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Abstract

Abstract

Alzheimer’s disease is the most common form (~60-80%) of dementia, currently
affecting approximately half a million people in the UK and ~30 million people
worldwide. The autosomal dominant form of AD represents a small proportion
(~1-2%) of AD cases and is genetically well characterised. The vast majority of AD
cases that show symptoms later in life (> 65 years of age) are genetically complex.
This type of AD, also known as late onset Alzheimer’s disease (LOAD) disease, is

still highly heritable with an estimated heritability of up to 76% (Gatz et al., 2006).

Unfortunately, there is no cure for this devastating disease. Investigating genetic
factors influencing the risk of LOAD is imperative for development of effective

therapeutic treatments and more accurate diagnosis.

A cross-platform comparison of four Genome-wide association studies (GWAS) was
performed in an effort to identify novel genetic associations with LOAD (Chapter 3).
A TRIM15 SNP rs929156 demonstrated significant evidence of association with
LOAD with a p-value approaching genome-wide significance (p = 8.77 x 10®) and an
odds ratio that showed consistent effect on risk (OR = 1.1, p = 0.03). Within this
chapter, a bio-informatic program to automate the process of GWAS meta-analysis
taking into account linkage disequilibrium (LD) is also presented. Subsequently two
fragments of the TRIM15 gene (including both 5’ and 3’ end flanking regions) were
sequenced using the ABI SOLID™ next generation sequencing technology. This was
a pilot study using a pooled DNA strategy to determine whether this region harbours

multiple rare variants which are associated with the disease (Chapter 4).

Lastly, a candidate gene study combined with whole genome analysis was performed
in an effort to search for genetic variants influencing human ageing using LOAD

GWAS data (Chapter 5).
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Introduction

Chapter 1. Introduction

Alzheimer’s disease is the most common cause of dementia in the elderly and
accounts for more than two-thirds of all dementia cases. Dementia affects ~820,000
people in the UK, and costs the UK economy approximately £23 billion per year
(Alzheimer’s Research UK). There are ~35 million people worldwide who suffer from
Alzheimer’s disease, and this figure has been estimated to rise to 65.7 million in 2030
and 115.4 million in 2050 (Ferri et al., 2009). The prevalence of AD ranges from 0.6%

in persons aged 65 to 69 years to 22.2% at ages 90 and older (Lobo et al., 2000).
1.1 Outline of the project

The following studies have been explored in this thesis (with the general aspects

covered by Chapters 1, 2 and 6):

o Analysis of Genome Wide Association Study (GWAS) data looking for
replicating signals in LOAD — Chapter 3

¢ Next generation sequencing (NGS) of tripartite motif containing 15 (TRIM15)
gene using pooled DNA samples — Chapter 4

e Genetic variants influencing human ageing from LOAD Genome Wide

Association Studies (GWAS) — Chapter 5

Respective specific aims are described in each of the chapters as appropriate.
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1.2 Symptoms, diagnosis and treatment of Alzheimer’s disease

Symptoms

AD is clinically identified by a progressive loss of cognitive abilities. The symptoms at
early stages involve mild memory loss - finding difficulty in remembering recently
learned facts such as people, places and meetings. As the disease progresses,
various advanced symptoms can occur such as confusion, irritability and aggression,
mood swings, language breakdown, long-term memory loss, and sensory decline.

Ultimately, the disease causes loss of body functions, and finally death.

AD is pathologically characterized by extracellular deposits of abnormally
accumulated B-amyloid (AB) peptide in the form of senile plaques in cerebral cortex,
and intracellular neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated
tau (1) proteins. Both observations are likely to be caused by misfolding and gradual
conversion of highly soluble proteins into insoluble filamentous polymers (Forman et
al., 2004). Furthermore, through brain scanning, such as computed tomography (CT)
or magnetic resonance imaging (MRI), AD brains demonstrate severe cortical
shrinkage, enlarged ventricles and shrinkage of the hippocampus, a region of the

brain thought to be responsible for storing and retaining memories.

Diagnosis

Alzheimer’s disease (AD) can only be definitely (100%) diagnosed post mortem when
an autopsy of the brain is performed (Carrette et al., 2003). However, it has been
demonstrated that using a combination of tools, it is possible to estimate and make a
probable diagnosis of Alzheimer’s disease in a living patient, and the accuracy can

range from ~80% to 95% (Ballard et al., 2011; Mucke, 2009).

A number of AD diagnosis criteria have been established to date. The most widely

used methods are known as NINCDS_ADRAD, DSM-IV and CERAD. These criteria
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involve a number of diagnostic procedures, such as taking history from patients and
their families, assessment of their cognitive function by carrying out
neuropsychological tests (e.g. mini-mental state examination MMSE (Folstein et al.,
1975)), and distinguish Alzheimer’s disease from other neurodegenerative dementias.
Other forms of dementia include frontotemporal dementia (FTD), dementia with

Lewy-body (DLB) and Creutzfeldt-Jakob disease (CJD).

According to these diagnostic criteria, AD patients are assigned into three different
risk groups - definite, probable and possible. Definite AD is defined only if

histopathological evidence is available (Table 1.1) (Dubois et al., 2007).

The NINCDS-ADRDA criteria were established in 1984 by the NINCDS (National
Institute of Neurological and Communicative Disorders and Stroke) and ADRDA
(Alzheimer’s Disease and Related Disorders Association) (McKhann et al., 1984). A
similar AD diagnosis criteria DSM-IV TR was published by the American Psychiatric
Association in 2000. These criteria are under constant review and take into account
technology advances in functional neuroimaging techniques such as PET (positron
emission tomography) and SPECT (single photon emission computed tomography)
scans. The latest amendment to the NINCDS-ADRDA criteria was carried out in 2007

(Dubois et al., 2007).
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Table 1.1 Summary of NINCDS-ADRDA criteria for diagnosis of AD. Table lists
criteria for the different AD risk groups. Adapted from Yaari and Corey-Bloom, 2007.

e Atypical onset, presentation, or clinical course of
_ dementia
Possible
e Presence of another illness capable of producing
dementia
e Deficits in two or more domains of cognition
e Progressive decline of memory and other cognitive
functions
Probable AD e Preserved consciousness
e Onset between ages 40 and 90
e Absence of systemic or other brain disease that could
account for symptoms
o e Clinical criteria for probable AD
Definite AD
e Tissue diagnosis by autopsy or biopsy
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The severity of AD can be assessed using the MMSE score (Folstein et al., 1975);

e mild AD: MMSE score 21 to 26
e moderate AD: MMSE score 10 to 20
e moderate severe AD: MMSE score 10 to 14

e severe AD: MMSE score less than 10

AB42, total tau and hyperphosphorylated tau are well established AD biomarkers.
Abnormally low AB42 levels and high tau (either total tau or hyperphosphorylated tau)

levels in CSF act as an important indicator of AD pathogenesis (Buchhave et al.,

2009; Tapiola et al., 2009).

Over the last few years, a number of more distinctive biomarkers of AD have become
available from studying cerebrospinal fluid (CSF). The level of biomarkers such as
secreted protein acidic and rich in cysteine-like protein 1 (SPARCL1), contactin-1
(CNTNZ1), contactin-2 (CNTN2), alpha-dystroglcan, neuronal pentraxin receptor
(NPR), carnosine dipeptidase 1 (CNDP1) and a 120kDa isoform of the precursor of
neural cell adhesion molecule 1 (NCAM-120) have been found to be significantly

different in AD CSF compared with normal subjects (Yin et al., 2009).

Treatment

Currently, there is no cure for Alzheimer’s disease. The damage to the brain is
thought to have occurred as many as 10 to 20 years before any symptoms arise.
Therefore, pre-symptomatic diagnosis is considered crucial for early and effective

treatment of Alzheimer’s disease to halt disease progression and reduce symptoms.

Though the disease is generally believed to be irreversible, it is hoped that
interventions preventing neuronal cell death, could activate the self-repair
mechanism of the brain, leading to restoration of broken neural circuits, and a

functional recovery may become possible (Mucke, 2009). Current therapeutic drugs
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are effective in relieving the disease symptoms. However, the efficacy of these drugs

in slowing down the disease progression and recovery of the brain is limited.

Five drugs have been approved by EMEA (European Agency for the Evaluation of
Medical Products) and FDA (USA Food and Drug Administration) for the treatment of
AD. These drugs are Donepezil, ENA-713, Galantamine, Memantine and Tacrine.
These medicines can be divided in two major categories according to their targets -
cholinesterase inhibitors (Donepezil, ENA-713, Galantamine, Tacrine) and an

antagonist for NMDA-type (N-methyl-D-aspartate) glutamate receptor (Memantine).

Acetylcholine is an important neurotransmitter, which has been found to be depleted
in AD brains. Antagonising its degrading enzyme acetylcholinesterase increases the
acetylcholine level in the brain. Thus it improves neurotransmission and ultimately
cognitive function. Cholinesterase inhibitors are prescribed to AD patients with mild to
moderate symptoms (Winblad et al., 2001). However, these inhibitors may cause

adverse effects such as diarrhea, vomiting, nausea, fatigue, insomnia and anorexia.

Memantine is an uncompetitive antagonist of NMDA-type receptor for glutamate, a
main excitatory neurotransmitter in the human central nervous system (CNS).
Glutamate is known to play an important role in neural transmission, learning,
memory processes and neuronal plasticity (Sucher et al., 1996). The level of
glutamate in the brain has important implications in determining synaptic cell survival,
where it has been found that excess levels of glutamate are toxic to neurons. This
increase in the level of glutamate was found to be caused by over-stimulation of
NMDA receptors (Robinson and Keating, 2006). Antagonising NMDA receptor thus
formed the biological basis for this drug. A previous clinical trial has suggested a
small beneficial effect of Memantine during six month placebo controlled trials in
moderate to severe AD. However, it is not yet clear if it has any effect in AD patients

with less severe symptoms (Areosa et al., 2005). Memantine has been found well
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tolerated in clinical trials, with dizziness and mild headaches reported as the main
adverse effects. Interestingly, combined treatment using both Memantine and

Donepezil appear to improve cognitive performance over either therapy alone on
multiple clinical measures, suggesting a synergistic effect between the two drugs

(Ihalainen et al., 2011; Tariot et al., 2004).

AB vaccination

Current available drugs for treatment of AD are severely limited in that they are
designed to relieve AD symptoms. In order to halt the disease progression,

interference of pathogenic events leading to the clinical symptoms is essential.

Since deposition of amyloid plaques is a major clinical feature of AD, removal of
these plagues has been thought to be able to block the disease progression. A
placebo-controlled clinical trial of AB42 immunisation showed that although patients
exhibited clear reduction of Ap plaques from the brain, there was no evidence of
either slowing down of disease progression or improving survival (Holmes et al.,
2008). Furthermore, full length Ap vaccination has been shown to elicit strong side
effects which can cause over-activation of the innate immune system, which in turn
accelerates disease progression rather than slowing it down (Holmes et al., 2008).
AD patients treated with AN1792 (an active Af vaccine) exhibited a significant
increase (p = 0.02) in the risk of aseptic meningoencephalitis compared with placebo
controlled AD patients (Orgogozo et al., 2003). As a result, A vaccination avoiding
these pro-inflammatory responses (mainly anti-Ap Th1l immune response) is under
intensive development. Moreover, AB vaccination combined with immuno-

suppressive therapy has also been suggested (Cribbs, 2010).

However, previous studies indicate a strong correlation between soluble oligomeric

AP concentration and AD, whereas a poor correlation has been observed as
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compared with Ap plaques counts (Davis et al., 1999; Lue et al., 1999;
Neuropathology Group of the Medical Research Council Cognitive Function and
Ageing Study, 2001). This has led to speculations that the plaque form of AB is
perhaps harmless or even protective. Active removal of A plaques could however
elevate the concentration of soluble Ap oligomers, resulting in acceleration of disease

progression (Holmes et al., 2008).

Alternative medications

A number of over-the-counter medications (such as melatonin and Omega-3 fatty

acids) are also available to AD patients.

Melatonin is a natural hormone secreted by the pineal gland. It regulates sleeping
cycles and has shown putative beneficial effects to people with sleeping disturbance
(Brzezinski et al., 2005). Cardinali et al., 2002 suggested it might also be helpful in
suppressing agitation and anxiety. However, such beneficial effects have not been
consistently observed in other studies. For example, Gehrman et al., 2009 did not

find any significant effect of melatonin (including sleep, circadian rhythms or agitation)
on AD patients (when compared with randomized AD subjects who take placebos).
There is also evidence that melatonin may disrupt, rather than improve sleep if

inappropriately used (Arendt et al., 2008).

Omega-3 fatty acid (which mainly consists of eicosapentaenoic acid [EPA] and
docosahexaenoic acid [DHA]) is one of the most widely used alternative therapies for
treating AD. The popularity of Omega-3 fish oil is probably due to its well recognized
effects of protection of heart diseases with no obvious adverse effects. DHA, which is
a major constituent of fish oils, is a long-chain polyunsaturated fatty acid (comprising
~12-16% of the total fatty acids) in the brain (Quinn et al., 2010). The level of DHA
has been found to be decreased (~30-50%) in AD patients compared with age-

matched controls.
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A longitudinal study taking 815 individuals (who were unaffected by AD) aged
between 65 to 94 years and followed by 3.9 years showed that subjects who
consumed fish regularly (at least once a week) exhibited a reduced risk (~60%) of
developing Alzheimer’s disease (relative risk, 0.4; 95% CI 0.2-0.9) (Morris et al.,
2003). This protective effect has led to extensive follow-up studies which aim to test
whether Omega-3 fatty acids can also slow down the disease progression. Several
studies have shown that the intake of Omega-3 fatty acids only appear to have a
small beneficial effect on patients with very mild AD symptoms, and no effects for
patients with moderate to severe symptoms (Freund-Levi et al., 2006; Quinn et al.,
2010). Interestingly, a recent study has found that the level of plasma DHA is not only
proportional to intake of DHA by eating fish, seafood or DHA supplement, but is also
associated with APOE ¢4 genotype. It has been suggested that the absorption of
DHA may be impaired in APOE €4 carriers, and therefore these people do not benefit

from consumption of DHA (Cunnane et al., 2009).

Other alternative treatments for AD include aromatherapy, music therapy, drinking
wine (in moderation) and green tea, as well as taking Vitamin E as dietary
supplements. However, these alternative treatments generally lack biological and
scientific basis, and their effectiveness are questionable. It has been shown that an
intake of high-dosage vitamin E increases the risk of mortality and thus should be

avoided (Miller et al., 2005).

It is hoped, with the additional knowledge gained through genetic studies of AD, that
more effective therapeutic interventions could be developed in the future by targeting

the root cause of AD rather than only its symptoms (Mucke, 2009).
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1.3 Early onset Alzheimer’s disease

Early onset Alzheimer’s disease (EOAD) refers to AD cases that develop symptoms
early in life (before 65 years of age). This form of AD cases constitutes only a small
proportion (~1% to 2%) of all AD patients, and is genetically well characterised
(Campion et al., 1999). EOAD exhibits a Mendelian form of inheritance in an

autosomal dominant manner.

EOAD is largely caused by fully penetrant mutations in three genes — amyloid
precursor protein (APP), chromosome 21g21.3; presenilin 1 (PSEN1), chromosome
14924.2 and presenilin 2 (PSEN2), chromosome 1g42.1. Mutations in the PSEN1
gene have been found to account for the majority of familial AD cases with ~170
mutations being identified, compared with only ~30 and ~10 mutations in APP and

PSEN2, respectively (Shepherd et al., 2009).

All of these mutations have been shown to affect APP proteolytic processing,
resulting in generation of toxic AB peptides (the major component of senile plaques)
in the brain. The alterations in APP processing in favour of AB production and its
accumulation in the brain are key pathogenic events in EOAD (Marzolo and Bu,

2009).

Proteolytic processing of APP

APP is proteolytically processed through one of the two mutually exclusive pathways
(amyloidogenic pathway and non-amyloidogenic pathway) via three enzymes - o,

and y secretase (Haass and Selkoe, 2007).
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In the amyloidogenic pathway (Figure 1.1), APP is first cleaved by B-secretase (also
known as -site APP cleaving enzyme 1 - BACEL), releasing a soluble APPj
fragment and a membrane-bound APP C-terminal fragment (APPCTFf). The C-
terminal fragment is subsequently cleaved by y-secretase within the membrane,
releasing AB peptides and the APP intracellular domain (AICD). This intracellular
domain acts as a transcription factor which regulates gene expression (Konietzko et
al., 2008). AICD has been shown to induce transcriptional activation of neprilysin
(NEP), which in turn plays an important role in degradation of Ap (Pardossi-Piquard
et al., 2005). AICD has a short half-life and is rapidly degraded in the cytosol (Cupers
et al., 2001) by insulin-degrading enzyme (IDE) (Edbauer et al., 2002). In addition,
APP-binding protein Fe65 stabilizes AICD and stimulates translocation of AICD to the

nucleus and binding of histone acetyltransferase TIP60 (Goodger et al., 2009).

A number of cleavage sites of intramembrane proteolysis by y-secretase have been
identified (Figure 1.1), each result in production of different sizes of Ap peptides
ranging from 37 to 43 amino acids (e.g. AB38, Ap40 and ApB42) (Marzolo and Bu,
2009). The precise site of y-secretase cleavage has important implications for Ap
aggregation, which in turn can affect the downstream disease pathology. The
therapeutic modification of the y-secretase cleavage site to y38 has been shown to

significantly reduce AB aggregation propensity (Haass and Selkoe, 2007).

The y-secretase complex is composed of four proteins including PSEN1 or PSEN2,
nicastrin (NCSTN), anterior pharynx defective 1 (APH-1) and presenilin enhancer
protein 2 (PEN2) (Haass, 2004). A previous study has shown that a fully active y-
secretase can be reconstituted in yeast when all four components are expressed

(Edbauer et al., 2003).
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Figure 1.1 Schematic representation of the amyloidogenic pathway. APP (grey
cylinder) is first cleaved by B-secretase, releasing the soluble B-cleaved APP
fragment (SAPP). The C-terminal fragment (99 amino acids in length) is
subsequently cleaved within the transmembrane domain by y-secretase, which
liberates the Ap peptide and an APP intracellular domain (AICD). y-secretase can
cleave the APP transmembrane domain at multiple sites — y, ¢ and € (Adapted from
Haass and Selkoe, 2007).
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PSEN1 or PSEN2 protein constitute the catalytic core of the y-secretase complex.
Mutations in PSEN1 and PSEN2 are thought to influence y-secretase cleavage
events by shifting it two amino acids to the C-terminus, and thus increasing the
production of AB42 (Haass, 2004). AB40 and AB42 are the most common isoforms of
AB peptides (Deane et al., 2009). The longer form (AB42) is more fibrillogenic and
neurotoxic, and has been shown to be more difficult to clear from the brain compared

with AB40 (Shepherd et al., 2009).

In the non-amyloidogenic pathway (Figure 1.2), APP is first cleaved by a-secretase
within the AB domain, and thus precludes AB production. The cleavage by a-
secretase generates a soluble APPa. peptide and membrane-bound C-terminal APP
fragment (APPCTFa). Subsequent intramembrane cleavage of the APPCTFa by the
y-secretase complex produces a shortened fragment P3 and a cytoplasmic APP

intracellular domain (AICD). It is unclear if P3 peptides play any functional role in

pathogenesis of AD.

It is noticeable that AICD is produced in both amyloidogenic and non-amyloidogenic
pathways. Interestingly, functional active AICD is likely to be generated

predominantly through amyloidogenic pathways, where translocation of AICD to the
nucleus has been found to be significantly reduced when the endosomal p-cleavage

pathway was blocked by pharmacological or genetic inhibitors (Goodger et al., 2009).
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Figure 1.2 Schematic representation of the non-amyloidogenic pathway.

Schematic structure of APP (grey cylinder) is shown together with AB (as shown). In

the non-amyloidogenic pathway, APP is first cleaved by a-secretase within the AB

domain, thus precluding production of AB. This cleavage by a-secretase results in

release of a soluble APP fragment (sAPPa), and a shortened form of the membrane

bound C-terminal fragment (83 amino acids in length). Subsequent cleavage of the

C-terminal fragment by y-secretase within the membrane releases a P3 peptide and

a cytoplasmic APP intracellular domain (Adapted from Haass and Selkoe, 2007).
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1.4 Late onset Alzheimer’s disease

Late onset Alzheimer’s disease (LOAD), also known as sporadic AD (SAD)
represents the majority (~98-99%) of AD cases. LOAD exhibits a complex aetiology
with strong genetic and environmental determinants. Like many other complex
common diseases, sporadic AD is likely to be governed by an array of common risk

alleles across a number of different genes (Bertram et al., 2008).

Mutations in APP, PSEN1 and PSEN2 responsible for causing EOAD have not been
reliably detected in LOAD patients, suggesting a distinct pathogenesis of LOAD
exists in comparison to EOAD. Although LOAD does not show Mendelian inheritance,
it is still highly heritable with an estimated heritability of up to 76% as determined by

studies of monozygotic and dizygotic twins (Gatz et al., 2006).

Although EOAD and LOAD share common neuropathological phenotypes including
both extracellular senile plaques and intracellular neurofibrillary tangles (NFTs), the
accumulation of AR in LOAD is believed to be a result of AR clearance deficits or
increased AP aggregation rather than being causative as in EOAD pathology

(Shepherd et al., 2009; Sleegers et al., 2010).

Age is the one of the biggest non-genetic risk factors for LOAD, where the likelihood
of developing AD approximately doubles every 5 years after the age of 65 (Feulner et
al., 2009). It should be noted that as much as 24% of LOAD risk could be attributable

to non-genetic factors, such as diet and lifestyle (Gatz et al., 2006).

15



Introduction

1.5 The Amyloid Cascade

As the two main features of AD are deposits of senile plaques containing AR peptides
and intracellular deposits of neurofibrillary tangles containing hyperphosphorylated
tau protein, and there is genetic evidence from studies of EOAD, pathways

concerning AB and tau have been a major focus of AD research.

All identified mutations associated with AD (both EOAD and LOAD) have been found
either directly or indirectly linked with the formation, aggregation and removal
processes of AB. These findings eventually lead to the formation of the amyloid

cascade hypothesis. AB are small peptides (~4 kDa) and the most common isoforms

are AB40 and Ap42 (Deane et al., 2009).

The Amyloid Cascade Hypothesis proposes that progressive cerebral accumulation
of beta-amyloid (AR) is the central trigger of the pathological changes found in the
brain of AD patients. These changes include synapse loss, activation of inflammatory
processes, induction of neurofibrillary changes and ultimately neuronal death (Hardy

and Higgins, 1992; Selkoe, 1991).

AB conformation and toxicity

It has been suggested that different conformations of Ap could induce neurotoxicity in
distinct biological pathways. Ap40 and AB42 exist in different aggregation states from
monomers to dodecamers, where oligomer refers to any aggregation state with the
exception of a monomer. Insoluble fibrils formed as oligomers grow in size, and
accumulation of these ultimately forms AB plaques found in the brain of AD patients.
In addition, AB42 peptide has been found to be more fibrillogenic than Ap40 (Tanzi

and Bertram, 2005).

It has been shown that accumulation of AB can cause neurotoxic effects, resulting in

the release of reactive oxygen species, loss of calcium homeostasis and activation of
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the several kinases including GSK3 - a kinase responsible for phosphorylation of tau

protein (Lee et al., 2005).

There is emerging evidence that small soluble Ap oligomers are more toxic than
mature fibrils. This has been supported by numerous studies in biochemistry and
histopathology, where biochemically measured levels of soluble A (monomers and
oligomers) correlate much better with the extent of synaptic loss and severity of
cognitive dysfunction in AD than do simple plague counts (Holmes et al., 2008; Lue

et al., 1999).

AB homeostasis

The level of soluble AR is homeostatically controlled by its production in neurons and
its subsequent clearance. Such homeostasis is thought to be deficient in the brain of
an AD patient. Levels of neurotoxic A in the brain have been found elevated in AD
contributing to the disease progression and neuropathology (Deane et al., 2008).
Furthermore, an increased AB42 to AR40 radio is a robust indicator of AD

(Kuperstein et al., 2010).

Given that the accumulation of A in the brain is determined by the rate of generation
versus clearance, both pathways are considered targets for therapeutic interventions.
The clearance of A from the brain can be achieved through two biological pathways

— proteolytic degradation or receptor mediated transport (Tanzi et al., 2004).

AP clearance by receptor mediated transport

The clearance of A from the brain through the blood brain barrier (BBB) is facilitated
by lipoprotein receptor-related protein 1 (LRP1) and p-glycoprotein on brain
capillaries by binding to chaperones (such as apolipoprotein E (APOE)) and a2-
macroglobulin (a2M) (Cirrito et al., 2005). LRP1 antagonists have shown to reduce

the efflux of AB from brain by up to 90% in mice injected with radiolabeled AB40
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(Shibata et al., 2000). However, it is still unclear if LRP1 also mediates A influx from
the bloodstream. Like Ap and APOE protein, LRP1 and its ligands are also detected

in amyloid plaques in AD brains (Marzolo and Bu, 2009).

It has also been found that LRP1 favours clearance of AB40 over the AB42 (more
amyloidogenic species of the peptide) and this might impede ABR42 transportation out
of the brain through the BBB (Deane et al., 2004). Thus the predominant path of
AB42 clearance from the brain is thought to be via the proteolytic degradation, as this

peptide is not efficiently exported.

AB clearance by proteolytic degradation

In the brain, soluble AB is degraded by activated microglia. The activation of
microglia is likely to be promoted by toll-like receptors (TLR). Frank et al., 2009 found
that mMRNA which encodes a membrane surface TLR is significantly up-regulated in

plague-associated brain tissues in aged APP23 transgenic mice.

AB peptides are proteolytically degraded within the brain principally by neprilysin
(NEP) intracellularly and insulin degrading enzyme (IDE) extracellularly (Jiang et al.,
2008). Genetic inactivation of these genes or administration of inhibitors of these
proteinases in the brain (of non-transgenic mice) leads to substantial elevation of A
levels in the brain and induction of plaque deposition (Dolev and Michaelson, 2004).
Conversely, overexpression of IDE or neprilysin results in lowered brain AB levels

and reduced plaque formation (Hemming et al., 2007).

The APOE protein plays a critical role in efficient intracellular degradation of soluble
AB by microglia. The APOE activity has been shown (using transgenic mice) to be
influenced by ATP-binding cassette 1 (ABCAL1), which lipidates APOE. Loss of

function of ABCA1 impairs Ap degradation in microglia. ABCA1 null microglia
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demonstrates a significantly higher level of intracellular AB compared with wild type

(microglia in presence of ABCAL1) (Jiang et al., 2008).

IDE is secreted by both microglia and astrocytes. It plays an important role in
extracellular degradation of soluble A with minor contributions by other secreted
proteinases (Qiu and Folstein, 2006; Qiu et al., 1998). In an experiment carried out
by Jiang et al. 2008, soluble A was found to be efficiently degraded after addition to
an astrocyte-conditioned medium. Addition of insulin (a competitive inhibitor of IDE)
prevents this degradation. Interestingly, AB clearance by IDE is also influenced by
APOQOE lipidation by ABCA1, where conditioned medium from ABCAL1 deficient
astrocytes exhibited significantly higher levels of A compared with medium from wild
type astrocytes. In addition, extracellular AB clearance has been found more efficient

in the presence of both APOE and IDE (Jiang et al., 2008).

AR and metals

AR aggregation has been found to be facilitated by interaction with metal ions, such
as zinc, copper, and other heavy metals. Aberrant metal homeostasis has been
observed in AD patients, and it is thought that these ions contribute to AD
pathogenesis through enhancing the formation of reactive oxygen species and toxic
Ap oligomers. These metals have been shown to be able to facilitate and stabilize AB

deposits (Maynard et al., 2005).

Intervention of such interaction using metal-complexing drugs (e.g. clioquinol) has
been on clinical trial for treatment of AD (ongoing). A pilot phase Il clinical trial using
a small number of subjects (n = 36) suggests that clioquinol improves cognition and
lowers plasma levels of Ap42 (Ritchie et al., 2003). However, clioquinol appears to
be neurotoxic which induces subacute myelo-optic neuropathy (SMON) syndrome (a
syndrome that involves sensory and motor disturbance in the lower limbs and visual

changes) (Bareggi and Cornelli, 2011).
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1.6 Pathways concerning tau protein

Tau protein, also known as microtubule-associated protein tau/saitohin (MAPT/STH),
is considered a central mediator of Alzheimer’s disease pathogenesis, since one of
the clinically observed characteristic of AD is the formation of intracellular
neurofibrillary tangles (NFT) mainly composed of abnormally hyperphosphorylated

tau proteins.

Mutations in the MAPT (which encodes tau protein), although found to result in tau
hyperphosphorylation, do not specifically lead to AD symptoms. These mutations
have been shown to be a major cause of a different type of dementia - frontotemporal
dementia (FTD) (Haberland, 2010). FTD is histologically distinct from AD as the brain

is normally free of Ap plaques (Small and Duff, 2008).

Tau is a phosphoprotein which normally contains one to three moles of phosphate
per mole of tau protein in the healthy brain, and the level of which is dramatically
increased (three to four folds higher) in the brain tissues of AD patient of similar age

(Zhang et al., 2009).

The main recognized function of tau is to promote assembly and stabilization of
microtubules in the brain. The binding capacity of tau is highly regulated by protein
phosphorylation. The hyperphosphorylated tau has lower binding capacity to
microtubules compared with unphosphorylated tau protein, resulting in destabilization
of microtubules in the brain (Sato-Harada et al., 1996). Tau protein phosphorylation
is achieved by protein kinases: glycogen synthase kinase 3 (GSK3), cyclin-
dependent kinase 5 (CDK5), possibly cyclic AMP-dependent protein kinase A (PKA)

and protein kinase C (PKC) (Churcher, 2006).

Similar to AB, tau can polymerize and form paired helical filaments (PHFs), and

accumulation of these leads to formation of neurofibrillary tangles (NFTs). NFTs are
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not exclusive to AD however and have been found in many other neurodegenerative
diseases: Down’s syndrome, progressive supranuclear palsy (PSP), corticobasal
degeneration (CBD), frontotemporal dementia and Parkinsonism linked to
chromosome 17 (FTDP-17), Pick’s disease, and Niemann-Pick type C disease (Avila

et al., 2004).
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1.7 Discussion over current belief on Alzheimer’s disease central

pathogenesis

In EOAD, it is clear that alteration of APP processing in favour of Ap production
(particularly AB42) is sufficient to cause the disease. Given EOAD and LOAD share
common pathological features (extracellular A3 plaques and intracellular
hyperphosphorylated tau tangles), biological pathways concerning Ap and tau are

undoubtedly critical pathological events in AD.

There is an increasing volume of evidence that suggests that AB and tau may not be
the root cause of LOAD pathology (Hardy and Selkoe, 2002) as partial and complete
removal of AB plaques by immunisation does not show significant effects on cognitive
function. Clear end stage dementia has been observed in individuals with almost the

complete elimination of plaques (Holmes et al., 2008).

Regarding tau proteins, although it has been found that the number and total length
of microtubules were significantly reduced in pyramidal neurons from AD in
comparison to controls (p = 4 x 10°®), no significant correlation between the loss of
microtubules and PHFs has been observed (p = 0.8). Individuals without PHF have
often been found with clear microtubule deficits (Cash et al., 2003). In addition, it has
been suggested that tau hyperphosphorylation may be neuroprotective in the early
stages of disease process, which possibly enables neurons to self-repair. Cells
overexpressing hyperphosphorylated tau protein has been shown to be more
resistant to apoptosis (Zhang et al., 2009). There is however, a general consensus

that a prolonged existence of NFTs is toxic and harmful to neurons.

These studies provide evidence that other biological pathways exist that are crucial
to the pathogenesis of LOAD. The recently identified LOAD genes (Harold et al.,

2009; Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri et al.,
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2010) promise a new era of AD research, and are likely to reveal biological pathways

underlying the root cause of the disease.
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1.8 Genetic risk factors in LOAD

Apolipoprotein E

APOE encodes for a 299 amino acid glycoprotein (~34 kDa) in humans. This gene is
expressed in several organs, with the highest expression found in the liver and the

brain (Bu, 2009).

The APOE protein exists in three isoforms, E2, E3, E4 translated from three specific
alleles, €2, €3 and €4, respectively (Mahley, 1988). The three allelic forms of APOE
are determined by two missense single nucleotide polymorphisms (SNPs) —
rs429358 (T/C) and rs7412 (CIT) (Table 1.2). These two SNPs cause coding change

at amino acid positions 112 and 158, respectively (C112R and R158C).

APOE is a major risk factor for LOAD explaining ~25% of the population attributable
risk (Lambert et al., 2009). The association of APOE €4 with LOAD was first reported
in 1993 through linkage analysis using family pedigrees (Corder et al., 1993;
Saunders et al., 1993; Sleegers et al., 2010). This association has been confirmed by

numerous genetic association studies (http://www.alzgene.org/).

The presence of APOE ¢4 greatly increases the risk of AD and reduces the average
age at onset (Feulner et al., 2009). Individuals carrying a single copy of €4 have a ~4-
fold higher risk of developing AD in comparison to carrier of the €3 allele; ~12-16-fold
increased risk of AD if with two copies of €4. APOE &2 is known to engender a

reduced risk of AD (Bertram et al., 2010).
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Table 1.2 Summary of APOE €2, €3 and &4 allelic status. The APOE €2, €3 and ¢4
status are determined by two SNPs: rs429358 and rs7412. Individual heterozygous

at both SNP loci is an indication of APOE ¢2/¢4 status (Kim et al., 2009).

Allelic status rs429358 | rs7412 Description

€2 allele has a frequency of ~8% in the

€2 T T general population, and is known to elicit a
protective effect against AD

£3 T c €3 is the most common allele of APOE with a
frequency of ~77% in the general population
the €4 allele has a frequency of ~15% in the

€4 C C general population, whereas ~40% in patients

with AD.
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Neither of these SNPs that generate the APOE alleles has been genotyped in
HapMap project. As existing GWAS chips are designed using SNPs derived from the
International HapMap Project, both APOE SNPs are therefore not genotyped by
current LOAD GWAS (The International HapMap Consortium, 2003). SNP rs2075650,
which does present on the chip, is known to be in tight LD with the APOE ¢4 allele
(Yu et al., 2007). SNP rs2075650 has been reported to be associated with risk of AD

with p-value 1.8 x 10™" (Harold et al., 2009).

The principal biological function of APOE is lipid and cholesterol metabolism. In
plasma, high density lipoprotein (HDL) contains APOA-1 as its major apolipoprotein,
whereas APOE is the most predominant apolipoprotein of HDL in the CNS (Kim et al.,

2009).

It has been shown that APOE is involved in both A aggregation and clearance

(Figure 1.3) (Bu, 2009).

APOE can interact with AB either directly or indirectly and promotes AP clearance
through both receptor mediated transport and proteolytic degradation as described
(See Introduction 1.5). The E4 isoform of APOE is associated with not only the least
efficient transport, but also reduced capability of promoting degradation of soluble AB

in comparison with E2 and E3 isoforms (Deane et al., 2008; Jiang et al., 2008).

Furthermore, AB in the blood stream is transported by cholesterol-rich HDL particles,
where APOE is also one of the structural components, prior to elimination by the liver

(Koudinov et al., 1998).
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APOE isoforms, levels and lipidation status

Synaptic plasticity

and cognition
AP Aggregation Neurotoxicity AP Clearance
Tau phosphorylation
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AD pathogenesis

Figure 1.3 Pathogenic mechanism of APOE in LOAD. It has been postulated that
APOE isoforms influence risk of AD via regulating aggregation and clearance of Ap.
In addition, the different isoforms, levels and lipidataion status of APOE have been
proposed as central mediators of LOAD pathology through modulating synaptic
functions, AB neurotoxicity, tau hyperphosphorylation, and neuroinflammation
(Adapted from Kim et al., 2009).
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APOE has also been suggested to play a crucial role in AB aggregation (Kim et al.,
2009). A positive correlation of the APOE ¢4 allele dosage and increased neuritic
plagues in AD has been observed in humans through post-mortem microscopic
examination (Tiraboschi et al., 2004). A follow-up imaging study using PET scans
also confirmed this association (APOE ¢4 allele dosage vs. fibrillar A burden)
(Reiman et al., 2009). Moreover, a previous study has revealed that APOE €4 allele
dosage is associated with a decreased AB42/AB40 ratio in CSF (p = 0.0001), a

robust indicator of Af levels in the brain (Kauwe et al., 2009).

APOE may also influence AD pathology through pathways not directly linked to Ap.
As a major apolipoprotein in the brain, APOE is known to play a pivotal rule in
cholesterol homeostasis by serving as a ligand in receptor-mediated endocytosis of
cholesterol-containing lipoprotein particles (Sleegers et al., 2010). Abnormal
cholesterol metabolism has been implicated as a key event leading to the

pathogenesis of AD (Martins et al., 2006).

LOAD susceptibility genes apart from APOE

In 2009 and 2011, a total of nine genes, CLU, PICALM, CR1, BIN1, ABCA?7,
MS4A6A, CD33, CD2AP and EPHA1, have been unequivocally identified and
confirmed by several large GWAS (each consisting of over 10,000 samples)
influencing the risk of LOAD (Harold et al., 2009; Hollingworth et al., 2011; Lambert

et al., 2009; Naj et al., 2011; Seshadri et al., 2010).

These genes can be assigned into three biological pathways, with a number of genes
involved in multiple pathways. CLU, CR1, ABCA7, MS4A6A, CD33 and EPHA1 have
putative functions in the immune system; PICALM, BIN1, CD33 and CD2AP are

proteins that play a critical role in synaptic cell membrane processes and endocytosis.
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CLU and ABCAY7 (together with APOE) are crucial in lipid and cholesterol metabolism

(Hollingworth et al., 2011; Morgan, 2011).

CLU (clusterin)

Two independent GWAS (Harold et al., 2009; Lambert et al., 2009) both identified
and replicated a SNP rs11136000 located in an intron of the CLU gene, giving strong
evidence of association with risk of LOAD with genome-wide level of significance (p =

1.4 x 10° and p = 7.5 x 10°°, respectively).

CLU (also known as APQOJ) encodes another abundantly expressed apolipoprotein in
the human brain. CLU exhibits similar biological functions as APOE, involved in both
cholesterol and lipid metabolism and has been shown to promote export of A across
the BBB (Guerreiro and Hardy, 2011). CLU was also found in amyloid plaques in the
brain (Calero et al., 2000; May et al., 1990). It has been shown that AB deposition are
cooperatively regulated by APOE and CLU in vivo, where APOE and CLU double
gene knockout PDAPP mice exhibit significantly higher Af load in comparison to

either of the single gene knockout transgenic mice (DeMattos et al., 2004).

CLU is a multifactorial glycoprotein, and one of the described functions is related to
inflammation and immunity through regulating activity in the complement pathway
(Falgarone and Chiocchia, 2009; Jenne and Tschopp, 1989; Jones and Jomary,

2002).

Furthermore, expression of CLU has been found to be elevated in response to injury
and chronic inflammation of the brain, suggesting that CLU may have an important

role in preventing possible damage to neurons (Calero et al., 2000).
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PICALM (phosphatidylinositol-binding clathrin assembly protein)

A SNP rs3851179 located at 5’ to the PICALM gene was first discovered and
reported to be associated with risk of LOAD (OR = 0.85, p = 1.9 x 10°®) by Harold and
colleagues (Harold et al., 2009). The effect has been replicated in an independent
sample cohort with ~4,000 samples (p = 0.014, OR = 0.90). On meta-analysis, the
combined datasets showed a strong evidence of association with a p-value that

exceeded genome-wide significance (p = 1.3 x 10°, OR = 0.86).

The association with PICALM was further supported by a large GWAS conducted by
Lambert and colleagues using samples from a French population; a SNP proxy
rs541458 in LD with rs3851179 (r* = 0.622) has shown a significant evidence of
association with LOAD (p = 0.0028, OR = 0.88), although it did not reached genome-

wide significance.

PICALM encodes a protein which plays a critical role in clathrin-mediated
endocytosis, a key process involved in regulation of receptors, synaptic transmission
and clearance of apoptotic cells (Baig et al., 2010). PICALM may alter the risk of
LOAD through regulating synaptic transmission and/or Af production by modulating
the rate of endocytosis of APP, an essential step preceding APP cleavage by -

secretase (Figure 1.1) (Goodger et al., 2009; Tebar et al., 1999).

A recent study using immunolabelling has shown that PICALM is predominately
present in endothelial cells, mainly expressed in the endothelium of the blood vessel
walls and weakly labelled in neurons. This has led to speculation that PICALM may

also be involved in Ap clearance via the BBB into the blood stream (Baig et al., 2010).

Furthermore, a significant epistatic interaction (p = 0.0068; logistic regression using
an additive model) was reported between the APOE ¢4 allele and PICALM SNP

rs3851179 using 3,055 AD cases and 8,169 age-matched controls. The effect of
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PICALM was only observed in samples carrying at least one copy of APOE €4 (Jun
et al., 2010); p = 3.4 x 10?in presences of APOE €4 and p = 0.73 in absence of

APOE ¢€4.

CR1 (complement receptor 1)

SNP rs6656401, present in an intron of CR1, has been shown to be associated with
an increased risk of LOAD by the Lambert et al., 2009 GWAS. This association was
confirmed by Harold et al., 2009 GWAS, with a p-value of 10° (OR = 1.17). Together
these two GWAS comprise over 25,000 samples (Harold et al., 2009; Lambert et al.,

2009).

In addition to the association with risk of LOAD, the CR1 SNP rs6656401 was also
found to be associated with a faster rate of cognitive decline (p = 0.011) and an
increased deposition of neuritic amyloid plaques (p = 0.009), where the significance
was not affected by including the APOE €4 status as a covariate (Chibnik et al.,

2011).

CR1 encodes a major receptor of C3b, a key inflammatory protein involved in AD
pathogenesis (Khera and Das, 2009). It has been postulated that CR1 may be
involved in the process of AB clearance through mediating complement-driven
phagocytosis, which may in turn prevent brain damage through reducing Ap-induced
neurotoxicity (Carrasquillo et al., 2010). Using hAPP transgenic mice, it has been
shown that mice expressing sCrry (soluble complement receptor-related protein y),
an inhibitor of C3 activation, exhibited ~2-3 folds elevated A deposition in the brains

compared with mice without such inhibition (Wyss-Coray et al., 2002).

Furthermore, a significant epistatic interaction between the APOE ¢4 and CR1 SNP
rs6656401 has been reported (p = 9.6 x 10°®), with stronger association observed in

carriers of the APOE €4 (Lambert et al., 2009).
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BIN1 (bridging integrator 1)

A three stage meta-analysis consisting of over 35,000 samples (8,371 cases)
identified an association of a SNP rs744373 (within ~30kb of the BIN1 gene) with an
increased risk of LOAD (p = 1.59 x 10, OR = 1.13) (Seshadri et al., 2010). The
effect of this SNP was replicated in an independent Spanish sample cohort (1,140
AD cases and 1,209 controls) with a p-value 0.02 and an odds ratio in the same

direction.

BIN1 (also known as amphiphysin-2) is expressed most abundantly in the CNS and
muscles, and appears to be involved in the endocytosis of synaptic vesicles (Cousin
and Robinson, 2001). A study using transgenic mice found that the amphiphysin 1
knockout mice, which cause reduction of amphiphysin 2 selectively in the brain,

exhibited major learning deficits and increased rate of mortality (Di Paolo et al., 2002).

ABCA7 (ATP-binding cassette transporter protein)

The ABCA7 SNP rs3764650 was found to be significantly associated with an
increased risk of LOAD in a combined sample cohort, consisting of over 60,000
samples (25,900 LOAD cases and 41,584 controls) (p = 5 x 10%*, OR = 1.23)

(Hollingworth et al., 2011).

ABCAY encodes an ATP-binding cassette (ABC) transporter and is abundantly
expressed in the brain (Kim et al., 2006). ABCA7 is involved in the transfer of lipids

and cholesterol to lipoprotein particles such as APOE and CLU.

Although no evidence of epistatic interactions between these loci were observed, it

does not preclude possibility of biological interactions (Hollingworth et al., 2011).
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MS4A6A (membrane-spanning 4 domains, subfamily A, member 6A)

A SNP (rs610932) in proximity to gene MS4A6A exhibited a significant evidence of
association with a reduced risk of LOAD (p = 1.2 x 10™*°, OR = 0.91) (Hollingworth et
al., 2011). The marker was found within an LD block ~290kb in size. This region
comprises six genes of MS4A gene family, which includes MS4A2, MS4A3, MS4A4A,

MS4A4E, MS4A6A and MS4AGE.

These genes encode for proteins which share structural similarities — all members
comprise a transmembrane domain, suggesting that these proteins may be involved
in synaptic cell membrane processes (Liang et al., 2001). The exact biological

function of MS4A6A has yet to be characterised.

CD2AP (CD2 associated protein), CD33 (sialic acid binding immunoglobin-like lecting)

and EPHAL1 (ephrin receptor Al)

Three other genes CD2AP, CD33 and EPHA1 have also been implicated in LOAD
pathogenesis (Hollingworth et al., 2011). Markers of these genes (rs9349407,
rs3865444 and rs11767557) demonstrated strong evidence of association with LOAD
which reached genome-wide level of significance (p < 1 x 10®), albeit at a lower
statistical significance than genes mentioned earlier (CLU, PICALM, CR1, BIN1,

ABCA7, MS4AGA).

Both CD33 and CD2AP encode for proteins important in communication between
cells and transduction of molecules across the membrane (Crocker et al., 2007;
Lynch et al., 2003). EPHA1 encodes for an ephrin receptor which has been
previously reported to play a role in synaptic development and plasticity (Lai and Ip,

2009).

33



Introduction

Summary of genes and pathways in Alzheimer’s disease

Identification of these genetic risk factors provides better understanding of underlying
biological pathways and mechanisms of LOAD. Future drugs that target pathways
highlighted by these genes enable potential development of effective treatments and

more accurate diagnosis of AD.

Figure 1.4 summarises the genes and pathways in Alzheimer’s disease implicated
from recent large GWAS (Harold et al., 2009; Hollingworth et al., 2011; Lambert et al.,
2009; Naj et al., 2011; Seshadri et al., 2010). These pathways include immune
system function, lipid and cholesterol metabolism and synaptic cell membrane

processes and endocytosis.

Apart from pathways elucidated from recent large GWAS, several other biological
pathways have also been implicated in AD, including oxidative stress (Lovell and
Markesbery, 2007), mitochondria function (Swerdlow, 2011), the insulin signalling
pathway (Liolitsa et al., 2002; Stewart and Liolitsa, 1999) and metal homeostasis

(Maynard et al., 2005).

One of the main advantages of GWAS is that the genes selected are not dependent
on pre-conceived knowledge about their function, and therefore may be able to

highlight a more general picture of AD genetics (Lambert and Amouyel, 2011).

In view of the genes identified by current GWAS results and the amyloid cascade
hypothesis proposed by Hardy and Selkoe, 2002, a number of common mechanisms

can be implicated (Figure 1.5):

o Familial early-onset forms of AD caused by rapid accumulation of Ap peptides
due to overproduction, which is associated with mutations in APP, PSEN1

and PSEN2
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e Late onset AD caused by subtle and insidious impaired clearance of the Ap
peptides, associated with APOE, CLU, CR1, PICALM, BIN1, ABCA7 and

potentially as yet unidentified others.

If the hypothesis is true, there is likely an overlap of the two gene categories at
intermediate age at onset (Lambert and Amouyel, 2011). This hypothesis requires

further investigation.
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Figure 1.4 Genetic risk factor and pathways in Alzheimer’s disease. Genes
involved in each pathway are shown in red. There is a significant overlap with a

number of genes being involved in multiple pathways. AB metabolism and

homeostasis may have a direct effect on pathways implicated in LOAD (as indicated

by blue arrows). The familial form of AD, which occurs before age 65, is
predominantly caused by mutations in three genes — APP, PSEN1 and PSEN2.
(Adapted from Morgan, 2011)

36



Introduction

Genetic variation in
APOE, CLU, CR1,
PICALM, BIN1, ABCA7
(other genes?)

l l

Dysfunction in

Missense mutation in
APP, PSEN1, PSEN2 genes
(Genetic variation in other genes?)

Dysfunction in (peripheral) AP
APP metabolism metabolism and
clearance

: |

Massive increase

) ‘ Insidious and slight
in AP production

AP accumulation

\ /

AP oligomerization and deposition as diffuse plaques

l

Subtle effect of AP oligomers on synapses, causing impairments
in synaptic plasticity

Progressive synaptic and neuritic injury

Widespread neuronal/neuritic dysfunction and cell death

Alzheimer’s disease

EOAD LOAD

Age at onset

Figure 1.5 Summary of pathogenic events leading to EOAD and LOAD
proposed by Hardy and Selkoe, 2002 considering new AD genes identified by
recent large GWAS (Adapted from Lambert and Amouyel, 2011).
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1.9 The missing heritability of LOAD

Genome-wide association studies have been successful in identifying hundreds of
replicable common genetic variants associated with a variety of complex diseases
(Hindorff et al., 2009). These genetic risk factors found by GWAS greatly improve our

understanding of the genetic basis of many complex disorders including LOAD.

The Population-attributable fraction (PAF) is defined as the proportion of disease
cases in a population that would be prevented if an exposure were eliminated
(Bertram et al., 2007). Population-attributable fraction (PAF) is also known as
population-attributable fraction of risk or population-attributable risk (Ertekin-Taner,

2010; Lambert and Amouyel, 2011; Lambert et al., 2009).

The Population Attributable fraction (PAF) can be calculated using the formula shown
below (Bertram et al., 2007):

Fx (OR—1)

PAF =
FXx(OR—1)+1

F is the frequency of the risk allele in the general population and OR is the odds ratio

of the risk allele (Yang et al., 2003).

The newly found LOAD genes (CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33,
CD2AP and EPHAL) were estimated to have a PAF range from 2.72% to 5.97% (Naj
et al., 2011). The estimation of PAF must be interpreted with caution, as it is based
on a number of assumptions, and may vary substantially between studies (Bertram et

al., 2007).

It has become increasingly evident that despite expanded GWAS that are capable of
capturing most common variants with both moderate and small effects, a substantial

fraction of the heritability of LOAD remains unaccounted for (‘missing heritability’).
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The remaining unexplained heritability is believed to be due to a combination of

factors:

e additional common variants of smaller effect size (which current GWAS are
still underpowered for detection),

e additional common variants missed by GWAS due to incomplete coverage,

e genetic risk caused by low frequency and rare variants, which are not
detectable by GWAS,

e synthetic associations attributable to rare variants and

e epistasis (known as gene-gene interaction).

Other factors such as copy number variations (CNVs) and gene-environmental
interactions could also play a role in AD pathogenesis and contribute to the missing

heritability (Morgan, 2011).

Additional common variants

It is plausible that additional common variants are associated with risk of LOAD, but
have not yet been discovered due to insufficient power. The sample size of a GWAS
determines the effect size of a common variant that can be detected. Identification of
associations with common variants of smaller effect sizes may continue to provide
insights into the complex biological pathways involved in AD. However, identification
of these variants is unlikely to have any immediate consequences in terms of disease

prediction and diagnosis (Seshadri et al., 2010).

Rare variants

Another explanation of missing heritability is due to low frequency and rare variants,
which occur with a frequency < 5%. The existing commercial genotyping chips for
GWAS are not designed for capturing SNPs with a MAF less than 5%. There is

increasing evidence that these low frequency rare variants can make a significant

39



Introduction

contribution to the heritability of complex traits and diseases (Rivas et al., 2011).
These less frequent variants are often found to have larger effect sizes than common

variants (Bodmer and Bonilla, 2008).

Synthetic associations

It has been suggested that a proportion of GWAS signals could be attributable to
casual rare variants of larger effect size due to incomplete LD with these rare

variants (Dickson et al., 2010).

Detection of a GWAS signal may therefore underestimate the actual effect size of the
rare variants (Wang et al., 2010), although the actual number of common variants
attributable to these variants is still unclear. It has also been argued that synthetic
associations attributable to rare variants do not explain most of GWAS results (Wray

et al., 2011).

Genetic architecture of complex traits

Figure 1.6 illustrates the predicted genetic architecture of complex disorders.
According to their allele frequency and effect size, SNPs can be separated into five

different categories:

e common variants of large effect size,

e common variants of small effect size,

¢ low frequency variants with intermediate effect,
e rare variants causing Mendelian diseases and

e rare variants of small effect size.
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Figure 1.6 Genetic architecture of complex traits. Figure summarizing the role of

genetic variants in complex disorders by allele frequencies and their genetic risk.

Allele frequency is shown on the x-axis versus odds ratios on the y-axis. Common

variants (MAF > 0.05) can be detected through genome-wide association studies,

whereas low frequency and rare variants may only be ascertained through direct

genotyping and sequencing projects. (Adapted from Manolio et al., 2009)
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Linkage analysis (using family pedigrees) is a powerful tool to map the location of
disease-causing loci in reference to the human genome. It was one of the most
widely used technologies preceding the GWAS era. However, linkage analysis is hot
capable of identifying SNPs with small effect size. APOE ¢2 and &4 are examples of
common variants with large effect size OR = ~4 (Bertram, 2011). In very few cases
however do common genetic variants exist that have a high risk (i.e. OR > 4)

associated with complex disorders.

The vast majority of common variants have shown to exert only a small effect size
with OR ranges 1.1-1.5. These odds ratio have been consistently observed through
studies of many complex disorders (Bodmer and Bonilla, 2008). These genetic loci
are difficult to detect using pedigree information. The advent of GWAS enabled
systematic detection of the associations between common variants and disease
given that a large enough sample size is utilized to provide adequate power of

detection (Figure 1.6).

There is emerging evidence that less frequent and rare variants may contribute to a
significant proportion of the missing heritability of LOAD. Although these variants are
only present in a small proportion of the population, the effect sizes (of these variants)

are often found to be higher than the association with common variants (Figure 1.6).

Rare variants of small effect size may also exist (Figure 1.6). This type of variant is
difficult to detect by any genetic means. Methods to detect these rare variants require

further exploration.

Epistasis

One of the possible explanations of the missing heritability is epistasis. It is a
measure of the interaction between two or more genetic loci (synergistic or
antagonistic) contributing to the risk of disease. PLINK (‘--epistasis’ or ‘--fast-

epistasis’) (Purcell et al., 2007) and synergy factor analysis (Combarros et al., 2009)
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are among the methods being widely used for assessing epistatic interactions
between genes. Epistatic interactions between SNPs in the regulatory regions of IL6
and IL10 have been reported, and have been shown to be associated with a reduced
risk of AD (Infante et al., 2004). This interaction was replicated in a follow-up study

(Combarros et al., 2009).

1.10 Summary

Alzheimer’s disease is the most common form of dementia in the elderly, accounting
for approximately two thirds of all dementia cases (Blennow et al., 2006). With the

average life expectancy continuing to rise (i.e. the population ageing), the number of
AD cases is likely to increase in the near future. The number of individuals suffering

from AD is expected to rise to ~115.4 million worldwide by 2050 (Ferri et al., 2009).

Genetic research in a small proportion (~1% to 2%) of AD patients with an autosomal
dominant pattern of inheritance has contributed greatly to our understanding of AD
pathogenesis by identifying causal mutations in three genes - APP, PSEN1 and
PSEN2 (See Amyloid Cascade; Introduction 1.5 for details). These AD cases are
known as FAD, as they show AD symptoms early in life (before the age of 65)

(Bertram and Tanzi, 2008).

LOAD represents the vast majority of AD cases, and their development is likely to be
affected by both genetic and environmental factors. This non-Mendelian form of AD
is still highly heritable, with an estimated heritability ranging from 60% to 80% (Gatz
et al., 2006). Mutations in genes causing the early onset form of Alzheimer’s disease,
including APP, PSEN1 and PSEN2, do not appear to be strongly associated with the

risk of late onset form of Alzheimer’s disease (Bertram, 2011).

Apart from APOE gene, nine additional genes (CLU, PICALM, CR1, BIN1, ABCA7,

MS4A6A, CD33, CD2AP and EPHAL) have been identified by GWAS and confirmed
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by several replication studies as influencing the risk for LOAD (Harold et al., 2009;
Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 2010)
(Genetic risk factors in LOAD; Introduction 1.8). Despite these successes, there
is increasing evidence to suggest that a large proportion of the genetic variation
contributing to AD risk remains unidentified (Sherva and Farrer, 2011) (See The

missing heritability of LOAD; Introduction 1.9 for details).

Early GWAS conducted during 2007 and 2009 generally failed to produce any
convincing results due to the lack of power (Sherva and Farrer, 2011). It is believed
that by combining each individually underpowered GWAS power could increase thus
allowing identification of genuine associations and previous spurious associations will
likely diminish. This formed the basis of the study as described in Chapter 3 -
Analysis of Genome Wide Association Study (GWAS) data looking for

replicating signals in LOAD.
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Chapter 2: Materials and methods

2.1 Study samples

Next generation sequencing

150 DNA samples (75 AD cases and controls) were used for next generation
sequencing (Chapter 4). These samples came from three research centres:

Nottingham, Manchester and Leeds (Appendix 8.1).

Samples used for studying human ageing

SNP rs4110518 was genotyped in 462 samples (335 AD cases and 127 controls)
with age-at-death (AAD) information (Chapter 5). Sample IDs of these samples are

not shown.

All DNA samples used are part of Alzheimer’s Research UK (ARUK) collection.
Approval was obtained from the ethics committee or institutional review board of
each institution responsible for the ascertainment and collection of samples. Written

informed consent was obtained for all individuals that participated in this study.

Except the autopsy sample cohort, which were examined post-mortem, all other AD
cases were diagnosed according to NINCDS-ADRDA (National Institute of
Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association), DSM-1V (Diagnostic and Statistical Manual of
Mental Disorders IV) or CERAD (Consortium to Establish a Registry for Alzheimer’s

Disease) criteria (McKhann et al., 1984; Mirra et al., 1991).
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2.2 Laboratory methods

A number of laboratory methods were utilized to generate biological data for analysis
in Chapters 4 and 5. Specifically, DNA extraction and quantitation, LR-PCR,
agarose gel electrophoresis, BigDye® sequencing and gel extraction were utilized to
produce DNA pools for next generation sequencing (Chapter 4). TagMan®
genotyping assays were used to validate and replicate SNP results as described in

Chapter 4 and Chapter 5.

2.2.1 DNA extraction from post-mortem brain tissues

DNA was extracted from brain tissues (~50mg) using QIAGEN® DNeasy Blood &
Tissue Kit according to the manufacturer’s protocol. Proteins and RNA were
degraded by addition of 20ul protease K (20mg/ml; QIAGEN®) and 4ul RNase A
(provided in the kit). DNeasy® mini spin columns (provided) were used to purify DNA
by selective binding of DNA to the membrane as contaminants pass through. The
DNA was eluted using 150ul elution buffer (supplied in the kit) and stored at —20°C

prior to use in PCR.

2.2.2 DNA quantitation using NanoDrop®

DNA was quantified using NanoDrop® spectrophotometer using a standard

laboratory protocol.

The inability of distinguishing UV absorption of free nucleic acid from double stranded
DNA meant that this technology is not sufficiently accurate to be used for
experiments that require a precise DNA concentration, e.g. next generation
sequencing library preparation, real-time PCR and DNA cloning. Alternative methods

such as Qubit®, Quanti-iT PicoGreen® should be used instead.
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2.2.3 Long-range polymerase chain reaction (LR-PCR)

Primers (sense and antisense) for LR-PCR were designed using primer-BLAST
program (http://www.ncbi.nim.nih.gov/tools/primer-blast/). The quality of the primers
were measured using Primer3 (v 0.4.0) (http://frodo.wi.mit.edu/primer3/) (Rozen and
Skaletsky, 2000) and SNPcheck (v 2.0) (https://ngrl.manchester.ac.uk/SNPCheckV2)

using default settings.

The following primers were used for TRIM15 ‘A’ and ‘B’ amplicons:

TRIM15 ‘A’

e Sense: ATGGGTGAAGGACCGTGGCT
e Anti-sense: AGGAAAGTGCCCCAAGGCCA

TRIM15 ‘B’

e Sense: AGGGGAAGGCGCCACAGTTT
e Anti-sense: ACAGGAGAATGGGCCCCACA

PCR amplification

TRIM15 ‘A’ and ‘B’ amplicons were LR-PCR amplified using FINNZYMES Phusion™
High-Fidelity DNA Polymerase on an Applied Biosystem Veriti® 96-well thermal

cycler.

The Phusion™ DNA polymerase, according to the manufacturer, has the following

advantages:

o Allows amplification of large size DNA amplicons (up to 15kb using genomic
DNA)
o High Fidelity — ~50-fold more accurate than Tag DNA polymerase

e High speed — 15-30 seconds per 1 kb

Cycling conditions used for TRIM15 ‘A’ and ‘B’ amplicons are shown in Table 2.1.

PCR products were stored at —20°C.
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Table 2.1 Amplification of TRIM15 gene by LR-PCR. Table showing A) cycling

programs for TRIM15 ‘A’ and ‘B’ amplicons and B) reagents used for each of the 50ul

reactions. The optimal annealing temperature for each amplicon (indicated by *’) was

determined by performing a temperature gradient optimisation.

A)
TRIM15 ‘A’ amplicon (1,984 bp)
Temperature Time Cycles
98°C 30 seconds 1
98°C 10 seconds
70.3°C* 30 seconds 35
72°C 1 minute
72°C 7 minutes 1
10°C Hold
TRIM15 ‘B’ amplicon (4,935 bp)
Temperature Time Cycles
98°C 30 seconds 1
98°C 10 seconds
71.2°C* 30 seconds 35
72°C 2 minutes and 30 seconds
72°C 7 minutes 1
10°C Hold
B)
Reagent Concentration Volume
Phusion HF or GC buffer 5x 10ul
dNTPs 10mM 1l
forward primer 100uM 0.25ul
reverse primer 100uM 0.25ul
Phusion® DNA Polymerase 20U/l 0.5ul
DNA 50ng/ul 1l
Nuclease free H,O NA 37ul
Total: 50ul
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Optimisation of conditions for LR-PCR

For each primer pair, the reaction was optimised using the strategy:

¢ Annealing temperature was optimised by performing temperature gradients,
57-72°C initially followed by a smaller temperature gradient according to the
band intensity (e.g. 62-67°C).

e Mg?+ concentration was optimised by performing a Magnesium gradient —
1.5mM, 2mM, 2.5mM, 3mM and 3.5mM.

e Addition of dimethyl sulfoxide (DMSO) was attempted to test if it improves the
performance of the LR-PCR; DMSO may improve the LR-PCR performance
by inhibiting formation of any secondary structures in the DNA template and

facilitating complete DNA denaturation.

2.2.4 Agarose gel electrophoresis

PCR products were visualised by agarose gel electrophoresis. Small 0.7% agarose

gels (gel volume 25ml) were prepared as follows:

e 0.17g of agarose powder (Fisher Scientific®)
o 25ml 1XTAE (40mM Tris acetate, 1mM EDTA)

e 3l of ethidium bromide (EtBr) (10 mg/ml, Pharmacia Biotech)

Medium (50ml 1xTAE buffer, 0.35g agarose and 5l of EtBr) and large agarose gels

(80ml 1XTAE buffer, 0.56g agarose and 8ul EtBr) were also used when necessary.

PCR products mixed with DNA loading buffer (Fermentas®) were subjected to
electrophoresis together with the GeneRuler™ 1kb ladder at ~80V. The DNA was

visualised using a UV transilluminator.
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2.2.5 BigDye® sequencing

Sanger sequencing was used to examine if the LR-PCR products were of the correct
fragment (by comparing with reference human genome sequence, hg19) prior to

DNA pooling for next generation sequencing (Chapter 4).

LR-PCR products were purified using ExoSAP-IT® (composed of Exonuclease | and
Shrimp Alkaline Phosphatase) and sequenced using the BigDye® Terminator v3.1
sequencing kit according to manufacturer’'s recommendations. Addition of EXoSAP-

IT® facilitates removal of unincorporated dNTPs and residual primers.

BigDye® terminator reaction premix contains essential reagents including AmpliTag®
DNA polymerase, deoxynucletides (dNTPs) and fluorescently labelled
dideoxynucleotides (ddNTPs). Cycling programs and reagents used in each of the

reactions are shown in Table 2.2.

After the sequencing reaction, the mixture was filtered by running through Edge
Biosystem Performa® DTR Gel Filtration cartridges to remove excess ddNTPs. The
reaction was dried on a thermal block at 90°C. The dried DNA pellets were stored at
—20°C prior to capillary electrophoresis using an ABI® 3130 Genetic Analyser.
Capillary electrophoresis was performed by the Molecular Diagnostic Lab at the

University of Nottingham.
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Table 2.2 Sequencing using BigDye® (v 3.1). Table showing A) cycling conditions

and B) reagents used for the EXoSAP-IT® treatment and BigDye® sequencing

reactions.

A) EXoSAP-IT® treatment

Temperature Time Cycles
37°C 15 minutes 1
80°C 15 minutes 1
10°C Hold
Sequencing reaction using BigDye®
Temperature Time Cycles
96°C 1 minute 1
96°C 30 seconds
50°C 15 seconds 25 cycles
60°C 4 minutes
10°C Hold
B) EXOSAP-IT® treatment
Reagent Concentration Volume
LR-PCR product ~200ng/pul 5ul
EXOSAP-IT premix 100% 2ul
Total: 7ul
BigDye® sequencing
Reagent Concentration Volume
ExoSAP-IT purified PCR product 5ul
Sequencing primer 5uM 1pl
BigDye® terminator reaction premix 100% 3l
ABI® sequencing buffer 5X 1l
Total: 10ul
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2.2.6 Gel extraction

LR-PCR product was purified by gel extraction using QIAquick® gel extraction kit

according to manufacturer’'s recommendations.

SYBR® Green (Invitrogen SYBR Safe™ DNA gel stain) was used (instead of EtBr)
for agarose gel electrophoresis to avoid introducing damage to the DNA. The
agarose gel was visualised using a Dark Reader® transilluminator, where the desired
DNA band was excised from the agarose gel using a clean, sharp scalpel blade
before being transferred into a 1.5ml Eppendorf tube. The agarose gel was
subsequently dissolved and filtered out using the kit. The DNA was collected using
30ul nuclease free water. The elution process was repeated, and the DNA was

stored at —20°C.
2.2.7 TagMan® SNP Genotyping assay

TagMan® genotyping assay was supplied at 40x concentration. The assay was
diluted to a 20x working concentration by adding one volume of 1XTE buffer (10mM

Tris-HCL, 1mM EDTA at pH8.0).

TagMan® genotyping was performed using Agilent® Real-Time PCR optical 8-tube
strips and optically clear 8-cap strips on the STRATAGENE Mx3000P™ Real-Time
PCR System. DNA templates were diluted to 10ng/ul concentration using nuclease-

free water prior to genotyping.

Cycling conditions and reagents used for the assay are summarised in Table 2.3.
The data was analysed using MxPro QPCR (v 4.01) and results were exported into
Microsoft Excel format for further analysis. TagMan® genotyping assays are claimed
to be highly accurate, although false positive amplifications are possible due to the
high throughput and repetitive nature of the 5’ nuclease assay. Special laboratory

practices are necessary to avoid false positive results (Kwok and Higuchi, 1989).
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Table 2.3 TagMan® genotyping assay. Table showing A) cycling program and B)
reagents used for the TagMan® genotyping assay on STRATAGENE Mx3000P ™
Real-Time PCR System.

A)
TagMan® genotyping assay
Temperature Time Cycles
50°C 2 minutes 1
95°C 10 minutes 1
95°C 15 seconds ec
60°C 1 minute
10°C Hold
B)
Reagent Concentration Volume
TagMan® genotyping assay 20x ul
TagMan® Unive_rsal PCR ox ol
MasterMix
Nuclease-free water NA 8ul
DNA template 10ng/pl 2ul
Total: 20yl
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2.3 Bioinformatics tools and data analysis

Open source bioinformatic tools have been utilized to enable a wide range of data
analysis presented in this thesis. Where indicated, ‘In house’ Perl scripts were written

and have been implemented to facilitate various data analysis (See Methods 2.3.2).

A range of bioinformatics tools are described in this section, facilitating data analysis
as described in Chapters 3, 4 and 5. Specifically, PLINK software (v1.06) was
utilized in Chapter 3 and Chapter 5 to analyse GWAS data and produce association
results. The Haploview program was used in Chapter 3 to produce LD plots, and in
Chapter 5 to create the Manhattan plot. VISTA and ECR browser were utilized to
analyse conservation and facilitating selection of conserved regions for next
generation sequencing (Chapter 4). EIGENSTRAT was utilized in Chapter 5 to
analyse population stratification using LOAD GWAS data. QUANTO (v1.2.4) was
utilized to perform power calculations for the association studies in Chapter 3, 4 and

5.

2.3.1 PLINK

PLINK is a powerful whole-genome association and linkage analysis toolset
developed by Purcell et al., 2007. It has become one of the most reputable
bioinformatic toolsets for GWAS data analysis to date. By September 2011, the
corresponding manuscript (Purcell et al., 2007) has been cited by over 2,400 peer-

reviewed scientific papers.

One of the advantages of using PLINK is it provides a comprehensive range of tools,
including GWAS data manipulation, quality control, association studies (single SNP
analysis and haplotype analysis), transmission disequilibrium testing (TDT), GWAS

meta-analysis, epistasis, imputation and permutation. The results generated by
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PLINK can be used directed by other bioinformatic software (e.g. Haploview) for

further in-depth analysis.

PLINK is operated through the command line interface as currently there is no viable

GUI available for handling large datasets.

PLINK file format

A summary of PLINK input file format is shown in Table 2.4. It should be noticed that
data stored in PED and MAP files are interlinked, genotype data stored in the PED
file correlates to the corresponding MAP file. Therefore, any manual changes on
these files should be avoided, as it could render the data unusable by introducing

error.

Missing data in PLINK is by default represented as either -9 or 0, with an exception of

missing genotype data which is presented as 0 (zero).
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Table 2.4 Summary of PLINK input file format. Table showing the PLINK input file

format together with a brief description.

File types Description

e Standard (generic) PLINK input file format

e PED file is comprised of six compulsory columns (Family 1D,
Individual 1D, Paternal ID, Maternal ID, Sex and Phenotype) and
variable number of genotype columns (column 7 and onwards).

PED and MAP . .

e MAP file consists of exactly four columns (Chromosome
number, SNP identifier, Genetic distance and Base-pair
position)

e no headers

¢ PLINK binary file format

e BED files store genotype information in a compressed binary
format, which is unreadable using a text editor.

BED, FAM and e The FAM file consists of exactly six columns as in the PED file.

BIM The BIM file includes the first four columns of the MAP file plus
two additional columns showing the corresponding SNP
genotypes.

e no headers

¢ PHENO file is able to store multiple alternative phenotypes for
analysis without modification of the PED file or FAM file.

e The PHENO file consists of two compulsory columns (family 1D

PHENO and individual ID) and variable number of phenotype columns.

e The PHENO file is included in the analysis by specifying ‘--
pheno’ in PLINK.

e Requires headers, two compulsory columns headers, FID and
IID, representing family ID and individual 1D

e Stores covariate information to be included in PLINK analysis.

e The covariate (COVAR) file consists of two compulsory columns
which are identical to the first two columns of the PHENO file,
and variable number of covariate columns.

COVAR

e The COVAR file is included in the analysis by specifying ‘--
covar’ in PLINK.

e Requires headers, two compulsory columns headers, FID and
IID, representing family ID and individual 1D
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It is recommended to convert the standard PLINK format (PED and MAP) to the
binary format when handling large datasets. Binary files are much smaller in file size,

PLINK analysis performs much quicker using the binary input format.

PLINK analysis including alternative phenotype and covariates is specified by *--

pheno’ and ‘--covar’ followed by the PHENO and COVAR file names, respectively.

One of the utilities of using PHENO file is to perform expression quantitative trait loci
(eQTL) analysis, where hundreds of thousands of gene expression data could be

analysed all at once.

Adjusting for covariates is crucial in GWAS analysis, as it ensures that the
association signal identified is not due to underlying biases such as age, gender,

centre of study and other sample heterogeneity.

By default, PLINK represents data using number codings as listed:

e Phenotypes — 1 and 2 represents controls and cases
e Gender — 1 and 2 represents males and females
¢ Genotypes — 1 and 2 represents minor and major allele (also coded as A, T,

CorQG)

Case/Control association analysis

PLINK provides a number of methods for case/controls association studies. The most
commonly used method ‘--assoc’ performs allelic dosage analysis (Wald test) on

guery SNPs. For example:

plink --file mydata --assoc

The command generates an output file ‘plink.assoc’ which contains the following
fields:

¢ CHR - chromosome number,
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e SNP-SNP ID,

o BP - base-pair position,

e Al- the minor allele based on whole sample,

e F_A - frequency of this allele in cases,

e F_U -frequency of this allele in controls,

e A2 -the major allele,

e CHISQ - chi-squared statistics on 1 degree of freedom,
e P - asymptotic p-value and

e OR - estimated odds ratio.

Optional addition of *--ci 0.95’ within the command line calculates 95% confidence

interval for ORs (odds ratios).

‘--assoc’ examines potential association much faster than logistic regression analysis;

however it does not allow inclusion of covariates.

Logistic regression analysis

Logistic regression analyses are more sophisticated and allow inclusion of covariates.
The logistic regression model is more robust than linear regression as it can handle
non-linear effects and it does not make assumptions on distribution of the

explanatory variables (e.g. a normal distribution) (Bewick et al., 2005).

Logistic regression analysis still has a number of inbuilt assumptions, and requires
much larger sample sizes than a standard linear regression analysis. In addition, the
logistic regression analysis in PLINK assumes the phenotype (e.g. disease trait) is
binary. Therefore, the analysis is quantitative rather than qualitative. This is
considered a limitation of logistic regression analysis, as taking into account the
severity of AD and disease related endophenotypes is likely to further increase power
enabling identification of genuine disease associated variants (Plomin et al., 2009)

that could be missed using the current approach.
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The analysis can be implemented with the following command line:

plink --file mydata --logistic --covar myfile.covar --covar-name

age,sex,APOEstatus

‘-file’ specifies the data files to be analysed as ‘mydata.ped’ and ‘mydata.map’. ‘--
logistic’ indicates the logistic regression analysis is utilized in the analysis. ‘--covar’

and ‘--covar-name’ specifies the covariate terms.

Association analysis using different genetic models

Different genetic models can be specified and analysed using logistic regression as

shown:

e Additive inheritance model: ‘--logistic’ on its own
o Dominant inheritance model: ‘--logistic --dominant’

o Recessive inheritance model: ‘--logistic --recessive’

An alternative way to include different genetic models in the analysis is to use ‘--
model’ command, though this does not allow adjusting for covariates. The following

tests are provided in PLINK ‘--model’ command:

e Cochran-Armitage trend test
e Genotypic (2 df) test
¢ Dominant gene action (1 df) test

e Recessive gene action (1 df) test

GWAS Quality controls (QC)

SNPs and individuals can be filtered out from an analysis by addition of QC filters in
the command line. ‘--geno’ and ‘--mind’ exclude SNPs and individuals according to
genotyping rate. ‘--maf’ excludes SNPs below a user-defined minor allele frequency.

‘--hwe’ removes SNPs from the analysis according to Hardy-Weinberg Disequilibrium
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p-values. Furthermore, in studies including families pedigrees, Mendelian errors can

be detected by ‘--me’ command.

Combinations of these methods provide flexibility and control in response to various

GWAS data analysis types.

Quantitative Trait analysis

Two main methods are provided in PLINK to perform gquantitative trait analysis, ‘--
assoc’ and ‘--linear’. The PLINK program automatically engages a quantitative trait
analysis when it encounters integers other than 0, 1, 2 or -9 in the sixth column of the

PED file.

The ‘--assoc’ command does not take into account covariates in a quantitative trait
analysis, conversely ‘--linear’ does allow covariates (‘--covar’ and ‘covar-name’) to be

included in the analysis.

The versatility of PLINK also allows for different genetic models to be explored in

guantitative trait analysis, as previously described.

PLINK gene report function

The PLINK gene report function can annotate SNPs according to their base pair
coordinates relative to genes. Two files are required in this analysis, a PLINK results

file (e.g. .assoc’) and a file containing coordinate information of known human genes.

The gene list (glist-hg18), which consists of ~20,000 human genes was downloaded
from the PLINK website at http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml. This
list consists of four columns - Chromosome, Start base pair position, Stop base pair
position and Gene name. This facility can be implemented using a similar command

to the below example:
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plink --gene-report results.assoc.linear --gene-list glist-hg18.txt --pfilter 0.05

--gene-list-border 20 --out outputfile

‘--pfilter 0.05’ specifies that the association p-value threshold is equal to 0.05,
indicating that the output would only present SNPs with p-value less than 0.05. ‘--
gene-list-border 20’ indicates the maximum distance between the SNP and the

reported gene is equal to 20kb.

A PERL program was written (Appendix 8.4.4) as a plug-in to complement the
PLINK gene report function. The program tabulates the PLINK output into a format

enabling further manipulation and analysis (Figure 2.1).

This PERL program consists of two files ‘gene_report_plugin.pl’ and ‘modules.pm’.
The program can be executed via the command line interface ‘perl
gene_report_plugin.pl’ or the appropriate file icon. Input file name can be specified by
editing ‘gene_report_plugin.pl’ file using a standard text file editor, such as WordPad
in Windows. Results are provided in a tab-delimited text file format, which can be

accessed via conventional statistical tools (Figure 2.2).
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including 20kk korderxr

TEST NMISS SE
LDD 981 0.2234 0
LDD 985 0.1217 0
LDD 985 0.2004

including 20kb korderxr

TEST HISS

ADD 372 0 0 0. -1
LDD g2 0 0 0 -1.
LDD 871 0 0 0 -2.
LDD 981 0 0 0 -2.
LDD 373 0 1 2.

ARSJ -- chr4:115020888..115140327 ( 119.43%kkb ) 4dincluding 20kb border

DIST CHR SHE BF Rl TEST NMISS CR SE LS5 uas STAT E
21.3kb 4 rslZ2645879 11506219 1 ADD 380 0.8173 0.09698 0.6758 0.9884 -2.081 0.03748
ART3 -- chr4:77131360..77272979 ( 141.619kb ) including 20kb border
DIST CHR SHE BF Rl TEST NMISS CR SE LS5 uas STAT E
-18.36kb 4 rs6849878 TT1329397 1 ADD 983 0.79% 0.1078 0.6468 0.9863 -2.083 0.03729
BARV1 -- chrl:229161445,.229223102 ( 61.657kkb ) including 20kb border
DIST CHR SHE BF Rl TEST NMISS CR SE LS5 uas STAT E
-2.028kb 1 rsl13374343 229179417 1 ADD 376 0.6959 0.1691 0.5025 0.9748 -2.111 0.03478
ARVCF -- chr22:18317418..1840430% ( 86.8%91kb ) including 20kb border
IST CHR Rl TEST HMISS 5E L35 STAT
21 4 z2 1 ALDD 881 Q i 5 0.5733 -2.544
3 7 z2 1 ALDD 984 Q i 0.5552 -2.833
33.65kb 22 1 ADD 365 0 0 0.556% -2.536

Figure 2.1 PLINK gene-report function output. Only SNPs that pass the user input filters are listed (i.e. ‘--pfilter 0.05’ and ‘--gene-list-
border 20’). Gene details are shown together with corresponding SNPs (DIST - distance between the SNP and start of the gene, CHR -
chromosome number, SNP - rs identifier, BP - base pair position, A1 - minor allele code, TEST - model of test, NMISS - number of non-
missing individuals, OR - odds ratio, SE - standard error, L95 and U95 - lower and upper 95% confidence interval, STAT - association
test statistics, P - p-value of the association). The corresponding genes (shown in bold) are automatically sorted in alphabetical order.
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SMP
rs2173012
rs3846677
rsl2054837
rs7216182
rs98906594
rsB075800
re3744301
rs2160725
rsl12645579
rsgE849878
rsl3374343
rs2073746
rs9617857
rs96l8725

CHR

oown

17
17
17
17
17

22
22
22

BP
78111916
78125183
78142127
63770263
63827063
63848486
63878334
63307321
115062191
77132997
229179417
18358558
18370733
18371067

P
0.003734
0.03473
0.01764
0.04738
0.04705
0.008173
0.01343
0.01636
0.03748
0.03729
0.03478
0.01037
0.008458
0.01122

OR
0.5232
0.7735

1.609
0.8153
0.7381
0.6713
0.6103

1.27
0.8173

0.799
0.6393
0.7304
0.7137
0.7183

GEME
ARSB
ARSB
ARSB
ARSG
ARSG
ARSG
ARSG
ARSG
ARSI
ART3
ARVL
ARVCF
ARVCF
ARVCF

LENGTH
209.321kb
209.321kb
209.321kb
161.678kh
161.678kh
161.678kh
161.678kh
161.678kh

79.439kkb
101.619kkb

21.657kb
45.891kb
45.891kb
45.891kb

DIST
3.124khb
16.4ki
33.34kb
3.352kb
80.15kb
81.57kb
111.4kb
140.4kb
21.3kb
-18.36kb
-2.028kb
21.14khb
33.37kb
33.65kb

Figure 2.2 Output of the PERL program for PLINK ‘gene-report’ function. The

results from PLINK output. Figure 2.1 are converted into a simplified tabulated

format. SNP - SNP Identifier, CHR - chromosome number, BP - base pair position

are shown together with P - p-value of the association, OR - odds ratios, GENE -

gene name, LENGTH - size of the gene and DIST - distance between the SNP and

the start position of the corresponding gene (negative values indicate that SNP is

located before the start position of the gene).
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2.3.2 PERL programming language

PERL is a programming language that has been widely utilized for the development
of novel bioinformatic applications. Analysis of large-scale genomic data is often
challenged by the lack of suitable bioinformatic programs. Writing ‘in house’
bioinformatic tools not only permits exploiting new ideas, but also reduces time for

tasks which would otherwise be laborious.

In this thesis, four Perl programs were developed ‘in house’ for the following

calculations:

Determination of common SNPs between different genotyping chip platforms

(e.g. lllumina HumanHap300 versus lllumina HumanHap610, which is a pre-
requisite step for principal component (PC) analysis (as described in
Methods 2.3.9). The program was documented in Appendix 8.4.1.

e Calculation of the number of independent tests in GWAS to enable an
accurate multiple testing adjustment for GWAS analysis (as described in
Methods 2.3.2). Appendix 8.4.2.

o A GWAS meta-analysis tool taking into account LD, shown in Chapter 3.
Appendix 8.4.3.

o A plug-in for PLINK gene-report function (as described in Methods 2.3.1).

Appendix 8.4.4.
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2.3.3 Calculation of the number of independent tests

GWAS has given insights into the aetiology of many complex diseases including
LOAD. However, due to the large number of SNPs tested all at once, apparently
‘significant’ findings may arise simply due to chance. However, the majority of these
findings are likely to be false positives. Thus a very stringent significance threshold is
necessary to provide confidence in the findings. For instance, in a GWAS using
500,000 independent markers, 25,000 would be expected to show a nominal p-value
< 5 x 10 by chance alone and five out of this 25,000 could be significant with p-
values < 1 x 10”°. The most widely used methods for solving this multiple testing
issue is to use Bonferroni correction, where it suggests that if ‘n’ independent tests
are carried out, the significance level for the entire series of tests is equal to the p-
value of a single test divided by ‘n’. The significance threshold of p = 5 x 10® has

been widely used to infer a genuine association in GWAS (Bertram et al., 2008).

It is generally believed that Bonferroni correction is overly conservative in GWAS
findings (Sherva and Farrer, 2011). A p-value of 5 x 10°® is equivalent to a p-value of
0.05 after a Bonferroni correction of 1,000,000 independent tests, whereas early
GWAS only possessed ~500,000 SNPs (Affymetrix 500K chip) or ~610,000 SNPs
(Mlumina 610 chip). Second, due to the existence of LD between SNPs on these
genotyping chips, a large number of SNPs are not independent. Taken together, it

implies that a SNP with p-value > 5 x 10 may well harbour genuine associations.

Linkage disequilibrium (LD) measures the probability that alleles at two loci are

co-inherited, the LD value is affected by genetic recombination (Wray et al., 2011).

A more accurate Bonferroni correction p-value threshold can be generated using the
exact number of independent tests, where multiple SNPs are counted as a single
independent test if they are in perfect LD (i.e. with r* = 1). It is conceivable that using

imperfect proxies (r* < 1) is likely to further reduce the number of independent test.
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The results, however, must be interpreted with caution, as lowering the LD r? value
will likely introduce errors. The relationship between the LD r? value and the amount
of noise contributing to the calculation of genome wide significance threshold

requires further investigation.

In order to calculate the exact number of independent test, SNPs genotyped on
GWAS chips were extracted from the HapMap dataset using ‘--extract’ and ‘--make-
bed’ command. Within this file, SNPs in perfect LD are ascertained using the

following PLINK commands:

plink --bfile ‘file’ --r2 --ld-window-kb 1000 --1d-window 99999 --1d-window-

r2 1 --out ‘file.ld’

‘--r2’ is the command for calculating r? value of LD. ‘--ld-window-kb 1000’ indicates
the calculation is undertaken within 1Mb distance of index SNPs saved in the input
file. --Id-window 99999’ specifies the maximum number of pair-wise combinations to
be calculated for each SNP is 99999. ‘--ld-window-r2 1’ indicates the LD r* threshold

is equal to 1.

The LD r? values calculated using PLINK are based on haplotype frequencies

estimated via the Expectation Maximisation (EM) algorithm.

Given that any two SNPs with their base-pair positions more than 1 Mb apart highly
unlikely to be in perfect LD, the calculation is conducted within a window of 1Mb

either side of the index SNP.

A PERL script (Appendix 8.4.2) was written to calculate the number of LD clusters
and the number of SNPs in perfect LD. The number of independent tests was then

calculated using the formula:
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Number of independent tests
= [Number of SNPs on the chip — Number of SNPs in perfect linkage]

+ Number of LD Clusters

The PLINK output file (.Id) was used for this calculation using this PERL script. The
genome-wide significant thresholds were calculated based on the number of actual
independent tests. This approach has been used in studies described in Chapter 3

and Chapter 5.
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2.3.4 Linkage disequilibrium analysis

LD patterns dramatically increase the coverage of SNPs chips used in GWAS. In
cross-platform meta-analysis, LD further increases the number comparable SNPs

between different studies.

There are two ways of measuring the strength of LD - r? and D’. r? is more frequently
used in comparison of SNPs with similar allele frequencies, whereas D’ is often used
when assessing the relationship between common and rare variants (Wang et al.,

2010; Wray et al., 2011).

The r® value is considered more stringent than D’. A LD value of r* equal to 1
produces a D’ value also equal to 1, whereas if LD value D’ equal to 1, r* value can

range from close to O to 1.

The value of D’ is not affected by the difference in allele frequencies between two
SNPs. Measures of the linkage between two SNPs can be assigned into four

categories - Perfect LD, Complete LD, Moderate LD and no evidence of LD.
CandiSNPer

CandiSNPer is a web based bioinformatic application which allows efficient search of
SNP LD patterns based on user-specified parameters (input SNP rs number, LD r?
value, output window sizes and population sizes), and simultaneously annotates
tagged SNPs, which are in LD with the index SNP (initial input SNP), based on its

functions (Schmitt et al., 2010).

CandiSNPer automatically categorize SNPs into different functional classes, and
annotates them in different colours. The program can be accessed through the

website http://www2.hu-berlin.de/wikizbnutztier/software /CandiSNPer.
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Default functional classes in CandiSNPer are:

Class 1: Stop lost, Stop gained, Frameshift

Class 2: Nonsynonymous coding, Splice site, Essential splice site

Class 3: Synonymous coding, 5 UTR, 3’'UTR, Upstream, Downstream

Class 4: Intronic, Pseudogene

Class 5: Intergenic

Class 6: Start SNP: rs number
CandiSNPer directly retrieves the latest version of SNP data (in real time) from the
Ensembl database. It calculates both LD r? and D’ values and provides the results in
a graphical HTML format. Furthermore, CandiSNPer automatically predicts and

highlights the LD block where the index SNP is located.

SNAP (SNP Annotation and Proxy Search)

SNAP is a web based bioinformatics tool for assessment of LD between SNPs
(Johnson et al., 2008). The SNAP program is accessible at

http://www.broadinstitute.org/mpg/snap/ldsearch.php.

It provides an efficient method to retrieve proxies for SNPs under investigation. The
LD values between SNPs are calculated using the HapMap and pilot 1000 genome
data. Furthermore, SNAP provides a function to graphically represent a ‘regional LD

plot’ for use in publications.
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2.3.5 Haploview

Haploview is a bioinformatic program designed to compute linkage disequilibrium
statistics and population haplotype patterns using a wide range of genotype data
input formats (Barrett et al., 2005). The software is written and operated within the

Java scripting language.

Haploview has been widely used for genetic studies, including association studies,
haplotype analysis, and calculation of SNP coverage in GWAS using the Haploview

‘tagger’ program.

Generation of a Manhattan Plot

A Manhattan plot is a useful method to visualise the results of a GWAS, facilitating

the identification of associated SNPs with disease or traits of interest.

Data in PLINK format was loaded into the Haploview program using the ‘Locus
Information File’ input box. Parameters can be adjusted using the pop-up window

after clicking the ‘Plot’ button. The following parameters were adjusted:

e ‘chromosomes’ was selected in ‘x-axis’ dropdown list

e ‘p’ was selected in ‘y-axis’ dropdown list

o ‘log10’ was selected in ‘scale’ dropdown list

e >’ was selected in ‘suggestive (blue line)’ dropdown list and 4.3 was inputted

e >’ was selected in ‘significant (red line)’ dropdown list and 7.3 was inputted

All other parameters were in default setting.

The appearance of the Manhattan plot could be adjusted via the ‘properties’ option
provided. An example Manhattan plot is shown in Figure 2.3 using the Mayo GWAS
data (Carrasquillo et al., 2009). The x-axis and y-axis represents chromosomal

position and -log:GWAS (p-value), respectively.
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Figure 2.3 Manhattan plot depicting GWAS output using LOAD GWAS data. The
data consists of 1,998 individuals (799 LOAD cases and 1,199 controls) and 313,330
SNPs. Chromosomal position is shown on the x-axis versus -log10 GWAS p-value on
the y-axis. Red and blue horizontal lines represent p-value threshold 5 x 10® and 5 x
10, respectively. SNPs are represented by dots highlighted in different colours
according to chromosomal locations. A series of green vertical dots represents SNPs
in LD with APOE &4 genotypes. The plot is shown for illustrative purposes only, and

has not been used for actual studies.
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Haploview ‘tagger’ program

The Haploview ‘tagger’ program is powerful tool to estimate the coverage of SNPs

typed on a GWAS chip with respect to all known SNPs.

The HapMap genotype data release #24 was used in this calculation. Data in
HapMap format was loaded into the Haploview program using the ‘browse’ button

provided. The ‘tag’ and ‘non-tag’ SNPs were selected using tick boxes - ‘force include

for ‘tag’ SNPs and ‘force exclude’ for ‘non-tag’ SNPs.

The coverage was calculated based on the number of SNPs (within the specified
genome region) which are captured by the ‘tag’ SNPs. Genome regions were
specified by selection of all SNPs within these regions. Selecting SNPs was

undertaken using ‘capture this allele?’ tick boxes provided.

A SNP was defined as being captured by the ‘tag’ SNP if the two SNPs showed a

pairwise LD r? = 0.8. Other parameters were in default.

An example of Haploview ‘tagger’ program output is demonstrated in Figure 2.4. In
the example, two SNPs were selected as ‘tag’ SNPs, which captured 18% (13 out of

69) SNPs with r* = 0.8. 56 SNPs have not been captured.
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Haploview 4.2 — dumped_region
File Display Analysis Help

| LD Plot | Haplotypes | Chedk Markers‘ Tagger ]

| Configuration | Results

rs12359570
rs7079104

(forced-in markers shown in bold)

Alleles captured by Current Selection
rs12359570
rs12260998
rs7077836
rs7065620
rs7920734
rs12773697
rs10829654

25NPsin 2 tests captured 13 of 69 (18%) alleles atr2 >=0.8
Mean maxris 0.951
Unable to capture 56 alleles (shown in red).

Dump Testz File H Dump Tags File ]

Figure 2.4 Haploview ‘Tagger’ program output. Two SNPs selected as ‘Tests’

Allele Test rz
rs3097956 Untaggable
rs7083202 rs7079104 0.815

rs7065620

rs7079104

0.937

rs7077836 rs7079104 0.938
rs10329854 rs7079104 0.933
rs3125602 Untaggable

rs3097970 rs7079104 0.938
rs 10829855 Untaggable

rs11017612 Untaggable

rs12773697 rs7079104 0.937
rs 10765007 Untaggable

rs7920734 rs7079104 1.0
rs12359570 rs12359570 1.0
rs7594208 Untaggable

rs 10437442 Untaggable

rs11017613 Untaggable

rs7079104 rs7079104 1.0
rs7075487 rs7079104 1.0
rs11017616 Untaggable

rs7096489 rs7079104 1.0
rs2397741 Untaggable

rs11017618 Untaggable

rs7902439 Untaggable

rs7909813 Untaggable

rs7598899 Untaggable

rs4332436 rs7079104 1.0
rs4333936 Untaggable

rs7396714 Untaggable

rs12260766 Untaggable

rs7916787 Untaggable

rs7E96408 Untaggable

rs7916519 Untaggable

rs12260993 rs12359570 0.858
rs12269595 Untaggable

rs 12240325 Untaggable

rs12761624 Untaggable

rz12763078 Untaggable

rs12242293 Untaggable

rs11017622 Untaggable

(rs12359570 and rs7079104) captured SNPs listed as ‘Allele captured’. The ‘tagged’
SNPs are listed in black font, and ‘untagged’ SNPs are in red font. This figure is

shown for illustrative purposes only.
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Generation of a Haploview LD plot

The Haploview LD plot has been widely used in genetic studies to interpret
association study results, e.g. if two SNPs are in the same LD block, the association
observed with one SNP could be in fact due to LD with the other functional SNP

which is showing an effect.

Data were loaded into Haploview using the same method as mentioned earlier. SNPs
to be included in the LD plot were selected using the tick boxes provided. The LD plot

is shown by simply selecting the ‘LD plot’ tag.
Haploview provides three different algorithms for estimating LD blocks:

e ‘confidence intervals’ (the default setting)(Gabriel et al., 2002),
o ‘Four Gamete Rule’ (Wang et al., 2002) and

e ‘Solid Spine of LD’ (Barrett et al., 2005).

An example LD plot is shown in Figure 2.5. Colour of each rhombus represents

strength of LD between SNPs:

e Red - perfect LD, reflected by both r* and D’ values equal to 1. Genotypes in
one SNP perfectly inform the genotype of the other.

e Blue - complete LD, where D’ value equal to 1 and r* < 1. Complete LD refers
to a scenario where two SNPs possess a significantly different MAF, and the
alleles of the two SNPs are coupled as much as is possible given the different
allele frequencies (Wray et al., 2011).

e Light red (or pink) - moderate LD, where both r? and D’ value are less than 1.

¢ White - the two SNPs are independent.
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Figure 2.5 Haploview LD plot. The strength of LD was represented by different

colours (red - perfect LD, blue - complete LD, pink - moderate LD and white - no

evidence of LD). The genomic region is represented by the horizontal bar shown at

the top, and the physical distance between SNPs are as indicated by connecting

solid lines. This LD plot is shown for illustrative purposes only and has not been used

for actual studies.
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2.3.6 Conservation analysis

Both VISTA browser (Frazer et al., 2004) and Evolutionary Conserved Regions (ECR)
browser (Ovcharenko et al., 2004) are designed to examine conservation between
the human genome and the genomes of vertebrate animal species (such as mouse,

rat, chimpanzee, rhesus monkey, dog, cow, opossum, chicken, frog, zebrafish).

Animals such as mouse, rat and rhesus monkey or chimpanzee are the most widely
used animal species for studying conservation, likely contributed by the fact that mice
and rats are the standard laboratory animals, whereas monkey and chimpanzee

share high degree of homology with human.

The conservation scores are pre-computed for both VISTA and ECR browsers,

allowing rapid retrieval of data from them both.

SNPs that fall in a conserved region are considered more likely to be functional than
anonymous polymorphisms (Carrasquillo et al., 2009). This is also supported by the
fact that regions such as exons and untranslated regions (UTRs) are more likely to

be conserved than introns and intergenic regions.

Both VISTA and ECR browsers are implemented in Java programming language.
They share a high degree of similarity such as both providing very similar graphical
user interfaces (GUI). Sequences and annotation data utilized in the ECR browser

are directly downloaded from the UCSC Genome Browser in real-time.

VISTA browser

The VISTA browser can be accessed via the website hitp://pipeline.lbl.gov/. For
TRIM15 gene analysis (as described in Chapter 4), ‘Vertebrate -> Human -> Mar.
2006’ was selected in the drop-down list, and base pair coordinates ‘chr6:30237972-

30251445’ (NCBI36/HG18) was entered in the ‘position’ input box. The coordinates
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were adjusted in order that that flanking regions of the gene are included in the

analysis. The following parameters were adjusted:

¢ Animal species ‘Rhesus, Dog, Horse, Mouse, Rat and Chicken’ were selected
using the ‘select/add’ dropdown list. The actual sequence alignments
between human genome and animal genome were retrieved via the
‘alignment’ icon.

¢ The range of the conservation score was adjusted to between 50% and 100%
using ‘minimal y’ and ‘maximal y’ input boxes provided.

¢ The significance threshold was adjusted to 70% using the ‘con identity’ input

box.
All other parameters were in default.

With the default setting, conservation scores exhibited by the software are based on
alignments of 100 nucleotide bases at a time. At each new chromosomal position,
the score is recomputed by shifting one nucleotide. The final conservation plot is
represented in the form of a curve. Conserved genome regions are automatically

highlighted by the software in different colours.
ECR browser

The ECR browser can be accessed via the website http://ecrbrowser.dcode.org/.
Genomic coordinates were input using the dropdown list and input boxes provided.

Parameters were adjusted using a similar method as for the VISTA browser.

A unique feature of ECR browser is it highlights conserved regions with clickable
rectangles (in pink colour). Clicking these rectangles provides access to detailed
percentage identity, corresponding sequence alignment, and a hyperlink to predict

transcription factor binding sites within this region.
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2.3.7 Power Calculation for SNP discovery

The power of a statistical test is defined as the probability that it will correctly lead to

the rejection of a false null hypothesis. In SNP discovery, it refers to the probability of

detecting a SNP with given minor allele frequencies (MAF).

Power calculations were performed to calculate sample sizes required in order to

detect a SNP. Sequencing of a single chromosome provides a probability of 0.01 to

detect a SNP with MAF of 0.01. This is represented as P[detection] = 0.01.

Consequently, P[non-detection] = 0.99.

If two chromosomes are sequenced, P[detection] and P[nhon-detection] are shown as

follows:
P[detection] = 0.01x0.01 + 0.01x0.99 + 0.01x0.99 = 0.199
P[nondetection] = 0.99% = 0.9801
If ‘n’ chromosomes are sequenced, then
P[detection] = 1 — 0.99"
P[nondetection] = 0.99"
If 95% power is required, then
P[detection] =1 —0.99" = 0.95

Therefore,

Therefore, in order to detect SNPs with MAF 0.01 with 95% power, sequencing of
298 chromosomes (i.e. 149 individuals) are necessary. The following formula has
been used to calculate sample size (n) with any specified power and MAFs.

_ [log(1 — power)]
[log(1 — MAF)]

The 95% power shown here is for illustrative purpose only, rather than what has

actually been used in the study.
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2.3.8 Power calculation for detecting an association

QUANTO (v1.2.4) is a bioinformatics application designed to calculate power (or

sample size required to achieve certain power) for genetic based association studies.
Three statistical models are provided in QUANTO, the main effects caused by genes,
gene-environment interaction and gene-gene interaction. The program provides GUIs

allowing modification of input parameters.

The gene-environment interaction model was utilized, as LOAD is affected by both
genetic and environmental factors (Avramopoulos, 2009). The model ‘gene-
environment interaction’ was selected (via ‘Parameters -> Outcome/Design ->

Disease’).

QUANTO requires mandatory configuration of four groups of parameters: ‘Gene’,
‘Environment’, ‘Outcome Model’ and ‘Power’ (Figure 2.6). These parameters must

be adjusted in order.

‘Gene G’ (Genetic effect parameters used in this instance) Figure 2.6a
e Allele frequency: 0.01- 0.05; Increments: 0.01
¢ Inheritance mode: Log additive
e Susceptibility frequency: generated by the software from the allele frequency
and inheritance model specified
‘Environment’ Figure 2.6b
o Population prevalence: 0.24 (representing an environmental component of

LOAD equal to 0.24)

‘Outcome Model’ Figure 2.6¢
e Population risk: 0.12 (an average risk of LOAD estimated between 65 to 100
years of age).

e Genetic effect size: 2 (represented by ORS)
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e Environmental effect size: 1.2
e Gene-environmental interaction: no interaction was assumed

e OR summary: computed based on the inputs.

‘Power’ Figure 2.6d

¢ Sample size: represents the number of case-control pairs (75 was used as
this represents the number of AD/Control samples analysed in Chapter 4)

e Type | error rate: 0.05 (maximum tolerated type | error)

o Perform 2 df test: yes (enables calculation of power taking into account

effects from both genetic and environmental factors)
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Figure 2.6 Input dialogues for performing power calculation using QUANTO (v

1.2.4). Four input dialogues windows: ‘Gene G’, ‘Environment’, ‘Disease Risk

Parameters’ and ‘Power’ are shown with example input.
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2.3.9 Population stratification analysis

EIGENSTRAT

The association identified in a case/control or quantitative trait GWAS analysis could
be due to underlying population substructure (i.e. population stratification) and

therefore must be considered in downstream analysis.

EIGENSTRAT is a bioinformatic program for calculation of heterogeneity between
samples according to SNPs typed on GWAS chip platforms (Price et al., 2006). The
software evaluates all possible systematic bias of allele frequencies between
different GWAS datasets and presents these differences in the form of principal
components (PCs). These PC values calculated can be adjusted and controlled in a
standard logistic regression (or linear regression) analysis by including them as
covariates. PC analysis reduces the genotype data to a number of dimensions,
defined as the top eigenvectors of a covariance matrix between samples (Price et al.,

2006).

EIGENSTRAT estimates genetic outliers, which are defined as any individual whose
ancestry is at least 6 standard deviations (SD) from the mean on one of the top ten
axes of variation. Genetic outliers are often an indication of individuals carrying

suspicious genotypes possibly due to genotyping errors.

Genomic control inflation factor (A), a representation of overall inflation of association
p-values, can be calculated using EIGENSTRAT. This inflation could be due to
variety of QC issues, including population stratification, centre effects and genotyping

errors.

Reference datasets are required by EIGENSTRAT to provide a baseline for the

analysis, HapMap data release 23 was used to fulfil this requirement. These datasets
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are publicly available from HapMap (The International HapMap Consortium, 2003),

three populations were downloaded are shown:

e CEU founders (release 23, 60 individuals, filtered 2.3 million SNPs) - US Utah
population with Northern and Western European ancestry (samples collected
in 1980 by the Centre d’Etude du Polymorphisme Humain CEPH).

o JPT + CHB founders (release 23, 90 individuals, filtered 2.2 million SNPSs) -
45 unrelated Japanese in Tokyo, Japan, and 45 unrelated Han Chinese in
Beijing, China.

¢ YRI founders (release 23, 60 individuals, filtered 2.6 million SNPs) - Yoruba

people in Ibadan, Nigeria.

The filtered HapMap file included SNPs with MAF greater than 0.01 and genotyping

rate greater than 0.95.

Data preparation for PC analysis

To ensure the PCs calculated (representing population stratification) were not
affected by a large number of SNPs which are in LD, it is essential to create a LD
pruned GWAS dataset (including both study samples and HapMap samples). It
should be emphasized that it is not essential to use any specific set of SNPs since
common SNPs are in LD with each other. An accurate estimation of PCs requires a

minimum of 20,000 SNPs on the chip (Price et al., 2006).

The common SNPs between different GWAS datasets and HapMap data #23 were
determined using an ‘in house’ PERL program as described in Methods 2.3.2. Prior
to analysis using EIGENSTRAT, the HapMap CEU population dataset were pruned

using the following commands in PLINK:

plink --bfile hapmap_CEU_r23a_filtered --extract MayoSNPs.txt --make-bed --

out hapmapCEUr23aM
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‘--bfile’ indicates the input PLINK files are in binary format. ‘--extract MayoSNPs.txt’
extracts all common SNPs which were stored in the ‘MayoSNPs.txt’ file. ‘--make-bed’

specifies the output file (in PLINK binary format), and ‘--out’ specifies the output file

name.
A LD pruned dataset was generated using the following command:

plink --bfile hapmapCEUr23aM --indep-pairwise 1500 150 0.2 --out

hapmapMP

‘--indep-pairwise 1500 150 0.2’ is the main method for pruning out SNPs with
pairwise LD r? value greater than 0.2 across sliding windows (window size of 1500
SNPs and 150 SNPs to shift the window). This command generated two files
‘hapmapMP.prune.in’ consists of LD pruned SNPs, whereas ‘hapmapMP.prune.out’

file is comprised of all remaining SNPs (which have been pruned out).

Each of the GWAS datasets and three HapMap datasets (as mentioned earlier) were

subject to pruning using the LD pruned SNPs. Commands used to prune HapMap
data CEU population are shown:

plink --bfile hapmap_CEU_r23a_filtered --extract hapmapMP.prune.in --

recodel2 --out CEU_PR

plink --file CEU_PR --make-bed --out CEU_PRB
‘--recode12’ indicates that all SNPs are converted into the same coding format (‘1’
and ‘2’ coding) in PLINK format (as described in Methods 2.3.1). ‘--make-bed’
indicates that standard PLINK files (PED and MAP) are converted into the PLINK
binary format (BED, BIM and FAM). This process was repeated for the other

populations and the GWAS dataset.

These four files were then merged into a single file using PLINK ‘--bmerge’ command

under ‘Consensus call’ mode.
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plink --bfile AGE_PRB --merge-list Mergelist.txt --make-bed --out
merge_ACCY

‘--merge-list’ is the main method for merging binary PLINK datasets. The

‘Mergelist.txt’ file contains three rows as shown:

CEU_PRB.bed CEU_PRB.bim CEU_PRB.fam
CHBJPT_PRB.bed CHBJPT_PRB.bim CHBJPT_PRB.fam
YRI_PRB.bed YRI_PRB.bim YRI_PRB.fam

SNPs with a genotyping rate less than 0.95 (--geno 0.05) were excluded (Methods
2.3.1). In order to calculate PC values, it is necessary that all samples are converted

into ‘controls’ in the merged dataset.

Calculation of Eigen-values, principal components and production of an MDS plot

The following commands were used to convert the merged dataset (in PLINK binary

format) into EIGENSTRAT format.

plink --bfile merge_ACCY(qc --recode --out merge_ACCYqc --noweb

../bin/convert -p par.PED.EIGENSTRAT

File ‘par.PED.EIGENSTRAT’ contains parameters for EIGENSTRAT ‘convert’
command, which consists of the following lines:

genotypename: merge_ACCYqc.ped

snpname: merge_ACCYqc.map

indivhame: merge_ACCYqc.ped

outputformat: EIGENSTRAT

genotypeoutname: merge_ACCY(qc.eigenstratgeno
snpoutname: merge_ACCYqc.snp

indivoutname: merge_ACCYqc.ind

familynames: YES
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The principal component analysis was executed using the following command,

../bin/smartpca.perl -i merge_ACCY(qc.eigenstratgeno -a merge_ACCYqc.snp -
b merge_ACCY(qc.ind -k 10 -o merge_ACCY(qc.pca -p merge_ACCYqc.plot -e

merge_ACCY(qc.eval -1 merge_ACCYqc.log

“', “-a’ and ‘-b’ specify the input files in EIGENSTRAT format - genotype file
(‘.eigenstratgeno’), SNP file (‘.snp’) and individual file (".ind’).-k 10’ indicates the
number of PCs to be shown in the output is equal to 10. ‘-0’ specifies the output file

for storing PC values. ’-e’ specifies the output file for storing Eigen-values.

‘-I' specifies name of the log file.

Although not explicitly stated in the command line, several useful outputs were

generated as listed:

¢ a multidimensional scaling (MDS) plot in both “.ps’ and ‘.pdf format.
e a‘.exec file, which was used to calculate genomic control inflation factor (1)
by EIGENSTRAT, as well as to create the covariate file for subsequent

GWAS analysis using PLINK.

e genetic outliers, which were calculated automatically. The results can be

found in the ‘.log’ file.

The significance of each PC axes were calculated using the following command

(‘twtable’ is a pre-made reference table, which was copied into the working directory).

../bin/twstats -t twtable -i merge_ACCYqc.eval > merge_ACCYqc.Sout
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Calculation of genomic control inflation factor (A)

Genomic control inflation factor (A) is an important estimator of population
stratification. The high A value indicates the data is inflated, and the corresponding
analysis is more likely to generate false positive outputs as a result. A A value of
equal or greater than 1.1 is often treated as unacceptable, and is an indication of the
existence of significant bias in the GWAS data. EIGENSTRAT provides tools to
calculate the genomic control inflation factor for data with and without correction of

the PCs.

Genetic outliers were removed from the merged data using ‘--remove’ command in

PLINK,

plink --bfile study_data --remove outlier.txt --make-bed --out new_dataset

‘outlier.txt’ consists of a list of individuals identified as genetic outliers (one individual

per row).

In order to proceed with the calculation, the phenotype data in PLINK PED file was
replaced with the actual phenotype values (e.g. age-at-death (AAD) values as
described in Chapter 5). The PLINK binary format was converted into EIGENSTRAT

format using the ‘convert’ command as mentioned.

The “.pca’ file was generated using command

evec2pca.perl 10 merge_ACCYqc.pca.evec merge_ACCYqc.ind
merge_ACCYqc.pca

The command is in a format:

evec2pca.perl $k $evec $b $o, where $K, $b and $o

$k, $b and $o corresponds to -k’, ‘-b’ and ‘-0’ as previously described, and $evec

specifies the ‘.evec’ filename generated using the same methods as described.
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Finally, the genomic control inflation factor was calculated using command,

../bin/smarteigenstrat.perl -1 study_data.eigenstratgeno -a study_data.snp -
b study_data.ind -k 10 -p merge_ACCY(qc.pca -q YES -1 smarteigenstrat.log -o
study_data.chisq

../bin/gc.perl study_data.chisq study_data.chisq.GC
-k’ specifies the number of PCs to be adjusted for calculation of A value. ‘-0’ specifies

the output *.GC’ filename. ‘-p’ specifies the input ‘.pca’ flename from previous

analysis. -q YES’ indicates that the analysis used are in quantitative trait phenotypes

This analysis was performed iteratively, including between 0 and 10 PCs. Each
calculation generated a single A value (11 A values in total). The number of PC axes
to be included as covariates in the GWAS analysis is ascertained when the lowest A

value was acquired after comparison of all 11 A values (see Chapter 5 for details).

Generate a Q-Q plot

A Q-Q plot is useful in examining the general quality of GWAS data. Two publicly
available methods are available to draw a Q-Q plot - the ‘estlambda’ function in
GenABEL (v 1.6.5) (Aulchenko et al., 2007) and ‘ggd.qqplot’ function (Turner et al.,

2011). Both methods are written in R statistical programming language.

GenABEL ‘estlambda’ is more flexible than the ‘ggd.qgplot’ method. The former

allows the user to specify the plot range using ‘xlim’ and ‘ylim’ parameters.

Furthermore, GenABEL ‘estlambda’ provides an approximate estimation of genomic
control inflation factor, though not to the same accuracy of EIGENSTRAT

calculations.

Data was loaded into R using command:

> mydata <- read.table(“filename.txt”, header=T)
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‘estlambda’ function in GenABEL was executed using the following commands:

> library(GenABEL)

> estlambda(mydata$P)

The following function was needed to run in R ‘ggd.qqplot()’:

ggd.qqplot = function(pvector, main=NULL, ...) {
o = -log10(sort(pvector,decreasing=F))

e = -log10( 1:length(o)/length(o) )
plot(e,o,pch=1,cex=1, main=main, ...,
xlab=expression(Expected~~-log[10](italic(p))),
ylab=expression(Observed~~-log[10](italic(p))),
xlim=c(0,max(e)), ylim=c(0,max(0)))
lines(e,e,col="red")

}

‘ggd.qgplot’ was executed by typing the following command in R:

> ggd.qqplot(mydata$P)
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2.4 Bioinformatics tools for next generation sequencing data analysis

Next generation sequencing is a high-throughput sequencing technology, which
generates enormous amount of sequencing data with a much lowered financial cost
than traditional Sanger sequencing. The innovation in the sequencing technology

leads to profound changes in methods of analysing the sequencing data.

This methods section describes a number of bioinformatics tools for next generation

sequencing data analysis as described in Chapter 4.

2.4.1 Read alignment and basic data format and manipulation

BioScope® (v 1.3)

BioScope® is a commercial software package, which is part of ABI SOLID™
sequencing pipeline. The ABI SOLID™ system uses a technology known as ‘colour
space’ system or ‘2-barcoded encoding system’, which means every single
nucleotide is interrogated twice. The SOLID™ system claims to be highly accurate

with the majority of base calls achieving accuracy in excess of 99.99%.

BioScope® (v 1.3) was used to perform conversion of SOLID colour space (CS) calls
into nucleotide calls and perform alignment of short sequencing reads to the current

reference genome sequences (human genome build 19 GRCh37/hg19 assembly).

The BioScope® alignment algorithm produces mapping statistics and generates a
mapping quality value (range O - 100) for each read, which can be used to filter

poorly aligned reads.

BioScope® is capable of aligning both ‘mate-pair’ and ‘paired-end’ library runs
(Chapter 4). The output of BioScope® alignment is a mapped BAM file and a

detailed report of mapping statistics.
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The SNP calling algorithm and associated tools provided in BioScope® are only
suitable for individual barcoded data, and not appropriate for pooled next generation

sequencing data.

SAMtools

The SAM file (sequence alignment/map) and BAM file (binary format of SAM) are
generic file formats for storing aligned next generation sequencing data (Li et al.,

2009).

A number of tools are provided by SAMtools to manipulate the next generation
sequencing data, which are compulsory for downstream analysis such as SNP

calling.

After the BioScope® alignment, two BAM files were generated (separate case control
pools) from the CSFASTQ and QV files. CSFASTQ and QV files are the original raw
data file formats representing colour space FASTQ file and quality value file,
respectively. Each of the colour space calls stored in the CSFASTQ file is provided

with a quality score which is saved in the QV file.

Both BAM files are sorted and indexed using SAMtools commands:

samtools sort F3_Morgan_control.renum.csfasta.ma.bam

F3_Morgan_control.renum.csfasta.ma.sorted

samtools sort F3_Morgan_case.renum.csfasta.ma.bam

F3_Morgan_case.renum.csfasta.ma.sorted
samtools index F3_Morgan_control.renum.csfasta.ma.sorted.bam
samtools index F3_Morgan_case.renum.csfasta.ma.sorted.bam

Aligned reads for the two TRIM15 fragments (‘A’ and ‘B’) were extracted from the

control datasets:

91



Materials and methods

samtools view F3_Morgan_control.renum.csfasta.ma.bam 6:30130365-

30143332 -bo TRIM15_AandB_BioScope1.3_Control.bam

‘-bo’ specifies output filename (in binary format).

The SAMtools ‘view’ function was used to convert BAM to SAM, as well as to retrieve

a subset of next generation sequencing data. The retrieved sequencing data was

sorted and indexed (which generates a new index BAI file):

samtools sort TRIM15_AandB_BioScope1.3_Control.bam

TRIM15_AandB_Bioscopel.3_ControlS

samtools index TRIM15_AandB_BioScope1.3_ControlS.bam

The genome reference FASTA file was indexed using ‘faidx’ function in SAMtools

(which generates a new FASTA index FAI file):

samtools faidx valid_6.fa

A pileup file (position based output) was generated using the ‘pileup’ function:

samtools pileup -vcf valid_6.fa TRIM15_AandB_BioScope1.3_ControlS.bam

The same commands were used for extracting, indexing and sorting of sequencing

reads for the case pool.

Additional functions are provided in SAMtools,

¢ ‘merge’ function, which allow user to merge multiple sorted BAM files

e ‘tview’ function, an alignment viewer.
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SAM file format

SAM file is in a tab-delimited text file format which consists of an optional header
section and a compulsory alignment section. Each header starts with the ‘@’ symbol
and is followed by a two-letter code (e.g. @RG) and a colon (*’). Table 2.5 lists all

these two-letter codes (known as ‘TAGS’) and their definitions.

An example header row is shown:

@RGID:20101014202018783PL:SOLiDLB:1ib1-50FPI:0DT:2010-10-
14T13:20:18-0700SM:Morgan_controlCN:freetext

This read header can be interpreted as shown:

¢ Read group (RG) identifier (ID): 20101014202018783

e Platform (PL): SOLID

e Library (LB): 1 to 50F

o Predicted median insert size (PI): 0

e Date of the run was produced (DT): 2010-10-14T13:20:18-0700
e Sample (SM): Morgan_control

¢ Name of the sequencing centre producing the read: freetext

It is noteworthy that each read from an individual pool is labelled with the same @RG,

reflecting the pooling strategy used.

In the alignment section, each read occupies one row, consists of 11 mandatory
fields for storing essential alignment information, as well as variable number of

optional fields for flexibility (Figure 2.7).
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Table 2.5 Header summary of the SAM file format. Figure showing a list of two-
letter header codes and their definitions (Adopted from Li et al., 2009).

Tag ‘ Description
@HD The header line. The first line if present.

VN* | Format version. Accepted format: /*[0-9]+\.[0-9]+$/.

Sorting order of alignments. Valid values: unknown (default), unsorted, queryname and

SO coordinate. For coordinate sort, the major sort key is the RNAME field, with order defined by the
order of @SQ lines in the header. The minor sort key is the POS field. For alignments with equal
RNAME and POS, order is arbitrary. All alignments with *' in RNAME field follow alignments with
some other value but otherwise are in arbitrary order.

@SQ Reference sequence dictionary. The order of @SQ lines defines the alignment sorting order.

SN* Reference sequence name. Each @SQ line must have a unique SN tag. The value of this field is used
in the alignment records in RNAME and PNEXT fields. Regular expression: [!-)+-<>-~][!-~]*

LN* | Reference sequence length. Range: [1, 22° -1]

AS Genome assembly identifier.

M5 | MD5 checksum of the sequence in the uppercase, with gaps and spaces removed.

SP Species.

UR URI of the sequence. This value may start with one of the standard protocols, e.g http: or ftp:.

If it does not start with one of these protocols, it is assumed to be a file-system path.
@RG Read group. Unordered multiple @RG lines are allowed.
Read group identifer. Each @RG line must have a unique ID. The value of ID is used in the RG tags

ID* | of alignment records. Must be unique among all read groups in header section. Read group
IDs may be modified when merging SAM files in order to handle collisions.

CN Name of sequencing center producing the read.

DS Description.

DT | Date the run was produced (ISO8601 date or date/time).

Flow order. The array of nucleotide bases that correspond to the nucleotides used for each flow of

FO each read. Multi-base flows are encoded in IUPAC format, and non-nucleotide flows by various
other characters. Format: /\*|[ACMGRSVTWYHKDBN]+/

KS The array of nucleotide bases that correspond to the key sequence of each read.

LB Library.

PG | Programs used for processing the read group.

PI Predicted median insert size.

PL Platform/technology used to produce the reads. Valid values: CAPILLARY, LS454, ILLUMINA,
SOLID, HELICOS, IONTORRENT and PACBIO.

PU | Platform unit (e.g. flowcell-barcode.lane for I[llumina or slide for SOLiD). Unique identifier.

SM | Sample. Use pool name where a pool is being sequenced.

@PG Program.

ID* | Program record identifier. Each @PG line must have a unique ID. The value of ID is used in the
alignment PG tag and PP tags of other @PG lines. PG IDs may be modified when merging SAM
files in order to handle collisions.

PN Program name

CL Command line

PP | Previous @PG-ID. Must match another @PG header's ID tag. @PG records may be chained using
PP tag, with the last record in the chain having no PP tag. This chain defines the order of programs
that have been applied to the alignment. PP values may be modified when merging SAM files in
order to handle collisions of PG IDs. The first PG record in a chain (i.e. the one referred to by the
PG tag in a SAM record) describes the most recent program that operated on the SAM record. The
next PG record in the chain describes the next most recent program that operated on the SAM
record. The PG ID on a SAM record is not required to refer to the newest PG record in a chain. It
may refer to any PG record in a chain, implying that the SAM record has been operated on by the
program in that PG record, and the program(s) referred to via the PP tag.

VN Program version

@CO One-line text comment. Unordered multiple @CO lines are allowed.
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Figure 2.7 Summary of SAM file format. Figure showing all elements of an individual read in the SAM file format, and corresponding

descriptions. ‘+’ indicates the relevant field is inapplicable to the ‘paired end’ sequencing data (See Chapter 4 for definition).
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PILEUP file format

Each row of the pileup file describes alignment information of reads at each

nucleotide base position. There is ho header section in the pileup file.

Two pileup formats are in use. The ‘standard sequence pileup’ format consists of six
columns: chromosome number, base pair position, reference nucleotide base,

number of reads aligned to this site, read bases and base qualities.

An example row of the SAMtools standard ‘.pileup’ file is shown:

1 10000 T 22 weneyyeyeysCapyyryes Go
+7<;<<<<<<<&<=<<:;<<&<

In this example, there are 22 reads mapped to this chromosomal position, on
chromosome 1, at base coordinate 10000 and with the reference allele ‘“T’. The dot
(“.) symbol in read bases represent a single read is mapped to the forward strand
and the base matches the reference allele ‘T’. The comma (‘,’) symbol indicates a
read, which matched to the reference allele, however mapped to the reverse strand.
Any other letters indicate a possible variant (e.g. ‘C’ and ‘G’ is shown in this example),
where uppercase lettering indicates a non-reference nucleotide base mapped to the
forward strand and a lowercase indicates the base is mapped to the reverse strand.
The quality of each nucleotide base was represented in a single ASCII code
(+7<<<<<<<<&<=<<:;<<&<); interpretation of this code is discussed in more detail

in Chapter 4, Table 4.1.

‘Consensus sequence pileup’ format differs from the ‘standard sequence pileup’
where it consists of four additional columns between the ‘reference nucleotide base’
and ‘number of reads aligned’ columns. These four columns are consensus base,

consensus quality, SNP quality and maximum mapping quality, respectively.
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2.4.2 FastQC (v0.9.4) quality assessment

FastQC is a bioinformatic program designed for assessment of quality of raw next
generation sequencing data. Obvious sequencing errors can be effectively revealed

by performing QC checks using the software.

Several input formats are supported, including SAM, BAM, FASTQ and CSFASTQ.

The program performs a series QC checks: basic sequence stats, sequence quality
(per base and per read), per base sequence content, per base GC content, per
sequence GC content, sequence length distribution and any evidence of sequence

over-representation.

Each of the tests performed is automatically flagged as a pass (green tick), warning
(an orange warning sign) or failed (a cross symbol in red) according to the QC

calculations.

The software is written entirely in Java and provided with a graphical user interface
(GUI). The analysis reports from FastQC can be saved in HTML format via ‘File ->

Save'.
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2.4.3 SNP calling

Syzyagy (v 1.1.0)

Syzygy is a SNP calling software designed specifically for pooled next generation
sequencing data analysis. Syzygy is written in python programming language, which
has several pre-requisites which influence how the program is installed in Linux. One

of the pre-requisites is SAMtools as mentioned earlier.

Syzygy calls SNPs and calculates error rates of each prediction based on error
models. Error models are generated while performing the analysis and calling SNPs.
The error rates generated determine whether the non-reference observations from
sequencing are variants or errors. Syzygy takes into account allele strand biases and
calculates a LOD score of strand bias (also known as ‘SLOD score’), allowing a

genuine SNP call to be distinguished from errors.

Syzygy input file format

Two compulsory files are required by Syzygy - ‘Target Info File’ (".tgf’ file) which

contains information about the sequencing target (DNA amplicons) and ‘Pool Info File

(“.pif file) which contains information about the pooling strategy.

The “.tgf’ file has six columns and ‘.pif’ file has four columns, and must be generated

in the format demonstrated in Table 2.6.
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Table 2.6 Syzygy input files (‘.tgf’ and ‘.pif’ file) for TRIM15 ‘A’ and ‘B’
amplicons. ‘tgf’ and ‘pif’ file formats for the TRIM15 ‘A’ and ‘B’ amplicons, including

the obligatory header sections.

‘tof file
FEATURE_NAME | CHR | START_POSITION | END_POSITION | LENGTH | GENOME_BUILD
TRIM15_AandB 6 30130365 30143332 12968 19
‘.pif’ file
PoolBAM Phenotype Inds Chroms
TRIM15_AandB_BioScopel.3_ControlS.bam 0 75 150
TRIM15_AandB_BioScopel.3_CaseS.bam 1 75 150
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Syzygy Implementation

Syzygy was executed using the following command:

syzygy --pif TRIM15.pif --tgf TRIM15.tgf --samtoolspath /usr/bin --outputdir
/home/mrxhs/deepseq/job6 --hg 19 --ref valid_6.fa --dbsnp TRIM15.dbsnp -

-skipannot true --mqthr 50 --bqthr 10 --power --rarethr 0.01

‘--samtoolpath’ specifies the file directory location of SAMtools program. ‘--outputdir’
specifies the output directory. ‘--hg 19’ indicates human genome build 19 was used in
the analysis. ‘--ref’ specifies the reference sequence FASTA file. ‘--dbsnp’ specifies
the dbSNP file (which was downloaded from UCSC website). ‘--bqthr 10’ and ‘--mqthr
50’ indicate the threshold for base call quality and mapping quality is equal to 10 and
50, respectively. ‘--power’ instructs Syzygy to calculate power for detection of a

singleton. ‘--rarethr 0.01’ indicates the rare variant threshold is equal to 0.01.

FreeBayes (v 0.4.2)

FreeBayes is a bioinformatic tools for calling SNPs developed by Marth and
colleagues at Boston College (http://bioinformatics.bc.edu/marthlab/FreeBayes). It is
an extension of the original Bayesian SNP caller PolyBayes (Marth et al., 1999).
FreeBayes supports analysis of both pooled sequencing data and individually

barcoded data.

FreeBayes is flexible and fast, and provides accurate estimations of allele
frequencies together with useful information including read depth of the nucleotide
base, alternative allele counts and number of reads aligned to the forward and

reverse strand.

FreeBayes generates results in Variant call file (VCF) format, a format which has

been widely adopted for next generation sequencing data analysis.
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The software can also accommodate insertions and deletions via the inclusion of ‘--

indels’ and ‘--left-align-indels’.

One of the limitations of FreeBayes is that it does not distinguish between high and
low quality SNPs as does Syzygy. Furthermore, although the software provides an
estimation of SNP quality by ‘pval’ (p-value) in the output, it is not sufficiently
stringent, as reflected by unrealistic number of predicted SNPs acquired ‘pval’ value

of 1 (the highest p-value allowed to be specified).

The following command was used for analysis of TRIM15 ‘A’ and ‘B’ amplicons (as

described in Chapter 4).

freebayes --fasta-reference valid_6.fa
TRIM15_AandB_BioScope1l.3_ControlS.bam --pooled --ploidy 150 --pvar 1 --
min-mapping-quality 50 --min-base-quality 10 --region 6:

30130365..30143332

‘--fasta-reference’ specifies the genome reference (‘.fa’ or “.fasta’), and next
generation data file in BAM format. ‘--pvar 1’ indicates the p-value (confidence of
calling a SNP) is equal to 1. ‘--min-mapping-quality 50’ indicates the mapping quality
threshold is equal to 50, and ‘--min-base-quality 10’ indicates the base quality
threshold is equal to 10. ‘--region 6:30138938..30143332’ specifies the region

analysed is on chromosome 6, base pair position from 30138983 to 30143332.

VCEF file format

VCEF (variant call file) is a generic file format designed for storing variants information
(including SNPs, Indels and structural variants) together with detailed annotations.
The VCF format is compact in size and both flexible and easily extensible for further

development. Furthermore, VCF files can be indexed by a program known as ‘tabix’,
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allowing fast and simple data retrieval of variants from a range of positions on the

reference genome (Li, 2011). An example command is as shown:

tabix -hf ftp://ftp.1000genome.ebi.ac.uk/voll/ftp /release/20101123/
interim_phasel_release/ALL.chré6.phasel.projectConsensus.genotypes.vcf.gz

6:30139699-30139699

The VCF file is comprised of three sections: meta-information, header section and

data section.

Meta-information (starts with a'## sign) stores:

e VCF file version (depicted as ‘fileformat’),
e Date,

e Source (e.g. syzygy 1.1.0),

¢ Filename of the reference genome, and

e Definitions of all annotations included in the VCF file.

Header line (starts with a ‘# sign) consists of eight mandatory fields as listed:

e CHROM - chromosome number

e POS - base pair position

e |ID - dbSNP rs number

e REF - reference bases

e ALT - alternative base,

e QUAL - Phred scaled quality score of the alternative allele
o FILTER - quality filters

¢ INFO - and additional information in format <key>=<data>

Predicted SNPs (third section) are presented in an ascending order of base pair
positions (one SNP per row). An example VCF file downloaded using tabix from 1000

genome project is shown in Figure 2.8.
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##fileformat=VCFv4.0

##source=BCM:SNPTools:hapfuse

##reference=1000Genomes-NCBI37
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=AP,Number=2,Type=Float,Description="Allelic Probability, P(Allele=1|Haplotype)">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
HG00096 HG00097 HG00099 HG00100 HG00101 HG00102 HG00103 HG00104
HG00106 HG00108 HG00109 HG00110 HGO00111 HG00112 HG00113 HG00114
HGOO116 HGO00117 HG00118 HGO00119 HGO00120 HGO00121 HGO00122 HGO00123

6 30130617 G A 100 PASS . GT:AP
0[0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.002,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000
0[0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0|0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000
0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0|0:0.002,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000

6 30139699 rs929156 G A 100 PASS GT:AP

0]0:0.000,0.000
0]0:0.000,0.000

0]0:0.000,0.000
0]0:0.000,0.000

meta-information

/

0]0:0.000,0.000

0]0:0.000,0.000

0]0:0.000,0.000

0]0:0.000,0.000

header line

S

0]1:0.000,0.998

0]0:0.000,0.000

0]0:0.000,0.000 1]0:1.000,0.000 0{0:0.000,0.000 0]1:0.000,0.998 1|0:1.000,0.000
0[0:0.000,0.000 0[0:0.000,0.000 0|1:0.000,1.000 0|0:0.000,0.000 1]0:1.000,0.000 0]0:0.000,0.000 0]0:0.000,0.000

0]0:0.000,0.000
0]0:0.000,0.000

predicted SNPs

Figure 2.8 Summary of VCF format. Figure showing an example VCF file from 1000 genome project accessed using tabix software.

The 1000 genome project data is freely available at website ftp://ftp.1000genome.ebi.ac.uk. A known SNP (rs929156) at chromosome 6

base pair position 30139699 is shown together with a novel SNP at chromosomal 6 base pair position 30130617.
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2.4.4 SNPs annotation

Variant Classifier

Variant Classifier is a program which annotates genetic variants (SNPs, insertion and

deletion) from analysis of next generation sequencing data.

A list of all current databases was displayed using script ‘Show_Latest_Databases.pl’
included in the program. The latest annotation data (‘.coding_info’ file) and the
corresponding reference sequence “.fasta’ file were downloaded from the most up-to-

date Ensembl database using command:

perl Extract_Cding_Info.pl -c 6 -b 30130365 -e 30143332 -0 “homo sapiens” -

B 60 -A 37e -f TRIM15_AandB_BioScopel.3 -x

‘-c 6’ indicates chromosome number is equal to 6. -b’ and ‘-e’ specifies the start and
end base pair coordinates. ‘-O homo sapiens’ indicates that human species is
selected. -B 60’ indicates the retrieved data is in NCBI build version ‘60’. *-A 37¢’
indicates the NCBI assembly version is ‘37¢’. ‘-’ specifies the output filename. *-x’

instructs the software to extend the coverage to include the whole gene if necessary.

The annotation function of Variant Classifier requires an input file ‘input_snps’, which

is comprised of 4 columns as listed:

e column 1 - SNP starting base pair position (it is compulsory that this position
matches the coordinate saved in the ‘.coding_info’ file);

e column 2 - SNP ending position (starting position plus 1);

e column 3 - strand (positive strand is noted as 1 and negative strand is
denoted as 2);

e column 4 - alternative allele.

This input file does not include any header.
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The annotation was executed using the commands:
perl Classify_SNPs.pl -s input_snps -c
TRIM15_AandB_BioScope1.3.coding_info -n

TRIM15_AandB_BioScope1.3.fasta -0 results.txt

‘-s’ specifies the input file name as described. ‘-¢’ and ‘-n’ specify the annotation data
file (".coding_info’) and reference sequence file (‘.fasta’), respectively. ‘-0’ specifies

the output file name.

Two result files were generated - ‘output.normal’ and ‘output.denormal’. Both files
contain the same information, where ‘output.denormal’ is designed to be read and

manipulated by computer.

Polyphen-2

Polyphen-2 is a web-based bioinformatic tool for predicting SNP pathogenicity. It
measures possible impact of an amino acid substitution on the structures and
functions of the encoded protein (Adzhubei et al., 2010). Non-synonymous SNPs are
characterized into three distinct risk groups - benign, possibly damaging and

probably damaging.

TRIM15 protein sequence was entered into the ‘Amino acid sequence in FASTA
format’ input box. The amino acid position where the change occurred was entered
into the ‘position’ input box. In ‘Substitutions’, the reference amino acid ‘AA1’ and
substituted amino acid ‘AA2’ (caused by the mutation) were selected according to

results obtained from Variant Classifier (See Chapter 4 for details).
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2.4.5 Visualisation tools

Integrative Genomic Viewer (IGV)

IGV is a visualisation tool for ‘real-time’ exploration of large-scale next generation

sequencing data. The software is implemented in Java (Robinson et al., 2011).

IGV viewer is freely available at http://www.broadinstitute.org/software/igv/download.
Two files are required by IGV: a BAM file and a reference genome FASTA file. Both

files must be sorted and indexed using methods as previously described.

A ‘.genome’ file is generated automatically after loading the FASTA file into IGV. An

input box is provided to enable viewing of a user-specified genomic region.

UCSC genome browser

The UCSC genome browser provides a humber of useful web-based bioinformatics

tools - ‘liftOver’, ‘In-Silico PCR’ and ‘UCSC custom tracks’.

liftOver

Human genome sequence is constantly under review due to technological
advancement and clarification of existing data. As a result, multiple genome
sequence assemblies exist, each differs in base pair coordinates. Base pair
coordinates must be transformed into the same genome build before a comparison

can be conducted. ‘liftOver is a tool designed to perform this conversion.

The latest genome assembly (Hg19) is currently in operation and was used by the
1000 genome project (The 1000 Genomes Project Consortium, 2010). Base pair

coordinates (in BED format) are required for ‘liftOver’ function.
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In-Silico PCR

The ‘In-Silico PCR’ program on UCSC website allows the user to search for the
target DNA sequence by simply entering the PCR forward and reverse primer
sequences. This tool is useful to examine whether the PCR primer designed target

the correct DNA template sequence of interest.

Input boxes are provided to allow PCR primers to be uploaded. Adjustment of ‘max

product size’ may be necessary depending on the size of expected PCR amplicon.

UCSC custom track

The custom track function allows users to view their own data in the UCSC genome
browser and to be displayed as a ‘custom track’. Custom tracks (in BED and WIG
format) can be loaded into UCSC genome browser using the ‘browse’ button
provided. These input files were used to display TRIM15 ‘A’ and ‘B’ amplicons

(Chapter 4) as documented in Appendix 8.5.
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Chapter 3: Analysis of Genome Wide Association Study
(GWAS) data looking for replicating signals in LOAD

3.1 Introduction

Alzheimer’s disease is the most prevalent form of dementia. As life expectancies
continue to rise, an increasing number of individuals are expected to develop AD.
The number of LOAD cases worldwide was recorded as 26.6 million in 2007, this
figure has been estimated to rise to over 100 million by 2050 (Brookmeyer et al.,
2007). Understanding the genetic aetiology of LOAD could enable the development

of effective therapeutic treatment.

Despite tremendous efforts over the last few decades, identification of genetic loci
underlying LOAD has been proven difficult, with the €4 allele of APOE being the only
established, reproducible genetic risk factor prior to the discovery of new LOAD risk
genes in 2009 (Harold et al., 2009). Genes explored in previous candidate gene
studies are often based on pre-conceived functional and biological hypotheses. As a
result, genes that are closely related to Ap and tau have been extensively studied in
the pathogenesis of LOAD. However, genetic defects found in genes such as APP,
PSEN1 and PSEN2 do not appear to contribute to risk for LOAD, but are tightly

linked to early onset Alzheimer’s disease (Bertram, 2011).

GWAS in LOAD has generated significant, reproducible findings and given insight
into the biological aetiology of LOAD. Nine new LOAD genes (CLU, PICALM, CR1,
BIN1, ABCA7, MS4A6A, CD33, CD2AP and EPHA1) have been identified through
recent large GWAS (Harold et al., 2009; Hollingworth et al., 2011; Lambert et al.,
2009; Naj et al., 2011; Seshadri et al., 2010). These genes provide new impetus for
drug development which could aid in slowing down disease progression and
ultimately developing a cure based on the grounds of genetic associations with

LOAD.
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Insufficient power has meant a large number early GWAS failed to generate any
significant ‘hits’ (McCarthy et al., 2008). These GWAS lacked the numbers of cases
and controls required to detect a modest effect (ORs = ~1.25) from a common variant
(Bertram et al., 2007). Despite these power issues, they are still a valuable source of
data for meta-analysis purposes. Combining individually underpowered GWAS could
increase power thus allowing identification of genuine associations and previous

spurious associations will likely diminish.

Unfortunately, there are a number of constraints that have limited the effectiveness of
whole-genome meta-analysis to date. Given that GWAS may use different
genotyping platforms (such as Illlumina or Affymetrix) each assaying different panels
of SNPs, the number of ‘matched’ SNPs available for meta-analysis is limited. This is

often confounded by SNP dropout during quality control procedures.

3.2 Aims

Genetic markers with suggestive association p-value (5 x 10° < p < 5 x 10®) may be
genuine AD candidates that due to power constraints, have failed to reach genome-

wide significance (p <5 x 10®).

The aim of this study was to select genes/regions that merit further investigation by
identifying all SNPs with p-values within this range (5 x 10° < p <5 x 10®) and
comparing their effects across several GWAS, either directly or by using a perfect
proxy (r? = 1). The approaches employed to identify replicating signals in this study

can be applied to other studies to search across GWAS data from different platforms.
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3.3 Strategy

A cross-platform comparison of four GWAS was conducted using data that are
readily obtainable; subject-level genotype data from two, Reiman et al., 2007 and
Carrasquillo et al., 2009, complete summary data from a third Li et al., 2008 and
summary data of top SNP hits (5 x 10° to 5 x 10®) in the fourth Beecham et al., 2009.
In each case, quality control measures had been applied by the authors prior to data

release (Table 3.1).

Generating SNP results from subject-level genotype data (Carrasquillo et al., 2009;

Reiman et al., 2007)

Datasets Reiman et al., 2007 and Carrasquillo et al., 2009 were analysed using the
PLINK analysis toolset version 1.06 (Methods 2.3.1). GWAS data was converted into
a file format appropriate for PLINK (PED and MAP) before analysis. GWAS outputs

were generated from genotyping data using ‘--assoc’ command.

To make the Reiman et al., 2007 Affymetrix data comparable with Carrasquillo et al.,
2009 lllumina data, the SNP ID was translated from Affymetrix SNP ID format to
dbSNP ID format (rs number). A PERL script was written to perform the translation

process (Methods 2.3.2; Methods 8.4.1).

As the sex status of individuals was unspecified in the Reiman et al., 2007 dataset,
the *--allow-no-sex’ command was utilised to instruct PLINK to ignore unspecified sex

and include all samples in the calculations.

Only limited information was obtained for the Beecham et al., 2009 and Li et al., 2008
studies. It was not possible to merge datasets, since the two studies used different

chip platforms.
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Table 3.1 Summary of the four GWAS analysed in this study. The number of

SNPs following QC, the platform utilised and the percentage of SNPs excluded in

each study is listed. Also shown are the number of perfect proxies (r? = 1) in the data
(post QC) together with the number of clusters into which these SNPs fall. The

number of independent tests for multiple testing corrections of combined p-values is

shown in the last column and was calculated as described (Methods 2.3.3).

Number of Excluded Number of Number of Number of
Study SNPs (post CHIP platform SNPs (%) SNPs with LD Clusters Independent
QC) °. LD (r* = 1) (r* =1) Tests
Beecham et ; 0
al., 2009 532,000 lllumina 550 4% - - -
Carasquillo et 515 54, llumina 300 1% 26,284 11,539 298,585
al., 2009
Lietal, 2008 469,438 Affg’g(‘)eé”x 5% 128,139 42,634 383,933
Reiman et al., Affymetrix o
2007 312,316 E00K 38% 83,739 29,678 258,255
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Comparing p-values across different GWAS

For each of the GWAS, all SNPs with p-values between 5 x 10® to 5 x 10 were
compared across the other studies (where possible) either directly or by using a
perfect proxy (r?= 1). SNAP (SNP Annotation and Proxy Search)
(http://www.broad.mit.edu /mpg/snap) was used to identify SNP proxies using the
HapMap Resource CEU population - release 23 as the reference dataset (Methods

2.3.4).

Direct proxies were used in order to capture the maximum number of SNPs across
the different chip platforms (each has their own SNP portfolio). Imputation attempts
for SNPs in TRIM15 using PLINK vyielded limited information when merging the
datasets with the reference datasets. Imputed SNPs generated PLINK INFO
(information content metric) scores lower than 0.8, indicating unreliably imputed
SNPs. This low score is due to poor LD architecture within this region and the limited

availability of data.

The significance band 5 x 10° to 5 x 10® was used to search for potential new AD
candidates that have failed to reach genome-wide significance due to limited power
of the GWAS to date. Extending to a lower cut-off (p > 10™) may reveal more
substantial information and this could well be a viable approach to use on larger
GWAS datasets as they become available. Any SNPs with p-values below 5 x 10®
were not included in this analyses as they would have been identified as genome
wide significant; effectively this resulted in all SNPs in the APOE region on

chromosome 19 being removed — this region replicated across all the studies.
SNPs were selected for further analysis as described below:

e SNPs with p-values 5 x 10 to 5 x 10°® were selected from each of the GWAS.
e SNP p-values were determined for the same SNPs (or proxies r* = 1) across

the remaining studies.
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e The Fisher's combined p-value test was used as a summary statistic to give
an overall value of association. It has to be noted that this test does not
correct for disparate effects created by alleles whose direction of association
differs between studies — the so-called ‘flippers’. For the resultant p-value to
be meaningful all effects must be in the same direction.

e  Combined p-values were corrected for the number of independent SNPs on

the highest density platform utilised following QC (Methods 2.3.3).

It is only possible to access the ‘top hits’ from Beecham et al., 2009, which limited the

comparison across all four studies.

Meta-analysis of odds ratios

Any SNPs that showed a corrected combined p-value (p < 0.05) were further
analysed by comparing their corresponding odds ratios across multiple GWAS
datasets. The random-effects method was implemented in the StatsDirect software
package. In contrast to Fisher's combined probability test, random-effect meta-
analysis accounts for the direction of effect. Significance is only obtained when the
effects are all in the same direction. A SNP could therefore be significantly

associated using Fisher's method but fail odds ratio meta-analysis.

Gene-centric analysis for TRIM15

A gene-centric approach was used to conduct an in depth SNP analysis of TRIM15,
the only genetic locus achieved significant by both Fisher's combined probability test
and random-effect meta-analysis (See results for details). The LD architecture
surrounding this gene was identified using LD plots generated in Haploview (v 4.0)
using HapMap CEU population data (Methods 2.3.5). SNPs flanking the gene (20 kb
either side) were also analysed. The base pair coordinates were obtained from
HapMap database. The study-specific p-values for allelic association for each of the

TRIM15 SNPs were generated in PLINK using the data from the Reiman et al., 2007
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and Carrasquillo et al., 2009; the values from the summary data were used for Li et

al., 2008.
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3.4 Results

Analysis of GWAS

The SNP’s with p-values 5 x 10”to 5 x 10 were identified for each study and then
compared across all datasets. Four tables were created, one table for each of the
GWAS listing the SNPs that were in this significance band together with the
corresponding SNP p-values in the three other GWAS (irrespective of their
significance values). Table 3.2 compares GWAS output for all four studies, whereas
tables Table 3.3, Table 3.4 and Table 3.5 compare data from the remaining three

GWAS.

Combined p-values were determined for SNPs that occurred in at least two studies.
SNPs with combined p-values of 10® were corrected for multiple testing. Using this
approach, three SNPs were identified. SNP rs929156 (Table 3.2 — Beecham et al.,
2009 as primary comparator) had a combined p-value of 8.77 x 10°®, corrected p-
value (p = 0.0467); this occurs in an exonic sequence of the TRIM15 gene on
chromosome 6. Using Li et al., 2008 as the primary dataset to compare with, SNP
rs11682545 (Table 3.3) gave a combined p-value of 7.98 x 10°®, corrected p-value (p
= 0.0306). This SNP occurs downstream of the TFCP2L1 gene on chromosome 2.
The third SNP (rs7077757) was identified in Table 3.4 (Reiman et al., 2007 as the
primary dataset) with a combined p-value of 6.35 x 10, corrected p-value (p =
0.0244). This occurs in intronic sequence of the RBM20 gene on chromosome 10.
No combined p-values of less than 10® were evident using the Carrasquillo et al.,

2009 study as the primary comparator (Table 3.5).
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Table 3.2 Beecham et al., 2009 GWAS SNPs (5 x 10° < p <5 x 10®) compared with Reiman et al., 2007, Li et al., 2008 and
Carrasquillo et al., 2009.

Beecham et al., 2009 Reiman et al., 2007 Li et al., 2008 Carrasglcj)lolgo etal, Combined Corrected
p-value p-value
SNP CHR BP Gene Position p-value SNP p-value SNP p-value SNP p-value

rs9659092 1 50216176 4.54E-06 rs12022125 4.04E-01 rs12022125 1.48E-01 - 2.71E-07

rs3807031 6 30141863 PPP1R11 Promoter 1.16E-05 - - rs3807031 4.94E-01 5.73E-06

rs1415985 1 49703336 1.23E-05 rs12022125 4.04E-01 rs12022125 1.48E-01 - 7.35E-07

rs4926831 1 50062688 1.23E-05 rs4926831 6.32E-01 rs4926831 5.17E-01 - 4.02E-06

rs929156 6 30247678 TRIM15 Exon 7 1.69E-05 rs2844775 2.50E-01 rs2844775 2.34E-01 rs929156 8.87E-02 8.77E-08 4.67E-02
rs11583200 1 50332407 1.83E-05 - - rs11583200 5.75E-01 1.05E-05
rs11754661 6 151248771 MTHFDI1L Intron 2.01E-05 - - rs11754661 6.27E-01 1.26E-05

rs3746319 19 49304071 ZNF224 Exon 6 2.96E-05 - - rs3746319 9.85E-01 2.92E-05

rs2180566 20 29482515 DEFB123 Promoter 3.80E-05 - - rs2180566 4.75E-01 1.80E-05

rs2061332 19 49305501 ZNF224 D'stream 3.93E-05 rs2061332 1.49E-02 rs2061332 7.22E-01 rs2061332 8.70E-01 3.68E-07

rs2681411 3 123268321 CD86 Intron 4.21E-05 - - rs2681411 3.09E-01 1.30E-05

rs2119067 2 165835529 4.38E-05 - - rs2119067 1.58E-01 6.92E-06

rs1402627 18 4123739 4.42E-05 - - rs1402627 8.01E-01 3.54E-05

rs659628 13 76361237 KCTD12 Promoter 4.46E-05 rs659628 4.49E-01 rs659628 1.00E+00 - 2.00E-05

rs9455973 6 168325855 4.47E-05 rs9455973 9.79E-01 rs9455973 5.99E-01 rs9455973 6.27E-01 1.64E-05

rs6059244 20 29474144 4.76E-05 - - rs6059244 5.43E-01 2.59E-05
rs11205641 1 49957662 8.41E-05 rs11205641 3.40E-01 rs11205641 4.79E-01 rs11205641 3.85E-01 5.27E-06

Each row represents a SNP with a p-value between 5 x 10® and 5 x 10®. The p-values are highlighted yellow if corr-p < 0.05 and
they replicated across two or more studies. Data from a perfect proxy SNP was used if data for the initial SNP was unavailable. If a
perfect proxy was used the corresponding rs number is listed. The combined p-values across studies are as shown. The final column
shows the corrected p-value adjusted as described (Chapter 3 - section 3.3).
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Table 3.3 Li et al., 2008 GWAS SNPs (5 x 10®° < p <5 x 10®) compared with Carrasquillo et al., 2009 and Reiman et al., 2007.

Li et al., 2008

Carrasquillo et al., 2009

Reiman et al., 2007

Combined Corrected
p-value p-value
SNP CHR BP Gene Position p-value SNP p-value SNP p-value

rs4735627 8 100705091 VPS13B Intron 3.51E-06 rs4735627 8.73E-01 rs4735627 7.66E-01 2.35E-06
rs7336489 13 59171299 BC041395 Intron 5.38E-06 - rs7336489 8.78E-01 4.72E-06

rs370672 5 2501146 9.37E-06 - rs370672 1.62E-01 1.52E-06
rs4684083 3 163865 9.73E-06 - rs4684083 6.72E-01 6.54E-06
rs11682545 2 121662295 TFCP2L1 Downstream 1.29E-05 - rs11682545  6.18E-03 7.98E-08 3.06E-02
rs6805482 3 25435600 1.78E-05 - rs6805482 9.27E-01 1.65E-05
rs11166407 1 100410296 LRRC39 Intron 2.00E-05 - rs11166407  8.62E-02 1.72E-06
rs8014810 14 35394781 BRMS1L Intron 2.00E-05 rs2274068 2.33E-01 rs8014810 3.84E-01 1.79E-06

rs541392 10 130941167 2.76E-05 rs476628 3.66E-01 rs541392 4.19E-01 4.23E-06
rs13180602 5 160213616 ATP10B Upstream 2.79E-05 rs4559036 7.00E-02 rs13180602  4.03E-01 7.87E-07
rs11751998 6 11297073 NEDD9 Intron 3.42E-05 rs10484448 4.86E-01 - 1.66E-05

rs6571727 14 35210859 GARNL1 Intron 3.49E-05 rs6571727 2.14E-01 rs10132580  7.61E-01 5.67E-06

rs4483549 11 90595620 3.58E-05 rs4483549 3.10E-01 rs4483549 2.12E-01 2.35E-06

rs1914516 2 215270178 3.61E-05 - rs1914516 2.21E-01 7.98E-06

rs4905898 14 99345451 EML1 Intron 3.61E-05 rs10141863 7.74E-01 rs4905897 5.44E-01 1.52E-05

rs4687319 3 193526543 FGF12 Intron 4.60E-05 - rs4687319 6.18E-01 2.84E-05
rs16897530 8 100725659 VPS13B Intron 4.74E-05 - rs16897530  9.66E-01 4.58E-05

rs4438299 16 60259838 CDH8 Intron 4,90E-05 rs4438299 9.09E-01 rs4438299 8.81E-01 3.93E-05

Each row represents a SNP with a p-value between 5 x 10®° and 5 x 10®. The p-values are highlighted yellow if corr-p < 0.05 and
they replicated across two or more studies. Data from a perfect proxy SNP was used if data for the initial SNP was unavailable. If a

perfect proxy was used the corresponding rs number is listed. The same platform was used in the Reiman et al., 2007 and Li et al.,

2008 studies. The combined p-values across studies are as shown. The final column shows the corrected p-value adjusted as
described (Chapter 3 - section 3.3).
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Table 3.4 Reiman et al., 2007 GWAS SNPs (5 x 10®° < p <5 x 10®) compared with Li et al., 2008 and Carrasquillo et al., 2009.

Reiman et al., 2007 Li et al., 2008 Carrsquillo et al., 2009 Combined Corrected
p-value p-value
SNP CHR BP Gene Position p-value SNP p-value SNP p-value
rs10824310 10 53680643 PRKG1 Intron 6.03E-07 rs10824310 3.06E-01 - 1.84E-07
rs17330779 107663071 NRCAM Intron 8.80E-07 rs17330779 5.31E-01 - 4.67E-07
rs6784615 52468315 NISCH Intron 9.89E-07 rs6784615 6.14E-01 - 6.07E-07
rs12162084 16 26553533 1.30E-06 rs12162084 7.61E-01 - 9.88E-07
rs2517509 6 31138101 1.35E-06 rs2517509 3.83E-01 - 5.16E-07
rs7077757 10 112527724 RBM20 Intron 1.52E-06 rs7077757 4.18E-02 - 6.35E-08 2.44E-02
rs249153 12 93837244 2.66E-06 rs249153 8.25E-02 rs249153 7.17E-01 1.58E-07
rs10747758 12 54287453 3.03E-06 rs10747758 2.45E-01 - 7.42E-07
rs11958566 5 117719226 4.16E-06 rs11958566 6.16E-01 - 2.56E-06
rs17505622 13 101759124 FGF14,L0C283480 Intron 5.47E-06 rs17505622 2.55E-01 - 1.39E-06
rs7079348 10 77742377 C100RF11 Intron 8.70E-06 rs7079348 3.85E-01 - 3.35E-06
rs475093 1 43383592 LOC440585 Intron 8.86E-06 rs475093 7.10E-01 - 6.29E-06
rs11748700 5 15773106 FBXL7 Intron 1.09E-05 rs11748700 2.40E-01 - 2.62E-06
rs7817227 8 27951747 1.47E-05 rs7817227 4.99E-01 - 7.35E-06
rs17126808 8 18457737 PSD3 Intron 1.89E-05 rs17126808 7.88E-01 - 1.49E-05
rs950922 1 21747977 ALPL Intron 1.96E-05 rs950922 3.45E-01 - 6.74E-06
rs16842422 1 196346167 1.99E-05 1516842422 7.48E-01 - 1.49E-05
rs4759173 12 54262230 1.99E-05 rs4759173 4.52E-01 rs10876820 4.45E-01 4.00E-06
rs2122339 4 27290902 2.12E-05 rs2122339 5.96E-01 - 1.27E-05
rs4394475 90496717 2.18E-05 rs4394475 5.23E-01 - 1.14E-05
rs10783760 12 54260896 2.22E-05 rs10783760 3.65E-01 rs10876820 4.45E-01 3.62E-06
rs13213247 6 81560955 2.29E-05 rs13213247 5.73E-01 rs16892136 4.17E-01 5.46E-06
rs7097398 10 91782821 2.60E-05 rs7097398 8.02E-01 - 2.08E-05
rs9982394 21 41191871 2.68E-05 rs9982394 3.06E-01 - 8.19E-06
rs9934599 16 69220773 L34 Upstream 2.68E-05 - rs9934599 4.46E-01 1.20E-05
rs7031458 9 84704086 2.74E-05 rs7031458 2.16E-02 - 5.91E-07
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rs1923924
rs249154
rs17151710
rs17048904
rs7134292
rs7585710
rs12044355
rs6888935
rs17586545
rs1038891

rs6094514
rs10248657

9
12

12

5
14
11

20
7

1581055
93848520
123739233
118081372
54260239
10819621
229901524
117745419
51101242
40877959

44993488
112741449

ATP6V1C2
DISC1*

LOC645380,L0C651876

EYA2

Intron

Intron

Intron

Intron

2.98E-05
3.12E-05
3.13E-05
3.50E-05
3.68E-05
3.76E-05
3.93E-05
3.93E-05
4.11E-05
4.48E-05

4.49E-05
4.56E-05

rs1923924
rs249154
rs17151710
rs17048904
rs7134292
rs7585710
rs12044355
rs6888935
rs17586545
rs1038891

rs6094514
rs10248657

5.00E-01
1.14E-01
7.59E-01
1.00E+00
3.23E-01
1.00E+00
9.07E-01
9.96E-01
8.87E-01
4.84E-01

3.40E-01
8.88E-01

rs249153 7.17E-01
rs10876820 4.45E-01

rs11700355 5.60E-01

1.49E-05
2.55E-06
2.38E-05
3.50E-05
5.30E-06
3.76E-05
2.92E-07*
3.92E-05
3.65E-05
2.17E-05

8.54E-06
4.05E-05

Each row represents a SNP with a p-value between 5 x 10° and 5 x 10®. The p-values are highlighted yellow if corr-p < 0.05 and

they replicated across two or more studies. Data from a perfect proxy SNP was used if data for the initial SNP was unavailable. If a
perfect proxy was used the corresponding rs number is listed. The combined p-values across studies are as shown. The final column

shows the corrected p-value adjusted as described. DISC1 is starred to indicate that the combined p-value listed has included the data
(p = 8.20 x 10°®) from the Beecham et al., 2009 study (Chapter 3 - section 3.3).
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Table 3.5 Carrasquillo et al., 2009 GWAS SNPs (5 x 10° < p < 5 x 10°®) compared with Li et al., 2008 and Reiman et al., 2007.

Carrasquillo et al., 2009 Li et al., 2008 Reiman et al., 2007 Combined Corrected
p-value p-value
SNP CHR BP Gene Position p-value SNP p-value SNP p-value
rs2318144 8 58277297 NcRNA 2.22E-06 | rs17194995 2.04E-01 | rs17194995 3.13E-01 1.42E-07
rs1279795 23 123152101 5.02E-06 rs1279795 8.42E-01 - 4.22E-06
rs3007421 1 6452776 PLEKHG5 Intron 6.54E-06 | rs3007421 6.51E-01 | rs3007421  4.68E-01 1.99E-06
rs6546452 2 25834776 8.55E-06 | rs17680828 9.00E-01 | rs17680828 9.68E-01 7.45E-06
rs7318037 13 81367146 1.15E-05 rs4456389 9.82E-01 rs4456389 2.39E-01 2.70E-06
rs2118732 5 79419032 1.32E-05 rs7736549 5.49E-01 - 7.25E-06
rs8039031 15 34954382 MEIS2 Downstream  2.26E-05 | rs8039031  5.04E-01 | rs8039031  9.92E-02 1.13E-06
rs7245160 18 70417826  AK056288/LOC400657 Upstream 2.66E-05 rs7245160 4.60E-01 rs7245160 4.15E-01 5.08E-06
rs856675 14 84405968 3.83E-05 | rs17737309 7.10E-01 | rs17737309 2.87E-01 7.81E-06

Each row represents a SNP with a p-value between 5 x 10®° and 5 x 10°®. Data from a perfect proxy SNP was used if data for the
initial SNP was unavailable. If a perfect proxy was used the corresponding rs number is listed. The combined p-values across studies
are as shown. The final column shows the corrected p-value adjusted as described. No SNPs replicated across studies using the

Carrasquillo et al., 2009 GWAS as the primary dataset (Chapter 3 - section 3.3).
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Meta-analysis of odds ratio for candidate SNPs

A random-effects meta-analysis (also known as DerSimonian-Laird test) of the allelic
odds ratios was performed for the three SNPs identified as mentioned (DerSimonian
and Laird, 1986). The TRIM15 SNP (rs929156) gave odds ratios in the same
direction (causative, Table 3.6) across three studies and random effect meta-
analysis gave an odds ratio of 1.1 (95% CI 1.0-1.2; p = 0.03). RBM20 (p = 0.95) and

TFCP2L1 (p = 0.74) SNPs were not significant following meta-analysis.

Gene-centric analysis of TRIM15

A gene-centric analysis of TRIM15 was undertaken (Figure 3.1) to explore the
genetic architecture in more detail. The histogram shows the SNPs present in three
different GWAS (Carrasquillo et al., 2009; Li et al., 2008; Reiman et al., 2007), their

associated p-values together with their degree of linkage.
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Table 3.6 Comparison of odds ratios across GWAS for selected SNPs. If the

SNP was not present in a GWAS, odds ratio of a perfect proxy (r* = 1) was used. The

proxy SNP ID is shown underneath the corresponding odds ratios. The data shown is

for the allelic association model. The 95% confidence interval (CI) for odds ratios are

shown in brackets. The results from random effects meta-analysis of these odds

ratios are given in the final column.

OR (95% Cl)

Gene . . . Random effects
Reiman et | Carrasquillo Li et al.,, Meta-analvsis of
al., 2007 | etal. 2009 2008 Y
OR’s
1.1 1.1 1.1
( rl-gRZ”;)/I11556) (0.9-1.3) a o 3 (0.9-1.3) (1.0-1.2)
(rs2844775) T (rs2844775) p =0.03
TFCP2L1 0.8 ] 1.3 © %L? 6)
(rs11682545) (0.7-0.9) (1.1-1.5) D= 0.95
RBM20 0.6 ] 1.3 © g;i 7
(rs7077757) (0.5-0.8) (1.0-1.5) 0 Zooa
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Figure 3.1 Schematic overview of the TRIM15 gene and the LD plot for this

region. The histogram depicts all GWAS SNPs in TRIM15

, their p-values and IDs

are shown at the top of the figure. These studies are colour-coded as indicated at the
top of the figure. The two TRIM15 isoforms and their chromosomal positions are as
depicted in HapMap (release 23). The LD plot is for the GWAS variants (Haploview
4.0, r? values with r? colour scheme). The positions of SNPs with respect to the gene
are indicated on the LD plot. The SNPs at the boundaries of this LD block are also

shown. LD values are represented by different colours (black - strong LD, grey -

moderate LD, and white - no evidence of LD).
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3.5 Discussion

The APOE region on chromosome 19 was confirmed as a genetic-risk factor in
LOAD by all four GWAS with SNP p-values ranging from 10°¢ to 10**. Apart from
those in LD with the APOE locus, there were no other SNPs across the four GWAS
with p-values less than 10®. Genes with suggestive significance (10° < p < 10®)

across different GWAS may infer a genuine LOAD candidate.

Approximately 700 genes and 3000 polymorphisms have been assessed as genetic
risk factors in association with AD (http://www.alzgene.org/) as of October 2011
(Bertram et al., 2007). Except for the APOE gene, most of the genes have conflicting
reports with regard to their associations. However, each of the studies often uses
different populations with varying male and female percentages, as well as differing
age ranges and sample sizes. Results are therefore not always directly comparable
between different studies (Bertram et al., 2007). The study approach used here may

help identify potential LOAD candidate genes whose signals replicate across studies.

GWAS association analysis uses very stringent significance levels to avoid the large
number of false positives potentially arising from the confounding effects of
population substructure and testing of a very large number of SNPs simultaneously
(Bodmer and Bonilla, 2008). For example, in a GWAS using 500,000 independent
markers, 25,000 can be expected to show a nominal p-value (p < 5 x 10%) by chance
alone and five out of this 25,000 may be significant with p-values (p < 1 x 10°). A
widely accepted p-value (p < 5 x 10®) is used to indicate a genuine disease
association in GWAS (Bertram and Tanzi, 2008). However, the SNPs on different
chip platforms are often not independent. Many SNPs are in LD with other SNPs,
potentially reducing the number of independent markers available for analysis.
Secondly, the genotyping rate never reaches 100%, and after quality control,

significant numbers of SNPs are excluded from study (Table 3.1). This suggests that
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a p-value of < 5 x 10® may in some instances be too stringent and SNPs with p-

values between 10 and 10® might well harbour genuine associations.

The potential role of TRIM15

TRIM15 is a member of the tripartite motif (TRIM) family. The TRIM motif includes
three zinc-binding domains, a RING, a B-box type 1 and B-box type 2, and a coiled-
coil region. The protein is localized to the cytoplasm. Two isoforms have been
identified and described, however their biological functions have not as yet been
identified. TRIM15 is ubiquitously expressed in various tissues. However, the

biological role of TRIM15 has not yet been determined (Shiina et al., 2006).

SNP rs929156 in TRIM15 is located in an exon in one of the two TRIM15 transcripts.
It changes the amino acid from a small, polar Serine to a medium-sized, polar
Asparagine. It is located in a B30.2 SPRY like domain (position: 276-465 amino
acids). The B30.2-like domain is a conserved domain found in nuclear and
cytoplasmic proteins, as well as transmembrane and secreted proteins. The B30.2-
like domain may also be associated with a zinc-binding B-box domain in the N-
terminal (Henry et al., 1998). The SPRY domain is proposed to be a protein
interacting module, which recognizes and interacts with specific individual partner
proteins (Woo et al., 2006). The potential effects of this SNP on protein structure

require further investigation.

The only other TRIM15 SNP in these GWAS rs9261536 is located in the &’
untranslated region (UTR), which may harbour potential regulatory elements (i.e. a
promoter region or a binding site for an associated transcription factor - Figure 3.1).
Possible linkage has been observed between this TRIM15 SNP and SNPs in Human

leukocyte antigen A (HLA-A) with r* value 0.77 (Figure 3.2).
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Figure 3.2 lllustration of LD between TRIM15 and HLA-A genes. The red ellipse
highlights the linkage between TRIM15 SNP rs9261536 (shown in bold) and three
known SNPs (rs2916801, rs2571381 and rs2499) in HLA-A with r* value = 0.77. The

LD plot was generated using HapMap data (CEU population release 23) and the
program Haploview version 4.0 (Methods 2.3.5).
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TRIM15 is surrounded by a number of HLA genes which are associated with the
human immune system. This group of HLA genes encode cell-surface antigen-
presenting proteins, which are essential elements in human immune responses.
HLA-A is necessary for immune recognition and apoptosis, and mutations in HLA-A
have been reported as risk factors for various cancers (Hu et al., 2009). Ma et al.,
2008 showed that mutations in HLA-A are associated with earlier age at onset of AD

(2.4 years, p = 0.03) for non-carriers of APOE ¢4 (Ma et al., 2008).

The significance of identified SNPs

In this study, an approach was described to detect replicating signals across different
GWAS platforms in an effort to identify LOAD candidate genes that have failed to
reach genome-wide significance previously. Using the data from the four studies
listed has generally failed to produce any convincing replicating signals with the
possible exception of the TRIM15 gene which contains the only SNP (rs929156)
whose combined p-value (p = 8.77 x 10®) survives multiple testing correction (corr-p
= 0.0467) and where the meta-analysis of odds ratios is also tentatively significant
(OR =1.1, 95% CI 1.0-1.2, p = 0.03) with no evidence of between-study

heterogeneity (Breslow-Day p = 0.90) (Figure 3.3).

The remaining two SNPs that had p-values of 10 failed the meta-analysis of odds

ratios because their effects were discordant between studies (Table 3.6).
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Odds ratio meta-analysis plot [random effects]

Reiman et al, 2007 ——.— 1.11 (0.93, 1.33)
Li et al, 2008 —F 1.08 (0.90, 1.28)
Carrasquillo et al, 2009 n 1.13 (0.98, 1.31)
combined [random] 1.11 (1.01, 1.22)

I 1

0.5 1 2
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Figure 3.3 Forest plot depicting effects of SNP rs929156 from different GWAS.
The effect of SNP rs929156 for each individual GWAS together with the meta-
analysis results (combined [random]) are as indicated. The size of the squares
represents the weight (Mantel-Haenzel weight) of the corresponding study in the
meta-analysis. The line either side of the square represents 95% confidence intervals
for the odds ratio. Confidence intervals of pooled estimates are displayed as a
horizontal line through the diamond. The dashed vertical line (linking squares and the
diamond) represents the odds ratio of the meta-analysis. Odds ratio and 95%
confidence interval of each study and combined are documented to the right of the

forest plot.
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In the UK LOAD GWAS paper (Harold et al., 2009) the TRIM15 SNP, rs929156, was
shown to be modestly associated with AD (p = 0.049). Adding this data results in a
Fisher's combined p-value of 4.30 x 10 strengthening the evidence of association
for this SNP. The odds ratio from the UK GWAS (OR = 1.07) was also compatible
with the odds ratio observed in the random effect meta-analysis in this study (OR =

1.11).

An issue which is evident in this study is the difficulty that exists when trying to
compare data across different chip platforms where the SNP complement differs.
Surprisingly few perfect proxies available resulted in a significant loss of data and a

reduction of power to detect new signals.

Technology continues to advance; the latest lllumina GWAS chip is capable of
genotyping ~5 million SNPs from the international HapMap project, as well as SNPs
identified by the 1000 genomes project with MAF above 1%. The approach described
may prove to be useful when larger datasets (generated using these chips) are

analysed.
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3.6 Bioinformatics Application Note

As the number of publically available GWAS datasets continues to grow,
bioinformatic tools which enable routine manipulation of data are becoming
increasingly useful. In addition, whole genome meta-analysis is labour intensive

without suitable bioinformatics software.

An ‘LD aware’ bioinformatics application was developed enabling efficient
comparison of SNPs effects across multiple GWAS datasets using Fisher's combined

probability test from PLINK (v1.06) ‘LD clumped’ output (Appendix 8.4.3).

Implementation

PLINK (v1.06) provides an ‘ld-clump’ analysis which allows automatic calculation of
‘clumps’ (blocks of SNPs in LD) across genotyping chip platforms. The software
developed uses the output file from this ‘LD clump’ analysis and performs the
downstream meta-analysis of SNPs in each clump (taking one SNP/proxy (r?=1) from

each study and combining their p-values).

The application consists of two files ‘meta_analysis.pl’, ‘modules.pm’, where

‘meta_analysis.pl’ is an executable file when PERL language is installed.

‘meta_analysis.pl’ file can be edited using a conventional text file editor, and allows
users to define two parameters; i) the location and the filename of the input
(‘Id_clump’) file generated in PLINK, and ii) the type of the study - case/control (CC)
analysis or quantitative trait (QT) analysis. Fields requiring modification were
annotated in the ‘meta_analysis.pl’ file. The default input is ‘case/control’ analysis.
Failure to adjust the parameter for the correct type of analysis will generate false

output in the results file.
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The program was designed to handle an unlimited number of GWAS datasets and
unlimited SNPs. However, currently the application has only been validated using up

to ten modelled datasets.

Issues and problem-solving

It is worth noticing that, when generating the ‘clump’ files, PLINK requires a reference
GWAS dataset (e.g. HapMap data) to calculate LD values between two SNPs. Given
that LD values vary between ethnic populations, it is imperative that the reference
dataset and the GWAS datasets are from the same population thus avoiding

stratification issues.

It is common that a SNP in one GWAS has multiple perfect SNP proxies (r’= 1) in
another independent GWAS. In this situation, although it is considered appropriate to
use any pair of SNPs to perform meta-analysis, the application decides which proxy
to use based on which proxy is closest to the index SNP (as in physical distance).
The distance between the SNP/proxy and the index SNP is annotated in the results
file. It should be noted that if an index SNP is unique to one study and does not have
a perfect proxy in any other studies, no meta-analysis results will be displayed for this

SNP.

This application only uses perfect proxies (r* = 1). This is a limitation of the software
as using imperfect proxies (r* < 1) will increase the number of comparable SNPs
between studies. Currently, there is no weighting algorithm implemented in the
program therefore any SNP p-value inferred from a proxy with r* < 1 will be

inaccurately treated as a perfect match.

To use imperfect proxies, simply alter the (--clump-r2) parameter in PLINK, and run
the application as usual. This may indeed be a valuable approach to increase
coverage, analogous to imputation, but until the output is weighted accordingly, the

results will have to be interpreted with caution.
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A ‘flipper’ refers to a SNP or SNP proxy in one dataset which has the opposite effect
to that observed in the original study. This application compares the OR (case/control
analysis) or regression coefficient (from quantitative trait analysis) of all SNP pairs

from different studies, and annotates according to the following rules;

i) 'YES — flipper — ORs are in opposite directions in two (or more) GWAS studies,
irrespective of missing OR data in additional studies, ii) ‘NO - non-flipper’ - all SNPs
OR in the same direction and OR data is present for all studies, and iii) ‘NA - not
applicable’ - there is either no OR data, or datasets are missing OR data making it
inappropriate to call a ‘non-flipper’. In studies with missing OR or BETA, the field has
to be encoded as ‘-9’ in the ‘.assoc’ file for subsequent ‘Id-clumping’ analysis in

PLINK.

The application automatically recognizes the number of GWAS from PLINK ‘Id-clump’
output files and tabulates the results accordingly. Although the application was
designed for GWAS meta-analysis, the user can perform analysis on much smaller

datasets.

This approach is advised to be used prior to more formal meta-analysis. It is
essential that any potential finding that emerges using the application is verified by
further investigation in a rigorous manner. Adjusting the genotypic data for covariates
and taking into account heterogeneity between studies/samples will verify if
observations involving both ‘flipping’ and ‘non-flipping’ alleles are likely to be genuine

and worthy of downstream study.
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An example

Two late-onset Alzheimer’s disease (LOAD) GWAS datasets - Carrasquillo et al.,
2009 and Reiman et al., 2007 and the ‘top hits’ tabulated in Beecham et al., 2009
were used to test the performance of the application. The sample sizes and
genotyping platforms for the three studies are - Carrasquillo et al., 2009, 799 LOAD
cases and 1199 controls on Illlumina 300 chip, Reiman et al., 2007, 859 LOAD cases
and 552 controls on Affymetrix 500K chip and Beecham et al., 2009, 492 LOAD
cases and 496 controls on lllumina 550 chip. The total sample size of all three GWAS
is 4,397 (2,150 LOAD cases and 2,247 controls). No apolipoprotein E (APOE) related
SNPs were listed in Beecham et al., 2009 ‘top hits’. These samples were estimated
to provide over 93% power to detect an association with a common SNP (MAF > 10%
and OR > 1.3). This estimation has to be treated with caution as it is based on a
number of assumptions (such as effect size and mode of inheritance), and gene-

environment interaction (GXE) has not been taken into account.

Before using the software, a number of PLINK analyses were undertaken.

1) Subject-level genotype data was obtained from Carrasquillo et al., 2009 and
Reiman et al., 2007. The files were converted into PLINK format where necessary,
and the SNP identifiers were converted into dbSNP rs number using an ‘in house’
program written in PERL (Methods 2.3.2). The GWAS output was generated using

the PLINK ‘--assoc’ command.

2) As Beecham et al., 2009 GWAS data was not available, a file called
‘Beecham.assoc’ was manually generated conforming to the format of a PLINK
‘.assoc’ file (Methods 2.3.1). Three compulsory columns are required in the ‘.assoc’
file with the headers ‘SNP’, ‘OR’ and ‘P’. All other information such as ‘BP’, ‘CHR’,

‘A1’ in the standard ‘.assoc’ file are not required, and can simply be ignored. As OR
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data was not included in the Beecham et al., 2009 data, these values were set to ‘-9’

in the ‘'OR’ column.

3) The ‘Id-clump’ analysis was performed using PLINK (v1.06) using the three files
generated ‘Carrasquillo.assoc’, ‘Reiman.assoc’ and ‘Beecham.assoc’. The filtered
version of HapMap data (CEU population, release 23) in PLINK binary format (BED,
BIM and FAM) was downloaded from the PLINK website
‘hitp://pngu.mgh.harvard.edu/~purcell/plink/res.shtm!’” (Purcell et al., 2007). The

HapMap data contains 2.3 million SNPs.

The ‘Id-clump’ analysis was performed using the following PLINK command:

plink --bfile HapMapCEU23

--clump Carrasquillo.assoc,Reiman.assoc,Beecham.assoc
--clump-verbose

--clump-annotate OR

--cClump-p11

--clump-p2 1

--clump-r2 0.99

--out 1d_clump

--noweb

The PLINK method reads ‘--bfile’ (the HapMap data in PLINK format) and ‘clumps’
the three datasets based on HapMap LD r? values. ‘--clump-verbose’ instructs PLINK
to generate a detailed report of SNPs in each clump. The output of ORs was
specified using ‘--clump-annotate OR’ (‘--clump-annotate BETA’ was used for
guantitative trait analysis). All SNPs were used to perform the ‘ld-clump’ analysis
irrespective of p-values (‘--clump-p1 1’ and ‘--clump-p2 1’). --clump-r2 0.99’ ensures
that only SNPs which are perfect proxies (r* > 0.99) are clumped (*--clump-r2 1’ does

not work).
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A single output file 1d_clump.clumped’ was generated using ‘--out Id_clump’. All of
these commands listed are compulsory to the subsequent analysis except ‘--clump-

p1’” and ‘--clump-p2’ which allow the user to adjust p-value threshold.

4) The ‘meta_analysis.pl’ file was edited using a text file editor to ensure it contains
the correct PLINK ‘Id-clump’ output filename and correct type of analysis as

described earlier.

5) The application was executed and a results file named ‘results.txt’ was generated

automatically.

The top 6 results in Table 3.7 illustrate the utility of this application. The top 2 SNPs
are in LD with the APOE locus and demonstrate highly significant p-values as
expected (rs1114832 Fisher’s method p-value 1.09 x 10 and rs10402271 Fisher’s
method p-value 1.13 x 10°); the first SNP exceeded genome-wide significance (p =
1.67 x 10°) after correcting for the number of independent tests (Methods 2.3.2) and

the second SNP approached this value.

Sub-significant hits may prove to be genuine when more datasets are included. SNP
rs2318144 is located 200kb upstream of the inositol monophosphatase domain
containing 1 gene, IMPAD1; as of October 2011 this gene has yet to figure as an AD
candidate in the AlzGene forum (Bertram et al., 2007). rs3746319 (p = 4.34 x 10”)
was found to be located in an exon of the zinc finger protein (ZNF224). Although this
SNP is in vicinity to the APOE region, the effect has been suggested to be
independent of APOE status (Beecham et al., 2009). rs11205641 demonstrates a
dichotomy of effect i.e. it's OR is not comparable between datasets (shows opposing
effects) and is thus indicated as a ‘flipper’. rs468345 (p = 1.15 x 10°) is located

~120kb upstream of Amyloid-beta precursor protein (APP) gene.
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Table 3.7 Results from Meta-analysis of Carrasquillo et al., 2009, Reiman et al., 2007 and Beecham et al., 2009. The table shows
SNPs with Fisher's combined probability test p-value less than 1 x 10°. F1, F2 and F3 refers to the studies which have been inputted to
perform the meta-analysis (1, 2 and 3 refers to Carrasquillo et al., 2009, Reiman et al., 2007 and Beecham et al., 2009, respectively).
KB1 and RSQL1 refer to the distance and LD between the index SNP and PROXY1. The same rule applies to KB2 and RSQ2. The suffix
(1, 2 or 3) on column headers Pvalue indicated p-value in each study individually as listed. ClumpNo - index number ranked based on
descending p-value in each study, CHR - chromosome number, FISHER - Fisher’'s combined probability test p-value and FLIPPER -
indicates whether the SNP is a flipper’.

ClumpNo SNP F1 CHR PROXY1 F2 KB1 RSQ1 PROXY2 F3 KB2 RSQ2 FISHER FLIPPER Pvaluel Pvalue2 Pvalue3
1 rs1114832 1 19 rs1114832 2 0 1 - - - - 1.09E-09 NO 1.37E-06 0.000799 -
4 rs10402271 1 19 rs10402271 2 0 1 - - - - 1.13E-07 NO 4.54E-06 0.0248 -
2 rs2318144 1 8 rs6982990 2 0532 1 - - - - 3.57E-07 NO 2.22E-06 0.161 -
20 rs3746319 3 19 rs3746319 1 0 1 rs2061332 2 1.43 1 4.34E-07 NA 0.985 0.0149 2.96E-05
7 rs11205641 3 1 rs11205641 1 0 1 rs11205641 2 0 1 1.10E-06 YES 0.385 0.34 8.41E-06
107 rs468345 2 21 rs468345 1 0 1 - - - - 1.15E-06 NO 0.00353  0.000326 -
42 rs7679738 1 4 rs510115 2 267 1 - - - - 1.63E-06 NO 9.72E-05 0.0168 -
5 rs9659092 3 1 rs12022125 2 -835 1 - - - - 1.83E-06 NA - 0.404 4.54E-06
3 rs249153 2 12 rs249153 1 0 1 - - - - 1.91E-06 NO 0.717 2.66E-06 -
68 rs9474661 2 6 rs4486000 1 244 1 - - - - 2.19E-06 NO 0.0142 0.000154 -
16 rs8039031 1 15 rs8039031 2 0 1 - - - - 2.24E-06 NO 2.26E-05 0.0992 -
86 rs4693305 2 4 rs4693305 1 0 1 - - - - 2.64E-06 NO 0.0119 0.000222 -
10 rs7318037 1 13 rs4456389 2 115 1 - - - - 2.75E-06 YES 1.15E-05 0.239 -
6 rs3007421 1 1 rs3007421 2 0 1 - - - - 3.06E-06 NO 6.54E-06 0.468 -
74 rs385771 1 5 rs385771 2 0 1 - - - - 3.78E-06 YES 0.000163 0.0232 -
76 rs10501120 1 11 rs10501120 2 0 1 - - - - 4.00E-06 NO 0.000171 0.0234 -
9 rs4313171 2 8 rs359819 1 -169 1 - - - - 5.01E-06 NO 0.501 1.00E-05 -
144 rs6695249 1 1 rs17113051 2 438 1 - - - - 5.40E-06 NO 0.00045 0.012 -
11 rs3807031 3 6 rs3807031 1 0 1 - - - - 5.73E-06 NA 0.494 - 1.16E-05
25 rs2119067 3 2 rs2119067 1 0 1 - - - - 6.92E-06 NA 0.158 - 4.38E-05
35 rs11033712 2 11 rs12271660 1 269 1 - - - - 7.85E-06 YES 0.127 6.18E-05 -
8 rs6546452 1 2 rs17680828 2 937 1 - - - - 8.28E-06 NO 8.55E-06 0.968 -
14 rs4759173 2 12 rs10876820 1 227 1 - - - - 8.86E-06 NO 0.445 1.99E-05 -
22 rs2387100 3 13 rs2387100 1 0 1 rs9551404 2  -125 1 9.40E-06 NA 0.644 0.382 3.82E-05
31 rs7537266 2 1 rs7537266 1 0 1 - - - - 9.52E-06 NO 0.186 5.12E-05 -
17 rs13213247 2 6 rs16892136 1 -115 1 - - - - 9.55E-06 NO 0.417 2.29E-05 -
79 rs4904864 1 14 rs10484035 2 14 1 - - - - 9.58E-06 YES 0.000186 0.0515 -
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3.7 Conclusion

An approach has been described in this chapter to detect replicating signals across
different GWAS in an effort to identify LOAD candidate genes that have failed to

reach genome-wide significance previously.

Using data from four studies (Table 3.1) revealed a single SNP rs929156 (located in
exon 7 of TRIM15 gene) whose combined p-value (p = 8.77 x 10°®) withstands
multiple testing correction (p = 0.0467) using perfect proxies and where the meta-
analysis of odds ratios is also significant (OR 1.1, 95% CI 1.0-1.2, p = 0.03). Using
imperfect proxies (r? < 1) (i.e. relaxing the condition of perfect LD) in this approach
would likely further reduce the number of independent test, thereby lowering the
genome-wide significant threshold, and more SNPs with suggestive p-values may
reach genome wide significance. However, such results would need to be interpreted
with caution, as lowering the LD r? value is likely to introduce errors. The relationship
between the LD r? value and the amount of noise introduced by using imperfect

proxies requires further investigation.

The next chapter (Chapter 4) describes a study investigating if the gene
encompassing this SNP harbours multiple rare variants that may be associated with

the disease using ABI SOLID® next generation sequencing.

An important argument for GWAS is that the genes in which common variants are
found, or genes nearby, may well contain functional rare variants; these may have
high enough penetrance to be considered as candidates for possible preventive

screening strategies in the future (Bodmer and Bonilla, 2008).
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Chapter 4: Next generation sequencing (NGS) of tripartite
motif-containing 15 (TRIM15) gene using pooled DNA samples

4.1 Introduction

Comparing DNA sequence of LOAD patients against those free of disease symptoms
allows identification of underlying genetic loci, which has been estimated to account
for up to 76% of the disease risk (Gatz et al., 2006). However, in order to differentiate
true signals from background noise and achieve statistical significance, sequencing

of a large number of individuals is essential.

DNA sequencing technology has evolved rapidly over the last few years, with the
advent of NGS enabling both reliable and economically affordable sequencing of
large-scale DNA sequence (such as whole exome and whole genome sequencing) in
a large number of individuals (Metzker, 2010). This enhanced capability of
sequencing provides unprecedented opportunity to address major biological
guestions, such as the search for genetic heritability of LOAD attributable to rare

variants.

Existing GWAS is not designed for capturing rare variants with allele frequency less
than 5%, and insufficient coverage meant that some of the common variants are also
not accounted for (Cirulli and Goldstein, 2010). NGS of targeted genomic regions
using pooled DNA samples is capable of testing genetic associations of all variants

within target regions provided there is sufficient power.

Sanger sequencing

Sequencing of DNA and RNA has solely relied on Sanger sequencing technology for
almost 30 years since it was first developed by Frederick Sanger in 1977 (Sanger et

al., 1977). It was the key technology used in identification of SNPs, copy number
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variations (CNVs) and structural variants (such as insertions and deletions) prior to

the advent of the NGS technology.

Automated Sanger sequencing was used for the Human Genome Project, which
produced the first sequence data of the complete human genome encompassing ~3
billion nucleotide bases (International Human Genome Sequencing Consortium,
2004). The project was accomplished in 2003 through intensive worldwide

collaboration and cost ~$3 billion.

Sanger sequencing is based on using fluorescently labelled dideoxynucleotide
triphosphate (ddNTPs) as DNA chain terminators. As ddNTPs lack the 3’-OH group
required to form the next phosphor-diester bond, addition of ddNTPs terminates the
chain elongation reaction (facilitated by Taq polymerase and dNTPs). The
concentrations of ddNTPs are much lower than dNTPs, thus they would occasionally

incorporate into a growing DNA chain at random, and stop further synthesis.

The final product of Sanger sequencing is a mixture of various sizes of nucleotide
fragments. Capillary electrophoresis of these short nucleotide fragments enables the
DNA sequence to be recorded, facilitated by a laser and a detector (Figure 4.1). The
Sanger sequencing method generates the DNA sequence in a format known as an

electropherogram.

Sanger’s method is limited by its throughput of sequencing of only ~1kb DNA
template per experiment run. Additionally, the first ~50 bases of reads are often
found to be of poor quality, a result likely to be due to the presence of residual

unincorporated fluorescently labelled ddNTPs (Wallis and Morrell, 2010).

139



Next generation sequencing of TRIM15 gene using pooled DNA samples
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Figure 4.1 Schematic diagram of Sanger sequencing. In Sanger sequencing, Taq polymerase, dNTPs and fluorescently labelled
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ddNTPs, sequencing primer and DNA template are added together. A range of different lengths of nucleotide fragments are generated,
which are subjected to capillary gel electrophoresis. The fluorescent signals emitted by the labelled the ddNTPs, each corresponding to
the point at which the chain growth is terminated, are detected using a laser and a detector. The sequence results are in the form of an

electropherogram.
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Next generation sequencing

The major advantage of next generation sequencing technology is the ability of
generating enormous amounts of sequencing data quickly and at substantially
lowered expenditure. Millions of short reads, each of 35-150 base pair in length, can
be generated in a single experiment run using the technology (Mardis, 2011; Metzker,

2010).

There has been fierce competitions in the field of next generation sequencing
technology, leading to rapid evolution of technology with respect to its accuracy,

throughput and speed (Metzker, 2010).

Next generation sequencing platforms

The currently available next generation sequencing platforms are Roche 454, ABI
SOLID and Illlumina platforms (Genome Analyzer lIx, HiSeq 1000/2000 and
HiScanSQ). Each of these platforms uses distinct chemistry, both Roche 454 and
lllumina platforms use a method known as ‘sequencing by synthesis’, compared to

‘sequencing by ligation’ used by ABI SOLID®.

Roche 454, also known as pyrosequencing, detects each polymerase catalysed
nucleotide incorporation event marked by the release of an inorganic pyrophosphate.
Unlike Illlumina platforms, which use modified nucleotides, the pyrosequencing
method adds only a single type of ANTP (i.e. dATP, dCTP, dTTP or dGTP) at a time.
This extension step is immediately followed by a temporary pause, allowing the
signal (release of inorganic pyrophosphate) to be detected by non-electrophoretic
bioluminescence (Ronaghi et al., 1998). The signal intensity is directly proportional to
the number of incorporated nucleotides, where incorporation of three dATPs would
result in three times the intensity of a signal observed from incorporation of a single

dATP. However, incorporation of eight or more of the same nucleotides can cause

141



Next generation sequencing of TRIM15 gene using pooled DNA samples

the signal to become saturated, prohibiting detection of longer repetitive nucleotide

sequences (Metzker, 2010).

lllumina platforms use a method known as cyclic reversible termination, where each
cycle comprises nucleotide incorporation, fluorescence imaging and cleavage
(Metzker, 2005). Like Sanger sequencing, the lllumina platform utilizes chain
terminators, with the exception that chain termination is reversible and the reaction

restarts after imaging has taken place.

ABI SOLID uses a technique known as the ‘colour space’ system or ‘2-barcoded
encoding system’. Processes involved in ABI SOLID next generation sequencing are

summarized in Figure 4.2.
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Figure 4.2 Overview of library preparation of ABlI SOLiD®. The flow diagram
summarizes the processes involved in next generation sequencing using the ABI
SOLID® sequencer. The LR-PCR amplified DNA was sheared into random sizes
using the Covaris AFA™ — similar technology to a sonicator with improved control of
wavelengths and isothermal advantage. The sheared DNA’s are end-repaired, and
two adaptors (known as ‘P1’ and ‘P2’) are ligated to both ends of the DNA fragments.
A specific length of DNA fragments (e.g. 50bp as used in this study) are extracted
using a size selection gel. This is followed by amplification via emulsion-PCR using
two primers: ‘A1’ and ‘A2’, which are complimentary to the ‘P1’ and ‘P2’ adaptors. ‘A1’
primers are coated on polystyrene beads, which enable enrichment of DNA
fragments. These polystyrene beads, with DNA attached, are deposited onto a glass
slide, where the sequencing reactions take place. The ABI SOLID® sequencer
supports flexible slide segmentation (also known as flow cells), which enables
several independent samples to be run simultaneously. Millions of random short DNA
fragments are sequenced in parallel using the ‘colour space’ system, where each

nucleotide is interrogated twice.
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Although the NGS platforms described are distinct from each other in many aspects,

they share substantial similarities:

e library preparation — all platforms involve DNA shearing into smaller
fragments followed by end-repair and addition of adaptors (short DNA
fragments) onto both ends of the template DNA.

o amplification of DNA template — all NGS platforms require amplification of
DNA template, so that the sequencing reaction produces sufficient signals
which can be detected by the instruments’ optical systems. Given that no
DNA polymerase is 100% accurate, this has been considered to be a
limitation of NGS technology (Mardis, 2011).

e repeating steps — all platforms perform sequencing reactions using a series of

repeating steps, which are performed automatically.

Sequencing library preparation

Two major methods exist to create a next generation sequencing library: pair-end
and mate-paired sequencing libraries, where reads generated from sequencing of

these libraries are known as paired-end and mate-paired reads, respectively.

Single-end sequencing, with each DNA fragment only sequenced from one end, has
been largely superseded by paired-end sequencing as a result of the lack of
accuracy. Single-end sequencing results in a higher proportion of reads incapable of
being aligned uniquely, resulting in these reads being unsuitable for variant discovery

(Mardis, 2011).

Paired-end sequencing allows a DNA fragment to be sequenced from both ends,

thus improving the confidence when it comes to calling SNPs (Mardis, 2011).

It should be emphasized that paired-end reads are from a single location of a

genome region in comparison to the mate-pair sequencing. The difficulty of mapping
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reads back to a locus of origin which is repetitive is considered a limitation for paired-

end sequencing.

This led to the development mate-pair sequencing. Reads in mate-pair sequencing
are made up of two short DNA segments derived from two genomic locations with the
distance between the two known (Figure 4.3). Given one end of the read of a mate
pair uniquely aligns to the reference sequence and the distance between the two
ends is known, the location of the other end of the read should be obvious.
Consequently, the use of a mate-pair sequencing library can greatly improve the

coverage of next generation sequencing across the target regions.

However, as this technology is based on circularization of large DNA molecules, the
low yield of circularization (directly proportional to the DNA molecules used) means
the technology is DNA expensive (Mardis, 2011). Furthermore, mate-pair sequencing
requires extra experimental steps and raises more challenges for mapping and
alignment, which in turn could result in more reagent cost and longer time to process

the data.
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Figure 4.3 Overview of ‘mate-pair sequencing’ library preparation. a) summarizes steps involved in library preparation for mate-pair
sequencing run. DNA template is represented by blue bars. Larger sizes of DNA fragments (e.g. 5 kb) are selected in contrast to the
library preparation for paired-end sequencing. These DNA fragments are end-repaired with biotin labelled dNTPs, which is followed by
circularization. Non-circularized DNA fragments are removed by digestion. After further fragmentation, biotin labelled DNA fragments

are purified. These fragments are then end-repaired, and two adaptors (‘P1’ and ‘P2’) are added, attaching to both ends of the amplicon.
The rest of the sequencing reaction is identical to paired-end sequencing. b) illustrates two scenarios of alignment to the reference
genome sequence, top — paired-end read is unable to map to repetitive genomic region (highlighted in green) and bottom — as one end
of the mate-pair read uniquely aligns to a non-repetitive genomic sequence, the locus of origin for the other end is obvious. Mate-pair
reads outperform paired-end reads on mapping to repetitive genomic regions and thus improve sequencing coverage.
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ABI SOLID® Colour space system

SOLID stands for Sequencing by Oligonucleotide Ligation and Detection. A unique
feature of SOLID technology is it uses the colour space system with each nucleotide
base being interrogated twice. This double interrogation greatly increases the

accuracy of each nucleotide call.

SOLID uses 16 two-base-encoded probes as illustrated in Figure 4.4a. Four specific
dinucleotides are labelled with a single fluorescent dye, and a total of four fluorescent

dyes are used in ABI SOLID® next generation sequencing.

Colour space calls are converted into nucleotide calls based on the chart shown in

Figure 4.4a using BioScope®.

Furthermore, colour space system can easily distinguish a SNP from a reading error
(Figure 4.4b). As each nucleotide base is determined by two adjacent colours, a

single colour change is an indication of a reading error.

Figure 4.5 summarized the processes involved in ABI SOLID® next generation
sequencing. Five rounds of ligation reaction (each of ten cycles) are necessary to

sequence all 50bp reads generated.
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Figure 4.4 ABI SOLiID® colour space system. a) Each probe consists of i) specific

dinucleotides at nucleotide bases 1-2, ii) degenerate nucleotides bases (denoted as

‘n’ (often RNA nucleotides) and ‘Z’ (inosine)) at nucleotide bases 3-8, iii) restriction

site between base pair 5 and 6 and iii) fluorescent dye labelled at the 5’ end. The
specific dinucleotides of each probe, according to the chart, are as shown. b)

illustrates a scenario where a sequencing error can easily be distinguished from a

real SNP call in ABI SOLID® NGS: a SNP is represented by two adjacent colour

changes, whereas a single colour change is an indication of a sequencing error.
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Figure 4.5 Flow diagram of the sequencing reaction of ABI SOLiD® NGS. The
flow diagram summarizes steps involved in the sequencing reaction using by ABI
SOLID®: a) annealing of a universal sequence primer enables one of the 16
fluorescently labelled probes (complementary to the target sequence) to be ligated
with the universal primer facilitated by ligase, b) four-colour imaging c) nucleotide
bases 6-8 (denoted as ‘Z' (inosine) in Figure 4.4a) are subsequently cleaved off,
leaving a 5’ phosphate group for further ligation reactions, d) nine more cycles of the
sequencing step is required to interrogate all nucleotide bases, e) the DNA is
denatured and the complementary strand is discarded. A new universal sequence
primer which binds to ‘n-1’ position is added, and is subjected to another ten cycles
of ligation reactions. A total of five ligation rounds are performed in ABI SOLID® NGS.
(Adapted from Metzker, 2010)
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Challenge of analysing NGS data

The distinct chemistry of NGS results in fundamental changes to the way that the
data are analysed in comparison with analysing the capillary data from Sanger
sequencing. An analysis pipeline of NGS data from the pooled DNA samples using

ABI SOLID® is described later in this chapter.

Furthermore, it is conceivable that the production of millions of NGS reads causes
challenges to the management of information technologies such as data transfer,
storage and quality control. Some NGS systems are able to generate over one billion
short reads per instrument run. Therefore, sufficient large data storage and transfer

devices are essential.

The delivery of high quality genome sequence and SNP calling is challenging, and is
dependent upon development of suitable bioinformatics software and sufficient
computing power in order to analyse the large-scale data. This includes accurate
alignment/assembly of read data and production of error models to permit confident

calling of novel rare SNPs (Metzker, 2010).

The accuracy of the alignment has a crucial role in variant detection. Incorrectly
aligned reads may lead to errors in SNP and genotype calling. Therefore, it is
important for alignment algorithms to be able to cope with sequencing errors, as well
as potential real differences (e.g. SNPs and Indels) between the reference genome
and the sequenced genome. In addition, the aligner must also be able to produce
well-calibrated alignment quality values, as variants calls are dependent on those

scores (Nielsen et al., 2011).
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42 Aims

An important argument for GWAS is that the genes in which common variants are
found, or genes nearby, may well contain functional rare variants; these may have
high enough penetrance to be considered as candidates for possible preventive

screening strategies (Bodmer and Bonilla, 2008).

The aims of this study were to i) investigate if the TRIM15 gene amplicons ‘A’ and ‘B’
(Figure 4.6) harbour multiple rare variants (with allele frequency between 1% to 5%)
by analysing the next generation sequencing data, and ii) prioritizing these SNPs
according to their potential biological functions and associations with the risk of

LOAD.
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Figure 4.6 Conservation plot using VISTA browser. Figure showing genomic
position of TRIM15 ‘A’ and ‘B’ amplicons which were sequenced using ABl SOLID®
NGS. The blue vertical lines represent the locations of SNPs on the genotyping chips
(Chapter 3). Conserved regions are indicated between the solid red lines, and the
actual TRIM15 ‘A’ and ‘B’ amplicons are indicated between the dotted red lines. The
corresponding vertebrate species are documented on the right. Conserved regions
are also highlighted in colours according to their function (red - introns and intergenic

regions, blue - exons, cyan - UTRS).
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4.3 Strategy

The next generation sequencing pipeline performed in this study are summarized in

Figure 4.7. The project consists of the following distinct steps:

e Preparation of DNA samples

e Ascertainment of DNA region for sequencing

e Target enrichment using LR-PCR

e Equi-molar pooling of LR-PCR products

e Library preparation and the sequencing reaction
e Quality assessment

e SNP discovery and identification

¢ Validation and replication

Preparation of DNA samples

Genomic DNA was extracted from brain tissue using QIAGEN® DNeasy Blood and
Tissue Kit (Methods 2.2.1). Concentrations of DNA samples were measured using

NanoDrop® (Methods 2.2.2).

Ascertainment of DNA region for seguencing

Two conserved regions of TRIM15 gene located at the 5° and 3’ ends were
ascertained using VISTA browser (Figure 4.6) (Method 2.3.6). The middle part of
TRIM15 gene (region between the ‘A’ and ‘B’ amplicons) was sequenced using
lllumina HiSeq™ (ongoing project). This region was sequenced in 96 LOAD cases
which were separated into 8 DNA pools, where each pool comprises 12 samples. No

control subjects were sequenced for this part of the project.
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Figure 4.7 Overview of the next generation sequencing pipeline in this study. The flow diagram illustrates seven distinct processes
conducted in this study: target enrichment using LR-PCR, equi-molar pooling of DNA samples, library preparation and sequencing using
ABI SOLID® NGS sequencer, translation of colour space calls to nucleotide calls and mapping to the reference genome sequence,
quality assessment of the raw data, variant discovery and identification, validation using TagMan® genotyping assays or Sanger

sequencing.
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Target enrichment

Two conserved regions of the TRIM15 gene were enriched using LR-PCR (Methods
2.2.3) on 150 samples (75 LOAD cases and controls) (Methods 2.1). These LR-PCR
products were visualized on EtBr stained 0.7% agarose gels under UV light together
with blank (negative controls) and the GeneRuler™ 1kb Plus DNA ladder (Methods

2.2.4).

DNA samples were kept for NGS only if they displayed a strong intensity band on the
agarose gel of the correct size and no evidence of DNA contamination noted by
examining the negative control samples. A small number (2-5) DNA samples were
selected and Sanger sequenced (Methods 2.2.5) to ensure the DNA amplified was
of the correct sequence by comparison to the reference sequence (hg19)

downloaded from the NCBI database.

Equi-molar pooling of LR-PCR products

Four DNA pools (AD cases and controls) for TRIM15 ‘A’ and ‘B’ amplicons were
created by pooling 5ul of each PCR amplified DNA products (‘DNA pooling 1’ in

Figure 4.7).

Gel extractions were undertaken for each of the DNA pools to remove non-specific
PCR products and primer-dimers (Methods 2.2.6). Concentrations of the cleaned

LR-PCR products were measured using Qubit® (Methods 2.2.2).

Two DNA pools (case and control) each containing 1ug of DNA were subsequently
created (‘DNA pooling 2’ in Figure 4.7) by adding all LR-PCR amplicons into the pool.
Volumes were adjusted according to the concentrations measured and the sizes of

the amplicons.
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The amount of DNA for each amplicon contributed to the final pool was calculated

using the equation:

length of amplicon (bp) x 1000ng
length of target (bp)

Amount of DNA =

Library preparation and the sequencing reaction

Library preparation and the sequencing reaction of ABlI SOLID® were performed by
the next generation sequencing unit at the University of Nottingham. Sequencing

reads were aligned using BioScope® (Methods 2.4.1).

Quality assessment

Raw data generated from the next generation sequencing were assessed using

FastQC (Methods 2.4.2).

Read depth and coverage

Read depth was calculated using the formula:

Number of reads X Length of the reads

Read Depth =
cacep Length of the target region

Fold coverage (per individual and chromosome) was calculated using the formula:

e Read Depth
Coverage (per individual) = ——5
Read Depth

Coverage (per chromosome) = 150
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An R script was written to draw the histogram depicting the fold coverage:

rm (mydata)
rm(count)
rm(depth_cont)
mydata <- read.table("mydata.txt", header=T)
count <- 0
for (i in mydata$cont cov) {
if (count == 0) {
depth_cont <- i
count <- 1
}
if (count > 0) {
if (i > 10) {
depth_cont <- c(depth _cont, i)
}
}
}
hist (depth_cont, breaks=300, ylim=c(0,100))

SNPs discovery and identification

SNPs were called using Syzygy and Freebayes (Methods 2.4.3). QC thresholds

were applied to SNP calls:

e Base quality threshold (--bgthr): 10

e Mapping quality threshold (--mqthr): 50

SNPs were separated into high and low quality according to QC criteria: strand bias,

read depth and error models as created by the software.

SNP annotation

SNPs were annotated using the Variant Classifier program (Methods 2.4.4). The
Variant Classifier input file is shown in Appendix 8.2. The full transcript
‘ENST00000376694" from the TRIM15 gene ‘ENSG00000204610’ was used. The
annotation data was downloaded from the most up-to-date Ensembl database.
Fisher's exact test (2-sided) was utilized to examine the association of SNPs
identified with the risk of LOAD using the estimated allele counts generated from both

pools (case and control).
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SNPs identified by NGS were visualized using UCSC custom track (Methods 2.4.5).
Four custom tracks were entered into the genome browser: power to detect a

singleton, high quality SNPs (known and novel) and association p-values.

SNP validation and replication

SNPs identified by NGS were compared with data documented in the latest SNP
databases: HapMap (CEU population release 28), dbSNP (release 132) and the
1000 genome project VCF (variant call file) accessed using the tabix program

(Methods 2.4.3).

SNPs showing significant evidence of association (with LOAD), as suggested by
NGS data, were validated by direct genotyping of samples that were used in creating
the sequencing library for NGS using Sanger sequencing (Methods 2.2.4) and

TagMan® genotyping assay (Methods 2.2.7).

Replication studies were performed for SNPs that validated. SNPs showing

consistent MAF were further genotyped in an independent sample cohort (93 AD
cases and controls) using the TagMan® genotyping assay (Methods 2.2.7). SNP
validation and replication experiments were performed by Narat Pititaweewat and

Rebecca Gibbons (MSc students in our laboratory).

158



Next generation sequencing of TRIM15 gene using pooled DNA samples

4.4 Results

LR-PCR of TRIM15 ‘A’ and ‘B’

Two conserved regions of TRIM15 gene (‘A’ and ‘B’) were successfully amplified
using LR-PCR. The sizes of these two amplicons are 1,984 bp and 4,935 bp,

respectively (Figure 4.6).

Coverage of TRIM15 gene

The latest human genome build hgl9/GRCH37 was used as the reference genome
sequence. Both amplicons (‘A’ and ‘B’) encompasses the following genomic regions

of TRIM15 gene:

Promoter region of TRIM15:
e 618 bp (chr6: 30130365-30130982) upstream of TRIM15 gene
Untranslated regions (UTR):

e complete 5 UTR (length = 479 bp; chr6: 30130983-30131461)
e complete 3’ UTR (length = 340 bp; chr6: 30140127-30140466)

Exons:

e complete exon 1 (length = 381 bp; chr6: 30131462-30131842)
e complete exon 6 (length = 33 bp; chr6: 30138753-30138785)
¢ complete exon 7 (length = 518 bp; chr6: 30139609-30140126)

Introns:

e complete intron 6 (length = 823 bp; chr6: 30138786-30139608)
e 506 bp of intron 1 (chr6: 30131843-30132348) (full size of intron 1 = 3110 bp)
e 355 bp of intron 5 (chr6: 30138398-30138752) (full size of intron 5 = 359 bp)

3’ downstream of TRIM15 gene:

e 2866 bp (chr6: 30140467-30143332)
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Altogether these genomic regions range from 30130365 to 30143332 on

chromosome 6.

LR-PCR optimisation

Optimisation of conditions for LR-PCR is key to successful amplification of large size
amplicons (> 1 kb), which are more sensitive to experimental conditions compared
with amplification of small amplicons (< 1 kb). Furthermore, LR-PCRs require longer

time to run in comparison to standard PCR using Taq polymerase.

Experiment conditions were successfully optimised for LR-PCR amplification of
TRIM15 ‘A’ and ‘B’ fragments, and the optimisation results are shown in Figure 4.8

(Methods 2.2.3).

LR-PCR and equimolar pooling

TRIM15 ‘A’ and ‘B’ amplicons were successfully amplified by LR-PCR, pooled in

equi-molar amounts and cleaned via gel extraction (Figure 4.9).
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Figure 4.8 Optimisation of LR-PCR. EtBr stained 0.7% agarose gel depicting PCR optimisation result using temperature gradient
58°C to 70°C (left), 67°C to 70°C (middle) both in presence and absence of DMSO (middle) and a gradient with varying primer
concentrations (right). The corresponding temperature and primer concentrations are shown together with sample ID on the top of the

gel. B - blank (negative control), L — DNA ladder (GeneRuler™ 1kb ladder)
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Figure 4.9 LR-PCR and equimolar pooling. TRIM15 amplicons (‘A’ and ‘B’) were successfully amplified in 75 AD cases and 75
controls (left). DNA samples of the same amplicon (AD cases and controls) were pooled (middle). Gel extractions were undertaken for
all DNA pools created, and visualized using EtBr stained 0.7% agarose gel (right).
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General statistics and quality assessment of raw NGS data

The raw next generation sequencing data is represented by a total of 78,133,090

short oligonucleotide reads (case pool: 34,043,745; control pool: 44,089,345).

82.76% of reads for the control pool (36,489,719 reads) and 87.07% of reads for the
case pool (29,641,561 reads) were successfully mapped to the reference genome
sequence (hgl9) using BioScope® (v 1.3) (performed by the next generation
sequencing unit at University of Nottingham). ~15% of reads produced by NGS were
unable to be mapped to the reference genome sequence, likely to be due to the fact

that these reads belonged to genome sequences which are repetitive.

Of those reads that have been mapped to the reference genome sequence, 89.76%
(26,607,720) and 91.46% (33,372,196) reads were mapped to targeted genome

regions (i.e. regions which were enriched by LR-PCR).

Furthermore, almost all mapped reads are of 50bp in length as expected (Figure

4.10).
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Figure 4.10 Read length of the control pool. The x and y axis represent read
length (bp) and corresponding read counts, respectively. Almost all reads are 50bp in
length as expected. The diagram was generated using FastQC (Methods 2.4.2).
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Quality scores

The quality of each sequencing read was measured using two scores: base quality
and mapping quality. Base quality values are indicated as ASCII codes (range 33-73)
(Methods 2.4.1), with each ASCII code representing a single PHRED score (range
0-40). The relationship between a PHRED score and probability of being a wrong call

is shown (Nielsen et al., 2011):

PHRED Score = —10 X log P(error)

A base quality of 40 is currently the highest quality that the NGS instrument
(including ABI SOLID®) can generate, which indicates a p-value of 0.0001 or the

nucleotide call is 99.99% accurate (Table 4.1).

Similarly, mapping quality is also represented by PHRED scores with wider quality

score range (0-100).

Due to the cyclic nature of the next generation sequencing, base qualities are higher
in early cycles of the sequencing reaction, and lower in the later cycles (Figure 4.11).

Itis likely that reagents required for the experiment are diminished in the later cycles.

Number of reads mapped to TRIM15 ‘A’ and ‘B’ amplicons

3,134,504 reads and 3,492,467 reads were mapped to TRIM15 gene ‘A’ and ‘B’

amplicons, respectively.
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Table 4.1 ASCII codes depicting base qualities in next generation sequencing

data. The table shows nucleotide base qualities between 0 and 40. ASCII code is

shown together with corresponding base quality scores (Phred scaled) and p (error)

— likelihood of being a wrong call.

Corresponding

Corresponding

ASCIl code base guality p (error) ASCIl code base quality p (error)
! 0 1 6 21 0.007943
“ 1 0.794328 7 22 0.00631
# 2 0.630957 8 23 0.005012
$ 3 0.501187 9 24 0.003981
% 4 0.398107 25 0.003162
& 5 0.316228 ; 26 0.002512
‘ 6 0.251189 < 27 0.001995
( 7 0.199526 = 28 0.001585
) 8 0.158489 > 29 0.001259
* 9 0.125893 ? 30 0.001
+ 10 0.1 @ 31 0.000794
, 11 0.079433 A 32 0.000631
- 12 0.063096 B 33 0.000501

13 0.050119 C 34 0.000398
/ 14 0.039811 D 35 0.000316
0 15 0.031623 E 36 0.000251
1 16 0.025119 F 37 0.0002
2 17 0.019953 G 38 0.000158
3 18 0.015849 H 39 0.000126
4 19 0.012589 | 40 0.0001
5 20 0.01
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Figure 4.11 Quality scores across all nucleotide bases in the control pool. The
x and y axis represent base position in reads and base quality (PHRED scaled),
respectively. Nucleotide bases of high (28-40), moderate (20-28) and low (0-20)
quality are shown in green, orange and red, respectively. The central box (in yellow)
represents the distance between the first and third quartile with the median marked
with a red line. The upper and lower whiskers represent the 10%-90% quartiles. The

mean base quality scores are represented by a blue curve.
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Power calculation

Three power calculations were performed:
e Power to discover SNPs given the number of samples sequenced

e Power to detect a singleton (a single alternative allele) according to the read

depth (number of reads aligned to target regions).

e Power to detect an association between SNP discovered and risk of LOAD

given the effect size (i.e. odds ratios) and allele frequencies.

Power for SNP discovery

Power to detect a SNP given the number of DNA samples sequenced was calculated
and is shown in Table 4.2 using Methods 2.3.7. The power to detect a SNP with
MAF of 0.01 using 75 samples was estimated to be 78%. As a result, this study does

not have sufficient power to detect a SNP with allele frequency less than 0.01.

Therefore, SNPs with MAF less than 0.01 in both AD cases and controls were

removed from further analysis as a result of the lack of power.
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Table 4.2 Relationship between MAF, power and sample size required. Minor

allele frequency, power to detect SNPs and sample size required are as indicated.

Sample size required to obtain 95% power to detect a SNP with MAF between 0.001

and 0.5 are shown on the left. Power to detect SNPs with sequencing of 75 samples
(with MAF between 0.001 and 0.5) are shown on the right. Power to detect SNPs

with MAF 0.01 using 75 samples is highlighted in yellow.

I\]{Iinor allele Power Samplg size Minor allele Power | Sample size
requency required frequency
0.001 0.95 1497 0.001 14% 75
0.005 0.95 299 0.005 53% 75
0.01 0.95 149 0.01 78% 75
0.02 0.95 74 0.02 95% 75
0.03 0.95 49 0.03 99% 75
0.04 0.95 37 0.04 >99% 75
0.05 0.95 29 0.05 >99% 75
0.1 0.95 14 0.1 ~100% 75
0.2 0.95 7 0.2 ~100% 75
0.3 0.95 4 0.3 ~100% 75
0.4 0.95 3 04 ~100% 75
0.5 0.95 2 0.5 ~100% 75
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Power to detect a singleton

Syzygy provides ‘--power’ function to estimate power to detect a singleton (a single
alternative allele) at each nucleotide base according to the read depth — number of

reads that mapped to the target regions.

The majority of the base pair positions in the TRIM15 ‘A’ and ‘B’ amplicons showed a

power value of 100, suggesting ~100% power to detect a singleton.

Power to detect a singleton can be calculated using the method described in
Methods 2.3.7. For example, using the average read depth of ~20,500 in the control

pool, the power to detect a singleton can be calculated:

20500
P[detecti =1- 1—(—) =1-2.8x10790
[detection] < 150)

= ~100%

SNP with the ‘power’ value given by Syzygy less than 80 have been excluded from

further analysis.

Power to detect an association

Power to detect an association was calculated using QUANTO v1.2.4 and the results
are shown in Table 4.3. As indicated, the study has 80% power to detect an
association for common variants with OR > 3 or a rare variants with OR > 4. This
estimation, however, should be interpreted with caution as it is based on a number of
assumptions (such as effect size and mode of inheritance), and gene-environment

interaction (GXE) has not been taken into account.
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Table 4.3 Sample size required to detect an association calculated using QUANTO (v 1.2.4). The required sample sizes (to have

80% and 95% power as indicated) were calculated for common variants (0.5 > MAF > 0.05) with odds ratio between 1.1 and 4.0, and

rare variants (0.05 > MAF > 0.01) with odds ratio between 1.5 and 12.0. The *’ indicates sample size was calculated based on allele

frequencies 0.10 to 0.20 instead of 0.05 to 0.5. All sample sizes shown are the the number of case-control pairs.

Common Variants (0.5 > MAF > 0.05) Rare Variants (0.05 > MAF > 0.01)

OR Sample required to have Sample required to have OR Sample required to have Sample required to have

80% power 95% power 80% power 95% power
4.0* 32-47 50-76 12.0 27-107 42-172
3.0* 48-75 76-119 11.0 28-114 45-183
2.0 88-350 141-561 10.0 30-123 48-197
1.9 102-412 162-661 9.0 33-135 53-216
1.8 120-498 191-797 8.0 37-150 58-241
1.7 145-619 232-991 7.0 41-172 66-275
1.6 183-800 293-1283 6.0 48-204 77-326
1.5 243-1094 389-1753 5.0 60-256 95-409
14 349-1618 559-2593 4.0 81-353 129-565
1.3 569-2719 912-4357 3.0 131-589 210-943
1.2 1171-5768 1876-9244 2.0 350-1623 561-2601
11 4264-21697 6834-34778 1.5 1094-5161 1753-8273

171



Next generation sequencing of TRIM15 gene using pooled DNA samples

High quality SNPs

77 high quality SNPs were called using BioScope (v1.3) (Methods 2.4.1) and Syzygy

(v1.1.0) (Methods 2.4.3).

21 SNPs with MAF less than 0.01 in both case and control pool were excluded from

further analysis; 56 SNPs remained for further analysis.

Of the remaining high quality SNPs, 31 were known and 25 were novel according to

the dbSNP database (release#132)

Further QC, taking into account strand bias, clustering and low read depth, were
applied to these 25 novel variants, resulting in 15 being removed. This QC did not

apply to known SNPs.
Known SNPs

All 31 known SNPs show identical alternative alleles as documented in the dbSNP

database (Table 4.4).

Approximately half of these SNPs (15 out of the 31) were found to be documented in

the latest version of HapMap database (release 28 - August 2010).

With exception of a single SNP (rs1063280), which showed a significantly different
allele frequency in comparison to the allele frequency quoted in HapMap, comparison
of the remaining 14 SNPs showed compelling consistency with a correlation

coefficient (R?) of 0.966 (Figure 4.12).

Allele frequency of the ‘C’ allele (alternative allele) of SNP rs1063280 was estimated
to be 0.21. The frequency of the same SNP is however shown to be 0.89 in HapMap
(CEU population release 28). The discrepancy in allele frequency suggests either the
presence of possible population heterogeneity, an error caused by read misalignment

or more likely a mis-call due to genotyping error.
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Table 4.4 Comparison of alternative alleles of known SNPs. Table shows all
known SNPs with allele frequency greater than 0.01 in the case or control pools
identified by next generation sequencing. All alternative alleles are shown in the
forward strand. Chromosome number (CHR), SNP identifier (SNP), base pair
positions (BP) are as indicated together with reference allele (RA), observed
alternative allele (Observed AA) and alternative allele documented in dbSNP

database (release 132).

CHR SNP BP RA | Observed AA ::SE’:;‘:;;
6 | rs60650863 | 30130456 | A G G
6 | rs17188113 | 30131123 | T G G
6 | rs62407492 | 30131331 | T c c
6 rs9261536 | 30131349 | T c c
6 | rs35278640 | 30131503 | T C c
6 rs2523733 | 30131515 | C A A
6 | rs11961941 | 30131527 | G T T
6 | rs17194460 | 30131546 | A G G
6 | rs17194467 | 30131585 | G A A
6 | rs17194474 | 30131711 | G c c
6 rs2074477 | 30132035 | G A A
6 | rs41272587 | 30132100 | G c C
6 | rs114344980 | 30138489 | G A A
6 rs1029238 | 30138645 | G A A
6 rs1029237 | 30138662 | C T T
6 | rs41272591 | 30138853 | C A A
6 | rs41272595 | 30138865 | T C c
6 | rs115440118 | 30138895 | C T T
6 | rs41272599 | 30139021 | A T T
6 rs929156 | 30139699 | G A A
6 rs1063280 | 30140342 | T c c
6 rs6905949 | 30140525 | T C c
6 | rs13212414 | 30140540 | A T T
6 rs2844787 | 30140913 | G T T
6 rs9380156 | 30141042 | A G G
6 | rs13213365 | 30141204 | C T T
6 rs757258 | 30142253 | T C c
6 rs757257 | 30142458 | G A A
6 rs961039 | 30142674 | G A A
6 rs957765 | 30142690 | G A A
6 rs2394737 | 30142999 | A G G
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Figure 4.12 Comparison of allele frequencies with HapMap data. Scatter plot

showing correlation between allele frequencies estimated from NGS (x-axis) and

from HapMap (CEU population - release 28) (y-axis) in the control pool. Each SNP is

represented by a blue diamond. Black line: expected line if allele frequencies from

both sets are identical. The dashed line highlights that the majority of the SNPs
exhibited similar allele frequency when compared with HapMap data (CEU

population release 28).
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Three out of the 31 high quality SNPs with dbSNP rs numbers showed significant
evidence of association with risk of LOAD (uncorr-p < 0.05) — rs41272591 (p =
0.0006), rs9380156 (p = 0.0044) and rs6905949 (p = 0.034). All three SNPs are
common (MAF > 5%) (Table 4.5). SNPs rs9380156 and rs6905949 exist in HapMap
(CEU population release 28) with MAF 0.16 and 0.15, respectively. SNP rs41272591

does not exist in HapMap (CEU population release 28).

Direct genotyping of the two most significant SNPs (rs41272591 and rs9380156)
using TagMan® genotyping assays using the original 75 case and control samples

showed similar allele frequency in the case pool as estimated by NGS.
Minor allele frequency (MAF) of SNP rs41272591:

e Case pool: 0.20 (TagMan) and 0.19 (NGS)

e Control pool: 0.11 (TagMan) and 0.05 (NGS)
Minor allele frequency (MAF) of SNP rs9380156:

e Case pool: 0.20 (TagMan) and 0.17 (NGS)

e Control pool: 0.11 (TagMan) and 0.05 (NGS)

Calculation of LD between the two SNPs showed strong evidence of linkage (r* =
0.864 and D’ = 0.93 in the control pool and r* = 0.918 and D’ = 0.958 in the case
pool). As a result, both SNPs showed identical and significant association with LOAD

(p =0.036, OR = 2.09) using the same statistical test (Fisher’s exact test (2-sided)).

Genotyping using an independent sample cohort (90 LOAD cases and 91 controls)
showed no significant difference in allele frequencies (cases compared with controls)
(p =0.89, OR = 1.05), although the odds ratio appears to be in the same direction as

suggested by the NGS.
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Table 4.5 Summary of all high quality SNPs identified in TRIM15 ‘A’ and ‘B’ amplicons with dbSNP rs numbers. Chromosome
number (CHR), base pair position (BP) and SNP identifier (SNP) are indicated together with fold coverage, power to detect a singleton
(Power), observed alleles (reference and alternative), annotation, MAF (case and control pool) and Fisher’s exact test (2-sided) p-
values. SNPs with association p-value (p < 0.05) are highlighted in yellow.

Fold coverage Power Allele . MAF in MAF in Fisher’s exact test
CHR BP SNP Annotation -
(case/control) (caselcontrol) | (ref/alt) case pool control pool (2-sided) p-value
6 30138853 rs41272591 330/402 100/100 C/A INTRON.6 +67 0.1863 0.0508 0.0006
6 30141042 rs9380156 238/404 100/100 A/G 3' DOWNSTREAM 0.163 0.0533 0.0044
6 30140525 rs6905949 364/372 100/100 T/C 3’ DOWNSTREAM 0.0803 0.1665 0.0340
6 30138645 rs1029238 270/266 100/100 G/A INTRON.5 +251 0.033 0.0932 0.0554
6 30131515 rs2523733 160/152 100/100 C/A EXON.1 0.3344 0.2314 0.0725
6 30130456 rs60650863 340/276 100/100 A/G PROMOTER -536 0.0199 0.0666 0.0853
6 30140342 rs1063280 54/32 96/74 T/C 3'UTR 0.2476 0.1662 0.1163
6 30131546 rs17194460 178/166 100/100 A/G EXON.1 0.0333 0.0781 0.1320
6 30139699 rs929156 186/160 100/100 G/A EXON.7 0.2355 0.3099 0.1933
6 30138865 rs41272595 320/392 100/100 T/C INTRON.6 +79 0 0.0199 0.2475
6 30138895 rs115440118 386/474 100/100 C/T INTRON.6 +109 0 0.0199 0.2475
6 30140913 rs2844787 392/420 100/100 G/T 3' DOWNSTREAM 0.7586 0.6988 0.2982
6 30131349 rs9261536 138/186 100/100 T/C 5'UTR 0.8457 0.8938 0.3030
6 30138662 rs1029237 262/278 100/100 C/T INTRON.5 +268 0.1969 0.2449 0.4057
6 30142253 rs757258 152/202 100/100 T/C 3' DOWNSTREAM 0.0363 0.0603 0.4127
6 30142690 rs957765 186/234 100/100 G/A 3' DOWNSTREAM 0.2062 0.2484 0.4907
6 30138489 rs114344980 214/160 100/100 G/A INTRON.5 +95 0 0.0134 0.4983
6 30139021 rs41272599 302/370 100/100 A/T INTRON.6 +235 0 0.0133 0.4983
6 30131711 rs17194474 250/290 100/100 G/C EXON.1 0.0333 0.0533 0.5724
6 30140540 rs13212414 374/386 100/100 A/T 3' DOWNSTREAM 0.0333 0.0533 0.5724
6 30142674 rs961039 26/30 20/28 G/A 3' DOWNSTREAM 0.2112 0.2405 0.6793
6 30131503 rs35278640 188/194 100/100 T/C EXON.1 0.0133 0.0278 0.6843
6 30141204 rs13213365 258/268 100/100 c/T 3' DOWNSTREAM 0.0266 0.0401 0.7497
6 30142999 rs2394737 316/324 100/100 A/G 3' DOWNSTREAM 0.408 0.4195 0.9067
6 30142458 rs757257 336/378 100/100 G/A 3' DOWNSTREAM 0.4202 0.4305 0.9071
6 30131123 rs17188113 360/420 100/100 T/G 5'UTR 0.0266 0.0266 1.0000
6 30131331 rs62407492 156/200 100/100 T/C 5'UTR 0.0421 0.0466 1.0000
6 30131527 rs11961941 152/144 100/100 G/T EXON.1 0.0541 0.0465 1.0000
6 30131585 rs17194467 174/182 100/100 G/A EXON.1 0.0133 0.0128 1.0000
6 30132035 rs2074477 358/428 100/100 G/A INTRON.1 +192 0.0255 0.0333 1.0000
6 30132100 rs41272587 352/428 100/100 G/C INTRON.1 +257 0.0266 0.0333 1.0000
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Novel rare variants

Ten high quality novel variants were identified in TRIM15 ‘A’ and ‘B’ amplicons
(Table 4.6). All of which were estimated to have an allele frequency between 0.01
and 0.05. No novel common variants were identified. Using the tabix program (as
described in Methods 2.4.3), four SNPs (out of the ten) have also been identified by
the 1000 genome project; suggesting these SNPs are likely to be genuine. dbSNP rs

numbers have yet to be assigned to these novel SNPs.

The average fold coverage for these high quality novel rare variants was calculated
as 230 and 242 in the case and control pools, respectively. As a result, all ten novel
rare variants acquired maximum power to detect a singleton, which in turn provides

confidence in them being genuine SNPs.

None of these novel rare variants however showed significant evidence of
association with LOAD (p < 0.05). This is perhaps unsurprising, as an association

study requires much larger sample size than SNP discovery.

Interestingly, one of the rare SNPs (located at chr6: 30131558) showed an allele
frequency of 0.00 in controls and 0.0133 in cases, was found to cause a non-
synonymous change (H33Y, histidine->tyrosine at amino acid position 33) and was

predicted to be ‘probably damaging’ by Polyphen-2 (Methods 2.4.4).

Furthermore, a single high quality novel SNP (chr6: 30142265) was identified as a
deletion of a single ‘T’ allele out of eight consecutive ‘T’ repeats. The frequencies of

this deletion were estimated to be identical in both pools (Figure 4.13).
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Table 4.6 Summary of all high quality novel rare variants identified in TRIM15 ‘A’ and ‘B’ amplicons. Chromosome number

(CHR), base pair position (BP), read coverage (per chromosome) are as indicated as well as power to detect a singleton (Power),

observed alleles (reference and alternative), annotation, MAF in case and control pools and Fisher’'s exact test (2-sided) p-values. The

novel rare variant that causes the non-synonymous change and predicted to be ‘probably damaging’ by Polyphen-2 is highlighted in

yellow. SNPs which have been found by the 1000 genome project are highlighted in green. As no SNPs showed significant (p < 0.05)

evidence of association, the table is presented in ascending order of base pair coordinates.

Read coverage Power Allele . MAF in MAF in Fisher's _exact

CHR BP (case/control) (caselcontrol) | (ref/alt) Annotation case control test (2-sided)
pool pool p-value
6 30130617 152/212 100/100 G/A PROMOTER -375 0 0.0133 0.4983
6 30131558 174/172 100/100 Cc/T EXON.1 0.0133 0 0.4983
6 30131764 254/138 100/100 C/G EXON.1 0.0133 0.0263 0.6843
6 30132314 216/298 100/100 T/A INTRON.1 +471 0.0066 0.0133 1.0000
6 30138476 182/134 100/100 T/C INTRON.5 +82 0 0.0198 0.2475
6 30138597 302/316 100/100 T/A INTRON.5 +203 0 0.0133 0.4983
6 30139155 344/426 100/100 C/G INTRON.6 +369 0 0.0133 0.4983
6 30139396 242/264 100/100 T/G INTRON.6 +610 0.0133 0.0136 1.0000
6 30139477 264/238 100/100 G/T INTRON.6 +691 0 0.0196 0.2475
6 30142265 162/220 100/100 T/- 3' DOWNSTREAM 0.0133 0.0133 1.0000
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Figure 4.13 Output from IGV viewer depicting deletion of a ‘T’ allele from eight consecutive ‘T’ repeats. The deletion is as
indicated (marked with ‘---’) — case pool on the left and control pool on the right. Nucleotide bases ‘A’, ‘T’, ‘C’ and ‘G’ are coloured in

green, red, blue and brown, respectively. Chromosomal locations (on the top) are shown together with reference human genome

sequence (hg19) (at the bottom).

179



Next generation sequencing of TRIM15 gene using pooled DNA samples

UCSC custom tracks

All high quality SNPs (both common and rare) identified by NGS are displayed in
UCSC custom tracks along with comprehensive UCSC annotations (Figure 4.14 and

Figure 4.15) (Methods 2.4.5).

Repetitive genomic regions are more likely to suffer from power issues due to
insufficient coverage and read depth (Treangen and Salzberg, 2011). Interestingly,
repeat masked region (using RepeatMasker) does not necessarily imply a drop of
power. Only a few genomic regions masked by RepeatMasker demonstrated this
loss of read depth and power, whereas the majority acquired full power of detection

of a singleton in comparison with non-repeat masked regions.

Furthermore, it is noteworthy that regions that have not been masked by
RepeatMaster occasionally show similar loss of power, however, with ‘sharp’

appearance (instead of ‘broad’ for repeat-masked regions).

A single region of TRIM15 ‘A’ amplicon showed a drop of power to detect a singleton
(Figure 4.14). On closer inspection (using IGV viewer (Methods 2.4.5)), this region

was found to be highly repetitive with ‘TAAA’ repeats (Figure 4.16).

Multiple repetitive regions exist for TRIM15 ‘B’ amplicon. A number of these regions

showed significantly reduction of power and ability to call SNPs (Figure 4.15).
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Figure 4.14 Summary of high quality SNPs identified in TRIM15 ‘A’ amplicon.
Power to detect a singleton is shown (at the top) together with high quality SNPs
(both known and novel) (in the middle) and association p-values (underneath SNP
representation). SNPs are highlighted in colours according to their chromosomal
position and their function - red (exon, non-synonymous), green (exon, synonymous),
blue (UTR), and black (introns, 5’ upstream of TRIM15 gene). The p-value threshold

(p = 0.05) is represented by a horizontal line.
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Figure 4.15 Summary of high quality SNPs identified in TRIM15 ‘B’ amplicon.
Power to detect a singleton is shown (at the top) together with high quality SNPs
(both known and novel) (in the middle) and association p-values (underneath SNPs
representation). SNPs are highlighted in colours according to their chromosomal
positions and functions - red (exon, non-synonymous), green (exon, synonymous),
blue (UTR), and black (introns, 3’ downstream of TRIM15 gene). The p-value
threshold (p = 0.05) is represented by a horizontal line.
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CATTL GTTTCITG  TTC CECGETAC  TAAAAATAAATAAATALL A Al A AT AL A TR TR A A TAR A TR AR ATAG FECAG TETTACEEGAAEEE cecacTarTd
CATTLTEE  TOTTGCETICTECCCAE TACAGTAARARTARE TAAA Th TR AT G AT AL A TA LG TR A A TAR L TR AL ATAG FECAG TATTACEEGAAE seacacTeTTd
AT TATGOTTTET TG CETTE TCECCaETAEAG T AL ATAAA Th AL TAALT it A TR P AT AR AT A A TG TEERG TETTACEC A AEEDE concTerTd
CATTATEGTTTCITGCET  FECCCRE TACAGTAAAAGTARE TAAA TG A nalE L AT A AT LG TR A TRA LG LA TG FEE G TOT TRCEEGnAECE secacTerTd
FTATEOETTOITE  FTCTECECOE TACAG TAGAR ATARA FARA TAAATS AlE f AT AR AT R TR A A TAR A A AR A TAG FEEAG TGTTACEEGARCEEE R cacTerTd
GCATTATGOTTTETTGEET TCECCGET A6 TAAARATAAATAAR TA Fanalh AT R A AR TR F AR AT AR L LG TEE ARG PG T TACEE GanC assscacTeTTd

r ATSGTTTCT COTTCTECCCGET  AGTAAAAATAAATARA TALL A Al A A TR A TR TAAATARA TR AL ATAG TECAGTGTTACEEGAACEE SGoacTeTTq

r PTG TTTCTTGCETIETECECaETAt a fh 0T A AT AR A A Al A A TAR A TA AL TA AL TR ATAGALFAGTECAG TGTTE ncecennnasagig e TTY

r ATECTTTCTTGCETIETECECaE TALAGTAAAAATARA TARA FAAATA AATAAATAALT  TAn AGAATAGTECAGFGTTAECEGHACEE concTerTg

e TG TTTCTTGCETICTECECar TACAGTAARALTARE TARA FALAT AlF AT AL AT R TR A A TAR A TR LA TAG FEEAG TATTACEEGAAECEE coacTirT

e TG TTTCITCCETICIECCOarT  AGTAAAAGTARE TARA FRAAT e e cacTerTd

rro TG TTTEITGCETICIECEOar TACAGTAA  ATAAATAR FTARATARAT AT A AR TR T AR ATA LA L FAGTEEAG FETTACEEGARCEEE ARG rorrd

rro TEGTTTEITGCETICTECCCOETAC GTA  ATL  TAA  ARAT Alfhn TR A TARA TR AATARA A AL ATAG FEEAG TATTACEE cenans  cacTorTq

r PTG TTTCTTGCETIETECECaE TALAG T PR ATARA TR AT A TAR A A AR TR T AR ATARALTAGTECAG TGTTh cecenn gssoa GTTq

rroc GGTTTCTTGCETIETECECaETACAGTAN  ATARATARATAAAT AT AT AL ATA AL TA A ATAR A TR AL ATAG FECAG TGTTACEEGAACCECARATE crrd

rroc CCTTTCTTGCETIC IECECaE TAL GTAAAAATARL TAAA FAAL AT AL TA AL AR ATA AL TAGTECAG FETTAEEEGAACEEE AR icTrTd

r TECTTTCITGCETICTECECarTa  GTAARALTARL TARA TR AT AL TA AL TR ATA AL FAGTECAG FETTACCEGAACEEE AR icTerTd
e crTTeTTiccrTeTCCECaE T 67 T TeoT TR AL TA AL T AL ATAGA L FAGTECAG FETTAECEGAACEEE AR ncTirTd

T

aca TYTETTGE T TCECCGETACAGTAAAAATAAAT ATAARTARAITh AATARATARA TARATAAATAARATAGTECAGTGTTACE ccenanceaaAE TG TTY
rracar TITETTGECTTCTCCECGETA  GTAAAAATAAA TAAATATATAR AATARR AATAAATAAATAAAATAGICEAGTGTTACCCGAACCECARAG TarTg
TRIM15_A_ContQCHS. ba rracar TTTCTIGECTTCTCCCCGE TACAG TAARARTAAA TARA FARATA AATARRTAAATAAATARATANARTAGTCEAGTGT TACCEGARCCECARA crarTy
rracar TTTCTTGCCTICTCCCCGETACAGTA  AAT ATA TARATARAITRAATAAATARATAAATARATAGAATAGTCCAGTGTTACCCE CARAGEGGAE TG TTY
rrecarT TTCTTGCETTCTCCCCaE TACAGTARARATARATA | TAARTARA TAAA ATARATAAATAAATARRATAGTCCAG TGTTACCCGARCEECAAAGEEE d
rrecarT TTETTGCCTICTCECCGETA G T ATAARTARATAR AATAARTAALTAARTARATAAAATAGTCCAGTGTTACCEGAACCECARA crarTy
rrecar TTCTTGCCTICICCCCGE TACAG TAAAALTAR TAAATAAATARAITAAATAAATARA TAAATAAATAAAATAGTCCAG TGTTA AEcec  aGGGGAc T TTY
rracarre TErTGEcTTCTCCECGETACAGTAR AAT  TARATAAA. AAT alth ATARATAAATAAATAARATAGTCEAG IGTTACECGARCEEEAAAGGGEAL
rracarre TETTGECTTCTCCECGETA  GTAA AATA  TAA  AAA  AAT ATARATARATARATAAATAARATAGTCEAG GTTACECGARCEEEAAAGE arry
rTacarTe TETTGECTICTECECGETACAGTAR AATA  TAA A n ATAAATARRTAAATARATAAAATAGICCAGFGTTACECGAACCEEARAGG srrg
FTacarTAT ETTGCCTICTECCCGE TACAG TAAARATARATARA TARATARA TAAAIT ATARATAAATAAATARRATAGTCCAGTGTTACECGARCCEEARAGGGEAE
rTecarTAT CTTGCCTICTECCCGE TACAGTAAARATARATARA TAAATA AATARATAAATAAATARATAAAATAGTC GTGTTACCCGAACCCCARA crarTyg
FTecaTTAT ETTG  TICTCCCCGCTA AGTAAAAATARATAAAT ATARAIAAATAAATARRTAAATAAATAGAATAGTCCAG TGTTACCCGAR AAGEECAL TG FTd
FracarTiTe TTGECTTICTECCCGETA  GTAG  ATA  FAAATAAAT  &TAA Tk AAATARATARATAAAATAGTCCAGTGTTA £G4 CCC AGG wd
rrecarrire TTGECTICICCECGETACAGTAG | ATAAATAA  AATA  TAaaitha ATARATARATARARTAGICCAGTGTTAC GAACCE R T
rrecarTiTe TTGECTICIECECGE TACAG TAAAAATAAR TARA TAAATALTAR AAATARATARATAAAATAG CEAGTGT TACEEGAACEEE AAGG rrd
FTecarTATES TGEETTCTCCCCGE TACAGTAAARATAAA TARA TARATAAR TARAITRA AT ARTAAATAAATANARTAGTCEAGIGT TACCEGAACCECARAGGGGAE TG T
FTecarTiTes TGEETTCTCCCCGETACAGTAR  ATAAATA  TARATAAAT AR AAATAAATAAATAAATARRATAGICCAGTGT TACCEGARCCEE % i
FTacarTiTes TGECTTCTCCECGETACAGTAL  ATAAATAA A r TAAATARATAAATARATARAATAGTCCAGTGTTACCCGARCCECARAGEE rrd
rTecarTaTeaT GEETTCTECCCGETACAGTA AATA  TAA TAR  GAA AR AT ATARATAAATARAATAGTC GTGTTACCCGAACCCCARAGGEEACTETT
rTec  ratcar GEETIETECCCGETACAGTA | AATA AT T AT ATARATAAATAAATARAATAGTCCAG TGT TACECGARCCECARAGGREARE
rrecarraTsar CCTTCTCCCCGETACAGTAG | ATARATAA AAA  AAT AaihaaTan TAAATAAATARAATAG TCCAGTGTTACECGARCCECARAGEGEAL TE T TY
rTecarraTaGTT ECTTCTCCECGETACAGTAL | ATAAATAA an aldur TARATARATAAAATAG ICEAGTGTTACEEGAACCEEARAGS q
rTecarriTesTT EETTCTCCECGETACAGTARAAATARATAR AAA AR alfli ara FARAT  ATAARATAGICEAGTGTTACEEGAACEEE GacTeTTy
TTGC  TATGGT ETICTCCCCGETACAGTAR  ATAAATARATAAAT AT n:rt TaR RAATARATAAAATAG CAGIGTTACCCGA CCC AAGGGGACT TG

>

rTecn GITTCTTGECT  TCCCCGCTACAGTARRRATARATA ATRRATAARAIThAATARATARA TRAATARATARAATAGTECAGTGTTACEE ECARAGGGGAC TG TTGH

<

Reference TTGCATTATGGITTCTIGCCTICTCCCCGE TACAGTARAAATAAATARATAAATAAATARATAAATAAATAAATAAATARATAAAATAGTICCAGTIGTTACCCGARCCECARAGGGGAL TG TTY

=

Figure 4.16 Output from IGV viewer showing ‘TAAA’ repeats found in the
TRIM15 ‘A’ amplicon. Nucleotide bases ‘A’, ‘T’, ‘C’ and ‘G’ are coloured in green,
red, blue and brown, respectively. Chromosomal locations (on the top) are shown

together with reference human genome sequence (hg19) (at the bottom).

183



Next generation sequencing of TRIM15 gene using pooled DNA samples

Overrepresentation of reads

A large number of overrepresented reads (50bp either side of the original amplicons)
were observed. This overrepresentation of reads unnecessarily wasted a large
number of reads, and thus reduced the throughput and capacity of the next

generation sequencing.

This overrepresentation is caused by bias where short nucleotide fragments at both
ends of the amplicons are more likely to be presented in the library in comparison to

nucleotide fragments located elsewhere (Figure 4.2).

Reducing this overrepresentation of reads is thus capable of increasing the average
read depth across the targeted interval, and provides more power to call SNPs. A
previous study suggested that using 5’-blocked primers in LR-PCR can significantly

reduces this overrepresentation (Harismendy and Frazer, 2009).

It should be emphasized that this overrepresentation of reads is only applicable for
NGS data using PCR based enrichment, and enrichment using commercial kits such

as Agilent SureSelect® are not affected in this manner.

As only a small number of genes were inputted into this NGS project, despite the
reads overrepresentation issue, the average read depth and fold coverage is still far
greater than what is generally accepted as deep/high coverage; > 20x as suggested
by Nielsen et al., 2011 and 42x as depicted by the 1000 Genome Project (The 1000
Genomes Project Consortium, 2010). The average coverage for all TRIM15 high
guality SNPs was ~240-fold in the case pool and ~260-fold in the control pool

(Figure 4.17).
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Figure 4.17 Histogram depicting read coverage in the control pool. The x and y axis represent the fold coverage and frequency of
reads, respectively. The overrepresented regions (i.e. 50bp each side of the amplicon) and base pair positions with less than 10-fold

coverage are not shown. As indicated, the majority of TRIM15 sequence acquired an average read coverage between 200 and 400 fold.
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45 Discussion

41 high quality SNPs were identified within the TRIM15 ‘A’ and ‘B’ amplicons from
analysing the next generation sequencing data generated by ABI SOLID®

sequencing.

The sequencing has been successful, as reflected by a number of observations:

High on-target rate — ~90% of mapped reads were found to be on target (LR-

PCR enriched regions).

e Consistent alternative alleles — 100% of known SNPs identified exhibited
identical alternative alleles as documented in the dbSNP database.

¢ Consistent allele frequencies — 96.6% correlation coefficient of allele
frequency as compared with HapMap data (14 SNPs)

¢ High discovery rate — all documented SNPs in HapMap and dbSNP with MAF

greater than 0.01 were detected.

It is noteworthy that all allele frequencies estimated in the case and control pool are
multiples of 0.0066, which is equivalent to one minor allele out of 150 (i.e. 1/150 =
0.0066). For example, a SNP with three minor alleles would therefore result in a

minor allele frequency estimation of 0.0199.

Calculation of Power

This study was estimated to have ~78% power to detect a SNP with minor allele

frequency (MAF) 0.01, and ~95% power to detect a SNP with MAF 0.02 (Table 4.2).

As only a small number of genomic regions were inputted for NGS, the majority of
sequence regions within TRIM15 ‘A’ and ‘B’ amplicons acquired maximum power to

detect a singleton. The average read-depth and fold-coverage for TRIM15 ‘A’ and ‘B’
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amplicons were estimated to be 18,382 and 245-fold in cases and 20,543 and 274-

fold in controls (Figure 4.17).

Discovery of a SNP is dependent upon: i) SNP present in the number of samples
chosen to be sequenced and ii) sufficient number of high quality and well mapped
reads overlapping the SNP site (i.e. read-depth) (The 1000 Genomes Project
Consortium, 2010). As the throughput of NGS per run is fixed, sequencing of more
DNA samples would avoid missing variants not represented by these samples, but
decreases the read-depth for each individual DNA sample and therefore leads to loss

of sensitivity and accuracy.

The power to detect an association with the risk of LOAD is dependent upon: i) effect
size carried by the SNP (i.e. odds ratios) and the number of samples sequenced.
With 75 matched case and control pairs, the power to detect an association was
estimated to be ~80% for common variants with OR > 3 and rare variants with OR > 4
(Table 4.3). An OR > 4 for common variants or an OR > 6 for rare variants is required

to have 95% power.

As rare variants are more likely to have greater odds ratios in comparison with
common variants according to studies of multiple complex disorders (Bodmer and
Bonilla, 2008), these variants are therefore more likely to become statistically
significant with smaller sample sizes. None of the high quality variants identified

within TRIM15 ‘A’ and ‘B’ amplicons exhibited an odds ratio above 6.

Ascertainment of base quality and mapping quality thresholds

The base quality threshold of 10 and mapping quality threshold of 50 were used in
this study to call SNPs using Syzygy. FreeBayes was used to validate and confirm

the Syzygy outputs (Methods 2.4.3).
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Base quality and mapping quality thresholds are tightly correlated; a read with low
base quality at multiple sites of a read, results in overall low mapping quality for that

read.

The same base quality threshold was used in this project as used by the 1000
genome project, and a more stringent mapping quality threshold of 50 (instead of 20)
has been used due to the high read-depth of the NGS data (The 1000 Genomes

Project Consortium, 2010).

High quality rare variants

Ten novel rare variants with MAFs between 0.01 and 0.05 were identified within the
TRIM15 ‘A’ and ‘B’ amplicons, none of which were shown to be associated with

LOAD with statistical significance p < 0.05 (Table 4.3).

Nine out of the ten were found to be single nucleotide polymorphisms (SNPs); six
SNPs were found to be located in introns, two in exon 1, and one was shown to be
located in a predicted promoter region of the TRIM15 gene. Of the 2 exonic SNPs,
one (located at chr6: 30131558) was identified as a hon-synonymous SNP, the other

(located at chr6: 30131764) was found to be synonymous.

The non-synonymous SNP appears to be particularly interesting; not only is the SNP
predicted to cause a coding change from a positive charged histidine to a neutral
tyrosine, but is also present in cases only (with minor allele frequency 0.0133) and
absent from the controls. Additionally, this coding change was predicted to be
‘probably damaging’ with respect to the encoded protein structure by Polyphen-2

(Methods 2.4.4).

A deletion variant was also detected; a single ‘T’ allele out of eight consecutive ‘T’
repeats with a frequency of 0.0133 in both case and control pools. Interestingly, a

known deletion variant rs5875237 has been documented in dbSNP database, at a
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neighbouring site (chr6: 30142266) as this variant found by NGS (chr6: 30142265). It
is likely that the novel deletion variant found in this study is the same SNP as

documented in the database.

Further experimental validation (using alternative genotyping methods) of these

SNPs are required to confirm if they are genuine and worthy of further investigation.

High quality common variants

Three common variants (rs41272591, rs9380156 and rs6905949) exhibited

significant evidence of associations with LOAD.

Two of the most significant SNPs (rs41272591 and ra9380516 which were found to
be in tight LD), have been validated by TagMan® genotyping assays with allele
frequencies similar to those estimated by NGS, and did not show significant evidence
of association using an independent sample cohort (90 cases and 91 controls) (p =
0.89, OR = 1.05). It is perhaps unsurprising as the initial p-values do not withstand
multiple testing after Bonferroni correction. In a study of 41 independent observations,
assuming that 5% would be expected to appear due to chance, two SNPs would be

expected to show a significant p-value (p < 0.05) and two have been detected.

No further efforts were made to replicate the nominal association seen with SNP

rs9380516.

Low guality variants

281 low quality variants were identified using Syzygy (Methods 2.4.3). The majority
of these low quality variants are likely to be due to errors, as discussed below, and

therefore no further efforts were made to validate any of them.
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Discussion over errors of NGS using pooled DNA samples

An accurate estimation of allele frequencies using pool