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ABSTRACT 

Over the past decades, there have been a number of trends that have driven the desire 

to improve the ability to navigate in all environments. While the Global Positioning 

System has been the driving factor behind most of these trends, there are limitations to 

this system that have become more evident over time as the world has increasingly 

come to rely on navigation. These limitations are mostly due to the low transmission 

power of the satellites, where navigation signals broadcast from space are 

comparatively weak, especially by the time they have travelled to receivers on the 

ground. This makes the signals particularly vulnerable to fading in difficult 

environments such as "urban jungles" and other built up areas. The low signal-to- 

noise ratio (SNR) also means, that the signals are susceptible to jamming, both hostile 

and accidental. 

This motivates the need for alternatives technologies to satellite navigation and 

consider terrestrial based alternatives such as LORAN-C and eLORAN, but there is 

also significant interest in the exploitation of other non-navigation signals for 

positioning and navigation purposes. These so-called 'Signals of Opportunity' do not 

generally require any alterations to existing communications transmission 

infrastructure and utilise alternative multi-carrier modulation techniques to those used 

by navigation systems. 

This project examines the use of such a signal, the Digital Audio Broadcast (DAB) 

signal, as a positioning source. This thesis contains complete research from initial 

coverage simulations in the UK, through to extensive static testing, and the use of the 

signal in a dynamic environment and it has been shown that the Digital Audio 

Broadcast signal has potential as a terrestrial based positioning signal. 
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1 INTRODUCTION 

1.1 BACKGROUND 

As Global Navigation Satellite Systems (GNSS) receivers have become almost 

standard in devices such as mobile phones and vehicle navigation systems, the threat 

of the signals becoming unavailable, particularly in critical safety-of-life applications 

is a concern. It is well documented that GNSS signals arrive at the Earth's surface 

with a very low signal-to-noise ratio (SNR), due to the relatively low power of 

transmission from the satellites themselves and the degrading effects of the 

atmosphere on the signals. The threat from jamming, intentional or otherwise, is 

increasing with jammer schematics posted on the internet giving users freely available 

knowledge to build such a device, and with this technical expertise, in addition to the 

low power of the received signals, interference to GNSS signals is a modern concern. 

1.2 MOTIVATION 

The original outline of this project was the mitigation of the effects of jamming on a 

GPS signal; however, it soon became clear that due to constraints on broadcasting 

signals on the Ll band, testing of such an approach would be unfeasible. Jamming 

exercises are conducted by the UK and other governments, but naturally due to the 

extensive problems this has the potential to cause, these tests have to be performed 

remotely and with widespread public consultation. 
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Therefore, the project took an alternative approach with an examination into terrestrial 

based signals, both for navigation and communication. The use of non-navigation 

signals, or so-called Signals of Opportunity, for navigation is a relatively recent field 

of study and one that could offer a terrestrial-based solution to the well-documented 

issues that GNSS suffer. A number of these signals have been investigated for this 

purpose during recent years, and an intensive literature review was undertaken at an 

early stage to establish potential directions for this project. 

It was from this review that the Digital Audio Broadcast (DAB) signal emerged as a 

particularly good candidate for positioning potential in the UK, reasons which are 

discussed thoroughly later in this document. The UK has one of the highest Digital 

Audio Broadcast coverage rates in the world, and with the announcement during this 

project that radio stations would be switched from the Frequency Modulation (FM) 

band to DAB merely added to the case for this technology. 

1.3 AIMS AND OBJECTIVES 

Following this process, a broad aim and more defined objectives were established. 

The general aims of the project being: 

" To undertake research into the use of the Digital Audio Broadcast signal as an 

alternative positioning source to satellite navigation. 

" To develop software capable of calculating the location of a Digital Audio 

Broadcast receiver without assistance from other positioning systems. 

These aims were then broken down into the following key objectives: 

" To develop a system capable of standalone positioning without the 

requirement for additional infrastructure. 

" To adopt a "Software Defined Radio" approach to demodulate the data and 

ultimately position the receiver. 

2 
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0 To develop a system using off the shelf components with the aim of proving 

the potential behind freely available components. 

0 To test such a system in a variety of environments and conditions. 

1.4 OVERVIEW & METHODOLOGY 

This project used the following research methodology in order to achieve the aims and 

objectives highlighted previously. This consisted of: 

" Performing a review of the navigation signals currently in use and examining 

the vulnerabilities that are present in each system. 

" Performing a review of the various jamming methods and the state of the 

technologies used to counter this. 

" Performing a case-study of non-navigation signals in the UK. 

" Using data simulations to examine the coverage of DAB networks in the UK, 

and establishing the minimum number of transmitters required to locate a 

receiver. 

" Construct a software based receiver to capture/decode and extract timing 

information from a DAB signal for positioning purposes. 

" Thoroughly test the platform in a wide variety of environments. 

Chapter 2 contains the review carried out on the current state of dedicated navigation 

signals, from the most widely used Global Positioning System (GPS) to lesser known 

terrestrial based systems such as Datatrak. The chapter then continues to examine a 

range of jamming methods and contains a review of the mitigation techniques 

developed to counteract jamming. The chapter concludes discussing the fact that no 

one mitigation solution is suitable for all environments. 

3 
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Chapter 3 examines a variety of signals not designed for navigation and presents a 

review of the signals used previously for such a purpose. A review of the different 

signal propagation techniques is then examined with the purpose of highlighting the 

benefits and drawbacks of each and to coincide with the general non-navigation 

signals discussion. The chapter then concludes with the decision to attempt using the 

Digital Audio Broadcast signal as the chosen signal for the remainder of this project. 

The Digital Audio Broadcasting signal is discussed in detail during Chapter 4, 

examining the signal structure and highlighting the required portions of the signal 

which would be useful for location purposes. This chapter also reviews the coverage 

of DAB within the UK and further afield. 

Chapter 5 examines the various positioning techniques that might be exploitable from 

the information available in the DAB signal, concluding that a Time Difference of 

Arrival approach be adopted 

The complete start to end processing of the DAB signal is broken down and presented 

in Chapter 6, commencing with the capture of the raw signal and introduction of the 

Universal Software Radio Peripheral as the only major hardware component required 

during this project. This is followed by a breakdown of the signal processing blocks, 

culminating in the solving of the observation equations using the Least Squares 

process. 

Chapter 7 contains the various simulations based on actual DAB transmitter locations 

in the UK, and discusses the regions where signal penetration will be at its greatest. 

These regions are shown to be in large built up areas as would be expected, but also 

the areas where satellite navigation would suffer from the effects of large scale 

structures. 

The complete testing undertaken is then presented in Chapter 8. This is broken down 

into key areas starting with the system testing in a known location and altering factors 
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such as the antenna and its height. This then continues with the system being taken 

out in to regions of the Midlands to test how the system copes with data received in 

rural, suburban and dense urban areas. Finally, a modified version of the processing 

software is tested using captures taken from a moving vehicle over a period of time. 

The outcome of these tests shows that the system developed has the ability to position 

a receiver when static to a degree of accuracy determined by the layout of the received 

transmitters. 

The final chapter then examines the project as a whole, summarising the results and 

presenting potential future directions that may be taken on the back of this research. 
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2 NAVIGATION SIGNALS 

This chapter contains an overview of the current status of dedicated navigation 

signals, both from satellite and terrestrial transmitters. Each system will be examined 

in turn followed by an examination of the weaknesses of both satellite and terrestrial 

based positioning systems. 

2.1 GLOBAL NAVIGATION SATELLITE SYSTEMS (GLASS) 

This section provides a brief overview of the currently available and upcoming GNSS. 

Each GNSS provide a means of acquiring direct position and speed estimates using 

passive ranging measurements from a constellation of satellites. The various systems 

will be examined in turn, followed by a summary of the error sources and weaknesses 

of GNSS which helped to inspire this project. 

2.1.1 The Global Positioning System (GPS) 

The NA VSTAR Global Positioning System (GPS) was the first fully operational GNSS 

and is the most widely used at the current time, being owned and operated by the 

United States government. The system broadcasts ranging signals on two primary 

frequencies, LI (1.57542 GHz) and L2 (1.22760 GHz) and also on the forthcoming L5 

(1.17645 GHz) which will not be examined further here. The GPS constellation 

consists of up to 32 satellites orbiting in three circular Medium Earth Orbit (MEO) 
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planes. The mean orbital altitude of the constellations is roughly 20,200km, meaning 

each satellite completes two orbits each sidereal day. 

GPS uses a Time of Arrival (TOA) ranging method (see section 5.1), meaning that 

each satellite in the constellation must broadcast its position and time of signal 

transmission in order for a receiver to be able to calculate its position. This places the 

receiver at the intersection point between a minimum of three ranging spheres. The 

clock inside a GPS receiver is of relative poor quality when compared to the precise 

atomic clocks housed inside each satellite. This means that a fourth measurement (and 

therefore satellite) is required to correct for this time offset and allow the receiver to 

calculate its position. When a receiver is initially switched on in, it has no information 

as to its location or the precise time and has to attempt to search through each satellites 

code until it finds one. Having found one code, the receiver downloads the almanac - 

a database of the current constellation status and the position of each satellite at the 

current time. This allows the receiver to find further satellites and compute its current 

position. 

Each GPS satellite broadcasts a Coarse Acquisition Code (C/A Code) on the LI 

frequency (Hofmann-Wellenhof et al., 2001). This code is composed of a Pseudo- 

Random Noise (PRN) 1023-bit Gold code (a code providing excellent auto-correlation 

properties) which has a repetition rate of once every Ix 10-3 seconds. The code is 

modulated using a Binary Phase Shift Keying (BPSK) approach. Each satellite in the 

constellation has an individual code, which are all broadcast on the same frequency. 

This means that the system adopts a Code Division Multiple Access (CDMA) 

modulation, allowing the signals to arrive at the receiver without causing any Inter- 

Symbol Interference (ISI). LI will also carry a further code in the future known as the 

LIC code. 
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The L2 frequency broadcasts the encrypted Precision Code (P code) along with the 

new L2C code, a second civilian code. The P code consists of a master sequence of 

2.35 x 10'4 bits in length, with each satellite assigned a segment (6.1871 X 1012 bits) of 

this code to repeat at weekly intervals. The code is broadcast at ten times the rate of 

the C/A code at 10.23 MHz. In order to use the P code, a receiver must first position 

itself using the C/A code. This is due to the length of the P code, which gives it very 

good correlation properties, but makes it difficult to lock on to without knowing the 

current location and time. In order to prevent Spoofing (a type of jamming signal used 

to inject bogus information to a GPS receiver by emulating a satellite/s code) the P 

code is encrypted by the W code in order to create the Y code, or as it is generally 

referred, the P(Y) code. 

GPS uses a timing system identical to Coordinated Universal Time (UTC) with one 

key difference in that GPS time does not take into account leap seconds. Leap 

seconds are used occasionally by UTC in order to correct for the non-uniform nature 

of the Earth's rotation. 

GPS uses the World Geodetic System 1984 (WGS84) coordinate system. 

2.1.2 GLONASS 

The GLObal NAvigation Satellite System (GLONASS) is a Russian system adopting a 

similar approach to GPS, albeit with some key differences. The system finally 

reached full operational capacity by late 1995, many years behind schedule following 

the break-up of the Soviet Union in the early 1990's. 

GLONASS was originally designed to uses a constellation of 24 satellites orbiting in 

three MEO orbital planes at a mean altitude of 19,100 km. The system broadcasts 

using a Frequency Division Multiple Access approach, as opposed to CDMA used by 

GPS. This means that each satellite broadcasts the same codes on different 

frequencies rather than different codes on the same frequency. The central frequency 
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of the LI broadcast is at 1.602 GHz, with each of the fifteen channels broadcast at a 

multiple of 0.5625 MHz (± 7) either side of the central frequency, based on the 

assigned number of the channel. As there are more satellites than channels, satellites 

on opposite sides of the Earth broadcast on the same frequencies. The Earth lies 

between satellites on opposite sides of the constellation thus preventing a user 

receiving signals from two satellites broadcasting on the same frequency 

simultaneously. The central frequency (fý) of the L2 broadcast is situated at 1.246 

GHz with the broadcasts at multiples of 0.4375 MHz either side off,. Each satellite 

broadcasts two signals, the Standard Precision (SP) and High Precision (HP) signals. 

These are similar to the C/A and P(Y) codes in GPS, with the SP code acting as the 

civilian code and the HP code the encrypted military code. 

As with GPS, GLONASS also uses a TOA positioning approach, with a minimum of 

four satellites required to find a receiver's location, three for the 3D coordinates and a 

fourth to correct the receiver clock offset. Unlike GPS, GLONASS uses the PZ-90 

coordinate system as opposed to WGS 84. 

2.1.3 Future GNSS 

Galileo is the positioning system currently under construction by the European Union 

and due to be fully-operational by 2013. The system design is fairly similar to that of 

GPS and will use a constellation of 28 satellites in three orbital MEO planes. The 

mean orbital altitude of the satellites will be slightly higher than GPS at 23,200 km 

(GSA, 2010). 

The system will be broken down into a number of services. The Open Service (OS) 

will be the equivalent of the civilian signals in GPS and GLONASS. This will 

broadcast over two frequency ranges, 1.563 to 1.591 GHz and 1.164 to 1.214 GHz 

using Multiplexed Binary Offset Carrier (MBOC) modulation (Rodriguez et al., 

2010). The estimated positioning accuracy of the civilian system will be better than 
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15 metres horizontally and 35 metres vertically. A second unencrypted service to be 

provided by the system is the Safety of Life (SOL) service, for use by systems where 

the safety of human life is paramount, such as aircraft navigation and emergency 

services. This will provide users with a guaranteed accuracy and the integration of 

integrity messages into the signal. 

As with GPS and GLONASS, Galileo will feature two additional encrypted codes. 

The first, the Commercial Service (CS), will be a premium service and charge users 

for the ability to decode the signals. The signal will be broadcast on the same 

frequencies as the OS and include a third range operating from 1.260 to 1.3 GHz. A 

receiver with the ability to decode this signal should achieve an accuracy of better than 

one metre. Galileo will also feature the encrypted Public Regulated Service (PRS), 

which will be a robust signal to help mitigate against jamming and spoofing and thus 

be used for safety of life applications. 

Compass is the second major GNSS currently under construction by China. The 

system features a number of similar features to the previously examined GNSS, 

although there are likely to be a few key differences. Firstly, while 30 of the 35 

satellites will orbit at MEO altitude, 5 will remain in a Geostationary orbit (GEO). 

In addition to these global systems, two regional systems are also currently under 

development in India and Japan. The Indian Regional Navigational Satellite System 

(IRNSS) is a government run system and will be composed of seven satellites, three of 

which will be in geostationary orbit (Inside GNSS, 2008). Similar to IRNSS is the 

Quasi-Zenith Satellite System (QZSS) being developed by Japan. QZSS will use only 

three satellites which whilst broadcasting GPS-type signals, will also be used as part 

of a communications network. Development of both systems was inspired to counter 

the well-documented vulnerabilities of GPS by having the ability to be used as a 

standalone system should GPS fail for any reason. 
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2.2 ISSUES AFFECTING GNSS SIGNALS 

2.2.1 Multipath 

Multipath of a signal occurs when an antenna receives multiple copies of the same 

signal. the multiple copies having been reflected off of objects in or close to the 

propagation path of the signal. 
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Figure 2-1: GNSS Multipath 

This effect has been well documented in the use of GNSS and some examples of 

attempts to mitigate it can be seen in (Julg, 1996). (van den Brekel and van Dee. 

1992). Due to the low transmission power used by GNSS satellites, signals can be 

completely obscured by objects yet still receive the same signal reflected off of nearby 

buildings. Figure 2-1 shows a simple example of multipath signals arriving from three 

GNSS satellites to a receiver R. The receiver has line-of-sight to satellites 1 and 2 and 

due to its location between high-rise buildings, also sees multipath signals reflected 

off of these. The signal from satellite 3 is obscured completely for a line-of-sight path 

but the signal does arrive at the receiver via a multipath route. As the reflected signals 

take longer to travel between the satellite and receiver, this adds an error when 

calculating the range to each satellite. 
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2.2.2 Atmospheric Effects 

The effects of a GNSS signal travelling through the various layers of the Earth's 

atmosphere has long been known as an error source, and the effect can be mitigated to 

some extent. These effects can be segmented into two portions of the atmosphere 

which can cause delaying effects on GNSS signals (see Figure 2-2). 

---- GNSS Signal Path 

GNSSReceiver 

GNSS 
Satcllitc ý 

ý- yý 

: SOMm ül. 

Figure 2-2: Atmospheric effects on GNSS signals 

" The Ionosphere - The upper part of the atmosphere that GNSS signals travel 

through following broadcast (between 50 and 250km above the Earth's 

surface). There are two distinct effects this has on the signal as it enters the 

Ionosphere; firstly the Pseudo-ranges are delayed as the signal is refracted and 

secondly, the carrier phase is advanced. The magnitude of the Pseudo-range 

delay is dependent on the Total Electron Content (TEC) along the ionospheric 
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portion of the signal path. This content varies with the sun-spot cycle, with 

the worst effects occurring during the Solar Maximum of that cycle. As the 

magnitude of both effects is broadcast frequency dependent, the Ll and L2 

pseudo-range signals used by GPS are slowed at slightly different rates. This 

effect is beneficial at the receiver as it helps to mitigate and cancel out the 

ionospheric effect using LI and L2 dual-frequency observations. 

" The Troposphere - The lower part of the atmosphere that GNSS signals 

travel through following broadcast (up to 50km above the Earth's surface). 

As with the Ionosphere, the Troposphere also affects GNSS signals in two 

ways. There are two delaying factors present in this part of the atmosphere, 

the dry delay (known as the Zenith Hydrostatic Delay - ZHD) and the wet 

delay (known as the Zenith Wet Delay - ZWD). The Troposphere delays both 

the pseudo-range and carrier phase measurements and whilst the dry delay can 

be removed relatively easily by modelling the effect, the wet delay is much 

more difficult to remove due to the unpredictability of water vapour levels 

present. Therefore the tropospheric errors are only mitigated in standalone 

positioning by applying a generalised model or by using differential 

positioning over a short baseline. 

2.2.3 Doppler Effects 

GNSS satellites orbiting on a MEO travel at a speed of roughly 3900 ms" relative to 

the Earth. This effect, in addition to the rotation of the Earth (= 400 ms") and the 

movement of a GNSS receiver relative to the surface (Zhang et al., 2006), means that 

Doppler effects are generated as the signal is in transit between the satellites and the 

receiver. 

2.2.4 Satellite Geometry 

Geometry of observable satellites at a receiver affects the accuracy of GNSS 

observations. Figure 2-3 shows two two-dimensional scenarios A and B, each 

13 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

indicating the position of two satellites (1 and 2) relative to each other and to a 

receiver on the ground. 
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Figure 2-3: GLASS Satellite Geometry 

In scenario A. the intersection of the arriving signals at the receiver gives an arrival 

angle of «A, at roughly 90°. This gives the smallest area of uncertainty possible 

around the receiver's true location. Compare this to scenario B where the two 

satellites are closer to each other in orbit. This gives a much wider signal arrival angle 

intersection (a11), and therefore a wider area of ambiguity around the receiver. The 

ambiguity limit lines on the diagrams are caused by the other error sources present in 

the system discussed in this chapter. 

As will be seen later in this document. the problem of transmitter geometry is present 

with all signals transmitting positioning signals. 
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2.2.5 Jamming 

Jamming of civilian GNSS signals is a topic of importance due to the large-scale 

rollout of GPS satellite navigation units and other safety of life applications in recent 

years. The dependency on the coverage and integrity of the signals is going to be 

paramount and jamming of the signals either intentionally or accidentally could 

potentially have catastrophic consequences. This section will briefly examine some 

jamming techniques and how they could affect a GPS receiver. 

The objective of an intentional jammer is to interfere with a radio transmission by 

broadcasting electromagnetic energy in the form of spurious signals to cause 

disruption or complete denial of a radio communication system. Figure 2-4 shows the 

jammer-to-signal (JSR) ratio levels at which the GPS signals tracking and signal 

acquisition is affected. It shows a jammers ability to jam both the C/A and P code 

signals dependent upon the jammers transmission power and its distance from the 

receiver. 

A jamming signal (intentional or otherwise) is present in addition to the background 

noise present on all frequencies. Background noise can fluctuate naturally due to 

factors such as the time of day and the solar flare cycle. This section will examine the 

types of jamming signals that can be produced. 
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Figure 2-4: Jammer Effect on GPS Code Acquisition/Tracking 

(recreated from (Abholt, 2002)) 

2.2.5.1 Narrow-hand & Wide-band Jamming 

Jammers can be set to target complete or only parts of signal frequencies so as to 

cause disruption. Naturally, the wider the bandwidth in which the jammer operates. 

the more power is required. This means that narrow-band jammers can operate at 

higher output power levels when using the equivalent input power of a wide-band 

jammer. Figure 2-5 indicates how broad and narrow-band jammers might swamp the 

GPS Ll signal. The wide-band jammer engulfs a bandwidth of 20.46MHz. covering 

both the P and C/A code. 

By comparison, the narrow-band jammer shown is focused only on the C/A code 

bandwidth (2.046MHz). leaving other segments of the signal less or completely 

unaffected (P code). However, the narrow-band jammer has a higher output power 

resulting in a lower signal-to-noise ratio over the C/A code than with the wide-band 

example. 
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Figure 2-5: Narrow and Widehnnd juninting of GPS Ll Signals 

2.2.5.2 Continuous Wave Jamming 

Continuous Wave (CW) Jamming involves an even simpler system than wide-band or 

narrow-band jammers. The CW jammer transmits an un-modulated continuous sine 

wave signal at a critical frequency of the source. usually the central transmission 

frequency, so that the receiver cannot attain lock on the signal of interest. Due to its 

very narrow band frequency. this jammer type requires less power than narrow band 

jamming. Multiple CW jamming waves can be produced simultaneously to produce 

what is known as a Nadi-lone Jammer (Rash, 1997). 

2.2.5.3 Brute Force Jamming 

The simplest jamming technique is called Brute Force or barrage jamming, and 

involves the broadcast of additional white (Gaussian) noise over the targeted region of 

the spectrum. The jamming signal does not require any knowledge of the broadcast 

signal other than the frequency over which it has to be effective. It can be used in 
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both broad and narrow-band jamming techniques. The spectral density Nj of the wide- 

band brute force jamming can be expressed by 2.1, where J is the total power and W is 

the bandwidth of the jamming signal: 

I 
Nj =W2.1 

Nj 
WI l 2.2 

Additionally, the narrow-band version is expressed by 2.2, where i Vj is the jamming 

signal bandwidth as a portion of the original signal bandwidth iV (WVj < [f). The 

narrow-band signal can be used to sweep the entire signal bandwidth TV in portions of 

width if'j. The usage of this technique is known as "Sweep-Spot Noise" (Pinker and 

Smith, 1999). 

2.2.5.4 Pulse Jamming 

Pulse Jamming involves the continuous switching on and off of a jamming signal. 

This conserves power at the transmission end whilst also allowing a narrow-band or 

CW jammer to switch frequencies. Whilst a wide-band brute force jammer will 

continuously broadcast a jamming signal over the spectrum of interest W, a wide-band 

pulse jammer would broadcast its pulsed signal over the spectrum width W for a 

predetermined time t. This allows the pulse jammer to use a fraction of the energy 

required from the continuous brute-force jammer. 

2.2.5.5 Chirp Jamming 

Chirp jamming involves the alteration in frequency modulation (FM) with respect to 

time to produce sinusoidal interference. Because of the frequency modulation over 

time, this causes a Doppler Shift Effect. Figure 2-6 shows an example of an 
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increasing chirp signal represented in the time domain, a reverse of the process may 

also be used (decrease in frequency over time). 

Figure 2-6: Example of a Chirp Signal in the temporal domain 

This technique would be used to target a spread spectrum signal such as GPS, due to 

its wide bandwidth. The frequency spread of the jamming signal would cover the 

entire useful bandwidth of the target signal; therefore this information would have to 

be known in order to deploy this jamming technique successfully. 

2.2.6 Unintentional Jamming 

Whilst cases of unintentional GNSS jamming are rare, a well-documented case 

occurred in Moss Landing harbour in California. USA (Vincent et A. 2003). A small 

television antenna pre-amplifier on board a boat malfunctioned in this case, preventing 

GPS signals from being received in much of the harbour and up to a kilometre out to 

sea. 
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2.3 JAMMING MITIGATION TECHNIQUES 

There are a number of anti jam techniques that may be employed to mitigate GPS 

interference. The choice of technique to be used is dependent on a variety of 

constraints, primarily size, cost and power. 

2.3.1 Adaptive Filtering 

A digital filter can be thought of as a `black box' system whereby a signal is sampled, 

passed through the system and outputs a filtered signal. The black-box is usually run 

on a CPU. This is in contrast to an analogue filter, which can perform the same task 

using a combination of electrical components. The following sections will be 

examining a variety of digital filters used to mitigate jamming. 

Adaptive filtering involves the adjustment of a digital filter used in the processing of a 

signal depending on the signals input characteristics. It is an iterative process, with 

the simplest approach using an estimation algorithm, such as the Least Mean Squares 

(Steinbuch and Widrow, 1965) and Kalman Filters (Kalman, 1960) with a feedback 

loop so the output of the filter is involved with the adjustment of the next iteration. A 

major disadvantage of this technique is that the interfering signal structure must be 

known in order to filter out the expected jamming signal. The use of adaptive filtering 

is most effective when used to combat narrowband jammers. 

2.3.2 Time-Frequency Domain Filtering 

As GPS signals arrive at receivers at very low power levels, the jammers tend to be of 

much higher power and can therefore be distinguished from the GPS signal in the 

frequency domain. The Time-Frequency distribution can be used to describe the 

power of a signal as a two-dimensional function of time and frequency. There are a 

number of Time-Frequency distributions which can be used to signify the signal in the 

frequency domain. Slow-changing, less-dynamic signals can obtain time-frequency 

distributions by calculating the spectrogram, whilst more dynamic signals requiring 
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higher frequency resolutions would use the Wigner-Ville (Guanghua et al., 2006) or 

Choi-Williams (Choi and Williams, 1989) distributions. Once the combined GPS and 

jamming signal are represented in the frequency domain, the two signals must be 

separated before converting back to the time domain. Time-Frequency techniques are 

only effective against narrowband and CW interference, not against wideband 

jamming signals. A brief summary of these techniques, including their advantages 

and disadvantages follow. 

2.3.2.1 Short-tune Fourier Transform (STFT) 

The Short-time Fourier Transform uses a window moving through the signal in the 

frequency domain in order to take the Fast Fourier Transform of the highlighted 

selection in the window (Durak and Arikan, 2003). This removes the jamming portion 

of the signal in the frequency domain which can then be transformed back to the time 

domain. The windowing technique used in the STFT can distort the signal; a narrow 

window provides good time resolution but poor frequency resolution, whilst a wide 

window provides good frequency resolution but poor time resolution. However, the 

technique can be deployed using relatively low power and may be fitted in discretely 

in small devices. 

2.3.2.2 Filter Banks 

Filter banks are structures composed of low-pass, band-pass and high-pass filters 

constructed specifically for the spectral decomposing and recomposing of signals 

(Mertins, 1996). Once decomposed into its various sub-bands by the analysis filter 

bank within the frequency domain, a spectral modification function is applied to each 

band in order to remove the jamming/interference. Finally, the sub-band signals are 
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recomposed by the synthesis filter bank in order to reconstruct the original signal with 

the interference removed. 

In (Jones and Jones, 1992), the technique was successfully used to remove a 

narrowband pulse jamming source from a Direct Sequence Spread Spectrum system. 

This technique allows the efficient extraction of jamming/interference spectral 

components, and has the same advantages as the Short-time Fourier Transform 

method without the disadvantage of window signal distortion. 

2.3.2.3 IIR and FIR Filtering 

Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) Filters are digital 

filters which may be used to mitigate narrow-band or multiple narrow-band jamming 

signals in the time domain. The technique may be implemented in real-time as a 

front-end to the GPS processing, or as a post-processing tool. 

A certain type of IIR/FIR filter used by (Kukrer and Hocanin, 2006) and (Choi and 

Cho, 2001) is the notch filter -a narrow-band band-stop filter. The notch of the filter 

was placed at the frequency of a CW jammer transmitting additional noise in order to 

mitigate it. In the case of (Kukrer and Hocanin, 2006), the FIR filter was used rather 

than an IIR filter due to its stability. However, in the case of (Choi and Cho, 2001) the 

IIR filter is used in preference to the FIR Filter as the former can provide frequency 

responses closer to an ideal notch filter than the latter of the same order, thus being 

more computationally efficient. In both cases, a frequency estimator is required in 

order to determine the Instantaneous Frequency (IF) of the jamming signal. The band- 

stop notch of the filter is then placed at this frequency to block the interference. 

The main advantage of this technique is that it is small and cheap to implement, 

therefore suitable for use in civilian receivers. However, it is limited in that it cannot 

mitigate wideband jamming signals without substantially more costly and power 

demanding analogue-to-digital converters. 
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2.3.2.4 Wavelet Transforms 

Wavelet Transforms are closely related to the STFT discussed in section 2.3.2.1, 

although the technique is often defined as a time-scale analysis rather than a time- 

frequency analysis (Daubechies, 1990). The Discrete Wavelet Transform (DWT) and 

Continuous Wavelet Transform (CWT) are two of the more widely used wavelet 

transforms and are alternatives to the Fast Fourier Transform used by the STFT 

technique. Rather than using a fixed window like the STFT, wavelet transforms use a 

window which varies in size as it passes over the signal. This provides a flexible 

resolution in both the time and frequency domain which compares much more 

favourably to the STFT, which has a fixed frequency resolution for the duration of the 

window. 

2.3.2.5 Subspace Processing 

Subspace processing or projection is a pre-correlation technique requiring the 

estimation of the Instantaneous Frequency of the jammer. This is provided by 

implementing one of the time-frequency distributions mentioned in 2.3.2. The 

Instantaneous Frequency defines the temporal signature of an orthogonal signal space 

in which the jamming signal occupies one dimension (Zhao et al., 2000). The 

definition quality of the Instantaneous Frequency is critical in this case, as the better 

the accuracy, the better the anti jamming performance of the system will be. 

This technique was used successfully to mitigate an FM signal attempting to jam the 

C/A code by (Zhao et al., 2002). Once the signal is decomposed, both original signal 

and jamming signal can be represented as two distinct vectors. The dimension 

occupied by the jamming signal can then be removed from the original signal and 

reconstructed in the time domain without interference. 

23 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

A second technique involving subspace projection involves the implementation of a 

time-varying notch filter, the placement of which is also defined by the Instantaneous 

Frequency quality of the jamming source. However, this technique can cause 

distortions in the signal. 

2.3.2.6 The De-chirp Method 

The de-chirp technique is used to identify a chirp jamming signal (discussed in 

2.2.5.5), then reconstruct this signal locally in the receiver in order to subtract it from 

the signal of interest (Zaka et al., 2005). The instantaneous frequency (IF) of the 

signal is attained using an appropriate time-frequency distribution technique as 

described in 2.3.2. This allows the calculation of the instantaneous phase and with the 

assistance of a low-pass filter, an estimate of the instantaneous amplitude of the chirp. 

With these three pieces of information (frequency, phase, amplitude) and using an 

iterative process, the chirp signal may be reconstructed and subsequently subtracted 

from the signal. 

2.3.3 Adaptive Antennas 

2.3.3.1 Beam Forming 

Beam forming involves the control of the radiation pattern (or the physical direction) 

of an antenna. The antenna is controlled so as to give high gain in the direction of the 

desired signal, whilst limiting or eliminating any incoming interference. In the case of 

GPS signals, the beam would be directed towards signals coming in from overhead 

and nulls in the direction of any jamming sources that may be being broadcast from 

the ground. This technique works well when the signal of interest and the jamming 

source are well spaced apart, but its weakness occurs when both signals arrive from 

the same direction. For example, GPS satellites that are broadcasting from lower on 
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the horizon may be transmitting on the same line of sight as a source of interference 

(Brown and Gerein, 2001). Whilst this is a successful technique, the physical size and 

cost of the equipment makes is unfeasible for use on anything other than a fixed 

receiver on land or a large sea vessel. 

2.3.3.2 Null Steering 

Null Steering (also known as a Controlled Radiation Pattern Antenna - CRPA) is a 

technique that may be employed in addition to Beam Forming (Zoltowski and Green, 

1995) or as a standalone mitigation technique. The method employs a circular array 

of slot elements in order to produce a pattern of nulls which can be directed towards 

interference sources. This is a very robust method to eliminate interference, and can 

tackle both wideband and narrowband jamming signals (Casabona and Rosen, 1999). 

On the negative side, the number of nulls produced by the slot elements can limit the 

number of satellites in view at any one time, whilst the physical equipment size and 

cost make it nonviable for compact civilian receivers. As mentioned, this technique 

can work alongside beam forming, the beam being pointed skywards to receive GPS 

signals whilst the nulls are steered towards the sources of interference on the ground 

plane. 
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Figure 2-7: Simple example showing Beamforming and Nulling 

Axial Nulling is a simplified variation of Null Steering commonly employed with GPS 

guided weapons. The null is produced along the axis of the projectile, mitigating 

jamming signals incoming from the direction of travel only. This technique could be 

used to guide a GPS guided missile to destroy an enemy jammer. 

2.3.4 Inertial Measurement Unit Integration 

The integration of GPS with Inertial Measurement Units (IMU) allows either 

technology to assist the other. An IMU consists of an accelerometer and a gyro fixed 

along each dimension measurements are to be taken. In the case of a three- 

dimensional environment, three such pairs are installed orthogonally to each other so 

as to measure the linear acceleration (from the accelerometer) and orientation (from 

the gyro) in each plane. 
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Figure 2-8: IMU operating, in three dimensions 

When used as a standalone unit an IMU suffers from several error sources which can 

cause the sensors to drift. IMU's are available in different grades and sizes, generally 

the more expensive and bully units have a much lower rate of drift than Micro- 

Electro-Mechanical Systems (MEMS) devices which can easily fit onto a printed 

circuit-board (Hide, 2003). The purpose of integrating the IMU with a GPS receiver is 

their ability to assist each other when implemented via a Kalman Filter (Kalman, 

1960). The inertial measurement improves the GPS receivers tracking ability, 

assisting it to counter interference/jamming for short periods of time depending on the 

grade of the IMU. At the same time, the GPS measurement helps to bound the errors 

of the IMU, without which would continually drift (rate of which also dependent on 

the IMU grade). 

Therefore this technique can only overcome jamming for pre-determined periods of 

time, after which the position estimate becomes unusable due to the IMU drift. 

2.3.5 Summary of Jamming Mitigation Techniques 

Although there are many methods available to mitigate the effect of a jamming signal 

on GPS, they each have their own advantages and weaknesses. 
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Adaptive filtering, whilst being cheap to implement and small in size requires 

knowledge of the interference signal structure and is also unable to mitigate wideband 

jamming. 

The Time-Frequency Domain Filtering techniques provide a range of different tools to 

remove most sorts of narrowband interference. They are low cost, require nominal 

power and can be implemented in the full range of receivers. This makes them 

particularly useful for highly dynamic receivers which will be changing direction 

constantly (e. g. hand-held, in-car satellite navigation). The major disadvantage of this 

is, like adaptive filtering, they cannot be used to mitigate wideband jamming. 

The inertial measurement integration technique can aid GPS tracking for short periods, 

the duration of which depends on the quality (and hence increase in size, cost and 

power) of the IMU. This means during periods of prolonged jamming or GPS 

unavailability, the position estimate would decay at an exponential rate over time. 

The adaptive antenna techniques such as beam-forming and null steering are capable 

of removing all types of interference at a pre-correlation stage, but due to the nature of 

the antenna arrays, the cost, power and space requirements are much higher than 

internal processing techniques. These are also incapable of successfully removing 

interference in dynamic situations and are limited to static or slow-moving platforms. 

To summarise, there is not currently one solution discussed which can fulfil all criteria 

and successfully mitigate all known types of jamming within size, cost and power 

constraints. This leads on to consider terrestrial positioning systems such as LORAN 

(section 2.4.1), and the so called Signals of Opportunity (section 3) - certain 

communications signals which whilst not designed for positioning, have elements 

which may be used for this purpose. 
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2.4 TERRESTRIAL NAVIGATION 

This section will examine the currently available terrestrial navigation systems and 

compare their positional accuracies and vulnerabilities with the GNSS described in 

2.1. 

2.4.1 LORAN/LORAN-C 

LORAN is a terrestrial radio navigation system and has been maintained by the United 

States Coast Guard for over 40 years (Lo et al., 2004) with LORAN-C being the 

currently adopted universal standard. While GPS coverage is essentially global. 

LORAN is limited to certain areas, see Figure 2-9 for coverage details. As this map 

shows, the coverage is limited to the northern hemisphere leaving large parts of the 

landmass without any coverage. 

Figure 2-9: Global LORAN Coverage 

2.4.1.1 Positioning Technique 

The LORAN system is divided into a number of 'chains'. A chain contains three or 

more stations (one master transmitter and two or more slave transmitters), each 
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transmitting a highly accurate atomic timing pulse from a known location. The basis 

of the positioning system is as follows. 

" The master transmitter transmits a series of nine timing pulses - these are 

received by each slave transmitter in the chain and any LORAN receiver 

within range of the master transmitter. 

9 On receipt of the master pulse group, each slave transmitter waits a highly 

accurate, predefined length of time before transmitting a series of eight pulses 

back (each slave transmitter has a different delay time which allows chain 

identification). The extra ninth pulse from the master station allows 

identification of the master signal. 

0A LORAN roving receiver compares the difference in the timing signals 

received from the master and slave transmitters. This places the user at some 

point along a hyperbola between the master and slave transmitters. 

"A second chain (using a second slave transmitter) produces a second 

hyperbola - hence the point where the two hyperbolas intersect is the position 

of the user. 

The time interval between two subsequent master pulses is called the Group 

Repetition Interval (GRI). Each chain has a different GRI and these vary from 40 - 

100 milliseconds. 

LORAN-C signals are broadcast in the LF band using a carrier wave centred at 100 

kHz (giving an approximate wavelength of 3k-m). Figure 3-1 shows an example of a 

generated LORAN pulse. 
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Figure 2-10: LORAN Pulse 

Each transmitted pulse has an approximate (useful) length of 200µs before decaying 

exponentially up to 300µs. The time difference between the first and subsequent 

pulses in each group is 1000µs. The exception to this is the last two pulses from the 

master transmitter (pulse's eight and nine). which have a gap of 2000µs. 

This frequency allows the signal to propagate along what is known as the ground- 

wave. Ground-wave propagation refracts the signal around the earth so that it may be 

received below the horizon of the transmitter; this allows the signal to travel over 

longer distances than line-of-sight transmissions (100's km). Most signals in the LF 

band and the lower end of the MF band can travel via this method. The refraction 

reduces the power of the signal the further it travels as the energy is absorbed by the 

earth's surface. The rate that the energy is absorbed depends on the ground itself, for 

example, the signal will travel further over open water (due to higher conductivity) 

than it will through a built-up city environment. 

The signal can also be affected by sky-wave propagation as the signal is distorted by 

the differing refractive index of the ionosphere and can vary depending on solar 

conditions. Sky-wave propagation distorts the carrier phase and shape of the pulse. 
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This causes two versions of the same pulse arriving at the receiver, the direct Ground- 

wave signal arriving fractionally before the Sky-wave signal. 

2.4.1.2 eLORAN 

eLORAN is an updated system to LORAN-C to be used to complement or back-up a 

GPS receiver. The theoretical accuracy of eLORAN is between 8- 20 m (Basker, 

2006) which is comparable to the accuracy of standalone GPS. In addition to this, the 

new signal has the ability to broadcast differential GPS corrections. 

2.4.1.3 Limitations 

The LORAN system is limited by several factors due to the ground-wave propagation 

of the signal and the large distance between stations. The speed of signal transition 

differs depending on the ground over which it is travelling, for example, the speed of 

the signal slows slightly over salt-water compared to that over land. This means a 

receiver based on the land has to apply what are known as Additional Secondary 

Factor (ASF) corrections to the measurements made in order to mitigate the error. As 

these ASFs are location dependant, a model of values has to be maintained to apply 

the necessary correction factors. It has also been shown that the presence of power- 

lines near a receiver can cause problems with the LORAN signal (Lachapelle et al., 

1993). 

Limitations also exist with the hardware component of a LORAN receiver. As the 

signals are broadcast at low-frequency, a relatively large antenna is required to receive 

the signals (Lorenzo et al., 2009). Judging the state of LORAN antennas available 

currently, it is unlikely that a sufficiently miniaturised LORAN antenna of adequate 

quality will appear in a market that requires one, such as the mobile phone market. 

2.4.2 Datatrak 

Datatrak is a commercial system broadcast in the LF band and primarily used to track 

and locate vehicles, often integrated with GPS as the Datatrak transmitters additionally 
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broadcast differential GPS corrections. The system operates in a way similar to 

LORAN in that it is a hyperbolic system. Transmitters are located in a network with a 

range of roughly 160km between each and broadcast the signals on 133 and 145 kHz. 

In addition to the positioning network, a receiver has the ability to report its position 

(to an accuracy of 50 metres) back via a dedicated data network (Banks, 1991). Little 

has been published about Datatrak since its inception, mainly due to the closed-source 

commercial nature of the system. The signals cannot be used by third-party receivers. 

2.4.3 Summary 

The current status of ground based radio navigation systems is currently limited to 

LORAN (in its various states) and Datatrak. Neither system operates globally, with 

LORAN limited to the northern hemisphere and Datatrak limited to certain European 

countries. As Datatrak is a private system, the signal cannot be realistically used as a 

potential solution to GPS non-availability. Land-based LORAN, whilst having a far 

greater signal-to-noise ratio than GPS, has issues due to the Additional Secondary 

Factor "errors", the effect of power-lines on signals broadcast at that frequency and 

the physical size of the equipment required to calculate position. This means that 

LORAN is a viable back-up to a GNSS when the receiver is based upon an oceanic 

vessel, with plenty of space for the necessary equipment, but not to a mobile phone or 

vehicular satellite navigation user who does not have the space requirements for the 

hardware. 

This leaves one to consider the use of other, non-navigation signals currently being 

broadcast for potential positioning purposes, which the next chapter will examine. 

33 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

3 SIGNALS OF OPPORTUNITY 

3.1 INTRODUCTION 

A "Signal of Opportunity" (referred to as a SoOp from here onwards) can be loosely 

defined as any communications signal which can be used for positioning purposes. 

These signals are not designed to be used as positioning systems; however, they have 

certain properties which make them usable as such. A number of attempts have been 

made over the years to take advantage of these SoOp's, some more successful than 

others. The signals are used to either fill gaps from designated positioning systems 

which may suffer certain weaknesses, or act as a standalone positioning system. 

These SoOp's however do have particular advantages and disadvantages depending on 

the signal examined. The following summary of SoOp strengths and weaknesses was 

published by (Raquet et al., 2007), and these highlight a good high-level overview of 

the use of non-navigation signals for positioning purposes. 

3.2 ADVANTAGES 

" Availability - there are a multitude of different signals available, transmitted 

from different directions and at different frequencies. Urban areas will 

receive a greater quantity of signals than less populated areas. 

" Power - compared to GNSS, terrestrial signals are transmitted at much higher 

powers, giving them the ability to reach users where GNSS cannot penetrate. 
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GNSS signals are transmitted with a power of approx 300W at a distance of at 

least 20,000km from the Earth. By comparison, the television and radio 

transmitter at Sutton Coldfield transmits at 250kW and is approximately 60km 

from Nottingham. Signals also do not suffer the ionospheric and Doppler 

errors experienced by GNSS. 

" Infrastructure - no additional infrastructure is required to transmit the signals 

and as they are being transmitted for other purposes, there is no additional cost 

to the user. 

" Technology Advances - with the advent of Software Defined Radios, it is now 

possible to capture and process large swathes of the radio spectrum in order to 

monitor more than one incoming signal source. 

3.3 DISADVANTAGES 

" System Design - signals of opportunity are not designed for the purpose of 

navigation/positioning. For Time of Arrival (TOA) and Time Difference of 

Arrival (TDOA) positioning, precise network synchronisation is required (in 

the region of a few nanoseconds) to create a position fix without the need for a 

second reference receiver. 

" Availability - there are numerous signals available (dependent on location), 

but the standards can differ greatly by continent/country leaving no one global 

standard for many signals of interest. This causes further receiver design 

problems if the device was to be used globally. For example, the different 

digital terrestrial television standards adopted by Europe (DVB-T) and the 

USA (ATSC). Whilst the data itself is not as important, it is the different 

modulation techniques used that could cause complications. 

" Transmitters - the location of all transmitters used for positioning must be 

precisely known. 
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" Receiver Design - examining wider regions of the spectrum requires more 

powerful processors, faster analogue-digital converters, and more complex 

antennas and filters. Additionally, more recent digital signals use wideband 

channels in preference to narrow-band channels. For example, the digital 

television (DVB-T) channels in the UK are delivered in 8MHz channels 

spanning the region 470 - 862 MHz. 

" Multipalh - probably the main problem facing all signals in urban 

environments. When used solely for communications purposes, multipath 

signals can be mitigated at the receiver and even used advantageously to boost 

performance in some systems. However, to be used as a positioning system, 

the direct signal transition time from transmitter to receiver is of utmost 

importance. 

3.4 SIGNALS USED FOR POSITIONING 

There have been some successful attempts to utilise various signals of opportunity for 

navigation/positioning purposes. 

3.4.1 Medium Wave (Amplitude Modulation) 

In the Medium Wave (MW) region, (Hall, 2002) created a carrier-phase positioning 

system utilising a software defined receiver to digitise the entire band (520 - 1710 

kHz) transmitted from approximately 30 stations broadcasting around Boston, USA. 

The results were promising, indicating errors of less than 15 metres on non-urban open 

land. However, results in the urban environment were subject to large errors. Further 

complications involved the signal propagation. Medium Wave signals are affected by 

sky-wave propagation at night which means that signals can "bounce" between the 

bottom layer of the Ionosphere (known as the D-layer) and the ground, hence 

travelling further and along a non-direct path. To counter this, some MW stations do 
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not transmit at night, or do so at a reduced power level. However, for positioning 

using the carrier phase, this adds large errors to the integer ambiguity. 

A subsequent paper by the author (Hall, 2004) discusses these signal propagation 

problems faced and the modelling techniques involved to mitigate these as much as 

possible. 

Also in the MW radio band, (McEllroy, 2004) used the Universal Software Radio 

Peripheral (USRP) to measure TDOA transmissions using one receiver as a reference 

base station and a second as a rover. McEllroy encountered difficulties in the data link 

between the two USRP receivers due to clock synchronisation issues (one example of 

which involved a 17 second straight line movement travelling 13 metres, whilst the 

measurements indicated a distance of 16000km! ). This was mainly due to the 

limitations of the RF front end used with the USRP which was not able to capture and 

digitise the entire band, unlike Hall's experiments. 

3.4.2 Analogue/Digital Television 

Digital and analogue US television sources (ATSC & NTSC respectively) were used 

for both an outdoor and indoor positioning system by (Rabinowitz and Spilker, 2005). 

These signals use a single frequency network, therefore the synchronisation block of 

the signal was used to obtain a position estimate using a TOA approach. Another 

advantage of ATSC is that it is a wideband signal (6MHz or greater), allowing for 

much improved propagation in urban environments and mitigation of multipath. 

3.4.3 Digital Audio Broadcasting (DAB) 

The use of Digital Audio Broadcasting (DAB) for positioning was investigated by 

(Layer et al., 1998) to provide rough position estimates in DAB Single Frequency 

Networks (SFNs) in Germany. The German DAB system operates in the L-band 

portion of the spectrum as opposed to the Band III portion used in the UK. Two 

approaches were used for position determination. The phase shift between pairs of 
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carrier waves (spaced by lkHz), and the evaluation of the channel impulse response. 

These pieces of information allowed the inter-arrival times of signals from each 

transmitter to be found and hence the estimated position of the receiver. 

An integrated positioning system using DAB and the Global System for Mobile 

Communications (GSM) was modelled by (Rooney et at., 2000). As DAB and GSM 

systems are not synchronised as an integrated system, a TDOA approach was used 

with the synchronised DAB network. GSM positioning works better in urban areas 

due to the number of transmitters; however it suffers in low-population areas because 

of fewer transmitters. The objective was that DAB positioning could fill in the gaps 

where GSM positioning was unavailable. 

Due to the completely different technologies involved (GSM - Narrowband and non- 

synchronised and DAB - Wideband and synchronised), the two technologies were 

seen to mitigate each other's weaknesses to a certain degree, DAB to work in more 

remote areas, GSM in the urban environment. As the GSM network is not 

synchronised, this portion of the system involved a data link to local transmitters using 

the SMS service. 

3.4.4 Global System for Mobile Communications (GSM) 

In 2006, (Varshavsky et al., 2005) discussed that GSM phones can be used as an 

adequate positioning system to within an accuracy of 5 to 75 metres in both indoor 

and outdoor environments. The authors claim this by testing two different algorithms 

(FingerPrinting and Centroid) with GSM and Wi-Fi localization systems to capture the 

signature of RF frequencies around an environment during a `training phase'. These 

signatures then form the basis of a model by which to navigate. Problems naturally 

occur with this technique due to the change of infrastructure and more importantly, the 

dynamic environment within an urban landscape. Limitations also arise as the 

receiver is unable to navigate in an environment in which it has not been before. 

38 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

3.4.5 Other Signals 

Other signals of interest which have been examined for positioning purposes include 

Wi-Fi (Akiyama et al., 2009), WiMax (Jiao et al., 2008), Bluetooth (Hallberg et al., 

2003) and Ultra-wideband (Schroeder et al., 2005). However, due to the high 

frequency of these and similar signals (>2.4GHz), their range is strictly limited. Using 

Wi-Fi as an example, a wireless router has a maximum range of 100's of metres. 

Whilst within the urban environment, Wi-Fi `hotspots' overlap to a certain degree, 

these cannot always be guaranteed. Additionally, the exact locations of Wi-Fi 

hotspots are not generally publicly known, making it extremely difficult to create any 

sort of timing positioning system by hopping from network to network. 

Bluetooth is another two-way communications device designed for even shorter range 

than Wi-Fi, therefore this makes the signal an unfeasible choice for this project. A 

more wide-scale approach is taken with a more recent technology called WiMax -a 

long range system designed to operate over 10's of kilometres. There is also a South 

Korean equivalent system called WiBro. Due to the current lack of WiMax/WiBro 

systems in operation, particularly in the UK, this system would be better examined in 

future work. 

Ultra-wideband (UWB) is another short-range communications technology. UWB 

devices work in the region 3.1 to 10.6 GHz. A small number of UWB positioning 

systems currently exist. UbiSense (Ward, 2007) and Thales (Ingram et al., 2004) have 

both developed UWB positioning systems for use indoors or for deployment at 

emergency scenarios. These systems have been developed for short-range positioning, 

and require the presence of additional infrastructure. 

Finally, Radio-frequency identification (RFID) Positioning (Wang and Shen, 2002) 

involves the use of a transponder located on a person or object which can then be 

tracked using a series of detectors. However, the object to be tracked must be within 
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several metres of the detectors with the added complexity of the infrastructure 

involved making this technology also unfeasible. 

3.5 SUMMARY OF SIGNALS 

Table I shows an overview of both the navigation and non-navigation radio signals 

discussed in this chapter. 

Propagation 
-1pprotinunc 

Synchronised 
Additional 

Passire/Active 
Signall, tvstenº Range Infrastructure 

Method . Network? Receiver 
(Am) Required? 

LORAN GroundvNavc 2000 Yes No Passive 

Commercial 
Unknown but Passive + 

Datatrak (iroundw+ave 150 
likely receiver 

optional data link 
required 

AM - Long wave Groundwave 2000 No No Passive 

AM - Mediumwave (iroundwave 500 
No No Passive 

(Sky wave - night) 1000+ 
AM - Shortwave Skvwavc 1000+ No No Passive 

FM/RDS Line ot'sight See note* No No Passive 

DAB line of sight See note* Yes No Passive 

DVB-T Line of sight See note* Yes No Passive 
GSM & equivalent Line of sight See note* No No Actn c 

Dependent on WI-Fl Line of sight See note* Either ^ct `c 
coverage 

Bluetooth Line of sight See note* No Yes Active 

WiMax/WiBro Line of sight See note* Yes Yes Active 

I IItra-wideband Line of sight See note* Yes Yes Active 

Rlll) I inc of sieht Sec note* 
System 

Yes Either 
dependent 

Line-)l-sight range dr/k'iids un 1 elgi l u/ transmitting umomt, ourpUI pun c, 

Table 1: Summag of Signals 

Whilst a range of non-navigation signals have been examined, only two of these 

signals fulfil the criteria required for this investigation: 

" No additional infrastructure required 

" Synchronised transmitters. for standalone positioning 

0 Signal propagates on a line-of-sight basis to avoid sky-wave/ground-wave 

issues (discussed in section 3.6) 

These two signals as highlighted in Table 1 are the DVB-T and DAB signals. As 

DVB-T had already been investigated to the point of a commercial system being 

available, the choice was made to investigate DAB further as a potential positioning 

source. 
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3.6 SIGNAL PROPAGATION 

Radio signals propagate in different ways depending on the frequency they are 

broadcast in. There are three main ways in which signals can propagate from 

transmitter to receiver (Rohan, 1991): 

3.6.1 Ground-wave 

Ground-wave propagation affects signals broadcast below 2MHz, such as Long Wave 

and Medium Wave AM radio and eLORAN. In this case, the signal path from the 

transmitter to receiver is distorted such that it follows the curvature of the Earth's 

surface (Connor, 1972) (Anderson, 1986). 

Figure 3-1: Ground-wave Propagation 

3.6.2 Sky-wave 

Sky-wave propagation affects signals in the High Frequency band (between 3- 

30MHz), which includes the Shortwave AM radio band. The signal is affected by 

refracting off of the ionosphere and thus creates a delaying effect between the true 

signal and the secondary signal being slowed and refracted by the atmosphere. This 

kind of propagation means that signals can be received from much further afield than 

intended and this can cause problems with inter-symbol interference (ISl) and 

interference with stations broadcast on the same frequency in different countries 

(Wang. 1995) (Connor. 1973). 
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Figure 3-2: Sky-wave Propagation 

3.6.3 Line-of-Sight (Spacewave) 

Line-of-sight or Spacewave propagation affects signals transmitted above 30MHz 

(including VHF/UHF bands. FM radio broadcasts. DAB. DVB etc). This means that a 

receiver antenna must be -visible' to the transmitter in that the transmitting antenna 

must not be below the horizon. This transition line between the two antennas is the 

maximum distance that the signal may travel. 

Figure 3-3: Line-of-Sigh! Propagation 

3.6.4 Fresnel Zone 

The Fresnel Zone is a hypothetical region which lies between a transmitter and a 

receiver when examining a signal propagating by Line-of-Sight (Anderson. 1964). 
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This region is described by a series of ellipsoids. the foci of which are situated at the 

transmitter and receiver. The region was examined during the early roll-out of the 

Eureka-147 system (European DAB standard) (Grosskopf, 1995) to establish the 

signal strength at locations where large obstacles may obstruct the direct Line-of-Sight 

line between transmitter and a receiver. The diagram in Figure 3-4 shows the basic 

concept of the Fresnel Zone. 
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Figure 3-4: Fresnel Zones 

The n11 Fresnel Zone radius (, "�) may be found from equation 3.1: 

_ 
A1d2 

rn 
nl 

+ d2 

Where ) is the wavelength of the signal of interest. 

3.6.5 Path-Loss Models 

3.1 

Any signal in transit will, over distance, lose an amount of power depending on the 

density of the landscape over which it travels. In (Abhayawardhana et al., 2005), the 

authors compare three models in order to be able to predict this path loss based on a 
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number of factors. The models used in this case were the ECC-33 Model, the 

Stanford University Interim Model and the COST-231 Hata Model. 

The Hata Path-Loss Model was originally devised by (Hata, 1980) and then improved 

upon to become the COST Hata Model as a result of the COST 231 meeting 

(Damosso and Correia, 1999). This showed that the signal propagation was based 

upon: 

0 the frequency of the broadcast 

" the distance from transmitter to receiver 

0 the height above sea level of both transmitter and receiver 

0 the density of the landscape the signal travels through 

Using these parameters, the following formula was devised to calculate the median 

path loss (dB) for an urban environment: 

LURB = 69.55 + 26.16log f 

- 13.82 log hB - Cy + [44.9 - 6.55 log hBI log d 3.2 

Where the receiver antenna height correction factor CH is defined as: 

CH = 3.2(log(11.75hR))2 -4.97 3.3 

"f= frequency of the transmission (MHz) - (where 200 <f <_ 1500) 

0 hB = height of the transmitter (metres) 

0 hR = height of the receiver (metres) 

0d= distance between transmitter and receiver (kilometres) 

Equations 3.2 and 3.3 differ depending on the environment the signal is travelling 

through. Using the same definitions as for urban environments, the path-loss for 

suburban areas (Lsr, R) is defined as: 
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= LURB -2 
(iog)2 

- 5.4 3.4 LSUR 

Where Lj�q represents the average value of the calculated path loss in 3.2. 

Finally, the equation developed in the same report for open/rural areas (LRVR) is 

defined as follows: 

LRUR = LURB 
- 4.78(log f)2 + 18.331og f- 40.94 3.5 

These path loss equations allow the calculation of the distance a signal travels over the 

Earth's surface. 

3.6.6 Gaussian Noise 

Gaussian noise (or White noise) is a statistical noise measurement, being simply noise 

on the communication channel between the transmitter and a receiver, the frequency 

distribution of which follows a normal (Gaussian) distribution. Such noise can be 

caused by any number of natural sources, such as solar radiation. 

3.6.7 Summary 

This section has shown the different types of signal propagation and the effects they 

can have on signals broadcast at certain wavelengths. The most important effects 

which affect this project are the Hata Path-Loss Models and the Fresnel Zone effect, 

due to the wavelengths at which the DAB signal is broadcast. The Hata models will 

be shown in use later in this thesis when the coverage of the DAB networks in the UK 

is examined, and the areas of the country where insufficient transmitters are present 

can be found. 
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4 THE DAB SIGNAL 

This chapter will introduce the basic elements of the DAB signal, where it has been 

deployed as a transmission system worldwide and identify the parts of the signal 

which have the potential to be used for positioning purposes. 

4.1 INTRODUCTION I 

The Digital Audio Broadcast (DAB hereafter) standard was developed in Europe in 

the 1980's as part of the Eureka-147 project, in order to combat the variety of 

problems associated with FM broadcasts (fading, interference, multipath etc), 

particularly when a receiver is mobile (Hallier et al., 1994) (Rau, 1995). The system 

was designed to be far more spectrally efficient than the FM standard, as numerous 

stations could be broadcast simultaneously on a single frequency without the need to 

retune the receiver (European Broadcasting Union, 1997). The signal could also carry 

a certain amount of multimedia content, greater than the RDS system used by FM 

transmissions. The audio quality was designed to be near CD quality at the time, 

although this came under criticism in more recent years, and paved the way for a more 

robust so-called DAB+ system design (European Broadcasting Union, 2007). 
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D, 46 digital 

adio 
Figure 4-1: The DAB Logo 

(The 'DAB Digital Radio' logo and the stylised 'r' mark ® and © Digital One Limited. ) 

4.2 DAB COVERAGE 

The UK has one of the most widely deployed DAB networks currently and the two 

main network operators, Digital One (Commercial) and the BBC claim to have 

coverage of better than 85% of UK population (Emery, 2009) at the time of writing, 

with the BBC committing its coverage to increase to 90% (BBC, 2009). 

Country Status Coverage (% Population) 

Australia DAB/DAB+ Trials 15 

Belgium DAB Launched 100 

China DAB Launched; DAB' Trials 8 

Denmark DAB Launched 90 

France DMB Launched* 20 

Germany DAB Launched; DAB+ Trials 82 

Ireland DAB Trial 44 

Italy DAB/DAB+ Trials 75 

Netherlands DAB Launched 70 

Norway DAB Launched 80 

Singapore DAB Launched 99 

South Korea DAB Launched 75 

Spain DAB Launched 52 

Switzerland DAB Launched 90 

United Kingdom DAB Launched 85 

* DMB = Digital Multimedia Broadcasting 

Table 2: Worldwide DAB/DAB+/DMB Coverage (January 2009) 
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Further afield, the countries listed in Table 2 have adopted the DAB standard as of 

January 2009 and begun deployment (Pedersen, 2009) (a number of other countries 

have adopted the standard but have either not begun building the infrastructure or have 

minimal coverage at present). 
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4.3 DAB SYSTEM 

4.3.1 System Clock 

All units in the DAB system are derivations of the system clock frequency. DAB runs 

on a fundamental frequency of 2.048 MHz, from which the fundamental unit T can be 

defined as in 4.1: 

T-1/2.048x106 4.1 

The unit T represents a measurement of time of around 0.48828µs. For the remainder 

of this document, this unit will be principally used when referring to periods of time. 

4.3.2 DAB Transmission Modes 

The DAB signal may be transmitted in any one of four transmission modes (I - IV). 

These modes and their primary characteristics are listed in Table 3 recreated from 

(European Broadcasting Union, 1997). 

Mode Carriers (K) Maximum Transmission Freq 

1 1536 375 MHz 

11 384 1.5 GHz 

III 192 3 GHz 

IV 768 750 MHz 

Table 3: DAB Transmission Modes 

In the UK, Mode I is the terrestrial transmission mode used and will be the only mode 

referred to throughout the remainder of this document. The mode was designed for 

large-area coverage as it has a long guard interval allowing the effects of long-delayed 
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secondary or multipath signals to be removed. Mode II is mostly used in L-band 

transmissions, whilst Mode Ill is primarily used for satellite transmissions. 

4.3.3 Broadcast Frequencies 

In the UK, the VHF Band III portion of the spectrum is subdivided into a number of 

channels or blocks which are used by DAB in the UK and Europe. The UK currently 

uses seven active blocks, detailed in Figure 4-2, giving a total frequency range of just 

over lOMHz. Further blocks are used to test additional services and these may be 

used for full-time transmissions in the future. 

Block Number- VHF Band III 

Ii 11 1 :2 
ii I IvýHt v v, º, ýeýc 1ANe 

i 

1 

c 
1 

DI IBIS ýiý 

WC 'N I If CO ONW C" NÖcWLN C4 -"N ýL" CC cNIPf, 1, - 
Cm-. ccc. ;rö. CmcCmz. 

-p. _rmOr 
1" N ^I 

ýJ 

t'u, It.. h (C OMZ L" n C. 

QJ 

n "t. W r'. C Lf, '. [ h Cn -HV, n O" T- gym. 
WW OP. O" C C'C 

__COCOJNNNNMmMm --I --ý -+ -r -+ -v -a . ti .y .y . -J ... a ... i ... ý .y ra aNNNNNNNNNJNNNN rJ N ri 

NNJ 

f, - MHz 

Figure 4-2: DAB Block/Channel Locations in VHF Band III 

4.4 DAB SIGNAL STRUCTURE (FREQUENCY DOMAIN) 

The DAB signal in the frequency domain uses a Coded Orthogonal Frequency 

Division Multiplexing (COFDM) technique as the primary means of signal 

modulation (European Broadcasting Union, 1997). This technique was chosen as it 

was a rugged means of transmission for mobile receivers, such as vehicle 

entertainment systems (Shelswell, 1996). 

COMM modulation uses a large number of closely spaced frequency divided sub- 

carriers (or sinusoids) to create a wideband signal. In the case of the DAB standard, 

there are 15336 sub-carriers spaced at I kHz intervals plus one suppressed central 
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carrier, see Figure 4-3. Each of these 1536 individual sub-carriers is then additionally 

modulated by Differential Quadrature Phase Shift Keying (DQPSK). As the 

information transmitted is spread over the width of the wideband signal. each 

individual carrier modulates slowly relative to narrowband signal modulation. The 

width of the signal also helps to mitigate any fading that might be present. Although 

fading may occur and obscure a portion of the signal. information may still be relayed 

through the remainder of the spectral width. 

1537 
Carriers 

Figure 4-3: DAB signal structure in the frequency domain 

highlighting the signal width and central frequency. f. 

As was mentioned previously, each of the subcarriers is sub-modulated by the DQPSK 

technique. This digital encoding technique will now be described as it will become 

important later in the document. 

Digital information is broadcast by the modulation of a basic sine wave signal. which 

can be defined as follows with the amplitude A_ the frequency_f, the time t and the 

phase cp in equation 4.2: 

Ac cos(21rfýt + cp) 4.2 
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This can be expressed graphically in Figure 4-4, which shows the state of a sine wave 

at a point in time i using a Polar coordinate system. 

Figure 4-4: Description of the I and Q planes 

The length of the arrow represents the amplitude of the wave, and the angle of the 

arrow is the relative phase cp at time 1. The I and Q planes can be thought of as a 

conversion of the Polar coordinate system (amplitude and phase) into a Cartesian 

coordinate system, with the I value the intercept on the horizontal axis and the Q 

(complex) value the intercept on the vertical axis. The example in Figure 4-4 would 

have an I value of /(t) = A(t) cos(cp(t)) and aQ value of Q(t) = A(t) sin(cp(t)). 

By breaking down DQPSK into two areas, the Quadrature Phase Shift Keying aspect 

is examined first. The binary data is modulated by changing (shifting) the phase of the 

subcarrier by either 0°, 90°, 180° or -90° (as opposed to just 1800 as used in Binary 

PSK) giving any one of four states for the phase to be in. To show this comparison in 

diagrammatic form. Figure 4-5 shows the I and Q maps of both BPSK and QPSK 

signals respectively. 
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Binary PSK Quadrature PSK 

Figure 4-5: Comparison of BPSK and QPSK in the IQ planes 

Where BPSK delivers only l bit per symbol, QPSK delivers 2 bits. The Differential 

aspect of the modulation means that rather than each of the four states having a set 

value of 00,01,10 and 11, the shift is relative to the current state with the sequence 

starting at 00 phase shift. For example. in Figure 4-6 the three modulation schemes 

are examined modulating the same baseband message on a simple sine wave (as 

QPSK and DQPSK schemes have 2 bits/symbol. the message is delivered in half the 

tine). The DQPSK scheme, although beginning the sequence identically to QPSK at 

+90° position (01), shifts its second symbol through +90° again (to +180° position - 

H). whilst the QPSK signal remains at the +90° (01) position. Although requiring 

slightly more computation due to the decoder having to constantly compare the current 

and previous symbols, this creates a more robust signal structure when transmitted 

through a physical communications channel. 
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01010011 Baseband Signal 
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01 01 00 11 Basebond Signal 
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Figure 4-6: Comparison of BPSK, QPSK and DQPSK 

Broadcasting Nie same buseband signal, note that QPSK and DQPSK messages 
broadcast in half the time of the BPSK signal 

4.5 DAB SIGNAL STRUCTURE (TEMPORAL DOMAIN) 

The DAB signal in the time or temporal domain is segmented into frames, each of 

which is subdivided into three main channels which are broadcast in sequence. Each 

DAB frame is broadcast over approximately 96ms. giving a frame-rate of roughly 10 

frames/second. The individual channels are all. with the partial exception of the 

Synchronisation Channel, subdivided into groupings of OFDM symbols. An OFDM 

symbol is composed of two parts, a useful symbol portion and a Guard Interval or 

Cyclic Prefix, (see Figure 4-7). The useful symbol contains all of the information the 

receiver requires, whilst the Guard Interval is composed of a duplicate of the final 

section of the useful symbol of length (504T) which is then appended to the front. 

creating a total symbol length of 2552T (Hoeg and Lauterbach. 2003). 
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Total Symbol (length 2552T) 
----------------------------------------------------------------- 

"Useful" Symbol (length 2048T) 
--------------------------------------------------- 

Guard Interval Symbol end 
(length 504T) (length 504T) 

----------- ----------- 

Start of OFDM Symbol 

Figure 4-7: Composition of an OFDM Si'mbol in the temporal domain 

Each of the three channels which compose a DAB frame will now be briefly examined 

in turn. Although only one channel is used for the remainder of this thesis, a high- 

level breakdown of each is presented for completeness. 

4.5.1 The Synchronisation Channel (SC) 

The first of these channels is the Synchronisation Channel. This is the shortest 

channel in the frame and is composed of two parts (Figure 4-8). The frame begins 

with a null or zero period. when all of the subcarriers are switched off - with the 

exception of every second frame - in order to provide an easily locatable (providing 

the signal is strong enough) yet approximate start of the frame. In every other frame, 

the null symbol is populated with very simple codes known as Transmitter 

Identification Information (TIl) codes. These codes allow a receiver to 

unambiguously identify the region it is currently in and the transmitters it is receiving. 

This information becomes vital later on when discussing the positioning 

characteristics of the signal as a whole. The second part of the channel is the first 

OFDM symbol in the frame and is known as the Time Frequency Phase Reference 

(TFPR) Symbol. This symbol allows the receiver to precisely find the position of the 
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beginning of the second channel and align the decoder to find the first and subsequent 

DQPSK symbols. 

One DAB Frame (96ms) 

u' 
Cn' 

--- ý-ý'-- 
'---_ '---_ 

'ý--_ '-- __ '---_ 
-- '- __ ' ý''--- 

Null Symbol (length 2656T) First OFDM Symbol (length 2552T) 
"TFPR Symbol" 

Synchronisation Channel 
(length 5208T z 2.5ms) 

Figure 4-8: Composition of the Svnchrunisatiun Channel 

4.5.2 The Fast Information Channel (FIC) 

The Fast Information Channel is the second channel. This is composed of three 

OFDM symbols which are in turn broken down into Fast Information Blocks (FIBs). 

As the receiver requires this information instantly in order to understand the multiplex 

configuration of the Main Service Channel, this part of the signal is not time 

interleaved. The Fast Information Blocks are further broken down into groups (Fast 

Information Groups) which can be distinguished by field codes in order to decode a 

variety of different pieces of information about the current multiplex. 
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One DAB Frame (96ms) 

N, LL 
i 
i 

- --------- 

- ------- 

Fast Information Fast Information ý Fast Information 
Channel1 Channe12 Channe13 
(OFDM) (OFDM) (OFDM) 

Fast Information Channel 
(length 7656T= 3.7ms) 

Figure 4-9: Composition of the Fast Information Channel 

4.5.3 The Main Service Channel (MSC) 

The Main Service Channel is the third and final channel and is composed of the 

programming data. It is made up of 72 OFDM symbols. each of which is broken 

down into Common Interleaved Frames (CIFs). The CIFs are closely linked by the 

FIBs in the Fast Information Channel (see 4.5.2). The capacity of the channel can 

vary considerably depending on the number of stations being broadcast in the 

multiplex, the quality of the audio and the quality of the error correction coding. The 

MSC is the only channel to have time and frequency interleaving. 
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One DAB Frame (96ms) 

i 

ýýLL MSC 

I 

Main Service Main Service Main Service 
Channel l Channel 2 . '. ". Channe172 
(OFDM) (OFDM) (OFDM) 

Main Service Channel 
(length 183744T z 89.7ms) 

Figure 4-10: Composition of the Main Service Channel 

4.6 SINGLE FREQUENCY NETWORKS 

The DAB signal is delivered over what are known as Single Frequency Networks 

(SFNs) (Liebenow and Zimmermann, 1998). These networks consist of a number of 

transmitters, all of which are synchronised by GPS time giving an accuracy of 300ns 

or better for the majority of the time (Evans and Baily, 1997). During periods of 

prolonged GPS outage. the synchronisation of the transmitter clocks falls to 

approximately l its (M. Ellis, pers. comm. ). This allows a DAB channel to be 

broadcast on the same frequency or block using very precise timing measurements. 

The diagram in Figure 4-11 shows a network of three transmitters (Tx1 - Tx, ) and 

their associated footprints. The DAB receiver (R) lies in an area where the three 

transmitter footprints overlap, this means that the network must be very precisely 

synchronised so that the multiple transmissions do not interfere with each other. The 

Guard Interval inserted before each OFDM symbol in the temporal domain (see 4.5), 

acts as a buffer for the arrival of these subsequent transmissions. 
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Tx, =Transmitter Number 
R= DAB Receiver 

Txz Tx2 Footprint 

----- ----------- 

Tx1 
Txl Footprint 

US Footprint 
Txs 

-------------- 
-. -' 

Figure 4-11: Single Frequency Network Example 

When a network transmits the data, all transmitters broadcast their signals at precisely 

the same time or Inter-Symbol Interference (ISI) can be caused at the receiver. On 

occasion however, the best (highest) site for a transmitter may lie in an area which 

means it would interfere with another transmitter's footprint. If a secondary signal 

arrived at the receiver outside of the guard interval then this would cause inter-symbol 

interference to the primary transmission source. Therefore, certain transmitters may 

use a constant offset bias from one transmitter in order to mitigate this effect. 

The use of this process means that to a DAB receiver, the signals are not broadcast 

simultaneously, meaning that this bias must be known and accounted for before any 

positioning algorithms are used. 
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S POSITIONING TECHNIQUES 

There are a number of different methods to estimate the position of a receiver when 

using terrestrial signals. In this chapter, five of the better known techniques will be 

examined with the purpose of finding a suitable method. 

5.1 TIME OF ARRIVAL (TOA) 

Time of arrival position estimation simply involves the precise measurement of a 

wireless signal's arrival time at a receiver. In order to calculate the three-dimensional 

position of the receiver, a minimum of four transmissions from four different 

transmitters must be received (three transmitters for a two-dimensional position) with 

the position of the transmitters known. 

Figure 5-1 shows a basic TOA system with four transmitters. Initially, the three 

transmitters Txi to Tx3 are considered. It is assumed that the receiver and transmitter 

clocks are synchronised and the transmitters broadcast the transmission time of each 

signal in addition to their precise location. 

As the precise transition time of each signal is known, the range can be calculated (p, 

to p3) between each transmitter and the receiver by multiplying by the speed of light c. 

This is enough information to find a position in a perfect system, however, in reality 
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the receiver clock will not be synchronised to the transmitter clocks. Therefore. the 

fourth ranging measurement is required to correct this error. 

11 

\I 1 

1 TX1 TX 

\ýI r 

3 

TX4 Tx3 

------------------------------------------------------------------- I 
Transmitters Tx, © Synchronised Transmitter Clocks 

T 
Receiver R© Receiver Clock 

Figure 5-1: Basic TOA Position Estimation 

Each range measurement creates a hypothetical sphere with the transmitter at its centre 

and the receiver lying somewhere on the surface of each sphere. The point where the 

minimum of three spheres intersect gives the 3D position. In a perfect world, each of 

the spheres will intersect at an infinitesimally small point giving the location, 

however, the number of error sources involved means that each locus of ranges has an 

area of ambiguity around the "true" range. This area of ambiguity is highlighted in 

Figure 5-2. Both diagrams (u) and (h) show a network of three transmitters on a flat 

earth viewed from above. This provides sufficient information to find a 2D position, 

however the position of transmitter Tx. is different in the two diagrams. Diagram (a) 

shows the transmitter geometry is fairly evenly spaced, giving a relatively small area 
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of ambiguity (the area bounded by the three pairs of solid lines) when compared to 

diagram (h) which has a much wider area of ambiguity. 

y Tx, Tx3 Y Tx Tx 
xx X1 Xs 

Txß Ambiguity Limits 

Tx, True Range 

Tx, Ambiguity limits 

Tx, True Range 
T2 TX2 

x, 
x TK Ambiguity Limits 

Tx, True Range 

-. -- Receiver Location 

Figure S-2: TOA Areas of Anrhiguity 

5.2 TIME DIFFERENCE OF ARRIVAL (TDOA) 

Time difference of arrival works in a similar way to TOA and also requires a 

synchronised network of transmitters (if using one receiver) at known locations. 

Unlike the TOA technique, TDOA does not need to know the transmission time of a 

reference symbol. Instead, a receiver observes the signal transmitted from pairs of 

transmitters as follows (see Figure 5-) ). 

A receiver between two synchronised transmitters, Tx1 and Tx,, receives the reference 

information at slightly different times due to the receiver being closer to one 

transmitter (Tic, in this case). The time difference of arrival of this information places 

the receiver somewhere on a hyperbola a between Tic, and Tx,,. To find the location of 

the receiver in two dimensions, a third transmitter Tx; is required to create a second 
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hyperbola. This produces a series of hyperbolae between Tv, and Ti. ; placing the 

receiver on hyperbola h. Hyperbolae a&h intersect at the receivers location allowing 

the 2D position of the receiver to be found. 

Master ac 

Txz 
, Tx, 

b0 

;R I 

TXq 

-------------------------- ---------------------------------------- I 
Transmitters Tx,, © Synchronised Transmitter Clocks 

T 
Receiver RQ Unsynchronised Receiver Clock 

Figure 5-3: Basic TDOA Position Estimation 

In order to expand this to find the 3D position, then a fourth transmitter is required 

(Tx4) giving a third pairing and therefore a third intersecting hyperbola c at the 

receiver's location. 

This technique may use non-synchronised transmitters by deploying a second receiver 

at a known location to act as a reference. Both receivers monitor the same radio 

frequency/frequencies and share a data link in order to apply corrections to the roving 

receiver. However, this technique is limited to the data link range between the two 

receivers in order for them to remain synchronised. 
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Although the transmitter to receiver ranges (PI to p, ) and therefore the signal 

propagation times are not known initially, the difference in arrival times of each signal 

are known. Therefore these range difference measurements can be used in place of 

the range measurements in order to calculate the receiver location. 

5.3 ANGLE OF ARRIVAL (AOA) 

The Angle of Arrival technique works by determining the direction of arrival of two or 

more signals to obtain a position estimate, rather than the signal timing techniques 

discussed previously. The network transmitters must be stationary and at known 

locations, although not necessarily synchronised (Köpper, 2005). 

This requires either a directional antenna or preferably an antenna array to determine 

the Time difference of arrival or the phase difference at each array element. This 

technique in theory could use one receiver but due to the complexity involved, it is 

preferable to use one base station and one rover connected by a data link. One of the 

benefits of this technique is that the system can use as few as two transmitters to 

obtain a rough fix (although this is highly dependent on the quality of the array 

resolution and the distance from each transmitter - the closer the better). 

The example described in Figure 5-4 shows a network of three transmitters (Txi to 

Tx3). By measuring the TDOA or phase difference at each array element, the 

incoming angles (pseudo-angles) from each transmitter may be found assuming this is 

in an open environment initially as this technique is also extremely vulnerable to 

multipath. Each angle is measured in this case with respect to a predetermined 

reference plane, R. 
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Txl 
I 

R 

Tx3 

-- ------------------------ 
-------- AoA from R to Tx, 

Transmitters Txý 

___--_ ~ AoA fro mR to Tx2 
Receiver R 

AoAfrom Rto Txj 

Figure 5-4: Basic A OA Position Estimation 

The array resolution is a major problem as it determines the accuracy of the perceived 

arrival angle of each signal. The more diffuse this angle. the larger the error 

surrounding the position estimate. This can be mitigated to an extent using multiple 

base stations, but naturally this requires pre-planning. 

5.4 SIGNAL STRENGTH COMPARISON 

Signal strength measurement positioning is probably the most simple to realise multi- 

lateration system. It involves the monitoring of the change in strength of three or 

more omni-directional transmission sources, and then by using a mathematical model. 

the path loss attenuation of each signal can be found (Kopper, 2005) and a position 

estimation calculated. 

The attenuation is a function of the range between transmitter/receiver, the wavelength 

of the signal of interest and the path loss gradient. Due to the different propagation 
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properties of radio-waves at different frequencies, these models will vary depending 

on the signal. This technique works well if there is no infrastructure between each 

transmitter and receiver. However. this is unfeasible and therefore this positioning 

technique is prone to significant errors due to multipath and fading in built up areas. 

This technique was not investigated further due to the greatly varying quantity and 

density of obstructions between terrestrial based transmitters. 

5.5 CARRIER PHASE MEASUREMENT 

Ranging using a signal's carrier phase involves monitoring the phase shift of a signal/s 

carrier phase at each epoch. 

The diagram in Figure 5-5 shows a simple two-dimensional example using this 

technique. At the first epoch (top diagram). the receiver is monitoring two signals 

from transmitters Tx, & Tx,. If the receiver location at position R at this epoch is 

unknown, then the number of complete wavelengths between each transmitter and the 

receiver are unknown. These complete wavelengths are known as the Irrleger 

Ambiguities (distance A to Tx 1 and distance B to T. r2). 

Epoch 1 

\ýR 

Txl Tx2 
A c. b-B 

Epoch 2 

II^I iý 1I 

1I 
ý/ 

II 

Txl Tx2 
A . Q.. b .. B 

Figure 5-5: Carrier Phase Positioning Example 
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However, if the receiver initial position is known along with the position of each 

transmitter, then each integer ambiguity may be resolved instantly. As the receiver 

moves from this point, the phase change in each signal indicates the amount the 

receiver has moved in a certain direction. 

If a signal source is masked for any reason for a period of time, the integer ambiguity 

must be recalculated. Again, as with all previous techniques, multipath and 

shadowing (complete loss of signal lock) will cause problems 

5.6 SUMMARY 

Of the positioning techniques examined in this chapter, one technique stands out as the 

most likely contender for use within this investigation. The Time Difference of 

Arrival (TDOA) technique has been chosen due to the DAB signal not broadcasting a 

precise transmission time (thus eliminating Time of Arrival as a possibility). It is 

known that DAB networks are synchronised, therefore only requiring the need for a 

single receiver. Angle of Arrival requires the use of a complex antenna array which 

contradicts the simple off-the-shelf objective of this project and is also severely 

affected by multipath, as is the carrier phase measurement solution. The signal 

strength measurement technique is not realistic in such an environment due to the 

vastly changing surroundings of a receiver when in transit. Such surroundings would 

change the received signal strength at a nonlinear rate making measurements very 

unreliable. 

Therefore the remainder of this project will use the Time Difference of Arrival method 

as the chosen positioning technique. 
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Ö DAB SIGNAL PROCESSING 

6.1 INTRODUCTION 

This chapter concentrates on, and describes in detail, the methodology behind the 

capture of the DAB signal and its subsequent processing. The aim of the processing is 

to extract information for two or more Time Difference of Arrival measurements in 

order for a positional fix to be generated. As this project was examining the DAB 

signal from a positioning perspective, the raw spectrum was initially captured so that 

suitable software could be built to decode the signal in post-processing. The chapter 

continues describing this capture process and the hardware and software involved. 

6.2 SIGNAL CAPTURE 

6.2.1 Software Defined Radio (SDR) 

This section describes the hardware and software used to capture and store the raw 

DAB spectrum. From early on in the project, a Software Defined Radio (SDR) 

approach was adopted to in order to capture the signal. A SDR essentially replaces 

most of the hardware required to decode a particular signal and replaces it with user- 

defined software with the tasks being operated by the host computers CPU. This 
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allows a host computer to have the potential to decode any radio signal (provided the 

hardware includes a sufficiently fast Analogue-Digital converter which is connected to 

an antenna capable of capturing the band of interest), and creates a single platform 

system where the reconfiguration is done in software alone. 

As a Software Defined Radio system requires both particular hardware and software, 

the combinations used in this project were as follows. 

6.2.2 Hardware - The Universal Software Radio Peripheral 

One of the aims of this project was to investigate the DAB signal using relatively 

simple, cost-effective off-the-shelf equipment. This was successfully achieved with 

the use of the Universal Software Radio Peripheral (USRP). 

The USRP is a piece of hardware that sits between the antenna and a computer. The 

device was developed and built by Ettus Research LLC (Ettus, 2008) and designed 

specifically to be used with the GNU Radio software described in 6.2.3. The device 

acts as a radio front-end and consists of two pairs of Analogue-Digital Converters 

(ADCs) and two pairs of Digital-Analogue Converters (DACs), allowing it to accept 

up to two receiver inputs and two transmitter outputs at any one time. The 12-bit 

ADCs are capable of capturing up to 64 Mega-samples/second, whilst the 14-bits 

DACs are capable of producing up to 128 Mega-samples/second. The system is 

controlled by a Field Programmable Gate Array (FPGA) which sits in the centre of the 

motherboard (Alters Cyclone FPGA). This chip runs the software defined radio from 

information received from the host computer. 

The USRP connects to a computer via a USB2.0 interface, allowing a maximum 

transfer rate of 32MB/s. This transfer rate acts as the major limitation of the device as 

it limits the width of spectrum the radio front-ends can capture. Each receiver and 

transmitter bay inside the casing can house one of many daughter-boards, each of 

which are designed to operate over a particular frequency range. Figure 6-1 shows an 
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annotated picture of the USRP motherboard (original photograph from 

http: //wxNw. ettus. com/products) and highlights the positions of the major components. 

As mentioned previously, the daughter-boards come in several different types. As this 

project was examining the DAB signal, a board was needed which would be able to 

sufficiently capture one or more DAB blocks in VHF Band 111 (170 - 240 MHz). To 

achieve this, the TVRX daughter-board was used as it could capture any 8MHz 

window between 50 and 870 MHz. giving it the ability to capture up to four signals 

simultaneously. Figure 6-2 shows a photograph of the USRP in its enclosure and also 

shows four of the available daughter-boards, the TVRX being top left, with the pen in 

the foreground present to give an idea of scale. 

Figure 6-1: USRP Motherboard (http: //www. ettus. com/pro(lucts) 
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TVRX 
(50 - 870 MHz) LFRX 

(DC -1 MHz) 

DBSRX mmmmý BasicRX 

(0.8 - 2.4 GHz) 
(1 - 250 MHz) 

Figure 6-2: USRP in enclosure including a selection of daughter-boards 

6.2.3 Software - GNU Radio 

The software used to control the USRP is called GNU Radio (Lang, 2010) and is open 

source software and freely available. It consists of a library of signal processing block 

sets built using C++ and Python and is used as the building blocks to run a Software 

Defined Radio. Whilst a substantial amount of processing can be done using GNU 

Radio, this project uses a relatively small amount of it due to the experimental nature 

of the work. In this instance. the software is used only to convert a signal of interest to 

baseband and then capture and store the raw I and Q values for post-processing in 

MatlabTM or equivalent software. 

The software script has a variety of basic input parameters, including the ability to 

alter the gain of the software receiver, the frequency and width of the capture. length 

of capture etc. Figure 6-3 shows a screen capture of GNU Radio running a Fast 

Fourier Transform (FFT) over an 8MHz window. In this instance, three DAB signals 

can be seen in the frequency domain. 
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Figure 6-3: Screen capture of GNU Radio 

running an FFT over an 8MHz spectral bandwidth 

6.2.4 Antennas 

Two antennas were used in the data capture trials for this project for one of the 

experiments. The main antenna was a passive omni-directional dipole antenna with a 

360° beam-width and 2.2dBd (dipole) gain (Figure 6-4, right image). This antenna is 

designed for use as a permanent static vertical mounting on a building in areas where a 

basic telescopic antenna does not produce sufficient reception quality. 

The second was a significantly smaller active in-car glass-mounted antenna (Figure 

6-4. left image). This required a +12v input giving a gain of 9dBi (isotropic. where 0 

dBd = 2.15dBi). but only in the direction of the glass, essentially forming a beam of 

180° away from the vehicle. 
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Figure 6-4: The two antennas used in this project 

(i) internal side-window mounted antenna left 
(ii) external roof mounted dipole right 

6.2.5 Data & Pre-processing 

Data captured by the USRP is stored on the computer hard drive as a complex binary 

number which initially must be converted to a 32-bit complex number in order for any 

processing to take place. 

The resulting converted data file is now a string of samples in the temporal domain. 

the parameters of which are determined by those used in the initial capture. At this 

point the first 100.000 samples are ignored to avoid any interference from the 

TVRX/USRP front end tuning to the desired frequency when the capture was made. 

One limitation of the USRP is the sampling rates of the hardware. As the main clock 

on the motherboard runs at 64MHz. any capture must be a decimation of this 

frequency. For example. while the DAB clock frequency (section 4.3.1) runs at 
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2.048MHz, the closest window available to the USRP is 2MHz, a decimation rate of 

32. This gives a capture window of 2MHz, whereas a DAB receiver would use a 

window of 2.048MHz. This does not cause a problem as the bulk of the information 

captured does not require decoding as will become clear later, but in order for the Fast 

Fourier Transform to work most efficiently and to avoid confusion when determining 

symbol length etc, the received signal is up-sampled marginally to 2.048MHz. This 

makes computations simpler and allows all computations to work with integer values 

of T (section 4.3.1). 

If capturing multiple signals then the same process is applied, a 4MHz window (two 

DAB signals) is up-sampled to 4.096MHz and an 8MHz window (four signals) to 

8.192MHz. 

The received dataset is now in a useable state to begin processing the OFDM symbols. 

6.3 FINDING THE NULL SYMBOL 

For the purposes of the following worked example, the basic assumption is that the 

dataset has been captured using the parameter values listed in Table 4 below and pre- 

processed as detailed in 6.2.5: 

Capture Parameter Value 

DAB Broadcast Frequency (fG) 225.648 MHz 

USRP Capture Window width 2 MHz (re-sampled to 2.048 MHz) 

Decimation Rate (of receiver clock) 32 

Number of DAB signals I 

Total Capture Length 2.1 x 106 samples 

Useable Capture Length 2.0x 106 samples 

Useable Capture Length post re-sampling 2.048x 106 samples 

Table 4: Example Data Capture Parameters 
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The first and most important stage of the post-processing is to detect the presence of 

the Null symbol in the temporal domain, and hence the start of the transmission frame. 

The length of a single frame is known to be I96.608T and it is known that at some 

point this will contain the Null symbol to signal the start of the next frame, so this 

number of samples is extracted and the absolute values of the signal in its current state 

are plotted (see Figure 6-5). 

Figure 6-5: Plot of a DAB frame in the temporal domain 

By eye, it is immediately obvious where the null symbol is located. It is known that 

the Null length is exactly 2656T: however. this is not the length seen when the null 

region in Figure 6-6 is examined closely. As this signal contains transmissions from 

multiple transmitters, a slight overlap is present and the end of the secondary signal's 

final OFDM symbol overlaps that of the primary signal as may be seen highlighted in 

the figure. 

At this point in the processing, it is not important that an overlap is present as it is the 

end of the Null Symbol that is needed in order to align for the next processing stage. 

Therefore, the search for the first null symbol is an iterative process which runs from 

left to right in the plot, testing the absolute amplitude of the current position in the 
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frame with those around it. Whilst the Null Symbol length may not he detectable as 

2656T due to secondary transmissions, it is knoNNn that the period will be no less than 

2152T due to the DAB signal design. 

Figure 6-6: Closer view of NullS; 'mhol 

The search window T�,, \ can be defined as: 

TWIN 
- 

TNULL - TGI 6.1 

Where Tyr 11 is the length of the Null Symbol and T;, is the length of the OFDM 

Guard Interval. This gives a minimum window length to search for and after a 

number of iterations, identifies the Null Symbol. Having found this region. the end of 

it must be found precisely in order to correctly identity the second part of the 

Synchronisation Channel, the TFPR symbol. This is relatively simple to find by 

testing each null point against the next in the sequence until a rise in the value is 

encountered. At this point it is assumed that the rough start of the OFDM symbols has 

been found and processing can continue. 
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6.4 DEFINING THE FIRST OFDM SYMBOL 

The first OFDM Symbol in the DAB frame is the Time-Frequency-Phase Reference 

Symbol, the sole purpose of which is to align the remainder of the frame and to allow 

for decoding of the Fast Information Channel. The rough start of this symbol has been 

identified, or at least the Guard Interval associated with it, therefore the length of an 

OFDM Symbol (T,,,.,, A, ) is defined as below, where Tr sc is the length of the useful 

symbol portion, and T,;, the length of the Guard Interval: 

TOFDM = "USE + TGI 6.2 

With this in mind, the symbol itself can be extracted and the Guard interval defined 

(Figure 6-7). 

Figure 6-7: Defining the first OFDM Srmhol (TFPR S nibo! ) 

The useful symbol portion can now be extracted and run through a Fast Fourier 

Transform algorithm (Cochran et al., 1967) to display the OFDM symbol in the 

frequency domain. This is performed so that the frequency errors can be removed. 
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6.5 CORRECTING THE FREQUENCY OFFSET 

In its current state, the symbol being processed contains errors in the frequency 

domain. This is discussed in detail in (Rugini and Banelli. 2005) and is due to errors 

in the receiver oscillator (the USRP front-end in this case) and the channel the signal 

travels through from transmitter to receiver. This is a two-stage process involving the 

correction of the coarse frequency (integer number of kHz) offset and the fine 

frequency (fraction of kHz) offset. 

6.5.1 Fine Frequency Offset 

The fine frequency offset correction involves the comparison of the symbols Guard 

Interval (GI) with its duplicate section (refer to Figure 4-7). Although these regions 

are identical when transmitted, because of secondary signals and other error sources 

through the channel, they do not arrive at the receiver as such. It is the comparison of 

these regions which allows the receiver to calculate the fine frequency offset, by 

plotting these symbol portions side-by-side (Figure 6-8). it can clearly be seen that 

although the two vectors largely map to each other, the left side of the plot shows 

some interference. 

Figure 6-8: Comparison of Guard Interval with OFDM Symbol end 
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This difference can then be calculated by taking the dot product of the two complex 

vectors (van de Beek, 1998) - Figure 6-8 only shows the absolute values for ease of 

viewing - as shown below where a is the complex vector of the Symbol End (504T), b 

is the complex vector of the Guard Interval and EFJ, vE is the resulting correction value 

in Hz: 

atan2(Z(corr), 9t(corr))1 6.3 
EFINE = Zit 1 C 

Where: corr =ax bT 6.4 

The current symbol can then be corrected for the fine frequency offset by the 

calculation as follows: 

(i =c" ef2Ti EFINE'f 6.5 

Where d is the symbol corrected for fine frequency offset, c is the same symbol before 

correction and f is the vector of values defined as: 

2047 

f-12.048 1 

x106 
6.6 

i=0 

6.5.2 Coarse Frequency Offset 

Having corrected the fine frequency offset, the coarse frequency offset must now be 

calculated and applied. For this purpose, the symbol of interest is represented in the 

frequency domain by applying a FFT algorithm (Figure 6-9). This technique requires 

the comparison of the empty carriers lying to the sides of the signal with the carriers 

switched on. The purpose of this is to move the symbol an integer number of carriers 
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(integer number of kHz) so that it `fits' precisely in the processing window to continue 

decoding. 

This is done by moving a comparison window over the signal fringes denoted by A 

and B in Figure 6-9. It is known that when the signal is centred correctly, it will lie in 

the region ±768 kHz of 0, with the central suppressed carrier. f . at 0 kHz. This gives a 

total width of 1537 carriers including. f.. 

Figure 6-9: OFDM Svn hol represented in the frequency domain 

. 
following fine error correction 

As the partial (fine) frequency offset has been calculated previously, this is simply a 

testing algorithm by shifting the window until the local maximum sum of 1537 

carriers is found. This completes the frequency offset correction. 

6.6 GENERATING THE TFPR SYMBOL 

The Time Frequency Phase Reference Symbol was briefly introduced in 4.5.1 as the 

first OFDM symbol in the DAB frame. As this frame is always identical in all DAB 

transmissions, as part of the ETSI 300 401 standard (European Broadcasting Union, 

1997). it can be re-created locally in the receiver. 
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6.6.1 CAZAC Sequence 

The symbol is composed of a complex sequence known as a Constant Amplitude Zero 

Auto-Correlation (CAZAC) code. As the name suggests, CAZAC codes have the 

following properties (Heimiller, 1961): 

0 Constant amplitude in the frequency domain 

" Zero out-of-phase auto-correlation in the frequency domain 

0 In-phase correlation of modulus one in the temporal domain 

6.6.2 Symbol Generation 

One of the most critical stages of the processing involves the generation of the correct 

CAZAC sequence within the receiver so that cross-correlation may be performed with 

the received symbol later in the process. The symbol is defined in (European 

Broadcasting Union, 1997) by equation 6.7 where 1= 1. 

ejcok for-K/Z<_k<0and0<k<_x/2 6.7 
ZIA 0 fork =0 

Where: ck =2 (hi, 
k-k, + n) 6.8 

The values of k, k', n and i can be found in Table 12 on page 216 and the values of j 

and h can be found in Table 13 on page 217. This gives sufficient information to 

create the TFPR code for transmission mode I. The phases are calculated from 

equation 6.8 and plotted against T as shown in Figure 6-10. 
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Figure 6-10: TFPR Sequence Phases 

At this stage the central suppressed carrier has not been taken into account. therefore 

this is inserted into the central position of the phase sequence to increase the length 

from 1536T to 1537T (central carrier at 769T). The in-phase (1) and quadrature (Q) 

components of the symbol are then calculated from equation 6.7, and can be seen 

plotted in the 2D 1-Q planes and 3D 1-Q against time Tin Figure 6-11. 
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Figure 6-11: TFPR Symbol plotted as I-Q (left) and I-Q against tine T (right) 
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This gives the basic TFPR symbol represented in the frequency domain. This symbol 

can now be passed through an inverse FFT to show the constant amplitude nature of 

the sequence in the frequency domain when compared to that of the temporal domain. 

Figure 6-12 shows the modulus of the sequence in both the frequency (blue) and 

temporal (red) domains. plotted on the same axis. The central suppressed "tuning' 

carrier can be seen clearly at position 769T on the frequency plot. 

r TFPR Symbol (Frequency Domain) 
TFPR Symbol (Temporal Domain) 

0 
0 500 1000 1500 

T 

Figure 6-12: Comparing the TFPR S1'mhol in Frequency/Temporal Domains 

By performing an auto-correlation of this 1536T sequence and plotting the modulus of 

the result, the following can be seen in Figure 6-13. 
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Figure 6-13: Auto-correlation of generated TFPR symbol 

In this plot it can clearly be seen that the auto-correlation maximum at position 1536T 

has amplitude of I11. 

6.6.3 Zero-padding 

Now the symbol has been successfully created using the parameters described in 

(European Broadcasting Union, 1997), zero-padding must be applied in the frequency 

domain in order to match the size of the capture window. 

The re-sampled capture window has a length of 2048T, which is composed of 1536 

useful OFDM carriers, I suppressed central carrier and a fringe either side of the 

signal of length 256T (from -769 to -1024 kHz and +768 to + 1024 kHz). The TFPR 

symbol as it stands currently has a window width of 1537T. Therefore. in order to 

match the received symbol, the fringes of the generated symbol must be zero-padded 

so that they match. 
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e; Length 2553T 
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c) Length 2049T 

Figure 6-14: Modification of the basic TFPR srmho! within receiver 

The charts (a - e) in Figure 6-14 show the five step process the receiver generated 

TFPR symbol must undergo in order to match the received signal. This process is 

undertaken as opposed to further processing of the received signal in order to provide 

the longest possible code length which becomes important in the following section. 

Chart a shows the modulus of the TFPR symbol as defined by the ETSI specification 

(European Broadcasting Union. 1997) and represented in the temporal domain. This 

symbol is processed using an FFT in order to present the symbol in the frequency 

domain. Chart b in Figure 6-14 shows the result of this process and highlights the 

constant amplitude nature of the symbol in the frequency domain. Chart c shows the 

position of the zero-padding placed either side of the OFDM symbol in order to 

expand and match the capture window (2049T). This is passed back through an 

inverse FFT to represent the signal in the temporal domain. The symbol is now in a 
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position to perform cross-correlation with the received symbol established in section 

6.5. 

6.7 TFPR CROSS-CORRELATION 

The cross-correlation process involves the comparison of the IQ values in the received 

and generated symbols in order to establish the correlation coefficients of each. It has 

already been shown that the auto-correlation function (the correlation of the generated 

function with itself) has excellent and easily distinguishable code correlation 

properties. 

There are a number of additional factors to examine at this point. Firstly it is known 

that each signal will travel through a unique channel containing background additive 

white Gaussian noise (AWGN) and or channel fading dependant on the surrounding 

structures. Secondly, there will likely be more than one signal arriving at the receiver 

on the same frequency, and this could arrive before, at the same time or after the 

arrival of the primary (strongest) signal. The signal that the software receiver initially 

locks on to is defined by the null symbol search and subsequent definition of the first 

OFDM symbol as detailed in 6.3 and 6.4. 

In order to establish the strongest possible cross-correlation, simulations can be 

performed involving changing some of the key characteristics of the incoming signals. 

The following sections (6.7.1 to 6.7.5) show the simulation processes and the 

conclusions that can be drawn from them. 

6.7.1 Comparing the TFPR sequence length (auto-correlation) 

This simulation compares the varying lengths of the TFPR symbol which were shown 

in 6.6.2, using the symbol in the following states: 

1. The sequence as defined in the ETSI specification - length 1536T. 
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2. As I with the addition of the central carrier - length 1537T. 

3. As 2 with the addition of the zero-padding in the frequency - length 2049T. 

4. As 3 with the addition of the guard interval - length 2553T. 

The correlation is performed using the complex signal in the temporal domain and is 

displayed in Figure 6-15, with the results of the maximum peak correlation 

coefficients in the table below. The side lobes represent the amplitude of the 

correlation coefficients at ±I lag from the maximum peak. The importance of this 

will become relevant later when multiple signals and multipath are examined. 

TFPR Symbol Length Max Peak Amplitude Side "Lobes " Amplitude 

1536T 1.0000 0.0004 

1537T 0.9993 0.0007 

2049T 0.7496 0.2245 

2553T 0.9326 0.2761 

Table S. Results when comparing TFPR sequence length for cross-correlation 

Clearly the shortest length of symbol yields the highest maximum peak amplitude 

possible in this test. 

87 



Position Estimation using the Digital Auclio Broadcast (DAB) Signal 

1.5 

ýý 
a 
s 
0 

0.5 

0 

1.5 
t537T 

i 
Et 

U£ 

X 

05 

U 

2520 2540 2580 2580 2600 
T 

C 

E U 
C 

I 

1.5 
ý1598T. 

0.5 

Uý 

2520 2540 2560 2580 2600 
T 

Figure 6-15: Comparison of TFPR length auto-correlation 

6.7.2 Comparing TFPR sequence length with additional delayed signals 

The process now moves on to look at adding an additional two signals to this channel 

and performing the test again. The two weaker signals will be simulated so one 

arrives slightly before the primary (strongest) signal and the second slightly after. The 

values for this simulation are shown below: 

Signal Lag (T) Relative Power 
Signal l (Primary) 0 100% 

Signal 2 -25T 60% 
Signal 3 +35T 30% 

Table 6: Simulation parameters 

Each TFPR signal is produced from the basic generated sequence. with the channels 

zero-padded in the temporal domain to create the correct length (for example. zero- 

pad of 25T, the 2553T of the TFPR symbol and zero-pad of 35T). Signals 2 and 3 are 
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also given a reduced power as a percentage of the primary signal. which is the signal 

the earlier processing will align with. 

For example. Figure 6-16 shows this process in diagrammatic form. Three signals are 

shown with different lags. Diagram a) shows the null end position of the strongest 

signal being found and the total symbol length and hence guard interval and useful 

symbol defined. Diagram b) shows the removal of the remainder of the two 

secondary signals while diagram c) shows the final portion of the incoming signal 

about to be passed through a FFT. 

This means that power is being lost from the secondary signals, which are thus 

receiving less-obvious correlation peaks. 

Time -------------------------------> SignaI1(Primar ) 
504T 2049T 

a Signal 2 

0 Signal3 

Null Detection point 

0 Signal2 Arrival 
Difference 

b) IIi Signal 3 Anival 
Difference 

Zonesi eiuoved 

-------------------------------------- 

c) 

Figure 6-16: Processing window problem 

The outcome of this simulation can be seen in Figure 6-17. 
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Figure 6-17: Comparison of TFPR symbol length cross-correlation 

All four of the cross-correlation functions clearly show the three signals, with the 

results shown beloNN in Table 7. 

Sequence Measurement Signal1 Signal 2 Signal 3 

1536T 
C'orrel. C'oef f 1.008 0.5272 0.3464 

Measured Lag (T) 0 -19 +26 

1537T 
Correl. Coefj: 1.007 0.5234 0.3483 

Measured Lag (T) 0 -19 +26 

2049T 
Correl. Coed: 0.7556 0.4472 0.2936 

Measured Lag (T) 0 -25 +35 

2553 T 
Correl. C'oeff 0.9405 0.5634 0.3691 

Measured Lag (T) 0 -25 +35 

Table 7: Results. from simulation of multiple delayed signals 

This immediately shows that the two secondary signals lag measurements for the 

sequence lengths I 536T and 1537T are incorrect (highlighted in grey), although their 

cross-correlation properties appear to be better defined. 
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The error in these sequences is directly related to the ratio of the difference in 

sequence length: 

2048T- 
_ 

(16) 6.9 

Where TT is the measured signal delay and T, the true signal delay. This difference 

provides the Time Difference of Arrival measurement required to calculate the 

position of a receiver. 

6.7.3 Comparing TFPR sequence length through noisy channels 

The same simulation in 6.7.2 is now performed but in this instance varying amounts of 

AWGN are added to each channel. It is assumed that the weaker the incoming 

secondary signal is relative to the primary signal, then the lower the Signal-to-Noise 

ratio (SNR) will be. The values applied are shown below in Table 8: 

Signal Lag (T) Relative Power SNR (dBii9 

Signal 1 (Primary) 0 100% 50 
Signal 2 -25T 60% 30 
Signal3 +35T 30% 15 

Table 8: Simulation parameters for 6.7.3 

As it is known where the cross-correlation peaks are going to be already, it is still easy 

to spot them (Figure 6-18), however, using a searching algorithm for this process may 

prove more difficult due to the amplitude and proximity of peaks which are not 

secondary transmissions. In particular, signal 3 (the smallest of the three peaks, 

marked with an arrow on each chart) has a number of correlation peaks in the vicinity 

of the true signal which could cause an incorrect match in the receiver. As would be 

expected, the ambiguous correlation peaks are most apparent in the two smaller code 
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sequences of 1536T and 1537T. with the maximum code length of 2553T yielding the 

clearest correlation spikes. 
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Figure 6-18: Comparing TFPR symbol length cross-correlation with vaqing SNR 

The scenarios in 6.7.2 and 6.7.3 have both used the same secondary signal delays: 

however, as the null detection algorithm "locks" onto the strongest signal which then 

defines the symbols (+2553T from the null detection position), the full power of these 

additional signals is not being used (as shown earlier in Figure 6-16). 

6.7.4 Cross-correlation over a wider input window 

The problem highlighted in section 6.7.3 can be recovered by running the cross- 

correlation over a longer symbol length This means that the two shorter TFPR 

sequences (1536T and 1537T) can no longer be used, as in order to do this the 

incoming symbol must be passed in the temporal domain through a FFT. remove the 
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"empty" carriers and then back through an IFFT to perform the cross-correlation in the 

temporal domain. 

Therefore, both the 1536T and 1537T sequence lengths can now be ignored. The 

remainder of this section will concern only the 2553T sequence as the tests undertaken 

so far have shown that it has outperformed the 2049T sequence, giving results with 

higher correlation-peak to noise ratios and correct lag times. 

This simulation. as with previous ones. assumes that the null detection algorithm has 

run meaning that the process is in a position to define symbols. Rather than extract 

the 2553T length of the incoming signal, this is extracted in addition to ±504T (guard 

interval length) giving a total incoming symbol length of 3561 T. 

This can be done as it is known that any overlapping transmitter footprints are 

designed to arrive in the guard interval of each. due to the precise synchronisation of 

the networks (European Broadcasting Union. 1997, Hoeg and Lauterbach. 2003). 

Uu g 0 hiW TFPR me (2563T) Usip d"F"Md TFPR +2 Curd Intends (3661 T) 
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Figure 6-19: Comparing TFPR Symbols 

Using the defined TFPR. vvmbol only (25537) (left) and the defined TFPR plus two 
Guard Intervals (504T + 2553T + 504T) (right) 
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The charts in Figure 6-19 show the process used previously on the left (comparing the 

incoming 2553T and the generated 2553T), and the process proposed above using an 

additional 504T at either end of the defined symbol (right plot). As would be 

expected, the correlation coefficient value of the primary signal remains the same as 

the complete symbols energy are used in both cases; however, the two secondary 

signals show a marginal increase in amplitude on the right plot. Although the 

increases shown here are small, if the secondary signal lag was measured in the 

hundreds of T, then a substantial amount of signal power would be lost using the 

earlier method. Reclaiming this power helps to define the correlation peaks at their 

maximum amplitude and allow the receiver to identify them as easily as possible. 

6.7.5 Conclusions 

This section has examined the variety of ways lags might be measured between 

multiple arriving signals. Simulations have been used to investigate the addition of 

noise, the separation of multiple signals arriving at different lags and at different SNR. 

The use of different sequence lengths has also been examined in addition to their auto 

and cross-correlation properties, and deciding upon a particular approach to use in the 

processing of real signals. 

The distance between lags (in T) will be used as the TDOA measurements to calculate 

the position of a receiver using the Least Squares process (described in 6.10). 

However, before this can be performed, the locations of the transmitters themselves 

must be determined. The subsequent chapter will examine this process. 
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6.8 TRANSMITTER IDENTIFICATION INFORMATION (TII) 

The Transmitter Identification Information (TII) codes embedded in the DAB signal 

are broadcast every second frame and contain unique codes allowing a receiver to 

theoretically identify the region it is located in and the transmitters that information is 

currently being received from. 

The code is defined by a basic Frequency Division Multiplexing (FDM) approach with 

each transmitter switching on pairs of carriers during the III null period which are 

subsequently decoded in the frequency domain. The code is divided into two parts; 

firstly the region code or pattern numberp is defined by the pattern of the switched-on 

neighbouring carrier pairs in the frequency domain and secondly, the transmitter code 

or comb number c is represented by the position of these carrier pairs on the frequency 

axis. 

In transmission mode I, this code is spread over a bandwidth of 384 kHz and then 

repeated three times to cover a total bandwidth of 1537 kHz (1536 with the removal of 

the suppressed central carrier). The purpose of this is to allow a receiver to decode the 

TII even when there is heavy fading present on the broadcast channel. 

The TII signal ST�(t) broadcast from a particular transmitter is defined by equations 

6.10 to 6.14, found in (European Broadcasting Union, 1997): 

+oo 
K/2 

STII t Re e2j"fct 
z 7. 

zm, 0, k x 9T11, k (t - mTF) 
6.10 ýý - 

m=-oo k=-K/2 

Where: 9Tn, k(t) - e2aik(t-TNULL+Tu)/TU x ReCt(t/TNULL) 6.11 

TM, u is the length of the null symbol (2656T); TI, is the length of the useful OFDM 

symbol (2048T) and f, is the centrally tuned frequency of the DAB signal. 
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The function Rect(t) is defined as: 

(1 if0 
_ t<1 6.12 

Rect(t)=10 if t<0ort>_1 

Zm, o, k = A,, p(k) x ejcok + A,, p(k - 1) x eJ`'k-1 6.13 

The sequences are encoded within the null symbol of the relevant frame and, as with 

the processing of the OFDM symbols, are decoded in the frequency domain. During 

the null period, a number of sub-carrier pairs are switched on and each of these sub- 

carriers broadcasts a complex number (zm. o, &) which is defined by equation 6.13, where 

the individual carrier positions (k) are defined by the region and transmitter codes. 

A,, p (k) = 

7 
1 S(k, -768 + 2c + 48b) x ab (p), 
b=0 

7 
1S (k, -384 + 2c + 48b) x ab (p), 
b=0 

7 
li S(k, 1+ 2c + 48b) x ab(p), 
b=0 

7 

a(k, 385 + 2c + 48b) x ab (p), 
0 

- 768: 5 k< -384 

-384<-k<0 

6.14 
0<k<-384 

384<k<-768 

The values for ab(p) can be found in Table 14 on page 217, where 8 is known as the 

Kronecker symbol. This is defined as: 

45(i. l)_{0 
if i*j 

6.8.1 TII Example 

6.15 

Once broadcast and defined at the receiver, the TII signal is presented in the frequency 

domain. Figure 6-20 shows how a perfect TII signal would appear. In this instance 
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the region code 69 is being broadcast (binary value III1000 0). Each black line 

represents a pair of carriers spaced by 1 kHz, with each bit in the 8-bit sequence 

separated by 48kHz. As the code is repeated three times across the bandwidth of the 

signal, the code is represented twice either side of the central frequency. f. 

11110000 

II- Ti! Signal (on) 

TIl Signal (off) 

OFDM Symbol 

48 kHz f 

384 kHz 

Figure 6-20: Example of Tu signal represented in the frequency domain 

This process makes the TI! symbol easy to identify if there is only one transmitter 

present, but to be able to position the receiver then a minimum of three (or later. two) 

transmitters on one transmission block is required in addition to the need to 

distinguish between them. 

6.8.2 Code Separation 

The following section will examine the use of real data captured and processed at a 

known location, and attempt to separate and identify multiple transmitter T11 signals 

within a capture. In this process, the primary null has already been identified and 

therefore the symbol lengths defined. The length of the null symbol is known so this 

portion can be extracted, however at this point the reader should refer again to Figure 

6-6 on page 76. This plot shows where the null symbol is, providing there is only one 
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signal present. It also shows the region (green box) where the overlap from 

subsequent signals is present. 

As has been stated previously. it is known that signals can only arrive in the guard 

interval of the closest/strongest signal; therefore it is subsequently known that the 

minimum portion of the null symbol where the Tll symbol is not swamped by the final 

OFDM of the secondary transmission (the useful portion of the null symbol) will be: 

TWIN = TNULL - TGI 
6.16 

Where T. \. 171 is the length of the null symbol and T(; / the length of the guard interval. 

In the case of transmission mode I. the value for TWIN used here is 2152T. Therefore a 

window of length 2049T can be defined back from the null symbol detection position 

in the temporal domain and the result run through an FFT. giving the correct carrier I 

kHz separation allowing the receiver to decode the T11. 

If trying to detect the presence of multiple weak signals, this process can be performed 

iteratively (see Figure 6-21). shifting the 2049T window by IT (A) until the start of 

the TFPR symbol is reached. 

1200 ----- -- ----ý--- ý __-- 2656T_ 

^I000_ 
1 2152T 

31 
------------------ 

ProcPSting Window 
(2049T) 

1 

1.6 14 1.48 149 1 

Time (T) 
SI 

, 10 

Figure 6-21: Processing the TII using an iterative processing window 
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The results may then be averaged in order to extract as much power from each signal 

as possible. The result is then displayed in the frequency domain (Figure 6-22). 
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Figure 6-22: Tu Signal in the frequency domain 

It is known that the T11 code is broadcast four times over the bandwidth of the signal. 

therefore, the resulting frequency plot can be divided into four with the result being 

averaged in order to search for the region codes used in the broadcast. The result of 

this is shown plotted in Figure 6-23. This is the maximum TII power that can be 

received in a single frame. 

6.8.2.1 Finding the Region Codes 

In order to identify the transmitters received and hence the transmitter positions, the 

region (or regions) currently being received must be correctly identified. As has been 

shown previously, there are a maximum of 70 region codes (0 - 69) used on band III 

transmissions in the UK. so in order to identify the correct regions, each code in the 

frequency domain must be constructed with the purpose of testing these against the 

received code. 
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Figure 6-23: Averaging; the four TII quadrants 

Referring again to Figure 6-23, it can be seen that the frequency axis has been 

subdivided into the eight 48kHz TII code bits, and in this scenario it is clear that the 

region code has a binary value of "1 1 10 000 1". This code can be cross-referenced 

with Table 14 on page 217 in order to determine the final region (65 in this case). 

In order to perform this in the receiver with optimum efficiency, the region codes used 

in the UK at the current time are generated. At the time of writing there were 18 

different regions in the UK, therefore the binary values of each are used to switch bits 

on and off accordingly. The mean value of the amplitudes of each carrier pair are 

taken for each code. This can be visualised by plotting, as seen in Figure 6-24 and 

then by "flattening" the 3D plot along the Region Codes axis, giving the maximum 

amplitude of all codes at each I kHz spacing and identifying the code associated with 

each maximum. In Figure 6-24, the right hand plot shows this flattening, allowing 

identification of the maxima in each code. 
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A similar example is shown in Figure 6-25; however in this example the receiver is 

using the national commercial network and receiving transmissions from seven 

transmitters across three regions. 

Figure 6-24: Testing; UK region codes against received TH - Simple example 

14(W 

1700) 

11000 12000 

14000 
10000 

1. UCn) 10000 

9000 

t000U 

8000 8000 

7000 
6000,4N0 

6000 

2IX10 

*16,5000 
4000 

60 4ri00 

2000 

Region Code Stu lip. 1a-1 
05 

10 15 20 i5 N, 40 4' 

M- 1Z 

Figure 6-25: Testing UK region codes against received Tu - Complex example 

At this stage a position has been reached to identify the individual transmitter codes. 
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6.8.2.2 Finding the Transmitter Codes 

As has been mentioned previously, each transmitter broadcasts its signal as a pair of 

carriers when viewed in the plots in Figure 6-24 and Figure 6-25. The region codes 

for each of the identifiable carrier pair peaks are now known and the transmitter itself 

may be identified by identifying the x-axis intercept of these peaks and using equation 

6.14. Once identified, this code can be cross-referenced with a database of individual 

transmitter codes available from (Moldon. 2010). This gives the location of each 

transmitter using the standard UK reference frame, OSGB36. 

6.8.2.3 Transmitter Position Database Accuracy 

The accuracy of the DAB transmitter database as found in (Moldon, 2010) is limited 

to an OS grid reference of 100m2, with each location listed as an OS grid reference. 

The grid reference details the lower left corner of the grid square the transmitter is 

located in, thus giving a position ambiguity of up to 141 in (Figure 6-26). 
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Figure 6-26: Transmitter location database accuracy' 

The effect of this potential offset will be examined later during the system testing 

phase of this project. 
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6.9 MATCHING CORRELATION COEFFICIENTS TO Tu 

At the current stage in the process. information from the raw signals has been 

successfully extracted; the timing information from the cross-correlation of the TFPR 

symbol and the transmitter identification from decoding the TI! codes. 

This now means that the two must be matched in order to be able to use the least 

squares positioning process. It can be seen in the following two charts (Figure 6-27 

and Figure 6-28) that at least six transmitters are being received at the receiver's 

location. The transmitter TII codes as presented in Figure 6-27 show the varying 

amplitudes of each signal represented in the frequency domain, whilst the associated 

correlation coefficients in Figure 6-28 are represented in the temporal domain. 

Figure 6-27: Example incoming TI! Code 

For each TII pair present, the average value of both carriers is taken and compared to 

the detected correlation peak values. When comparing Figure 6-27 and Figure 6-28, it 

can be seen that peaks occur at approximately the same amplitudes. For ease of 

viewing, these have been highlighted and numbered in both charts. 
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Figure 6-28: Example cross-correlation plot fier Figure 6-27 

Due to all transmissions emitting the same TFPR symbol, there is no way to separate 

them based on transmitted code. This also means that errors can be introduced into 

the system when two or more transmitter's timing information are incorrectly 

matched. Therefore, a threshold was built in to this part of the signal processing 

where coefficients of similar amplitudes are compared to all Tll values extracted. 

This is an iterative process with each tested pair being passed to the following Least 

Squares process where most incorrectly matched pairs will not converge on a result. 

If more than one converged result occurs, then that with the lowest HDOP value is 

taken as the correctly matched pair. 
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6.10 POSITION ESTIMATION USING LEAST SQUARES 

As the two key factors have now been established allowing the system to position a 

receiver, these values must be fed into a least squares process. This process is defined 

as follows. Firstly, as the position of the transmitters is known by decoding the Tll 

signals, these positions can be plotted and the relative positions of the receiver as seen 

in Figure 6-29. In this case, the minimum of three transmitters have been identified. 

sufficient for a 2D position. 
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x 

Figure 6-29: Test La; 'out of Transmitters & Receiver 

The unknown ranges between each transmitter and the receiver R can be defined by 

equations 6.17 to 6.19: 

T1R - (Rx - Tlx)2 + (Ry - Tly)2 6.17 

z T2R = (Rx - Tzx)2 + ýRy 
- 7'zy) 6.18 
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T3R = (R., - T3 )2 + (Ry - Tay)2 6.19 

Each range (TIR to T3R) can be expressed in terms of signal transition time (t�) by 

dividing by the speed of light in a vacuum, c: 

tn _ 
TCR 

6.20 

As the precise transmission time of each signal is not known, the TDOA values are 

used rather than TOA (both discussed in chapter 5); therefore two independent TDOA 

measurements at the receiver are defined relative to the ranges as: 

TDOA1 = It2 - t1 l 6.21 

TDOA2 =I t3 - tl 1 6.22 

Therefore the difference in ranges (z21 &231) can be defined as: 

z21 = 
ý(Rx 

- Tzx)2 + (Ry - Tzy)2 - 
ý(Rx 

- T1 )2 + (Ry - Tiy)z 6.23 

z31 = 
ý(Rx 

- Tsx)2 + (Ry - Tay)z - (Rx - Tix)2 + (Ry - Tly)z 6.24 

The terms in brackets can be defined and then expanded: 

Znm = an - am 6.25 

Where: an = (Rx - Tnx)2 + (Ry - Tny)Z 6.26 

And: 
am = (Rx - Tmx)2 + (Ry Tmy)2 6.27 

an = [RX2 - 2RXTnX + Tnx2] + [Ry2 - 2RyT�y +T 2] 
6.28 Expanding: 

am = [Rx2 - 2RxTmx + Tmx2] + [Ry2 - 2RyTmy + Tmy2] 6.29 

This equation is then differentiated wrt a: 

Sz 1 
_1 

a-=2a 2 6.30 

Sa 
SxR = 2RX - 2Tnx 6.31 
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SZ 1 Rx - Tnx 

Sz 2- 
(2Rx - 2Tnx) =26.32 

ýRx-7'nx)2+(Ry-Tny) 

Sz 
_ 

RX - T,, X 6.33 
SxR Tl R 

Therefore the final partial differentials are as follows to solve for the first transmitter 

pair: 

8z1 
_RX-T1XRx-T2z 6.34 

SxR Tl R T2 R 

8z1 
_Ry 

- Tiy Ry-T2y 
6.35 

SyR Ti R T2 R 

And therefore the second transmitter pair: 

8z2 
- 

RX - Tix RX - T3X 
6.36 

xR T1R T3R 

Sze 
_Ry-TlyRy-T3y 6.37 

SyR T1 R T3 R 

The position of the receiver can then be solved for by least squares using the following 

matrix operations. TDOA, and TDOAZ represent the observation measurements taken 

by the receiver which can be expressed as ranges (from equation 6.20). 

TDOA measurements: 2= 
[TDOA11 
TDOA= lctl ct3I 

6.38 
21-3 

1szl szi 

H= 
SxR SyR 

6.39 1Sze Sze 
SxR SyR 

Where: x= (HT H)-1HT z 6.40 

Sx = (HT H)'1HT Sz 6.41 

Sz=z -z6.42 
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Where 2 is the initial guess of the receiver's position and z is the value from the 

receiver. After the first iteration, 1 is updated with z and the process then continues. 

The accuracy of the initial guess defines the number of iterations required before a 

usable solution is found. This can take a number of iterations, depending on the 

quality of the initial guess input to the system. 

Solutions which do not converge on a result are rejected, with the system then 

continuing with the following DAB frame. The raw measurements are extracted from 

this frame and the process continues. 

6.11 SUMMARY 

This chapter has presented the complete signal processing flow, from the capture of 

the raw DAB data, to establishing the Time Difference of Arrival measurements based 

on the signal lags and finally the positioning process solved using Least Squares. It 

has also been shown how to find the position of any transmitter by decoding every 

second null symbol and to match these results to the correlation coefficients. The 

system at this stage has been constructed for the purpose of static positioning only. A 

number of key differences are shown in chapter 8.11 for the dynamic positioning 

experiments. 
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% UK DAB COVERAGE 

7.1 INTRODUCTION 

This chapter will examine the current potential positioning performance of the DAB 

networks in the UK by modelling the true locations of transmitter antennas heights 

and the varying height of a receiver. An analysis has been performed by placing a 

hypothetical grid over the UK, based on OSGB36 coordinates (Easting/Northing) and 

calculating the Horizontal Dilution of Precision (HDOP) at each grid intersection. 

Figure 7-1 shows how the simulation has been constructed. 
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n 

Figure 7-1: HDOP Simulation Setup 
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At each grid intersection (circled in the figure), the linear distance is calculated to the 

three transmitters (T1 to T3). As the position of both receiver (grid intersection) and 

transmitters is known during this simulation, the HDOP value of the transmitter layout 

can be calculated based on the TDOA timing expected from these positions. The 

resolution of the grid acts as the time-step (A) of the calculation, which can be as 

detailed as required. The transmitters are located at their true locations (details taken 

from the Ofcom website (Moldon, 2010)) which may lie between intersection points. 

The HDOP measurements at each grid intersection were calculated based on TDOA 

measurements from the transmitters within a range defined by the heights of the 

transmitting and receiving antennas. The transmitter's receivable range at each 

receiver position was calculated using the Hata model (discussed earlier in section 

3.6.5) and the subset of available transmitters in the area created based upon this 

analysis. 

7.2 SIMULATION 1: NATIONAL COVERAGE 

The first simulation examines the UK as a whole on a grid of 700km x 1000km. The 

spatial resolution (A) used was lkm. The results from this are shown in Figure 7-2 

through to Figure 7-7. Each figure shows both the individual transmitter coverage 

footprint (left chart) and the HDOP values based on a minimum of three transmitters 

to find a 2D position. 

Block I ID is the only national network presented here due to the lack of transmitter 

height information available for the BBC national network (12B). The remaining 

blocks represent either local or regional networks. For this simulation, the receiving 

antenna is fixed at an altitude of 3 metres (value chosen as this was the approximate 

height of the dipole antenna when fitted to the test vehicle). 
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Figure 7-2: Simulation using DAB transmitters on block IIB 

Figure 7-3: Simulation using DA B transmitters on block II C 
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Figure 7-4: Simulation using DAB transmitters on block I ID 
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Figure 7-5: Simulation using DAB transmitters on block 12A 
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Figure 7-6: Simulation using DAB transmitters on Klock 12C 

Figure 7-7: Simulation using DAB transmitters on block 12D 
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As can be seen from these results, the coverage of transmitters around the UK varies 

depending upon the DAB block from which they are broadcast from. HDOP values 

on block 11D shows that the majority of the country lies in a region where two or 

more transmitters are viewable at any one time, from a national network alone. Areas 

not covered by this approach tend to lie in regions where GPS would not suffer poor 

coverage (urban environments). This also provides the motivation of a terrestrial 

based alternative to GNSS. 

7.3 SIMULATION 2: LOCAL COVERAGE 

This simulation examines the testing region used in DAB positioning tests which 

follow this chapter. In this scenario, the focus of the simulation is shown on the UK 

map below in Figure 7-8 within the black rectangle. This area is grid of 100km X 

105km with a spatial resolution of 100 metres. This region was chosen as it contains 

many areas which will later be used for system testing. Results follow in Figure 7-9 

through to Figure 7-14. 

woo . ýT 

mo 

sm ror 

? V 

a 

s° ü 
4m 

m 

- 

Q 

2m - 

,m 

1W m0 3w go sm No 7W 
M 

Figure 7-8: Region used for local region simulation 
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Figure 7-9: Simulation using DAB transmitters on block IIB (local region) 

Figure 7-10: Simulation using DAB transmitters on block IIC (local region) 
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Figure 7-14: Simulation using DAB transmitters on block 12D (local region) 
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Figure 7-12: Simulation using DAB transmitters on Klock 12A (local region) 

Figure 7-13: Simulation using DAB transmitters on block 12C (local region) 
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The simulation has shown the same results as used for the national simulation but 

within a smaller area and at a higher resolution. It can clearly be seen in this region 

which transmission frequencies offer either a standalone or combined solution. Block 

I1D (Figure 7-11) naturally contains the highest number of transmitters being one of 

the two current national networks. 

7.4 SIMULATION 3: RECEIVER ANTENNA HEIGHT 

This final simulation examines the same region (using the same spatial resolution) 

from section 7.3 but varies the receiving antenna height between 1 and 100 metres. 

Each figure shows three plots. the left plot indicates the HDOP available if the antenna 

is I metre above ground-level, 10 metres in the central plot and 100 metres for the 

right plot. The model is otherwise identical to that in 7.3. 

The purpose of this simulation is to examine the effect of changing receiver antenna 

height by an order of magnitude has on a DAB positioning receiver, in order to be able 

to "see" sufficient transmitters to calculate a fix. The heights in this case were chosen 

as being the most likely range at which a DAB antenna would be situated above the 

Earth's surface. Figure 7-15 to Figure 7-20 over the following pages show the results 

of this simulation for the same transmission blocks as used previously. 

Figure 7-15: Simulation varying; receiver height on block 11B (local region) 
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Figure 7-16: Simulation varying receiver height on block II C (local region) 

Figure 7-17. " Simulation varying receiver height on block I ID (local r(-, gion) 

Figure 7-18: Simulation varpina receiver height on block 12A (local region) 
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Figure 7-19: Simulation var; 'inl; receiver height on block 12C (local region) 

Figure 7-20: Simulation varying receiver height on block 12D (local region) 

These results show the quality of TDOA positioning when the antenna is positioned 

above ground-level at the levels indicated on the charts. As more transmitters emerge 

into view to a receiver. so the HDOP value falls with block 11 D once again showing 

the highest quality results as per the previous simulations. 

These simulations give a rough idea of the number of transmitters available at a 

certain location and at a particular height. As these scenarios all consider the use of a 

spherical earth with no obstacles between transmitter and receiver, the true world 

results would be expected to be slightly degraded from these results. This height- 

testing scenario will be investigated further using real data later in the project. 

119 



Position Estimation using the Digital Audio Broaclcasl (DAB) Signal 

7.5 SIMULATION 4: THE "T GRID" 

This simulation was performed in order to model the effect that the receiver's 

sampling-rate has on the performance of the positioning system. As has been 

discussed previously, DAB data is broadcast at a clock rate of 2.048 MHz with the 

USRP front-end only having the ability to sample at 2.000 MHz. This involves the 

up-sampling of the signal by a small degree in order to match the broadcast clock rate 

and decode the information in the signal. 

In section 4.3.1 the unit T was defined, giving the distance travelled by the signal in 

IT by roughly 146m. In this simulation, the four transmitters used are those currently 

used in the Nottingham/Leicester regions and the model assumes that usable signals 

can be received as TDOA pairs as listed in Table 9. 

Transmitter 
TII Code 

Region Transrnilter 
East (m) North (m) 

Mapperley 65 8 458350 342450 

Waltham 65 16 480950 323350 

Copt Oak 65 17 448350 312650 

Houghton 65 21 467550 304450 

Table 9: Transmitters used for simulation in 7.5 

In this scenario, each pair creates a series of hyperbolae between the two transmitters. 

As the system resolution is limited to the measurement value of T, this means that the 

hyperbolae are spaced according to this value. 

The results of this can be seen in Figure 7-21 and Figure 7-22. The first of these 

figures shows the result of the test area on the left with a closer view of aI knm by I kin 

square on the right (indicated by the red square). 
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Figure 7-2 1: Local T Grid simulation 

Two pairs of transmitters giving two TDOA measurements 

It can be seen in this case that the grid structure formed by the difference in arrival 

times limited by integer values of T, gives roughly thirty positions within a square 

kilometre which the TDOA measurement system will lock to. By examining a 

different square kilometre in Figure 7-22, it can be seen that because of the limitation 

due to transmitter geometry, there are only eight possible positions the system will 

lock to. 

Figure 7-22: Local T Grid simulation 

Two pairs of transmitters giving two TDOA measurements 
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Running the simulation again with the same transmitters, but this time the model is 

assembled so that four transmitters are received on the sane frequency, such as might 

be received if tuning to one of the national networks. 

The Waltham transmitter is assigned as the 'master' (reference transmitter), with the 

remaining three transmitters as secondary signals. This provides enough information 

to make three TDOA measurements and therefore three sets of time equidistant 

hyperbolae. These results can be seen in Figure 7-23 and Figure 7-24 with the left 

hand charts in each figure showing the simulation run over the same areas and the 

right hand charts highlighting the same magnified regions in Figure 7-21 and Figure 

7-22. 

Figure 7-23: Local T Grid simulation 

One master, three secondary giving three TDOA measurements 

It is immediately obvious that the use of this transmitter geometry and measurement of 

TDOA, providing sufficient transmitters are receivable on a single frequency. gives 

the system a higher resolution than the previous exercise. This has limited the size of 

each measurement cell providing a more accurate estimation of position. 
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Figure 7-24: Local T Grid simulation 

One master, three secondary giving; three TDOA measurements 

The purpose of this exercise was to highlight the difference in resolution when adding 

more than the fundamental two TDOA measurements, and showing that the geometry 

of the transmitter layout is also critical in providing the best possible resolution in this 

system. 
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S FIELD TEST RESULTS 

8.1 INTRODUCTION 

This chapter will examine the results of DAB captures taken in a variety of locations, 

and scenarios. A number of tests were performed in order to examine the potential 

behind positioning using DAB alone. These tests were then expanded to explore the 

durability of the system in environments where the transmitter layout could vary 

considerably. 

8.2 TRANSMITTER OSCILLATOR CONSISTENCY 

8.2.1 Introduction 

The purpose of this test was to monitor the stability of a transmission over a 48 hour 

period. If the transmitter oscillators were found to show a fluctuation of different 

readings over time, then this would strongly affect the positioning potential of the 

system. Any oscillator variations affecting the positioning system will be obvious in 

the cross-correlation process described previously. 

In order to perform this, captures were made of the BBC national network (Block 12B 

- 225.648 MHz) once per hour for 48 hours. The omni-directional dipole antenna was 
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mounted on the roof of a building on the University Park campus; roughly fifteen 

metres clear of the ground. The USRP was set to run at hourly intervals and perform a 

one-second capture on the hour (approximately ten transmission frames). The data 

could then be post-processed in order to examine the stability of the transmission. 

8.2.2 Results 

The data was post-processed with the aim of finding the null symbol, so allowing the 

TII symbols (every second frame) and performing a cross-correlation of the TFPR 

symbol (every frame) to attain the difference in arrival times of the transmissions. 

The receiver oscillator error also had to be accounted for in each frame. 

The results of each capture were averaged in order to create the smoothest plot. The 

map in Figure 8-1 shows the relative positions of both transmitters and the receiver, 

while the charts in Figure 8-2 and Figure 8-3 show the received TII information and 

TDOA measurements respectively. It can clearly be seen that at the data sampling 

rate used by the USRP, no fluctuations are seen in either frequency (TIl) or time 

(TDOA), proving that the stability of transmitters in the mid-term is adequate for 

positioning purposes. Each figure clearly shows two peaks, with the peaks in Figure 

8-2 presented as pairs of carriers which can be decoded as "Mapperley" and 

"Waltham" transmitters when referring to the Ofcom database. The peaks in Figure 

8-3 show a constant separation of 174T, and giving a single TDOA measurement in 

this case. 
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Figure 8-1: Map showing transmitter and receiver positions 

(Image courtesy of Google Maps UK) 
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Figure 8-3: Cross-correlation of block 12B captures over 48-hour period 
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8.3 RECEIVER ANTENNA HEIGHT TESTING 

8.3.1 Introduction 

This section will examine the difference in receiver antenna height makes in real 

signal testing. This was performed as a simulation earlier in 7.4. In this scenario, the 

test equipment was initially stationed at the base of a building on the University of 

Nottingham campus, and then positioned on the top of a turret on the roof of the same 

building. The same test was then performed at the base of and the top floor of a 15- 

story building, based on the same campus. 

The purpose of these experiments was to investigate how a large change in height 

affects the number of transmitters viewable from the same position. It would be 

expected that new transmitters would come into view if the height of the antenna is 

increased by a substantial degree. 

8.3.2 Results 

The first test examined the commercial national network on block I ID. The first 

capture was taken at 2 metres above ground level at the base of the building, with the 

second capture taken atop the turret, approximately 15 metres from ground level. it 

can be seen in Figure 8-4 that a significant difference in cross-correlation amplitude is 

present between the two DAB captures. Both captures were performed using the same 

gain value through the capture software, for the same period of time. The results were 

then averaged to show the mean value achieved over all received DAB frames. 

Although the primary signal (based at 505T) shows an increase in amplitude, the 

secondary correlation peak (at 678T) has shown an unexpected decrease. The process 

is then repeated using the signal from the Nottingham local network on block 12C. 
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The results from this (shown in Figure 8-5) show a similar result. While the primary 

transmitter strength increases with height, the secondary signal decreases. 
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Figure 8-4: Height Testing Location I- Block I1 D 
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Figure 8-5: Height Testing Location 1- Block 12C 

129 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

This result is surprising, as it would be expected that the received power for both 

transmitters would increase. Instead, it appears that the stronger of the two 

transmitters `swamps' the broadcast frequency, causing a smaller correlation peak for 

secondary signals. 

The same experiment was then carried out at the Tower Building on campus, the 

tallest building in the area, with the top floor capture taken at approximately 60 metres 

above ground level. This time, the local network result on block 12C is examined (as 

it is known that a limited number of transmitters broadcast on this frequency within 

the region). The results of both captures can be seen in Figure 8-6, where the most 

noticeable change in correlation coefficients is the amount of multipath present on the 

capture taken from the top of the tower. 
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Figure 8-6: Height Testing Location 2- Block 12C 

The same test performed on the national block 11 D is then shown in Figure 8-7. It is 

immediately obvious that a number of new transmitters may be received from the 

elevated position over the ground based position. In order to evaluate this capture 

fully, the T11 information from both captures must be compared (Figure 8-8). 
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Figure 8-7: Height Testing Location 2- Block 11D 
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Figure 8-8: TII codes associated with Figure 8-7 

While the ground based receiver automatically locks onto the correlation coefficient 

with greatest amplitude (referring to the TII information, this transmitter has the code 
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Region 65, Tx 8), the tower based receiver receives a number of more powerful 

transmitters that lie outside of the line-of-sight of the ground based receiver. 

In this scenario, the primary transmitter locked onto by the signal processing 

algorithms has the TII code Region 24, Tx 18, with a number of other signals present 

along the frequency axis. 

This shows that a difference in elevation of only 60 metres can make a significant 

difference in the number of transmitter's receivable. In this instance, the number of 

transmitters increases from 2 to 6 (N. B. further transmitters are likely to be present, 

however the detection algorithms detected six on this capture). 
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8.4 ANTENNA TESTING 

8.4.1 Introduction 

The purpose of this test was to establish the difference in quality of observable 

measurements between DAB antenna positioned at the same location. As the purpose 

of this project is to examine the positioning potential of DAB, the antenna that gave 

the better results would then be used for the main trials reported on later in this 

project. 

For this test, the primary passive dipole omni-directional antenna was compared to the 

smaller active directional patch antenna (refer to Figure 6-4 on page 73 for details of 

both antennas). Both antennas were installed at the same height, with the same 

capture input parameters through the GNU Radio software. 

The antennas were positioned at the following two locations for this test. Both tests 

capture the DAB national commercial network on block 1ID. Positions were 

measured using Real-Time Kinematic (RTK) GPS equipment. 

Position 1I Position 2 

East (m) 469199 482652 
North (nz) 380516 374236 
Terrain Elevation (m) 35 8 
Antennas height above terrain (in) 33 
Total Height (in) 38 11 

Table 10: DAB receiver positions 
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Figure 8-9: Map showing transmitter & receiver locations 

(Image courtes)' of Google Maps UK) 

8.4.2 Results 

8.4.2.1 Position I 

The received Tll and TFPR cross-correlation charts for position I can be seen in 

Figure 8-10 and Figure 8-11 respectively. Three unique incoming transmissions can 

be identified using the dipole antenna (sufficient for a 2D fix) whilst only two 

transmissions can be seen fron the patch antenna. The transmission from the 

Mansfield transmitter suffers on the patch antenna capture where the cross-correlation 

peak lies below the threshold associated with the primary received signal from the 

Waltham transmitter. The background noise level from the patch antenna result is also 

of greater magnitude than the dipole which can be seen in Figure 8-10. 
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Figure 8-10: Antenna Testing Position I- TII 
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Figure 8-11: Antenna Testing Position I- Cross-correlation 

8.4.2.2 Position 2 

The results from position 2 show a higher level of noise from the patch antenna than 

the dipole than was seen at position 1. Four transmitters can be clearly identified from 

the Tll information from the dipole as can be seen in Figure 8-12, whilst three can be 

recognised fron the patch antenna. 
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The patch does not successfully identify the transmitter at Sheffield. whilst 

significantly lower signal amplitudes are detected for both the Mansfield and Belmont 

transmitters. 

This scenario is also shown when viewing the correlation coefficients in Figure 8-13, 

where different primary signals are detected from the two antennas. The patch locks 

on to Waltham as its most powerful signal whilst the dipole locks to Mansfield. 

Figure 8-12: Antenna Testing Position 2- TII 
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Figure 8-13: Antenna Testing Position 2- Cross-correlation 

8.4.3 Conclusions 

The purpose of this exercise was to identify a receiving antenna to use for the primary 

static and dynamic experiments performed later in this project. It has been shown that 

whilst both antennas have the ability to receive and identify multiple signals on a 

single DAB frequency. the dipole results are shown to be far more impressive than the 

patch. 

Naturally, the physical size of the dipole makes it less portable than the patch antenna. 

but as the aim of this project is to perform a feasibility study for the use of the DAB 

signal as a positioning source, this matter remains of relative unimportance. 

Therefore, the dipole antenna was chosen for the remainder of the experiments in this 

project. 
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8.5 INDOOR TESTING 

8.5.1 Introduction 

The purpose of this test is to examine the system's ability to detect usable signals in an 

indoor location and examine the possible effect of multipath within this environment. 

Three positions were chosen within an indoor environment, on different floors and at 

the same depth within the building. The depth of the captures lay behind one external 

(constructed from breeze blocks) and one internal (plasterboard) wall at a depth of 

approximately 5 metres from the edge of the building (see plan in Figure 8-14). Each 

floor had a change in height of approximately 4 metres. 

Figure 8-14: Indoor fest - Floor Plan 

8.5.2 Results 

The results from the test were inadequate to produce a position estimate. primarilyI due 

to the transmitters in view of the receiver's antenna. The following three charts show 

the correlation coefficients and associated TH information measured using the 

commercial national network (block 11 D) over three floors in the same building. 
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Each of the three positions had the same OS National Grid position but merely a 

difference in floor level (from ground to second floor). 
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Figure 8-15: Indoor Test - Cross-correlation of TFPR symhol 

Figure 8-16: Indoor Test - TII information 
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The chart shown in Figure 8-15 shows the cross-correlation coefficients of each 

capture taken from block 11D, while Figure 8-16 shows the associated TII signal for 

these captures. 

In this region, it would normally be possible to obtain a weak signal from transmitters 

based close to the city of Leicester on the local DAB block 11B when out in the open, 

as may be seen in subsequent experiments. However, within the indoor environment 

this was not possible due to the poor quality (low SNR) of the signals. It was still 

possible to obtain information about two transmitters on all floors, those situated at 

Waltham and Mapperley (highlighted in Figure 8-16), proving that multiple signals 

are still available to an indoor environment. 

Multipath was not seen to cause a problem in this test as can be seen by the cross- 

correlation plots. If multipath was present here, it would be visible on a sub-T 

position only as the walls of the building lie within the highest possible resolution of 

this system (= 150 metres). 
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8.6 TRANSMITTER DATABASE ACCURACY TEST 

8.6.1 Introduction 

Earlier in this project (see section 6.8.2.3). the accuracy of the transmitter location 

database as supplied by Ofcom was investigated. It was shown that the locations 

provided were only as accurate as the 100m2 grid reference square that the transmitter 

was located in. The potential effect of this could be a measurement difference of more 

than one unit of T- therefore this issue was investigated further. 

8.6.2 Transmitter Survey 

Each transmitter visited had to be surveyed using a Leica SinarIslulion, due to the 

restricted access of the area immediately underneath and surrounding each mast. An 

angle of intersection was measured at two ends of a baseline, the length of which was 

dependant on the visibility of each mast (see Figure 8-17 for details). 
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Figure 8-17: Transmitter Survey Method 
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A levelled tripod was positioned at each end of a baseline. with the Smcn"lstulion 

installed on one and a target reflector on the other. The , Snuiristalion was then used to 

measure the position of the first tripod using RTK GPS and was then used to measure 

the angle between a point on the transmitter mast and the reflector. This process was 

then repeated after swapping the Smartstation and reflector positions, allowing for the 

calculation of the baseline length and angle from the second tripod to the mast. This 

provided sufficient information to calculate the position of each mast. 

A number of locations were chosen in a region which was known to be within range of 

four transmitters. Data captures were taken at each position and the transmitters 

identified successfully. The transmitters themselves were then visited and surveyed to 

within an accuracy of one metre, with the results then used in place of the locations 

found on the database and a comparison made. 

8.6.3 Results 
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Figure 8-18: Database transmitter accuracy test 
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The results presented in Figure 8-18 show the difference in DAB positional estimates 

from both the Ofcom transmitter database and the revised transmitters found by 

surveying each mast. The change in position can be seen to be quite significant here. 

particularly in case 1, where although the offset from GPS is still at the same distance, 

the hyperbolic grid intersection shifts eastwards by approximately 300 metres. 

The captures at locations 2 and 3 also show a smaller offset from GPS when using the 

surveyed transmitter masts. The Easting, Northing and total linear offsets can be seen 

in the charts in Figure 8-19. 
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Figure 8-19: Charts showing difference in DAB/GPS offset 

Left chart shows the offset from the Ofcom database; right chart shows the offset 
when all transmitter positions have been survged 

Position 3 in this case makes a dramatic difference in the east offset and improves 

from 168 metres when using the public database to just 19 metres using the surveyed 

sites. In all three cases, the largest differences appear in the Easting component with 

only small differences in the Northings. The effect of these coordinate errors will of 

course depend wholly on the array of the transmitters that are visible to the receiver. 

but it can be seen here in this test that the difference in transmitter database positions 

can make a significant difference. 

Due to the time taken to survey each transmitter for this test, it was decided to 

continue to use the Ofcorn coordinates for the remainder of the experiments. 
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8.7 REPEATABILITY TESTING 

8.7.1 Introduction 

This test was performed around the interior road system on the University Park 

campus. The purpose of the test was to use any available DAB blocks at each static 

location (measured by GPS) to establish a position estimation and then repeat this 

process by returning to each capture point (precision within lm) and performing the 

same process. 

As the transmitter oscillator consistency over time was tested in experiment 8.2, the 

results would be expected to be identical during the repeated test. 

8.7.2 Results 

The plot shown in Figure 8-20 shows the positioning results as described above. Each 

capture location includes a precise RTK GPS solution providing sub-metre accuracy 

to allow the precise repeat test procedure. As this test was conducted over a relatively 

small region, the same transmitters were found for each capture point (detailed below). 
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At the majority of positions, the system could extract two TDOA measurements using 

the potential combinations of transmitter pairs shown in the previous table. The most 

common solution was to use Mapperley and Waltham as one transmitter pair (giving 

the first TDOA measurement) and Houghton and Copt Oak transmitters as the second. 

However, a number of the capture points (the locations with greater elevation) were 

able to extract a third TDOA measurement on Block 11D only between Houghton and 

either Mapperley or Waltham. 

It can be seen that the DAB locations do not coincide perfectly with the GPS location 

which is due to the measured integer T values discussed in 7.5. The magnitude of 

each offset from the GPS position for Easting, Northing and the total linear offset can 

be seen plotted in Figure 8-21, where capture 10 shows the offset with the largest 

magnitude. Capture 10 also happens to have the lowest capture elevation, meaning 

that more distant signals may not have sufficient power to penetrate objects within the 

line-of-sight. 
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Figure 8-20: Positioning Results from test 8.6 
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The chart plotted in Figure 8-23 shows all captures plotted as their linear offset from 

GPS (y-axis) against the terrain height (x-axis). A linear trend-line drawn against this 

data indicates that the higher the elevation, the smaller the offset of the DAB position 

from the true GPS position. 
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Figure 8-21: DAB offsets from GPS positions (lest 8.6) 

The final evaluation chart shown in Figure 8-22 shows each capture points calculated 

Horizontal Dilution of Precision (HDOP). Although capture point 10 has the highest 

HDOP value, there appears not to be any, direct correlation between this value and the 

value of the linear offset in position. 
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The same exercise is then run again approximately an hour later by returning the 

antenna to precisely the same GPS coordinates as before (± I metre). As expected, the 

calculated coordinates are identical with the exception of one measurement at capture 

position 3 which now calculates at the same hyperbolic intersects as position 9. 
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Figure 8-24: Repeated lest showing GPS/DAB positions 

This instance could be explained by the under-sampling of the signal by the USRP 

front-end. As the DAB data is sampled at a rate x i. 024 faster than the receiver 

sample-rate, this could give a measurement ambiguity of ±1 T. enough to alter the 

measurement by up to 150 metres. 
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8.8 STATIC TEST: LEICESTER (RURAL/SUBURBAN) 

8.8.1 Introduction 

This test was performed using the main dipole antenna mounted to the roof of a 

vehicle. The aim of the test was similar to that in 8.7, but to the take the system 

further out in the field in order to examine measurements spaced over a wider area. 

This was done in order to observe the positioning capability of the system when the 

ranges between transmitter and receiver differ by several kilometres between captures 

as opposed to the hundreds of metres tested previously. At each capture position, the 

DAB positioning equipment has no previous knowledge of where it has been. 

The region identified lay roughly between the cities of Nottingham and Leicester, 

composing mostly suburban and rural landscapes. Four transmitters roughly border 

the region used, however further transmission sources should be able to be received at 

certain locations, due to regional crossover. 

At each capture position, the precise location was calculated using GPS, with the DAB 

captures performed simultaneously on all seven of the UK blocks. For each block, a 

capture of length 2.1e6 samples was taken (roughly one second) using a 2MHz 

bandwidth capture window, resulting in approximately ten transmission frames with 

the purpose of averaging the results from frames containing TII information (half of 

the received frames). 

Each capture yields the results of both the TII and cross-correlation of the TFPR 

symbol, as is shown in Figure 8-25 and Figure 8-26 for four of the seven blocks 

receivable at this location (11 D and 12B are the two national networks, 11 B is the 

Leicester local network and I2C is the Nottingham local network). 
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8.8.2 Results 

The chart shown in Figure 8-27 shows an overview of the capture positions within the 

region in question. Each `true' position from the GPS receiver is indicated along with 

the DAB position. All discernable transmitters are shown on the plot, however, these 
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are not all detectable from any one location. therefore to show each positional result in 

further detail; these are broken down and shown over the following pages. 
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Figure 8-27: Test Results Overview 

Figure shows the test region, transmitters used and comparison between GPS and 

DAB positions 

Each individual result shows the transmitters used, the TDOA measurements taken, 

the GPS/DAB locations including the offset between the two systems, the initial 

'guess' used for the least squares process along with each iteration of this process 

culminating in the final DAB position, and finally the HDOP of each DAB position. 
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8.8.3 Discussion and analysis of results 

The results from this experiment have shown that whilst DAB standalone positions 

were not attainable at all locations, 11 of the 13 captures provided a position 

estimation, although the quality of these positions did vary according to the 

transmitters available. Capture 4, whilst attaining a position of sorts, must also be 

ruled out as the resultant location calculation lies far outside the transmitters 

receivable radius (and entirely off of the National Grid). 

Figure 8-28 shows a chart of the offset values between GPS and DAB measurements 

at each capture location. Each capture is shown divided into three values; the 

differences in the East, North and linear components. Captures 3,4 and 6 are the 

captures where insufficient/poor information was collected via DAB and are absent. 

It is immediately obvious that it is the quality of the Northings measurement where the 

major positional error is found in the majority of captures. This is caused by the 
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layout of the receivable transmitters for each case as the capture positions used in this 

experiment are not spaced as far apart as the latter trials. 
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Figure 8-28: Offset from GPS (m) at each capture 

Chart divided to show difference in East, North and Linear offsets 

The quality of the observations can be seen by viewing Figure 8-29 where all results. 

with the exception of capture 11, have HDOP values of less than 2. This would 

appear to be a surprising result when examining capture 13 with a linear offset of 

almost a kilometre. The problem in this capture appears to be the TDOA 

measurements passed to the least squares process. Blocks 11D and 12B have the 

measurements of I 85T and 186T respectively from the sane transmitters, while block 

12C has a measurement of 182T. A difference of up to ±2T is expected due to capture 

resolution and even broadcast antenna position at the transmitter site, however, a 

difference of 4T causes the error in position in this case. As the DAB positioning 

system does not know which value is correct, all three have to be used in the final least 

squares process. 
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8.9 STATIC TEST - BIRMINGHAM (URBAN/SUBURBAN) 

8.9.1 Introduction 

The aim of this experiment was to evaluate how the DAB positioning system 

compared with GPS when used in an urban area. The equipment set-up for this was 

the same as in previous experiments, with each DAB capture location logged to a GPS 

position in order to compare the two when post-processed. 

The vehicle containing the test equipment travelled from Nottingham to Birmingham 

via one route and returning via another. This allowed the equipment to be used in 

areas ranging from open rural land, to suburban areas and into dense urban landscape. 

Seventeen different transmitters were received during this experiment in total, though 

at different times. These may be seen in Figure 8-31, with the route taken highlighted 

in red. 
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8.9.2 Results 
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As has been shown in the results, the majority of DAB data captures have resulted in a 

position fix. The offset of all DAB positions from their actual GPS positions can be 

seen in Figure 8-33. As before, the offset has been divided into the difference in 

Easting. difference in Northing and total linear offset. The captures taken at locations 

18 and 19 do not yield a result and by examining the individual result table for these 

captures it can be seen that this is due to a lack of TDOA measurements. In both 

cases. two measurements are extracted from different blocks, but these are from the 

same transmitters meaning only one can be used. 
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Figure 8-33: Offset from GPS (m) at each capture 

Chart divided to show difference in East, North and Linear offsets 

Capture 17 shows a very large offset from its true position (almost 4km). Examining 

the individual result shows that the linear least squares positioning process appears to 

jump around erratically before eventually settling on a position. Four transmitters are 

used in this capture to provide two TDOA pairs (there are actually three measurements 

but two of these involve the same transmitters). The final HDOP value for this 

capture (see Figure 8-34) shows an uncertainty value of almost 5, proving that the 

calculated position in this case is poor. 

Most other captures during this test show total offsets from the true position of better 

than 500 metres. The most accurate capture at position 9 shows a linear offset of 99 

metres, which also corresponds to a low HDOP value of 0.81. 
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Figure 8-34: HDOP values fur DAB position at each capture location 

As previously, the linear offset from the GPS and DAB positions can be plotted 

against the elevation the vehicle was at when the data was collected, which may be 

seen in Figure 8-35. The general trend again shows that the captures taken on higher 

ground provide a higher accuracy than those on lower ground. A couple of exceptions 

are noticeable with capture 17 taken at a relatively high location but providing the 

highest error in this test. 
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8.10 STATIC TEST: LINCOLNSHIRE (SUBURBAN/RURAL) 

8.10.1 Introduction 

The final test involving static positioning took place at a number of locations between 

Nottingham and Lincoln. It was known that there were fewer transmitters in this 

direction than encountered on the trial towards the urban environment in Birmingham; 

therefore the general aim was to examine how the system would cope with being in a 

region of lower transmitter density. 

A number of captures were taken starting towards the north of Nottingham. heading 

east towards Lincoln and then returning back to Nottingham again via an alternative 

route in order to give as widespread a set of results as possible. This route and the 

transmitters received during the trial may be seen in Figure 8-36. 
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Figure 8-36: Transmitters received during Lincolnshire trial 

(Image courtesi' of Google Maps UK) 
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8.10.2 Results 
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As mentioned in the introduction to this section. this final static positioning test was 

undertaken to examine the positioning performance of the DAB system in regions 

where there are fewer transmitters present. It was expected that there would be 

captures taken where insufficient information would be extracted in order to establish 

a fix. however, this was the only static test where every capture yielded a result. 

This region had an elevation generally lower than that of other tests which could have 

provided poor transmitter view. However, due to the relatively flat nature of the 

topography in the region, this did not prove to be problematic. 

A number of the results do show very poor positional errors, which will be examined 

in turn. Evidently the capture with the greatest error was taken at location 3 where an 

offset of over 10km was calculated. 
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Figure 8-38: Offset from GPS (m) at each capture 

Chart divided to show difference in East, North and Linear offsets 

Position 7 shows an error of over 4km, again in reality an un-usable result. Examining 

the individual result more closely it can be seen that while it is using three transmitters 

and has calculated four TDOA measurements (two of which are unique), the three 

TDOA measurements using the same transmitters all have different values. It would 

be expected that measured values may lie up to ±2T of the true value due to the 

intersecting points on the T-grid. however in this case the TDOA from block 12C is 4- 

5T adrift of the same measurements on blocks I ID and 12B. As the DAB receiver 

has no knowledge of which measurement to use in a real-life situation, all three must 

be used in the least squares process. This creates the ambiguity that is seen in this 

result. 

Position 6 is the last of the position estimates to have a linear error over I knm. This is 

caused by a similar issue seen in position 7 but on a smaller magnitude. TDOA 

measurements on blocks 11 D and 12C show an ambiguity of 3T which causes the 

inaccuracy in range in this case. 
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Figure 8-39: HDOP values for DAB position at each capture location 
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With the exception of these results with large offsets, the DAB positioning system 

appears to have made standalone results with a mean value of = 250 metres. 

Depending on the transmitters available to each capture, this is the sort of accuracy 

that would be expected when taking the "T-grid" into consideration. 

Finally, examining the overall capture height vs. linear offset in Figure 8-40, it can be 

seen once again that the trend-line of the data plotted shows that the more accurate 

results are captured at lower elevation overall. The three anomalous results represent 

captures 6,7 and 3 respectively (left to right), though it has been explained how these 

results occurred. 

186 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

8.11 DYNAMIC TESTING 

8.11.1 Introduction 

The purpose of this test was to examine the effect on the positioning system if the 

hardware is moving. One important difference in the processing of this data is that the 

result cannot be averaged over a number of frames as can be done when performing 

static testing. 

This immediately puts the testing process at a disadvantage as the TDOA must be 

processed every frame (IOHz) and the TII every other frame (5Hz). Therefore for the 

purpose of this test, the approach was taken to firstly identify a frame containing TII 

information and then process every second frame from that point onwards. 

The process performed previously was run in order to show the shift in correlation 

spikes over distance. Firstly, the transmitters received must be identified using the Tll 

information. A plot of this information over 500 DAB frames (-50 seconds) can be 

seen in Figure 8-41. 
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Figure 8-41: Tu symbol over 500 dynamic DAB frames 
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As would be expected over this time period, the transmitters received are going to 

change minimally, if at all. Therefore it can be seen that the codes remained largely 

unchanged. By plotting the cross-correlation of each TFPR symbol over this same 

period (see Figure 8-42), a definite change in the TDOA values relative to the primary 

signal can be seen (situated in this instance at around 2050T). A number of peaks of 

varying amplitudes can be clearly seen separating or converging. 
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Figure 8-42: TFPR cross-correlation over 500 dynamic DAB frames 

The variance of the peak amplitudes means that the system will not always "lock" to 

the same null symbol when the initial null search is undertaken. If for example, the 

line-of-sight between the receiver and transmitter is temporarily obstructed by a large 

building, then the relative power from this transmitter is seen to reduce, potentially 

giving a false reading when the positioning process is performed. 

Therefore for the purpose of these experiments, the following alterations had to be 

made to the post-processing algorithms. 
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8.11.1.1 Initialposition known 

As the vehicle does not begin from a stationary position, this provides an environment 

where the received signal cannot be averaged over time, as was done for the static 

positioning. Therefore for the purposes of this test, it is assumed that the vehicle 

initial start position is known (from GPS in this case), allowing the correlation peaks 

to be matched by searching around the expected regions on the cross-correlation plot, 

provided by the TH codes from the first DAB frame received to contain this 

information. 

Although this technique gives the closest matching correlation peak, it does not 

necessarily indicate the precise start position of the receiver due to the integer Tvalue. 

8.11.1.2 Primary transmitter changes 

As was mentioned previously, if the original primary transmitter signal path is 

obstructed then the central correlation peak could change temporarily. This would 

cause problems with the algorithm as this primary peak would be used as the reference 

point to measure the TDOA values from. Therefore, this problem can be overcome by 

monitoring the null position within the total DAB frame found in the early processing. 

If a receiver is static, this position should not change by more than IT (which only 

occurs due to the under-sampling of the original signal). If a receiver is moving, then 

the position of the null will change over distance depending on the direction of travel 

and the geometry of the transmitters received. 

As the system is limited to measuring the time differences in integer values of T, the 

position is expected to change erratically, by shifting between the grid points as each 

measurement is taken. 
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8.11.2 Results 

The results presented over the following pages show the GPS tracking of each 

dynamic run in addition to the calculated DAB positions. Each chart indicates the 

start and finish points for both positioning systems, and also includes a plot of the 

varying HDOP values for each DAB epoch. 

8.11.2.1 Dynamic Test 1 

This test was performed in the West Midlands region, using DAB signals broadcasting 

on Block 1113 (national commercial), allowing the use of multiple regional 

transmitters if detectable. The transmitters decoded within the first TI! symbol 

detected show that three transmitters were available at this position. These are listed 

in the table below. 

Transmitter Region Transmitter East North 
Name Code Code (metres) (metres) 

Sutton Coldfield 24 18 411350 300326 

Daventry 18 02 458750 262150 

Turner's Hill 24 15 396950 288750 

Three transmitters provide sufficient information for a two-dimensional position using 

standalone DAB, the results of which can be seen in Figure 8-43. It can clearly be 

seen in these results that the DAB positions map to the "T grid" structure mentioned 

previously. As the road used in this test did not lie along one of the TDOA hyperbolae 

(which will be the majority of cases), the DAB positions jump from either side of the 

vehicle path, as would be expected. The quality of the measurements in this instance 

(with the exception of the DAB start position) show that the closest hyperbolic 

intersect was found and used to establish each position. 
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Figure 8-43: D; 'numic Test I- GPS iss. DAB 

The quality of the position measurements are shown as a series of II[X)P 

measurements in Figure 8-44. These fluctuate between certain key values, which 

coincide with the limited number of DAB positions shown in the positional plot in 

Figure 8-43. It is at these points where the result "jumps" between values, giving a 

change in position of around 150 metres, as opposed to the true change which would 

be one or two metres. 

The HDOP values shown are considerably higher than would be expected when 

viewing the accuracy of the positioning results, meaning that the geometry of the 

transmitters used was far from ideal in this scenario. 
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Figure 8-44: Dynamic Test I- DAB HDOP values 

8.11.2.2 Dynamic test 2 

The second dynamic test was performed in the central midlands region Using the 

commercial national DAB block IID. The initial analysis of the first available 'I'I I 

symbol allowed the software to decode the following five transmitters within range of 

the vehicle (see table below). 

Transmitter 
Name 

Region 
Code 

Transmitter 
Code 

East 

(inetres) 

North 

(nietres) 

Sutton Goldfield 24 18 393350 367650 

Waltham 65 16 480950 323350 

Mapperle)' Ridge 65 08 458350 342450 

Cent Oak 65 17 448350 312650 

Mansfield 
65 10 451450 360650 

(Fishpond Hill) 

Five transmitters is more than adequate for a t\\o-dimensional positional fix riving 

four TDOA measurements to use in the least squares process. It would be expected 

therefore that precise tracking would be possible for the duration of this trial, however. 

the positioning plot shown in Figure 8-45 indicates extremely poor DAB signal 

tracking. It can be seen that the GPS matched initial start position is over a kilometre 
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away from the true start position in this case. which is where the problems are caused 

(the start location also has the highest HDOP as can be seen in Figure 8-46, however. 

as it is less than I the confidence in this measurement is high). This means that the 

peak searching algorithm cannot find the expected correlation peaks ihr the 

transmitters in the area. 

As the algorithms are searching at each epoch for the correlation peaks. it appears that 

strong multipath has affected the smaller, and thus more difficult to track signals. This 

causes the closely clustered measurements near the start of the DAB capture. Towards 

the middle of the trial, the DAB position is realigned with the true position (indicated 

by the dip in HDOP values and circled in Figure 8-45); although again as with the 

beginning the strong multipath makes the signals harder to track causing larger 

fluctuations in position. 
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Figure 8-45: Dj'namic Test 2- GPS vs. DAB 
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This trial run can be evaluated further by viewing the position of the tracked null 

symbol throughout the capture. It can be seen in Figure 8-47 that the position of the 

detected null symbol shifts significantly during the sane frame where the I IDOP value 

increases. This is due to the algorithm used to find the null symbol tracking a 

different primary signal to that used at the beginning of the capture. This can be 

caused by the vehicle moving through a location where the Fresnel zone between the 

initial primary transmitter and receiver is obstructed (partially or totally) by an object 

of high density. such as a hill or a large building. 

At this point (frame 72 in this instance) the algorithm automatically locks on to the 

most powerful secondary signal (which then becomes the primary signal) and begins 

to track this instead, with all measurements being made relative to this signal. 

Naturally, when moving through an area where multiple such obstructions are present. 

the detected null symbol will 'jump' as the primary source changes. Such junmps are 

in addition to the gradual decline/incline of the tracked null depending on whether the 

vehicle is moving towards or away from the transmitter. 
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Figure 8-46: Dynamic Test 2- DAB HDOP values 
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Figure 8-47: D j, namic Test 2- Null symbol position shift 

8.11.2.3 Dynamic Test 3 

Dynamic test 3 was undertaken on the Nottinghamshire/Derbyshire border using the 

BBC national DAB block 12B. Four transmitters were initially available (see below) 

giving sufficient information for a position fix. 

Transmitter Rea ion Transmitter East North 
Name Code Code (metres) (metres) 

Waltham 65 16 480950 323350 
Mapperley Ridge 65 08 458350 342450 
Sutton Coldfield 24 18 393350 367650 

Daventry 18 02 458750 262150 

These test results highlight the limitation in the dynamic tracking algorithm, as can be 

seen in Figure 8-48. The initial position calculated by the DAB signal is roughly 400 

metres from the truth, this is acceptable as a start location, and each epoch for the first 

500m are clustered around the same area meaning that the correct correlation peaks 

are being tracked. Beyond this point however, the weakest of the four signals is lost 

completely for several epochs, meaning that the tracking loop snaps to the closest peak 
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in its expected position. This means that false readings are now being fed into the 

least squares solution, which accounts for the perpendicular drift away from the true 

path. This result can also be seen in the HDOP plot (Figure 8-49) at the point where 

the values suddenly increase in magnitude between 70 and 80 frames. 
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Figure 8-48: Dynamic Test 3- GPS vs. DAB 
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Figure 8-49: Dynamic Test 3- DAB HDOP values 

8.11.2.4 Dynamic Test 4 

This test was conducted shortly after the data collected in test 3. The same 

transmitters are still in view of the vehicle's DAB antenna. As this is a new test, the 

T11 symbol is decoded once again and the correlation peaks assigned accordingly in 

order to begin the tracking loops. 

Transmitter Region Transmitter East North 
Name Code Code (metres) (metres) 

Waltram 65 16 480950 323350 

Mapperlej' Ridge 65 08 458350 342450 

Sutton Goldfield 24 18 393350 367650 
Davenirl' 18 02 458750 262150 

As can be seen in Figure 8-50, the DAB tracking, whilst performing better than that in 

test 3, can be seen to fluctuate to the north of the true result. It can be seen by 

referring to the cross-correlation of the received TFPR symbols over time (Figure 8-51 

on page 199) that the system is tracking the four signals as would he expected. The 

two strongest signals, located at roughly 400 and 500T respectively. show evidence of 

strong multipath signals each lying at approximately IOT to the right of each. As the 

frame count surpasses forty. it can be seen that the peak-tracking starts to fail. This 

197 



Position Estimation using the Digital Audio Broadcast (DAB) Signal 

can be due to the vehicle moving through an area of lowered elevation meaning that 

transmitters can lose line-of-sight from one or more directions. This can be verified 

by viewing the HDOP plot (Figure 8-52 on page 199), where a leap in HDOP values 

occurs around the same period. 

In situations such as these where DAB fails to provide a position due to transmitters 

falling below the line-of-sight, where GPS updating would provide the mitigating 

factor. 
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Figure 8-51: Cross-correlation of each DAB frame 
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Figure 8-52: Dynamic Test 4- DAB HDOP values 
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8.11.2.5 Dynamic Test 5 

This test was conducted in the Lincolnshire region using the commercial national 

block 1 1D. Three transmitters were viewable for the duration of this trial which are 

listed in the table below. 

Transmitter 
Name 

Region 
Code 

Transmitter 
Code 

East 
(metres) 

North 
(metres) 

Belmont 58 02 521850 383650 

Mapperley Ridge 65 16 458350 342450 

Sheffield 58 03 432450 387050 
(Tapton Hill) 

Referring to the DAB results plotted against the GPS position in Figure 8-53 on page 

201, it can be seen that this trial showed very successfully that the DAB tracking 

module works providing the secondary signal strengths remain at an adequate level 

relative to the primary signal. The plot shows the DAB position at an approximate 

distance of 100 metres at the start of the capture, and despite one poor measurement in 

frame 10 where the position shifts away from the true path, the general position shifts 

in the correct direction and tracks the correct peaks. 

The HDOP values for this test shown in Figure 8-54 show little variation for the 

duration of the trial and by viewing the position of the detected null symbol in Figure 

8-55 on page 202, it can be seen that the position of the detected null symbol of the 

primary signal decreases steadily during this time. 

If the receiver remained at a static location, it can be seen that this value will remain 

stable with potential fluctuation between two values due to the USRP's front-end 

under-sampling the signals. 
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Figure 8-53: Dynamic Test 5- GPS vs. DAB 
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Figure 8-54: Test 5- DAB HDOP values 
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Figure 8-55: Null symbol position within DAB frame 

8.11.2.6 Dynamic Test 6 

The final dynamic test was conducted towards the east of Nottingham using the lID 

national commercial signal on block IID. Three transmitters were tracked for the 

duration of the trial, shown in the table below. These transmitters allowed for two 

TDOA measurements to be made, the minimum for a two-dimensional position. 

Transmitter Region Transmitter East North 
Name Code Code (metres) (metres) 

Waltham 65 08 480950 323350 
Mapperley Ridge 65 16 458350 342450 
Belmont 58 02 521850 383650 

The positioning results for this test in Figure 8-56 show the grid-like nature of the 

system as has been seen in other tests. It can be seen that the initial DAB position was 

roughly 300 metres from the start of the GPS tracking. At this point, the tracking 

begins to drift away from the GPS path but is then reacquired to bring the DAB result 
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within 50 metres. This process is then repeated with the tracking drifting away from 

the truth but once again being reacquired as the trial finishes. 

339900 

339850 

339800 

E 
339750 

0 
z 

339? 00 

DAB 
FINISH 

339650 

Gp5 
FINISH 

339600 

466400 466500 466600 466700 

DAB GPS 
START START 

466800 466900 457000 467100 467200 

East (m) 

GPS 

DAB 

Figure 8-56: Dynamic Test 6- GPS vs. DAB 

The HDOP plot in Figure 8-57 shows the step-like change in values as has been seen 

previously, though in this instance the precision is deteriorating slightly. This pattern 

appears to be synonymous with the DAB tracking over the grid system. In such cases, 

the same transmitters are tracked for the duration of the trial, and while null symbol 

detection slips may occur, the software can detect and account for these by 

reallocating the primary transmitter using the next available Tll information. 
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Figure 8-57: Test 5- DAB HDOP values 

8.11.3 Dynamic Tests Summary 

It has been shown in this chapter that whilst dynamic positioning for DAB is possible, 

it is not accurate over short distances. This would be expected as the static positioning 

has shown that the accuracy of the system is only as good as the layout of the 

transmitters, and even with `perfect' geometry, the initial under-sampling by the radio 

front-end in this project does limit the resolution of the system. 

The testing has shown that dynamic positioning requires a modified approach to the 

algorithms that have been developed for static positioning. Complexities arise as 

transmitters leave the view of the antenna while others come into view. This means 

that whilst the initial locations were provided by GPS in these scenarios, the constant 

monitoring and cross-referencing of the TII symbol with the correlation properties of 

the received TFPR symbol is critical over longer periods. 

In addition to these properties of each usable frame, the relative null symbol position 

within each frame also has to be monitored to enable the system to identify any 

sudden changes in position. As has been shown, a dramatic positional change (> ±2T) 

in these values means that the current primary transmitter has changed. This change 
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requires further diagnosis of the TII in that frame (if available) in order to establish 

which correlation peak to match to each incoming transmitter. 

As with static positioning, the multipath elements found in a number of the captures 

can make the tracking of peaks problematic and also decrease the accuracy of the 

positioning algorithms. This issue will arise based on the surrounding objects of the 

vehicle in each DAB frame. 

There does not appear to be an issue with Doppler shift due to the moving vehicle. 

This may be because the resolution of the system is such that any incremental value 

may not be detected. 
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9 SUMMARY AND CONCLUSIONS 

The final chapter in this thesis is intended to provide an overview of the work 

undertaken in order to produce this document. The work will be examined and 

conclusions drawn, with final recommendations being made as to the continuation of 

research within this field. 

9.1 SUMMARY 

The aims of this project were to investigate the use of the Digital Audio Broadcast 

signal as an alternative positioning source to satellite navigation, and to then develop 

software capable of positioning a receiver using this signal alone. In order to achieve 

this, a number of simulations were initially performed using transmitter location data 

obtained from Ofcom, in order to ascertain the feasibility of the aims. Following these 

simulations, software was developed throughout the duration of the project using the 

hardware selected at the outset to detect Time Difference of Arrival measurements 

from multiple DAB sources. 

The tools developed were then subjected to an initial testing phase in order to 

investigate the effects of a number of criteria to enable further development of the 

software. Static positioning trials followed this period, with equipment installed 

inside a vehicle and data captures taken at pre-determined locations in order to 
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examine different geographical settings. These tests covered terrain from wide open 

and flat rural land to dense urban situations with the intention to cover a spectrum of 

geography in the UK. GPS tracking provided the "truth" system against which the 

DAB positioning was compared. 

Finally, the most demanding test involved the development of further algorithms to 

enable the software to track signals when moving at speed. A number of these trials 

were performed in different regions again to examine how DAB positioning fared 

when compared to the GPS tracking. 
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9.2 CONCLUSIONS 

This section will examine the various simulations and testing exercises in turn with the 

purpose of providing an overall summary into the use of DAB as a standalone/aiding 

positioning source. 

9.2.1 Coverage Simulations 

The early research involved the examination of DAB signal coverage, based on 

publicly available details regarding transmitter sites. Initial tests modelled the 

locations of these transmitters in the UK, and based on the height of these locations 

and transmitting antennas, produced contour maps for both signal coverage and 

horizontal dilution of precision values, assuming perfect reception. 

The DAB spectrum was sub-divided into seven widely used frequencies at the time 

(1111 - IID and 12A - 12D), with several test signals on other frequencies and 

allowance for further expansion in the future. Information on these available 

frequencies was freely available for all networks, although the BBC information 

(provided through their own website) declined to mention the height of transmitting 

antennas at the time of writing. This meant that the BBC national network had to be 

excluded from these simulations due to the lack of information. The remaining six 

blocks had complete information for this purpose. In general, sites were found to be 

identical to those in the dominant Digital One commercial national network (block 

1113) and therefore the lack of BBC information was unlikely to add any coverage 

advantages. 

These simulations indicated that within the country as a whole, coverage was 

sufficient to attain a position fix using a Time Difference of Arrival (TDOA) 

measurement approach, coupled with linear least squares positioning methodology. 

Naturally, as transmitters were spaced not for positioning purposes but for the sole 

purpose of a DAB receiver being within line-of-sight of a single transmitter, this was 
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found to be a valuable simulation in proving that DAB positioning could be 

undertaken at the majority of locations within the UK. 

Various models were run to investigate how changes in the receiver antenna height 

above a spherical earth model would increase/decrease the number of transmitters in 

view of a receiver, in addition to the effect of the COST Hata path-loss model used to 

determine line-of-sight signal propagation. 

The main conclusions that can be drawn from the simulation exercises performed 

were: 

" The general model used for these simulations indicated excellent coverage 

from three or more transmitters at any one time, especially in areas of high 

population. 

" The height of the receiving antenna can improve the transmitter availability in 

all areas. 

" The resolution of the system is dependent on the position and quantity of 

transmitters available to the receiver. 

9.2.2 System Testing 

During the initial build of the processing software, a number of tests were conducted 

to investigate how the variation of certain parameters could affect the timing 

extraction ability of the software. The first of these tests was a time-delay exercise 

whereby the equipment was automated to perform a capture of one DAB block once 

per hour over 48 hours to examine if the TDOA measurements altered during this 

period. Any variations would have suggested transmitter clock drift, which would 

make standalone positioning of a DAB receiver impossible. The antenna was 

mounted high on the roof of a university building and left over the course of a 

weekend to capture the data. However, the results indicated that the clock stability 
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was excellent, with the testing algorithms reporting the same results over the 48 hour 

period. 

The sampling rate of the TVRX daughterboard front-end inside the USRP sampled the 

incoming signal at a rate that was slightly lower (2MHz) than the DAB sampling 

frequency (2.048MHz). This meant that it was necessary to re-sample the received 

signal to the DAB frequency in order to perform the cross-correlation process and was 

able to separate multiple signals to one unit of DAB time T (1/2.048MHz z 142 

metres). This simplified the system to a grid-like structure whereby the TDOA 

(measured in integer T) would automatically `lock' to the intersection of each 

hyperbolic intersect. It was later shown during a further simulation that these grid 

areas are defined by the geometry of the transmitters and the HDOP of the system. 

The second test involved changing the height of the receiving antenna at the same 

position on the Earth's surface. This was to confirm that the simulation undertaken 

earlier in the project proved true, that the higher the antenna is, the more transmitters 

are within line-of-sight. This proved to be the case, but there were surprising results 

with the severe multipath component in the experiment conducted on the tallest 

building in the surrounding area on the university campus. These secondary signals 

were likely to have been reflected upwards from the large number of flat-roofed 

buildings in the vicinity of the area. This outcome had not been considered previously 

as it had been assumed that a very clean signal would have been received. 

Testing then progressed to study the comparison between two different DAB specific 

antennas. These involved the examination of the outdoor mounted dipole antenna and 

the indoor vehicle mounted active patch antenna. These results were immediately 

conclusive in showing that during identical test conditions, the dipole antenna showed 

far more potential than the patch by providing a higher signal-to-noise ratio. Naturally 

the relative size of the dipole antenna meant that it was much less mobile, but the 
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purpose of the project was to establish how the signals could be used, and this antenna 

yielded the better quality results. 

The dipole antenna was therefore used in the first round of positioning trials based 

around the university campus road network to test whether the equipment could repeat 

a set of positioning measurements if it was removed and returned to the same location 

within the space of an hour. These tests showed that the repeatability was excellent as 

expected following the successful testing of the transmitter clock stability. 

As the equipment had now been tested in an outdoor environment, it proved 

interesting to test whether signals adequate for positioning could be received inside a 

building. Positions were found where the signals would have to travel through 

multiple walls and also where the same position could be tested on three floors. The 

results from this test did not present enough information for a standalone positional fix 

which was due to the lower receiving power of the signals, the lower power 

transmissions then being lost in the background noise. The multiple signals could be 

separated within a large structure where GPS reception was not possible. However, 

the lower power signals were lost in the background noise, meaning that there was 

insufficient information for a positional fix. 

The main conclusions of the system testing stages were as follows: 

0 As was proven in the simulation exercise, the system provided a resolution 

good enough for rough positioning in an area with good transmitter coverage 

(approx 150m), which is only marginally greater than GPS when Selective 

Availability was switched on (approx 100m). 

0 The transmitter clocks were stable enough for positioning purposes on the 

resolution of the DAB system, although the stability would need to be tested 

in order to calculate fractional values of T if an alternative front-end had the 

ability to over-sample the signal. 
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" The dipole antenna out-performed the patch antenna in the comparison trial. 

Technical development would be required for this type of receiver to be hand- 

held due to its current size. 

" Tests proved that repeatability of the developed system was excellent. 

" It was shown that signals could be separated within a large dense building, if 

the signal-to-noise ratio was high enough. The use of this system within an 

indoor environment caused issues due to secondary transmissions being lost in 

the background noise. 

9.2.3 Field Testing - Static 

The field testing was performed over a number of different test runs during 2009 with 

the aim to try and capture DAB data in as many diverse locations as possible. The 

equipment was again installed inside a vehicle with the dipole antenna mounted to the 

roof. Real-time kinematic GPS tracking was used to establish the true position of each 

capture in order to compare the DAB position calculation. At every static capture 

location, the DAB capture was made on all seven of the UK blocks along with the true 

GPS calculated location. 

The first of these test-runs involved a combination of suburban and rural environments 

between the cities of Nottingham and Leicester. Within this region there were four 

dominant transmitters forming a simple four-sided test area for the system. This 

allowed for a number of well-spaced tests to be conducted and a mean system error of 

approximately 380 metres from the true position. A small minority of the captures 

either did not yield results, or resulted in unusable measurements due to the geometry 

of the transmitters. 

The second test-run involved a combination of suburban and dense urban 

environments between the cities of Nottingham, Leicester and Birmingham. Within 

this region there were significantly more transmitters available to the receiver. The 
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majority of positions yielded excellent results, with an average position approximately 

345 metres from the truth. 

The third and final test-run involved a combination of suburban and mainly rural 

environments between the cities of Nottingham and Lincoln. The number of 

transmitters available to the receiver was similar in quantity to the first test, and this 

showed an average offset of 254 metres from the majority of results. 

The main conclusions that can be drawn from the static positioning trials are: 

0 Proof that the earlier simulations were correct, in that the linear offset of the 

DAB position from the true GPS position was proportional to the height of the 

antenna relative to the transmitters. 

0 The structure of the hyperbolic intersections, caused by the hardware 

sampling rate, created a varying accuracy dependent on the quantity and 

position of transmitters. 

" The transmitter location accuracy could have been improved over the Ofcom 

database by identifying transmitters from satellite imagery (such as Google 

Maps) and provide an offset of potentially 10's of metres rather than 100+. 

0 Standalone DAB Positioning was possible in the vast majority of cases tested 

and although a small number of positions did not yield a location, this was 

seen as a very encouraging result from a system not designed for positioning. 

9.2.4 Field Testing - Dynamic 

The final testing of the system involved the use of both DAB and GPS receivers 

tracking a moving vehicle over a short distance. These tests required new processing 

modules to be built to allow the receiver to track correlation peaks over time. The 

techniques used differed from the static positioning, using GPS to `seed' the 

preliminary vehicle location allowing the correlation peaks to be matched 

immediately. 
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" Transmitter "shadowing", where one or more transmitters would disappear 

from line of sight for short periods, and then reappear at a later time at a 

different correlation coefficient, would be eliminated by further development 

of the system tracking algorithms. 

" The tests performed in this section demonstrated that the calculated DAB 

position lay within the region of interest and was seen to generally follow the 

local hyperbolic grid structure. 

Such a system would be usable for longer term position tracking, which may 

not require a high degree of accuracy. For example, the system may not be 

suited to tracking a vehicle around a housing estate containing many closely 

located intersecting roads, but would be better suited to tracking a vehicle 

between villages, towns and cities. 

9.2.5 Concluding Remarks 

This thesis has presented the use of Digital Audio Broadcasting, a non-navigation 

signal, as a potential source of delivering a terrestrial-based complement to satellite 

navigation. A prototype Software Defined Radio system has been developed from 

basic principles throughout this work providing an environment within which the 

necessary signal processing operations may be performed. 

The key elements required for TDOA positioning have been shown to be present 

within the DAB signal proving that static and dynamic tracking are possible, however, 

more work is required on these tracking algorithms for both processes to make a more 

robust system. Higher precision positioning should also be possible using an 

alternative radio frontend to oversample the DAB signal, allowing for a unit of 

measurement smaller than the clock rate T. 

It has been proven that the fundamentals of standalone DAB positioning are possible 

and with further development could provide a robust backup to GNSS. 
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9.3 POTENTIAL FUTURE WORK RECOMMENDATIONS 

This thesis has presented the use of DAB as a positioning source in a wide range of 

scenarios and shown that the use of a Software Defined Radio approach has been 

sufficient in the post-processing of such data. Due to time limitations within this 

project, a number of recommendations can be made for future research in this area: 

" It would be an interesting study to potentially build a custom built front-end 

allowing for the capture of multiple signals at a higher sampling rate to 

overcome the limitations of the USRP sampling rate. The second generation 

USRP2 has the ability to capture much wider signal bandwidths, allowing for 

the capture of the entire DAB band using a sampling rate of higher resolution 

than the transmitter clock frequency (2.048MHz). This approach could allow 

for the measurement of a "sub-T" TDOA system, allowing for a higher 

resolution than could be achieved with the hardware within this project. 

" As a standalone positioning system, DAB accuracy could currently be 

compared with an early LORAN-C system (accuracy up to l km). It would be 

of interest to combine measurements from a number of different terrestrial 

based sources (such as DVB, DRM, LORAN, Wi-Fi etc) to investigate how a 

data fusion approach improves upon the results from standalone DAB. This 

approach could also be adopted using a limited GNSS constellation (< 3 

satellites) and a single TDOA measurement from DAB to potentially mitigate 

the effect or urban canyon GNSS measurements. 

" Differential DAB positioning would be an interesting direction to investigate 

further. Due to the TVRX daughterboard using a separate oscillator to the 

USRP motherboard, the synchronisation of this system would not be possible, 

however, custom-built hardware could have this ability and providing two 

USRP2 devices could connect via a data-link, this approach could prove to 

produce interesting results. 
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10 APPENDIX 

k range 
min max k' i n 

-768 -737 -768 0 1 

-736 -705 -736 1 2 

-704 -673 -704 2 0 

-672 -641 -672 3 1 

-640 -609 -640 0 3 

-608 -577 -608 1 2 

-576 -545 -576 2 2 
-544 -513 -544 3 3 

-512 -481 -512 0 2 

-480 -449 -480 1 1 

-448 -417 -448 2 2 

-413 -385 -416 3 3 

-384 -353 -384 0 1 

-352 -321 -352 1 2 

-320 -289 -320 2 3 

-288 -257 -288 3 3 
-256 -225 -256 0 2 

-224 -193 -224 1 2 
-192 -161 -192 2 2 
-160 -129 -160 3 1 
-128 -97 -128 0 1 
-96 -65 -96 1 3 

-64 -33 -64 2 1 
-32 -1 -32 3 2 

k range 
min max k' i n 

1 32 1 0 3 
33 64 33 3 1 
65 96 65 2 1 
97 128 97 1 1 

129 160 129 0 2 
161 192 161 3 2 
193 224 193 2 1 
225 256 225 1 0 
257 288 257 0 2 
289 320 289 3 2 
321 352 321 2 3 
353 384 353 1 3 
385 416 385 0 0 
417 448 417 3 2 
449 480 449 2 1 
481 512 481 1 3 
513 544 513 0 3 
545 576 545 3 3 
577 608 577 2 3 
609 640 609 1 0 
641 672 641 0 3 
673 704 673 3 0 
705 736 705 2 1 
737 768 737 1 1 

Table 12: TFPR Construction - relationship between k, VP i and it 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

hoj 
hij 

0 
0 

2 
3 

0 
2 

0 
3 

0 
0 

0 
1 

1 
3 

1 
0 

2 
2 

0 
1 

0 
2 

0 
3 

2 
2 

2 
3 

1 
3 

1 
0 

h2. ß 
h3J 

0 
0 

0 
1 

0 
2 

2 
1 

0 
0 

2 
3 

1 
3 

3 
2 

2 
2 

2 
3 

0 
2 

2 
1 

2 
2 

0 
1 

1 
3 

3 
2 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

ho. j 0 2 0 0 0 0 1 1 2 0 0 0 2 2 1 1 
hi j 0 3 2 3 0 1 3 0 2 1 2 3 2 3 3 0 
h2, 0 0 0 2 0 2 1 3 2 2 0 2 2 0 1 3 
h3j 0 1 2 1 0 3 3 2 2 3 2 1 2 1 3 2 

Table 13: TFPR Construction - relationship between j and h 

p ah (P) 
b=0,1,2,3,4,5,6,7 

0 00001111 
1 00010111 

2 00011011 
3 00011101 
4 00011110 
5 00100111 
6 00101011 
7 00101101 
8 00101110 
9 00110011 
10 00110101 
11 00110110 
12 00111001 
13 00111010 
1.1 00111100 
15 01000111 

16 01001011 
17 01001101 
18 01001110 
19 01010011 
20 01010101 
21 01010110 
22 01011001 
23 01011010 

p ati(')) 
b=0,1,2,3,4,5,6,7 

24 01011100 
25 01100011 
26 01100101 
27 01100110 
28 01101001 
29 01101010 
30 01101100 
31 01110001 
32 01110010 
33 01110100 
34 01111000 
35 10000111 
36 10001011 
37 10001101 
38 10001110 
39 10010011 
40 10010101 
41 10010110 
42 10011001 
43 10011010 
44 10011100 
45 10100011 
46 10100101 
47 10100110 

p ab(p) 

b=0,1,2,3,4,5,6,7 
48 10101001 
49 10101010 
50 10101100 
51 10110001 
52 10110010 
53 10110100 
54 10111000 
55 11000011 
56 11000101 
57 11000110 
58 11001001 
59 11001010 
60 11001100 
61 11010001 
62 11010010 
63 11010100 
64 11011000 
65 11100001 
66 11100010 
67 11100100 
68 11101000 
69 11110000 

Table 14: List of TI! region codes p and binary codes ab(p) 
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