 

an element subjected to a uniaxial stress, a 
P, 

and cyclic 

linear through thickness temperature gradient such that the 

maximum elastic thermal stress in the element is at. The 

material was assumed to be elastic-perfectly-plastic with the 

yield stress initially independent of temperature. 

Fig. 2.12(ii) shows the 'Bree' diagram for the behaviour of the 

fuel can. The diagram subdivides into several regions. Purely 

elastic response occurs in the E (see Fig. 2.12(ii) for 

notation) region, in the S1and S2 regions, elastic shakedown 

occurs, cyclic plastic straining occurs on P region and 

ratchetting occurs in the R1and R2 regions. These regions are 

separated by boundaries which are also shown in Fig. 2.12(ii). 

Also only tensile yielding occurs in the regions with suffix 1 

and tensile and compressive yielding occurs in regions with 

suffix 2. In the ratchetting regions, the ratchet strain per 

cycle ER can be calculated. In the R1 region, 

2a 
ER = Et (1-2 (aQ/at - ap/ at)) 

where E is the Young's modulus 

and in the R2 region 

2a 
Ei ap/ ao - ao/at) eR =t 

2.46 

2.47 

The effects of changes of yield stress with temperatures and 



the effects of a linear kinematic hardening model were also 

investigated by Bree (8). The shakedown ratchetting boundaries 

are given by 

op/ vo + 
ia/a 

to =1for ot/ Qo ý< 2.0 2.48 

ap at' 
=1 for at/ a0 > 2.0 2.49 

aa 
00 

Burgreen (5) obtained analytical solutions for a beam subjected 

to a steady axial load and a cyclic bending moment. An 

elastic-perfectly-plastic material behaviour model was used. 

The general behaviour is similar to that of a 2-bar structure 

and the Bree tube described above, namely, depending on the 

applied load, elastic, shakedown, ratchetting and 

collapse can occur. The equivalent Bree diagram is shown in 

Fig. 2.12(iii) known as the Burgreen diagram. Unlike the Bree 

diagram of Fig. 2.12(ii), the ratchetting/collapse boundary is 

closed because both the axial load and the bending moment, by 

themselves can cause the component to collapse. The narrowness 

of the ratchetting regime indicate that the behaviour is very 

sensitive to changes in the applied loads. I 

Knowledge of the shakedown/ratchetting boundary is particularly 

important during the initial design stage of components, in 

which the possibility of ratchetting exists. Several methods 

are used to determine shakedown/ratchetting boundaries. The 

solutions for the 2-bar structure (shown in Fig-2-12(i)), for 

the simplified model for the fuel can (shown in Fig. 2.12(ii)) 

and for the beam shown in Fig. 2.12(iii) are exact solutions. 

Many other components are, however, too complicated for exact 

solutions to be obtained and approximate methods are sometimes 



- 48- 

a possible alternative. Melan (72) proposed the Lower Bound 

Shakedown Theorem. Symonds (73) later applied the Melan's (72) 

theorems to obtain the boundary for a circular bar subjected to 

an axial force and cyclic torsional moment between given 

limits. Melan's theorem (72) generally gives a boundary which 

is conservative and gives a safe boundary against ratchetting. 

The apparent setback is that it can be too conservative and 

hence the material is not exploited to its full advantage. The 

attention is now focussed on the Upper Bound Shakedown Theorem 

proposed by Koiter (12) based on the principle of virtual work. 

Ponter (7) recently extended the theorem to include cases where 

cyclic plasticity occur. This was used to determine the 

shakedown/ratchetting boundary for a number of components. For 

a 2-bar structure and Bree tube, the boundary obtained by 

Ponter (7) is identical to the boundary obtained from the 

closed form analytical solutions. In solving the problem of a 

simply supported circular plate subjected to a steady 

transverse pressure and cyclic, linear radial temperature 

gradient, Ponter (7) states that the mechanism of ratchetting 

at low thermal load is different from the mechanism at high 

thermal load. From the assumed mechanism of ratchetting 

deformations shown in Fig. 2.12(iv) and 2.12. (v) the Upper Bound 

Shakedown Theorem were applied. The shakedown/ratchetting 

boundaries are shown in Fig. 2.12(vi). 

For structures with complicated shapes and stress 

distributions, e. g. structures with stress concentrations, 

closed form analytical solutions and bounding techniques can be 

difficult or impossible to apply. The alternative is to use a 
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numerical computer method. Dwivedi et al (17), Hyde (15), 

Hardy (16) and Hyde et al (33,65,67) used the finite element 

method. Hyde (15) investigated the behaviour of a circular 

plate with a radially movable direction fixed edge, subjected to 

a combination of membrane stress, transverse pressure and 

cyclic through thickness temperature variations. Hyde (15) 

found that for no transverse pressure, a Bree (8) type of 

mechanism exists and the ratchet strain per cycle is 

approximately twice that predicted by Bree's equation for a 

tube. A perfectly-plastic material behaviour model was assumed 

by Hyde (15). When a transverse pressure is applied the 

behaviour differed. The mechanism of ratchetting for the plate 

used by Hyde (15) but without the membrane stress was 

investigated by Hardy (16). 

Dawson et al (61) and Hardy (16) investigated the 

elasto-plastic behaviour of shouldered and flanged tubes 

subjected to an axial load and cyclic transient through 

thickness temperatures. Due to the changes in section a region 

of stress concentration occurs. In reference (61), the finite 

element results were compared directly to the experimental 

result on lead alloy material. The material data for a lead 

alloy was used in (61) and (16). A linear hardening model was 

used by Dawson et al (61) whilst Hardy (16) assumed 

elastic-perfectly-plastic, linear kinematic hardening and 

linear isotropic hardening models. The results were also 

compared to the experimental values. A detailed analysis of a 

uniform beam subjected to an axial load and cyclic bending 

moment by Hardy (16) is of particular relevance to the present 
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work. Here, a direct detailed comparison was made between 

finite element predictions using elastic-perfectly-plastic, 

linear kinematic hardening and linear isotropic hardening 

assumption. For the load combinations considered, perfectly 

plastic material behaviour gave an overestimate of the ratchet 

strains whilst the other models gave underestimates. 

Hardy (16) argued that the poor prediction was due to the 

inability of the material models used to predict the material 

ratchetting phenomenon which is a characteristic of the lead 

alloy material. 

Several general points have emerged from the review of the 

methods of predicting component ratchetting behaviour. 

Firstly, the exact solutions can be obtained only for simple 

component geometries and loadings. Secondly, the bounding 

techniques can be used for some components assuming an 

idealised material behaviour model. The results however can 

sometimes be too conservative if the Lower Bound Theorem is 

used. The Upper Bound Theorem can give the'exact' ratchetting 

boundary, if the mechanism of ratchetting deformation is 

accurately assumed. Finally, the finite element method is 

unlimited in its application. Provided the material behaviour 

model resembles the true material behaviour, and sufficient 

computing capacity exists, good predictions are obtained. 

2.3.2.2 Above the Creep Threshold. 

The effects of creep on the ratchetting behaviour of components 

have been considered by some authors 



(e. g. 8,10,11,16,30,23,71,75,33,70,55,65,71,69)" The 

behaviour, in general, is time dependent even though at 

complete stress redistribution state, the behaviour is 

independent of time. As a result, a time history analysis is 

required which could be both time consuming and expensive. 

Therefore there is a need for approximate, but reasonably 

accurate methods of analysis. This section is mainly concerned 

with both the approximate and complete time history analyses. 

Ainsworth (76) derived upper bounds for the work, displacements 

and creep energy dissipation of structures subjected to cyclic 

loading and creep. The analysis was restricted to a stationary 

cyclic state. In a further paper (77) the bounds were applied 

to structures subjected to steady mechanical loads and cyclic 

strains. A beam subjected to a steady axial load and cyclic 

curvature, a thin walled tube subjected to a steady axial 

stress and internal pressure and cyclic through thickness 

temperature and a 2-bar structure subjected to a steady axial 

load and cyclic variation in temperatures were analysed. The 

results were compared with those obtained from more detailed 

calculations; generally good agreement was obtained. The 

bounding solutions in (76) were later extended to include the 

behaviour which occurs before the cyclic stationary state is 

achieved (78) and the bound was subsequently applied to predict 

the deformation bounds for components subjected to a steady and 

cyclic loads. 

An upper bound for the accumulation of creep and plastic 

strains for the Bree problem (8) was obtained by O'Donnell and 



Porowski (79). The load conditions covered (79) correspond to 

S1and S2 and P regions of Fig. 2.12(ii). In these regions, some 

parts of the material near the tube mid-thickness, does not 

experience plastic straining (i. e. a so-called elastic core 

exists). The maximum stress in the elastic core was used to 

bound the accumulated strains. This was possible because the 

stresses in the elastic core is uniform through the thickness 

and also for the present problem the total strain is uniform 

through the whole thickness. Hence, any point can be taken as 

being representative of the creep deformation of the whole 

section. 

An excellent review of bounding techniques used in shakedown 

and ratchetting analysis at elevated temperatures is given by 

Leckie (80). Shakedown and ratchetting theorems below and 

above the creep threshold were discussed. In particular, for 

the case of variable loading it was deduced that the effects of 

plasticity can be considered small for load combination within 

n/(n+1) of the shakedown load (80); n is the creep stress 

index. For loads in excess of this value, the effects of 

plasticity could be significant. 

Hardy (16) and Hyde et al (75,33,65,67) obtained solutions for 

creeping structures using the finite element method. Results 

of the prediction were compared to experimental values. In the 

finite element analysis an idealised material behaviour model 

was used and no creep/plasticity interaction was assumed. The 

effect of stress concentration 'was also assessed. Reasonably 

good agreement between experimental and finite element results 
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was obtained considering that very simple material behaviour 

models were assumed. 

2.4 Conclusion. 

Literature relating to the ratchetting behaviour and 

ratchetting mechanisms for components with complicated loadings 

and/or geometries, particularly components with stress 

concentrations, and the effects of creep on ratchetting is 

scarce. Current material behaviour models do not adequately 

describe material behaviour, particularly cyclic hardening, 

cyclic relaxation, material ratchetting and plasticity/creep 

interaction are not well described. 

The results contained in this thesis are intended to fill some 

of the gaps in the literature and to assist with the 

understanding of the ratchetting mechanisms. Also, more 

specifically, the effect of creep. on ratchetting is illustrated 

(for the complete redistribution case) by use of the eccentric 

tube and clamped circular plate and the effect of material 

ratchetting on the predicted ratchet strains is illustrated for 

a simple beam component. The beam is subjected to a steady, 

axial mechanical load and cyclic, fully reversed bending 

moments. The results obtained for a tube subjected to a 

steady, axial, mechanical load and cyclic torsion are also 

presented to show that material ratchetting can be included for 

components with non-proportional, multi-axial stress systems. 
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Fig. 2.2(i). Effective stress-effective strain data from the 
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tests for lead alloy (from ref. 20) 
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Fig. 2.3(i) Cyclic hardening. 
Stress controlled cycling. 

Fig. 2.3(ii) Cyclic hardening. 
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Fig. 2.4(i) Cyclic softening. 
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Fig. 2.5(i) Cyclic relaxation. 
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Fig. 2.5(ii) Material ratehetting. 
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Fig. 2.9(ii) Isotropic hardening. 
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Fig. 2.9(i) Elastic-perfectly 
plastic model. 

Fig. 2.9(iii) Isotropic hardening 
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Fig. 2.9(iv) Isotropic hardening model in the n-plane. 
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Fig. 2.9(v) Kinematic hardening. 
Strain controlled cycling. 
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Fig. 2.9(vi) Kinematic hardening. 
Stress controlled cycling. 
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Fig. 2.9(vii) Kinematic hardening model in 
the n-plane. 
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Fig. 2.10(i) Mroz's model. 
Monotonic stress-strain curve. 
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Fig. 2.10(ii) Mroz's model. Virgin 
material in the n-plane. 

Fig. 2.10(iii) Position of the surfaces at the end of loading path 
OABCD in Fig. 2.10(1) for Mroz's model. 
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Fig. 2.10(iv) Mroz's model. Position of the work hardening surfaces 
at the end of non-propotional loading path PHK of Fig. 2.10(iii). 
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Fig. 2.10(v) Dafalias and Popov model(k5). Uniaxial bounding surface.! 
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Fig. 2.12(iv) Conical deformation of collapse. 
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Fig. 2.12(vi) Shakedown/ratchetting boundary for the plate 
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CHAPTER 3. 

RATCHETTING OF THIN TUBES. 

3.1 Introduction. 

Tubes are used in many industrial applications. Often they are 

subjected to internal pressure and cyclic, through-thickness, 

temperature variations. When the resulting thermal strains and 

pressures are large enough, ratchetting will occur. Bree (8) 

obtained analytical solutions to predict shakedown/ratchetting 

boundaries and ratchet strains for a uniaxial simplification of 

the problem. In order to obtain the analytical solutions, 

Bree (8) assumed that the axial stress was zero and he 

neglected the radial stresses. 

In many practical situations, axial loading (e. g. due to 

pressurized end closures on components), axial restraint 

(e. g. due to end restraints on pipework systems) or 

non-uniformity of wall thickness (e. g. resulting from initial 

manufacture or due to corrosion) may be present. In this 

chapter the effects of each of the above deviations from the 

problem analysed by Bree, for the shakedown/ratchetting 

boundary and the ratchet strains are investigated. 

The effect of 'complete' stress redistribution due to creep which 

occurs during 'long' dwell periods between thermal cycles is 

also investigated. 
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3.2 Tube Geometries and Finite Element Meshes. 

For the uniform wall thickness analyses, a tube with an outside 

diameter to thickness ratio of 20 was used. Since the 

component and loadings (see section 3.4) were axisymmetric, the 

mesh simply consisted of four elements (four elements through 

the thickness by one element along the length). Eight-noded, 

axisymmetric, isoparametric elements with 4 'gauss integration' 

points per element were used. 

For the non-uniform wall thickness analyses, a tube with an 

outside diameter to mean wall thickness ratio of 20 was chosen, 

so that the results could be compared with those from the 

uniform thickness tube analyses. The eccentricity of the 

centre of the bore with respect to the centre of the outside 

diameter was chosen to be 0.2 x the mean wall thickness. This 

eccentricity was considered to be the absolute maximum that was 

likely to occur in practice. " Since the geometry was not 

axisymmetric, simple axisymmetric finite element mesh could not 

be used. The mesh, consisting of 48,8-noded, isoparametric, 

plane stress elements, with four 'gauss integration' points per 

element, is shown in Fig. 3.1. 

3.3 Material Properties. 

The elastic-plastic material properties were chosen to 

approximate those of 316 Stainless Steel at elevated 

temperature (i. e. 400 to 6000C). An elastic-perfectly-plastic 

material (with E/vo=1000), having a Poisson's ratio, v, of 
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0.3, was used. All the mechanical and thermal properties were 

assumed to be independent of temperature, the actual properties 

used are given in Table 3.1. 

During the dwell periods, a steady-state power-law creep 

(Norton Creep) formulation was used (i. e. ec =Adn). Since 

complete stress redistribution was allowed in all cases, the 

actual values of the constants in the creep law do not have an 

effect on the subsequent ratchet strains for the uniform wall 

thickness tubes. For the non-uniform wall thickness tubes, 

only the stress index, n, can have an effect on the subsequent 

ratchet strains; results were obtained for stress exponents of 

3,5 and 7. The constants in the creep law were assumed to be 

temperature independent. 

The von-Mises effective stress criterion and the Prandtl-Reuss 

flow rule were used to relate the multi-axial behaviour to 

uniaxial behaviour for both the plasticity and creep 

calculations. 

3.4 Loading Conditions and Boundary Conditions. 

Pressure loading was applied to the bore of the tubes in all 

cases (for both uniform and non-uniform wall thickness). 

Calculations were then carried out for both the uniform and the 

non-uniform wall thickness tubes with a zero axial stress 

condition imposed. These calculations were performed so that 

direct comparisons with the Bree solution (8) could be made. 

Further calculations were carried out for the uniform wall 
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thickness tube in which 

i) a uniform axial strain, with an axial load (corresponding 

to a long, closed ended cylinder conditions), was imposed 

and 

ii) a zero total axial strain wasimposed 

The first of these simulates a more realistic condition than 

that assumed by Bree (8). ' The second simulates a pipe which 

has its ends constrained from moving. This condition sometimes 

occurs when a pipe (without bellows) is used to carry fluid 

between two relatively stiff components. 

In all cases (for both uniform and non-uniform wall thickness 

tubes), the thermal load was applied by incrementally imposing 

through thickness temperature distributions to the tubes. 

During a complete thermal loading cycle, the temperature of the 

external surfaces were maintained constant, at temperature, T, 

while the temperatures of the internal surfaces were increased 

from T to T+AT and then reduced back to T, linear through 

thickness temperature distributions being maintained at every 

stage during the thermal loading. 

3.5 Results and Discussion. 

3.5.1 Effect of the Pressure on the Bore. 

In order to obtain simple analytical solutions, Bree (8) 

neglected the variation of radial stress (-P at the bore and 
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zero at outside) and the consequent variations in the hoop 

stress. In this section the effect of the radial pressure, in 

the absence of axial stress (as assumed by Bree (8)) is 

investigated. The load combinations for which the finite 

element results were obtained are given in Table 3.2. Applying 

Lame's equations, the elastic radial stress and hoop 

stress, Qp and ve respectively, due to pressure, P, are given 

by 

PRi 2 
Roll2 

) (1-l 6r P 

(R) 

( 

rJ 

and 

UP - 

PRi Ro 2 
(1+) Ar 

(Rö-Ri) 

3.1 

3.2 

Although the hoop stress is not uniform through the thickness 

(see Fig. 3.2) when the pressure is applied, the mechanical load 

is still conveniently characterised by the mean hoop stress 

i. e. 

0p= PRi/h 3.3 

Under zero axial stress conditions, the maximum elastically 

calculated thermal stress is given by: - 

Qt = EaOT/2 3,4 
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3.5.1.1 Ratchetting Mechanisms. 

For this type of component, two ratchetting regimes can be 

identified, these were defined as Rland Rzby Bree (8), see 

Fig. 2.12(ii). Detailed finite element results are presented 

for one load combination in each regime. 

a) The R Re gime_ 

For a load combination of ap /a0=0.758 and at/a0=1.376, the 

distributions of radial and hoop stresses, after the applications 

of the internal pressure, are shown in Fig-3.2. Fig. 3.3(i) 

shows the through thickness distribution of the hoop stress at 

the end of the first half cycle and the hoop stress at the end 

of the second half cycle. 

It can be seen that tensile yielding occurs over more than half 

the thickness of the tube at the end of each half cycle. There 

exists a volume of material, near the centre, in'which tensile 

yielding occurs during each half cycle, this gives rise to the 

ratchetting behaviour. The increments of plastic hoop strain 

at the end of each half cycle are shown in Fig. 3.3(ii). The 

ratchet strain during the cycle, in this case, is the sum of 

these plastic strain increments. It is observed that the 

through thickness variations of plastic hoop strain increment 

over a cycle _are_not uniform. This is due to the non-uniform 

distribution of the radial stress through the thickness. The 

variation of total strain at the mid-thickness with cycle 

number is included in Fig. 3.4(i). Fig-3.4(ii) includes the 
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variation of ratchet strain at the tube mid-thickness with 

cycle number. A large ratchet strain occurs in the first cycle 

and is constant for each cycle after the first. The mechanism 

is very similar to that described by Bree (8). However, in the 

Bree's analysis, the stress distributions during the first and 

second half cycles of each thermal shock are mirror images of 

each other. When the radial pressure is included in the 

analysis, the stress distributions are no longer mirror images. 

b) The Regime. 

For a load combination of ap /ao=0.379 and at/a0=3.0, the through 

thickness distribution of the hoop stress at the end of first 

and second half cycles are shown in Fig-3.5(i). Both 

compressive and tensile yielding occurs at the end of each half 

cycle. The volume of material at the tube mid-thickness yields 

in tension at the end of each half cycle whilst the material at 

the surfaces, exhibit cyclic plasticity over a cycle. The 

through thickness variation of the increment of plastic hoop 

strain at the end of each half cycle is shown in Fig. 3.5(ii). 

The variations of the total hoop strains and hoop ratchet 

strain with cycle number are included in Figs. 3"k(i) and (ii) 

respectively. Again, a large ratchet strain was obtained in 

the first cycle. A constant ratchet strain was obtained for 

the second and subsequent cycles. 

As was the case in the R, regime, the 'mirror image' stress 

distributions predicted by the Bree's analysis were not 
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obtained. However, the ratchetting mechanism was found to be 

essentially the same as that predicted by Bree (8). 

3.5.1.2 Effect of Mechanical and Thermal Load Magnitudes on 

Ratchet Strains. 

For each load combination given in Table 3.2, five cycles of 

thermal loads were imposed. Steady state ratchetting was 

achieved in each case. The steady state ratchet strain per 

cycle at the tube mid-thickness for each load combination is 

given in Table 3.2. 

The variations of the steady state ratchet hoop strains with 

ap/aOfor constant Qt/ 
övalues 

are shown in Fig-3.6. From 

Fig-3.6, the shakedown/ratchetting boundary (i. e. the boundary 

above which ratchetting occurs) was determined by linearly 

extrapolating the result to zero ratchet strain. The amount of 

extrapolation is small. The extrapolated values are given in 

Table 3.2 and in Fig-3.7 which shows the shakedown and 

ratchetting regions on a 'Bree-diagram'. The contours of 

constant ratchet strains, linearly interpolated from Fig. 3.6 

are also shown in Fig. 3.7. The shakedown/ratchetting boundary 

and the constant ratchet strain contours obtained from the 

finite element results are very accurately predicted by the 

Bree's analysis(8). It is therefore concluded that the effect 

of the variations in the hoop and radial stress distributions, 

caused by the pressure applied to the bore, have a very small 

effect on the ratchetting behaviour. 
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3.5.2 Effect of Pressurised Closed Ends. 

As well as ignoring the radial stress variations and the 

consequent hoop stress variations, Bree (8) also assumed that 

axial stresses are zero in order to obtain a simple analytical 

solution. In this section the effect of axial stress, caused 

by pressurised end closures, on a long cylinder is 

investigated. The elastic axial stress due to pressure, up is 
z 

given by: - 

up = PRi/(Rö - Ri) 3.5 

The radial and hoop stresses are also given by Equations 3.1 

and 3.2 respectively. Again, for convenience, the mechanical 

load is characterised by the mean hoop stress (Equation 3.3). 

However, because uniform axial strain conditions were imposed, 

the maximum, elastically calculated thermal stress is given 

by: - 

0t= EaAT/2(1-v) 3.6 

In the following description of the results, Equation 3.6 is 

used to characterise the thermal loading. The load 

combinations for which the finite element results were obtained 

are given in Table 3.3. 
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3.5.2.1 Ratchetting Mechanisms. 

As in the case where zero axial stress conditions are imposed 

(section 3.5.1), ratchetting regimes R1 and R2 can be identified. 

Typical behaviour in both regimes is illustrated by Figs 3.8 to 

3.10. 

a) The R1Regime. 

The distribution of axial and hoop stresses through the 

thickness for a load combination of ap/ao=0.853 and atlao =1.5 

are shown in Fig-3.8(i). Due to the pressure loading, the 

axial stress is uniform through the thickness, whereas the hoop 

stress varies slightly across the thickness. When thermal 

loading is applied, both the axial and hoop stresses change. 

In the first half of each cycle, at the steady ratchet state, 

the through-thickness distribution of the axial and hoop 

stresses are also shown in Fig. 3.8(i). Yielding occurs in the 

tensile-tensile quadrant of the yield surface (in the 

az-ae plane) over more than half the tube thickness. In the 

second half of each cycle, at the steady ratchet state, 

yielding also occurs in the tensile-tensile quadrant of the 

yield surface over more than half the tube thickness. The 

material near the mid-thickness position yields during each 

half cycle. Also, due to the non-uniform distribution of 

through-thickness radial stress, the stress distribution during 

each of the first half cycles, Fig-3.8(i) are not a mirror 

image of that in the second half cycle. Fig-3.8(ii) shows the 

increments of the plastic axial and hoop strain components over 
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each half cycle in the steady ratchet state. Also in this 

case, the sum of each of the half cycle plastic strain 

increments gives the ratchet strain. As expected, the axial 

ratchet strain is uniform through the thickness because 'plane 

sections remain plane'. However, the ratchet hoop strain is 

not uniform through the thickness. Also, the magnitude of the 

axial ratchet strain is lower than the magnitude of the hoop 

ratchet strain. 

The variation of total axial and mid-thickness total hoop 

strains with cycle number are shown in Fig. 3.9(i). The 

corresponding variation of ratchet strains with cycle number 

are shown in Fig. 3.9(ii). A steady ratchet occurs after the 

first cycle. The mechanism is similar to the Bree's 

analysis (8), that is, yielding of material near the centre 

during each half cycle is necessary to cause ratchetting in the 

tube. 

b) The Regime. 

A load combination of ap/ao=0.568 and, vt/a0=2.5 is chosen to 

illustrate the behaviour in the R2 regime. For this load, the 

through thickness distribution of the axial and hoop stresses 

are shown in Fig-3-10(i). In the first half of each cycle, in 

the steady cyclic state, yielding in the 

compression-compression quadrant of the yield surface in the 

ae azspace occurs near the inner surface. Yielding in the 

tensile-tensile quadrant occurs at the outer surface of the 

tube and extends to more than half the tube thickness. The 



- 86 - 

reverse occurs during the second half of each cycle. As in the 

Rlregime, the material near the centre yields in 

tensile-tensile quadrant during each half cycle. This was also 

observed for the tube with zero axial load described in section 

3.5.1. Also, as for load combinations in the Rlregime and for 

the tube with zero axial stress, the distribution of stresses 

through the thickness in the first half of each cycle is not a 

mirror image of the distribution in the second half of each 

cycle. The variation of the plastic axial and hoop strain 

increments through the thickness during each half cycle, at 

the steady ratchet state are shown in Figs-3-10(ii) and (iii) 

respectively. As expected, the ratchet axial strain is uniform 

through the thickness whereas the ratchet hoop strain varies 

through the thickness; the maximum ratchet hoop strain occurs 

at the inner surface. 

3.5.2.2 Effect of Mechanical and Thermal Load Magnitudes on 

Ratchet Strains. 

Similar linear extrapolations and interpolations of plots of 

ratchet strain versus ap/a0, under constant atlaovalues, were 

used to obtain the shakedown/ratchetting boundary and contours 

of constant ratchet strain. The shakedown/ratchetting boundary 

is shown in Fig. 3.11 (numerical values are given in Table 3.3) 

together with the contours of constant ratchet strains. Also 

shown in Fig. 3.11 is the shakedown/ratchetting boundary 

obtained from the simplified Bree's analysis (8). The presence 

of the axial stress has a significant effect on the 

shakedown/ratchetting boundary. It is seen that the axial 
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stress, which is not included in Bree's analysis (8), 

significantly increase the loads which are required to cause 

ratchetting. The axial stress reduces the effective stress in 

the tube. The equivalent stress at the mid-thickness, due to 

pressure only, Qeq , from Equations 3.1,3.2 and 3.5, can be 

expressed by: - 

zip 
eq = 0.9091Qp 

for the present tube geometry. 

3.7 

Fig. 3.12 shows the shakedown/ratchetting boundary obtained from 

the method outlined above, plotted as at lao versus BP /a. Also 
q0 

shown in Fig. 3.12 is the boundary obtained from Bree's 

analysis (8). The two boundaries are practically the same. 

Therefore Bree's solution could be used provided the mechanical 

load is characterised by the equivalent stress at the 

mid-thickness. If the Bree's solution (8) is used in this 

manner a safe boundary against ratchetting is obtained. 

When the axial stress is not zero, the behaviour differs 

slighty from the zero axial stress case. For the case 

considered, which modelled the pressurised closed ends, a 

biaxiality ratio of 2: 1 was applied; i. e. the ratio of the 

hoop stress to axial stress is 2. As pointed out earlier, the 

effective stress is reduced for this biaxiality ratio and the 

pressure required to cause ratchetting is increased compared to 

the zero axial stress case. Hence the shakedown/ratchetting 

boundary as shown in Fig. 3.11 does not correlate with the 
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simplified Bree's analytical boundary (8). This is different 

from the component analysed by Hyde (15) which has a biaxiality 

ratio of 1: 1. In (15) the shakedown ratchetting boundary 

practically coincided with Bree's boundary. However, for the 

present case, if the equivalent stress at the tube 

mid-thickness is taken as the mechanical load parameter, a 

better correlation is obtained as shown in Fig. 3.12. The 

Bree's boundary is conservative. 

3.5.3 Effect of Complete Axial Restraint. 

In sections 3.5.1 and 3.5.2, slight deviations from the Bree's 

analysis (8) were investigated. In this section a somewhat 

extreme, but practically relevant deviation from the Bree's 

analysis is investigated; complete axial restraint, i. e. no 

strain in the axial direction, is imposed. 

The radial and hoop stresses due. to pressure are also given by 

Equations 3.1 and 3.2 respectively. Again, the mechanical load 

is characterised by the mean hoop stress (Equation 3.3). Due 

to the axial restraint, the component of axial stress 
op is 

given by: - 

QZ =1ý ( Qp + v© ) 

= 2vPRi2 /(Rö 2- 
Ri) 3.8 
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Equations 3.1,3.2 and 3.8, give the equivalent stress due to 

pressure; 

PR2 R211 /2 
up 

e9 
=iý 6(r )+ 2(1-2v)2 

1 

2 (Ro - Ri) 
3.9 

From equation 3.9, the equivalent stress due to pressure at the 

outer surface 
aeQ is given by 

äeq = 0.8420PRý/h 

for the present tube geometry and dimension. 

3.10 

The expression 3.10 will be used later. 

The linear through-thickness temperature distribution, T, is 

given by: - 

AT ( 
2x 

2h - 1) +T3.11 

where x is measured from the tube mid-thickness. When the 

temperature distribution, T; is applied, assuming the tube is 

very thin, the hoop stress, oe , and the axial stress, OT , are 

given by: - 
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Qe = 2QtX/h 

and 

T 
vZ =v ae- Ea'( T' - T) 

_ -Q( 1- v- 2x/h ) 

where 

EaAT 

2(1-v) 

3.12 

3.13 

3.14 

Equation 3.14 is used to characterise the thermal load. The 

maximum values for both a9 and a occurs at x=-h/2 and hence 
z 

the maximum equivalent thermal stress (aT ) can be determined 
eq 

This is given by 

QeQ = 1.48Qt 3.15 

The effect of using Expressions 3.10 and 3.15 as the mechanical 

and thermal load characteristics will be assessed. The elastic 

thermal stresses for t /a0=. 61 are shown in Fig. 3.13(ii). 
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3.5.3.1 Ratchetting Mechanism. 

In this case, Rland R2regimes are not clearly identifiable, 

although, at high mechanical load and low thermal load, the 

behaviour is similar to that in the Rlregime. The axial 

restraint produces axial stresses which depend on both the 

mechanical and thermal loads; these axial stresses affect the 

behaviour considerably. The behaviour is illustrated by 

results for the load conditions of a /a =0.995 and at /a =0.688 

and for ap/a0=0.284 and at/ao=3.5. 

a) Mechanisms for a High Mechanical Load and Low Thermal 

Loads. 

When a load combination of apla 
0 

=0.995 and at/ao=0.688, was 

applied, the through thickness variation of the stresses during 

a cycle, at the steady ratchet state, are shown in Fig. 3.14. 

The radial stresses are practically unaffected by the thermal 

load. The distribution of stresses due to pressure only, are 

not uniform through the thickness. 

At the end of the thermal loading, yielding occurs over more 

than half the thickness near the outer surface. Neglecting the 

radial stress, yielding occurs in the tensile-tensile quadrant 

of the yield surface in the aa-a 
z 

space. At the end of the 

thermal unloading (second half cycle) yielding also occurs in 

the tensile-tensile quadrant of the yield surface to more than 

half the tube thickness. Over a cycle, in the steady ratchet 

state, there is an 'overlap' of the plastic zone in the region 
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of the tube mid-thickness. The increment of the plastic axial 

strains through the thickness are shown in Fig. 3.15(i). A 

compressive increment is obtained in the first half cycle 

whereas in the second half of each cycle, a tensile increment 

is obtained. In a cycle, the ratchet axial strain, which is 

also given by the sum of the plastic strain increments during 

each half cycle, is zero. The increment of the plastic hoop 

strain through the thickness in the first and second half of 

each cycle are shown in Fig. 3.15(ii). A tensile increment 

occurs during each half cycle which gives a non-zero ratchet 

strain. The variation of ratchet hoop strain through the 

thickness is also shown in Fig. 3.15(ii). The non-uniform 

through thickness stress distribution result in a non-uniform 

through thickness ratchet hoop strain. The variations of total 

hoop strain and ratchet hoop strain, at the mid-thickness, with 

cycle number are shown in Fig. 3.16(i) and (ii). It can be seen 

that a steady ratchet occurs after the second cycle. 

b) Mechanism of Ratchetting for ap La 
o =0.2824 and a t- 

Lao =3.5. 

In this case, the thermal loading is much more severe. The 

most severe loading occurs at the end of each thermal upshock 

(first half cycle) and at the end of each thermal downshock 

(second half cycle). The through-thickness distributions of 

axial stress, at the ends of each thermal upshock and thermal 

downshock, at the steady ratchet state, are shown in 

Fig. 3.17(i). Fig-3-17(ii) shows the through-thickness 

distributions of the hoop stress at the end of each thermal 

upshock and thermal downshock. The thermal load is so severe 
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that it is possible for yielding to occur throughout the tube 

material at the end of each half cycle. In the first half 

cycle, the yield zone can be divided into the following: - 

a) for -0.5<x/h<-0.0875 yielding occurs in the 

compressive-compressive quadrant of the yield surface, 

b) for -0.0875< x/h < 0.1875 yielding occurs in the 

compressive (axial)-tensile (hoop) quadrant of the yield 

surface and 

c) for 0.1875 < x/h < 0.5 yielding occurs in the 

tensile-tensile quadrant of the yield surface. 

Due to the severity of the thermal load, it is also possible 

for yielding to occur throughout the material in the second 

half cycle. The following zones are obtained: 

a') -0.5 < x/h < 0.2375 yielding occurs in the 

tensile-tensile quadrant, 

b') for 0.2375 < x/h < 0.425 yielding occurs in the 

compressive (hoop)- tensile (axial) quadrant of the yield 

surface and 

c') for . 425 < x/h < 0.5 yielding occurs in the 

compressive-compressive quadrant of the yield surface. 

Again, the radial stresses are negligible. The 

through-thickness distribution of the axial and hoop stress in 

the first half cycle are not mirror images of the distributions 

in the second half cycle. The mechanism is different from that 

described in sections 3.5.1 and 3.5.2. 

The distributions of plastic axial strain increment through the 

thickness, at the steady ratchet state, is shown in 

Fig. 3.18(i). A compressive increment occurs in the first half 
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of each cycle and an equal tensile increment occurs in the 

second half of each cycle; the axial ratchet strain is zero. 

Fig-3-18(ii) shows the through-thickness distribution of 

plastic hoop strain increment. The distribution of the ratchet 

hoop strain is also shown in Fig. 3.18(ii). The ratchet hoop 

strain is not uniform across the thickness. The variation of 

the total hoop and ratchet hoop strains at the mid-thickness 

with cycle number are shown in Fig. 3.16. Steady state 

ratchetting occurs after the second cycle of thermal loads. 

3.5.3.2 Effects of Mechanical and Thermal Load Magnitudes on 

Ratchet Strains. 

Table 3.4 shows the load combinations for which the finite 

element results were obtained. For each load, six thermal 

cycles were imposed. A steady ratchet state has been achieved 

in each case. 

The steady state maximum ratchet hoop strains and ratchet hoop 

strains at the mid-thickness for each load combination are also 

given in Table 3.4. By linearly extrapolating the results to 

zero ratchet strains, the shakedown/ratchetting boundary is 

determined. The boundary (denoted as 'computed boundary') is 

shown in Fig. 3.19" Contours of constant mid-thickness ratchet 

hoop strains and the Bree's boundary (8) are also shown in 

Fig. 3.19. For at /ao< 1.38, the Bree's boundary (8) is 

conservative and, for at /ao >1.38, the Bree boundary (8) is 

unsafe. Fig-3.20 shows the shakedown/ratchetting boundary 

plotted using the maximum equivalent thermal stress ( eq) 
and 
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the equivalent stress due to pressure at the tube outer surface 

(vQeq ) as the loading characteristics. The correlation of the 

boundaries is 'improved' slightly. In this case, the Bree 

boundary is conservative for UTq < 3.3500. Other methods of 
e 

characterising the loads were attempted but these did not give 

better correlations. 

3.5.4 Effect of Non-uniform Wall Thickness. 

In order to investigate the effect of non-uniformity of wall 

thickness, a zero axial stress condition was imposed so that 

the results could be compared with Bree's solution (8). The 

mechanical load was characterised by the mean hoop stress 

(Equation 3.3) and the thermal loading was characterised by the 

maximum thermal stress (Equation 3.4). 

Jeffrey (81) has obtained an analytical solution for the 

elastic stresses in a tube with an eccentric bore. For the 

present geometry (Fig-3.1), the analytical solutions are 

compared with the finite element predictions (obtained with the 

mesh shown in Fig. 3.1) in Fig-3.21. The comparison indicates 

that the finite element mesh is adequate. 

The load combinations used in the finite element analyses are 

given in Table 3.5. 

3.5.4.1 Ratchetting Mechanisms. 

Unlike the uniform wall thickness tubes, for a given 
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combination of loads, in general, there is not a single 

mechanism which characterises the behaviour of the non-uniform 

wall thickness tube. However, at any particular 

circumferential position, the mechanism can be identified as 

lying in either the shakedown, S, cyclic plasticity, P, or 

ratchetting, Rlor R2, regimes. The results obtained for two 

load combinations will be used to illustrate the behaviour of 

the 'tube'. 

a) Behaviour with a 
p/ao-. 

568 and at/ao_1.72. 

The variation of the hoop stress with0 at the inner and outer 

surfaces due to the applications of the pressure is shown in 

Fig. 3.21. The radial and shear stresses are small and have 

an insignificant effect on the behaviour of the component. 

Prior to the thermal loading, the stress distribution is 

entirely elastic. When the thermal loading is applied, a large 

plastic zone develops during the. first and second halves of the 

first cycle. The distributions of plastic zone at the ends of 

the first and second half cycles are shown in Fig-3.22. A 

large increment of strain is obtained during the first cycle of 

thermal load. During the subsequent cycles, the growth of the 

plastic zones are shown in Figs-3.23(i) to (viii). During the 

thermal loading, i. e. in the first halves of the cycles, the 

plastic zones emanate from the mid-thickness position, at the 

thinnest section of the tube (i. e. 6 =0 as shown in 

Fig-3.23(i). After this, the plastic zone spreads in the hoop 

and radial direction towards the outer surface. The extent of 

the plastic zone at the 17th of 21 increments and at the end of 
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the thermal loading (21st of 21 increments) are shown in 

Figs-3.23(ii) and 3.23(iii) respectively. Fig. 3.23(iv) shows 

the regions which experience plastic straining during the first 

half cycle. During the thermal unloading, i. e. in the second 

half cycle, the plastic zone again emanates from the 

mid-position of the thinnest section, as shown in Fig. 3.2 3(v). 

During the thermal unloading, the plastic zone spreads in the 

hoop and radial directions towards the inner surface. 

Figs. 3.23(vi) and 3.23(vii) show the plastic zones at the 17th 

of 21 increments of the second half cycle and at the end of the 

second half cycle. Fig-3.23(viii) shows all of the regions 

which experience plastic straining during the thermal 

unloading. It is observed that, there is a zone which 

experiences plastic straining over both the first and second 

halves of a thermal cycle. However, this zone does not extend 

over the whole circumference of the tube. The region of 

particular interest is that which experiences plastic straining 

in the region close to the thinnest section, i. e. at 0=00. 

The variation of the stresses at a=30, at the inner surface and 

at the mid-thickness position, with cycle number are shown in 

Fig-3.24(i). It can be seen that a steady cyclic state is 

achieved after about 7 cycles. The corresponding variation of 

the total strain with cycle number is shown in Fig. 3.24(ii). 

The large changes in the total strain at the inner surface, 

during the thermal loading, is due to the thermal expansion 

which is insignificant at the mid-thickness. Fig-3.25 shows 

the variation of the ratchet strains at the mid-thickness 

position with 0, it can be seen that ratchetting is confined to 

the region 0° < 0<94°with the maximum value occuring at 0=0°. 
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The variations of ratchet strains with cycle number, at 0=3°, 

at the inner surface and mid-thickness positions, are shown in 

Fig-3.26. Apart from the small variations due to the accuracy 

criterion of 0.5% (see Appendix III section AIII. 4.1. ) used in 

the plasticity calculations, steady state ratchetting occurred 

after about the 7th cycle. 

The variations of stress, through the thickness , at 6=30 and at 

e=27 
0, 

are shown in Figs. 3.27(i) and (ii) respectively. The 

behaviour is similar except that the 'overlap' region at the 

mid-thickness position is smaller at 8=270compared to that at 

6=30. In fact, this 'overlap' region reduces to zero at 

A= 940 The variation of increment of plastic strain, through 

the thickness, at 6=3°and at 8=27°are shown in Fig-3.28(i) and 

Fig. 3.28(ii) respectively. The distribution of the ratchet 

strain through the thickness, at 6=3°and at 6=27°, are shown in 

Fig. 3.28(iii). Although the distribution is not uniform 

through the thickness, the behaviour is essentially the same as 

that described by Bree (8). 

Figs. 3.29(i) and 3.29(1 1) show the displacements at the 10th 

cycle and the ratchet displacement at the steady 

ratchet state for the tube, respectively. 

b) Behaviour with ap/Qý 0.379 . and at/a = 2.5 

This load combination represents a low mechanical and high 

thermal load which is common in LMFBR components. Prior to the 

thermal loading, the stress distribution is also entirely 
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elastic. When the thermal loading is applied, in the first 

half cycle, compressive yielding occurs at the inner surface 

and tensile yielding occurs at the outer surface. In the 

second half cycle, plastic tensile yielding occurs at the inner 

surface and compressive yielding occurs at the outer surface. 

The distribution of the plastic zone during the first thermal 

loading and thermal unloading are shown in Figs-3-30(i) and 

3.30(11) respectively. Due to the residual stresses developed 

during the first cycle, in the subsequent cycles, the plastic 

zones reduce in size. At the steady cyclic state (achieved 

after 6 cycles) the developement of the plastic zones during a 

cycle are shown in Figs-3.31(i) to 3.31(vi). At the steady 

ratchet state, in the first half cycle, tensile yielding 

emanates from the mid-thickness position at the thinnest 

section and spreads in the hoop and radial directions towards 

the outer surface. Towards the end of the first half cycle, 

compressive yield starts to develop at the inner surface. The 

distribution of the plastic zone. at the end of the first half 

of each cycle, at the steady ratchet state, is shown in 

Fig. 3.31(iii). In the second half of each cycle, tensile 

yielding also emanates from the mid-thickness positions at the 

thinnest section and spreads around the tube. Near the end of 

the second half of each cycle, compressive yield zones develop 

at the outer surface. The distribution of the plastic zones at 

the end of the second half of each cycle is shown in 

Fig. 3.31(vi). A large plastic zone occurs over a region close 

to the thinnest section as observed in section 3.5.4.1(a) 

above. 
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The distribution of the ratchet strain with 6 at the 

mid-thickness is shown in Fig. 3.32. It can be seen that 

ratchetting also occurs over only a part of the 'tube' and not 

the whole component. The variations of stresses at 0=3°, at 

the inner surface and at mid-thickness position, with cycle 

number are shown in Fig-3.33(i). The corresponding variations 

of total strain with cycle number are shown in Fig. 3.33(ii). 

It is observed that a steady cyclic state (from Fig-3-33(i)) is 

achieved after 6 cycles. The ratchet strains at 9=3°at the 

mid-thickness and at the inner surface with cycle number are 

shown in Fig. 3.34. 

The distribution of the hoop stress through the thickness at 

0=3 
, 0=420 and at 6=1770 at the end of each half cycle, at the 

steady ratphet state, are shown in Figs. 3.35(i), 3.35(11) and 

3.35(iii) respectively. The corresponding distributions of 

plastic strain increments, through the thickness, at a=3°, 

a=42°and a=177°, at the end of each half cycle, are shown in 

Figs 3.35(iv), 3.35(v) and 3.35(vi) respectively. At a=3°, 

tensile yielding spreads over more than half the tube thickness 

at the end of each half cycle. At 9=42°, both tensile and 

compressive yielding occurs in each half cycle with a non-zero 

net increment of plastic strain over a cycle. At the 

mid-thickness position, tensile yielding occurs during each 

half cycle. This is a characteristic of ratchetting in the 

R2 regime of the Bree diagram. At 0=177°, shakedown occurs with 

cyclic plasticity. For this particular load combination it is 

possible to obtain both types of behaviour described by 

Bree (8). However, at the lower values of ap Iao ratchetting 
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in the R2 region at the thinnest section, with shakedown in the 

rest of the tube with a cyclic plasticity would occur. The 

ratchet strains are shown in Fig. 3.35(vii). 

The displacement of the tube at the 10th cycle is shown in 

Fig-3.36(i) and Fig-3.36(ii) shows the region of the 'tube' 

which suffer incremental deformation. 

3.5.4.2 Effects of the Thermal and Mechanical Load Magnitudes 

on Ratchet Strains. 

From the results presented in section 3.5.4.1, it is apparent 

that the shakedown or ratchetting behav. our, at any 

circumferential position in the non-uniform wall thickness 

tube, can be identified as similar to that described by Bree in 

the uniform tube. However, more than one regime can be present 

within the non-uniform wall thickness tube. 

The normalised average ratchet strains at 9=30(i. e. nearest 

'gauss point' plane to the thinnest section) are plotted 

against ap/ao, for given values of at/ao, in Fig. 3.37. BY 

extrapolation and interpolation, the shakedown/ratchetting 

boundary and contours of constant ratchet strains in Fig. 3.38 

were obtained. Also shown in Fig. 3.38 is the 

shakedown/ratchetting boundary obtained by Bree (8). It can be 

seen that the shakedown/ratchetting boundary is 

non-conservatively predicted by Bree's analytical solution. 

However, if instead of using the average hoop stress, op, to 

represent the mechanical loading characteristics, the maximum 

hoop stress (i. e. the hoop stress at 6=00, see Fig-3.21) is 
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used, the correlation is much better (see Fig 3.39). For thin 

cylinders the maximum hoop stress can be simply obtained by 

scaling up the mean hoop stress, o 
p, 

by the ratio of the mean 

wall thickness to the minimum wall thickness $, i. e. 

ap= $Qp 

It is therefore concluded that for design purposes, the 

ratchetting results for uniform wall thickness thin tubes can 

be applied to non-uniform wall thickness tubes, provided the 

minimum wall thickness is considered. 

3.5.5 The Effect of Complete Stress Redistribution Due to 

Creep. 

When complete stress redistribution, due to steady load creep 

between each thermal cycle occurs the shakedown/ratchetting 

boundary is coincident with the elastic boundary (see 

Fig. 2.12(ii) for example). 

For the uniform wall thickness tubes, the ratchet strain per 

cycle under complete redistribution conditions is the same as 

the first cycle ratchet strain. This is because the stationary 

state stress distribution, i. e. uniform stress, is independent 

of the creep stress index, n. The contours of constant ratchet 

strain per cycle, under complete redistribution conditions, for 

the uniform wall thickness tubes, are given in Fig. 3.40(i) to 

3.40(111). 
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For the non-uniform wall thickness tube, the stationary state 

stress distributions are not independent of the creep stress 

index, n; for the particular geometry chosen, the differences 

are, however, very small, see Fig. 3.41(i) to 3.41(111). To 

illustrate the behaviour of the non-uniform wall thickness tube 

when creep occurs, the results for a load combination of 

/a =0.379 and a la =1.376 will be used. 
P0t 

Under no-creep conditions, the variations of hoop stress at the 

inner and outer surfaces with8 due to the pressure as shown in 

Fig-3.42 and is purely elastic. The variation of hoop stress 

due to pressure (indicated as initial), at the end of thermal 

loading (first half cycle) and at the end of thermal unloading 

(second half cycle) at 8=30,420,720,1080,1530 and 1770 are shown 

in Figs. 3.43(i) to (vi). In the first half cycle, tensile 

yielding occurs at the outer surface. Since the loads 

correspond to the shakedown region elastic behaviour occurs in 

the subsequent cycles. The distribution of increment of total 

strain during the first cycle is shown in Fig-3.44, the maximum 

occurs at the inner surface for 8=00. The variations of 

maximum total hoop strain and maximum hoop ratchet strain with 

number of cycles are shown in Fig-3.45(i) and (ii). Shakedown 

occurs after the first cycle. 

When redistribution is allowed to occur, the initial 

distribution of hoop stress shown in Fig-3.42 changes until the 

distributions of hoop stress shown in Figs. 3.41(i), (ii) and 

(iii), for n values of 3,5 and 7 respectively, are obtained. 

For the n values considered the effect of creep is to 
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redistribute the stresses so that a more uniform distribution, 

through the thickness, occurs. 

The distribution of stress through the thickness, for various 

values of 0, at the end of first and second half cycles, for 

n=3,5, and 7, are shown in Fig-3.46(i) to (vi), Figs. 3.47(i) to 

(vi) and Figs. 3.48(i) to (vi) respectively. The stress 

distribution prior to each thermal cycles are also given in 

Figs. 3.46,3.47 and 3.48. For each value of n considered, 

during the first half cycle, plastic yielding occurs in the 

region close to the outer surface and elastic behaviour occurs 

during the second half cycle. The behaviour is similar to the 

first cycle behaviour of the tube in the 'no-creep' case. The 

variation of strain increment with 0 at various surfaces, 

through the thickness, for n=3,5 and 7, are shown in 

Figs. 3.49(i), 3.49(ii) and 3.49(iii) respectively. The 

distribution is very similar to the first cycle behaviour in 

the 'no-creep' condition as shown in Fig-3.44. Since a 

stationary state of stress occurs prior to thermal load, the 

behaviour at successive cycles will be identical to the 

behaviour just described. At each cycle, an increment of 

strain as shown in Figs-3.49(i) to (iii) is obtained during 

each cycle and is practically independent of n. The maximum 

value occurs at the thinnest section. Table 3.6 shows the 

values of the maximum ratchet strains and ratchet strains at 

mid-thickness position, at 0=30, for the values of n 

considered. The first cycle ratchet strain for the 'no-creep' 

case and the predicted value using Bree's analysis (8) are also 

given. It can be seen that Bree's solution (8) accurately 
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predicts the mid-thickness ratchet strain of the tube in the 

presence of creep. The first cycle ratchet strains in the 

'no-creep' case are lower than those obtained when creep 

occurs. 
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Young's Modulus, E 

Yield stress, co 

Poisson's ratio, v 

Coefficient of expansion, a 

160 GNm-2 

160 MNm-2 

0.3 

20 X 10-6 K-1 

Table 3.1 Materials data for the elastic-plastic analysis of the 
tubes. 

Cr la 
t0 a /a 

p0 

Mid-thickness normalised ratchet 
hoop strains ee /eo 

Maximum normalised 
ratchet hoop strain 

R 
/E Co o 

first cycle steady shakedown first cycle steady 
state boundary state 

0.688 0.758 0.0975 0 0.1034 0 
0.853 0.2429 0.166 0.815 0.2597 0.180 
0.947 0.8023 0.557 0.867 0.600 

1.204 0.663 0.2584 0 0.2647 0 
0.758 0.5115 0.335 0.696 0.5493 0.363 
0.853 0.9151 0.812 0.9957 0.880 

1.376 0.568 0.2475 0 0.2593 0 
0.663 0.3955 0.100 0.639 0.4089 0.108 
0.758 0.7093 0.528 0.7633 0.571 

1.720 0.474 0.3258 0" 0.3393 0 
0.568 0.455 0.048 0.559 0.4634 0.053 
0.663 0.7374 0.4210 0.7919 0.459 

2.064 0.474 0.519 0 0.524 0 
0 568 0.7789 0.368 0.507 0.8304 0.402 
0.663 1.1602 0.889 1.2489 0.958 

2.752 0.379 0.7156 0.097 0.351 0.7316 0.107 
0.474 1.1168 0.442 1.199 0.483 

3.0 0.379 0.8849 0.274 0.317 0.9246 0.301 
0.474 1.3437 0.666 1.449 0.727 

3.5 0.284 0.8128 0.0716 0.275 0.8212 0.080 
0.379 1.2348 0.5779 1.3216 0.634 

4.0 0.284 1.0511 0.3084 0.226 1.0862 0.344 

0.379 1.6589 0.8421 1.7976 0.880 

Table 3.2 Ratchet strains and shakedown/ratchetting boundary for a 
uniform tube under plane stress condition. 



- 107 - 

at/ 0 
ap/a0 

Mid-thickness normalised 
ratchet hoop strains 

eR/E 
Ao 

Normalised 
ratchet axial 
strains ER/e zo 

Maximum 
normalised 
ratchet hQpp 
strains sA/e 

first steady boundary first steady first steady 
cycle state cycle state cycle state 

0.5 0.947 0.01859 0 0.01067 0 0.0581 0 
0.995 0.1254 0.0721 0.976 0.0137 0.0045 0.1371 0.080 
1.042 0.3054 0.2667 0.0143 0.010 0.3395 0.294 

1.0 0.758 0.0069 0 0.0494 0 0.1373 0 
0.853 0.2087 0.0231 0.846 0.0625 0.0037 0.2258 0.026 
0.947 0.5229 0.4114 0.0732 0.04067 0.5817 0.455 

1.5 0.663 0.2467 0 0.1266 0 0.2666 0 
0.758 0.4078 0.1468 0.723 0.1488 0.0284 0.4449 0.142 
0.853 0.7456 0.5488 0.1741 0.09 0.8208 0.609 

2.0 0.568 0.3728 0 0.2279 0 0.4038 0 
0.663 0.6073 0.2573 0.604 0.2669 0.0753 0.666 0.287 
0.758 0.9389 0.6665 0.3091 0.156 1.0359 0'. 742 

2.5 0.379 0.3566 0 0.2290 0 0.385 0 
0.474 0.4712 0.0150 0.470 0.2826 0.0022 0.5102 0.016 
0.568 0.7626 0.3596 0.3757 0.1187 0.8382 0.402 

3.0 0.379 0.5068 0 0.323 0 0.5488 0 
0.474 0.7867 0.3067 0.410 0.4193 0.1093 0.8633 0.343 
0.568 1.151 0.7636 0.5278 0.246 1.2732 0.854 

3.5 0.379 0.6772 0.1936 0.3961 0; 0791 0.7385 0.217 
0.474 1.120 0.6383 0.338 0.5805 0.2387 1.2383 0.715 

4.0 0.284 0.5877 0 0.3581 0 0.6354 0 
0.332 0.6841 0.141 0.309 0.3929 0.0501 0.744 0.157 
0.379 0.9879 0.4377 0.5485 0.1627 1.0875 0.490 

Table 3.3 Results for pressurised closed ends tube 
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Mid-thickness normalised ratchet 

hoop strains 

Ee/E 
0 

Maximum normalised 

ratchet hoop strains 

Ee/Eo 

/a c a /a First steady Shakedown First Steady 
0 t p 0 cycle state boundary cycle state 

0.688 0.947 0.5461 0.110 0.923 0.5929 0.111 

0.995 0.890 0.330 0.972 0.363 

1.376 0.663 0.567 0.016 0.656 0.6064 0.017 

0.758 0.874 0.221 0.9449 0.244 

1.720 0.568 0.7118 0.103 0.531 0.7609 0.114 

0.663 1.0204 0.364 1.1024 0.40 

2.064 0.474 0.7957 0.153 0.426 0.8514 0.203 

0.568 1.1127 0.454 1.2009 0.500 

2.752 0.284 0.7708 0.144 0.234 0.8185 0.158 

0.379 1.1039 0.415 1.1869 0.457 

3.0 0.189 0.5929 0.08 0.1488 0.6207 0.088 

0.284 0.9251 0.269" 0.9875 0.297 

3.5 0.189 0.8045 0.264 0.107 0.853 0.291 

0.284 1.248 0.568 1.3434 0.625 

4.0 0.189 1.0046 0.454 0.0912 1.095 0.556 

0.284 1.557 0.895 1.6834 0.986 

Table 3"4 Ratchet hoop strains and shakedown/ratchetting boundary for 

a tube with uniform thickness subjected to a steady internal 

pressure and cyclic linear through thickness temperature 

variation and zero axial strain. 



a t/ao 
Peak 

Mid-thickness ratchet hoop strains 

at 9=3 (ae/co) 

Maximum ratchet hoop 

strains at 0= 3o(ce/co) 

a /a first steady boundary first steady 
p 0 cycle state cycle state 

0.688 0.875 0.3601 0.230 0.5075 0.290 
1.0 3.460 2.81 0.8639 4.451 3.22 

1.204 0.750 0.4446 0.196 0.6897 0.280 
0.875 1.240 1.240 0.727 1.799 1.35 

1.376 0.750 0.7176 0.535 1.138 0.585 
0.875 1.240 1.41 0.674 1.848 1.460 

1.720 0.625 0.5002 0.185 0.7844 0.260 
0.750 1.0426 0.920 0.588 1.544 0.970 
0.875 1.332 1.75 1.868 1.780 

2.064 0.625 0.8102 0.581 1.161 0.660 
0.750 1.1726 1.235 0.514 1.604 1.265 

2.50 0.375 0.3948 0 0.6874 0 
0.50 0.8437 0.390 0.411 1.216 0.417 
0.625 1.097 0.940 1.313 0.960 

3.0 0.250 0.3917 0 0.693 0 
0.375 0.6168 0.070 0.358 1.176 0.123 
0.50 0.9417 0.579 1.225 0.580 

3.5 0.250 0.4419 0 0.9226 0 
0: 375 0.8033 0.252 0.301 1.3044 0.270 
0.500 0.9637 0.680 1.338 0.733 

Table 3.5 Ratchet strains for a tube with an eccentric bore 
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Normalised ratchet strain Eee/a 
o Cases 

Computed Bree's solution* 

Maximum mid-thickness 

n=3 0.258 0.190 

n=5 0.254 0.200 0.204 (all n) 

n=7 0.250 0.198 

first cycle 

'no-creep' 0.243 0.174 

Table 3.6 Normalised ratchet strains for elastic-plastic-creep 
computation. 

* The Bree's solution(8) is calculated from the equations 

ER/EO =(1-Qp/ao )+(Qt/oo )(1-2((Q0/ 0t)(1- Qp/oo )))1/2 

by taking 0=00 

Q 
p/oo =stress due to pressure at mid-thickness 

yield stress 

=77.0/160.0 =0.48 
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Eig. 3.6 Variation of ratchet strain at mid-thickness with ap/00 

at constant of/o0 for a tube with uniform thickness., at o EaAT/2 
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Bree boundary 

0.4 0.6 

vt= ECLAT/2 

RATCHETTING 

o. a 1.0 

(computed) 

-ºý 
a p/oa 

Fig. 3.7 Shakedown/ratchetting regimes of a tube with a uniform thickness 
and comparison with Bree's simplified solution 
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CHAPTER 4. 

RATCHETTING OF A CIRCULAR PLATE. 

4.1 Introduction. 

In Chapter 3, the ratchetting behaviour of thin tubes subjected 

to a steady internal pressure and cyclic through thickness 

temperature variations was investigated. The analysis included 

deviations from the classical Bree's analysis (8), which are 

relevant in practical situations. The deviations caused 

complications to the stress distributions e. g. the tube with 

variable thickness had circumferential, as well as radial, 

stress variations. The mechanisms of ratchetting, however were 

all found to be similar and could be related to the simple 

Bree analysis (8). The mechanism of ratchetting in tubes is 

well understood and a uniaxial simplification can be used to 

obtain relevant solutions. 

Other components, e. g. pressure vessel end closures or plate 

type structures, do not have the same ratchetting mechanisms as 

tubes. Also, there are practical situations where this type of 

structure is used under conditions in which ratchetting could 

occur, e. g. the above core plate like structures of LMFBR's. 

Although these structures do not have severe geometrical 

discontinuities, complicated stress distributions can be 

created due to self-weight, pressure and non-uniform 

temperature distributions. The behaviour of plates under some 

combinations of steady and cyclic, mechanical and thermal loads 
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is not fully understood, although some work on this type of 

component has been performed. The behaviour of a simply 

supported circular plate subjected to steady transverse 

pressure and cyclic linear radial temperature gradient has been 

investigated by Goodman and Goodall (18) and Ponter (7). In 

particular, Ponter (7) suggested that two types of ratchetting 

mechanisms exist, depending on the magnitudes of the applied 

mechanical and thermal loads. Hyde (15) and Hardy (16) have 

investigated the behaviour of a circular plate with a radially 

movable, direction fixed edge, subjected to combinations of 

steady membrane stress, transverse pressures and cyclic linear 

through thickness temperature gradients. With through 

thickness temperature gradients, the mechanism is different 

from that produced with radial temperature gradients as 

investigated by Ponter (7). 

In this chapter, the behaviour of a clamped circular plate 

subjected to a steady transverse pressure and cyclic, linear 

radial temperature gradient is investigated. The ratchetting 

mechanism for, this component is not the same as the 'Bree 

mechanism (8)' and therefore the problem cannot be approximated 

by a simple uniaxial model. The essential features of 

practical components such as the above core plate like 

structure of a nuclear reactor and pressure vessel end closures 

are contained in the present plate component and loading. The 

effects of complete stress redistribution due to creep areialso 

investigated. 
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The elastic-perfectly-plastic material properties used in the 

analyses were based on 316 Stainless Steel properties at 5500C. 

t These properties are given in Table 3.1 and are the same as 

those used in the tube ratchetting investigation described in 

Chapter 3. The creep behaviour was modelled by a Norton-Bailey 

Creep Law (30). Since only the effect of complete stress 

redistribution on ratchetting behaviour was investigated, the 

stress indices, n, used in the analyses are the only creep 

constants of importance, n-values of 3,5 and 7 were used. As 

in the tube analyses, all material properties were assumed to 

be temperature independent. Also, the multi-axial plasticity 

and creep behaviours were related to the uniaxial behaviours 

using the von-Mises effective stress criterion and the 

Prandtl-Reuss flow rule. 

4.2 Geometry and Loading. 

A plate with a radius, R, to thickness, h, ratio of 20 was 

chosen for the investigation. The finite element mesh, which 

consists of 40, eight noded, axisymmetric, isoparametric 

elements is shown in Fig. 4.1. The nodes at the edge of the 

plate were constrained so as not to move radially. Several 

different methods were used to restrain the edge of the plate, 

these are described in detail ip Appendix II. The most 

suitable method, for the present purposes was found to be the 

boundary condition C' (Appendix II), in which a "uniform, 
. shear 

stress distribution through the thickness was imposed at the 

outer edge. 
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The mechanical loading consists of a uniform pressure, P, 

applied to one surface of the plate; for the purpose of 

simplifying the subsequent description of the results, this 

surface is called the top surface. With the plate starting off 

at a uniform temperature, T, thermal loading consisted of 

incrementally increasing the temperature of the centre by AT 

whilst maintaining the edge at temperature T, with linear 

variation of temperature with radius being maintained 

throughout, i. e. at the end of the thermal loading, the 

temperature, T(r), at any radius, r, is given by 

T(r) =T+ pT(1-r/R) 4,1 

Thermal unloading consisted of incrementally reducing the 

temperature at the centre of the plate from T+A T back to T, 

whilst continuing to hold the edge at a constant temperature T. 

Again, a linear variation of temperature with radius was 

maintained throughout. 

Dwell periods, during which creep occurred, were only allowed 

during isothermal conditions, i. e. between complete thermal 

cycles. No creep was allowed to occur during each of the 

thermal loading cycles. Since complete stress redistribution 

was allowed between each thermal shock, in the calculation with 

dwell periods, the stress distributions before each thermal 

shock were identical. Hence the predicted ratchet strains and 

deflections were identical for the second and all subsequent 

thermal cycles. 
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4.3 Preliminary Analysis. 

Details of the elastic and elastic-plastic analytical and 

approximate solutions for the mechanical and thermal loading of 

the plate are given in Appendix I. 

The finite element and analytical predictions for the 

variations of surface hoop and radial stresses, and shear 

stress at the plate centre plane, in the elastic range are 

shown in Figs. 4.2(i) and (ii ) respectively. It can be 

seen that there is good agreement between the finite element 

and theoretical results. The variation of the transverse. 

deflection is shown in Fig. 4.3. A maximum value is obtained at 

the plate centre. The variation of the deflection at the 

centre with PR2/a0h2 is shown in Fig. 4.4. At low pressure, 

i. e. when no yielding occurs, the variation of the central 

deflection follows closely the expected elastic variation. 

When the pressure is increased further, yielding occurs and the 

deflection increases sharply with PR laoh Close to 
22 

collapse, convergence problems occur with the elastic-plastic 

finite element calculations. The maximum value of the pressure 

achievable by using the finite element method, therefore, 

depends on the magnitude of the load increments. With very 

small load increments used for the plate 

calculations (1.25 X 10-5PR2/ah2) a maximum PR2/aoh2 of 

3.25 was achieved. This value which will be very close to the 

collapse value, corresponds closely to the theoretical value of 
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3.125 (see Appendix I). The difference is most likely to be 

due to the neglect of the shear and pressure stresses in the 

theoretical analysis. The growth of the plastic zones with 

increasing pressure are shown in Fig. 4.5. Yielding starts to 

occur at a pressure of PR2/a 
0 

h2 =2.0. Yielding first occurs 

at C and D at the plate edge and then at points A and B at the 

plate centre (see Fig. 1.5 for the position of A, B, C and D). 

From these positions, the plastic zones expand through the 

plate thickness and along the surface. The extent of the 

plastic zone is symmetric about the centre-plane of the plate 

with compressive yielding occurring in the plate region around 

B and D and tensile yielding around A and C. At a pressure of 

PR2/aö h2=3.125, which is the theoretical collapse pressure 

based on von-Mises yield criterion (see Appendix I), the 

plastic zone is shown in Fig. 4.5. The centre plane of the 

plate remains elastic. The plastic zone at PR2/aö 2=3.25 
are 

also shown in Fig. 4.5. 

In the subsequent descriptions of the behaviour of the plate, 

the pressure loading is normalized with respect to the 

analytically determined 

22 
i. e. PL = 3.125Q0 h/R. 

collapse pressure 

The thermo-elastic hoop stress, aT , and radial stress, aT 

for a clamped circular plate subjected to a radial temperature 

distribution (equation 4.1) are given by: - 

T 2(1-v)r 
a8 at(1_ (2-v) R) 

ü. 2 
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T (1-v)r 
) ar =- Qt(1 - (2-v )H 

where e= 
(2-v)EaAT 

t-30-v) 

4.3 

4.4 

at represents the maximum elastic thermal stress in the plate 

which occurs at the plate centre; it is not dependent upon 

plate thickness. at has been used as the loading parameter for 

the thermal load. 

For the present plate geometry and loading, failure due to 

thermal buckling is possible. From reference 82, for a 

circular plate subjected to an in-plane load per unit length 

acting on the circumference, F, the plate buckles when 

F= 14.68D 

R2 

-- s- «- -1- Eh3 
wnere li ij Vfle PiaUe U1, itiness = 

12(1-v2) 

ü. 5 

4.6 

Due to the load F, the plate is subjected to an equibiaxial 

compressive stress. For the clamped circular plate 

subjected to a temperature distribution given by Equation 4.1, 

a biaxial compressive state of stress occurs. Although equation 

1.5 cannot be applied directly to the present problem, it can 
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be used to give some measure of the value of afla which is 
0 

likely to cause buckling. This is carried out as follows. Due 

to the load F, the radial and hoop stresses or and 

vF repectively, are given by: - 

=I a-ý I= F/h 

4L. 6D 
hR a- 

or 

F 

vr 
(Q R21------ý 

00 12(1- v) 

4.7 

4.8 

The lower values of o t/a0 to cause buckling can be obtained by 

equating Equations 4.2 at r/R=0 and Equation 4.8. This gives 

vt/QO = 3.36 4.9 

for the present plate geometry and material data. The thermal 

loads at /a0 for which the finite element results obtained were 

well below the value given by Equation 4.9 . Table 4.1 gives 

the load combinations for which the finite element results were 

obtained. 
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4.4 Results. 

4.4.1 Ratchetting Mechanisms. 

The results of the finite element analyses of the plates when 

subjected to steady transverse pressure loading and cyclic 

thermal loading indicated that two types of ratchetting 

mechanisms exist. Results for one load combination within each 

of these two ratchetting regimes will be presented in detail to 

describe the mechanisms. The load combinations chosen are: - 

(i) P/PL = 0.832 and at/a0=1.5, i. e. a high mechanical 

load and a low thermal load; and 

(ii)p/pL= 0.104 and at/ac=2.3, i. e. a low mechanical load 

and a high thermal load. 

(a) Mechanism of Ratchetting for P/ 0.832 and at 
=1.5. Q 0 

The radial distribution of hoop stress (a3) and radial stress 

(ar) at the plate surfaces and the shear stress (Trz) at the 

plate centre-plane when a pressure of P/PL 0.832, is applied 

are shown in Fig. 4.6. Some material in the plate has become 

plastic at this pressure. The plastic zones for P/PL = 0.832 

are shown in Fig. 4.7. Also the distributions of the hoop and 

radial., stresses at the top surface are practically equal but 

opposite in sign to the distributions at the bottom surface. 

The radial distribution of hoop and radial stresses at the top 

and bottom surfaces at the end of the first and second half 



- 199 - 

cycles are shown in Figs. 4.8(i) and 4.8(ii) respectively. At 

the end of the first cycle, yield occurs in the plate. The 

growth of plastic zone in the plate for the first two cycles is 

shown in Fig. 4.9(i). A small increase in plastic zone occurs 

at the end of each half cycle until a steady cyclic state is 

obtained; this was reached after 10 cycles of thermal loading. 

At the steady cyclic state, the growth of the plastic zones, 

which are created during each cycle, are shown in Figs. 4.9(ii) 

and (iii). Fig. 4.9(ii) shows the growth during the first half 

of each thermal load cycle. Plastic straining starts to occur 

at r/R = 0.62 (at the top surface), 0.78 (at the bottom 

surface) and 0.98 ( at the botom surface). From these 

positions, the plastic zones grow and at the end of each of the 

first half cycles, the zones are as shown in Fig. 4.9(ii). 

During the second half of each cycle, the growth is shown in 

Fig. 4.9(iii). Yielding starts at the same radial position as 

that of the first half of each cycle except that the position 

across the thickness is reversed. The overall plastic zone 

created during a complete thermal cycle, at the steady cyclic 

state, is shown in Fig. 4.9(iv). The behaviour is symmetrical 

about the plate centre-plane. 

During a complete cycle, it can be seen that, at every radial 

position, tensile (or compressive) yielding occurs through half 

of the plate thickness (during each of the first half cycles) 

and compressive (or tensile) yielding occurs through the other 

half of the plate thickness (during each of the second half 

cycles). This type of behaviour is analogous to the plastic 

hinge which can be created when a mechanical bending load is 



- 200 - 

applied to a beam, i. e. tensile yielding occurs over half the 

depth of the beam while compressive yielding occurs over the 

other half. When a plastic hinge of this type is created due 

to mechanical loading, unrestrained deformation occurs. 

However, in the present plate analysis, the yielding occurs 

over the top and bottom halves of the plate thickness at 

different times during the cycle. Hence the amount of 

deformation which can occur is limited by the elastic and 

thermal deformations which occur in the unyielded half of the 

plate thickness. Under these conditions, incremental 

deformation, as opposed to unrestrained deformation in a 

mechanical loading situation, occurs and there can be said to 

be an 'incremental plastic hinge' present. When a plastic 

hinge is created, there is a discontinuity in the stresses at 

the interface between the tensile and compressive yielding 

zones. Similarly, with an 'incremental plastic hinge' there 

are discontinuties in the stresses at the interface between the 

tensile and compressive yielding zones. This can be clearly 

seen from the through-thickness variation of the radial and 

hoop stresses at various radial positions as shown in 

Fig. 4.10(i) to (vi) for each of the first half cycles (during 

heating) and each of the second half cycles (cooling). It can 

be seen that a discontinuity in the stress occurs at the plate 

centre plane (z/h=0) which indicates that an incremental 

plastic hinge is developed at all radii. Heating and cooling 

of the plate induces compression and tensile loadings, 

respectively, which occurs both in the radial and hoop 

directions. The superposition of the compressive and tensile 

thermal loads on the mechanical bending of the plate due to the 
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pressure gives rise to the increments of bending strains in the 

plate. The through-thickness ratchet hoop and radial strains 

distribution, at various radial positions are shown in 

Figs. 4.11(i) to (vi). In all cases, the ratchet strains vary 

linearly through the thickness. The magnitudes, however, are 

different for different radial positions. From these results 

it can be concluded that a bending type of mechanism exists. 

The deflections of the plate at the 10th cycle are, shown 

in Fig. 4.12; the maximum deflection is at the centre of the 

plate (i. e. r/R = 0). The variation of the total accumulated 

ratchet deflection at plate centre and the corresponding 

ratchet deflection with cycle number are shown in Figs. 4.13(i) 

and (ii) respectively. A steady ratchet state occurs after 10 

cycles of thermal loading were applied. At the steady ratchet 

state, the variation of ratchet deflection-with radius is shown 

in Fig. 4.14. It can be seen that ratchetting occurs throughout 

the structure with the maximum ratchet deflection occurring at 

the plate centre. The variation of the steady state hoop and 

radial ratchet strains with radius, at z/h=-0.4472 (near the 

top surface) and at z/h=. 4472 (near the bottom surface) are 

shown in Fig. 4.15(1)and(ii). The ratchet hoop strain and ratchet 

radial strain are equal at the plate centre because at this 

position, an equibiaxial bending occurs. The hoop ratchet 

strain, at the top surface, reduces from a maximum negative 

value " at-the plate centre to zero at the plate edge. However, 

the radial ratchet strain increases in magnitude rapidly near 

the plate edge. This indicates that a plastic hinge occurs at 

the edge of the plate; no matter how fine a mesh was used at 
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the edge, it would not adequately model a hinge because it is 

confined to such a small radial width of the plate. However, 

its effect on the overall behaviour is insignificant. The 

variation of the steady state ratchet hoop and radial strain 

with radius at the top surface its 
, equal in magnitude but 

opposite in sign to that at the bottom surface. The radial 

variation of the shear ratchet strain is shown in Fig. 4.15(iii). 

The magnitude is considerably less than the magnitude of the 

hoop and radial ratchet strain. The effect of shear on the 

overall deformation and hence on the ratchetting mechanism 

negligible. 

(b) Mechanism of Ratchetting for P/PL= 0.104 and at/oo=2.3. 

The load combination represents a low mechanical load and high 

thermal load which is characteristic of the loading conditions 

applicable to LMFBR power plant components. Due to the 

pressure loading of P/PL = 0.104, an initially elastic 

behaviour is obtained. The variation of the hoop and radial 

stresses at the bottom and top surfaces with radius are shown 

in Fig. 4.16. Also, the distribution of the hoop and radial 

stresses at the top surface are practically equal in magnitude 

but opposite in sign to the distribution of the stresses at the 

bottom surface. The radial distribution of the hoop and radial 

stresses at the top and bottom surfaces at the end of the first 

and second half cycles are shown in Fig. 4.17. In this case, 

the stresses at the top surface and the stresses at the bottom 

surface are not symmetrical about the plate centre plane. This 

is because, the thermal stresses, which are uniform through the 
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thickness are the dominant stresses compared to the stresses 

due to pressure. Hence, the combined thermal and pressure 

stresses will tend to be uniform through the thickness. During 

thermal loading, a significant amount of material in the plate 

become plastic. The growth of plastic zone in the plate during 

the first half cycle of the thermal load is shown in 

Fig. 4.18(i). At the end of the first half cycle, the extent of 

plastic zone is also shown in Fig. 4.18(i) where a large amount 

of material has become plastic. During the second half cycle, 

the growth of plastic zone is shown in Fig. 4.18(ii) and at the 

end of the second half cycle, the plastic zone is confined to a 

smaller volume of the plate. After this, the increment of the 

plastic zone during each cycle is insignificant. At the steady 

ratchet state, which is achieved after the third cycle of 

loading, the extent of plastic zone at the end of each half 

cycle is similar to that shown in Fig. 4.18(ii). Also, at the 

steady ratchet state, yielding starts at r/R =0 (through the 

entire plate thickness) and spreads radially to r/R = 0.2 for 

the present thermal load. For higher thermal loads, the 

plastic zone would extend to larger radii. It is also noted 

that the plastic zone is confined to a small volume of material 

which is highly thermally stressed, in this case near the plate 

centre. 

The through thickness distributions of the hoop and radial 

stresses at various radial positions, at the end of each half 

cycle, in the steady ratchet state, are shown in Figs. 4.19(i) 

to (vi). The radial and hoop stresses are practically uniform 

through the thickness. However, for r/R<0.2, the radial and 
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hoop stresses are practically equal in magnitude at the end of 

each half cycle but for r/R>0.2, the magnitude of the radial 

and hoop stresses, at the end of the second half cycle, are not 

equal. It can be seen that in the region r/R<0.2, the material 

is in plastic compression during each half cycle and in plastic 

tension during the other half cycle. The stress strain 

behaviour at r/R = 0.0211 and z/h = -0.447, shown in Fig. 4.20, 

shows that the material near the plate centre is a region of 

cyclic plasticity. The distribution of the ratchet, radial and 

hoop, strains in the steady ratchet state, through the 

thickness, at various radial positions, are shown in 

Fig. 4.21(i) to (v). At r/R<0.1, a bending type of deformation 

is not apparent. Even though the ratchet hoop strain at 

r/R=0.0788 is almost linear through the thickness, the ratchet 

strain in the radial direction is not linear through the 

thickness. The through thickness distribution of radial 

ratchet strain indicated that for r/R<0.0788, there is flow of 

material in the radial direction. - Again this could only occur 

incrementally since the deformation is associated with the 

development of plastic zone during thermal cycles. At r/R = 

0.1789, however, the ratchet radial strain is linear through 

the thickness (see Fig. 4.21(iv)) and is associated with bending 

in the radial direction. The hoop ratchet strain is negligible 

at r/R=0.1789 and at r/R>0.2; all the ratchet hoop and radial 

strains are zero. 

The variation of ratchet hoop, radial and shear strains with 

radius, at the steady ratchet state are shown in Fig. 4.22. 

Ratchet strains are only obtained in the zones in which cyclic 
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plasticity occurs. The variation of ratchet deflection with 

radius, at the steady ratchet state, is shown in Fig. 4.23. 

Again maximum ratchet deflections occur at the plate Centre. 

The variation of total accummulation of ratchet deflection and 

ratchet deflection at the plate centre with cycle number are 

shown in Figs 4.24(1) and (ii) respectively. Fig. 4.12 shows 

the 'exaggerated' deflection of the plate at the 10th. cycle 

and maximum deflection, again, occurs at the plate centre. 

4.4.2 Effect of Load Combination on Ratchetting. 

The results for the ratchet deflection at the plate centre for 

the load combinations of Table 4.1 are given in Table 4.2 and 

4.3. In all cases, except where indicated, a steady ratchet 

state has been achieved. From these results, the 

shakedown/ratchetting boundary for a clamped circular plate 

subjected to a steady transverse pressure and a cyclic linear 

radial temperature variation was constructed. A linear 

extrapolation procedure illustrated in Figs 4.25(i) and (ii) 

was used for this purpose. The shakedown/ratchetting boundary 

is shown in Fig. 4.26. Also shown in Fig. 4.26 are the lines of 

constant ratchet deflection, interpolated from the straight 

line fits in Figs. 4.25(i) and (ii). 

It was also observed that, in all cases, steady ratchet 

deflections were achieved after a number of cycles. However, 

during this process, a considerable amount of deflection was 

accummulated. The total accummulated ratchet deflection at the 

first, fifth, tenth, twentieth and thirtieth cycles are given 

in Table 4.4. 
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The total equivalent strains at the plate centre for the first, 

fifth, tenth, twentieth and thirtieth cycles are given in 

Table 4.7. At these positions, the radial ratchet strains are 

practically equal to the hoop ratchet strains. For the case in 

which low mechanical and high thermal loads were present, these 

values represent the maximum value obtained. But for high 

mechanical and low thermal loads the maximum occurs at the 

plate edge. However, it should be noted that although the 

behaviour at the edge of the plate does not have a significant 

effect on overall deformations, the strains at these positions 

may be in error because a relatively coarse mesh was used. The 

total accummulated ratchet strains and the ratchet strains at 

various cycle numbers are given in Tables 4.8 and 4.9 

respectively. 

The shakedown/ratchetting boundary obtained is compared in 

Fig. 4.26 with that obtained from the Upper Bound Shakedown 

Theorem; this comparison will be discussed later. The 

boundary obtained in this manner is derived in Appendix I 

sections A1.2.4.1 and A1.2.4.2. 

4.4.3 Comparison Between Finite Element and Theoretical 

Shakedown/Ratchetting Boundaries. 

Based on the Upper Bound Shakedown Theorem proposed by 

Koiter-(12) and extended by Ponter (7), to include cyclic 

loading, the shakedown/ratchetting boundary for the circular 

plate subjected to a steady transverse pressure and a cyclic 

linear radial temperature distribution has been obtained. The 
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derivation is given in Appendix 1. Fig. 4.26 compares the two 

boundaries. For at/a0< 2.0, the finite element boundary falls 

within the theoretical boundary. However, for at/a0> 2.0, the 

shakedown/ratchetting boundary obtained by using the finite 

element method, is outside the theoretical boundary. 

4.4.4 Effect of Complete Stress Redistribution Due to Creep. 

When stress redistribution due to creep occurs between each 

thermal loading, ratchetting may occur in the 'no-creep' 

shakedown region. The effect of creep on ratchetting can be 

bounded by the no-creep and complete redistribution situations. 

In the present analysis, only the effect of complete stress 

redistribution, between each thermal loading cycle, is 

investigated. For some components, e. g. a tube with uniform 

thickness under steady internal pressure, the stationary stress 

distribution is independent of the creep stress index, n. For 

the present plate component, however, the stationary stress 

distributions are not independent of n. To illustrate the 

behaviour of the clamped plate subjected to steady transverse 

pressure, P, and cyclic linear radial temperature distribution, 

a load combination in the 'no-creep' shakedown region was 

chosen; the loads used were P/PL=0.416 and at la 
0 =1.275, with 

n-values of 3,5 and 7. 

Under.. 'no-creep' conditions, the stress distribution when a 

pressure of P/PL -0.416 is applied is as shown in Fig. 4.27. 

Under this pressure, the initial deformation is entirely 

elastic. When the thermal load is applied, plastic deformation 
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occurs; the plastic zone produced in the first cycle of 

thermal load is shown in Fig. 4.28. A large plastic zone occurs 

in the first cycle but the behaviour is elastic (i. e. shakedown' 

occurs) after 4 cycles. The variation of the total and ratchet 

deflections at the plate centre with cycle number are shown in 

Figs. 4.29(i) and (ii) respectively. 

When complete redistribution due to creep is allowed, the 

stress distribution is different from that shown in Fig. 4.27. 

The completely redistributed stress distributions for n=3,5 and 

7 are shown in Fig. 4.30(i), 4.30(ii) and 4.30(iii) respectively. 

The stationary stress distributions are different for different 

n. For each value of n, the stress distributions is 

symmetrical about the centre-plane of the plate. The through 

thickness variation of the radial and hoop stresses at the 

stationary stress state at various radial positions are shown 

in Figs. 4.31,4.32 and 4.33 for n=3,5 and 7 respectively. 

Generally, the magnitude of the surface stationary state stress 

at the plate centre is higher for lower values of n. When the 

thermal load is applied, plastic deformation is produced. The 

extent of plastic zones during the thermal cycles is_shown in 

Figs. 4.34(i), (ii) and (iii) for n=3,5 and 7 respectively. The 

positions of the zones are similar for all n values but the 

volume of material in which the plastic zones occur is 

different in each case. The amount of ratchet deflection 

depends on the amount of plasticity in the plate material. The 

variation of the ratchet deflection with radius is shown in 

Fig. 4.35 for the values of n considered. Also shown in 

Fig. 4.35 is the first cycle ratchet deflection under the 
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'no-creep' conditions. The maximum ratchet deflection occurs 

at the plate centre. Table 4.10 gives the maximum ratchet 

deflection for all values of n considered and also for the 

first cycle 'no-creep' ratchet deflection. The maximum ratchet 

strains are also given in Table 4.10. Overall the ratchet 

deflection and the maximum ratchet equivalent plastic strains 

decrease with increasing values of n. The variation of maximum 

ratchet deflection with n is shown in Fig. 4.36. The maximum 

ratchet deflection reduces approximately linearly with n for 

this particular case. It is interesting to note that the 

extrapolated values, at-n=1, of this linear relationship gives 

the first cycle 'no-creep' ratchet deflection, as shown in 

Fig. 4.36. Even though the result is for a particular load 

combination, the implication is that when creep occurs, 

ratchetting occurs in the 'no-creep' shakedown region and the 

maximum possible ratchet deflection is given by the first cycle 

'no-creep' ratchet deflection. This observation can be 

generalized, i. e. the elastic/shakedown boundary becomes the 

shakedown/ratchetting boundary when complete redistribution due 

to creep occurs. 

4.5 Discussion. 

The ratchetting mechanisms of the plate has been investigated. 

Due to the pressure, the radial, hoop and shear stresses do not 

only --vary through the thickness but also in the radial 

direction. The resulting hoop and radial stresses due to 

thermal loading only vary radially but are uniform through 

thickness. Ratchetting can occur when two load combinations 
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are imposed simultaneously. R1and R2 regimes of ratchetting, 

observed in the tube components, cannot be identified for the 

plate. More importantly, shakedown with cyclic plasticity does 

not occur. The results also indicate that two distinct modes 

of behaviour are obtained, depending on the magnitudes of the 

applied loads. At low mechanical load and high thermal load, 

ratchetting is confined to a small volume of material which 

exhibits cyclic plasticity and at high mechanical load and low 

thermal load, incremental deformation occurs over the entire 

plate. In both cases, maximum ratchet deflection occurs at the 

plate centre. This type of behaviour is different from 

the behaviour of thin tubes described in Chapter 3, and also 

different from that analysed in reference 15,7,16 and 18. In 

particular a shear type of mechanism, as proposed by Ponter (7) 

for simply supported circular plates subjected to the same 

loading as the present plate, does not occur for the present 

plate. 

The results also indicate that, increasing the magnitude of the 

applied load (mechanical or thermal) has the effect of 

increasing the ratchet deflection i. e. worsening the 

situation. For load combinations close to the 

shakedown/ratchetting boundary, it was found that the ratchet 

deflection is practically linearly related to the applied load 

(for e. g. at constant value of at /ao=1.5, shown in 

Fig. 4: -25(ii), the three points are practically colinear). 

Hence a linear extrapolation can be used to determine the 

shakedown/ratchetting boundary (i. e. the load at which the 

ratchet deflection is zero). This method is used to determine 
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the shakedown/ratchetting boundary of the plate shown in 

Fig. 4.26. The boundary obtained in this manner, lies within 

the boundary obtained using the Upper Bound Shakedown Theorem 

for at 110 <2.0. For a t/ao 
>2.0, the boundary is above that 

obtained from the method given in Appendix I. The differences 

could be attributed to the finite element mesh used being 

coarse. 

The results are normalized with respect to the plate dimension 
are 

and material properties and therefore4applicable to any thin 

plate with similar geometry and loading. 
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U 
t/U P/PL 

0.5 0.884,0-936 0.988 
1.275 0.728,0.832 
1.5 0.676,0.728,0.832 
2.1 0.416 
2.3 0.104,0.416 
2.4 0.104 

Table 4.1 Load combinations for which finite element-results 
were obtained. 

at/00 P/PL Normalised rahchet 
deflections u /h 

P/PL for uR/h=0 

(constructed 
boundary) 

0.5 0.884 0.0 
0.936 0.0116 (1) 0.920 
0.988 0.090 

1.275 0.728 0.028 0.707 
0.832 0.1588 

1.5 0.676 0.037(2) 
0.728 0.102 0.653 
0.832 0.261 

Table 4.2 Normalised steady state ratchet deflection fora la <2.0 
t o. 

P/PL at/a0 Normalised ratchet for uR/h=0 at/a 
R 0 

deflection u /h 

104 0 2.2 0.14X10 
4 

. 2.3 _ 0.84X10 2.196 
2.4 2.00 X 10_4 

0.416 2.1 0.00084 2.096 
2.3 0.0466 

Table 4.3 Normalised ratchet deflection for v t<2.0 
Qo 

(1) Values at 30 cycles 

(2) Values at 50 cycles 
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Total deflection at Nth cycle uT/h 
a t/°o 

P/PL 
N=1 N=5 N=10 N=20 N=30 

0.5 0.884 0.406 0.553' 0.611 0.631 - 
0.936 0.518 0.788 0.970 1.197 1.352 
0.988 0.739 1.275 1.825 2.813 3.729 

1.275 0.728 0.409 0.745 1.034 1.493 1.870 

0.832 0.586 1.351 2.203 3.813 - 

1.5 0.676 0.425 0.790 1.122 1.639 2.055 
0.728 0.491 1.054 1.644 2.752 3.775 
0.832 0.682 1.813 3.148 - - 

2.1 0.416 0.342 0.489 0.562 0.623 0.648 

2.3 0.104 0.0559 0.0563 0.0568 - - 
0.416 0.401 0.670 0.986 1.497 1.977 

2.4 0.104 0.0586 0.0597 0.0608 - - 

Table 4.4 Total deflection at plate centre at various number of 
cycles for a clamped circular plate subjected to a 
steady transverse pressure and cyclic linear radial 
temperature gradient. 

Total accumulated ratchet deflection uR/h 

/a a P/P N=1 N=5 ' N=10 N=20- N=30 
o t L 

0.5 0.884 0.112 0.259 0.317 0.336 - 
0.936 0.152 0.422 0.604 0.831 0.985 
0.988 0.223 0.759 1.309 2.297 3.213 

1.275 0.728 0.241 0.577 0.866 1.325 1.702 
0.832 0.355 1.119 1.971 3.581 - 

1.5 0.676 0.274 0.640 0.972 1.488 1.904 
0.728 0.323 0.886 1.476 2.584 3.607 
0.832 0.451 1.582 2.917 - - 

2.1 0.416 0.2523 0.399 0.472 0.533 0.5583 

2.3 0.104 0.0334 0.0339 0.0343 - - 
-0.416 0.3109 0.6098 0.897 1.407 1.887 

2.4 0.104 0.0362 0.0373 0.0383 - - 

Table 4.5 Total accumulated ratchet deflection at the plate centre 
for the clamped circular plate. 
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at/0 P/PL 
Ratchet deflection at the Nth cycle uR/h 

N=1 N=5 N=10 N=20 N=30 

0.5 0.884 0.112 0.02476 0.0049 0.00076 0 
0.936 0.152 0.0530 0.0294 0.0190 0.01156 
0.988 0.223 0.120 0.105 0.0946 0.0898 

1.275 0.728 0.241 0.0698 0.0512 0.04 0.0363 
0.832 0.355 0.178 0.166 0.159 - 

1.5 0.676 0.274 0.0746 0.061 0.0444 0.0386 
0.728 0.323 0.128 0.115 0.108 0.102 
0.832 0.451 0.274 0.263 - - 

2.1 0.416 0.2523 0.0229 0.0108 0.00376 0.00188 

2.3 0.104 0.0334 0.000096 0.000088 - - 
0.416 0.3109 0.0634 0.0547 0.0492 0.0472 

2.4 0.104 0.03619 0.000172 0.000212 - - 

Table 4.6 Ratchet deflection at plate centre at various number of cycles 
for the clamped circular plate. 

Qt/co P/PL 

Total equivalent strain at r/R=0.02, z/h=-0.447 

at the Nth cycles , eeq /eo 

N=1 N=5 N=10 N=20 N=30 

0.5 0.884 3.983 5.817 6.525 6.685 - 
0.936 5.190 8.444 10.680 13.430 15.340 
0.988 7.696 14.20 20.820 32.620 43.580 

1.275 0.728 4.949 8.892 12.00 16.82 20.84 
0.832 5.180 13.670 23.10 40.65 - 

1.5 0.676 5.478 10.02 13.46 18.729 23.018 
0.728 6.011 12.43 18.53 30.06 40.73 
0.832 7.796 20.24 34.80 - - 

2.1 0.416 7.354 9.314 11.18 14.94 18.92 

2.3 0": 104 6.584 14.14 23.637 - - 
0.416 8.418 14.870 23.280 40.540 57.86 

2.4 0.104 7.255 17.790 30.98 - - 

Table 4.7 Total equivalent strain at r/R=0.02 and z/h= -0.447 at 
various cycle number for the clamped circular plate. 
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t0 a /e P/P 
L 

Total accumulated ratchet strain, CR /c at 

r/R=0.02 and z/h= -0.447, and Nth cycle. 

N=1 N=5 N=10 N=20 N=30 

0.5 0.884 1.693 3.527 4.235 4.453 - 
0.936 2.105 5.359 7.590 10.34 12.25 
0.988 2.826 9.33 15.950 27.75 38.71 

1.275 0.728 3.886 7.829 10.94 15.76 19.78 
0.832 4.190 12.68 22.11 39.66 - 

1.5 0.676 4.542 9.084 12.523 17.793 22.082 
0.728 4.948 11.37 17.470 29.0 39.67 
0.832 6.155 18.60 33.160 - - 

2.1 0.416 6.788 8.748 10.61 14.37 18.35 

2.3 0.104 6.442 13.998 23.496 - - 
0.416 7.852 14.304 22.714 39.97 57.29 

2.4 0.104 7.113 17.65 30.84 - - 

Table 4.8 Values of total accumulated equivalent ratchet strains at 
r/R=0.02 and z/h=-0.447 for the clamped circular plate. 

t/c0 
P/PL 

Ratchet strains at r/R=0.02, z/h=-0.447, cR /c 

at the Nth cycles. 

N=1 N=5. N=10 N=20 N=30 

0.5 0.884 1.693 0.288 0.064 0.001 0 
0.936 2.105 0.606 0.350 0.230 0.140 
0.988 2.826 1.450 1.270 1.140 1.070 

1.275 0.728 3.886 0.766 0.530 0.440 0.390 
0.832 4.190 2.00 1.820 1.730 - 

1.5 0.676 4.542 0.846 0.626 0.454 0.399 
0.728 4.948 1.350 1.190 1.120 1.050 
0.832 6.155 2.970 2.870 - - 

2.1 0.416 6.788 0.351 0.380 0.380 0.40 

2.3 0.104 6.442 1.891 1.900 - - 
0'. 416 7.852 1.640 1.70 1.740 1.720 

2.4 0.104 7.113 2.640 2.640 - - 

Table 4.9 Values of ratchet equivalent strains at r/R=0.02, z/h=-0.447 
for the clamped circular plate. 



values normalised normalised normalised 
of ratchet ratchet ratchet 

n deflection at equivalent equivalent 
plate centre strain at plastic strains 

uR/h r/R=0.02, at r/R=0.02, 
c z/h=-0.447 z/h=-0.447 

Re /e e /E 
o eq eq o 

3 0.0644 2.61 2.808 
5 0.062 2.52 2.70 
7 0.0592 2.34 2.533 

first 
cycle 0.0671 3.075 2.8849 
'no-creep' 

Table 4.10 Maximum ratchet deflaetion and strain for the clamped 
circular plate. Complete stress redistribution 
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Fig. 4.36 Variations of ratchet deflection at plate 
centre with creep stress index n 
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CHAPTER 5. 

THE EFFECT OF MATERIAL RATCHETTING. 

5.1 Introduction. 

In Chapters 3 and 4, the ratchetting of components made of 

elastic-perfectly-plastic materials was investigated. It was 

found that with some combinations of steady mechanical and 

cyclic thermal loads, ratchetting occurred. With an 

elastic-pefectly-plastic material, this form of ratchetting is 

termed 'structural ratchetting'. However, the behaviour of 

real materials is much more complex and phenomena such as 

strain hardening, material ratchetting (sometimes called cyclic 

creep), cyclic relaxation, cyclic hardening and cyclic 

softening occur; see Chapter 2 for details. 

The effect of strain hardening has been assessed, by using an 

isotropic or kinematic hardening material behaviour model 

(e. g. 6,16,61,75). Use of both of these material behaviour 

models results in predictions of ratchet strains (or 

deformations) which monotonically reduce to zero after a finite 

number of cycles. However, experimental data 

(e. g. 55,74,75,4,3) show that ratchetting continues for many 

more cycles than is predicted and may even continue until 

failure occurs. This indicates that the inclusion of strain 

hardening in the material behaviour model is not sufficient to 

give accurate predictions. Material ratchetting, cyclic 

relaxation etc. also need to be included. 
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Hardy et al (75) used experimental results, obtained from tests 

of lead alloy beams subjected to steady axial load and cyclic 

bending loads, to assess the accuracy of predictions based upon 

kinematic and isotropic hardening material behaviour models. 

The poor predictions obtained were attributed to the fact that 

material ratchetting was not included in the models. In 

section 5.2 of this chapter, the results of calculations 

similar to those of Hardy et al (75) are described. However, a 

much more complex material behaviour model capable of 

predicting material ratchetting and cyclic relaxation was used. 

The predictions are compared with the experimental results in 

order to assess the accuracy of the material ratchetting 

model. 

In section 5.3 of this chapter, the effect of material 

ratchetting in 316 Stainless Steel on the behaviour of a beam 

which is constrained to remain straight and is subjected to a 

steady axial mechanical load and. a cyclic linear through-depth 

temperature distribution is assessed. This is, in fact, the 

equivalent uniaxial model used by Bree for the problem of 

ratchetting of a thin cylinder. The results given in section 

5.3 also show that the finite element coding, written for the 

material ratchetting model, works correctly with thermal 

loading as well as mechanical loading. 
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5.2 Assessment of the Goodman and Goodall (18) Material 

Ratchetting Model, Using Experimental Ratchetting Data from 

Lead Alloy Beams. 

5.2.1 Material Behaviour. 

5.2.1.1 Experimental. 

In its as-cast condition, a large amount of scatter was 

obtained in the uniaxial, montonic, stress-strain behaviour for 

the lead alloy (nominal alloy composition: 2.55%Sb, 0.14%As), 

see Ref. 3. However, when the uniaxial specimens were subjected 

to a normalising heat treatment of 100°C for 144h before 

testing, the scatter was greatly reduced (3). The scatter band 

associated with the monotonic stress-strain behaviour, at 

20°C ± 
2°C with a strain-rate of 2x 10-5/s, from all tests, is 

shown in Fig-5.1. Also shown in Fig. 5.1 is the mean 

stress-strain curve. 

Under cyclic loading between +c and -e, for c in the range 

0.1% <c< 1%, it was found (3) that no significant cyclic 

hardening or softening occurred; see Fig. 5.2" for example. 

However, when uniaxial specimens were subjected to cyclic 

loading between fixed stress levels, with a non-zero mean 

stress, 'material ratchetting' was found to occur (3); see 

Fig. 5.3 for example. The material ratchet strains were found 

to reduce during the first three to four cycles, after which an 

approximately constant ratchet strain was obtained. The 

average ratchet strains per cycle for each of the four tests 



- 281 - 

performed are included in Table 5.1 together with the mean 

stresses and stress ranges associated with each test. The 

experimental data used in the comparison was obtained by 

Yahiaoui (3). 

5.2.1.2 Material Model Data. 

Since the component to be analysed (a beam) is subjected to 

uniaxial states of stress only, the formulation of the material 

model relevant to the present analysis is the uniaxial 

formulation described in detail in Chapter 2. However, the 

material model is capable of being generalized for use with 

multi-axial stress states and non-proportional loading. The 

formulation for multi-axial stress states is described in 

Appendix III; this multi-axial formulation has been 

incorporated into the finite element programs. 

Because of the scatter in the. results obtained from the 

'material ratchetting' tests (see Table 5.1), it was decided to 

obtain three sets of constants for the 'material ratchetting' 

model. The constants were chosen to give ratchet strains equal 

to those obtained in tests U1, U3 and U4 in Table 5.1. For 

each of the models the yield stress, a, and saturation stress, 
0 

as, were the same, the values used were 

00 = 14.0 MNm 2 

and 

as = 29.2 MNm 2 
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The other three constants (q, r and t) were obtained 

iteratively; the iterative procedure used to obtain the 

constants q, r and t is also described in detail in 

Appendix III. The constants were determined such that a 

reasonable fit to the mean, monotonic stress-strain curve of 

Fig. 5.1 was obtained. Also a good prediction on the average 

experimental ratchet strains from stress controlled cycling 

test such as that shown in Fig. 5.3 was obtained. The resulting 

constants are given in Table 5.2. 

As a comparison, Fig. 5.4 shows the resulting stress strain 

curve under cyclic loading between fixed stress levels; the 

constants corresponding to material model A were used based on 

the ratchet strains obtained from Fig. 5.3. The discrepancies 

between the experimental stress strain curve (Fig-5-3) and the 

prediction (Fig. 5. ZI) can be attributed to a combination of the 

inherent scatter in material behaviour and the simplifying 

assumption made for the material model. It is worth noting 

that, although the monotonic stress strain curve and the 

ratchet strain were well predicted, the fit to the subsequent 

stress strain curve may not be as good as the fit to the 

monotonic stress strain curve. 

The fit to the mean, monotonic, stress strain curve is good in 

all cases (see Fig-5.1). The ratchet strains predicted, by the 

three. models, for each of the 'material ratchetting' 

experiments are given in Table 5.1. From Table 5.1 it can be 

seen that material model A generally underestimates the ratchet 

strains obtained in the experiments (except for test U4 from 
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which the constants for model A were derived). The effect of 

the material constants q, r and t on ratchet strains, for a 

range of mean stresses and stress ranges, is conveniently 

illustrated by presenting the data in the form of carpet plots, 

as shown in Fig. 5.5. It can be seen that model A gives 

significantly lower material ratchet strains than both models B 

and C. The material ratchet strains for model C are slightly 

greater than those for model B. When compared with the 

experimental results, material models B and C both give 

reasonable predictions; material model B appears to be 

slightly better than model C but there is little to choose 

between them. Other relevant material constants are given in 

Table 5.3. 

5.2.2 Loading. 

5.2.2.1 Experimental. 

In the experiments, which were carried out by Yahiaoui (3), the 

axial load and bending loads were applied using dead-weights. 

The curvature induced by the bending loads caused the axial 

load to., be offset with respect to the beam centre line. As a 

result, although constant bending loads were applied to the 

ends of the beams, the actual maximum bending moments at the 

centre of the beam, where the strains were measured, were found 

to vary during the first five cycles. After the first five 

cycles, the maximum eccentricities caused by the bending loads 

were found to be constant. Hence the bending moments were 

constant after the fifth cycle. The actual bending moments at 
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the centre of the beam are given in Table 5.4. Details of the 

'beam rig' together with all the experimental results are 

described in references (3,74). However, the experimental 

results relevant to the present analysis are included in 

Figs. 5.6(i), (ii) and (iii) and 5.7(1), (ii) and (iii). In 

Figs-5.6 and 5.7, the first tensile (FT) surface i. e. z/d=0.5 

is defined as the surface which experiences a tensile stress 

for the first application of moment in the first cycle. The 

first compressive (FC) surface, i. e. at z/d=-0.5, is the 

opposite surface which would have a compressive stress for the 

first application of moment during the first cycle, with zero 

mean load. 

Top and bottom surface strains were measured at the centre of 

the beam using electrical resistance strain gauges. 

5.2.2.2 Finite Element. 

The uniform beam, which has a breadth, b, of 10mm and a depth, 

d, of 25mm was modelled using a uniform mesh of 10 elements 

through the depth and one element along the length; 8-noded, 

isoparametric, plane stress elements were used. The loads were 

applied via an 'effectively rigid' block identical in size to 

the beam except that it is 100 times thicker. The purpose of 

the 'rigid' block is to ensure that the face CD remain plane 

during deformation (see Fig-5.8 for notation and coordinate 

convention). The axial load and bending moments are applied to 

the rigid block. The face_AB is constrained from displacement 

in the x-direction and the node at X is also constrained from 
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displacement in the z-direction. Nodal displacements in the 

x-direction oftface CD are identical to the corresponding nodal 

displacement along the face, FG. In the computation, a 2x2 

array of 'gauss integration' points was used. 

Firstly, the required axial load was applied. The moment was 

then applied in increments until the maximum required value was 

obtained (the moments are given in Table 5.4). The moments 

were then reduced, incrementally to zero and then applied in 

the opposite direction to the required maximum value (these 

moments are also given in Table 5.4). The moments were then 

reduced incrementally to zero. This process of applying the 

bending load was repeated for the required number of cycles. 

Very small load increments (typically 200 increments to cover 

the full moment range) were used to ensure that accurate 

solutions were obtained. When the magnitude of the load 

increments were reduced by a factor of 2, the accumulated 

strains after 15 cycles increased by a factor of about 1.025. 

This discrepancy was considered to be acceptable for the 

present purposes. 

5.2.3 Finite Element Results. 

5.2.3.1 General Behaviour. 

To illustrate the general behaviour of the beam, the finite 

element results for the load combinations associated with test 

B2 (Table 5.4) and material model C will be used. Fig. 5.9(i) 

shows the through-thickness stress distributions associated 
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with the application of the axial load, when the maximum moment 

is applied during the first cycle and when the maximum reverse 

moment is applied during the first cycle. It can be seen that 

tensile yielding occurs through more than half of the depth of 

the beam at each extreme of moment application. There are also 

significant regions, near the outside surfaces where reverse 

plasticity occurs; the cyclic plasticity regions occupy about 

one-third of the volume of the beam. As cycling proceeds, the 

maximum stress and the mean stress, during a cycle, near the 

surfaces of the beam reduce, see Fig. 5.9(ii). This is 

accompanied by a reduction in the width of the stress strain 

loops at these' positions (see Fig.. 5.10(i) and 5.10(11)) At the 

same time, the region of the beam experiencing tensile yielding 

during the application of each moment and reverse moment is 

reducing to one-half of the beam depth. The +M and -M stress 

distributions tend towards a situation in which they are mirror 

images of each other, (see Fig. 5.9(ii)). At positions near the 

centre-line of the beam, no cyclic plasticity occurs and only 

small elastic stress reversals are obtained (see 

Fig. 5.10(iii)). At intermediate positions, large elastic 

stress reversal occurs (e. g. see Fig-5-10(iv) for z/dz-0.22) 

or cyclic plasticity, with loops narrower than those near the 

surfaces, occurs (e. g. see Fig-5.10(v) for z/d=-0.28). The 

zero moment stress distributions, which are in equilibrium with 

the axial load, redistribute as cycling continues. In the 

central region, the stress increases. At the same time, the 

mean stress during a cycle in regions adjacent to the surfaces 

of the beam reduce and will eventually become zero. At this 

stage, equal and opposite plastic strains will occur with each 
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moment reversal and the stress at the centre-line remain 

constant. Regions between these will experience purely elastic 

strain variations. 

5.2.3.2 Effect of Material Constants. 

Figs. 5.11(i), 5.11(ii), 5.12(i) and 5.12. (11) show the finite 

element results obtained with the three models for loads 

corresponding to test'B2 (see Table 5.4). As may be expected, 

Figs. 5.11 show that the material models which give the greater 

material ratchetting lead to the largest strain accumulations 

in the beams. However, it is interesting to note that the 

differences are small during the first five cycles. In fact 

the model which gives the smaller material ratchet strains 

gives the largest strain accumulation in the first two to three 

cycles. The finite element predictions, of strains accumulated 

in 15 cycles, for loads corresponding to all three tests, are 

presented in Table 5.5 for the three material models used. The 

experimental results are also given in Table 5.5. It. can be 

seen that the behaviour indicated in Figs. 5.11, for load 

condition B2, is also observed with load conditions B1 and B3. 

Thus it can be concluded that the material constants which 

result in the largest material ratchetting will produce the 

largest strain accumulation in the beams. Also, although there 

is relatively little difference between the results predicted 

with models B and C, the predictions based on model C are 

marginally better when compared with the experimental results. 

This correlates with the marginally better overall fit to the 

uniaxial material ratchetting experiments (Table 5.1) obtained 

with model C. 
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5.2.3.3 Effect of Axial Load. 

Although the moment ranges corresponding to tests B2 and B3 are 

not identical (2.13M 
0 

and 1.99 M, respectively, for the 5th to 
o 

15th cycles), they are close enough to allow assessment of the 

effect of axial loading to be made. Fig. 5.13 shows the 

predicted variations of ratchet strains for the surfaces of the 

beams, plotted against cycle number, for material model B. It 

can be seen that increasing the axial load from 0.5P 
0 

to 

0.7P0 causes an approximate doubling of the ratchet strains for 

the 5th to 15th cycles. Although the ratchet strains are 

reducing with cycle number for both axial loads, the ratio of 

the ratchet strains does not appear to be changing 

significantly. Hence it may be expected that the asymptotic 

strain accumulations will have a ratio of about two. This 

effect of mean load is similar to that predicted using simpler 

material behaviour models (75) and to that obtained by 

Bree (8). Using Bree's solutions (8), taking 00,2 as an 

equivalent yield stress of an equivalent 

elastic-perfectly-plastic material model, a ratio slightly less 

than two is obtained. However, it should be noted that the 

predictions based on the Bree's analysis are much too large; 

this will be discussed further in section 5.2.6. 

5.2.4 Comparisons of Finite Element Predictions with 

Experimental Results. 

It is clear from Table 5.1 that material model A does not fit 

the overall experimental data accurately. Models B and C give 



- 289 - 

similar results and both appear to fit the data (Table 5.1) 

reasonably well. Detailed comparisons between experimental and 

finite element results are therefore only presented for 

material model C; model B gives very similar results (see 

Table 5.5). 

in 

The variationsýFT and FC surface strains with moment, during 

the first complete cycle for test B2 are compared with the 

'model C' finite element results in Figs. 5.14(i) and (ii). It 

can be seen that for the first quarter cycle (i. e. the first 

moment application), the predictions are extremely good. This 

reflects the accurate fit to the monotonic stress-strain curve 

which has been achieved. During the rest of the first cycle, 

the predictions for one surface are good, whereas the strains 

on the other surface are underpredicted. This is probably 

because the transient behaviour exhibited by the material, i. e. 

larger material ratchet strains are obtained during the first 

two to three cycles (see Fig. 5.3, for example), is not included 

in the material model. However, the quality of these 

predictions is much better than that obtained with simpler 

material behaviour models (75). 

The accumulation of surface strains, with cycle number, in 

experiments B1, B2 and B3 are compared with the corresponding 

finite element predictions using material model C in 

Figs-5-6(i)-(iii) respectively. The corresponding ratchet 

strains are shown plotted against cycle number in 

Figs. 5.7(i)-(iii). In tests B1 and B2, apart from the first 

two or three cycles of loading, the predictions of strain 
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accumulations and ratchet strains are good. Previous 

analyses (75) based on kinematic or isotropic hardening 

resulted in shakedown in about four to five cycles. The 

variations of the total strains and ratchet strains obtained by 

Hardy (16) using elastic-perfectly-plastic, linear isotropic 

hardening and linear kinematic hardening and loading condition 

B2 are shown in Figs-5-15(i) to (iii) and Figs-5.16(i) to (iii) 

respectively together with the predictions from the present 

analysis. This very marked improvement is due to the inclusion 

of material ratchetting in the material behaviour model, 

together with improved modelling of the 'knee' of the stress 

strain curve. 

The strain accumulations and ratchet strains predicted for test 

B3 are not as good as those for tests B1 and B2; strains are 

underpredicted. However, the results are still a significant 

improvement over previous predictions (16,75). The relatively 

poor predictions are attributed tp the creep occurring during 

the experiments. For test B3 a mean stress level of 15.05 

N/mm , which is greater than the yield stress of 14 N/mm , was 

applied. For tests B1 and B2, significantly lower mean 

stresses (6.45 N/mm2 and 10.75 N/mm2, respectively) were 

applied. Also, the predicted centre-line stresses which are 

practically constant (there is actually a slight increase) 

during a cycle, are greater for test B3 than for tests B1 and 

B2. For example, the centre-line stresses, obtained for the 

15th cycle in the finite element analyses, using material model 

C, were found to be 24.4 N/mm2,22.5 N/mm2and 26.2 N/mm2for 

load conditions B1, B2 and B3 respectively. The higher stress 
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levels in test B3 results in significant creep strains 

occurring whereas the relatively low stresses for tests B1 and 

B2 do not cause significant creep strains to occur. Apart from 

the increases in experimental strains which can be directly 

attributed to creep, the stress redistribution which occurs 

will increase the structural ratchetting. Also, 

plasticity/creep interaction tests for a similar lead 

alloy (33) have shown that plastic straining causes increased 

creep straining for high creep stress levels. The opposite was 

found to be true for low creep stress levels. This effect may 

also be contributing to the relatively poor predictions for 

test B3. 

5.2.5 Effect of Refining the Finite Element Mesh. 

To assess the accuracy of the result with respect to the 

element size, a second finite element mesh with 24 elements was 

used. The mesh is shown in Fig, -5-17. The constraints are 

identical to the mesh of Fig. 5.8. Only results for load 

conditions B2 (see Table 5.4) and material model C (see 

Table 5.2) were obtained. The stress distribution at the end 

of 4,4,94 and 94 cycles for the two meshes are shown in 

Figs. 5.18(i) and (ii) respectively. It is obvious that there 

is no significant difference between the two sets of results. 

The variation of ratchet strain with cycle number is shown in 

Fig. 5.19. Practically, no improvement on the prediction was 

obtained when the number of-elements was increased. It can be 

concluded that the analysis performed using the 10 element mesh 

was sufficiently accurate. 
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5.2.6 Discussion. 

For the purpose of simplifying the analysis of components, the 

exact details of material behaviour are often ignored. It is 

common to assume that the real material can be represented by 

an elastic-perfectly-plastic model; the 0.2% proof stress, 

a0.2, is commonly used as the yield stress for the 

elastic-perfectly-plastic model. Using the curvature range 

obtained during the 15th cycle of the finite element analyses, 

equivalent stresses were obtained (see Bree (8) for details). 

These equivalent thermal stresses and the mean stresses were 

used to determine the ratchet strains, using the 0.2% proof 

stress as the yield stress; Bree's (8) analysis was used. The 

resulting predictions are compared with the finite element 

predictions in Table 5.6. In all cases, the predictions based 

on Bree's (8) analysis grossly overestimates the ratchet 

strains; all of the predictions were about an order of 

magnitude too large. 

The behaviour of the lead alloy is simpler than that of some 

steels (e. g. 18), i. e. cyclic hardening seems to be relatively 

insignificant in the lead alloy. Hence it may be concluded 

that for material which cyclically harden, predictions based on 

a Bree-type analysis, using aO. 2' are likely to be even more 

inaccurate than those obtained for the lead alloy (see 

Table 5.6). It may be possible to choose an 'equivalent yield 

stress' other than a0.2 and get better predictions in some 

cases. However, as yet, there is no fundamental basis upon 

which to determine the appropriate 'equivalent yield stress'. 
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Also, it is possible to determine an equivalent yield stress 

for Bree-type analysis which gives the same incremental strains 

as those obtained from the finite element analysis for the 

material ratchetting model. The yield stresses calculated in 

this way, for the 15th cycle, are given in Table 5.7. It can 

be seen that the stresses obtained for the three loading 

conditions are different. For load case B1, the resulting 

yield stress is even larger than the UTS for the lead alloy. 

Hence some doubt must be cast on this type of approach. It 

must therefore be concluded that more realistic material 

behaviour models and more rigorous analysis techniques are 

required if realistic predictions of incremental growth of 

components is to be achieved. 

It is apparent from the comparisons between the finite element 

results and the experimental data for test B3 that creep 

effects become significant with high mean loads and high 

stresses. The inclusion of creep in the analysis would be 

necessary - to improve the predictions. However, the 

interactions between plastic and creep strains cannot yet be 

adequately modelled by constitutive equations. This is true of 

all metals, not only the lead alloy. 

5.3 Assessment of the Effect of Material Ratchetting on the 

behaviour of a 316 Stainless Steel Component. 

The comparisons of the experimental results and the finite 

element predictions, presented in section 5.2 for lead alloy 

beams indicate that the inclusion of material ratchetting can 
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have a significant effect on the quality of predictions for 

components made from some materials. In this section the 

significance of material ratchetting in 316 Stainless Steel is 

assessed. The constants used for the material ratchetting 

model are given by Goodman and Goodall (18) for 316 Stainless 

Steel at 600°C. Apart from calculations based on the material 

ratchetting model, results were also obtained for a linear 

kinematic hardening model fitted to the 316 Stainless Steel 

stress strain curve. A comparison of the two sets of results 

thus allows the effect of material ratchetting to be assessed. 

The monotonic stress strain curve obtained by using the 

material constants given by Goodman and Goodall (18) is shown 

in Fig. 5.20. 

5.3.1 Material Data. 

5.3.1.1 Linear Kinematic Hardening. 

The monotonic stress strain curve was approximated by a 

bilinear stress strain curve, which passes through the stress 

strain curve at the 0.2% proof stress, as shown in Fig-5.20; 

the resulting material constants are given in Table 5.8. The 

material constants were assumed to be independent of 

temperature. 

5.3.1.2 Goodman and Goodall (18) Material Ratchetting Model. 

The relevant material constant at 600°C for the cast of 316 

Stainless Steel used by Goodman and Goodall (18) are given in 

Table 5.9. 
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It was assumed that these material constants were independent 

of temperature and in the present computations, the cyclic 

hardening which occurs in 316 Stainless Steel was ignored. The 

results obtained, which were for the strains accumulated during 

the first few cycles of loading are not likely to be 

significantly different if cyclic hardening was included. For 

large numbers of load cycles, cyclic hardening is significant 

and would need to be included if accurate predictions were 

required. 

The values of Young's modulus (E), Poisson's ratio (v) and 

coefficient of expansion (a) were the same as those used for 

the ratchetting analyses of thin tubes and circular plate 

described in Chapters 3 and 4 respectively. The values of the 

yield stress (ao) and 0.2% proof stress (a0.2) are different 

from those used in Chapters 3 and 4. 

5.3.1.3 Loading. 

A uniform beam of depth, d, and thickness, h, was modelled 

using 10 equal sized 8-noded isoparametric elements, which were 

subjected to a steady axial load and a, cyclic linear 

through-the-depth temperature gradient. The axial load only 

causes elastic strains and, hence, was applied in a single load 

increment. The temperature was applied and removed in not less 

than 400 increments per cycle to ensure accurate results. The 

convergence criterion is within 0.1% in all cases (see 

Appendix III, section AIII. 4.1 for definition of convergence 

criterion). The load combinations used in the analyses are 

included in Table 5.10. 
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5.3.2 Results. 

5.3.2.1 Linear Kinematic Hardening Model. 

The general behaviour for all the load combinations analysed 

was found to be the same. Therefore, the results obtained for 

one load combination only is described in detail, to illustrate 

the behaviour. The load combination chosen is ap/a0.2=0.4571 

and at/a0.2=2.8. 

The variation of stress through the depth, in the first cycle, 

is shown in Fig-5.21(i). Compressive and tensile yielding 

occurs at the end of each half cycle. The variation of stress 

through the depth during the tenth cycle is shown 

Fig. 5.21(ii) . Again during this cycle -at the end of each half cycle, 

yielding occurs near the beam surfaces, remote from the beam 

centre-line. The variations of total strain with cycle number 

and the ratchet strain with cycle number are shown in 

Figs. 5.22(V) and (Vi) respectively. For this load combination 

the total strain monotonically increases with cycle number 

approaching a maximum value while the ratchet strain reduces 

monotonically, approaching zero. The ratchet strains in the 

first and tenth cycles, for different load combinations, are 

given in Table 5.10. Also shown in Table 5.10 are the total 

accumulated ratchet strain at the end of 10 cycle of loading. 

Figs-5.23(i) and (ii) show the results in the form of 'carpet 

plot'. 'Figs-5-22(i) to (vi ) show the results for all the! 

load combinations obtained. 
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5.3.2.2 Goodman and Goodall Material Ratchetting Model (18). 

The stress distributions, through the depth, obtained at the 

ends of the first and second halves of the first cycle are 

shown in Fig. 5.24(i) for op /a 
0.2 =0.4571 and at /Q 

0.2 =2.8. 

Compressive and tensile yielding occurs during each half cycle. 

The corresponding stress distributions for the tenth cycle are 

shown in Fig. 5.24(ii). Figs-5.25(i) to (iv) show the stress 

strain behaviour at various depths through the beam. At the 

surfaces, cyclic plasticity with a large strain range occurs. 

Near the beam centre-line, monotonic loading occurs. At other 

positions, either cyclic plasticity with a smaller strain range 

or monotonic plastic straining, with elastic strain reversals, 

occur. For this particular load combination, over 10 cycles, 

the effect of structural rather than material ratchetting 

appears to dominate. From the above discussion, it can be 

concluded that the behaviour is very similar to that of a 

uniform beam subjected to a steady axial load and a cyclic, 

fully reversed, bending moment described in detail in Section 

5.2.3 above. It can also be concluded that the program can be 

used for thermal stress analyses. 

Figs. 5.26 to 5.28 show the total strains plotted against cycle 

number and ratchet strains plotted against cycle number for the 

load combinations considered. The ratchet strain reduces with 

number of cycles. 

The results for the accumulated ratchet strains, first cycle 

ratchet strains and 10th cycle ratchet strains are shown as a 
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'carpet plot' in Figs-5.29(i) and (ii) for various mean and 

thermal load combinations. The overall results are also shown 

in Table 5.10. 

5.3.3 Comparison between the prediction using the Linear 

Kinematic Hardening and Goodman and Goodall models and 

discussion. 

The results for both the kinematic hardening and Goodman and 

Goodall (18) models are summarised in Tables 5.10. The results 

are also presented as 'carpet plots' in Figs-5.23 and 5.29. 

By comparing Figs. 5.23(i) and 5.29(1), it can be seen that 

there is very little difference between the predictions of 

first cycle ratchet strains obtained with the two material 

behaviour models. In all cases the predicted first cycle 

ratchet strains were found to be larger when the Goodman and 

Goodall model was used rather than the kinematic hardening 

model. This is mainly due to the differences in the 

stress-strain relationships in the vicinity of the 'knee' of 

the stress strain 'curve'. It can also be seen from 

Figs. 5.23(i) and 5.29(1) that with the lower mechanical loads 

the predictions of tenth cycle ratchet strains based upon the 

Goodman and Goodall model were greater than those based on the 

kinematic hardening model. The opposite was found to be the 

case with higher mechanical loads. At the higher mechanical 

loads the accumulated plastic strains are relatively large, see 

Figs. 5.23(ii) and 5.29(11). At these relatively large values 

of plastic strains, the kinematic hardening stress-strain 
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'curve', is below the Goodman and Goodall stress-strain 

'curve', see Fig-5.20. Hence the greater accumulation of 

ratchet strain for strains in excess of about 0.3% may be 

expected with the kinematic hardening model. It would, 

therefore, appear that for the range of loads considered, the 

effect of material ratchetting in 316 Stainless Steel is not 

significant. A suitably chosen kinematic hardening model would 

give sufficiently accurate predictions. 



Material Stress (Nmm 2) 
eR ave lie 

Ratchetting Mean Range 

test number a a Exp. Model A Model B Model C 

U1 4.6 35.2 150 33 150 174 
U2 2.5 40.0 250 94 360 403 

U3 4.76 38.9 625 137 545 625 

U4 3.5 43 300 300 1132 1263 

Table 5.1 Comparison of the results of the material ratchetting 
experiments with those predicted by material models A, B and C 

Model q r t 

A 2.898 0.241 0.085 

B 2.520 0.161 0.333 

C 2.451 0.147 0.379 

Table 5.2 Material constants 

Properties Values 

Young's modulus, E 23.2 GNm 2 

Poisson's ratio v 0.44 

0.2 % proof stress, 21.5 MNm-2 

Q0.2 

Table 5.3 Relevant material constants 



(3) M/M 0 

Test No. B1 B2 B3 

Cycle 
NN, 

P/P(2) 0 No. 0.3 0.5 0.7 
(1)M 

t omen 

1 +M 1.35 1.03 0.97 
0 -0.96 -0.66 -0.47 

-M -1.44 -1.11 -1.09 0 0.05 0.01 0.05 

2 +M 1.37 1.03 0.97 
0 -0.09 -0.04 -0.06 

-M -1.38 -1.08 -1.06 0 0.06 0.02 0.05 

3 +M 1.38 1.06 0.98 
0 -0.09 -0.02 -0.03 

-M -1.38 -1.06 -1.02 0 0.06 0.26 0.03 

4 +M 1.37 1.07 0.98 
0 -0.09 -0.01 -0.04 

-M -1.38 -1.06 -1.03 0 0.07 0.02 0.17 

5 to 15 +M 1.37 1.06 0.97 
0 -0.08 -0.01 -0.05 

-M -1.38 -1.07 -1.02 0 0.06 0.04 0.28 

Table 5.4 Beam experiment loads 

(1) +M, 0 and -M indicate the maximum, zero and minimum applied 
moment conditions 

(2) P0 = bd Q0.2 

(3) M0 = bd2 v0.2/ 6 



Load 
conditions 

Material 
model 

Ratchet strain accumulation in 
15 cycles (%) 

FC surface FT surface 

B1 A 0.662 0.230 
B 0.901 0.434 
C 0.914 0.465 

Experiment 0.947 0.768 

B2 A 0.380 0.303 
B 0.462 0.366 
C 0.467 0.375 

Experiment 0.362 0.495 

B3 A 1.075 0.757 
B 1.271 0.930 
C 1.297 0.956 

Experiment 2.287 2.386 

Table 5.5 Predicted and experimental strain accumulations 
in 15 cycles 

Load 
conditions 

Material 
model 

Predicted 15th cycle centreline 
ratchet strain (%) 

Finite element Bree (using a0=c0.2 

B1 A 0.0065 0.1965 
B 0.02086 0.2045 
C 0.02318 0.1901 

B2 A 0.0013 0.0585 
B 0.00661 0.0663 
C 0.00758 0.0678 

B3 A 0.00208 0.1102 
B 0.01411 0.1287 
C 0.01645 0.1332 

Table 5.6 Comparison of finite element and Bree predictions 
of 15th cycle ratchet strains 



Loading 
conditions 

model Equivalent yield stress 

(MNm-2) 

B1 A 30.46 
B 29.52 
C 29.29 

B2 A 24.58 
B 24.67 
C 24.69 

B3 A 27.03 
B 27.18 
C'. 27.25 

Table 5.7 Equivalent yield stresses required to give 
correct 15th cycle ratchet strains. 



Properties values 

Young's modulus,, E 160.0 GNm_2 
yield stress Q 131.1 MNm o 

Poisson's ratio, v 0.3 

Plastic modulus, Ep 4.352 MNm 
2 

ß=Ep/E 0.0272 

Coefficient of 
i 20 X 10_6 K-ý on, a expans 

Table 5.8 Materials data for linear kinematic 
hardening model 

Properties values 

Young's modulus, E 160 GNm 2 

yield stress, a 100 MNm 
2 

s 
Poisson's ratio, v 0.3 

0.2% proof stress a0 2 140 MNm-2 

Saturation stress, a 400 MNm 
2 

s 
Goodman r 0.61 

and t 0.4 

Goodall q0 2.5 

constants 
Coefficient of 

i _6 -1 expans on, 20 X 10 K 

Table 5.9 Materials data for Goodman and Goodall 
material ratchetting model. 
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with Goodman and Goodall material model constants A. 
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Fig. 5.10(1) Stress-strain histories at z/d = 0.48 for B2 loading 
conditions and material model C 
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Fig. 5.10(iv) Stress-strain histories at z/d = -0.22 for B2 loading 
conditions and material model C. 
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Fig. 5.15(i ) Comparison between experimental results (3), 
perfectly plastic model (16) and Goodman and 
Goodall model C for B2 loading conditions. 
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Fig. 5.25(i) Stress strain histories at z/d = 0.447 for a beam subjected 
axial and thermal loads. Goodman and Goodall model, 
ap/a0.2 = 0.4571, at/a0 = 2.8 
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a/a0.2 

Fig. 5.25(V) Stress-strain histories at Z/d - 0.447 for a beam 
subjected to axial and thermal load. 
Goodman and Goodall model, Qp/Q0.2 = 0.4571, of/Q0.2 = 2.8 
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CHAPTER 6. 

DISCUSSION. 

6.1 Introduction. 

Ratchetting has been identified as a potential problem in 

components operating in conventional and nuclear power plants, 

chemical plants and aero-engines where components are likely to 

be subjected to severe loading conditions. 

When designing components which would experience severe loading 

conditions, the load conditions which would cause ratchetting 

should be determined. The effects of ratchetting on the 

performance of the components should be assessed. 

In particular, the mechanism of ratchetting should be 

identified. The amount of deformation which would be 

accumulated over the design life of the component is required. 

This information is needed, especially at the initial design 

stage. 

To predict the behaviour of component, three methods are 

available. These are: - 

1) Experimental methods, 

2) theoretical and approximate methods, and 

3) computational methods. 
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Experiments on actual components or on the prototype under 

actual loading condition are usually very expensive. The time 

taken to gather the results is usually long and if high 

temperatures are involved, measurement of deformation and 

strains may be difficult. An alternative is to use a model. 

Even though it is relatively cheap, in some cases data obtained 

in this manner may not be used directly to predict actual 

component behaviour. The results are however, useful in 

assessing the accuracy of theoretical and approximate methods. 

More importantly, the results are useful in validating the 

assumptions of the material behaviour model used in the 

computational methods. The experimental results for the lead 

alloy beams have been used in this way to validate the Goodman 

and Goodall model for the lead alloy. 

The theoretical methods are usually limited to simple component 

geometries and also simple material behaviour models. Their 

advantage is that they can give. easily applied closed form 

solutions. 

The third approach, used in this project, is to use 

computational techniques to predict component behaviour. The 

finite element method has been used to investigate the various 

parameters which are likely to influence the ratchetting 

behaviour of components. The finite element method has also 

been used to: - 

1) investigate the ratchetting behaviour of a number of 

components subjected to steady mechanical and cyclic 

thermal loads, 
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2) identify the mechanisms of ratchetting and to examine the 

effects of load magnitudes and component geometry on the 

ratchetting mechanisms, 

3) assess the effect of complete stress redistribution due 

to creep on the behaviour of components and 

4) investigate the effect of material ratchetting phenomenon 

on the finite element prediction of component behaviour. 

6.2 Elastic-Plastic Behaviour. 

The behaviour of thin tubes and a circular plate subjected to 

steady mechanical loads and cyclic thermal loads , was 

investigated to identify the effects of geometry and loading on 

the ratchetting mechanism of components. For these cases a 

von-Mises elastic-perfectly-plastic material model for 316 

Stainless Steel was used. However, the results have been 

normalized with respect to geometry and material properties so 

that they could be of more general use. 

For all the tubes, the ratio of mean diameter to mean thickness 

of 19 was used. For all the cases investigated, a Bree type of 

mechanism was obtained. However, for a tube with zero axial 

displacement, the R2 type of behaviour is not clearly 

identified. Also, for the tube with an eccentric bore, three 

different types of behaviour (corresponding to ratchetting in 

the R1 and R2 regimes and cyclic plasticity without ratchetting) 

at various circumferential positions were obtained for one load 

condition . This is because the hoop stress varies around the 

circumference. For the value of mean diameter to mean 
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thickness ratio investigated, there is a through-thickness 

variation of stresses. The ratchet strains also vary through 

the thickness as a result of the through thickness variation of 

the stresses and also the circular compatibility 

condition. For the tube with zero axial load, the variation is 

small and the shakedown/ratchetting boundary and the contours 

of ratchet strains are practically the same as those predicted 

by Bree's analysis (8). By modifying the mechanical load 

characteristics, the shakedown/ratchetting boundary for the 

pressurized closed end and eccentric tubes can be predicted by 

the simple Bree analysis (8) to a good accuracy. For the 

tube with zero axial displacement, both the mechanical and 

thermal load characteristics had to be modified before the 

shakedown/ratchetting boundary could be correlated. Even so, a 

good correlation was only obtained for relatively low thermal 

loads. Except for the uniform tube with zero axial load, the 

contours of ratchet strains were not well predicted by 

Bree's analysis (8). This could be due to the effects of the 

deviations from Bree's analysis (8). 

For the circular plate, a diameter to thickness ratio of 40 was 

used. The results indicated that there are two distinct 

mechanism of ratchetting depending on the load magnitudes. In 

this case, the mechanisms of ratchetting are different from the 

Bree type of mechanism and in particular, shakedown with cyclic 

plasticity does not exist. The shakedown/ratchetting boundary 

for low thermal load falls within the boundary obtained from 

the Upper Bound Theorem. For low thermal load and high 

mechanical load, the mechanism is very much dominated by the 
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mechanical load. The mechanical load, which causes bending in 

the radial and hoop directions, results in the ratchet hoop and 

radial strains to vary linearly through the thickness at all 

radii. On the other hand, at high thermal load and low 

mechanical load, the thermal stresses are the dominant 

stresses. Since the thermal stresses varies radially such that 

the maximum occurs at the plate centre, ratchetting only occurs 

in a region which exhibit cyclic plasticity and is confined to 

a small radius. Outside this region, elastic shakedown occurs. 

This type of ratchetting mechanism is different from the 

ratchetting behaviour of plates investigated by Hyde (15), 

Hardy (16), Goodman and Goodall (18) and Ponter (7). 

The effect of complete redistribution due to creep on the 

behaviour of the eccentric tube and circular plate was also 

investigated. In both cases, a° 'no-creep' shakedown load was 

used and ratchetting occurs. For the eccentric tube, the 

ratchet strains are practically independent of the creep stress 

index, n, whereas for the circular plate, the ratchet 

deflection reduces with increasing n values. This is because 

for the eccentric tube,. the hoop stress is dominant and at the 

complete redistribution, the stress is practically uniform 

through the thickness. Also for all values of n considered, 

the stress distribution must be in equilibrium with the same 

mechanical load. Hence the distribution of stress at the 

stationary state depends on the mechanical load and -istherefore 

independent of n. This was not the case for the circular plate 

where the stresses vary radially as well through the thickness. 

However, in both cases, the ratchet strains obtained when creep 
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occurs are always lower than the first cycle ratchet strains. 

Even though the effect of partial redistribution was not 

investigated, the ratchet strain which would be obtained if the 

stress is only partially redistributed, would be bounded by the 

first cycle 'no-creep' ratchet strains and that obtained when 

complete stress redistribution due to creep occurs. 

The above discussion, illustrates that geometry and loading 

influences the ratchetting mechanism of components subjected to 

steady and cyclic loads. Structural ratchetting was observed 

because elastic-perfectly-plastic material was used. To 

determine if the Goodman and Goodall material ratchetting model 

give a better prediction, a lead alloy uniform beam subjected 

to steady axial load and cyclic fully reversed bending moment 

was used. The material model constants were determined from a 

uniaxial cyclic plastic test data. The model gave a better 

representation of the monotonic and cyclic stress-strain curve, 

in particular, the 'knee' of stress strain curve was accurately 

modelled. The constants were determined so that an accurate 

fit to the monotonic stress strain curve and the average 

ratchet strain,, for stress controlled cycling were obtained. 

Cyclic hardening was ignored. For cycling between a non-zero 

mean stress, the stress strain curve for the initial cycles 

was'. not accurately modelled. However, the essential features 

of the real material behaviour, such as material ratchetting1are 

contained in this model as opposed to the linear kinematic or 

the isotropic hardening models. When this model was used to 

predict the behaviour of the beam, a good agreement between the 

experimental observation and the finite element predictions was 
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obtained. When compared to the prediction using either 

elastic-perfectly-plastic, linear kinematic hardening and 

linear isotropic hardening models, the Goodman and Goodall 

model showed a significant improvement. Therefore, the poor 

prediction using the simpler hardening models is due to 

neglecting the material ratchetting phenomena. The 

elastic-perfectly-plastic material model predicts continued 

ratchetting at a constant ratchet strain after the first cycle. 

Isotropic hardening model predicts a monotonically reducing 

ratchet strain and elastic shakedown eventually occurs. 

Kinematic hardening model predicts ratchetting with 

monotonically reducing ratchet strains and shakedown with 

cyclic plasticity finally occurs. The Goodman and Goodall 

model predicts ratchetting with reducing ratchet strains but 

ratchetting still occurs even when either the isotropic or 

kinematic hardening models predicted component shakedown. 

The Goodman and Goodall model was also used to predict the 

behaviour of a uniform beam subjected to a steady axial load 

and cyclic through the depth temperature distribution. 

Material constants applicable to 316 Stainless Steel at 6000C 

were used. The results were compared with that obtained using 

a linear kinematic hardening model. Initially, when structural 

ratchetting dominates, there was a slight difference in the 

predictions for the two models. But later, when material 

ratchetting dominates, the Goodman and Goodall material model 

predicted higher ratchet strains compared to the 'linear 

kinematic hardening model . Since, the computation was meant 

to illustrate the phenomena and to test that the program works 
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for the thermal loading as well, 10 cycles were applied. 

However, a higher number of cycles could also be applied. This 

analysis illustrates that material behaviour assumption also 

influences the component behaviour. 

6.3 Classification of Ratchetting Mechanism. 

Ponter (7) classified the mechanism of ratchetting into two 

main categories, namely, kinematically confined and 

kinematically unconfined types of mechanism. In the present 

work , both types of mechanisms were observed and are described 

below. 

(a) Kinematically Confined. 

In this category, ratchetting occurs such that at any instant, 

during the cycle, no volume of material which is 

yielding, contains a kinematically admissible deformation 

mechanism. As an example, let us look at the Bree type of 

mechanism. For a volume . of`tmaterial containing an 

admissible deformation mechanism to ', be "present yielding: 
-would 

havelto'Occur, through the whole thickness; the deformation 

mechanism would be a continued extension. This never happens 

in-the Bree problem whereat any instant, -there is always-some 

elastic material through the thickness which restricts the 

amount of extension . 'Thus. a Bree type of mechanism, as observed 

in the ratchetting of tubes, is a kinematically confined type 

of ratchetting. For Bree type problems at high thermal 

load, values of low mechanical load exist for which cyclic 
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plasticity may occur without ratchetting. Also when 

ratchetting occurs, the whole section suffers incremental 

strain . For strain hardening materials, the ratchet strain 

reduces to zero. 

(b) Kinematically Unconfined. 

In this category, at-some instant, there exists a volume of 

material which is yielding'andýcontains_a kinematically admissible 

deformation mechanism. The behaviour of the circular plate is 

an example. At high thermal and low mechanical loads, the 

centre of the plate, which is high thermally stressed region, 

yielding occurs through the whole thickness. Transverse and 

radial deformation can occur. For this case, ratchetting 

occurs whenever there is a volume of material which exhibitS 

cyclic plasticity. Hence, load combinations which would cause 

cyclic plasticity without ratchetting do not exist. It is 

thought that material ratchetting and cyclic hardening would 

govern the ratchet rate. 

6.4 Effects of Uniform and Non-uniform Loading on the 

Ratchetting Behaviour of Structures. 

The effects of loads on the stress distribution in a structure 

depends on-the geometry. For structures with uniform geometry 

(e. g. tube and plate with uniform thickness) subjected to a 

uniform loading (e. g. pressure)the stressing_of the structure is 

said to be uniform. On the other hand, a non-uniform loading 

is said to occur if either the geometry or the stressing, is"not 
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uniform such as the eccentric tube subjected to an internal 

pressure. 

Two types of structural behaviour were observed in the present 

work. Firstly, if the stressing is uniform, then the whole 

structure suffers incremental. strains. The tube with uniform 

thickness and uniform beams are examples of ratchetting 

behaviour whereby every part of the structure experienced 

incremental strains. For the circular plate subjected to high 

mechanical and low thermal loads, incremental deflection is 

obtained at all radii. Secondly, for non-uniform stressing, 

ratchetting could be confined to some part of the structure 

leaving the rest of the structure shaking down. Some examples are 

the behaviour of the'tube with an eccentric bore and the circular 

plate subjected to a high thermal and low mechanical loads. In 

the eccentric tube, the non-uniform stressing results from the 

variation in the tube thickness. Ratchetting is then confined 

to the thinnest section of the tube which is highly 

mechanically stressed, whereas the other part of the tube 

shakes down. In the case of the circular,, plate,, the non- 

uniform stressing is due to the variation of the thermal stress. 

In this case ratchetting is only confined to the plate centre 

which is highly thermally stressed. The first type of effect 

is called the global effect as opposed to the local effect. 

If it is known that a particular . stressing results in 

a local effect, then the shakedown/ratchetting boundary can be 

determined by considering only the localised ratchetting 

region. This could prove to be useful in simplifying the 

analysis. To illustrate this point, to determine the 
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shakedown/ratchetting boundary for the eccentric tube, only the 

thinnest section need to be considered. 

6.5 Suggestion for Further Work. 

It is the author's desire that the investigations into 

ratchetting of components using the finite element method 'should be 

continued. This section gives some suggestions of further work 

that followed from the present work. 

i) Component Analysis. 

Data on the ratchetting behaviour of components subjected to 

combinations of steady and cyclic loading are still scarce. It 

is suggested that more component analysis should be carried out 

to provide a general design data base. In particular, the 

effects of partial redistribution due to creep on the behaviour 

of components should be investigated. More importantly, 

analysis of components with material ratchetting should be 

pursued. More cyclic plastic material data, in particular for 

316 Stainless Steel at elevated temperature, should be obtained 

so that the existing program with material ratchetting and 

cyclic hardening could be used to investigate the behaviour of 

stainless steel components. An equally important work is to 

incorporate the existing data from finite element analysis into 

the design codes for high temperature plant. Also, the finite 

element results could be used to investigate the accuracy 

the approximate methods. 
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ii) Creep-plasticity Interaction Model. 

Although good agreement between experimental and finite element 

results for the beam for low mean load, was obtained when 

material ratchetting was included, the result at high mean load 

where creep is likely to occur, is still underpredicted. This 

suggests that there is an interaction between creep and 

plasticity that should be investigated. Development of 

creep/plasticity interaction model equations and incorporate 

them into the finite element scheme should be pursued. 

iii) Improvement on the Present Program. 

Improvement on the present program in terms of efficiency and 

speed of convergence is worth pursuing so that the computing 

time could be reduced. 
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CHAPTER 7. 

CONCLUSIONS. 

The following conclusions have been obtained from the present 

study: - 

1. The detailed study of the ratchetting of thin tubes 

indicated that: - 

(i) For thin tubes with uniform thickness, in the absence of 

axial loading, the shakedown/ratchetting boundary and 

contours of constant ratchet strain can be accurately 

predicted by Bree's simplified uniaxial analysis (8). 

The variation of stress through the thickness has little 

effect on the shakedown/ratchetting boundary. In the 

presence of axial loading, with the ratio of mean hoop to 

axial stress of 2: 1, the pressure to cause ratchetting is 

higher than that necessary for tubes without axial load. 

However, if the equivalent stress, due to pressure, at 

the mid-thickness is used to characterise the mechanical 

load parameter, the shakedown/ratchetting boundary can 

again be correlated with the Bree boundary (8) for 
I 

practically all the load combinations considered. For 

these two cases, ratchetting in both R1 and R2 regimes 

can be identified and the existence of the 'plastic core' 

is required for ratchetting to occur. 

(ii) For thin tube with axial restraint, the behaviour is 

different from that described above. For this case, 

R and R2ratchetting regimes cannot be clearly identified 

and the shakedown/ratchetting boundary cannot be 
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correlated with Bree's simplified uniaxial solution. If 

the equivalent stress due to pressure at the outer 

surface ( Qp ) and the maximum elastic equivalent 
eq 

thermal stress (a) are used to characterise the 
eq 

mechanical and thermal load parameters respectively, the 

shakedown/ratchetting boundary obtained using the 

simplified analysis is conservative for aeglao<3.35Vand for 

T 
a Ia0>3.35 the boundary is unsafe. 

(iii) For a thin tube with an eccentric bore, without axial 

loading, ratchetting is most pronounced in the vicinity of 

the thinnest section. At each circumferential position, 

the ratchetting mechanism is similar to that of a uniform 

tube without an axial load. The shakedown/ratchetting 

boundary can be accurately predicted from Bree's 

simplified analysis, if it is applied to the thinnest 

section. For any particular value of applied pressure 

and thermal load, it is possible that ratchetting in 

R and R2 regions and shakedown- with cyclic plasticity 

occur simultaneously, depending on the circumferential 

position. 

(iv) For all the components investigated, there is an increase 

in ratchet strains with an increase in the magnitude of 

the loads. For loads close to, the shakedown/ratchetting 

boundary, it was found that the ratchet strains varies 

linearly with the load. 

(v) It was found that creep which occurs between thermal 
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cycles affects the behaviour of the tube. When complete 

stress redistribution due to creep occurs, ratchetting 

can occur in the 'no-creep', shakedown regime. For the 

tube with uniform thickness, the ratchet strain for each 

thermal cycle will not vary with creep stress index, n. 

For tube with eccentric bore, the ratchet strains 

obtained, for each thermal cycle, seemed to vary slightly 

with n. 

2. From the analysis of the clamped circular plate, a 

relatively simple mesh was found to be adequate when the 

conditions at the plate edge were accurately modelled. The 

type of behaviour of the plate under combined transverse 

pressure and cyclic linear radial temperature gradients, was 

found to depend upon the magnitudes of both the mechanical and 

thermal loads. For high mechanical loads, incremental 

deflection, in the direction of the applied pressure, occurs at 

all radii. For high thermal loads and low mechanical loads, 

incremental deflection only occurs in the volume of material 

Which undergoes cyclic plasticity. This volume of material 

confined to the central region of the plate. The radial extent 

of this volume of material depends upon the magnitude of the 

thermal loading. The shakedown/ratchetting boundary, when a 

high mechanical load and low thermal load is applied, falls 

within the boundary obtained using the Upper Bound Shakedown 
0. 

Theorem. Atlow mechanical load and high thermal load, the 

shakedown/ratchetting boundary obtained was above the 

theoretical boundary. This is because with thermal loads close 

to the boundary, the material in which cyclic plasticity occurs 
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only occupies a small volume, hence accuracy depends upon the 

closeness of the nearest 'Gauss' point to the centre of the 

plate. With the mesh used, the boundary predicted is as good 

as would be expected. 

Creep which occurs between thermal cycles was found to affect 

the behaviour of the plate. When complete stress 

redistribution due to creep occurs, ratchetting was obtained 

for load combinationS within the 'no-creep' shakedown regime. 

The ratchet deflection obtained was found to be dependent upon 

the creep stress index, n. Under complete redistribution 

conditions, the ratchet deflection was found to decrease with 

increasing n. The first cycle 'no-creep' ratchet deflection 

corresponds to the n=1 case. 

In all cases, the ratchet deflection increased with increasing 

load magnitudes and close to the shakedown/ratchetting 

boundary, the ratchet deflections were found to vary linearly 

with the load magnitude. 

3. Comparisons of experimental results and finite element 

predictions, for a uniform beam subjected to steady axial 

loading and cyclic fully reversed bending mements, indicate 

that when material ratchetting is included good correlations 

are obtained. The relatively poor predictions obtained with a 

high axial load, is due to the effects of creep, which were not 

included in the finite element calculations. The improvement, 

with Goodman and Goodall material ratchetting model, compared 

to predictions obtained with elastic-perfectly-plastic, linear 
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isotropic hardening and linear kinematic hardening material 

models, is very significant. 

4. Results for a uniform beam, subjected to a steady axial 

load and cyclic, linear, through the depth, temperature 

distribution were also obtained; a linear kinematic hardening 

model and a Goodman and Goodall material ratchetting model 

(with material constants appropriate to 316 Stainless Steel at 

600 0 C) were used. For the load magnitudes considered and the 

accumulated strains obtained, no significant difference was 

apparent. 

5. For components which operates at high mean loads at which 

creep and plasticity are likely to occur, it is essential that 

a more appropriate material behaviour model, which is capable 

of describing creep-plasticity interactions is developed if 

improvements in the accuracy of predictions are to be obtained. 

6. The following parameters have been found to influence the 

elastic-plastic ratchetting behaviour: - 

(i) Structural geometry and loading conditions, 

(ii) Creep and 

(iii) Material behaviour. 
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APPENDIX I. 

ANALYTICAL SOLUTIONS FOR CLAMPED CIRCULAR PLATES. 

AI. 1 Introduction. 

The elastic solution for a variety of plates structures 

subjected to pressure load are available (e. g. 53). Solutions 

for the limit loads of circular plates, subjected to 

axisymmetric loading, made of elastic-perfectly-plastic 

material, which obeys the von-Mises yield conditions, are also 

available (35). The elastic stresses induced due to a general 

temperature distribution in plates are given in reference 54. 

These solutions have been obtained and will not be derived in 

this appendix; the relevant results will simply be quoted. 

The results for the elastic stress distribution in a circular 

plate clamped at its edge with a linear radial temperature 

distribution will also be quoted. The shakedown/ratchetting 

boundary for the present plate geometry and loading is derived 

here by applying the Upper Bound Shakedown Theorem, as extended 

by Ponter (7). The solutions will be used for comparison with 

those obtained from the finite element results described in 

Chapter 4. The component geometry is a circular plate with 

outer radius, R, and thickness, h, clamped at its outer edge. 
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AI. 2 Elastic Solutions. 

AI. 2.1 Uniform Transverse Pressure, P. 

The transverse deflection u(r) is given by (53): - 

u(r) 
3(1-v )PRA 

1- (r)2I2 
16Eh_1R 

The stresses due to pressure P are (52): - 

r= 
3(1+v) 

(h) (h )P 1- 
(v 

R 
) ()2J I1+ 

and 

up _ 
3(1+v)(R)2(Z)p 1_ 

i3v+1)(r)2 
8ý 4hh( (1+v) R 

AI. 1 

AI. 2 

AI. 3 

where or is the radial stress and oe is the hoop stress due to 

pressure P. 

The average through-thickness shear stresses, TrZ 1 is given 

by: - 

T=_ Pr AI. 4 
rz 2h 
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AI. 2.2 Thermal Stresses. 

The elastic thermal hoop stress (aT) and thermal radial stress 

(ar) for a clamped circular plate with a radial temperature 

distribution of: - 

T(r) = AT(1 - r/R) AI. 5 

are given by 

aT = _a (1 - 
(1-v)r 

rt 2-v R 

and 

T_ 2(1-v)r 
ý0 - ýt(1 2-v R 

where 

(2-v) 
at - 3(1-v) EaAT 

AI. 2.3 Limit Pressure. 

AI. 6 

AI. 7 

AI. 8 

A complete and detailed analysis of the load carrying capacity 

of circular plates made of elastic-perfectly-plastic material 

and obeying the von-Mises yield criterion is given in 



- 393 - 

reference 35. The analysis is complicated and hence the reader 

is referred to reference 35 for a complete analysis. The final 

result for the limit pressure, PL , for a clamped circular 

plate subjected to a uniform transverse pressure, made from an 

elastic plastic material obeying the von-Mises yield condition 

is given by: - 

2 
PL = 3.12500(R) AI. 9 

where a0 is the yield stress of the material. For a material 

which obeys the Tresca yield criterion the expression for the 

limit pressure, PT , is given by: - 

PL = 2.815ao(R) AI. 10 

The limit pressure evaluated from expressions AI. 9 and AI. 10. 

will be compared with the value obtained from the finite 

element analysis. The analysis in references 53 and 35 are 

based on thin plate theory and the effect of shear and 

transverse stresses are therefore ignored. 

AI. 3 Elastic-Plastic Cyclic Solutions. 

AI. 3.1 Shakedown/Ratchetting Boundary for of/a0 < 2.0 
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The shakedown/ratchetting boundary determined in this section 

is based on the Upper Bound Theorem proposed by Koiter (12) and 

extended, to include the case where cyclic plasticity region 

exists, for cyclic loading, by Ponter (7). In the present 

case, the extended theorem is employed. The theorem states 

that: - 

'The body cannot support a given system of external loads if 

any kinematically admissible strain field dec exists for which J 

the rate of work of the external loads exceeds the rate of 

plastic energy dissipation'. 

Conversely: 'The body can support the given external loads if 

the rate of plastic energy dissipation is greater than the rate 

of work done by the external loads'. 

The second definition implies that, for a body to support the 

external loads, the following inequality must be satisfied: - 

l 

J D(deii )dV PiduidSp (x, to)deii dV AI-11 

.. - "- V 'S 'V 
-p 

where pi is a boundary traction acting on Sp , 

V is the volume , 

deii is a compatible strain field, 

dui is a displacement field which satisfies the 

boundary conditions, 

i3 is a state of stress on the yield surface and 

D(dcii) is the energy dissipation function given by 
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D(d e 
iý) 

= aiýdeij 

For at/oo<2.0 where at is given by equation AI. 8 the mechanism 

of collapse, shown in Fig. AI. 1 may be assumed. For this case, 

the displacement field u is simply 

u= Uo(1 - r/R) AI. 12 

where U0 is the displacement at the plate centre. For this 

deformed shape, the curvatures in the hoop direction, K8, and 

in the radial direction, Kr, are given by 

Ke 

and 

_ 
1du 

- rdr 

U 
0 

Rr 

K=d2u _0 r dr 

Hence the strain field dcij consists of 

Ee = xe. z 

only and 

e=Kz =0 rr 

Uz 
0 

Rr 

AI. 13 

AI. 14 

AI. 15 

AI. 16 

Assuming small deformations, the angular displacement at the 

clamped edge $ is given by 
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ý 
U 

0 
-r AI. 17 

The thermal stresses are given by equations AI. 6 and AI. 7, 

which, together with AI. 8, give the results: - 

a- _a (1 _ 
(1-v)r 

rt 2-v R 

a6 =- vt(1 - -2- --v-, 
-R 

) 

AI. 18 

AI. 19 

Now, the terms in inequality AI. 11 will be evaluated 

separately. 

External Work. 

Due to pressure, P 

PiduidSp = volume of cone X pressure 

S 
P 

1 
sitR2UaP AI. 20 

The term 
j; 

j(t)dc? jdV involves an instant to during the 

thermal cycle. The value of aii(x, t0) is found by 

translating the thermal stress history using rigid body 

translation to the point on the yield surface which has the 

compatible strain field. The point which touches the yield 

surface during the translation is the required value. This is 

2(1-v)r 
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carried out for the present history at each point in the 

structure. Fig. AI. 2 shows the yield surface and the thermal 

load history AB. The stress history OA is the thermal load at 

the plate centre and OB is the thermal load at the plate edge. 

By the method outlined above and for the thermal cycle shown in 

Fig. AI. 3 and period 2t1, it was found that 

for z>0, to = 2nt1, where n=0,1,2 etc. and 

for z<0, to = nt1, where n=1,2,3 etc. 

Hence 

Qij(x, to) =0 for z>0 

and for z<O , the components of oil( x, to) are given by 

Equations AI. 18 and AI. 19. 

fv 
0R 

i(x, 
t )deiýdV = orT . er. 2nrdrdz 

hn h 
-2 /0 

+ 

h 

Evaluating the integrals give 

aij tx, t laeii av = ju 

h 
2 

/ ncrtUoh2 

V 

4(2-v) 

Qe. se. 2nrdrdz 

AI. 21 
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Plastic Energy Dissipation. 
JD(de?. 

)dV 

Now, D( dc 
ii 

) consists of 2 parts. Firstly the energy 

dissipated in the hoop bending which occurs at all radii and 

secondly, the energy dissipated due to the formation of a 

plastic hinge at the edge. 

Hence 

D(deii)dV 

v V 

v3Qaee2nrdrdz 

+ (Moe) 
at the edge 

Where Mo is the plastic moment 

Now 

and 

h 

Uv h2 
00 

-oy 2 
Mý= 

L 
-S" V 

.. / I1 

2R 

n 

4 Uz 

-Q . irdrdz 
�3 0 Ro 

8Uoir Qo 
R 

�3., 

2 
z_ 
2 

UonQh2 

h 
2 

r 

0 

AI. 22 

AI. 23 

R 

0 

AI. 24 
�3 

Collecting terms and substituting into equation AI. 11 gives the 

following equation. 

211 nR2UoP nUoh2Qt 
n äQOh (2 + 

�3 
-) 03+ 2-v 

AI. 25 

Normalizing with respect to 3.125PR2la 
0 

h2 

gives 
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2 
3X1.0774Q 

0 
() 

p 
2 

3.125ßo(R) PL 

P 
0.24Qt 

i. e. 1.0343 =P+ 2-v Qo 
L 

putting v=0.3, the bound become 

Ih 2 

2-ý 
(R) ýt 

+ 

3.125cro(R) 

0 
1.0343 = 

Pv 
+ 0.1412Q 

The bound is given in Fig. AI. 4. 

AI. 3.2 Boundary for at/aO > 2.0 

AI. 26 

AI. 27 

For this load condition, the volume of material can be divided 

into 2 parts. The first part, is a region where the material 

exhibits cyclic plasticity, in which case the elastically 

calculated thermal stress history cannot be translated into the 

yield surface by rigid body translation. The second part, is 

the region in the plate where the thermal stress history can be 

translated into the yield surface in which shakedown occurs. 

In the region where there is cyclic plasticity, ratchetting 

occurs. For low mechanical loads, which are considered here, 

the thermal load dominates. Under these conditions, the 

problem becomes that of determining the volume of material 

which exhibits cyclic plasticity and to determine the bound to 

avoid ratchetting. Referring to Fig. AI. 5 AB represent the 

thermal load history for the plate at the hot state. OA is the 
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stress history at the plate centre and OB is the stress history 

at the plate edge etc. The surface I is the yield surface. 

For convenience, another surface, II, is also defined. By 

rigid body translation, the history CB can be translated into 

the yield surface whereas AC cannot. Therefore cyclic 

plasticity occurs at the position in the plate which has the 

stress histories AC. The cyclic plasticity zone extends from 

the plate centre, with thermal stress history OA, to a radius 

r=R with stress history OC. The problem is to determine the 

radius R1. Now, the equation of line AB is given by 

ae - 2ar = at 

or a0 = 2Qr + Qt 

The equation of the yield surface (surface I) is 

ar + 
26 

- arse 
2 

Q 0 

and the equation of surface II is 

2 
a+ o aa8 Sar 6 r0 

2 

substituting equation AI. 28 into AI. 30 gives 

Qr + (2vr+Qt)2-Qr(2a 
r+Qt)2 = 4a2 

2 3vr + 3Qrot + Qt -4a2 =0 

which simplifies to 

Qr =- 2t 
± 48(0 )2- 

AI. 28 

AI. 29 

AI. 30 

The negative root is required here for a<0 
r 
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.. 

2 

3 48(0) -Qt AI. 32 

This is the value of Qrat r=RI 

substituting AI. 32 into equation AI. 18 and putting r=R1 gives 

2 
)1 ) 

°t CYt 
48(Q°) -3 Qt. (1 - 

(2_v 
RR 26t 

2 

1- 
(1-v) R1 

_11 

j48(-2) 

-3 2-v R- 2b at 

and hence 

2 
R1 (2-v) Ii 1 ao 

R' 1-v 2- 9 

/48 

(Qt) -3 

(2-v) 
1-v 

for v=0. 3 

2 

3- 48(Q )-3 
I 

Rr/e 

I 

3 
2--' 

R1 = 0.4048 13 
- "/ý+8(Q°) -3 tYt 

AI. 33 

AI-34 

AI. 35 

Since ratchetting occurs in the region O <r<R1, in order to 

avoid ratchetting, it is necessary to have R1=0. That is 

o must not exceed 2Q 
t0 

Hence for atla >2, the shakedown boundary become 0 t/QO = 2.0. 



Fig. AI. 1 Assumed collapse mechanism for atla0 <2 
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Fig. AI. 2 Determination of ai1(x, to). Translation of stress 
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history OA in the direction OC gives aT ('x, to)= 0 
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whereas translation in the direction AF gives 

Q13ýXýtO) =a 
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Fig. AI. 5 Determination of volume which exhibit cyclic 
plasticity for et > 2a0 
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APPENDIX II 

VALIDATION OF THE FINITE ELEMENT MESH FOR THE CLAMPED CIRCULAR PLATE. 

AII. 1 Introduction. 

In this appendix, the validation of the finite element mesh for 

a clamped circular plate subjected to a uniform transverse 

pressure is described. The results will be compared to 

theoretical values whenever possible. 

AII. 2 Finite Element Model. 

The plate is 25mm thick and 1m diameter made of an 

elastic-perfectly-plastic material with Young's modulus 

-2 2 160 GNm, yield stress 160 MNm and a Poisson's ratio of 0.3. 

The plate was modelled using 40 x8 noded isoparametric 

elements, 4 elements through the thickness and 10 elements in 

the radial direction as shown in Fig. AII. 1. The mesh is 

similar to that used by Hyde (15) and Hardy (16). A 

theoretical solution for the stresses due to the applied 

transverse pressure is available (53). The elastic solution 

due to a linear radial temperature gradient is given 

elsewhere (54). The collapse pressure for the plate made of an 

elastic-perfectly-plastic material which obeys a Tresca yield 

criterion has been solved by Hopkins and Prager (34) whereas 

Hopkins and Wang (35) have determined the collapse pressure by 

assuming the von-Mises yield condition. The finite element 

results are compared with the theoretical values from the above 

sources. 
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AII. 3 Edge Conditions. 

Results for three different edge conditions were obtained in 

order to determine suitable conditions for the analysis. The 

edge conditions tested were: - 

A) All the nodes at the clamped edge CF of Fig. AII. 1 were 

constrained from any displacement in either the radial or 

transverse directions. 

B) All nodes at the clamped edge are constrained from radial 

displacement and the node at F1, is also constrained from 

transverse displacement. 

C) As in B above except that transverse nodal forces which 

results in a -uniform shear stress distribution were 

applied to 'balance' the applied pressure as shown in 

Fig. AII. 2. 

In all cases, the nodes at the plate centre, i. e. across AB of 

Fig. AII. 1, were constrained in the radial direction to maintain 

symmetry. 

AII. 4 Results. 

The finite element results for the plate with edge conditions 

A, B and C are presented here. Fig. AII. 3 shows the variation of 

the elastic transverse deflection with the radius. The 

theoretical values from the simple plate theory (53) are also 
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shown. There is good agreement between the finite element 

results and the theoretical values. 

Fig. AII. 4 shows the variation of the elastic radial and hoop 

surface stresses with radius. All the results for the edge 

conditions A, B and C agree with the theoretical values. The 

variation of the shear stresses at the centre plane of the 

plate with radius are shown in Fig. AII. 5. The comparison 

between the plate theory and finite element results for the 

plate edge conditions A, B and C shows that better agreement is 

obtained for the edge condition C. 

The variation of the central deflection with transverse 

pressure are shown in Fig. AII. 6. In the elastic range, where 

deflections are small compared to the plate thickness, the 

results obtained with edge conditions A, B and C all agree with 

the plate theory. For larger deflections, however, the results 

differ. From Fig. AII. 6, the collapse pressure for the plate 

can be obtained since the deflections become very large at 

pressures close to the collapse pressure. The values, thus 

determined for the collapse pressure from Fig. AII. 6 are given 

in Table AII. 1. Also given in Table AII. 1 are the values of 

the collapse pressures for an elastic-perfectly-plastic 

material obeying the Tresca criterion obtained by Hopkins and 

Prager (34), PT , and the value for plate made of 

elastic-perfectly-plastic material obeying the von-Mises yield 

condition, PL , from Hopkins and Wang (35). In the finite 

element analysis, a von-Mises yield criterion was used. The 

results for the collapse pressure for the plate with edge 
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conditions B and C are closer to that obtained in (35) than the 

collapse pressure for a plate with edge condition A. With edge 

conditions B and C, higher values of collapse pressure were 

obtained by comparison with that obtained by Hopkins and 

Wang (35). From the close agreement obtained with both the 

elastic-plastic results it was concluded that the tuesh together 

with edge condition C were suitable for use in the cyclic 

thermal loading analyses. 

Thermal Loading. 

Fig. AII. 7 shows the variation of elastic radial and hoop 

stresses with radius when a linear radial temperature gradient 

was imposed. The theoretical elastic solutions given by 

equations AI. 6 and AI. 7 are also given in AII. 7. Good 

agreement between finite element and theoretical solutions was 

again obtained. 



Edge conditions Collapse pressure 

PL / MNm-2 

A 1.46 

B 1.30 

C 1.31 

PT L 1.13 

PL 1.25 

Table AII. 1 Values of collapse pressures for 
different edge conditions and theretical. 
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Clamped edge 

Fig. AII. 1 Clamped circular plate and finite element mesh 
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Fig. AII. 6 Variation of central deflection with pressure for the plate 
with different edge conditions and comparison with the 
theoretical values. 



x 
s. 

ý 

ý 

0 
ý 

rn 
0 

00 
6 

1 

11 

1 
1I 

oý 

- 417 - 

1I 
a 
0 
0 
ý 

wx 

1 
'ei 
1 

e1I 1l 

ti 
0 

M 

? -I M 
., 4 
Cd s. 

II 
0 

_ 
11 
1 

°i ý býu 

p U1 
N In . 
OO 

OI 
I 

It 

ri 

b c ý 
, -. a 
X" 

v 

4-3 

ý 
a) 

rl 

a) 
ý 
w-i 

"r1 

a) 

y. ) 
a) 

A 

C 
0 
0) 

S.. 
co 
a 

0 
C-) 

ý 
OC) 
O 

11 

0 
b 

-41 b 

42 
c0 

C 0 
-4 

n r. ý 
ý 07 

.H V 
0) .., in a) 1 L. cd 
4.3 U 
(0 ., 1 

ý 
'-4 N 
6o 
i. Q) 

ti 
H 
H 
ý 

m 

-H w 



- 418 - 

APPENDIX III 

AIII. 1 MULTI-AXIAL FORMULATION OF THE GOODMAN AND GOODALL 

MODEL. 

In the multi-axial formulation of the Goodman and Goodall 

model (18,19), the von-Mises yield criterion is used. The 

effective stress is derived from the second invariant of the 

stress deviator tensor where 

6eq = 1.5SijSij 

and the initial yield is given by: - 

cr eq 
> a0 

AIII. 1 

AIII. 2 

In plasticity, the associated flow rule is used to determine 

the individual plastic strain increments. It is assumed that 

previous plastic flow influences subsequent plasticity. The 

influence is stored in an internal tensor aij. In the 

kinematic hardening model used here, aij represents the 

position of the centre of the yield surface. Further yielding 

therefore occurs when 

f= {1.5(Sjj_ajj)(Sjj_ajj)]1"2 >, Qo AIII. 3 

1 
where aij = aij 3akkaij 

In the it -plane, f is a circle with a fixed radius 
0 

and centre 

aij. The associated flow rule can now be written as 
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and 
deiý = Xaf 

as ij 

It 

AIIIA 

pýde p dep =3 de 
j AIII. 5 

The surface equivalent to the saturation stress in the uniaxial 

case, is the surface 
Sf 

defined by: 

fs = 1.5SijSij - Qs =p AIII. 6 

In the n-plane fsis a circle with radius s and centred at the 

origin. Similarly, am is equivalent to a surface fm defined as 

fm = 1.5SiýSiý - Qý =0 AIII. 7 

For convenience, the maximum equivalent stress reached during 

the previous loading history is denoted by om 
eqIt 

is convenient at this stage to define some terms commonly 

used in describing cyclic behaviour. When the current 

equivalent stress aegis either greater than am (or greater than 

fmax the last value of f ), then loading occurs along the mm 

monotonic 'stress-strain curve' otherwise the loading is not 

monotonic. For the movement of the surfaces ff and f, a 
ms 

rule similar to that adopted by Mroz (40) is used here. In 

general, the surface can either touch or slide against one 

another but they are not allowed to intersect. It is important 

to note here that f3 is normally well above the operational 

stress level. It is assumed that neither surface f nor f will 
m 

touch surface f. If f touches f and monotonic loading occurs, 
sm 

then finexpands isotropically. But if f touches fm and the 

loading is not monotonic, f will slide so as to prevent f from 



- 420 - 

intersecting fm. Initially f and fm coincide. If sliding does 

not occur, the instantaneous translation of f is in the same 

direction as the plastic straining. 

Now consider the application of a monotonically increasing 

tensile load from 0 to B. Referring to Fig. AIII. 1, elastic 

deformation takes place from 0 to A. Further loading from A to 

B produces some plastic deformation. Surface f translates 

kinematically such that the centre of f initially at 0 moves to 

01. Since f can only touch fm, i. e. f and fm cannot intersect, 

then in the process of moving from 0 to 01, fm expands 

isotropeally from 
m0 

to fm1. Unloading is always elastic until 

yield occurs as defined in equation AIII. 3 , after which 

plastic loading occurs and f will translate within 
ml 

so long as 

f and fmldo not touch one another. 001, is denoted by the 

tensor ciJ ,. 
The surface fm is only updated (in this case 

expands) whenever the loading is monotonic. 

Suppose from the point B, the material is unloaded elastically 

to C and loaded again in the direction CDFG as shown in 

Fig. AIII. 2. Along the loading path BCD, elastic changes occur. 

Along DF, plastic deformation takes place. The loading, 

however, is not monotonic. Therefore surface fm remains at fm1' 

Since f (now denoted by f1) is not allowed to intersect but 

always touches surface fm1, surface f must slide within fml' 

The increment of plastic strain is normal to the yield surface. 

In this case in the direction 01D as shown. The instantaneous 

translation of f1 occurs along 010 which is parallel to the 

tangent of fm1at B. As the stress point moves from D to F, the 
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centre of ft moves along the are 0102. At 02, the surface f is 

denoted by f2. Along the path FG, monotonic loading occurs. 

The increment of plastic strain is, again, normal to yield 

surface (in this case f2) at F as shown. The instantaneous 

translation of f is in the direction of plastic strain. As the 

stress point moves along FG, f2 moves along 0203. Surface fm is 

updated to fm2. 

AIII. 2 Development of Equations. 

A complete constitutive equations for the model described 

previously is developed in this section. In the elasto-plastic 

analysis, the load is applied in increments. The plastic 

strain for a monotonic loading is given, in integral form, as: - 

Ep = (rU*)QV*t AIII. 8 

where U* is the equivalent expression of U in the uniaxial 

case. Similarly V* is the equivalent expression of V (see 

Chapter 2). 

For monotonic loading i. e. Q >, g 
eq MI 

* 
U= 

In general, 

V 

v-ý 
eq o 

v-Q 
so 

* as -a o 

as - aeQ as - QeQ 

AIII. 9 

AIII. 10 

The equivalent expression for plastic modulus is: - 
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r 

Ep -U 

(vs - vo) 

(rU*)q V*t(q+tU*V*) 

** 

= g(U V) 

AIII. 11 

AIII. 12 

For non-monotonic loading, a rule for updating U* is required. 

U* is updated to zero for radially reversed yielding. U* is 

unaltered if forward radial yielding, from an elastic 

unloading, occurs. U* has an intermediate value for a 

non-radial yield path. Radial here refers to the surface f 

The rule is: - 

new 2 (1+w)U* 
old 

where 

_ 
j_! 

jj w ij 
BB 

eqo eq 
f 

AIII. 13 

AIII. 14 

and ßij -- Sij - aii 

13 ßeqo -2 ßijoßijo 

ße9 2 ßijßij 
I 

In this model, aego ßeq 

I 

I 

Q 
O 

AIII. 15 

AIII. 16 

AIII. 17 

AIII. 18 

The quantities ", j, a ii, a ijo are illustrated in Fig. AIII. 3, for 

a loading path BCD. 
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For any kinematic hardening model, a translation rule is 

required. For this case two rules are required. One for the 

case when surface f slides over surface f and the other for the 
m 

no sliding condition. 

When sliding does not occur, the surface translates in the 

direction of the outward normal to the yield surface at the 

stress point. The rule is given by: - 

d«ij =2 S(U*V*)deij 

together with the associated flow rule AIII. 4 

AIII. 19 

The evolution of U* is half as rapid as that for monotonic 

loading. That is 

*_i 
Id«e ( 

dU - ---4- AI II. 20 2 
s0 

where daeq is the change in aeq . V* is given by equation 

AIII. 10 throughout. 

When sliding occurs, the surface f translates, instantaneously, 

in a direction tangential to the f surface, at the point where 
m 

f and f touch each other, as described in section AIII. 1. The 

condition for sliding to occur is when 

a+Q>f and a< Qm eq om eq eq 
AIII. 21 

When the condition AIII. 21 is satisfied, the translation rule 

becomes 

daij =ýnal AIII. 22 
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where ý is a scalar and n o1is a vector in the direction 0101 of 

Fig. AIII. 2. 

Now, the position vector of 01 is defined by aijfrom the origin 

0. The surface f is defined by: - 

3 
a aij a 2 ij eq AIII. 23 

= 
r0.5 (a -a )2+(a -a )2+(a -a )2+6a2 1/2 

AIII. 24 
xx yy yy zz zz xx xy J 

; this is the surface containing O1. In the n-plane, f is a 

circle of radius ci and origin at 0. The vector normal to f at 
a 

01 is given by: - 

at 
_a naij 

aai3 
AIII. 25 

This vector is denoted by 01H in Fig. AIII. 2. 

The vector in the direction normal to the surface at D, na is 
ij 

given by: - 

af 
n= ýij aSij 

AIII. 26 

Both vectors na and nQ are required to uniquely define the 
ij ij 

vector in the direction 0O, . The magnitudes of n 1 101 a ij 
nQ and noýare not relevant. 

ij 

The vector no1 is evaluated via an intermediate vector n2 which 

is perpendicular to both n and n. aij vii 

Hence n2=nXn ai. i 
AIII. 27 vi j 
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where X indicates a vector product. 

The required vector, n 
of 

is thus given by: - 

n01 naij X n2 

af af af 
_aXXa 

aaij aSii aaij 

af 
dQijTS 

The condition that the stress point lies on the yield surface 

is given by: - 

idaij-dQij) 
8f 

=0 
BSij 

where dcijis the increment of stress. 

Substituting equations AIII. 22 into AIII. 29 gives, 

(VI 
o1-dQij)äs =0 

ij 

which gives 

af af dQijagij ý no1TSk1 

Hence 

da ii = 
n 

AIII. 28 

AIII. 29 

AIII. 30 

AIII. 31 

AIII. 32 
-- 

8f no1 

o1äSk1 

Now, no1 can be evaluated as 
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at at at af at at aa_aa in 
01 

(aaijaaij, 
aSij 

aaljaSijýact ij 

_33f _ 
afa af afa 

-2aSiý aaiý'aSi3 aaij 

Since 
2afa afa 

1 3aaiý'aaii 

The value of $ can be evaluated as follows. 

From 

ý_ 

we have 

of 
doij TS- 

ij 
of 

not 
askl 

3f 33f 3fa 3f 
3fa 3f 

no1ý3 ý2Sij _ `Taij'ý, ýi, ýSij 

9 afa af 2 

a; Y--) 

since 
23f af 

rs- 
i jasii 

AIII. 33 

AIII. 34 

Substituting the results of AIII. 34 into equation AIII. 31 gives 
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ý_ 

f da a 
ijaSij 

9 8fa afa 2 
aaiýBSij 

and hence 

daij = 

af 3af afa 
af 

afa 
aQijasij (Zasij - (aaii'asij)aa) 

af af 2- tý - ä«; 'as ij ij 

AIII. 35 

The vector daijcan be expressed in terms of plastic strain 

increment dcii so that dais can be evaluated within the 

iterations loop of the finite element program. This is 

achieved from the Prandtl-Reuss flow rule and the 

'stress'-'plastic strain' relationship. From the flow rule, 

p af deii = dep 5 -9 
1-1 

AIII. 36 

and from the stress strain curve the increment of plastic 

strain is related to the increment of stress by 

dQeq = g(U*, V*)dep " AIII. 37 

Substituting relationship AIII. 36 and AIII. 37 into equation 

AIII. 35 gives 
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da = ij 
P 

38(u*"V*)(dQij . dEij) eq pp2afpaä 

1- 
4( a8f 2 

[d¬ii 
- 3( aij. 

deii )aa 
ý 

9F-, -ili I-S -) 
Equation AIII. 38 defines the translation rule. 

The equations are now expressed in expanded form: - 

The total equivalent stress is given by, 

3 
aeq 2Sijsij 

AIII. 38 

1(Q-o )2+(ý -Q )2+(v -v )2+6T2 
1 ]1/2 

AIII. 39 -2l xx yy yy zz zz xx xy 

j 

and the yield surface is expressed as: - 

f= C2(Sij-aij )(Sij-aij )l1/2 

= 1.5((2cr XX a 
YY_crzz 

_a XX) 

2+(2aYY-a zz_0 XX 
_aYY) 

2 

C33 
(2azz-axx 

aYY 
-azZ)2 + 2(txy -axY/2)2)11/2 AIII. 40 

3 

The components of plastic strain increment are given by: - 
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dep =de 
(2(vXX-aXX) - (Q 

YY-a yy 
)- (azz-azZ)) 

xx p 2f 

dep =de 

(2(ayy-ayy) - (aZZ-azZ) - (aXX-aXX)) 

yy p 2f 

dep 
xy 

(TXy-aXy/2) 
=3de P I 

dep = de 
(2(azz-azz) - (axx-aXX) - (o -a )) 

yy yy 
zz p 2f 

(i> 

(ii) 
AIII. 41 

(iv) 

Two expressions for the translation rule are required. One for 

the no-sliding condition and another for the sliding condition. 

For no-sliding condition: - 

do = 
2g(U*, V*)depX - (i) 

2** 
dayy = 3g(U ,V )deyy 

2** daXy = 3g(U, V )deXY 

AIII. 42 

(ii) 

(iii) 

da 
ZZ = 3g(U V )de ZZ (iv) 

where g(U*, V*) is defined by equation AIII. 12. 

when sliding occurs, 
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daXX = ý(deXX - udaXX) (i)' 

dayY = n(deyy - udayY) (ii) 

dazz = Q(deP 
zz - uda 

1 
zZ) (iii) 

daXY = n(deP 
xy - uda 

9 
Xy/2) 

where: - 

' 2axx-ayy-azz 
daxx - 2f 

a 

' 2aYY azz axx 
dayY = 2fa 

(iv) 

(i) 

(ii) 

1 3(axy/2) 
da 

xy - 2f 
cl 

(iii) 

I 2aZZ-axx-ayy 
(iv) dazz - 2f 9 

a I 

AIII. 43 

AIII. 44 

fa = 
C((axx 

ayy )2+(ayy-azz)2+(azz-a 
xx 

)2+6(a 
xy 

/2)2)/2)1/2 1 AIII. 45 

u= 
[daXXdeXX+dayydeyy+daZZdeZZ+2daXYdEXyý 

3ý 
AIII. 46 

n= 

2g(Uý, Vý)((Q -0° )dep +(° -°° )dep +(° _Q° )dsp +2(t -T° )dep 
-3 xx xx xx yy yy yy zz zz zz xy xy xy 

0q)(1 
-4 

9de 

" AIII. 47 

In the above expression, de is the equivalent plastic strain 
p 



-ü31- 

increment given by: - 

2PP dEP = 3deiýdeiý AIII. 48 

the superscript o refers to the value at the last converged 

solution (see section AIII. 4.1). The above formulation has 

been incorporated into the finite element program. 

To include the effect of cyclic hardening, the parameter 

q increases from qo . It is a gradual process and a stable 

cyclic state is reached after a very large number of cycles. 

It is assumed that q varies as a function of plastic strain 

path. An empirical relation suggested by Goodman and 

Goodall (18) is employed here .q varies according to the 

following relation: - 

q= qo lg(10 +H lg(1+100p*)) AIII. 49 

H is a constant. p* is the total cyclic plastic strain 

path, given by :- 

** 
P=E IAePI - eP 

Ac 
p 

is given by equation AIII. 48 and 

AIII. 50 

AIII. 51 
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Altogether, six constants are needed to describe the model. 

These are a 
spa0, r, t, go and H. These constants can be determined 

from uniaxial cyclic stress strain curves. 

AIII. 3.1 Determination of Material Constants. 

Any material model requires a method of determining the 

necessary constants, preferably, without excessive or 

complicated material testing. A method for finding the 

constants r, t, go and H are outlined here. The procedure follows 

closely the method suggested by Goodman and Goodall (18). The 

method assumes that a montonic stress strain curve and a cyclic 

plastic stress strain curve are available. The cyclic plastic 

stress strain curve are obtained from cycling between fixed 

stress level with stress range oR and maximum tensile stress aT. 

The experimental ratchet strain at the hardened state eR can be 

obtained. An iterative procedure described below can then be 

applied. 

1) Estimate a and a 
s0 

2) Guess a value of t=t 
0. 

It is convenient to put t0=0 to 

start with. 

3) Find r and qo so that equation AIII. 8 fits the monotonic 

loading curve. 

4) From the hardened hysteresis loop find q 
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to fit 

T 
(o 

T 
eR = vR/E +f EpdQ 

oT-aR+2vo 

where 

Ep = 

* 
U (as-ao) 

(rU , gV(Q+- UýV ) 

AIII. 52 

AIII. 53 

q=qo can be taken as the starting point. eR is the total 

strain range for the loop considered. 

5) Determine the hardening constant H from equation AIII. 49 

6) From q obtained in step (4), obtain a new value of t to 

give the correct ratchet strain 

TT 
R v-"R 

e= Epd ct - 
TT 

' 0--vR+2QO / Q`-2a 
0 

EpdQ 

7) Go to step 3 until all values converge. 

AIII. 54 

If cyclic hardening is negligible, steps 4 and 5 can be 

omitted; this simplifies the procedure considerably. The 

integration which is necessary in equations AIII. 52 and AIII. 54 

may have to be carried out numerically. 

I _rt-_rt 

AIII. 3.2 Determination of the Constants for the Lead Alloy. l 
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The lead alloy had been shown to exhibit the phenomena of 

cyclic hardening, cyclic relaxation and material ratchetting 

(see references 3 and 20). The cyclic stress-strain curves in 

(3) and (20) also indicate that for cycling between fixed 

strain limits, a stable loop is obtained after the first cycle, 

the material does not cyclically harden. For this reason, 

cyclic hardening is ignored in determining the material 

constants for the lead alloy, this simplifies the procedure 

very considerably. 

The monotonic stress-strain curve obtained by Yahiaoui (3) for 

lead alloy is reproduced here in Fig. AIII. 4(i). It indicates 

that there is a scatter in the experimental data. The average 

stress-strain curve is used here. A typical uniaxial cyclic 

plastic stress-strain curve for cycling between two fixed 

stresses is shown in Fig. AIII. 4(ii). The ratchet strain per 

cycle is taken to be the average for the first 10 cycles. 

Because of the scatter in the results obtained from 

'material ratchetting' tests (see Table AIII. 1), it was decided 

to obtain three sets of constants for the 

'material ratchetting' model. The constants were chosen to 

give ratchet strains equal to those obtained in tests Uk, U1 and 

U3. The resulting sets of constants denoted as material models 

A, B and C respectively are also shown in Table AIII. 1. 

Using the material constants obtained, Fig. AIII. u(i) shows the 

predicted monotonic stress-strain curves; these are compared 

with the experimental stress-strain curve. The constants for 
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materials A, B and C all give good prediction of the monotonic 

stress-strain curve. The predictions of ratchet strain per 

cycle, however, are not so good. The variation of ratchet 

strains per cycle with the mean stress and stress range for 

materials A, B and C are shown in Fig. AIII. 5. Material A gives, 

overall, lower predictions of ratchet strains, compared to 

materials B and C. For all cases, overall, the lead alloy 

behaviour was found to be better predicted by the constants for 

material models B and C. Fig. AIII. 6 shows the cyclic plastic 

stress-strain curve obtained using material model A, constant 

ratchet strains are obtained after the first cycle because 

cyclic hardening is ignored. 

AIII. u Program Development. 

Full details of the elastic-plastic creep finite element 

programs, data input system, flow charts etc., which were used 

as the basis for the present developments, are decribed by 

Hardy (83). The relevant subroutines used for the inclusion of 

the Goodman and Goodall model are called PLASTIC and T86010. 

These' subroutines are stored in a file called 

EAFESLIB. EAXSHCPLEEP';. Both of these subroutines were modified 

to accommodate the present model. A minor modification was 

made in PLASTC to retain the restart facility. A separate 

routine called GOOD2 for the present model was written. A 

major modification to T86010 was necessary; thus allowing it 

to call GOOD2 without affecting the existing perfectly-plastic, 

linear kinematic and linear isotropic models in the routine. 

Parts of the flow chart for T86010, where modifications were 
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made, and the flow chart for GOOD2 are shown in Figs. AIII. 7 and 

AIII. 8 respectively. 

AIII. 4.1 Program Detail. 

To solve elastic-plastic problem an incremental approach is 

adopted. The load is increased in small, but finite, steps by 

increasing the displacement. The total strain is then 

calculated from the total displacements and the elastic strain 

is extracted, from which the components of the stresses are 

calculated. The equivalent stress is then calculated taking 

into account any shift in the yield surface which may be due to 

kinematic hardening. If the equivalent stress is above the 

yield stress, then yielding occurs and the plastic strain must 

be determined. An iterative precedure described in detail in 

reference 14 is used. A 'negative gradient' technique is 

used to speed up the convergence of the iterative solution. 

This technique is briefly described here. Fig. AIII. 9 shows the 

equivalent stress-equivalent strain curve for a 'gauss' point 

in the structure. At some stage in the iteration, point A is 

reached which is not on the stress-strain curve. If the 

converged solution at the end of the last load step is at B, 

then CA is the current estimate of the equivalent plastic 

strain. A 'guess' for the solution on the uniaxial stress 

strain curve is obtained, i. e. point D, by taking a negative 

gradient, usually minus the Young's Modulus, from A towards the 

stress strain curve. The new estimate of the equivalent 

plastic strain is given by ED. If A is below the stress-strain 

curve, the same negative gradient is used which would give a 



- 437 - 

smaller estimate of plastic strain than the previous iteration. 

The iteration procedure is continued until the stresses at each 

'gauss point' within the structure are within X% of the 

stress-strain curve. X is called the accuracy criterion of the 

converged solution. 

The Goodman and Goodall (18) model is a particular case for 

which certain approximations to the actual stress-strain curve 

are made. The stress-strain curve is approximated by a series 

of short straight lines each with a plastic modulus Ep, given 

by equation AIII. 11, evaluated at the last converged solution. 

Hence, in Fig. AIII. 9 the curve BGD is approximated by a 

straight line BD which is the tangent of the curve at B with 

plastic modulus Ep calculated using stress aB. The plastic 

modulus is constant during the iteration. Due to this 

approximation, the stress-strain curve is always 'above' the 

actual stress-strain curve. For infinitesimally small stress 

increments, the generated stress-strain curve would converged 

to the actual stress-strain curve. More sophisticated 

techniques for obtaining an appropriate value of Ep could be 

used but for the present development work, these were not 

considered to be necessary. 

AIII. 5 Illustrative Examples. 

In this section the results of uniaxial and biaxial 

calculations obtained with the above model are presented to 

illustrate the behaviour of the model and to demonstrate that 

the finite element coding is working correctly. In all but one 
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case, i. e. the case in which cyclic hardening is included, the 

constants for the lead alloy material model C of Table AIII. 1 

were used. For uniaxial loading case, with cyclic hardening, 

the material constants for 316 Stainless Steel, obtained by 

Goodman and Goodall (18), were used. The constants for 316 

Stainless Steel are given in Table AIII. 2. A one element model 

was used throughout. For convenience, the results for stress 

controlled cycling were obtained. 

AIII. 5.1 Uniaxial Loading. 

AIII. 5.1.1 Without Cyclic Hardening. 

Fig. AIII. 10 shows the stress-strain curve obtained for stress 

controlled cycling with a zero mean stress. The curve OAB 

represents the monotonic loading curve. When the stress is 

reversed, the curve BCD is generated. On reloading from D, the 

curve DEB is generated. A closed hysteresis loop BCDEB is 

obtained and there is no ratchet strain obtained with cycling 

about a zero mean stress. 

When cycling between the stress levels of 25MNm -2 and 

-2 
-18 MNm , the stress-strain curve shown is Fig. AIII. 11(i) was 

obtained. For convenience, the stress has been plotted against 

the plastic strain. The curve OAB represents the monotonic 

loading curve. The results for only 12 cycles are shown. 

However, since there is no cyclic hardening, the plastic branch 

of the curve in the tensile direction in the subsequent cycles 

will be identical to the curve DEF and similarly for the 
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compressive branch it will be identical to FGH. The ratchet 

strain per cycle eRis indicated in Fig. AIII. 11(i). If cycling 

between the strain limits at B and D was carried out, for the 

first cycle, there would be a stress relaxation of 6o as shown. 

Subsequent cycling would cause the hysteresis loop to shift 

downwards, tending towards a loop with zero mean stress. 

AIII. 5.1.2 With Cyclic Hardening. 

The stress-strain curve obtained is shown in Fig. AIII. 11(ii). 

The monotonic loading curve is denoted by OAB. For this part, 

the hardening index, q, takes a value q. . On unloading from B, 

the material undergoes cyclic hardening, i. e. plastic slope of 

the curve BCD is higher than it would be if cyclic hardening 

was not included. The hardening index, q, is constant over a 

loading path until a plastic reversal occurs. For example, 

q is constant at ql, for curve BCD, q 2 
for DEF, q 3 

for FGH etc. 

where g1, g2 q3 etc. in general different. The ratchet strain 

reduces after each cyclic loop until q become approximately 

uniform when a constant ratchet strain occurs. 

AIII. 5.2 Biaxial Loading. 

AIII. 5.2.1 Proportional Loading. 

In this case, the element is subjected to stresses in the x and 

y directions denoted by a 
xx and a 

yy respectively (see Fig. AIII. 12 

for the coordinate axes). The loading is such that at any 

instant the ratio of a to a is constant. As a result, a radial 
xx yy 
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loading path is obtained. A modified effective stress (aeff) 

and plastic strain (eeff ) are used so that the result can be 

presented in a similar manner to the uniaxial stress-strain 

curves, where aeffand eeffare given by equation AIII. 55(i) and 

(ii) respectively. 

f PIis 
aef f- sgn(exx) Siij (i) 

AIII. 55 

'P2PP eeff - sgniExx) 3eij eij iii) 

where sgn(a )is the sign of XXand sgn(eXX ) is the sign of a 
xi 

The results for biaxiality ratio of 1: 1 (i. e. oxx: a 
yy=1: 

1) are 

shown in Fig. AIII. 13(i) and for biaxiality ratio of 1: 2 are 

shown in Fig. AIII. 13(ii). As would be expected, the curves 

obtained were found to be identical to those obtained for 

uniaxial loading, i. e. Fig. AIII. 11(i). 

AIII. 5.2.2 Non-Proportional Loading. 

Results were obtained for the following load combinations: - 

(a) uniaxial monotonic loading to a 
yy =12MNm 

2 followed by 

cyclic variations of axx between -9MNm 
2 

and 28.74MNm 
2, 

(b) uniaxial monotonic loading to a =1MNm 
2 followed by cyclic 

xx 
variations of r between -12MNm 

2and 12MNm 2and 
xy 
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(c) uniaxial monotonic loading to a 4MNm-2 followed by cyclic 

variations of the shear strain between -0.25% and +0.25%. 

AIII. 5.2.2.1 Results for Load Case (a). 

A graph of xx against Eeff is shown in Fig. AIII. 14(i). The 

results are somewhat surprising since the effective plastic 

strain was found to be decreasing with cycle number. The 

variation of total strain in the y direction, e 
T, 

shown in 
yy 

Fig. AIII. 1k(ii), however, shows that eT is increasing with 
yy 

cycle number. The result is different from either the uniaxial 

or the proportional loading cases. The movement of the yield 

surface is denoted by aid. In the n -plane, the position of 

aiiduring loading is shown in Fig. AIII. 14(iii). The curve OA 

represents the movement of the yield surface during the loading 

on the virgin material. Subsequent loading in which plastic 

straining occurs, causes the centre of the yield surface to 

follow the curve ABCDEFG. Sliding of surfaces f and fm are 

denoted by the curves CD and FG. Because the stress increment 

in the computation is finite, there is a small expansion in the 

surface fm . If the stress increments were reduced, point D 

would be closer to point A, point E would be closer to point B 

and so on. For infinitesimal small stress increments, point D 

would be identical to point A and so on. 

AIII. 5.2.2.2 Results for Load Case (b). 

This load case corresponds to that of a thin tube subjected to 

a steady axial load and a cyclic torsional moment. 
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Fig. AIII. 15(i) shows the shear stress-shear strain behaviour of 

the element. The curve OAB corresponds to the virgin material. 

Unloading from B follows the curve BCD with subsequent 

reloading following the curve DEF. Because it is a stress 

controlled situation, the shear strain at F is less than that 

at B; and the loop is not symmetric, with a non-zero mean 

strain. The loops for the second, third and fourth cycles are 

also shown in Fig. AIII. 15(i). For the third and fourth cycles, 

the loops almost coincide. The variation of total axial strain 

with shear stress is shown in Fig. AIII. 15(ii) and 

Fig. AIII. 15(iii) shows the variation of total axial strain with 

cycle number. The axial strain increases for the first few 

cycles and reaches a constant value at about 4 cycles. 

AIII. 5.2.2.3 Results for Load Case (c). 

This load case corresponds to one commonly used in experimental 

work. The axial load is held constant while a cyclic torsional 

moment is applied such that the shear strain is cycled between 

fixed levels with zero mean shear strain. Fig. AIII. 16(i) shows 

the shear stress-shear strain loop for shear strain cycling 

between ± 0.25% with a constant axial stress, a 
xx , 

of 4 

MNm 2(i. 
e. axx /aä 0.2857). Initially, curve OA is traced which 

is the virgin material curve followed by curve ABC and so on. 

At the end of each quarter cycle, the magnitude of the shear 

stress increases. The increment in the shear stress reduces. 

The stress-strain loop eventually reaches a stable loop with 

zero mean stress. The variation of total axial strain with 

cycle number is shown in Fig. AIII. 16(ii). There is an increase 
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in the total axial strain with cycle number and the increment 

reduces. The total axial strain finally reaches a steady 

value. When this happens, a stable stress-strain loop is 

obtained. This describes qualitatively the behaviour of some 

metals, e. g. in reference 26. 

From these observations, it is concluded that the model is 

capable of describing commonly observed material behaviour in 

multi-axial as well as uniaxial loading and that the coding in 

the program is correct. 
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Yield stress, a 
0 

Saturation stress, 

Young's modulus, E 

Poisson's ratio, v 

Goodman and 

Goodall (18) 

constants 

0 
S 

r 

t 
q0 

H 

100.0 MNm-2 

400.0 MNm-2 

160.0 CNm-2 

0.3 

0.61 

0.4 
2.5 

60.0 

Table AIII. 2 Material constants for 316 Stainless. 

Steel at 500-600°C 



cr 1 

Fig. AIII. 1 Multi-axial model. 



f 
S 

Fig. AIII. 2 Multi-axial model. Non-proportional loading. 



Fig. AIII. 3 Definition of parameters for loading path BCD. 
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Fig. AIII. 4(i) Experimental stress-strain data and fit to the 
mean data. 
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Fig. AIII. 4(ii) Typical behaviour with fixed stress range 
cycling with a non-zero mean stress. 
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Fig. AIII. 6 Stress-strain behaviour for fixed stress cycling 
for material model A. 
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L 
Call subroutine C99000 
which in turn calls 
subroutine T86010 

4 
Retrieve control parameters 
and other parameters relating 
to particular loading conditions 

Start of element loop 

y 

YES 

Calculate thermal 
strains ADEPL1, using 
temperature difference 
between current 
increment(DLIST) and 
previous increment 
TEMP1 

If particular element is not 
to be stressed (i. e. IRET=1) 
update IGPT by IIxII and go 
to the next element. 

Calculate total strains 
from total displacements 

Calculate' elastic strains 
and hence stresses 

Fig. AIII. 7 Program flow chart (part of Subroutine Plastic 
of reference 83 ) 
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isotropic 
hardening I kinematic 
and elastic I hardening 
perfectly 
plastic 

. _ý 
Calculate von-Mises 
equivalent stress, 
SIGEQ 

Calculate total equivalent 
strain, EEQ, as the sum of 
equivalent elastic and 
equivalent plastic strains 

ýv Retrieve material 
constants for Goodman 
and Goodall model 
by calling TXXXX8 

Calculate total von-Mises 
equivalent stress, BETEQ. 
Calculate von-Mises 
equivalent stress allowing 
for a shift in yield 
surface, SIGEQ. 

Y 

Fig. AIII. 7 contd. 

Retrieve total von-MLses 
equivalent stress at the 
last increment, BETEQO, 
and the quantity eq 

Retrieves current values 
of abs. increment, iteration, 
gauss point and ICHECK by 
calling TXXXX4 

Go to subroutine for 
Goodman and Goodall model, 
GOOD2 (see Fig. AIII. 8 for 
flow chart) 

Retrieve current values of 
abs. increment, iteration, 

gauss point and ICHECK by 
calling TXXXX4 
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elastic 
perfectly 
plastic and 
isotropic 
hardening 

Calculate components 
of plastic strain 
increment using 
Prandtl-Reuss flow 
rule(ADEPLI) 

Fig. AIII. 7 contd. 

Calculate components 
of plastic strain 
increment using 
Prandtl-Reuss flow 
rule for kinematic 
hardening (ADEPL1) 

Set indicator IYIELD 
to 1 if yielding has 
oucured 

Goodman 
and 
Goodall 

Calculate components 
of plastic strain 
increment using 
Prandtl-Reuss flow 
rule for Goodman and 
Goodall model (ADEPL1) 
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>0? 

Calculate the shift in yield 
surface when sliding occur 

Fig. AIII. 7 contd. 

Is , 
IC1-1? 

(i. e converged 
solution on previous 

iteration) 

Is it 
Goodman and Goodall 

model? 

Calculate the shift in 
yield surface according 
to Prager's hardening 
rule Aaij=2F Ac i j/3 

Does 
yield surface 
slides surface 

f? 
_m 

Is 
'increment 
of plastic strain 

Is it 
Goodman and 
Goodall 

, model? 

Store stresses in 
array SIGMA1 

Store positions 
of yield surface 
in array ALFA 
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Fig. AIII. 8 Flow chart for Goodman and Goodall model 
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Fig. AIII. 8 contd. 



- 462 - 

I 

o'B 

Or 0 

imp- 
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Fig. AIII. 9 Equivalent stress-equivalent strain curve 
showing the method of estimating the 
equivalent plastic strain increment. 
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