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Chapter 1

Introduction

Quantitative methods of speculation have long been an interest to major mar-

ket participants. “Quants”, those who exploit quantitative methods, usually

use sophisticated mathematical and statistical techniques to develop high-

tech trading programs, executable through automated trading systems and

achieved by disciplined, consistent rules. Determining the correct specifica-

tion of a time series is important both in economics and as a practical tool for

a trader. The goal of the economist is to study certain aspects of the economy

and provide accurate predictions about the effect of structural changes in the

economy, unexpected shocks to the fundamentals of the economy or public

policy proposals. The goal of an arbitrageur is to generate financial gain by

arbitraging significant deviations from the modeled phenomena. In both cases

an accurate specification of time series data is needed.

Test statistics that are usually developed for basic models do not apply

to real data. It is often the case that after analyzing a particular dataset in
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a descriptive way it becomes apparent that the basic model fails to capture

certain aspects of the data. Thus the test statistic needs to be analyzed under

certain well-defined departures from the basic model. Sometimes, however,

the tests remain relatively robust to a more general model. In Chapter 3, for

example, I find that tests for stationarity in panel data that assume a station-

ary volatility process are in the least favorable case only modestly oversized

in instances where the volatility process is nonstationary. Those tests in fact

retain power quite well. On the other hand, tests that are developed for a

simple model often exhibit severe size distortions when the data departs from

this simple model. When this is the case these statistics can be extended to a

broader more relevant class of models in several ways.

For example, tests of nonstationarity rely on assumptions about a time

trend, if one is present, and assumptions about the dynamics of the underlying

driving process. In Chapter 2 I find that failure to account for the time trend

indeed leads to a test with zero size and zero power. Correcting the statistic

entails properly accounting for the time trend. A recent line of literature is

concerned with the properties of these tests in the presence of uncertainty

about the existence and form of the trend (Harvey, Leybourne and Taylor

2009b, Harvey, Leybourne and Taylor 2011). If it is “underspecified” the test

has (close to) zero size and power. If it is “overspecified” the test has correct

size but inferior power. These authors propose a union of rejections testing

strategy to handle the trend uncertainty. Chapter 2 discusses this work and

considers time series with a cubic trend. I show that the union of rejections

strategy can be extended to this more general model.
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Sometimes the uncertainty over the correct specification can be solved in

yet a different way. When the correct null distribution depends on unknown

parameters a resampling technique can often be used to approximate the dis-

tribution. When testing for structural level breaks in a time series the correct

specification of the volatility process affects the null distribution of the statis-

tic. Specifying a parametric model for the volatility process is beneficial if

one has exact knowledge of the data generating process (dgp). In Chapter 3,

I instead implement a nonparametric, bootstrapping procedure that accounts

for the volatility process without a parametric structure.

These specification tests have real practical importance. There is evidence

that many macroeconomic time series are characterized by either permanent

or transitory shocks fluctuating around a long-run mean that exhibits sudden

breaks (Stock and Watson 1996). Moreover, Busetti and Taylor (2003) and

Sensier and Dijk (2004) find that series with level breaks tend to also exhibit

breaks in volatility. Indeed a large body of recent work has shown that the

unconditional volatility of the processes underlying many macroeconomic time

series declined over the last quarter of the last century (see, e.g., the literature

review in Cavaliere and Taylor, 2008). Thus the importance of simultaneously

accounting for uncertainty over the order of integration and the possibility of

breaks in volatility when testing for level breaks - as the procedure I develop

in Chapter 4 does - cannot be overstated.

Accounting for trend uncertainty when testing for a unit root is also empir-

ically important. Many macroeconomic times series exhibit a combination of

a nonstochastic time trend and nonstationary stochastic behavior. In Chapter
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2 I analyze one hundred years of data on relative commodity prices. These

prices evidently exhibit a nonstochastic trend, often downward. In addition,

Harvey et al. (2011) show that many of the commodity price series can be de-

scribed as stationary around this nonstochastic trend. Determining the order

of integration of these series is an important task for economic forecasters who

wish to predict the affect of economic shocks or policy changes. Our analysis

in Chapter 2 demonstrates that accounting for uncertainty over the form of

the trend is empirically relevant as it leads to different conclusions as to the

order of integration of these commodity prices. For example, I find that the

price of sugar is stationary around a cubic trend whereas Harvey et al. (2011)

concluded that it was nonstationary.

Another practical application of specification testing arises in quantitative

methods of speculation by actual market participants. A popular short term

speculation strategy that belongs at the arsenal of statistical arbitrage tools

and is currently used by hedge funds as well as investment banks, known as

“pairs trading”. The underlying concept is simply to identify two stocks, or

other traded assets, whose prices have moved together historically. When the

spread between them widens, a profitable action would be to short the winner

and long the loser. If the co-movement of the two assets is correctly specified

then the prices will converge and the arbitrageur will profit.

Asset pricing can be viewed in absolute and relative terms. Absolute pric-

ing values securities based on fundamentals such as discounted future cash

flows. This method is often notoriously difficult and results in wide margin for

error. Relative pricing means that two securities that are close substitutes for
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each other should sell for a similar price. Relative pricing is only slightly easier

as it does not say what the price will be; it does, however, enable to infer the

price of one asset given the price of the other. The Law of One Price (LOOP)

is a term associated with relative pricing, described by Install (1987): “two

investments with the same payoff in every state of the nature must have the

same current value”. Differently stated, two securities with the exactly same

prices in all states of the world should sell for exactly same price. Chen and

Knez (1995) extend this argument and posit that closely integrated markets

should assign to similar payoffs prices that are close. This weaker condition

implies that two securities with similar, but not necessarily identical payoffs

across states should have similar prices. This proposition allows the exam-

ination of near-efficient economies, or in Chen and Knezs terminology, near

integrated markets. In markets which are efficient, risk-adjusted returns from

pure arbitrage strategies should not be positive. However, the fact that specu-

lators are trading securities that are close economic substitutes for each other

may validate the existence of short term arbitrage opportunities. Specification

testing plays an important role here by identifying these assets that co-move,

as well as identifying when the spread has widened sufficiently to enable ar-

bitrage. Controlling the size of the relevant tests is a risk-management tool;

it safeguards against too often falsely detecting opportunities for arbitrage.

Increasing the power of the relevant tests increases the arbitrage opportunities

detected and hence increases profitability of a strategy.

Detecting assets whose prices have moved together historically depends

crucially on how this “co-movement” is defined. The simple correlation be-
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tween the two assets measures co-movements in returns. However, it measures

the degree of linear association over time and does not carry information on

the long-term relationship that may exist between the variables. The cointe-

gration framework of Engle and Granger (1987) is a more useful concept of

co-movement in returns. Cointegration measures long-term co-movements in

prices, which prevails even through periods in which static correlation is low.

Two time series are said to be cointegrated if they are each I(1) but some

linear combination of the two is I(0). Hence statistical tests for cointegration

relationships can be derived from unit root and stationarity tests. In Chapter 2

I apply the unit root tests that account for uncertainty over the trend to a test

for cointegration between two assets when one or possibly both assets exhibit a

linear, quadratic or even cubic time trends. Not accounting for the possibility

of time trends could lead to the failure to detect cointegrating relationships

and hence limit the profitability of pairs trading.

In Chapter 5 I discuss another important issue related to testing for cointe-

grated assets. In some cases the cointegration framework of Engle and Granger

(1987) fails to detect cointegrating relationships when the assets appear to co-

move historically. This can happen for instance if the spread between them

“moves too much” (see Campbell and Shiller (1987)). Harris, McCabe and

Leybourne (2002) and McCabe, Leybourne and Harris (2006) developed a

framework of stochastic cointegration to account for this possibility. Two time

series are said to be stochastically cointegrated if some linear combination

of the two series is stochastically trendless. This term is defined precisely in

Chapter 5. This framework allows for nonstationary heteroskedasticity in the
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spread so that shocks may have a permanent effect on the variance but always

have only a transitory effect on the level of the spread. In Chapter 5 I show

that this is an effective tool that consistently estimates long-run states of equi-

librium and repeatedly detects such relationships in the U.S. equity market.

A test for stationarity of the spread between two assets that does not allow for

nonstationary heteroskedasticity rejects the null hypothesis of co-movement

too often. Accounting for the possibly for nonstationary heteroskedasticity

properly controls the size of this test. This reinforces the central theme of this

thesis that careful specification testing of economic or financial time series is

valuable and important.

In this thesis I study several specification tests and analyze ways of ex-

tending them in order to enhance their practical utility both for economists

and traders. The second chapter studies unit root tests in the presence of

uncertainty about the non-stochastic time trend in the data. The third and

fourth chapters consider the role of nonstationary volatility in specification

tests. Chapter 3 shows that a test of stationarity in a panel exhibits a sur-

prising robustness in the face of time-varying variances. In Chapter 4, after

finding that this is not true for a test for level breaks, I propose a solution

based on resampling techniques. Chapter 5 is empirical. I demonstrate that

the stochastic cointegration framework of Harris et al. (2002) and McCabe et

al. (2006) is better able to detect cointegrating relationships in the U.S. equity

market.
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Chapter 2

Testing for unit roots in the

presence of polynomial trends

The specification of the deterministic trend component of a time series

is an important step in testing for the presence of a unit root. Recent

work by Ayat and Burridge (2000) emphasizes the importance of allow-

ing nonlinear trends. Harvey et al. (2009b) and Harvey et al. (2011),

as well as Ayat and Burridge (2000), describe problems associated with

testing the null hypothesis of a unit root when there is uncertainty

about the trend component. Harvey et al. (2009b) and Harvey et al.

(2011) described testing strategies based on a union of rejections ap-

proach that can circumvent the low power associated with overfitting

the model for the trend and demonstrate this approach by allowing for

no trend, a linear trend or a quadratic trend. Their analysis suggests

that this approach can be extended to allow more flexible specifica-
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tions. In this paper we develop a unit root testing strategy that allows

for nonlinearity in the form of cubic trends in the time series. We de-

velop the asymptotic theory of the test and provide simulations that

show substantial improvement of the union test over a test based on

a cubic trend estimate, both asymptotically and in finite samples. We

show that this testing strategy is important empirically by applying it

to two separate data analyses. First we use the methodology to test for

unit roots in a series of commodity price data, analyzed in Harvey et al.

(2011). Second, we test for cointegration between every pair combina-

tions of the 30 stocks that constitute the Dow Jones Industrial Average

index, and find that the procedure detects far more cointegrating re-

lationships, when compared with the linear or quadratic specifications.

Thus, extending the possibilities to statistically arbitrage stocks that

are sufficiently away from their long-run estimated equilibria.
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2.1 Introduction

Testing for the presence of a unit root is an important issue in time series

analysis. The literature on unit root tests has been very active since the

influential Dickey and Fuller (1979) paper derived a unit root test based on the

t-test for the null hypothesis that the regression estimate of the AR coefficient

is equal to 1. One problem with the Dickey-Fuller test and extensions to it

that have been discussed in the literature, such as the Elliott, Rothenberg and

Stock (1996) test that was shown to be efficient under certain conditions, is

that they are sensitive to the assumed deterministic component of the time

series. For example, Perron (1989) studied the sensitivity of unit root tests

to breaks in the deterministic trend. Overfitting the deterministic component

generally leads to low power of the test for a unit root. On the other hand,

underfitting the deterministic component will also generally affect the power

of the test.

Thus the specification of the form of the trend component is very impor-

tant. There are two separate issues at stake. One is an issue of interpretation

and the other is an issue of statistical power. If a very flexible deterministic

trend is allowed then it is not clear what evidence of stationarity really means.

In the extreme case, the observed time series can be entirely attributed to a

nonparametric deterministic trend. Since all that is left after removing such

a trend is yt = 0, the series is trivially stationary. A separate but related

issue is that allowing a highly parameterized model for the deterministic trend

introduces a lot more statistical noise. In the presence of a lot of noise any

statistical test for a unit root is likely to have very low power. We only deal

14



with the issue of statistical power in this paper, while keeping in mind that

a more flexible deterministic trend model may alter the interpretation of the

results of the tests.

Many authors have considered flexible models for the deterministic trend.

Ouliaris, Phillips and Park (1989) derive a unit root test that allows for a

polynomial trend of given degree. Though they do not discuss the asymptotic

(local) power of their test it is clear from their applications to real data that

the test has low power. Bierens (1997) estimates the trend nonparametrically

via Chebyschev polynomials. The results of the proposed tests when applied to

several macroeconomic indicators are difficult to interpret because the trends

swallows nearly the whole series. But in general he does not find low rejection

rates. Becker, Enders and Lee (2006) use a flexible Fourier approximation.

Other recent contributions to this literature include Pippenger and Goering

(1993), Balke and Fomby (1997), and Kapetanios, Shin and Snell (2003).

In a pair of papers Harvey, Leybourne and Taylor study unit roots tests

when the deterministic component may be linear or quadratic (Harvey et

al. 2009b, Harvey et al. 2011). Instead of allowing a very flexible specification

of the trend component they focus on uncertainty between two parsimonious

nested models for the trend. In some sense it seems that their approach si-

multaneously solves the problem of interpretation (discussed, for example, in

Phillips (1998)) and low statistical power. The interpretation of their test is

clear: does the time series have a unit root or is it stationary around a trend

that is either linear or locally quadratic? It is clear that there is still substan-

tial variation around the estimated trend in their commodity price application,
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as opposed to Bieren’s estimate trends for various time series of price indices.

However, the focus on two nested models in some way seems to exacerbate

the problem of low statistical power. Harvey et al. (2009b) and Harvey et al.

(2011) then solve this problem in a clever way by using a strategy that rejects

when at least one of two different statistics suggests rejecting the null. Thus

the important result that can be learned from these papers is that a limited

amount of flexibility in the specification of the trend can be allowed without

altering the interpretation and without sacrificing substantial power. Thus

allowing a more complex model for the trend does not risk overfitting because

their strategy also rejects if the less complex trend model would suggest re-

jection. This strategy works in part because if the more complex model were

indeed correctly specified then the less complex model would nearly never re-

ject the null. In Harvey et al. (2009b) the two models are no trend versus

a linear trend; in Harvey et al. (2011) they are linear trend versus quadratic

trend.

In this paper we extend this by allowing a cubic trend. This is done in

part to show that the logic of these two papers can be extended to more

flexible specifications of the deterministic trend. The question we leave on the

table then is to what extent such an approach can be extended to allow a

polynomial trend of unknown degree and how such an approach that carefully

guards against loss of power would compare to the tests proposed by Ouliaris

et al. (1989) and Bierens (1997). We first derive the asymptotic distribution

of the Elliott et al. (1996) unit root test that allows for a linear trend and the

Harvey et al. (2011) unit root test that allows for a quadratic trend under the
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assumption of a local cubic trend. As anticipated we find that probability of

rejection under these tests quickly collapses to zero as the cubic component

of the trend is increased. We next derive asymptotic properties of a new test

statistic, DF − QDcb, that differs from the others by allowing a third degree

polynomial in the QD detrending step. As expected, this test is asymptotically

invariant to the cubic component of the trend. We plot the power function

and show the power that is sacrificed by using this test when the cubic trend

component is very small or nonexistent. Finally, in the spirit of Harvey et al.

(2009b) and Harvey et al. (2011) we propose a union of rejections strategy that

takes advantage of the high power of the proper test under different conditions.

We find that the size and power properties of these tests are not substantially

different in finite samples.

The rest of the paper is organized as follows. In Section 2 we describe

our time series model that allows for cubic time trends and define the Dickey-

Fuller test statistics we use. In Section 3 we derive the asymptotic behavior

of the various tests under a cubic trend. In Section 4 we lay out the union

of rejections strategy. In Section 5 we report simulation results for the finite

sample properties of the tests. Finally, Sections 6 and 7 provide applications

to unit root tests on commodity price data and cointegration tests on stock

price data, respectively. Section 8 concludes.
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2.2 The model

Suppose we observe a time series of length T , {yt}. The model, or data

generating process, we assume is

yt = µ+ βt+ γt2 + δt3 + ut, t = 1, . . . , T (2.1)

ut = ρTut−1 + εt, t = 2, . . . , T (2.2)

where ρT = 1 − cT−1, for 0 ≤ c < ∞, T−1/2u1 →p 0 and {εt} is a stable and

invertible linear process. Note that c = 0 corresponds to a unit root process

and c > 0 corresponds to the local alternative. That is, we assume

Assumption 2.1. The stochastic process {εt} satisfies

εt = C(L)et

C(L) :=
∞∑
i=0

CiL
i, C0 = 1

where C(z) 6= 0 for all z such that |z| ≤ 1,
∑∞

i=1 i|Ci| < ∞ and {et} is a

martingale difference sequence with conditional variance σ2 and suptE(e4
t ) <

∞.

We would like to test the null hypothesis H0 : ρ = 1 against the local

alternative H1 : ρ < 1, and consider the power under local alternatives where

ρ = ρT := 1− c/T for c > 0.

Three different tests can be defined, depending on whether a linear, quadratic

or cubic trend is assumed. Define ρ̄c̄ := 1− c̄/T . Let zτt = (1, t)′, zqt = (1, t, t2)′
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and zcbt = (1, t, t2, t3)′. Finally, let yc̄ := (y1, y2 − ρ̄c̄y1, . . . , yT − ρ̄c̄yT−1)′ and

Zi
c̄ := (zi1, z

i
2− ρ̄c̄zi1, . . . , ziT− ρ̄c̄ziT−1)′ for i = τ, q, cb. Then define ũit := yt−zi′t θ̃i

where θ̃i is the coefficient from the QD trend regression of yc̄i on Zi
c̄i

. Then

DF −QDi is equal to the t-statistic for ρ = 1 in the regression

ũit = ρũt−1 +

p∑
j=1

φj∆ũ
i
t−j + et

Clearly we have defined DF − QDτ to coincide with the Dickey and Fuller

(1979)-type test proposed by Elliot et al (1996) and DF − QDq to coincide

with the test recommended by Ayat and Burridge (2000). As far as we know

DF − QDcb has not been used in the literature. Note that we have allowed

the quasi-differencing parameter c̄ to be different for the three tests. The

“optimal” values have been found to be c̄τ = 13.5, c̄q = 18.5 and c̄cb = 231

2.3 Asymptotic Behavior Under Cubic Trends

In this section we give the asymptotic distribution of all three test statistics

under the assumption of a cubic trend. In order to prevent the cubic and

quadratic terms in the trend from dominating the asymptotic behavior we

need to assume that these coefficients are decaying toward zero as a function

of the sample size at the appropriate rate. The relevant Pitman drifts are γT =

κ1T
−3/2 and δT = κ2T

−5/2. Under these sequences of parameter values the

asymptotic distributions of the three test statistics introduced in the previous

1The first two have been reported in Elliott et al. (1996) and Harvey et al. (2011). We
find via simulations that the Gaussian power envelope in the cubic trend case is at 0.50 for
c = 23.
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section can be characterized in terms of κ1 and κ2. The following lemma gives

the asymptotic distributions.

Lemma 1. Suppose {yt}Tt=1 is generated according to equations (2.1)-(2.2)

and that ρ, γ and δ are indexed by T : ρT = 1 − c/T , γT = κ1T
−3/2, and

δT = κ2T
−5/2. Then under this sequence of distributions the test statistics

have the following limits

DF −QDi d→ J ic(1)2 − 1

2
√∫ 1

0
J i,c̄ic (r)2dr

:= τi

where

Jτ,c̄τc = Wc(r)− rπ−1
1,c̄τM1,c̄τ + κ∗1(r2 − rπ−1

1,c̄τπ2,c̄τ ) + κ∗2(r3 − rπ−1
1,c̄τπ4,c̄τ )

Jq,c̄qc = Wc(r)− rd−1
c̄q (π3,c̄qM1,c̄q − π2,c̄qM2,c̄q)− r2d−1

c̄q (π1,c̄qM2,c̄q − π2,c̄qM1,c̄q)

+ κ∗2(r3 − rd−1
c̄q (π3,c̄qπ4,c̄q − π2,c̄qπ5,c̄q)− r2d−1

c̄q (π1,c̄qπ5,c̄q − π2,c̄qπ4,c̄q)

J cb,c̄cbc = Wc(r)− r(π(11)M1,c̄cb + π(12)M2,c̄cb + π(13)M3,c̄cb)

− r2(π(21)M1,c̄cb + π(22)M2,c̄cb + π(23)M3,c̄cb)− r3(π(31)M1,c̄cb + π(32)M2,c̄cb + π(33)M3,c̄cb)

where κ∗s = κs/σ for s = 1, 2, Wc(r) =
∫ r

0
exp(−(r − s)c)dW (s) for standard

Brownian motion W (s) and

M1,c̄i = (1 + c̄i)Wc(1) + c̄2
i

∫ 1

0

sWc(s)ds, i = τ, q, cb

M2,c̄i = (2 + c̄i)Wc(1)− 2

∫ 1

0

Wc(s)ds+ c̄2
i

∫ 1

0

s2Wc(s)ds, i = q, cb

M3,c̄cb = (3 + c̄cb)Wc(1)− 6

∫ 1

0

sWc(s)ds+ c̄2
cb

∫ 1

0

s3Wc(s)ds
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and for i = τ, q, cb,

π1,c̄i = 1 + c̄i + c̄2
i /3

π2,c̄i = 1 + c̄i + c̄2
i /4

π3,c̄i = 4/3 + c̄i + c̄2
i /5

π4,c̄i = 1 + c̄i + c̄2
i /5

π5,c̄i = 3/2 + c̄i + c̄2
i /6

π6,c̄i = 9/5 + c̄i + c̄2
i /7

dc̄i = π1,c̄iπ3,c̄i − π2
2,c̄i

Π =


π1,c̄cb π2,c̄cb π4,c̄cb

π2,c̄cb π3,c̄cb π5,c̄cb

π4,c̄cb π5,c̄cb π6,c̄cb


Π−1 = (π(ij))

Note that the Pitman drift parameters κ∗1 and κ∗2 cannot be consistently

estimated. The fact that ττ and τq depend on these parameters, while τcb does

not, highlight the importance of using τcb when a cubic trend is known to be

present. The other two tests will suffer from low power because the critical

value cannot be indexed by κ∗s.

Figure 1 shows the asymptotic power functions that we computed by di-

rect simulation of the distributions in Lemma 1. The Brownian motions are

approximated via standard normal random variables and the integrals of the

relevant processes by partial sums over 500 steps. Also note that from Lemma
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1 only the distribution of DF −QDτ depends on κ∗1. Since the interest here is

in the relative behavior of DF−QDq and DF−QDcb we set κ∗1 = κ∗2. We then

plot the power functions for κ∗2 ∈ {0, 1, 2, 3, 4, 5}. Several main patterns can

be seen. The reported results are for a nominal size of 5%. First, for κ∗2 = 0

the linear trend statistic is most powerful (because κ∗1 = 0) and the quadratic

trend statistic is more powerful than the cubic. This dominance is maintained

for small values of κ∗2. And at κ∗2 = 2 DF − QDq and DF − QDcb have very

similar power functions. For higher values of κ∗2 the power of DF −QDq col-

lapses while the power for DF − QDcb is unchanged. Finally, in unreported

simulations we saw that an increase in κ∗1 has a different affect on the power

of DF −QDτ than the same increase in κ∗2. As one might expect, the power

collapses faster with the local cubic trend coefficient κ∗2.

0.1 0.05 0.01

Linear -2.56 -2.85 -3.41

Quadratic -3.15 -3.43 -3.97

Cubic -3.62 -3.89 -4.35

HLT adj. 1.069 1.058 1.043

new adj. 1.095 1.079 1.071

Table 1. Critical Values

2.4 Union of Rejection Strategy

From the results seen in Figure 1 it is apparent that if the researcher knew

whether or not a cubic trend is present in the data the choice of test statistic

is crucial but obvious. One possible solution is to pre-test for a cubic trend.

However, we worry as do Harvey et al. that the low power of such a pre-test
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for moderate values of the cubic coefficient would result in low power of the

unit root test.

Instead we follow Harvey et al. (2011) and propose a union of rejections

strategy. Under this strategy the unit root hypothesis is rejected if it is rejected

by any one of the three tests, DF − QDi, i = τ, q, cb. This is equivalent to

rejecting if the following test statistic is less than cvτ :

tUR := min{DF −QDτ ,
cvτ
cvq

DF −QDq,
cvτ
cvc

DF −QDcb}

We denote the resulting test by URτ,q,cb. In general URτ,q,cb will be oversized

since Pr(tUR < cvτ ) ≥ Pr(DF − QDτ ) = α where the inequality is strict

as long as the second term in the “min” is smaller with some probability.

However, the critical value can be adjusted in order to correct the size. This

adjustment is likely to sacrifice power because the adjusted test will always

reject less often than the unadjusted test. The adjusted union of rejections

strategy rejects the null if tUR < ψcvτ . We denote this test by URadj.
τ,q,cb. Note

that the size will be highest when κ∗1 = κ∗2 = 0. As a result, we can obtain

the right value of ψ that will control the size by simulating the distribution

under this assumption. We computed these values for α = 0.01, 0.05 and 0.10

through a Monte Carlo simulation with 5000 iterations. The values of ψ were

obtained via a grid search that gave size closest to the desired alpha. They

are reported in the last row of Table 1 above (new adj.).

Figure 1 includes simulations of the power and size of these two tests as well.

Also, the test URτ,q denotes the union of rejections test proposed by Harvey
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et al. (2009b) that is based on the DF −QDτ and DF −QDq statistics alone,

and URadj.
τ,q denotes the version of this test with the size correction2.

As expected the unadjusted URτ,q,cb test maintains the highest possible

power across all values of κ∗1. This result follows directly from the definition of

this procedure. The problem of course is that it will reject too often under the

null. In fact the size of this test is 8.5% for a nominal 5% test. Note however,

that the adjusted test still performs quite well across all values of κ∗2.

Another important aspect of Figure 1 is the comparison between URadj.
τ,q,cb

and the proposed procedure of Harvey et al. (2011), URadj.
τ,q . The former cer-

tainly maintains much better power when κ∗2 6= 0. However, when κ∗2 = 0 the

(expected) power advantage of URadj.
τ,q is very small.

2.5 Finite Sample Simulations

Figure 2 shows the size and power of the tests in finite samples. We simulate a

series from the model of equations (2.1)-(2.2) with εt ∼ iid N(0, 1), T = 150,

ρ = 1 − c/T with c ranging from 0 to 40 and with µ = β = γ = 0 and

δ = κ2T
−5/2 for κ2 ranging from 0 to 5. The number of lags used in the

Dickey-Fuller regression are chosen according to the modified MAIC procedure

suggested by Perron and Qu (2007).

Figure 2 depicts the finite sample power functions for DF − QDτ , DF −

QDq, DF −QDcb, URτ,q, UR
adj.
τ,q , URτ,q,cb, and URadj.

τ,q,cb, approximated by 1000

Monte Carlo simulations. First note that the tests are not oversized in the

2As reported by Harvey et al. (2011) the appropriate adjustment for this test is κ = 1.058
for a 5% level test. For our test the appropriate adjustment is κ = 1.079 for a test of level
5%.
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finite sample, except URτ,q and URτ,q,cb which are expected to be oversized

as they are oversized asymptotically as well. For example, the size of URadj.
τ,q,cb

ranges from 0.031 to 0.049.

Second, note that the tests maintain good power in the finite sample. As

the asymptotic analysis suggests, the union of rejections strategy is able to

capitalize on the superior power of DF − QDτ when only a linear trend is

present, the superior power of DF − QDq when only a quadratic trend is

present, and the superior power of DF −QDcb when a cubic trend is present.

The fact that the finite sample performance largely matches the asymptotic

behavior suggests that URadj.
τ,q,cb should be the preferred test when there is

uncertainty over the degree of a low order polynomial trend. The procedure

is robust, correctly sized, powerful and easy to implement.

Finally note that the power advantage of URadj.
τ,q over URadj.

τ,q,cb is still quite

small when no cubic trend component is present. In fact, it seems even smaller

than suggested by the asymptotic results of Figure 1.

2.6 Application to Commodity Prices

In this section we demonstrate the practical importance of the theoretical anal-

ysis of the previous sections. We apply the tests discussed above to the same

(yet updated) set of relative commodity price series analyzed in Harvey et al.

(2011). The data consist of indices of primary commodity prices relative to

manufactured goods for 24 commodity categories for the period 1900− 2007,

measured in logarithms. Thus the time series each consist of 108 observations.
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The prices of these commodities have been studied extensively to test down-

ward trends in the relative commodity prices, namely, The Prebisch-Singer

hypothesis (Prebisch 1950, Singer 1950). Our interest here, however, is assess-

ing the order of integration of these series, adding another perspective to these

studies. We use the data originally compiled by Grilli and Yang (1988) and

updated by Pfaffenzeller, Newbold and Rayner (2007). For the QD detrended

Dickey-Fuller regressions we use the Perron and Qu (2007) MAIC procedure

to choose the lag order, as we did in the simulations in the previous section.

For most of the commodities our results match those of Harvey et al. (2011).

However, for a few commodities we are able to reject the unit root by allowing

a cubic trend. Moreover, by using the union of rejections strategy we do not

reverse any of their rejections because of the loss of power when a cubic trend

is not present.

Table 2 lists the results of our seven testing procedures for each commodity

index. The values of our DF − QDτ and DF − QDq statistics differ slightly

from those of Harvey et al. (2011) because we use 4 additional years of data.

However, our 5% rejections do not differ from theirs for these tests nor do they

for URτ,q and URadj.
τ,q . Now consider the results of the new tests discussed in

this paper in columns 3, 6 and 7. For sugar the cubic test, DF −QDcb, rejects

the unit root despite the fact that the tests used by Harvey et al. (2011) do

not. By definition the null is also rejected by the URτ,q,cb test, but note that

the null is also still rejected by URadj.
τ,q,cb. This shows that our proposed test,

URadj.
τ,q,cb, is able to detect stationarity where Harvey et al. (2011) did not detect

it.

26



Of course, a major concern in allowing for a cubic trend in the testing

procedure is that the power of it will suffer, i.e., there will be fewer rejections

in general across the set of commodities. Indeed, note that for coffee, tea, rice,

rubber and timber the cubic test fails to reject although either the linear test,

the quadratic test, or both reject the null. Note however, that the adjusted

union of rejections strategy is still able to detect stationarity for timber and

rice. While the value of the cubic test statistic DF − QDcb is quite low for

these two time series the values of the linear and quadratic statistics are large

enough to still reject the null while allowing for a cubic trend. Also note that

our preferred test, URadj.
τ,q,cb, agrees with URadj.

τ,q for all five of these goods.

Overall note that the only commodity series for which our proposed statis-

tic, URadj.
τ,q,cb, and that of Harvey et al. (2011), URadj.

τ,q , disagree at the 5% level

is sugar. This application shows the practical use of allowing higher degree

polynomial trends. The stationarity of the sugar commodity series cannot be

detected without allowing a cubic trend. On the other hand this application

has shown that the cubic based testing strategy is very reliable in that the

power of the test does not suffer too much for those series that do not appear

to have a cubic trend; indeed it does not perform any worse than the quadratic

union test in this regard.

The commodity price series are plotted in Figure 3 along with the estimated

linear, quadratic, and cubic trends. From these we can see that several series

clearly exhibit a quadratic trend, as noted in Harvey et al. (2011). We can

also see that a cubic trend fits the price series for sugar better than either a

linear or quadratic. This distinction seems subtle but as we have seen makes

27



an important difference when testing for a unit root in the detrended series.

2.7 Statistical Arbitrage and Testing for Coin-

tegration

The methodology developed in the previous sections can also be applied to

tests for cointegration in multivariate time series. A pair of series is said to

be cointegrated if each series individually is I(1) but some linear combination

of the two series is I(0). See Engle and Granger (1987) for an early source on

the concept of cointegration; see Harris, McCabe and Leybourne (2002) for

a more recent discussion of the literature on cointegration. If the two series

are presumed to be nonstationary then a test of the null of no cointegration

is essentially a unit root test. The residual from the regression of one of the

series on the other can be tested for the presence of the unit root. If such a test

rejects the unit root null then we consider the null of no cointegration rejected

as well. Depending on the statistical properties of the individual series though

a simple unit root test may not be appropriate. The cubic trend union of

rejections approach developed in Sections 2-5 can be used to account for the

possibility that at least one of the two series exhibits trend behavior of a cubic

form.

Consider two series, y1t and y2t, each generated according to equations 2.1

and 2.2 with ρ1 = ρ2 = 1. Furthermore, suppose that u2t = α1u1t + wt where

wt = ρwTwt−1 +νt. Then we are interested in the null hypothesis H0 : ρwT = 1

versus the (local) alternative, H1 : ρwT = 1 − cw/T, cw > 0.
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We propose the following procedure for testing this null hypothesis. First,

we regress y2c on Zc where y2c = (y21, y22 − ρcy21, . . . , y2T − ρcy2,T−1)′ and

zc = (z1, z2−ρcz1, . . . , zT−ρczT−1)′ where zt = (1, t, t2, t3, y1t)
′ and ρc = 1−c/T .

Next, we obtain the residuals from this regression, ût. Finally we run the

Dickey-Fuller type residual regression

ût = ρût−1 +

p∑
j=1

φj∆ût−j + et

and use the t-test for ρ = 1. We determine the number of lags, p, according

to the MAIC procedure of Ng and Perron (2001) and Perron and Qu (2007).

We use c = 23 as recommended for the test above.

We suspect that the asymptotic distribution of this test statistic will be of

the same form as that given in Lemma 1 since we are not introducing a new

regression step but incorporating the regression of y2t on y1t into the first-stage

quasi-detrending regression. However, we also ran Monte Carlo simulations to

determine the critical values of the cointegration test. The size is largest when

there is no time trend at all. So we simulated u1t and u2t according to the

model of equation 2.2 with ρ = 1 and set y1t = u1t and y2t = u1t + γu2t for

various values of γ 6= 0. The error processes, εt were drawn i.i.d. from a

standard normal. We used 10, 000 Monte Carlo iterations. For a large sample,

T = 1000, we found very similar critical values. In particular, the 5% critical

value is −3.8.

We apply this test to the 30 stocks of the Dow Jones Industrial Average

for a time span of January 3, 2000 - December 8, 2009. We divide the data
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into five sections each of 500 days, corresponding to about two years worth of

business days. Recall that in order for two series to be cointegrated they must

each separately be I(1). Moreover, applying the cointegration test above to

stationary series is inappropriate and leads to distortions. Hence we employ a

pre-test within each period to determine which series are I(1). The pre-test we

use is the cubic union test for a unit root described in Section 4. We then apply

a union of rejections test to maintain power for series that do not exhibit a

cubic trend. This applies the union of rejections strategy described in Section

4 to the cointegration test developed here allowing for a linear, quadratic or

cubic trend. We apply the test to all possible pairs of the series. Table 3

reports the results.

We use three different testing strategies as a comparison. The first set of

tests only allows for a linear trend, both in the pre-test and the cointegration

test. The second set of tests in the table allows for up to a cubic trend, both

in the pre-test and the cointegration test. The third set of tests is a hybrid

strategy that uses a linear trend test in the pre-testing stage but employs the

cubic union of rejections procedure for the cointegration test.

As we discussed both in the asymptotic analysis and the CPI commodity

price application, the cubic test can either result in fewer or more rejections

than the linear test. The same is true of the cointegration test used here.

Suppose a given pair of series is indeed cointegrated. Then if one or both

of the series exhibits a cubic trend then the linear test may attribute this

trend in the residual to a unit root and conclude that the two series are not

cointegrated. On the other hand, if they are cointegrated but both exhibit
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only a linear time trend then the cubic test may have low power and hence be

less likely to detect cointegration.

As can be seen in Table.3, the most dramatic evidence that the cubic test

can improve upon the test that assumes only a linear trend is found in the first

and last time periods. In the first range the same series are maintained after

discarding the stationary series, regardless of which test is used to determine

this. Subsequently, the cubic test finds 39 cointegrating pairs, whereas the

linear test only finds 22. Indeed, the linear test finds that only two of the

series are cointegrated with at least one other, while the cubic test finds that

six are. The same pattern holds for the last time period. While one more series

is discarded by the cubic pre-test, the cubic cointegration test still detects far

more cointegrating pairs: 95 versus 55 for the linear cointegration test. Stated

another way, the cubic test finds that 20 of the series are cointegrated with at

least one other, while the linear test finds that only 11 are.

The fourth period exhibits the same pattern as well, though to a lesser

extent. Notice, however, that the second and third period show the reverse

pattern. That is, in both cases the cubic test finds fewer cointegrating pairs

than the linear cointegration test. By considering the hybrid strategy in the

third set of columns in the table it is apparent that this is because the cubic

pre-test discards more series and that these series are more likely to be coin-

tegrated with some other series. However, notice too, that for the third time

period when performed on the same pairs of time series the cubic and linear

cointegration tests detect the same number of cointegration pairs.

In conclusion we find that allowing for a cubic trend when testing for
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cointegration typically leads to detection of more cointegrating pairs. This

is a useful result for the pairs trader who can find more statistical arbitrage

opportunities when a cointegrated pair of stocks deviates far enough. An

interesting extension to this research would be to design a trading strategy

that builds on this model and analyses the economic value of the findings.

2.8 Conclusion

In this paper we studied the behavior of Dickey-Fuller unit root tests of the

form studied by Elliott et al. (1996) and Harvey et al. (2011) under a cubic

trend. We confirm that the power of these tests suffers dramatically in the

presence of an unattended cubic trend, both asymptotically and in finite sam-

ple simulations. We also propose a test, DF −QDcb, that incorporates a cubic

trend into the QD detrending procedure. We show that such a test maintains

good power when a cubic trend is in fact present but that the power is low

when only a linear or quadratic trend is present. These results mirror those of

Harvey et al. (2009b) and Harvey et al. (2011). As these authors suggest, we

implement a union of rejections strategy that is able to take advantage of the

superior power of the cubic test when a cubic trend is present and the superior

power of the quadratic test, DF −QDq, (or the linear, DF −QDτ ) when the

polynomial trend is of a lower degree. Our proposed union of rejections testing

strategy compares favorably to that proposed by Harvey et al. (2011).

We also show the practical importance of the proposed testing procedure

by applying it to commodity price indices. For one commodity series – sugar
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– we are able to reject the null hypothesis that the series exhibits a unit root

by allowing for a cubic trend and yet the power does not suffer seriously for

those series which do not exhibit a cubic trend. The testing procedure is easy

to implement, maintains good power and controls the size. In addition, we

show that allowing for a cubic trend, the unit root test can be successfully

used in the area of statistical arbitrage, allowing the trader to detect more

cointegrating relationships.

Even though the critical-value adjusted union test, URadj.
τ,q,cb, is properly

sized and has good overall power in the presence of cubic, quadratic or lin-

ear trends, we saw that the unadjusted version, URτ,q,cb, has superior power

asymptotically as the magnitude of the cubic trend gets larger. A poten-

tial extension to this research is to develop a modified test strategy through

pretesting first for a strong cubic trend. This will allow to use the less con-

servative unadjusted union test when strong cubic trend is indeed detected,

benefiting from the added power of this test over its adjusted counterpart.
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Appendix

The proof of Lemma 1 follows. We split up the derivation for each of the three

statistics.

We will make use of the following three results derived from similar results

in Harvey et al. (2011) and Chapter 17 of Hamilton (1994).

T−(p+1)
∑
t=1

tp = (1 + p)−1 + o(1)

T−3/2−p
T∑
t=2

tput−1
d→ σ

∫ 1

0

spWc(s)ds

T−1/2−p
T∑
t=2

tp∆ut
d→ σ

{
Wc(1)− p

∫ 1

0

sp−1Wc(s)ds

}

We also will make use of the following result. If T−1/2ũbrT c
d→ σJc(r) then

the unit root test based on these residuals will converge in distribution to

Jc(1)2 − 1

2
√∫ 1

0
Jc(r)2dr

This result follows by standard arguments if Jc(0) = 0 and assuming that the

estimate of the variance of the error in the residual regression converges in

probability to σ2. For each case below we therefore just derive the asymptotic

distribution of T−1/2ũbrT c.
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Asymptotic distribution of DF −QDcb

The statistic, DF−QDcb, is based on the residuals ũt := yt− µ̃− β̃t− γ̃t2− δ̃t3,

where θ̃ := (µ̃, β̃, γ̃, δ̃)′ is obtained by OLS. First, we want to look at the

asymptotic distribution of ũt evaluated at brT c instead of t because, as we

can see from Harvey et al. (2011), this is what the asymptotic distribution

of the test statistic depends on. Next, by the FCLT T−1/2ubrT c converges in

distribution to σWc(r), the Ornstein-Uhlenbeck process. This suggests that

we need to scale ũbrT c by T−1/2 as well. Hence, plugging in the formula above

for yt, we need to derive the asymptotic distribution of

T−1/2ũbrT c = T−1/2ubrT c − T−1/2(µ̃− µ)− T 1/2(β̃ − β)r − T 3/2(γ̃ − γ)r2 − T 5/2(δ̃ − δ)r3

since the floor functions can be ignored in the limit.

The main difficulty is to find the asymptotic distribution of the vector of

coefficients, θ̃ which is obtained by OLS. First, notice that

θ̃ := (X ′X)
−1
X ′Y

where X is a T by 4 matrix with first row (1, 1, 1, 1) and tth row (1 − ρ̄, t −

ρ̄(t − 1), t2 − ρ̄(t − 1)2, t3 − ρ̄(t − 1)3) and Y is a vector with Y1 = y1 and

Yt = yt − ρ̄yt−1. Then this first means that Y = Xθ + U where U1 = u1 and

Ut = ut − ρ̄ut−1. So θ̃ − θ = (X ′X)−1X ′U . Since θ does not appear on the

right-hand side of this equation the residuals are invariant to the true value of

the parameters and hence we can assume without loss of generality that θ = 0.
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Next let A := X ′X and B = X ′U . We want to find the asymptotic

distribution of the coefficient estimates scaled by the right powers of T . By

mimicking the pattern from the linear and quadratic trends considered in

Harvey et al. (2011) we can guess that

θ̃T :=



T−1/2(µ̃− µ)

T 1/2(β̃ − β)

T 3/2(γ̃ − γ)

T 5/2(δ̃ − δ)


=



a11 T−1a12 T−2a13 T−3a14

a12 T−1a22 T−2a23 T−3a24

T−1a13 T−2a23 T−3a33 T−4a34

T−2a14 T−3a24 T−4a34 T−5a44



−1

T−1/2b1

T−1/2b2

T−3/2b3

T−5/2b4


:= A−1

T BT

To check this we have to compute the inverse of a 4 by 4 matrix. We do this

using the method of minors and find that it is indeed true.

Now the idea is that we can find the asymptotic distribution of θ̃T by

studying the behavior of AT and BT separately. We only need to deal with

aj4, b3 and b4. The other entries of AT and BT are the same as in Harvey et

al. (2011).

Now let Xj denote the jth column of X. Also, recall that ρ̄ = 1 − c̄T−1.
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Then

T−2a14 = T−2X ′1X4

= T−2

(
1 +

T∑
t=2

(1− ρ̄)(t3 − ρ̄(t− 1)3)

)

= T−2

(
1 + c̄T−1

T∑
t=2

(3t2 − 3t+ 1 + c̄T−1(t− 1)3)

)

= 3c̄T−3

T∑
t=2

t2 + c̄2T−4

T∑
t=2

t3 + o(1)

→ c̄+ c̄2/4

Next,

T−3a24 = T−3X ′2X4

= T−3

(
1 +

T∑
t=2

(t− ρ̄(t− 1))(t3 − ρ̄(t− 1)3)

)

= T−3

(
1 +

T∑
t=2

(1 + c̄T−1(t− 1))(3t2 − 3t+ 1 + c̄T−1(t− 1)3)

)

= 3T−3

T∑
t=2

t2 + 3c̄T−4

T∑
t=2

t3 + c̄T−4

T∑
t=2

t3 + c̄2T−5

T∑
t=2

t4 + o(1)

→ 1 + c̄+ c̄2/5 = π4
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Next,

T−4a34 = T−4X ′3X4

= T−4

(
1 +

T∑
t=2

(t2 − ρ̄(t− 1)2)(t3 − ρ̄(t− 1)3)

)

= T−4

(
1 +

T∑
t=2

(2t− 1 + c̄T−1(t− 1)2)(3t2 − 3t+ 1 + c̄T−1(t− 1)3)

)

= 6T−4

T∑
t=2

t3 + 3c̄T−5

T∑
t=2

t4 + 2c̄T−5

T∑
t=2

t4 + c̄2T−6

T∑
t=2

t5 + o(1)

→ 3/2 + c̄+ c̄2/6 = π5

Finally,

T−5a44 = T−5X ′4X4

= T−5

(
1 +

T∑
t=2

(t3 − ρ̄(t− 1)3)2

)

= T−5

(
1 +

T∑
t=2

(3t2 − 3t+ 1 + c̄T−1(t− 1)3)2

)

= 9T−5

T∑
t=2

t4 + 6c̄T−6

T∑
t=2

t5 + c̄2T−7

T∑
t=2

t6 + o(1)

→ 9/5 + c̄+ c̄2/7 := π6
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Lastly consider b3 and b4. Using them we find,

T−3/2b3 = 2T−3/2

T∑
t=2

t∆ut + 2c̄T−5/2

T∑
t=2

tut−1 + c̄T−5/2

T∑
t=2

t2∆ut + c̄2T−7/2

T∑
t=2

t2ut−1

d→ 2σ

{
Wc(1)−

∫ 1

0

Wc(s)ds

}
+ 2c̄σ

∫ 1

0

sWc(s)ds+ c̄σ

{
Wc(s)− 2

∫ 1

0

sWc(s)ds

}
+

c̄2σ

∫ 1

0

s2Wc(s)ds

= σ

{
(2 + c̄)Wc(1)− 2

∫ 1

0

Wc(s)ds+ c̄2

∫ 1

0

s2Wc(s)ds

}
:= σM2

Note that this is the same asymptotic distribution for T−3/2b3 that is derived

in Harvey et al. (2011). Next,

T−5/2b4 = 3T−5/2

T∑
t=2

t2∆ut + 3c̄T−7/2

T∑
t=2

t2ut−1 + c̄T−7/2

T∑
t=2

t3∆ut+

c̄2T−9/2

T∑
t=2

t3ut−1 + op(T
5/2)

d→ 3σ

{
Wc(1)− 2

∫ 1

0

sWc(s)ds

}
+ 3c̄σ

∫ 1

0

s2Wc(s)ds+

c̄σ

{
Wc(s)− 3

∫ 1

0

s2Wc(s)ds

}
+ c̄2σ

∫ 1

0

s3Wc(s)ds

= σ{(3 + c̄)Wc(1)− 6

∫ 1

0

sWc(s)ds+ c̄2

∫ 1

0

s3Wc(s)ds} := σM3
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So, combining these results,



T−1/2µ̃

T 1/2β̃

T 3/2γ̃

T 5/2δ̃


d→



1 0 0 0

1 + c̄+ c̄2/2 π1 π2 π4

c̄+ c̄2/3 π2 π3 π5

c̄+ c̄2/4 π4 π5 π6



−1

0

σM1

σM2

σM3



= σ



0

Π−1


M1

M2

M3




where

Π =


π1 π2 π4

π2 π3 π5

π4 π5 π6


Plugging this back into the formula for T−1/2ũbrT c we obtain J cb,c̄cbc (r) defined

in the theorem.

Asymptotic distribution of DF −QDq

We set µ = β = γ = 0 since DF−QDq is invariant to these parameters. Hence

yt = κ2T
−5/2t3+ut. The statistic is based on the residuals ũt := yt−µ̃−β̃t−γ̃t2.
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Hence we need to derive the asymptotic distribution of

T−1/2ũbrT c = T−1/2ubrT c + κ2r
3 − T−1/2µ̃− T 1/2β̃r − T 3/2γ̃r2

The main difficulty is to find the asymptotic distribution of the vector of

coefficients, (µ̃, β̃, γ̃)′ which is obtained by OLS. Notice that


T−1/2µ̃

T 1/2β̃

T 3/2γ̃

 =


a11 T−1a12 T−2a13

a12 T−1a22 T−2a23

T−1a13 T−2a23 T−3a33


−1

T−1/2b1

T−1/2b2

T−3/2b3


The terms aij are the same as in HLT. So we only need to deal with b1, b2, b3.

b1 = y1 + c̄T−1(yT − y1) + c̄2T−2

T∑
t=2

yt−1

b2 = yT + c̄T−1

T∑
t=2

yt + c̄T−1

T∑
t=2

t∆yt + c̄2T−2

T∑
t=2

tyt−1 + op(T
1/2)

b3 = 2
T∑
t=2

t∆yt + 2c̄T−1

T∑
t=2

tyt−1 + c̄T−1

T∑
t=2

t2∆yt + c̄2T−2

T∑
t=2

t2yt−1 + op(T
3/2)

We will make use of the fact that T−(p+1)
∑

t=1 t
p = (1 + p)−1 + o(1). For

example,
∑T

t=1 t = 1
2
T (T + 1), so dividing by T 2 we get 1

2
(1 + T−1)→ 1

2
.

T−1/2b1 = T−1/2u1 + κ2T
−3 + c̄T−3/2(uT − u1 + κ2T

1/2 − κ2T
−5/2) + c̄2T−5κ2

T∑
t=2

t3+

c̄2T−5/2

T∑
t=2

ut−1 →p 0
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Next consider b2.

T−1/2b2 = κ2 + T−1/2uT + c̄T−4κ2

T∑
t=2

t3 + c̄T−3/2

T∑
t=2

ut−1 + c̄T−4κ2

T∑
t=2

t(t3 − (t− 1)3)

+ c̄T−3/2

T∑
t=2

t∆ut + c̄2T−5κ2

T∑
t=2

t4 + c̄2T−5/2

T∑
t=2

tut−1 + op(T
1/2)

d→ σ

{
(1 + c̄)Wc(1) + c̄2

∫ 1

0

sWc(s)ds+ κ∗2

(
1 + c̄+

c̄2

5

)}

where κ∗2 := σ−1κ2.

Lastly consider b3.

T−3/2b3 = 2T−3/2

T∑
t=2

t∆ut + 2c̄T−5/2

T∑
t=2

tut−1 + c̄T−5/2

T∑
t=2

t2∆ut + c̄2T−7/2

T∑
t=2

t2ut−1

+ 2T−4κ2

T∑
t=2

t(t3 − (t− 1)3) + 2c̄T−5κ2

T∑
t=2

t4 + c̄T−5κ2

T∑
t=2

t2(t3 − (t− 1)3)+

c̄2T−6κ2

T∑
t=2

t5

d→ σ

{
(2 + c̄)Wc(1)− 2

∫ 1

0

Wc(s)ds+ c̄2

∫ 1

0

s2Wc(s)ds+ κ∗2

(
3

2
+ c̄+

c̄2

6

)}

Combining these results with the asymptotic forms of aij derived in Harvey

et al. (2011) we get


T−1/2µ̃

T 1/2β̃

T 3/2γ̃

 d→


0

σd−1(π3M1 − π2M2 + κ∗2(π3π4 − π2π5))

σd−1(π1M2 − π2M1 + κ∗2(π1π5 − π2π4))


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where everything is defined in Harvey et al. (2011) except

π4 = 1 + c̄+
c̄2

5

π5 =
3

2
+ c̄+

c̄2

6

Lastly, this implies that

T−1/2ũbrT c
d→ σ

{
Wc(r)− rd−1(π3M1 − π2M2)− r2d−1(π1M2 − π2M1)

+κ∗2(r3 − rd−1(π3π4 − π2π5)− r2d−1(π1π5 − π2π4)
}

Asymptotic distribution of DF −QDτ

We set µ = β = 0 since DF − QDτ is invariant to these parameters. Hence

yt = κ1T
−3/2t2 + κ2T

−5/2t3 + ut. The statistic is based on the residuals ũt :=

yt − µ̃− β̃t. Hence we need to derive the asymptotic distribution of

T−1/2ũbrT c = T−1/2ubrT c + κ1r
2 + κ2r

3 − T−1/2µ̃− T 1/2β̃r

So we have to find the asymptotic distribution of the vector of coefficients,

(µ̃, β̃)′ which is obtained by OLS. First notice that

 T−1/2µ̃

T 1/2β̃

 =

 a11 T−1a12

a12 T−1a22


−1 T−1/2b1

T−1/2b2


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The terms aij are the same as in HLT. As in HLT, T−1/2b1 → 0. Next,

b2 = y1 +
T∑
t=2

(yt − ρ̄yt−1)(t− ρ̄(t− 1))

= y1 +
T∑
t=2

(∆yt + c̄T−1yt−1)(1 + c̄T−1(t− 1))

So

T−1/2b2 = op(1) + T−1/2yT + c̄T−3/2

T∑
t=1

yt + c̄T−3/2

T∑
t=1

t∆yt + c̄2T−5/2

T∑
t=1

tyt

= op(1) + κ1 + κ2 + T−1/2uT + 3c̄κ1T
−3

T∑
t=1

t2 + 4c̄κ2T
−4

T∑
t=1

t3 + c̄T−3/2

T∑
t=1

ut

+ c̄T−3/2

T∑
t=1

t∆ut + c̄2κ1T
−4

T∑
t=1

t3 + c̄2κ2T
−5

T∑
t=1

t4 + c̄2T−5/2

T∑
t=1

tut

d→ σM1,c̄ + κ1(1 + c̄+ c̄2/4) + κ2(1 + c̄+ c̄2/5)

where M1,c̄ is defined in Harvey et al. (2011) as (1 + c̄)Wc(1) + c̄2
∫ 1

0
sWc(s)ds.

Combining these results

 T−1/2µ̃

T 1/2β̃

 d→

 1 0

1 + c̄+ c̄2/2 π1,c̄


−1 0

σM1,c̄ + κ1(1 + c̄+ c̄2/4) + κ2(1 + c̄+ c̄2/5)


=

 0

π−1
1,c̄ (σM1,c̄ + κ1(1 + c̄+ c̄2/4) + κ2(1 + c̄+ c̄2/5))


Finally we can plug this into the expression above to get the asymptotic dis-

tribution of T−1/2ũbrT c.
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Commodity DF-DQτ DF-DQq Df-DQcb UR τ-q UR τ-q Adj UR τ-q-cb UR τ-q-cb Adj
Coffee -3.000 -3.628 -3.859 1 0 1 0
Cocoa -2.110 -2.163 -2.924 0 0 0 0
Tea -2.215 -3.568 -3.743 1 0 1 0
Rice -1.790 -3.809 -3.854 1 1 1 1
Wheat -3.340 -3.828 -4.040 1 1 1 1
Maize -0.704 -4.946 -5.258 1 1 1 1
Sugar -2.903 -2.906 -4.910 1 0 1 1
Beef -2.975 -2.991 -3.339 1 0 1 0
Lamb -3.085 -3.091 -3.098 1 1 1 1
Banana -1.598 -2.376 -3.216 0 0 0 0
Palmoil -2.792 -4.291 -4.320 1 1 1 1
Cotton -1.239 -2.459 -2.451 0 0 0 0
Jute -0.913 -1.801 -1.835 0 0 0 0
Wool -1.405 -2.162 -2.892 0 0 0 0
Hides -1.616 -3.271 -3.676 0 0 0 0
Tobacco -0.738 -4.124 -4.231 1 1 1 1
Rubber -2.858 -3.483 -3.489 1 0 1 0
Timber -3.519 -3.780 -3.795 1 1 1 1
Copper -2.222 -2.715 -2.722 0 0 0 0
Aluminum -2.528 -3.345 -3.365 0 0 0 0
Tin -2.569 -2.738 -2.832 0 0 0 0
Silver -1.859 -2.237 -2.761 0 0 0 0
Lead -2.419 -2.437 -2.553 0 0 0 0
Zinc -3.980 -4.157 -4.181 1 1 1 1

Table 2. Unit Root Tests on Commodity Price Data
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1 22 26 650 0.034 39 26 650 0.060 45 26 650 0.069

2 36 27 702 0.051 33 25 600 0.055 65 27 702 0.093

3 31 28 756 0.041 21 29 812 0.026 31 28 756 0.041

4 17 25 600 0.028 24 26 650 0.037 24 25 600 0.040
5 55 30 870 0.063 95 29 812 0.117 103 30 870 0.118

Table 3. Cointegration tests with trend uncertainty

#  

series 

cointegrating 

pairs detected

# pairs 

tested

cointegrating 

pairs detected

# pairs 

tested
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#  

series 

#  

series p
er
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d

%  pairs 
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linear cubic linear/cubic

cointegrating 
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# pairs 

tested

%  pairs 

detected
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Figure 1. Asymptotic size and local power of the linear, quadratic and

cubic under cubic

Model: yt = µ+ βt+ κ1T
−3/2t2 + κ2T

−5/2t3 + ut

(Monte Carlo=500, T=1000)
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Figure 2. Finite samples size and local power of the linear, quadratic and

cubic under cubic

Model: yt = µ+ βt+ κ1T
−3/2t2 + κ2T

−5/2t3 + ut

(Monte Carlo=1000, T=150)
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Figure 3(a). Relative primary commodity price series and fitted

deterministic components
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Figure 3(b). Relative primary commodity price series and fitted

deterministic components
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Figure 3(c). Relative primary commodity price series and fitted

deterministic components
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Figure 3(d). Relative primary commodity price series and fitted

deterministic components
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Chapter 3

The robustness of a panel

stationarity test to

nonstationary volatility

Harris, Leybourne and McCabe (2005) propose a test for stationarity

in panel time series data that allows for arbitrary cross-sectional depen-

dence while also treating the time series dynamics nonparametrically.

They do not, however, account for the possibility of time series het-

eroskedasticity. We explore the behavior of their test in finite samples

for ARMA models when the underlying innovation has a time-varying

variance through a series of Monte Carlo exercises and discover the

unexpected result that the test is fairly robust without correcting for

the heteroskedasticity. We find that the uncorrected statistic of Harris

et al. (2005) that does not account for small sample bias arising from
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estimation of the regression coefficients is still conservative in our sim-

ulations which allow for non-constant volatility. That is, we find that

the size is always less than the nominal size. Second, we find that the

bias-corrected version of their test is typically over-sized but the distor-

tion is not substantial in any of our simulations. Third, we find that

in general the unattended nonstationary volatility does not adversely

affect the power of either test.
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3.1 Introduction

The proliferation of long time series on many macroeconomic variables recently

has led to the development of new ways to test for unit roots, or conversely

test for stationarity, in panels. As long as the separate series are not highly

correlated the use of panels should lead to test with higher power (see, inter

alia, O’Connell (1998); Maddala and Wu (1999); Hadri (2000); Choi (2001);

Choi (2006); Im, Pesaran and Shin (2003); and Harris et al. (2005)).

One key problem with some of the proposed tests is that they assume cross-

sectional independence. Harris et al. (2005) suggest a way to allow arbitrary

cross-sectional dependence while still allowing for a wide range of time series

dynamics. Their test is essentially the sum of the lag-k estimate autocorrela-

tions across the N series. By allowing k to increase with time in the asymptotic

analysis they are able to show that asymptotically this test can handle all sorts

of time series behavior. This sum of autocorrelations is then asymptotically

normal under standard conditions and the only other component needed to

perform a valid test for stationarity is an estimate of the asymptotic vari-

ance. Their test is then robust to cross-sectional dependence because they use

an estimate of the asymptotic variance that allows for arbitrary dependence

between the series. This estimate relies on a consistent estimate of the long-

run variance of the series
∑N

i=1 eitei,t−k. This series essentially describes the

cross-sectional lag-k autocorrelation at each period t.

While allowing for arbitrary cross-sectional dependence and serial corre-

lation, Harris et al. (2005) assumes that the underlying process in each se-

ries is stationary. However, the importance of accounting for non-stationary
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unconditional volatility has recently been recognized in a growing literature.

In particular, a large body of recent work has shown that the unconditional

volatility of the processes driving many macroeconomic time series declined

over the last quarter of the last century (see, e.g., the literature review in Cav-

aliere and Taylor, 2008). Sensier and Dijk (2004) find wide spread evidence

of non-constant volatility in the Stock and Watson (1999) dataset. More-

over, unattended time-varying volatility has been found to produce significant

size distortions in standard unit root and stationary tests (Kim, Leybourne

and Newbold 2002, Busetti and Taylor 2003, Cavaliere 2004, Cavaliere and

Taylor 2005, Cavaliere and Taylor 2007, Cavaliere and Taylor 2008), as well

as in tests of level breaks (Daihes 2011).

Because of these concerns we conduct a series of Monte Carlo experiments

to assess the distortion caused by non-constant volatility in the time series.

One would expect that a heteroskedasticity-robust variance estimator is nec-

essary for the test to be valid. Surprisingly we find little distortion in the size

of the test without such a correction. In Section 2 we lay out the model con-

sidered by Harris et al. (2005) and define their proposed estimator. In Section

3 we describe our simulations and report the results. Section 4 concludes.
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3.2 The model

Suppose we observe N time series of length T , {yit}. The model, or data

generating process, we assume is

yit = β′ixit + eit (3.1)

eit = φiei,t−1 + εit, t = 1, . . . , T (3.2)

We wish to test the null hypothesis

H0 : φi < 1 for all i

against the alternative that φi = 1 for some i.

Harris et al. (2005) assume that εt = (ε1t, . . . , εNt) satisfies the following

assumption.

Assumption 3.1. εt is a N × 1 vector of fixed dimension generated by

εt = A(L)ξt,

where A(L) =
∑∞

j=0 AjL
j and Aj and ξt satisfy

(i). A0 = IN

(ii).
∑∞

j=0 j
2tr(A′jAj) <∞

(iii). A(1) has full rank

(iv). {ξt,Ft} is a martingale difference sequence where Ft = σ{ξt−j , j ≥ 0}
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(v). E(ξtξt
′ | Ft−1) = Σ almost surely, for all t

(vi). ||E(ξtξt
′ ⊗ ξtξt′ | Ft−1)|| < κ <∞ almost surely, for all t1

This assumption allows for substantial dependence across i and serial cor-

relation across t as well as heteroskedasticity across i. The one thing it does

not allow is heteroskedasticity across t. Assumption 1(v) restricts the driving

process ξt to be stationary. Alternatively we might assume that ξt = Σtνt

for a non-stochastic, time-varying volatility series, Σt, and a process νt that

satisfies Assumptions 1(iv)-1(vi). We find in a series of Monte Carlo exercises

that their procedure is robust to this more general specification. Specifically,

we simulate processes with a jump in volatility, i.e., Σt = σtIN for a scalar

σt = σ0 + I(t > b.5T c)(σ1− σ0). Harris et al. (2005) also assume the following

about the regressors xit.

Assumption 3.2. For each i there exists DiT such that (i) D−1
iT xibτT c →

Xi(τ) <∞, uniformly in τ and (ii) T−1
∑T

t=1D
−1
iT xit

(
D−1
iT xit

)′ → ∫ 1

0
Xi(τ)Xi(τ)′dτ >

0.

This assumptions requires the deterministic regressors to satisfy a very mild

set of restrictions regarding their limiting behavior. Note that for example,

any polynomial trend will satisfy this assumption. If xit = tp for some positive

integer p then it is satisfied with DiT = T p and Xi(τ) = τ p.

1Where ||W || denotes
√
tr(W ′W ).
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3.2.1 The estimator

To motivate the test statistic suppose yt = ρyt−1 + et where et is white noise

with variance σ2. Then if ρ < 1,

E

(
T−1/2

T∑
t=k+1

ytyt−k

)
≈ T 1/2σ2ρk/(1− ρ2)

On the other hand, when ρ = 1, the same expectation is approximately T 3/2σ2

(Harris et al. 2005). Note that using this statistic for k = 1 requires estimation

of ρ as well as σ2. More generally for fixed k such a statistic requires speci-

fication and estimation of the time series behavior of the data. However, as

documented by (Harris et al. 2005), if k is indexed by T so that it is increasing

in T but o(T ) then the right-hand side of the above expression converges to 0

while T 3/2σ2 →∞2.

We start by residualizing and normalizing each series. Let êit denote the

OLS residual and let ẽit denote êit/(T
−1
∑T

t=1 ê
2
it). Next define

Sk = T−1/2

N∑
i=1

T∑
t=k+1

ẽi,tẽi,t−k

This is the statistic suggested above for a univariate time series aggregated

over the N different series. Next define

Γ̂j(at) = T−1

T∑
t=j+1

ata
′
t−j

2To see this, suppose k = T δ for 0 < δ < 1. Then T 1/2σ2ρk/(1 − ρ2) = σ2/(1 −
ρ2) exp((1/2) ln(T ) + T δ ln(ρ)). Since ρ < 1 and because ln(T ) converges slower than any
power of T it follows that (1/2) ln(T ) + T δ ln(ρ)→ −∞ and thus T 1/2σ2ρk/(1− ρ2)→ 0.
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Then the test statistic is obtained by studentizing Sk.

Ŝ =

(
Γ̂0

(
N∑
i=1

ẽi,tẽi,t−k

)
+ 2

l∑
j=1

(1− j/l)Γ̂j

(
N∑
i=1

ẽi,tẽi,t−k

))−1/2

Sk

As stated below this test statistic is asymptotically normal under H0. How-

ever, when N is large relative to T there will often be a small sample bias in

this test statistic. As discussed in Harris et al. (2005), this arises due to es-

timation error from the OLS coefficients. The error due to estimation of βi

is of order T−1/2. However, when N is not sufficiently small relative to T the

aggregation of the estimation error across i = 1, . . . , N can produce substan-

tial bias even when T is itself large. Harris et al. (2005) propose using the

following bias-corrected version of the numerator

S∗k = T−1/2

N∑
i=1

T∑
t=k+1

ẽi,tẽi,t−k

+ T−1/2

N∑
i=1

tr


(
T−1

T∑
t=1

xitx
′
it

)−1(
Γ̂0(

N∑
i=1

xitẽit) +
l∑

j=1

(1− j/l)(Γ̂j(xitẽit) + Γ̂j(xitẽit)
′)

)
The bias-correction accounts for the individual regression errors that accumu-

late when aggregated over the N time series. The correction is an estimate of

the expectation of the Op(T
−1/2) terms in the expansion of Sk. Clearly when

the Γ̂j are consistent estimates of the autocorrelations and presuming that

the regressors have finite second moments each summand of the second term

is Op(1) and hence the whole term is Op(T
−1/2). Let Ŝ∗ denote the statistic

obtained by replacing Sk with S∗k in Ŝ. This is the bias-corrected test statistic.
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Harris et al. (2005) show that the bias-corrected statistic is still asymptotically

normal since the bias-correction is op(1).

We next state the asymptotic results of Harris et al. (2005).

Theorem 1. Suppose k = O(T 1/2) and l = o(k). Then under Assumptions 1

and 2, (i) Ŝ → N(0, 1) under H0, (ii) Ŝ∗ → N(0, 1) under H0, and (iii) both

Ŝ and Ŝ∗ diverge to +∞ under H1.

This theorem states that both proposed test statistics are asymptotically

normal under the null hypothesis and that both are consistent under the alter-

native that φi = 1 for some i. The asymptotics are obtained as an application

of a more general limit theory of processes where the degree of autocorrelation

is indexed by the sample size developed by Harris, McCabe and Leybourne

(2003).

3.3 Monte Carlo simulations

We replicate the finite sample size simulations of Harris et al. (2005) and in

addition perform several additional simulations with non-stationary volatility.

First we use the dgp of equations (3.1)-(3.2) with βi = 0 for all i and εit =

νit − θiνi,t−1 where νt = (ν1t, . . . , νNt) is i.i.d. N(0, ρ) where ρij = E(νitνjt)

and ρii = 1. In the simulations we vary the MA parameters θi and the AR

parameters φi as well as the sample sizes N and T , but fix ρij = 0. In a second

set of exercises we allow the variance to jump from 1 to σ2 in the middle of

the series. That is, εit = ν̃it − θiν̃i,t−1 where ν̃it = Σ
1/2
t νit, νit is i.i.d. N(0, ρ)

and Σ
1/2
t = {1 + I(t > b.5T c)(σ− 1)}IN . We also run simulations allowing for
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a deterministic time trend. In particular we set xit = t and βi = β for all i in

the data generating process.

In Tables 1A-1C we used the test statistic Ŝ for the panels labeled “no bias

correction” and Ŝ∗ for the panels labeled “bias-corrected”. The residual was

obtained by first removing the mean of each series and then normalizing each

series of residuals as described in the text. We chose the order of autocorrela-

tion k according to the rule k = b(3 ∗ T )1/2c and we chose the lag truncation

parameter l according to l = b12 ∗ (T/100)1/4c. These are the same choices

used in Harris et al. (2005). First examine Table 1A. The first panel of this

table should be identical to Table 1(a) of HLM. Indeed both tables show that

with the bias-correction the test has nearly exact size in finite samples across

various values of θi and φi when ρij = 0 for i 6= j and the variance is constant

over time. Both tables show that the test is the most under-sized when T is

small but N is large, θi = 0, and φi = 0.8. This is likely because the bias of

the uncorrected statistic is quite large in this case and the correction is not

sufficient. Also, both tables show that the test is most over-sized when sample

sizes are small and θi = 0 and φi is small. It can also be seen in the second

panel of Table 1A that the uncorrected tests is severely undersized as shown

by HLM (cf. Table 1(e) in that paper).

Now consider Tables 1B and 1C. First note that in the second panel, where

the results of the uncorrected test are reported, we see that the size in every

case is less than the nominal size of 0.05. This suggests that the bias in the

uncorrected test statistic caused by not accounting for heteroskedasticity is

not too large. Indeed we can conclude that the bias is typically negative by
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comparing with the second panel of Table 1A. Now examine the first panel

of Tables 1B and 1C. Note that the failure to account for heteroskedasticity

may bias these tests in two ways because both the uncorrected statistic and

the bias-correction may be affected by the heteroskedasticity. For example,

consider the three columns where the MA parameter is 0. The size is largest

in this case but the second panel shows that there is not much of an upward

bias in the uncorrected statistic, if at all. Indeed it is apparent that the failure

of the bulk of the bias in the “bias-corrected” statistic is due to the use of the

wrong model for the correction. Note also though that this second source of

bias may be positive or negative; see for example the fifth column. Overall the

failure to account for heteroskedasticity did not lead to large size distortions;

in the worst case we find a size of less than twice the nominal size.

Tables 2A-2C present new results concerning the model with a determin-

istic time trend. The residual was obtained by first estimating a regression

on a constant and a linear time trend for each series and then normalizing

each series of residuals as described in the text. We again chose the order of

autocorrelation k according to the rule k = b(3 ∗ T )1/2c and we chose the lag

truncation parameter l according to l = b12 ∗ (T/100)1/4c. Table 2A reports

results for the case where the volatility is in fact constant. Note that the bias-

correction goes too far in many of the exercises. The size is distorted by more

than 2.5 times the nominal size in some cases. However, comparing the results

of the volatility jump exercises in Tables 2B and 2C we find the same pattern

as we did when no trend was simulated. Namely, the uncorrected statistic,

while still in some cases severely undersized, is never over-sized. And the size
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of the bias-corrected test is typically only slightly higher than the analogous

test in Table 2A.

Tables 3 and 4 report the results of the power simulations. To assess the

power of the test, both under constant volatility and time-varying volatility,

we simulate the model of equations (3.1)-(3.2) with the same parameters as in

the size simulations except that we allow some of the N series to have a unit

root, i.e., φi = 1. We vary the number of series with φi = 1 from M = 1 to

M = 30. We also report results where the correlation between the series is

ρ = 0.5 and ρ = 0.9 in addition to the uncorrelated case.

First observe the results in Table 3A. The power number lines up exactly

with those reported by Harris et al. (2005), as they should. Note that the

power is lower when there is correlation among the separate series in the panel.

Yet the power does not drop off toward zero except in the case where N is

large and M is small. Compare the results in Tables 3B and 3C. There is an

observable drop in power relative to the case of constant volatility. However,

the power loss is not substantial in any case. As a baseline, consider the case

where T = 300, N = 3, ρ = 0 and M = 1. The power drops from .79 to .74

in the first case where the volatility jumps 300% and .72 in the second case

where the volatility jumps 500%.

Recall that we found above that the bias-corrected test is slightly over-sized

when the series exhibit time-varying variances. We also found, however, that

the size of the unadjusted test remains below nominal size under this departure

from the model. This is a useful result only if the test also maintains power

in this case. To assess this consider panel (b) in Tables 3A-3C. As expected,
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the lowest power occurs when N is large relative to T - because this is where

the small sample bias is largest - and when M is small. This is true whether

or not the model is correctly specified, i.e., regardless of the volatility process.

However, for large enough T the unadjusted test exhibits substantial power

when the series exhibit unattended jumps in the volatility process. When

T = 300 and there is a 500/% jump in the variance the unadjusted test retains

power function which is at modest levels when M = 1 and increases quickly

in M .

Also, Harris et al. (2005) note that the power results demonstrate clearly

the advantage of using the panel test. Observe in Table 3A, panel (a), that

when N = M = 3 and T = 75 the power is 0.69. Increasing N but keeping

M = N and T = 75, the power increases quickly to 1. This shows that as

more evidence of nonstationarity in a panel is added the test is able to reject

at a higher rate. Importantly, this result still holds for both the unadjusted

and bias-corrected tests when jumps in volatility are present. For example,

in Table 3C, panel (a), we see that the power goes from 0.63 to .99 along

the same diagonal. In panel (b) of the same table we see that the power is

negligible when t = 75 but when T = 150 the power goes from .72 to 1 along

the N = M diagonal.

Table 4 reports power results for the model with a linear time trend. One

important message here is that for small T the test has low power, regard-

less of the volatility process and regardless of whether the bias correction is

implemented. Considering then only the panels where T = 300, we see that

the results mostly mirror those from the case without a trend. There is a
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small but not substantial power loss due to the jump in volatility in the bias

corrected test. The unadjusted test still has non-negligible power particularly

as M increases. And the result that when correlation is low the panel test

improves power still holds under jumps in volatility.

3.4 Conclusion

Harris et al. (2005) have shown that if the cross-sectional dependence is prop-

erly accounted for panel time series data can provide increased power in de-

tecting unit roots. One potential drawback of their procedure, however, is

that it fails to account for the possibility of non-stationary volatility in one

or more of the observed time series. This is potentially a serious problem

because recent work has found that time-varying unconditional variances are

quite prevalent in many macroeconomic time series and because other test

statistics have been found to exhibit substantial size distortions when this is

not accounted for. Through several Monte Carlo simulation exercises we are

able to show that panel stationarity tests based on the properly studentized

aggregate lagged autocorrelations of multiple series, such as the one proposed

by Harris et al. (2005), do not suffer from this same problem. The Harris et

al. (2005) test is surprisingly robust without correcting the variance estimator

for heteroskedasticity, as usually one would need a HAC (Hetroscedastic and

Auocorrelation Consistent) variance estimator to achieve asymptotic robust-

ness.

While we find that the test proposed by Harris et al. (2005) that corrects
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for small sample bias when N is large relative to T is over-sized, the distortion

is minimal. On the other hand, the unadjusted statistic, however, controls

the size in all of our simulations. Therefore in some cases it may be prefer-

able to use the unadjusted statistic as a conservative approach to testing for

stationarity when time-varying volatility may be present.

One might suspect that though the test controls size despite these depar-

tures from the model it may suffer in terms of power when there is time-

varying volatility. Our simulation results show that this is in general not the

case. While there are slight power losses due to the jumps in volatility the

only substantial losses are when T = 75. For larger sample sizes the reduc-

tion in power is typically smaller, though not negligible. Using the unadjusted

test statistic as a conservative strategy when time-varying volatility may be

present results in further power losses but in general the power of the test is

still substantial and increases when the percentage of nonstationary series in

the panel increases.

This certainly raises the question of why the test statistics considered ex-

hibit this robustness property. It would be useful to derive the asymptotic

distribution of the statistics under more general assumptions that allow for

non-stationary volatility in the residual process. In addition, the simulation

results are limited to a particular volatility process with a single break in the

middle of the sample. While in some sense this is a particularly difficult volatil-

ity process because it is discontinuous, it may be the case that the robustness

properties that we find do not generalize. A more extensive simulation study

may be warranted. We leave these important extensions for future work.
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Constant Only    (MC=10,000)

sigma1/sigma0 = 1 (Constant Volatility)

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.05 0.06 0.07 0.04 0.04 0.05

5 75 0.05 0.06 0.07 0.04 0.04 0.05

10 75 0.06 0.07 0.06 0.05 0.05 0.06

20 75 0.07 0.07 0.04 0.05 0.05 0.07

30 75 0.07 0.07 0.03 0.05 0.04 0.07

3 150 0.05 0.06 0.06 0.05 0.05 0.05

5 150 0.05 0.06 0.06 0.05 0.04 0.05

10 150 0.05 0.06 0.05 0.05 0.05 0.06

20 150 0.06 0.07 0.05 0.05 0.05 0.06

30 150 0.06 0.07 0.04 0.05 0.05 0.06

3 300 0.05 0.05 0.05 0.05 0.05 0.05

5 300 0.05 0.05 0.06 0.05 0.05 0.05

10 300 0.05 0.05 0.05 0.05 0.05 0.05

20 300 0.05 0.06 0.05 0.05 0.05 0.05

30 300 0.06 0.06 0.04 0.05 0.05 0.05

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.02 0.01 0.01 0.03 0.03 0.02

5 75 0.02 0.01 0.00 0.03 0.04 0.02

10 75 0.02 0.01 0.00 0.03 0.04 0.01

20 75 0.01 0.00 0.00 0.03 0.04 0.01

30 75 0.01 0.00 0.00 0.02 0.03 0.01

3 150 0.03 0.03 0.02 0.04 0.05 0.03

5 150 0.03 0.02 0.01 0.04 0.04 0.03

10 150 0.03 0.02 0.00 0.04 0.04 0.02

20 150 0.02 0.01 0.00 0.04 0.05 0.02

30 150 0.02 0.01 0.00 0.04 0.05 0.01

3 300 0.04 0.03 0.03 0.05 0.05 0.04

5 300 0.04 0.03 0.02 0.05 0.05 0.04

10 300 0.03 0.02 0.01 0.05 0.05 0.03

20 300 0.03 0.02 0.00 0.04 0.05 0.02

30 300 0.02 0.01 0.00 0.04 0.05 0.02

Table 1A. Empirical size of S(hat)  at asymptotic 0.05-level critical values.

N T

(a)  ρij = 0.0,  Bias Correction

(e)  ρij = 0.0,  No Bias Correction

N T

68



Constant Only    (MC=10,000)

sigma1/sigma0 = 3,  tauV = 0.5

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.03 0.05 0.09 0.02 0.01 0.04

5 75 0.04 0.07 0.08 0.02 0.02 0.05

10 75 0.06 0.09 0.07 0.03 0.02 0.06

20 75 0.07 0.09 0.04 0.03 0.02 0.08

30 75 0.08 0.09 0.02 0.04 0.02 0.09

3 150 0.04 0.05 0.07 0.04 0.04 0.04

5 150 0.04 0.06 0.07 0.04 0.03 0.05

10 150 0.05 0.07 0.08 0.04 0.03 0.05

20 150 0.06 0.08 0.06 0.04 0.04 0.06

30 150 0.07 0.08 0.06 0.05 0.04 0.07

3 300 0.05 0.05 0.06 0.05 0.05 0.05

5 300 0.05 0.05 0.06 0.05 0.05 0.05

10 300 0.05 0.06 0.07 0.05 0.05 0.05

20 300 0.05 0.06 0.06 0.05 0.05 0.06

30 300 0.06 0.07 0.06 0.05 0.05 0.06

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.01 0.01 0.01 0.01 0.01 0.01

5 75 0.01 0.01 0.01 0.01 0.01 0.01

10 75 0.01 0.01 0.00 0.01 0.01 0.01

20 75 0.01 0.00 0.00 0.01 0.01 0.01

30 75 0.01 0.00 0.00 0.01 0.01 0.00

3 150 0.02 0.02 0.02 0.03 0.03 0.03

5 150 0.02 0.02 0.02 0.03 0.03 0.03

10 150 0.02 0.02 0.01 0.03 0.03 0.02

20 150 0.02 0.01 0.00 0.03 0.03 0.02

30 150 0.02 0.01 0.00 0.03 0.03 0.02

3 300 0.04 0.03 0.03 0.04 0.05 0.04

5 300 0.04 0.03 0.03 0.04 0.05 0.04

10 300 0.03 0.03 0.02 0.04 0.04 0.03

20 300 0.03 0.02 0.01 0.04 0.05 0.03

30 300 0.03 0.02 0.01 0.04 0.04 0.02

Table 1B. Empirical size of S(hat)  at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T

(e)  ρij = 0.0,  No Bias Correction

N T
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Constant Only    (MC=10,000)

sigma1/sigma0 = 5,  tauV = 0.5

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.03 0.05 0.09 0.01 0.01 0.03

5 75 0.04 0.07 0.08 0.01 0.01 0.05

10 75 0.06 0.09 0.07 0.02 0.01 0.07

20 75 0.07 0.10 0.04 0.02 0.01 0.09

30 75 0.09 0.09 0.02 0.03 0.01 0.09

3 150 0.04 0.05 0.08 0.03 0.03 0.04

5 150 0.04 0.06 0.08 0.04 0.03 0.05

10 150 0.05 0.07 0.08 0.03 0.03 0.05

20 150 0.06 0.08 0.07 0.04 0.03 0.07

30 150 0.07 0.08 0.06 0.04 0.03 0.07

3 300 0.05 0.05 0.07 0.05 0.05 0.05

5 300 0.05 0.05 0.06 0.05 0.05 0.05

10 300 0.05 0.06 0.06 0.05 0.05 0.05

20 300 0.06 0.06 0.06 0.05 0.05 0.06

30 300 0.06 0.07 0.06 0.05 0.05 0.06

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.00 0.01 0.01 0.00 0.01 0.01

5 75 0.00 0.01 0.01 0.00 0.00 0.00

10 75 0.00 0.01 0.00 0.00 0.01 0.01

20 75 0.00 0.00 0.00 0.01 0.01 0.01

30 75 0.00 0.00 0.00 0.00 0.00 0.00

3 150 0.02 0.02 0.02 0.03 0.03 0.02

5 150 0.02 0.02 0.02 0.03 0.03 0.02

10 150 0.02 0.02 0.01 0.02 0.03 0.02

20 150 0.02 0.01 0.00 0.03 0.03 0.02

30 150 0.02 0.01 0.00 0.03 0.03 0.02

3 300 0.04 0.03 0.03 0.04 0.05 0.04

5 300 0.04 0.03 0.03 0.05 0.04 0.04

10 300 0.03 0.03 0.02 0.04 0.04 0.03

20 300 0.03 0.02 0.01 0.04 0.04 0.03

30 300 0.03 0.02 0.01 0.04 0.05 0.02

Table 1C. Empirical size of S(hat)  at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T

(e)  ρij = 0.0,  No Bias Correction

N T
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Linear Trend Included   (MC=10,000)

sigma1/sigma0 = 1 (Constant Volatility)

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.09 0.09 0.04 0.07 0.07 0.08

5 75 0.09 0.09 0.03 0.08 0.08 0.09

10 75 0.11 0.10 0.01 0.09 0.08 0.09

20 75 0.12 0.09 0.00 0.10 0.09 0.09

30 75 0.12 0.08 0.00 0.11 0.09 0.09

3 150 0.07 0.08 0.05 0.07 0.07 0.07

5 150 0.07 0.08 0.04 0.07 0.07 0.07

10 150 0.07 0.08 0.03 0.07 0.07 0.07

20 150 0.09 0.09 0.01 0.08 0.07 0.08

30 150 0.10 0.08 0.01 0.08 0.07 0.08

3 300 0.06 0.07 0.05 0.06 0.06 0.06

5 300 0.06 0.07 0.05 0.06 0.06 0.06

10 300 0.07 0.07 0.04 0.06 0.06 0.06

20 300 0.07 0.07 0.03 0.07 0.07 0.06

30 300 0.07 0.08 0.02 0.06 0.06 0.07

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.02 0.01 0.00 0.03 0.03 0.01

5 75 0.01 0.01 0.00 0.03 0.04 0.01

10 75 0.01 0.00 0.00 0.03 0.04 0.01

20 75 0.01 0.00 0.00 0.02 0.04 0.00

30 75 0.00 0.00 0.00 0.02 0.03 0.00

3 150 0.03 0.02 0.00 0.04 0.05 0.02

5 150 0.02 0.01 0.00 0.04 0.04 0.02

10 150 0.02 0.01 0.00 0.03 0.04 0.01

20 150 0.01 0.00 0.00 0.03 0.05 0.01

30 150 0.01 0.00 0.00 0.03 0.04 0.00

3 300 0.03 0.02 0.01 0.04 0.05 0.03

5 300 0.03 0.02 0.00 0.04 0.05 0.03

10 300 0.02 0.01 0.00 0.04 0.05 0.02

20 300 0.02 0.01 0.00 0.04 0.05 0.01

30 300 0.01 0.00 0.00 0.03 0.05 0.01

Table 2A. Empirical size of S(hat) at asymptotic 0.05-level critical values.

(e)  ρij = 0.0,  No Bias Correction

N T

(a)  ρij = 0.0,  Bias Correction

N T
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Linear Trend Included   (MC=10,000)

sigma1/sigma0 = 3,  tauV = 0.5

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.08 0.10 0.06 0.06 0.05 0.08

5 75 0.09 0.12 0.05 0.07 0.05 0.09

10 75 0.11 0.12 0.03 0.08 0.06 0.10

20 75 0.13 0.12 0.01 0.09 0.07 0.12

30 75 0.14 0.10 0.00 0.10 0.07 0.11

3 150 0.06 0.08 0.06 0.06 0.06 0.07

5 150 0.07 0.09 0.06 0.06 0.05 0.08

10 150 0.08 0.09 0.04 0.06 0.05 0.08

20 150 0.10 0.10 0.03 0.08 0.06 0.09

30 150 0.10 0.10 0.02 0.08 0.07 0.10

3 300 0.06 0.07 0.06 0.06 0.06 0.06

5 300 0.07 0.07 0.06 0.06 0.06 0.07

10 300 0.07 0.07 0.05 0.06 0.06 0.07

20 300 0.07 0.08 0.04 0.07 0.06 0.07

30 300 0.08 0.09 0.04 0.07 0.06 0.07

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.00 0.00 0.00 0.01 0.01 0.00

5 75 0.00 0.00 0.00 0.01 0.01 0.00

10 75 0.00 0.00 0.00 0.01 0.01 0.00

20 75 0.00 0.00 0.00 0.01 0.01 0.00

30 75 0.00 0.00 0.00 0.01 0.01 0.00

3 150 0.02 0.01 0.00 0.03 0.03 0.02

5 150 0.02 0.01 0.00 0.03 0.03 0.02

10 150 0.01 0.01 0.00 0.02 0.03 0.01

20 150 0.01 0.00 0.00 0.02 0.03 0.01

30 150 0.01 0.00 0.00 0.02 0.03 0.00

3 300 0.03 0.02 0.01 0.04 0.05 0.03

5 300 0.03 0.02 0.01 0.04 0.05 0.03

10 300 0.02 0.01 0.00 0.04 0.04 0.02

20 300 0.02 0.01 0.00 0.04 0.05 0.01

30 300 0.02 0.01 0.00 0.03 0.04 0.01

Table 2B. Empirical size of S(hat) at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T

(e)  ρij = 0.0,  No Bias Correction

N T
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Linear Trend Included   (MC=10,000)

sigma1/sigma0 = 5,  tauV = 0.5

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.08 0.10 0.07 0.05 0.04 0.08

5 75 0.09 0.12 0.06 0.06 0.04 0.09

10 75 0.12 0.13 0.03 0.07 0.05 0.11

20 75 0.13 0.12 0.01 0.09 0.06 0.12

30 75 0.15 0.11 0.00 0.10 0.06 0.12

3 150 0.06 0.08 0.07 0.06 0.05 0.07

5 150 0.07 0.09 0.06 0.06 0.05 0.08

10 150 0.08 0.10 0.05 0.06 0.05 0.08

20 150 0.10 0.10 0.03 0.07 0.06 0.09

30 150 0.11 0.10 0.02 0.08 0.06 0.10

3 300 0.06 0.07 0.06 0.06 0.06 0.06

5 300 0.06 0.07 0.06 0.06 0.06 0.07

10 300 0.07 0.07 0.06 0.06 0.06 0.07

20 300 0.07 0.08 0.05 0.06 0.06 0.07

30 300 0.08 0.09 0.04 0.07 0.06 0.07

φi = 0.0 φi = 0.4 φi = 0.8 φi = 0.0 φi = 0.0 φi = U[0, 0.8]

θi = 0.0 θi = 0.0 θi = 0.0 θi = 0.4 θi = 0.8 θi = U[0, 0.8]

3 75 0.00 0.00 0.00 0.00 0.01 0.00

5 75 0.00 0.00 0.00 0.00 0.00 0.00

10 75 0.00 0.00 0.00 0.00 0.01 0.00

20 75 0.00 0.00 0.00 0.00 0.00 0.00

30 75 0.00 0.00 0.00 0.00 0.00 0.00

3 150 0.02 0.01 0.00 0.02 0.03 0.02

5 150 0.02 0.01 0.00 0.02 0.03 0.01

10 150 0.01 0.01 0.00 0.02 0.03 0.01

20 150 0.01 0.00 0.00 0.02 0.03 0.01

30 150 0.01 0.00 0.00 0.02 0.03 0.00

3 300 0.03 0.03 0.01 0.04 0.05 0.03

5 300 0.03 0.02 0.01 0.04 0.04 0.03

10 300 0.02 0.02 0.00 0.04 0.04 0.02

20 300 0.02 0.01 0.00 0.04 0.04 0.02

30 300 0.02 0.01 0.00 0.03 0.04 0.01

Table 2C. Empirical size of S(hat) at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T

N T
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Constant Only    (MC=10,000)

sigma1/sigma0 = 1 (Constant Volatility)

1 3 5 10 20 30

3 75 0.34 0.69 N/A N/A N/A N/A

5 75 0.28 0.63 0.82 N/A N/A N/A

10 75 0.22 0.53 0.75 0.95 N/A N/A

20 75 0.18 0.42 0.64 0.91 1.00 N/A

30 75 0.17 0.36 0.59 0.85 0.99 1.00

3 150 0.57 0.91 N/A N/A N/A N/A

5 150 0.50 0.89 0.98 N/A N/A N/A

10 150 0.40 0.85 0.97 1.00 N/A N/A

20 150 0.30 0.77 0.94 1.00 1.00 N/A

30 150 0.22 0.68 0.91 1.00 1.00 1.00

3 300 0.79 0.99 N/A N/A N/A N/A

5 300 0.76 0.99 1.00 N/A N/A N/A

10 300 0.66 0.98 1.00 1.00 N/A N/A

20 300 0.53 0.97 1.00 1.00 1.00 N/A

30 300 0.45 0.94 1.00 1.00 1.00 1.00

1 3 5 10 20 30

3 75 0.10 0.22 N/A N/A N/A N/A

5 75 0.07 0.17 0.26 N/A N/A N/A

10 75 0.05 0.11 0.18 0.34 N/A N/A

20 75 0.03 0.06 0.11 0.24 0.45 N/A

30 75 0.02 0.05 0.09 0.19 0.36 0.52

3 150 0.40 0.78 N/A N/A N/A N/A

5 150 0.32 0.74 0.90 N/A N/A N/A

10 150 0.22 0.64 0.86 0.99 N/A N/A

20 150 0.13 0.48 0.76 0.98 1.00 N/A

30 150 0.08 0.37 0.68 0.95 1.00 1.00

3 300 0.73 0.98 N/A N/A N/A N/A

5 300 0.67 0.97 1.00 N/A N/A N/A

10 300 0.55 0.96 1.00 1.00 N/A N/A

20 300 0.39 0.92 0.99 1.00 1.00 N/A

30 300 0.27 0.88 0.99 1.00 1.00 1.00

M

M

(b)  ρij = 0.0,  No Bias Correction

N T

Table 3A. Empirical power of S(hat)  at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T
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1 3 5 10 20 30

3 75 0.31 0.62 N/A N/A N/A N/A

5 75 0.22 0.55 0.68 N/A N/A N/A

10 75 0.14 0.39 0.58 0.75 N/A N/A

20 75 0.09 0.21 0.35 0.65 0.82 N/A

30 75 0.07 0.14 0.23 0.52 0.76 0.84

3 150 0.54 0.87 N/A N/A N/A N/A

5 150 0.41 0.82 0.93 N/A N/A N/A

10 150 0.23 0.70 0.89 0.97 N/A N/A

20 150 0.13 0.41 0.67 0.93 0.99 N/A

30 150 0.09 0.27 0.48 0.85 0.98 0.99

3 300 0.77 0.98 N/A N/A N/A N/A

5 300 0.69 0.98 1.00 N/A N/A N/A

10 300 0.43 0.94 0.99 1.00 N/A N/A

20 300 0.21 0.75 0.95 1.00 1.00 N/A

30 300 0.14 0.52 0.84 0.99 1.00 1.00

1 3 5 10 20 30

3 75 0.30 0.50 N/A N/A N/A N/A

5 75 0.17 0.44 0.48 N/A N/A N/A

10 75 0.09 0.25 0.40 0.49 N/A N/A

20 75 0.07 0.12 0.21 0.41 0.50 N/A

30 75 0.05 0.08 0.13 0.28 0.48 0.50

3 150 0.50 0.70 N/A N/A N/A N/A

5 150 0.32 0.69 0.71 N/A N/A N/A

10 150 0.17 0.50 0.64 0.71 N/A N/A

20 150 0.08 0.21 0.44 0.67 0.75 N/A

30 150 0.07 0.14 0.26 0.56 0.71 0.75

3 300 0.76 0.90 N/A N/A N/A N/A

5 300 0.56 0.88 0.92 N/A N/A N/A

10 300 0.28 0.76 0.89 0.93 N/A N/A

20 300 0.13 0.46 0.72 0.89 0.93 N/A

30 300 0.10 0.28 0.52 0.81 0.92 0.93

Table 3A, cont'd.

(d)  ρij = 0.9, Bias Correction

N T
M

M

(c)  ρij = 0.5, Bias Correction

N T
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Constant Only    (MC=10,000)

sigma1/sigma0 = 3,  tauV = 0.5

1 3 5 10 20 30

3 75 0.33 0.65 N/A N/A N/A N/A

5 75 0.28 0.57 0.75 N/A N/A N/A

10 75 0.23 0.48 0.66 0.89 N/A N/A

20 75 0.19 0.39 0.55 0.81 0.97 N/A

30 75 0.19 0.34 0.47 0.76 0.95 1.00

3 150 0.55 0.88 N/A N/A N/A N/A

5 150 0.46 0.85 0.96 N/A N/A N/A

10 150 0.36 0.79 0.94 1.00

20 150 0.27 0.68 0.89 0.99 1.00 N/A

30 150 0.23 0.60 0.83 0.99 1.00 1.00

3 300 0.74 0.98 N/A N/A N/A N/A

5 300 0.68 0.97 1.00 N/A N/A N/A

10 300 0.58 0.96 1.00 1.00 N/A N/A

20 300 0.45 0.93 0.99 1.00 1.00 N/A

30 300 0.37 0.87 0.99 1.00 1.00 1.00

1 3 5 10 20 30

3 75 0.10 0.17 N/A N/A N/A N/A

5 75 0.08 0.14 0.17 N/A N/A N/A

10 75 0.05 0.11 0.14 0.15 N/A N/A

20 75 0.03 0.07 0.10 0.13 0.13 N/A

30 75 0.02 0.06 0.08 0.10 0.10 0.08

3 150 0.38 0.75 N/A N/A N/A N/A

5 150 0.30 0.69 0.86 N/A N/A N/A

10 150 0.20 0.57 0.80 0.97 N/A N/A

20 150 0.12 0.42 0.66 0.94 1.00 N/A

30 150 0.08 0.32 0.57 0.90 1.00 1.00

3 300 0.67 0.96 N/A N/A N/A N/A

5 300 0.61 0.95 0.99 N/A N/A N/A

10 300 0.47 0.92 0.99 1.00 N/A N/A

20 300 0.31 0.85 0.98 1.00 1.00 N/A

30 300 0.22 0.79 0.96 1.00 1.00 1.00

(b)  ρij = 0.0,  No Bias Correction

N T
M

Table 3B. Empirical power of S(hat)  at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T
M
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1 3 5 10 20 30

3 75 0.30 0.59 N/A N/A N/A N/A

5 75 0.25 0.52 0.66 N/A N/A N/A

10 75 0.14 0.38 0.53 0.70 N/A N/A

20 75 0.09 0.21 0.34 0.59 0.77 N/A

30 75 0.07 0.15 0.25 0.48 0.71 0.78

3 150 0.50 0.83 N/A N/A N/A N/A

5 150 0.39 0.79 0.89 N/A N/A N/A

10 150 0.22 0.64 0.82 0.94 N/A N/A

20 150 0.11 0.38 0.61 0.90 0.98 N/A

30 150 0.09 0.24 0.41 0.80 0.95 0.98

3 300 0.71 0.96 N/A N/A N/A N/A

5 300 0.61 0.94 0.99 N/A N/A N/A

10 300 0.37 0.89 0.97 1.00 N/A N/A

20 300 0.19 0.62 0.89 1.00 1.00 N/A

30 300 0.12 0.44 0.75 0.97 1.00 1.00

1 3 5 10 20 30

3 75 0.28 0.51 N/A N/A N/A N/A

5 75 0.17 0.42 0.52 N/A N/A N/A

10 75 0.09 0.28 0.40 0.53 N/A N/A

20 75 0.05 0.12 0.23 0.41 0.51 N/A

30 75 0.03 0.08 0.14 0.30 0.48 0.49

3 150 0.48 0.69 N/A N/A N/A N/A

5 150 0.29 0.64 0.70 N/A N/A N/A

10 150 0.12 0.46 0.62 0.70 N/A N/A

20 150 0.07 0.22 0.40 0.61 0.72 N/A

30 150 0.06 0.13 0.25 0.51 0.70 0.72

3 300 0.68 0.84 N/A N/A N/A N/A

5 300 0.50 0.83 0.88 N/A N/A N/A

10 300 0.22 0.69 0.83 0.89 N/A N/A

20 300 0.12 0.37 0.62 0.84 0.89 N/A

30 300 0.09 0.22 0.43 0.75 0.88 0.89

Table 3B, cont'd.

(d)  ρij = 0.9, Bias Correction

N T
M

M

(c)  ρij = 0.5, Bias Correction

N T
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Constant Only    (MC=10,000)

sigma1/sigma0 = 5,  tauV = 0.5

1 3 5 10 20 30

3 75 0.33 0.63 N/A N/A N/A N/A

5 75 0.28 0.56 0.73 N/A N/A N/A

10 75 0.22 0.46 0.63 0.86 N/A N/A

20 75 0.19 0.37 0.52 0.77 0.95 N/A

30 75 0.17 0.32 0.44 0.68 0.92 0.99

3 150 0.54 0.87 N/A N/A N/A N/A

5 150 0.45 0.84 0.95 N/A N/A N/A

10 150 0.35 0.76 0.92 1.00 N/A N/A

20 150 0.26 0.66 0.87 0.99 1.00 N/A

30 150 0.22 0.60 0.81 0.98 1.00 1.00

3 300 0.72 0.97 N/A N/A N/A N/A

5 300 0.66 0.96 1.00 N/A N/A N/A

10 300 0.56 0.94 0.99 1.00 N/A N/A

20 300 0.43 0.90 0.99 1.00 1.00 N/A

30 300 0.35 0.86 0.98 1.00 1.00 1.00

1 3 5 10 20 30

3 75 0.10 0.14 N/A N/A N/A N/A

5 75 0.08 0.13 0.12 N/A N/A N/A

10 75 0.05 0.10 0.11 0.10 N/A N/A

20 75 0.03 0.07 0.10 0.09 0.06 N/A

30 75 0.02 0.05 0.07 0.09 0.07 0.03

3 150 0.37 0.72 N/A N/A N/A N/A

5 150 0.30 0.67 0.85 N/A N/A N/A

10 150 0.20 0.55 0.77 0.96 N/A N/A

20 150 0.11 0.40 0.63 0.92 1.00 N/A

30 150 0.08 0.33 0.53 0.86 0.99 1.00

3 300 0.64 0.94 N/A N/A N/A N/A

5 300 0.57 0.93 0.99 N/A N/A N/A

10 300 0.46 0.90 0.98 1.00 N/A N/A

20 300 0.30 0.83 0.96 1.00 1.00 N/A

30 300 0.23 0.74 0.95 1.00 1.00 1.00

M

Table 3C. Empirical power of S(hat)  at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T
M

(b)  ρij = 0.0,  No Bias Correction

N T
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1 3 5 10 20 30

3 75 0.32 0.57 N/A N/A N/A N/A

5 75 0.24 0.52 0.63 N/A N/A N/A

10 75 0.15 0.38 0.54 0.71 N/A N/A

20 75 0.09 0.21 0.35 0.56 0.74 N/A

30 75 0.07 0.16 0.27 0.44 0.67 0.74

3 150 0.51 0.81 N/A N/A N/A N/A

5 150 0.37 0.77 0.88 N/A N/A N/A

10 150 0.22 0.61 0.81 0.94 N/A N/A

20 150 0.13 0.36 0.59 0.89 0.97 N/A

30 150 0.09 0.24 0.41 0.74 0.95 0.97

3 300 0.70 0.95 N/A N/A N/A N/A

5 300 0.58 0.93 0.98 N/A N/A N/A

10 300 0.35 0.86 0.96 1.00 N/A N/A

20 300 0.19 0.58 0.87 0.99 1.00 N/A

30 300 0.13 0.41 0.68 0.96 1.00 1.00

1 3 5 10 20 30

3 75 0.28 0.49 N/A N/A N/A N/A

5 75 0.16 0.42 0.48 N/A N/A N/A

10 75 0.08 0.27 0.40 0.51 N/A N/A

20 75 0.04 0.13 0.24 0.39 0.50 N/A

30 75 0.04 0.07 0.13 0.28 0.46 0.50

3 150 0.44 0.65 N/A N/A N/A N/A

5 150 0.29 0.64 0.67 N/A N/A N/A

10 150 0.14 0.45 0.60 0.70 N/A N/A

20 150 0.07 0.22 0.34 0.60 0.69 N/A

30 150 0.06 0.13 0.23 0.47 0.66 0.71

3 300 0.68 0.84 N/A N/A N/A N/A

5 300 0.47 0.80 0.85 N/A N/A N/A

10 300 0.22 0.66 0.81 0.87 N/A N/A

20 300 0.11 0.35 0.61 0.81 0.88 N/A

30 300 0.09 0.22 0.38 0.72 0.87 0.87

Table 3C, cont'd.

M

(d)  ρij = 0.9, Bias Correction

N T

T
M

(c)  ρij = 0.5, Bias Correction

N
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Linear Trend Included   (MC=10,000)

sigma1/sigma0 = 1 (Constant Volatility)

1 3 5 10 20 30

3 75 0.09 0.06 N/A N/A N/A N/A

5 75 0.09 0.07 0.04 N/A N/A N/A

10 75 0.11 0.08 0.06 0.02 N/A N/A

20 75 0.11 0.09 0.07 0.03 0.00 N/A

30 75 0.12 0.10 0.09 0.04 0.00 0.00

3 150 0.24 0.42 N/A N/A N/A N/A

5 150 0.22 0.40 0.51 N/A N/A N/A

10 150 0.18 0.35 0.47 0.66 N/A N/A

20 150 0.16 0.30 0.41 0.63 0.83 N/A

30 150 0.14 0.27 0.38 0.57 0.80 0.91

3 300 0.52 0.84 N/A N/A N/A N/A

5 300 0.47 0.82 0.94 N/A N/A N/A

10 300 0.39 0.78 0.92 0.99 N/A N/A

20 300 0.31 0.71 0.89 0.99 1.00 N/A

30 300 0.26 0.65 0.86 0.99 1.00 1.00

1 3 5 10 20 30

3 75 0.00 0.00 N/A N/A N/A N/A

5 75 0.00 0.00 0.00 N/A N/A N/A

10 75 0.00 0.00 0.00 0.00 N/A N/A

20 75 0.00 0.00 0.00 0.00 0.00 N/A

30 75 0.00 0.00 0.00 0.00 0.00 0.00

3 150 0.03 0.03 N/A N/A N/A N/A

5 150 0.03 0.03 0.02 N/A N/A N/A

10 150 0.03 0.02 0.02 0.01 N/A N/A

20 150 0.02 0.01 0.01 0.01 0.00 N/A

30 150 0.01 0.01 0.01 0.01 0.00 0.00

3 300 0.30 0.57 N/A N/A N/A N/A

5 300 0.25 0.53 0.70 N/A N/A N/A

10 300 0.17 0.45 0.65 0.89 N/A N/A

20 300 0.10 0.33 0.53 0.84 0.98 N/A

30 300 0.07 0.24 0.44 0.80 0.98 1.00

Table 4A. Empirical power of S(hat) at asymptotic 0.05-level critical values.

M

(a)  ρij = 0.0,  Bias Correction

N T

(b)  ρij = 0.0,  No Bias Correction

N T
M
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1 3 5 10 20 30

3 75 0.08 0.07 N/A N/A N/A N/A

5 75 0.09 0.08 0.07 N/A N/A N/A

10 75 0.09 0.10 0.08 0.06 N/A N/A

20 75 0.10 0.12 0.11 0.06 0.05 N/A

30 75 0.10 0.10 0.11 0.10 0.07 0.05

3 150 0.23 0.36 N/A N/A N/A N/A

5 150 0.18 0.33 0.40 N/A N/A N/A

10 150 0.14 0.27 0.35 0.46 N/A N/A

20 150 0.10 0.18 0.27 0.41 0.48 N/A

30 150 0.10 0.14 0.21 0.33 0.43 0.51

3 300 0.49 0.76 N/A N/A N/A N/A

5 300 0.41 0.75 0.81 N/A N/A N/A

10 300 0.26 0.63 0.80 0.89 N/A N/A

20 300 0.15 0.42 0.64 0.87 0.94 N/A

30 300 0.12 0.30 0.49 0.78 0.92 0.95

1 3 5 10 20 30

3 75 0.10 0.09 N/A N/A N/A N/A

5 75 0.11 0.08 0.09 N/A N/A N/A

10 75 0.10 0.10 0.11 0.08 N/A N/A

20 75 0.10 0.11 0.10 0.10 0.08 N/A

30 75 0.08 0.09 0.10 0.09 0.09 0.08

3 150 0.23 0.29 N/A N/A N/A N/A

5 150 0.16 0.29 0.32 N/A N/A N/A

10 150 0.12 0.21 0.28 0.31 N/A N/A

20 150 0.08 0.13 0.19 0.28 0.31 N/A

30 150 0.07 0.10 0.15 0.22 0.30 0.31

3 300 0.47 0.60 N/A N/A N/A N/A

5 300 0.32 0.60 0.61 N/A N/A N/A

10 300 0.18 0.46 0.56 0.60 N/A N/A

20 300 0.10 0.29 0.41 0.57 0.61 N/A

30 300 0.08 0.18 0.31 0.50 0.60 0.63

(c)  ρij = 0.5, Bias Correction

N T

Table 4A, cont'd.

N
M

M

T

(d)  ρij = 0.9, Bias Correction
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Linear Trend Included   (MC=10,000)

sigma1/sigma0 = 3,  tauV = 0.5

1 3 5 10 20 30

3 75 0.11 0.08 N/A N/A N/A N/A

5 75 0.10 0.09 0.07 N/A N/A N/A

10 75 0.15 0.11 0.07 0.03 N/A N/A

20 75 0.15 0.13 0.10 0.06 0.01 N/A

30 75 0.14 0.15 0.11 0.06 0.01 0.00

3 150 0.26 0.40 N/A N/A N/A N/A

5 150 0.23 0.39 0.48 N/A N/A N/A

10 150 0.19 0.34 0.44 0.62 N/A N/A

20 150 0.17 0.32 0.39 0.56 0.74 N/A

30 150 0.17 0.29 0.35 0.49 0.70 0.80

3 300 0.49 0.79 N/A N/A N/A N/A

5 300 0.43 0.78 0.91 N/A N/A N/A

10 300 0.37 0.71 0.88 0.98 N/A N/A

20 300 0.28 0.66 0.84 0.98 1.00 N/A

30 300 0.24 0.57 0.79 0.97 1.00 1.00

1 3 5 10 20 30

3 75 0.00 0.00 N/A N/A N/A N/A

5 75 0.00 0.00 0.00 N/A N/A N/A

10 75 0.00 0.00 0.00 0.00 N/A N/A

20 75 0.00 0.00 0.00 0.00 0.00 N/A

30 75 0.00 0.00 0.00 0.00 0.00 0.00

3 150 0.04 0.04 N/A N/A N/A N/A

5 150 0.04 0.04 0.03 N/A N/A N/A

10 150 0.03 0.03 0.03 0.02 N/A N/A

20 150 0.02 0.03 0.03 0.02 0.00 N/A

30 150 0.01 0.02 0.02 0.02 0.00 0.00

3 300 0.27 0.53 N/A N/A N/A N/A

5 300 0.23 0.49 0.66 N/A N/A N/A

10 300 0.15 0.43 0.60 0.83 N/A N/A

20 300 0.09 0.29 0.49 0.77 0.96 N/A

30 300 0.06 0.21 0.40 0.70 0.94 0.99

M

(a)  ρij = 0.0,  Bias Correction

N T

(b)  ρij = 0.0,  No Bias Correction

N T

Table 4B. Empirical power of S(hat) at asymptotic 0.05-level critical values.

M
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1 3 5 10 20 30

3 75 0.12 0.09 N/A N/A N/A N/A

5 75 0.11 0.10 0.08 N/A N/A N/A

10 75 0.10 0.12 0.11 0.08 N/A N/A

20 75 0.10 0.12 0.12 0.11 0.07 N/A

30 75 0.10 0.12 0.13 0.14 0.09 0.06

3 150 0.24 0.38 N/A N/A N/A N/A

5 150 0.20 0.34 0.42 N/A N/A N/A

10 150 0.15 0.26 0.37 0.42 N/A N/A

20 150 0.12 0.18 0.26 0.41 0.47 N/A

30 150 0.09 0.17 0.22 0.35 0.44 0.48

3 300 0.48 0.72 N/A N/A N/A N/A

5 300 0.40 0.69 0.78 N/A N/A N/A

10 300 0.22 0.56 0.74 0.86 N/A N/A

20 300 0.13 0.36 0.56 0.81 0.90 N/A

30 300 0.12 0.27 0.42 0.71 0.89 0.92

1 3 5 10 20 30

3 75 0.11 0.10 N/A N/A N/A N/A

5 75 0.10 0.11 0.10 N/A N/A N/A

10 75 0.10 0.13 0.12 0.11 N/A N/A

20 75 0.07 0.11 0.12 0.13 0.11 N/A

30 75 0.07 0.09 0.09 0.12 0.12 0.11

3 150 0.20 0.31 N/A N/A N/A N/A

5 150 0.16 0.29 0.30 N/A N/A N/A

10 150 0.12 0.23 0.27 0.32 N/A N/A

20 150 0.09 0.13 0.21 0.28 0.30 N/A

30 150 0.08 0.11 0.15 0.23 0.29 0.32

3 300 0.42 0.56 N/A N/A N/A N/A

5 300 0.30 0.57 0.59 N/A N/A N/A

10 300 0.16 0.45 0.56 0.58 N/A N/A

20 300 0.11 0.23 0.37 0.55 0.59 N/A

30 300 0.08 0.16 0.24 0.47 0.59 0.60

(c)  ρij = 0.5, Bias Correction

Table 4B, cont'd.

T

M

M

TN

(d)  ρij = 0.9, Bias Correction

N
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Linear Trend Included   (MC=10,000)

sigma1/sigma0 = 5,  tauV = 0.5

1 3 5 10 20 30

3 75 0.12 0.08 N/A N/A N/A N/A

5 75 0.14 0.10 0.08 N/A N/A N/A

10 75 0.14 0.12 0.09 0.03 N/A N/A

20 75 0.15 0.15 0.11 0.05 0.01 N/A

30 75 0.16 0.15 0.12 0.07 0.02 0.00

3 150 0.25 0.40 N/A N/A N/A N/A

5 150 0.20 0.39 0.50 N/A N/A N/A

10 150 0.18 0.35 0.44 0.59 N/A N/A

20 150 0.16 0.28 0.37 0.55 0.70 N/A

30 150 0.17 0.28 0.35 0.48 0.68 0.78

3 300 0.47 0.80 N/A N/A N/A N/A

5 300 0.42 0.75 0.90 N/A N/A N/A

10 300 0.36 0.71 0.87 0.98 N/A N/A

20 300 0.27 0.62 0.81 0.98 1.00 N/A

30 300 0.24 0.56 0.78 0.97 1.00 1.00

1 3 5 10 20 30

3 75 0.00 0.00 N/A N/A N/A N/A

5 75 0.00 0.00 0.00 N/A N/A N/A

10 75 0.00 0.00 0.00 0.00 N/A N/A

20 75 0.00 0.00 0.00 0.00 0.00 N/A

30 75 0.00 0.00 0.00 0.00 0.00 0.00

3 150 0.05 0.05 N/A N/A N/A N/A

5 150 0.04 0.04 0.03 N/A N/A N/A

10 150 0.03 0.04 0.04 0.02 N/A N/A

20 150 0.02 0.03 0.03 0.02 0.01 N/A

30 150 0.02 0.02 0.03 0.02 0.01 0.00

3 300 0.28 0.52 N/A N/A N/A N/A

5 300 0.23 0.48 0.63 N/A N/A N/A

10 300 0.15 0.40 0.58 0.81 N/A N/A

20 300 0.09 0.30 0.46 0.74 0.95 N/A

30 300 0.06 0.22 0.38 0.68 0.93 0.99

Table 4C. Empirical power of S(hat) at asymptotic 0.05-level critical values.

(a)  ρij = 0.0,  Bias Correction

N T
M

N T

(b)  ρij = 0.0,  No Bias Correction

M
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1 3 5 10 20 30

3 75 0.12 0.10 N/A N/A N/A N/A

5 75 0.11 0.12 0.10 N/A N/A N/A

10 75 0.12 0.14 0.13 0.08 N/A N/A

20 75 0.12 0.13 0.16 0.11 0.09 N/A

30 75 0.11 0.13 0.13 0.14 0.11 0.07

3 150 0.22 0.36 N/A N/A N/A N/A

5 150 0.20 0.35 0.41 N/A N/A N/A

10 150 0.14 0.26 0.35 0.42 N/A N/A

20 150 0.10 0.20 0.27 0.38 0.45 N/A

30 150 0.12 0.14 0.22 0.31 0.44 0.47

3 300 0.46 0.68 N/A N/A N/A N/A

5 300 0.35 0.68 0.78 N/A N/A N/A

10 300 0.23 0.57 0.72 0.84 N/A N/A

20 300 0.13 0.36 0.56 0.80 0.89 N/A

30 300 0.10 0.21 0.41 0.70 0.87 0.92

1 3 5 10 20 30

3 75 0.13 0.12 N/A N/A N/A N/A

5 75 0.12 0.13 0.13 N/A N/A N/A

10 75 0.09 0.13 0.13 0.11 N/A N/A

20 75 0.07 0.11 0.11 0.13 0.12 N/A

30 75 0.07 0.09 0.11 0.12 0.13 0.12

3 150 0.22 0.32 N/A N/A N/A N/A

5 150 0.16 0.28 0.31 N/A N/A N/A

10 150 0.11 0.22 0.28 0.31 N/A N/A

20 150 0.09 0.14 0.19 0.30 0.32 N/A

30 150 0.07 0.11 0.15 0.22 0.31 0.32

3 300 0.44 0.58 N/A N/A N/A N/A

5 300 0.28 0.55 0.58 N/A N/A N/A

10 300 0.16 0.40 0.52 0.57 N/A N/A

20 300 0.09 0.24 0.37 0.53 0.56 N/A

30 300 0.09 0.16 0.26 0.45 0.56 0.60

M

M

TN

(d)  ρij = 0.9, Bias Correction

(c)  ρij = 0.5, Bias Correction

N T

Table 4C, cont'd.
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Chapter 4

Detecting multiple level breaks

in the presence of

non-stationary volatility

In this paper we analyze the impact of non-stationary volatility on a

recently developed procedure for testing the null hypothesis of no break

in level against the alternative of (possibly) multiple levels breaks, oc-

curring at unknown point(s) in the sample. The procedure derived by

Harvey, Leybourne and Taylor (2010), is a combination of two unit root

tests: one designed for I(0) processes and the other for I(1) ones. The

procedure takes a union of rejections approach whereby the null hy-

pothesis of no level break is rejected if either of the two tests rejects.

In its analysis, Harvey et al. (2010) assumes the shocks follow a linear

process driven by i.i.d innovations. Using Monte Carlo simulations we
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show that the tests are oversized when presented with non stationary

innovations, specifically in a form of a one-time change in the volatility.

As a solution to the inference problem we propose the wild bootstrap

implementation of the procedure, using the level break estimator from

the original data. The wild bootstrap method does not require the

practitioner to specify a parametric model for volatility and is shown

to produce good size and power, and performs well in practice.

87



4.1 Introduction

One must account for structural changes in the parameters of any model if

accurate inference is of interest. The first wave of research has been focusing

on tests for structural change in the parameters of stationary forms see, inter

alia, Stock (1994), Kuan and Hornik (1995) and Perron (2006). Stock and

Watson (1996, 1999) and Perron and Zhu (2005), inter alia, find that many

economic and financial data exhibit temporary stationary characteristics or

possess permanent unit roots. This motivated a new area of research that

aims at deriving tests for structural changes in parameters that are robust

to whether the series follows a stationary process or has a unit root. Similar

to Models B and C of Perron (1989), Harvey, Leybourne and Taylor (2009a)

develop tests for one-time break in the slope of the deterministic trend function.

Harvey et al. (2010), henceforth HLT, extend some of this initial work

to allow for multiple level breaks occurring at unknown break points, while

maintaining validity for both I(0) and I(1) stochastic processes. It has recently

been recognized that series that have breaks in level tend to also exhibit breaks

in the unconditional volatility of the shocks driving the process (Busetti and

Taylor 2003, Sensier and Dijk 2004). This suggests a possible shortcoming in

the test developed by HLT since they assume a non time-varying volatility.

Non-constant volatility has been found to produce significant size distortions

in standard unit root and stationary tests (Kim et al. 2002, Busetti and Taylor

2003, Cavaliere 2004, Cavaliere and Taylor 2005, Cavaliere and Taylor 2007,

Cavaliere and Taylor 2008). Cavaliere, Harvey, Leybourne and Taylor (2011)

derive the distribution of the unit root test of Harris, Harvey, Leybourne and
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Taylor (2009) when time-varying volatility is present.

In Monte Carlo studies we find similar size distortions in the HLT test when

the volatility of the driving process exhibits a break. Similarly to Cavaliere

and Taylor (2008) and Cavaliere et al. (2011) we develop a testing procedure

based on the wild bootstrap in order to correct for these size distortions.

The remainder of the paper is organized as follows. Section 2 lays out the

multiple level model of HLT. In Section 3 we discuss the test statistic proposed

by HLT for constant volatility of the driving process. In Section 4 we demon-

strate the performance of this test when the volatility is not constant and

propose a solution based on two separate wild bootstrap procedures. Section

5 concludes.

In the remainder of the paper b·c will denote the integer part and
d→

and
p→ will denote convergence in distribution and convergence in probability,

respectively. We will also use D to denote the space of all processes on [0, 1]

that are right continuous with left limits.

4.2 A multiple level breaks model with non-

stationary volatility

We follow the model representation of HLT with the exception that we allow

the volatility of the innovations to exhibit non-stationary behaviour. To be

specific about the nature of this non-stationary behavior we use the construc-

tion of Cavaliere and Taylor (2007), Cavaliere and Taylor (2008), and Cavaliere

et al. (2011). In the HLT model, T observations from a time series process
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{yt} satisfy

yt = α +
n∑
i=1

γ∗i,TDUt(bτiT c) + ut, t = 1, ..., T (4.1)

ut = ρTut−1 + εt, t = 2, ..., T (4.2)

where DUt(bτiT c) = 1(t > bτiT c) with bτiT c a potential level break point

with fraction τi and magnitude γ∗i,T . The level breaks points are unknown

but are bounded away from 0 and 1. That is, τi ∈ Λ = bτL, τUc where

0 < τL < τU < 1;. The fractions τL and τU represent the lower and upper

trimming parameters, below and above which no break is assumed to take

place. Without loss of generality we can order that break points as follows:

τ1 < τ2 < · · · < τn−1 < τn. As is typical in the literature we require a condition

on initial condition, u1. Following HLT we assume that T−1/2u1
p→ 0, so that

the first observation does not dominate the stochastic process and becomes

negligible as T gets larger. The error process {εt} is taken to satisfy the fol-

lowing conventional linear process assumption.

Assumption LP : The stochastic process {εt} is such that εt = C(L)ηt,

where ηt = σtzt and C(L) :=
∑∞

j=0 CjL
j with C(1)2 > 0 and

∑∞
i=0 i|Ci| <∞,

and where {zt} is an i.i.d. sequence with mean zero and unit variance and

finite fourth moment.

Note that under this assumption, ηt has mean 0 and time-varying variance

σt. We assume this time-varying variance satisfies the following mild condition.
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Assumption A: The volatility term σt satisfies σt = ω(t/T ) where ω(·) ∈

D is non-stochastic and strictly positive. For t > 0, σt ≤ σ̃ <∞.

The conditions on the volatility process given in this assumption are the

same as those given in Cavaliere and Taylor (2008) and Cavaliere et al. (2011)

(see Assumption A3 in either paper). Note that the data-generating process

assumed in HLT is reproduced here if ω(s) = σ. In general, however, this

assumption allows for a broader class of models than HLT. The restrictions on

the volatility process are quite weak. The assumption only requires that the

variance is bounded and exhibits at most a countable number of jumps. See

Cavaliere and Taylor (2007) for more discussion of the class of models that

satisfy this assumption.

Note that the autoregressive factor in (4.2) depends on the sample size

T . This allows us to study the local-to-unit root asymptotics. As in HLT,

two cases for the order of integration of the autoregressive process, ut, are

considered that amount to two different assumption on ρT .

(a) The I(1) case for ut is represented by setting ρT := 1−c/T for 0 ≤ c <∞

in (4.2), which permits (local to) unit root behavior when (c > 0) c = 0.

It is also assumed that γ∗i,T := ωεT
1/2γi, i = 1, . . . , n. The T 1/2 scaling in

γ∗i,T provides the appropriate Pitman drift so that the test statistics grow

at the right rate as T gets bigger in order for local power to be assessed,

while scaling by ωε is a convenient device allowing it to be factored out

when the limit distribution for this process is derived.
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(b) The I(0) case for ut is achieved by setting ρT = ρ for all T where

|ρ| < 1 in (4.2), where the long run variance of ut is given by ω2
u :=

limT→∞ T
−1E(

∑T
t=1 ut)

2 = σ2
ηC(1)2/(1− ρ)2. It is assumed that γ∗i,T :=

ωuT
−1/2γi, i = 1, . . . , n, with T−1/2 now providing the appropriate Pitan

drift, and scaling by ωu again being used for convenience in the derivation

of the limit distribution.

Formally, the two cases are embodied in the following assumptions:

Assumption I(1) Let Assumption LP hold. Also, let ρT = 1 − c/T, 0 ≤

c <∞, and let γ∗i,T = ωεT
1/2γi.

Assumption I(0) Let Assumption LP hold. Also, let ρT = ρ where |ρ| < 1

and let γ∗i,T = ωuT
−1/2γi.

In the next section we discuss HLT’s proposed statistic for detecting the

level breaks in this model. They propose a procedure that is valid under either

Assumption I(1) or Assumption I(0). Their procedure is not valid, however, if

ω(s) is not constant. In Section 4 we discuss how to adjust the procedure to

account for this new aspect of the model.
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4.3 The HLT procedure for testing for multi-

ple level breaks

Testing for level break(s) is carried out by testing the null hypothesis of no

level breaks, that is

H0 : γ∗i,T = 0,

for all i ∈ {1, 2, . . . , n}, against the alternative of at least one level break; that

is

H1 : γ∗i,T 6= 0

for at least one i ∈ {1, . . . , n}

In implementing a test of such hypothesis, HLT consider a sequence of

statistics that belong to the generalized fluctuations class of test statistics for

structural change, introduced in Kuan and Hornik (1995) and Leisch, Hornik

and Kuan (2000), inter alia. The statistic takes the form of Mt,bmT c, for

t ∈ ΛT := [bτLT c, bτUT c], where

Mt,bmT c = bm
2
T c−1

bm2 T c∑
i=1

yt+i −
bm

2
T c∑

i=1

yt−i+1

 (4.3)

which is the difference between the mean of the bm
2
T c observations yt+1, yt+2, . . . , yt+bm

2
T c

and the mean of the bm
2
T c observations yt, yt−1, . . . , yt−bm

2
T c+1.
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To ensure that at most only one level break can occur in the data spanned

by any Mt,bmT c we need to impose the restriction that τi − τi−1 ≥ m for all

i = 2, . . . , n. Under this constraint, the DGP admits n level breaks occurring

at unknown points across the interval ΛT , with a minimum of bmT c observa-

tions between breaks. As a result, n and m are bounded by the relation:

n ≤ 1 + bτU − τL
m

c =: nmax

which provides an upper bound for the maximum number of breaks assumed

to be present for given choices of the window width, m, and the trimming

parameters, τL and τU .

As HLT point out, Mb0.5T c,bmT c is the test suggested by maximum likelihood

considerations in a stylized example with m = 2/T in the I(1) version of the

example and with m = 1 in the I(0) version. Hence they propose using a

statistic that is based on Mt,bmT c of (4.3) with 0 < m < 1 for detecting

possible multiple breaks in level even when the order of integration is unknown.

Trying to detect the maximum function of
∣∣Mt,bmT c

∣∣ (notice that the signs of

the possible breaks are also unknown) over all t ∈ ΛT , i.e.

M := max
t∈ΛT
|Mt,bmT c|

For a given value of m, this statistic therefore takes the largest (in absolute

value) fluctuation measure |Mt,bmT c| over all possible points in ΛT . Note that

it is required that τL ≥ m/2 and τU ≤ 1 − (m/2), so that Mt,bmT c is only

calculated from observed data.
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The test statistic M is not pivotal, even under constant volatility, unless

scaled by the long-run variance. In order to obtain a pivotal statistic in the

case of constant volatility HLT derive estimates of the long-run variance. We

now describe their procedure for how to estimate the long-run variance un-

der I(1) and I(0) and present a robust procedure for testing for level breaks

under both specifications. In section 4.3.1, we describe the procedure for esti-

mating the long run variances and their behaviour under both I(1) and I(0)

errors. In section 4.3.2, we describe the operational test against level breaks in

model (4.1)-(4.2)) for the situation where the order of integration is unknown.

4.3.1 Estimation of the Long Run Variance of εt and ut

We now describe the estimation of the long run variances ω2
ε that is relevant

under I(1) errors and ω2
u that is relevant under I(0) errors. Initially, assume

we know the order of integration.

The Long Run Variance of εt

First we consider estimating ω2
ε when the errors are known to be I(1). It

is obviously desirable from a power standpoint that the long run variance

estimator is not influenced by the presence of the level breaks, bearing in

mind that the number and timings of these breaks are unknown. Our first

consideration is therefore estimation of the timing of the potential breaks. In

the context of our reference level break model (4.1)-(4.2), we further assume

that when there are n level breaks, that |γ1| > |γ2| > · · · > |γn|. This ordering

is adopted to expedite the arguments made below, and does not compromise
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the generality of the results.

Under Assumption I(1), if the errors εt in (4.2) are Gaussian white noise

and only one break is present (at time bτ1T c), the optimal test of γ∗1,T = 0

is based on the ML estimator ∆ybτ1T c+1. It makes sense, therefore, under

I(1) errors, to consider |∆yt| to identify any break points. Consequently, let

t̂1 := (arg maxt∈ΩT |∆yt|) − 1 where ΩT := [bτLT c + 1, bτUT c + 1] (bearing

in mind that the outliers are observed one observation after a corresponding

break point). Next, since we are assuming that the breaks are separated by

at least bmT c observations, we now wish to exclude the dates [t̂1 − bmT c +

1, t̂1 + bmT c − 1], so now let t̂2 := arg maxt∈ΩT−Ω1,T
|∆yt|) − 1 where Ω1,T :=

[t̂1−bmT c+ 2, t̂1 + bmT c], then t̂3 := (arg maxt∈ΩT−Ω1,T−Ω2,T
|∆yt|)− 1 where

Ω2,T := [t̂2−bmT c+2, t̂2 +bmT c], and so on, until Ωn̄+1,T = ∅. This procedure

identifies n̄ breaks points, where it can be shown that

⌊
bτUT c − bτLT c+ bmT c

2bmT c − 1

⌋
≤ n̄ ≤ nmax. (4.4)

Using the estimated break points, t̂1, . . . t̂n̄, we then remove the effect of

the level breaks on the ∆yt series by taking the residuals ε̂t from the OLS

regression

∆yt =
n̄∑
i=1

γ̂∗iDt(t̂i) + ε̂t, t = 2, . . . , T (4.5)

where the Dt(t̂i) := I(t = t̂i + 1), i = 1, . . . , n̄, are one-time dummy variables.

The Berk (1974)-type autoregressive spectral density estimator of ω2
ε is the n
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obtained as

ω̄2
ε :=

σ̂2

π̂2

which is based on estimating the OLS regression

∆ε̂t = π̂ε̂t−1 +
k−1∑
j=1

ψ̂j∆ε̂t−j + êt, t = k + 2, . . . , T (4.6)

with σ̂2 := (T − 2k − 1)−1
∑T

t=k+2 ê
2
t . As is standard, we require that the

lag truncation parameter, k, in (4.6) satisfies the condition that, as T →∞,

1/k + k3/T → 0.

The Long Run Variance of ut

Now consider estimating ω2
u in the case where the errors are known to be I(0).

Given the estimated break points, t̂1, . . . , t̂n̄, from the section above, we again

account for the level breaks by taking the residuals ût from the OLS regression

yt = α̂ +
n̄∑
i=1

γ̂∗iDUt(t̂i) + ût, t = 1, . . . , T (4.7)

where DUt(t̂i) := I(t > t̂i), i = 1, . . . , n̄. The estimator of ω2
u in this case is

given by

ω̂2
u :=

σ̂2

π̂2
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where π̂ and σ̂ are now obtained from the OLS regression

∆ût = π̂ût−1 +
k−1∑
j=1

ψ̂j∆ût−j +
k−1∑
j=0

n̄∑
i=1

ψ̂j,iDt−j(t̂i) + êt, t = k + 1, . . . , T,

(4.8)

with σ̂2 := (T−(2+n̄)k)−1
∑T

t=k+1 ê
2
t , and where k again satisfies the condition

that, as T → ∞, 1/k + k2/T → 0. Notice that, for the reasons outlined in

Perron and Vogelsang (1992), the regression in (4.8) augments the usual ADF-

type regression with the n̄ one-time dummy variables, Dt(t̂i), i = 1, . . . , n̄, and

the (k − 1) lagged values of each of these.

4.3.2 The HLT tests

Having proposed suitable long run variance estimators we can finally define the

feasible statistics proposed by HLT for detecting multiple level breaks. The

asymptotic behavior ofM, along with the properties of the long run variance

estimators, suggests the following statistics, appropriate under I(1) and I(0)

errors, respectively:

S1 := ω̂−1
ε T−1/2M (4.9)

S0 := ω̂−1
u T 1/2M (4.10)

Remark. It is useful for analysis in subsequent sections to note that S1

and S0 could equivalently be expressed as S1 := maxt∈ΛT S1,t,bmT c and S0 :=

maxt∈ΛT S0,t,bmT c, where S1,t,bmT c := ω̂−1
ε T−1/2

∣∣Mt,bmT c
∣∣ and
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S0,t,bmT c := ω̂−1
u T−1/2

∣∣Mt,bmT c
∣∣.

In the following theorem we establish the large sample behaviour of the

S1 and S0 statistics of (4.9) and (4.10), respectively, in both I(1) and I(0)

environments.

Theorem 2. Let yt be generated according to equations (4.1) and (4.2) and

suppose Assumption A holds with ω(s) = σ. Then,

(a) Under Assumption I(1),

(i) S1
ω→ supr∈Λ |L1(r,m, c) +K(r,m, τ ,γ)|;

(ii) S0
ω→ supr∈Λ|L1(r,m,c)+K(r,m,τ ,γ)|

Q1/2(c,d,τ̃ )

(b) Under Assumption I(0),

(i) S1 = Op(kT
−1);

(ii) S0
ω→ supr∈Λ |L0(r,m) +K(r,m, τ ,γ)|

where τ := [τ1, τ2, . . . , τn], γ := [γ1, γ2, . . . , γn], W (·) is a standard Brownian
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motion process on [0, 1], and

L0(r,m) := 2m−1 {W (r +m/2)− 2W (r) +W (r −m/2)}

L1(r,m, c) := 2m−1

{∫ r+m/2

r

Wc(s)ds−
∫ r

r−m/2
Wc(s)ds

}

Wc(r) :=

∫ r

0

e−(r−s)cdW (s)

K(r,m, τ ,γ) :=



0 τL ≤ r ≤ τ1 −m/2

γ1

(
1− |τ−τ1|

m/2

)
τ1 −m/2 ≤ r ≤ τ1 +m/2

0 τ1 −m/2 ≤ r ≤ τ2 −m/2

γ2

(
1− |τ−τ2

m/2

)
τ2 −m/2 ≤ r ≤ τ2 −m/2

...
...

0 τn−1 +m/2 ≤ r ≤ τn −m/2

γn

(
1− |τ−τn|

m/2

)
τn −m/2 ≤ r ≤ τn +m/2

0 τn +m/2 ≤ r ≤ τU


Q(c,m, τ̃ ) :=

{∫ 1

0
H(r, c,m, τ̃ )2dr

}2

{∫ 1

0
H(r, c,m, τ̃ )dWc(r)

}2

where H(r, c,m, τ̃) is the (continuous-time) residual from the projection of the

OU process, Wc(r), onto the span of {1, 1(r > τ̃1), . . . , 1(r > τ̃n̄)} and where

τ̃i = limT→∞ T
−1t̂i.

In order to test for level breaks in the absence of knowledge about the order

of integration HLT develop a union of rejections procedure. Let cv1
α be the

level α critical value for the distribution, supr∈Λ |L1(r,m, c)|, and let cv0
α be

the level α critical value for the distribution, supr∈Λ |L0(r,m)|. These are the
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appropriate asymptotic critical values to use if the data is known to be I(1) or

I(0), respectively. They propose the decision rule:

U : Reject H0 if either S1 > καcv
1
α or S0 > καcv

0
α

Note that if κα = 1 the procedure is correctly sized asymptotically under I(0)

errors since S1
p→ 0 in this case. But under I(1) errors, S0

p9 0 and hence

the procedure would be (slightly, as seen through simulations) over-sized with

κα = 1. Hence κα represents the adjustment needed in order to ensure the

procedure is always correctly sized. See HLT or Harvey et al. (2009b) for more

discussion.

4.4 Accounting for non-stationary volatility

The asymptotic distribution derived in the Theorem above is useful because

under the null hypothesis it only depends on the (user-specified) window size,

m, if the process is either stationary or exhibits a unit root. And hence

the union of rejections procedure described above can be easily implemented

without knowledge of any parameters of the model. However, the Theorem

relies on the assumption that ω(s) is constant. If this is not the case, as

we suspect in many applications, the asymptotic behavior described in the

Theorem is not correct. Indeed, if the volatility is non-stationary then the

asymptotic distribution of the test statistics may depend on the exact nature

of this volatility process. For example, Cavaliere et al. (2011) show that the

asymptotic distribution of a class of unit root tests depends on the following
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variance profile term:

η(s) =

∫ s
0
ω(s)2ds∫ 1

0
ω(s)2ds

In particular, the asymptotic distribution is distorted by η(s). It is generated

by the stochastic process W (η(s)) where W (s) is a standard Brownian motion

process on [0, 1]. A similar result holds for the statistics considered here,

though this derivation is beyond the scope of this paper.

We performed a series of Monte Carlo exercises to explore the size distortion

of the HLT test when the volatility of the driving process is not constant. We

generated data from the model of equations (4.1) and (4.2) with α = γi = 0,

εt = ηt and

ω(s) =

 σ0 if s ≤ τσ

σ1 otherwise

That is, we allowed the volatility to jump from σ0 to σ1 at time period bτσT c.

We varied the ratio of σ1/σ0 across the four values 1/2, 1, 3, 5. We performed

the exercise for ρ = 0 and ρ = 1, i.e., an i.i.d. driving process and a pure

random walk driving process. Tables 1A-1C demonstrate the performance of

the HLT union of rejections procedure for this simulated data. The probability

of (falsely) rejecting the null across 1000 Monte Carlo replications of the first

set of exercises is recorded in the rows labeled ρ = 0. The results of the

second set of exercises are labeled ρ = 1. We repeated the exercises for sample

sizes T = 150, 300, 600, and 1200. In all of the simulations we performed the
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tests using the finite sample critical values reported in Harvey et al. (2010),

and not the asymptotic critical values, as they find that there are noticeable

differences, particularly for smaller sample sizes. Table 1A reports the results

when τσ = .25 and Tables 1B and 1C repeat these simulations but now varying

the period in which the break occurs to be either after half or three-quarters

of the periods pass.

In general the failure to properly account for the break in volatility leads to

over-rejection of the null when a level break is not present. This phenomenon

is worse when the jump is larger and when it occurs closer to the middle of

the time period observed. The rejection rate is also typically worse when the

underlying process is stationary, all else held constant. Finally, the tests with

larger values of m are evidently less affected. Recall that m refers to the size of

the window used to detect fluctuations in the data. This is expected because

if the window is larger it is easier to see whether a sudden jump should be

attributed to a level break or a jump in the volatility of the process.

As in Cavaliere and Taylor (2008) and Cavaliere et al. (2011) we implement

a wild bootstrap procedure to account for this problem. As we will discuss

later it is necessary to develop two different wild bootstrap-based resampling

schemes, one for stationary processes and one for non-stationary processes.

4.4.1 Wild bootstrap procedure I

We first describe a straightforward procedure that generates bootstrap samples

that can be used to approximate the distribution of S1 and S0 under the null

hypothesis of no level breaks if the process is I(1). If the process is known to
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be I(1) then an appropriate testing procedure would be to reject if S1 exceeds

the 1− α percentile of the distribution, as calculated using many draws from

this bootstrap distribution. The first step is to remove the level breaks from

the series.

(a) Estimate the break points t̂i for i = 1, . . . , n̄ as described in Section 4.3.

(b) Estimate the regression

yt − yt−1 =
n̄∑
i=1

γ̂iDt(t̂i) + ε̂t

via OLS where Dt(s) = 1(t = s+ 1).

(c) Remove the break:

ũt = yt −
n̄∑
i=1

γ̂iDUt(t̂i)

where DUt(s) = 1(t > s).

The next step is to estimate the AR(1) coefficient. To do this, regress ũt

on ũt−1. That is, estimate the regression

ũt = α̂ + ρ̂ũt−1 + ε̂t

Now we can use the residuals from this regression to construct a wild

bootstrap sample. Let w1, . . . , wT be i.i.d. ∼ N (0, 1). Then define

ε∗t = wtε̂t
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Then we construct a new sample of yt’s that imposes the null of no level

break.

y∗1 = ε∗1

y∗t = ρ̂y∗t−1 + ε∗t , t = 2, . . . , T

In order to simulate the wild bootstrap critical values for a test statistic

we have to create such a sample Nboot times. Each time we record the value of

the test statistic computed on the bootstrap sample, S∗j . Then the bootstrap

critical value is the 1− α quantile of the sample S∗1 , . . . , S
∗
Nboot

.

If the process is stationary then this procedure will not be accurate for rea-

sons explained below. We now describe a procedure that generates bootstrap

samples that can be used to approximate the distribution of S1 and S0 under

the null hypothesis of no level breaks if the process is I(0). Of course if the

process is known to be I(0) then an appropriate testing procedure would be

to reject if S0 exceeds the 1 − α percentile of the distribution, as calculated

using many draws from this second bootstrap distribution.

4.4.2 Wild bootstrap procedure II

(a) Estimate the break points t̂i for i = 1, . . . , n̄ as described in Section 4.3.

(b) Estimate the regression

yt = α̂ + ρ̂yt−1 +
n̄∑
i=1

γ̂iDt(t̂i) +
n̄∑
i=1

γ̂iDUt(t̂i) + ε̂t
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and generate the residuals, ε̂t.

(c) Let w1, . . . , wT be i.i.d. ∼ N (0, 1). Then define

ε∗t = wtε̂t

(d) Construct a new sample of yt’s that imposes the null of no level break.

y∗1 = ε∗1

y∗t = α̂ + ρ̂y∗t−1 + ε∗t , t = 2, . . . , T

4.4.3 Difficulty of bootstrap for the U test

Now note that if the order of integration is unknown and the volatility is

possibly non-constant we neither know which test statistic to use – S1 or S0

– nor what boostrap procedure to use to derive critical values. As shown in

HLT for the constant volatility case, the S1 and S0 tests will be under-sized

under the I(0) and I(1) assumptions, respectively, i.e. under the “wrong”

assumptions. This remains the case for the more general model here. So we

would prefer to implement a union of rejections type test, as HLT do. The

HLT statistic U = max{S1,
cv1

cv0
S0} makes sense because

U ≤ cv1 ⇔ S0 ≤ cv0

asymptotically, under I(0), since in this case S1
p→ 0. Then we can adjust the

critical value from cv1 to κcv1 to control the size in the I(1) case.
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In our more general model the critical values cv1 and cv0 are not known

and possibly depend on unknown parameters of the volatility process. Hence

if we instead use the bootstrap critical values of S1 and S0 to construct U ,

the HLT logic no longer holds. Another possibility is to use the asymptotic

critical values (under the assumption of constant volatility, from HLT), which

is what we do.

4.4.4 The wild bootstrapped U test for level breaks

Following the discussion in the previous paragraph we define the test statistic

U(w) = max{S1, wS0},

which can be computed from data y1, . . . , yT for any scalar w where S1 and S0

are defined above. Here w describes how S0 is weighted relative to S1.

The proposed test rejects the null of no level breaks if U(w) > ĉ∗α(w) where

ĉ∗α(w) = max{ĉ∗1,α(w), ĉ∗2,α(w)}

and the critical values ĉ∗j,α(w) for j = 1, 2 are obtained via the wild bootstrap

as follows.

(a) Set the number of boostrap samples to N and fix w.

(b) Obtain a sample y∗1, . . . , y
∗
T using Wild bootstrap procedure I if j = 1

and Wild bootstrap procedure II if j = 2. Calculate U(w) using this

new sample and call it U∗1 (w).
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(c) Repeat the previous step for i = 2, . . . , N obtaining U∗2 (w), . . . , U∗N(w).

(d) Define ĉ∗j,α(w) = inf{t : N−1
∑N

i=1 1(U∗i (w) ≥ t) ≤ α}.

This procedure can be performed for any value of the weighting parameter

w. Ideally w should be equal to the critical value of S1 under the I(1) as-

sumption divided by the critical value of S0 under the I(0) assumption. These

critical values cannot both be accurately approximated using the bootstrap

procedures. Instead we use the asymptotic critical values derived under the

assumption of constant volatility, taken from HLT.

4.4.5 Problem with wild bootstrap procedure I

It may not be obvious why the resampling scheme given by wild bootstrap

procedure I does not also work when the underlying process is stationary. The

logic behind the test is as follows. If the data exhibit a level break then we

want to estimate the break and remove it from the data. Then we use the wild

bootstrap on the adjusted data to approximate the distribution of the test

statistic U under the null hypothesis but with the correct volatility process.

If the data is generated by a model with no break in level we would want the

procedure to still approximate the distribution of U under the null hypothesis

of no break in level. It turns out that this works fairly well for a I(1) process

but not for a stationary process. First, look at what it does for a process with

a level break. We generated an i.i.d. N(0, 1) process with a break in level at

observation 250 out of 500. Figure 1(a) below shows the original process and

Figure 1(b) shows the process obtained by using wild bootstrap procedure I,
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except that we take ε∗t = ε̂t.

Figure 1. (a) I(0) process with level break, (b) bootstrapped

residuals, procedure I
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This is what we would like to see. The process removes the level break and

does not seem to otherwise distort the time series behavior of the series. Next,

consider what happens if the process is non-stationary with a break. We

generate ut = ut−1 + εt where εt is i.i.d. N(0, 1) and then add a break in level

to ut at observation 250 out of 500. The original series and the bootstrapped

residuals are shown in Figure 2.
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Figure 2. (a) I(1) process with level break, (b) bootstrapped

residuals, procedure I
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First note that the break is slightly less noticeable than in the previous figure

because the process is non-stationary and the simulated break was of the same

magnitude. But it still apparent that the procedure removed the break from

the data properly. Next, consider what happens if the process is non-stationary

with no break. Here we generated the data just as in the previous figure except

that a break in level was not added. The resulting series are shown in Figure

3.
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Figure 3. (a) I(1) process without level break, (b) bootstrapped

residuals, procedure I
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The procedure produces a time series that does not look distorted in any

way. In particular, the new series does not appear to have a level break.

Finally, consider what happens when the process is stationary with no break.

Using an i.i.d. normal data generation process as in Figure 1, but this time

without a level break, we plot the resulting series in Figure 4.
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Figure 4. (a) I(0) process without level break,(b) bootstrapped

residuals, procedure I
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This example is where a problem occurs. The main problem is that the es-

timate of the break magnitude(s), γ̂i, are not close to zero when the data is

generated by a model with no breaks. The differencing is what throws this off.

For example, regressing on a single dummy Dt(t̂) will result in γ̂ = max ∆yt.

On the other hand, regressing levels of yt on DUt(t̂) gives γ̂ = ȳt≥t̂ − ȳt≤t̂.

Now in Figure 5 we show what happens when the process is stationary

with no break using the wild bootstrap II procedure.
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Figure 5. (a) I(0) process without level break, (b) bootstrapped

residuals, procedure II
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As expected, the resampling no longer creates a level break in the series, nor

does it distort the process in any other noticeable way. Hence wild bootstrap

procedure II is valid for stationary data, whereas wild bootstrap procedure I

is not.

Because bootstrap procedure I exhibits this problem when the data is I(0)

we also rely on the alternative bootstrap procedure II. By using the larger of

the two resulting critical values we ensure that the testing procedure will not

be oversized. However, depending on the direction of failure in procedure I for

I(0) data the procedure could potentially be very conservative, or undersized.

We find in the simulations in the subsequent section that this is generally not
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the case.

4.4.6 Simulation results

We now present results of simulations that show the size and power of the

bootstrap-based testing procedure under different data-generating processes.

In Tables 2A-2C we assess the size of the bootstrap-based testing procedure.

The number of Monte Carlo simulations is now reduced from 1000 to 500 as

they are computationally expensive. The same set of data-generating processes

are used except that we now included the intermediate ρ = 0.95 case and only

use samples of size T = 150 or 300. Across the board, the size is much closer to

the nominal size, 0.05, than the size of the HLT test. The worst performance

is when m is large, ρ = 1 and the volatility break occurs toward the beginning

or end of the time period observed. Even in this case though the size is lower

(closer to the nominal size) than the size of the HLT test.

Finally, Tables 3A-3D list the power against several different alternatives

for these same data-generating processes when T = 150. Tables 3A-3C report

the power from exercises in which the data was generated with a break in level

after half of the periods have passed of two different magnitudes, γ = 5 and

γ = 10. The simulations recorded in Table 3D used three level breaks of equal

size - γ = 5 in the first panel and γ = 10 in the second panel - occurring after

1/4, 1/2 and 3/4 of the time periods.

First we can compare the constant volatility rows in the γ = 5 panel of

Table 3B with Table 8 in HLT. Note that our bootstrap-based test maintains

high power under constant volatility when ρ = 0. Furthermore, the power of
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our test under constant volatility when the underlying process has a unit root

or is near unit root is very similar to that of the HLT test, roughly ranging

from .07 to .13 across different values of m. Comparing the γ = 10 panels

to Table 7 in HLT we see that the power of our test converges more quickly

toward 1.

It is also clear from these results that our test typically maintains similar

levels of local power when there is a small jump in volatility, though for a fixed

γ the power suffers for larger jumps. The timing of the break in volatility also

seems to be an important determinant of the power of the test, though the

pattern is hard to decipher. Finally, it is also evident that using a larger

window size, m, for the test leads to smaller losses of power. This is an

important discovery because when volatility is constant both our test and the

HLT test generally have higher power when m is smaller. Thus there is an

interesting tradeoff between (i) using a wider window to distinguish between

level breaks and volatility jumps and (ii) using a smaller window to better

distinguish level breaks from non-stationarity in the underlying process.

The results in Table 3D mostly support this conclusion that when a time

series exhibits jumps in volatility our bootstrapped version of HLT’s testing

procedure can still detect level breaks with similar power to the HLT test

when there is no jump in volatility. However, when both γ - the level break

magnitude - and the size of the jump volatility are large this does not appear

to be true. In the last panel of Table 3D we find that the power is quite low

both for the stationary and non-stationary cases. Note however, that for a

window size of m = .30 test is inconsistent as there is now more than one
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break within the window, violating the requirement of at most one break.

4.5 Conclusion

Harvey et al. (2010) discuss a class of test statistics for detecting multiple level

breaks in a time series and propose a testing procedure that is valid regardless

of the order of integration of the underlying process. In this paper we studied

the behavior of their tests when the driving process does not exhibit stationary

volatility. We first demonstrated through a series of Monte Carlo exercises that

the union of rejections procedure proposed by HLT is oversized when there is

a break in the volatility. The size distortion is worse when the jump is larger,

when it occurs closer to the middle of the time period observed, and when the

data generating process satisfies Assumption I(0). The size distortion is also

worse when a smaller window is used for the test.

Following Cavaliere and Taylor (2008) and Cavaliere et al. (2011) we pro-

pose a procedure based on the wild boostrap to perform valid tests when the

underlying process has non-stationary volatility. We use the HLT test statis-

tics and employ a resampling procedure to obtain valid critical values. Since

we consider the order of integration to be unknown we are forced to use two

separate bootstrap procedures to obtain two separate critical values, each of

which is valid under the corresponding stationarity assumption. We reject the

null hypothesis if the statistic exceeds both critical values.

We find through a Monte Carlo study that this adjusted testing procedure

controls the size fairly well, even in small samples. We also find that while the
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power of the testing procedure is similar to the power of the HLT procedure

when the volatility is constant in some cases where the volatility jump is

small, the power is considerably lower for larger volatility jumps. We leave

the theoretical derivation of the asymptotic behavior of the tests under non-

stochastic volatility to future research. In future research we also hope to

consider adapting the test statistic itself to account for changes in the volatility,

in the hope of improving the power of the testing procedure.
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# of Monte Carlo Simulations: 1000

τσ=0.25

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.049 0.041 0.042 0.041 0.039

ρ = 0 0.025 0.018 0.009 0.013 0.006
σ1/σ0=0.5 ρ = 1 0.121 0.112 0.109 0.109 0.11

ρ = 0 0.121 0.088 0.064 0.045 0.036
σ1/σ0=3 ρ = 1 0.121 0.099 0.081 0.077 0.068

ρ = 0 0.081 0.063 0.046 0.029 0.027
σ1/σ0=5 ρ = 1 0.142 0.107 0.088 0.08 0.072

ρ = 0 0.087 0.072 0.051 0.031 0.029

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.051 0.04 0.045 0.04 0.045

ρ = 0 0.051 0.031 0.027 0.012 0.012
σ1/σ0=0.5 ρ = 1 0.116 0.113 0.115 0.123 0.115

ρ = 0 0.152 0.103 0.079 0.061 0.048
σ1/σ0=3 ρ = 1 0.133 0.09 0.092 0.09 0.07

ρ = 0 0.134 0.107 0.075 0.051 0.035
σ1/σ0=5 ρ = 1 0.141 0.101 0.098 0.095 0.082

ρ = 0 0.152 0.12 0.081 0.059 0.039

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.044 0.044 0.05 0.051 0.059

ρ = 0 0.046 0.037 0.029 0.017 0.016
σ1/σ0=0.5 ρ = 1 0.123 0.112 0.113 0.122 0.114

ρ = 0 0.179 0.125 0.077 0.057 0.052
σ1/σ0=3 ρ = 1 0.141 0.127 0.108 0.093 0.094

ρ = 0 0.147 0.121 0.099 0.058 0.04
σ1/σ0=5 ρ = 1 0.149 0.141 0.127 0.107 0.099

ρ = 0 0.161 0.131 0.105 0.063 0.048

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.045 0.05 0.054 0.046 0.055

ρ = 0 0.055 0.039 0.043 0.027 0.021
σ1/σ0=0.5 ρ = 1 0.126 0.113 0.11 0.117 0.113

ρ = 0 0.188 0.128 0.092 0.06 0.048
σ1/σ0=3 ρ = 1 0.128 0.127 0.112 0.096 0.083

ρ = 0 0.137 0.11 0.096 0.07 0.055
σ1/σ0=5 ρ = 1 0.137 0.136 0.12 0.106 0.089

ρ = 0 0.147 0.12 0.108 0.078 0.06

Panel B. T=300
U

Panel C. T=600

U

Panel D. T=1200
U

Table 1.A   Finite sample sizes of nominal 0.05-level tests: normal  innovations with 

volatility breaks
Panel A. T=150

U
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# of Monte Carlo Simulations: 1000

τσ=0.5

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.049 0.041 0.042 0.041 0.039

ρ = 0 0.025 0.018 0.009 0.013 0.006
σ1/σ0=0.5 ρ = 1 0.165 0.149 0.123 0.113 0.099

ρ = 0 0.133 0.105 0.075 0.059 0.045
σ1/σ0=3 ρ = 1 0.212 0.162 0.148 0.137 0.121

ρ = 0 0.21 0.144 0.116 0.086 0.055
σ1/σ0=5 ρ = 1 0.269 0.204 0.187 0.178 0.153

ρ = 0 0.251 0.18 0.145 0.104 0.076

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.051 0.04 0.045 0.04 0.045

ρ = 0 0.051 0.031 0.027 0.012 0.012
σ1/σ0=0.5 ρ = 1 0.171 0.151 0.137 0.135 0.114

ρ = 0 0.173 0.152 0.102 0.067 0.052
σ1/σ0=3 ρ = 1 0.221 0.164 0.154 0.139 0.116

ρ = 0 0.274 0.229 0.172 0.124 0.092
σ1/σ0=5 ρ = 1 0.286 0.22 0.205 0.187 0.152

ρ = 0 0.325 0.273 0.205 0.149 0.114

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.044 0.044 0.05 0.051 0.059

ρ = 0 0.046 0.037 0.029 0.017 0.016
σ1/σ0=0.5 ρ = 1 0.157 0.127 0.127 0.124 0.108

ρ = 0 0.214 0.168 0.121 0.086 0.069
σ1/σ0=3 ρ = 1 0.23 0.209 0.172 0.172 0.154

ρ = 0 0.316 0.233 0.179 0.14 0.11
σ1/σ0=5 ρ = 1 0.277 0.257 0.219 0.213 0.188

ρ = 0 0.375 0.287 0.218 0.17 0.129

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.045 0.05 0.054 0.046 0.055

ρ = 0 0.055 0.039 0.043 0.027 0.021
σ1/σ0=0.5 ρ = 1 0.155 0.141 0.134 0.123 0.12

ρ = 0 0.208 0.157 0.107 0.084 0.075
σ1/σ0=3 ρ = 1 0.216 0.208 0.185 0.164 0.14

ρ = 0 0.294 0.239 0.19 0.139 0.112
σ1/σ0=5 ρ = 1 0.26 0.25 0.226 0.197 0.169

ρ = 0 0.36 0.285 0.226 0.167 0.136

Panel A. T=150
U

Panel B. T=300
U

Panel C. T=600

U

Panel D. T=1200
U

Table 1.B   Finite sample sizes of nominal 0.05-level tests: normal  innovations with 

volatility breaks

119



# of Monte Carlo Simulations: 1000

τσ=0.75

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.049 0.041 0.042 0.041 0.039

ρ = 0 0.025 0.018 0.009 0.013 0.006
σ1/σ0=0.5 ρ = 1 0.116 0.09 0.081 0.073 0.076

ρ = 0 0.072 0.048 0.036 0.036 0.02
σ1/σ0=3 ρ = 1 0.221 0.173 0.183 0.185 0.191

ρ = 0 0.223 0.154 0.104 0.091 0.078
σ1/σ0=5 ρ = 1 0.308 0.247 0.258 0.282 0.303

ρ = 0 0.334 0.228 0.163 0.141 0.127

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.051 0.04 0.045 0.04 0.045

ρ = 0 0.051 0.031 0.027 0.012 0.012
σ1/σ0=0.5 ρ = 1 0.108 0.095 0.081 0.078 0.071

ρ = 0 0.103 0.084 0.053 0.03 0.027
σ1/σ0=3 ρ = 1 0.217 0.199 0.19 0.205 0.203

ρ = 0 0.277 0.228 0.163 0.115 0.08
σ1/σ0=5 ρ = 1 0.306 0.283 0.279 0.279 0.291

ρ = 0 0.38 0.301 0.218 0.162 0.125

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.044 0.044 0.05 0.051 0.059

ρ = 0 0.046 0.037 0.029 0.017 0.016
σ1/σ0=0.5 ρ = 1 0.109 0.1 0.087 0.086 0.082

ρ = 0 0.133 0.094 0.065 0.046 0.038
σ1/σ0=3 ρ = 1 0.204 0.171 0.167 0.18 0.183

ρ = 0 0.299 0.229 0.174 0.123 0.088
σ1/σ0=5 ρ = 1 0.293 0.253 0.264 0.286 0.285

ρ = 0 0.409 0.308 0.233 0.183 0.136

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.045 0.05 0.054 0.046 0.055

ρ = 0 0.055 0.039 0.043 0.027 0.021
σ1/σ0=0.5 ρ = 1 0.111 0.098 0.085 0.085 0.09

ρ = 0 0.12 0.088 0.068 0.067 0.047
σ1/σ0=3 ρ = 1 0.23 0.203 0.191 0.184 0.19

ρ = 0 0.34 0.253 0.185 0.139 0.124
σ1/σ0=5 ρ = 1 0.321 0.275 0.268 0.276 0.284

ρ = 0 0.45 0.333 0.261 0.207 0.172

Panel A. T=150
U

Panel B. T=300
U

Panel C. T=600

U

Panel D. T=1200
U

Table 1.C   Finite sample sizes of nominal 0.05-level tests: normal  innovations with 

volatility breaks

120



# of Monte Carlo Simulations: 500

# of Bootstraps: 100

τσ=0.25

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068

ρ = 0.95 0.006 0.03 0.046 0.05 0.062

ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.042 0.064 0.072 0.084 0.088

ρ = 0.95 0.034 0.054 0.048 0.056 0.046

ρ = 0 0.03 0.046 0.044 0.052 0.038

σ1/σ0=3 ρ = 1 0.014 0.044 0.066 0.06 0.066

ρ = 0.95 0.002 0.038 0.052 0.052 0.058

ρ = 0 0.008 0.02 0.04 0.044 0.04

σ1/σ0=5 ρ = 1 0.012 0.04 0.072 0.066 0.064

ρ = 0.95 0.004 0.04 0.054 0.052 0.06

ρ = 0 0.006 0.018 0.04 0.044 0.032

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.036 0.048 0.072 0.08 0.078

ρ = 0.95 0.016 0.028 0.024 0.024 0.042

ρ = 0 0.026 0.038 0.038 0.036 0.04

σ1/σ0=0.5 ρ = 1 0.044 0.062 0.08 0.09 0.096

ρ = 0.95 0.026 0.018 0.036 0.046 0.044

ρ = 0 0.05 0.058 0.056 0.048 0.05

σ1/σ0=3 ρ = 1 0.036 0.044 0.052 0.054 0.064

ρ = 0.95 0.02 0.022 0.024 0.034 0.036

ρ = 0 0.016 0.04 0.036 0.038 0.034

σ1/σ0=5 ρ = 1 0.04 0.044 0.052 0.058 0.062

ρ = 0.95 0.018 0.024 0.024 0.034 0.044
ρ = 0 0.016 0.04 0.03 0.034 0.034

Table 2.A   Finite sample sizes of nominal 5%-level tests: normal 

innovations with volatility breaks, WBS
Panel A. T=150

U

Panel B. T=300

U
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# of Monte Carlo Simulations: 500

# of Bootstraps: 100

τσ=0.5

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068

ρ = 0.95 0.006 0.03 0.046 0.05 0.062

ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.024 0.044 0.076 0.086 0.098

ρ = 0.95 0.022 0.038 0.024 0.044 0.042

ρ = 0 0.016 0.028 0.042 0.038 0.044

σ1/σ0=3 ρ = 1 0.018 0.052 0.066 0.074 0.078

ρ = 0.95 0.014 0.044 0.056 0.066 0.062

ρ = 0 0.008 0.02 0.056 0.05 0.042

σ1/σ0=5 ρ = 1 0.024 0.042 0.066 0.078 0.076

ρ = 0.95 0.012 0.046 0.066 0.068 0.058

ρ = 0 0.008 0.024 0.048 0.042 0.038

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.036 0.048 0.072 0.08 0.078

ρ = 0.95 0.016 0.028 0.024 0.024 0.042

ρ = 0 0.026 0.038 0.038 0.036 0.04

σ1/σ0=0.5 ρ = 1 0.058 0.076 0.084 0.064 0.066

ρ = 0.95 0.03 0.042 0.042 0.04 0.036

ρ = 0 0.038 0.052 0.048 0.056 0.052

σ1/σ0=3 ρ = 1 0.03 0.048 0.06 0.048 0.042

ρ = 0.95 0.022 0.028 0.03 0.036 0.05

ρ = 0 0.03 0.036 0.06 0.044 0.044

σ1/σ0=5 ρ = 1 0.03 0.05 0.058 0.052 0.058

ρ = 0.95 0.024 0.03 0.03 0.044 0.052
ρ = 0 0.026 0.03 0.05 0.046 0.048

Table 2.B   Finite sample sizes of nominal 5%-level tests: normal 

innovations with volatility breaks, WBS
Panel A. T=150

U

Panel B. T=300

U
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# of Monte Carlo Simulations: 500

# of Bootstraps: 100

τσ=0.75

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068

ρ = 0.95 0.006 0.03 0.046 0.05 0.062

ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.018 0.038 0.06 0.076 0.092

ρ = 0.95 0.01 0.028 0.036 0.048 0.058

ρ = 0 0.004 0.018 0.03 0.022 0.03

σ1/σ0=3 ρ = 1 0.052 0.086 0.096 0.094 0.082

ρ = 0.95 0.06 0.068 0.078 0.082 0.1

ρ = 0 0.034 0.068 0.068 0.07 0.062

σ1/σ0=5 ρ = 1 0.068 0.088 0.094 0.098 0.098

ρ = 0.95 0.074 0.076 0.078 0.086 0.096

ρ = 0 0.034 0.064 0.06 0.054 0.034

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.036 0.048 0.072 0.08 0.078

ρ = 0.95 0.016 0.028 0.024 0.024 0.042

ρ = 0 0.026 0.038 0.038 0.036 0.04

σ1/σ0=0.5 ρ = 1 0.05 0.062 0.078 0.076 0.094

ρ = 0.95 0.014 0.03 0.018 0.018 0.038

ρ = 0 0.02 0.04 0.04 0.054 0.054

σ1/σ0=3 ρ = 1 0.064 0.078 0.074 0.07 0.076

ρ = 0.95 0.028 0.046 0.054 0.046 0.056

ρ = 0 0.06 0.074 0.052 0.034 0.032

σ1/σ0=5 ρ = 1 0.062 0.076 0.08 0.082 0.078

ρ = 0.95 0.038 0.05 0.056 0.062 0.062
ρ = 0 0.058 0.064 0.052 0.032 0.028

Panel B. T=300

U

Panel A. T=150

U

Table 2.C   Finite sample sizes of nominal 5%-level tests: normal 

innovations with volatility breaks, WBS
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# of Monte Carlo Simulations: 500
# of Bootstraps: 100
One vol break at: τσ=0.25
One level break at: τ=0.5

U
m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068
ρ = 0.95 0.006 0.03 0.046 0.05 0.062
ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.042 0.064 0.072 0.084 0.088
ρ = 0.95 0.034 0.054 0.048 0.056 0.046
ρ = 0 0.03 0.046 0.044 0.052 0.038

σ1/σ0=3 ρ = 1 0.014 0.044 0.066 0.06 0.066
ρ = 0.95 0.002 0.038 0.052 0.052 0.058
ρ = 0 0.008 0.02 0.04 0.044 0.04

σ1/σ0=5 ρ = 1 0.012 0.04 0.072 0.066 0.064
ρ = 0.95 0.004 0.04 0.054 0.052 0.06
ρ = 0 0.006 0.018 0.04 0.044 0.032

U
m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.08 0.11 0.096 0.112 0.126
ρ = 0.95 0.11 0.114 0.13 0.19 0.232
ρ = 0 0.966 0.984 0.964 0.946 0.9

σ1/σ0=0.5 ρ = 1 0.386 0.296 0.242 0.248 0.274
ρ = 0.95 0.464 0.39 0.32 0.36 0.438
ρ = 0 1 1 1 1 0.992

σ1/σ0=3 ρ = 1 0.014 0.042 0.066 0.068 0.074
ρ = 0.95 0.012 0.032 0.044 0.066 0.058
ρ = 0 0.174 0.482 0.71 0.78 0.844

σ1/σ0=5 ρ = 1 0.016 0.042 0.06 0.062 0.066
ρ = 0.95 0.01 0.032 0.046 0.046 0.05
ρ = 0 0.034 0.116 0.288 0.37 0.516

U
m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30

constant volatility ρ = 1 0.742 0.606 0.476 0.464 0.42
ρ = 0.95 0.834 0.726 0.622 0.628 0.646
ρ = 0 1 1 1 1 1

σ1/σ0=0.5 ρ = 1 0.988 0.958 0.896 0.836 0.794
ρ = 0.95 0.992 0.98 0.962 0.938 0.922
ρ = 0 1 1 1 1 1

σ1/σ0=3 ρ = 1 0.03 0.056 0.076 0.08 0.072
ρ = 0.95 0.036 0.056 0.098 0.13 0.118
ρ = 0 0.764 0.884 0.872 0.806 0.768

σ1/σ0=5 ρ = 1 0.016 0.036 0.068 0.068 0.064
ρ = 0.95 0.014 0.042 0.044 0.064 0.064
ρ = 0 0.302 0.612 0.812 0.818 0.826

Panel C.  γ= 10 (one level break)

Table 3.A      Finite sample powers of nominal 0.05-level tests: normal innovations with a single 

volatility break, WBS
Panel A.  T=150, γ= 0  (No level break)

Panel B.  T=150, γ= 5 (one level break)
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# of Monte Carlo Simulations: 500
# of Bootstraps: 100
One vol break at: τσ=0.5
One level break at: τ=0.5

Panel A.  T=150, γ= 0  (No level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068

ρ = 0.95 0.006 0.03 0.046 0.05 0.062
ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.024 0.044 0.076 0.086 0.098
ρ = 0.95 0.022 0.038 0.024 0.044 0.042
ρ = 0 0.016 0.028 0.042 0.038 0.044

σ1/σ0=3 ρ = 1 0.018 0.052 0.066 0.074 0.078
ρ = 0.95 0.014 0.044 0.056 0.066 0.062
ρ = 0 0.008 0.02 0.056 0.05 0.042

σ1/σ0=5 ρ = 1 0.024 0.042 0.066 0.078 0.076
ρ = 0.95 0.012 0.046 0.066 0.068 0.058
ρ = 0 0.008 0.024 0.048 0.042 0.038

Panel B.  T=150, γ= 5 (one level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.08 0.11 0.096 0.112 0.126

ρ = 0.95 0.11 0.114 0.13 0.19 0.232
ρ = 0 0.966 0.984 0.964 0.946 0.9

σ1/σ0=0.5 ρ = 1 0.13 0.126 0.108 0.148 0.16
ρ = 0.95 0.162 0.18 0.174 0.252 0.31
ρ = 0 0.98 0.984 0.974 0.96 0.944

σ1/σ0=3 ρ = 1 0.016 0.054 0.076 0.086 0.086
ρ = 0.95 0.014 0.04 0.05 0.078 0.068
ρ = 0 0.228 0.562 0.742 0.776 0.798

σ1/σ0=5 ρ = 1 0.02 0.04 0.07 0.078 0.074
ρ = 0.95 0.014 0.032 0.068 0.074 0.056
ρ = 0 0.042 0.11 0.258 0.372 0.504

Panel C.  T=150, γ= 10 (one level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.742 0.606 0.476 0.464 0.42

ρ = 0.95 0.834 0.726 0.622 0.628 0.646
ρ = 0 1 1 1 1 1

σ1/σ0=0.5 ρ = 1 0.872 0.756 0.644 0.616 0.568
ρ = 0.95 0.95 0.864 0.814 0.782 0.786
ρ = 0 1 1 1 1 1

σ1/σ0=3 ρ = 1 0.038 0.068 0.09 0.112 0.134
ρ = 0.95 0.044 0.096 0.104 0.15 0.182
ρ = 0 0.844 0.9 0.862 0.798 0.728

σ1/σ0=5 ρ = 1 0.018 0.054 0.074 0.08 0.086
ρ = 0.95 0.014 0.048 0.066 0.072 0.09
ρ = 0 0.35 0.664 0.782 0.742 0.682

Table 3.B      Finite sample powers of nominal 0.05-level tests: normal innovations with a single 

volatility break, WBS
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# of Monte Carlo Simulations: 500
# of Bootstraps: 100
One vol break at: τσ=0.75
One level break at: τ=0.5

Panel A.  T=150, γ= 0  (No level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068

ρ = 0.95 0.006 0.03 0.046 0.05 0.062
ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.018 0.038 0.06 0.076 0.092
ρ = 0.95 0.01 0.028 0.036 0.048 0.058
ρ = 0 0.004 0.018 0.03 0.022 0.03

σ1/σ0=3 ρ = 1 0.052 0.086 0.096 0.094 0.082
ρ = 0.95 0.06 0.068 0.078 0.082 0.1
ρ = 0 0.034 0.068 0.068 0.07 0.062

σ1/σ0=5 ρ = 1 0.068 0.088 0.094 0.098 0.098
ρ = 0.95 0.074 0.076 0.078 0.086 0.096
ρ = 0 0.034 0.064 0.06 0.054 0.034

Panel B.  T=150, γ= 5 (one level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.08 0.11 0.096 0.112 0.126

ρ = 0.95 0.11 0.114 0.13 0.19 0.232
ρ = 0 0.966 0.984 0.964 0.946 0.9

σ1/σ0=0.5 ρ = 1 0.086 0.108 0.108 0.124 0.14
ρ = 0.95 0.124 0.14 0.152 0.208 0.26
ρ = 0 0.944 0.962 0.94 0.916 0.888

σ1/σ0=3 ρ = 1 0.054 0.086 0.092 0.1 0.092
ρ = 0.95 0.056 0.072 0.088 0.1 0.096
ρ = 0 0.706 0.926 0.958 0.966 0.73

σ1/σ0=5 ρ = 1 0.07 0.086 0.094 0.11 0.112
ρ = 0.95 0.08 0.082 0.074 0.088 0.084
ρ = 0 0.102 0.394 0.62 0.708 0.554

Panel C.  T=150, γ= 10 (one level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.742 0.606 0.476 0.464 0.42

ρ = 0.95 0.834 0.726 0.622 0.628 0.646
ρ = 0 1 1 1 1 1

σ1/σ0=0.5 ρ = 1 0.736 0.626 0.524 0.49 0.458
ρ = 0.95 0.842 0.77 0.68 0.698 0.694
ρ = 0 1 1 1 1 1

σ1/σ0=3 ρ = 1 0.122 0.128 0.126 0.132 0.138
ρ = 0.95 0.166 0.188 0.21 0.224 0.228
ρ = 0 1 1 1 1 0.91

σ1/σ0=5 ρ = 1 0.07 0.092 0.096 0.112 0.102
ρ = 0.95 0.086 0.092 0.096 0.116 0.106
ρ = 0 0.896 0.996 1 1 0.72

Table 3.C      Finite sample powers of nominal 0.05-level tests: normal innovations with a single 

volatility break, WBS
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# of Monte Carlo Simulations: 500
# of Bootstraps: 100
one vol break at: τσ=0.5
Three level breaks at: τ=*0.25,0.5,0.75+

Panel A.  T=150, γi= 0  (No level break)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.012 0.038 0.05 0.054 0.068

ρ = 0.95 0.006 0.03 0.046 0.05 0.062
ρ = 0 0.006 0.026 0.024 0.026 0.034

σ1/σ0=0.5 ρ = 1 0.024 0.044 0.076 0.086 0.098
ρ = 0.95 0.022 0.038 0.024 0.044 0.042
ρ = 0 0.016 0.028 0.042 0.038 0.044

σ1/σ0=3 ρ = 1 0.018 0.052 0.066 0.074 0.078
ρ = 0.95 0.014 0.044 0.056 0.066 0.062
ρ = 0 0.008 0.02 0.056 0.05 0.042

σ1/σ0=5 ρ = 1 0.024 0.042 0.066 0.078 0.076
ρ = 0.95 0.012 0.046 0.066 0.068 0.058
ρ = 0 0.008 0.024 0.048 0.042 0.038

Panel B.  T=150, γi= 5 (three level breaks)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.174 0.13 0.154 0.19 0.064

ρ = 0.95 0.248 0.178 0.3 0.386 0.108
ρ = 0 0.946 0.978 0.966 0.952 0.166

σ1/σ0=0.5 ρ = 1 0.208 0.154 0.182 0.236 0.068
ρ = 0.95 0.324 0.252 0.332 0.43 0.058
ρ = 0 0.974 0.978 0.98 0.98 0.06

σ1/σ0=3 ρ = 1 0.026 0.052 0.064 0.084 0.07
ρ = 0.95 0.026 0.058 0.08 0.09 0.086
ρ = 0 0.284 0.534 0.596 0.554 0.392

σ1/σ0=5 ρ = 1 0.024 0.05 0.07 0.078 0.078
ρ = 0.95 0.012 0.044 0.068 0.078 0.068
ρ = 0 0.076 0.192 0.35 0.402 0.402

Panel C.  T=150, γi= 10 (three level breaks)
U

m = 0.10 m = 0.15 m = 0.20 m = 0.25 m = 0.30
constant volatility ρ = 1 0.908 0.808 0.704 0.696 0.052

ρ = 0.95 0.972 0.93 0.884 0.892 0.022
ρ = 0 1 1 1 1 0.01

σ1/σ0=0.5 ρ = 1 0.96 0.894 0.834 0.8 0.026
ρ = 0.95 0.992 0.962 0.956 0.95 0.002
ρ = 0 1 1 1 1 0

σ1/σ0=3 ρ = 1 0.066 0.064 0.098 0.148 0.05
ρ = 0.95 0.09 0.118 0.19 0.27 0.12
ρ = 0 0.712 0.83 0.782 0.744 0.114

σ1/σ0=5 ρ = 1 0.03 0.052 0.062 0.082 0.052
ρ = 0.95 0.034 0.062 0.084 0.104 0.09
ρ = 0 0.374 0.62 0.612 0.54 0.22

Table 3.D      Finite sample powers of nominal 0.05-level tests: normal innovations with a multiple 

volatility breaks, WBS
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Chapter 5

Statistical arbitrage with

stochastic cointegration

This chapter provides empirical evidence supporting the use of relative

pricing in pairs of financial securities that exhibit profound statistical

relationship. As a means to formally detect pairs of stocks that co-

moved historically in the equity market, we propose to use the new

nonlinear method for cointegration analysis derived by Harris, McCabe

and Leybourne (2002, 2006). We test for the presence of stochastic

cointegration and empirically assess the nonlinear generalization of a

new paradigm over the standard method of Engle and Granger (1987).

Compared with the standard method, stochastic cointegration is found

to be an effective tool that consistently estimates long-run states of

equilibria and repeatedly detects such relationships in the US equity

market.
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5.1 Introduction

Pair Trading is an investment strategy that has long been employed by hedge

funds and proprietary trading desks. In its most common form, the concept of

the strategy is simple: find two financial securities that have moved together

historically. When the spread between them widens significantly, (short) sell

the winner and (long) buy the loser. As soon as the spread reverts back to its

‘norm’ the position in the pair is closed, resulting in net gain. The profitability

of pairs trading strategies relies heavily on the expectation that the relation-

ship observed between the securities in the past will prevail in the future. Any

significant deviations from the modeled relationship are assumed to be tempo-

rary and are expected to revert. Questions such as how to define and identify

the long-run ‘norm’ between prices of securities, as well as what constitutes

significant divergence from the long-run state all need to be formalized and

modeled directly.

A well documented example that offers a theoretical explanation for why

prices of different securities tend to move together can be found in the stock

market. Arbitrage Pricing Theory (APT) developed primarily by Ross (1976a)

and Ross (1976b), suggests that the price of a share in a company should equal

the net present value of the sum of its future dividends. The discount rate

that is used to discount future dividends of stocks is particularly sensitive to a

shift in the expectation of future interest rate. Ceteris paribus, an increase in

the expected interest rate generally decreases the net present value of stocks.

Conversely, an expected decrease in future interest rate usually results in an

increase in stock prices. Stock prices therefore, tend to co-move in response to
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changes in macroeconomic variables. Other economic news often has a more

pronounced effect on prices of a subset of stocks, stocks that serve as close

economic substitutes to each other. For example, a sharp unexpected price

increase of a fundamental production component such as crude oil is likely to

have a substantial negative effect on the profitability of stocks that belong to

the airline industry. In response to a price increase of a common production

factor (oil), stock prices of the airline industry have high propensity to co-move

in the same direction to a lower level.

The Law of One Price as defined by Ingersoll (1987) maintains that secu-

rities that have the exact same payoffs in every state of the world must sell

for the exact same price. Any discrepancies between prices of identical secu-

rities usually disappear almost as soon as they appear as a result of (riskless)

arbitrage activity. A pure arbitrageur is engaged in the activity of buying

the underpriced security and simultaneously selling the same security in the

market where it is overpriced. This activity takes place until the price discrep-

ancy disappears. Occasionally, (slightly) different prices can be observed for

the same stock that is traded simultaneously on two different exchanges. The

arbitrageur buys the stock on the exchange where it is underpriced and at the

same time sells it on the exchange where it is overpriced, netting a riskless

gain. The concept of pure arbitrage can be extended to any securities that

maintain an exact arbitrage relationship or any securities whose future payoff

can be perfectly mimicked using a combination of other financial instruments,

such as derivatives. Chen and Knez (1995) extend the definition of Ingersoll

and argue that closely integrated securities should have similar prices. This
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weaker condition on the prices is the main motivation for strategies of statisti-

cal arbitrage, where prices of similar securities are expected to be in the same

neighborhood, in a statistical sense, but not exactly the same, as in the case

of pure arbitrage.

Trading strategies of statistical arbitrage aim to exploit deviations from

a statistical relationship that is observed between securities. Similar to Je-

gadeesh and Titman (1993), Gatev, W.N.Goetzmann and Rouwenhorst (2006)

test the assumption that there is a potential profitability from pairs trading

simply due to the assumption that there is a tendency of stock prices to revert

to their means at certain horizons. To address this hypothesis, they develop

a bootstrapping test based upon random pair choice; if pairs trading profits

were simply due to mean-reversion, then randomly chosen pairs should gener-

ate profits by buying loser and selling winner stocks. This simple contrarian

strategy was found to be unprofitable over the period of their study, suggest-

ing that the mean-reversion assumption by itself does not tell the whole story.

They propose to use cointegration analysis instead.

Alexander (1999) shows that high correlation of returns does not neces-

sarily imply cointegration in prices. Correlation measures co-movements in

returns, which are subject to great instabilities over time. It measures the

degree of linear association between a set of variables but does not carry in-

formation on the long-term relationship that may exist between the variables.

Hence, trading and hedging strategies that are based on correlation require

frequent parameter estimation and rebalancing. Cointegration on the other

hand, measures long time co-movement in prices, which prevails even through
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periods when static correlation appears low. Investment management and

trading strategies that are based only on volatility and correlation of returns

cannot guarantee long term performance. Cointegration extends the tradi-

tional models by including a preliminary stage in which the multivariate price

data are analyzed, and then augments the correlation analysis by including

the dynamics and causal flows between returns. Mispricing and over-hedging

may occur if cointegration is ignored. Cointegration in financial assets can be

found between spot and futures, bonds of different maturities, bonds issued in

different counties, international indices or in fact anywhere where spreads are

mean-reverting.

Bossaerts and Green (1989), as well as Gatev et al. (2006) suggest that

pairs trading strategies may be justified within an equilibrium asset-pricing

framework with non stationary common factors. They employ cointegration

analysis as a tool to identify stocks whose prices move together over a given

history. Originally proposed by Engle and Granger (1987) (EG), the method-

ology provides a framework in which the long and short components of a pair

can fluctuate around a nonstationary factor, allowing for a long-run state of

equilibrium to prevail between the stocks. Using the standard EG framework,

Bossaerts (1988) and Gatev et al. (2006) find evidence of price cointegration

in the US equity market.

The EG methodology indeed has had some degree of success in detecting

cointegrating pairs in the equity market, but the procedure provides little

support to an important economic theory, the term structure of interest rates.

The theory suggests that short and long term rates should cointegrate with a
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single cointegrating vector equal to one. In their empirical analysis, Campbell

and Shiller (1987) did not find cointegration between the rates and argue

that the spreads between them tend to “move-to-much” to be consistent with

the EG paradigm. Harris et al. (2002) (HML) propose a new framework for

cointegration, one that allows for volatility in excess of that catered for by

the standard integration/cointegration paradigm through the introduction of

nonstationary heteroscedasticity. Using this technique they are able to provide

empirical support to the term structure theory and a cointegrating relationship

between the rates is indeed detected. HML offers a nonlinear generalization

over the standard EG paradigm.

Similar to HML, Xiao (2009) proposes an alternative way to model the

nonlinearity in cointegrated systems observed in the equity market via a quan-

tile cointegration model. His model settings allow the cointegrating coeffi-

cients to be non-constant, that is to evolve over time. Sollis (2008) favors

the heteroskedastic integration (HI)/stochastic cointegration (SC) framework

and points out that the HML heteroscedastically integrated processes can be

represented as models with time-varying parameters, a property that better

captures the dynamics seen in financial and economic data.

In this chapter we maintain that while cointegration analysis is a rele-

vant tool for identifying stocks that co-move over time, the EG framework

is sub-optimal with respect to both the quality and the number of detected

cointegrating pairs. Instead, the SC framework of HML provides a superior

alternative. The advantage of employing SC over the standard EG is threefold:

1) Using the HML method, a larger number of cointegrating pairs is detected,
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providing the statistical arbitrageur with more opportunities to take advan-

tage of price discrepancies. 2) Unlike EG, the long-run parameters estimated

by the HML technique are consistent in the presence of heteroscedastically

integrated regressors. 3) The HML method identifies the specific form of coin-

tegration (heteroscedastic or stationary), allowing the statistical arbitrageur

to further fine-tune their trading models to take advantage of the type of the

long-run relationship.

The chapter is structured as follows: Section 2 introduces the stochastic

integration/cointegration paradigm and highlights the differences between the

new approach and the standard EG one. Section 3 assesses empirically the

value of the new framework over the standard one by comparing the perfor-

mance of the two approaches in detecting cointegrating relationships in the

US equity market. The results validate that relative pricing is an effective

pricing methodology when applied to a specific set of stocks, stocks that are

stochastically cointegrated. Section 4 concludes.

5.2 Stochastic Integration

A popular way to model time series of prices of stocks is to use unit root

models such as random walk. These however, fail to capture an important

stylized fact that is observed in many financial data in the form of excess

volatility. Conditional heteroscedasticity, particularly in a form that allows

level dependent one, is often a desired feature in modeling financial data.

The specification of HML offers an adequate alternative as it allows for level
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dependent heteroscedasticity while assuming prices are stochastically trending.

Their concept builds on the heteroscedastically integrated processes that were

originally studied by Hansen (1992). For the purpose of modeling a system of

stock prices we adopt the model setting as proposed in McCabe et al. (2006):

Zt = µ+ δt + Πwt + εt + Vtht (5.1)

wt = wt−1 + ηt

ht = ht−1 + νt

for t = 1, . . . , T . Where Zt, µ, δ and εt are m× 1 vectors; wt and ηt are n× 1

vectors; ht and νt are p × 1 vectors; Π and Vt are m × n and m × p matri-

ces, respectively. The disturbances εt, ηt, νt and Vt are mean zero stationary

processes. In this case Zt represents a vector of time series of observed stock

prices, consists of the deterministics µ and δ, an integrated component Πwt,

and a shock term εt + Vtht. The shock term has a linear component, εt, and

a nonlinear component, Vtht, that is nonstationary heteroscedastic from its

dependence on the I(1) process ht. When ht is replaced with wt the process

exhibits level dependent heteroscedastic behavior. The Linear Process (LP)

assumption is made for the statistical properties of the disturbance terms in

equation (5.1), allowing for general forms of serial correlation, cross-correlation

and endogeneity.

Assumption 5.1 (LP). Let ζ = [ν ′t, vec(Vt)
′, η′t, ε

′
t]
′ be generated by the vector

linear process ζt =
∑∞

j=0Cjξt−j where
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(a)
∑∞

j=0 j||Cj|| <∞ with C0 having full rank1.

(b) ξt is an i.i.d. sequence.

(c) E(ξtξ
′
t) = I.

(d) For all E(ξ16
it ) is bounded.

From equation (5.1) HML derive the process for the individual elements of

Zt. Let ei be the m × 1 vector with 1 in its ith position and 0 elsewhere, so

that e′iZt = zit, the ith element of the vector Zt, such that

zit = e′iΠwt + e′i(εt + Vtht)

where we make the simplifying assumption that µ = δ = 0. If e′iΠ 6= 0 then zit

is said to be stochastically integrated (SI). If in addition, e′iE(VtV
′
t )ei > 0 then

zit is said to be heteroscedastically integrated (HI) due to the term e′iVtht. On

the other hand if e′iVt = 0 then zit has a constant unit root, that is simply I(1).

A stochastically integrated variable therefore, nests both forms of integration:

constant unit root and the heteroscedastic one.

5.2.1 Stochastic Cointegration

We aim to model the linear relationships between the time series of stock prices

in Zt. This can be achieved as follows: let c be a non-zero m × 1 vector and

1||A|| =
√
tr(AA′).
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consider

c′Zt = c′Πwt + c′(εt + Vtht)

When c′Π = 0 , the variables in Zt are said to be stochastically cointegrated,

otherwise the variables are not cointegrated. HML note that under stochas-

tic cointegration c′Zt = c′(εt + Vtht) behaves like a stochastically integrated

process net of its stochastic trend component and they refer to such a process

as being stochastically trendless. Under Assumption LP, they show that as

s→∞ (with t fixed),

E(εt+s + Vt+sht+s | It)− E(εt+s + Vt+sht+s)→ 0

That means that the behavior of the process up to time t a has negligible

effect on its behavior into the infinite future. Therefore, even though the dis-

turbances νt have an infinitely persistent effect on ht+s their effect on the level

of Vt+sht+s is only transitory. This in turn, implies that the product process

Vtht is stochastically trendless, even if Vt is correlated with νt. Despite the

fact that Vtht is nonstationary heteroscedastic (as it exhibits linearly trend-

ing variance), it is the stochastically trendless nature of c′Zt = c′(εt + Vtht)

that facilitates co-movement of a nonstationary heteroscedastic type. The pro-

cess described in equation (5.1) is a departure from the standard cointegration

framework of EG, as EG assume the cointegrating residuals are asymptotically

stationary, while HML require them to be only stochastically trendless.

Similar to the interpretation of zit above, when c′Π = 0 and c′E(VtV
′
t )c = 0,
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c′Zt = c′εt is stationary. If in addition, Vt = 0 then the variables are integrated

and cointegrated in the standard EG sense. Because of the stationary behav-

ior of c′Zt in either case, HML refer to this as stationary cointegration. When

c′Π = 0 and c′E(VtV
′
t )c > 0 the variables Zt are said to be heteroscedastically

cointegrated (HC). Thus, stochastic cointegration encompasses both station-

ary cointegration (possibly of the EG kind) and heteroscedastic cointegration.

HML essentially replace the restrictive requirement of EG on the cointegrat-

ing errors with a weaker condition. The concept of SC is weaker than the

conventional EG paradigm as it only requires the residuals from the long-run

regression not to be I(1), rather than requiring them to be I(0) stationary.

While EG impose I(0) stationary behavior on the residuals of the long-run

model, HML only require that I(1) behavior is absent from them.

5.2.2 Hypothesis Tests and Test Statistics

A formal statistical test needs to be employed in order to identify pairs of stocks

that co-moved historically in a stochastically cointegrated fashion. HML de-

velop a procedure that tests whether the system is cointegrated and set the null

of the test as a cointegrated system and the alternative as a non-cointegrated

system: H0 : c′Π = 0 and H1 : c′Π 6= 0. Further, within stochastic coin-

tegration, they develop a procedure that tests whether the cointegration is

stationary or of heteroscedastic form. The null of stationary cointegration

against the heteroscedastic alternative is tested by partitioning H0 as

H0
0 : c′E(VtV

′
t )c = 0 and H0

1 : c′E(VtV
′
t )c > 0
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The system described in equation (5.1) provides merely a representation of

the model and cannot be estimated directly since the only observed variables

are those in Zt. In order to estimate the system HML partition Zt in equa-

tion (5.1 into a scalar yt and an (m− 1)× 1 vector xt as Zt = [yt, x
′
t]
′ so that

it can be estimated via a regression equation:

 yt

xt

 =

 µy

µx

+

 δy

δx

 t+

 π′y

Πx

wt +

 εyt

εxt

+

 v′yt

Vxt

ht (5.2)

Where yt, µy, δy and εyt are scalars, xt, µx, δx and εxt are (m− 1)× 1 vectors,

πy and vyt are n × 1 and p × 1 vectors, respectively, while Πx and Vxt are

(m − 1) × n and (m − 1) × p matrices. Letting c = [1,−β′]′, α = µy − β′µx,

k = δy−β′δx, et = εyt−β′εxt, q′ = π′y−β′Πx = c′Π and v′t = v′yt−β′Vxt = c′Vt,

then we have

yt = α + kt+ x′tβ + ut (5.3)

ut = et + q′wt + v′tht (5.4)

The regression error term ut is the equilibrium residual from the long-run

equation. It has a stationary term et, the integrated term q′wt and the het-

eroscedastic component v′tht
2. It is assumed there is only one cointegrat-

ing vector so that rank(Πx) = m − 1, which imposes the restriction that

n ≥ m − 1. This means that any further sub-relationships among the xt

variables in Eq. (5.3) are excluded. The null hypothesis of stochastic cointe-

2ut need not have zero mean so that α is not an intercept in the usual sense.
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gration against alternative of non-cointegration is expressed via Eq. (5.3) as

H0 : q = 0 and H1 : q 6= 0. Within the cointegrating relationship, H0, the null

hypothesis of stationary cointegration against the heteroscedastic alternative

is H0
0 : E(v′tvt) = 0 against H0

1 : E(v′tvt > 0).

Both tests, H0 vs. H1 and H0
0 vs. H0

1 , use lag covariances and long-run

variances as inputs. Lag covariances for an arbitrary process {at} is defined

by γj(at) = T−1
∑T

s=j+1 asas−j. A HAC (heteroscedasic and autocorrelation

consistent) estimator of the long run variance (LRV) is defined by

ω2(at) = γ0(at) + 2
∑

j = 1lλ(j/l)γj(at) (5.5)

where λ(·) is a window with lag truncation parameter l. It is assumed that

Assumption KN below holds.

Assumption 5.2 (KN, (Kernel and lag Length)). (a) λ(0) = 1

(b) 0 ≤ λ(x) ≤ 1 for 0 ≤ x < 1

(c) λ(x) is continuous and of bounded variation on [0, 1].

(d) l→∞ as T →∞

Testing for stochastic cointegration against non-cointegration (testing H0

against H1) is equivalent to testing whether q = 0 in ut = et + q′wt + v′tht.

The null encompasses both stationary and heteroscedastic cointegration; while

the alternative is I(1) or heteroscedastic integration. As an optimal test HML
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consider the statistic

Snc =
T∑

t=k+1

utut−k (5.6)

When all the disturbances are i.i.d. Snc with k = 1 basically tests for zero

autocorrelation in ut against the correlation induced by the I(1) term q′wt.

By contrast, when the disturbances terms are more general than i.i.d., Snc

needs to be modified to eliminate the nuisance parameters that result from

the autocorrelation and from the presence of v′tht. A solution is obtained by

allowing k to increase with T . HML show that under the cointegration null,

H0, the statistic Snc is asymptotically N(0, 1)3 and is consistent under the

alternative of no cointegration, H1. Letting k become large eliminates any

correlation between ut and ut−k.

Since yt and xt are observed, b = [α, k, β′]′ of Eq (5.3) is estimated by

means of the estimator b̂k = [α̂k, k̂k, β̂
′
k]
′ given by

b̂k =

(
T∑

t=k+1

Xt−kXt

)−1 T∑
t=k+1

Xt−kyt (5.7)

where Xt = [1, t, x′t]
′. This estimator is called an Asymptotic IV (AIV).

As opposed to AIV estimator, the OLS estimator that is used in the EG

framework is not consistent under heteroscedastic cointegration unless consists

entirely of an I(1) process. In this case, any economic decision (such as trading

strategies, risk management, hedging, etc.) that is based on the long-run

equilibrium estimate obtained via the EG estimation procedure may not be

3when standardized with a HAC estimator.
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reliable.

Eq (5.6) is now reconstructed using the AIV residuals:

ût = yt − α̂k − k̂kt− x′tβ̂k. (5.8)

Using limit theory HML prove consistency of the AIV estimator and asymp-

totic normality subject to some additional exogeneity restrictions. They show

that under H0 the test statistic and its distribution is:

Ŝnc =
T−1/2

∑T
t=k+1 ûtût−k√

ω2(ûtût−k)

d→ N(0, 1)

while under H1 the distribution of |Ŝnc| diverges4 as T →∞.

Testing H0
0 against H0

1

In decomposing the composite hypothesis H0 into null of stationary cointegra-

tion against heteroscedastic alternative, we need to test whether E(v′tvt) = 0

in 5.4, maintaining q = 0. McCabe and Leybourne (2000) show that a locally

most powerful test of H0
0 against H0

1 is given by

Shc =
T∑
t=1

tu2
t (5.9)

4ût is defined in (5.8) using (5.7); ω2() is defined in (5.5).
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HML show that under H0
0 the test statistic is normally distributed and the

statistic is:

Ŝhc = (1/12)1/2T
−3/2

∑T
t=1 t(û

2
t − σ̂2

u)√
ω2(û2

t − σ̂2
u)

d→ N(0, 1)

while under H0
1 , the distribution of |Ŝhc| diverges as T →∞.

Ŝhc is calculated using û2
t − σ̂2

u rather than simply û2
t as 5.9 might suggest.

This alteration is needed to center the statistic and make sure it is invariant

to the variance of ut under H0
0 . The structure of Shc can also be used to test

the null of I(1) against the alternative of HI for any given individual series,

by simply constructing Ŝhc by redefining ût as ût = ∆yt − δ̂y where δ̂y is an

estimator of the trend coefficient δy given by δ̂y = T−1
∑T

t=1 ∆yt. HML denote

this statistic Ŝhi and show that Ŝhi
d→ N(0, 1) if yt is I(1) and |Ŝhi| diverges if

yt is HI. The same conclusion arise if linear trends are excluded from (5.3), in

which case ût = ∆yt.

5.3 Empirical Methodology and Results

The objective of this section is twofold. First, we provide empirical evidence

suggesting that stochastic integration is evident in time series of daily stock

prices. Second, we show that the framework of stochastic cointegration can

be used to effectively detect pairs of stocks whose prices co-moved historically.

Gatev et al. (2006) form pairs based on an algorithm that minimizes the dis-

tance between (standardized) historical prices of two stocks. This algorithm

is indeed appealing but it excludes other forms of potentially robust relation-
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ships between two stocks. Cointegration analysis does not necessarily form

pairs with minimal distance between the variables, but clearly has the ability

to detect stocks that co-moved in a well defined fashion. Within the cointe-

gration framework, cointegrating pairs of stocks that exhibit minimal distance

are likely to have a long-run regression slope close to one, so that they closely

follow each other with minimal tracking error. We use instead, the cointegrat-

ing technique as a pairs forming algorithm as it is likely to produce a larger

universe of pairs; pairs that co-move with cointegrating vector not necessarily

[1,−1].

We analyze prices of stocks that belong to the Russell 1000 index. The

index consists of the 1000 largest firms in the US. The index is updated an-

nually; some stocks are deleted from the index because they no longer meet

the index membership criteria while others are added. The dataset consists

of daily closing prices of the index stock members, going back about 10 years

in time. We group the stocks into 10 sectors, as classified by Global Industry

Classification Standard5. In order to test for cointegration and highlight some

characteristics of the data we arbitrarily divide the data into 5 consecutive,

non-overlapping time sections, each time section spans over two years and

consists of 500 observations (there are about 250 business days in a calendar

year).

5See the appendix for a full list of all the sectors.
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Figure 5.1:

Time Section 1 yr:1-2 Observation: 1-500 08/Sep/1997 - 02/Sep/1999

Time Section 2 yr:3-4 Observation: 501-1000 03/Sep/1999 - 27/Aug/2001

Time Section 3 yr:5-6 Observation: 1001-1500 28/Aug/2001 - 27/Aug/2003

Time Section 4 yr:7-8 Observation: 1501-2000 28/Aug/2003 - 22/Aug/2005

Time Section 5 yr:9-10 Observation: 2001-2500 23/Aug/2005 - 17/Aug/2007

At the end of each of the 5 time sections we calculate the number of stocks

in each of the 10 groups, counting only stocks that have full history of daily

prices during the respective time section (500 observations6). Fig.1 shows the

variation in the number of stocks in each sector across time, using a boxplot7.

6We conducted the analysis using 250 observations too and the qualitative conclusion
was not changed.

7A Boxplot produces a box and whisker plot for each column of a matrix. The box has
lines at the lower quartile, median, and upper quartile values. Whiskers extend from each
end of the box to the adjacent values in the data, the most extreme values within 1.5 times
the interquartile range from the ends of the box. Outliers are data with values beyond the
ends of the whiskers. Outliers are displayed with a red + sign.
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There are 5 observations in each box, corresponding to the 5 sequential time

sections. For example, the number of stocks that belong to Sector 1 (Energy

and consumption) at each of the 5 time sections is: 39, 53, 46, 55, and 72. The

median number of stocks across time for this sector is 53, represented in Fig.1

by the red horizontal line. The figure also shows that Sector 7 (Financials) has

the highest median number of stocks in a group over time, 192, while Sector 9

(Telecommunication Services) has the lowest median, 19. Overall, the number

of stocks per sector seems rather stable across time.

As mentioned above, it is common practice to assume that stock prices

follow I(1) process. In order to test the I(1) hypothesis, at the end of each

time section we calculate for each sector the proportion of stocks that are

identified as I(1) using the KPSS test (Kwiatkowski, Phillips, Schmidt and

Shin 1992), denoted Ks, for stationarity8. The null hypothesis for the KPSS

test is I(0), and the alternative is I(1). Fig.2 shows the proportion of stocks

that were found to be I(1) in each of the 5 time sections. Visually comparing

the lengths of the 10 boxes, the figure suggests that Sector 2 exhibits the

largest variation in the proportions of I(1) stocks across the five time sections,

with as low as 73% of the stocks being I(1) at one time section and as high

as 96% in other time section. Overall, based on Ks the median proportion of

stocks that are I(1) exceed 85% (red horizontal lines).

Fig.2 merely confirms a well known stylized fact that daily stock prices

are in general nonstationary. The next figure, however, will highlight the fact

that a decent proportion of these I(1) stocks are actually better modeled as

8As the sample size at each time section is 500 observations, asymptotic values are used
in the KPSS test. The test is performed with a constant and no trend.
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Figure 5.2:

heteroscedastically integrated processes.

In each sector group we focus on the stocks that were found to be I(1) by

KPSS and test each stock individually whether they are indeed I(1) or actually

HI, using the Shi test as detailed in Section 5.2.2.

Fig.3 shows that across time, at least 10% of the stocks that found to be

I(1) by KPSS are better modeled as HI processes, as indicated by the median

proportion in each sector group (the red horizontal lines). In Sector 1 for

example, the proportion of stocks that were found to be HI reaches 70% at

one time section and drops to about 20% in other time section. The figure

points out that heteroscedastic integration is evident in the daily stock prices

of the US market and should not be ignored if accurate modeling is desired.

Using the framework of stochastic integration and cointegration is partic-

ularly important when one searches for cointegrating pairs of stocks. In each

of the 5 time sections, we search for cointegrating pairs among all possible
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Figure 5.3:

pair combinations within each sector. In this analysis a pair is identified as

cointegrating if both stocks in a potential pair are I(1), as determined by the

KPSS test for stationarity, and the residual-based test for stochastic cointe-

gration Snc indicates cointegration. The number of pairs that were found to

be stochastically cointegrated is then recorded for each sector at each time

section. The Snc test is performed with a constant and no trend9. As in HML,

for the AIV estimator we set k = bT 1/2c, (b·c denoting the integer part of).

For the variance estimators we use Bartlett kernel for λ(·) and set the lag

truncation parameter l = 12(T/100)1/4 throughout.

Similarly, we search for cointegrating pairs under the EG assumptions using

the residual test of Shin (1994), denoted Kc, testing for the null hypothesis of

cointegration between I(1) series against the alternative of no cointegration.

9There are n(n − 1) possible combinations of pairs, where n is the number of stocks in
the sector group at a certain time section. For example, in the 5th time section, Sector 1
has 72 stocks; this produces 5112 potential pairs. In this case, regressing stock A on stock
B is treated and counted separately from regression B on A.
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Figure 5.4:

We use an efficient OLS estimator in which bT 1/4c lead and lag terms in ∆xt

are added into the regression equation of yt on xt (see Saikkonen (1991) for

details). The test is performed with a constant and no trend. We then compare

the number of pairs detected by the two methods.

Fig.4 depicts the median number of pairs detected by Snc as a proportion

of the median number of pairs that are detected by Kc. The figure shows that

in each and every sector the median number of pairs detected by stochastic

cointegration is significantly larger than that detected by the conventional

method, by a factor of as low as 20% more pairs in Sector 8 and as high as

67% more pairs in Sector 3.

In order to further highlight the superiority of SC over the conventional

Engle-Granger in detecting cointegrating pairs in the stock market, we perform

the KPSS test for cointegration on each pair that is found to be stochastically

cointegrated based on Snc. The number of cointegrating pairs that are rejected
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Figure 5.5:

by EG is then calculated as a proportion of the pairs that are detected by Snc.

Fig.5 depicts the proportions of pairs that EG rejects out of the pairs that

SC detects. The figure shows that in Sector 2 for example, as high as 50%

of the cointegrating pairs that are detected by SC are actually rejected by

EG at one time section, while ’only’ about 28% are rejected in other time

section. With the exception of Sector 9, the medians of all sectors are above

30%, indicating that the EG methodology fails to detect a large proportion of

cointegrating pairs.

Next, still focusing on those cointegrating pairs that are detected by Snc

but rejected by Kc, we show empirically that a potential reason that Kc fails to

detect a larger number of pairs is due to the fact that many of these pairs are

heteroscedastically cointegrated and not cointegrated in a stationary fashion,

as mandated by the EG framework. As noted in Section 2 the statistic Shc is

designed to distinguish between stationary and heteroscedastic cointegration.
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Figure 5.6:

The sector medians in Fig.6 show that over 30% of the pairs that detected

by Snc but rejected by Kc are in fact found to be heteroscedastically cointe-

grated. This highlights the fact that the conventional method largely rejects

cointegration in the presence of heteroscedastic integration.

Last, in order to yet further highlight the potential drawback of using

the EG, the focus is turned this time to those cointegrating pairs that are

detected by both Kc and Snc. As detailed in Section 5.2.2, when the regressor

is heteroscedastically integrated, the long-run parameters estimated by (EG)

OLS are inconsistent. In each sector at each time section, we look at the

proportion of the pairs where the regressor is found to be heteroscedastically

integrated according to the Shi test.

The medians proportions in Fig.7 show that about 20% of the cointegrating

pairs that are detected by both Kc and Snc have HI regressors. This indicates

that a significant proportion of the long-run parameters that are estimated by
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Figure 5.7:

EG method is subject to inconsistencies and therefore may not be reliable.

5.4 Conclusion

The empirical findings above suggest that the framework of stochastic integra-

tion detects cointegrating relationships in the US equity market. The nonlinear

generalization of the framework detects a significantly larger number of coin-

tegrating pairs. The findings are in line with the simulation results reported

in HML. The fact that cointegrating pairs of stocks can be found in the eq-

uity market points out that relative pricing is an effective pricing methodology

when applied to a specific set of stocks. Given cointegrating relationship, rel-

ative pricing implies that the price of one stock can be inferred from the price

of the other. Granger (1986) states that assets in an efficient market cannot

be cointegrated; if they were, there would be a market inefficiency since there
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would be Granger causality running at least in one direction and thus one

price could be used to predict the other. Invoking Granger’s definition, our

analysis shows that markets are not efficient. Stochastic cointegration is able

to detect this type of inefficiency better than the EG method and provides

traders with a better way to statistically arbitrage any significant deviations

from the long-run relationship. A possible extension of this research would be

to simulate a trading strategy that builds on the SC approach to screen for

pairs of stocks that exhibit long-run relationship. Then compute the returns

from those pairs that significantly deviated from their cointegrating relation-

ship over a historical sample period and compare it to the returns from a

buy-and-hold investment strategy. The efficient market hypothesis suggests

that the mean returns from each strategy should be equal.
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Appendix

Sector 1: Energy and consumption

Sector 2: Material/labor

Sector 3: Industrials

Sector 4: Consumer Discretionary

Sector 5: Consumer Staples

Sector 6: Health Care/liability

Sector 7: Financials

Sector 8: Information Technology

Sector 9: Telecommunication Services
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