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Abstract 

Over the course of the last two decades, research into the role of quorum sensing (QS) in 

regulating diverse bacterial behaviours has exploded, and around twelve years ago, a QS 

network was identified in the enteropathogenic bacterium Yersinia pseudotuberculosis, 

which was shown to control motility and cellular clumping.  This thesis seeks to expand 

this regulatory relationship and explore the causes and consequences of the link between 

QS and motility, which affects pleiotropic processes including the type 3 secretion system 

(T3SS) and biofilm formation.  Indeed, the clumping phenotype first explored by Atkinson 

et al. (1999), is linked to QS-dependent regulation of the T3SS, since the deletion of 

several QS genes results in liquid culture biofilm (LCB) formation. This is concomitant with 

T3S protein secretion into culture supernatant, which occurs under normally non-inducing 

conditions, while deleting the T3SS structural component yscJ prevents secretion and LCB 

formation.  De-repression of the T3SS and the development of LCBs also occurs following 

mutation of the flagella regulators flhDC and fliA, revealing that QS and the flagella 

system co-regulate LCBs.  However, interestingly it was found that LCB formation and 

secretion also occurs following mutation of the flagella structural gene flhA.  The ∆flhA 

mutant represents a flagella-minus strain, in which the underlying regulatory circuit 

mediated by FlhDC and FliA is intact, suggesting that an element of the flagella structure 

that depends on FlhA activity acts as a check-point governing expression of the T3SS.     

 

Both QS and the flagella system positively regulate biofilm formation by Y. 

pseudotuberculosis on the surface of the nematode worm, Caenorhabditis elegans.   

Surprisingly, the up-regulated T3SS was found to be responsible for mediating down-

regulation of biofilm formation by Y. pseudotuberculosis QS mutants, since subsequent 

deletion of yscJ could restore biofilms to wild-type levels.  This suggested that a 

component of the injectisome was capable of influencing cellular processes in addition to 

its role in secretion.  In light of the link regulatory link between flagella and T3S, this 

raised the possibility that the injectisome could play a role in the reciprocal regulation of 

motility.  Since the genetic regulatory network underpinning expression of the T3SS is 

intact in the ∆yscJ mutant, like the ∆flhA mutant for flagella, the ∆yscJ mutant can reveal 

the role of the injectisome structure in modulating gene expression.  By phenotypic 

observation, it was determined that the ∆yscJ mutant displayed aberrant flagella 

mediated motility, swimming vigorously under conditions in which the wild-type did not, 

and, similar to the over-production of Yop proteins in the ∆flhA mutant, the ∆yscJ mutant 

over-produces flagellin.  This suggests that a component of the T3SS injectisome acts as 

a checkpoint to regulate motility, which appears to be at the level of transcription, since 

the ∆yscJ mutant displays up-regulation of the flagella regulators flhDC and fliA.  Indeed, 

the relationship between T3S and motility appears to require a direct influence on QS, 

since subsequent mutation of ypsI and ytbI abolishes ∆yscJ-dependent hyper-motility, 

the ∆yscJ mutant displays altered expression of the QS system genes.  Furthermore, for 

the emerging transcriptional relationship between these systems, the flagella and QS 

mutants which are up-regulated for the production of Yop proteins also over-express the 

virulence regulator virF, completing the transcriptional regulatory circuit which appears to 

be crucial for the regulation of lifestyle choices by Y. pseudotuberculosis.   
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Introduction 
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1.1 Bacterial Communication and Quorum Sensing 

  

The ability for many species of bacteria to engage in a type of population sensing 

which couples genetic regulation with growth phase has been termed quorum 

sensing (QS).  QS facilitates co-operation, competition and co-ordinated group 

behaviours including bioluminescence, virulence, biofilm formation, competence, 

motility, secondary metabolite (for example antibiotic production) and exoprotein 

secretion (Williams et al., 2007, Fuqua et al., 1994, Diggle et al., 2007a, 

Williams, 2007).  To achieve this, bacteria typically produce and release small 

diffusible signalling molecules that accumulate in the environment and at a 

threshold concentration cause global changes in gene expression, often including 

auto-induction, whereby the signal induces positive-feedback on its own 

production (Williams et al., 2007, Salmond et al., 1995, Swift et al., 1996, 

Williams et al., 2000, Withers et al., 2001, Winzer and Williams, 2001).  

 

There are two extensively characterised QS systems in bacteria- the N-acyl-

homoserine lactone (AHL) QS group of the proteobacteria, and the peptide based 

QS group in Gram positive bacteria (Kleerebezem et al., 1997, Hardman et al., 

1998, Williams et al., 2007, Withers et al., 2001).  Another QS system, termed 

autoinducer 2 (AI-2) has also been discovered which spans the Gram negative / 

Gram positive divide (Schauder et al., 2001, De Keersmaecker et al., 2006, 

Surette et al., 1999), however, in some bacteria, it may not function as a QS 

system but may only play a metabolic role (Doherty et al., 2006).  More QS 

molecules are found in specific bacterial groups, such as the Pseudomonas 

Quinolone Signal (2-heptyl-3-hydroxy-4-quinolone; PQS) and the related 2-

heptyl-4-quinolone (HHQ) QS systems found in Pseudomonas and Burkholderia 

spp. (Diggle et al., 2006, Diggle et al., 2007b), and the epinephrine / 



 
3 

 

norepinephrine / autoinducer 3 responsive signalling pathway found to regulate 

virulence in enterohaemorrhagic Escherichia coli (Walters and Sperandio, 2006). 

 

1.1.1 AHL signalling and QS 

 

The QS paradigm is based on bioluminescence in the marine bacterium Vibrio 

fischeri.  This species grows to high cell densities in specialised „light organs‟ of 

certain marine squid and generates light via activity of the luciferase (lux) 

operon (Engebrecht et al., 1983).  Luciferase expression occurs at high cell-

densities through the activity of AHL signalling molecules, usually produced via a 

member of the LuxI AHL synthase protein family.  AHLs constitute a family auto-

inducing signalling molecules which diffuse or are exported from the cell and 

accumulate to a minimal threshold concentration whereupon they activate a 

cytoplasmic receptor / helix-turn-helix transcriptional activator which is usually a 

member of the LuxR protein family (Whitehead et al., 2001, Cámara et al., 

2002, Kaplan and Greenberg, 1985).  The AHL-LuxR complex binds to the 

promoter of the lux genes, and activates bioluminescence (Swartzman et al., 

1992). The LuxR/I system can also positively regulate its own expression 

(Eberhard et al., 1991, Shadel and Baldwin, 1991), and so represents a 

biochemical switch between the „quorate‟ and „non-quorate‟ state (figure 1.1) - 

however, LuxR can also negatively regulate its own expression, which may lead 

to bistability and hysteresis in the QS network (Williams et al., 2008). 

 

Homologues of luxI and luxR exist in at least 50 other species of Proteobacteria 

(Williams et al., 2007), and these systems can be classified into two 

phylogenetic groups: group A, including LuxR/I from Vibrio spp. and LasR/I from 

Pseudomonas aeruginosa, are dispersed throughout the α, β, and γ 

Proteobacteria and generally act as transcriptional activators, while group B, 
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including YpsR/I from Y. pseudotuberculosis and EsaR/I from Pantoea stewartii, 

are restricted to the γ proteobacteria and act as transcriptional repressors 

(Waters and Bassler, 2005, Minogue et al., 2002, Atkinson et al., 1999, 

Swartzman et al., 1992, Gambello and Iglewski, 1991).  In the genome, the luxI 

and luxR family genes are typically found in close proximity; in tandem, 

divergent or even over-lapping pairs (Williams et al., 2007), and have been 

found on chromosomes, on plasmids (Piper et al., 1999), and carried in 

transposons (Wei et al., 2006). 

 

 

Figure 1.1| AHLs accumulate in the extracellular environment and trigger 

behavioural changes at threshold concentrations.  In the top panel (a), an 

AHL producing cell is at low cell density (1).  Following growth, more AHLs 

are produced (2) until the cell reaches a high cell density with an abundance 

of AHLs in the environment (3).  As the concentration of AHLs surpasses the 

threshold, the cells become “quorate” and engage in collective target gene 

expression, such as the production of bioluminescence (4).  The bottom 

panel (b) shows a graphical representation of the accumulation of AHLs in 

the extracellular environment that crosses a threshold concentration to 

induce the “quorate” state and modulate gene expression. 
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 1.1.2  LuxI family proteins and signal generation 

 

The archetypal AHL synthase is LuxI from V. fischeri.  LuxI is a 22 kDa protein 

which directs the synthesis of 3-oxo-C6-homoserine lactone (HSL) from S-

adenosylmethionone (SAM) and 3-oxo-hexanoyl-acyl-acyl carrier protein (acyl-

ACP) (Schaefer et al., 1996).  LuxI binds acyl-ACP and forms a covalent 

intermediate between the acyl-ACP acyl-group and the enzyme (Hanzelka et al., 

1997).  Subsequent to SAM binding, LuxI catalyses the formation of an amide 

bond between the carboxyl group of the fatty acid and the amino group of SAM.  

This intermediate undergoes lactonisation, resulting in the formation of the AHL 

and 5‟methylthioadenosine (Schaefer et al., 1996, Hanzelka et al., 1997). 

 

LuxI-family proteins synthesise a diverse range of AHLs, with acyl-side chain 

lengths between 4 to 16 carbon atoms which may be fully reduced, or 

substituted with an oxidized carbonyl or hydroxyl group on the third carbon 

(Williams, 2007).  Long chain AHLs may also be unsaturated (Swift et al., 2001), 

and recently more AHL groups have been identified, such as the p-coumaroyl-

HSL, where the side chain is derived from exogenously supplied p-coumaric acid 

derived from a plant metabolite (Schaefer et al., 2008) (Figure 1.2).  This 

diversity in AHL structure is provided by the mechanism of synthesis and the 

cellular pool of acyl-acyl-ACPs: substitutions on the third carbon depend on fatty 

acid biosynthesis, and the degree of N-acylation is conferred by differences in 

the fatty acid binding pocket of the LuxI homologue, which either occludes or 

permits longer acyl chains (Nasser and Reverchon, 2007). This diversity may 

allow for specificity between the AHL and its cognate receptor and allows 

bacteria to discriminate signals produced by their own species and reduce „noise‟ 

produced by co-habitants (Nasser and Reverchon, 2007), however, some LuxI 

homologues are capable of synthesizing more than one type of AHL, though it is 
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not known if all are biologically relevant (Waters and Bassler, 2005).  In contrast 

to this acyl side chain structural diversity, the AHL produced by Erwinia 

carotovora (3-oxo-C6-HSL) exists exclusively in the L-isomer, and since synthetic 

D-enantiomers lack activity, this suggests that other AHLs may also be active in 

the L-form (McClean et al., 1997).   

 

 

Figure 1.2| Some representative chemical structures of the AHL signal 

family.  N-acyl homoserine lactones (AHLs), where the acyl side chain (R) can 

be C1 to C15 are commonly unsubsituted, or substituted to form 3-oxo-AHLs 

(N-3-oxoacyl-homoserine lactone) or 3-hydroxy-AHL (N-3-hydoxyacyl-

homoserine lactone).  One or more double bonds may also be present in the 

acyl side chain.  More recently, derivatives of AHLs including the p-

coumaroyl-HSL, where the side chain is provided by a plant-derived 

molecule, have been identified.  Figure adapted from Williams et al., 2007 

and Schaefer et al., 2008. 

 

Reflecting on this AHL structural diversity, LuxI family proteins often share 

relatively little sequence homology, despite the presence of highly conserved 

regions (Fuqua et al., 1996). Mutational analysis of LuxI has however revealed 

two segments of the protein which are required for its function- a region within 

the N-terminus between residues 25 – 70 which includes the active site involved 

in amide bond formation, and residues 133 – 164 in the C-terminus which form 

AHL

3-oxo-AHL

3-hydroxy-AHL

p-coumaroyl-HSL
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the acyl-acyl-ACP binding pocket, especially a threonine residue at position 140 

(Hanzelka et al., 1997) which is conserved in, LuxI, LasI and EsaI from Vibrio 

spp., P. aeruginosa and P. stewartii respectively, which all preferentially bind 3-

oxo-acyl-ACP and produce 3-oxo-HSL molecules (Watson et al., 2002).  These 

threonine resides are also found in the Y. pseudotuberculosis AHL synthase 

enzymes YpsI and YtbI which direct the synthesis of both 3-oxo and 

unsubstituted AHLs (Ortori et al., 2007). 

 

However, AHLs can also be synthesized by enzymes other than the LuxI-family, 

and at least two other families of AHL synthase proteins exist: the luxM / ainS 

family present only in Vibrio spp. (Milton et al., 2001, Gilson et al., 1995) and 

hdtS from Pseudomonas fluorescens (Laue et al., 2000).  Both these enzymes 

synthesize the core HSL ring from SAM, and differ only in the sources they use 

for the acyl side chain.  However both are characterized to a lesser extent than 

the LuxI family (Williams et al., 2007). 

 

1.1.3 LuxR family proteins and signal transduction 

 

Typically, AHL signals are received by receptor proteins of the LuxR family, but 

while LuxR homologues all share a similar domain structure, like the LuxI family 

proteins they share relatively little homology with one another (Fuqua et al., 

1996).  The V. fischeri LuxR protein, as with all other studied homologues, 

contains two functional domains- an N-terminal binding site for its cognate AHL 

and a C-terminal helix-turn-helix (HTH) DNA binding motif which binds a region 

in target promoters termed the „lux box‟- a 20 bp palindromic sequence of DNA 

(Egland and Greenberg, 1999).  LuxR may bind DNA either synergistically with 

(Stevens et al., 1994) or independently of (Egland and Greenberg, 2000)  the 

RNA polymerase (RNAP) complex.  LuxR  binds as a homodimer, each monomer 
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contacting one half of the dyadic lux box and acts as an ambidextrous activator 

of RNAP (Egland and Greenberg, 1999)- though other LuxR proteins may form 

homodimers and heterodimers with other LuxR homologues encoded in the same 

bacteria (Ledgham et al., 2003, Medina et al., 2003, Ventre et al., 2003).   

 

When no AHLs are present, the N-terminal-domain of LuxR blocks dimerisation 

and the DNA binding capacity of the HTH motif.  Upon AHL binding, a 

conformational change releases this auto-inhibition (Poellinger et al., 1995).  

AHL binding to TraR from Agrobacterium tumefaciens and MrtR from 

Mesorhizobium tianshanense also promotes dimerisation and activation (Qin et 

al., 2000, Yang et al., 2008).  Specificity in the response to AHLs is conferred by 

discrete differences in the C-terminal-domain AHL binding pocket; this is formed 

from regions of hydrophobic and aromatic amino acids that are highly conserved 

through the LuxR homologues.  This creates differences in the acyl binding 

tunnel which accommodate acyl chains of different lengths.  Longer chain AHLs 

also appear to be irreversibly bound to LuxR homologues, while affinities 

decrease with decreasing chain length (Nasser and Reverchon, 2007).  Indeed, 

one A. tumefaciens AHL, 3-oxo-C8-HSL, is thought to be completely embedded in 

a narrow channel within the AHL binding domain of TraR, can be removed only 

following dialysis in the presence of detergent (Zhu and Winans, 1999, Zhang et 

al., 2002), and TraR can retain activity for up to 8 h after AHLs have been 

removed (Luo et al., 2003).  In contrast, in V. fischeri, 3-oxo-C6-HSL can be 

readily and reversibly disassociated from LuxR by dilution, suggesting a much 

weaker interaction (Urbanowski et al., 2004).   

 

Orphan LuxR receptors are encoded in genomes throughout the proteobacteria, 

which lack a luxI homologue in the genomic vicinity (Williams et al., 2007).  P. 

aeruginosa encodes two of these orphan receptors, qscR and vqsR.  These 

modulate virulence and the timing of QS by repressing transcription of lasI and 
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rlhI (Chugani et al., 2001, Fuqua, 2006) and affecting the production of AHLs (Li 

et al., 2007).  VsqR selectively activates lasI expression without affecting lasR 

and also regulates virulence factors (Juhas et al., 2004, Juhas et al., 2005). It 

may also be a target of AHL QS regulation since a lux box is present in the 

promoter of vqsR and has been shown to drive two-fold more expression in the 

presence of LasR (Li et al., 2007). 

 

However, it should be noted that while AHL QS is involved in the virulence of 

many bacterial species, its production is absent from a number of obligate and 

opportunistic pathogens including Nesseria meningitidis, Haemophilus influenzae, 

Helicobacter pylori, E. coli and Salmonella spp. (Williams et al., 2007), however 

the latter two encode a luxR homologue (sdiA) which responds to AHLs in the 

growth environment of AHL producing bacteria, maximally from 3-oxo-C6-HSL 

and 3-oxo-C8-HSL (Williams et al., 2007), and becomes active during transit 

through the gastrointestinal tract in the presence of AHL producing bacteria 

(Smith et al., 2008, Dyszel et al., 2010).  This raises the possibility that signal 

interception by these bacteria could contribute to their success as enteric 

commensals and pathogens.  In addition, SdiA in E. coli has been shown to 

respond to an endogenous signal, and over-expression represses cell division, 

virulence factor production and flagella (Kanamaru et al., 2000).  However, no 

gene has been shown to be regulated by chromosomally encoded sdiA alone, 

and sdiA mutants fail to show expected abnormality in cell division (Ahmer, 

2004). 
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1.1.4 AHL signalling in virulence 

 

Several lines of evidence point to QS being actively involved in disease.  In a 

mouse model of Y. enterocolitica infection, AHLs have been detected (Jacobi et 

al., 2003), while 3-oxo-C12-HSL can activate a gfp reporter in the lungs of mice 

infected with P. aeruginosa (Wu et al., 2000).  Physiological concentrations of 

AHLs have also been detected in the sputum of cystic fibrosis patients infected 

with P. aeruginosa (Middleton et al., 2002b, Chambers et al., 2005), while the 

virulence of several bacteria in chronic and acute infections is reduced following 

mutation of their QS systems (Wu et al., 2001, Imamura et al., 2005, Nelson et 

al., 2009, Pearson et al., 2000, Rumbaugh et al., 1999, Sokol et al., 2003, 

Valade et al., 2004).  QS regulates a range of virulence determinants including 

exoprotease production (Lewenza et al., 1999, Pearson et al., 1997, Valade et 

al., 2004, Swift et al., 1999, Jones et al., 1993), and secretion systems of the 

type 1 (Liu et al., 2008), type 2 (Corbett et al., 2005, Liu et al., 2008), type 3 

(Bleves et al., 2005, Henke and Bassler, 2004, Liu et al., 2008), type 4 (Delrue 

et al., 2005), type 5 (Chambers et al., 2006) and type 6 (Liu et al., 2008, Aubert 

et al., 2008) classes.  Interestingly, AHLs (predominantly 3-oxo-C12-HSL) also 

function directly as virulence determinants, and can modulate mammalian 

physiology and the immune response (Smith et al., 2002, Telford et al., 1998, 

2004, Skindersoe et al., 2009, Boontham et al., 2008, Tateda et al., 2003, Hooi 

et al., 2004), acting as a vasorelaxant, and inhibiting contraction of porcine 

arterial smooth muscle (Lawrence et al., 1999).  This AHL can also accelerate 

apoptosis of macrophages, neutrophils, dendritic cells and CD4+ cells, but not 

epithelial cells or CD-8+ cells (Tateda et al., 2003, Boontham et al., 2008).      

 

The regulatory relationship between QS and virulence is not always one-way, 

and several examples have been found where virulence associated pathways 
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affect the expression of QS.  In P. aeruginosa, Vfr is a member of the cyclic-AMP 

receptor protein (CRP) family of proteins and regulates a range of virulence 

determinants including exotoxin A production, elastase, type IV pili and type 3 

secretion (West et al., 1994, Beatson et al., 2002, Wolfgang et al., 2003).  Vfr 

also positively regulates QS in P. aeruginosa by binding to specific DNA 

sequences in the promoter of lasR (Albus et al., 1997).  CRP-family proteins also 

regulate virulence and QS in other bacteria, including V. cholerae, where CRP 

positively regulates the AHL response regulator hapR along with swimming 

motility and several genes involved in intestinal colonisation (Liang et al., 2007).     

 

1.2 Yersinia pseudotuberculosis 

 

Yersinia pseudotuberculosis is a Gram negative bacillus, but can be pleiomorphic 

ranging from shortened cocobacilli to elongated rods, with this pleiomorphism 

being greatly influenced by environmental conditions such as nutrient availability 

and temperature (Bottone and Mollaret, 1977, Rollins et al., 2003, Deacon et al., 

2003, Rowan, 1999, Wanger, 2010).  There are at least fifteen documented 

species within the genus Yersinia, but only three of these are considered to be 

pathogenic to humans; Y. pseudotuberculosis, Yersinia enterocolitica and 

Yersinia pestis (Pujol and Bliska, 2005, Perry and Fetherston, 1997, Shivaji et 

al., 2000).  Given the genomic similarity between the two species- Y. pestis is 

thought have emerged from Y. pseudotuberculosis some time before the first 

plague epidemic in 541 AD (Achtman et al., 1999).   

 

Most Yersinia are capable of psychrophilic adaptation and grow well in cold 

temperatures (Bergann et al., 1995, Somov and Varvashevich, 1984), while 

cold-enrichment is often used for the isolation of Yersinia species (Greenwood et 
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al., 1975).  In fact the most prolonged and severe Y. pestis pandemic, the „black 

death‟ and associated epidemics, stretched from 1346 to the beginning of the 

19th century, coincident with the „little ice-age‟, a period of global cooling that 

occurred between 1400 and 1800 AD.  Furthermore Justinian‟s plague (541 – 

767 AD), although occurring shortly after a cold period, originated in East or 

Central Africa before spreading northwards towards colder regions on the world 

(Achtman et al., 1999).  Reflecting this geographically, high anti-Yersinia 

antibody titres are also frequently found in areas such as Scandinavia (Bottone, 

1999), and Yersinia reservoirs tend to be in cold to temperate regions of the 

world (Adesiyun and Krishnan, 1995, Vincent et al., 2008, Rimhanen-Finne et 

al., 2009) while most infections are reported in winter (Long et al., 2010). 

 

1.2.1 Diseases caused by the yersiniae 

 

The diseases caused by Y. pseudotuberculosis and Y. enterocolitica range 

between mild, self-limiting enteritis or more serious mesenteric lymphadenitis 

and appendicitis resulting from ingestion of contaminated food or water (Pujol 

and Bliska, 2005, Hubbert et al., 1971).  However, deadly disease resulting from 

systemic infection and septicaemia, while rare, carries a 75 % mortality rate 

despite the use of antibiotics (Butler, 1994, Ljungberg et al., 1995, Deacon et 

al., 2003).  Autoimmune disorders such as reactive arthritis are also common 

sequelae to infection by both Y. pseudotuberculosis and Y. enterocolitica (Hannu 

et al., 2003, Jalava et al., 2006), but erythema nodosum, glomerulonephritis 

and myocarditis can also be after-effects of infection (Bottone, 1999).   

 

Interestingly, Y. pseudotuberculosis has also been implicated in several other 

diseases- starting in the 1950s, an epidemic spread along the pacific coastal 

region of the then USSR, symptoms of which presented as erythematous skin 
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rash and desquamation, exanthema, hyperaemic tongue, and a toxic shock 

syndrome, similar to scarlet fever caused by Group A Streptococci.  A Y. 

pseudotuberculosis strain (IP31758) was identified as the causative agent of this 

outbreak, and the scarletinoid-like fever caused by this strain may be linked to 

the acquisition of strain-specific virulence plasmids unrelated to any other 

Yersinia plasmid, including an icm/dot type IV secretion system, which carry 

immunosuppressive and antiphagocytotic properties and is shared only with the 

intracellular pathogens in the order Legionellales (Eppinger et al., 2007).   

 

Y. pestis, the aetiological agent of bubonic, pneumonic and septicaemic plague- 

still causes disease worldwide (Titball et al., 2003, Perry and Fetherston, 1997).  

Infection is usually transmitted via the bite of an infected flea- this causes the 

bubonic form of the disease, where bacteria disseminate to local draining lymph 

nodes in the armpit or groin (Titball et al., 2003).  This can result in systemic 

infection and septicaemic plague, followed by dissemination to the lungs and 

secondary pneumonic plague infection which is highly contagious and can be 

transmitted via the airborne route in cough droplets, causing primary pneumonic 

infection in other individuals (Titball et al., 2003).   

 

Interestingly all three yersiniae display marked tropism for lymphoid tissue 

(Brubaker, 1991).  The enteropathogens Y. pseudotuberculosis and Y. 

enterocolitica selectively target M-cells (a type of antigen sampling cell which 

overlays the follicle associated epithelium of the Peyer‟s patches) to cross the 

intestinal epithelial barrier, resulting in the destruction of the Peyer‟s patches 

and the formation of abscesses in the mesenteric lymph nodes (Autenrieth and 

Firsching, 1996).  The bacteria may then disperse via the lymphatic vessels to 

the spleen, other lymph nodes and the liver (Carter, 1975, Autenrieth and 

Firsching, 1996, Clark et al., 1998, Grützkau et al., 1990, Hanski et al., 1989).   
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1.2.2  The environmental control of virulence 

 

To cause disease, the three pathogenic yersiniae possess sophisticated 

mechanisms to switch on particular sets of genes during infection.  The most 

important signals for this are temperature - where the shift in temperature from 

those typical of ambient conditions to those prevalent in the mammalian body 

signals to the bacterium that they have entered a mammalian host; and the 

availability of calcium, which is thought to signal the proximity of the bacterium 

to host cells, perhaps by the competitive interaction of calcium with an 

unidentified Yersinia cell surface receptor (Cornelis, 2002b).  Temperature 

regulates the expression of several virulence factors (Straley and Perry, 1995), 

while pathogenic yersiniae require calcium concentrations in excess of 2.5 mM 

for growth at 37oC.  In the absence of calcium, the growth of Y. pestis becomes 

restricted after approximately two generations, which can only be recovered by 

shifting the cells to growth at 26oC, and not simply by supplying calcium to the 

growth media (Zahorchak et al., 1979).  The growth restriction is, however, less 

severe in the enteropathogenic yersiniae (Perry et al., 1998).  This is known as 

the low calcium response (LCR) which, along with temperature, affects the 

production of a significant number of virulence related proteins (Chromy et al., 

2005).  
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1.2.3 The Yersinia virulence plasmid 

 

One of the important virulence determinants for the pathogenic yersiniae is a 70 

kb virulence plasmid, termed pYV (plasmid for Yersinia Virulence, also called 

pCD1 or pIB1) which is required for full virulence in mammals (Cornelis et al., 

1998a).  This plasmid encodes the Yop-Ysc Type 3 Secretion System (T3SS), 

along with other virulence determinants including the adhesin YadA (El Tahir and 

Skurnik, 2001).  The pYV plasmid is present in all three pathogenic Yersinia, but 

has evolved differently, particularly between the Y. pseudotuberculosis (pIB1) / 

Y. pestis (pCD1) branch and that present in Y. enterocolitica (pYV) which are 

distinguished by rearrangements in the replication and partition region which has 

inverted the yopE-yadA region (Biot and Cornelis, 1988), several insertions 

(Snellings et al., 2001, Neyt et al., 1997), and some smaller yet important 

mutations including frame-shift mutations which abolish the production of YadA 

and the lipoprotein YlpA from pCD1 from Y. pestis (Perry et al., 1998, Hu et al., 

1998), and YlpA from pIB1 and pCD1 (Cornelis et al., 1998a, Hu et al., 1998, 

Perry et al., 1998).   

 

Most of the genes encoded on the pYV are expressed maximally at 37oC, and 

several are also regulated by the LCR, such that the plasmid can be regarded as 

an anti-mammalian genome (Cornelis et al., 1998b).  The pYV plasmid is 

important for the resistance of the yersiniae to phagocytosis by macrophages 

and other phagocytic cells, and mediates the behaviour necessary to cause 

apoptosis in macrophages (Mills et al., 1997, Ruckdeschel et al., 1997), although 

the yersiniae may also persist within phagocytes intracellularly and disrupt the 

normal phagocytic process (Pujol and Bliska, 2005, Grant et al., 1999).  

Intracellular persistence of Y. pestis in murine peritoneal macrophages, however, 

does not appear to depend on the pYV (Straley and Harmon, 1984a, Straley and 
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Harmon, 1984b), and other virulence determinants are also important in Y. 

enterocolitica, since the absence of virulence in low pathogenicity Y. 

enterocolitica isolates is not simply a consequence of the absence of pYV, since if 

the pYV plasmid is provided to these strains, it does not markedly affect their 

virulence (Gaede and Heesemann, 1995, Heesemann et al., 1984). 

 

1.2.4 The Yop-Ysc Type 3 Secretion System 

 

The Yersinia Yop-Ysc T3SS (Figure 1.3) is a sophisticated multi-protein 

nanomachine, and can be divided into structural components such as the basal 

body, the needle, the tip structure and translocon, chaperone and effector 

proteins.  This system can inject (or translocate) Yop (for Yersinia outer protein) 

effectors through a hollow conduit (or needle) into target eukaryotic cells where 

they can disrupt the eukaryotic cytoskeleton and cellular processes, preventing 

phagocytosis, inducing apoptosis and subverting the immune response (Cornelis, 

2002b).   
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Figure 1.3| The Yop-Ysc T3SS.  This multiprotein nanomachine spans the 

bacterial inner membrane (IM), peptidoglycan (PG) and outer membrane 

with a basal body structure.  A needle protrudes from the basal body which 

is capped with a tip structure composed of LcrV.  The T3SS uses the secretion 

apparatus to secrete and insert a YopBD translocon pore into target 

eukaryotic cell membranes (CM), and then translocates effector proteins 

directly into the cytoplasm.  Figure adapted from Diepold et al., 2010. 
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1.2.4.1 The structure of the Yop-Ysc T3SS 

 

The base of the injectisome is composed of a number of proteins which adopt a 

cylindrical structure similar to that of the flagella basal body, and are secreted 

into the membrane by the Sec dependent pathway (Diepold et al., 2010).  This 

structure includes two membrane rings termed the MS (inner membrane) and 

OM (outer membrane) rings.  The MS ring is an assembly of 24 copies of the 

lipoprotein YscJ, which is anchored to the periplasmic side of the inner 

membrane via an amino-terminal lipid group and a carboxy-terminal 

transmembrane domain (Silva-Herzog et al., 2008).  YscD connects YscJ to the 

OM ring (Spreter et al., 2009), which consists of 13 copies of the secretin-family 

protein YscC (Burghout et al., 2004).  These two membrane rings are connected 

to five integral membrane proteins (YscR, S, T, U and V) which play a role in 

exporting proteins (Edqvist et al., 2003, Sorg et al., 2007).  The export 

apparatus is flanked by YscQ, which facilitates the binding of the ATPase YscN 

and secretion substrate-chaperone complexes (Jackson and Plano, 2000, Morita-

Ishihara et al., 2006).  YscN forms hexameric rings which are activated by 

oligomerisation, and contributes to providing the energy necessary for the 

secretion of Yop effectors (Woestyn et al., 1994, Zarivach et al., 2007, Diepold 

et al., 2010).  Secretion through the Ysc injectisome requires a proton motive 

force, and can be blocked by the addition of the protonophore carbonyl cyanide 

m-chlorophenylhydrazone (Wilharm et al., 2004).   

 

Emanating from the basal body, protruding into the extracellular space, is a 60-

80 nm long hollow needle formed by the helical polymerisation of 150 - 300 

copies of YscF with an external diameter of 6-7 nm and an internal space of 

approximately 2 – 3 nm (Diepold et al., 2010, Cornelis, 2006, Hoiczyk and 

Blobel, 2001).  YscF is a substrate for the T3SS, and is exported and 

polymerised in a T3S-dependent manner along with YscP, a protein which 
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determines the length of the needle via the helical architecture of the N-terminal 

domain, possibly acting as a molecular ruler (Wagner et al., 2009, Payne and 

Straley, 1999, Stainier et al., 2000).  Secretion of YscF may be aided by YopR, 

which is secreted into the extracellular milieu during the stages of injectisome 

formation (Blaylock et al., 2010, Lee and Schneewind, 1999a).  The distal needle 

is capped with structure composed of four copies of the hydrophilic protein LcrV 

(Broz et al., 2007, Mueller et al., 2005).  LcrV aids in directing the formation of a 

pore in the membrane of target cells (Hakansson et al., 1993).  

 

The Yop translocon consists of a tripartite pore which is inserted into eukaryotic 

cell membranes and permits the translocation of Yop effectors into the target cell 

cytoplasm.  The pore is composed of the transmembrane proteins YopB and 

YopD (Hakansson et al., 1993) and the injectisome tip complex LcrV (Holmström 

et al., 2001, Bröms et al., 2003, Neyt and Cornelis, 1999a).  Bacteria lacking the 

tip and translocon proteins are still able to secrete effectors into growth 

supernatant, but are defective in the translocation of these proteins into 

eukaryotic cells (Lee et al., 2000, Lee and Schneewind, 1999b, Cheng and 

Schneewind, 2000, DeBord et al., 2001).  YopD may, however, only associate 

with the pore transiently, as it can be found in the cytoplasm of infected HeLa 

cells following integration of the translocon (Francis and Wolf-Watz, 1998b) 

where it is thought to play a role in regulating translocation of Yop effectors 

(Francis and Wolf-Watz, 1998a).   

 

  



 
20 

 

1.2.4.2  Sorting proteins for the T3SS 

 

Included in the injectisome is an in-built ability to discriminate between secretion 

substrates, providing an order in T3S so the needle is polymerised before the 

translocon is released, which precedes Yop effector secretion (Cornelis and Wolf-

Watz, 1997b).  The secretion of early substrates (including the proteins required 

to complete the needle complex) requires YscU, YscP (Blaylock et al., 2010, 

Wood et al., 2008).  The middle substrates (including the tip complex and 

translocon) also require YscU and YscP, alongside YopR (Lee et al., 2000, Lee et 

al., 2001, Schubot et al., 2005a), and the negative regulator LcrQ, which acts 

partly to prevent the premature secretion of the tip and translocon (Rimpilainen 

et al., 1992).  LcrQ (YscM1 and YscM2 in Y. enterocolitica) plays a central role in 

the hierarchy of Yop secretion (Wulff-Strobel et al., 2002), is normally required 

to down-regulate the LCR and growth-restriction at 37oC (Rimpilainen et al., 

1992), and secretion of LcrQ via the T3SS relieves the repression of yop 

expression (Pettersson et al., 1996).  It is also part of the third switch (known as 

the secretion gate), which regulates secretion of late substrates, the Yop 

effectors, and only permits expression and transit of the Yop substrates through 

the T3SS when LCR conditions are encountered.  LcrQ cannot function to 

suppress Yop secretion without LcrG (Wulff-Strobel et al., 2002), a protein which 

forms part of a „gatekeeper‟ complex at the cytoplasmic face of the injectisome 

and prevents the secretion of Yop effectors until it is displaced or titrated away, 

perhaps by LcrV (Nilles et al., 1998, Nilles et al., 1997, Matson and Nilles, 2001, 

Skryzpek and Straley, 1993).  The proteins YopN and TyeA also function as part 

of this gate- YopN binds to the C-terminal domain of TyeA, preventing YopN 

secretion, until calcium depletion or host cell contact (Cheng et al., 2001, Day et 

al., 2003, Iriarte et al., 1998, Schubot et al., 2005b). 
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Within the later acting substrates there is a hierarchy of secretion, with the tip 

and translocon components loaded into the injectisome before the effector Yops, 

while YopH also appears to be injected before YopE (Phan et al., 2004, 

Cambronne et al., 2000, Wulff-Strobel et al., 2002).  This final level of substrate 

selection also involves LcrQ, and may associate with the YopH chaperone SycH 

at the injectisome gate.  SycH is required for the secretion of LcrQ, and may 

displace LcrQ, loading its ligand and causing secretion of YopH prior to YopE 

(Phan et al., 2004, Cambronne et al., 2000, Wulff-Strobel et al., 2002).  This 

observation may extend to other chaperones, since Yops with cognate 

chaperones have been shown to be preferentially secreted by the T3SS 

(Anderson and Schneewind, 1999, Boyd et al., 2000, Feldman and Cornelis, 

2003). 

 

1.2.4.3 Chaperones facilitate the T3SS  

 

The construction and timely secretion of the T3SS requires specific chaperones.  

These are typically small proteins (12 – 19 kDA) which dimerise, and can be 

subdivided into three classes: class I chaperones (i.e. SycE, SycO, SycT and 

SycH) bind to the effector proteins and often share high structural conservation 

(Locher et al., 2005, Phan et al., 2004, Trame and McKay, 2003, Birtalan et al., 

2002, Birtalan and Ghosh, 2001, Büttner et al., 2005); class II chaperones (i.e. 

SycD and LcrG), which associate with the translocon proteins YopB, YopD and 

LcrV respectively (Büttner et al., 2008, Matson and Nilles, 2001, Lawton et al., 

2002, Wang et al., 2008, Johnson et al., 2007); and class III chaperones (i.e. 

YscE and YscG), which tend to form heterodimers and facilitate structural 

components of the injectisome (Sun et al., 2008).  The chaperones may serve 

several functions: stabilising the ligand against degradation, as seen with the 

YopE chaperone SycE (Woestyn et al., 1996, Cheng and Schneewind, 1999); 

preventing the activity of the protein- seen where SycD binding to YopB and 



 
22 

 

YopD prevents premature oligomerisation (Neyt and Cornelis, 1999b), the 

heterodimeric chaperone YscE / YscG prevents YscF polymerising in the bacterial 

cytoplasm (Sun et al., 2008), and catalytically inactive YopT binds less 

effectively to YscT (Locher et al., 2005).  Chaperones may also usher their 

partners to the injectisome, which may be important for effectors synthesised 

and stored prior to secretion, such as YopE (Lloyd et al., 2001).  However, not all 

these functions are shared by the chaperones (Birtalan et al., 2002, Letzelter et 

al., 2006, Sory et al., 1995, Wattiau et al., 1994, Cambronne et al., 2000, Cheng 

et al., 1997), and no chaperones have been identified for YopM or YopP (Cornelis 

et al., 1998a).   

 

1.2.4.4 The Yop effectors 

 

The Yop effector proteins are virulence factors translocated into eukaryotic cells.  

Four (YopH, YopE, YopT and YpkA) are involved in disrupting the proper 

functioning of the cytoskeleton.  Several of these target an important group of 

eukaryotic cell signalling components- the RhoA family of small GTPases.  In the 

active GTP-bound state, RhoA family proteins contribute to several signalling 

pathways, including directing cytoskeletal rearrangements necessary for 

phagocytosis following receptor mediated activation.  YopE is a functional mimic 

of eukaryotic GTPase activating proteins (GAPs) (Evdokimov et al., 2002), and 

disrupts the actin cytoskeleton by inducing the GTPase activity of RhoA family 

proteins (Black and Bliska, 2000, Aili et al., 2006, Andor et al., 2001).    By 

hydrolysing GTP to GDP, RhoA family proteins are inactivated (Van Aelst and 

D‟Souza-Schorey, 1997) and phagocytosis by macrophages and dendritic cells is 

prevented (Fahlgren et al., 2009).  In Y. pseudotuberculosis YopE is critical for 

virulence in mice, and yopE mutants are rapidly cleared from Peyer‟s patches, 

and do not colonise the liver and spleen (Holmstrom et al., 1995, Viboud et al., 

2006).  YopT affects RhoA family signalling by acting as a mimic of eukaryotic 
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cysteine proteases (Shao et al., 2002), and can cleave within the C-terminal 

domain of RhoA, Rac1 and Cdc42, liberating the GTPases from the membrane 

and preventing their functioning (Shao et al., 2002, Shao et al., 2003). The 

suppression of RhoA-mediated signalling by YopT prevents the formation of the 

phagocytic cup for internalisation of the bacteria, and also inhibits the formation 

of focal adhesion complexes required for the formation of pseudopodia and 

migration of macrophages (Aepfelbacher et al., 2003).  Another effector which 

interrupts RhoA family signalling is YpkA (YopO in Y. enterocolitica), a multi-

domain protein which structurally mimics serine / threonine protein kinases in 

the N-terminal domain, while the C-terminal domain bears similarity to 

eukaryotic GDI-like GTPase-binding domain proteins.  YpkA is localised to the 

inner side of the eukaryotic cell membrane (Håkansson et al., 1996, 

Dukuzumuremyi et al., 2000), and catalyses the phosphorylation of Gαq, a 

component of heterotrimeric G-proteins, which inhibits the binding of GTP and 

prevents signalling which would normally result in stimulation of phospholipase 

C-β and RhoA mediated pathways (Navarro et al., 2007).  The C-terminal 

domain, meanwhile, associates to RhoA family proteins and inhibits phagocytosis 

(Barz et al., 2000, Groves et al., 2010). 

 

YopH is one of the most multi-functional Yop proteins, disrupting pathways 

involved in both innate and adaptive immunity and is essential to the virulence 

of Y. pestis, Y. pseudotuberculosis and Y. enterocolitica in mice, where yopH 

mutant bacteria fail to colonise the mesenteric lymph nodes and do not infect 

the liver or spleen (Cantwell et al., 2010, Logsdon and Mecsas, 2003, Trulzsch et 

al., 2004).  YopH is a 51 kDA protein which possesses a C-terminal domain that 

potently mimics eukaryotic protein tyrosine phosphatases (PTPase) (Rosqvist et 

al., 1988, Zhang et al., 1992), and an N-terminal domain which contains a cleft 

reminiscent of eukaryotic SH2 domain proteins, responsible for binding a variety 

of target host proteins and causes widespread tyrosine dephosphorlyation to 
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proteins (Khandelwal et al., 2002, Bliska et al., 1991, Guan and Dixon, 1990) in 

epithelial cells (Black and Bliska, 1997) macrophages (Hamid et al., 1999) and 

T-cells (Gerke et al., 2005).   This inhibits autophagy following binding of Invasin 

or YadA to β1-integrins (Deuretzbacher et al., 2009), and prevents phagocytosis 

in macrophages (Rosqvist et al., 1988, Bölin and Wolf-Watz, 1988)- indeed, high 

expression of YopH alone is sufficient to prevent phagocytosis (Persson et al., 

1997).  Interestingly, a Y. pseudotuberculosis yopE / yopH double mutant shows 

the same level of impairment in the ability to resist phagocytosis as a pYV- strain 

(Rosqvist et al., 1990). 

 

The remaining effectors (YopJ, YopM and YopK) down-regulate elements of the 

immune system such as inflammation and leukocyte recruitment (Grosdent et 

al., 2002, Shao, 2008, Cornelis, 2002b, Matsumoto and Young, 2009, Cornelis, 

2002a).    YopJ (YopP in Y enterocolitica) is a serine / threonine / lysine 

acetyltransferase that catalyses the acylation of target proteins, a process which 

prevents subsequent activation by phosphorylation (Mukherjee et al., 2006).  

YopJ acetylates the kinases MEK1 and MEK2, and the IKK complex, inhibiting 

their ability to activate the release of NF-Κβ, which would otherwise induce pro-

inflammatory cytokine production (Orth et al., 2000, Mittal et al., 2006, 

Ruckdeschel et al., 1998, Boland and Cornelis, 1998).  YopM is a highly acidic 

protein, which is translocated into macrophages (Boland et al., 1996), but may 

also be able to self-deliver into human RSAF cells (Bertrand et al., 2010).  Inside 

eukaryotic cells, YopM interacts with, and stimulates, two cellular kinases, RSK1 

and PRK2, assembling into a trimeric complex (McDonald et al., 2003, Hentschke 

et al., 2010).  YopM is also localised to the nucleus by means of a vesicle-

associated pathway in yeast and mammalian cells (Skrzypek et al., 1998, 

Skrzypek et al., 2003, Benabdillah et al., 2004), and once inside the nucleus, 

YopM may influence the expression of a range of genes, down-regulating many 

pro-inflammatory cytokines (Bertrand et al., 2010, Ye et al., 2009) and may 
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counteract the innate immune system by causing depletion of natural killer cells 

in the liver, spleen and blood (Kerschen et al., 2004). YopK is 21 kDa effector 

found in all three pathogenic Yersinia, but has no known homologue in any other 

bacterial T3SS.  Little is known about the function of YopK, although it is known 

that yopK mutants produce enlarged translocation pores and over-translocate 

Yops- however these mutants are still avirulent in mice and are rapidly cleared 

from Peyer‟s patches (Holmstrom et al., 1995, Holmström et al., 1997).  It has 

been proposed that YopK interacts with the translocon to inhibit immune system 

recognition, which prevents activation of the inflammasome- a complex of the 

innate immune system which promotes production of inflammatory cytokines 

(Brodsky et al., 2010).  

 

1.2.5  Regulation of the Yop-Ysc T3SS 

 

The synthesis and utilisation of the Yop-Ysc system is regulated at multiple 

levels.  Firstly, the system is activated by temperature-dependent mechanisms, 

and during growth at 37oC the injectisome is constructed at the cell surface, the 

needle is produced and the LcrV tip complex is installed.  The translocon 

components YopB and YopD are also synthesised, and may be secreted 

constitutively in low amounts along with LcrV (Lee et al., 2000, Lee et al., 2001).  

However, full activation of Yop expression and secretion through the injectisome 

requires the LCR, during which effector proteins are maximally expressed and 

are secreted into the extracellular environment (Michiels et al., 1990, Zahorchak 

et al., 1979).  However, while many mutants which are calcium „blind‟ (i.e. 

secrete Yop proteins during growth at 37oC in the presence of calcium) show a 

growth restriction in the presence or absence of calcium at 37oC (Ramamurthi 

and Schneewind, 2002),  the bacteriostasis that accompanies the LCR and Yop 

secretion can be uncoupled from the production of Yop effectors, since a Y. 
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enterocolitica mutant in virG, encoded immediately upstream of the positive 

regulator virF, grows normally under LCR conditions while still secreting Yops 

into the culture supernatant (Allaoui et al., 1995a).  Additionally, single-cell 

studies have shown that the expression of yopE in Y. pseudotuberculosis is not 

related to the cell-cycle (Wiley et al., 2007).   

 

It is interesting to note that the structure of the injectisome may also auto-

regulate the T3SS.  In Y. pestis, yscC, yscD and yscG mutants can only express 

lcrV and yopM at basal levels, regardless of calcium (Plano and Straley, 1995), in 

Y. pseudotuberculosis a yscJ mutant is calcium-blind for Yop production at 37oC 

(Holmstrom et al., 1995), and Yop effectors are auto-regulated by negative 

feedback, whereby the intracellular accumulation of Yops when the injectisome is 

closed leads to their down-regulation (Allaoui et al., 1995b, Plano and Straley, 

1993, Plano and Straley, 1995).  This has been suggested to be analogous to 

FlgM/FliA in controlling flagella biosynthesis (Cornelis and Wolf-Watz, 1997a), 

and has been shown to involve the Cpx two-component system and an 

extracytoplasmic function sigma factor (Carlsson et al., 2007a).  Other 

regulatory proteins including YopN, LcrQ, SycH and LcrG are also involved in 

down-regulating Yop production (Cheng et al., 2001, Wulff-Strobel et al., 2002, 

Forsberg et al., 1991, Skryzpek and Straley, 1993). 

 

1.2.5.1  The genetic control of the Yop-Ysc T3SS 

 

The major regulator of injectisome assembly and for the synthesis of Yop 

effectors is the pYV encoded regulator VirF (also called LcrF), which is often used 

as a diagnostic marker for virulent yersiniae (Lambertz et al., 1996).  VirF 

activates expression of the yopH, yopE, lcrGVH-yopBD and virC operons, and 

also promotes expression of other virulence factors including pYV encoded 

adhesin yadA, the lipoprotein ylpA (China et al., 1990) and the chromosomally 
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encoded catalase katY (Garcia et al., 1999).  Like the regulators controlling 

diverse bacterial T3SS, VirF is an AraC-type regulator which, in the absence of 

the binding of particular ligand (i.e. arabinose in the case of AraC from E. coli), 

binds to DNA and causes looping between distant sites which prevents gene 

expression (Egan, 2002, Plano, 2004).  However, no endogenous ligand has yet 

been identified for VirF.  VirF probably functions by binding to inverted repeats of 

the consensus motif TTTaGYcTtTat, although low-affinity binding is also observed 

in the presence of only one copy of the motif (Wattiau and Cornelis, 1994). 

 

The production of VirF is regulated by temperature and is maximal at 37oC.  In 

Y. enterocolitica, this is thought to involve DNA topology changes, whereby 

hairpin bends in the DNA of the promoter region melt at 37oC and allow 

transcription to occur (Rohde et al., 1994, Rohde et al., 1999).  In Y. pestis, 

thermoregulation of virF may be post-transcriptional, since virF is expressed at 

both 26oC and at 37oC, however a stem-loop structure sequesters the Shine-

Delgano sequence of the virF mRNA at low temperatures, which is relaxed as the 

temperature increases (Hoe and Goguen, 1993).  Factors in addition to DNA 

topology also influence the production of the T3SS.  The histone like protein 

YmoA also negatively regulates virF (Cornelis et al., 1991, de Rouvroit et al., 

1992), while the regulator RovA may also repress several T3SS genes through 

an unknown mechanism (Yang et al., 2010).  The cAMP receptor protein (CRP) 

specifically represses the sycO-ypkA-yopJ operon (Zhan et al., 2009), whereas 

the RNA chaperone Hfq activates the synthesis and secretion of Yop effector 

proteins (Schiano et al., 2010), as does the CpxA / CpxR two-component system 

via the activity of an extracytoplasmic function sigma-factor (Carlsson et al., 

2007a).    Finally, the O-antigen status of the cell also affect the production of 

the T3SS (Bleves et al., 2002, Perez-Gutierrez et al., 2007) as does Dam 

dependent DNA methylation (Julio et al., 2002, Falker et al., 2006). 
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AHL-dependent QS has a role in regulating the T3SS in several bacteria, 

including Y. pestis, where antibody based protein profiling suggested several 

virulence factors, including LcrV, to be positively regulated by QS (Chen et al., 

2006).  The plant pathogens Pectobacterium atrosepticum and Ralstonia 

solanacearum also use AHL-mediated QS to activate expression of the T3SS (Liu 

et al., 2008).  Conversely, in P. aeruginosa, the RhlI/R QS system negatively 

regulates the T3SS (Bleves et al., 2005), whereas in Vibrio harveyi and Vibrio 

parahaemolyticus, both AHL-mediated and AI-2 dependent QS modulate the 

expression of the T3SS (Henke and Bassler, 2004).  

 

1.2.6 Other Yersinia virulence factors 

 

1.2.6.1 The Pgm locus 

 

In addition to the pYV plasmid, the pathogenic yersiniae contain several 

pathogenicity islands which contribute to their virulence.  Among these is the 

Pgm locus, which contains the hms genes, originally identified as involved in the 

adsorption of haemin or haem-analogues such as Congo red to the cell surface 

(giving a pigmented phenotype to colonies growing on agar supplemented with 

haemin or Congo red, or Pgm+) (Perry et al., 1990), but now considered to 

encode genes responsible for the production of a β-1,6-N-acetylglucosamine-like 

biofilm matrix exopolysaccharide (Bobrov et al., 2008).  However while this locus 

is important for the infectivity of both Y. pseudotuberculosis and Y. pestis in 

insects and nematodes (Hinnebusch et al., 1996, Darby et al., 2002), it is 

missing in the high-pathogenicity Y. enterocolitica 1B group (Fetherston et al., 

1992).   
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Genetically linked to the hms genes is another chromosomal island only present 

in pathogenic Yersinia- the high pathogenicity island (HPI), encoding the 

yersiniabactin (yersiniaphore) iron acquisition siderophore system (Carniel et al., 

1996, Bearden et al., 1997) which plays a key role in the systemic spread of 

yersiniae during infection and reduces the oxidative stress response of 

macrophages (Paauw et al., 2009, Bearden et al., 1997).  Together, the hms 

genes and the HPI island form the Pgm locus.  The Pgm locus is thought to have 

been acquired by the pathogenic yersiniae by horizontal gene transfer 

(Fetherston et al., 1992).   

 

1.2.6.2 The adhesins- Inv, Ail, pH 6 antigen and YadA  

 

The genomes of the pathogenic Yersinia encode several virulence factors which 

act as adhesins and invasins.  These factors include chromosomally encoded 

Invasin (inv), the attachment and invasion locus protein (Ail) and the pH 6 

antigen (Psa), and virulence plasmid encoded adhesins such as the auto-

transporter YadA (El Tahir and Skurnik, 2001).  There is a great degree of 

seeming redundancy in the number of putative adhesins encoded by the 

Yersinia, highlighted by the fact that a frameshift mutation in the Y. pestis yadA 

coding region renders YadA non-functional, and that in some strains of Y. pestis 

inv is interrupted by the insertion of an IS200-like element (Simonet et al., 

1996).  In their places, Y. pestis may use other adhesins including the auto-

transporter protein, YapC (Felek et al., 2008) and the Ail homologue OmpX 

(Kolodziejek et al., 2007).  YapC mediates bacterial auto-aggregation and biofilm 

formation, OmpX provides resistance to serum-dependent killing, and both have 

been shown to facilitate entry into cultured HEp-2 cells (Felek et al., 2008, 

Kolodziejek et al., 2007).  The Y. pestis specific plasmid pPCP1 also aids in 

promoting invasiveness in this species (Cowan et al., 2000).  The pPCP1 plasmid 

encodes three genes for pesticin, the pesticin resistance gene and the Pla 
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plasminogen activator, and subsequently Pla was found to be the adhesin 

involved in inducing invasion into eukaryotic cells (Lähteenmäki et al., 2001).  

 

Invasin (Inv) 

 

Despite the absence of inv in Y. pestis, invasin is an essential invasion factor for 

Y. pseudotuberculosis and Y. enterocolitica, both in vitro and in vivo (Simonet 

and Falkow, 1992, Grassl et al., 2003).  Invasin fulfils a role in binding to β1-

integrins on eukaryotic cell surfaces (Clark et al., 1998, Leong et al.), which are 

enriched on the apical surface of M-cells in Peyer‟s patches (Schulte et al., 

2000), and causes internalisation following activation of several host cell signal 

transduction proteins such as Rac-1 and N-WASP (McGee et al., 2001).   

Furthermore, invasin can confer the ability to bind to and invade tissue culture 

cells to a non-invasive E. coli strain (tissue culture invasive, TCI+) (Miller and 

Falkow, 1988).    Invasin probably plays a role in the initial establishment of Y. 

pseudotuberculosis and Y. enterocolitica infection in the mammalian 

gastrointestinal system, since this protein is expressed maximally at 

temperatures below 28oC, at early stationary phase, but also at 37oC in acidic 

conditions (Pepe et al., 1994), and at least in Y. pseudotuberculosis, inv mutants 

fail to translocate across M-cells and instead colonise the luminal intestinal 

epithelium (Marra and Isberg, 1997).   

 

Attachment Invasion Locus protein (Ail) 

 

Ail is a 17 kDa membrane bound adhesion  which was also identified alongside 

Inv in conferring a TCI+ phenotype to E. coli (Miller et al., 1990, Miller and 

Falkow, 1988).  However this adhesin exhibits more discrimination in its ability 

to bind to cells than does Inv (Miller and Falkow, 1988), and may promote 

bacterial adhesion to migrating cells, facilitating dissemination to the lymph 
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nodes and spleen (Isberg, 1990).  Ail also contributes to resistance against 

serum-dependent killing (Pierson and Falkow, 1993, Bartra et al., 2008, Yang et 

al., 1996).  However, the role of Ail appears to differ slightly between the 

pathogenic Yersinia.  While it enhances virulence towards mice in Y. pestis (Felek 

and Krukonis, 2009), it has not been found to have this effect in Y. enterocolitica 

(Wachtel and Miller, 1995), and despite that it aids Y. enterocolitica and Y. pestis 

attachment and invasion into eukaryotic cells, it does not seem to play this role 

in Y. pseudotuberculosis, with the pH 6 antigen apparently replacing this function 

(Yang et al., 1996). 

 

The pH 6 Antigen (Psa) 

 

The pH 6 Antigen (Psa) was originally identified in Y. pestis as a surface antigen 

which is expressed at mammalian body temperatures and at pH values similar to 

that in phagolysosomes, and is important for infections in mice (Benefraim et al., 

1961).  Further investigation revealed a cell surface complex composed of 

aggregates of a 15 kDa protein (PsaA) that requires the regulators PsaE and 

PsaF for maximal induction (Lindler et al., 1990, Yang and Isberg, 1997).  The 

Psa is a flexible fimbrial structure, with accessory proteins (PsaB and PsaC) 

similar to E. coli Pap, K88, K99 and CS3 fimbriae, which is highly expressed 

during infection in macrophages (Lindler and Tall, 1993).  Biochemical 

examination of the Psa reveals that it binds to 1-linked galactosyl residues in 

glycosphingolipids (Payne et al., 1998), mainly of the type found in 

apolipoprotein B containing lipoproteins in human plasma, such as LDL and lipid 

rafts in macrophage membranes (Makoveichuk et al., 2003).  Furthermore, Psa 

also acts as a bacterial Fc receptor, binding human immunoglobulin (IgG), but 

not reacting with rabbit, mouse or sheep IgG (Zav'yalov et al., 1996) and causes 

the agglutination of erythrocytes (Bichowsky-Slomnicki and Ben-Efraim, 1963). 
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YadA 

 

YadA is an important adhesin for the enteropathogenic yersiniae (El Tahir and 

Skurnik, 2001), although it is not produced by Y. pestis (El Tahir and Skurnik, 

2001, Simonet et al., 1996).  This auto-transporter is positively controlled by the 

virulence regulator VirF (LcrF) (Skurnik and Toivanen, 1992), negatively 

controlled by YmoA (Cornelis et al., 1991), and exhibits classic Yersinia thermo-

regulation, being maximally expressed at 37oC (Bolin et al., 1982).  YadA 

promotes cellular aggregation, the binding to various cell types and connective 

proteins, such as fibronectin, and inhibits serum and complement dependent 

killing (El Tahir and Skurnik, 2001, Kirjavainen et al., 2008).  The association 

between YadA and fibronectin also promotes internalisation of bacteria into 

eukaryotic cells by binding to β1-integrins exposed on the cell surface (Bliska et 

al., 1993, Heise and Dersch, 2006), while binding to integrins also facilitates the 

docking of the T3SS injectisome and Yop translocation into eukaryotic cells 

(Mejía et al., 2008).      

 

1.2.7 QS in Yersinia 

 

Like many other Gram negative bacteria, Y. pseudotuberculosis, Y. pestis and Y. 

enterocolitica all utilise AHL-mediated QS.  Y. pseudotuberculosis and Y. pestis 

share a homologous QS network, consisting of two interlinked synthase / 

receptor systems termed YpsI/R and YtbI/R in Y. pseudotuberculosis, and YpeI/R 

and YspI/R in Y. pestis, which are encoded as convergent and overlapping pairs 

(Atkinson et al., 1999, Atkinson et al., 2008).  Y. enterocolitica, however, 

produces a single synthase termed YenI, which shares homology with YtbI.  The 

synthase yenI is encoded with the receptor yenR although an additional 

receptor, termed ycoR, is encoded elsewhere on the chromosome (Ng, R., 
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personal communication).  The YpsI/R and YtbI/R QS systems in Y. 

pseudotuberculosis are hierarchically related, where YpsI/R positively controls 

ytbI/R expression.  However, while YtbR positively regulates ytbI, the YtbI/R 

system down-regulates the ypsIR (Atkinson et al., 2008).  

   

The Yersinia synthase enzymes produce a range of AHLs.  At least 24 AHLs are 

produced by Y. pseudotuberculosis, predominantly C6-, 3-oxo-C6-, 3-oxo-C7-, C8- 

3-oxo-C8-, 3-oxo-C10-, 3-oxo-C12-, and 3-oxo-C14- HSL (Atkinson et al., 1999, 

Yates et al., 2002, Ortori et al., 2007).  All these AHLs can be produced by YtbI, 

which is solely responsible for the production of the long-chain AHLs (Ortori et 

al., 2007), however 3-oxo-C6-HSL, is mainly produced by YpsI (Atkinson et al., 

1999, Ortori et al., 2007).  Y. pestis synthesises similar AHLs, with 3-oxo-C6-

HSL, 3-oxo-C8-HSL as the major signals (Kirwan et al., 2006), while 18 AHLs are 

produced by YenI (Ng, R., personal communication), predominantly C6-HSL, 3-

oxo-C6-HSL (Throup et al., 1995), and 3-oxo-C10-HSL, 3-oxo-C12-HSL and 3-oxo-

C14-HSL (Atkinson et al., 2006).  Environmental factors such as temperature play 

a large role in determining the extracellular AHL profile produced by Y. 

pseudotuberculosis, with differences in profile during growth at 22oC, 28oC or 

37oC, with increased levels of long-chain AHLs at 37oC.  At 37oC, AHL production 

may rely on YtbI, since the ypsI mutant produces the same range of AHLs as the 

wild-type at this temperature while at 28oC YpsI provides 3-oxo-C6-HSL.  Oddly 

however, this importance of YpsI was not found during growth at 22oC (Atkinson 

et al., 1999, Ortori et al., 2007). 

 

QS influences several behaviours in the Yersinia, most notably motility, which is 

affected by QS in Y. pseudotuberculosis and Y. enterocolitica (Atkinson et al., 

1999, Atkinson et al., 2006).  However, the processes underlying the effect of 

QS on motility appear to be different, since the expression of the flagella 

regulators flhDC and fliA are affected by QS in Y. pseudotuberculosis (Atkinson 
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et al., 2008), whilst they are not in Y. enterocolitica (Atkinson et al., 2006).  

Instead, in Y. enterocolitica, QS appears to influence the expression of the 

flagella structural component fleB (Atkinson et al., 2006).  In Y. 

pseudotuberculosis, QS also influences the growth of bacteria in clumps during 

growth at 30oC or 37oC, where a ypsR mutant (but not a ypsI mutant) forms 

dense bacterial aggregates in liquid culture (Atkinson et al., 1999). QS may also 

impact on other virulence factors.  In Y. pestis, high, non-physiological, 

concentrations of exogenous C8-HSL or oxo-C8-HSL results in the down-

regulation of LcrV and several other proteins suggesting QS negatively regulates 

the T3SS (Gelhaus et al., 2009), while growth phase has, along with 

temperature, been shown to regulate several other virulence factors including 

the pH6 antigen in Y. enterocolitica (Iriarte et al., 1995) and type 6 secretion in 

Y. pestis (Pieper et al., 2009).   

 

1.3 Biofilms- on surfaces and in liquid cultures 

 

Bacterial biofilms are ubiquitous in the microbial world, occurring in almost every 

studied environment, from deep-sea hydrothermal vents to the human body 

during infection (Guezennec et al., 1998, Hall-Stoodley et al., 2004, Costerton et 

al., 1995, Costerton et al., 1999, Schaber et al., 2007, Costerton et al., 1987, 

Beveridge et al., 1997).  Biofilms are populations of bacteria adherent to each 

other and to surfaces, growing in an extracellular matrix (ECM) composed of a 

variety of polymers including lipids, proteins, polysaccharides and DNA 

(Flemming et al., 2007, Sutherland, 2001, Whitchurch et al., 2002).  This mode 

of bacterial growth is considered to be the principle survival mechanism for 

bacteria in the environment (Costerton et al., 1995).  Many bacterial species also 

engage in a multi-cellular behaviour variously known as clumping, fluffing, 
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flocculation, or auto-aggregation, in which bacterial cells adhere tightly to one 

another to create dense aggregates in a way that is often recognised as a type of 

liquid culture biofilm (LCB) (Håvarstein et al., 2006, Allesen-Holm et al., 2006, 

Seidl et al., 2008, Godefroid et al., 2010).  These types of aggregates are 

recognised in industrial applications such as sludge bed reactors, or the marine 

environment, where they are termed „sludge‟, „flocs‟ (Bura et al., 1998) or 

„marine-snow‟ (Costerton et al., 1995), however a wide variety of bacterial 

species from across the genera have been shown to form LCB-like biofilms 

naturally or in vitro, including Myxococcus xanthus (Arnold and Shimkets, 1988), 

Klebsiella oxytoca (Zhou et al., 2001) Sphingomonas sp., Acinetobacter sp. 

(Singh and Vincent, 1987), some strains of Lactococcus lactis (Godon et al., 

1994), Xylella fastidiosa (Bi et al., 2007), pathogens such as Brucella melitensis 

(Uzureau et al., 2007), Erwinia chrysanthemi (Hussain et al., 2008), Vibrio sp. 

(Seki, 1971), enteroaggregative E. coli (Albert et al., 1993), Salmonella spp. 

(Römling and Rohde, 1999), Yersinia pestis (El Tahir and Skurnik, 2001), 

Streptococcus spp. (Dunny et al., 1978, Handley et al., 1984) and the 

pneumococci (Tomasz and Zanati, 1971).  

 

1.3.1 Architecture of biofilms  

 

The biofilm matrix is built from a secreted assortment of polysaccharides, 

proteins, lipids, and nucleic acids known collectively as the ECM (Flemming et 

al., 2007, Sutherland, 2001, Whitchurch et al., 2002), which help generate a 

framework around which a structured microbial community can grow.  Water 

probably contributes most significantly to the biofilm matrix, and provides a 

means to regulate viscosity of the matrix depending on dissolved solutes and 

may also transport nutrients and waste into and out of the biofilm through 

structural channels, or voids (Costerton et al., 1995, Stewart, 2003). 
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For many bacteria, exopolysaccharides (EPS) play a critical role in the matrix of 

biofilms, providing anchorage between cell and surface, contributing to the 

viscoelastic properties of the ECM (Mayer et al., 1999) and acting as a rigid 

structural element of the matrix (Mayer et al., 1999, Sutherland, 2001, 

Costerton et al., 1995).  EPS secreted by bacteria can differ in their composition 

and chemical properties, though most are polyanionic (Sutherland, 2001).  

Several bacteria are known to produce β-1,6-linked N-acetyl glucosamine 

(PNAG) including Staphylococcus epidermidis, P. fluorescens, Y. 

pseudotuberculosis, Y. pestis, and E. coli, and biofilms from these species can be 

disrupted by the degradation of this polysaccharide (Itoh et al., 2005, Wang et 

al., 2004, Tan and Darby, 2004). 

 

In addition to EPS, many bacteria form surface attached biofilms and LCBs that 

contains extracellular DNA (eDNA), which can function as a cell-to-cell 

interconnecting scaffold (Whitchurch et al., 2002, Watanabe et al., 1998).  In 

many cases, eDNA originates from the lysis of a subpopulation of cells in the 

biofilm (Allesen-Holm et al., 2006, Berne et al., 2010, Spoering and Gilmore, 

2006), although eDNA can occur in very high concentrations, raising doubt over 

the source (Flemming et al., 2007).  Grids or networks of eDNA have been 

observed in the biofilm matrix (Allesen-Holm et al., 2006, Böckelmann et al., 

2006), and eDNA contributes to the stability and structure of biofilms, since in 

many cases addition of a DNase to the biofilms reduces biomass and integrity 

(Whitchurch et al., 2002, Petersen et al., 2004, Tetz et al., 2009, Nijland et al., 

2010).  Interestingly, bacteria may move along the eDNA grid, suggesting that 

the network may be used for mobility within the biofilm (Flemming et al., 2007).  
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1.3.2 Function of biofilms  

 

The properties of the biofilm mode of growth confer enhanced resistance in 

embedded cells to a diverse range of environmental insults including antibiotic 

pressure, changes in temperature, UV irradiation and periods of desiccation 

(Stewart, 1996, Stewart and William Costerton, 2001, Decho, 2000).  By 

providing anchorage to surfaces, biofilms also provide bacteria with access to 

nutrients which may be dilute in the bulk-phase but concentrate on surfaces by 

hydrophobic or electrostatic interactions (Beveridge et al., 1997), and can also 

act as a reservoir of infection (Hall-Stoodley and Stoodley, 2005).  It has also 

been proposed that biofilms may stabilise nutrient supplies by concentrating and 

storing substrates which are used for growth in periods of starvation (Freeman 

and Lock, 1995), and some EPS may serve as a nutrient store (Flemming et al., 

2007).   In addition, many natural complex sources of energy require a consortia 

of bacteria to release nutrients (Nielsen et al., 2000), and biofilms provide the 

ability for such structured communities to develop.   

 

An important function of biofilms in the environment is that they aid bacterial 

survival against predation by bacteriovorous protozoans and metazoans such as 

amoeba, flagellates and nematodes (Matz and Kjelleberg, 2005, Pickup et al., 

2007, Drace and Darby, 2008).  Biofilms are considered too large to be 

consumed by some protozoan predators (Matz and Kjelleberg, 2005), although 

others such as Acanthamoeba castellanii and Colpoda maupasi specialise to feed 

on biofilms (Huws et al., 2005, Weitere et al., 2005).  Larger predators such as 

the nematode Caenorhabditis elegans can also feed on bacteria, and biofilms 

formed by bacteria such as Y. pestis. Y. pseudotuberculosis and Xenorhabdis 

nematophila block the mouthparts of the worm and prevent feeding (Darby et 

al., 2002, Drace and Darby, 2008, Atkinson et al., 2011), whereas other bacteria 
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such as Staphylococcus epidermidis use biofilm exopolysaccharides to protect 

against the C. elegans innate immune system and kill the worm following a 

biofilm-related infection of the intestines (Begun et al., 2007).   

 

LCBs may also represent a discrete yet important biofilm in mammalian 

infections, since many areas of the mammalian body where bacteria grow can be 

thought of as liquid cultures.  For example in hypertrophied adenoids, floc 

biofilms are more predominant than surface attached biofilms, forming in areas 

of stagnation with low mucus flow (Winther et al., 2009).  LCBs may influence 

initial infection, and in V. cholerae, the adoption of a LCB-phenotype massively 

increases infectivity, between 12 – 145 fold, compared with planktonic cells 

(Faruque et al., 2006).  Some species of bacteria, including Staphylococcus 

aureus and Enterococcus faecalis, use LCBs biofilms to prevent uptake by, or 

inhibit the function of macrophages (Goldstein et al., 1978, Sumuth et al., 

2000), while both Mycobacterium spp. and Yersinia spp. can grow as aggregates 

inside macrophage phagosomes (Lee et al., 2008, Lindler and Tall, 1993).  This 

suggests that LCB formation contributes to pathogenicity towards mammals, and 

can be an adaptive virulence mechanism as well as being important for survival 

in the environment.  Conversely, the aggregation of bacteria may also be utilised 

by the commensal microflora in the competitive exclusion of pathogens, as 

described for the interaction between certain Lactobacillus strains with 

uropathogenic and enteropathogenic E. coli (Reid et al., 1988, Spencer and 

Chesson, 1994, Kmet and Lucchini, 1997).  Together this suggests a diverse role 

for LCBs in both pathogenic and mutualistic relationships. 
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1.3.3  Biofilm development  

 

The established model of biofilm formation describes a multi-stage 

developmental series by which cells attach to a surface (Costerton et al., 1995).  

The biofilm, once established, grows and matures, and individual cells or clumps 

of biofilm may eventually disperse and propagate new communities.  The initial 

attachment stage involves the initial contact between a bacterial cell and a 

surface, and in many species this requires motility in the form of flagella 

mediated swimming (Pratt and Kolter, 1998, Watnick et al., 2001, Klausen et al., 

2003b).  Swimming is not however a precondition for biofilms per se, since many 

non-motile species such as Yersinia pestis (Jarrett et al., 2004) and 

Staphylococcus aureus (Hall-Stoodley et al., 2004), also form biofilms, and some 

non-motile derivatives of other species such as P. aeruginosa can be hyper-

adherent (Deziel et al., 2001).   

 

Once cells have attached, growth of the biofilm can occur by at least 3 

mechanisms (Stoodley et al., 2002).  Cells attached to a surface will divide, and 

this division will increase the size of the biofilm if these cells remain attached to 

one another.  Species such as Pseudomonas putida develop biofilms in this 

manner (Heydorn et al., 2000).  Secondly, cells which have attached to a surface 

in one location may also translocate to new areas.  In P. aeruginosa, both 

flagella-driven „swimming‟ and type-IV pili mediated „twitching‟ motility are 

critical for adherence to abiotic surfaces and microcolony formation respectively 

(O'Toole and Kolter, 1998).  The third mechanism involves the recruitment of 

cells from the environment or bulk phase to a developing biofilm, and it has been 

proposed that Yersinia biofilms grow on C. elegans in this way (Tan and Darby, 

2004).   
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A growing biofilm subsequently enters into a developmental process of 

maturation.  This is identified by the development of species-characteristic multi-

cellular structures, such as the mushroom-like structures observed in P. 

aeruginosa biofilms (Klausen et al., 2003a) and filamentous-chain and aggregate 

clusters in Serratia (Rice et al., 2005).  In some species, a division of labour in 

bacteria within the biofilm allows the development of cell types such as persister 

cells, which exhibit suppressed metabolism and growth rate yet are particularly 

resistant to antimicrobials (Keren et al., 2004), wall-formers which provide a 

physical support to the biofilm community (Klausen et al., 2006), and hyper-

motile populations adept at dispersal (Costerton et al., 1995).  Built into the 

developmental structure of biofilms are discrete spaces free of bacteria, which 

have been described as „pores‟ or „water-channels‟ (Beer et al., 1994).  These 

water-channels develop in many cases in both mono- and poly- species biofilms 

(Beer et al., 1994, Stoodley et al., 2002), and appear to facilitate the movement 

oxygen and nutrients throughout the biofilm (Sternberg et al., 1999).  Studies 

have shown that within biofilms, oxygen and nutrient gradients fall sharply in 

dense areas, leading to the shut-down of metabolism in deeply entrenched cells 

(Stewart, 2003).  However, the addition of fresh nutrients can stimulate the 

metabolism of these deep biofilm cells and water channels have been shown to 

aid the supply of oxygen and nutrients throughout the biofilm (Sternberg et al., 

1999).  Biofilm maturation is heavily influenced by environmental parameters 

such as nutrient availability, and fluid-sheer forces, however in some species 

such as P. aeruginosa maturation is also a discrete molecular process governed 

by specific genetic loci which often have no identifiable role in other stages of 

biofilm formation, such as motility, attachment or biofilm growth (Kuchma et al., 

2005).   

 

Bacteria exit the biofilm mode of growth via mechanisms of dispersal; either 

when the particular conditions that is favourable to the biofilm pass, or by the 
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shedding of cells from a mature biofilm for the colonisation of new areas 

(Costerton et al., 1995).  Dispersed biofilm bacteria may also retain higher 

infectivity than their planktonic counterparts, as has been shown for V. cholerae 

(Faruque et al., 2006), making them especially important in human pathogenesis 

(Hall-Stoodley and Stoodley, 2005).  

 

1.3.4 Yersinia biofilms 

 

The ability for Y. pestis to form biofilms within the flea proventriculus during 

transmission of plague from the flea vector to a mammalian host is well known 

(Jarrett et al., 2004).  Y. pseudotuberculosis does not form biofilms in fleas, but 

is capable of causing acute oral infections and can also adhere to the flea midgut 

(Erickson et al., 2007).  Both Y. pestis and Y. pseudotuberculosis form 

hmsHRFS-dependent biofilms on the cuticle of the nematode worm C. elegans 

(Darby et al., 2005, Joshua et al., 2003), which involves the EPS β-1,6-N-acetyl 

glucosamine (Drace and Darby, 2008, Joshua et al., 2003, Jarrett et al., 2004).  

The hmsT locus, which is not genetically linked to the hmsHRFS genes, is also 

required for biofilm formation (Kirillina et al., 2004, Jones et al., 1999).  HmsT is 

a member of the diguanylate cyclase family, and produces the secondary 

messenger cyclic-di-GMP (Cotter and Stibitz, 2007).  High cyclic-di-GMP levels 

are correlated with increased biofilm formation in several different bacteria 

(Kirillina et al., 2004, Cotter and Stibitz, 2007, Bobrov et al., 2005, Simm et al., 

2005).  The action of HmsT is opposed by the phosphodiesterase, HmsP, which 

inactivates cyclic-di-GMP, and hmsP mutants form biofilms with increased 

biomass (Kirillina et al., 2004, Bobrov et al., 2005). 

 

In Y. enterocolitica, mutation of the flagella structural genes also reduces the 

growth of biofilms on abiotic surfaces (Kim et al., 2008).  Motility itself, rather 
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than just the presence of flagella was shown to be critical, since a motA mutant 

(defective for the ion channel responsible for coupling the proton motive force to 

torque generation in the flagellum) also forms poor biofilms (Kim et al., 2008).  

However for Y. pseudotuberculosis, while elements of the flagella regulon 

including the master regulator flhDC, the flagella sigma-factor fliA, and the 

structural component flhA are required for both swimming and biofilm formation, 

motility per se is not required since a non-motile fliC mutant is capable of 

forming biofilms on C. elegans which are as severe as those formed by the wild-

type (Atkinson et al., 2011).  

 

1.3.4 QS in biofilms  

 

AHLs have been identified in biofilms growing on surfaces in many environmental 

and clinical settings (McLean et al., 1997, Gram et al., 2002, Taylor et al., 2004, 

Bachofen and Schenk, 1998, Stickler et al., 1998, Huang et al., 2007), revealing 

that bacteria use QS in this mode of growth.  AHLs have been found in sputum 

of cystic fibrosis patients infected with P. aeruginosa (Erickson et al., 2002, 

Middleton et al., 2002a) where they are produced de novo (Singh et al., 2000).  

Y. pseudotuberculosis biofilms growing on C. elegans have also been shown to 

concentrate AHLs (Atkinson et al., 2011).  Since AHLs can be extracted from 

biofilms, it is not surprising to find QS genes actively expressed in the biofilm 

mode of growth.  Transcripts for lasI and lasR have been isolated from P. 

aeruginosa biofilms (Middleton et al., 2002a), and expression of lasI and rlhI has 

been investigated using a gfp reporter, revealing that expression is maximal in 

cells at the substratum, and decreases with biofilm height (De Kievit et al., 

2001b).  The authors of the study also found that lasI expression reduces over 

time, but rhlI expression remains constant (De Kievit et al., 2001a).  

Comparatively, another study using a lacZ reporter found the las system to be 
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more active during the early stages of biofilm attachment, while the rhl system 

appears to be more active during the maturation stage (Sauer et al., 2002). 

 

It is largely acknowledged that QS plays a central role in regulating biofilm 

development, even though other sensory inputs such as nutrient cues modulate 

the role for QS in biofilms (De Kievit et al., 2001a).  In many species, such as P. 

aeruginosa, Burkholderia cepacia and Serratia spp., QS appears to influence the 

maturation stage of biofilm development rather than initial attachment, where 

QS mutants form flat, undifferentiated biofilms (Davies et al., 1998, Huber et al., 

2001, Labbate et al., 2004, Rice et al., 2005).  Differentiation and microcolony 

formation is also prevented in an Aeromonas hydrophila, ahyI mutant, however 

the ahyR mutant does not share this phenotype, and indeed biofilms formed by 

the ahyR mutant were shown to exhibit increased surface coverage (Lynch et al., 

2002).   Bacteria can also negatively regulate biofilm formation using AHL-

dependent QS.  For example, Pseudomonas aureofaciens and Pantoea stewartii 

use the CsaR/I and EsaR/I systems respectively to repress the synthesis of 

biofilm matrix components (Zhang and Pierson, 2001, von Bodman et al., 1998).   

 

Several bacterial species also use QS to regulate LCBs, including Y. 

pseudotuberculosis (Atkinson et al., 1999).  The marine bacterium Rhodobacter 

sphaeroides also forms such aggregates following deletion of cerI, and in 

addition overproduces an exopolysaccharide (Puskas et al., 1997).  In Brucella 

melitensis, a vjbR mutant grows as an LCB encased in a matrix of 

exopolysaccharides and eDNA (Uzureau et al., 2007), which is also observed 

following over-expression of an AHL degrading acylase (AiiD) (Godefroid et al., 

2010).  QS can also enhance LCB formation.  Erwinia chrysanthemi grows in 

aggregates which can be prevented by mutation of expI but recovered by the 

addition of AHLs (Hussain et al., 2008). Additionally, in late-log phase cultures of 

P. aeruginosa, substantial cell clumps develop in a way that is not observed in 
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the lasI and rhlI synthase mutant (Allesen-Holm et al., 2006).  Together this 

indicates a species specific role for QS in regulating the formation of LCBs. 

 

QS regulates a number of genes involved in the biofilm mode of growth.  

Probably the best example of this comes from P. aeruginosa, where the RhlR/I 

system regulates the production of rhamnolipid biosurfactants (Ochsner and 

Reiser, 1995, Brint and Ohman, 1995), and S. liquifaciens, where the SwrR/I 

system regulates a lipopeptide biosurfactant (Lindum et al., 1998).  

Biosurfactants affect biofilm architecture (Davey et al., 2003) by influencing 

swarming motility (Lindum et al., 1998, Caiazza et al., 2005) and mediating 

detachment and dispersal of cells (Boles et al., 2005).  Rhamnolipids appear to 

be spatially and temporally localised in P. aeruginosa biofilms, and are 

synthesised primarily in the stalks rather than in the caps of the characteristic 

mushroom-like structures (Lequette and Greenberg, 2005).    In S. liquifaciens, 

QS also regulates the genes bsmA and bsmB, which are involved in the 

development of the highly differentiated, filamentous biofilms characteristic of 

this species (Labbate et al., 2004). However, these genes are also involved in 

biofilm formation independent of QS, when the surface colonised is biotic rather 

than abiotic (Labbate et al., 2007).   
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1.4  Flagella mediated motility 

 

1.4.1  The structure and function of the flagellum 

 

Many bacterial species move by employing a sophisticated nanomachine termed 

the flagellum, which is composed of approximately 25 proteins which, by using a 

proton motive force, drives the rotation of a rigid helical filament to generate 

thrust (Macnab, 2003).  The structure of the flagellum can be subdivided into 

several parts, including the basal body; the motor; the export apparatus; the 

hook and filament (figure 1.4).  The flagella is a self-assembling structure which, 

for the most part, arranges sequentially with proximal structures being 

incorporated prior to distal ones (Macnab, 2003, Macnab, 2004).    

 

The production of flagella can be subdivided into four stages (Macnab, 2004).  In 

the first stage the motor proteins MotA and MotB are inserted into the 

cytoplasmic membrane along with a basal body component, the MS ring, 

composed of approximately 26 copies of FliF, which is inserted into the 

cytoplasmic membrane (Macnab, 2004, Jones et al., 1990), and the rotor/C-ring 

structure, composed of FliG/FliM and FliN, which is attached to the MS-ring 

(Macnab, 2003).  These components are exported to the membrane via 

conventional Sec-dependent secretion along with the secretion apparatus 

components FliO, FliP, FliQ, FliR, FlhA and FlhB, which occupy the centre of the 

MS ring (Macnab, 2003).  The secretion apparatus probably assembles co-

ordinately with the MS-ring, since the export component FlhA has been shown to 

interact with FliF (Kihara et al., 2001).  This structure functions in subsequent 

stages of flagellum production as a type 3 secretion system.  Approximately six 
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proteins are thought to be essential to the T3S apparatus- FliI, FliP, FliQ, FliR, 

FlhA and FlhB (Macnab, 2004). 

The second stage of flagella synthesis involves the T3S-dependent export of the 

proximal rod (Macnab, 2004), a complex of several proteins, connected to the 

MS ring by the junction and export gate protein FliE, which spans the periplasm 

(Macnab, 2003) and acts as a driveshaft which is connected to the cytoplasmic 

rotor (Chevance and Hughes, 2008).  FliE is thought to bridge the annular 

symmetry of the MS ring with the helical symmetry of the axial structure, and is 

required for secretion of the rod, while the rod is terminated by a complex 

consisting of approximately 26 copies of the distal rod protein FlgG (Macnab, 

2003).   

 

The third stage of flagellum production involves Sec-dependent export of the 

remaining elements of the basal body- the periplasmic P-ring, consisting of 24 

copies of FlgI; and the outer-membrane ring, termed the L-ring, which is formed 

by approximately 28 copies of the lipoprotein FlhH (Macnab, 2003).  The fourth 

stage involves the T3S-dependent export of the remaining distal elements of the 

flagellum including the hook, associated junction elements, the filament and cap 

proteins.  The flagellum filament is a helical polymer of around 20,000 copies of 

the flagellin monomer, FliC (Chevance and Hughes, 2008).  For the filament to 

be properly polymerised at the surface, FliC interacts with a self-assembling cap 

composed of approximately 5 copies of FliD (Macnab, 2003, Ikeda et al., 1996).  
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Figure 1.4| The flagella machinery of Y. pseudotuberculosis.  The flagellum is 

multiprotein nanomachine that secretes and rotates a helical filament, 

connected to a hook and basal body, in order to drive bacterial motility. Figure 

modified from http://www.genome.jp/kegg/pathway/ypy/ypy02040.html. 

 

The motor, which powers the rotation of the flagellum, can be further subdivided 

into two parts- the stator and a reversible rotor (Minamino et al., 2008).  The 

stator is an integral membrane complex probably composed of four copies of 

MotA and two of MotB, which are arranged surrounding the basal body (Macnab, 

2003).  The stator is stationary in reference to the cell, as it is attached non-

covalently to the peptidoglycan layer.  When protons cross the membrane, they 

are suspected to bind to a conserved aspartate residue within the stator protein 

MotB.  This causes a conformational change in the stator, involving a conserved 

proline residue in MotA, which drives rotation of the rotor (Kojima and Blair, 

2001).  The rotor is a complex of FliF, FliG, FliM and FliN- FliF as the MS-ring, 

while FliG sits in the C-ring alongside FliM and FliN, together these proteins form 
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a switch structure which can modify the direction in the spin of the flagellum 

between clockwise and counter-clockwise rotation (Minamino et al., 2008).  In 

bacteria such as Salmonella and Yersinia, the filament has a left-handed 

asymmetry, and so anti-clockwise movement of the flagellum causes the helical 

filament to create thrust away from the cell, driving motion forwards.  Clockwise 

movement of the filament causes polymorphic structural changes to the 

filament, generated by the change in torsional load, which can create semi-coiled 

flagella with a handedness opposite to normal.  This produces chaotic fluid 

dynamics and causes the cell to re-orientate, or „tumble‟ (Macnab and Ornston, 

1977, Turner et al., 2000).   

 

Most species of Yersinia, including Y. pseudotuberculosis and Y. enterocolitica, 

but with the exception Y. pestis, achieve motility by means of peritrichous 

arranged flagella (Bercovier and Mollaret, 1984, Bottone and Mollaret, 1977, 

Hurst et al., 2010, Wauters et al., 1988, Murros-Kontiainen et al., 2010, 

Bercovier et al., 1984).  Even the most distantly related species, Y. ruckeri  and 

Y. nurmii (Chen et al., 2010),  possess peritrichous flagella (Furones et al., 

1993, Murros-Kontiainen et al., 2010).  It should be noted, however, that Ding 

et al. (2009) noted a single polar flagellum in Y. pseudotuberculosis (Ding et al., 

2009), and some strains of Y. ruckeri have been shown to be non-motile, but 

still capable of causing red-mouth disease (Fouz et al., 2006).   
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1.4.2  QS and the genetic regulation of flagella 

 

The genetic regulation of the typical flagella systems of enteric bacteria is 

organised into three hierarchical classes (McCarter, 2006).  The class I gene 

products include FlhD and FlhC, which form heterodimer complexes constituting 

what is regarded as the master flagella regulator (often termed FlhDC), and can 

be regulated by several systems including CRP (Soutourina et al., 1999, Stella et 

al.), H-NS (Soutourina et al., 1999, Goyard and Bertin, 1997), CsrA (Wei et al., 

2001), OmpR (Kim et al., 2003, Hu et al., 2009) and the Rcs phosphorelay 

system (Francez-Charlot et al., 2003).  FlhDC binds to specific recognition 

sequences in gene promoters and activates expression of the flagella specific 

sigma factor fliA (Ohnishi et al., 1990, Helmann and Chamberlin, 1987) and 

Class II flagella genes encoding proteins of the flagellum basal body and hook 

(Liu and Matsumura, 1994).  Together, FlhDC and FliA activate expression of the 

remaining Class III elements of the flagellum, including the flagellum filament 

and cap (fliC and fliD), motor proteins and chemotaxis genes (Kutsukake and 

Iino, 1994, Liu and Matsumura, 1995, Ide et al., 1999).     

 

Interestingly, several bacteria also regulate the expression of flhDC using AHL-

mediated QS, including Burkholderia glumae (Kim et al., 2007) and Yersinia spp. 

(Atkinson et al., 2006, Atkinson et al., 2008), while the expression of several 

flagella genes is affected by QS in Sinorhizobium meliloti (Hoang et al., 2008).  

In Y. pseudotuberculosis and other bacteria, such as Erwinia chrysanthemi, 

mutation of AHL synthase genes results in hyper-motility (Hussain et al., 2008).  

However, in other bacteria, such as A. hydrophila, QS does not appear to play a 

role in regulating motility (Khajanchi et al., 2009).  
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1.5 Aims 

 

Atkinson et al. (1999) demonstrated that motility and clumping were regulated 

by QS in Y. pseudotuberculosis (Atkinson et al., 1999), and it has since been 

shown that QS modulates the expression of the flagella regulators flhDC and fliA 

(Atkinson et al., 2008).  In addition to their role in controlling motility, FlhDC 

and FliA are also implicated in the environmental control of virulence.  For 

example, a Y. enterocolitica flhDC mutant over-produces T3SS proteins under 

normally non-inducing conditions (Bleves et al., 2002), forms cell clumps 

reminiscent of a Y. pseudotuberculosis ypsR mutant (Bleves et al., 2002), and is 

attenuated for biofilm formation on abiotic surfaces (Kim et al., 2008).  This 

suggests that, at least in Y. enterocolitica, the flagella regulatory cascade is 

embedded in the lifestyle decision making process- that is, whether to express 

motility, virulence traits, or to adopt multicellular, aggregative or biofilm-like 

behaviour under particular conditions.  In light of the aggregative phenotype of 

the ypsR mutant, this thesis aims to explore the contribution of QS to other 

phenotypes associated with the flagella system.  In doing so, this work:  

 

 Describes cellular clumping, which is repressed by QS in Y. pseudotuberculosis, 

as a form of liquid culture biofilm (LCB), which is also repressed by the motility 

system. 

 Correlates the formation of LCBs with the up-regulation of the T3SS in several Y. 

pseudotuberculosis QS and motility mutants. 

 Reveals that the formation of biofilms by Y. pseudotuberculosis on the surface of 

C. elegans is promoted by QS, and is inversely correlated with the activity of the 

T3SS. 

 Demonstrates a reciprocal feedback whereby the T3SS modulates the expression 

of flhDC and motility  
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 Provides evidence to suggest that T3S-associated modulation of motility requires 

an effect on the expression of QS. 

 Links the up-regulation of the T3SS to over-expression of the virulence 

regulator, virF. 

 

From these objectives, this thesis aims to build on an emerging picture of how 

QS is intricately involved in the cellular decision making process of Y. 

pseudotuberculosis, which allows this bacteria to behave adaptively in response 

to specific environmental signals. 
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Chapter 2| 

 

Materials and method 
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2.1 Growth Conditions 

 

2.1.1 Growth media 

 

The media used in this study, their abbreviations and reference or source are 

listed in Table 2.1 
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Name Abbr. Composition Ref  / 

source 

Luria Broth LB  (Luria and 

Delbruck, 

1943) 

Luria agar LB agar  (Luria and 

Delbruck, 

1943) 

Luria Broth buffered with 3-(N-

morpholino) propanesulfonic acid 

LBMOPS LB supplemented with 10 mM 3-(N-

morpholino) propanesulfonic acid 

(Yates et al., 

2002) 

Blue/White selection plates for 

identification of interrupted lacZ 

Blue/white LB supplemented with 100 µg/ml, IPTG 

and 64 µg/ml X-gal 

 

Congo red Luria Broth LBCR LB supplemented with Congo red 0.1 % 

(v/v) 

This study 

Semi-solid Swimming Motility 

agar 

SwMA (10  g/l tryptone [Oxoid], 5 g/l NaCl2 

[Sigma], 0.3 % (w/v) Difco Bacto agar 

[Difco] 

(Atkinson et 

al., 1999) 

Typtone Soy Agar TSA  Oxoid 

Congo red Tryptone Soy agar TSACR TSA supplemented with Congo red 0.1 

% (v/v) 

This study 

Congo red Magnesium Oxalate 

Tryptone Soy agar 

CRMOX TSA supplemented with 20 mM Sodium 

Oxalate [Sigma], 20 mM MgCl2 [Sigma], 

0.1 % (v /v) Congo red. 

(Riley and 

Toma, 1989) 

Worm Nutrient Growth Medium 

agar 

Worm-

NGM 

NGM supplemented with 5 µg/ml 

Cholesterol, 1 mM CaCl2, 25 mM KH2PO4 

(pH6).  Lacking MgSO4. 

(Epstein and 

Shakes, 

1995) 

Autoinducer bioassay medium AB 17.5 g/l NaCl2, 12.3 g/l MgSO4, 2.0 g/l 

Casamino acids, 10 mM KPi (pH 7.0), 1 

µM L-arginine, 1 % Glycerol. pH 7.5 with 

NaOH. 

(Bassler et 

al., 1994) 

    

Table 2.1| Media used in this study 
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Supplements added to the media, abbreviations and working concentrations: 

Ampicillin (Amp) 50 µg/ml, chloramphenicol (Cm) 30 µg/ml, tetracycline (Tet) 10 

µg/ml, streptomycin (Sm) 30 µg/ml, kanamycin (Km) 50 µg/ml, naladixic acid 

(Nal) 15 µg/ml, trimethoprim (Tp) 100 µg/ml, isopropyl-1-thio-β-D-

galacpyranoside (IPTG) 64 µg/ml, 5-bromo-5-chloro-3-indolyl β-D-galactoside 

(X-gal) 64 µg/ml, L-arabinose at 0.8 % (w/v). 

 

2.1.2 Growth Conditions 

 

Unless otherwise stated, all Y. pseudotuberculosis strains were grown at 30oC 

and all E. coli strains were grown at 37oC in LB with agitation at 200 rpm.  The 

growth of the cultures was monitored by reading the absorbance of the culture 

at either OD600 using a Gallenkamp Visi-Spec, or at OD405 in a combined 

spectrophotometer / luminometer (Anthos Lucy I) (Winson et al., 1998) .  Unless 

otherwise stated, bacteria were maintained as colonies on LB agar plates at 4oC 

and used within 3 weeks.  For selection for the presence or absence of the pYV 

plasmid in Y. pseudotuberculosis strains, bacteria were grown on CRMOX agar at 

37oC for 48 h, whereby pYV+ clones grow as small, blood-red colonies, while 

pYV- clones grow as large, cream-white colonies.  Carriage of pYV was confirmed 

by PCR directed against pYV encoded yscU using primer pairs YscUF and YscUR 

(Table 2.4).  Swimming agar plates were made as previously described (Atkinson 

et al., 2006).  Y. pseudotuberculosis cultures were grown overnight and 1 µl 

inoculated into the centre of the plate. These plates were incubated at the 

relevant temperature for 48 h or 72 h prior to being examined and 

photographed.  
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2.1.3 Bacterial strains 

 

The bacterial strains used in this study are listed in Table 2.2. 

Strain Description Reference / 

Source 

 

Escherichia coli 

 

DH5-α E. coli K-12 cloning strain. *F φ80dlacZΔM15Δ (lacZYA-argF) 

U169 recAI endAI hsdR17 (rK- mK
+
) supE44 thiI gyrI relAI]

 

(Hanahan, 

1983) 

S17-1 λ-pir λ -pir lysogen of S17-1 [thi pro hsdR– hsdM+ recA RP4 2-

Tc::Mu-Km::Tn7]. Permissive host capable if transferring 

suicide plasmids requiring the Pir protein by conjugation to 

recipient cells / Sm
R
. 

(Simon et al., 

1983) 

OP50 Uracil auxotroph nutrient source for C. elegans and control for 

uninfected worms / Tc
R
. 

(Epstein and 

Shakes, 1995) 

S17 

pDM4PvirF::lux 

S17 containing pDM4PvirF::lux / Sm
R 

Cm
R 

This study 

S17  pSA278  S17 containing pSA278 (PypsI::lux) / Sm
R 

(Atkinson et 

al., 2008) 

S17  pSA279  S17 containing pSA279 (PypsR::lux) / Sm
R
 (Atkinson et 

al., 2008) 

S17 pHP276 S17 containing pHP276 (PytbI::lux) / Sm
R
 (Atkinson et 

al., 2008) 

S17 pHP277 S17 containing pHP277 (PytbR::lux) / Sm
R
 (Atkinson et 

al., 2008) 

Vibrio harveyi 

BB170 

V. harveyi bioreporter for AI-2 assays (Bassler et al., 

1994) 

 

Yersinia pseudotuberculosis 

 

YPIII pIB1 Parent strain of YPIII harbouring the virulence plasmid pYV. 

Serotype O:3 / Nal
R
 

(Rosqvist et 

al., 1988) 

YPIII pYV
- 

Parent strain of YPIII cured of the pYV virulence plasmid / Nal
R
  This study 

∆flhDC YPIII mutant for the Class I flagella regulator flhDC / Tet
R 

(Atkinson et 

al., 2011) 
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∆flhDC 

pGem::flhDC 

YPIII ∆flhDC complemented with functional flhDC carried on 

pGem / Tet
R 

Amp
R 

(Atkinson et 

al., 2011) 

∆fliA YPIII mutant for the flagella sigma factor fliA / Km
R
 (Atkinson et 

al., 2011) 

∆flhA YPIII mutant for the flagella structural component flhA / Km
R
 (Atkinson et 

al., 2011) 

∆fliC YPIII mutant for the flagellin filament gene fliC / Tet
R 

(Atkinson et 

al., 2011) 

∆yscJ YPIII mutant for the Yop-Ysc T3SS Inner ring component yscJ / 

Tet
R
 

This study 

∆yscJ pHGyscJ YPIII ∆yscJ complemented with functional yscJ carried on 

pHG327 / Tet
R
 Amp

R
 

This study 

∆ypsI YPIII ypsI AHL synthase mutant / Km
R
 (Atkinson et 

al., 1999) 

∆ypsR YPIII ypsR AHL receptor mutant / Km
R
 (Atkinson et 

al., 1999) 

∆ytbI YPIII ytbI AHL synthase mutant / Cm
R
 (Atkinson et 

al., 2008) 

∆ytbR YPIII ytbR AHL receptor mutant / Cm
R
 (Atkinson et 

al., 2008) 

∆ypsR ∆ytbR YPIII ypsR/ytbR double mutant / Cm
R
 Km

R
 (Atkinson et 

al., 2008) 

∆ypsI ∆ytbI YPIII ypsI/ytbI double mutant / Cm
R
 Km

R
 (Atkinson et 

al., 2008) 

∆ypsI ∆ytbI pYV
-
 YPIII ypsI/ytbI double mutant cured of pYV / Cm

R
 Km

R
. This study 

∆ypsI ∆ytbI 

pSA291 

YPIII ypsI/ytbI AHL synthase double mutant harbouring ypsI and 

ytbI on the complementation vector pSA291/ Cm
R
 Km

R 
Ap

R
. 

 

(Atkinson et 

al., 2008) 

∆ypsI ∆ytbI 

Tn5::psaE 

YPIII ypsI/ytbI AHL synthase double mutant with a Tn5 insertion 

in psaE / Cm
R
 Km

R
 Tp

R
 

This study 

∆ypsI ∆ytbI ∆yscJ Deletion of the yscJ type three secretion system inner ring 

component in the ypsI/ytbI double AHL synthase mutant 

background / Cm
R
 Km

R 
Tc

R
 

This study 
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∆ypsI ∆ytbI ∆yscJ 

pHGyscJ 

YPIII ypsI/ytbI/yscJ triple mutant harbouring yscJ on pHG::yscJ 

for complementation. Cm
R
 Km

R 
Ap

R
. 

This study 

Promoter fusions  

YPIII pIB1  

pDM4PvirF::lux    

YPIII wild-type virF promoter fusion / Nal
R
 Cm

R 
This study 

∆ypsI  

pDM4PvirF::lux    

YPIII ∆ypsI virF promoter fusion / Km
R
 Cm

R
 This study 

∆ypsR  

pDM4PvirF::lux    

YPIII ∆ypsR virF promoter fusion / Km
R
 Cm

R
 This study 

∆ytbI  

pDM4PvirF::lux    

YPIII ∆ytbI virF promoter fusion / Cm
R
 This study 

∆ytbR  

pDM4PvirF::lux    

YPIII ∆ytbR virF promoter fusion / 
R
 Cm

R
 This study 

∆ypsI ∆ytbI  

pDM4PvirF::lux    

YPIII ∆ypsI ∆ytbI virF promoter fusion / Km
R
 Cm

R
 This study 

∆ypsI ∆ytbI  

pDM4PvirF::lux 

pSA291    

YPIII ∆ypsI ∆ytbI virF promoter fusion expressing ypsI and ytbI 

from pSA291 / Km
R
 Amp

R
 Cm

R
 

This study 

∆ypsR ∆ytbR  

pDM4PvirF::lux    

YPIII ∆ypsR ∆ytbR virF promoter fusion / Km
R
 Cm

R
 This study 

∆flhDC  

pDM4PvirF::lux    

YPIII ∆flhDC virF promoter fusion / Tet
R
 Cm

R
 This study 

∆flhDC  

pDM4PvirF::lux 

pGem::flhDC     

YPIII ∆flhDC virF promoter fusion expressing flhDC from  

pGem::flhDC / Km
R
 Amp

R
 Cm

R
 

This study 

∆fliA  

pDM4PvirF::lux    

YPIII ∆fliA virF promoter fusion / Km
R
 Cm

R
 This study 

∆flhA  

pDM4PvirF::lux    

YPIII ∆flhA virF promoter fusion / Km
R
 Cm

R
 This study 

∆fliC  

pDM4PvirF::lux    

YPIII ∆fliC virF promoter fusion / Tet
R
 Cm

R
 This study 

YPIII pIB1  

pSA278    

YPIII wild-type ypsI promoter fusion / Nal
R
 Sm

R
 (Atkinson et 

al., 2008) 

∆yscJ  pSA278 ∆yscJ ypsI promoter fusion / Tet
R
 Sm

R
 This study 
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Table 2.2| Strains used in this study 

∆yscJ  pSA278 

pHGyscJ 

∆yscJ ypsI promoter fusion expressing yscJ from pHGyscJ  / Nal
R
 

Amp
R
 Sm

R
 

This study 

YPIII pIB1  

pSA279    

YPIII wild-type ypsR promoter fusion / Nal
R
 Sm

R
 (Atkinson et 

al., 2008) 

∆yscJ  pSA279 YPIII ∆yscJ ypsR promoter fusion / Tet
R
 Sm

R
 This study 

∆yscJ  pSA279 

pHGyscJ 

YPIII ∆yscJ ypsR promoter fusion expressing yscJ from pHGyscJ 

/ Nal
R
 Amp

R
 Sm

R
 

This study 

YPIII pIB1  

pHP276    

YPIII wild-type ytbI promoter fusion / Nal
R
 Sm

R
 (Atkinson et 

al., 2008) 

∆yscJ   pHP276 YPIII ∆yscJ ytbI promoter fusion / Tet
R
 Sm

R
 This study 

∆yscJ   pHP276 

pHGyscJ 

YPIII ∆yscJ ytbI promoter fusion expressing yscJ from pHGyscJ / 

Nal
R
 Amp

R
 Sm

R
 

This study 

YPIII pIB1  

pHP277    

YPIII wild-type ytbR promoter fusion / Nal
R
 Sm

R
 (Atkinson et 

al., 2008) 

∆yscJ   pHP277 YPIII ∆yscJ ytbR promoter fusion / Tet
R
 Sm

R
 This study 

∆yscJ   pHP277 

pHGyscJ 

YPIII ∆yscJ ytbR promoter fusion expressing yscJ from pHGyscJ / 

Nal
R
 Amp

R
 Sm

R
 

This study 

YPIII pIB1   

pSA200    

YPIII wild-type flhDC promoter fusion / Nal
R
 Cm

R
 (Atkinson et 

al., 2008) 

∆yscJ    pSA200 YPIII ∆yscJ flhDC promoter fusion / Tet
R
 Cm

R
 This study 

∆yscJ    pSA200 

pHGyscJ 

YPIII ∆yscJ flhDC promoter fusion expressing yscJ from pHGyscJ 

/ Tet
R 

 Amp
R
 Cm

R
 

This study 

∆ypsI ∆ytbI ∆yscJ    

pSA200 

YPIII ∆ypsI ∆ytbI ∆yscJ flhDC promoter fusion / Tet
R
 Km

R
 Cm

R 
  This study 

YPIII pIB1   

pSA208    

YPIII wild-type fliA promoter fusion / Nal
R
 Cm

R
 (Atkinson et 

al., 2008) 

∆yscJ    pSA208 YPIII ∆yscJ fliA promoter fusion / Tet
R
 Cm

R
 This study 

∆yscJ    pSA208 

pHGyscJ 

YPIII ∆yscJ fliA promoter fusion expressing yscJ from pHGyscJ / 

Tet
R
 Amp

R
 Cm

R
 

This study 
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2.2 Genetic Manipulation 

 

2.2.1 DNA 

 

DNA was handled according to standard techniques.  Plasmids were purified from 

bacterial cultures via MiniPrep columns (QIAGEN), and total chromosomal DNA 

was purified using the Blood and Tissue Kit (QIAGEN), both according to 

manufacturer‟s instructions.  Unless otherwise stated, all DNA was recovered 

from Y. pseudotuberculosis grown at 30oC, or E. coli grown at 37oC, for 16 h with 

agitation at 200 rpm. 

 

2.2.2 Plasmids used in this study 

The plasmids used in this study are listed in Table 2.3 
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Plasmid Description Reference / 

Source 

pGemT-easy Cloning vector / Amp
R
 Promega 

pBluescript II 

KS+ 

Cloning vector, maintained in  E. coli DH5-α  / Amp
R
 Stratagene 

pHG327 Low-copy number complementation vector / Amp
R
 (Stewart et al., 

1986) 

pBlueTet pBluescript II KS+ encoding tetA gene from  pBR322   / 

Amp
R
 

(Atkinson et al., 

2008) 

pBlueLux pBluescript II KS+ Vector containing the luxCDABE operon 

/ Amp
R
 

(Atkinson et al., 

2008) 

pGemPvirF PvirF PCR product ligated into pGemT-easy / Amp
R
 This study 

pBluePvirF ApaI NotI insertion of PvirF from  pGemPvirF into  pBluescript 

II KS+ / Amp
R
 

This study 

pBluePvirF::lux SacI insertion of luxCDABE excised from pBlueLux into 

pBluePvirF /  Amp
R
 

This study 

pDM4 Suicide vector:  mobRK2, oriR6K (pir requiring). sacBR of 

Bacillus subtilis  / Cm
R
 

(Milton et al., 

1996) 

pDM4PvirF::lux PvirF::lux construct excised by ApaI SalI and ligated into 

pDM4 / Cm
R
 

This study 

pGem::flhDC Complementation vector for ∆flhDC, flhDC PCR product 

cloned into pGemT-easy / Amp
R 

(Atkinson et al., 

2011) 

pHG::yscJ Complementation vector for ∆yscJ, yscJ PCR product 

cloned into pHG327 / Amp
R 

(Atkinson et al., 

2011) 

pSB2020 Constitutively expressing gfp3 / Amp
R 

(Qazi et al., 

2001) 

pAJD434 Carrying the λred recombinase / Amp
R
 Km

R 
(Derbise et al., 

2003) 

pSA278 pKNG101::PypsI::lux (ypsI promoter fusion) / Sm
R 

(Atkinson et al., 

2008) 

pSA279 pKNG101::PypsR::lux (ypsR promoter fusion) / Sm
R
 (Atkinson et al., 

2008) 

pHP276 pKNG101::PytbI::lux (ytbI promoter fusion) / Sm
R
 (Atkinson et al., 

2008) 

pHP277 pKNG101::PytbR::lux (ytbR promoter fusion) / Sm
R
 (Atkinson et al., 

2008) 
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Table 2.3| Plasmids used in this study 

 

2.2.3 Restriction enzymes 

 

All restriction enzymes were purchased from Promega, and used according to 

manufacturer‟s instructions.  Unless otherwise stated, all restriction reactions 

were incubated at the appropriate temperature for 3 h to allow for complete 

digestion. 

 

2.2.4 Separation of DNA by agarose gel electrophoresis 

 

DNA was resolved in TAE-agarose gels (80 mM Tris-acetate pH 7.9, 19 mM 

EDTA, 0.8 % (w/v) analytical grade agarose (Invitrogen) and contained ethidium 

bromide at a final concentration of 10 µg / ml.  To establish the size of the DNA 

fragments, 1 kb DNA ladder (Promega) was routinely loaded alongside DNA 

samples into gels.  An appropriate volume of 6 X loading buffer (Promega) was 

added to DNA samples prior to loading into the gel, and electrophoresis was 

performed using a horizontal gel apparatus in TAE buffer at 90 V.  Where 

appropriate, DNA fragments were recovered from gel slices using a gel 

extraction kit (QIAGEN) according to manufacturer‟s instructions. 

 

  

pSA200 pDM4::PflhDC::lux (ytbR promoter fusion) / Cm
R
 (Atkinson et al., 

2008) 

pSA208 pDM4::PfliA::lux (fliA promoter fusion)  / Cm
R
 (Atkinson et al., 

2008) 
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2.2.5 DNA ligation 

 

Purified DNA inserts were ligated into appropriate vectors at the ratio of 1 : 3 

(vector : insert).  Ligations were carried out using 1 µl T4 DNA ligase and the 

appropriate volume of 1 X T4 reaction buffer (Promega), usually to a final 

volume of 20 µl and incubated overnight on melting ice. 

 

2.2.6 Polymerase chain reaction conditions 

 

2.2.6.1 Synthesis of oligonucleotide primers 

 

Oligonucleotide primers (Table 2.4) were synthesised by Sigma-Genosys Ltd. 

(UK).  Unless otherwise stated, all primers were designed to the published Y. 

pseudotuberculosis YPIII genome (NCBI, accession: NC_010465.1).  Primer 

sequences are listed in table 2.4.  Where appropriate, restriction site sequences 

were engineered into the oligonucleotides, and these are highlighted in bold and 

underlined. 
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Table 2.4 | Oligonucleotide primers used in this study 

 

  

Oligonucleotide Sequence (5’3’) Notes 

YscJaFor CTGAATTGCGTAGTGTATTGCAGCAG  

YscJupR-Tet GAGCGCATTGTTAGATTTCATTAGTTTTCACCCCCCCTT

CGA 

 

YscJdownF-tet GAGCCGGGCCACCTCGACCTGACGTAACACGAGCATA

CTGTC 

 

YscJbRev CCGCAAGCGAGCGAGAGATTAC  

TetFor ATGAAATCTAACAATGCGCTC  

TetRev TCAGGTCGAGGTGGCCCGGCTC  

yscJC_F TCTAGAGACTGCCGGGCGAATGAG XbaI 

yscJC_R GTCGACCGGCGCCCCGTCTTCGC SalI 

pVirF-ApaI-F GGGCCCGTTGAATACAAATA ApaI 

pVirF-Not1-r GCGGCCGCATGTTATACTGTCC NotI 

RP-1 GACACTCTGTTATTACAAATCG 

 

 

YscUF AAAAGCAAGCGTCGTCAGTT 
 

 

YscUR GCTGTGGCCTCTATTTGCTC 
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2.2.6.2 PCR amplification 

 

Unless otherwise specified, PCR amplifications were performed using 0.2 µl 

FailSafe Phusion DNA polymerase (NEB), in a reaction containing 1 µg of each 

oligonucleotide primer, an appropriate volume of the 5 X reaction buffer supplied 

with the enzyme, and 2 mM dNTPs.  Reactions were carried out in a Hybaid 

express thermal cycler using the following conditions, unless otherwise stated: 

98oC for 5 min for initial denaturation, followed by 35 cycles of melting at 98oC 

for 30 sec, annealing at 56oC for 30 sec and polymerisation at 74oC for the 

appropriate length of time (approximately 1 min per kb).  A final extension stage 

at 74oC for 5 min ensured complete polymerisation of all strands.  The annealing 

temperature was also run on a gradient to determine the best temperature for 

the reaction. 

 

2.2.7 Introducing DNA into bacterial cells 

 

2.2.7.1 Preparation of electro-competent cells 

 

Electro-competent E. coli and Y. pseudotuberculosis cells to be used for 

electroporation were prepared as previously described (Sambrook and Russell, 

2001).  Briefly, bacteria were grown overnight and seeded into 40 ml LB.  This 

was grown to an OD600 of 0.6 – 0.8 before cells were harvested by centrifugation 

(Beckman Avanti 30 Centrifuge CO650) at 5000 x g for 10 min at 4oC.  Cells 

were washed 3 times in 40, 20 then 5 ml of ice-cold 10 % (v/v) glycerol.  The 

cells were then re-suspended to a final volume of 60 µl with 10 % (v/v) glycerol.  

Aliquots were stored at -80oC in sterile 1.5 ml tubes (Eppendorf). 
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2.2.7.2 Electroporation 

 

DNA for electroporation was routinely dialysed against distilled water for 15 min 

using a 0.0025 µm nitrocellulose filter (Millipore, UK).  Approximately 5 µl of 

dialysed DNA was added to the 20 µl electro-competent cell aliquot, mixed and 

electroporated using a Gene Pulsar (BioRad, UK) set to 2.5 kV, 200 Ω, 25 µF.  

Electroporated cells were recovered in 1 ml LB for 1 h at the appropriate 

temperature prior to being plated on LB agar supplemented with appropriate 

antibiotics, and grown overnight at the appropriate temperature.  When 

appropriate, bioluminescent colonies (expressing the lux genes) were selected 

using a photomultiplier camera (Hamamatsu).  These colonies can be detected 

on the basis of light production which can be captured as an image and used to 

isolate the colony.   

 

2.2.7.3 Conjugation 

 

The vectors pDM4 and pKNG101 were introduced into Y. pseudotuberculosis 

strains from E. coli S-17 typically by mating 1: 3 (donor: recipient).  Cells were 

grown for no longer than 16 h prior to being gently washed and combined.  

Combined cell pellets were re-suspended in 5 µl LB and spotted onto LB agar and 

incubated at 30oC for 16 h.  The resulting colony was recovered from the plate, 

reconstituted in 1 ml LB and serially diluted 106 prior to being plated on LB agar 

plates with appropriate antibiotics.  When appropriate, colonies were selected on 

the basis of light production following screening using a photomultiplier camera 

(Hamamatsu). 
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2.2.8 Construction of the virF promoter fusion 

 

An 800 bp PCR product encoding the promoter region of virF (from position 

52567 to 53366 on the published IP32593 pYV sequence, accession number: 

NC_006153) was amplified using the primers pVirF-ApaI-F and pVirF-Not1-R 

(table 2.4).  This product was ligated into pGemT-easy (Promega).  The virF 

promoter was removed from pGemT-easy as an ApaI and NotI fragment, and 

cloned into similarly digested pBluescript KSII+ to yield pBlue-PvirF and clones 

with interrupted lacZ selected on blue/white plates.  Subsequently, the Lux 

biosynthetic operon (luxCDABE) was excised from pBlueLux (Atkinson et al., 2008) as 

a SacI fragment and cloned into similarly digested pBlue-PvirF to give pBlue-

PvirF::lux.  The PvirF::lux fusion was excised as an ApaI and SalI fragment, and 

the 8918 bp fragment was cloned into similarly digested pDM4, yielding pDM4-

PvirF::lux and transformed into E. coli S17-1 λ-pir, prior to conjugation with the 

appropriate Y. pseudotuberculosis strain. 

 

2.2.9 Mutagenesis of yscJ 

 

The yscJ gene was deleted in-frame and replaced by a tetracycline resistance 

cassette following a modified method of Derbise et al. (2003), which uses the 

λred recombinase encoded on the helper plasmid pAJD434 (Derbise et al., 

2003).  Primer pairs YscJaFor/YscJupR-Tet and YscJdownF-tet/YscJbRev were 

used to amplify the up- and down- stream regions of yscJ (positions 59172 to 

59743 and 60344 to 61135 on the published Y. pseudotuberculosis YPIII pYV 

virulence plasmid sequence).  YscJupR-Tet and YscJdownF-tet contained 21 bp 

or 22 bp of sequence homologous to a tetracycline cassette from pBlueTet 

(O'Neill et al., 2008), which was amplified as an 1191 bp fragment using primer 
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pair TetFor and TetRev.  The deleted yscJ fragment containing the tetracycline 

cassette was then amplified using primer pair YscJaFor and YscJbRev using the 3 

newly generated PCR products as a template in one PCR reaction.  The resulting 

2553 bp fragment was transferred, by electroporation, into YPIII strains carrying 

the helper plasmid pAJD434, encoding the λred recombinase, which recombines 

homologous DNA from the PCR product into the genome following induction on 

LB agar supplemented with arabinose (0.8 % final concentration).  The pAJD434 

plasmid was then cured from the newly mutagenised strains by growth at 37oC, 

and mutagenesis confirmed by PCR using the primer pair YscJaFor and YscJbRev 

to amplify a 2553 bp fragment in the mutants and a 1963 bp fragment in the 

wild-type.   

 

To complement ∆yscJ, an 842 bp product from Y. pseudotuberculosis (positions 

59686 to 60537 on the IP32953 pYV published sequence) was amplified using 

primers YscJF-XbaI and YscJR-SalI.  Following XbaI / SacI digestion, the 

fragment was cloned into similarly digested pBluescript KSII+ and removed as a 

KpnI / PstI fragment and sub-cloned into the low copy number vector pHG327 

(Stewart et al., 1986).   The resulting plasmid, pHGyscJ was transformed into 

the ∆ypsI ∆ytbI mutant. 

 

2.2.10 Transposon mutagenesis 

 

To generate transposon mutant libraries, electrocompetent ∆ypsI ∆ytbI mutant 

cells were transformed with the EZ-Tn5 transposome system (trimethoprim 

resistance, Epicentre).  This system is a complex formed between an EZ-Tn5™ 

Transposon and EZ-Tn5™ Transposase which can reliably generate a library of 

random gene knockouts.   The resulting cells were serially diluted 102, 103 and 

104 and plated onto LB agar supplemented with Tp. 
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To sequence across the region of the transposon insertion, chromosomal DNA 

from the appropriate mutant was extracted and digested with BamHI and ligated 

into similarly digested pBluescript KSII+ before being transformed into E. coli 

DH-5α by electroporation.    Cells were selected on LB agar supplemented with 

Tp and Amp.  The EZ-Tn5 transposon carries a single BamHI site; therefore 

positive colonies would carry a fragment containing the transposon and Y. 

pseudotuberculosis DNA to the first available downstream BamHI site.  BamHI 

restriction confirmed the insertion and size of the fragment, and sequencing 

using the primer RP-1 determined the location of the transposon insertion.  

 

2.2.11 Sequencing of DNA 

 

Sequencing was carried out at the DNA sequencing facility (Queen‟s Medical 

Centre, University of Nottingham).  Sequences were analysed using LaserGene 

DNA sequence analysis package (DNAstar Ltd).  Subsequent DNA analysis was 

performed using programs listed by Dr. Andrew Kropinski, Molecular & Cellular 

Biology, University of Guelph, Ontario, Canada (http://molbiol-tools.ca), and 

those available from the NCBI (http://www.ncbi.nlm.nih.gov/) or EBI 

(http://www.ebi.ac.uk/) website. 

 

 

 

  

http://molbiol-tools.ca/
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
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2.3 Extraction and Analysis of Proteins 

 

2.3.1 Preparation of supernatant proteins 

 

In order to examine proteins present in the supernatant, 10 ml of the 

appropriate bacterial cultures were grown for 16 h at the appropriate 

temperature, and cells pelleted by centrifugation at 4000 x g for 15 min at 4oC.  

The supernatant was recovered into a fresh tube and placed on ice and proteins 

were precipitated via the trichloroacetic acid (TCA) method (see below). 

 

2.3.2 Purification of flagella 

 

Flagella were purified from bacterial cells using the cannular method as 

previously described (Atkinson et al., 1999).  Briefly, bacterial cultures were 

grown overnight at 22oC, then seeded into 10 ml cultures at an OD600 of 0.001 

and grown for 24 h at 22oC until the cultures reached an OD600 of 2.2.  The 

bacterial cells were washed with fresh media and passed through cannular tubing 

20 times.  Cells and cell debris was removed by centrifugation, and the proteins 

present in the resulting filter sterilised supernatant was precipitated by the TCA 

method. 
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2.3.3 TCA precipitation 

 

The supernatant was recovered into a fresh tube and incubated on ice with TCA 

(10 % w/v final concentration) for 1 h and centrifuged at 10,000 x g for 30 min 

at 4oC.  Supernatant was removed and the protein pellet was re-suspended in 

500 µl 10 % SDS.  To this, 1 ml ice-cold acetone was added, mixed, and 

incubated on ice for 40 min.  Following centrifugation at 4oC at 13,000 x g for 30 

min, the supernatant was removed and the protein pellet was air dried to 

remove residual acetone and re-suspended in 60 µl PBS and stored at -20oC. 

 

2.3.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Polyacrylamide gel electrophoresis was carried out according to standard 

protocols (Sambrook and Russell, 2001) using 10 % (v/v) polyacrylamide gels.  

Where appropriate for the purposes of resolution, 4 – 12 % (1 mm) Bis-Tris pre-

cast gels (Invirogen) were used according to manufacturers‟ instructions.   Gels 

were stained with 0.25 % coomassie blue according to standard protocols. 

 

2.3.5 Protein profiling and sequencing 

 

Where stated, proteins present in SDS-gels were identified using either MALDI-

ToF or Q-ToF services at the University of Nottingham Sequencing Facility or the 

Proteins and Nucleic Acid Centre, Leicester (PNACL). 
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2.4 Phenotypic assays 

 

2.4.1 Liquid culture biofilm assays 

 

To investigate the ability for different Y. pseudotuberculosis strains to clump and 

form LCBs, clumping experiments were performed essentially as previously 

described (Atkinson et al., 1999).  Briefly, cultures were grown overnight at the 

specified temperature, and 1 ml culture transferred to a spectrophotometer 

cuvette, which was then statically incubated at room temperature for 20 min to 

allow LCB formation to occur.  Samples were examined by microscopy (see 

section 2.5). 

 

To determine the role of supernatant in the clumping phenotype, a modified 

clumping assay was performed.  Here, cells of the appropriate culture were 

pelleted by centrifugation at 5000 x g for 10 min, and washed in the same 

volume of fresh media.  Supernatant was filter sterilised, after which 1 ml of 

culture was pelleted and recombined with sterile supernatant, mixed and left to 

statically incubate at room temperature for 20 min to allow LCB formation to 

occur.  Where appropriate, to exclude macromolecules from the supernatant 

prior to the reconstitution of cell pellets, supernatants were centrifuged at 

10,000 x g for 40 min through concentration columns, which prevent the flow 

through of large molecular weight molecules, of the appropriate size.  The flow 

through was then used to re-suspend cell pellets which were then used in 

clumping assays.  The large molecular weight molecules were then recovered 

from the filters by adding 100 µl fresh media to the inverted column, incubating 

on ice for 30 min and centrifugation at 10,000 x g for 30 mins.  The resulting 

elutant was made up to a final volume of 1 ml by the addition of fresh media, 
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and this was then used in clumping assays.  To denature heat-labile molecules in 

the supernatant, filter sterilised supernatant was heated to 100oC in a boiling 

water bath for 30 min.  The supernatant was cooled to room temperature, and 

used in clumping assays.   

 

To investigate if proteins present on the cell surface were involved in the 

clumping phenotype, cell cultures were washed in PBS and incubated with 

proteinase K (20 µg/ml final concentration) at room temperature for 30 min.  

Cells were washed three times in PBS and then used in clumping assays. 

 

To determine if extracellular DNA was released by Y. pseudotuberculosis into the 

growth supernatant, cultures were grown and re-suspended in PBS and 

incubated for up to 16 h at the appropriate temperature with agitation at 200 

rpm.  Following this, cells were removed by centrifugation and the quantity of 

DNA in the supernatant measured using the PicoGreen system (Invitrogen) 

according to manufacturer‟s instructions. 

 

To determine if extracellular DNA played any role in the formation of LCBs, cell-

free supernatant for use in assays was pre-treated with DNase I (20 µg/ml final 

concentration).  Where appropriate, DNase I was also added directly to cultures 

used in clumping assays.  Extracellular DNA was labelled in LCBs by the use of 

the DNA specific label 4',6-diamidino-2-phenylindol (DAPI 0.5 – 1 µg/ml final 

concentration) (Böckelmann et al., 2002).  Low concentrations of DAPI label the 

ECM biofilm matrix without penetrating the bacterial cell and staining the 

intracellular DNA [72].  To determine if exopolysaccharides were present in liquid 

culture biofilms, cultures for use in clumping assays were stained with 

Rhodamine-WGA (20 µg/ml final concentration), a lectin which is commonly used 

to label polysaccharides in bacterial biofilms [12].  
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2.4.2 Congo red binding in liquid culture 

 

To investigate the binding of Congo red in liquid culture, a modified method of a 

(reverse) haemolysis experiment was used.  Here, Bacteria were cultured 

overnight and inoculated into LBCR at an OD600 of 0.01, and incubated at the 

appropriate temperature for 16 h with agitation at 200 rpm.  Following this, 

bacterial cells were removed by centrifugation and the optical density (495 nm) 

of filter sterilised supernatant was measured using a spectrophotometer.  The 

OD494 of sterile LBCR (low control) and LB (high control) was also measured, and 

the amount of Congo red bound by the bacterial cells was calculated using the 

formula: 

 

                          
 
                 

               

 
            

           
  

       

 

2.4.3 Measuring biofilms on the surface of C. elegans 

 

2.4.3.1 Biofilms grown in the agar method 

 

The C. elegans wild-type (N2 Bristol) strain was obtained from the 

Caenorhabditis Genetics Centre (University of Minnesota, St. Paul, MN) and 

maintained on worm-NGM plates (Epstein and Shakes, 1995) lacking MgCl2, 

seeded with E. coli OP50.  For biofilm experiments, 1 ml Y. pseudotuberculosis 

overnight culture was spread onto worm-NGM agar plates and air-dried for 1 h.  

A minimum of 20 C. elegans worms were transferred to the Y. 

pseudotuberculosis seeded plates and incubated at 22oC for 16 h.  The resulting 

biofilms which developed on the C. elegans surface were examined using a Nikon 
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SMZ1000 microscope under medium magnification and scored for biofilm 

severity on a scale of 0 to 3, where 0 represents the absence of biofilm; 1 

represents a small biofilm which primarily manifests around the buccal cavity; 2 

represents a large, mono-focal biofilm while 3 represent a very large multi-focal 

biofilm (Atkinson et al., 2011).  These data were then used to calculate a biofilm 

severity index (Tarr, 1972) as: 

 

                               
                                       

                                         
         

 

All biofilm experiments were performed „double-blind‟. 

For some experiments the presence of EPS and eDNA in biofilms was 

investigated as described in section 2.4.1.  Worms were mounted on concave 

microscope slides in 30 mM NaNO3 for use in microscopy (see section 2.5).   

 

Where appropriate, to degrade eDNA, DNase I (20 µg/ml) was added to Y. 

pseudotuberculosis cultures prior to spreading onto the NGM plate to be used in 

biofilm assays. 

 

2.4.3.2 Biofilms grown in the compost method 

 

To simulate Y. pseudotuberculosis contamination in the natural environment, 

approximately 10 g of dried, autoclaved commercial compost (Wilkinson UK, low 

peat compost) was added to 50 ml falcon tubes, which roughly consumes 5 ml 

volume space.  To this, 3 ml H2O and 2 ml of Y. pseudotuberculosis culture was 

added, and at least 60 worms transferred into the tubes.  This was incubated 

statically at 22oC for 24 and 48 h.  Worms were recovered by gently mixing the 

soil with 15 ml PBS, the solution was then dispensed into a Petri dish and 

examined under low magnification using a Nikon SMZ1000 microscope.  Worms 
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can be seen by their swimming motion and were recovered into a fresh Petri dish 

filled with 20 ml PBS, where they could be separated from the soil detritus.  For 

some experiments EPS and eDNA was labelled as described in section 2.4.1.  

Worms were mounted on concave microscope slides in 30 mM NaNO3 for 

microscopy (see section 2.5). 

 

2.4.4 Determination of bioluminescence and optical density 

 

Bioluminescence and optical density were measured simultaneously in a 96-well 

microtitre plate using a combined spectrophotometer / luminometer (Anthos 

Lucy I), controlled by the Stingray 2 software package (Dazdaq) as previously 

described (Atkinson et al., 2008). Briefly, bacteria which had been grown 

overnight at 30oC were used to seed fresh LB with appropriate antibiotics to an 

OD600 of 0.001.  Approximately 200 µl was added to wells of a 96-well microtitre 

plate, and the plate was incubated in Anthos Lucy I at the appropriate 

temperature for at least 20 h.  Luminescence and OD405 of the culture was 

automatically measured every 30 min, and presented as relative light unit per 

unit of OD405 (luminescence / OD405).  For each experiment, the bacteria were 

incoluated into at least 5 wells each, and at least 3 independent experiments 

carried out. 

 

Where appropriate, the determination of AI-2 present in culture supernatants 

followed the previously described method (Bassler et al., 1994).  

 

  



 
77 

 

2.5 Microscopy 

 

Where appropriate, samples were taken at different time courses over the 

incubation time and visualised by microscopy using either a Nikkon inverted 

fluorescence microscope or a Zeiss LSM700 inverted confocal microscope. The 

respective proprietary software packages (Nikkon picture acquisition tool and 

Zen Light Edition 2009 [Zeiss]) were used for image analysis.  For fluorescent 

detection of on the Zeiss LSM700, laser wavelengths and powers were typically 

set as 405 nm at 4 % (DAPI), 488 nm at 15 % (GFP) and 561 nm at 15 % (R-

WGA).  Master gain applied to all channels was approximately 800, and the 

digital offset approximately 130.  
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Chapter 3| 

 

Quorum Sensing and the 

motility regulon co-regulate the 

Yop-Ysc Type 3 Secretion 

System, which contributes to the 

formation of liquid culture 

biofilms 
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3.1 Introduction 

 

A number of bacterial species form clusters of clumps of attached cells during 

liquid culture (Arnold and Shimkets, 1988, Zhou et al., 2001, Singh and Vincent, 

1987, Godon et al., 1994, Bi et al., 2007, Uzureau et al., 2007, Hussain et al., 

2008, Seki, 1971, Albert et al., 1993, Römling and Rohde, 1999, El Tahir and 

Skurnik, 2001, Dunny et al., 1978, Handley et al., 1984, Tomasz and Zanati, 

1971) which are often recognised as a type of liquid culture biofilm (LCB), since 

the cells may be surrounded by a complex extracellular matrix (ECM) composed 

of exopolysaccharides and DNA, similar to surface attached biofilms (Flemming 

et al., 2007, Sutherland, 2001, Kim et al., 1999, Allesen-Holm et al., 2006, 

Godefroid et al., 2010, Seidl et al., 2008, Håvarstein et al., 2006, Kreth et al., 

2009).  This ECM probably provides the encased cells with the benefits of a 

surface-attached biofilm in resisting antibiotics, and can act as a counter-

predation mechanism (Matz and Jürgens, 2003, Matz and Kjelleberg, 2005), 

while the close proximity of the cells can facilitate genetic exchange (Dunny et 

al., 1978).  Interestingly, LCBs can also assemble quickly, for example some 

bacteria will form LCB-like biofilms spontaneously in response to antibiotics 

(Lorian et al., 1978), while the aquatic bacterium Sphingobium sp will form LCBs  

upon detection of secreted molecules from the bacteriovorous flagellate 

Poterioochromonas (Blom et al., 2010).  
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Figure 3.1| A representation of liquid culture biofilms.  Here, an aggregate 

of bacterial cells suspended in liquid media is surrounded by an extracellular 

matrix (ECM) ECM is typically composed of exopolysaccharides, extracellular 

DNA and other polymers. 

 

3.1.1 Cellular physiology and genetics of LCBs 

 

LCBs involve a plethora of cellular processes and cell surface properties (Figure 

3.2).  Early on, it was shown that variation in lipopolysaccharide (LPS) in the 

outer membrane of E. coli and Salmonella typhimurium from a full length, 

„smooth‟ form, to a shortened O-chain „rough‟ form induced LCB-like aggregates 

in liquid culture (Diderichsen, 1980).  Similarly, „deep-rough‟ or O-antigen 

mutants in E. coli, with truncated LPS, also display substantial clumping (Moller 

et al., 2003, Sheng et al., 2008). Since then, various groups of cell surface 

proteins have been identified which play a critical role in the formation of cell 

aggregates.  In E. coli, the flu gene, encoding the Antigen 43 auto-transporter 

protein, influences fluffing, or the formation of LCBs, (Diderichsen, 1980, 

Henderson and Owen, 1999). In E. coli, flu is regulated reciprocally by the 

methylase Dam and the redox sensor OxyR, which results in Flu+ (LCB forming) 
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and Flu- (non-forming) cells that are rapidly inter-convertible (Henderson and 

Owen, 1999, Schembri et al., 2003).   

 

Many other auto-transporters affect LCB formation, including Hap in 

Haemophilus influenzae (Hendrixson and St. Geme, 1998), Cah in 

enterohaemorrhagic E. coli (Torres et al., 2002), YadA and YapC in Y. 

pseudotuberculosis and Y. pestis respectively (Bliska et al., 1993, Felek et al., 

2008).  In most cases, aggregation is thought to be caused by protein-protein 

interactions between the auto-transporters present on neighbouring cells.  

Interestingly some auto-transporters have been shown to affect LCB formation 

beyond protein auto-aggregation, such as in Azorhizobium caulinodans, where 

the auto-transporter AoaA positively influences the secretion of biofilm matrix 

components (Suzuki et al., 2008).  Other families of cell-surface proteins and 

lipoproteins, are also involved in cell aggregation (Jung et al., 1990).  An 

important group of protein structures are cell surface fimbriae, and in many 

bacteria including E. coli K-12, Salmonella enteriditis, Citrobacter spp. and 

Enterobacter sakazakii, thin aggregative fimbriae are involved in cell clumping 

(Vidal et al., 1998, Collinson et al., 1991, Zogaj et al., 2003).  However it should 

be noted that the aggregative effect of fimbriae may depend on other genetic 

factors, since in some strains of E. coli, fimbriae have been shown to block Flu-

mediated aggregation, and the ability for Flu+ E. coli cells to form LCBs 

correlates with the absence of fimbrial structures on the cell surface (Hasman et 

al., 1999, Sherlock et al., 2005).  Together, this suggests that the LCB 

phenotype results from interplay between a number of cell surface attributes 

that may often be mutually exclusive.   

 

Stress responses, usually controlled by two-component systems, play a large 

role in regulating the formation of LCBs.  In Streptococcus mutans, the CovR/S 

two-component system regulates the expression of a fructosyltransferse (FTF) 
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and the production of uronic and glucuronic acids important for the biofilm 

matrix so that under stressful conditions CovS inactivates the repressor CovR 

and permits the formation of LCBs (Lee et al., 2004, Dalton and Scott, 2004).  

Mutants in covR, in contrast to wild-type, have an abundance of FTF on the cell 

surface, generate excess glucose and also exhibit substantial auto-aggregation 

(Lee et al., 2004).  This genetic relationship between stress responses and 

matrix production / multi-cellular aggregation is mirrored in E. coli K12, where 

the enzyme responsible for the production of colonic acid, WcaB is part of the 

two-component OmpR / EnvZ regulon (Chirwa and Herrington, 2003).  Stress 

also affects the cellular concentration of the second messenger cyclic-di-GMP, 

which regulates aggregation in a variety of species.  In P. aeruginosa cyclic-di-

GMP is known to affect clumping (D'Argenio et al., 2002), while in E. coli AdrA, a 

diguanylate cyclase which produces cyclic-di-GMP, enhances clumping while 

YhjH, a phosphodiesterase which degrades cyclic-di-GMP, suppresses this 

multicellular behaviour (Simm et al., 2005).  Together, this indicates that several 

stress-response systems converge on the regulation of multiple proteins which 

are involved in the formation of LCBs. 
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Figure 3.2| Methods for cellular aggregation in bacteria.  Bacteria employ 

several methods to form aggregates and liquid culture biofilms, including cell 

surface structures such as thin aggregative fimbriae, protein-protein 

interactions, particularly those involving autotransporters such as YadA.  The 

export of biofilm matrix components and ‘rough’ LPS with truncated O-

chains also enhances the formation of LCBs.  LCBs can be regulated by stress 

responses and two-component regulators, and high cellular cyclic-di-GMP 

concentrations resulting from the activity of diguanylate cyclases increases 

cellular aggregation.    

 

3.1.2 LCBs in the yersiniae 

 

Y. pseudotuberculosis and Y. enterocolitica have long been known to undergo 

spontaneous agglutination during static culture in tissue culture medium (Laird 

and Cavanaugh, 1980), which is thought to involve the Yersinia adhesin, YadA.  

YadA is encoded on pYV, and is a critical virulence factor for Y. 

pseudotuberculosis and Y. enterocolitica, with roles in binding to a variety of cell 

types (El Tahir and Skurnik, 2001). The composition of the growth medium 

influences the production of YadA, with marked suppression in rich media such 

as BHI and LB compared with minimal media (Kapperud et al., 1985, Bolin et al., 
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1982, Eitel and Dersch, 2002).  Low calcium or high magnesium concentrations 

may allow maximal production of YadA (Bolin et al., 1982, Eitel and Dersch, 

2002) and this behaviour only occurs following growth at 37oC and not when 

cells are grown below 30oC (Laird and Cavanaugh, 1980, Perry and Brubaker, 

1983, Kapperud et al., 1985), indicating a multi-component regulatory circuit 

underpinning YadA expression.   

 

Early experiments hinted at a role for QS in repressing YadA-mediated auto-

agglutination, since exponential phase cultures express yadA much more than do 

stationary phase cells (Eitel and Dersch, 2002).  However it is not known 

whether the LCB phenotype observed by Atkinson et al. (1999) in response to 

mutation of ypsR (Atkinson et al., 1999) and YadA-mediated auto-agglutination 

are the same phenotype.  In the absence of YadA (El Tahir and Skurnik, 2001), 

early tests failed to detect auto-agglutination in Y. pestis (Perry and Brubaker, 

1983).  However later auto-agglutination was shown in Y. pestis, though this is 

not dependent on the pYV plasmid, but requires a chromosomal locus identified 

as YapC  (Felek et al., 2008).  YapC and YadA share several functional 

characteristics; both are members of the auto-transporter family of proteins and 

are involved in adherence to host cells and in biofilm formation (Felek et al., 

2008, El Tahir and Skurnik, 2001). 

 

In addition to YadA and YapC, other Yersinia cell surface proteins have been 

shown to affect clumping, including OmpX in Y. pestis, a member of the Ail/Lom 

family of proteins similar to the Y. pseudotuberculosis Attachment and Invasion 

Locus (Ail) protein (Kolodziejek et al., 2007).  In other species, fimbrial 

structures are also associated with clumping; the Yersinia Psa is a cell surface 

fimbriae heavily expressed during infection of macrophages (Lindler and Tall, 

1993), and while the Psa has not been previously shown to affect multicellularity 

in vitro, a characteristic of Yersinia spp. growing inside macrophages is the 
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formation of tight cell aggregates (Pujol and Bliska, 2003), suggesting that the 

Psa could be involved. 

 

Biofilm matrix components are also implicated in aggregation in Yersinia, where 

the hms locus of Y. pestis causes bacterial aggregation within the blood-meal of 

the flea vector (Hinnebusch et al., 1996).  The hms locus drives the production 

of the biofilm matrix exopolysaccharide β-1,6-N-acetyl-D-glucosamine (Bobrov et 

al., 2008), and is crucial for biofilm formation in both Y. pestis and Y. 

pseudotuberculosis (Hinnebusch et al., 1996, Darby et al., 2002).  The hms 

locus is also involved in the binding of haem or the haem analogue Congo red, 

which gives rise to the pigmented (Pgm+) phenotype (Pendrak and Perry, 1993, 

Buchrieser et al., 1998).  In Y. pestis Pgm+ cells only develop when the bacteria 

are grown below 28oC (Brubaker, 1991), and it has long been known that Pgm+ 

Y. pestis forms clumps in a variety of liquid media at this temperature (Perry et 

al., 1990).  In contrast, Y. pseudotuberculosis does not generally bind Congo red 

or form clumps at 28oC, with only one strain, IP32790, known to give a 

pigmented phenotype (Buchrieser et al., 1998).  In contrast, Y. 

pseudotuberculosis and Y. enterocolitica take up Congo red following growth in 

calcium depleted conditions at 37oC in media containing the stain- and this 

phenotype is dependent on cells harbouring the pYV plasmid (Prpic et al., 1983, 

Thoerner et al., 2003).   
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3.1.3 Chapter 3 aims 

 

The clumping of bacteria and the formation of floc-type biofilms has been widely 

reported, and several species, including Y. pseudotuberculosis, regulate this 

behaviour using QS (Puskas et al., 1997, Godefroid et al., 2010, Uzureau et al., 

2007, Atkinson et al., 1999).  However, the nature of these aggregates in Y. 

pseudotuberculosis has not been fully investigated- while it is known that a Y. 

pseudotuberculosis ∆ypsR mutant forms dense bacterial aggregates that are not 

observed in the ∆ypsI mutant or the parent control (Atkinson et al., 1999), it is 

not known if the YtbR / I QS system also regulates clumping, nor is it known 

what cellular processes underlie this phenotype.  This chapter presents data to 

suggest that, in addition to the ∆ypsR mutant but unlike the ∆ypsI mutant, 

clumping also occurs following mutation of ytbR or ytbI, or when both AHL 

synthase or receptor genes are deleted.  These clumps associate together to 

form large aggregates, which label abundantly for eDNA and EPS- biofilm matrix 

components more often associated with surface-attached biofilms, which 

suggests that these aggregates represent a form of LCB.  LCB formation requires 

a pYV-encoded secreted factor that probably interacts with a chromosomally 

encoded cell surface factor to induce the formation of LCBs.  This secreted factor 

is dependent on the Ysc injectisome, since its production into the supernatant is 

abolished following subsequent mutation of yscJ, a key structural component of 

the injectisome.   

 

To investigate the role of other systems that influence LCB formation, and since 

the flagella regulon in Y. pseudotuberculosis is also regulated by QS (Atkinson et 

al., 1999, Atkinson et al., 2008) and has previously been shown to regulate T3S 

and cell-aggregation in Y. enterocolitica (Bleves et al., 2002),  the involvement 

of the flagella regulators FlhDC and FliA in the LCB phenotype was investigated.  
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The data show that mutation of flhDC or fliA results in the formation of LCBs, 

which is correlated with a similar profile of Yop-related proteins secreted into the 

culture supernatant.  Interestingly, a mutant in flhA, encoding a component of 

the flagella secretion system, also over-produces Yop proteins and forms LCBs, 

suggesting that elements of the structure of the flagella may play a role as 

checkpoints in the regulation of LCB formation and Yop production.  To begin to 

investigate the genetic basis of LCB formation, a transposon mutagenesis 

approach has been used to identify loci which, when mutated by insertion of the 

transposon, are able to revert a LCB forming strain of Y. pseudotuberculosis 

(such as the ∆ypsI ∆ytbI mutant) to the non-LCB forming phenotype reminiscent 

of the wild-type.  This screen identified nine loci which are necessary for the 

∆ypsI ∆ytbI mutant to form LCBs.       
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3.2 Results 

 

3.2.1 Quorum sensing and LCBs  

 

3.2.1.1 QS controls LCB formation 

 

Previously, LCBs have been shown to be formed during culture of a Y. 

pseudotuberculosis ∆ypsR mutant, maximally following growth at 37oC, but also 

observed following growth at 30oC.  These LCBs are not observed in the wild-

type at these temperatures, nor in a ∆ypsI mutant, or when any of the strains 

are grown at 22oC (Atkinson et al., 1999).  Since this work by Atkinson et al. 

(1999), several other QS mutants have been constructed, and now include 

mutants in the ytbI / R system, and double AHL synthase (ypsI / ytbI) and 

receptor (ypsR / ytbR) mutants (Atkinson et al., 2008).  To investigate whether 

the strains ΔytbI, ΔytbR, ΔypsI ΔytbI, and ΔypsR ΔytbR clumped and formed 

LCBs, overnight cultures were grown at 37oC alongside the ΔypsI and ΔypsR 

mutants and the wild-type, and left statically at room temperature for 20 min 

prior to being inspected visually (Figure 3.1 a) and by microscopy (Figure 3.1 b) 

for LCB formation.  

 

Figure 3.3 shows visual inspection of cultures in spectrophotometer cuvettes (a) 

and phase contrast microscope images of the cultures (b), and demonstrates 

that, like ΔypsR (ii), the strains ΔytbR (iv), ΔytbI (v), ΔypsR ΔytbR (vi) and 

ΔypsI ΔytbI (vii) all develop into dense bacterial aggregates which rapidly 

associate together under static conditions.  Conversely, cultures of the wild-type 

(i) and ∆ypsI mutant (iii) do not show this phenotype.  The formation of clumps 

and sediment is a rapid process- initially, ΔypsR, ΔytbR, ΔytbI, ΔypsR ΔytbR and 

ΔypsI ΔytbI mutant cultures appear homogenous, however within 5 to 10 min 
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the bacteria can be visually observed to aggregate into macroscopic clumps. 

Within 20 min, these clumps begin to sediment at the bottom of the culture 

vessel, forming a dense layer of bacterial cells which appear to be encased in an 

iridescent material.  However, neither the cells nor the iridescent material is 

present in a confluent layer, with areas of low material density, which creates a 

patch-work 3-dimensional structure reminiscent of biofilm architecture (Figure 

3.3 b ii, iv, v, vi & vii).   

 

 

Figure 3.3| Cell clumping, sedimentation and liquid culture biofilm formation 

are regulated by QS.  When wild-type Y. pseudotuberculosis (i) and isogenic QS 

mutants ΔypsR (ii), ΔypsI (iii), ΔytbR (iv), ΔytbI (v), the double mutants ΔypsR 

ΔytbR (vi) and ΔypsI ΔytbI (vii) are grown overnight at 37
o
C, and statically 

incubated in spectrophotometer cuvettes (a), it can be seen that, in contrast to 

the wild-type and ΔypsI, all other QS mutants clump and form sediment.  LCBs 

form as the cells can be observed to visually aggregate into macroscopic clumps, 

prior to sedimentation to the bottom of the culture vessel.  Phase contrast 

microscope images of the cultures (b) show a dense network of cells surrounded 

by an iridescent material.  Large areas seem to contain less cells and less 

material, suggestive of 3-dimenstional biofilm architecture. 

 

These results show that LCBs are not restricted to the ΔypsR mutant, but 

develop in the ΔytbR, ΔytbI, ΔypsR ΔytbR and ΔypsI ΔytbI mutants, and 

ΔypsR ΔypsI ΔytbIΔytbR

ΔypsI

ΔytbI

ΔypsR

ΔytbR

i ii iii viv viivi

a

b

Wild-
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suggests that QS is important for repressing the formation of LCBs in Y. 

pseudotuberculosis.  These strains also form LCBs at 30oC, albeit more slowly, as 

shown for the ∆ypsR mutant (Atkinson et al., 1999) (data not shown). 

 

3.2.1.2 YpsI and YtbI are necessary for LCBs 

 

Despite the fact that the single ΔypsI mutant does not form liquid culture 

biofilms, most QS genes clearly play a role in repressing the formation of LCBs.  

In light of this, the double synthase mutant strain ΔypsI ΔytbI was selected for 

further investigation, since this strain is unable to synthesise AHLs and thus 

represents a fully AHL-negative strain (Ortori et al., 2007).  In many species 

such as P. aeruginosa, E. carotovora and V. fischeri, QS-associated phenotypes, 

discovered through mutagenesis of the relevant AHL-synthase gene can be 

readily complemented by supplementing the culture with the relevant AHL-signal 

molecule (Swift et al., 1996, Winzer et al., 2000). However, in Y. 

pseudotuberculosis and Y. enterocolitica, the exogenous addition of AHLs does 

not rescue the known phenotypes associated with QS mutation (Atkinson et al., 

2008).  To confirm that AHLs are involved in LCB formation, ΔypsI ΔytbI 

(expressing gfp3 from pSB2020) was transformed with pSA291, a plasmid 

harbouring functional copies of ypsI and ytbI under the control of their native 

promoters, which restores AHL production and other QS regulated processes in 

the ΔypsI ΔytbI background  (Atkinson et al., 2008).  Figure 3.4 shows wild-type 

(i), ΔypsI ΔytbI, (ii) and ΔypsI ΔytbI pSA291 (iii) expressing gfp3, used in LCB 

assays and shown in spectrophotometer cuvettes (a).  To investigate the mass 

of cells that are formed during growth, cultures were also subjected to CLSM (b).     

 

Both microscopic and macroscopic tests demonstrated that formation of LCBs by 

ΔypsI ΔytbI could be prevented by supplementing functional copies of ypsI and 

ytbI on pSA291 (Figure 3.4, compare ii and iii).  Within 5 min ΔypsI ΔytbI 
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developed into very large cell aggregates (Figure 3.4 b ii), whereas ΔypsI ΔytbI 

pSA291 is much more similar to the wild-type (Figure 3.4 b, compare iii and i).   

 

 

Figure 3.4| The ∆ypsI ∆ytbI mutant reverts to a non-clumping phenotype 

following restoration of ypsI and ytbI on pSA291.  The ∆ypsI ∆ytbI mutant 

shows LCBs at following growth at 37
o
C (ii), while this is not observed in 

wild-type (i), and LCBs are substantially reduced in the ∆ypsI ∆ytbI pSA291 

strain, where functional yspI and ytbI are provided to the ∆ypsI ∆ytbI mutant 

in trans on pSA291 (iii).  Panels show spectrophotometer cuvettes containing 

cultures which have been statically incubated for 20 min (a), and microscope 

images showing LCB formation at the cell level.  Bacteria are expressing gfp3 

from pSB2020 and appear green (b).   

 

  

i
Wild-type

ii
ΔypsI ΔytbI

ii
ΔypsI ΔytbI 

pSA291

a

b

c

d

iii
ΔypsI ΔytbI 

pSA291



 
92 

 

3.2.2 Biofilm matrix components in LCBs 

 

3.2.2.1 Extracellular DNA and polysaccharides are present in LCBs 

 

Extracellular DNA (eDNA) is an ECM component that provides structural support 

for liquid culture biofilms and sessile biofilms alike (Whitchurch et al., 2002, 

Vilain et al., 2009, Allesen-Holm et al., 2006, Godefroid et al., 2010, Seidl et al., 

2008, Håvarstein et al., 2006, Kreth et al., 2009).  Extracellular DNA may be 

particularly important in LCBs, since it is present in the aggregates of several 

bacteria including P. aeruginosa, B. melitensis, S. aureus and Streptococcus 

spp., and these aggregates can be disrupted by the addition of DNase (Allesen-

Holm et al., 2006, Godefroid et al., 2010, Seidl et al., 2008, Håvarstein et al., 

2006, Kreth et al., 2009).  To investigate whether eDNA was present in the cell 

aggregates formed by the ∆ypsI ∆ytbI mutant, the DNA probe DAPI was added 

to cultures immediately after removal from overnight growth at 37oC, and 

incubated for 5 min prior to examination by CLSM.  Figure 3.5 shows DAPI 

labelling is much more prominent in cultures of the ∆ypsI ∆ytbI mutant than the 

wild type, suggesting that extracellular DNA (eDNA) is present in the matrix of 

LCBs.  In addition, DAPI labelling is also reduced in the ΔypsI ΔytbI pSA291 

strain when compared with the ∆ypsI ∆ytbI mutant (compare Figure 3.5, c ii 

with c i & c iii).    
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Figure 3.5| Extracellular DNA is enriched around cells of clumping mutants.  

CLSM reveals that cells of the ∆ypsI ∆ytbI mutant label heavily for the DNA 

specific stain DAPI (ii), whereas such heavy labelling is not observed in the 

wild-type (i), and is reduced when ypsI and ytbI are provided to the ∆ypsI 

∆ytbI mutant on pSA291 (iii).  Panels show DAPI fluorescence (a) and a 

composite image showing bacteria expressing gfp3 overlaid with the DAPI 

fluorescence image (b).  This data shows the fluorescence from DAPI in ∆ypsI 

∆ytbI mutant cultures effectively masks the GFP signal (compare ii a and ii b), 

suggesting an abundance of eDNA surrounds the cells.  In contrast, GFP 

fluorescence from wild-type cells is clear (i b), with very little DAPI labelling (i 

a), suggesting that the DAPI labelling in the ∆ypsI ∆ytbI mutant is not due to 

DAPI entering the cell and staining chromosomal DNA.   

 

As previously stated, Y. pseudotuberculosis QS mutant LCBs develop from 

bacterial aggregates that coalesce and sediment.  In order to follow this 

development by microscopy, and to observe the presence of eDNA, ΔypsI ΔytbI 

cells were grown at 37oC for 18 h, labelled with DAPI and then moved to static 

incubation at room temperature.  At several time points (5, 10, 15 and 20 min), 

the culture was viewed by fluorescence microscopy.   

 

Figure 3.6 shows the process of cellular clumping, clump coalescing and LCB 

formation that occurs in ΔypsI ΔytbI.  Cells clump after 5 min; the clumps then 
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associate into loosely packed aggregates after 10 min and become very dense 

after 15 min, and finally settle to the bottom of the culture vessel after 20 min.  

Interestingly, dense areas of DAPI labelling at 20 min coincides with the 

iridescent material observed under phase microscopy, suggesting that this 

material is eDNA. 

 

 

Figure 3.6| The ∆ypsI ∆ytbI mutant clumps and associate into LCBs.  Phase 

contrast images and DAPI labelling of eDNA over several time points 

showing the process of liquid culture biofilm formation.  After 5 min, small 

clusters of cells have associated together, forming bigger clusters after 10 

min.  By 15 min, these clusters have packed into ‘grains’ which can be 

observed macroscopically to begin settling to the bottom of the culture 

vessel.  After 20 min, thick sediment has developed, with cells tightly 

associated into a 3-dimensional structure.  DAPI labelling shows these cells 

to be covered in extracellular DNA.  Interestingly, an iridescent material 

observable by phase microscopy co-localises with intense DAPI labelling, 

suggesting this material to be eDNA.  Wild-type cells label much less strongly 

with DAPI, suggesting that eDNA release is involved in the LCB phenotype 

(not shown). 

 

Extracellular polysaccharides (EPS) are also important components of the biofilm 

matrix (Sutherland, 2001).  An important EPS for several bacteria including Y. 

pseudotuberculosis is β-1,6-N-acetyl-D-glucosamine, which is produced by the 

hms locus (Bobrov et al., 2008, Itoh et al., 2005), and can be labelled by Wheat 



 
95 

 

Germ Agglutinin coupled to a fluorophore such as rhodamine (R-WGA) (Tan and 

Darby, 2004).  R-WGA therefore represents a fluorescent marker suitable for the 

detection of β-1,6-N-acetyl-D-glucosamine, although WGA can sometimes also 

bind to other polysaccharides, glycoproteins and glycolipids (Molin et al., 1986).  

To investigate whether such polysaccharides were present in the LCBs formed by 

ΔypsI ΔytbI, overnight cultures of wild-type and ΔypsI ΔytbI grown at 37oC were 

labelled with R-WGA, and incubated statically for 20 min before examination by 

fluorescence microscopy.  DAPI was also used to label eDNA in order to further 

examine the qualitative difference in DAPI labelling between ΔypsI ΔytbI and 

wild-type. 

 

Figure 3.7 shows that both DAPI and R-WGA label the LCBs formed by ΔypsI 

ΔytbI, however very little labelling is observed in wild-type (compare Figure 3.7 i 

with ii).  For both DAPI and R-WGA, the labels are not dispersed evenly through 

the ΔypsI ΔytbI biofilm.  For eDNA, DAPI labels what appears like a network of 

biofilm material, with large gaps devoid of cells (Figure 3.7 a ii), while for R-

WGA, labelling is pronounced in punctuated spots throughout the biofilm (Figure 

3.7 b ii).  The eDNA in the LCBs formed by the ∆ypsI ∆ytbI mutant can also be 

labelled with ethidium bromide (data not shown). 
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Figure 3.7| Biofilm matrix components are abundant in LCBS.  The LCBs 

formed by the ∆ypsI ∆ytbI mutant stains abundantly for extracellular matrix 

components eDNA (labelled with DAPI, ii a) and β-1,6-N-acetyl-D-

glucosamine (labelled with R-WGA, ii b).  LCBs are absent in wild-type and 

labelling by DAPI or R-WGA is substantially reduced (i a & i b).  

 

Together these results show that following growth at 37oC, ΔypsI ΔytbI cells 

coalesce into progressively larger clumps- possibly their density causes them to 

settle and sediment into LCBs.  The ΔypsI ΔytbI cells appear incredibly sticky, 

whereby, under the microscope, clumps passing by one another will readily 

associate together.  These LCBs label heavily for the biofilm matrix components 

eDNA and EPS, and possess a three-dimensional architecture which is not 

observed in the wild-type.   

 

  

i Wild-type   ii       ΔypsI ΔytbI

a

b

i
Wild-type

ii
ΔypsI ΔytbI

a

b



 
97 

 

3.2.2.2     Extracellular DNA is an important structural component of LCBs 

 

The addition of DNase to liquid cultures of several species of bacteria prevents 

the formation biofilms similar to the LCBs observed in this study (Allesen-Holm 

et al., 2006, Godefroid et al., 2010, Seidl et al., 2008, Håvarstein et al., 2006, 

Kreth et al., 2009).  To investigate whether extracellular DNA played a role in 

maintaining the structure of Y. pseudotuberculosis LCBs, ΔypsI ΔytbI LCBs were 

treated with DNase I, an enzyme which can cleave both double stranded and 

single stranded DNA, labelled with DAPI and observed by CLSM.  The treated and 

untreated cultures were also left statically for 20 min in spectrophotometer 

cuvettes to visually assess the formation of LCBs.  Figure 3.8 shows that the 

addition of DNase I prevents the formation of LCBs by ΔypsI ΔytbI (compare 

Figure 3.8 i and ii).  Furthermore DAPI staining demonstrates that most of the 

DNA observed on ΔypsI ΔytbI is extracellular, since very little DAPI labelling can 

be observed in the sample treated with DNase I compared with untreated 

(compare Figure 3.8 c i and c ii).   
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Figure 3.8| LCB formation in ΔypsI ΔytbI is prevented by the addition of 

DNAse I.  When ∆ypsI ∆ytbI mutant cultures are grown at 37
o
C overnight, 

the cells can be observed by CLSM to associate into large clumps (i b-d).  

These clumps are not observed if DNase I is added to the cultures prior to 

examination by microscopy (ii b-d).  When these cultures are incubated 

statically at room temperature in spectrophotometer cuvettes, the ∆ypsI 

∆ytbI mutant culture sediments (i a), which is not observed when the culture 

is treated with DNase I (ii a).  CLSM reveals large cell aggregates of bacteria 

expressing gfp3 in the DNase I untreated control (i b), which are not present 

when cells are treated with DNase I (ii b).  DAPI labelling is also reduced 

following DNase I treatment (compare ii c & i c), confirming that the DNA is 

present outside of the cells.  A composite image of DAPI and GFP shows the 

co-localisation of DNA and cells (i & ii d).    
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3.2.3 Supernatant factors influence LCB formation 

 

3.2.3.1 Secretion is involved in LCB formation 

 

Biofilms usually involve the synthesis of extracellular matrix components, such 

as EPS, eDNA and proteins, which are secreted into the extracellular 

environment.  To examine in more detail the contribution of secreted factors to 

the LCB phenotype, a series of experiments were carried out whereby washed 

cell pellets of the non-LCB forming wild-type were mixed with sterile-filtered 

supernatant taken from wild-type or the ΔypsI ΔytbI mutant grown overnight at 

37oC or 30oC.  In this way, if the propensity for the ∆ypsI ∆ytbI mutant to form 

LCBs was carried in the supernatant, it should be possible to induce LCB 

formation in the wild-type by supplying the cells with culture supernatant from 

the ∆ypsI ∆ytbI mutant. 

 

Figure 3.9 shows the LCBs formed by the ΔypsI ΔytbI mutant can be induced in 

the wild-type by re-suspension in ΔypsI ΔytbI supernatant from growth at either 

37oC or 30oC, indicating that factors present in the spent growth medium are 

important for LCB formation (Figure 3.9, c & d). Interestingly, only wild-type 

cells grown at 37oC were sensitive to LCB induction by ΔypsI ΔytbI supernatant, 

whereas wild-type cells grown at 30oC do not show this phenotype when 

exposed to ΔypsI ΔytbI mutant culture supernatant (compare Figure 3.9, c & g).  

However, ΔypsI ΔytbI mutant culture supernatant harvested from cultures 

grown at 22oC does not induce LCB formation in the wild-type (data not shown).   
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Figure 3.9| The ΔypsI ΔytbI mutant supernatant can induce LBC formation 

in wild-type grown at 37
o
C.  When sterile filtered supernatants from ΔypsI 

ΔytbI cultures, grown at either 30
o
C or 37

o
C, are used to re-suspend cell-

pellets of the wild-type, cells grown at 37
o
C are induced to form LCBs (c / d).  

However, wild-type cells grown at 30
o
C do not respond to ΔypsI ΔytbI 

supernatant by forming LCBs (g / h).    Wild-type supernatant has no LCB-

inductive effect on wild-type cells, irrespective of growth temperature (a, b, 

e, and f). 

 

These results suggest a supernatant factor is produced during growth of the 

ΔypsI ΔytbI mutant, but not the wild-type, at 30oC and at 37oC and is involved in 

the LCB phenotype, as it can induce LCB formation in wild-type cells.  However, 

the growth temperature clearly plays a role in determining the ability for wild-

type cells to form LCBS, since the wild-type must be grown at 37oC for ∆ypsI 

∆ytbI mutant culture supernatant to induce LCBS, and LCBs cannot be induced 

by ∆ypsI ∆ytbI mutant culture supernatant following growth of the wild-type at 

30oC. 

 

To investigate the factor in the culture supernatant further, ΔypsI ΔytbI mutant 

culture supernatant was subjected to heat treatment and filtration through 

protein concentration columns to give more information on the nature of the 
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supernatant factor produced by the ∆ypsI ∆ytbI mutant that could induce LCB-

formation in the wild-type.  The treated supernatant was then applied to wild-

type cells to probe for any effect of these treatments on the ability for ΔypsI 

ΔytbI supernatant to induce LCB formation. 

 

3.2.3.2 Boiling of ΔypsI ΔytbI supernatant prevents LCBs  

 

Apart from certain heat-stable exotoxins, the proteins from most non-

extremophilic bacteria are heat labile.  To investigate the effect of heat 

treatment on the ability of ΔypsI ΔytbI mutant supernatant to induce LCB 

formation in wild-type cells, sterile filtered ΔypsI ΔytbI mutant supernatant was 

heated in a boiling water bath for 30 min.  This heat-treated supernatant was 

then used to re-suspend wild-type cells as described earlier.  Figure 3.10 shows 

heat treated ΔypsI ΔytbI supernatant loses the ability to induce LCB formation 

on wild-type cells (compare Figure 3.10 a & b), which suggests the factor in 

ΔypsI ΔytbI mutant supernatant is heat-labile. 

 

 

Figure 3.10| The LCB-inducing factor in ∆ypsI ∆ytbI mutant culture 

supernatant is heat-labile.  When wild-type cells are re-suspended in ΔypsI 

ΔytbI supernatant, they form LCBs (a).  However, the LCB-inductive effect of 

∆ypsI ∆ytbI mutant culture supernatant can be abolished by heating in a 

boiling water bath for 30 min (b). 

 

 

 



 
102 

 

3.2.3.3 Excluding macromolecules from ∆ypsI ∆ytbI mutant supernatant prevents LCB 

 

Given that heat-treating ∆ypsI ∆ytbI mutant culture supernatants abolishes LCB 

formation in the wild-type, there was a strong possibility that the supernatant 

factor produced by the ΔypsI ΔytbI mutant was a large macromolecule.  To 

investigate this possibility, size exclusion experiments were carried out on ΔypsI 

ΔytbI mutant supernatants by centrifugation through protein concentration 

columns (10, 30 and 100 kDa), and mixing the resulting flow-through with wild-

type cell pellets, as previously described.  Figure 3.11 reveals that when 

macromolecules up to 100 kDA are excluded from the flow through, the resulting 

supernatant cannot induce LCB formation in wild-type cells when compared with 

un-filtered controls.  

                     

 

Figure 3.11| Large macromolecules in ∆ypsI ∆ytbI mutant culture 

supernatant are required to induce LCBs in the wild-type.  When unfiltered 

ΔypsI ΔytbI mutant supernatant and filtered to only remove ΔypsI ΔytbI cells 

is used to re-suspend wild-type (WT) cell pellets, LCBs form (a, b).  However, 

when large macromolecules are excluded from the supernatant by passing 

through size exclusion filters, the resulting flow-through cannot induce wild-

type cells to form LCBs (c, d, and e). 

 

The results of these experiments suggested that the factor in ∆ypsI ∆ytbI 

mutant supernatant that is capable of inducing LCB formation in the wild-type, is 

a large-molecular weight (>100 kDa) heat labile molecule. 

WT re-suspended in ΔypsI ΔytbI supernatant…

a) Unfiltered

b) Filtered through 0.02 µm membrane

c) Filtered through 100 kDa cut-off membrane

d) Filtered through 30 kDa cut-off membrane

e) Filtered through 10 kDa cut-off membrane

a b c d e
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3.2.4 Cell surface factors are involved in LCB formation 

 

Wild-type cells only form LCBs following growth at 37oC, which suggests that 

temperature regulated processes also play a role in LCB formation.  Several 

temperature-regulated proteins in Y. pseudotuberculosis are exposed on the cell 

surface during growth at 37oC, including YadA, Ail, the pH 6 antigen, and the Ysc 

injectisome (Bolin et al., 1982), leading to the possibility that any of these may 

interact with the ΔypsI ΔytbI supernatant factor to cause LCB formation.  

Additionally, Y. pseudotuberculosis also switches its LPS structure according to 

temperature (Rebeil et al., 2004), and since LPS is also known to impact on the 

LCB phenotype in other bacteria (Diderichsen, 1980, Moller et al., 2003, Sheng 

et al., 2008), this could also play a role in LCB formation in Y. 

pseudotuberculosis. 

 

3.2.4.1  Protease treatment of cell pellets prevents LCB formation 

 

To investigate the impact of cell surface proteins and LPS on the formation of 

LCBs, cell pellets of the wild-type and ∆ypsI ∆ytbI mutant cultured at 37oC were 

treated with proteinase K and subjected to ΔypsI ΔytbI mutant supernatant as 

previously described.  This would strip surface proteins from the cell, and also 

removes LPS (Kitchens and Munford, 1998).   Figure 3.12 reveals cell surface 

proteins, or perhaps LPS, are important for the ability of the ΔypsI ΔytbI mutant 

to form LCBs, and for ΔypsI ΔytbI mutant supernatant to induce LCB formation 

in the wild-type, since proteinase K treatment of cell pellets prevents these cells 

from forming LCBs. 
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Figure 3.12| Proteinase K treated wild-type cells do not form LCBs in 

response to ∆ypsI ∆ytbI mutant supernatant. When wild-type or ∆ypsI ∆ytbI 

mutant cells are re-suspended in ∆ypsI ∆ytbI mutant culture supernatant, 

LCBs form (a & d).  Conversely, when either wild-type or ∆ypsI ∆ytbI cells are 

treated with proteinase K prior to being re-suspended in ∆ypsI ∆ytbI mutant 

culture supernatant, LCBs are prevented from forming (b & d). 

 

3.2.4.2 Chromosomally encoded factors, not YadA, are involved in LCB formation 

 

YadA is a critical adhesin for Y. pseudotuberculosis with a well-documented role 

in cellular auto-agglutination (El Tahir and Skurnik, 2001).  This virulence factor 

is encoded on the pYV plasmid, and since cell surface proteins are important for 

LCB formation, if YadA is involved then a pYV negative derivative of wild-type Y. 

pseudotuberculosis should not be able to form LCBs when exposed to ΔypsI 

ΔytbI supernatant.  In order to test this hypothesis, a pYV-negative (pYV-) 

derivative of wild-type YPIII was isolated and cell pellets of this strain were used 

alongside a pYV+ control in LCB experiments.  Figure 3.13 shows that pYV- wild-

type YPIII forms LCBs in response to ΔypsI ΔytbI mutant supernatant, in a 

similar manner to the pYV+ control, indicating that the pYV does not encode the 

cell surface factor responsible for LCB formation. 
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Figure 3.13| Wild-type cells do not require the pYV to be induced to form 

LCBs by ΔypsI ΔytbI supernatant.  Wild-type cells do not normally show LCB 

formation (a), however  LCBs form when wild-type cells are re-suspended in 

∆ypsI ∆ytbI mutant supernatant, and both pYV
+ 

and pYV
-
 wild-type strains 

can be induced to form LCBs (b & c). 

 

These data suggest that the temperature-regulated cell surface factor that is 

necessary for LCB formation is not encoded on pYV, but is probably located on 

the chromosome. 

 

3.2.5 The pYV encodes the supernatant factor required for 

LCBs 

 

Although the cell surface factor involved in LCB formation appears to be encoded 

on the chromosome, there was a possibility that the supernatant protein 

involved in inducing LCB formation in wild-type cells was associated with pYV.  

To investigate this, the pYV plasmid was cured from the ΔypsI ΔytbI mutant 

(∆ypsI ∆ytbI pYV-), and supernatants examined for their ability to induce LCBs in 

the wild-type when compared with supernatants from the ∆ypsI ∆ytbI pYV+ 

mutant. 

 

Figure 3.14 shows that the pYV negative ∆ypsI ∆ytbI mutant does not form 

LCBs, and supernatant taken from this strain cannot cause LCBs to form in wild-
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type cells when compared with supernatants taken from cultures of a ∆ypsI 

∆ytbI pYV+ mutant. 

 

 

Figure 3.14| Liquid culture biofilms require a pYV encoded supernatant 

factor. Unlike the LCBs formed by ΔypsI ΔytbI pYV
+
, when the pYV plasmid is 

cured from ΔypsI ΔytbI, no LCBs are formed (compare c & d), similar to the 

wild-type, which does not form LCBs regardless of pYV status (a & b).  

Similarly, when sterile filtered supernatant is taken from ΔypsI ΔytbI pYV
-
 

cultures and applied to wild-type cells, no LCBs form (f) unlike when wild-

type cells are re-suspended in supernatant taken from ΔypsI ΔytbI pYV
+ 

cultures, which induces LCBs (e). 

 

3.2.6 T3S is involved in the formation of LCBs 

 

3.2.6.1 Yop-related proteins are abundant in the culture supernatants of 

strains which form LCBs  

 

Since the presence of pYV was essential for the production of the supernatant 

factor(s) responsible for inducing LCB formation, and the fact the pYV encodes 

the Yop-Ysc T3SS which plays a large role in protein secretion in Y. 

pseudotuberculosis, it was important to investigate protein differences between 

the supernatants of the mutants which formed LCBs (the ∆ypsR, ∆ytbI, ∆ytbR, 

∆ypsI ∆ytbI and ∆ypsR ∆ytbR mutants) and those that did not (wild-type, the 
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∆ypsI mutant and the complement ΔypsI ΔytbI pSA291 strain).  In order to do 

this, these strains were grown at 37oC or 30oC for use in LCB experiments as 

previously described, and the proteins present in cell-free culture supernatant 

precipitated and visualised by SDS-PAGE (Figure 3.15).   

 

When culture supernatants are analysed by SDS-PAGE, the ∆ypsR, ∆ytbI, ∆ytbR, 

and ∆ytbI mutants all produced a range of supernatant proteins during growth at 

37oC (Figure 3.15 a) or 30oC (Figure 3.15 b), which were reduced in cultures of 

the wild-type.  When investigated by MALDI-ToF, these protein bands were 

identified as the Yop regulon proteins YopH, YopM, YopN, and LcrV.  Similar to 

the ∆ytbI mutant, the ∆ypsI ∆ytbI mutant also produces this range of 

supernatant proteins, which is reduced when functional ypsI and ytbI are 

restored to on pSA291 (Figure 3.15 c).  The same protein profile was identified 

in the ∆ypsR ∆ytbR mutant, but absent when the strains were cultured at 22oC 

(data not shown).  Figure 3.15 (c) shows a 4 – 14 % gradient gel, which can 

resolve YopH and YopM separately, where they co-migrate in normal 10 % gels 

shown in Figure 3.15 (a) and Figure 3.15 (b), as has been reported previously 

(Leung et al., 1990). 
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Figure 3.15| The secretion of Yop-related proteins is regulated by QS.  

Unlike the wild-type and ∆ypsI mutant, the ∆ypsR, ∆ytbR and ∆ytbI mutants 

all produce a range proteins in the supernatant during culture at 37
o
C (a) 

and 30
o
C (b), in the same conditions in which LCBs form.  MALDI-ToF 

identifies these as the Yop-related proteins YopH, YopM, LcrV and YopN.   

Flagellin (FliC) was also observed in the growth supernatant of all strains 

during growth at 30
o
C (b).  By separating the supernatant proteins produced 

by the ∆ypsI ∆ytbI mutant during growth at 37
o
C, YopH and YopM can be 

separately resolved, in addition to LcrV and YopN, and when functional ypsI 

and ytbI is restored to the ∆ypsI ∆ytbI mutant on pSA291, the production of 

Yop-related proteins into the supernatant is reduced to levels similar to the 

wild-type (c). 

 

To rule out the possibility that the increased levels of proteins in the ∆ypsI ∆ytbI 

mutant culture supernatant was a result of increased cell lysis of the mutant, 

cultures were stained with propidium iodide.  Propidium iodide, used in cell 

viability assays, enters cells with compromised membranes and fluoresces red 

(Boulos et al., 1999).  No difference was observed in the labelling by propidium 

iodide between the ∆ypsI ∆ytbI mutant and the wild-type, suggesting that 

increased cell lysis does not explain the appearance of Yops in the supernatant 

(data not shown).  

 

ΔypsI ΔytbIWT ΔypsI ΔytbI
pSA291

55

42

34

ΔypsR ΔypsI ΔytbR ΔytbIWT

ΔypsR ΔypsI ΔytbR ΔytbIWT

a)        Proteins produced at 37oC

b)        Proteins produced at 30oC

c )   Complementation
YopH/M

LcrV

YopN

YopH/M

LcrV

YopN

FliC

YopH

YopM

LcrV

YopN
55

42

27

55
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These results demonstrate that the pYV is essential for the production of a 

supernatant protein which is secreted and can induce LCB formation in wild-type, 

and suggests that this protein(s) is associated with the Yop regulon, since Yop 

proteins are present in culture supernatant under the same conditions as 

promote LCB formation.   

 

3.2.6.2 Secretion via the Ysc injectisome is necessary for LBC formation 

 

The appearance of Yop-related proteins in ∆ypsI ∆ytbI mutant culture 

supernatant led to the possibility that one or more of these proteins was 

involved in the LCB phenotype.  To confirm that LCBs result from the induction 

of functional T3SS, rather than a result of other genes on the pYV, the ∆ypsI 

∆ytbI mutant was modified by deleting yscJ, a structural component of the 

inner-ring of the Yop-Ysc injectisome (Diepold et al., 2010).  This component is 

essential for the construction of the full injectisome needle, and mutants in yscJ 

cannot secrete Yops (Allaoui et al., 1995b).   

 

To investigate the role of the T3SS, the ∆ypsI ∆ytbI ∆yscJ triple mutant was 

examined for LCB formation alongside the complemented ΔypsI ΔytbI ΔyscJ 

pHGyscJ strain, in which yscJ is restored on pHG327.  Sterile filtered supernatant 

from the ∆ypsI ∆ytbI ∆yscJ mutant and ΔypsI ΔytbI ΔyscJ pHGyscJ strain was 

also used to re-suspend wild-type cells in LCB experiments as previously 

described (Figure 3.16 a).  To confirm that YscJ was necessary for the 

appearance of Yop related proteins in the supernatant of the ∆ypsI ∆ytbI 

mutant, the proteins present in culture supernatants of the ∆ypsI ∆ytbI ∆yscJ 

mutant and ∆ypsI ∆ytbI ∆yscJ pHGyscJ strain was also investigated by SDS-

PAGE (Figure 3.16 b) 
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Figure 3.16 shows that the presence of a functional copy of yscJ is essential for 

the LCB phenotype of the ∆ypsI ∆ytbI mutant, the ability for the ΔypsI ΔytbI 

mutant culture supernatant to cause LCB formation in wild-type cells (Figure 

3.16 a); and for the secretion of Yop-related proteins into the culture 

supernatant (Figure 3.16 b).  Unlike the ∆ypsI ∆ytbI mutant (Figure 3.16 a i & a 

v), the injectisome-minus ∆ypsI ∆ytbI ∆yscJ mutant could not form LCBs, nor 

could supernatant harvested from the strain induce LCBs in wild-type cells 

(Figure 3.16 a ii & a vi).  Complementation with functional yscJ on pHGyscJ 

partially restores LCBs (Figure 3.16 a iii), and supernatant from the 

complemented strain could induce LCB formation in the wild-type (Figure 3.16 a 

vii).  Furthermore, by re-suspending ΔypsI ΔytbI ΔyscJ mutant cell pellets in 

supernatants from the ΔypsI ΔytbI or ΔypsI ΔytbI ΔyscJ pHGyscJ strains, LCB 

formation could be restored (data not shown).  Similarly, when the proteins 

present in culture supernatants were investigated, no Yop-related proteins were 

found in the culture supernatant of the ∆ypsI ∆ytbI ∆yscJ mutant, unlike the 

∆ypsI ∆ytbI mutant. When yscJ is restored on pHGyscJ, the proteins YopH, 

YopM, LcrV and YopN can be observed (Figure 3.16 c).  YopH and YopM have co-

migrated in this gel, as has been reported previously in one-dimensional 

electrophoresis (Leung et al., 1990).  Together, these data indicates that a 

functional T3SS is essential for the secreted protein component of the LCB 

phenotype. 
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3.2.7 Identification of genes involved in the formation of 

LCBs 

 

3.2.7.1 Y. pseudotuberculosis flhDC, fliA and flhA mutants also form 

LBCs 

 

In Y. enterocolitica, the flagella system has previously been linked to the control 

of both LCB-like biofilms and the T3SS, where a flhDC mutant forms pronounced 

LCB-like sediments following static incubation and over-produced Yop-related 

proteins (Bleves et al., 2002), while the over-production of Yop proteins has also 

been observed in a fliA mutant (Horne and Prüß, 2006).  Similar to Y. 

enterocolitica (Atkinson et al., 2006), motility is controlled by QS in Y. 

pseudotuberculosis (Atkinson et al., 1999, Atkinson et al., 2008), and so to 

investigate whether the motility system was involved in controlling T3S and LCB 

formation in Y. pseudotuberculosis, the ∆flhDC, ∆fliA and ∆flhA mutants were 

cultured overnight at 37oC and used in LCB experiments as previously described 

(Figure 3.17 a).  To investigate the possibility that the flagella system also 

regulates the T3SS, proteins present in the culture supernatant from strains 

grown at 37oC (Figure 3.17 b) and 30oC (Figure 3.17 c) were precipitated and 

analysed by SDS-PAGE.    

   

These results show that LCBs form in the ∆flhDC, ∆fliA and ∆flhA mutants during 

growth at 37oC, where LCBs are not formed by the wild-type under these 

conditions (Figure 3.17 a).  Furthermore, investigation of the proteins present in 

the supernatant reveals that several proteins are up-regulated in the mutants 

compared with the wild-type during culture at 37oC (Figure 3.17 b) or 30oC 

(Figure 3.17 c).  This up-regulated protein profile is similar to that observed in 

the QS mutants, and when investigated by MALDI-ToF, the proteins were 
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revealed to be YopH, YopM, LcrV and YopN.  YopH and YopM have co-migrated in 

Figure 3.17 (c), as has been reported previously in one-dimensional 

electrophoresis (Leung et al., 1990), although they have been resolved 

separately in Figure 3.17 (b).   

 

Figure 3.17| The flagella regulators FlhDC and FliA and the secretion 

component FlhA affect LCB formation and Yop production.  The ∆flhDC, 

∆fliA and ∆flhA mutants form LCBs following growth at 37
o
C, as revealed by 

the cuvette assay (a i) and by phase microscopy (a ii).  The formation of LCBs 

at this temperature correlates with the up-regulated release of several 

proteins into the growth supernatant which are not present in the wild-type 

(b).  MALDI-ToF identifies these to be the Yop virulon associated proteins 

YopH, YopM, LcrV and YopN.  These proteins are also found in the culture 

supernatant of the mutants, but not the wild-type, during growth at 30
o
C (c).  

Protein marker weights are given in kDa. 

 

Together, these results show that, as for Y. enterocolitica, FlhDC and FliA in Y. 

pseudotuberculosis repress T3SS-dependent secretion, and that the appearance 

of Yop-related proteins in the culture supernatants of the ∆flhDC and ∆fliA 

mutants correlates with the formation of LCBs.  Interestingly, the flagella 

secretion component FlhA, which is required for the T3S-dependent export of the 

flagella (Macnab, 2004), is also required to repress the production of Yop-related 

proteins and LCB formation. 

i
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LcrV

WT

c) Proteins produced at 30oC

b) Proteins produced at 37oC
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3.2.7.2  A Transposon mutagenesis screen identifies candidate genes involved in the 

LCB phenotype 

 

In light of these results, a transposon mutagenesis approach was used to 

identify Y. pseudotuberculosis genes involved in the supernatant and cell-surface 

factors responsible for the ∆ypsI ∆ytbI dependent LCB phenotype.  The Tn5 

transposon would insert randomly into either the ∆ypsI ∆ytbI chromosome or 

pYV, and clones which do not exhibit LCBs would be expected to carry mutations 

in genes responsible for this phenotype.    

 

Approximately 800 Tn5 insertion mutants were individually screened for their 

ability to form LCBs, and nine clones were determined to be both LCB negative 

and pYV+, since PCR directed against pYV encoded yscU yielded an amplification 

product (data not shown).  The mutated genes carrying the Tn5 insertion were 

cloned and mapped to the Y. pseudotuberculosis YPIII genome (Table 3.1). 

 

Despite the requirement for the pYV plasmid in the LCB phenotype, all the 

transposon insertions characterised were in chromosomal loci.  Four of these 

insertionally mutated genes encode putative intracellular proteins: the regulator 

of the pH 6 antigen, psaE (YPK_2671), the auto-inducer 2 processing enzyme 

lsrG (YPK_3655) (Miller and Bassler, 2001), a catalase katA (YPK_2855), and an 

unidentified AraC-type regulator (YPK_3661).  The insertions into all these, 

except lsrG, would be expected to exert polar effects since the insertions create 

frameshift mutations.  Four clones attenuated for LCBs possessed insertions in 

putative membrane proteins.  An Ail / Lom family protein gene YPK_2061 and a 

putative auto-transporter (YPK_0763) both contain in-frame insertions, while a 

putative membrane protein gene homologous to a family only found in 

enantomopathogenic bacteria such as Xenorhabdus and Photorhabdus spp. 

(YPK_1310), and a subunit of an ATP synthase membrane proton channel 
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(YPK_4420), both contain insertions which would be predicted to cause frame-

shift mutations.  The final clone identified possesses a frame-shift insertion into 

a hypothetical protein encoded by YPK_3644. 

 

After these clones were identified as non-LCB forming mutants, they were 

further investigated by re-suspending the transposon mutant cells grown at 37oC 

in supernatant harvested from ∆ypsI ∆ytbI mutant cultures.  Strains which could 

be induced to form LCBs were designated + and those unable to form LCBs 

designated -.  None of the clones were able to form LCBs after induction with 

∆ypsI ∆ytbI mutant supernatant, which suggested that all the loci influenced the 

ability for ∆ypsI ∆ytbI mutant to produce the cell surface factor required for LCB 

formation.  Following this, supernatant was harvested from transposon mutant 

cultures and used to re-suspend cells of the wild-type.  Supernatants from six 

clones (YPK_0763, YPK_1310, YPK_2061, YPK_2671 / psaE, YPK_2855 and 

YPK_4420) were able to induce LCB formation in the wild-type, suggesting that 

these clones were only affected in the production of the cell-surface factor or the 

cellular response required for LCB formation, and not for the production of the 

supernatant factor.  Three clones (YP_3655 / lsrG, YPK_3661 and YPK_3644) 

showed both cells and supernatants to be incapable of forming or inducing LCBs, 

suggesting that these 3 loci are required for the production of both the cell-

surface and supernatant factor involved in LCB formation. 
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Table 3.1| Loci involved in the LCB phenotype as revealed by a transposon 

mutagenesis screen.    Approximately 800 clones from a random transposon 

mutant library in the LCB-forming ∆ypsI ∆ytbI mutant were individually 

screened for clones which showed restoration to the non-LCB phenotype 

reminiscent of the wild-type.  Nine insertions in loci important for the 

formation of LCBs were identified, and are categorised by their assumed 

cellular localisation.  The mutants were tested for the ability for cell pellets 

to form LCBs following re-suspension in ∆ypsI ∆ytbI mutant supernatant 

(cells: form LCBs = +, do not form LCBs = -), and for the ability of culture 

supernatant harvested from growth to induce LCB formation in wild-type 

cells (supernatant: induces LCBs = +, cannot induce LCBs = -). 
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3.2.7.3 A transposon insertion into psaE links Congo red binding with LCBs 

 

Except for the transposon insertion into psaE, all the other insertion mutants 

exhibited normal growth on CRMOX plates at 37oC, growing as small, red colonies 

typical of those observed in pYV+ Y. pseudotuberculosis colonies.  However, the 

transposon mutant in psaE (ΔypsI ΔytbI Tn5::psaE) grew as large, white 

colonies, reminiscent of pYV- derivatives of Y. pseudotuberculosis, yet 

amplification of yscU showed that this strain carried pYV (data not shown).  This 

raised the possibility that Congo red uptake could be correlated with the ability 

for Y. pseudotuberculosis to form LCBs, since ΔypsI ΔytbI pYV- cells do not form 

LCBs and, like pYV- wild-type cells, do not bind Congo red when grown on CRMOX 

plates (data not shown).  However, unlike the binding of Congo red in the wild-

type, the ∆ypsI ∆ytbI mutant does not require low calcium to form LCBs.  To 

investigate the possibility that Congo red binding could occur in liquid culture, 

and was correlated with LCB formation, ΔypsI ΔytbI and the psaE transposon 

mutant were grown alongside wild-type and ΔypsI ΔytbI pSA291 in LBCR for 16 h 

at 22oC, 30oC and 37oC.  From these cultures, cell-free supernatant was 

harvested, and the difference in residual Congo red left in the medium was 

determined against bacteria-free LBCR. Figure 3.18 (a) shows that Congo red 

binding in liquid culture follows a very similar pattern to LCB formation, with 

almost 90 % of available Congo red bound by the ΔypsI ΔytbI mutant during 

growth at 37oC, and over 50 % at 30oC.  During growth at 22oC however, ΔypsI 

ΔytbI binds only 17 % of the available Congo red.  In contrast wild-type cells 

appear to bind only 20 % of available Congo red during growth at 30oC, 30 % at 

37oC, and 13 % during culture at 22oC.  Strikingly, and similar to the loss of LCB 

formation, the psaE transposon mutant (ΔypsI ΔytbI Tn5::psaE) bound only 

approximately 10 % of the available Congo red regardless of temperature. 
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To supplement this data, the ability for the strains to bind Congo red on agar in 

the presence of calcium was investigated by growing the strains for 48 h at 22oC, 

30oC and 37oC on LBCRA.  Representative images of single colonies were captured 

using a plate microscope at medium magnification (Figure 3.18 inserts).  These 

data show that, as in liquid media, the ∆ypsI ∆ytbI mutant could bind Congo red 

during growth on agar plates in calcium containing media during growth at 30oC 

or 37oC, and that this effect was abrogated when psaE was inactivated by the 

insertion of a transposon.  At 30oC, Congo red binding in ∆ypsI ∆ytbI mutant 

colonies occurs in a dense, clearly delineated region in the centre of the colony, 

whereas during growth at 37oC Congo red is bound throughout the colony, 

except at a thin strip around the perimeter.  During growth at 22oC, and similar 

to the wild-type, the ∆ypsI ∆ytbI mutant does not bind Congo red, however 

during growth at 30oC or 37oC, the wild-type appears to bind much less Congo 

red than the ∆ypsI ∆ytbI mutant, with only limited and diffuse Congo red visible 

in the centre of the colony at 37oC.   

 

Together, these results show that the ability for the ∆ypsI ∆ytbI mutant to form 

LCBs is correlated to the ability for this strain to bind Congo red, and that the pH 

6 antigen, which is regulated by PsaE, may play a role in both these phenotypes. 
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3.3 Discussion 

 

3.3.1 Defining cellular aggregation as LCBs 

 

This chapter has elaborated the role for QS in controlling the cell aggregation 

first described in Y. pseudotuberculosis by Atkinson et al. (1999), who 

demonstrated that a ∆ypsR mutant displayed substantial clumping following 

growth at either 30oC or 37oC  (Atkinson et al., 1999).  The results presented in 

this chapter show that in addition to the ΔypsR mutant, the ΔytbR; ΔytbI; ΔypsR 

ΔytbR and ΔypsI ΔytbI mutants all clump during liquid culture in a way not 

observed in the wild-type or ∆ypsI mutant.  These bacterial aggregates are 

surrounded by biofilm matrix components, including eDNA and EPS, similar to 

that observed following mutation of QS in R. sphaeroides (Puskas et al., 1997) 

and B. melitensis (Uzureau et al., 2007), and can be recognised as a type of 

biofilm.  The development of LCBs these mutants shows a remarkable similarity 

with the development of sessile biofilms, especially those that grow by 

recruitment of cells from the bulk fluid and interestingly, Tan & Darby (2002) 

suggested that Y. pseudotuberculosis forms biofilms on the nematode worm C. 

elegans in this way (Tan and Darby, 2004).   Microscopic examination of these 

clumps shows that the cells do not settle into a confluent layer, but assemble 

into a patchwork 3-dimensional structure.  Large areas are devoid of cells and 

matrix components, much like water channels observed in surface attached 

biofilms which supply water and nutrients throughout the biofilm (Sternberg et 

al., 1999).  The cells do not easily dissociate from the sediment when the biofilm 

is disturbed; when lightly rotated, strands of biofilm appear; these remain 

attached to the sediment, and quickly return to the bottom when left static.  This 

suggests that the biofilm possesses some degree of architectural integrity.    
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This structural integrity may be provided by a mixture of biofilm matrix 

components including eDNA and EPS.  This polysaccharide is probably β-1,6-N-

acetyl-D-glucosamine, since it displays affinity for the lectin R-WGA, which has 

previously used to label this polysaccharide in biofilms caused by Y. 

pseudotuberculosis on the nematode worm C. elegans (Tan and Darby, 2004, 

Joshua et al., 2003, Atkinson et al., 2011) and can be found in aggregates of S. 

aureus (Seidl et al., 2008).  In LCBs, eDNA appears to be essential for 

developing and maintaining structure, since DNase I treatment can both prevent 

LCBs from forming and disrupt developing LCBs; this has also been observed in 

other bacteria, including P. aeruginosa (Allesen-Holm et al., 2006) B. melitensis 

(Godefroid et al., 2010) S. aureus (Seidl et al., 2008) and Streptococcus spp. 

(Håvarstein et al., 2006, Kreth et al., 2009).  Together, this suggests that 

biofilm matrix components are commonly used by bacteria to maintain close 

association of cells when suspended in liquid culture.  Interestingly, when 

investigating cell viability using propidium iodide, there was a possibility that the 

label would also stain the eDNA surrounding the ∆ypsI ∆ytbI mutant cells- this 

did not occur, and ∆ypsI ∆ytbI cells labelled similarly to the wild-type.  Both 

DAPI and ethidium bromide can label the eDNA surrounding ∆ypsI ∆ytbI cells, 

which can bind to single stranded and double stranded DNA.  Propidium iodide, 

conversely, cannot bind to single stranded DNA (Van Erp et al., 1988), and so 

this suggests that the eDNA involved in LCB formation may be single stranded, 

which has previously been seen in LCBs formed by the bacterium Rhodovulum 

sulfidophilum (Nishimura et al., 2006). 
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3.3.2 QS mediated repression of LCBs 

 

The results in this chapter show that QS in Y. pseudotuberculosis represses the 

formation of LCBs, since deletion of ypsR, ytbR, ytbI, or both synthases or 

receptors results in LCB formation.  It is possible that normally, this QS-

dependent inhibition acts to cause dissociation of cells from clumps as cell-

density increases, thereby preventing the formation of aggregates which, 

depending on the prevailing environmental conditions, are too large.  When cell 

densities are low, clumps of bacteria may benefit each other by offering 

protection from predation (Matz and Kjelleberg, 2005), facilitating genetic 

exchange (Dunny et al., 1978)  or perhaps even providing the sufficient density 

to settle when in aqueous environments.  At high cell densities however, 

clumping may be less useful to bacteria by limiting the diffusion of nutrients or 

preventing dissemination of the bacteria.  However, it is also possible that these 

LCBs develop under conditions in which AHL-QS is normally repressed- for 

example, AHLs are known to be inactivated by pH-dependent lactonolysis which 

is accelerated at 37oC (Yates et al., 2002) and evidence suggests that the QS 

genes in Y. pseudotuberculosis are expressed more at 22oC than at 37oC 

(Atkinson et al., 2008).  This suggests that in certain conditions in the 

mammalian body, AHLs may be down-regulated and quickly degraded which 

would result in an AHL-negative state, similar to the ∆ypsI ∆ytbI mutant 

phenotype.  This could indicate that LCBs can develop and are important in vivo.    
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3.3.3 A role for T3S in LCBs 

 

Initial observations that the pYV plasmid was essential for LCB formation in the 

∆ypsI ∆ytbI mutant raised the possibility that YadA may play a role in the LCB 

phenotype, since YadA is known to mediate auto-agglutination (El Tahir and 

Skurnik, 2001).  However, YadA is unlikely to play a role in the formation of QS-

regulated LCBs, since a pYV negative (pYV-) derivative of the wild-type or the 

∆ypsI ∆ytbI mutant, which would lack yadA, can be induced to form LCBs 

following re-suspension in supernatant harvested from cultures of a ∆ypsI ∆ytbI 

pYV+ strain.  This indicated that the pYV-dependent factor LCBs was present in 

the supernatant, rather than cell associated.  Although it is possible that a 

subset of YadA expressed by the ∆ypsI ∆ytbI mutant detaches from the cell and 

is carried in the supernatant, it was not identified by SDS-PAGE analysis of 

supernatant proteins.  The pYV plasmid is intricately linked to virulence in Y. 

pseudotuberculosis, carrying in addition to yadA the genes encoding several 

other virulence factors including the Yop-Ysc T3SS (Cornelis et al., 1998a).   

 

When the secreted protein profile of the LCB forming mutants was investigated 

by SDS-PAGE and MALDI-ToF, it became clear that several Yop-related proteins 

were present under conditions which could cause the induction of LCBs (37oC or 

30oC), but absent in supernatants from cultures of the wild-type.  These 

proteins, including LcrV, YopH, YopM, and YopN, are secreted through the 

injectisome (Cornelis, 2002b, Fields and Straley, 1999, Forsberg et al., 1991).  

Interestingly, several other Yop proteins were not found in the growth 

supernatant, including YopE, which is normally highly produced during the 

activation of the T3SS and is secreted by both the wild-type and the ∆ypsI ∆ytbI 

mutant under Yop inducing conditions (data not shown).  YopH has previously 

been proposed to precede YopE in the secretion hierarchy (Wulff-Strobel et al., 



 
124 

 

2002), but while the mechanism of this hierarchy is not clear, these results 

suggests that QS could play a role. 

 

However in vitro, the T3SS is usually controlled both by temperature and calcium 

concentration, only being expressed at 37oC and secretion occurring under low-

calcium conditions (Cornelis et al., 1998a).  Finding Yop-related proteins in the 

supernatant of cultures grown at 30oC or 37oC and in the presence of calcium is 

significant as it shows that the environmental regulation of Yop production and 

secretion is mediated, at least in part, by QS and suggests that these proteins 

are involved in LCB formation.  This was confirmed following the mutation of 

yscJ, an essential component of the Ysc-injectisome, in the ∆ypsI ∆ytbI mutant 

background.  Without YscJ, the injectisome cannot be built and no Yop secretion 

can occur (Silva-Herzog et al., 2008).  In this AHL- and secretion- deficient 

mutant (∆ypsI ∆ytbI ∆yscJ), LCBs do not form, Yops do not appear in the 

supernatant, and culture supernatant cannot induce LCB formation in wild-type 

cells.   

 

By filtering the ΔypsI ΔytbI supernatant used to re-suspend wild-type cells 

through pores of various exclusion sizes it was established that ability for this 

supernatant to confer LCBs on wild-type depended on a large molecular weight 

factor, in excess of 100 kDa, revealing that a large macromolecule is responsible 

for augmenting LCBs.  However, there are no known Yop proteins which are 

larger than 100 kDa, the largest being YopO / YpkA at 82 kDa (Galyov et al., 

1993).  It is possible that this protein was retarded by the 100 kDa pore filter, 

and that YopO causes the LCB phenotype to be conferred by ∆ypsI ∆ytbI mutant 

supernatant, however YopO was not specifically identified in the supernatant 

proteins.  It is possible, then, that protein multimers or aggregates in the 

supernatant are responsible for the LCB phenotype, which is supported by the 

fact that some type 3 secretion proteins are known to be able to aggregate and 
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form complexes in the extracellular environment (Ménard et al., 1994, Michiels 

et al., 1990).   

 

It is possible that Y. pseudotuberculosis could possess a mechanism to detect 

the extracellular accumulation of Yop proteins to measure the destruction of 

eukaryotic cells, as the Yop proteins are liberated by cell lysis.  Perhaps the lysis 

of host cells, which would normally be assumed to cause the release of 

inflammatory cytokines and recruitment of the immune system, acts as a 

warning for Y. pseudotuberculosis to assume a clumped phenotype to aid in 

resisting phagocytosis.  If the LCB phenotype is a response to Yops in the 

extracellular environment, it is perhaps likely that more than one Yop protein or 

an aggregate can stimulate this behaviour.  Investigation of individual Yop 

effector deletions in the ∆ypsI ∆ytbI mutant would shed light on the contribution 

of each protein. 

 

It is interesting to note that bacterial T3SS have previously been linked to LCB 

formation. In Mycobacterium tuberculosis, the adoption of a clumped phenotype 

results in an increased ability to infect macrophages, and this has been linked to 

increased T3S (Brennan et al., 2001), while E. chrysanthemi requires the T3SS 

for aggregative pellicle formation at air-liquid interfaces at 37oC (Yap et al., 

2005).  In addition, when investigating the regulation of the length of the S. 

typhimurium T3SS needle, Kubori et al. (2000) discovered that when over-

expressing the transcriptional activator of the T3SS, hilA, a mutation in invJ, 

which encodes a needle length regulator, resulted in an abundance of elongated 

needle structures on the cell surface and bacterial clumping (Kubori et al., 

2000). It is possible that hyper-activity of the Ysc system in the ∆ypsI ∆ytbI 

mutant leads to an abundance of needle complexes on the cell surface, which in 

turn may cause aggregation.  However, this would not explain why supernatant 
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harvested from the ∆ypsI ∆ytbI mutant can induce LCB formation in the wild-

type or in pYV- cells. 

 

Alternatively it is possible that the abrogation of LCB formation in the ∆ypsI 

∆ytbI ∆yscJ mutant is unrelated to the inability for this mutant to secrete Yops 

or produce needles, but rather depends on the fact that this mutant may be 

unable to properly control the LCR.  A widely used marker for virulence in 

Yersinia is the ability for Y. pseudotuberculosis to bind the dye Congo red, in a 

low-calcium dependent manner, during growth at 37oC.  Previously, needle 

mutants in yscF have been shown incapable of binding Congo red under these 

conditions (Davis and Mecsas, 2007), although mutants which secrete lower or 

an altered profile of Yops still bind the dye (Mecsas et al., 2001), as do mutants 

in the Yop effectors such as YopE and YopH  (Logsdon and Mecsas, 2003).  The 

ΔypsI ΔypsI ΔyscJ mutant, however, does not bind Congo red in a low-calcium 

medium during growth at 37oC (data not shown).  In light of this, there may be 

other secreted factors related to the LCR, but un-related to T3S per se, which 

are responsible for the LCB phenotype in the ∆ypsI ∆ytbI mutant. However, this 

would not explain why pYV- cells can respond to ∆ypsI ∆ytbI mutant supernatant 

by forming LCBs.  It is perhaps more likely that proteins secreted into the 

extracellular environment through the Ysc injectisome are responsible for the 

link between the LCB phenotype and pYV. 
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3.3.4  Pathways to the LCB phenotype  

 

3.3.4.1 The flagella system represses LCB formation and Yop production 

 

In Y. enterocolitica, FlhDC and FliA are known to negatively regulate the T3SS, 

and a flhDC mutant forms LCB-like biofilms (Bleves et al., 2002, Horne and Prüß, 

2006).  In Y. pseudotuberculosis, the ∆ypsI ∆ytbI mutant is repressed for flhDC 

expression when compared with the wild-type (Atkinson et al., 2008), and so 

finding that ∆flhDC and ∆fliA mutants also form LCBs and are up-regulated for 

the production of the same Yop-related proteins as the ∆ypsI ∆ytbI mutant 

suggests that the flagella regulon is required down-stream of QS for the 

repression of LCB formation.  Interestingly, the same range of Yop-related 

proteins was found, lacking YopE, in the culture supernatant of the ∆flhDC and 

∆fliA mutants when compared with the ∆ypsI ∆ytbI mutant, further suggesting 

that QS regulates LCB formation via the flagella pathway. 

 

Surprisingly, the flagella secretion system component FlhA was also found to be 

essential for repressing LCB formation and reducing Yop secretion under 

normally non-inducing conditions.  Without FlhA, the majority of the flagellum 

cannot be constructed (Macnab, 2003), and the ∆flhA mutant is non-motile 

(Atkinson et al., 2011).  However, since both flhDC and fliA are intact in the 

∆flhA mutant, this suggests that elements of the flagella structure, and not just 

the flagella regulators, may play a role as check-points in the regulation of T3S 

and LCB formation.  It could be that FlhA itself plays an important regulatory role 

in governing cellular decisions, and in other bacteria mutation of flhA prevents 

the secretion of virulence factors (Ghelardi et al., 2002).  It also impacts on FlgM 

production (Ghelardi et al., 2002), an anti-sigma factor which sequesters and 

inactivates FliA (Kutsukake and Iino, 1994) and also mediates internalisation of 
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P. aeruginosa into cultured epithelial cells in a manner that cannot be explained 

by a loss of motility, with an 80 % reduction in invasion in a flhA mutant, 

compared with 50 % observed in a fliC mutant (Fleiszig et al., 2001).  However, 

it is perhaps more likely that the effects of flhA mutation noted are due to the 

activity of the developing flagella as a regulatory checkpoint.  The developing 

flagellum is known to feed-back information to the cell regarding its status, 

including the secretion of the anti-sigma factor FlgM upon completion of the of 

the basal body and hook, which leads to FliA-dependent transcription of fliC 

(Karlinsey et al., 2000).  Interestingly, the ∆fliC mutant, unlike the ∆flhA 

mutant, does not secrete Yop-related proteins into the culture supernatant 

(Atkinson et al., 2011) - FliC is only produced subsequent to FliA activation by 

FlgM export (Kutsukake and Iino, 1994, Ding et al., 2009), which could suggest 

that FlgM export represents a critical part of the switch between T3S and 

motility, and that class III flagella genes are not involved in this regulation.   

 

3.3.4.2 Cell surface factors involved in LCBs 

 

Proteinase K can remove cell surface factors important for the formation of LBCs 

from pYV+ and pYV- alike, indicating that a cell surface factor encoded on the 

chromosome was involved in the LCB phenotype.   Wild-type cells can only form 

LCBs at 37oC, suggesting that this factor is normally regulated by temperature.  

However, QS may also affect this temperature regulation, since LCBs form in the 

mutants during growth at 30oC (Atkinson et al., 1999).  The binding of Y. 

pseudotuberculosis to mammalian cells involves at least three chromosomally 

encoded surface structures: invasin (inv), the pH 6 antigen (psaA) and Ail (ail) 

(Grassl et al., 2003, Yang et al., 1996, El Tahir and Skurnik, 2001).  It is unlikely 

that either Inv or Ail play a role in the LCB phenotype, since these gene are 

repressed during growth at 37oC (Pierson and Falkow, 1993, Pepe et al., 1994).  

Although Inv can be expressed at 37oC if the environment is acidic (Pepe et al., 
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1994).  However, since proteinase K can remove LPS from the bacterial cell 

surface (Kitchens and Munford, 1998) this does not exclude the possibility that 

LPS may play a role in LCB formation, especially the type of shortened O-chain 

LPS typically seen in Y. pseudotuberculosis during growth at 37oC which has 

been associated with aggregation in E. coli (Diderichsen, 1980, Moller et al., 

2003, Sheng et al., 2008).   

 

3.3.4.3  Transposon insertions in the ∆ypsI ∆ytbI mutant chromosome can prevent 

LCB formation 

 

The transposon mutant screen revealed several interesting genes which, when 

mutated, prevented the ∆ypsI ∆ytbI mutant forming LCBs, and many of the loci 

identified in the screen can be linked to already established processes governing 

LCB formation in other species.  The catalase KatA appears to play a role, 

specifically in regulating the production of the cell surface factor required for 

cells to form LCBs.  In other bacteria KatA is responsible for mediating hydrogen 

peroxide resistance in biofilms (Elkins et al., 1999), and is regulated by the 

oxidative regulator OxyR (Han et al., 2008).  In E. coli,  oxidised OxyR causes 

Flu-mediated aggregation (Waldron et al., 2002).  This could suggest interplay 

between catalases and the oxidative stress response may regulate the 

production of cell surface factors involved in LCB formation in Y. 

pseudotuberculosis.  Interestingly, the expression of katA has been shown to be 

growth phase dependent in Y. pestis (Han et al., 2008), indicating a link to QS.   

 

A separate transposon insertion in YPK_3655 also abrogates LCB formation in 

the ΔypsI ΔytbI mutant background.  This gene, lsrG is annotated as an 

antibiotic biosynthesis monooxygenase and in S. typhimurium, the function of 

LsrG is to modify a putative QS signal, AI-2, synergistically with the LsrF protein, 

encoded upstream.  It is thought that this modification by LsrG terminates the 
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signaling capability of AI-2, by preventing phospho-AI-2 binding, and relaxes the 

repressive effect of the AI-2 response regulator LsrR on gene transcription 

(Marques et al., 2011).  AI-2 signaling plays a role in cellular aggregation in V. 

cholerae (Miller and Bassler, 2001), and this data suggests it could also be 

involved in LCB formation in Y. pseudotuberculosis.  The production of AI-2 in 

the supernatant was investigated in the Y. pseudotuberculosis lsrG transposon 

mutant, and revealed that this mutant could not produce extracellular AI-2 (data 

not shown).  This is similar to an E. coli luxO mutant, which cannot produce AI-

2, and like the ΔypsI ΔytbI Tn5::lsrG strain, does not form aggregates typical in 

the wild-type (Miller and Bassler, 2001).  This data raises speculation about the 

possible involvement of AI-2 in co-regulating phenotypic traits in Y. 

pseudotuberculosis alongside AHL-mediated QS.   

 

Six genes downstream of YPK_3655, another transposon insertion into a putative 

AraC-type regulator, YPK_3661, prevent LCB formation in the ΔypsI ΔytbI 

mutant.  YPK_3661 shares domain structure with the AraC-type regulators RhaR 

/ RhaS, which are involved in E. coli rhamnose catabolism, and are repressed by 

AI-2 signalling (Wang et al., 2005).  Although the function of YPK_3655 in Y. 

pseudotuberculosis is unknown, it suggests that multiple regulators may 

converge on the LCB phenotype in Y. pseudotuberculosis.  The possibility that 

YPK_3661 may affect rhamnose metabolism is especially interesting since 

rhamnose is present in P. aeruginosa biofilm matrices (Wozniak et al., 2003).  

 

The transposon mutant in a putative auto-transporter encoded by YPK_0763 

highlights the possibility that auto-transporter proteins in addition to YadA may 

influence cell-aggregation leading to LCB formation in Y. pseudotuberculosis.  

Auto-transporters other than YadA have been identified as involved in clumping 

in Y. pestis (Felek et al., 2008) and in several other species they play a role in 

aggregation (Suzuki et al., 2008, Torres et al., 2002, Sherlock et al., 2005).  It 
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is possible that several auto-transporters can facilitate cell-cell contact in Y. 

pseudotuberculosis and that they are all regulated to be utilised under different 

conditions.  In the same way, it is interesting to find a transposon mutant in the 

Ail / Lom family protein encoded by YPK_2061 also prevents LCB formation.  In 

Y. pestis, the ail homologue OmpX is involved in the formation of cell aggregates 

(Kolodziejek et al., 2007), and together, this suggests that the role of a variety 

of other surface proteins converge on the formation of LCBs, perhaps working 

synergistically to regulate LCB formation.  

 

A transposon insertion into the gene YPK_3644 also resulted in the reversion of 

the ∆ypsI ∆ytbI mutant to the non-LCB phenotype. This gene, which encodes a 

small 77 amino acid hypothetical protein, is a member of the DUF1049 super 

family of uncharacterised proteins.  This protein is predicted to be localised to 

the cytoplasmic membrane, and a search of the PROSITE database shows 

YPK_3644 possesses a bacterial IgG-like domain at the N-terminus, and two 

potential glycosylation sites.  The reversion of the transposon mutant in 

YPK_3644 to a non-LCB phenotype is interesting due to the proximity of this 

gene to the O-antigen polymerase wzy (YPK_3646).  In E. coli and S. 

typhimurium, rough colony variants or mutants, with altered O-antigen produce 

LCBs (Diderichsen, 1980, Moller et al., 2003, Sheng et al., 2008).  Similarly, in 

Y. pseudotuberculosis and Y. enterocolitica, LPS becomes rough at 37oC where it 

is smooth below 26oC (Krasikova et al., 2000); this differs to Y. pestis, where the 

O-antigen gene cluster is silenced, leading to an LPS which is constitutively 

rough (Skurnik et al., 2000).  In Y. enterocolitica, an O-antigen mutant is unable 

to secrete Yops under conditions usually permissive for Yop secretion (Perez-

Gutierrez et al., 2006).  This may be due to the over-expression of the flagella 

master regulator genes flhDC in the O-antigen mutant, since FlhDC is known to 

negatively regulate T3S in Y. enterocolitica (Bengoechea et al., 2004, Perez-

Gutierrez et al., 2006, Bleves et al., 2002).  In light of this, it is interesting to 
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note that supernatant from the YPK_3644 transposon mutant could not induce 

LCB formation in the wild-type; suggesting that Yop-production is also affected 

in this strain and increasing the possibility that LPS biosynthesis is affected by 

QS and contributes to the LCB phenotype.  

 

This chapter also presents data which suggests that QS in Y. pseudotuberculosis 

affects the synthesis of the Psa via the regulator PsaE.  Even though some 

evidence suggests QS positively regulates the Psa in Y. pestis (Chen et al., 

2006), in Y. enterocolitica it is produced maximally at the transition between 

exponential phase and stationary phase, with decreased amounts present two 

hours into stationary phase (Iriarte et al., 1995).  The data in this chapter 

suggest that de-repression of psaE in the ∆ypsI ∆ytbI mutant leads to an 

abundance of Psa on the cell surface, since i) Congo red binding in Y. 

pseudotuberculosis during culture in liquid is correlated with the LCB phenotype 

and is dependent on psaE, and ii) the ∆ypsI ∆ytbI Tn5::psaE transposon mutant 

is attenuated for LCB formation.  The Psa is known to be expressed in 

phagolysosome compartments (Perry and Fetherston, 1997), but while the 

yersiniae have been observed to grow as aggregates in phagosomes (Lindler and 

Tall, 1993), Y. pseudotuberculosis YPIII is not thought to be an intracellular 

pathogen, and so in this strain the Psa may perform other functions.  It is 

interesting that the both the psaE transposon mutant and the ∆yscJ mutant 

cannot bind Congo red, which hints at a further regulatory relationship between 

these two systems- indeed like the Yop effectors, the Psa is an anti-phagocytotic 

factor (Huang and Lindler, 2004), and has previously been suggested to partly 

facilitate the contact necessary for the translocation of Yop effectors into 

eukaryotic cells (Mejía et al., 2008). 
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3.3.5 Conclusions 

 

This chapter has shown that several factors contribute to the formation of LCBs 

in Y. pseudotuberculosis.  The Yop-Ysc T3SS is de-repressed, and secreted 

proteins presumably act upon cell-surface factors to stimulate the release or 

binding of matrix components and LCB formation (Figure 3.19). 

 

 

Figure 3.19| The possible regulation of LCB formation by QS in Y. 

pseudotuberculosis.  QS acts to repress the production and secretion of Yop 

proteins, probably via the flagella system.  QS also appears to repress 

temperature regulated surface factors.  Yops in the supernatant interact 

with these elements, and induce the formation of LCBs through and effect 

on the production or binding of biofilm matrix components.    

 

The adoption of LCBs by bacteria can be viewed as a behaviour where cells can 

come together in response to hostile environments.  In Sphingobium sp., it has 

been suggested that the mere “scent of danger”, or rather the detection of 

factors released into the environment by a predator flagellate, is sufficient to 

trigger LCB formation (Blom et al., 2010).  For Y. pseudotuberculosis, 

experiencing temperature shifts upwards of 30oC is likely to be a cue for the 
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switch between the environment and mammalian host, since although 

mammalian body temperature is 37oC, ambient temperatures rarely rise to 30oC 

in areas prone to being Yersinia reservoirs, which tend to be in cold or temperate 

regions of the world (Adesiyun and Krishnan, 1995, Vincent et al., 2008, 

Rimhanen-Finne et al., 2009).  During the course of such a transition, a low 

density of cells might associate together as an anti-predatory behaviour (Matz 

and Kjelleberg, 2005, Pickup et al., 2007, Blom et al., 2010), as opposed to 

bacteria in a large population, which may have less need for the protective effect 

of neighbouring cells.  It would be interesting to investigate the possibility that 

Y. pseudotuberculosis uses LCBs as an anti-predatory mechanism, potentially 

against phagocytic cells, and this may provide important detail on how Y. 

pseudotuberculosis survives in the mammalian environment.  This may provide 

important discoveries relevant to infection control. 
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Chapter 4| 

 

Biofilm formation on 

Caenorhabditis elegans is 

facilitated by quorum sensing 

dependent repression of type 3 

secretion 
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4.1 Introduction 

 

4.1.1 Caenorhabditis elegans 

 

C. elegans is a small, free-living nematode which can be reliably isolated from 

compost and rotting vegetable matter (Barrière and Félix, 2005, Félix and 

Braendle, 2010, Kiontke and Sudhaus, 2006).  Little is known about the natural 

ecology of C. elegans, however it is known that it is a coloniser of organic 

material which is rich in nutrients and microorganisms, but the worm is rarely 

found in natural undisturbed soil environments, despite extensive sampling (Félix 

and Braendle, 2010, Kiontke and Sudhaus, 2006).  C. elegans is thought to feed 

primarily on bacteria and small eukaryotes, and all isolated species can grow 

using E. coli as a food-source (Félix and Braendle, 2010, Kiontke and Sudhaus, 

2006), however it is not known which microbes C. elegans feeds on in nature, 

but C. elegans can also feed on single cells of the slime-mould Dictyostelium 

discoidium (Kessin et al., 1996).  To feed, C. elegans uses the pharynx as a 

muscular pump to suck up bacterial cells (Albertson and Thomson, 1976).  The 

pharynx rhythmically contracts to ingest bacteria into a terminal bulb, where an 

organ termed the grinder with specialised abrasive extensions of the cuticle 

disrupts the cells and passes them through pharyngeal-intestinal valve to the 

digestive tract (Figure 4.1) (Albertson and Thomson, 1976). 
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Figure 4.1| Diagram of the pharynx and anterior digestive tract of C. 

elegans, as revealed by CLSM.  Bacteria are taken up by the worm and 

accumulate in the terminal bulb, where a chitin grinder disrupts the cells for 

processing through the digestive tract (Albertson and Thomson, 1976). 

 

4.1.1.1 C. elegans as a model organism 

 

Despite the fact that little is known of the natural ecology of C. elegans, this 

organism has been adapted as a model system for genetics and developmental 

biology.  C. elegans can be propagated rapidly in the lab, and the organism is 

translucent throughout its life-cycle, making it easy to observe by microscopy.  

In addition to its use in developmental biology and genetics, C. elegans has 

become a model organism for the study of pathogen-host interactions (Aballay 

and Ausubel, 2002, Sifri et al., 2005) for several bacterial species including P. 

aeruginosa (Tan et al., 1999), enteropathogenic E. coli (Anyanful et al., 2005), 

S. typhimurium (Labrousse et al., 2000) and S. aureus (Sifri et al., 2003).  In 

addition to the modelling of mammalian pathogenesis, the study of microbe-

nematode interactions may be especially important since nematodes are the 

most abundant metazoan organisms on Earth  (Neher, 2001).  Many nematode 

species feed on bacteria, and so this would make nematodes an important 

selective pressure for bacteria where they co-exist in the environment.  It may 

not be surprising, therefore, to find that many bacterial species are pathogenic 

Mouth

Pharynx
Grinder

Digestive tract

Ovaries 

Terminal bulb
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towards nematodes, including Agrobacterium tumefaciens, Bacillus megaterium, 

Erwinia spp., Aeromonas spp., Leucobacter chromiireducens and Yersinia spp., 

which either kill the worm or possess mechanisms to prevent the worm feeding 

on the bacterial population (Couillault and Ewbank, 2002, Darby et al., 2002, 

Tan and Darby, 2004, Muir and Tan, 2008).  Furthermore, the bacteria 

Photorhabdus luminescens and Xenorhabdus nematophila, which are usually 

found in symbiotic association with entomopathogenic nematodes of the families 

Heterorhabditidae and Steinermatidae, severely reduce the survival of C. elegans 

(Couillault and Ewbank, 2002).  It is also noteworthy that as recently as the year 

2000, new natural pathogens of C. elegans have been isolated, such as 

Microbacterium nematophilium (Hodgkin et al., 2000).   

 

4.1.2 Biofilm-related infections in C. elegans 

 

Biofilms are increasingly recognised as a mechanism by which bacteria use to 

prevent protozoan predation (Matz and Kjelleberg, 2005, Matz et al., 2004, 

Queck et al., 2006), and several species of bacteria form biofilms on larger 

metazoan predators such as C. elegans, including Y. pestis, Y. 

pseudotuberculosis and X. nematophila (Atkinson et al., 2011, Darby et al., 

2005, Drace and Darby, 2008).  Darby et al. (2002) revealed that the biofilms 

formed by Y. pseudotuberculosis on C. elegans, which accumulate around the 

mouthparts, were sufficient to form a blockage and prevent the worm feeding on 

bacteria (Darby et al., 2002), and since the biofilms formed by Y. 

pseudotuberculosis, Y. pestis and X. nematophila are morphologically similar 

(Figure 4.2), it is likely that they all function in this way.  This blockage may be 

analogous to the biofilms formed on nematodes by the emerging human 

pathogen Photorhabdus asymbiotica which can be transferred to humans 
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(Waterfield et al., 2009), and also to the biofilms formed in the proventriculus of 

the flea vector during transmission of Y. pestis (Hinnebusch et al., 1996).  

 

 

Figure 4.2| The biofilms formed by X. nematophila, Y. pseudotuberculosis 

and Y. pestis on C. elegans are morphologically similar and accumulate at 

the anterior of the worm, around the mouthparts.  For X. nematophila  (a, 

adapted from Drace and Darby, 2008)) and Y. pseudotuberculosis (b, 

adapted from Atkinson et al., 2011)), bacterial cells are expressing gfp and 

appear green, biofilm exopolysaccharides are labelled red with the lectin 

wheat-germ agglutinin coupled to rhodamine.  For Y. pestis, the arrow 

denotes the mouth of the worm (c, adapted from Darby et al., 2005).  

 

Y. pestis, Y. pseudotuberculosis, X. nematophila and S. epidermidis all encode 

homologues of the hmsHRFS operon.  In S. epidermidis, this locus, termed the 

icaABCD operon (for intercellular adhesin) produces partially deacetylated poly-

β-1,6-N-acetyl-D-glucosamine (PNAG), a biofilm matrix EPS important for 

adherence, biofilm formation, and biofilm-related infections in C. elegans (Vuong 

et al., 2004, Itoh et al., 2005, Begun et al., 2007).  The hmsHRFS operons of 

Yersinia spp. and X. nematophila probably synthesise the same, or similar, 

partially deacetylated exopolysaccharide.  This can be inferred from the 

homology of HmsR to IcaA and other glycosyltransferases such as E. coli PgaC, 

which are responsible for the production of PNAG, and the presence of the 

polysaccharide deaceylase gene hmsF (Darby, 2008).  Additionally the biofilms 

a) X. nematophila b) Y. pseudotuberculosis c) Y. pestis
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formed by S. epidermidis, X. nematophila and Yersinia spp. all share a similar 

affinity for wheat-germ agglutinin, a lectin which binds PNAG and when coupled 

to rhodamine (R-WGA), is a useful tool for visualising EPS by fluorescence 

microscopy (Darby, 2008, Drace and Darby, 2008, Atkinson et al., 2011).   

 

4.1.3 Significance of the Yersinia / C. elegans relationship 

 

Tan & Darby (2004) proposed that Y. pseudotuberculosis biofilms form on C. 

elegans in a snow-plough fashion, whereby movement of the worm through a 

bacterial lawn on agar causes the accumulation of biofilm at the anterior of the 

worm, around the head (Tan and Darby, 2004).  Supporting this hypothesis, 

worms which cannot move accumulate a reduced biofilm (Tan and Darby, 2004).  

This could be seen to compromise the notion that such biofilms formed by Y. 

pseudotuberculosis are a natural adaptation to prevent predation by nematodes, 

and reduces the complexity of the Y. pseudotuberculosis / C. elegans 

relationship to an in vitro artefact of the interaction between the worm and a 

sticky bacterial lawn.  However, other evidence indicates biofilm formation is an 

interactive process between Y. pseudotuberculosis and C. elegans, since C. 

elegans with mutations in srf-2, srf-3, srf-5 and daf-1 and several surface 

proteins show resistance to Y. pseudotuberculosis biofilms, yet are motile and 

can track across agar seeded with Y. pseudotuberculosis normally (Joshua et al., 

2003, Darby et al., 2007, Drace et al., 2009).   In addition, male C. elegans 

worms are less prone to accumulate biofilms than are hermaphrodites, and 

dauer stage larva are resistant to biofilm accumulation (Darby et al., 2007).  It 

has also been noted that during biofilm assays, some worms do not accumulate 

biofilms and appear to behave normally, in contrast to the aberrant movement 

usually associated with inoculation onto Yersinia lawns (Darby et al., 2007, 

Atkinson et al., 2011).  Together, this suggests that there are many more factors 
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involved in the formation of biofilms by Y. pseudotuberculosis on the cuticle of C. 

elegans than can be explained by the snow-plough hypothesis.    

 

Interestingly, many Y. pseudotuberculosis outbreaks are associated with 

agricultural activity (Nuorti et al., 2004, Laukkanen et al., 2008, Rimhanen-Finne 

et al., 2009).  This correlates with the known natural habitats for C. elegans, 

which prefers to live in organic nutrient rich environments such as compost 

(Barrière and Félix, 2005, Félix and Braendle, 2010, Kiontke and Sudhaus, 

2006).  Y. pestis uses the flea Xenopsylla cheopis as an insect vector for 

transmission between one mammalian host and another (Perry and Fetherston, 

1997), and so it is possible that Y. pseudotuberculosis uses nematodes such as 

C. elegans in a similar fashion.  Clearly it is possible that the formation of 

biofilms by Y. pseudotuberculosis on C. elegans could represent bio-

accumulation of the bacteria, which could result in transmission of the bacteria 

to predators of nematodes, and further up the food chain.   

 

4.1.4  Chapter 4 aims 

 

Chapter 3 demonstrated that LCBs are regulated by QS via a mechanism 

involving the T3SS.  Another type of biofilm formed by Y. pseudotuberculosis 

occurs on the nematode worm C. elegans, where the biofilm grows on the worm 

cuticle, predominantly at the anterior and around the mouth, where it prevents 

the worm feeding on bacteria (Darby et al., 2002, Tan and Darby, 2004, Joshua 

et al., 2003).  While these biofilms develop in vitro, when worms are placed on 

agar plates seeded with Y. pseudotuberculosis, work in this chapter shows that 

they can also develop in an environmental model, where nematodes are placed 

into compost seeded with Y. pseudotuberculosis.  QS regulates the formation of 

these biofilms on C. elegans grown on agar surfaces (Atkinson et al., 2011), and 
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also affects the development of these biofilms in soil.  The biofilms that develop 

on the cuticle of C. elegans are very similar in composition to LCBs, containing 

eDNA and EPS as part of the biofilm matrix, with eDNA forming an important 

structural component.  Furthermore, as with LCBs, the Yop-Ysc T3SS impacts on 

the ability for Y. pseudotuberculosis to form biofilms on C. elegans- in this case 

the T3SS prevents C. elegans biofilms.  This chapter presents work to show that 

when wild-type cells are conditioned to express the T3SS, they are incapable of 

forming biofilms on C. elegans.  Additionally, the reduction in biofilm load 

observed following infection by the ∆ypsI ∆ytbI mutant, which has a de-

repressed T3SS, can be restored to wild-type levels following the removal of the 

pYV or by mutation of yscJ, which encodes an essential structural component of 

the Ysc injectisome.  
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4.2 Results 

 

4.2.1  QS regulates biofilm formation on C. elegans 

 

The motility regulators flhDC and fliA are important for biofilm formation on C. 

elegans by Y. pseudotuberculosis (Atkinson et al., 2011), and since QS regulates 

the motility regulon (Atkinson et al., 2008), it was possible that QS also affected 

biofilm formation on C. elegans.  To investigate this, the AHL negative ∆ypsI 

∆ytbI mutant was used, since this strain cannot produce AHL signalling 

molecules, and is highly repressed for the expression of flhDC and fliA (Atkinson 

et al., 2008).    When C. elegans is infected with the ∆ypsI ∆ytbI mutant, the 

biofilms which form are approximately three-fold smaller than those formed by 

the wild-type.  Additionally, when supplied with functional copies of ypsI and 

ytbI (on pSA291), biofilm formation is partially restored (Figure 4.3). 

 

Figure 4.3| Biofilm severity index calculated for wild-type, ΔypsI ΔytbI and 

the complement strain ΔypsI ΔytbI pSA291.  Biofilms are substantially 

reduced when C. elegans are infected with ΔypsI ΔytbI relative to wild-type, 

and restoration of the ypsI and ytbI genes as plasmid borne copies (on 

pSA291) restores the biofilm forming ability of Y. pseudotuberculosis.  Bars 

represent the standard deviation of biofilm severity.  Measurements are the 

mean of 60 worms from three plates per condition, 20 worms per plate. 
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To investigate the structure of the biofilms, the ∆ypsI ∆ytbI mutant and wild-

type were used to infect C. elegans and biofilms that developed over 16 h were 

inspected by CLSM.  Polysaccharides have previously been shown to be present 

in the ECM of Y. pseudotuberculosis biofilms on C. elegans (Tan and Darby, 

2004), and were therefore highlighted using Rhodamine-coupled Wheat Germ 

Agglutinin (which has been used previously to label PNAG in Y. 

pseudotuberculosis biofilms on C. elegans and emits a red fluorescence 

(Atkinson et al., 2011)).  To aid localisation of bacteria in the biofilm, all strains 

were expressing gfp3 from pSB2020 (Figure 4.4). 

 

The wild-type strain forms large biofilms that accumulate at the anterior end of 

C. elegans, particularly around the mouthparts (Figure 4.4 i a).  These biofilms 

stain positively for EPS using R-WGA and appears red (Figure 4.4 i a & I b), 

which can also be observed in the worm digestive tract (Figure 4.4 i b).  Biofilms 

formed by the ∆ypsI ∆ytbI mutant are substantially smaller than those formed 

by wild-type (compare Figure 4.4 i & ii), and the biofilm appears more diffuse 

across the surface of the worm rather than being localised to the worm head 

(Figure 4.4 ii a).  R-WGA highlights that EPS is present in these biofilms, 

however GFP fluorescence suggests there to be less bacterial cells contained 

within the biofilm (compare Figure 4.4 ii b & ii c with Figure 4.4 i b & ii c).  In 

some worms infected with the ∆ypsI ∆ytbI mutant, a large distended region of 

GFP fluorescence can be observed at the posterior end of the pharynx, probably 

in the terminal bulb (Figure 4.4 ii c), and may reflect the fact that C. elegans can 

graze on these bacteria, since this type of fluorescence is observed when C. 

elegans is fed its usual food source, E. coli OP50 (Darby et al., 2002). 
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Figure 4.4| Biofilms formed on the cuticle of C. elegans by wild-type Y. 

pseudotuberculosis (i) and the AHL negative ∆ypsI ∆ytbI mutant (ii) as 

revealed by CLSM.  Biofilms are labelled with R-WGA to highlight EPS, which 

appears red, while bacteria expressing gfp3 appear green.  Where bacteria 

and EPS co-localise, a yellow colour can be observed.  The wild-type forms 

large biofilms that accumulate primarily at the anterior end of the worm, 

around the mouthparts (i a), with large micro-colonies imbedded in the 

matrix (i b & i c, arrows).  Some R-WGA labelling within the worm digestive 

tract suggests the biofilm to extend inside the worm as well as outside (i b).  

The biofilms formed by the ∆ypsI ∆ytbI mutant are substantially smaller and 

appear to be more diffuse over the worm surface (ii a), with fewer bacterial 

cells and no clear micro-colonies within the matrix (ii b & ii c).  C. elegans 

may be able to efficiently graze on ∆ypsI ∆ytbI cells, as shown by the 

distended region of GFP in the terminal bulb (II c & compare results 

presented by Darby et. al. (2002). 
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4.2.2 The biofilm ECM contains extracellular DNA 

 

Chapter 3 reported that LCBs contain substantial amounts of eDNA as part of the 

biofilm matrix, similar to that described for several other species (Vilain et al., 

2009, Whitchurch et al., 2002, Izano et al., 2008, Kreth et al., 2009, 

Böckelmann et al., 2006).  To investigate the presence of eDNA in Y. 

pseudotuberculosis biofilms on C. elegans, worms infected with Y. 

pseudotuberculosis were labelled with DAPI, which has been previously used to 

label eDNA in bacterial biofilms (Vilain et al., 2009, Böckelmann et al., 2006). 

 

Figure 4.5 reveals that eDNA is present throughout the biofilm matrix on the 

surface on C. elegans (Figure 4.5 a).  When only DAPI fluorescence is visualised, 

this eDNA can be observed to extend throughout the worm digestive tract 

(Figure 4.5 b, arrow).  The eDNA appears to be present as a network, since 

strands of eDNA can clearly be observed when the image is magnified (Figure 

4.5 c arrows). 
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Figure 4.5| Y. pseudotuberculosis biofilms on C. elegans stain positively for 

eDNA using DAPI, which gives a blue fluorescence, as revealed by CLSM.  

Panels show eDNA labelled in C. elegans following infection with Y. 

pseudotuberculosis for 16 h (a) and a diagram showing only eDNA within the 

biofilm (b).  Extracellular DNA can clearly be seen throughout the biofilm and 

extends into the worm digestive tract (b, arrow)  The red square within 

panel b has been magnified (c) and shows the eDNA exists as a filamentous 

network in the biofilm, since strands can clearly be observed throughout and 

on the periphery of the biofilm (c, arrows).  

 

Extracellular DNA represents an important structural component of the matrix for 

the biofilms of several species of bacteria, and can be disrupted by the addition 

of DNase I (Whitchurch et al., 2002, Izano et al., 2008).  Chapter 3 presented 

data to show that LCBs formed by Y. pseudotuberculosis could be prevented by 

the addition of DNase I, and this raised the possibility that eDNA constitutes a 

structural component of Y. pseudotuberculosis biofilm on C. elegans.  To 

investigate this, C. elegans were infected with a Y. pseudotuberculosis culture 

which had been treated with DNase I before being seeded onto worm- NGM 

a b

c
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plates, in order to degrade eDNA.  Figure 4.6 shows that when C. elegans is 

infected with wild-type Y. pseudotuberculosis in the presence of DNase I, the 

biofilms produced are reduced two-fold when compared with the untreated 

control. 

 

 

Figure 4.6| Biofilm severity index calculated for biofilms caused by 

Y. pseudotuberculosis on the surface of C. elegans when the 

bacterial culture is either treated with DNase I or untreated.  

Treatment of the bacterial culture prior with DNase I prior to seeding 

on NGM-plates reduces the severity of the biofilms that form on C. 

elegans by approximately 50 %. Error bars represent standard 

deviation of biofilm severity.  Measurements are the mean of 60 

worms per condition from three plates, 20 worms per plate.   

 

Together, Figures 4.5 and 4.6 show that Y. pseudotuberculosis biofilms on C. 

elegans contain substantial amounts of eDNA that appears in a network through 

the biofilm, and that this eDNA is potentially important for the architecture of 

the biofilm.  
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4.2.3  Y. pseudotuberculosis colonises and forms biofilms on 

C. elegans in a compost model of infection 

 

Biofilms are often considered to be an anti-predatory adaptation (Matz and 

Kjelleberg, 2005), however Tan et al. (2004) suggest that Y. pseudotuberculosis 

forms biofilms on the surface of C. elegans in a passive interaction (Tan and 

Darby, 2004), suggesting that these biofilms are an in vitro artefact.  The 

possibility that Y. pseudotuberculosis uses biofilms on C. elegans as an anti-

predatory mechanism relies on the ability for biofilms to develop in a natural 

environment which does not typically provide an ideal surface such as an agar 

plate for biofilm formation.  To determine whether Y. pseudotuberculosis forms 

biofilms on C. elegans in an environment which more closely resembles the 

natural habitat of C. elegans, worms were introduced into sterilised commercial 

compost, seeded with Y. pseudotuberculosis and incubated for 24 to 48 h before 

being visualised by CLSM.   

 

After 24 h, Y. pseudotuberculosis is found predominantly in the anterior region of 

the worm gut (Figure 4.7 a), whereas after 48 h, a large proportion of the worm 

is colonised by Y. pseudotuberculosis, with GFP labelled bacteria found in biofilm-

like material which surrounds the mouth (Figure 4.7 b, white arrow), in the 

intestines (Figure 4.7 b, black arrow) and in the posterior digestive tract (Figure 

4.7 b, red arrow).  When worms are inoculated into compost not seeded with Y. 

pseudotuberculosis, no green florescence is observed (Figure 4.7 c). 
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Figure 4.7| The colonisation of C. elegans by Y. pseudotuberculosis in 

compost, as revealed by CLSM.  After 24 h, the bacteria are localised 

primarily in the anterior region of the worm digestive tract (a), after 48 h, 

the bacteria can be found throughout the worm digestive tract (red arrow) 

and in the intestines (black arrow).  The material surrounding the worm 

mouth also shows some GFP fluorescence (white arrow).  When C. elegans is 

inoculated into soil without Y. pseudotuberculosis, no GFP fluorescence can 

be observed (c). 

 

To investigate the possibility that the colonisation of C. elegans by Y. 

pseudotuberculosis after 48 h in compost is a consequence of a biofilm-related 

infection, the worms were labelled with R-WGA to highlight EPS (Figure 4.8 i a, b 

& d) and DAPI to label eDNA (Figure 4.8 i c & d), before being inspected by 

CLSM.  Figure 4.8 shows that the worms appear to contain biofilm material 

throughout the gut.  EPS is found blocking the mouthparts of the worm (Figure 

4.8 i a & b) and throughout the gut of worms infected with Y. pseudotuberculosis 

(Figure 4.8 i a & b white arrows).  Extracellular DNA is also found in these 

biofilms, which appears in a network like structure surrounding the mouthparts 

a

b

c
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(Figure 4.8 i c), and blue DAPI fluorescence co-localises with R-WGA in the 

biofilm blocking the mouthparts of the worm (Figure 4.8 i d).   

 

To investigate if QS was also involved in the formation of biofilms on C. elegans 

in compost, as in agar, the ∆ypsI ∆ytbI mutant was inoculated into compost and 

used to infect C. elegans.  The biofilms that grew in this assay were labelled with 

R-WGA and DAPI to label EPS and eDNA respectively, and visualised by CLSM.  

In comparison to wild-type biofilms, biofilms formed by the ∆ypsI ∆ytbI mutant 

cannot be clearly observed on the worm (Figure 4.8 ii a & b).  GFP fluorescence 

from the bacteria indicates that the ∆ypsI ∆ytbI mutant is less able to proliferate 

inside the worm, and does not show the marked dissemination to the intestines 

observed with the wild type (compare Figure 4.8 i a & b with ii a & b). When only 

the DAPI and R-WGA channels are visualised, very small biofilms can be seen in 

the mouth of the worm (Figure 4.8 ii c & d), with a R-WGA labelled „plug‟ and 

DAPI labelling the lining of the buccal cavity, although these biofilms are 

substantially smaller than those formed by the wild-type (compare Figure 4.8 ii d 

with i c).  When worms are placed into compost inoculated only with OP50, and 

are labelled with R-WGA and DAPI, no red or blue fluorescence can be observed, 

and only low levels of green fluorescence can be seen (figure 4.8 iii a & b).  
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4.2.4  QS regulated biofilms involve the pYV plasmid 

 

Chapter 3 presented data to show that LCBs are modulated by QS in Y. 

pseudotuberculosis through control of the T3SS.  To investigate the possibility 

that the ability for the ΔypsI ΔytbI mutant to form biofilms on the surface of C. 

elegans was linked to the virulence plasmid, pYV cured derivatives of both wild-

type and the ΔypsI ΔytbI (pYV-) were evaluated in C. elegans agar plate biofilm 

experiments. 

 

Figure 4.9 reveals that the presence or absence of the pYV plasmid does not 

affect the ability of the wild-type to form biofilms on C. elegans, consistent with 

the results described by Joshua et al. (2003).  However, when the pYV plasmid is 

cured from the ∆ypsI ∆ytbI mutant, biofilm formation is restored to that of the 

wild-type.  This indicates that QS normally represses the expression of a pYV-

associated factor which would otherwise prevent biofilm formation on C. elegans. 
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Figure 4.9| The pYV plasmid determines the reduction in biofilm load in a 

∆ypsI ∆ytbI mutant.   Biofilm formation on the surface of C. elegans is 

unaffected by the presence or absence of pYV in the wild-type.  However, 

the ∆ypsI ∆ytbI pYV
-
 mutant forms biofilms with similar severity to the wild-

type, in contrast to the ∆ypsI ∆ytbI pYV
+ 

mutant, in which biofilm formation 

is reduced approximately two-fold.  Measurements are the mean of 60 

worms per condition from three plates, 20 worms per plate.   

 

4.2.5  QS affects biofilms through deregulation of the T3SS 

 

Figure 4.9 supports the data presented in Chapter 3, which showed that 

formation of LCBs by the ∆ypsI ∆ytbI mutant involved the pYV, and suggests 

that the pYV plasmid is important for biofilm formation on C. elegans.  For LCBs, 

this was related to the Yop-Ysc T3SS, since the ∆ypsI ∆ytbI ∆yscJ mutant could 

not form LCBs.  To investigate whether the Yop-Ysc system affected biofilm 

formation on C. elegans, the ∆ypsI ∆ytbI ∆yscJ mutant described in Chapter 3 

was used in C. elegans biofilm assays.  When yscJ is deleted in the ∆ypsI ∆ytbI 

mutant background to produce the triple ∆ypsI ∆ytbI ∆yscJ mutant, biofilm 

severity was restored to wild-type levels. Complementation of the ∆ypsI ∆ytbI 
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∆yscJ triple mutant with yscJ on pHGyscJ reduced biofilm formation three-fold, 

to levels similar to the ∆ypsI ∆ytbI mutant (Figure 4.10). 

 

 

Figure 4.10| The attenuation of biofilm formation in the ΔypsI ΔytbI 

mutant is reversed by mutation of yscJ (ΔypsI ΔytbI ∆yscJ). In the wild-type 

background, there does not appear to be an effect of the yscJ mutation on 

the formation of biofilms on the cuticle of C. elegans (compare wild-type and 

ΔyscJ).  Complementation of the yscJ mutation in ΔypsI ΔytbI (ΔypsI ΔytbI 

ΔyscJ pHG::yscJ) restores the reduction in biofilm severity to levels similar to 

the ΔypsI ΔytbI strain.  Measurements are the mean of 60 worms per 

condition from three plates, 20 worms per plate.   

 

The reduction in biofilm severity exhibited by ΔypsI ΔytbI compared with the 

wild-type is, therefore, dependent upon the presence of the pYV, and biofilms 

formed by the ∆ypsI ∆ytbI mutant can be restored to levels comparable with the 

wild-type by deletion of yscJ.  Additionally, the ΔypsI ΔytbI ∆yscJ mutant 

biofilms can be restored to ΔypsI ΔytbI mutant levels by providing yscJ encoded 

on pHGyscJ.  These results are consistent with a role for the type III injectisome 

in preventing biofilm formation on C. elegans, and suggest that the injectisome, 

the secreted Yop effectors, or perhaps both, prevent biofilm formation on C. 

elegans.  
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4.2.6  The injectisome is responsible for repressing biofilms 

 

Chapter 3 presented data to show that LCBs are as a consequence of secretion 

of proteins through the T3SS.  Since the biofilm load on C. elegans can be 

restored to wild-type levels in the ∆ypsI ∆ytbI mutant by deletion of yscJ, this 

could suggest that a similar process underlies the QS-dependent regulation of 

biofilm formation on C. elegans.  Alternatively, it is possible that the Yop-Ysc 

injectisome structure represents a physical barrier, and prevents the association 

between the bacterial cell and the nematode surface. To attempt to differentiate 

between these possibilities, wild-type Y. pseudotuberculosis was grown at 37oC 

in the presence of calcium to permit the production of the T3SS injectisome, but 

not the release of Yop effectors (Forsberg et al., 1991, Michiels et al., 1990).  Y. 

pseudotuberculosis was seeded onto NGM agar supplemented with calcium 

alongside a wild-type control grown at 30oC.   

 

When Y. pseudotuberculosis is grown at 37oC in LB (conditions to express the 

T3SS injectisome, but not to secrete Yop effectors), biofilms are not produced on 

C. elegans (Figure 4.11).  This suggests that the presence of the needle rather 

than secretion through the injectisome is responsible for the QS-dependent 

repression of biofilm formation on C. elegans.     
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Figure 4.11| Y. pseudotuberculosis grown at 37
o
C does not form 

biofilms on C. elegans.  When Y. pseudotuberculosis is conditioned to 

express the injectisome needle by growth at 37
o
C in medium 

containing calcium, the formation of biofilms is abolished, in contrast 

to cultures grown at 30
o
C which develop substantial biofilms on C. 

elegans. Measurements are the mean of 60 worms per condition 

from three plates, 20 worms per plate.    

 

Tan et al. (2004) showed that the biofilm matrix may not be produced during 

growth at 37oC (Tan and Darby, 2004).  To ensure that the presence of the 

injectisome on the cell surface, rather than the lack of matrix components, was 

responsible for the abrogation of biofilm formation, Y. pseudotuberculosis 

conditioned at 37oC was re-suspended in supernatant from Y. pseudotuberculosis 

grown at 30oC.  In this case, even though biofilm matrix components had been 

supplied to the bacteria, they were still incapable of forming biofilms when 

compared with Y. pseudotuberculosis grown at 30oC (data not shown), 

emphasising the fact that the structural components of the T3SS are intrinsically 

important for preventing biofilm formation on C. elegans. 
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4.3 Discussion 

 

4.3.1 The significance of QS regulated biofilm formation  

 

Y. pseudotuberculosis forms biofilms on C. elegans, which are positively 

regulated by QS since the ∆ypsI ∆ytbI mutant, which cannot produce AHLs, is 

substantially reduced in its ability to form biofilms compared with the wild-type 

strain.  Darby et al. (2002) previously showed that the biofilms formed by Y. 

pseudotuberculosis on C. elegans were sufficient to prevent the worm feeding on 

the bacteria, and in that study, when C. elegans was fed with E. coli OP50 a 

bolus of bacteria could be observed in the posterior pharynx, probably in the 

terminal bulb (Darby et al., 2002).  Worms infected with the ∆ypsI ∆ytbI mutant 

often show a distended area of GFP fluorescence in the terminal bulb, which may 

reflect that these bacteria are being actively grazed upon by C. elegans.  

Comparatively, the absence of this distended area of green fluorescence in 

worms infected with the wild-type, and also the fact that bacteria through the 

intestines co-localise with matrix components suggests that the wild-type resists 

grazing by C. elegans in a way that is QS-dependent.   

 

4.3.2 Extracellular DNA in the biofilm matrix 

 

By using low concentrations of DAPI, eDNA can be labelled and not chromosomal 

DNA (Vilain et al., 2009).  This has shown that large quantities of eDNA can be 

observed in the biofilms caused by Y. pseudotuberculosis.  The fact that biofilms 

are reduced in the presence of DNase I further suggests that eDNA is an 

important matrix component of Y. pseudotuberculosis biofilms, while several 



 
159 

 

other bacteria also use eDNA as part of the matrix, including P. aeruginosa, 

Bacillus cereus, Staphylococcus spp., and Streptococcus mutans (Izano et al., 

2008, Whitchurch et al., 2002, Vilain et al., 2009, Perry et al., 2009).  Other 

studies have found that Y. pseudotuberculosis biofilms on C. elegans could be 

dispersed using M9 buffer raised to pH 10, which has been attributed to the 

breakdown of polysaccharides under high pH (Tan and Darby, 2004).  However, 

DNA also dissociates under basic conditions, and given the importance of DNA in 

Y. pseudotuberculosis biofilms it is possible that polysaccharides and / or DNA 

were affected in that study, and in other bacteria, DNA and polysaccharides may 

both be necessary to maintain biofilm architecture (Izano et al., 2008).  The 

eDNA appears to be organised in a network throughout the biofilm, as has been 

described for other bacteria, (Allesen-Holm et al., 2006, Böckelmann et al., 

2006), and it is tempting to speculate that Y. pseudotuberculosis may use this 

DNA network as nanowires to facilitate movement within the biofilms.   This has 

been suggested for other bacteria (Flemming et al., 2007), although any 

movement of Y. pseudotuberculosis in this way must be independent of flagella, 

since a non-motile ∆fliC mutant can still form biofilms (Atkinson et al., 2011).   

 

There also appears to be substantially less eDNA in the biofilms formed by the 

ΔypsI ΔytbI mutant than those caused by wild-type.  In other bacteria such as P. 

aeruginosa and Streptococcus spp., QS affects the release of eDNA, probably 

resulting from the controlled lysis of a sub-population of cells (Allesen-Holm et 

al., 2006, Spoering and Gilmore, 2006).  However, AHL-dependent QS could not 

be demonstrated to directly affect eDNA production (data not shown).  It is 

possible however that QS affects biofilm specific eDNA release, although it is 

more likely that the reduction of eDNA in biofilms formed by the ΔypsI ΔytbI 

mutant is a consequence of the reduced size of the biofilm or increased ability 

for the worm to graze on the mutant, rather than the reduced size of the biofilm 

being a consequence of reduced eDNA release.  This notwithstanding, the 
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discovery that eDNA is present in and important for Y. pseudotuberculosis 

biofilms on C. elegans may prove to be important for the future bio-control of 

this and related organisms in the event of disease outbreaks.   

 

4.3.3 The relationship between QS, T3S and biofilms 

 

In light of the relationship between QS, T3S and LCBs at 37oC, and since LCBs 

and C. elegans biofilms share similar matrix compositions, biofilms formed on C. 

elegans were investigated using plasmid cured derivatives of wild-type and the 

ΔypsI ΔytbI mutant alongside their pYV harbouring counterparts.  This showed 

that in the absence of the pYV plasmid, the reduced biofilms formed by the 

ΔypsI ΔytbI mutant were restored to wild-type levels.  This suggested that 

biofilm load on C. elegans was modulated by QS-dependent regulation of the 

pYV plasmid.  To exclude factors on the pYV plasmid other than the T3SS, 

targeted deletion of yscJ in the ΔypsI ΔytbI mutant background (ΔypsI ΔytbI 

ΔyscJ) also restores biofilm load to wild-type levels, suggesting that the T3SS 

modulates biofilms on the cuticle of C. elegans. 

 

In the case of LCBs, T3S appears to release a factor into the supernatant which 

induces LCB formation, and so perhaps a similar process underlines the effect of 

T3S on C. elegans biofilms, albeit oppositely, whereby this factor would repress 

biofilm formation on C. elegans.  Alternatively, it is possible that the Yop-Ysc 

injectisome structure represents a physical or regulatory barrier to the 

association between the bacterial cell and the nematode surface.  To distinguish 

between these two possibilities, wild-type Y. pseudotuberculosis was conditioned 

by overnight growth at 37oC in calcium containing (i.e. not calcium chelated) 

media.  This permits the production of the T3SS injectisome, but not the release 

of Yop effectors (Forsberg et al., 1991, Michiels et al., 1990), and allows for the 
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dissection of the role of secretion versus the injectisome structure in the control 

of biofilm formation on C. elegans.   These results revealed that the presence of 

the Yop injectisome alone was sufficient to prevent biofilm development and, 

unlike LCBs, precluded a requirement for T3S per se in the regulation of biofilms 

on C. elegans.   

 

It is possible that the presence of the injectisome acts as a barrier to occlude the 

normal binding between Y. pseudotuberculosis cell surface proteins and 

components on the nematode surface (Figure 5.12 a).  This would be consistent 

with the loss of biofilm formation which occurs following mutation of several C. 

elegans surface-determinants (Drace et al., 2009, Darby et al., 2007).  However, 

it is also possible that the injectisome is able to feed back information to the cell 

which causes the prevention of biofilm formation- perhaps a constitutively open 

injectisome (which might occur in the ∆ypsI ∆ytbI mutant) releases a „factor‟ 

which, when intracellular, fulfils a role in the induction of biofilms, and when the 

export of this factor is prevented, either by removal of the pYV or by deletion of 

yscJ, biofilm formation is restored to wild-type levels (Figure 4.12 b).  The T3SS 

may do this in a way analogous to the FlgM / FliA relationship in flagella 

(Cornelis and Wolf-Watz, 1997a), and involves the Cpx two-component system 

and an extra-cytoplasmic function sigma factor (Carlsson et al., 2007a).   

However, this would not explain why when conditioning the wild-type at 37oC, 

where the injectisome is present but secretion should not occur, the strain does 

not produce biofilms, since calcium within the worm NGM should also continue to 

suppress T3S.  It is also possible that the structure of the injectisome itself 

somehow signals gene regulation in the cell (Figure 4.12 c).  It would be 

interesting to investigate if other processes are also affected in this way, and to 

dissect the nature of this regulation. 
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Figure 4.12| Three possible mechanisms for biofilm repression by the Ysc 

injectisome in the ∆ypsI ∆ytbI mutant.  The injectisome could prevent close 

association between the bacterial cell and the nematode surface, thus 

preventing attachment and biofilm formation (a).  The injectisome may 

secrete a ‘factor’ which fulfils and intracellular role in activating biofilm 

formation (b), or the injectisome itself may cause changes in gene regulation 

that down-regulate biofilm formation when the injectisome is present (c). 
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Feedback may also involve other regulatory systems, especially those which 

reciprocally regulate the T3SS and biofilm formation.  In P. aeruginosa the RetS 

and LadS sensor proteins accomplish this- RetS is required for expression of the 

T3SS genes and for repression of the pel and psl matrix polysaccharide genes, 

while LadS has the opposite effect on T3SS gene expression and biofilm 

formation (Goodman et al., 2004, Laskowski et al., 2004, Zolfaghar et al., 2005, 

Ventre et al., 2006).  The SadARS three-component system also functions in this 

way, regulating both biofilm maturation and T3S, and provides a link between 

sensor-response systems in regulating biofilm formation versus T3S (Kuchma et 

al., 2005).  Indeed in P. aeruginosa, the ExoS toxin of the T3SS, is regulated by 

the RhlI/R QS system and is down-regulated in biofilms (Hogardt et al., 2004).  

Mutants in T3SS also sometimes show altered biofilm formation in other 

bacteria, such as in P. aeruginosa where transposon mutants in the T3SS have 

been shown to exhibit more attachment to plastic, indicating that the T3SS can 

influence biofilm formation (Kuchma et al., 2005).  These data provide evidence 

that T3SSs are more than just conduits for the delivery of toxins into eukaryotic 

cells, and are tightly linked into the lifestyles of bacteria, and that pleiotropic 

behaviours such as attachment and biofilm formation are affected depending on 

the ability for the bacteria to engage in T3S. 

 

4.3.4  Biofilm formation on agar and in compost 

 

Bacteriovorous nematodes such as C. elegans are found almost exclusively in 

organic nutrient rich soils (Barrière and Félix, 2005, Félix and Braendle, 2010, 

Kiontke and Sudhaus, 2006), and many Y. pseudotuberculosis outbreaks are 

associated with agricultural activity (Nuorti et al., 2004, Laukkanen et al., 2008, 

Rimhanen-Finne et al., 2009), indicating these organisms may share a natural 

habitat.  In Y. pseudotuberculosis and other bacteria, biofilms aid resistance to 



 
164 

 

predation (Matz and Kjelleberg, 2005, Pickup et al., 2007, Drace and Darby, 

2008); however Tan and Darby (2003) suggest that Y. pseudotuberculosis 

accumulates on C. elegans in a „snow-plough‟ fashion (Tan and Darby, 2004), 

which may be difficult to visualise in soil environments which lack a lawn of 

bacteria for a „snow-plough‟ to move through, since smooth agar plates are ideal 

for the lateral movement of worms through a viscous bacterial lawn, and on agar 

plates biofilms grow quickly (Tan and Darby, 2004, Joshua et al., 2003), while 

the compost model however presents a coarse, 3-dimensional environment.  In 

spite of this, Y. pseudotuberculosis biofilms grow on C. elegans in compost, 

which shares the same profile of matrix components as those grown in the agar 

model, showing an extensive network of eDNA and EPS.  The R-WGA labelled 

EPS is probably poly β-1,6-N-acetyl-D-glucosamine, the product of the hms locus 

(Bobrov et al., 2008).  Although R-WGA can label other molecules, including 

peptidoglycan, which contains N-acetyl glucosamine as the sugar backbone 

(Sizemore et al., 1990), it is probably not labelling peptidoglycan in these 

biofilms, since R-WGA does not solely co-localise with bacterial cells expressing 

gfp3.  Both Y. pseudotuberculosis and X. nematophila require the hms genes to 

form biofilms on C. elegans on agar (Drace and Darby, 2008), and these data 

suggest it is also involved in biofilms in compost.   

 

Importantly, DAPI and R-WGA labelling shows the majority of the biofilm in the 

compost model appears to be throughout the worm digestive tract, so it is 

tempting to speculate that the biofilms originate inside the worm before 

protruding from the mouthparts.  This would contradict the „snow-plough‟ 

hypothesis, which would be difficult to use to explain the formation of these 

internal biofilms.  This is interesting as biofilm matrix can also be visualised in 

the digestive tract of worms infected with Y. pseudotuberculosis in the agar 

model- when biofilms are labelled with DAPI and R-WGA, some eDNA and EPS 

can be observed in the C. elegans digestive tract.  However, the density of the 
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biofilm around the worm head may largely occlude DAPI and R-WGA and prevent 

most of the ECM in the internal biofilm from being labelled.  For example, when 

R-WGA is used on 48 h biofilms grown in the agar model, even the external 

biofilm mass is impenetrable to the label (Atkinson et al., 2011).  Additionally, 

although biofilms that grow in the agar model can sometimes be multi-focal, the 

majority of the biofilm, both in soil and on agar, appears to emerge from the 

worm mouthparts.  The presence of biofilm material in the worm digestive tract 

could suggest that these biofilms are regurgitated by the worm and accumulate 

outside the mouth; this would be analogous both to how Y. pestis is transferred 

from the flea vector to the mammal, and how Photorhabdus spp. are transferred 

from the digestive tract of entomopathogenic nematodes to the insect host 

(Ciche and Ensign, 2003) and raises the possibility that Y. pseudotuberculosis 

biofilms accumulation on nematodes may also help spread disease.  This may be 

especially important since nematodes are the most abundant metazoan on Earth 

(Neher, 2001). 

 

Both on agar and in soil, biofilm load appears substantially reduced in the ΔypsI 

ΔytbI mutant compared with the wild-type.  The finding that mutation of ypsI 

and ytbI dramatically affects biofilm formation in soil and on agar presents 

evidence that QS is involved in regulating natural anti-predatory biofilms in Y. 

pseudotuberculosis.  This requirement for QS in anti-predatory biofilms is 

becoming increasingly recognised (Matz et al., 2004, Queck et al., 2006), 

providing evidence that the extrapolation of a role for QS within in vitro biofilms 

to those in the environment is appropriate.  
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4.3.5 Conclusions 

 

The work presented in this chapter suggests that Y. pseudotuberculosis biofilms 

which form on C. elegans are possibly a natural adaptation to resist predation by 

C. elegans, since biofilms that develop on C. elegans when incubated on a lawn 

of Y. pseudotuberculosis seeded onto an agar plate are also observed when 

worms are allowed to graze on Y. pseudotuberculosis inoculated into sterile 

compost.  Biofilms that develop on agar and in soil are very similar in 

composition, staining positively for matrix components eDNA and 

polysaccharides.  These biofilms contain substantial amounts of extracellular 

DNA, which is an important structural component of the biofilm since biofilms in 

the agar model can be reduced in the presence of DNase I.  QS is important in 

the regulation of these biofilms, and influences the growth of biofilms in a way 

that is related to the repressive effect of QS on the Y. pseudotuberculosis T3SS.  

The precise mechanism by which the T3SS affects biofilm formation is still 

unclear, but clearly requires an intact injectisome rather than secretion through 

the injectisome per se.  The injectisome may present a physical barrier between 

the bacterial cell and worm surface, preventing the close association required for 

attachment.  However, it is equally possible that a pleiotropic effect of the 

injectisome is responsible for blocking biofilm formation, since injectisomes are 

known to be able to feed-back information such as the progress of injectisome 

assembly and competence for secretion, and it is perhaps one of these 

mechanisms which repress biofilm formation.  While presently it is not possible 

to distinguish between these possibilities, evidence favours a pleiotropic role for 

the injectisome in regulating behaviour in Y. pseudotuberculosis, which will be 

the subject of the following Chapter.  
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Chapter 5| 

 

Reciprocal control of the motility 

regulon and the type 3 secretion 

system involves quorum sensing 
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5.1 Introduction 

 

5.1.1 The biological link between flagella and the T3SS 

 

Flagella are macromolecular bacterial motors attached to a long, thin, external 

propeller-like filament, which facilitate bacterial movement (Macnab, 1999, 

Macnab, 2003). Conversely, bacterial type 3 secretion systems are 

macromolecular organelles which penetrate eukaryotic cell membranes and 

deliver anti-host effector proteins into the cytoplasm of eukaryotic cells (Galán 

and Collmer, 1999, Cornelis, 2006).   Flagella are important for invasion and 

virulence in several bacterial species (Josenhans and Suerbaum, 2002), while 

T3SSs modulate the physiology of the host cell to co-opt host cells to facilitate 

bacterial growth, for example by suppressing phagocytosis or inducing apoptosis 

(Galán and Collmer, 1999, Mota and Cornelis, 2005).   

 

Motility and virulence are intricately linked (Ottemann and Miller, 1997, 

Josenhans and Suerbaum, 2002), and these organelles have a remarkably 

similar architecture and have evolved from a common ancestor (Blocker et al., 

2003, Saier, 2004, Erhardt et al., 2010, Gophna et al., 2003) (Figure 5.1).  

Underlining the structural homology between the two systems, there is clear 

conservation in the proteins required to build these structures, with 

approximately half the proteins required for building flagella being homologous 

to their injectisome counterparts (Erhardt et al., 2010, Cornelis, 2006).    
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Figure 5.1| Comparison of the structure of the flagella and injectisome.  

The bacterial flagella and type 3 secretion injectisome are structurally 

similar, both comprising a cytoplasmic C-ring like structure, an inner 

membrane MS-ring which connects to an inner rod, attached to the outer 

membrane OM-ring (comprised of the P- and L-ring in flagella) (Cornelis and 

Van Gijsegem, 2000, Cornelis, 2006).  In flagella, a hook connects the basal 

body to the filament (Homma et al., 1990), while in the injectisome the 

needle emerges from the basal body (Cornelis, 2006).  Both structures 

possess a cap (known as the tip in the injectisome) which covers the most 

distal end of the nanomachine.  Figure adapted from Erhardt et al., 2010. 

 

5.1.2  The dichotomy of Flagella and the T3SS in the Yersinia  

 

In Y. pseudotuberculosis and Y. enterocolitica there is a natural dichotomy 

between the expression of the flagella and Yop-Ysc T3SS, whereby flagella are 

only expressed at ambient temperatures (<28oC) and repressed at 37oC 

(Kapatral and Minnich, 1995), while the T3SS is only produced during growth at 

37oC (Cornelis, 2002b).  The down regulation of flagella at 37oC is co-incident 

with the transcriptional down-regulation of the flagella master regulator flhDC 

and the flagella specific sigma factor fliA (Kapatral and Minnich, 1995, Atkinson 
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et al., 2008) due to the action of global modulators including Csr (Wei et al., 

2001, Heroven et al., 2008), and H-NS (Bertin et al., 1994).  For the Yop-Ysc 

system, expression of the T3SS regulator, virF, is modulated by DNA topology 

changes (Rohde et al., 1994, Rohde et al., 1999) so that it becomes active only 

at 37oC.  However, several other systems also regulate virF expression and the 

T3SS.  These include YmoA (Cornelis et al., 1991, de Rouvroit et al., 1992), 

FlhDC (Bleves et al., 2002) and FliA (Horne and Prüß, 2006), which repress the 

T3SS and modulate the environmental control of Yop production, such that 

mutants in these genes do not require growth at 37oC in order to produce Yop 

proteins, and can also secrete Yop effectors into the growth supernatant at lower 

temperatures, regardless of calcium concentration (Bleves et al., 2002, Horne 

and Prüß, 2006, Cornelis et al., 1991).  Several systems influence both motility 

and the T3SS, particularly DNA-methylation by the Dam adenine 

methyltransferase (Julio et al., 2002, Falker et al., 2006, Falker et al., 2007), O-

antigen status of Yersinia lipopolysaccharide, which is also regulated by Dam 

(Falker et al., 2007, Bengoechea et al., 2004, Perez-Gutierrez et al., 2007), the 

RNA chaperone Hfq (Schiano et al., 2010) and nucleosome-associated proteins 

H-NS and YmoA (Cornelis et al., 1991, Ellison and Miller, 2006).  This suggests 

that DNA topology changes alone do not explain the thermoregulation of T3S, 

and instead indicates that a complex regulatory circuit underpins the regulatory 

relationship between flagella and the Yop-Ysc T3SS.  However, while it has been 

shown that the flagella system can regulate the Yop-Ysc T3SS, it has not been 

shown that this regulation can operate reciprocally. 
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5.1.3  Chapter 5 aims 

 

The data presented in Chapter 3 demonstrated that QS and the Yop-Ysc T3SS 

were linked, and that the Ysc injectisome played a role in the formation of QS-

mediated LCBs in Y. pseudotuberculosis, probably as a result of T3S-dependent 

protein secretion.  The data presented in Chapter 4 demonstrated that the 

formation of biofilms by Y. pseudotuberculosis on the nematode C. elegans is 

regulated by QS via a mechanism involving the Ysc injectisome.  The finding that 

the injectisome could influence biofilm formation in liquid culture and on the C. 

elegans cuticle is interesting as it suggests that the injectisome can play a role in 

regulating pleiotropic behaviours, and sets a precedent for the involvement of 

the T3SS in QS-associated traits.  Alongside clumping, motility was the first 

phenotype to be linked to QS-dependent regulation in Y. pseudotuberculosis 

(Atkinson et al., 1999, Atkinson et al., 2008).  The flagella regulon also regulates 

biofilm formation, both in liquid culture (Chapter 3) and on the surface of C. 

elegans (Atkinson et al., 2011), while in Y. enterocolitica biofilm formation and 

T3S are also linked to the flagella regulon (Bleves et al., 2002, Horne and Prüß, 

2006, Kim et al., 2008).  This prompted an investigation into the role that the 

Ysc injectisome played in regulating flagella-mediated motility.  A ∆yscJ mutant, 

unable to produce injectisomes (Diepold et al., 2010) was constructed in an 

attempt to investigate the role of the injectisome itself, since the underlying 

regulatory elements of the T3SS remain genetically intact in this mutant.   

 

The data presented in this chapter demonstrates that motility is negatively 

regulated by some component or components of the Ysc injectisome, since a 

∆yscJ mutant, which cannot build the injectisome, shows a hyper-motile 

phenotype during growth at 22oC.  This is supported by the observation that 

expression of the flagella regulators flhDC and fliA are de-repressed in this 
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mutant.  Hyper-motility and up-regulation of flhDC is dependent on QS, since 

deletion of the AHL synthase genes ypsI and ytbI results in the down-regulation 

of flhDC expression and motility.  Furthermore, the data reveals that the 

relationship between T3S, QS and flagella may involve an effect of the Ysc 

injectisome on the expression of the QS genes, since in the ∆yscJ mutant, the 

expression of ypsI and ytbR is down-regulated compared with the wild-type, 

whereas the expression of ypsR and ytbI is up-regulated.  In addition, and 

further to the results presented in Chapter 3, the results in this chapter show 

that the regulation of Yop secretion by FlhDC, FliA and FlhA is under-lined by de-

repression of the expression of the major Yop-Ysc regulator, VirF, and up-

regulated virF expression is also observed in several QS mutants which secrete 

Yop-related proteins into the growth supernatant during growth at 30oC.    
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5.2  Results 

 

5.2.1  Mutation of yscJ results in hyper-motility and over-

production of flagellin 

 

To investigate whether any regulation was exerted by structural elements of the 

Yop-Ysc system on flagella, a Y. pseudotuberculosis yscJ mutant was 

constructed.  This mutant then represents an injectisome-minus strain, and can 

indicate if structural elements of the T3SS injectisome could play a role in 

regulating flagella, since the underlying regulatory elements of the T3SS are 

genetically intact.   

 

When viewed by light microscopy, cultures of the ∆yscJ mutant grown overnight 

at 22oC could be seen to be motile, similar to the ∆ypsI and ∆ypsR mutants, but 

unlike the wild-type, which can take up to 72 h to become motile (Atkinson et 

al., 1999, Atkinson et al., 2008).  To investigate this further, motility plate 

assays were carried out by inoculating overnight cultures of Y. 

pseudotuberculosis wild-type, the ∆yscJ mutant, the complemented strain ∆yscJ 

pHGyscJ, where ∆yscJ is provided with a functional copy of yscJ on pHGyscJ, into 

swimming motility agar as previously described (Atkinson et al., 1999).  These 

plates were incubated at 22oC and 37oC for 48 h, and the degree of motility 

measured as the radial distance of the swim-colony from the point of inoculation 

(Figure 5.2).   

 

These results show that at 22oC and as has been reported previously (Atkinson 

et al., 1999, Atkinson et al., 2008), no motility could be observed in the wild-

type under these conditions, (Figure 5.2 i a).  However, the ∆yscJ mutant shows 
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substantial motility (Figure 5.2 i b), reaching a radial diameter of 40 mm.  In 

contrast, swimming is reduced when functional yscJ is restored to the ∆yscJ 

mutant on pHGyscJ (Figure 5.2 i c).  At 37oC, similarly to that seen in liquid 

culture, none of the strains appeared to swim (Figure 5.2 ii).   

 

  

Figure 5.2| Mutation of yscJ results in hyper-motility during growth at 

22
o
C.  In the absence of the gene encoding the T3SS structural lipoprotein 

YscJ, Y. pseudotuberculosis is hyper-motile in agar during incubation at 22
o
C 

(i b), and displays a radial distance of approximately 40 mm, which is not 

observed in the wild-type control (i a).  Complementation with functional 

yscJ on pHGyscJ however reduces ∆yscJ-dependent swimming to levels much 

more similar to the wild-type (i c).  During incubation at 37
o
C however, none 

of the strains were motile in agar (ii). 

  

The increased motility of the ∆yscJ mutant strongly suggested that it may over-

produce flagella.  By examining ∆yscJ mutant cultures that have been stained 

with a modified Leifson stain to visualise flagella by microscopy (Clark, 1976), 

long filamentous structures emanating from the cell surface were visible which 

were not apparent in the wild-type (data not shown).  To confirm the increase in 

Wild-type ΔyscJ ΔyscJ pHGyscJ

2
2

o
C

3
7

o
C

a b cii

a b ci
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flagella production in the ∆yscJ mutant, flagella were purified from cultures 

grown for 24 h at 22oC using the cannular method previously described 

(Atkinson et al., 1999), and following analysis by SDS-PAGE revealed a dense 

band (~46 kDa) in the ∆yscJ mutant preparations that is substantially reduced in 

the wild-type or the ∆yscJ pHGyscJ strains.  This band probably corresponds to 

flagellin (FliC: 45 kDa) and demonstrates that flagella are over-produced in the 

∆yscJ mutant when compared with the wild-type (Figure 5.3).  

 

 

Figure 5.3| The ∆yscJ mutant over-produces flagellin during growth at 

22
o
C.  By purifying flagella from bacterial cultures via the cannular method, a 

dense band at near the 46 kDa marker can be observed in the ∆yscJ mutant 

which is substantially reduced in wild-type and the complement ∆yscJ 

pHGyscJ strain.  This band probably corresponds to the flagellin protein (FliC: 

45 kDa).  This dense ~45 kDa protein band is not seen in the strains following 

growth at 37
o
C (data not shown). 

 

Flagella, alongside pili, are also involved in swarming motility (Kohler et al., 

2000) To investigate the possibility that de-repression of flhDC and flagella 

mediated swimming also affected the ability for Y. pseudotuberculosis to engage 

in this type of surface translocation, which has not previously been reported in Y. 

pseudotuberculosis (Atkinson et al., 1999), the wild-type, ΔyscJ mutant and the 

complemented strain ΔyscJ pHG327 were inoculated on to swarm agar plates, 

and incubated at either 22oC or 37oC for 72 h.  However, none of the strains 

were observed to form swarm colonies (data not shown).  

 

i

ii

a b c

Wild-type ΔyscJ ΔyscJ pHGyscJ

46 
kDa
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5.2.2  The ∆yscJ mutant over-expresses flhDC and fliA 

 

To understand the mechanism of the over-production of flagella and hyper-

motility in the ΔyscJ mutant, a series of reporter constructs were used, which 

link luciferase expression and light production to the activity of a chosen 

promoter.  The promoter fusion  PflhDC::lux, which reports expression of the 

flagella master regulator flhDC (Atkinson et al., 2008) was used to measure the 

expression of flhDC in the ΔyscJ mutant and the complemented strain ΔyscJ 

pHGyscJ during growth at 22oC or 37oC (Figure 5.4).  At both temperatures, 

flhDC is up-regulated in the ∆yscJ mutant, and is approximately 4-fold higher at 

22oC, and 8-fold higher during growth at 37oC when compared with the wild-

type.  During growth at 22oC, wild-type expresses flhDC approximately 3 fold 

higher than during growth at 37oC, similar to the difference described previously 

(Atkinson et al., 2008).  At both 22oC and 37oC, when the ∆yscJ mutant is 

complemented with yscJ on pHGyscJ, expression of flhDC is restored to levels 

similar to the wild-type.  
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Flagella are also regulated by the flagella sigma factor FliA (Liu and Matsumura, 

1995, Atkinson et al., 2008), and so the expression of fliA was measured in wild-

type, the ∆yscJ mutant and the complemented strain ∆yscJ pHGyscJ over the 

growth phase at 22oC and 37oC using a PfliA::lux promoter fusion (Atkinson et al., 

2008).  Figure 5.5 shows that, similar to flhDC expression, fliA expression is 

increased in the ∆yscJ mutant during growth at 22oC (Figure 5.5 a) or 37oC 

(Figure 5.5 b) when compared with the wild-type.  In agreement with previous 

studies (Atkinson et al., 2008), expression of fliA is repressed in the wild-type 

during growth at 37oC when compared with growth at 22oC, with expression at 

22oC approximately 10-fold higher than that at 37oC.  In the ∆yscJ mutant, 

during growth at 22oC, fliA expression is roughly 5-fold higher than in the wild-

type, while during growth at 37oC fliA expression in ∆yscJ is roughly 25-fold 

higher than in the wild-type.  
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Together, these results show that the up-regulation of flagella production and 

hyper-motility in the ∆yscJ mutant during growth at 22oC is mirrored by an up-

regulation of flhDC and fliA expression. 

 

 

5.2.3  Hyper-motility and up-regulation of flhDC in the ∆yscJ 

mutant requires YpsI and / or YtbI 

 

It has previously been reported that the two Y. pseudotuberculosis QS systems 

(YpsR/I and YtbR/I) regulate motility via flhDC and fliA in an AHL-dependent 

manner (Atkinson et al., 1999, Atkinson et al., 2008, Atkinson et al., 2011).  To 

investigate whether QS plays a role in ∆yscJ-dependent hyper-motility, the AHL-

negative, injectisome-minus ∆ypsI ∆ytbI ∆yscJ triple mutant was inoculated into 

motility agar alongside the ∆yscJ mutant, the ∆ypsI ∆ytbI mutant, and the wild-

type, and incubated for 48 h at 22oC (Figure 5.6).  These results show that, in 

contrast to the hyper-motility observed in the ∆yscJ mutant, the AHL-negative 

∆ypsI ∆ytbI ∆yscJ mutant, like the ∆ypsI ∆ytbI mutant and the wild-type, is 

non-motile.  These results suggest a link between QS-mediated motility and the 

presence of functional YscJ.  No motility was seen in any of the strains during 

incubation at 37oC (data not shown). 

 



 
181 

 

 

Figure 5.6| YpsI and YtbI are necessary for the ∆yscJ mutant to exhibit 

hyper-motility. The wild-type and AHL-negative ∆ypsI ∆ytbI mutant do not 

show motility after 48 h in swimming agar.  The ∆yscJ mutant however, 

shows hyper-motility at this temperature, while the AHL-negative ∆ypsI 

∆ytbI ∆yscJ mutant does not swim under these conditions. 

 

The expression of flhDC is known to be repressed in the ∆ypsI ∆ytbI mutant 

(Atkinson et al., 2008). In order to determine if the absence of motility in the 

∆ypsI ∆ytbI ∆yscJ mutant (compared with ∆yscJ) was due to down-regulation of 

flhDC, PflhDC::lux was introduced into the ∆ypsI ∆ytbI ∆yscJ mutant and the 

complement ∆ypsI ∆ytbI ∆yscJ pHGyscJ strain, and light output measured over 

20 h of growth at both 22oC and 37oC. 

 

Figure 5.7 shows that, in contrast to the ∆yscJ mutant, which is up-regulated for 

flhDC expression during growth at 22oC (Figure 5.7 a) or 37oC (Figure 5.7 b), the 

∆ypsI ∆ytbI ∆yscJ mutant expresses flhDC at levels lower than that observed in 

the wild-type, although during growth at 22oC the ∆ypsI ∆ytbI ∆yscJ mutant 

express flhDC slightly higher than does the ∆ypsI ∆ytbI mutant.    Taken 

together, these results confirm that QS, in conjunction with YscJ, influence the 

expression of flhDC and swimming motility, although yscJ appears to have a 

small, QS-independent effect on flhDC expression during growth at 22oC.   

 

 



 
182 

 

 

 

 

 

 

 

  

Fi
gu

re
 5

.7
| 

Y
p

sI
 a

n
d

 Y
tb

I 
ar

e
 n

e
ce

ss
ar

y 
fo

r 
u

p
-r

e
gu

la
ti

o
n

 o
f 

fl
h

D
C

 e
xp

re
ss

io
n

 i
n

 ∆
ys

cJ
. 

 T
h

e 
h

ig
h

 e
xp

re
ss

io
n

 o
f 

fl
h

D
C

 o
b

se
rv

ed
 i

n
 ∆

ys
cJ

 i
s 

re
d

u
ce

d
 

ap
p

ro
xi

m
at

el
y 

1
0

-f
o

ld
 f

o
llo

w
in

g 
su

b
se

q
u

en
t 

m
u

ta
ti

o
n

 o
f 

yp
sI

 a
n

d
 y

tb
I 

(∆
yp

sI
 ∆

yt
b

I 
∆

ys
cJ

) 
d

u
ri

n
g 

gr
o

w
th

 a
t 

2
2

o
C

 (
a)

 a
n

d
 a

p
p

ro
xi

m
at

el
y 

1
2

-f
o

ld
 

d
u

ri
n

g 
gr

o
w

th
 a

t 
3

7
o
C

 (
b

) 
to

 le
ve

ls
 lo

w
er

 t
h

an
 t

h
at

 o
b

se
rv

e
d

 in
 t

h
e 

w
ild

-t
yp

e.
  E

rr
o

r 
b

ar
s 

re
p

re
se

n
t 

st
an

d
ar

d
 d

ev
ia

ti
o

n
. 



 
183 

 

5.2.4  The expression of QS is modulated by functional YscJ 

 

On the basis of the unexpected reciprocal relationship between the T3SS and 

motility that required QS, the observation that QS regulated the T3SS led to the 

hypothesis that the T3SS might also reciprocally regulate QS.  Previously, YpsI 

has been suggested to repress motility in agar, whereas YtbI probably promotes 

this phenotype (Atkinson et al., 2008).  Since hyper-motility in ∆yscJ was 

abrogated following deletion of ypsI and ytbI, it is possible that hyper-motility in 

∆yscJ is the result from either repression of ypsI or increased expression of ytbI 

in the mutant.  To investigate this, lux-based promoter fusions (PypsI::lux and 

PytbI::lux) which report the expression of ypsI and ytbI (Atkinson et al., 2008) 

were introduced into the ∆yscJ mutant and ∆yscJ pHGyscJ to investigate the 

expression of the AHL synthase genes over the growth phase (Figure 5.8).  

These results show that, over the growth phase, the expression of ypsI is highly 

repressed in the ∆yscJ mutant when compared with the wild-type.  

Complementation of ∆yscJ by providing yscJ on pHGyscJ partially restores ypsI 

expression to wild-type levels (Figure 5.8 a).  Conversely, the expression of ytbI 

is increased approximately 5-fold in the ∆yscJ mutant compared with the wild-

type.  When yscJ is provided on pHGyscJ, expression is reduced to wild-type 

levels (Figure 5.8 b). 
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The correlation between the expression of the AHL synthase enzymes and the 

hyper-motile phenotype of the ∆yscJ mutant illustrates a very clear relationship; 

expression of the motility repressor, YpsI, is itself repressed in the ∆yscJ mutant 

compared with the wild-type, and the motility activator, YtbI, is over-expressed.  

To examine the relationship between the AHL receptor proteins and ∆yscJ-

associated motility, the expression of ypsR and ytbR was measured over the 

growth phase at 22oC (Figure 5.9).  These results show that ypsR expression is 

approximately 3-fold higher in the ∆yscJ mutant compared with the wild-type 

(Figure 5.9 a), while expression of ytbR is completely abolished in the ∆yscJ 

mutant (Figure 5.9 b).  Restoration of functional yscJ to the ∆yscJ mutant on 

pHGyscJ reduces expression of ypsR to wild-type levels (Figure 5.9 a); however, 

complementation results in only a small, but consistent, increase in expression of 

ytbR when compared with the ∆yscJ mutant, although the expression of ytbR in 

the wild-type is approximately 8-fold higher than the ∆yscJ pHGyscJ strain 

(Figure 5.9 b). 
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These data show that, like the AHL synthase genes, expression of the receptors 

YpsR and YtbR is differentially regulated by either YscJ itself, or some down-

stream component of the injectisome which requires YscJ for its function.  

However unlike the AHL synthases, where ypsI appears activated by YscJ and 

ytbI appears repressed by YscJ, the expression of ypsR is up-regulated in the 

∆yscJ mutant while expression of ytbR is effectively abolished in the mutant 

compared with the wild-type.  This suggests that the presence of functional YscJ- 

either due to YscJ itself or a downstream element of the injectisome- acts 

repressively towards ypsR and activates ytbR.    

 

5.2.5  The flagella regulon reciprocally regulates the T3SS via 

an effect on the expression of virF 

 

The up-regulation of swimming in the ∆yscJ mutant is interesting as it shows a 

component of the Ysc-injectisome can influence motility, which is strikingly 

similar to the results in Chapter 3 which revealed that the flagella structural 

component FlhA could influence the production of Yop-related proteins during 

culture at 37oC or 30oC.  The up-regulation of flhDC and fliA expression in the 

∆yscJ mutant is also significant as it shows that, at least for ∆yscJ-associated 

motility, this relationship is at the level of the transcriptional control of key 

regulators, and suggests that structural components of the injectisome can 

behave as a checkpoint in the transcriptional regulation of flagella.  This raised 

the possibility that the up-regulation of Yop-related proteins in the ∆flhDC, ∆fliA 

and ∆flhA mutants shown in Chapter 3 involved over-expression of the main 

transcriptional regulator of the Yop-Ysc system- VirF (Cornelis et al., 1989), 

particularly at 30oC, since at temperatures below 37oC virF is considered to be 

down-regulated (de Rouvroit et al., 1992, Hoe and Goguen, 1993).  To 
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investigate this, a virF promoter fusion (PvirF::lux) was constructed and used to 

measure expression of virF over the growth phase at 30oC, and in the presence 

of calcium, in the wild-type and the ∆flhDC, ∆fliA, ∆flhA and ∆fliC mutants, and 

the ∆flhDC mutant complement strain, ∆flhDC pGem::flhDC, where functional 

flhDC is provided to on pGem::flhDC (Atkinson et al., 2008).   

 

Figure 5.10 shows the ∆fliA, ∆flhA (Figure 5.10 a) and ∆flhDC (Figure 5.10 b) 

mutants express virF in a way that increases in over the growth phase to levels 

approximately 4 to 6-fold higher than that observed in the wild-type, which 

appears to express virF constitutively at low levels over the growth phase.  The 

∆fliC mutant, conversely, displays no difference in the expression of virF when 

compared with the wild-type (Figure 5.10 a), in line with the lack of Yop 

production observed in this strain during growth at 30oC (Atkinson et al., 2011).  

Complementation of the ∆flhDC mutant with pGem::flhDC also reduces 

expression of virF to levels similar to the wild-type (Figure 5.10 b).  The data 

from these two panels are taken from the same experiment, and have been 

plotted separately for clarity of presentation.  
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These results suggest that the up-regulation of Yop-production observed in the 

∆flhDC ∆fliA and ∆flhA mutants during growth at 30oC (Chapter 3) is under-lined 

by up-regulation of virF expression, which indicates that the flagella regulon 

represses virF at 30oC. 

 

5.2.6 QS represses T3S at non-inductive temperatures via an 

effect on virF expression  

 

The repressive effect of the flagella system towards virF expression and the Yop 

regulon is interesting, since QS is known to regulate flagella and flhDC 

expression (Atkinson et al., 2008, Atkinson et al., 1999), and, as Chapter 3 

revealed, several QS mutants secrete Yop-related proteins into the culture 

supernatant during growth at 30oC.  Similar to the flagella mutants, it was likely 

that the up-regulation of Yop production in the QS mutants was due to over-

expression of virF.  To confirm this, PvirF::lux was introduced into the ∆ypsR, 

∆ypsI, ∆ytbR, ∆ytbI, ∆ypsI ∆ytbI mutants and the complement ∆ypsI ∆ytbI 

pSA291 strain, and the expression of virF determined over the growth phase at 

30oC.  Figure 5.11 (a) shows that the ∆ypsR, ∆ytbI and ∆ytbR mutants all over-

express virF at 30oC, whereas only low constitutive expression of virF is 

observed in the wild-type or ∆ypsI.  Figure 5.11 (b) shows that virF expression is 

also up-regulated in the ∆ypsI ∆ytbI mutant, whereas this is reduced to wild-

type levels following complementation with pHG291.  Similar over-expression of 

virF was observed in the ∆ypsR ∆ytbR mutant and when the strains were grown 

at 37oC (data not shown).  These results suggest that virF is repressed by QS at 

30oC. 
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Together, these data show that QS represses the expression of virF at 30oC in a 

way similar the repression caused by the flagella regulon. 

 

5.3 Discussion 

 

5.3.1  The regulation of motility by YscJ and QS 

 

The work described in this chapter has revealed that the presence or absence of 

YscJ affects the regulation of flagella-mediated swimming motility.  Mutation of 

yscJ results in the de-repression of the flagella master regulator flhDC and the 

flagella specific sigma factor fliA and causes a hyper-motile phenotype, 

suggesting that either YscJ itself, or an as yet unidentified element that senses 

the lack of the injectisome, causes the induction of motility during growth at 

22oC.  Mutation of yscJ also results in increased flhDC and fliA expression at 

37oC, however the level of expression of flhDC and fliA in ∆yscJ during growth at 

37oC is only half that observed during growth at 22oC, and no motility is 

observed during growth at 37oC.  This could suggest either that the expression 

levels of flhDC and fliA at 37oC are not sufficient to induce motility, or that 

additional regulators negatively control motility during growth at 37oC.  Indeed 

in Y. enterocolitica it has been suggested that FlhDC does not regulate flagella 

genes during growth at 37oC (Kapatral et al., 2004), which could provide a 

reason why YscJ-associated modulation of flhDC expression does not affect 

motility during growth at this temperature.   

 

The induction of hyper-motility in the ∆yscJ mutant is abolished in the ∆ypsI 

∆ytbI ∆yscJ triple mutant, indicating that YscJ-associated repression of motility 

is QS dependent.  The expression of flhDC is also repressed in the ∆ypsI ∆ytbI 
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∆yscJ mutant when compared with the wild-type or the single ∆yscJ mutant, 

suggesting that QS is specifically required for the activation of the Class I flagella 

regulator, which then leads to ∆yscJ-dependent motility.  However, an intact 

YscJ also appears to partially drive the repression of flhDC independently of QS, 

since the ∆ypsI ∆ytbI ∆yscJ mutant expresses flhDC at slightly higher levels than 

does the ∆ypsI ∆ytbI mutant.  This notwithstanding, the up-regulation of motility 

observed in the ∆yscJ mutant, and the dependence of this phenotype on YpsI 

and YtbI is probably related to the fact that YscJ exerts control over the YpsR/I 

and YtbR/I QS systems, and acts differentially to enhance the expression of ypsI 

and ytbR and repress ypsR and ytbI.   

 

5.3.2  A checkpoint possibly controls the reciprocal regulation 

between motility and T3S 

 

The observation that the presence or absence of the Yop-Ysc structural 

lipoprotein YscJ could affect motility is reminiscent of the results presented in 

Chapter 3, which revealed that the flagella secretion component, FlhA, is 

involved in repression of the Yop-Ysc system and LCB formation.  In a manner 

analogous to FlhA, it is possible that YscJ plays a regulatory role in addition to its 

function as a structural component of the IM ring of the T3SS, and previously, Y. 

pseudotuberculosis yscJ mutants have been shown to be calcium-blind with 

respect to Yop expression at 37oC (Holmstrom et al., 1995), suggesting that YscJ 

can function as part of a regulatory checkpoint controlling gene expression.  

However, it is more likely that there is a sensory mechanism, whereby perhaps 

protein-protein interactions sense the presence or absence of YscJ, and this acts 

as a checkpoint in measuring the state of production of theT3SS.  This 

checkpoint may be responsible for driving both the regulation of Yop gene 
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expression and the reciprocal regulation between the T3SS and flagella.  The Yop 

effectors are also known to be auto-regulated by negative feedback, whereby 

the intracellular accumulation of Yops when the needle is closed (or absent) 

leads to down-regulation of their expression (Allaoui et al., 1995b, Plano and 

Straley, 1993, Plano and Straley, 1995).  This may be analogous to FlgM/FliA 

controlling flagella biosynthesis (Cornelis and Wolf-Watz, 1997a), and involves 

the Cpx two-component system and an extracytoplasmic function sigma factor 

(Carlsson et al., 2007a).  It is possible that this sigma factor driven negative 

feedback mechanism could form the basis of the checkpoint which controls the 

expression of the QS genes, which, in turn, may influence the expression of 

flhDC and motility.   

 

For example, in flagella biosynthesis, FliC is produced subsequent to FliA 

activation by FlgM export (Kutsukake and Iino, 1994, Ding et al., 2009), whereas 

the production of FlhA only requires FlhDC, and not FliA (Liu and Matsumura, 

1994).  In some species, FlhA influences the activation of FliA by interacting with 

FlhM (Rust et al., 2009) and affects the production of FliC (Yang et al., 2009), 

suggesting that FlhA acts in a checkpoint to control the activation of FliA.  Since 

the production of FliC occurs after FliA has been activated, whereas FlhA 

influences the activation of FliA, and since FliA is important for the regulation of 

Yop production, this may go some way to explain why flhA, but not fliC, is 

important for virF expression.  It would therefore be interesting to investigate 

the effect of a yscF mutation, since YscF may, like FliC, be exported only after 

the proposed T3SS sigma factor (Carlsson et al., 2007a) has been activated.  

This mutant may then be considered to be analogous to the ∆fliC mutant and, if 

this strain displays only wild-type expression of QS, flhDC and motility 

(analogous to how the ∆fliC mutant displays wild-type Yop secretion and virF 

expression), it would provide further support for the existence of such a switch 

controlling the reciprocal regulation of flagella and T3S via QS.   
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However, it is not clear why the presence of FlhA results in the repression of 

secretion and virF expression at 30oC or 37oC, nor why the presence of YscJ 

should influence the repression of motility at 22oC since these temperatures are 

not normally associated with their respective functions.  It is interesting to note 

that neither hyper-motility in the ∆yscJ mutant, nor Yop secretion in the ∆flhA 

mutant occurs during growth at 37oC or 22oC, respectively, suggesting that the 

absolute temperature regulation of these processes is still in place.  

 

5.3.3  Transcriptional control of QS by the T3SS and 

consequences for motility 

 

The abrogation of motility in the ∆yscJ mutant following the loss of AHL 

production could be due to a requirement of QS for the absolute induction of 

motility, and not involve a direct relationship between the T3SS, QS and motility.  

However, it is likely that hyper-motility and up-regulation of flhDC expression in 

the ∆yscJ mutant is a consequence of altered expression of QS genes in the 

∆yscJ mutant.  Expression of both ypsI and ytbR is abolished in the ∆yscJ 

mutant, indicating they are activated by the presence of functional YscJ or by a 

sensory mechanism that involves YscJ or a downstream component of the 

injectisome that requires YscJ for its localisation.  Conversely, ypsR and ytbI 

expression is up-regulated in the ∆yscJ mutant, implying that an element 

sensing the presence or absence of YscJ acts as a checkpoint to repress the 

expression of these genes. 

 

Atkinson et al. (2008) previously suggested that the AHL synthase gene YtbI 

acts as an inducer of motility in agar, while YpsI represses this phenotype 
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(Atkinson et al., 2008). The data in this chapter may support this, since the 

deletion of ytbI (alongside ypsI) from the hyper-motile ∆yscJ mutant abolishes 

motility.  The loss of motility in the ∆ypsI ∆ytbI ∆yscJ mutant compared with the 

∆yscJ mutant is probably a result of the loss of ytbI, since the single ∆ypsI 

mutant, like the ∆yscJ mutant, is hyper-motile, but this hyper-motility is lost 

following subsequent mutation of ytbI (Atkinson et al., 2008).  In addition, the 

expression of ytbI is increased in ∆yscJ relative to wild-type, where it is restored 

to wild-type levels following the addition of functional yscJ on pHGyscJ, 

coincident with the reversion of motility to levels more similar to the wild-type.  

Atkinson et al. (2008) also suggested that YpsI represses motility, since a single 

ypsI mutant is hyper-motile (Atkinson et al., 2008).  This is supported by the 

results in this chapter which show that ypsI expression is almost completely 

abolished in the ∆yscJ mutant compared with the wild-type.  In this way, the 

∆yscJ mutant simulates the effect of the ypsI mutation, abolishing the 

production of YpsI, and it is therefore not surprising that the ∆yscJ mutant 

shares the hyper-motile phenotype with the ∆ypsI mutant. 

 

The relationship between the AHL receptor proteins YpsR and YtbR, YscJ and 

motility is less obvious.  Firstly, although a ∆ypsR mutant displays hyper-

motility, it is also repressed for the expression of flhDC, suggesting that YpsR is 

a positive regulator of flhDC but a negative regulator of motility, perhaps in 

conjunction with YtbR and via an effect on the expression of the sigma factor fliA 

(Atkinson et al., 2008, Atkinson et al., 1999).  However, in this chapter, the 

results show that ypsR expression is up-regulated in the ∆yscJ mutant, which is 

inconsistent with the role of YpsR as a repressor of motility, since in spite of the 

up-regulation of ypsR, the ∆yscJ mutant is hyper-motile.  Secondly and in 

contrast, mutation of ytbR does not substantially change the expression of flhDC 

when compared with the wild-type, but when ytbR is mutated in the hyper-

motile ∆ypsR mutant background, the resulting ∆ypsR ∆ytbR double mutant is 
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not motile in swimming agar.  This suggests YtbR positively regulates swimming 

motility (Atkinson et al., 2008).  However, the expression of flhDC in the ∆ypsR 

∆ytbR mutant, although lower than in the wild-type, is higher than in the single 

ypsR mutant, suggesting that at least in the absence of YpsR, YtbR can repress 

flhDC expression and, by inference, motility.  To support the hypothesis that 

YtbR represses motility, it has been reported that the ∆ytbR ∆ytbI double mutant 

also displays a hyper-motile phenotype (H. Patrick, unpublished results), even 

though the single ytbR or ytbI mutants are non-motile (Atkinson et al., 2008).  

Here, the results indicate that the expression of ytbR is almost entirely abolished 

in the ∆yscJ mutant, which is inconsistent with the role of YtbR as an activator, 

but may further suggest that YtbR acts as a repressor of motility. 

 

5.3.4  Potential links between FlhDC, QS and the T3SS 

 

The repression of flhDC expression in the ∆ypsI ∆ytbI mutant compared with the 

wild-type correlates with the up-regulation of virF observed in the ∆ypsI ∆ytbI 

mutant, and since FlhDC also represses virF and the T3SS it is likely that the 

regulation of virF by YpsI and YtbI occurs through FlhDC (Bleves et al., 2002).  It 

is unclear how QS and FlhDC influence virF expression; however it may involve 

an effect on nucleosome-associated proteins such as YmoA or H-NS.  YmoA is 

thought to modulate the expression of the Yop virulon, and a Y. enterocolitica 

ymoA mutant is up-regulated for Yop production at 28oC (Cornelis et al., 1991), 

similar to that seen in this chapter in the Y. pseudotuberculosis flagella and QS 

mutants.  The nucleosome-associated protein H-NS regulates motility in several 

species (Bengoechea et al., 2004, Bertin et al., 1994), and may interact with 

YmoA, which would provide a link between both these phenotypes and 

nucleosome-associated proteins (Cornelis et al., 1991, Ellison and Miller, 2006, 

Marceau, 2005, Nieto et al., 2002).  In Y. enterocolitica, H-NS over-expression 
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leads to enhanced flhDC expression and motility (Bengoechea et al., 2004), 

similar to that observed here in the ∆yscJ mutant.  It is possible that mutation of 

yscJ, ypsI or ypsR also leads to H-NS over-expression, while the up-regulation of 

virF expression and Yop production in the flagella or ∆ypsI ∆ytbI mutants could 

be due to down-regulation of YmoA.  It is interesting to find that H-NS may bind 

to the ypsR promoter (S. Atkinson, unpublished results), which could suggest 

that H-NS and YpsR regulate one another.  The fact that the ∆yscJ mutant, along 

with the ∆ypsI and ∆ypsR mutant is only hyper-motile at low temperatures and 

not at 37oC, and that the flagella and QS mutants over-produce Yop effectors 

during growth at 30oC, but not at 22oC, also suggests that the environmental 

regulation of these systems is relaxed, but not abolished.  This could imply that 

the target for flagella-, T3SS- and QS-dependent regulation of motility is a 

modulator rather than a strict activator / inactivator, and indeed both H-NS and 

YmoA have previously been described as such (de Rouvroit et al., 1992, 

Marceau, 2005, Atlung and Ingmer, 1997).   

        

Other potential candidate targets for QS regulation must also include the several 

regulators and systems that affect both motility and the Yop-Ysc T3SS.  Both 

these systems are affected by Dam-dependent DNA methylation, whereby a 

Dam over-producing strain (DamOP) of Y. pseudotuberculosis is relaxed for the 

temperature, but not calcium dependency of Yop secretion (Julio et al., 2002), 

while DamOP in Y. enterocolitica is relaxed for the calcium, but not temperature 

regulation of Yop secretion (Falker et al., 2006).  In Y. enterocolitica, DamOP also 

exhibits increased motility compared with the wild-type (Falker et al., 2007).  

Interestingly, Dam also affects the O-antigen status of Yersinia 

lipopolysaccharide, increasing the amount of „rough‟ LPS lacking O-antigen side 

chains (Falker et al., 2007); O-antigen status is also involved in controlling 

motility and the Yop-Ysc T3SS, probably via an effect on H-NS (Bengoechea et 

al., 2004, Perez-Gutierrez et al., 2007). Recently it has also been shown that the 
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RNA chaperone Hfq regulates both motility and the Yop-Ysc T3SS; a Y. 

pseudotuberculosis hfq mutant displays hyper-motility and is reduced for the 

synthesis and secretion of Yop effector proteins (Schiano et al., 2010).  Two 

component regulator systems such as EnvZ / OmpR and CpxA / CpxR may also 

be involved since the former positively regulates flagella via-regulation of flhDC 

expression in Y. pseudotuberculosis and Y. enterocolitica (Hu et al., 2009, 

Raczkowska et al., 2011), while the latter regulates the production and 

translocation of Yop effectors through the injectisome via the activity of an 

extracytoplasmic function sigma-factor (Carlsson et al., 2007a).  Both systems 

converge in regulating invasin production, probably through modulation of the 

global regulator RovA or RovM (Carlsson et al., 2007b, Brzostek et al., 2007, 

Heroven and Dersch, 2006), although neither RovA or RovM affect the Yop-Ysc 

T3SS (Heroven and Dersch, 2006).  Due to the reciprocal regulation of motility 

and the T3SS, any and all of these regulators are potentially involved in QS-

mediated bi-directional control of flagella and the T3SS. 

 

5.3.5 Conclusions 

 

This chapter has shown that the T3SS, QS and motility are intricately linked in Y. 

pseudotuberculosis- although the precise mechanism which underlies the 

relationship is unknown.  It is not clear why the hyper-motile ∆yscJ mutant over-

expresses ypsR, but is completely repressed for ytbR expression, when YpsR is 

thought to negatively regulate motility, and YtbR to positively regulate motility.   

It is possible that there are nuances by which the AHL receptors can regulate 

motility both as enhancers or repressors, perhaps depending on the cellular 

availability of YpsR and YtbR which could potentially form hetero- as well as 

homo-dimers, and may fulfil different functions depending on the composition of 

the active complex.  The range of AHLs produced by YpsI and YtbI could also act 
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to differentially activate or inhibit the receptor proteins; the AHL profile of Y. 

pseudotuberculosis cultures is known to change according to growth temperature 

(Ortori et al., 2007), and since expression of the AHL synthase genes are altered 

following mutation of the receptors (Atkinson et al., 2008), this could suggest 

that the phenotyes of the ∆ypsR and ∆ytbR mutants could be due to a modified 

AHL profile.  However, it is also possible that previous investigations into the 

relationship between QS and motility have over-looked the potential involvement 

of the pYV plasmid, which might be absent from some of the strains from which 

promoter fusion data has been gathered (Atkinson et al., 2008).  Several flagella 

and QS mutants may lose the pYV plasmid more rapidly than the wild-type (S. 

Atkinson, unpublished results), and this might affect the expression of QS and 

flagella genes, therefore calling into question the accuracy of the model built 

upon that data.  In light of this, it is also interesting to note that a pYV negative 

derivative of YPIII has not been reported to display the hyper-motile phenotype 

of the ∆yscJ mutant. Since yscJ is also encoded on pYV, this suggests that the 

de-repressive effect of yscJ mutation on flhDC expression and motility requires 

other pYV encoded loci to induce flhDC and fliA expression, and to stimulate 

motility. 
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Chapter 6| 

 

Conclusions  

and future directions 
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6.1 Conclusions 

 

The work in this thesis has sought to build on the emerging model of how QS 

regulates lifestyle choices in Y. pseudotuberculosis.  Previously, it has been 

shown that QS regulates several behaviours in this bacterium, including motility 

and clumping(Atkinson et al., 1999), and that QS is, itself, sensitive to 

thermoregulation (Atkinson et al., 2008), which is prevalent in modulating the 

biology and pathogenesis of Y. pseudotuberculosis (Straley and Perry, 1995).  

Considering that the two major targets of QS regulation, for example FlhDC and 

FliA, have been implicated in controlling biofilm formation (Kim et al., 2008) and 

virulence (Bleves et al., 2002, Horne and Prüß, 2006) in Y. enterocolitica, these 

previous results strongly suggest that QS could be involved in regulating these 

behaviours in Y. pseudotuberculosis.  These behaviours, including virulence, 

motility and biofilm formation, can be regarded as lifestyle choices for Y. 

pseudotuberculosis and are used under very different ecological conditions.  For 

example, virulence, by way of T3S, is utilised to inject toxic proteins into 

eukaryotic cells under the conditions prevalent in infection (for example at 37oC 

and in close contact with host cells).  Conversely, flagellum-mediated motility is 

down-regulated at 37oC, possibly because flagella are incredibly immunogenic 

(Honko et al., 2006) and would quickly alert the mammalian immune system to 

the invading bacteria.  Instead motility is considered to be utilised at 

temperatures prevalent in the environment (for example 22oC – 30oC) and in 

liquid or semi-solid medium (Atkinson et al., 1999).  Biofilms, however, form 

following the contact of Y. pseudotuberculosis with the surface of C. elegans at 

environmental temperatures, in a specific interaction with the nematode surface, 

since Y. pseudotuberculosis biofilms are not observed to form on plastics (Joshua 

et al., 2003).  However, the possibility that Y. pseudotuberculosis may form 
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biofilms on other surfaces in the environment, both abiotic and biotic, cannot be 

discounted. 

 

Despite the very different ecological niches required for these behaviours, 

previous studies on Y. enterocolitica and Y. pseudotuberculosis have suggested 

that they are linked by the involvement of the flagella regulators FlhDC and FliA 

(Bleves et al., 2002, Horne and Prüß, 2006), and that by mutating these 

regulators, the normal regulation of these lifestyle choices is affected- for 

example, in a flhDC mutant, no motility occurs (Bleves et al., 2002, Atkinson et 

al., 2008), T3S is de-repressed under normally non-inducing conditions (Bleves 

et al., 2002), and the ability for the bacterium to form biofilms is reduced (Kim 

et al., 2008, Atkinson et al., 2011).   In Y. pseudotuberculosis, QS also regulates 

flhDC and fliA expression and flagella mediated motility (Atkinson et al., 2008), 

indicating that QS is embedded in the regulatory network that governs the 

expression of these traits.  This prompted the investigation of the role of QS in 

regulating lifestyle choices in Y. pseudotuberculosis.   

 

From the results presented in this thesis, a clear narrative emerges, describing 

an intricate and inter-dependent relationship between QS, motility and T3S in 

modulating each other to dictate lifestyle choices such as biofilm formation 

versus the planktonic mode of growth.  Initially, the key finding in Chapter 3, 

revealing that the formation of cell clumps during liquid culture of certain Y. 

pseudotuberculosis QS mutants, first described by Atkinson et al. (1999) 

(Atkinson et al., 1999), is correlated with the ectopic secretion of Yop-related 

proteins into the culture supernatant and depends on the presence of the T3SS 

and a functional yscJ gene.  Along with results in Chapter 6, which show the 

virulence regulator virF is over-expressed in the QS mutants- this strongly 

suggests that QS represses Yop production.  The consequences of the repression 

of T3S by QS was further explored in Chapter 5, where key findings revealed 
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that the hyper-activity of the T3SS was probably responsible for mediating the 

down-regulation of biofilm formation on the surface of C. elegans infected with 

the Y. pseudotuberculosis QS mutant strains.  Although it is not clear how a 

hyper-active T3SS contributes to the repression of C. elegans biofilm formation, 

results in Chapter 6 reveal that the T3SS is intricately embedded in a regulatory 

network, alongside QS, in regulating the expression of flhDC, fliA, and flagella-

mediated motility.  Indeed, the involvement of the motility regulon is a theme 

which pervades throughout the work presented here, being involved in 

regulating- in addition to motility- the production of the T3SS, LCB formation, 

the growth of biofilms on the surface of C. elegans, and potentially acts down-

stream in the same pathway as QS.  A simplified diagram of this relationship is 

presented in Figure 6.1. 

 

Surrounding this general narrative are results which contribute to our 

understanding of the process by which QS and the flagella system repress T3S, 

and how T3S reciprocally regulates flagella.  Both QS and the flagella system 

repress the transcription of the virulence regulator virF, and the up-regulation of 

virF in the Yop over-producing QS and flagella mutants probably contributes to 

the appearance of Yop proteins in the culture supernatant during growth at 30oC.  

It is likely that, at least for QS, this depends on the AHLs produced by YtbI- 

since the single ∆ypsI mutant does not show up-regulation of virF, nor does it 

secrete Yop proteins under non-inducing conditions, whereas the single ∆ytbI 

mutant is up-regulated for virF expression and Yop production, similar to the 

∆ypsI ∆ytbI mutant.  Using bioreporters, Atkinson et al. (1999) showed that 

during growth at 37oC, mutation of ypsI does not largely affect the AHL profile 

produced by Y. pseudotuberculosis (Atkinson et al., 1999), while specific 

measurement of AHL concentrations using liquid chromatography coupled to 

hybrid quadrupole–linear ion trap mass spectrometry has shown that during 

growth at 30oC, YtbI is principally responsible for the production of 3-oxo-C7-



 
205 

 

HSL, and solely responsible for the production of C8-HSL, 3-oxo-C8-HSL, and 

long chain AHLs including 3-oxo-C10-HSL (Ortori et al., 2007).  It is therefore 

tempting to speculate that the high concentration or the timing of the AHLs 

produced by YtbI dictates the repression of virF and T3S.  

 

 

 

Figure 6.1 | A simplified model for the relationship between QS and FlhDC in 

regulating temperature modulated behavioural decisions in Y. 

pseudotuberculosis.  QS regulates flhDC expression (Atkinson et al., 2008), and 

while both QS and FlhDC negatively regulate the T3SS at 37
o
C, they positively 

influence motility at 22
o
C.  The motility system and the T3SS reciprocally 

regulate one another, and it can be proposed that this reciprocal regulation 

causes the induction of LCBs in the flagella mutants.  The T3SS reciprocally and 

differentially regulates QS, and this may underlie the effect of yscJ deletion on 

QS-regulated C. elegans. 
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QS regulates flhDC, fliA and flagella mediated motility in Y. pseudotuberculosis 

(Atkinson et al., 2008), and since FlhDC and FliA regulate T3S in Y. enterocolitica 

(Bleves et al., 2002, Horne and Prüß, 2006), it perhaps not surprising that FlhDC 

and FliA affect virF expression and T3S in Y. pseudotuberculosis.  The fact that 

flhDC expression is down-regulated in ∆ypsI ∆ytbI, and that the ∆flhDC mutant 

shares many phenotypes with the ∆ypsI ∆ytbI mutant (i.e. over-expresses virF, 

secretes Yops, forms LCBs and is attenuated for biofilm formation on C. elegans 

(Atkinson et al., 2011)) strongly suggests that the flagella system operates 

down-stream of QS in regulating T3S.  It is especially interesting however that 

the ∆flhA mutant shares these phenotypes with the ∆ypsI ∆ytbI, and ∆flhDC 

mutants, and suggests that the regulatory activity of the flagella extends beyond 

the levels of FlhDC and FliA.  It would be interesting to investigate flhDC 

expression in the ∆flhA mutant; it could be expected that flhDC may be down-

regulated in the ∆flhA mutant, suggesting feedback between the structure of the 

flagella and the flagella regulatory cascade.     

 

However, although QS and the flagella system clearly impact on the expression 

of virF, the relaxation of the calcium block for T3S suggests other genes in 

addition to virF are modulated by QS, specifically those required for the low-

calcium response.  Several proteins form a gate complex at the injectisome, 

preventing the secretion of Yop proteins until LCR conditions are encountered, 

including LcrQ, (Rimpilainen et al., 1992, Pettersson et al., 1996), LcrG (Wulff-

Strobel et al., 2002), YopN (Cheng et al., 2001, Day et al., 2003) and TyeA 

(Iriarte et al., 1998, Day et al., 2003), and deletion of any of these allows the 

secretion of Yop proteins into the culture supernatant in the presence of calcium.  

This could suggest that QS positively regulates these proteins, leading to their 

absence in the ∆ypsI ∆ytbI mutant and concomitant secretion of Yop proteins.  

However it is unlikely that YopN is positively regulated by QS / flagella, since this 
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protein is present in abundance in culture supernatants of the Yop over-

producing mutants. 

 

The theory that the flagella system operates down-stream of QS in regulating 

T3S is paralleled, though reversed, by the idea that QS operates down-stream of 

the T3SS in regulating motility.  It is interesting, given the proposition that AHLs 

produced by YtbI are principally involved in the down-regulation of T3S, that in 

the case of motility, the ∆yscJ mutant should behave similarly to the ∆ypsI 

mutant.  The fact that ypsI expression in the ∆yscJ mutant is also practically 

abolished supports the notion that the AHLs produced by YpsI, previously 

suggested to be repressive towards motility (Atkinson et al., 1999), acts down-

stream of YscJ in repressing motility.  Additionally however, the up-regulation of 

ytbI expression in the ∆yscJ mutant, and the fact that ∆yscJ-dependent motility 

appears to be dependent on the presence of functional YtbI suggests that the 

AHLs produced via the second AHL synthase also act down-stream of YscJ in the 

regulatory cascade leading to modulation of flagella-mediated motility.  Given 

this relationship, it is possible that YpsI plays an as yet unidentified role in the 

regulation of T3S, perhaps acting as an activator, rather than a repressor, of the 

system.   

 

Motility and T3S are behaviours carried out by Y. pseudotuberculosis, which 

suggests that QS occupies a central position in the regulatory system that 

determines which behaviour is most adaptable for a particular environment.  A 

third behaviour for Y. pseudotuberculosis is the formation of biofilms, either in 

liquid culture or on the surface of C. elegans.  Although these biofilms manifest 

in very different ecological niches, QS, the flagella system and T3S converge to 

regulate both these types of biofilm.  However, the direction of this regulation 

appears to be opposite, with QS and the flagella system repressing LCBs but 

enhancing biofilm formation on C. elegans.  In both biofilms, the effect of QS 
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(and probably the flagella system) depends on the T3SS; however, again the 

manner of this association is reversed, where LCBs are positively associated with 

T3S, while biofilm formation on C. elegans is negatively associated with T3S.  

Indeed, the mechanism by which the T3SS affects LCBs and C. elegans may also 

differ, since it is likely that the structure of the injectisome is important for 

inhibiting biofilms on C. elegans, while secretion through the injectisome appears 

to be a key component for LCB formation.   

 

Although the significance of the QS / T3SS relationship in affecting biofilms is 

unclear, it may reflect the ability for Y. pseudotuberculosis to finely regulate 

lifestyle choices when confronted with specific conditions.  For example, the 

∆ypsI ∆ytbI mutant, in being AHL negative, cannot communicate the density of 

the population, and perhaps it is more adaptable for Y. pseudotuberculosis, in 

low cell density, to suppress biofilm formation in favour of T3S.  In this way it 

would be interesting to investigate if the Yop effector proteins have a toxic effect 

towards C. elegans.  Conversely, by removing the ability for the bacteria to 

engage in T3S biofilms can be restored, perhaps since the „adaptive‟ response 

has been prevented, the bacteria revert to what could be considered „plan A‟- 

that is to form biofilms.  It would be very interesting therefore to investigate if a 

low cell density Y. pseudotuberculosis population that was prevented from 

engaging in this proposed „adaptive‟ behaviour suffered a fitness cost in C. 

elegans, when compared to those bacteria able to carry out T3S.  
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6.2 Future directions 

 

Emerging from this work are clear avenues of research to explore.  For example, 

a recurrent pattern in these results is the fact that environmental regulation of 

lifestyle choices is relaxed, rather than abolished, when the QS or motility 

systems are mutated.  For example, QS mutants do not form LCBs and do not 

produce Yops at 22oC, while both these behaviours occur at 30oC and above, 

while ∆yscJ-dependent hyper-motility does not occur at 37oC.  This suggests that 

the inter-relationship between QS, the flagella system and the T3SS acts to 

modulate the existing thermoregulation of these behaviours rather than strictly 

act as activators / repressors.  It is very likely, therefore, that QS, the flagella 

system and the T3SS interact with other modulators such as YmoA or H-NS.  

Indeed, preliminary results suggest that H-NS may bind directly to the promoter 

of ypsR, while deletion of ymoA may affect the expression of the QS genes (S. 

Atkinson, unpublished data).  Further work may reveal the involvement of these 

histone-like proteins, as they play a central role in determining the response of 

Y. pseudotuberculosis to the environment (Cornelis et al., 1991, Banos et al., 

2008).    

 

QS is increasingly being recognised to play a central role in regulating lifestyle 

choices in bacteria, including biofilm formation (Parsek and Greenberg, 2005), 

T3S (Bleves et al., 2005, Henke and Bassler, 2004, Liu et al., 2008) and motility 

(Kim et al., 2007, Atkinson et al., 2006, Atkinson et al., 2008, Hussain et al., 

2008).  It is clear that bacteria, particularly Y. pseudotuberculosis, have evolved 

to strike a balance in regulating these processes to occur under different 

environmental conditions, and while QS appears to be poised as an integral part 

of the switch between these behaviours, the feedback from these to the 

expression of QS also seems to be critical.  While results in this thesis reveal that 
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feedback does exist between the T3SS and QS, the mechanism of this feedback 

is unclear, and deserves full characterisation, as it is clearly a key part in the 

regulation of lifestyle choices in Y. pseudotuberculosis.  It is likely that the 

regulation of the flagella system by QS is also reciprocal, and future experiments 

may possibly show the expression of QS to be affected by mutation of the 

flagella system genes.  It is, however, difficult to predict the direction of this 

regulation, since the individual QS genes appear to differentially affect the 

behaviour of Y. pseudotuberculosis, and discovering which genes are up-

regulated and which are down-regulated following the mutation of the flagella 

system may help to clarify the contribution of each QS gene to the behaviours of 

Y. pseudotuberculosis.  Indeed, it is unclear why, for example, the single ∆ytbI 

or ∆ytbR mutants over-produce Yop proteins, while the double ∆ytbI ∆ytbR 

mutant is similar to the wild-type and does not over-produce Yops (data not 

shown).  Similarly, this dichotomy between the single ytbI/R system mutants 

and the double mutant is seen with respect to flagella mediated motility, 

whereby the single mutants are non-motile whereas the double mutant is hyper-

motile in the same way as is the ∆ypsI or ∆ypsR mutant (H. Patrick, University 

of Nottingham thesis 2010).  It will be important to characterise the down-

stream elements of this regulatory pathway, which will be invaluable in order to 

develop a global model for the role for QS in regulating the lifestyle switch of Y. 

pseudotuberculosis.   
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