A Bayesian optimization algorithm for the nurse scheduling problem

Li, Jingpeng and Aickelin, Uwe (2003) A Bayesian optimization algorithm for the nurse scheduling problem. In: 2003 Congress on Evolutionary Computation (CEC2003), 8-12 Dec. 2003, Canberra, Australia.

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1299938


A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse’s assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Item Type:Conference or Workshop Item (Lecture)
Additional Information:Lecture published in: 2003 Congress on Evolutionary Computation: CEC 2003: proceedings, 8-12 December 2003, Canberra, Australia. Piscataway, N.J.: IEEE, 2003. 4 v. (ISBN: 9780780378049), Vol. 3, p. 2149-2156
Schools/Departments:Faculty of Science > School of Computer Science
ID Code:1247
Deposited By:Aickelin, Professor Uwe
Deposited On:29 Aug 2012 14:27
Last Modified:29 Aug 2012 14:27

Repository Staff Only: item control page