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Abstract 

Alzheimer’s disease is the most common form (~60-80%) of dementia, currently 

affecting approximately half a million people in the UK and ~30 million people 

worldwide. The autosomal dominant form of AD represents a small proportion       

(~1-2%) of AD cases and is genetically well characterised. The vast majority of AD 

cases that show symptoms later in life (> 65 years of age) are genetically complex. 

This type of AD, also known as late onset Alzheimer’s disease (LOAD) disease, is 

still highly heritable with an estimated heritability of up to 76% (Gatz et al., 2006).  

Unfortunately, there is no cure for this devastating disease. Investigating genetic 

factors influencing the risk of LOAD is imperative for development of effective 

therapeutic treatments and more accurate diagnosis. 

A cross-platform comparison of four Genome-wide association studies (GWAS) was 

performed in an effort to identify novel genetic associations with LOAD (Chapter 3). 

A TRIM15 SNP rs929156 demonstrated significant evidence of association with 

LOAD with a p-value approaching genome-wide significance (p = 8.77 x 10-8) and an 

odds ratio that showed consistent effect on risk (OR = 1.1, p = 0.03). Within this 

chapter, a bio-informatic program to automate the process of GWAS meta-analysis 

taking into account linkage disequilibrium (LD) is also presented. Subsequently two 

fragments of the TRIM15 gene (including both 5’ and 3’ end flanking regions) were 

sequenced using the ABI SOLiDTM next generation sequencing technology. This was 

a pilot study using a pooled DNA strategy to determine whether this region harbours 

multiple rare variants which are associated with the disease (Chapter 4).  

Lastly, a candidate gene study combined with whole genome analysis was performed 

in an effort to search for genetic variants influencing human ageing using LOAD 

GWAS data (Chapter 5).  
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Chapter 1:    Introduction 

Alzheimer’s disease is the most common cause of dementia in the elderly and 

accounts for more than two-thirds of all dementia cases. Dementia affects ~820,000 

people in the UK, and costs the UK economy approximately £23 billion per year 

(Alzheimer’s Research UK). There are ~35 million people worldwide who suffer from 

Alzheimer’s disease, and this figure has been estimated to rise to 65.7 million in 2030 

and 115.4 million in 2050 (Ferri et al., 2009). The prevalence of AD ranges from 0.6% 

in persons aged 65 to 69 years to 22.2% at ages 90 and older (Lobo et al., 2000).  

1.1 Outline of the project 

The following studies have been explored in this thesis (with the general aspects 

covered by Chapters 1, 2 and 6): 

 Analysis of Genome Wide Association Study (GWAS) data looking for 

replicating signals in LOAD  Chapter 3 

 Next generation sequencing (NGS) of tripartite motif containing 15 (TRIM15) 

gene using pooled DNA samples  Chapter 4 

 Genetic variants influencing human ageing from LOAD Genome Wide 

Association Studies (GWAS)  Chapter 5 

Respective specific aims are described in each of the chapters as appropriate.  
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1.2 Symptoms, diagnosis and treatment of Alzheimer’s disease 

Symptoms 

AD is clinically identified by a progressive loss of cognitive abilities. The symptoms at 

early stages involve mild memory loss - finding difficulty in remembering recently 

learned facts such as people, places and meetings. As the disease progresses, 

various advanced symptoms can occur such as confusion, irritability and aggression, 

mood swings, language breakdown, long-term memory loss, and sensory decline. 

Ultimately, the disease causes loss of body functions, and finally death.   

AD is pathologically characterized by extracellular deposits of abnormally 

accumulated β-amyloid (Aβ) peptide in the form of senile plaques in cerebral cortex, 

and intracellular neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated 

tau () proteins. Both observations are likely to be caused by misfolding and gradual 

conversion of highly soluble proteins into insoluble filamentous polymers (Forman et 

al., 2004). Furthermore, through brain scanning, such as computed tomography (CT) 

or magnetic resonance imaging (MRI), AD brains demonstrate severe cortical 

shrinkage, enlarged ventricles and shrinkage of the hippocampus, a region of the 

brain thought to be responsible for storing and retaining memories.  

Diagnosis 

Alzheimer’s disease (AD) can only be definitely (100%) diagnosed post mortem when 

an autopsy of the brain is performed (Carrette et al., 2003). However, it has been 

demonstrated that using a combination of tools, it is possible to estimate and make a 

probable diagnosis of Alzheimer’s disease in a living patient, and the accuracy can 

range from ~80% to 95% (Ballard et al., 2011; Mucke, 2009). 

A number of AD diagnosis criteria have been established to date. The most widely 

used methods are known as NINCDS_ADRAD, DSM-IV and CERAD. These criteria 
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involve a number of diagnostic procedures, such as taking history from patients and 

their families, assessment of their cognitive function by carrying out 

neuropsychological tests (e.g. mini-mental state examination MMSE (Folstein et al., 

1975)), and distinguish Alzheimer’s disease from other neurodegenerative dementias. 

Other forms of dementia include frontotemporal dementia (FTD), dementia with 

Lewy-body (DLB) and Creutzfeldt-Jakob disease (CJD).  

According to these diagnostic criteria, AD patients are assigned into three different 

risk groups - definite, probable and possible. Definite AD is defined only if 

histopathological evidence is available (Table 1.1) (Dubois et al., 2007).  

The NINCDS-ADRDA criteria were established in 1984 by the NINCDS (National 

Institute of Neurological and Communicative Disorders and Stroke) and ADRDA 

(Alzheimer’s Disease and Related Disorders Association) (McKhann et al., 1984). A 

similar AD diagnosis criteria DSM-IV TR was published by the American Psychiatric 

Association in 2000. These criteria are under constant review and take into account 

technology advances in functional neuroimaging techniques such as PET (positron 

emission tomography) and SPECT (single photon emission computed tomography) 

scans. The latest amendment to the NINCDS-ADRDA criteria was carried out in 2007 

(Dubois et al., 2007). 
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Table 1.1 Summary of NINCDS-ADRDA criteria for diagnosis of AD. Table lists 

criteria for the different AD risk groups. Adapted from Yaari and Corey-Bloom, 2007.  

 

 

  

Possible 

 Atypical onset, presentation, or clinical course of 

dementia 

 Presence of another illness capable of producing 

dementia 

Probable AD 

 Deficits in two or more domains of cognition 

 Progressive decline of memory and other cognitive 

functions 

 Preserved consciousness 

 Onset between ages 40 and 90 

 Absence of systemic or other brain disease that could 

account for symptoms 

Definite AD 
 Clinical criteria for probable AD 

 Tissue diagnosis by autopsy or biopsy 
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The severity of AD can be assessed using the MMSE score (Folstein et al., 1975);  

 mild AD: MMSE score 21 to 26  

 moderate AD: MMSE score 10 to 20 

 moderate severe AD: MMSE score 10 to 14 

 severe AD:  MMSE score less than 10 

A42, total tau and hyperphosphorylated tau are well established AD biomarkers. 

Abnormally low A42 levels and high tau (either total tau or hyperphosphorylated tau) 

levels in CSF act as an important indicator of AD pathogenesis (Buchhave et al., 

2009; Tapiola et al., 2009).  

Over the last few years, a number of more distinctive biomarkers of AD have become 

available from studying cerebrospinal fluid (CSF). The level of biomarkers such as 

secreted protein acidic and rich in cysteine-like protein 1 (SPARCL1), contactin-1 

(CNTN1), contactin-2 (CNTN2), alpha-dystroglcan, neuronal pentraxin receptor 

(NPR), carnosine dipeptidase 1 (CNDP1) and a 120kDa isoform of the precursor of 

neural cell adhesion molecule 1 (NCAM-120) have been found to be significantly 

different in AD CSF compared with normal subjects (Yin et al., 2009).  

Treatment 

Currently, there is no cure for Alzheimer’s disease. The damage to the brain is 

thought to have occurred as many as 10 to 20 years before any symptoms arise. 

Therefore, pre-symptomatic diagnosis is considered crucial for early and effective 

treatment of Alzheimer’s disease to halt disease progression and reduce symptoms.  

Though the disease is generally believed to be irreversible, it is hoped that 

interventions preventing neuronal cell death, could activate the self-repair 

mechanism of the brain, leading to restoration of broken neural circuits, and a 

functional recovery may become possible (Mucke, 2009). Current therapeutic drugs 
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are effective in relieving the disease symptoms. However, the efficacy of these drugs 

in slowing down the disease progression and recovery of the brain is limited.  

Five drugs have been approved by EMEA (European Agency for the Evaluation of 

Medical Products) and FDA (USA Food and Drug Administration) for the treatment of 

AD. These drugs are Donepezil, ENA-713, Galantamine, Memantine and Tacrine. 

These medicines can be divided in two major categories according to their targets - 

cholinesterase inhibitors (Donepezil, ENA-713, Galantamine, Tacrine) and an 

antagonist for NMDA-type (N-methyl-D-aspartate) glutamate receptor (Memantine).  

Acetylcholine is an important neurotransmitter, which has been found to be depleted 

in AD brains. Antagonising its degrading enzyme acetylcholinesterase increases the 

acetylcholine level in the brain. Thus it improves neurotransmission and ultimately 

cognitive function. Cholinesterase inhibitors are prescribed to AD patients with mild to 

moderate symptoms (Winblad et al., 2001). However, these inhibitors may cause 

adverse effects such as diarrhea, vomiting, nausea, fatigue, insomnia and anorexia.  

Memantine is an uncompetitive antagonist of NMDA-type receptor for glutamate, a 

main excitatory neurotransmitter in the human central nervous system (CNS). 

Glutamate is known to play an important role in neural transmission, learning, 

memory processes and neuronal plasticity (Sucher et al., 1996). The level of 

glutamate in the brain has important implications in determining synaptic cell survival, 

where it has been found that excess levels of glutamate are toxic to neurons. This 

increase in the level of glutamate was found to be caused by over-stimulation of 

NMDA receptors (Robinson and Keating, 2006). Antagonising NMDA receptor thus 

formed the biological basis for this drug. A previous clinical trial has suggested a 

small beneficial effect of Memantine during six month placebo controlled trials in 

moderate to severe AD. However, it is not yet clear if it has any effect in AD patients 

with less severe symptoms (Areosa et al., 2005). Memantine has been found well 
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tolerated in clinical trials, with dizziness and mild headaches reported as the main 

adverse effects. Interestingly, combined treatment using both Memantine and 

Donepezil appear to improve cognitive performance over either therapy alone on 

multiple clinical measures, suggesting a synergistic effect between the two drugs 

(Ihalainen et al., 2011; Tariot et al., 2004). 

A vaccination 

Current available drugs for treatment of AD are severely limited in that they are 

designed to relieve AD symptoms. In order to halt the disease progression, 

interference of pathogenic events leading to the clinical symptoms is essential.  

Since deposition of amyloid plaques is a major clinical feature of AD, removal of 

these plaques has been thought to be able to block the disease progression. A 

placebo-controlled clinical trial of A42 immunisation showed that although patients 

exhibited clear reduction of A plaques from the brain, there was no evidence of 

either slowing down of disease progression or improving survival (Holmes et al., 

2008). Furthermore, full length A vaccination has been shown to elicit strong side 

effects which can cause over-activation of the innate immune system, which in turn 

accelerates disease progression rather than slowing it down (Holmes et al., 2008). 

AD patients treated with AN1792 (an active A vaccine) exhibited a significant 

increase (p = 0.02) in the risk of aseptic meningoencephalitis compared with placebo 

controlled AD patients (Orgogozo et al., 2003). As a result, A vaccination avoiding 

these pro-inflammatory responses (mainly anti-A Th1 immune response) is under 

intensive development. Moreover, A vaccination combined with immuno-

suppressive therapy has also been suggested (Cribbs, 2010).  

However, previous studies indicate a strong correlation between soluble oligomeric 

A concentration and AD, whereas a poor correlation has been observed as 
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compared with A plaques counts (Davis et al., 1999; Lue et al., 1999; 

Neuropathology Group of the Medical Research Council Cognitive Function and 

Ageing Study, 2001). This has led to speculations that the plaque form of A is 

perhaps harmless or even protective.  Active removal of A plaques could however 

elevate the concentration of soluble A oligomers, resulting in acceleration of disease 

progression (Holmes et al., 2008).     

Alternative medications 

A number of over-the-counter medications (such as melatonin and Omega-3 fatty 

acids) are also available to AD patients. 

Melatonin is a natural hormone secreted by the pineal gland. It regulates sleeping 

cycles and has shown putative beneficial effects to people with sleeping disturbance 

(Brzezinski et al., 2005). Cardinali et al., 2002 suggested it might also be helpful in 

suppressing agitation and anxiety. However, such beneficial effects have not been 

consistently observed in other studies. For example, Gehrman et al., 2009 did not 

find any significant effect of melatonin (including sleep, circadian rhythms or agitation) 

on AD patients (when compared with randomized AD subjects who take placebos). 

There is also evidence that melatonin may disrupt, rather than improve sleep if 

inappropriately used (Arendt et al., 2008).  

Omega-3 fatty acid (which mainly consists of eicosapentaenoic acid [EPA] and 

docosahexaenoic acid [DHA]) is one of the most widely used alternative therapies for 

treating AD. The popularity of Omega-3 fish oil is probably due to its well recognized 

effects of protection of heart diseases with no obvious adverse effects. DHA, which is 

a major constituent of fish oils, is a long-chain polyunsaturated fatty acid (comprising 

~12-16% of the total fatty acids) in the brain (Quinn et al., 2010). The level of DHA 

has been found to be decreased (~30-50%) in AD patients compared with age-

matched controls.  
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A longitudinal study taking 815 individuals (who were unaffected by AD) aged 

between 65 to 94 years and followed by 3.9 years showed that subjects who 

consumed fish regularly (at least once a week) exhibited a reduced risk (~60%) of 

developing Alzheimer’s disease (relative risk, 0.4; 95% CI 0.2-0.9) (Morris et al., 

2003). This protective effect has led to extensive follow-up studies which aim to test 

whether Omega-3 fatty acids can also slow down the disease progression. Several 

studies have shown that the intake of Omega-3 fatty acids only appear to have a 

small beneficial effect on patients with very mild AD symptoms, and no effects for 

patients with moderate to severe symptoms (Freund-Levi et al., 2006; Quinn et al., 

2010). Interestingly, a recent study has found that the level of plasma DHA is not only 

proportional to intake of DHA by eating fish, seafood or DHA supplement, but is also 

associated with APOE ε4 genotype. It has been suggested that the absorption of 

DHA may be impaired in APOE ε4 carriers, and therefore these people do not benefit 

from consumption of DHA (Cunnane et al., 2009).    

Other alternative treatments for AD include aromatherapy, music therapy, drinking 

wine (in moderation) and green tea, as well as taking Vitamin E as dietary 

supplements. However, these alternative treatments generally lack biological and 

scientific basis, and their effectiveness are questionable. It has been shown that an 

intake of high-dosage vitamin E increases the risk of mortality and thus should be 

avoided (Miller et al., 2005).   

It is hoped, with the additional knowledge gained through genetic studies of AD, that 

more effective therapeutic interventions could be developed in the future by targeting 

the root cause of AD rather than only its symptoms (Mucke, 2009).  
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1.3 Early onset Alzheimer’s disease 

Early onset Alzheimer’s disease (EOAD) refers to AD cases that develop symptoms 

early in life (before 65 years of age). This form of AD cases constitutes only a small 

proportion (~1% to 2%) of all AD patients, and is genetically well characterised 

(Campion et al., 1999). EOAD exhibits a Mendelian form of inheritance in an 

autosomal dominant manner.  

EOAD is largely caused by fully penetrant mutations in three genes  amyloid 

precursor protein (APP), chromosome 21q21.3; presenilin 1 (PSEN1), chromosome 

14q24.2 and presenilin 2 (PSEN2), chromosome 1q42.1. Mutations in the PSEN1 

gene have been found to account for the majority of familial AD cases with ~170 

mutations being identified, compared with only ~30 and ~10 mutations in APP and 

PSEN2, respectively (Shepherd et al., 2009).  

All of these mutations have been shown to affect APP proteolytic processing, 

resulting in generation of toxic A peptides (the major component of senile plaques) 

in the brain. The alterations in APP processing in favour of A production and its 

accumulation in the brain are key pathogenic events in EOAD (Marzolo and Bu, 

2009).  

Proteolytic processing of APP 

APP is proteolytically processed through one of the two mutually exclusive pathways 

(amyloidogenic pathway and non-amyloidogenic pathway) via three enzymes - ,  

and  secretase (Haass and Selkoe, 2007).  
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In the amyloidogenic pathway (Figure 1.1), APP is first cleaved by β-secretase (also 

known as -site APP cleaving enzyme 1 - BACE1), releasing a soluble APP 

fragment and a membrane-bound APP C-terminal fragment (APPCTF). The C-

terminal fragment is subsequently cleaved by -secretase within the membrane, 

releasing Aβ peptides and the APP intracellular domain (AICD). This intracellular 

domain acts as a transcription factor which regulates gene expression (Konietzko et 

al., 2008). AICD has been shown to induce transcriptional activation of neprilysin 

(NEP), which in turn plays an important role in degradation of A (Pardossi-Piquard 

et al., 2005). AICD has a short half-life and is rapidly degraded in the cytosol (Cupers 

et al., 2001) by insulin-degrading enzyme (IDE) (Edbauer et al., 2002). In addition, 

APP-binding protein Fe65 stabilizes AICD and stimulates translocation of AICD to the 

nucleus and binding of histone acetyltransferase TIP60 (Goodger et al., 2009).  

A number of cleavage sites of intramembrane proteolysis by -secretase have been 

identified (Figure 1.1), each result in production of different sizes of A peptides 

ranging from 37 to 43 amino acids (e.g. A38, A40 and A42) (Marzolo and Bu, 

2009). The precise site of -secretase cleavage has important implications for A 

aggregation, which in turn can affect the downstream disease pathology. The 

therapeutic modification of the -secretase cleavage site to 38 has been shown to 

significantly reduce Aβ aggregation propensity (Haass and Selkoe, 2007).  

The -secretase complex is composed of four proteins including PSEN1 or PSEN2, 

nicastrin (NCSTN), anterior pharynx defective 1 (APH-1) and presenilin enhancer 

protein 2 (PEN2) (Haass, 2004). A previous study has shown that a fully active -

secretase can be reconstituted in yeast when all four components are expressed 

(Edbauer et al., 2003).   
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Figure 1.1 Schematic representation of the amyloidogenic pathway. APP (grey 

cylinder) is first cleaved by -secretase, releasing the soluble -cleaved APP 

fragment (sAPP). The C-terminal fragment (99 amino acids in length) is 

subsequently cleaved within the transmembrane domain by -secretase, which 

liberates the A peptide and an APP intracellular domain (AICD). -secretase can 

cleave the APP transmembrane domain at multiple sites  , ζ and ε (Adapted from 

Haass and Selkoe, 2007).  
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PSEN1 or PSEN2 protein constitute the catalytic core of the -secretase complex. 

Mutations in PSEN1 and PSEN2 are thought to influence -secretase cleavage 

events by shifting it two amino acids to the C-terminus, and thus increasing the 

production of Aβ42 (Haass, 2004). Aβ40 and Aβ42 are the most common isoforms of 

Aβ peptides (Deane et al., 2009). The longer form (Aβ42) is more fibrillogenic and 

neurotoxic, and has been shown to be more difficult to clear from the brain compared 

with A40 (Shepherd et al., 2009).  

In the non-amyloidogenic pathway (Figure 1.2), APP is first cleaved by α-secretase 

within the A domain, and thus precludes A production. The cleavage by -

secretase generates a soluble APP peptide and membrane-bound C-terminal APP 

fragment (APPCTF). Subsequent intramembrane cleavage of the APPCTF by the 

-secretase complex produces a shortened fragment P3 and a cytoplasmic APP 

intracellular domain (AICD). It is unclear if P3 peptides play any functional role in 

pathogenesis of AD.  

It is noticeable that AICD is produced in both amyloidogenic and non-amyloidogenic 

pathways. Interestingly, functional active AICD is likely to be generated 

predominantly through amyloidogenic pathways, where translocation of AICD to the 

nucleus has been found to be significantly reduced when the endosomal -cleavage 

pathway was blocked by pharmacological or genetic inhibitors (Goodger et al., 2009).  
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Figure 1.2 Schematic representation of the non-amyloidogenic pathway. 

Schematic structure of APP (grey cylinder) is shown together with A (as shown). In 

the non-amyloidogenic pathway, APP is first cleaved by -secretase within the A 

domain, thus precluding production of A. This cleavage by -secretase results in 

release of a soluble APP fragment (sAPP), and a shortened form of the membrane 

bound C-terminal fragment (83 amino acids in length). Subsequent cleavage of the 

C-terminal fragment by -secretase within the membrane releases a P3 peptide and 

a cytoplasmic APP intracellular domain (Adapted from Haass and Selkoe, 2007). 
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1.4 Late onset Alzheimer’s disease 

Late onset Alzheimer’s disease (LOAD), also known as sporadic AD (SAD) 

represents the majority (~98-99%) of AD cases. LOAD exhibits a complex aetiology 

with strong genetic and environmental determinants. Like many other complex 

common diseases, sporadic AD is likely to be governed by an array of common risk 

alleles across a number of different genes (Bertram et al., 2008).  

Mutations in APP, PSEN1 and PSEN2 responsible for causing EOAD have not been 

reliably detected in LOAD patients, suggesting a distinct pathogenesis of LOAD 

exists in comparison to EOAD. Although LOAD does not show Mendelian inheritance, 

it is still highly heritable with an estimated heritability of up to 76% as determined by 

studies of monozygotic and dizygotic twins (Gatz et al., 2006).  

Although EOAD and LOAD share common neuropathological phenotypes including 

both extracellular senile plaques and intracellular neurofibrillary tangles (NFTs), the 

accumulation of Aβ in LOAD is believed to be a result of Aβ clearance deficits or 

increased A aggregation rather than being causative as in EOAD pathology 

(Shepherd et al., 2009; Sleegers et al., 2010).  

Age is the one of the biggest non-genetic risk factors for LOAD, where the likelihood 

of developing AD approximately doubles every 5 years after the age of 65 (Feulner et 

al., 2009). It should be noted that as much as 24% of LOAD risk could be attributable 

to non-genetic factors, such as diet and lifestyle (Gatz et al., 2006).  
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1.5 The Amyloid Cascade 

As the two main features of AD are deposits of senile plaques containing Aβ peptides 

and intracellular deposits of neurofibrillary tangles containing hyperphosphorylated 

tau protein, and there is genetic evidence from studies of EOAD, pathways 

concerning Aβ and tau have been a major focus of AD research.  

All identified mutations associated with AD (both EOAD and LOAD) have been found 

either directly or indirectly linked with the formation, aggregation and removal 

processes of Aβ. These findings eventually lead to the formation of the amyloid 

cascade hypothesis. A are small peptides (~4 kDa) and the most common isoforms 

are A40 and A42 (Deane et al., 2009). 

The Amyloid Cascade Hypothesis proposes that progressive cerebral accumulation 

of beta-amyloid (Aβ) is the central trigger of the pathological changes found in the 

brain of AD patients. These changes include synapse loss, activation of inflammatory 

processes, induction of neurofibrillary changes and ultimately neuronal death (Hardy 

and Higgins, 1992; Selkoe, 1991). 

A conformation and toxicity 

It has been suggested that different conformations of A could induce neurotoxicity in 

distinct biological pathways. A40 and A42 exist in different aggregation states from 

monomers to dodecamers, where oligomer refers to any aggregation state with the 

exception of a monomer. Insoluble fibrils formed as oligomers grow in size, and 

accumulation of these ultimately forms A plaques found in the brain of AD patients. 

In addition, A42 peptide has been found to be more fibrillogenic than A40 (Tanzi 

and Bertram, 2005).  

It has been shown that accumulation of Aβ can cause neurotoxic effects, resulting in 

the release of reactive oxygen species, loss of calcium homeostasis and activation of 
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the several kinases including GSK3 - a kinase responsible for phosphorylation of tau 

protein (Lee et al., 2005).  

There is emerging evidence that small soluble A oligomers are more toxic than 

mature fibrils. This has been supported by numerous studies in biochemistry and 

histopathology, where biochemically measured levels of soluble A (monomers and 

oligomers) correlate much better with the extent of synaptic loss and severity of 

cognitive dysfunction in AD than do simple plaque counts (Holmes et al., 2008; Lue 

et al., 1999). 

A homeostasis 

The level of soluble Aβ is homeostatically controlled by its production in neurons and 

its subsequent clearance. Such homeostasis is thought to be deficient in the brain of 

an AD patient. Levels of neurotoxic A in the brain have been found elevated in AD 

contributing to the disease progression and neuropathology (Deane et al., 2008). 

Furthermore, an increased Aβ42 to Aβ40 radio is a robust indicator of AD 

(Kuperstein et al., 2010).  

Given that the accumulation of Aβ in the brain is determined by the rate of generation 

versus clearance, both pathways are considered targets for therapeutic interventions. 

The clearance of Aβ from the brain can be achieved through two biological pathways 

  proteolytic degradation or receptor mediated transport (Tanzi et al., 2004). 

A clearance by receptor mediated transport 

The clearance of Aβ from the brain through the blood brain barrier (BBB) is facilitated 

by lipoprotein receptor-related protein 1 (LRP1) and p-glycoprotein on brain 

capillaries by binding to chaperones (such as apolipoprotein E (APOE)) and α2-

macroglobulin (α2M) (Cirrito et al., 2005). LRP1 antagonists have shown to reduce 

the efflux of Aβ from brain by up to 90% in mice injected with radiolabeled Aβ40 
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(Shibata et al., 2000). However, it is still unclear if LRP1 also mediates A influx from 

the bloodstream. Like A and APOE protein, LRP1 and its ligands are also detected 

in amyloid plaques in AD brains (Marzolo and Bu, 2009).  

It has also been found that LRP1 favours clearance of Aβ40 over the Aβ42 (more 

amyloidogenic species of the peptide) and this might impede Aβ42 transportation out 

of the brain through the BBB (Deane et al., 2004). Thus the predominant path of 

Aβ42 clearance from the brain is thought to be via the proteolytic degradation, as this 

peptide is not efficiently exported. 

A clearance by proteolytic degradation 

In the brain, soluble Aβ is degraded by activated microglia. The activation of 

microglia is likely to be promoted by toll-like receptors (TLR). Frank et al., 2009 found 

that mRNA which encodes a membrane surface TLR is significantly up-regulated in 

plaque-associated brain tissues in aged APP23 transgenic mice.  

Aβ peptides are proteolytically degraded within the brain principally by neprilysin 

(NEP) intracellularly and insulin degrading enzyme (IDE) extracellularly (Jiang et al., 

2008). Genetic inactivation of these genes or administration of inhibitors of these 

proteinases in the brain (of non-transgenic mice) leads to substantial elevation of Aβ 

levels in the brain and induction of plaque deposition (Dolev and Michaelson, 2004). 

Conversely, overexpression of IDE or neprilysin results in lowered brain Aβ levels 

and reduced plaque formation (Hemming et al., 2007).  

The APOE protein plays a critical role in efficient intracellular degradation of soluble 

Aβ by microglia. The APOE activity has been shown (using transgenic mice) to be 

influenced by ATP-binding cassette 1 (ABCA1), which lipidates APOE. Loss of 

function of ABCA1 impairs A degradation in microglia. ABCA1 null microglia 
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demonstrates a significantly higher level of intracellular Aβ compared with wild type 

(microglia in presence of ABCA1) (Jiang et al., 2008). 

IDE is secreted by both microglia and astrocytes. It plays an important role in 

extracellular degradation of soluble A with minor contributions by other secreted 

proteinases (Qiu and Folstein, 2006; Qiu et al., 1998). In an experiment carried out 

by Jiang et al. 2008, soluble A was found to be efficiently degraded after addition to 

an astrocyte-conditioned medium. Addition of insulin (a competitive inhibitor of IDE) 

prevents this degradation. Interestingly, Aβ clearance by IDE is also influenced by 

APOE lipidation by ABCA1, where conditioned medium from ABCA1 deficient 

astrocytes exhibited significantly higher levels of A compared with medium from wild 

type astrocytes. In addition, extracellular Aβ clearance has been found more efficient 

in the presence of both APOE and IDE (Jiang et al., 2008).  

A and metals 

Aβ aggregation has been found to be facilitated by interaction with metal ions, such 

as zinc, copper, and other heavy metals. Aberrant metal homeostasis has been 

observed in AD patients, and it is thought that these ions contribute to AD 

pathogenesis through enhancing the formation of reactive oxygen species and toxic 

A oligomers. These metals have been shown to be able to facilitate and stabilize Aβ 

deposits (Maynard et al., 2005). 

Intervention of such interaction using metal-complexing drugs (e.g. clioquinol) has 

been on clinical trial for treatment of AD (ongoing). A pilot phase II clinical trial using 

a small number of subjects (n = 36) suggests that clioquinol improves cognition and 

lowers plasma levels of A42 (Ritchie et al., 2003). However, clioquinol appears to 

be neurotoxic which induces subacute myelo-optic neuropathy (SMON) syndrome (a 

syndrome that involves sensory and motor disturbance in the lower limbs and visual 

changes) (Bareggi and Cornelli, 2011).  



 
Introduction 

20 
 

1.6 Pathways concerning tau protein 

Tau protein, also known as microtubule-associated protein tau/saitohin (MAPT/STH), 

is considered a central mediator of Alzheimer’s disease pathogenesis, since one of 

the clinically observed characteristic of AD is the formation of intracellular 

neurofibrillary tangles (NFT) mainly composed of abnormally hyperphosphorylated 

tau proteins.  

Mutations in the MAPT (which encodes tau protein), although found to result in tau 

hyperphosphorylation, do not specifically lead to AD symptoms. These mutations 

have been shown to be a major cause of a different type of dementia - frontotemporal 

dementia (FTD) (Haberland, 2010). FTD is histologically distinct from AD as the brain 

is normally free of A plaques (Small and Duff, 2008).  

Tau is a phosphoprotein which normally contains one to three moles of phosphate 

per mole of tau protein in the healthy brain, and the level of which is dramatically 

increased (three to four folds higher) in the brain tissues of AD patient of similar age 

(Zhang et al., 2009).  

The main recognized function of tau is to promote assembly and stabilization of 

microtubules in the brain. The binding capacity of tau is highly regulated by protein 

phosphorylation. The hyperphosphorylated tau has lower binding capacity to 

microtubules compared with unphosphorylated tau protein, resulting in destabilization 

of microtubules in the brain (Sato-Harada et al., 1996). Tau protein phosphorylation 

is achieved by protein kinases: glycogen synthase kinase 3 (GSK3), cyclin-

dependent kinase 5 (CDK5), possibly cyclic AMP-dependent protein kinase A (PKA) 

and protein kinase C (PKC) (Churcher, 2006).  

Similar to Aβ, tau can polymerize and form paired helical filaments (PHFs), and 

accumulation of these leads to formation of neurofibrillary tangles (NFTs). NFTs are 
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not exclusive to AD however and have been found in many other neurodegenerative 

diseases: Down’s syndrome, progressive supranuclear palsy (PSP), corticobasal 

degeneration (CBD), frontotemporal dementia and Parkinsonism linked to 

chromosome 17 (FTDP-17), Pick’s disease, and Niemann-Pick type C disease (Avila 

et al., 2004).  
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1.7 Discussion over current belief on Alzheimer’s disease central 

pathogenesis 

In EOAD, it is clear that alteration of APP processing in favour of A production 

(particularly A42) is sufficient to cause the disease. Given EOAD and LOAD share 

common pathological features (extracellular A plaques and intracellular 

hyperphosphorylated tau tangles), biological pathways concerning A and tau are 

undoubtedly critical pathological events in AD.  

There is an increasing volume of evidence that suggests that A and tau may not be 

the root cause of LOAD pathology (Hardy and Selkoe, 2002) as partial and complete 

removal of Aβ plaques by immunisation does not show significant effects on cognitive 

function. Clear end stage dementia has been observed in individuals with almost the 

complete elimination of plaques (Holmes et al., 2008).  

Regarding tau proteins, although it has been found that the number and total length 

of microtubules were significantly reduced in pyramidal neurons from AD in 

comparison to controls (p = 4 x 10-6), no significant correlation between the loss of 

microtubules and PHFs has been observed (p = 0.8). Individuals without PHF have 

often been found with clear microtubule deficits (Cash et al., 2003). In addition, it has 

been suggested that tau hyperphosphorylation may be neuroprotective in the early 

stages of disease process, which possibly enables neurons to self-repair. Cells 

overexpressing hyperphosphorylated tau protein has been shown to be more 

resistant to apoptosis (Zhang et al., 2009). There is however, a general consensus 

that a prolonged existence of NFTs is toxic and harmful to neurons.  

These studies provide evidence that other biological pathways exist that are crucial 

to the pathogenesis of LOAD. The recently identified LOAD genes (Harold et al., 

2009; Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 
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2010) promise a new era of AD research, and are likely to reveal biological pathways 

underlying the root cause of the disease.  
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1.8 Genetic risk factors in LOAD 

Apolipoprotein E 

APOE encodes for a 299 amino acid glycoprotein (~34 kDa) in humans. This gene is 

expressed in several organs, with the highest expression found in the liver and the 

brain (Bu, 2009).  

The APOE protein exists in three isoforms, E2, E3, E4 translated from three specific 

alleles, ε2, ε3 and ε4, respectively (Mahley, 1988). The three allelic forms of APOE 

are determined by two missense single nucleotide polymorphisms (SNPs)  

rs429358 (T/C) and rs7412 (C/T) (Table 1.2). These two SNPs cause coding change 

at amino acid positions 112 and 158, respectively (C112R and R158C).  

APOE is a major risk factor for LOAD explaining ~25% of the population attributable 

risk (Lambert et al., 2009). The association of APOE ε4 with LOAD was first reported 

in 1993 through linkage analysis using family pedigrees (Corder et al., 1993; 

Saunders et al., 1993; Sleegers et al., 2010). This association has been confirmed by 

numerous genetic association studies (http://www.alzgene.org/).  

The presence of APOE 4 greatly increases the risk of AD and reduces the average 

age at onset (Feulner et al., 2009). Individuals carrying a single copy of 4 have a ~4-

fold higher risk of developing AD in comparison to carrier of the ε3 allele; ~12-16-fold 

increased risk of AD if with two copies of ε4. APOE 2 is known to engender a 

reduced risk of AD (Bertram et al., 2010).  
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Table 1.2 Summary of APOE ε2, ε3 and ε4 allelic status. The APOE ε2, ε3 and ε4 

status are determined by two SNPs: rs429358 and rs7412. Individual heterozygous 

at both SNP loci is an indication of APOE 2/ε4 status (Kim et al., 2009).  

  

Allelic status rs429358 rs7412 Description 

ε2 T T 

ε2 allele has a frequency of ~8% in the 

general population, and is known to elicit a 

protective effect against AD 

ε3 T C 
ε3 is the most common allele of APOE with a 

frequency of ~77% in the general population 

ε4 C C 

the ε4 allele has a frequency of ~15% in the 

general population, whereas ~40% in patients 

with AD. 
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Neither of these SNPs that generate the APOE alleles has been genotyped in 

HapMap project. As existing GWAS chips are designed using SNPs derived from the 

International HapMap Project, both APOE SNPs are therefore not genotyped by 

current LOAD GWAS (The International HapMap Consortium, 2003). SNP rs2075650, 

which does present on the chip, is known to be in tight LD with the APOE ε4 allele 

(Yu et al., 2007). SNP rs2075650 has been reported to be associated with risk of AD 

with p-value 1.8 x 10-157 (Harold et al., 2009).  

The principal biological function of APOE is lipid and cholesterol metabolism. In 

plasma, high density lipoprotein (HDL) contains APOA-1 as its major apolipoprotein, 

whereas APOE is the most predominant apolipoprotein of HDL in the CNS (Kim et al., 

2009). 

It has been shown that APOE is involved in both A aggregation and clearance 

(Figure 1.3) (Bu, 2009).   

APOE can interact with A either directly or indirectly and promotes A clearance 

through both receptor mediated transport and proteolytic degradation as described 

(See Introduction 1.5). The E4 isoform of APOE is associated with not only the least 

efficient transport, but also reduced capability of promoting degradation of soluble A 

in comparison with E2 and E3 isoforms (Deane et al., 2008; Jiang et al., 2008).  

Furthermore, A in the blood stream is transported by cholesterol-rich HDL particles, 

where APOE is also one of the structural components, prior to elimination by the liver 

(Koudinov et al., 1998).  
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Figure 1.3 Pathogenic mechanism of APOE in LOAD. It has been postulated that 

APOE isoforms influence risk of AD via regulating aggregation and clearance of A. 

In addition, the different isoforms, levels and lipidataion status of APOE have been 

proposed as central mediators of LOAD pathology through modulating synaptic 

functions, A neurotoxicity, tau hyperphosphorylation, and neuroinflammation 

(Adapted from Kim et al., 2009).  
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APOE has also been suggested to play a crucial role in A aggregation (Kim et al., 

2009). A positive correlation of the APOE ε4 allele dosage and increased neuritic 

plaques in AD has been observed in humans through post-mortem microscopic 

examination (Tiraboschi et al., 2004). A follow-up imaging study using PET scans 

also confirmed this association (APOE ε4 allele dosage vs. fibrillar A burden) 

(Reiman et al., 2009). Moreover, a previous study has revealed that APOE ε4 allele 

dosage is associated with a decreased Aβ42/Aβ40 ratio in CSF (p = 0.0001), a 

robust indicator of A levels in the brain (Kauwe et al., 2009).  

APOE may also influence AD pathology through pathways not directly linked to A. 

As a major apolipoprotein in the brain, APOE is known to play a pivotal rule in 

cholesterol homeostasis by serving as a ligand in receptor-mediated endocytosis of 

cholesterol-containing lipoprotein particles (Sleegers et al., 2010). Abnormal 

cholesterol metabolism has been implicated as a key event leading to the 

pathogenesis of AD (Martins et al., 2006).   

 

LOAD susceptibility genes apart from APOE 

In 2009 and 2011, a total of nine genes, CLU, PICALM, CR1, BIN1, ABCA7, 

MS4A6A, CD33, CD2AP and EPHA1, have been unequivocally identified and 

confirmed by several large GWAS (each consisting of over 10,000 samples) 

influencing the risk of LOAD (Harold et al., 2009; Hollingworth et al., 2011; Lambert 

et al., 2009; Naj et al., 2011; Seshadri et al., 2010).  

These genes can be assigned into three biological pathways, with a number of genes 

involved in multiple pathways. CLU, CR1, ABCA7, MS4A6A, CD33 and EPHA1 have 

putative functions in the immune system; PICALM, BIN1, CD33 and CD2AP are 

proteins that play a critical role in synaptic cell membrane processes and endocytosis. 
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CLU and ABCA7 (together with APOE) are crucial in lipid and cholesterol metabolism 

(Hollingworth et al., 2011; Morgan, 2011).  

CLU (clusterin)  

Two independent GWAS (Harold et al., 2009; Lambert et al., 2009) both identified 

and replicated a SNP rs11136000 located in an intron of the CLU gene, giving strong 

evidence of association with risk of LOAD with genome-wide level of significance (p = 

1.4 x 10-9 and p = 7.5 x 10-9, respectively).  

CLU (also known as APOJ) encodes another abundantly expressed apolipoprotein in 

the human brain. CLU exhibits similar biological functions as APOE, involved in both 

cholesterol and lipid metabolism and has been shown to promote export of A across 

the BBB (Guerreiro and Hardy, 2011). CLU was also found in amyloid plaques in the 

brain (Calero et al., 2000; May et al., 1990). It has been shown that A deposition are 

cooperatively regulated by APOE and CLU in vivo, where APOE and CLU double 

gene knockout PDAPP mice exhibit significantly higher A load in comparison to 

either of the single gene knockout transgenic mice (DeMattos et al., 2004).  

CLU is a multifactorial glycoprotein, and one of the described functions is related to 

inflammation and immunity through regulating activity in the complement pathway 

(Falgarone and Chiocchia, 2009; Jenne and Tschopp, 1989; Jones and Jomary, 

2002).  

Furthermore, expression of CLU has been found to be elevated in response to injury 

and chronic inflammation of the brain, suggesting that CLU may have an important 

role in preventing possible damage to neurons (Calero et al., 2000).  
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PICALM (phosphatidylinositol-binding clathrin assembly protein) 

A SNP rs3851179 located at 5’ to the PICALM gene was first discovered and 

reported to be associated with risk of LOAD (OR = 0.85, p = 1.9 x 10-8) by Harold and 

colleagues (Harold et al., 2009). The effect has been replicated in an independent 

sample cohort with ~4,000 samples (p = 0.014, OR = 0.90). On meta-analysis, the 

combined datasets showed a strong evidence of association with a p-value that 

exceeded genome-wide significance (p = 1.3 x 10-9, OR = 0.86).  

The association with PICALM was further supported by a large GWAS conducted by 

Lambert and colleagues using samples from a French population; a SNP proxy 

rs541458 in LD with rs3851179 (r2 = 0.622) has shown a significant evidence of 

association with LOAD (p = 0.0028, OR = 0.88), although it did not reached genome-

wide significance.  

PICALM encodes a protein which plays a critical role in clathrin-mediated 

endocytosis, a key process involved in regulation of receptors, synaptic transmission 

and clearance of apoptotic cells (Baig et al., 2010). PICALM may alter the risk of 

LOAD through regulating synaptic transmission and/or A production by modulating 

the rate of endocytosis of APP, an essential step preceding APP cleavage by -

secretase (Figure 1.1) (Goodger et al., 2009; Tebar et al., 1999).  

A recent study using immunolabelling has shown that PICALM is predominately 

present in endothelial cells, mainly expressed in the endothelium of the blood vessel 

walls and weakly labelled in neurons. This has led to speculation that PICALM may 

also be involved in A clearance via the BBB into the blood stream (Baig et al., 2010).  

Furthermore, a significant epistatic interaction (p = 0.0068; logistic regression using 

an additive model) was reported between the APOE ε4 allele and PICALM SNP 

rs3851179 using 3,055 AD cases and 8,169 age-matched controls. The effect of 
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PICALM was only observed in samples carrying at least one copy of APOE ε4 (Jun 

et al., 2010); p = 3.4 x 10-3 in presences of APOE ε4 and p = 0.73 in absence of 

APOE ε4.  

CR1 (complement receptor 1) 

SNP rs6656401, present in an intron of CR1, has been shown to be associated with 

an increased risk of LOAD by the Lambert et al., 2009 GWAS. This association was 

confirmed by Harold et al., 2009 GWAS, with a p-value of 10-6 (OR = 1.17). Together 

these two GWAS comprise over 25,000 samples (Harold et al., 2009; Lambert et al., 

2009).  

In addition to the association with risk of LOAD, the CR1 SNP rs6656401 was also 

found to be associated with a faster rate of cognitive decline (p = 0.011) and an 

increased deposition of neuritic amyloid plaques (p = 0.009), where the significance 

was not affected by including the APOE ε4 status as a covariate (Chibnik et al., 

2011).  

CR1 encodes a major receptor of C3b, a key inflammatory protein involved in AD 

pathogenesis (Khera and Das, 2009). It has been postulated that CR1 may be 

involved in the process of A clearance through mediating complement-driven 

phagocytosis, which may in turn prevent brain damage through reducing A-induced 

neurotoxicity (Carrasquillo et al., 2010). Using hAPP transgenic mice, it has been 

shown that mice expressing sCrry (soluble complement receptor-related protein y), 

an inhibitor of C3 activation, exhibited ~2-3 folds elevated A deposition in the brains 

compared with mice without such inhibition (Wyss-Coray et al., 2002).  

Furthermore, a significant epistatic interaction between the APOE 4 and CR1 SNP 

rs6656401 has been reported (p = 9.6 x 10-3), with stronger association observed in 

carriers of the APOE ε4 (Lambert et al., 2009).  
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BIN1 (bridging integrator 1) 

A three stage meta-analysis consisting of over 35,000 samples (8,371 cases) 

identified an association of a SNP rs744373 (within ~30kb of the BIN1 gene) with an 

increased risk of LOAD (p = 1.59 x 10-11, OR = 1.13) (Seshadri et al., 2010). The 

effect of this SNP was replicated in an independent Spanish sample cohort (1,140 

AD cases and 1,209 controls) with a p-value 0.02 and an odds ratio in the same 

direction.  

BIN1 (also known as amphiphysin-2) is expressed most abundantly in the CNS and 

muscles, and appears to be involved in the endocytosis of synaptic vesicles (Cousin 

and Robinson, 2001). A study using transgenic mice found that the amphiphysin 1 

knockout mice, which cause reduction of amphiphysin 2 selectively in the brain, 

exhibited major learning deficits and increased rate of mortality (Di Paolo et al., 2002).  

ABCA7 (ATP-binding cassette transporter protein) 

The ABCA7 SNP rs3764650 was found to be significantly associated with an 

increased risk of LOAD in a combined sample cohort, consisting of over 60,000 

samples (25,900 LOAD cases and 41,584 controls) (p = 5 x 10-21, OR = 1.23) 

(Hollingworth et al., 2011).  

ABCA7 encodes an ATP-binding cassette (ABC) transporter and is abundantly 

expressed in the brain (Kim et al., 2006). ABCA7 is involved in the transfer of lipids 

and cholesterol to lipoprotein particles such as APOE and CLU.  

Although no evidence of epistatic interactions between these loci were observed, it 

does not preclude possibility of biological interactions (Hollingworth et al., 2011).  
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MS4A6A (membrane-spanning 4 domains, subfamily A, member 6A) 

A SNP (rs610932) in proximity to gene MS4A6A exhibited a significant evidence of 

association with a reduced risk of LOAD (p = 1.2 x 10-16, OR = 0.91) (Hollingworth et 

al., 2011). The marker was found within an LD block ~290kb in size. This region 

comprises six genes of MS4A gene family, which includes MS4A2, MS4A3, MS4A4A, 

MS4A4E, MS4A6A and MS4A6E.  

These genes encode for proteins which share structural similarities  all members 

comprise a transmembrane domain, suggesting that these proteins may be involved 

in synaptic cell membrane processes (Liang et al., 2001). The exact biological 

function of MS4A6A has yet to be characterised.    

CD2AP (CD2 associated protein), CD33 (sialic acid binding immunoglobin-like lecting) 

and EPHA1 (ephrin receptor A1) 

Three other genes CD2AP, CD33 and EPHA1 have also been implicated in LOAD 

pathogenesis (Hollingworth et al., 2011). Markers of these genes (rs9349407, 

rs3865444 and rs11767557) demonstrated strong evidence of association with LOAD 

which reached genome-wide level of significance (p < 1 x 10-8), albeit at a lower 

statistical significance than genes mentioned earlier (CLU, PICALM, CR1, BIN1, 

ABCA7, MS4A6A).  

Both CD33 and CD2AP encode for proteins important in communication between 

cells and transduction of molecules across the membrane (Crocker et al., 2007; 

Lynch et al., 2003). EPHA1 encodes for an ephrin receptor which has been 

previously reported to play a role in synaptic development and plasticity (Lai and Ip, 

2009).  
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Summary of genes and pathways in Alzheimer’s disease 

Identification of these genetic risk factors provides better understanding of underlying 

biological pathways and mechanisms of LOAD. Future drugs that target pathways 

highlighted by these genes enable potential development of effective treatments and 

more accurate diagnosis of AD.  

Figure 1.4 summarises the genes and pathways in Alzheimer’s disease implicated 

from recent large GWAS (Harold et al., 2009; Hollingworth et al., 2011; Lambert et al., 

2009; Naj et al., 2011; Seshadri et al., 2010). These pathways include immune 

system function, lipid and cholesterol metabolism and synaptic cell membrane 

processes and endocytosis.  

Apart from pathways elucidated from recent large GWAS, several other biological 

pathways have also been implicated in AD, including oxidative stress (Lovell and 

Markesbery, 2007), mitochondria function (Swerdlow, 2011), the insulin signalling 

pathway (Liolitsa et al., 2002; Stewart and Liolitsa, 1999) and metal homeostasis 

(Maynard et al., 2005).  

One of the main advantages of GWAS is that the genes selected are not dependent 

on pre-conceived knowledge about their function, and therefore may be able to 

highlight a more general picture of AD genetics (Lambert and Amouyel, 2011).  

In view of the genes identified by current GWAS results and the amyloid cascade 

hypothesis proposed by Hardy and Selkoe, 2002, a number of common mechanisms 

can be implicated (Figure 1.5): 

 Familial early-onset forms of AD caused by rapid accumulation of A peptides 

due to overproduction, which is associated with mutations in APP, PSEN1 

and PSEN2   
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 Late onset AD caused by subtle and insidious impaired clearance of the A 

peptides, associated with APOE, CLU, CR1, PICALM, BIN1, ABCA7 and 

potentially as yet unidentified others.  

If the hypothesis is true, there is likely an overlap of the two gene categories at 

intermediate age at onset (Lambert and Amouyel, 2011). This hypothesis requires 

further investigation.   
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Figure 1.4 Genetic risk factor and pathways in Alzheimer’s disease. Genes 

involved in each pathway are shown in red. There is a significant overlap with a 

number of genes being involved in multiple pathways. A metabolism and 

homeostasis may have a direct effect on pathways implicated in LOAD (as indicated 

by blue arrows). The familial form of AD, which occurs before age 65, is 

predominantly caused by mutations in three genes  APP, PSEN1 and PSEN2. 

(Adapted from  Morgan, 2011)  
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Figure 1.5 Summary of pathogenic events leading to EOAD and LOAD 

proposed by Hardy and Selkoe, 2002 considering new AD genes identified by 

recent large GWAS (Adapted from Lambert and Amouyel, 2011).  
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1.9 The missing heritability of LOAD 

Genome-wide association studies have been successful in identifying hundreds of 

replicable common genetic variants associated with a variety of complex diseases 

(Hindorff et al., 2009). These genetic risk factors found by GWAS greatly improve our 

understanding of the genetic basis of many complex disorders including LOAD.  

The Population-attributable fraction (PAF) is defined as the proportion of disease 

cases in a population that would be prevented if an exposure were eliminated 

(Bertram et al., 2007). Population-attributable fraction (PAF) is also known as 

population-attributable fraction of risk or population-attributable risk (Ertekin-Taner, 

2010; Lambert and Amouyel, 2011; Lambert et al., 2009).  

The Population Attributable fraction (PAF) can be calculated using the formula shown 

below (Bertram et al., 2007):  

    
  (    )

  (    )   
 

F is the frequency of the risk allele in the general population and OR is the odds ratio 

of the risk allele (Yang et al., 2003).  

The newly found LOAD genes (CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, 

CD2AP and EPHA1) were estimated to have a PAF range from 2.72% to 5.97% (Naj 

et al., 2011). The estimation of PAF must be interpreted with caution, as it is based 

on a number of assumptions, and may vary substantially between studies (Bertram et 

al., 2007).  

It has become increasingly evident that despite expanded GWAS that are capable of 

capturing most common variants with both moderate and small effects, a substantial 

fraction of the heritability of LOAD remains unaccounted for (‘missing heritability’).  
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The remaining unexplained heritability is believed to be due to a combination of 

factors:  

 additional common variants of smaller effect size (which current GWAS are 

still underpowered for detection), 

 additional common variants missed by GWAS due to incomplete coverage, 

 genetic risk caused by low frequency and rare variants, which are not 

detectable by GWAS, 

 synthetic associations attributable to rare variants and 

 epistasis (known as gene-gene interaction). 

Other factors such as copy number variations (CNVs) and gene-environmental 

interactions could also play a role in AD pathogenesis and contribute to the missing 

heritability (Morgan, 2011).   

Additional common variants 

It is plausible that additional common variants are associated with risk of LOAD, but 

have not yet been discovered due to insufficient power. The sample size of a GWAS 

determines the effect size of a common variant that can be detected. Identification of 

associations with common variants of smaller effect sizes may continue to provide 

insights into the complex biological pathways involved in AD. However, identification 

of these variants is unlikely to have any immediate consequences in terms of disease 

prediction and diagnosis (Seshadri et al., 2010).  

Rare variants   

Another explanation of missing heritability is due to low frequency and rare variants, 

which occur with a frequency < 5%. The existing commercial genotyping chips for 

GWAS are not designed for capturing SNPs with a MAF less than 5%. There is 

increasing evidence that these low frequency rare variants can make a significant 
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contribution to the heritability of complex traits and diseases (Rivas et al., 2011). 

These less frequent variants are often found to have larger effect sizes than common 

variants (Bodmer and Bonilla, 2008).  

Synthetic associations 

It has been suggested that a proportion of GWAS signals could be attributable to 

casual rare variants of larger effect size due to incomplete LD with these rare 

variants (Dickson et al., 2010).  

Detection of a GWAS signal may therefore underestimate the actual effect size of the 

rare variants (Wang et al., 2010), although the actual number of common variants 

attributable to these variants is still unclear. It has also been argued that synthetic 

associations attributable to rare variants do not explain most of GWAS results (Wray 

et al., 2011).   

Genetic architecture of complex traits 

Figure 1.6 illustrates the predicted genetic architecture of complex disorders. 

According to their allele frequency and effect size, SNPs can be separated into five 

different categories:  

 common variants of large effect size,  

 common variants of small effect size,  

 low frequency variants with intermediate effect, 

 rare variants causing Mendelian diseases and  

 rare variants of small effect size.  
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Figure 1.6 Genetic architecture of complex traits. Figure summarizing the role of 

genetic variants in complex disorders by allele frequencies and their genetic risk. 

Allele frequency is shown on the x-axis versus odds ratios on the y-axis. Common 

variants (MAF > 0.05) can be detected through genome-wide association studies, 

whereas low frequency and rare variants may only be ascertained through direct 

genotyping and sequencing projects. (Adapted from Manolio et al., 2009)  
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Linkage analysis (using family pedigrees) is a powerful tool to map the location of 

disease-causing loci in reference to the human genome. It was one of the most 

widely used technologies preceding the GWAS era. However, linkage analysis is not 

capable of identifying SNPs with small effect size. APOE 2 and 4 are examples of 

common variants with large effect size OR = ~4 (Bertram, 2011).  In very few cases 

however do common genetic variants exist that have a high risk (i.e. OR > 4) 

associated with complex disorders.  

The vast majority of common variants have shown to exert only a small effect size 

with OR ranges 1.1-1.5. These odds ratio have been consistently observed through 

studies of many complex disorders (Bodmer and Bonilla, 2008). These genetic loci 

are difficult to detect using pedigree information. The advent of GWAS enabled 

systematic detection of the associations between common variants and disease 

given that a large enough sample size is utilized to provide adequate power of 

detection (Figure 1.6).  

There is emerging evidence that less frequent and rare variants may contribute to a 

significant proportion of the missing heritability of LOAD. Although these variants are 

only present in a small proportion of the population, the effect sizes (of these variants) 

are often found to be higher than the association with common variants (Figure 1.6).  

Rare variants of small effect size may also exist (Figure 1.6). This type of variant is 

difficult to detect by any genetic means. Methods to detect these rare variants require 

further exploration.  

Epistasis 

One of the possible explanations of the missing heritability is epistasis. It is a 

measure of the interaction between two or more genetic loci (synergistic or 

antagonistic) contributing to the risk of disease. PLINK (‘--epistasis’ or ‘--fast-

epistasis’) (Purcell et al., 2007) and synergy factor analysis (Combarros et al., 2009) 
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are among the methods being widely used for assessing epistatic interactions 

between genes. Epistatic interactions between SNPs in the regulatory regions of IL6 

and IL10 have been reported, and have been shown to be associated with a reduced 

risk of AD (Infante et al., 2004). This interaction was replicated in a follow-up study 

(Combarros et al., 2009).  

 

1.10 Summary 

Alzheimer’s disease is the most common form of dementia in the elderly, accounting 

for approximately two thirds of all dementia cases (Blennow et al., 2006). With the 

average life expectancy continuing to rise (i.e. the population ageing), the number of 

AD cases is likely to increase in the near future. The number of individuals suffering 

from AD is expected to rise to ~115.4 million worldwide by 2050 (Ferri et al., 2009).  

Genetic research in a small proportion (~1% to 2%) of AD patients with an autosomal 

dominant pattern of inheritance has contributed greatly to our understanding of AD 

pathogenesis by identifying causal mutations in three genes - APP, PSEN1 and 

PSEN2 (See Amyloid Cascade; Introduction 1.5 for details). These AD cases are 

known as FAD, as they show AD symptoms early in life (before the age of 65) 

(Bertram and Tanzi, 2008).  

LOAD represents the vast majority of AD cases, and their development is likely to be 

affected by both genetic and environmental factors. This non-Mendelian form of AD 

is still highly heritable, with an estimated heritability ranging from 60% to 80% (Gatz 

et al., 2006). Mutations in genes causing the early onset form of Alzheimer’s disease, 

including APP, PSEN1 and PSEN2, do not appear to be strongly associated with the 

risk of late onset form of Alzheimer’s disease (Bertram, 2011).  

Apart from APOE gene, nine additional genes (CLU, PICALM, CR1, BIN1, ABCA7, 

MS4A6A, CD33, CD2AP and EPHA1) have been identified by GWAS and confirmed 
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by several replication studies as influencing the risk for LOAD (Harold et al., 2009; 

Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 2010) 

(Genetic risk factors in LOAD; Introduction 1.8). Despite these successes, there 

is increasing evidence to suggest that a large proportion of the genetic variation 

contributing to AD risk remains unidentified (Sherva and Farrer, 2011) (See The 

missing heritability of LOAD; Introduction 1.9 for details).  

Early GWAS conducted during 2007 and 2009 generally failed to produce any 

convincing results due to the lack of power (Sherva and Farrer, 2011). It is believed 

that by combining each individually underpowered GWAS power could increase thus 

allowing identification of genuine associations and previous spurious associations will 

likely diminish. This formed the basis of the study as described in Chapter 3 - 

Analysis of Genome Wide Association Study (GWAS) data looking for 

replicating signals in LOAD.  

 



 
Materials and methods 

45 
 

Chapter 2:    Materials and methods 

2.1 Study samples 

Next generation sequencing 

150 DNA samples (75 AD cases and controls) were used for next generation 

sequencing (Chapter 4). These samples came from three research centres: 

Nottingham, Manchester and Leeds (Appendix 8.1).  

Samples used for studying human ageing  

SNP rs4110518 was genotyped in 462 samples (335 AD cases and 127 controls) 

with age-at-death (AAD) information (Chapter 5). Sample IDs of these samples are 

not shown.  

All DNA samples used are part of Alzheimer’s Research UK (ARUK) collection. 

Approval was obtained from the ethics committee or institutional review board of 

each institution responsible for the ascertainment and collection of samples. Written 

informed consent was obtained for all individuals that participated in this study.  

Except the autopsy sample cohort, which were examined post-mortem, all other AD 

cases were diagnosed according to NINCDS-ADRDA (National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease 

and Related Disorders Association), DSM-IV (Diagnostic and Statistical Manual of 

Mental Disorders IV) or CERAD (Consortium to Establish a Registry for Alzheimer’s 

Disease) criteria (McKhann et al., 1984; Mirra et al., 1991).  
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2.2 Laboratory methods 

A number of laboratory methods were utilized to generate biological data for analysis 

in Chapters 4 and 5. Specifically, DNA extraction and quantitation, LR-PCR, 

agarose gel electrophoresis, BigDye® sequencing and gel extraction were utilized to 

produce DNA pools for next generation sequencing (Chapter 4). TaqMan® 

genotyping assays were used to validate and replicate SNP results as described in 

Chapter 4 and Chapter 5.   

2.2.1 DNA extraction from post-mortem brain tissues 

DNA was extracted from brain tissues (~50mg) using QIAGEN® DNeasy Blood & 

Tissue Kit according to the manufacturer’s protocol. Proteins and RNA were 

degraded by addition of 20µl protease K (20mg/ml; QIAGEN®) and 4µl RNase A 

(provided in the kit). DNeasy® mini spin columns (provided) were used to purify DNA 

by selective binding of DNA to the membrane as contaminants pass through. The 

DNA was eluted using 150µl elution buffer (supplied in the kit) and stored at 20°C 

prior to use in PCR.  

2.2.2 DNA quantitation using NanoDrop® 

DNA was quantified using NanoDrop® spectrophotometer using a standard 

laboratory protocol.   

The inability of distinguishing UV absorption of free nucleic acid from double stranded 

DNA meant that this technology is not sufficiently accurate to be used for 

experiments that require a precise DNA concentration, e.g. next generation 

sequencing library preparation, real-time PCR and DNA cloning. Alternative methods 

such as Qubit®, Quanti-iT PicoGreen® should be used instead.  
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2.2.3 Long-range polymerase chain reaction (LR-PCR) 

Primers (sense and antisense) for LR-PCR were designed using primer-BLAST 

program (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The quality of the primers 

were measured using Primer3 (v 0.4.0) (http://frodo.wi.mit.edu/primer3/) (Rozen and 

Skaletsky, 2000) and SNPcheck (v 2.0) (https://ngrl.manchester.ac.uk/SNPCheckV2) 

using default settings.  

The following primers were used for TRIM15 ‘A’ and ‘B’ amplicons: 

TRIM15 ‘A’ 

 Sense: ATGGGTGAAGGACCGTGGCT 

 Anti-sense: AGGAAAGTGCCCCAAGGCCA 

TRIM15 ‘B’ 

 Sense: AGGGGAAGGCGCCACAGTTT 

 Anti-sense: ACAGGAGAATGGGCCCCACA 

PCR amplification 

TRIM15 ‘A’ and ‘B’ amplicons were LR-PCR amplified using FINNZYMES PhusionTM 

High-Fidelity DNA Polymerase on an Applied Biosystem Veriti® 96-well thermal 

cycler.  

The PhusionTM DNA polymerase, according to the manufacturer, has the following 

advantages:  

 Allows amplification of large size DNA amplicons (up to 15kb using genomic 

DNA) 

 High Fidelity  ~50-fold more accurate than Taq DNA polymerase 

 High speed  15-30 seconds per 1 kb 

Cycling conditions used for TRIM15 ‘A’ and ‘B’ amplicons are shown in Table 2.1. 

PCR products were stored at 20°C.  
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Table 2.1 Amplification of TRIM15 gene by LR-PCR. Table showing A) cycling 

programs for TRIM15 ‘A’ and ‘B’ amplicons and B) reagents used for each of the 50µl 

reactions. The optimal annealing temperature for each amplicon (indicated by ‘*’) was 

determined by performing a temperature gradient optimisation.   

 

 

  

A) 

TRIM15 ‘A’ amplicon (1,984 bp) 

Temperature Time Cycles 

98°C 30 seconds 1 

98°C 10 seconds 

35 70.3°C* 30 seconds 

72°C 1 minute 

72°C 7 minutes 1 

10°C  Hold 

TRIM15 ‘B’ amplicon (4,935 bp) 

Temperature Time Cycles 

98°C 30 seconds 1 

98°C 10 seconds 

35 71.2°C* 30 seconds 

72°C 2 minutes and 30 seconds 

72°C 7 minutes 1 

10°C  Hold 

B) 

Reagent Concentration Volume 

Phusion HF or GC buffer 5x 10µl 

dNTPs 10mM 1µl 

forward primer 100µM 0.25µl 

reverse primer 100µM 0.25µl 

Phusion® DNA Polymerase  2U/µl 0.5µl 

DNA 50ng/µl 1µl 

Nuclease free H2O NA 37µl 

Total:  50µl 
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Optimisation of conditions for LR-PCR 

For each primer pair, the reaction was optimised using the strategy:  

 Annealing temperature was optimised by performing temperature gradients, 

57-72°C initially followed by a smaller temperature gradient according to the 

band intensity (e.g. 62-67°C). 

 Mg2+ concentration was optimised by performing a Magnesium gradient  

1.5mM, 2mM, 2.5mM, 3mM and 3.5mM.  

 Addition of dimethyl sulfoxide (DMSO) was attempted to test if it improves the 

performance of the LR-PCR; DMSO may improve the LR-PCR performance 

by inhibiting formation of any secondary structures in the DNA template and 

facilitating complete DNA denaturation.   

 

2.2.4 Agarose gel electrophoresis 

PCR products were visualised by agarose gel electrophoresis. Small 0.7% agarose 

gels (gel volume 25ml) were prepared as follows: 

 0.17g of agarose powder (Fisher Scientific®)  

 25ml 1xTAE (40mM Tris acetate, 1mM EDTA) 

 3µl of ethidium bromide (EtBr) (10 mg/ml, Pharmacia Biotech)  

Medium (50ml 1xTAE buffer, 0.35g agarose and 5µl of EtBr) and large agarose gels 

(80ml 1xTAE buffer, 0.56g agarose and 8ul EtBr) were also used when necessary.  

PCR products mixed with DNA loading buffer (Fermentas®) were subjected to 

electrophoresis together with the GeneRulerTM 1kb ladder at ~80V. The DNA was 

visualised using a UV transilluminator.  
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2.2.5 BigDye® sequencing 

Sanger sequencing was used to examine if the LR-PCR products were of the correct 

fragment (by comparing with reference human genome sequence, hg19) prior to 

DNA pooling for next generation sequencing (Chapter 4).  

LR-PCR products were purified using ExoSAP-IT® (composed of Exonuclease I and 

Shrimp Alkaline Phosphatase) and sequenced using the BigDye Terminator v3.1 

sequencing kit according to manufacturer’s recommendations. Addition of ExoSAP-

IT® facilitates removal of unincorporated dNTPs and residual primers.   

BigDye® terminator reaction premix contains essential reagents including AmpliTaq® 

DNA polymerase, deoxynucletides (dNTPs) and fluorescently labelled 

dideoxynucleotides (ddNTPs). Cycling programs and reagents used in each of the 

reactions are shown in Table 2.2.  

After the sequencing reaction, the mixture was filtered by running through Edge 

Biosystem Performa® DTR Gel Filtration cartridges to remove excess ddNTPs. The 

reaction was dried on a thermal block at 90°C. The dried DNA pellets were stored at 

20°C prior to capillary electrophoresis using an ABI® 3130 Genetic Analyser. 

Capillary electrophoresis was performed by the Molecular Diagnostic Lab at the 

University of Nottingham.   
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Table 2.2 Sequencing using BigDye® (v 3.1). Table showing A) cycling conditions 

and B) reagents used for the ExoSAP-IT® treatment and BigDye® sequencing 

reactions.  

 

 

  

A) ExoSAP-IT® treatment 

Temperature Time Cycles 

37°C 15 minutes 1 

80°C 15 minutes 1 

10°C  Hold 

Sequencing reaction using BigDye® 

Temperature Time Cycles 

96°C 1 minute 1 

96°C 30 seconds 

25 cycles 50°C 15 seconds 

60°C 4 minutes 

10°C  Hold 

B) ExoSAP-IT® treatment 

Reagent Concentration Volume 

LR-PCR product ~200ng/µl 5µl 

ExoSAP-IT premix 100% 2µl 

Total:  7µl 

BigDye® sequencing 

Reagent Concentration Volume 

ExoSAP-IT purified PCR product  5µl 

Sequencing primer 5µM 1µl 

BigDye® terminator reaction premix 100% 3µl 

ABI® sequencing buffer 5x 1µl 

Total:  10µl 
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2.2.6 Gel extraction 

LR-PCR product was purified by gel extraction using QIAquick® gel extraction kit 

according to manufacturer’s recommendations.  

SYBR® Green (Invitrogen SYBR SafeTM DNA gel stain) was used (instead of EtBr) 

for agarose gel electrophoresis to avoid introducing damage to the DNA. The 

agarose gel was visualised using a Dark Reader® transilluminator, where the desired 

DNA band was excised from the agarose gel using a clean, sharp scalpel blade 

before being transferred into a 1.5ml Eppendorf tube. The agarose gel was 

subsequently dissolved and filtered out using the kit. The DNA was collected using 

30µl nuclease free water. The elution process was repeated, and the DNA was 

stored at 20°C.  

2.2.7 TaqMan® SNP Genotyping assay 

TaqMan® genotyping assay was supplied at 40x concentration. The assay was 

diluted to a 20x working concentration by adding one volume of 1xTE buffer (10mM 

Tris-HCL, 1mM EDTA at pH8.0).  

TaqMan® genotyping was performed using Agilent® Real-Time PCR optical 8-tube 

strips and optically clear 8-cap strips on the STRATAGENE Mx3000PTM Real-Time 

PCR System. DNA templates were diluted to 10ng/µl concentration using nuclease-

free water prior to genotyping.  

Cycling conditions and reagents used for the assay are summarised in Table 2.3. 

The data was analysed using MxPro QPCR (v 4.01) and results were exported into 

Microsoft Excel format for further analysis. TaqMan® genotyping assays are claimed 

to be highly accurate, although false positive amplifications are possible due to the 

high throughput and repetitive nature of the 5’ nuclease assay. Special laboratory 

practices are necessary to avoid false positive results (Kwok and Higuchi, 1989).  
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Table 2.3 TaqMan® genotyping assay. Table showing A) cycling program and B) 

reagents used for the TaqMan® genotyping assay on STRATAGENE Mx3000PTM 

Real-Time PCR System.  

 

  

A) 

TaqMan® genotyping assay 

Temperature Time Cycles 

50°C 2 minutes 1 

95°C 10 minutes 1 

95°C 15 seconds 
55 

60°C 1 minute 

10°C  Hold 

B) 

Reagent Concentration Volume 

TaqMan® genotyping assay 20x 1µl 

TaqMan® Universal PCR 
MasterMix 

2x 9µl 

Nuclease-free water NA 8µl 

DNA template 10ng/µl 2µl 

Total:  20µl 
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2.3 Bioinformatics tools and data analysis 

Open source bioinformatic tools have been utilized to enable a wide range of data 

analysis presented in this thesis. Where indicated, ‘In house’ Perl scripts were written 

and have been implemented to facilitate various data analysis (See Methods 2.3.2).  

A range of bioinformatics tools are described in this section, facilitating data analysis 

as described in Chapters 3, 4 and 5. Specifically, PLINK software (v1.06) was 

utilized in Chapter 3 and Chapter 5 to analyse GWAS data and produce association 

results. The Haploview program was used in Chapter 3 to produce LD plots, and in 

Chapter 5 to create the Manhattan plot. VISTA and ECR browser were utilized to 

analyse conservation and facilitating selection of conserved regions for next 

generation sequencing (Chapter 4). EIGENSTRAT was utilized in Chapter 5 to 

analyse population stratification using LOAD GWAS data. QUANTO (v1.2.4) was 

utilized to perform power calculations for the association studies in Chapter 3, 4 and 

5.  

2.3.1 PLINK 

PLINK is a powerful whole-genome association and linkage analysis toolset 

developed by Purcell et al., 2007. It has become one of the most reputable 

bioinformatic toolsets for GWAS data analysis to date. By September 2011, the 

corresponding manuscript (Purcell et al., 2007) has been cited by over 2,400 peer-

reviewed scientific papers.  

One of the advantages of using PLINK is it provides a comprehensive range of tools, 

including GWAS data manipulation, quality control, association studies (single SNP 

analysis and haplotype analysis), transmission disequilibrium testing (TDT), GWAS 

meta-analysis, epistasis, imputation and permutation. The results generated by 
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PLINK can be used directed by other bioinformatic software (e.g. Haploview) for 

further in-depth analysis.  

PLINK is operated through the command line interface as currently there is no viable 

GUI available for handling large datasets.  

PLINK file format 

A summary of PLINK input file format is shown in Table 2.4. It should be noticed that 

data stored in PED and MAP files are interlinked, genotype data stored in the PED 

file correlates to the corresponding MAP file. Therefore, any manual changes on 

these files should be avoided, as it could render the data unusable by introducing 

error.  

Missing data in PLINK is by default represented as either -9 or 0, with an exception of 

missing genotype data which is presented as 0 (zero).  
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Table 2.4 Summary of PLINK input file format. Table showing the PLINK input file 

format together with a brief description.  

File types Description 

PED and MAP 

 Standard (generic) PLINK input file format 

 PED file is comprised of six compulsory columns (Family ID, 
Individual ID, Paternal ID, Maternal ID, Sex and Phenotype) and 
variable number of genotype columns (column 7 and onwards). 

 MAP file consists of exactly four columns (Chromosome 
number, SNP identifier, Genetic distance and Base-pair 
position) 

 no headers 

BED, FAM and 
BIM 

 PLINK binary file format 

 BED files store genotype information in a compressed binary 
format, which is unreadable using a text editor. 

 The FAM file consists of exactly six columns as in the PED file. 
The BIM file includes the first four columns of the MAP file plus 
two additional columns showing the corresponding SNP 
genotypes. 

 no headers 

PHENO 

 PHENO file is able to store multiple alternative phenotypes for 
analysis without modification of the PED file or FAM file.  

 The PHENO file consists of two compulsory columns (family ID 
and individual ID) and variable number of phenotype columns.  

 The PHENO file is included in the analysis by specifying ‘--
pheno’ in PLINK.  

 Requires headers, two compulsory columns headers, FID and 
IID, representing family ID and individual ID 

COVAR 

 Stores covariate information to be included in PLINK analysis.  

 The covariate (COVAR) file consists of two compulsory columns 
which are identical to the first two columns of the PHENO file, 
and variable number of covariate columns.  

 The COVAR file is included in the analysis by specifying ‘--
covar’ in PLINK. 

 Requires headers, two compulsory columns headers, FID and 
IID, representing family ID and individual ID 
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It is recommended to convert the standard PLINK format (PED and MAP) to the 

binary format when handling large datasets. Binary files are much smaller in file size, 

PLINK analysis performs much quicker using the binary input format.  

PLINK analysis including alternative phenotype and covariates is specified by ‘--

pheno’ and ‘--covar’ followed by the PHENO and COVAR file names, respectively.  

One of the utilities of using PHENO file is to perform expression quantitative trait loci 

(eQTL) analysis, where hundreds of thousands of gene expression data could be 

analysed all at once. 

Adjusting for covariates is crucial in GWAS analysis, as it ensures that the 

association signal identified is not due to underlying biases such as age, gender, 

centre of study and other sample heterogeneity.  

By default, PLINK represents data using number codings as listed: 

 Phenotypes  1 and 2 represents controls and cases 

 Gender  1 and 2 represents males and females 

 Genotypes  1 and 2 represents minor and major allele (also coded as A, T, 

C or G) 

Case/Control association analysis 

PLINK provides a number of methods for case/controls association studies. The most 

commonly used method ‘--assoc’ performs allelic dosage analysis (Wald test) on 

query SNPs. For example: 

plink --file mydata --assoc 

The command generates an output file ‘plink.assoc’ which contains the following 

fields: 

 CHR - chromosome number,  
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 SNP - SNP ID,  

 BP - base-pair position,  

 A1- the minor allele based on whole sample,  

 F_A - frequency of this allele in cases,  

 F_U - frequency of this allele in controls,  

 A2 - the major allele,  

 CHISQ - chi-squared statistics on 1 degree of freedom,  

 P - asymptotic p-value and  

 OR - estimated odds ratio.  

Optional addition of ‘--ci 0.95’ within the command line calculates 95% confidence 

interval for ORs (odds ratios).  

‘--assoc’ examines potential association much faster than logistic regression analysis; 

however it does not allow inclusion of covariates.  

Logistic regression analysis 

Logistic regression analyses are more sophisticated and allow inclusion of covariates. 

The logistic regression model is more robust than linear regression as it can handle 

non-linear effects and it does not make assumptions on distribution of the 

explanatory variables (e.g. a normal distribution) (Bewick et al., 2005).  

Logistic regression analysis still has a number of inbuilt assumptions, and requires 

much larger sample sizes than a standard linear regression analysis. In addition, the 

logistic regression analysis in PLINK assumes the phenotype (e.g. disease trait) is 

binary. Therefore, the analysis is quantitative rather than qualitative. This is 

considered a limitation of logistic regression analysis, as taking into account the 

severity of AD and disease related endophenotypes is likely to further increase power 

enabling identification of genuine disease associated variants (Plomin et al., 2009) 

that could be missed using the current approach.  
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The analysis can be implemented with the following command line: 

plink --file mydata --logistic --covar myfile.covar --covar-name 

age,sex,APOEstatus 

‘--file’ specifies the data files to be analysed as ‘mydata.ped’ and ‘mydata.map’. ‘--

logistic’ indicates the logistic regression analysis is utilized in the analysis. ‘--covar’ 

and ‘--covar-name’ specifies the covariate terms. 

Association analysis using different genetic models 

Different genetic models can be specified and analysed using logistic regression as 

shown: 

 Additive inheritance model: ‘--logistic’ on its own 

 Dominant inheritance model: ‘--logistic --dominant’ 

 Recessive inheritance model: ‘--logistic --recessive’ 

An alternative way to include different genetic models in the analysis is to use ‘--

model’ command, though this does not allow adjusting for covariates. The following 

tests are provided in PLINK ‘--model’ command: 

 Cochran-Armitage trend test 

 Genotypic (2 df) test 

 Dominant gene action (1 df) test 

 Recessive gene action (1 df) test 

GWAS Quality controls (QC) 

SNPs and individuals can be filtered out from an analysis by addition of QC filters in 

the command line. ‘--geno’ and ‘--mind’ exclude SNPs and individuals according to 

genotyping rate. ‘--maf’ excludes SNPs below a user-defined minor allele frequency. 

‘--hwe’ removes SNPs from the analysis according to Hardy-Weinberg Disequilibrium 
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p-values. Furthermore, in studies including families pedigrees, Mendelian errors can 

be detected by ‘--me’ command. 

Combinations of these methods provide flexibility and control in response to various 

GWAS data analysis types.  

Quantitative Trait analysis 

Two main methods are provided in PLINK to perform quantitative trait analysis, ‘--

assoc’ and ‘--linear’. The PLINK program automatically engages a quantitative trait 

analysis when it encounters integers other than 0, 1, 2 or -9 in the sixth column of the 

PED file.  

The ‘--assoc’ command does not take into account covariates in a quantitative trait 

analysis, conversely ‘--linear’ does allow covariates (‘--covar’ and ‘covar-name’) to be 

included in the analysis. 

The versatility of PLINK also allows for different genetic models to be explored in 

quantitative trait analysis, as previously described.   

PLINK gene report function 

The PLINK gene report function can annotate SNPs according to their base pair 

coordinates relative to genes. Two files are required in this analysis, a PLINK results 

file (e.g. ‘.assoc’) and a file containing coordinate information of known human genes.  

The gene list (glist-hg18), which consists of ~20,000 human genes was downloaded 

from the PLINK website at http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml. This 

list consists of four columns - Chromosome, Start base pair position, Stop base pair 

position and Gene name. This facility can be implemented using a similar command 

to the below example: 
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plink --gene-report results.assoc.linear --gene-list glist-hg18.txt --pfilter 0.05 

--gene-list-border 20 --out outputfile 

 ‘--pfilter 0.05’ specifies that the association p-value threshold is equal to 0.05, 

indicating that the output would only present SNPs with p-value less than 0.05. ‘--

gene-list-border 20’ indicates the maximum distance between the SNP and the 

reported gene is equal to 20kb.  

A PERL program was written (Appendix 8.4.4) as a plug-in to complement the 

PLINK gene report function. The program tabulates the PLINK output into a format 

enabling further manipulation and analysis (Figure 2.1).  

This PERL program consists of two files ‘gene_report_plugin.pl’ and ‘modules.pm’. 

The program can be executed via the command line interface ‘perl 

gene_report_plugin.pl’ or the appropriate file icon. Input file name can be specified by 

editing ‘gene_report_plugin.pl’ file using a standard text file editor, such as WordPad 

in Windows. Results are provided in a tab-delimited text file format, which can be 

accessed via conventional statistical tools (Figure 2.2).  
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Figure 2.1 PLINK gene-report function output. Only SNPs that pass the user input filters are listed (i.e. ‘--pfilter 0.05’ and ‘--gene-list-
border 20’). Gene details are shown together with corresponding SNPs (DIST - distance between the SNP and start of the gene, CHR - 
chromosome number, SNP - rs identifier, BP - base pair position, A1 - minor allele code, TEST - model of test, NMISS - number of non-
missing individuals, OR - odds ratio, SE - standard error, L95 and U95 - lower and upper 95% confidence interval, STAT - association 
test statistics, P - p-value of the association). The corresponding genes (shown in bold) are automatically sorted in alphabetical order.  



 
Materials and methods 

63 
 

 

 

 

 

 

Figure 2.2 Output of the PERL program for PLINK ‘gene-report’ function. The 

results from PLINK output. Figure 2.1 are converted into a simplified tabulated 

format. SNP - SNP Identifier, CHR - chromosome number, BP - base pair position 

are shown together with P - p-value of the association, OR - odds ratios, GENE - 

gene name, LENGTH - size of the gene and DIST - distance between the SNP and 

the start position of the corresponding gene (negative values indicate that SNP is 

located before the start position of the gene).   
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2.3.2 PERL programming language 

PERL is a programming language that has been widely utilized for the development 

of novel bioinformatic applications. Analysis of large-scale genomic data is often 

challenged by the lack of suitable bioinformatic programs. Writing ‘in house’ 

bioinformatic tools not only permits exploiting new ideas, but also reduces time for 

tasks which would otherwise be laborious.  

In this thesis, four Perl programs were developed ‘in house’ for the following 

calculations: 

 Determination of common SNPs between different genotyping chip platforms 

(e.g. Illumina HumanHap300 versus Illumina HumanHap610, which is a pre-

requisite step for principal component (PC) analysis (as described in 

Methods 2.3.9). The program was documented in Appendix 8.4.1.  

 Calculation of the number of independent tests in GWAS to enable an 

accurate multiple testing adjustment for GWAS analysis (as described in 

Methods 2.3.2). Appendix 8.4.2.  

 A GWAS meta-analysis tool taking into account LD, shown in Chapter 3. 

Appendix 8.4.3.  

 A plug-in for PLINK gene-report function (as described in Methods 2.3.1). 

Appendix 8.4.4.  
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2.3.3 Calculation of the number of independent tests 

GWAS has given insights into the aetiology of many complex diseases including 

LOAD. However, due to the large number of SNPs tested all at once, apparently 

‘significant’ findings may arise simply due to chance. However, the majority of these 

findings are likely to be false positives. Thus a very stringent significance threshold is 

necessary to provide confidence in the findings. For instance, in a GWAS using 

500,000 independent markers, 25,000 would be expected to show a nominal p-value 

< 5 x 10-2 by chance alone and five out of this 25,000 could be significant with p-

values < 1 x 10-5. The most widely used methods for solving this multiple testing 

issue is to use Bonferroni correction, where it suggests that if ‘n’ independent tests 

are carried out, the significance level for the entire series of tests is equal to the p-

value of a single test divided by ‘n’. The significance threshold of p = 5 x 10-8 has 

been widely used to infer a genuine association in GWAS (Bertram et al., 2008).  

It is generally believed that Bonferroni correction is overly conservative in GWAS 

findings (Sherva and Farrer, 2011). A p-value of 5 x 10-8 is equivalent to a p-value of 

0.05 after a Bonferroni correction of 1,000,000 independent tests, whereas early 

GWAS only possessed ~500,000 SNPs (Affymetrix 500K chip) or ~610,000 SNPs 

(Illumina 610 chip). Second, due to the existence of LD between SNPs on these 

genotyping chips, a large number of SNPs are not independent. Taken together, it 

implies that a SNP with p-value > 5 x 10-8 may well harbour genuine associations.  

Linkage disequilibrium (LD) measures the probability that alleles at two loci are      

co-inherited, the LD value is affected by genetic recombination (Wray et al., 2011). 

A more accurate Bonferroni correction p-value threshold can be generated using the 

exact number of independent tests, where multiple SNPs are counted as a single 

independent test if they are in perfect LD (i.e. with r2 = 1). It is conceivable that using 

imperfect proxies (r2 < 1) is likely to further reduce the number of independent test. 
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The results, however, must be interpreted with caution, as lowering the LD r2 value 

will likely introduce errors. The relationship between the LD r2 value and the amount 

of noise contributing to the calculation of genome wide significance threshold 

requires further investigation.   

In order to calculate the exact number of independent test, SNPs genotyped on 

GWAS chips were extracted from the HapMap dataset using ‘--extract’ and ‘--make-

bed’ command. Within this file, SNPs in perfect LD are ascertained using the 

following PLINK commands: 

plink --bfile ‘file’ --r2 --ld-window-kb 1000 --ld-window 99999 --ld-window-

r2 1 --out ‘file.ld’ 

‘--r2’ is the command for calculating r2 value of LD. ‘--ld-window-kb 1000’ indicates 

the calculation is undertaken within 1Mb distance of index SNPs saved in the input 

file. ‘--ld-window 99999’ specifies the maximum number of pair-wise combinations to 

be calculated for each SNP is 99999. ‘--ld-window-r2 1’ indicates the LD r2 threshold 

is equal to 1.  

The LD r2 values calculated using PLINK are based on haplotype frequencies 

estimated via the Expectation Maximisation (EM) algorithm.   

Given that any two SNPs with their base-pair positions more than 1 Mb apart highly 

unlikely to be in perfect LD, the calculation is conducted within a window of 1Mb 

either side of the index SNP.   

A PERL script (Appendix 8.4.2) was written to calculate the number of LD clusters 

and the number of SNPs in perfect LD. The number of independent tests was then 

calculated using the formula: 
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The PLINK output file (.ld) was used for this calculation using this PERL script. The 

genome-wide significant thresholds were calculated based on the number of actual 

independent tests. This approach has been used in studies described in Chapter 3 

and Chapter 5.  
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2.3.4 Linkage disequilibrium analysis 

LD patterns dramatically increase the coverage of SNPs chips used in GWAS. In 

cross-platform meta-analysis, LD further increases the number comparable SNPs 

between different studies.  

There are two ways of measuring the strength of LD - r2 and D’. r2 is more frequently 

used in comparison of SNPs with similar allele frequencies, whereas D’ is often used 

when assessing the relationship between common and rare variants (Wang et al., 

2010; Wray et al., 2011).  

The r2 value is considered more stringent than D’. A LD value of r2 equal to 1 

produces a D’ value also equal to 1, whereas if LD value D’ equal to 1, r2 value can 

range from close to 0 to 1. 

The value of D’ is not affected by the difference in allele frequencies between two 

SNPs. Measures of the linkage between two SNPs can be assigned into four 

categories - Perfect LD, Complete LD, Moderate LD and no evidence of LD.  

CandiSNPer 

CandiSNPer is a web based bioinformatic application which allows efficient search of 

SNP LD patterns based on user-specified parameters (input SNP rs number, LD r2 

value, output window sizes and population sizes), and simultaneously annotates 

tagged SNPs, which are in LD with the index SNP (initial input SNP), based on its 

functions (Schmitt et al., 2010).  

CandiSNPer automatically categorize SNPs into different functional classes, and 

annotates them in different colours. The program can be accessed through the 

website http://www2.hu-berlin.de/wikizbnutztier/software /CandiSNPer. 
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Default functional classes in CandiSNPer are: 

Class 1: Stop lost, Stop gained, Frameshift 

Class 2: Nonsynonymous coding, Splice site, Essential splice site 

Class 3: Synonymous coding, 5’ UTR, 3’UTR, Upstream, Downstream 

Class 4: Intronic, Pseudogene 

Class 5: Intergenic 

Class 6: Start SNP: rs number 

CandiSNPer directly retrieves the latest version of SNP data (in real time) from the 

Ensembl database. It calculates both LD r2 and D’ values and provides the results in 

a graphical HTML format. Furthermore, CandiSNPer automatically predicts and 

highlights the LD block where the index SNP is located.  

 

SNAP (SNP Annotation and Proxy Search) 

SNAP is a web based bioinformatics tool for assessment of LD between SNPs 

(Johnson et al., 2008). The SNAP program is accessible at 

http://www.broadinstitute.org/mpg/snap/ldsearch.php. 

It provides an efficient method to retrieve proxies for SNPs under investigation. The 

LD values between SNPs are calculated using the HapMap and pilot 1000 genome 

data. Furthermore, SNAP provides a function to graphically represent a ‘regional LD 

plot’ for use in publications.  
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2.3.5 Haploview 

Haploview is a bioinformatic program designed to compute linkage disequilibrium 

statistics and population haplotype patterns using a wide range of genotype data 

input formats (Barrett et al., 2005). The software is written and operated within the 

Java scripting language. 

Haploview has been widely used for genetic studies, including association studies, 

haplotype analysis, and calculation of SNP coverage in GWAS using the Haploview 

‘tagger’ program.  

Generation of a Manhattan Plot 

A Manhattan plot is a useful method to visualise the results of a GWAS, facilitating 

the identification of associated SNPs with disease or traits of interest.  

Data in PLINK format was loaded into the Haploview program using the ‘Locus 

Information File’ input box. Parameters can be adjusted using the pop-up window 

after clicking the ‘Plot’ button. The following parameters were adjusted: 

 ‘chromosomes’ was selected in ‘x-axis’ dropdown list 

 ‘p’ was selected in ‘y-axis’ dropdown list 

 ‘-log10’ was selected in ‘scale’ dropdown list 

 ‘>’ was selected in ‘suggestive (blue line)’ dropdown list and 4.3 was inputted 

 ‘>’ was selected in ‘significant (red line)’ dropdown list and 7.3 was inputted 

All other parameters were in default setting.  

The appearance of the Manhattan plot could be adjusted via the ‘properties’ option 

provided. An example Manhattan plot is shown in Figure 2.3 using the Mayo GWAS 

data (Carrasquillo et al., 2009). The x-axis and y-axis represents chromosomal 

position and -log10GWAS (p-value), respectively.  
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Figure 2.3 Manhattan plot depicting GWAS output using LOAD GWAS data. The 

data consists of 1,998 individuals (799 LOAD cases and 1,199 controls) and 313,330 

SNPs. Chromosomal position is shown on the x-axis versus -log10 GWAS p-value on 

the y-axis. Red and blue horizontal lines represent p-value threshold 5 x 10-8 and 5 x 

10-5, respectively. SNPs are represented by dots highlighted in different colours 

according to chromosomal locations. A series of green vertical dots represents SNPs 

in LD with APOE 4 genotypes. The plot is shown for illustrative purposes only, and 

has not been used for actual studies.  
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Haploview ‘tagger’ program 

The Haploview ‘tagger’ program is powerful tool to estimate the coverage of SNPs 

typed on a GWAS chip with respect to all known SNPs.  

The HapMap genotype data release #24 was used in this calculation. Data in 

HapMap format was loaded into the Haploview program using the ‘browse’ button 

provided. The ‘tag’ and ‘non-tag’ SNPs were selected using tick boxes - ‘force include’ 

for ‘tag’ SNPs and ‘force exclude’ for ‘non-tag’ SNPs.  

The coverage was calculated based on the number of SNPs (within the specified 

genome region) which are captured by the ‘tag’ SNPs. Genome regions were 

specified by selection of all SNPs within these regions. Selecting SNPs was 

undertaken using ‘capture this allele?’ tick boxes provided.  

A SNP was defined as being captured by the ‘tag’ SNP if the two SNPs showed a 

pairwise LD r2 ≥ 0.8. Other parameters were in default.  

An example of Haploview ‘tagger’ program output is demonstrated in Figure 2.4. In 

the example, two SNPs were selected as ‘tag’ SNPs, which captured 18% (13 out of 

69) SNPs with r2 ≥ 0.8. 56 SNPs have not been captured. 
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Figure 2.4 Haploview ‘Tagger’ program output. Two SNPs selected as ‘Tests’ 

(rs12359570 and rs7079104) captured SNPs listed as ‘Allele captured’. The ‘tagged’ 

SNPs are listed in black font, and ‘untagged’ SNPs are in red font. This figure is 

shown for illustrative purposes only.  
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Generation of a Haploview LD plot 

The Haploview LD plot has been widely used in genetic studies to interpret 

association study results, e.g. if two SNPs are in the same LD block, the association 

observed with one SNP could be in fact due to LD with the other functional SNP 

which is showing an effect.  

Data were loaded into Haploview using the same method as mentioned earlier. SNPs 

to be included in the LD plot were selected using the tick boxes provided. The LD plot 

is shown by simply selecting the ‘LD plot’ tag.  

Haploview provides three different algorithms for estimating LD blocks:   

 ‘confidence intervals’ (the default setting)(Gabriel et al., 2002),  

 ‘Four Gamete Rule’ (Wang et al., 2002) and  

 ‘Solid Spine of LD’ (Barrett et al., 2005).  

An example LD plot is shown in Figure 2.5. Colour of each rhombus represents 

strength of LD between SNPs: 

 Red - perfect LD, reflected by both r2 and D’ values equal to 1. Genotypes in 

one SNP perfectly inform the genotype of the other. 

 Blue - complete LD, where D’ value equal to 1 and r2 < 1. Complete LD refers 

to a scenario where two SNPs possess a significantly different MAF, and the 

alleles of the two SNPs are coupled as much as is possible given the different 

allele frequencies (Wray et al., 2011).  

 Light red (or pink) - moderate LD, where both r2 and D’ value are less than 1.  

 White - the two SNPs are independent. 
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Figure 2.5 Haploview LD plot. The strength of LD was represented by different 

colours (red - perfect LD, blue - complete LD, pink - moderate LD and white - no 

evidence of LD). The genomic region is represented by the horizontal bar shown at 

the top, and the physical distance between SNPs are as indicated by connecting 

solid lines. This LD plot is shown for illustrative purposes only and has not been used 

for actual studies.  
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2.3.6 Conservation analysis 

Both VISTA browser (Frazer et al., 2004) and Evolutionary Conserved Regions (ECR) 

browser (Ovcharenko et al., 2004) are designed to examine conservation between 

the human genome and the genomes of vertebrate animal species (such as mouse, 

rat, chimpanzee, rhesus monkey, dog, cow, opossum, chicken, frog, zebrafish).  

Animals such as mouse, rat and rhesus monkey or chimpanzee are the most widely 

used animal species for studying conservation, likely contributed by the fact that mice 

and rats are the standard laboratory animals, whereas monkey and chimpanzee 

share high degree of homology with human.  

The conservation scores are pre-computed for both VISTA and ECR browsers, 

allowing rapid retrieval of data from them both.  

SNPs that fall in a conserved region are considered more likely to be functional than 

anonymous polymorphisms (Carrasquillo et al., 2009). This is also supported by the 

fact that regions such as exons and untranslated regions (UTRs) are more likely to 

be conserved than introns and intergenic regions.  

Both VISTA and ECR browsers are implemented in Java programming language. 

They share a high degree of similarity such as both providing very similar graphical 

user interfaces (GUI). Sequences and annotation data utilized in the ECR browser 

are directly downloaded from the UCSC Genome Browser in real-time.  

VISTA browser 

The VISTA browser can be accessed via the website http://pipeline.lbl.gov/. For 

TRIM15 gene analysis (as described in Chapter 4), ‘Vertebrate -> Human -> Mar. 

2006’ was selected in the drop-down list, and base pair coordinates ‘chr6:30237972-

30251445’ (NCBI36/HG18) was entered in the ‘position’ input box. The coordinates 
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were adjusted in order that that flanking regions of the gene are included in the 

analysis. The following parameters were adjusted:  

 Animal species ‘Rhesus, Dog, Horse, Mouse, Rat and Chicken’ were selected 

using the ‘select/add’ dropdown list. The actual sequence alignments 

between human genome and animal genome were retrieved via the 

‘alignment’ icon.  

 The range of the conservation score was adjusted to between 50% and 100% 

using ‘minimal y’ and ‘maximal y’ input boxes provided.   

 The significance threshold was adjusted to 70% using the ‘con identity’ input 

box.  

All other parameters were in default. 

With the default setting, conservation scores exhibited by the software are based on 

alignments of 100 nucleotide bases at a time. At each new chromosomal position, 

the score is recomputed by shifting one nucleotide. The final conservation plot is 

represented in the form of a curve. Conserved genome regions are automatically 

highlighted by the software in different colours.   

ECR browser 

The ECR browser can be accessed via the website http://ecrbrowser.dcode.org/. 

Genomic coordinates were input using the dropdown list and input boxes provided. 

Parameters were adjusted using a similar method as for the VISTA browser.  

A unique feature of ECR browser is it highlights conserved regions with clickable 

rectangles (in pink colour). Clicking these rectangles provides access to detailed 

percentage identity, corresponding sequence alignment, and a hyperlink to predict 

transcription factor binding sites within this region.  
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2.3.7 Power Calculation for SNP discovery 

The power of a statistical test is defined as the probability that it will correctly lead to 

the rejection of a false null hypothesis. In SNP discovery, it refers to the probability of 

detecting a SNP with given minor allele frequencies (MAF).  

Power calculations were performed to calculate sample sizes required in order to 

detect a SNP. Sequencing of a single chromosome provides a probability of 0.01 to 

detect a SNP with MAF of 0.01. This is represented as P[detection] = 0.01. 

Consequently, P[non-detection] = 0.99.  

If two chromosomes are sequenced, P[detection] and P[non-detection] are shown as 

follows: 

                                                 

                             

If ‘n’ chromosomes are sequenced, then 

                     

                      

If 95% power is required, then 

                           

Therefore, 

  
         

         
     

Therefore, in order to detect SNPs with MAF 0.01 with 95% power, sequencing of 

298 chromosomes (i.e. 149 individuals) are necessary. The following formula has 

been used to calculate sample size (n) with any specified power and MAFs.  

  
    (       ) 

    (     ) 
 

The 95% power shown here is for illustrative purpose only, rather than what has 

actually been used in the study.  
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2.3.8 Power calculation for detecting an association 

QUANTO (v1.2.4) is a bioinformatics application designed to calculate power (or 

sample size required to achieve certain power) for genetic based association studies. 

Three statistical models are provided in QUANTO, the main effects caused by genes, 

gene-environment interaction and gene-gene interaction. The program provides GUIs 

allowing modification of input parameters. 

The gene-environment interaction model was utilized, as LOAD is affected by both 

genetic and environmental factors (Avramopoulos, 2009). The model ‘gene-

environment interaction’ was selected (via ‘Parameters -> Outcome/Design -> 

Disease’). 

QUANTO requires mandatory configuration of four groups of parameters: ‘Gene’, 

‘Environment’, ‘Outcome Model’ and ‘Power’ (Figure 2.6). These parameters must 

be adjusted in order.  

‘Gene G’ (Genetic effect parameters used in this instance) Figure 2.6a 

 Allele frequency: 0.01- 0.05; Increments: 0.01 

 Inheritance mode: Log additive 

 Susceptibility frequency: generated by the software from the allele frequency 

and inheritance model specified 

‘Environment’ Figure 2.6b 

 Population prevalence: 0.24 (representing an environmental component of 

LOAD equal to 0.24) 

‘Outcome Model’ Figure 2.6c 

 Population risk: 0.12 (an average risk of LOAD estimated between 65 to 100 

years of age). 

 Genetic effect size: 2 (represented by ORs) 
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 Environmental effect size: 1.2  

 Gene-environmental interaction: no interaction was assumed 

 OR summary: computed based on the inputs.  

‘Power’ Figure 2.6d 

 Sample size: represents the number of case-control pairs (75 was used as 

this represents the number of AD/Control samples analysed in Chapter 4) 

 Type I error rate: 0.05 (maximum tolerated type I error) 

 Perform 2 df test: yes (enables calculation of power taking into account 

effects from both genetic and environmental factors) 
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Figure 2.6 Input dialogues for performing power calculation using QUANTO (v 

1.2.4). Four input dialogues windows: ‘Gene G’, ‘Environment’, ‘Disease Risk 

Parameters’ and ‘Power’ are shown with example input.   
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2.3.9 Population stratification analysis 

EIGENSTRAT 

The association identified in a case/control or quantitative trait GWAS analysis could 

be due to underlying population substructure (i.e. population stratification) and 

therefore must be considered in downstream analysis.  

EIGENSTRAT is a bioinformatic program for calculation of heterogeneity between 

samples according to SNPs typed on GWAS chip platforms (Price et al., 2006). The 

software evaluates all possible systematic bias of allele frequencies between 

different GWAS datasets and presents these differences in the form of principal 

components (PCs). These PC values calculated can be adjusted and controlled in a 

standard logistic regression (or linear regression) analysis by including them as 

covariates. PC analysis reduces the genotype data to a number of dimensions, 

defined as the top eigenvectors of a covariance matrix between samples (Price et al., 

2006).  

EIGENSTRAT estimates genetic outliers, which are defined as any individual whose 

ancestry is at least 6 standard deviations (SD) from the mean on one of the top ten 

axes of variation. Genetic outliers are often an indication of individuals carrying 

suspicious genotypes possibly due to genotyping errors.  

Genomic control inflation factor (λ), a representation of overall inflation of association 

p-values, can be calculated using EIGENSTRAT. This inflation could be due to 

variety of QC issues, including population stratification, centre effects and genotyping 

errors.   

Reference datasets are required by EIGENSTRAT to provide a baseline for the 

analysis, HapMap data release 23 was used to fulfil this requirement. These datasets 
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are publicly available from HapMap (The International HapMap Consortium, 2003), 

three populations were downloaded are shown:  

 CEU founders (release 23, 60 individuals, filtered 2.3 million SNPs) - US Utah 

population with Northern and Western European ancestry (samples collected 

in 1980 by the Centre d’Etude du Polymorphisme Humain CEPH). 

 JPT + CHB founders (release 23, 90 individuals, filtered 2.2 million SNPs) - 

45 unrelated Japanese in Tokyo, Japan, and 45 unrelated Han Chinese in 

Beijing, China.  

 YRI founders (release 23, 60 individuals, filtered 2.6 million SNPs) - Yoruba 

people in Ibadan, Nigeria.  

The filtered HapMap file included SNPs with MAF greater than 0.01 and genotyping 

rate greater than 0.95.  

Data preparation for PC analysis 

To ensure the PCs calculated (representing population stratification) were not 

affected by a large number of SNPs which are in LD, it is essential to create a LD 

pruned GWAS dataset (including both study samples and HapMap samples). It 

should be emphasized that it is not essential to use any specific set of SNPs since 

common SNPs are in LD with each other. An accurate estimation of PCs requires a 

minimum of 20,000 SNPs on the chip (Price et al., 2006).  

The common SNPs between different GWAS datasets and HapMap data #23 were 

determined using an ‘in house’ PERL program as described in Methods 2.3.2. Prior 

to analysis using EIGENSTRAT, the HapMap CEU population dataset were pruned 

using the following commands in PLINK: 

plink --bfile hapmap_CEU_r23a_filtered --extract MayoSNPs.txt --make-bed --

out hapmapCEUr23aM 
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‘--bfile’ indicates the input PLINK files are in binary format. ‘--extract MayoSNPs.txt’ 

extracts all common SNPs which were stored in the ‘MayoSNPs.txt’ file. ‘--make-bed’ 

specifies the output file (in PLINK binary format), and ‘--out’ specifies the output file 

name.  

A LD pruned dataset was generated using the following command: 

plink --bfile hapmapCEUr23aM --indep-pairwise 1500 150 0.2 --out 

hapmapMP 

‘--indep-pairwise 1500 150 0.2’ is the main method for pruning out SNPs with 

pairwise LD r2 value greater than 0.2 across sliding windows (window size of 1500 

SNPs and 150 SNPs to shift the window). This command generated two files 

‘hapmapMP.prune.in’ consists of LD pruned SNPs, whereas ‘hapmapMP.prune.out’ 

file is comprised of all remaining SNPs (which have been pruned out).  

Each of the GWAS datasets and three HapMap datasets (as mentioned earlier) were 

subject to pruning using the LD pruned SNPs. Commands used to prune HapMap 

data CEU population are shown: 

plink --bfile hapmap_CEU_r23a_filtered --extract hapmapMP.prune.in --

recode12 --out CEU_PR 

plink --file CEU_PR --make-bed --out CEU_PRB 

‘--recode12’ indicates that all SNPs are converted into the same coding format (‘1’ 

and ‘2’ coding) in PLINK format (as described in Methods 2.3.1). ‘--make-bed’ 

indicates that standard PLINK files (PED and MAP) are converted into the PLINK 

binary format (BED, BIM and FAM). This process was repeated for the other 

populations and the GWAS dataset.  

These four files were then merged into a single file using PLINK ‘--bmerge’ command 

under ‘Consensus call’ mode. 
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plink --bfile AGE_PRB --merge-list Mergelist.txt --make-bed --out 

merge_ACCY 

‘--merge-list’ is the main method for merging binary PLINK datasets. The 

‘Mergelist.txt’ file contains three rows as shown: 

CEU_PRB.bed CEU_PRB.bim CEU_PRB.fam 

CHBJPT_PRB.bed CHBJPT_PRB.bim CHBJPT_PRB.fam 

YRI_PRB.bed YRI_PRB.bim YRI_PRB.fam  

SNPs with a genotyping rate less than 0.95 (--geno 0.05) were excluded (Methods 

2.3.1). In order to calculate PC values, it is necessary that all samples are converted 

into ‘controls’ in the merged dataset. 

 

Calculation of Eigen-values, principal components and production of an MDS plot  

The following commands were used to convert the merged dataset (in PLINK binary 

format) into EIGENSTRAT format.  

plink --bfile merge_ACCYqc --recode --out merge_ACCYqc --noweb 

../bin/convert -p par.PED.EIGENSTRAT 

File ‘par.PED.EIGENSTRAT’ contains parameters for EIGENSTRAT ‘convert’ 

command, which consists of the following lines: 

genotypename: merge_ACCYqc.ped 

snpname: merge_ACCYqc.map 

indivname: merge_ACCYqc.ped 

outputformat: EIGENSTRAT 

genotypeoutname: merge_ACCYqc.eigenstratgeno 

snpoutname: merge_ACCYqc.snp 

indivoutname: merge_ACCYqc.ind 

familynames: YES 
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The principal component analysis was executed using the following command, 

../bin/smartpca.perl -i merge_ACCYqc.eigenstratgeno -a merge_ACCYqc.snp -

b  merge_ACCYqc.ind -k 10 -o merge_ACCYqc.pca -p merge_ACCYqc.plot -e 

merge_ACCYqc.eval -l merge_ACCYqc.log 

‘-i’, ‘-a’ and ‘-b’ specify the input files in EIGENSTRAT format - genotype file 

(‘.eigenstratgeno’), SNP file (‘.snp’) and individual file (‘.ind’).‘-k 10’ indicates the 

number of PCs to be shown in the output is equal to 10. ‘-o’ specifies the output file 

for storing PC values. ’-e’ specifies the output file for storing Eigen-values.  

‘-l’ specifies name of the log file.  

Although not explicitly stated in the command line, several useful outputs were 

generated as listed: 

 a multidimensional scaling (MDS) plot in both ‘.ps’ and ‘.pdf’ format.  

 a ‘.exec’ file, which was used to calculate genomic control inflation factor () 

by EIGENSTRAT, as well as to create the covariate file for subsequent 

GWAS analysis using PLINK.  

 genetic outliers, which were calculated automatically. The results can be 

found in the ‘.log’ file.  

The significance of each PC axes were calculated using the following command 

(‘twtable’ is a pre-made reference table, which was copied into the working directory).  

../bin/twstats -t twtable -i merge_ACCYqc.eval > merge_ACCYqc.Sout 
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Calculation of genomic control inflation factor () 

Genomic control inflation factor () is an important estimator of population 

stratification. The high λ value indicates the data is inflated, and the corresponding 

analysis is more likely to generate false positive outputs as a result. A  value of 

equal or greater than 1.1 is often treated as unacceptable, and is an indication of the 

existence of significant bias in the GWAS data. EIGENSTRAT provides tools to 

calculate the genomic control inflation factor for data with and without correction of 

the PCs.  

Genetic outliers were removed from the merged data using ‘--remove’ command in 

PLINK, 

plink --bfile study_data --remove outlier.txt --make-bed --out new_dataset 

‘outlier.txt’ consists of a list of individuals identified as genetic outliers (one individual 

per row).   

In order to proceed with the calculation, the phenotype data in PLINK PED file was 

replaced with the actual phenotype values (e.g. age-at-death (AAD) values as 

described in Chapter 5). The PLINK binary format was converted into EIGENSTRAT 

format using the ‘convert’ command as mentioned.  

The ‘.pca’ file was generated using command  

evec2pca.perl 10 merge_ACCYqc.pca.evec merge_ACCYqc.ind 

merge_ACCYqc.pca 

The command is in a format:  

evec2pca.perl $k $evec $b $o, where $k, $b and $o  

$k, $b and $o corresponds to ‘-k’, ‘-b’ and ‘-o’ as previously described, and $evec 

specifies the ‘.evec’ filename generated using the same methods as described.   
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Finally, the genomic control inflation factor was calculated using command, 

../bin/smarteigenstrat.perl -I study_data.eigenstratgeno -a study_data.snp -

b study_data.ind -k 10 -p merge_ACCYqc.pca -q YES -l smarteigenstrat.log -o 

study_data.chisq 

../bin/gc.perl study_data.chisq study_data.chisq.GC 

‘-k’ specifies the number of PCs to be adjusted for calculation of λ value. ‘-o’ specifies 

the output ‘.GC’ filename. ‘-p’ specifies the input ‘.pca’ filename from previous 

analysis. ‘-q YES’ indicates that the analysis used are in quantitative trait phenotypes 

This analysis was performed iteratively, including between 0 and 10 PCs. Each 

calculation generated a single  value (11  values in total). The number of PC axes 

to be included as covariates in the GWAS analysis is ascertained when the lowest  

value was acquired after comparison of all 11  values (see Chapter 5 for details).  

 

Generate a Q-Q plot 

A Q-Q plot is useful in examining the general quality of GWAS data. Two publicly 

available methods are available to draw a Q-Q plot - the ‘estlambda’ function in 

GenABEL (v 1.6.5) (Aulchenko et al., 2007) and ‘ggd.qqplot’ function (Turner et al., 

2011). Both methods are written in R statistical programming language.  

GenABEL ‘estlambda’ is more flexible than the ‘ggd.qqplot’ method. The former 

allows the user to specify the plot range using ‘xlim’ and ‘ylim’ parameters.  

Furthermore, GenABEL ‘estlambda’ provides an approximate estimation of genomic 

control inflation factor, though not to the same accuracy of EIGENSTRAT 

calculations.   

Data was loaded into R using command: 

> mydata <- read.table(“filename.txt”, header=T) 
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‘estlambda’ function in GenABEL was executed using the following commands: 

> library(GenABEL) 

> estlambda(mydata$P) 

The following function was needed to run in R ‘ggd.qqplot()’: 

ggd.qqplot = function(pvector, main=NULL, ...) { 

o = -log10(sort(pvector,decreasing=F)) 

e = -log10( 1:length(o)/length(o) ) 

plot(e,o,pch=1,cex=1, main=main, ..., 

xlab=expression(Expected~~-log[10](italic(p))), 

ylab=expression(Observed~~-log[10](italic(p))), 

xlim=c(0,max(e)), ylim=c(0,max(o))) 

lines(e,e,col="red") 

} 

‘ggd.qqplot’ was executed by typing the following command in R: 

> ggd.qqplot(mydata$P) 
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2.4 Bioinformatics tools for next generation sequencing data analysis 

Next generation sequencing is a high-throughput sequencing technology, which 

generates enormous amount of sequencing data with a much lowered financial cost 

than traditional Sanger sequencing. The innovation in the sequencing technology 

leads to profound changes in methods of analysing the sequencing data. 

This methods section describes a number of bioinformatics tools for next generation 

sequencing data analysis as described in Chapter 4.  

2.4.1 Read alignment and basic data format and manipulation 

BioScope® (v 1.3) 

BioScope® is a commercial software package, which is part of ABI SOLiDTM 

sequencing pipeline. The ABI SOLiDTM system uses a technology known as ‘colour 

space’ system or ‘2-barcoded encoding system’, which means every single 

nucleotide is interrogated twice. The SOLiDTM system claims to be highly accurate 

with the majority of base calls achieving accuracy in excess of 99.99%.  

BioScope® (v 1.3) was used to perform conversion of SOLiD colour space (CS) calls 

into nucleotide calls and perform alignment of short sequencing reads to the current 

reference genome sequences (human genome build 19 GRCh37/hg19 assembly).   

The BioScope® alignment algorithm produces mapping statistics and generates a 

mapping quality value (range 0 - 100) for each read, which can be used to filter 

poorly aligned reads.  

BioScope® is capable of aligning both ‘mate-pair’ and ‘paired-end’ library runs 

(Chapter 4). The output of BioScope® alignment is a mapped BAM file and a 

detailed report of mapping statistics.  
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The SNP calling algorithm and associated tools provided in BioScope® are only 

suitable for individual barcoded data, and not appropriate for pooled next generation 

sequencing data.  

SAMtools 

The SAM file (sequence alignment/map) and BAM file (binary format of SAM) are 

generic file formats for storing aligned next generation sequencing data (Li et al., 

2009).  

A number of tools are provided by SAMtools to manipulate the next generation 

sequencing data, which are compulsory for downstream analysis such as SNP 

calling.  

After the BioScope® alignment, two BAM files were generated (separate case control 

pools) from the CSFASTQ and QV files. CSFASTQ and QV files are the original raw 

data file formats representing colour space FASTQ file and quality value file, 

respectively. Each of the colour space calls stored in the CSFASTQ file is provided 

with a quality score which is saved in the QV file.  

Both BAM files are sorted and indexed using SAMtools commands: 

samtools sort F3_Morgan_control.renum.csfasta.ma.bam 

F3_Morgan_control.renum.csfasta.ma.sorted 

samtools sort F3_Morgan_case.renum.csfasta.ma.bam 

F3_Morgan_case.renum.csfasta.ma.sorted 

samtools index F3_Morgan_control.renum.csfasta.ma.sorted.bam 

samtools index F3_Morgan_case.renum.csfasta.ma.sorted.bam 

Aligned reads for the two TRIM15 fragments (‘A’ and ‘B’) were extracted from the 

control datasets: 
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samtools view F3_Morgan_control.renum.csfasta.ma.bam 6:30130365-

30143332 -bo TRIM15_AandB_BioScope1.3_Control.bam   

‘-bo’ specifies output filename (in binary format). 

The SAMtools ‘view’ function was used to convert BAM to SAM, as well as to retrieve 

a subset of next generation sequencing data. The retrieved sequencing data was 

sorted and indexed (which generates a new index BAI file):  

samtools sort TRIM15_AandB_BioScope1.3_Control.bam 

TRIM15_AandB_Bioscope1.3_ControlS 

samtools index TRIM15_AandB_BioScope1.3_ControlS.bam 

The genome reference FASTA file was indexed using ‘faidx’ function in SAMtools 

(which generates a new FASTA index FAI file): 

samtools faidx valid_6.fa 

A pileup file (position based output) was generated using the ‘pileup’ function: 

samtools pileup -vcf valid_6.fa TRIM15_AandB_BioScope1.3_ControlS.bam 

The same commands were used for extracting, indexing and sorting of sequencing 

reads for the case pool.  

Additional functions are provided in SAMtools,  

 ‘merge’ function, which allow user to merge multiple sorted BAM files 

 ‘tview’ function, an alignment viewer.  

 

  



 
Materials and methods 
 

93 
 

SAM file format 

SAM file is in a tab-delimited text file format which consists of an optional header 

section and a compulsory alignment section. Each header starts with the ‘@’ symbol 

and is followed by a two-letter code (e.g. @RG) and a colon (‘:’). Table 2.5 lists all 

these two-letter codes (known as ‘TAGs’) and their definitions. 

An example header row is shown: 

@RG ID:20101014202018783PL:SOLiDLB:lib1-50FPI:0 DT:2010-10-

14T13:20:18-0700 SM:Morgan_controlCN:freetext 

This read header can be interpreted as shown:  

 Read group (RG) identifier (ID): 20101014202018783 

 Platform (PL): SOLiD 

 Library (LB): 1 to 50F 

 Predicted median insert size (PI): 0 

 Date of the run was produced (DT): 2010-10-14T13:20:18-0700 

 Sample (SM): Morgan_control 

 Name of the sequencing centre producing the read: freetext 

It is noteworthy that each read from an individual pool is labelled with the same @RG, 

reflecting the pooling strategy used.  

In the alignment section, each read occupies one row, consists of 11 mandatory 

fields for storing essential alignment information, as well as variable number of 

optional fields for flexibility (Figure 2.7). 
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Table 2.5 Header summary of the SAM file format. Figure showing a list of two-
letter header codes and their definitions (Adopted from Li et al., 2009).   

Tag Description 

@HD The header line. The first line if present. 

 
 
 

VN* Format version. Accepted format: /^[0-9]+\.[0-9]+$/. 

SO 
 

Sorting order of alignments. Valid values:  unknown (default), unsorted, queryname and 
coordinate. For coordinate sort, the major sort key is the RNAME field, with order defined by the 
order of @SQ lines in the header. The minor sort key is the POS field. For alignments with equal 
RNAME and POS, order is arbitrary. All alignments with `*' in RNAME field follow alignments with 
some other value but otherwise are in arbitrary order.  

@SQ Reference sequence dictionary. The order of @SQ lines defines the alignment sorting order. 

 
 
 

SN* 
Reference sequence name. Each @SQ line must have a unique SN tag. The value of this field is used 
in the alignment records in RNAME and PNEXT fields. Regular expression: [!-)+-<>-~][!-~]* 

LN* Reference sequence length. Range: [1, 229 -1] 

AS Genome assembly identifier. 

M5 MD5 checksum of the sequence in the uppercase, with gaps and spaces removed. 

SP Species. 

UR 
URI of the sequence. This value may start with one of the standard protocols, e.g http: or ftp:.  
If it does not start with one of these protocols, it is assumed to be a file-system path. 

@RG Read group. Unordered multiple @RG lines are allowed. 

 
ID* 

Read group identifer. Each @RG line must have a unique ID. The value of ID is used in the RG tags 
of alignment records. Must be unique among all read groups in header section. Read group 
IDs may be modified when merging SAM files in order to handle collisions. 

CN Name of sequencing center producing the read. 

DS Description. 

DT Date the run was produced (ISO8601 date or date/time). 

FO 
Flow order. The array of nucleotide bases that correspond to the nucleotides used for each flow of 
each read. Multi-base flows are encoded in IUPAC format, and non-nucleotide flows by various 
other characters.  Format: /\*|[ACMGRSVTWYHKDBN]+/ 

KS The array of nucleotide bases that correspond to the key sequence of each read. 

LB Library. 

PG Programs used for processing the read group. 

PI Predicted median insert size. 

PL 
Platform/technology used to produce the reads. Valid values: CAPILLARY, LS454, ILLUMINA, 
SOLID, HELICOS, IONTORRENT and PACBIO. 

PU Platform unit (e.g. flowcell-barcode.lane for Illumina or slide for SOLiD). Unique identifier. 

SM Sample. Use pool name where a pool is being sequenced. 

@PG Program. 

 ID* Program record identifier. Each @PG line must have a unique ID. The value of ID is used in the 
alignment PG tag and PP tags of other @PG lines.  PG IDs may be modified when merging SAM 
files in order to handle collisions. 

PN Program name 

CL Command line 

PP Previous @PG-ID. Must match another @PG header's ID tag. @PG records may be chained using 
PP tag, with the last record in the chain having no PP tag. This chain defines the order of programs 
that have been applied to the alignment. PP values may be modified when merging SAM files in 
order to handle collisions of PG IDs. The first PG record in a chain (i.e. the one referred to by the 
PG tag in a SAM record) describes the most recent program that operated on the SAM record. The 
next PG record in the chain describes the next most recent program that operated on the SAM 
record. The PG ID on a SAM record is not required to refer to the newest PG record in a chain. It 
may refer to any PG record in a chain, implying that the SAM record has been operated on by the 
program in that PG record, and the program(s) referred to via the PP tag. 

VN Program version 

@CO One-line text comment. Unordered multiple @CO lines are allowed. 
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Figure 2.7 Summary of SAM file format. Figure showing all elements of an individual read in the SAM file format, and corresponding 

descriptions. ‘+’ indicates the relevant field is inapplicable to the ‘paired end’ sequencing data (See Chapter 4 for definition).  
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PILEUP file format 

Each row of the pileup file describes alignment information of reads at each 

nucleotide base position. There is no header section in the pileup file.  

Two pileup formats are in use. The ‘standard sequence pileup’ format consists of six 

columns: chromosome number, base pair position, reference nucleotide base, 

number of reads aligned to this site, read bases and base qualities.  

 An example row of the SAMtools standard ‘.pileup’ file is shown:  

1  10000 T 22 ....,,.,.,.C.,,,.,..G. 
+7<;<<<<<<<&<=<<:;<<&< 

 

In this example, there are 22 reads mapped to this chromosomal position, on 

chromosome 1, at base coordinate 10000 and with the reference allele ‘T’. The dot 

(‘.’) symbol in read bases represent a single read is mapped to the forward strand 

and the base matches the reference allele ‘T’. The comma (‘,’) symbol indicates a 

read, which matched to the reference allele, however mapped to the reverse strand. 

Any other letters indicate a possible variant (e.g. ‘C’ and ‘G’ is shown in this example), 

where uppercase lettering indicates a non-reference nucleotide base mapped to the 

forward strand and a lowercase indicates the base is mapped to the reverse strand. 

The quality of each nucleotide base was represented in a single ASCII code 

(+7<;<<<<<<<&<=<<:;<<&<); interpretation of this code is discussed in more detail 

in Chapter 4, Table 4.1.  

‘Consensus sequence pileup’ format differs from the ‘standard sequence pileup’ 

where it consists of four additional columns between the ‘reference nucleotide base’ 

and ‘number of reads aligned’ columns. These four columns are consensus base, 

consensus quality, SNP quality and maximum mapping quality, respectively.   
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2.4.2 FastQC (v0.9.4) quality assessment 

FastQC is a bioinformatic program designed for assessment of quality of raw next 

generation sequencing data. Obvious sequencing errors can be effectively revealed 

by performing QC checks using the software.  

Several input formats are supported, including SAM, BAM, FASTQ and CSFASTQ.  

The program performs a series QC checks: basic sequence stats, sequence quality 

(per base and per read), per base sequence content, per base GC content, per 

sequence GC content, sequence length distribution and any evidence of sequence 

over-representation.  

Each of the tests performed is automatically flagged as a pass (green tick), warning 

(an orange warning sign) or failed (a cross symbol in red) according to the QC 

calculations.  

The software is written entirely in Java and provided with a graphical user interface 

(GUI). The analysis reports from FastQC can be saved in HTML format via ‘File -> 

Save’.  
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2.4.3 SNP calling 

Syzygy (v 1.1.0) 

Syzygy is a SNP calling software designed specifically for pooled next generation 

sequencing data analysis. Syzygy is written in python programming language, which 

has several pre-requisites which influence how the program is installed in Linux. One 

of the pre-requisites is SAMtools as mentioned earlier.  

Syzygy calls SNPs and calculates error rates of each prediction based on error 

models. Error models are generated while performing the analysis and calling SNPs. 

The error rates generated determine whether the non-reference observations from 

sequencing are variants or errors. Syzygy takes into account allele strand biases and 

calculates a LOD score of strand bias (also known as ‘SLOD score’), allowing a 

genuine SNP call to be distinguished from errors.   

Syzygy input file format 

Two compulsory files are required by Syzygy - ‘Target Info File’ (‘.tgf’ file) which 

contains information about the sequencing target (DNA amplicons) and ‘Pool Info File’ 

(‘.pif’ file) which contains information about the pooling strategy.  

The ‘.tgf’ file has six columns and ‘.pif’ file has four columns, and must be generated 

in the format demonstrated in Table 2.6.   
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Table 2.6 Syzygy input files (‘.tgf’ and ‘.pif’ file) for TRIM15 ‘A’ and ‘B’ 

amplicons. ‘tgf’ and ‘pif’ file formats for the TRIM15 ‘A’ and ‘B’ amplicons, including 

the obligatory header sections. 

 ‘.tgf’ file 

FEATURE_NAME CHR START_POSITION END_POSITION LENGTH GENOME_BUILD 

TRIM15_AandB 6 30130365 30143332 12968 19 

 

‘.pif’ file 

PoolBAM Phenotype Inds Chroms 

TRIM15_AandB_BioScope1.3_ControlS.bam 0 75 150 

TRIM15_AandB_BioScope1.3_CaseS.bam 1 75 150 
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Syzygy Implementation 

Syzygy was executed using the following command: 

 syzygy --pif TRIM15.pif --tgf TRIM15.tgf --samtoolspath /usr/bin --outputdir 

/home/mrxhs/deepseq/job6 --hg 19 --ref valid_6.fa --dbsnp TRIM15.dbsnp -

-skipannot true --mqthr 50 --bqthr 10 --power --rarethr 0.01 

‘--samtoolpath’ specifies the file directory location of SAMtools program. ‘--outputdir’ 

specifies the output directory. ‘--hg 19’ indicates human genome build 19 was used in 

the analysis. ‘--ref’ specifies the reference sequence FASTA file. ‘--dbsnp’ specifies 

the dbSNP file (which was downloaded from UCSC website). ‘--bqthr 10’ and ‘--mqthr 

50’ indicate the threshold for base call quality and mapping quality is equal to 10 and 

50, respectively. ‘--power’ instructs Syzygy to calculate power for detection of a 

singleton. ‘--rarethr 0.01’ indicates the rare variant threshold is equal to 0.01.  

FreeBayes (v 0.4.2) 

FreeBayes is a bioinformatic tools for calling SNPs developed by Marth and 

colleagues at Boston College (http://bioinformatics.bc.edu/marthlab/FreeBayes). It is 

an extension of the original Bayesian SNP caller PolyBayes (Marth et al., 1999). 

FreeBayes supports analysis of both pooled sequencing data and individually 

barcoded data.  

FreeBayes is flexible and fast, and provides accurate estimations of allele 

frequencies together with useful information including read depth of the nucleotide 

base, alternative allele counts and number of reads aligned to the forward and 

reverse strand.   

FreeBayes generates results in Variant call file (VCF) format, a format which has 

been widely adopted for next generation sequencing data analysis.   
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The software can also accommodate insertions and deletions via the inclusion of ‘--

indels’ and ‘--left-align-indels’.   

One of the limitations of FreeBayes is that it does not distinguish between high and 

low quality SNPs as does Syzygy. Furthermore, although the software provides an 

estimation of SNP quality by ‘pval’ (p-value) in the output, it is not sufficiently 

stringent, as reflected by unrealistic number of predicted SNPs acquired ‘pval’ value 

of 1 (the highest p-value allowed to be specified). 

The following command was used for analysis of TRIM15 ‘A’ and ‘B’ amplicons (as 

described in Chapter 4). 

freebayes --fasta-reference valid_6.fa 

TRIM15_AandB_BioScope1.3_ControlS.bam --pooled --ploidy 150 --pvar 1 --

min-mapping-quality 50 --min-base-quality 10 --region 6: 

30130365..30143332 

‘--fasta-reference’ specifies the genome reference (‘.fa’ or ‘.fasta’), and next 

generation data file in BAM format. ‘--pvar 1’ indicates the p-value (confidence of 

calling a SNP) is equal to 1. ‘--min-mapping-quality 50’ indicates the mapping quality 

threshold is equal to 50, and ‘--min-base-quality 10’ indicates the base quality 

threshold is equal to 10. ‘--region 6:30138938..30143332’ specifies the region 

analysed is on chromosome 6, base pair position from 30138983 to 30143332.   

VCF file format 

VCF (variant call file) is a generic file format designed for storing variants information 

(including SNPs, Indels and structural variants) together with detailed annotations. 

The VCF format is compact in size and both flexible and easily extensible for further 

development. Furthermore, VCF files can be indexed by a program known as ‘tabix’, 
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allowing fast and simple data retrieval of variants from a range of positions on the 

reference genome (Li, 2011). An example command is as shown: 

tabix -hf ftp://ftp.1000genome.ebi.ac.uk/vol1/ftp/release/20101123/ 

interim_phase1_release/ALL.chr6.phase1.projectConsensus.genotypes.vcf.gz 

6:30139699-30139699 

The VCF file is comprised of three sections: meta-information, header section and 

data section.  

Meta-information (starts with a‘##’ sign) stores: 

 VCF file version (depicted as ‘fileformat’),  

 Date, 

 Source (e.g. syzygy 1.1.0),  

 Filename of the reference genome, and  

 Definitions of all annotations included in the VCF file.  

Header line (starts with a ‘#’ sign) consists of eight mandatory fields as listed: 

 CHROM - chromosome number  

 POS - base pair position 

 ID - dbSNP rs number 

 REF - reference bases 

 ALT - alternative base, 

 QUAL - Phred scaled quality score of the alternative allele 

 FILTER - quality filters 

 INFO - and additional information in format <key>=<data>  

Predicted SNPs (third section) are presented in an ascending order of base pair 

positions (one SNP per row). An example VCF file downloaded using tabix from 1000 

genome project is shown in Figure 2.8. 
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Figure 2.8 Summary of VCF format. Figure showing an example VCF file from 1000 genome project accessed using tabix software. 

The 1000 genome project data is freely available at website ftp://ftp.1000genome.ebi.ac.uk. A known SNP (rs929156) at chromosome 6 

base pair position 30139699 is shown together with a novel SNP at chromosomal 6 base pair position 30130617.  
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2.4.4 SNPs annotation 

Variant Classifier 

Variant Classifier is a program which annotates genetic variants (SNPs, insertion and 

deletion) from analysis of next generation sequencing data.   

A list of all current databases was displayed using script ‘Show_Latest_Databases.pl’ 

included in the program. The latest annotation data (‘.coding_info’ file) and the 

corresponding reference sequence ‘.fasta’ file were downloaded from the most up-to-

date Ensembl database using command: 

perl Extract_Cding_Info.pl -c 6 -b 30130365 -e 30143332 -O “homo sapiens” -

B 60 -A 37e -f TRIM15_AandB_BioScope1.3 -x 

‘-c 6’ indicates chromosome number is equal to 6. ‘-b’ and ‘-e’ specifies the start and 

end base pair coordinates. ‘-O homo sapiens’ indicates that human species is 

selected. ‘-B 60’ indicates the retrieved data is in NCBI build version ‘60’. ‘-A 37e’ 

indicates the NCBI assembly version is ‘37e’. ‘-f’ specifies the output filename. ‘-x’ 

instructs the software to extend the coverage to include the whole gene if necessary.  

The annotation function of Variant Classifier requires an input file ‘input_snps’, which 

is comprised of 4 columns as listed:  

 column 1 - SNP starting base pair position (it is compulsory that this position 

matches the coordinate saved in the ‘.coding_info’ file); 

 column 2 - SNP ending position (starting position plus 1);  

 column 3 - strand (positive strand is noted as 1 and negative strand is 

denoted as 2); 

 column 4 - alternative allele.  

This input file does not include any header.  
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The annotation was executed using the commands: 

perl Classify_SNPs.pl -s input_snps -c 

TRIM15_AandB_BioScope1.3.coding_info -n 

TRIM15_AandB_BioScope1.3.fasta -o results.txt 

‘-s’ specifies the input file name as described. ‘-c’ and ‘-n’ specify the annotation data 

file (‘.coding_info’) and reference sequence file (‘.fasta’), respectively. ‘-o’ specifies 

the output file name.   

Two result files were generated - ‘output.normal’ and ‘output.denormal’. Both files 

contain the same information, where ‘output.denormal’ is designed to be read and 

manipulated by computer.   

Polyphen-2 

Polyphen-2 is a web-based bioinformatic tool for predicting SNP pathogenicity. It 

measures possible impact of an amino acid substitution on the structures and 

functions of the encoded protein (Adzhubei et al., 2010). Non-synonymous SNPs are 

characterized into three distinct risk groups - benign, possibly damaging and 

probably damaging.  

TRIM15 protein sequence was entered into the ‘Amino acid sequence in FASTA 

format’ input box. The amino acid position where the change occurred was entered 

into the ‘position’ input box. In ‘Substitutions’, the reference amino acid ‘AA1’ and 

substituted amino acid ‘AA2’ (caused by the mutation) were selected according to 

results obtained from Variant Classifier (See Chapter 4 for details).  
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2.4.5 Visualisation tools 

Integrative Genomic Viewer (IGV) 

IGV is a visualisation tool for ‘real-time’ exploration of large-scale next generation 

sequencing data. The software is implemented in Java (Robinson et al., 2011).   

IGV viewer is freely available at http://www.broadinstitute.org/software/igv/download. 

Two files are required by IGV: a BAM file and a reference genome FASTA file. Both 

files must be sorted and indexed using methods as previously described.   

A ‘.genome’ file is generated automatically after loading the FASTA file into IGV. An 

input box is provided to enable viewing of a user-specified genomic region.  

UCSC genome browser 

The UCSC genome browser provides a number of useful web-based bioinformatics 

tools - ‘liftOver’, ‘In-Silico PCR’ and ‘UCSC custom tracks’. 

liftOver 

Human genome sequence is constantly under review due to technological 

advancement and clarification of existing data. As a result, multiple genome 

sequence assemblies exist, each differs in base pair coordinates. Base pair 

coordinates must be transformed into the same genome build before a comparison 

can be conducted. ‘liftOver’ is a tool designed to perform this conversion.  

The latest genome assembly (Hg19) is currently in operation and was used by the 

1000 genome project (The 1000 Genomes Project Consortium, 2010). Base pair 

coordinates (in BED format) are required for ‘liftOver’ function.  
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In-Silico PCR 

The ‘In-Silico PCR’ program on UCSC website allows the user to search for the 

target DNA sequence by simply entering the PCR forward and reverse primer 

sequences. This tool is useful to examine whether the PCR primer designed target 

the correct DNA template sequence of interest.  

Input boxes are provided to allow PCR primers to be uploaded. Adjustment of ‘max 

product size’ may be necessary depending on the size of expected PCR amplicon.  

UCSC custom track 

The custom track function allows users to view their own data in the UCSC genome 

browser and to be displayed as a ‘custom track’. Custom tracks (in BED and WIG 

format) can be loaded into UCSC genome browser using the ‘browse’ button 

provided. These input files were used to display TRIM15 ‘A’ and ‘B’ amplicons 

(Chapter 4) as documented in Appendix 8.5.  
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Chapter 3:    Analysis of Genome Wide Association Study 

(GWAS) data looking for replicating signals in LOAD 

3.1 Introduction 

Alzheimer’s disease is the most prevalent form of dementia. As life expectancies 

continue to rise, an increasing number of individuals are expected to develop AD. 

The number of LOAD cases worldwide was recorded as 26.6 million in 2007, this 

figure has been estimated to rise to over 100 million by 2050 (Brookmeyer et al., 

2007). Understanding the genetic aetiology of LOAD could enable the development 

of effective therapeutic treatment. 

Despite tremendous efforts over the last few decades, identification of genetic loci 

underlying LOAD has been proven difficult, with the ε4 allele of APOE being the only 

established, reproducible genetic risk factor prior to the discovery of new LOAD risk 

genes in 2009 (Harold et al., 2009). Genes explored in previous candidate gene 

studies are often based on pre-conceived functional and biological hypotheses. As a 

result, genes that are closely related to A and tau have been extensively studied in 

the pathogenesis of LOAD. However, genetic defects found in genes such as APP, 

PSEN1 and PSEN2 do not appear to contribute to risk for LOAD, but are tightly 

linked to early onset Alzheimer’s disease (Bertram, 2011).  

GWAS in LOAD has generated significant, reproducible findings and given insight 

into the biological aetiology of LOAD. Nine new LOAD genes (CLU, PICALM, CR1, 

BIN1, ABCA7, MS4A6A, CD33, CD2AP and EPHA1) have been identified through 

recent large GWAS (Harold et al., 2009; Hollingworth et al., 2011; Lambert et al., 

2009; Naj et al., 2011; Seshadri et al., 2010). These genes provide new impetus for 

drug development which could aid in slowing down disease progression and 

ultimately developing a cure based on the grounds of genetic associations with 

LOAD.  
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Insufficient power has meant a large number early GWAS failed to generate any 

significant ‘hits’ (McCarthy et al., 2008). These GWAS lacked the numbers of cases 

and controls required to detect a modest effect (ORs = ~1.25) from a common variant 

(Bertram et al., 2007). Despite these power issues, they are still a valuable source of 

data for meta-analysis purposes. Combining individually underpowered GWAS could 

increase power thus allowing identification of genuine associations and previous 

spurious associations will likely diminish.  

Unfortunately, there are a number of constraints that have limited the effectiveness of 

whole-genome meta-analysis to date. Given that GWAS may use different 

genotyping platforms (such as Illumina or Affymetrix) each assaying different panels 

of SNPs, the number of ‘matched’ SNPs available for meta-analysis is limited. This is 

often confounded by SNP dropout during quality control procedures. 

 

3.2 Aims 

Genetic markers with suggestive association p-value (5 x 10-5 < p < 5 x 10-8) may be 

genuine AD candidates that due to power constraints, have failed to reach genome-

wide significance (p < 5 x 10-8).   

The aim of this study was to select genes/regions that merit further investigation by 

identifying all SNPs with p-values within this range (5 x 10-5 < p < 5 x 10-8) and 

comparing their effects across several GWAS, either directly or by using a perfect 

proxy (r2 = 1).  The approaches employed to identify replicating signals in this study 

can be applied to other studies to search across GWAS data from different platforms. 
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3.3 Strategy 

A cross-platform comparison of four GWAS was conducted using data that are 

readily obtainable; subject-level genotype data from two, Reiman et al., 2007 and 

Carrasquillo et al., 2009, complete summary data from a third Li et al., 2008 and 

summary data of top SNP hits (5 x 10-5 to 5 x 10-8) in the fourth Beecham et al., 2009. 

In each case, quality control measures had been applied by the authors prior to data 

release (Table 3.1). 

Generating SNP results from subject-level genotype data (Carrasquillo et al., 2009; 

Reiman et al., 2007) 

Datasets Reiman et al., 2007 and Carrasquillo et al., 2009 were analysed using the 

PLINK analysis toolset version 1.06 (Methods 2.3.1). GWAS data was converted into 

a file format appropriate for PLINK (PED and MAP) before analysis. GWAS outputs 

were generated from genotyping data using ‘--assoc’ command.  

To make the Reiman et al., 2007 Affymetrix data comparable with Carrasquillo et al., 

2009 Illumina data, the SNP ID was translated from Affymetrix SNP ID format to 

dbSNP ID format (rs number). A PERL script was written to perform the translation 

process (Methods 2.3.2; Methods 8.4.1). 

As the sex status of individuals was unspecified in the Reiman et al., 2007 dataset, 

the ‘--allow-no-sex’ command was utilised to instruct PLINK to ignore unspecified sex 

and include all samples in the calculations. 

Only limited information was obtained for the Beecham et al., 2009 and Li et al., 2008 

studies. It was not possible to merge datasets, since the two studies used different 

chip platforms. 
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Table 3.1 Summary of the four GWAS analysed in this study. The number of 

SNPs following QC, the platform utilised and the percentage of SNPs excluded in 

each study is listed. Also shown are the number of perfect proxies (r2 = 1) in the data 

(post QC) together with the number of clusters into which these SNPs fall. The 

number of independent tests for multiple testing corrections of combined p-values is 

shown in the last column and was calculated as described (Methods 2.3.3). 

 

 

  

Study 
Number of 
SNPs (post 

QC) 
CHIP platform 

Excluded 
SNPs (%) 

Number of 
SNPs with 
LD (r

2
  = 1) 

Number of 
LD Clusters 

(r
2
  = 1) 

Number of 
Independent 

Tests 

Beecham et 
al., 2009 

532,000 Illumina 550 4% - - - 

Carrasquillo et 
al., 2009 

313,330 Illumina 300 1% 26,284 11,539 298,585 

Li et al., 2008 469,438 
Affymetrix 

500K 
5% 128,139 42,634 383,933 

Reiman et al., 
2007 

312,316 
Affymetrix 

500K 
38% 83,739 29,678 258,255 
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Comparing p-values across different GWAS  

For each of the GWAS, all SNPs with p-values between 5 x 10-5 to 5 x 10-8 were 

compared across the other studies (where possible) either directly or by using a 

perfect proxy (r2 = 1). SNAP (SNP Annotation and Proxy Search) 

(http://www.broad.mit.edu /mpg/snap) was used to identify SNP proxies using the 

HapMap Resource CEU population - release 23 as the reference dataset (Methods 

2.3.4).  

Direct proxies were used in order to capture the maximum number of SNPs across 

the different chip platforms (each has their own SNP portfolio). Imputation attempts 

for SNPs in TRIM15 using PLINK yielded limited information when merging the 

datasets with the reference datasets. Imputed SNPs generated PLINK INFO 

(information content metric) scores lower than 0.8, indicating unreliably imputed 

SNPs. This low score is due to poor LD architecture within this region and the limited 

availability of data.  

The significance band 5 x 10-5 to 5 x 10-8 was used to search for potential new AD 

candidates that have failed to reach genome-wide significance due to limited power 

of the GWAS to date. Extending to a lower cut-off (p > 10-5) may reveal more 

substantial information and this could well be a viable approach to use on larger 

GWAS datasets as they become available. Any SNPs with p-values below 5 x 10-8 

were not included in this analyses as they would have been identified as genome 

wide significant; effectively this resulted in all SNPs in the APOE region on 

chromosome 19 being removed – this region replicated across all the studies.  

SNPs were selected for further analysis as described below: 

 SNPs with p-values 5 x 10-5 to 5 x 10-8 were selected from each of the GWAS. 

 SNP p-values were determined for the same SNPs (or proxies r2 = 1) across 

the remaining studies. 
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 The Fisher’s combined p-value test was used as a summary statistic to give 

an overall value of association. It has to be noted that this test does not 

correct for disparate effects created by alleles whose direction of association 

differs between studies – the so-called ‘flippers’.  For the resultant p-value to 

be meaningful all effects must be in the same direction.   

 Combined p-values were corrected for the number of independent SNPs on 

the highest density platform utilised following QC (Methods 2.3.3). 

It is only possible to access the ‘top hits’ from Beecham et al., 2009, which limited the 

comparison across all four studies.  

Meta-analysis of odds ratios 

Any SNPs that showed a corrected combined p-value (p < 0.05) were further 

analysed by comparing their corresponding odds ratios across multiple GWAS 

datasets. The random-effects method was implemented in the StatsDirect software 

package. In contrast to Fisher’s combined probability test, random-effect meta-

analysis accounts for the direction of effect. Significance is only obtained when the 

effects are all in the same direction. A SNP could therefore be significantly 

associated using Fisher’s method but fail odds ratio meta-analysis. 

Gene-centric analysis for TRIM15 

A gene-centric approach was used to conduct an in depth SNP analysis of TRIM15, 

the only genetic locus achieved significant by both Fisher’s combined probability test 

and random-effect meta-analysis (See results for details). The LD architecture 

surrounding this gene was identified using LD plots generated in Haploview (v 4.0) 

using HapMap CEU population data (Methods 2.3.5). SNPs flanking the gene (20 kb 

either side) were also analysed. The base pair coordinates were obtained from 

HapMap database. The study-specific p-values for allelic association for each of the 

TRIM15 SNPs were generated in PLINK using the data from the Reiman et al., 2007 
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and Carrasquillo et al., 2009; the values from the summary data were used for Li et 

al., 2008. 
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3.4 Results 

Analysis of GWAS 

The SNP’s with p-values 5 x 10-5 to 5 x 10-8 were identified for each study and then 

compared across all datasets. Four tables were created, one table for each of the 

GWAS listing the SNPs that were in this significance band together with the 

corresponding SNP p-values in the three other GWAS (irrespective of their 

significance values). Table 3.2 compares GWAS output for all four studies, whereas 

tables Table 3.3, Table 3.4 and Table 3.5 compare data from the remaining three 

GWAS. 

Combined p-values were determined for SNPs that occurred in at least two studies. 

SNPs with combined p-values of 10-8 were corrected for multiple testing. Using this 

approach, three SNPs were identified. SNP rs929156 (Table 3.2 – Beecham et al., 

2009 as primary comparator) had a combined p-value of 8.77 x 10-8, corrected p-

value (p = 0.0467); this occurs in an exonic sequence of the TRIM15 gene on 

chromosome 6. Using Li et al., 2008 as the primary dataset to compare with, SNP 

rs11682545 (Table 3.3) gave a combined p-value of 7.98 x 10-8, corrected p-value (p 

= 0.0306). This SNP occurs downstream of the TFCP2L1 gene on chromosome 2. 

The third SNP (rs7077757) was identified in Table 3.4 (Reiman et al., 2007 as the 

primary dataset) with a combined p-value of 6.35 x 10-8, corrected p-value (p = 

0.0244).  This occurs in intronic sequence of the RBM20 gene on chromosome 10. 

No combined p-values of less than 10-8 were evident using the Carrasquillo et al., 

2009 study as the primary comparator (Table 3.5). 
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Table 3.2 Beecham et al., 2009 GWAS SNPs (5 x 10-5 < p < 5 x 10-8) compared with Reiman et al., 2007, Li et al., 2008 and 

Carrasquillo et al., 2009.  

Each row represents a SNP with a p-value between 5 x 10-5 and 5 x 10-8. The p-values are highlighted yellow if corr-p < 0.05 and 

they replicated across two or more studies. Data from a perfect proxy SNP was used if data for the initial SNP was unavailable. If a 

perfect proxy was used the corresponding rs number is listed. The combined p-values across studies are as shown. The final column 

shows the corrected p-value adjusted as described (Chapter 3 - section 3.3).  

Beecham et al., 2009 Reiman et al., 2007 Li et al., 2008 
Carrasquillo et al., 

2009 Combined 
p-value 

Corrected 
p-value 

SNP CHR BP Gene Position p-value SNP p-value SNP p-value SNP p-value 

rs9659092 1 50216176   4.54E-06 rs12022125 4.04E-01 rs12022125 1.48E-01 -  2.71E-07  

rs3807031 6 30141863 PPP1R11 Promoter 1.16E-05 -  -  rs3807031 4.94E-01 5.73E-06  

rs1415985 1 49703336   1.23E-05 rs12022125 4.04E-01 rs12022125 1.48E-01 -  7.35E-07  

rs4926831 1 50062688   1.23E-05 rs4926831 6.32E-01 rs4926831 5.17E-01 -  4.02E-06  

rs929156 6 30247678 TRIM15 Exon 7 1.69E-05 rs2844775 2.50E-01 rs2844775 2.34E-01 rs929156 8.87E-02 8.77E-08 4.67E-02 

rs11583200 1 50332407   1.83E-05 -  -  rs11583200 5.75E-01 1.05E-05  

rs11754661 6 151248771 MTHFD1L Intron 2.01E-05 -  -  rs11754661 6.27E-01 1.26E-05  

rs3746319 19 49304071 ZNF224 Exon 6 2.96E-05 -  -  rs3746319 9.85E-01 2.92E-05  

rs2180566 20 29482515 DEFB123 Promoter 3.80E-05 -  -  rs2180566 4.75E-01 1.80E-05  

rs2061332 19 49305501 ZNF224 D'stream 3.93E-05 rs2061332 1.49E-02 rs2061332 7.22E-01 rs2061332 8.70E-01 3.68E-07  

rs2681411 3 123268321 CD86 Intron 4.21E-05 -  -  rs2681411 3.09E-01 1.30E-05  

rs2119067 2 165835529   4.38E-05 -  -  rs2119067 1.58E-01 6.92E-06  

rs1402627 18 4123739   4.42E-05 -  -  rs1402627 8.01E-01 3.54E-05  

rs659628 13 76361237 KCTD12 Promoter 4.46E-05 rs659628 4.49E-01 rs659628 1.00E+00 -  2.00E-05  

rs9455973 6 168325855   4.47E-05 rs9455973 9.79E-01 rs9455973 5.99E-01 rs9455973 6.27E-01 1.64E-05  

rs6059244 20 29474144   4.76E-05 -  -  rs6059244 5.43E-01 2.59E-05  

rs11205641 1 49957662   8.41E-05 rs11205641 3.40E-01 rs11205641 4.79E-01 rs11205641 3.85E-01 5.27E-06  



 
Analysis of GWAS data looking for replicating signals in LOAD 

117 
 

Table 3.3 Li et al., 2008 GWAS SNPs (5 x 10-5 < p < 5 x 10-8) compared with Carrasquillo et al., 2009 and Reiman et al., 2007.  
 

Each row represents a SNP with a p-value between 5 x 10-5 and 5 x 10-8. The p-values are highlighted yellow if corr-p < 0.05 and 

they replicated across two or more studies. Data from a perfect proxy SNP was used if data for the initial SNP was unavailable. If a 

perfect proxy was used the corresponding rs number is listed. The same platform was used in the Reiman et al., 2007 and Li et al., 

2008 studies. The combined p-values across studies are as shown. The final column shows the corrected p-value adjusted as 

described (Chapter 3 - section 3.3).  

  

Li et al., 2008 Carrasquillo et al., 2009 Reiman et al., 2007 
Combined 

p-value 
Corrected 

p-value 
SNP CHR BP Gene Position p-value SNP p-value SNP p-value 

rs4735627 8 100705091 VPS13B Intron 3.51E-06 rs4735627 8.73E-01 rs4735627 7.66E-01 2.35E-06  

rs7336489 13 59171299 BC041395 Intron 5.38E-06 -  rs7336489 8.78E-01 4.72E-06  

rs370672 5 2501146   9.37E-06 -  rs370672 1.62E-01 1.52E-06  

rs4684083 3 163865   9.73E-06 -  rs4684083 6.72E-01 6.54E-06  

rs11682545 2 121662295 TFCP2L1 Downstream 1.29E-05 -  rs11682545 6.18E-03 7.98E-08 3.06E-02 

rs6805482 3 25435600   1.78E-05 -  rs6805482 9.27E-01 1.65E-05  

rs11166407 1 100410296 LRRC39 Intron 2.00E-05 -  rs11166407 8.62E-02 1.72E-06  

rs8014810 14 35394781 BRMS1L Intron 2.00E-05 rs2274068 2.33E-01 rs8014810 3.84E-01 1.79E-06  

rs541392 10 130941167   2.76E-05 rs476628 3.66E-01 rs541392 4.19E-01 4.23E-06  

rs13180602 5 160213616 ATP10B Upstream 2.79E-05 rs4559036 7.00E-02 rs13180602 4.03E-01 7.87E-07  

rs11751998 6 11297073 NEDD9 Intron 3.42E-05 rs10484448 4.86E-01 -  1.66E-05  

rs6571727 14 35210859 GARNL1 Intron 3.49E-05 rs6571727 2.14E-01 rs10132580 7.61E-01 5.67E-06  

rs4483549 11 90595620   3.58E-05 rs4483549 3.10E-01 rs4483549 2.12E-01 2.35E-06  

rs1914516 2 215270178   3.61E-05 -  rs1914516 2.21E-01 7.98E-06  

rs4905898 14 99345451 EML1 Intron 3.61E-05 rs10141863 7.74E-01 rs4905897 5.44E-01 1.52E-05  

rs4687319 3 193526543 FGF12 Intron 4.60E-05 -  rs4687319 6.18E-01 2.84E-05  

rs16897530 8 100725659 VPS13B Intron 4.74E-05 -  rs16897530 9.66E-01 4.58E-05  

rs4438299 16 60259838 CDH8 Intron 4.90E-05 rs4438299 9.09E-01 rs4438299 8.81E-01 3.93E-05  
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Table 3.4 Reiman et al., 2007 GWAS SNPs (5 x 10-5 < p < 5 x 10-8) compared with Li et al., 2008 and Carrasquillo et al., 2009.  

Reiman et al., 2007 Li et al., 2008  Carrsquillo et al., 2009 
Combined 

p-value 
Corrected 

p-value 
SNP CHR BP Gene Position p-value SNP p-value SNP p-value 

rs10824310 10 53680643 PRKG1 Intron 6.03E-07 rs10824310 3.06E-01 -  1.84E-07  

rs17330779 7 107663071 NRCAM Intron 8.80E-07 rs17330779 5.31E-01 -  4.67E-07  

rs6784615 3 52468315 NISCH Intron 9.89E-07 rs6784615 6.14E-01 -  6.07E-07  

rs12162084 16 26553533   1.30E-06 rs12162084 7.61E-01 -  9.88E-07  

rs2517509 6 31138101   1.35E-06 rs2517509 3.83E-01 -  5.16E-07  

rs7077757 10 112527724 RBM20 Intron 1.52E-06 rs7077757 4.18E-02 -  6.35E-08 2.44E-02 

rs249153 12 93837244   2.66E-06 rs249153 8.25E-02 rs249153 7.17E-01 1.58E-07  

rs10747758 12 54287453   3.03E-06 rs10747758 2.45E-01 -  7.42E-07  

rs11958566 5 117719226   4.16E-06 rs11958566 6.16E-01 -  2.56E-06  

rs17505622 13 101759124 FGF14,LOC283480 Intron 5.47E-06 rs17505622 2.55E-01 -  1.39E-06  

rs7079348 10 77742377 C10ORF11 Intron 8.70E-06 rs7079348 3.85E-01 -  3.35E-06  

rs475093 1 43383592 LOC440585 Intron 8.86E-06 rs475093 7.10E-01 -  6.29E-06  

rs11748700 5 15773106 FBXL7 Intron 1.09E-05 rs11748700 2.40E-01 -  2.62E-06  

rs7817227 8 27951747   1.47E-05 rs7817227 4.99E-01 -  7.35E-06  

rs17126808 8 18457737 PSD3 Intron 1.89E-05 rs17126808 7.88E-01 -  1.49E-05  

rs950922 1 21747977 ALPL Intron 1.96E-05 rs950922 3.45E-01 -  6.74E-06 
 

rs16842422 1 196346167   1.99E-05 rs16842422 7.48E-01 -  1.49E-05 

rs4759173 12 54262230   1.99E-05 rs4759173 4.52E-01 rs10876820 4.45E-01 4.00E-06  

rs2122339 4 27290902   2.12E-05 rs2122339 5.96E-01 -  1.27E-05  

rs4394475 9 90496717   2.18E-05 rs4394475 5.23E-01 -  1.14E-05  

rs10783760 12 54260896   2.22E-05 rs10783760 3.65E-01 rs10876820 4.45E-01 3.62E-06  

rs13213247 6 81560955   2.29E-05 rs13213247 5.73E-01 rs16892136 4.17E-01 5.46E-06  

rs7097398 10 91782821   2.60E-05 rs7097398 8.02E-01 -  2.08E-05  

rs9982394 21 41191871   2.68E-05 rs9982394 3.06E-01 -  8.19E-06  

rs9934599 16 69220773 IL34 Upstream 2.68E-05 -  rs9934599 4.46E-01 1.20E-05  

rs7031458 9 84704086   2.74E-05 rs7031458 2.16E-02 -  5.91E-07  
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Each row represents a SNP with a p-value between 5 x 10-5 and 5 x 10-8. The p-values are highlighted yellow if corr-p < 0.05 and 

they replicated across two or more studies. Data from a perfect proxy SNP was used if data for the initial SNP was unavailable. If a 

perfect proxy was used the corresponding rs number is listed. The combined p-values across studies are as shown. The final column 

shows the corrected p-value adjusted as described. DISC1 is starred to indicate that the combined p-value listed has included the data 

(p = 8.20 x 10-3) from the Beecham et al., 2009 study (Chapter 3 - section 3.3).  

rs1923924 9 1581055   2.98E-05 rs1923924 5.00E-01 -  1.49E-05  

rs249154 12 93848520   3.12E-05 rs249154 1.14E-01 rs249153 7.17E-01 2.55E-06  

rs17151710 5 123739233   3.13E-05 rs17151710 7.59E-01 -  2.38E-05  

rs17048904 4 118081372   3.50E-05 rs17048904 1.00E+00 -  3.50E-05  

rs7134292 12 54260239   3.68E-05 rs7134292 3.23E-01 rs10876820 4.45E-01 5.30E-06  

rs7585710 2 10819621 ATP6V1C2 Intron 3.76E-05 rs7585710 1.00E+00 -  3.76E-05  

rs12044355 1 229901524 DISC1* Intron 3.93E-05 rs12044355 9.07E-01 -  2.92E-07*  

rs6888935 5 117745419   3.93E-05 rs6888935 9.96E-01 -  3.92E-05  

rs17586545 14 51101242 LOC645380,LOC651876 Intron 4.11E-05 rs17586545 8.87E-01 -  3.65E-05  

rs1038891 11 40877959   4.48E-05 rs1038891 4.84E-01 -  2.17E-05  

rs6094514 20 44993488 EYA2 Intron 4.49E-05 rs6094514 3.40E-01 rs11700355 5.60E-01 8.54E-06  

rs10248657 7 112741449   4.56E-05 rs10248657 8.88E-01 -  4.05E-05  



 
Analysis of GWAS data looking for replicating signals in LOAD 

120 
 

 

 

Table 3.5 Carrasquillo et al., 2009 GWAS SNPs (5 x 10-5 < p < 5 x 10-8) compared with Li et al., 2008 and Reiman et al., 2007.  

Each row represents a SNP with a p-value between 5 x 10-5 and 5 x 10-8. Data from a perfect proxy SNP was used if data for the 

initial SNP was unavailable. If a perfect proxy was used the corresponding rs number is listed. The combined p-values across studies 

are as shown. The final column shows the corrected p-value adjusted as described. No SNPs replicated across studies using the 

Carrasquillo et al., 2009 GWAS as the primary dataset (Chapter 3 - section 3.3). 

 

Carrasquillo et al., 2009 Li et al., 2008 Reiman et al., 2007 
Combined 

p-value 
Corrected 

p-value 
SNP CHR BP Gene Position p-value SNP p-value SNP p-value 

rs2318144 8 58277297 ncRNA  2.22E-06 rs17194995 2.04E-01 rs17194995 3.13E-01 1.42E-07  

rs1279795 23 123152101   5.02E-06 rs1279795 8.42E-01 -  4.22E-06  

rs3007421 1 6452776 PLEKHG5 Intron 6.54E-06 rs3007421 6.51E-01 rs3007421 4.68E-01 1.99E-06  

rs6546452 2 25834776   8.55E-06 rs17680828 9.00E-01 rs17680828 9.68E-01 7.45E-06  

rs7318037 13 81367146   1.15E-05 rs4456389 9.82E-01 rs4456389 2.39E-01 2.70E-06  

rs2118732 5 79419032   1.32E-05 rs7736549 5.49E-01 -  7.25E-06  

rs8039031 15 34954382 MEIS2 Downstream 2.26E-05 rs8039031 5.04E-01 rs8039031 9.92E-02 1.13E-06  

rs7245160 18 70417826 AK056288/LOC400657 Upstream 2.66E-05 rs7245160 4.60E-01 rs7245160 4.15E-01 5.08E-06  

rs856675 14 84405968   3.83E-05 rs17737309 7.10E-01 rs17737309 2.87E-01 7.81E-06  
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Meta-analysis of odds ratio for candidate SNPs 

A random-effects meta-analysis (also known as DerSimonian-Laird test) of the allelic 

odds ratios was performed for the three SNPs identified as mentioned (DerSimonian 

and Laird, 1986). The TRIM15 SNP (rs929156) gave odds ratios in the same 

direction (causative, Table 3.6) across three studies and random effect meta-

analysis gave an odds ratio of 1.1 (95% CI 1.0-1.2; p = 0.03). RBM20 (p = 0.95) and 

TFCP2L1 (p = 0.74) SNPs were not significant following meta-analysis.   

Gene-centric analysis of TRIM15 

A gene-centric analysis of TRIM15 was undertaken (Figure 3.1) to explore the 

genetic architecture in more detail. The histogram shows the SNPs present in three 

different GWAS (Carrasquillo et al., 2009; Li et al., 2008; Reiman et al., 2007), their 

associated p-values together with their degree of linkage.  
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Table 3.6 Comparison of odds ratios across GWAS for selected SNPs. If the 

SNP was not present in a GWAS, odds ratio of a perfect proxy (r2 = 1) was used. The 

proxy SNP ID is shown underneath the corresponding odds ratios. The data shown is 

for the allelic association model. The 95% confidence interval (CI) for odds ratios are 

shown in brackets. The results from random effects meta-analysis of these odds 

ratios are given in the final column. 

 

 

 

 

 

 

 

  

Gene 
OR (95% CI) 

Reiman et 
al., 2007 

Carrasquillo 
et al., 2009 

Li et al., 
2008 

Random effects 
Meta-analysis of 

OR’s 

TRIM15 
(rs929156) 

1.1 
(0.9-1.3) 

(rs2844775) 
1.1 

(1.0-1.3) 
1.1 

(0.9-1.3) 
(rs2844775) 

1.1 
(1.0-1.2) 
p = 0.03 

TFCP2L1 
(rs11682545) 

0.8 
(0.7-0.9) - 1.3 

(1.1-1.5) 
1.0 

(0.7-1.6) 
p = 0.95 

RBM20 
(rs7077757) 

0.6 
(0.5-0.8) - 1.3 

(1.0-1.5) 
0.9 

(0.5-1.7) 
p = 0.74 
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Figure 3.1 Schematic overview of the TRIM15 gene and the LD plot for this 

region. The histogram depicts all GWAS SNPs in TRIM15, their p-values and IDs 

are shown at the top of the figure. These studies are colour-coded as indicated at the 

top of the figure. The two TRIM15 isoforms and their chromosomal positions are as 

depicted in HapMap (release 23). The LD plot is for the GWAS variants (Haploview 

4.0, r2 values with r2 colour scheme). The positions of SNPs with respect to the gene 

are indicated on the LD plot. The SNPs at the boundaries of this LD block are also 

shown. LD values are represented by different colours (black - strong LD, grey - 

moderate LD, and white - no evidence of LD). 
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3.5 Discussion 

The APOE region on chromosome 19 was confirmed as a genetic-risk factor in 

LOAD by all four GWAS with SNP p-values ranging from 10-36 to 10-44. Apart from 

those in LD with the APOE locus, there were no other SNPs across the four GWAS 

with p-values less than 10-8. Genes with suggestive significance (10-5 < p < 10-8) 

across different GWAS may infer a genuine LOAD candidate. 

Approximately 700 genes and 3000 polymorphisms have been assessed as genetic 

risk factors in association with AD (http://www.alzgene.org/) as of October 2011 

(Bertram et al., 2007). Except for the APOE gene, most of the genes have conflicting 

reports with regard to their associations. However, each of the studies often uses 

different populations with varying male and female percentages, as well as differing 

age ranges and sample sizes. Results are therefore not always directly comparable 

between different studies (Bertram et al., 2007). The study approach used here may 

help identify potential LOAD candidate genes whose signals replicate across studies. 

GWAS association analysis uses very stringent significance levels to avoid the large 

number of false positives potentially arising from the confounding effects of 

population substructure and testing of a very large number of SNPs simultaneously 

(Bodmer and Bonilla, 2008). For example, in a GWAS using 500,000 independent 

markers, 25,000 can be expected to show a nominal p-value (p < 5 x 10-2) by chance 

alone and five out of this 25,000 may be significant with p-values (p < 1 x 10-5). A 

widely accepted p-value (p < 5 x 10-8) is used to indicate a genuine disease 

association in GWAS (Bertram and Tanzi, 2008). However, the SNPs on different 

chip platforms are often not independent. Many SNPs are in LD with other SNPs, 

potentially reducing the number of independent markers available for analysis. 

Secondly, the genotyping rate never reaches 100%, and after quality control, 

significant numbers of SNPs are excluded from study (Table 3.1). This suggests that 
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a p-value of < 5 x 10-8 may in some instances be too stringent and SNPs with p-

values between 10-5 and 10-8 might well harbour genuine associations. 

The potential role of TRIM15 

TRIM15 is a member of the tripartite motif (TRIM) family. The TRIM motif includes 

three zinc-binding domains, a RING, a B-box type 1 and B-box type 2, and a coiled-

coil region. The protein is localized to the cytoplasm. Two isoforms have been 

identified and described, however their biological functions have not as yet been 

identified. TRIM15 is ubiquitously expressed in various tissues. However, the 

biological role of TRIM15 has not yet been determined (Shiina et al., 2006). 

SNP rs929156 in TRIM15 is located in an exon in one of the two TRIM15 transcripts. 

It changes the amino acid from a small, polar Serine to a medium-sized, polar 

Asparagine. It is located in a B30.2 SPRY like domain (position: 276-465 amino 

acids). The B30.2-like domain is a conserved domain found in nuclear and 

cytoplasmic proteins, as well as transmembrane and secreted proteins. The B30.2-

like domain may also be associated with a zinc-binding B-box domain in the N-

terminal (Henry et al., 1998). The SPRY domain is proposed to be a protein 

interacting module, which recognizes and interacts with specific individual partner 

proteins (Woo et al., 2006). The potential effects of this SNP on protein structure 

require further investigation.  

The only other TRIM15 SNP in these GWAS rs9261536 is located in the 5’ 

untranslated region (UTR), which may harbour potential regulatory elements (i.e. a 

promoter region or a binding site for an associated transcription factor - Figure 3.1). 

Possible linkage has been observed between this TRIM15 SNP and SNPs in Human 

leukocyte antigen A (HLA-A) with r2 value 0.77 (Figure 3.2).  
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Figure 3.2 Illustration of LD between TRIM15 and HLA-A genes. The red ellipse 

highlights the linkage between TRIM15 SNP rs9261536 (shown in bold) and three 

known SNPs (rs2916801, rs2571381 and rs2499) in HLA-A with r2 value = 0.77. The 

LD plot was generated using HapMap data (CEU population release 23) and the 

program Haploview version 4.0 (Methods 2.3.5). 
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TRIM15 is surrounded by a number of HLA genes which are associated with the 

human immune system. This group of HLA genes encode cell-surface antigen-

presenting proteins, which are essential elements in human immune responses. 

HLA-A is necessary for immune recognition and apoptosis, and mutations in HLA-A 

have been reported as risk factors for various cancers (Hu et al., 2009). Ma et al., 

2008 showed that mutations in HLA-A are associated with earlier age at onset of AD 

(2.4 years, p = 0.03) for non-carriers of APOE 4 (Ma et al., 2008). 

The significance of identified SNPs 

In this study, an approach was described to detect replicating signals across different 

GWAS platforms in an effort to identify LOAD candidate genes that have failed to 

reach genome-wide significance previously. Using the data from the four studies 

listed has generally failed to produce any convincing replicating signals with the 

possible exception of the TRIM15 gene which contains the only SNP (rs929156) 

whose combined p-value (p = 8.77 x 10-8) survives multiple testing correction (corr-p 

= 0.0467) and where the meta-analysis of odds ratios is also tentatively significant 

(OR = 1.1, 95% CI 1.0-1.2, p = 0.03) with no evidence of between-study 

heterogeneity (Breslow-Day p = 0.90) (Figure 3.3). 

The remaining two SNPs that had p-values of 10-8 failed the meta-analysis of odds 

ratios because their effects were discordant between studies (Table 3.6). 
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Figure 3.3 Forest plot depicting effects of SNP rs929156 from different GWAS. 

The effect of SNP rs929156 for each individual GWAS together with the meta-

analysis results (combined [random]) are as indicated. The size of the squares 

represents the weight (Mantel-Haenzel weight) of the corresponding study in the 

meta-analysis. The line either side of the square represents 95% confidence intervals 

for the odds ratio. Confidence intervals of pooled estimates are displayed as a 

horizontal line through the diamond. The dashed vertical line (linking squares and the 

diamond) represents the odds ratio of the meta-analysis. Odds ratio and 95% 

confidence interval of each study and combined are documented to the right of the 

forest plot.  

  

Odds ratio meta-analysis plot [random effects]

0.5 1 2

Carrasquil lo et al, 2009 1.13 (0.98, 1.31)

Li et al, 2008 1.08 (0.90, 1.28)

Reiman et al, 2007 1.11 (0.93, 1.33)

combined [random] 1.11 (1.01, 1.22)

odds ratio (95% confidence interval)



 
Analysis of GWAS data looking for replicating signals in LOAD 

129 
 

In the UK LOAD GWAS paper (Harold et al., 2009) the TRIM15 SNP, rs929156, was 

shown to be modestly associated with AD (p = 0.049). Adding this data results in a 

Fisher’s combined p-value of 4.30 x 10-9 strengthening the evidence of association 

for this SNP. The odds ratio from the UK GWAS (OR = 1.07) was also compatible 

with the odds ratio observed in the random effect meta-analysis in this study (OR = 

1.11). 

An issue which is evident in this study is the difficulty that exists when trying to 

compare data across different chip platforms where the SNP complement differs. 

Surprisingly few perfect proxies available resulted in a significant loss of data and a 

reduction of power to detect new signals.  

Technology continues to advance; the latest Illumina GWAS chip is capable of 

genotyping ~5 million SNPs from the international HapMap project, as well as SNPs 

identified by the 1000 genomes project with MAF above 1%. The approach described 

may prove to be useful when larger datasets (generated using these chips) are 

analysed.  
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3.6 Bioinformatics Application Note 

As the number of publically available GWAS datasets continues to grow, 

bioinformatic tools which enable routine manipulation of data are becoming 

increasingly useful. In addition, whole genome meta-analysis is labour intensive 

without suitable bioinformatics software.  

An ‘LD aware’ bioinformatics application was developed enabling efficient 

comparison of SNPs effects across multiple GWAS datasets using Fisher’s combined 

probability test from PLINK (v1.06) ‘LD clumped’ output (Appendix 8.4.3). 

Implementation 

PLINK (v1.06) provides an ‘ld-clump’ analysis which allows automatic calculation of 

‘clumps’ (blocks of SNPs in LD) across genotyping chip platforms. The software 

developed uses the output file from this ‘LD clump’ analysis and performs the 

downstream meta-analysis of SNPs in each clump (taking one SNP/proxy (r2=1) from 

each study and combining their p-values). 

The application consists of two files ‘meta_analysis.pl’, ‘modules.pm’, where 

‘meta_analysis.pl’ is an executable file when PERL language is installed. 

‘meta_analysis.pl’ file can be edited using a conventional text file editor, and allows 

users to define two parameters; i) the location and the filename of the input 

(‘ld_clump’) file generated in PLINK, and ii) the type of the study - case/control (CC) 

analysis or quantitative trait (QT) analysis. Fields requiring modification were 

annotated in the ‘meta_analysis.pl’ file. The default input is ‘case/control’ analysis. 

Failure to adjust the parameter for the correct type of analysis will generate false 

output in the results file.  
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The program was designed to handle an unlimited number of GWAS datasets and 

unlimited SNPs. However, currently the application has only been validated using up 

to ten modelled datasets. 

Issues and problem-solving 

It is worth noticing that, when generating the ‘clump’ files, PLINK requires a reference 

GWAS dataset (e.g. HapMap data) to calculate LD values between two SNPs. Given 

that LD values vary between ethnic populations, it is imperative that the reference 

dataset and the GWAS datasets are from the same population thus avoiding 

stratification issues.  

It is common that a SNP in one GWAS has multiple perfect SNP proxies (r2= 1) in 

another independent GWAS. In this situation, although it is considered appropriate to 

use any pair of SNPs to perform meta-analysis, the application decides which proxy 

to use based on which proxy is closest to the index SNP (as in physical distance). 

The distance between the SNP/proxy and the index SNP is annotated in the results 

file. It should be noted that if an index SNP is unique to one study and does not have 

a perfect proxy in any other studies, no meta-analysis results will be displayed for this 

SNP. 

This application only uses perfect proxies (r2 = 1). This is a limitation of the software 

as using imperfect proxies (r2 < 1) will increase the number of comparable SNPs 

between studies. Currently, there is no weighting algorithm implemented in the 

program therefore any SNP p-value inferred from a proxy with r2 < 1 will be 

inaccurately treated as a perfect match.  

To use imperfect proxies, simply alter the (--clump-r2) parameter in PLINK, and run 

the application as usual. This may indeed be a valuable approach to increase 

coverage, analogous to imputation, but until the output is weighted accordingly, the 

results will have to be interpreted with caution.  
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A ‘flipper’ refers to a SNP or SNP proxy in one dataset which has the opposite effect 

to that observed in the original study. This application compares the OR (case/control 

analysis) or regression coefficient (from quantitative trait analysis) of all SNP pairs 

from different studies, and annotates according to the following rules;  

i) ‘YES – flipper’ – ORs are in opposite directions in two (or more) GWAS studies, 

irrespective of missing OR data in additional studies, ii) ‘NO - non-flipper’ - all SNPs 

OR in the same direction and OR data is present for all studies, and iii) ‘NA - not 

applicable’ - there is either no OR data, or datasets are missing OR data making it 

inappropriate to call a ‘non-flipper’. In studies with missing OR or BETA, the field has 

to be encoded as ‘-9’ in the ‘.assoc’ file for subsequent ‘ld-clumping’ analysis in 

PLINK.  

The application automatically recognizes the number of GWAS from PLINK ‘ld-clump’ 

output files and tabulates the results accordingly. Although the application was 

designed for GWAS meta-analysis, the user can perform analysis on much smaller 

datasets.  

This approach is advised to be used prior to more formal meta-analysis. It is 

essential that any potential finding that emerges using the application is verified by 

further investigation in a rigorous manner. Adjusting the genotypic data for covariates 

and taking into account heterogeneity between studies/samples will verify if 

observations involving both ‘flipping’ and ‘non-flipping’ alleles are likely to be genuine 

and worthy of downstream study. 
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An example 

Two late-onset Alzheimer’s disease (LOAD) GWAS datasets - Carrasquillo et al., 

2009 and Reiman et al., 2007 and the ‘top hits’ tabulated in Beecham et al., 2009 

were used to test the performance of the application. The sample sizes and 

genotyping platforms for the three studies are - Carrasquillo et al., 2009, 799 LOAD 

cases and 1199 controls on Illumina 300 chip, Reiman et al., 2007, 859 LOAD cases 

and 552 controls on Affymetrix 500K chip and Beecham et al., 2009, 492 LOAD 

cases and 496 controls on Illumina 550 chip. The total sample size of all three GWAS 

is 4,397 (2,150 LOAD cases and 2,247 controls). No apolipoprotein E (APOE) related 

SNPs were listed in Beecham et al., 2009 ‘top hits’. These samples were estimated 

to provide over 93% power to detect an association with a common SNP (MAF > 10% 

and OR > 1.3). This estimation has to be treated with caution as it is based on a 

number of assumptions (such as effect size and mode of inheritance), and gene-

environment interaction (GxE) has not been taken into account.  

Before using the software, a number of PLINK analyses were undertaken.  

1) Subject-level genotype data was obtained from Carrasquillo et al., 2009 and 

Reiman et al., 2007. The files were converted into PLINK format where necessary, 

and the SNP identifiers were converted into dbSNP rs number using an ‘in house’ 

program written in PERL (Methods 2.3.2). The GWAS output was generated using 

the PLINK ‘--assoc’ command.  

2) As Beecham et al., 2009 GWAS data was not available, a file called 

‘Beecham.assoc’ was manually generated conforming to the format of a PLINK 

‘.assoc’ file (Methods 2.3.1). Three compulsory columns are required in the ‘.assoc’ 

file with the headers ‘SNP’, ‘OR’ and ‘P’. All other information such as ‘BP’, ‘CHR’, 

‘A1’ in the standard ‘.assoc’ file are not required, and can simply be ignored. As OR 
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data was not included in the Beecham et al., 2009 data, these values were set to ‘-9’ 

in the ‘OR’ column.  

3) The ‘ld-clump’ analysis was performed using PLINK (v1.06) using the three files 

generated ‘Carrasquillo.assoc’, ‘Reiman.assoc’ and ‘Beecham.assoc’. The filtered 

version of HapMap data (CEU population, release 23) in PLINK binary format (BED, 

BIM and FAM) was downloaded from the PLINK website 

‘http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml’ (Purcell et al., 2007). The 

HapMap data contains 2.3 million SNPs.  

The ‘ld-clump’ analysis was performed using the following PLINK command: 

plink --bfile HapMapCEU23 

--clump Carrasquillo.assoc,Reiman.assoc,Beecham.assoc 

--clump-verbose 

--clump-annotate OR 

--clump-p1 1 

--clump-p2 1 

--clump-r2 0.99 

--out ld_clump 

--noweb 

The PLINK method reads ‘--bfile’ (the HapMap data in PLINK format) and ‘clumps’ 

the three datasets based on HapMap LD r2 values. ‘--clump-verbose’ instructs PLINK 

to generate a detailed report of SNPs in each clump. The output of ORs was 

specified using ‘--clump-annotate OR’ (‘--clump-annotate BETA’ was used for 

quantitative trait analysis). All SNPs were used to perform the ‘ld-clump’ analysis 

irrespective of p-values (‘--clump-p1 1’ and ‘--clump-p2 1’). ‘--clump-r2 0.99’ ensures 

that only SNPs which are perfect proxies (r2 > 0.99) are clumped (‘--clump-r2 1’ does 

not work). 
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A single output file ‘ld_clump.clumped’ was generated using ‘--out ld_clump’. All of 

these commands listed are compulsory to the subsequent analysis except ‘--clump-

p1’ and ‘--clump-p2’ which allow the user to adjust p-value threshold. 

4) The ‘meta_analysis.pl’ file was edited using a text file editor to ensure it contains 

the correct PLINK ‘ld-clump’ output filename and correct type of analysis as 

described earlier. 

5) The application was executed and a results file named ‘results.txt’ was generated 

automatically.  

The top 6 results in Table 3.7 illustrate the utility of this application. The top 2 SNPs 

are in LD with the APOE locus and demonstrate highly significant p-values as 

expected (rs1114832 Fisher’s method p-value 1.09 x 10-9 and rs10402271 Fisher’s 

method p-value 1.13 x 10-7); the first SNP exceeded genome-wide significance (p = 

1.67 x 10-7) after correcting for the number of independent tests (Methods 2.3.2) and 

the second SNP approached this value. 

Sub-significant hits may prove to be genuine when more datasets are included. SNP 

rs2318144 is located 200kb upstream of the inositol monophosphatase domain 

containing 1 gene, IMPAD1; as of October 2011 this gene has yet to figure as an AD 

candidate in the AlzGene forum (Bertram et al., 2007). rs3746319 (p = 4.34 x 10-7) 

was found to be located in an exon of the zinc finger protein (ZNF224). Although this 

SNP is in vicinity to the APOE region, the effect has been suggested to be 

independent of APOE status (Beecham et al., 2009). rs11205641 demonstrates a 

dichotomy of effect i.e. it’s OR is not comparable between datasets (shows opposing 

effects) and is thus indicated as a ‘flipper’. rs468345 (p = 1.15 x 10-6) is located 

~120kb upstream of Amyloid-beta precursor protein (APP) gene. 
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Table 3.7 Results from Meta-analysis of Carrasquillo et al., 2009, Reiman et al., 2007 and Beecham et al., 2009. The table shows 
SNPs with Fisher’s combined probability test p-value less than 1 x 10-5. F1, F2 and F3 refers to the studies which have been inputted to 
perform the meta-analysis (1, 2 and 3 refers to Carrasquillo et al., 2009, Reiman et al., 2007 and Beecham et al., 2009, respectively). 
KB1 and RSQ1 refer to the distance and LD between the index SNP and PROXY1. The same rule applies to KB2 and RSQ2. The suffix 
(1, 2 or 3) on column headers Pvalue indicated p-value in each study individually as listed. ClumpNo - index number ranked based on 
descending p-value in each study, CHR - chromosome number, FISHER - Fisher’s combined probability test p-value and FLIPPER - 
indicates whether the SNP is a ‘flipper’. 

ClumpNo SNP F1 CHR PROXY1 F2 KB1 RSQ1 PROXY2 F3 KB2 RSQ2 FISHER FLIPPER Pvalue1 Pvalue2 Pvalue3 

1  rs1114832  1  19  rs1114832  2  0  1  - - - - 1.09E-09  NO  1.37E-06  0.000799  - 

4  rs10402271  1  19  rs10402271  2  0  1  - - - - 1.13E-07  NO  4.54E-06  0.0248  - 

2  rs2318144  1  8  rs6982990  2  0.532  1  - - - - 3.57E-07  NO  2.22E-06  0.161  - 

20  rs3746319  3  19  rs3746319  1  0  1  rs2061332  2 1.43 1 4.34E-07  NA  0.985  0.0149  2.96E-05  

7  rs11205641  3  1  rs11205641  1  0  1  rs11205641  2 0 1 1.10E-06  YES  0.385  0.34  8.41E-06  

107  rs468345  2  21  rs468345  1  0  1  - - - - 1.15E-06  NO  0.00353  0.000326  - 

42  rs7679738  1  4  rs510115  2  2.67  1  - - - - 1.63E-06  NO  9.72E-05  0.0168  - 

5  rs9659092  3  1  rs12022125  2  -83.5  1  - - - - 1.83E-06  NA  - 0.404  4.54E-06  

3  rs249153  2  12  rs249153  1  0  1  - - - - 1.91E-06  NO  0.717  2.66E-06  - 

68  rs9474661  2  6  rs4486000  1  -2.44  1  - - - - 2.19E-06  NO  0.0142  0.000154  - 

16  rs8039031  1  15  rs8039031  2  0  1  - - - - 2.24E-06  NO  2.26E-05  0.0992  - 

86  rs4693305  2  4  rs4693305  1  0  1  - - - - 2.64E-06  NO  0.0119  0.000222  - 

10  rs7318037  1  13  rs4456389  2  11.5  1  - - - - 2.75E-06  YES  1.15E-05  0.239  - 

6  rs3007421  1  1  rs3007421  2  0  1  - - - - 3.06E-06  NO  6.54E-06  0.468  - 

74  rs385771  1  5  rs385771  2  0  1  - - - - 3.78E-06  YES  0.000163  0.0232  - 

76  rs10501120  1  11  rs10501120  2  0  1  - - - - 4.00E-06  NO  0.000171  0.0234  - 

9  rs4313171  2  8  rs359819  1  -169  1  - - - - 5.01E-06  NO  0.501  1.00E-05  - 

144  rs6695249  1  1  rs17113051  2  4.38  1  - - - - 5.40E-06  NO  0.00045  0.012  - 

11  rs3807031  3  6  rs3807031  1  0  1  - - - - 5.73E-06  NA  0.494  - 1.16E-05  

25  rs2119067  3  2  rs2119067  1  0  1  - - - - 6.92E-06  NA  0.158  - 4.38E-05  

35  rs11033712  2  11  rs12271660  1  26.9  1  - - - - 7.85E-06  YES  0.127  6.18E-05  - 

8  rs6546452  1  2  rs17680828  2  9.37  1  - - - - 8.28E-06  NO  8.55E-06  0.968  - 

14  rs4759173  2  12  rs10876820  1  -22.7  1  - - - - 8.86E-06  NO  0.445  1.99E-05  - 

22  rs2387100  3  13  rs2387100  1  0  1  rs9551404  2 -12.5 1 9.40E-06  NA  0.644  0.382  3.82E-05  

31  rs7537266  2  1  rs7537266  1  0  1  - - - - 9.52E-06  NO  0.186  5.12E-05  - 

17  rs13213247  2  6  rs16892136  1  -115  1  - - - - 9.55E-06  NO  0.417  2.29E-05  - 

79  rs4904864  1  14  rs10484035  2  14  1  - - - - 9.58E-06  YES  0.000186  0.0515  - 
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3.7 Conclusion 

An approach has been described in this chapter to detect replicating signals across 

different GWAS in an effort to identify LOAD candidate genes that have failed to 

reach genome-wide significance previously.  

Using data from four studies (Table 3.1) revealed a single SNP rs929156 (located in 

exon 7 of TRIM15 gene) whose combined p-value (p = 8.77 x 10-8) withstands 

multiple testing correction (p = 0.0467) using perfect proxies and where the meta-

analysis of odds ratios is also significant (OR 1.1, 95% CI 1.0-1.2, p = 0.03). Using 

imperfect proxies (r2 < 1) (i.e. relaxing the condition of perfect LD) in this approach 

would likely further reduce the number of independent test, thereby lowering the 

genome-wide significant threshold, and more SNPs with suggestive p-values may 

reach genome wide significance. However, such results would need to be interpreted 

with caution, as lowering the LD r2 value is likely to introduce errors. The relationship 

between the LD r2 value and the amount of noise introduced by using imperfect 

proxies requires further investigation.  

The next chapter (Chapter 4) describes a study investigating if the gene 

encompassing this SNP harbours multiple rare variants that may be associated with 

the disease using ABI SOLiD® next generation sequencing.  

An important argument for GWAS is that the genes in which common variants are 

found, or genes nearby, may well contain functional rare variants; these may have 

high enough penetrance to be considered as candidates for possible preventive 

screening strategies in the future (Bodmer and Bonilla, 2008).   
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Chapter 4:         Next generation sequencing (NGS) of tripartite 

motif-containing 15 (TRIM15) gene using pooled DNA samples 

4.1 Introduction 

Comparing DNA sequence of LOAD patients against those free of disease symptoms 

allows identification of underlying genetic loci, which has been estimated to account 

for up to 76% of the disease risk (Gatz et al., 2006). However, in order to differentiate 

true signals from background noise and achieve statistical significance, sequencing 

of a large number of individuals is essential.  

DNA sequencing technology has evolved rapidly over the last few years, with the 

advent of NGS enabling both reliable and economically affordable sequencing of 

large-scale DNA sequence (such as whole exome and whole genome sequencing) in 

a large number of individuals (Metzker, 2010). This enhanced capability of 

sequencing provides unprecedented opportunity to address major biological 

questions, such as the search for genetic heritability of LOAD attributable to rare 

variants.  

Existing GWAS is not designed for capturing rare variants with allele frequency less 

than 5%, and insufficient coverage meant that some of the common variants are also 

not accounted for (Cirulli and Goldstein, 2010). NGS of targeted genomic regions 

using pooled DNA samples is capable of testing genetic associations of all variants 

within target regions provided there is sufficient power.   

Sanger sequencing 

Sequencing of DNA and RNA has solely relied on Sanger sequencing technology for 

almost 30 years since it was first developed by Frederick Sanger in 1977 (Sanger et 

al., 1977). It was the key technology used in identification of SNPs, copy number 
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variations (CNVs) and structural variants (such as insertions and deletions) prior to 

the advent of the NGS technology.  

Automated Sanger sequencing was used for the Human Genome Project, which 

produced the first sequence data of the complete human genome encompassing ~3 

billion nucleotide bases (International Human Genome Sequencing Consortium, 

2004). The project was accomplished in 2003 through intensive worldwide 

collaboration and cost ~$3 billion.  

Sanger sequencing is based on using fluorescently labelled dideoxynucleotide 

triphosphate (ddNTPs) as DNA chain terminators. As ddNTPs lack the 3’-OH group 

required to form the next phosphor-diester bond, addition of ddNTPs terminates the 

chain elongation reaction (facilitated by Taq polymerase and dNTPs). The 

concentrations of ddNTPs are much lower than dNTPs, thus they would occasionally 

incorporate into a growing DNA chain at random, and stop further synthesis.  

The final product of Sanger sequencing is a mixture of various sizes of nucleotide 

fragments. Capillary electrophoresis of these short nucleotide fragments enables the 

DNA sequence to be recorded, facilitated by a laser and a detector (Figure 4.1). The 

Sanger sequencing method generates the DNA sequence in a format known as an 

electropherogram.  

Sanger’s method is limited by its throughput of sequencing of only ~1kb DNA 

template per experiment run. Additionally, the first ~50 bases of reads are often 

found to be of poor quality, a result likely to be due to the presence of residual 

unincorporated fluorescently labelled ddNTPs (Wallis and Morrell, 2010).  
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Figure 4.1 Schematic diagram of Sanger sequencing. In Sanger sequencing, Taq polymerase, dNTPs and fluorescently labelled 
ddNTPs, sequencing primer and DNA template are added together. A range of different lengths of nucleotide fragments are generated, 
which are subjected to capillary gel electrophoresis. The fluorescent signals emitted by the labelled the ddNTPs, each corresponding to 
the point at which the chain growth is terminated, are detected using a laser and a detector. The sequence results are in the form of an 
electropherogram.  
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Next generation sequencing 

The major advantage of next generation sequencing technology is the ability of 

generating enormous amounts of sequencing data quickly and at substantially 

lowered expenditure. Millions of short reads, each of 35-150 base pair in length, can 

be generated in a single experiment run using the technology (Mardis, 2011; Metzker, 

2010).  

There has been fierce competitions in the field of next generation sequencing 

technology, leading to rapid evolution of technology with respect to its accuracy, 

throughput and speed (Metzker, 2010).  

Next generation sequencing platforms 

The currently available next generation sequencing platforms are Roche 454, ABI 

SOLiD and Illumina platforms (Genome Analyzer IIx, HiSeq 1000/2000 and 

HiScanSQ). Each of these platforms uses distinct chemistry, both Roche 454 and 

Illumina platforms use a method known as ‘sequencing by synthesis’, compared to 

‘sequencing by ligation’ used by ABI SOLiD®.  

Roche 454, also known as pyrosequencing, detects each polymerase catalysed 

nucleotide incorporation event marked by the release of an inorganic pyrophosphate. 

Unlike Illumina platforms, which use modified nucleotides, the pyrosequencing 

method adds only a single type of dNTP (i.e. dATP, dCTP, dTTP or dGTP) at a time. 

This extension step is immediately followed by a temporary pause, allowing the 

signal (release of inorganic pyrophosphate) to be detected by non-electrophoretic 

bioluminescence (Ronaghi et al., 1998). The signal intensity is directly proportional to 

the number of incorporated nucleotides, where incorporation of three dATPs would 

result in three times the intensity of a signal observed from incorporation of a single 

dATP. However, incorporation of eight or more of the same nucleotides can cause 
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the signal to become saturated, prohibiting detection of longer repetitive nucleotide 

sequences (Metzker, 2010).  

Illumina platforms use a method known as cyclic reversible termination, where each 

cycle comprises nucleotide incorporation, fluorescence imaging and cleavage 

(Metzker, 2005). Like Sanger sequencing, the Illumina platform utilizes chain 

terminators, with the exception that chain termination is reversible and the reaction 

restarts after imaging has taken place.   

ABI SOLiD uses a technique known as the ‘colour space’ system or ‘2-barcoded 

encoding system’. Processes involved in ABI SOLiD next generation sequencing are 

summarized in Figure 4.2. 
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Figure 4.2 Overview of library preparation of ABI SOLiD®. The flow diagram 

summarizes the processes involved in next generation sequencing using the ABI 

SOLiD® sequencer. The LR-PCR amplified DNA was sheared into random sizes 

using the Covaris AFATM  similar technology to a sonicator with improved control of 

wavelengths and isothermal advantage. The sheared DNA’s are end-repaired, and 

two adaptors (known as ‘P1’ and ‘P2’) are ligated to both ends of the DNA fragments. 

A specific length of DNA fragments (e.g. 50bp as used in this study) are extracted 

using a size selection gel. This is followed by amplification via emulsion-PCR using 

two primers: ‘A1’ and ‘A2’, which are complimentary to the ‘P1’ and ‘P2’ adaptors. ‘A1’ 

primers are coated on polystyrene beads, which enable enrichment of DNA 

fragments. These polystyrene beads, with DNA attached, are deposited onto a glass 

slide, where the sequencing reactions take place. The ABI SOLiD® sequencer 

supports flexible slide segmentation (also known as flow cells), which enables 

several independent samples to be run simultaneously. Millions of random short DNA 

fragments are sequenced in parallel using the ‘colour space’ system, where each 

nucleotide is interrogated twice.  
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Although the NGS platforms described are distinct from each other in many aspects, 

they share substantial similarities: 

 library preparation  all platforms involve DNA shearing into smaller 

fragments followed by end-repair and addition of adaptors (short DNA 

fragments) onto both ends of the template DNA.  

 amplification of DNA template  all NGS platforms require amplification of 

DNA template, so that the sequencing reaction produces sufficient signals 

which can be detected by the instruments’ optical systems. Given that no 

DNA polymerase is 100% accurate, this has been considered to be a 

limitation of NGS technology (Mardis, 2011).  

 repeating steps  all platforms perform sequencing reactions using a series of 

repeating steps, which are performed automatically.  

Sequencing library preparation 

Two major methods exist to create a next generation sequencing library: pair-end 

and mate-paired sequencing libraries, where reads generated from sequencing of 

these libraries are known as paired-end and mate-paired reads, respectively.  

Single-end sequencing, with each DNA fragment only sequenced from one end, has 

been largely superseded by paired-end sequencing as a result of the lack of 

accuracy. Single-end sequencing results in a higher proportion of reads incapable of 

being aligned uniquely, resulting in these reads being unsuitable for variant discovery 

(Mardis, 2011).  

Paired-end sequencing allows a DNA fragment to be sequenced from both ends, 

thus improving the confidence when it comes to calling SNPs (Mardis, 2011).  

It should be emphasized that paired-end reads are from a single location of a 

genome region in comparison to the mate-pair sequencing. The difficulty of mapping 
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reads back to a locus of origin which is repetitive is considered a limitation for paired-

end sequencing.  

This led to the development mate-pair sequencing. Reads in mate-pair sequencing 

are made up of two short DNA segments derived from two genomic locations with the 

distance between the two known (Figure 4.3). Given one end of the read of a mate 

pair uniquely aligns to the reference sequence and the distance between the two 

ends is known, the location of the other end of the read should be obvious. 

Consequently, the use of a mate-pair sequencing library can greatly improve the 

coverage of next generation sequencing across the target regions.  

However, as this technology is based on circularization of large DNA molecules, the 

low yield of circularization (directly proportional to the DNA molecules used) means 

the technology is DNA expensive (Mardis, 2011). Furthermore, mate-pair sequencing 

requires extra experimental steps and raises more challenges for mapping and 

alignment, which in turn could result in more reagent cost and longer time to process 

the data.  
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Figure 4.3 Overview of ‘mate-pair sequencing’ library preparation. a) summarizes steps involved in library preparation for mate-pair 
sequencing run. DNA template is represented by blue bars. Larger sizes of DNA fragments (e.g. 5 kb) are selected in contrast to the 
library preparation for paired-end sequencing. These DNA fragments are end-repaired with biotin labelled dNTPs, which is followed by 
circularization. Non-circularized DNA fragments are removed by digestion. After further fragmentation, biotin labelled DNA fragments 
are purified. These fragments are then end-repaired, and two adaptors (‘P1’ and ‘P2’) are added, attaching to both ends of the amplicon. 
The rest of the sequencing reaction is identical to paired-end sequencing. b) illustrates two scenarios of alignment to the reference 

genome sequence, top  paired-end read is unable to map to repetitive genomic region (highlighted in green) and bottom  as one end 
of the mate-pair read uniquely aligns to a non-repetitive genomic sequence, the locus of origin for the other end is obvious. Mate-pair 
reads outperform paired-end reads on mapping to repetitive genomic regions and thus improve sequencing coverage.
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ABI SOLiD® Colour space system 

SOLiD stands for Sequencing by Oligonucleotide Ligation and Detection. A unique 

feature of SOLiD technology is it uses the colour space system with each nucleotide 

base being interrogated twice. This double interrogation greatly increases the 

accuracy of each nucleotide call.  

SOLiD uses 16 two-base-encoded probes as illustrated in Figure 4.4a. Four specific 

dinucleotides are labelled with a single fluorescent dye, and a total of four fluorescent 

dyes are used in ABI SOLiD® next generation sequencing.  

Colour space calls are converted into nucleotide calls based on the chart shown in 

Figure 4.4a using BioScope®.  

Furthermore, colour space system can easily distinguish a SNP from a reading error 

(Figure 4.4b). As each nucleotide base is determined by two adjacent colours, a 

single colour change is an indication of a reading error.   

Figure 4.5 summarized the processes involved in ABI SOLiD® next generation 

sequencing. Five rounds of ligation reaction (each of ten cycles) are necessary to 

sequence all 50bp reads generated.    
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Figure 4.4 ABI SOLiD® colour space system. a) Each probe consists of i) specific 

dinucleotides at nucleotide bases 1-2, ii) degenerate nucleotides bases (denoted as 

‘n’ (often RNA nucleotides) and ‘z’ (inosine)) at nucleotide bases 3-8, iii) restriction 

site between base pair 5 and 6 and iii) fluorescent dye labelled at the 5’ end. The 

specific dinucleotides of each probe, according to the chart, are as shown. b) 

illustrates a scenario where a sequencing error can easily be distinguished from a 

real SNP call in ABI SOLiD® NGS: a SNP is represented by two adjacent colour 

changes, whereas a single colour change is an indication of a sequencing error.  
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Figure 4.5 Flow diagram of the sequencing reaction of ABI SOLiD® NGS. The 

flow diagram summarizes steps involved in the sequencing reaction using by ABI 

SOLiD®: a) annealing of a universal sequence primer enables one of the 16 

fluorescently labelled probes (complementary to the target sequence) to be ligated 

with the universal primer facilitated by ligase, b) four-colour imaging c) nucleotide 

bases 6-8 (denoted as ‘z’ (inosine) in Figure 4.4a) are subsequently cleaved off, 

leaving a 5’ phosphate group for further ligation reactions, d) nine more cycles of the 

sequencing step is required to interrogate all nucleotide bases, e) the DNA is 

denatured and the complementary strand is discarded. A new universal sequence 

primer which binds to ‘n-1’ position is added, and is subjected to another ten cycles 

of ligation reactions. A total of five ligation rounds are performed in ABI SOLiD® NGS. 

(Adapted from Metzker, 2010) 

  



 
Next generation sequencing of TRIM15 gene using pooled DNA samples 

150 
 

Challenge of analysing NGS data 

The distinct chemistry of NGS results in fundamental changes to the way that the 

data are analysed in comparison with analysing the capillary data from Sanger 

sequencing. An analysis pipeline of NGS data from the pooled DNA samples using 

ABI SOLiD® is described later in this chapter.   

Furthermore, it is conceivable that the production of millions of NGS reads causes 

challenges to the management of information technologies such as data transfer, 

storage and quality control. Some NGS systems are able to generate over one billion 

short reads per instrument run. Therefore, sufficient large data storage and transfer 

devices are essential.   

The delivery of high quality genome sequence and SNP calling is challenging, and is 

dependent upon development of suitable bioinformatics software and sufficient 

computing power in order to analyse the large-scale data. This includes accurate 

alignment/assembly of read data and production of error models to permit confident 

calling of novel rare SNPs (Metzker, 2010).  

The accuracy of the alignment has a crucial role in variant detection. Incorrectly 

aligned reads may lead to errors in SNP and genotype calling. Therefore, it is 

important for alignment algorithms to be able to cope with sequencing errors, as well 

as potential real differences (e.g. SNPs and Indels) between the reference genome 

and the sequenced genome.  In addition, the aligner must also be able to produce 

well-calibrated alignment quality values, as variants calls are dependent on those 

scores (Nielsen et al., 2011).   
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4.2 Aims 

An important argument for GWAS is that the genes in which common variants are 

found, or genes nearby, may well contain functional rare variants; these may have 

high enough penetrance to be considered as candidates for possible preventive 

screening strategies (Bodmer and Bonilla, 2008).  

The aims of this study were to i) investigate if the TRIM15 gene amplicons ‘A’ and ‘B’ 

(Figure 4.6) harbour multiple rare variants (with allele frequency between 1% to 5%) 

by analysing the next generation sequencing data, and ii) prioritizing these SNPs 

according to their potential biological functions and associations with the risk of 

LOAD.  
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Figure 4.6 Conservation plot using VISTA browser. Figure showing genomic 

position of TRIM15 ‘A’ and ‘B’ amplicons which were sequenced using ABI SOLiD® 

NGS. The blue vertical lines represent the locations of SNPs on the genotyping chips 

(Chapter 3). Conserved regions are indicated between the solid red lines, and the 

actual TRIM15 ‘A’ and ‘B’ amplicons are indicated between the dotted red lines. The 

corresponding vertebrate species are documented on the right. Conserved regions 

are also highlighted in colours according to their function (red - introns and intergenic 

regions, blue - exons, cyan - UTRs). 
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4.3 Strategy 

The next generation sequencing pipeline performed in this study are summarized in 

Figure 4.7. The project consists of the following distinct steps: 

 Preparation of DNA samples 

 Ascertainment of DNA region for sequencing 

 Target enrichment using LR-PCR 

 Equi-molar pooling of LR-PCR products 

 Library preparation and the sequencing reaction 

 Quality assessment 

 SNP discovery and identification 

 Validation and replication 

Preparation of DNA samples 

Genomic DNA was extracted from brain tissue using QIAGEN® DNeasy Blood and 

Tissue Kit (Methods 2.2.1). Concentrations of DNA samples were measured using 

NanoDrop® (Methods 2.2.2).  

Ascertainment of DNA region for sequencing 

Two conserved regions of TRIM15 gene located at the 5’ and 3’ ends were 

ascertained using VISTA browser (Figure 4.6) (Method 2.3.6). The middle part of 

TRIM15 gene (region between the ‘A’ and ‘B’ amplicons) was sequenced using 

Illumina HiSeqTM (ongoing project). This region was sequenced in 96 LOAD cases 

which were separated into 8 DNA pools, where each pool comprises 12 samples. No 

control subjects were sequenced for this part of the project.   
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Figure 4.7 Overview of the next generation sequencing pipeline in this study. The flow diagram illustrates seven distinct processes 

conducted in this study: target enrichment using LR-PCR, equi-molar pooling of DNA samples, library preparation and sequencing using 

ABI SOLiD® NGS sequencer, translation of colour space calls to nucleotide calls and mapping to the reference genome sequence, 

quality assessment of the raw data, variant discovery and identification, validation using TaqMan® genotyping assays or Sanger 

sequencing. 
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Target enrichment 

Two conserved regions of the TRIM15 gene were enriched using LR-PCR (Methods 

2.2.3) on 150 samples (75 LOAD cases and controls) (Methods 2.1). These LR-PCR 

products were visualized on EtBr stained 0.7% agarose gels under UV light together 

with blank (negative controls) and the GeneRulerTM 1kb Plus DNA ladder (Methods 

2.2.4).  

DNA samples were kept for NGS only if they displayed a strong intensity band on the 

agarose gel of the correct size and no evidence of DNA contamination noted by 

examining the negative control samples. A small number (2-5) DNA samples were 

selected and Sanger sequenced (Methods 2.2.5) to ensure the DNA amplified was 

of the correct sequence by comparison to the reference sequence (hg19) 

downloaded from the NCBI database.  

Equi-molar pooling of LR-PCR products 

Four DNA pools (AD cases and controls) for TRIM15 ‘A’ and ‘B’ amplicons were 

created by pooling 5µl of each PCR amplified DNA products (‘DNA pooling 1’ in 

Figure 4.7).  

Gel extractions were undertaken for each of the DNA pools to remove non-specific 

PCR products and primer-dimers (Methods 2.2.6). Concentrations of the cleaned 

LR-PCR products were measured using Qubit® (Methods 2.2.2).  

Two DNA pools (case and control) each containing 1µg of DNA were subsequently 

created (‘DNA pooling 2’ in Figure 4.7) by adding all LR-PCR amplicons into the pool. 

Volumes were adjusted according to the concentrations measured and the sizes of 

the amplicons.  
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The amount of DNA for each amplicon contributed to the final pool was calculated 

using the equation: 

              
                   (  )        

                 (  )
     

 

Library preparation and the sequencing reaction 

Library preparation and the sequencing reaction of ABI SOLiD® were performed by 

the next generation sequencing unit at the University of Nottingham. Sequencing 

reads were aligned using BioScope® (Methods 2.4.1).  

Quality assessment 

Raw data generated from the next generation sequencing were assessed using 

FastQC (Methods 2.4.2).  

 

Read depth and coverage 

Read depth was calculated using the formula: 

           
                                     

                           
  

Fold coverage (per individual and chromosome) was calculated using the formula: 

         (              )  
           

  
 

         (              )  
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An R script was written to draw the histogram depicting the fold coverage:  

rm(mydata) 

rm(count) 

rm(depth_cont) 

mydata <- read.table("mydata.txt", header=T) 

count <- 0 

for (i in mydata$cont_cov) {  

if (count == 0) { 

 depth_cont <- i 

 count <- 1 

} 

if (count > 0) { 

 if (i > 10) { 

depth_cont <- c(depth_cont,i) 

 } 

} 

} 

hist(depth_cont, breaks=300, ylim=c(0,100)) 

 

SNPs discovery and identification 

SNPs were called using Syzygy and Freebayes (Methods 2.4.3). QC thresholds 

were applied to SNP calls:  

 Base quality threshold (--bqthr): 10 

 Mapping quality threshold (--mqthr): 50 

SNPs were separated into high and low quality according to QC criteria: strand bias, 

read depth and error models as created by the software.  

SNP annotation 

SNPs were annotated using the Variant Classifier program (Methods 2.4.4). The 

Variant Classifier input file is shown in Appendix 8.2. The full transcript 

‘ENST00000376694’ from the TRIM15 gene ‘ENSG00000204610’ was used. The 

annotation data was downloaded from the most up-to-date Ensembl database. 

Fisher’s exact test (2-sided) was utilized to examine the association of SNPs 

identified with the risk of LOAD using the estimated allele counts generated from both 

pools (case and control).  
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SNPs identified by NGS were visualized using UCSC custom track (Methods 2.4.5). 

Four custom tracks were entered into the genome browser: power to detect a 

singleton, high quality SNPs (known and novel) and association p-values.  

SNP validation and replication 

SNPs identified by NGS were compared with data documented in the latest SNP 

databases: HapMap (CEU population release 28), dbSNP (release 132) and the 

1000 genome project VCF (variant call file) accessed using the tabix program 

(Methods 2.4.3).  

SNPs showing significant evidence of association (with LOAD), as suggested by 

NGS data, were validated by direct genotyping of samples that were used in creating 

the sequencing library for NGS using Sanger sequencing (Methods 2.2.4) and 

TaqMan® genotyping assay (Methods 2.2.7).  

Replication studies were performed for SNPs that validated. SNPs showing 

consistent MAF were further genotyped in an independent sample cohort (93 AD 

cases and controls) using the TaqMan® genotyping assay (Methods 2.2.7). SNP 

validation and replication experiments were performed by Narat Pititaweewat and 

Rebecca Gibbons (MSc students in our laboratory).  
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4.4 Results 

LR-PCR of TRIM15 ‘A’ and ‘B’ 

Two conserved regions of TRIM15 gene (‘A’ and ‘B’) were successfully amplified 

using LR-PCR. The sizes of these two amplicons are 1,984 bp and 4,935 bp, 

respectively (Figure 4.6).  

Coverage of TRIM15 gene 

The latest human genome build hg19/GRCH37 was used as the reference genome 

sequence. Both amplicons (‘A’ and ‘B’) encompasses the following genomic regions 

of TRIM15 gene: 

Promoter region of TRIM15: 

 618 bp (chr6: 30130365-30130982) upstream of TRIM15 gene 

Untranslated regions (UTR): 

 complete 5’ UTR (length = 479 bp; chr6: 30130983-30131461) 

 complete 3’ UTR (length = 340 bp; chr6: 30140127-30140466) 

Exons: 

 complete exon 1 (length = 381 bp; chr6: 30131462-30131842) 

 complete exon 6 (length = 33 bp; chr6: 30138753-30138785) 

 complete exon 7 (length = 518 bp; chr6: 30139609-30140126) 

Introns: 

 complete intron 6 (length = 823 bp; chr6: 30138786-30139608) 

 506 bp of intron 1 (chr6: 30131843-30132348) (full size of intron 1 = 3110 bp) 

 355 bp of intron 5 (chr6: 30138398-30138752) (full size of intron 5 = 359 bp) 

3’ downstream of TRIM15 gene: 

 2866 bp (chr6: 30140467-30143332) 
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Altogether these genomic regions range from 30130365 to 30143332 on 

chromosome 6.  

LR-PCR optimisation 

Optimisation of conditions for LR-PCR is key to successful amplification of large size 

amplicons (> 1 kb), which are more sensitive to experimental conditions compared 

with amplification of small amplicons (< 1 kb). Furthermore, LR-PCRs require longer 

time to run in comparison to standard PCR using Taq polymerase.  

Experiment conditions were successfully optimised for LR-PCR amplification of 

TRIM15 ‘A’ and ‘B’ fragments, and the optimisation results are shown in Figure 4.8 

(Methods 2.2.3).  

LR-PCR and equimolar pooling 

TRIM15 ‘A’ and ‘B’ amplicons were successfully amplified by LR-PCR, pooled in 

equi-molar amounts and cleaned via gel extraction (Figure 4.9). 
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Figure 4.8 Optimisation of LR-PCR. EtBr stained 0.7% agarose gel depicting PCR optimisation result using temperature gradient 

58°C to 70°C (left), 67°C to 70°C (middle) both in presence and absence of DMSO (middle) and a gradient with varying primer 

concentrations (right). The corresponding temperature and primer concentrations are shown together with sample ID on the top of the 

gel.  B  blank (negative control), L  DNA ladder (GeneRulerTM 1kb ladder)
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Figure 4.9 LR-PCR and equimolar pooling. TRIM15 amplicons (‘A’ and ‘B’) were successfully amplified in 75 AD cases and 75 

controls (left). DNA samples of the same amplicon (AD cases and controls) were pooled (middle). Gel extractions were undertaken for 

all DNA pools created, and visualized using EtBr stained 0.7% agarose gel (right).  
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General statistics and quality assessment of raw NGS data 

The raw next generation sequencing data is represented by a total of 78,133,090 

short oligonucleotide reads (case pool: 34,043,745; control pool: 44,089,345).  

82.76% of reads for the control pool (36,489,719 reads) and 87.07% of reads for the 

case pool (29,641,561 reads) were successfully mapped to the reference genome 

sequence (hg19) using BioScope® (v 1.3) (performed by the next generation 

sequencing unit at University of Nottingham). ~15% of reads produced by NGS were 

unable to be mapped to the reference genome sequence, likely to be due to the fact 

that these reads belonged to genome sequences which are repetitive.  

Of those reads that have been mapped to the reference genome sequence, 89.76% 

(26,607,720) and 91.46% (33,372,196) reads were mapped to targeted genome 

regions (i.e. regions which were enriched by LR-PCR).  

Furthermore, almost all mapped reads are of 50bp in length as expected (Figure 

4.10).  
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Figure 4.10 Read length of the control pool. The x and y axis represent read 

length (bp) and corresponding read counts, respectively. Almost all reads are 50bp in 

length as expected. The diagram was generated using FastQC (Methods 2.4.2).  
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Quality scores 

The quality of each sequencing read was measured using two scores: base quality 

and mapping quality. Base quality values are indicated as ASCII codes (range 33-73) 

(Methods 2.4.1), with each ASCII code representing a single PHRED score (range 

0-40). The relationship between a PHRED score and probability of being a wrong call 

is shown (Nielsen et al., 2011): 

                    (     )  

A base quality of 40 is currently the highest quality that the NGS instrument 

(including ABI SOLiD®) can generate, which indicates a p-value of 0.0001 or the 

nucleotide call is 99.99% accurate (Table 4.1).  

Similarly, mapping quality is also represented by PHRED scores with wider quality 

score range (0-100).  

Due to the cyclic nature of the next generation sequencing, base qualities are higher 

in early cycles of the sequencing reaction, and lower in the later cycles (Figure 4.11). 

It is likely that reagents required for the experiment are diminished in the later cycles.  

Number of reads mapped to TRIM15 ‘A’ and ‘B’ amplicons 

3,134,504 reads and 3,492,467 reads were mapped to TRIM15 gene ‘A’ and ‘B’ 

amplicons, respectively.   
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Table 4.1 ASCII codes depicting base qualities in next generation sequencing 

data. The table shows nucleotide base qualities between 0 and 40. ASCII code is 

shown together with corresponding base quality scores (Phred scaled) and p (error) 

 likelihood of being a wrong call.  

ASCII code 
Corresponding 

base  quality 
p (error) ASCII code 

Corresponding 
base  quality 

p (error) 

! 0 1 6 21 0.007943 

“ 1 0.794328 7 22 0.00631 

# 2 0.630957 8 23 0.005012 

$ 3 0.501187 9 24 0.003981 

% 4 0.398107 : 25 0.003162 

& 5 0.316228 ; 26 0.002512 

‘ 6 0.251189 < 27 0.001995 

( 7 0.199526 = 28 0.001585 

) 8 0.158489 > 29 0.001259 

* 9 0.125893 ? 30 0.001 

+ 10 0.1 @ 31 0.000794 

, 11 0.079433 A 32 0.000631 

- 12 0.063096 B 33 0.000501 

. 13 0.050119 C 34 0.000398 

/ 14 0.039811 D 35 0.000316 

0 15 0.031623 E 36 0.000251 

1 16 0.025119 F 37 0.0002 

2 17 0.019953 G 38 0.000158 

3 18 0.015849 H 39 0.000126 

4 19 0.012589 I 40 0.0001 

5 20 0.01  
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Figure 4.11 Quality scores across all nucleotide bases in the control pool. The 

x and y axis represent base position in reads and base quality (PHRED scaled), 

respectively. Nucleotide bases of high (28-40), moderate (20-28) and low (0-20) 

quality are shown in green, orange and red, respectively. The central box (in yellow) 

represents the distance between the first and third quartile with the median marked 

with a red line. The upper and lower whiskers represent the 10%-90% quartiles. The 

mean base quality scores are represented by a blue curve.  
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Power calculation 

Three power calculations were performed:  

 Power to discover SNPs given the number of samples sequenced 

 Power to detect a singleton (a single alternative allele) according to the read 

depth (number of reads aligned to target regions). 

 Power to detect an association between SNP discovered and risk of LOAD 

given the effect size (i.e. odds ratios) and allele frequencies.  

Power for SNP discovery 

Power to detect a SNP given the number of DNA samples sequenced was calculated 

and is shown in Table 4.2 using Methods 2.3.7. The power to detect a SNP with 

MAF of 0.01 using 75 samples was estimated to be 78%. As a result, this study does 

not have sufficient power to detect a SNP with allele frequency less than 0.01.  

Therefore, SNPs with MAF less than 0.01 in both AD cases and controls were 

removed from further analysis as a result of the lack of power.  
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Table 4.2 Relationship between MAF, power and sample size required. Minor 

allele frequency, power to detect SNPs and sample size required are as indicated. 

Sample size required to obtain 95% power to detect a SNP with MAF between 0.001 

and 0.5 are shown on the left. Power to detect SNPs with sequencing of 75 samples 

(with MAF between 0.001 and 0.5) are shown on the right. Power to detect SNPs 

with MAF 0.01 using 75 samples is highlighted in yellow.  

Minor allele 
frequency 

Power 
Sample size 

required 

 

Minor allele 
frequency 

Power Sample size 

0.001 0.95 1497 0.001 14% 75 

0.005 0.95 299 0.005 53% 75 

0.01 0.95 149 0.01 78% 75 

0.02 0.95 74 0.02 95% 75 

0.03 0.95 49 0.03 99% 75 

0.04 0.95 37 0.04 >99% 75 

0.05 0.95 29 0.05 >99% 75 

0.1 0.95 14 0.1 ~100% 75 

0.2 0.95 7 0.2 ~100% 75 

0.3 0.95 4 0.3 ~100% 75 

0.4 0.95 3 0.4 ~100% 75 

0.5 0.95 2 0.5 ~100% 75 
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Power to detect a singleton 

Syzygy provides ‘--power’ function to estimate power to detect a singleton (a single 

alternative allele) at each nucleotide base according to the read depth  number of 

reads that mapped to the target regions.   

The majority of the base pair positions in the TRIM15 ‘A’ and ‘B’ amplicons showed a 

power value of 100, suggesting ~100% power to detect a singleton.  

Power to detect a singleton can be calculated using the method described in 

Methods 2.3.7. For example, using the average read depth of ~20,500 in the control 

pool, the power to detect a singleton can be calculated: 

               (  (
 

   
))

     

              

        

 

SNP with the ‘power’ value given by Syzygy less than 80 have been excluded from 

further analysis.  

Power to detect an association 

Power to detect an association was calculated using QUANTO v1.2.4 and the results 

are shown in Table 4.3. As indicated, the study has 80% power to detect an 

association for common variants with OR > 3 or a rare variants with OR > 4. This 

estimation, however, should be interpreted with caution as it is based on a number of 

assumptions (such as effect size and mode of inheritance), and gene-environment 

interaction (GxE) has not been taken into account.  
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Table 4.3 Sample size required to detect an association calculated using QUANTO (v 1.2.4). The required sample sizes (to have 

80% and 95% power as indicated) were calculated for common variants (0.5 > MAF > 0.05) with odds ratio between 1.1 and 4.0, and 

rare variants (0.05 > MAF > 0.01) with odds ratio between 1.5 and 12.0. The ‘*’ indicates sample size was calculated based on allele 

frequencies 0.10 to 0.20 instead of 0.05 to 0.5. All sample sizes shown are the the number of case-control pairs.  

Common Variants (0.5 > MAF > 0.05) Rare Variants (0.05 > MAF > 0.01) 

OR 
Sample required to have 

80% power 
Sample required to have 

95% power 
OR 

Sample required to have 
80% power 

Sample required to have 
95% power 

4.0* 32-47 50-76 12.0 27-107 42-172 

3.0* 48-75 76-119 11.0 28-114 45-183 

2.0 88-350 141-561 10.0 30-123 48-197 

1.9 102-412 162-661 9.0 33-135 53-216 

1.8 120-498 191-797 8.0 37-150 58-241 

1.7 145-619 232-991 7.0 41-172 66-275 

1.6 183-800 293-1283 6.0 48-204 77-326 

1.5 243-1094 389-1753 5.0 60-256 95-409 

1.4 349-1618 559-2593 4.0 81-353 129-565 

1.3 569-2719 912-4357 3.0 131-589 210-943 

1.2 1171-5768 1876-9244 2.0 350-1623 561-2601 

1.1 4264-21697 6834-34778 1.5 1094-5161 1753-8273 
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High quality SNPs 

77 high quality SNPs were called using BioScope (v1.3) (Methods 2.4.1) and Syzygy 

(v1.1.0) (Methods 2.4.3).  

21 SNPs with MAF less than 0.01 in both case and control pool were excluded from 

further analysis; 56 SNPs remained for further analysis.  

Of the remaining high quality SNPs, 31 were known and 25 were novel according to 

the dbSNP database (release#132)  

Further QC, taking into account strand bias, clustering and low read depth, were 

applied to these 25 novel variants, resulting in 15 being removed. This QC did not 

apply to known SNPs.  

Known SNPs 

All 31 known SNPs show identical alternative alleles as documented in the dbSNP 

database (Table 4.4).  

Approximately half of these SNPs (15 out of the 31) were found to be documented in 

the latest version of HapMap database (release 28 - August 2010).  

With exception of a single SNP (rs1063280), which showed a significantly different 

allele frequency in comparison to the allele frequency quoted in HapMap, comparison 

of the remaining 14 SNPs showed compelling consistency with a correlation 

coefficient (R2) of 0.966 (Figure 4.12).  

Allele frequency of the ‘C’ allele (alternative allele) of SNP rs1063280 was estimated 

to be 0.21. The frequency of the same SNP is however shown to be 0.89 in HapMap 

(CEU population release 28). The discrepancy in allele frequency suggests either the 

presence of possible population heterogeneity, an error caused by read misalignment 

or more likely a mis-call due to genotyping error. 
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Table 4.4 Comparison of alternative alleles of known SNPs. Table shows all 

known SNPs with allele frequency greater than 0.01 in the case or control pools 

identified by next generation sequencing. All alternative alleles are shown in the 

forward strand. Chromosome number (CHR), SNP identifier (SNP), base pair 

positions (BP) are as indicated together with reference allele (RA), observed 

alternative allele (Observed AA) and alternative allele documented in dbSNP 

database (release 132).  

CHR SNP BP RA Observed AA 
AA found in 
dbSNP #132 

6 rs60650863 30130456 A G G 

6 rs17188113 30131123 T G G 

6 rs62407492 30131331 T C C 

6 rs9261536 30131349 T C C 

6 rs35278640 30131503 T C C 

6 rs2523733 30131515 C A A 

6 rs11961941 30131527 G T T 

6 rs17194460 30131546 A G G 

6 rs17194467 30131585 G A A 

6 rs17194474 30131711 G C C 

6 rs2074477 30132035 G A A 

6 rs41272587 30132100 G C C 

6 rs114344980 30138489 G A A 

6 rs1029238 30138645 G A A 

6 rs1029237 30138662 C T T 

6 rs41272591 30138853 C A A 

6 rs41272595 30138865 T C C 

6 rs115440118 30138895 C T T 

6 rs41272599 30139021 A T T 

6 rs929156 30139699 G A A 

6 rs1063280 30140342 T C C 

6 rs6905949 30140525 T C C 

6 rs13212414 30140540 A T T 

6 rs2844787 30140913 G T T 

6 rs9380156 30141042 A G G 

6 rs13213365 30141204 C T T 

6 rs757258 30142253 T C C 

6 rs757257 30142458 G A A 

6 rs961039 30142674 G A A 

6 rs957765 30142690 G A A 

6 rs2394737 30142999 A G G 
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Figure 4.12 Comparison of allele frequencies with HapMap data. Scatter plot 

showing correlation between allele frequencies estimated from NGS (x-axis) and 

from HapMap (CEU population - release 28) (y-axis) in the control pool. Each SNP is 

represented by a blue diamond. Black line: expected line if allele frequencies from 

both sets are identical. The dashed line highlights that the majority of the SNPs 

exhibited similar allele frequency when compared with HapMap data (CEU 

population release 28).    
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Three out of the 31 high quality SNPs with dbSNP rs numbers showed significant 

evidence of association with risk of LOAD (uncorr-p < 0.05)  rs41272591 (p = 

0.0006), rs9380156 (p = 0.0044) and rs6905949 (p = 0.034). All three SNPs are 

common (MAF > 5%) (Table 4.5). SNPs rs9380156 and rs6905949 exist in HapMap 

(CEU population release 28) with MAF 0.16 and 0.15, respectively. SNP rs41272591 

does not exist in HapMap (CEU population release 28).  

Direct genotyping of the two most significant SNPs (rs41272591 and rs9380156) 

using TaqMan® genotyping assays using the original 75 case and control samples 

showed similar allele frequency in the case pool as estimated by NGS.  

Minor allele frequency (MAF) of SNP rs41272591: 

 Case pool: 0.20 (TaqMan) and 0.19 (NGS) 

 Control pool: 0.11 (TaqMan) and 0.05 (NGS) 

Minor allele frequency (MAF) of SNP rs9380156: 

 Case pool: 0.20 (TaqMan) and 0.17 (NGS) 

 Control pool: 0.11 (TaqMan) and 0.05 (NGS) 

Calculation of LD between the two SNPs showed strong evidence of linkage (r2 = 

0.864 and D’ = 0.93 in the control pool and r2 = 0.918 and D’ = 0.958 in the case 

pool). As a result, both SNPs showed identical and significant association with LOAD 

(p = 0.036, OR = 2.09) using the same statistical test (Fisher’s exact test (2-sided)).  

Genotyping using an independent sample cohort (90 LOAD cases and 91 controls) 

showed no significant difference in allele frequencies (cases compared with controls) 

(p = 0.89, OR = 1.05), although the odds ratio appears to be in the same direction as 

suggested by the NGS.  
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Table 4.5 Summary of all high quality SNPs identified in TRIM15 ‘A’ and ‘B’ amplicons with dbSNP rs numbers. Chromosome 
number (CHR), base pair position (BP) and SNP identifier (SNP) are indicated together with fold coverage, power to detect a singleton 
(Power), observed alleles (reference and alternative), annotation, MAF (case and control pool) and Fisher’s exact test (2-sided) p-
values. SNPs with association p-value (p < 0.05) are highlighted in yellow.  

CHR BP SNP 
Fold coverage 
(case/control) 

Power 
(case/control) 

Allele 
(ref/alt) 

Annotation 
MAF in 

case pool 
MAF in 

control pool 
Fisher’s exact test 
(2-sided) p-value 

6 30138853 rs41272591 330/402 100/100 C/A INTRON.6 +67 0.1863 0.0508 0.0006 

6 30141042 rs9380156 238/404 100/100 A/G 3' DOWNSTREAM 0.163 0.0533 0.0044 

6 30140525 rs6905949 364/372 100/100 T/C 3’ DOWNSTREAM 0.0803 0.1665 0.0340 

6 30138645 rs1029238 270/266 100/100 G/A INTRON.5 +251 0.033 0.0932 0.0554 

6 30131515 rs2523733 160/152 100/100 C/A EXON.1 0.3344 0.2314 0.0725 

6 30130456 rs60650863 340/276 100/100 A/G PROMOTER -536 0.0199 0.0666 0.0853 

6 30140342 rs1063280 54/32 96/74 T/C 3' UTR 0.2476 0.1662 0.1163 

6 30131546 rs17194460 178/166 100/100 A/G EXON.1 0.0333 0.0781 0.1320 

6 30139699 rs929156 186/160 100/100 G/A EXON.7 0.2355 0.3099 0.1933 

6 30138865 rs41272595 320/392 100/100 T/C INTRON.6 +79 0 0.0199 0.2475 

6 30138895 rs115440118 386/474 100/100 C/T INTRON.6 +109 0 0.0199 0.2475 

6 30140913 rs2844787 392/420 100/100 G/T 3' DOWNSTREAM 0.7586 0.6988 0.2982 

6 30131349 rs9261536 138/186 100/100 T/C 5'UTR 0.8457 0.8938 0.3030 

6 30138662 rs1029237 262/278 100/100 C/T INTRON.5 +268 0.1969 0.2449 0.4057 

6 30142253 rs757258 152/202 100/100 T/C 3' DOWNSTREAM 0.0363 0.0603 0.4127 

6 30142690 rs957765 186/234 100/100 G/A 3' DOWNSTREAM 0.2062 0.2484 0.4907 

6 30138489 rs114344980 214/160 100/100 G/A INTRON.5 +95 0 0.0134 0.4983 

6 30139021 rs41272599 302/370 100/100 A/T INTRON.6 +235 0 0.0133 0.4983 

6 30131711 rs17194474 250/290 100/100 G/C EXON.1 0.0333 0.0533 0.5724 

6 30140540 rs13212414 374/386 100/100 A/T 3' DOWNSTREAM 0.0333 0.0533 0.5724 

6 30142674 rs961039 26/30 20/28 G/A 3' DOWNSTREAM 0.2112 0.2405 0.6793 

6 30131503 rs35278640 188/194 100/100 T/C EXON.1 0.0133 0.0278 0.6843 

6 30141204 rs13213365 258/268 100/100 C/T 3' DOWNSTREAM 0.0266 0.0401 0.7497 

6 30142999 rs2394737 316/324 100/100 A/G 3' DOWNSTREAM 0.408 0.4195 0.9067 

6 30142458 rs757257 336/378 100/100 G/A 3' DOWNSTREAM 0.4202 0.4305 0.9071 

6 30131123 rs17188113 360/420 100/100 T/G 5'UTR 0.0266 0.0266 1.0000 

6 30131331 rs62407492 156/200 100/100 T/C 5'UTR 0.0421 0.0466 1.0000 

6 30131527 rs11961941 152/144 100/100 G/T EXON.1 0.0541 0.0465 1.0000 

6 30131585 rs17194467 174/182 100/100 G/A EXON.1 0.0133 0.0128 1.0000 

6 30132035 rs2074477 358/428 100/100 G/A INTRON.1 +192 0.0255 0.0333 1.0000 

6 30132100 rs41272587 352/428 100/100 G/C INTRON.1 +257 0.0266 0.0333 1.0000 



 
Next generation sequencing of TRIM15 gene using pooled DNA samples 

177 
 

Novel rare variants 

Ten high quality novel variants were identified in TRIM15 ‘A’ and ‘B’ amplicons 

(Table 4.6). All of which were estimated to have an allele frequency between 0.01 

and 0.05. No novel common variants were identified. Using the tabix program (as 

described in Methods 2.4.3), four SNPs (out of the ten) have also been identified by 

the 1000 genome project; suggesting these SNPs are likely to be genuine. dbSNP rs 

numbers have yet to be assigned to these novel SNPs.  

The average fold coverage for these high quality novel rare variants was calculated 

as 230 and 242 in the case and control pools, respectively. As a result, all ten novel 

rare variants acquired maximum power to detect a singleton, which in turn provides 

confidence in them being genuine SNPs.  

None of these novel rare variants however showed significant evidence of 

association with LOAD (p < 0.05). This is perhaps unsurprising, as an association 

study requires much larger sample size than SNP discovery.  

Interestingly, one of the rare SNPs (located at chr6: 30131558) showed an allele 

frequency of 0.00 in controls and 0.0133 in cases, was found to cause a non-

synonymous change (H33Y, histidine->tyrosine at amino acid position 33) and was 

predicted to be ‘probably damaging’ by Polyphen-2 (Methods 2.4.4).  

Furthermore, a single high quality novel SNP (chr6: 30142265) was identified as a 

deletion of a single ‘T’ allele out of eight consecutive ‘T’ repeats. The frequencies of 

this deletion were estimated to be identical in both pools (Figure 4.13). 
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Table 4.6 Summary of all high quality novel rare variants identified in TRIM15 ‘A’ and ‘B’ amplicons.  Chromosome number 

(CHR), base pair position (BP), read coverage (per chromosome) are as indicated as well as power to detect a singleton (Power), 

observed alleles (reference and alternative), annotation, MAF in case and control pools and Fisher’s exact test (2-sided) p-values. The 

novel rare variant that causes the non-synonymous change and predicted to be ‘probably damaging’ by Polyphen-2 is highlighted in 

yellow. SNPs which have been found by the 1000 genome project are highlighted in green. As no SNPs showed significant (p < 0.05) 

evidence of association, the table is presented in ascending order of base pair coordinates. 

  

CHR BP 
Read coverage  
(case/control) 

Power 
(case/control) 

Allele  
(ref/alt) 

Annotation 
MAF in 
case 
pool 

MAF in 
control 

pool 

Fisher’s exact 
test (2-sided) 

p-value 

6 30130617 152/212 100/100 G/A PROMOTER -375 0 0.0133 0.4983 

6 30131558 174/172 100/100 C/T EXON.1 0.0133 0 0.4983 

6 30131764 254/138 100/100 C/G EXON.1 0.0133 0.0263 0.6843 

6 30132314 216/298 100/100 T/A INTRON.1 +471 0.0066 0.0133 1.0000 

6 30138476 182/134 100/100 T/C INTRON.5 +82 0 0.0198 0.2475 

6 30138597 302/316 100/100 T/A INTRON.5 +203 0 0.0133 0.4983 

6 30139155 344/426 100/100 C/G INTRON.6 +369 0 0.0133 0.4983 

6 30139396 242/264 100/100 T/G INTRON.6 +610 0.0133 0.0136 1.0000 

6 30139477 264/238 100/100 G/T INTRON.6 +691 0 0.0196 0.2475 

6 30142265 162/220 100/100 T/- 3' DOWNSTREAM 0.0133 0.0133 1.0000 
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Figure 4.13 Output from IGV viewer depicting deletion of a ‘T’ allele from eight consecutive ‘T’ repeats. The deletion is as 

indicated (marked with ‘---’)  case pool on the left and control pool on the right.  Nucleotide bases ‘A’, ‘T’, ‘C’ and ‘G’ are coloured in 

green, red, blue and brown, respectively. Chromosomal locations (on the top) are shown together with reference human genome 

sequence (hg19) (at the bottom). 
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UCSC custom tracks 

All high quality SNPs (both common and rare) identified by NGS are displayed in 

UCSC custom tracks along with comprehensive UCSC annotations (Figure 4.14 and 

Figure 4.15) (Methods 2.4.5).   

Repetitive genomic regions are more likely to suffer from power issues due to 

insufficient coverage and read depth (Treangen and Salzberg, 2011). Interestingly, 

repeat masked region (using RepeatMasker) does not necessarily imply a drop of 

power. Only a few genomic regions masked by RepeatMasker demonstrated this 

loss of read depth and power, whereas the majority acquired full power of detection 

of a singleton in comparison with non-repeat masked regions.  

Furthermore, it is noteworthy that regions that have not been masked by 

RepeatMaster occasionally show similar loss of power, however, with ‘sharp’ 

appearance (instead of ‘broad’ for repeat-masked regions).  

A single region of TRIM15 ‘A’ amplicon showed a drop of power to detect a singleton 

(Figure 4.14). On closer inspection (using IGV viewer (Methods 2.4.5)), this region 

was found to be highly repetitive with ‘TAAA’ repeats (Figure 4.16).  

Multiple repetitive regions exist for TRIM15 ‘B’ amplicon. A number of these regions 

showed significantly reduction of power and ability to call SNPs (Figure 4.15).  
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Figure 4.14 Summary of high quality SNPs identified in TRIM15 ‘A’ amplicon. 

Power to detect a singleton is shown (at the top) together with high quality SNPs 

(both known and novel) (in the middle) and association p-values (underneath SNP 

representation). SNPs are highlighted in colours according to their chromosomal 

position and their function - red (exon, non-synonymous), green (exon, synonymous), 

blue (UTR), and black (introns, 5’ upstream of TRIM15 gene). The p-value threshold 

(p = 0.05) is represented by a horizontal line.  
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Figure 4.15 Summary of high quality SNPs identified in TRIM15 ‘B’ amplicon. 

Power to detect a singleton is shown (at the top) together with high quality SNPs 

(both known and novel) (in the middle) and association p-values (underneath SNPs 

representation). SNPs are highlighted in colours according to their chromosomal 

positions and functions - red (exon, non-synonymous), green (exon, synonymous), 

blue (UTR), and black (introns, 3’ downstream of TRIM15 gene). The p-value 

threshold (p = 0.05) is represented by a horizontal line.   
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 Figure 4.16 Output from IGV viewer showing ‘TAAA’ repeats found in the 

TRIM15 ‘A’ amplicon. Nucleotide bases ‘A’, ‘T’, ‘C’ and ‘G’ are coloured in green, 

red, blue and brown, respectively. Chromosomal locations (on the top) are shown 

together with reference human genome sequence (hg19) (at the bottom). 
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Overrepresentation of reads 

A large number of overrepresented reads (50bp either side of the original amplicons) 

were observed. This overrepresentation of reads unnecessarily wasted a large 

number of reads, and thus reduced the throughput and capacity of the next 

generation sequencing.  

This overrepresentation is caused by bias where short nucleotide fragments at both 

ends of the amplicons are more likely to be presented in the library in comparison to 

nucleotide fragments located elsewhere (Figure 4.2).  

Reducing this overrepresentation of reads is thus capable of increasing the average 

read depth across the targeted interval, and provides more power to call SNPs. A 

previous study suggested that using 5’-blocked primers in LR-PCR can significantly 

reduces this overrepresentation (Harismendy and Frazer, 2009).  

It should be emphasized that this overrepresentation of reads is only applicable for 

NGS data using PCR based enrichment, and enrichment using commercial kits such 

as Agilent SureSelect® are not affected in this manner.  

As only a small number of genes were inputted into this NGS project, despite the 

reads overrepresentation issue, the average read depth and fold coverage is still far 

greater than what is generally accepted as deep/high coverage; > 20x as suggested 

by Nielsen et al., 2011 and 42x as depicted by the 1000 Genome Project (The 1000 

Genomes Project Consortium, 2010). The average coverage for all TRIM15 high 

quality SNPs was ~240-fold in the case pool and ~260-fold in the control pool 

(Figure 4.17).  
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Figure 4.17 Histogram depicting read coverage in the control pool. The x and y axis represent the fold coverage and frequency of 

reads, respectively. The overrepresented regions (i.e. 50bp each side of the amplicon) and base pair positions with less than 10-fold 

coverage are not shown. As indicated, the majority of TRIM15 sequence acquired an average read coverage between 200 and 400 fold.
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4.5 Discussion 

41 high quality SNPs were identified within the TRIM15 ‘A’ and ‘B’ amplicons from 

analysing the next generation sequencing data generated by ABI SOLiD® 

sequencing.  

The sequencing has been successful, as reflected by a number of observations: 

 High on-target rate  ~90% of mapped reads were found to be on target (LR-

PCR enriched regions).  

 Consistent alternative alleles  100% of known SNPs identified exhibited 

identical alternative alleles as documented in the dbSNP database.  

 Consistent allele frequencies  96.6% correlation coefficient of allele 

frequency as compared with HapMap data (14 SNPs) 

 High discovery rate  all documented SNPs in HapMap and dbSNP with MAF 

greater than 0.01 were detected.  

It is noteworthy that all allele frequencies estimated in the case and control pool are 

multiples of 0.0066, which is equivalent to one minor allele out of 150 (i.e. 1/150 = 

0.0066). For example, a SNP with three minor alleles would therefore result in a 

minor allele frequency estimation of 0.0199.  

Calculation of Power 

This study was estimated to have ~78% power to detect a SNP with minor allele 

frequency (MAF) 0.01, and ~95% power to detect a SNP with MAF 0.02 (Table 4.2).  

As only a small number of genomic regions were inputted for NGS, the majority of 

sequence regions within TRIM15 ‘A’ and ‘B’ amplicons acquired maximum power to 

detect a singleton. The average read-depth and fold-coverage for TRIM15 ‘A’ and ‘B’ 
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amplicons were estimated to be 18,382 and 245-fold in cases and 20,543 and 274-

fold in controls (Figure 4.17).  

Discovery of a SNP is dependent upon: i) SNP present in the number of samples 

chosen to be sequenced and ii) sufficient number of high quality and well mapped 

reads overlapping the SNP site (i.e. read-depth) (The 1000 Genomes Project 

Consortium, 2010). As the throughput of NGS per run is fixed, sequencing of more 

DNA samples would avoid missing variants not represented by these samples, but 

decreases the read-depth for each individual DNA sample and therefore leads to loss 

of sensitivity and accuracy.  

The power to detect an association with the risk of LOAD is dependent upon: i) effect 

size carried by the SNP (i.e. odds ratios) and the number of samples sequenced. 

With 75 matched case and control pairs, the power to detect an association was 

estimated to be ~80% for common variants with OR ≥ 3 and rare variants with OR ≥ 4 

(Table 4.3). An OR > 4 for common variants or an OR > 6 for rare variants is required 

to have 95% power.  

As rare variants are more likely to have greater odds ratios in comparison with 

common variants according to studies of multiple complex disorders (Bodmer and 

Bonilla, 2008), these variants are therefore more likely to become statistically 

significant with smaller sample sizes. None of the high quality variants identified 

within TRIM15 ‘A’ and ‘B’ amplicons exhibited an odds ratio above 6.  

Ascertainment of base quality and mapping quality thresholds 

The base quality threshold of 10 and mapping quality threshold of 50 were used in 

this study to call SNPs using Syzygy. FreeBayes was used to validate and confirm 

the Syzygy outputs (Methods 2.4.3).  
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Base quality and mapping quality thresholds are tightly correlated; a read with low 

base quality at multiple sites of a read, results in overall low mapping quality for that 

read.   

The same base quality threshold was used in this project as used by the 1000 

genome project, and a more stringent mapping quality threshold of 50 (instead of 20) 

has been used due to the high read-depth of the NGS data (The 1000 Genomes 

Project Consortium, 2010).   

High quality rare variants 

Ten novel rare variants with MAFs between 0.01 and 0.05 were identified within the 

TRIM15 ‘A’ and ‘B’ amplicons, none of which were shown to be associated with 

LOAD with statistical significance p < 0.05 (Table 4.3).  

Nine out of the ten were found to be single nucleotide polymorphisms (SNPs); six 

SNPs were found to be located in introns, two in exon 1, and one was shown to be 

located in a predicted promoter region of the TRIM15 gene. Of the 2 exonic SNPs, 

one (located at chr6: 30131558) was identified as a non-synonymous SNP, the other 

(located at chr6: 30131764) was found to be synonymous.  

The non-synonymous SNP appears to be particularly interesting; not only is the SNP 

predicted to cause a coding change from a positive charged histidine to a neutral 

tyrosine, but is also present in cases only (with minor allele frequency 0.0133) and 

absent from the controls. Additionally, this coding change was predicted to be 

‘probably damaging’ with respect to the encoded protein structure by Polyphen-2 

(Methods 2.4.4).  

A deletion variant was also detected; a single ‘T’ allele out of eight consecutive ‘T’ 

repeats with a frequency of 0.0133 in both case and control pools. Interestingly, a 

known deletion variant rs5875237 has been documented in dbSNP database, at a 
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neighbouring site (chr6: 30142266) as this variant found by NGS (chr6: 30142265). It 

is likely that the novel deletion variant found in this study is the same SNP as 

documented in the database.  

Further experimental validation (using alternative genotyping methods) of these 

SNPs are required to confirm if they are genuine and worthy of further investigation.  

High quality common variants 

Three common variants (rs41272591, rs9380156 and rs6905949) exhibited 

significant evidence of associations with LOAD.  

Two of the most significant SNPs (rs41272591 and ra9380516 which were found to 

be in tight LD), have been validated by TaqMan® genotyping assays with allele 

frequencies similar to those estimated by NGS, and did not show significant evidence 

of association using an independent sample cohort (90 cases and 91 controls) (p = 

0.89, OR = 1.05). It is perhaps unsurprising as the initial p-values do not withstand 

multiple testing after Bonferroni correction. In a study of 41 independent observations, 

assuming that 5% would be expected to appear due to chance, two SNPs would be 

expected to show a significant p-value (p < 0.05) and two have been detected.  

No further efforts were made to replicate the nominal association seen with SNP 

rs9380516.  

Low quality variants 

281 low quality variants were identified using Syzygy (Methods 2.4.3). The majority 

of these low quality variants are likely to be due to errors, as discussed below, and 

therefore no further efforts were made to validate any of them.  
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Discussion over errors of NGS using pooled DNA samples 

An accurate estimation of allele frequencies using pooled DNA samples is dependent 

upon equal representation of each individual DNA sample in the library (DNA pool) 

for sequencing.  

Although gel extractions were performed to remove undesired non-specific PCR 

products and primer dimers, this however was only undertaken after the initial DNA 

pooling (Figure 4.7).  

As the exact amount of the DNA amplicon out of the 5µl (which had been pooled) 

may vary, it is likely that some of the DNA samples are more concentrated than 

others. Ideally the library is better created by gel extractions of all LR-PCR samples 

individually, this however means more cost, longer time to perform, and potential to 

introduce errors.   

Barcoding of each individual sample prior to DNA pooling and target enrichment 

(often with short non-palindromic oligos) enables downstream identification of where 

the read has originated.  

Employing individually bar-coded DNA library samples is an alternative approach to 

solve equi-molar pooling issues, where estimation of allele frequencies is less 

sensitive to differential representation of different DNA samples in the library. 

NGS using bar-coded DNA libraries results in more accuracy in calling SNPs and 

prediction of allele frequencies. An alternative allele from individually bar-coded 

samples would be represented by 50% of reads with the same barcode, whereas by 

only 0.66% in this study. As a result, differentiating errors (caused by sequencing and 

read misalignment) from a real SNP would be much easier in bar-coded NGS data.  

Furthermore, NGS with bar-codes enables identification of each individual genotype, 

which is useful in downstream analyses, e.g. imputation, studies of LD between 
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common and rare variants and meta-analysis taking into account heterogeneity 

between samples through including covariates. However, applying an individual 

barcode to each DNA sample is significantly more expensive than using a pooled 

DNA strategy (which is considered a cost effective approach). 

Furthermore, using multiple smaller DNA pools would be better in comparison with 

using a single large DNA pool. First, each alternative allele would be representing a 

higher allele frequency, making it easier to be differentiated from errors. Second, 

validation of genotype data would be easier as sequencing of a smaller number of 

DNA samples will be required (instead of sequencing all DNA samples in the pool). 

The above therefore are all considered limitations of using a DNA pooling strategy in 

next generation sequencing.  

NGS is still at its early stage. The highest capacity sequencer currently available 

requires 8-14 days to produce data, which has limited the application of this 

technology in clinical diagnosis.  

The most anticipated ‘real-time next generation’ sequencer is in trial and under 

development. One of the examples is nanopore technology, which claims to be able 

to sequence DNA fragments while they pass through the nanopore. This technology, 

once developed, is thought to be able to sequence the entire human genome in less 

than 24 hours for $1000 (Branton et al., 2008).  

It is foreseeable that in the not too distant future, NGS technologies will be able to 

obtain sequencing data from a single cell, allowing investigation of somatic mutations 

responsible for disease, particularly in cancer genomics (Metzker, 2010).  

  



 
Next generation sequencing of TRIM15 gene using pooled DNA samples 

192 
 

4.6 Conclusion 

A next generation sequencing pipeline was described in an effort to investigate if the 

TRIM15 gene ‘A’ and ‘B’ amplicons harboured multiple rare variants that may be 

associated with disease. The pipeline described can be applied to other studies that 

use the ABI SOLiD® next generation sequencing platform. 

A total of ten high quality rare variants were successfully identified. Four of which are 

likely to be genuine as they have also been found by the 1000 genome project (The 

1000 Genomes Project Consortium, 2010). The remaining six rare SNPs are novel, 

and have not been reported before. Direct genotyping using an alternative approach 

(e.g. Sanger sequencing or TaqMan® genotyping assay) will be necessary to confirm 

if these SNPs are genuine, and worthy of further investigation.  

Furthermore, none of the high quality rare variants identified were found to be 

significantly associated with LOAD (p > 0.05). This is perhaps unsurprising, as an 

association study would require much larger sample size than SNP discovery.  

Although not statistically significant, the rare SNP (located at chr6: 30131558) 

appears to be interesting; not only as it appear to cause a non-synonymous change 

in exon 1 of the TRIM15 gene, but also as it is suggestively associated with LOAD 

(found only in cases with MAF 1.33% and absent in controls), and predicted to be 

‘probably damaging’ by Polyphen-2. If validated, this SNP may prove to be genuinely 

associated with AD when larger samples are analysed.  
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Chapter 5:    Genetic variants influencing human ageing from 

LOAD Genome-Wide Association Studies (GWAS) 

 

5.1 Introduction 

Human ageing has long been considered a natural process of deterioration, where 

an accumulation of damage occurs to DNA molecules, cells and tissues over the life-

time. As a result, it causes frailty and malfunctions of various parts of the body, and 

eventually leads to death. It has become increasingly evident that the human ageing 

process, like all other biological processes, is subject to regulation by signalling 

pathways and transcription factors (Kenyon, 2010).  

Human ageing and longevity are closely related. There are thoughts that achieving 

longevity might mean merely adding a few years at the late stage of a life-span. 

Others thought that increasing the life-span could slow down the ageing process (i.e. 

people stay young and healthy for longer). The latter has become increasingly 

accepted. In C.elegans, long-lived mutants appear to remain young after normal 

worms ‘look’ old by assessing the rate of tissue decline (Garigan et al., 2002; 

Herndon et al., 2002). 

Human ageing is affected by both genetic and environment factors (Cutler and 

Mattson, 2006). The heritability of ageing is estimated to be 20-30% to reach mid-

eighties estimated from twin studies (Herskind et al., 1996). Furthermore, previous 

studies have shown that siblings of centenarians have an approximately 4-fold higher 

chance of survival to their early 90s compared with siblings of individuals who die at 

73 years of age (Perls et al., 1998). A larger study conducted by the same research 

group has shown an even higher fold increase (8-18 fold) in the ‘risk’ of longevity for 

siblings of centenarians compared with random controls (US 1900 birth cohort) (Perls 

et al., 1998). Evidence indicates strong familial aggregation towards human ageing.  
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Given the fact of the likely existence of ageing genes, a large number of studies have 

been undertaken using different approaches to elucidate the genetic variants 

contributing to successful ageing and longevity. As a result, various genes have been 

reported as susceptibility loci for human ageing, such as PON1, APOE, IL6, IL10, 

GSTT1, and SIRT3 (Glatt et al., 2007; Martin et al., 2007). These candidate genes 

highlight biological pathways that maybe important in human ageing, such as 

lipid/cholesterol metabolism [GO:0006629] [GO:0008203] (APOE and PON1) (de 

Chaves and Narayanaswami, 2008; Efrat and Aviram, 2010), immune system 

processes [GO:0002376] (IL6 and IL10) (Jylhava and Hurme, 2009), drug 

metabolism [KEGG:hsa00982] (GSTT1) (Glatt et al., 2007) and energy metabolism in 

mitochondria (SIRT3) (Polito et al., 2010).  

GenAge is a database of genes related to ageing (http://genomics.senescence.info/). 

To date, over 250 genes have been recorded by the GenAge database based on 

extensive literature reviews. All of these genes have shown possible association with 

human ageing (de Magalhaes et al., 2009). Most of these genes are playing critical 

parts in a variety of biological pathways, and a significant number of these genes 

(>100) are also related to severe human diseases. It is generally believed that genes 

and bio-markers implicated in age-related diseases such as cancer, coronary artery 

disease (CAD), cerebra-vascular disease (CVD) and Alzheimer’s disease (AD) have 

a role in successful ageing (Panza et al., 2009; Wang et al., 2009). Identification of 

genuine ageing genes may uncover ‘master genes’ that increase our understanding 

of many age-related diseases.  

The molecular genetics underlying the human ageing process is complex and it is 

suggested that successfully ageing is likely due to numerous genes and 

environmental factors, each exerting a small effect (Lescai et al., 2009; Plomin et al., 

2009).  
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Insights into human ageing have been gained from studying model organisms. 

Extension of lifespan can be achieved by manipulating a few genes in laboratory 

animals, such as flies, worms and mice (Kenyon, 2010). The insulin/IGF-1 (insulin-

like growth factor 1) signalling pathway has a well-established role in influencing 

lifespan within model organisms with large effect (Clancy et al., 2001; Holzenberger 

et al., 2003; Kenyon et al., 1993). Genetic inactivation of the daf-2 gene (encoding 

the IGF-1 receptor homolog in C.elegans) increases the lifespan of C.elegans by 

approximately 100% (Sebastiani et al., 2009). Interestingly, there is emerging 

evidence that genes such as IGF1/IGF1R (the orthologues of which play a major part 

in ageing in animals) can play a role in human lifespan. Loss of function mutations in 

IGF1R have been found to be overrepresented in Ashkenazi Jewish centenarians 

compared with controls (Suh et al., 2008).  

Ageing genes in human may not only increase the life-span but also postpone age-

related diseases. A previous study has indicated a significantly decreased 

prevalence of age-related diseases in offspring of long-lived parents (hypertension by 

23%, diabetes mellitus by 50%, heart attacks by 60%, and no incidences of strokes) 

compared with several age-matched control groups (Atzmon et al., 2004).  

Characterising various genetic and environmental factors influencing human life-span 

is one of the world’s major scientific challenges (Jylhava and Hurme, 2009). To date, 

GWAS are one of the most widely adopted approaches for identifying common 

genetic variations associated with human diseases. It has been suggested that with 

increasing sample size, promising signals of association between human traits and 

genetic variants can be revealed (McCarthy et al., 2008).  
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5.2 Aims 

Age is one of the biggest risk factor for many age-related diseases including 

Alzheimer’s disease. The prevalence of Alzheimer’s disease rises from less than 0.6% 

in persons aged between 65 and 69 years to over 22% in persons aged 90 years and 

older (average age-at-onset: 84) (Corder et al., 1993; Lobo et al., 2000). The risk of 

developing AD approximately doubles every five years after the age of 65 (Feulner et 

al., 2009).  

The aim of this study was to i) investigate whether the ‘known’ LOAD genes play a 

role in human ageing, and ii) search for candidate genetic risk factors associated with 

human survival and ageing, which may merit further study.  
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5.3 Strategy 

Through collaborative efforts, a combined GWAS dataset (subject-level genotype 

data) was generated from 1,385 subjects (1,047 LOAD cases and 338 controls) with 

documented age-at-death (AAD). All of these data were subject to subsequent QC 

procedures and analysis. The data analysis was performed using PLINK (Methods 

2.3.1).  

Datasets merging and QC 

The data was obtained from nine research centres, three from the USA and six from 

the UK (ARUK consortium). All studies used the Illumina 610 QuadChip, except the 

Mayo data which used the Illumina HumanHap300 chip (Carrasquillo et al., 2009). 

The Illumina 610 QuadChip includes all SNPs presented in Illumina 300 chip, which 

enabled merging of all the datasets (Table 5.1).  

Individual data characterized as ‘AUT - autopsy’ or having AAD information were 

extracted from the Mayo dataset (Carrasquillo et al., 2009) using the ‘--keep’ and ‘--

make-bed’ command in PLINK. This was repeated for samples from ARUK GWAS 

data (Nottingham, Bristol, Manchester, Belfast, Oxford and London), National 

Institute of Mental Health (NIMH) and Washington University (WashU) where 

possible. All GWAS datasets were transformed into the same PLINK format (1 and 2 

coding in PLINK binary format). Any samples which overlapped between GWAS 

datasets were removed. Each sample was checked individually for discrepancies 

between AAD and age at sampling (AAS). Samples with AAS greater than AAD were 

removed from further analysis. Data merging was performed using (--bmerge) in 

PLINK under “Consensus call” mode (shown as merged data 1 in Figure 5.1).  
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Table 5.1 Summary of sample information. GWAS data obtained from a total of 

nine centres, three from the USA (NIMH, WashU and Mayo) and six from the UK 

(Nottingham, Bristol, Manchester, Belfast, Oxford, London). Sample size, number of 

cases and controls, males and females for each cohort are as indicated together with 

details of the mean age at death in years for cases and controls and genotyping chip 

used in each study.  

Dataset 
Sample 

Size 
AD Status 

(AD/Controls) 
Gender 

(Male/Female) 
Genotyping 

Chip 
Mean AAD 

(AD/Controls) 
Origin 

Mayo 434 220/214 246/188 Illumina 300 73.5/71.7 USA 

NIMH  46  46/0  12/34  Illumina 610  78.1/- USA  

WashU  332  294/38  140/192  Illumina 610  84.1/86.1 USA  

Belfast  235  213/22  99/136  Illumina 610  82.2/83.1 UK  

Bristol  59  43/16  21/38  Illumina 610  82.5/81.6 UK  

London  238  194/44  83/155  Illumina 610  86.1/83.0 UK  

Manchester  1  1/0  0/1  Illumina 610  79.0/- UK  

Nottingham  39  35/4  18/21  Illumina 610  83.6/79.5 UK  

Oxford  1  1/0  0/1  Illumina 610  79.5/- UK  

Pooled 1385 1047/338 619/766 - 81.5/76.1 - 
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Figure 5.1 GWAS data QC and data merging strategy. Flow diagram summarizing 

the processes undertaken for data preparation and QC prior to subsequent analyses. 

The data was merged together under PLINK “Consensus call” mode (Merged Data 1). 

This data was split into two groups (Dataset ‘A’ and ‘B’) according to genotyping rate 

(SNPs which had > 95% genotyping rate for all samples (both chips) and the rest of 

the SNPs with genotyping rate > 95% for samples typed on the Illumina 610 chip). 

Both of these groups were subject to QC separately. The two datasets were then 

merged (Merged Data 2). Dataset ‘A’ (which contained SNPs common to both 

platforms) was LD pruned and merged with HapMap data (CEU, CHB/JPT and YRI) 

to form ‘Merged Data 3’. This was then used in a Principal Components Analysis 

which revealed 16 individuals as genetic outliers. These were removed from ‘Merged 

Data 2’. GR  genotyping rate  
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QC procedures were undertaken for the merged data to account for population 

stratification and differences in Illumina chip versions. Data merging and QC 

procedures are illustrated in Figure 5.1. The merged data was separated into two 

GWAS datasets (‘A’ and ‘B’) using the ‘--geno 0.05’ command in PLINK.  

For both of the GWAS datasets, the following QC procedures were carried out in 

order.  

1) SNPs with a genotyping rate less than 0.95 (--geno 0.05) were excluded from 

further analysis.  

2) SNPs with a minor allele frequency (MAF) less than 0.01 (--maf 0.01) were 

excluded from further analysis.  

3) A list of SNPs with MAF’s between 0.01 and 0.05 was generated (--freq). Within 

this shortlist, SNPs with genotyping rate less than 0.99 (--geno 0.01) were excluded 

(--exclude) from further analysis.  

4) SNPs with a Hardy-Weinberg Equilibrium p-value less than 0.001 (--hwe 0.001 --

hwe-all) were excluded from further analysis, irrespective of status (AD cases or 

controls).  

5) Individuals with a genotyping rate less than 0.95 (--mind 0.05) were excluded from 

further analysis.  

6) Using the GWAS dataset ‘A’, a LD pruned subset of 57,160 SNPs common to all 

arrays and HapMap data (--indep-pairwise) was generated using a PERL script 

written ‘in-house’ (Appendix 8.4.1). No two SNPs within this list had a LD r2 value 

greater than 0.2 across sliding windows (window size of 1,500 SNPs and 150 SNPs 

to shift the window). The subset of SNPs was used by EIGENSTRAT (Price et al., 

2006) for following calculations:  
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 To detect genetic outliers (See Methods 2.3.9 for definition), 

 To calculate principal components (PCs),  

 To generate a population stratification plot (as described in Methods 2.3.9) 

7) Genomic control inflation factor () was calculated using the GWAS dataset ‘A’ 

with AAD using EIGENSTRAT (Methods 2.3.9).  

8) Extraction of PCs from EIGENSTRAT results.  

Principal component analysis (PCA) using EIGENSTRAT reduces the genotype data 

to a number of dimensions, which are defined as the top eigenvectors of a 

covariance matrix between samples (Price et al., 2006). All significant PC axes (p < 

0.05) were taken into account in the analysis. The number of PC axes to be included 

as covariates was ascertained using the method as described (Methods 2.3.9).  

After the above QC, dataset ‘A’ consisted of SNPs common to both Illumina 300 and 

Illumina 610 chips, whereas dataset ‘B’ consisted of SNPs only common to Illumina 

610 chips. The two GWAS datasets were merged using the same methods (--bmerge) 

as described (shown as merged data 2 in Figure 5.1).  

SNPs with allele frequency bias due to inter-chip and inter-cohort differences can 

cause inflation of type I error rate. A box & whisker plot was drawn using StatsDirect 

(v 2.7.8). Only two centres (Mayo and NIMH) showed significant differences in AAD 

range compared with the rest of the data. Therefore, two logistic regression tests 

were undertaken using WashU data as a control and the Mayo and NIMH data as 

cases. The test incorporated the top six PCs and AAD as covariates. For each 

comparison, a Q-Q plot of 2 of observed versus expected p-values was generated 

using GenABEL (v1.6.4) (Aulchenko et al., 2007) (Methods 2.3.9).  
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Investigation of effect of LOAD genes in ageing 

Ten known LOAD susceptibility genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, 

MS4A6A, CD33, CD2AP and EPHA1) were tested for association with ageing using 

the most significant SNPs found in the previous GWAS (Harold et al., 2009; 

Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 2010). 

The best proxy was used to inform the effect of SNPs if they were not present in the 

merged dataset (Table 5.2).  
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Table 5.2 SNP selection. The most significant SNPs found in previous LOAD GWAS 

were selected for testing their effects with human lifespan. The SNPs, associated 

genes and the GWAS study are as indicated. LD - linkage disequilibrium shown in r2. 

‘-’ indicates the original index SNP was used rather than a proxy.  

SNP used in 
this study 

Gene 
SNP cited in 

literature 
LD (r

2
) Literature 

rs2075650 APOE rs2075650 - Harold et al., 2009 

rs11136000 CLU rs11136000 - Harold et al., 2009 

rs3851179 PICALM rs3851179 - Harold et al., 2009 

rs3818361 CR1 rs3818361 - Hollingworth et al., 2011 

rs744373 BIN1 rs744373 - Hollingworth et al., 2011 

rs3764650 ABCA7 rs3764650 - Hollingworth et al., 2011 

rs610932 MS4A6A rs610932 - Hollingworth et al., 2011 

rs3865444 CD33 rs3865444 - Hollingworth et al., 2011 

rs1485780 CD2AP rs9349407 0.913 Hollingworth et al., 2011 

rs11767557 EPHA1 rs11767557 - Hollingworth et al., 2011 
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Genome-wide association studies 

Quantitative Trait (QT) analysis of all SNPs was performed using multivariable linear 

regression (--linear) adjusted for AD status, gender and the top six PCs (Methods 

2.3.1). AAD was used as a continuous trait in this analysis thus giving maximum 

statistical power. Manhattan plots were drawn using Haploview (v 4.1) to visualize 

GWAS results (Methods 2.3.5). A histogram of AAD of all individuals that passed QC 

was drawn using StatsDirect software (v 2.7.8).  

Each SNP was annotated with its gene name using the PLINK gene report function 

(Methods 2.3.1) and a PERL script developed ‘in-house’ (Appendix 8.4.4).  

Genotyping of SNP rs4110518 

SNP rs4110518 was genotyped using an independent sample cohort (n = 487) using 

TaqMan® genotyping assay (Methods 2.2.7).  

Power calculation 

Power calculations were undertaken using QUANTO v1.2.4 (Methods 2.3.8). The 

required sample size was estimated using an additive model created by the software.  

MAF analysis of SNPs responsible for LOAD 

The full range of AAD (58-108 years) was separated into five age-at-death categories, 

the boundaries of which were selected to ensure each group contains an 

approximately equal number of samples. This was carried out using “Grouping => 

Categorise” function in StatsDirect. For each of the LOAD gene loci, the allele 

frequency was calculated and stratified by AAD category.  

The separation into five age-at-death categories were used only to facilitate 

visualisation of MAF of candidate SNPs in the different age ranges, and was not 

used to generate p-values.  
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5.4 Results 

Dataset composition and QC 

The combined GWAS dataset had a sample size 1,385 before QC. After QC, four 

participants were removed for low genotyping rate (--mind 0.05) from Mayo GWAS 

(Carrasquillo et al., 2009). A single sample from Bristol was removed due to 

discrepancies between AAD and age-at-onset (AAO). An additional 16 samples were 

removed as genetic outliers by PCs analysis using EIGENSTRAT. This included 14 

samples from the Mayo data, one from NIMH and one from Belfast. The mean AAD 

in the pooled dataset (post QC) was greater than 80 years of age (Table 5.1).  

The AAD histogram follows a normal distribution (Figure 5.2), with mean AAD of 

80.2 years of age (SD = 8.9 years). The box and whisker plot depicting AAD of each 

centre was as illustrated (Figure 5.3).  

The multidimensional scaling plot (MDS) demonstrated three distinct clusters. As 

expected, each cluster represents different population ancestry - European (CEU), 

Asian (CHB and JPT), and Yoruban (YRI) (Figure 5.4). UK, USA and HapMap_CEU 

samples formed a single cluster. On closer inspection, slight deviation between UK 

and USA samples exists and this was accounted for by including PCs as covariates. 

Genomic control inflation factor () was calculated using EIGENSTRAT by iteratively 

including zero to ten PCs (Price et al., 2006). Including six PCs generated the lowest 

genomic control inflation factor ( = 1.003) (Table 5.3).  
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Figure 5.2 Histogram plot representing the spread of AAD of samples included 

in this study. The x and y axis represents age-at-death (AAD) in years and number 

of individuals, respectively. This graph follows a normal distribution, with mean AAD 

80.2 years (n = 1,385). 
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Figure 5.3 Box and whisker plot, showing the Age at Death (AAD) distribution 

for each centre. The central box represents the distance between the first and third 

quartiles with median marked with a diamond. The circles indicate that an individual’s 

AAD is outside 2 times the interquartile range. The dashed rectangle highlights that 

the majority of the data have a similar range of AAD with the exception of the NIMH 

and Mayo data.  
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Figure 5.4 Multi-dimensional scaling (MDS) plot depicting the Principal Component Analysis of Merged Data 3. Population 

stratification was tested using HapMap data #23 as reference. UK and USA and HapMap CEU samples formed a single cluster (shown 

inside the dashed rectangle). One HapMap individual from the Asian samples appears to have dual ethnicity. The diagram inset shows 

a magnified section of UK, USA and HapMap CEU samples.  
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Table 5.3  Calculation of genomic control inflation factor (). Table showing 

genomic control inflation factor () calculated before and after taking into account 

population stratification. The top six PCs were used in subsequently analyses as 

covariates (highlighted yellow).  

Number of top 
PCs adjusted 

 (before)  (after) 

0 1.020 1.020 

1 1.020 1.018 

2 1.020 1.018 

3 1.020 1.007 

4 1.020 1.008 

5 1.020 1.006 

6 1.020 1.003 

7 1.020 1.003 

8 1.020 1.003 

9 1.020 1.004 

10 1.020 1.005 
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It was noted that there is a difference in AAD between LOAD cases (mean AAD = 

81.63 years) and controls (mean AAD = 76.09 years), and similarly between male 

(mean AAD = 77.93 years) and female (mean AAD = 82.17 years). ANOVA tests of 

the variance of AAD between these groups were found to be significant (p < 0.001). 

This confirmed that AD status and gender were appropriate covariates.   

After stringent QC, there were 1,364 samples (1,031 LOAD cases and 333 controls, 

608 male and 756 female) and 528,430 SNPs remaining for further analysis.  

Analysis and results 

Assessment of the ten LOAD susceptibility genes yielded compelling evidence of 

association between APOE locus (rs2075650) and human ageing (uncorr-p = 5.27 x 

10-4), which withstood multiple testing after Bonferroni correction for ten independent 

tests (Table 5.4A).  

In addition to examining the association of these ten LOAD susceptibility genes with 

ageing, analyses including all SNPs on the Illumina 610 chip (post QC) were 

undertaken. The genome-wide significance threshold was calculated (p = 1.04 x 10-7) 

using Bonferroni correction for the number of independent tests (N = 483,066), which 

was estimated using Methods 2.3.3.  

No variants appear to be associated with ageing with a genome-wide level of 

significance (p < 1.04 x 10-7). There were 41 SNPs with p-value (p ≤ 5 x 10-5). These 

SNPs span the genome, representing 35 distinct signals (pairwise r2 ≤ 0.8) across 13 

chromosomes. 24 of them are located within 20kb of known human genes with a 

wide range of functions. SNPs with p-value (p < 5 x 10-5) are shown in Table 5.4B. 

These signals are at best tentative but may merit study in larger sample sets.  
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Table 5.4 Summary of results. Table showing the results of the analysis of A) the 

ten documented LOAD susceptibility loci (APOE, CLU, PICALM, CR1, BIN1, ABCA7, 

MS4A6A, CD33, CD2AP and EPHA1) with human ageing. B) SNPs (rs number 

[major/minor allele]) with association p-value < 5 x 10-5. Chromosome number (CHR), 

base pair position (BP) and gene name (Gene) is shown together with p-value (P) 

and direction of effect. ‘+’ indicates the minor allele of any given SNP is protective, 

whereas ‘-’ means the minor allele of the SNP has a detrimental effect on ageing. In 

table B), the gene name is shown if the SNP is within 20kb of a known gene.  

A) 

SNP 
[major/minor] 

CHR BP Gene P 
Direction of 

Effect 

rs2075650[T/C] 19 50087459 APOE 5.27E-04 - 

rs3764650[A/C] 19 997520 ABCA7 1.35E-01 - 

rs610932[C/A] 11 59695883 MS4A6A 1.76E-01 + 

rs3851179[G/A] 11 85546288 PICALM 2.27E-01 + 

rs11767557[A/G] 7 142819261 EPHA1 2.67E-01 - 

rs3865444[C/A] 19 56419774 CD33 4.42E-01 + 

rs3818361[G/A] 1 205851591 CR1 5.63E-01 + 

rs1485780[A/C] 6 47664589 CD2AP 6.04E-01 - 

rs744373[A/G] 2 127611085 BIN1 6.89E-01 + 

rs11136000[G/A] 8 27520436 CLU 9.75E-01 - 

B) 

SNP 
[major/minor] 

CHR BP Gene P 
Direction of  

Effect 

rs987839[T/C] 12 21266105 SLCO1B1 3.19E-06 + 

rs17205854[G/A] 5 64458658 
 

3.74E-06 + 

rs17811551[T/C] 5 64462993 ADAMTS6 3.74E-06 + 

rs1857821[A/G] 4 77101003 NAAA 5.12E-06 + 

rs7525717[G/A] 1 56700226 
 

5.76E-06 - 

rs4673651[A/G] 2 212712848 ERBB4 6.08E-06 - 

rs17049647[G/T] 2 130093855 
 

7.12E-06 + 

rs10518142[G/T] 4 77061898 NAAA 8.89E-06 + 

rs2444861[A/G] 8 99170108 C8orf47 8.99E-06 + 

rs1418425[G/A] 1 111270409 
 

9.64E-06 - 

rs2271528[C/T] 4 77107860 SDAD1 1.02E-05 + 

rs1555453[A/C] 9 27316780 MOBKL2B 1.07E-05 + 

rs13111494[A/G] 4 77204512 ART3 1.28E-05 + 

rs12740413[C/T] 1 16388466 ARHGEF19 1.30E-05 - 

rs3210458[C/T] 3 142494320 ACPL2 1.52E-05 + 
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rs4859571[G/A] 4 77076333 NAAA 1.56E-05 + 

rs7803143[T/C] 7 6211011 PSCD3 1.57E-05 - 

rs7622678[T/C] 3 198798845 BDH1 1.93E-05 - 

rs4720752[G/A] 7 7735965 RPA3 1.93E-05 - 

rs6962026[C/T] 7 6213048 PSCD3 2.07E-05 - 

rs10901296[C/T] 9 132755477 ABL1 2.37E-05 + 

rs680109[C/A] 11 105255919 GRIA4 2.52E-05 + 

rs1537438[G/T] 13 26806973 
 

2.53E-05 + 

rs11206814[C/T] 1 56690636 
 

2.67E-05 - 

rs12562047[A/C] 1 164095780 UCK2 2.70E-05 + 

rs2710548[A/G] 4 126492980 FAT4 2.79E-05 - 

rs6454676[C/T] 6 88934174 
 

2.90E-05 + 

rs17047650[C/T] 3 68547103 FAM19A1 3.19E-05 + 

rs10433502[C/T] 3 68569792 FAM19A1 3.49E-05 + 

rs10485170[T/C] 6 88939371 
 

3.67E-05 + 

rs12257410[A/C] 10 13832528 FRMD4A 3.77E-05 + 

rs3125524[C/T] 10 133104931 
 

3.83E-05 + 

rs4280854[A/G] 5 105923201 
 

3.85E-05 + 

rs1037381[A/G] 2 105669675 
 

3.99E-05 - 

rs6532496[A/G] 4 95799427 PDLIM5 4.00E-05 - 

rs17618813[G/A] 4 114153483 ANK2 4.16E-05 + 

rs7103504[G/A] 11 99006474 CNTN5 4.39E-05 - 

rs10085518[C/T] 7 6252040 PSCD3 4.59E-05 - 

rs4686837[G/A] 3 188222371 ST6GAL1 4.60E-05 + 

rs6491207[T/C] 13 26828900 
 

4.63E-05 + 

rs7952321[G/T] 11 55539349 OR5AS1 4.68E-05 - 
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Without conducting logistic regression comparison, initial analysis of the association 

study suggested two genome-wide significant SNPs - rs4110518 (p = 5.96 x 10-9) 

and rs2944476 (p = 2.19 x 10-8). Comparing SNPs between NIMH and WashU data 

showed no significant difference in allele frequency, whereas five SNPs showed 

significant difference in allele frequency comparing Mayo data with WashU data after 

taking into account population stratification (i.e. PCs) and AAD. These five SNPs are 

rs4110518, rs2944476, rs10460926, rs10953303, rs7172278 (Figure 5.5 and Figure 

5.6).  

It is perhaps unsurprising that the two SNPs which showed genome-wide level of 

significance overlap with the five SNPs that showed significant bias between Mayo 

and WashU data, as the AAD of the Mayo data is significantly younger (as previously 

described). It is not possible to correct for centre, as the spread of the AAD is 

considered crucial in detecting genuine ageing associated variants. The difference in 

allele frequency due to samples with young AAD in Mayo and old AAD in WashU 

may well represent genuine associations. Including centre as a covariate would 

abolish the ability to detect this effect.  

The Manhattan plot shown in Figure 5.6 represents a scenario before removal of 

these five false positive SNPs.  

TaqMan® genotyping of SNP rs4110518 

SNP rs4110518 was genotyped using TaqMan® genotyping assay (Methods 2.2.7). 

A total of nine samples (four major homozygotes, four heterozygotes and one minor 

homozygote with GWAS data) were genotyped using the assay as positive controls. 

The positive control results showed identical genotypes as derived from the GWAS 

chips. The replication cohort consisted of 462 samples (Figure 5.7).  

As expected, SNP genotype data (rs4110518) from the replication cohort showed no 

significant evidence of association with human ageing (p = 0.5064). 
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Figure 5.5 QQ plot of 2 - 2 p-values to determine bias in SNP frequencies observed in Mayo (a), NIMH (b) versus WashU data. 

a) Logistic regression (Mayo versus WashU samples) adjusted for the top six PCs and AAD. Five SNPs (circled) showed significant bias 

in the Mayo compared with WashU data taking into account population stratification and AAD. b) Logistic regression comparing NIMH 

data versus WashU data taking into account population stratification and AAD. No bias was observed in NIMH compared with WashU. 

Solid line: expected under null hypothesis i.e. no significant difference (or no significant association); Open circles: data points. Red line: 

fitted slope of all data points. The diagram was drawn using GenABEL in R (v2.12.1).  
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Figure 5.6 Manhattan plot of GWAS in human ageing. Chromosomal position is 

shown on the x-axis versus -log10 GWAS p-value on the y-axis. The threshold for 

genome-wide significance (p = 1.04 x 10-7) and p-value threshold (p = 5 x 10-5) are 

indicated by the horizontal lines. SNPs between these thresholds show “suggestive” 

associations. The five SNPs (highlighted by circles) exhibit significant differences in 

allele frequencies between samples from Mayo and WashU (see Figure 5.5). Two of 

the five SNPs (rs4110518 and rs2944476) showed spurious genome-wide significant 

signals as a result of this bias.  
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Figure 5.7 TaqMan® genotyping assays for SNP rs4110518. TaqMan® results, dual scatter plots, are shown for positive control 

samples and the six 96-well plates (P1 to P6). The HEX and FAM signal thresholds are indicated by horizontal lines (green  HEX and 

blue  FAM). Individual genotypes are determined according to the signal intensities of both TaqMan® probes (HEX/FAM): depicted 

using different coloured points  blue (individual homozygous for the major allele ‘C’), red (individual homozygous for the minor allele 
‘T’), green (heterozygote) and yellow (no template controls). The corresponding amplification curves are shown in Appendix 8.3.  
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Power Calculation 

Power calculations indicate that a sample size between ~3,000 and ~15,000 is 

required in order to have 80% power to detect an association with a MAF ranging 

above 0.05. Approximately ~4,000 to ~19,000 samples will be needed if 95% power 

is required.  

This estimation should be interpreted with caution as it is based on a number of 

assumptions (such as effect size and mode of inheritance), gene-environment 

interaction (GxE) has also not been taken into account.  
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5.5 Discussion 

It is known that age is one of the biggest risk factors for LOAD. The prevalence of 

LOAD was estimated ranging from 0.6% in persons aged 65 to 69 years to 22.2% in 

persons aged 90 and older (Lobo et al., 2000). Since age is one of the biggest risk 

factors for LOAD, it is important to understand whether genes involved in LOAD play 

a role in successful ageing and longevity.  

In this study, an association test of the top GWAS LOAD genes (APOE, CLU, 

PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP and EPHA1) with human 

ageing was performed using the most significant SNPs found in previous studies. 

Apart from the well documented association between APOE and LOAD, the 

association with the other nine genes was identified recently through large GWAS, 

each with a sample size of over 10,000 (Harold et al., 2009; Hollingworth et al., 2011; 

Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 2010).  

The results of this study provided compelling evidence of association between APOE 

locus (rs2075650) and human ageing (p = 5.27 x 10-4) (Table 5.4A) with risk effect 

based on the analysis of 1,364 samples using AAD as a continuous trait. The minor 

allele frequency plot (Figure 5.8) shows that the MAF of this SNP significantly 

decreases in the old AAD category (MAF = 0.21, AAD > 89 years of age, n = 228) 

compared with the other four younger AAD categories (MAF = 0.27, AAD ≤ 89, n 

=1,136). Interestingly, individuals homozygous for the minor allele ‘G’ showed 

significantly lowered AAD (p = 0.002) compared with individuals homozygous for the 

major allele ‘A’. No effect was seen for the individuals carrying ‘AG’ genotype (p = 

0.891).  
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Figure 5.8 Minor Allele Frequency (MAF) analysis for ten LOAD genes with respect to ageing. The figure shows the relationship 
between SNP MAFs and human ageing, where AAD is separated into five categories. Each AAD category contains roughly equal 
amounts of samples to avoid bias in sample sizes. All ten documented LOAD genes are shown together with the APOE locus 
highlighted in red (all other loci in grey). The APOE locus (rs2075650) showed significant association with ageing, with MAF = 0.27, 
AAD ≤ 89 years of age (n = 1,136) and MAF = 0.21, AAD > 89 years of age (n = 228). None of the other gene loci were significantly 
associated with ageing. The analysis of quantitative trait was conducted on the whole dataset. The stratification of age at death into five 
age-at-death categories was only used to facilitate visualisation of the minor allele frequency of the candidate genes in the different age 
ranges, and was not used to generate p-values.  
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To date, APOE has been extensively examined with respect to human ageing due to 

its role in AD and vascular disease. A longitudinal study following subjects for 18 

years using 1,094 individuals aged 75 and older showed that the risk of mortality was 

affected by the APOE gene. Risk was increased by 22% in those carrying the APOE 

ε4 allele, decreased by 28% in those carrying the APOE ε2 allele, and individuals 

carrying the APOE ε3 allele showed no significant difference in risk (Lewis and 

Brunner, 2004; Rosvall et al., 2009). The association between APOE ε2 variant and 

ageing has been investigated in Finish centenarians, where a trend of association 

was observed  9%, 21%, and 25% in people aged 100 to 101, 102 to 103 and 104 

years and older, respectively (Frisoni et al., 2001). SNP rs2075650 is known to be in 

tight LD with the APOE ε4 allele (Yu et al., 2007). The direction of the effect of 

rs2075650 in this study is compatible with previous findings for the APOE ε4 allele 

(Christensen et al., 2006). APOE is a major transporter of cholesterol and has been 

implicated in multiple age-related diseases including LOAD and vascular diseases 

(Panza et al., 2007).   

No evidence of association was observed with the remaining LOAD genes implying 

that these genes are genuine LOAD genes with no detectable effects on human 

ageing. However, the possibility of these genes having weak effects on ageing that 

the dataset analysed was not sufficiently large enough to detect cannot be ruled out.  

All SNPs on the Illumina chips were subsequently analysed after stringent QC 

procedures. The mean AAD for the samples analysed was over 80 years (Table 5.1). 

This minimized the possibility of early death (prior to age 40 years) as a result of 

underlying non-genetic factors or highly penetrant genetic factors affecting the 

analysis (McGue et al., 1993).   

In an assessment of all SNPs on the chip, none were found to approach genome-

wide significance as calculated for this study (p < 1.04 x 10-7). The inability to detect 
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any novel ageing associated variants is likely the result of a lack of power. The 

calculation of power using QUANTO (v 1.2.4) has suggested a much larger sample 

size is required in order to detect an association with common variants. With rare 

exceptions, common variants are known to exert only small to moderate effects, 

according to previous studies of many complex disorders and traits (Bodmer and 

Bonilla, 2008).  

GWAS provide a method of identifying common genetic variations associated with 

disease or phenotype in an unbiased manner. However, it comes with a price of 

correction for multiple testing given that hundreds and thousands of SNPs are tested 

simultaneously. A very stringent significance threshold (p < 5 x 10-8) is often used to 

infer a genome-wide significant association and to avoid large number of false 

positives (Bertram et al., 2008).  

The analysis was conducted using AAD as a quantitative trait; this is believed to 

provide more power compared with a traditional case/control approach. The 

advantage of statistical power gained compared with the case/control analysis is 

dependent upon the design of the study. For example, dichotomizing the AAD 

distribution into cases and controls would give less power than comparing the low 

and high extremes of the quantitative trait (Plomin et al., 2009). Increasing statistical 

power by including more samples is imperative to elucidate genuine genetic 

associations in this study. Including more samples with the extreme phenotypes (e.g. 

exceptional longevity - nonagenarians and centenarians) would give more power 

than addition of samples of average AAD (Plomin et al., 2009; Tan et al., 2010). 

Domestic and international collaborations are often required to raise sufficiently large 

sample sizes in order to have adequate power to detect genuine disease 

associations. This is especially true for SNPs with a small effect size. However, such 

combined analysis can in some instances generate new problems. For instance, 
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inter-chip and inter-cohort differences could create spurious genome-wide significant 

associations. More importantly, these SNPs may pass all conventional QC filtering 

(e.g. Hardy Weinberg Equilibrium p-value, minor allele frequency, genotyping rate 

threshold) increasing the likelihood of generating false positive results, which are not 

corrected for by principal component analysis.  

As shown in Figure 5.5 and Figure 5.6, ignoring comparison of data from centres 

(Mayo and WashU) gave spurious genome-wide significant associations (rs4110518, 

p = 5.96 x 10-9 and rs2944476, p = 2.19 x 10-8). Therefore, extra caution should be 

made when performing GWAS analysis which utilises data from multiple centres.  

Including ‘Centre’ as a covariate has been widely used to solve such problems raised 

by centres and this is largely effective. However this is not always possible, 

especially in circumstances where the number of cases and controls are significantly 

different between centres. In this study, correcting for centre was not possible due to 

the AAD bias in the centres sampled. The overall spread of AAD is crucial to this 

analysis and the difference in allele frequency between individuals with relatively 

young AAD (Mayo) and relatively old (WashU) may well represent genuine 

associations.  

Furthermore, samples were included from both LOAD cases and controls in this 

study which is intended to achieve maximum power to detect novel ageing 

associated variants. Ideally this test is better performed using only control samples. 

Considering that ‘pure controls’ where individuals die without experiencing any age-

related diseases probably do not exist, it was considered valid to undertake an 

analysis using both sets. However, due to the large number of AD cases that have 

been used relative to the number of controls (about three quarter of the total), any 

association with human ageing implicated in the study may be biased and specific to 
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the AD population. Follow-up studies using only control samples will be required to 

confirm these associations.  

5.6 Conclusion 

In this chapter, a study was conducted to investigate genetic factors influencing 

human ageing using LOAD GWAS data from the GERAD1 (Genetic and 

Environmental Risk for Alzheimer’s Disease) and Mayo GWAS datasets that had 

documented age-at-death (Table 5.1).  

The study, which consists of both a candidate gene study and genome-wide analysis, 

were conducted using age-at-death as a quantitative trait, a method likely to provide 

more power than a traditional case/control analysis (Plomin et al., 2009).  

Testing of the ‘known’ LOAD genes for association with human ageing may provide 

insights on whether these genes are directly associated with the disease or indirectly 

by allowing successful ageing. The APOE locus (rs2075650) showed compelling 

evidence of association with human ageing with a p-value which withstood multiple 

test correction for ten independent tests (uncorr-p = 5.27 x 10-4); the number of 

genes tested. This effect is consistent with previous reports of an association of the 

APOE locus with human ageing (Deelen et al., 2011; Panza et al., 2009).  

None of the other nine genetic loci (CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, 

CD33, CD2AP and EPHA1) showed significant evidence of association (uncorr-p > 

0.05), suggesting these genes are genuine LOAD genes with no detectable effect on 

ageing in this study.   

No SNPs were found to approach genome-wide significance in an assessment using 

all SNPs available on the genotyping chips after stringent QC. This is likely to be due 

to the lack of power. Increasing statistical power by including more samples, 

especially individuals with exceptional longevity (e.g. nonagenarians and 
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centenarians), will be imperative in identification of genuine genetic association with 

human ageing.  

Presenting data on genes that lie between 10-5 and 10-8 (Table 5.4B) may enable 

groups to identify genes for future study especially if there is overlap with other 

studies. Additionally this data could be used as part of a larger meta-analysis.   
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Chapter 6:     General discussion

Alzheimer’s disease is the most prevalent form of dementia, representing the majority 

(~60%) of dementia cases. Approximately 35 million people are affected by 

Alzheimer’s disease worldwide as of 2009, and it has been estimated that this figure 

will increase to ~65 million and ~115 million by 2030 and 2050, respectively (Ferri et 

al., 2009).  

In Mendelian disorders, presence or absence of a disease is often caused by 

mutations in a single gene. These mutations are found to be 100% penetrant (i.e. all 

individuals would get the disease if they carry the mutation). As opposed to 

Mendelian type of disorders, the penetrances of genetic factors found responsible for 

LOAD are low. As a result, it is intractable to map these genes through linkage 

analysis using family pedigrees with the exception of APOE ε4 (Brookfield, 2010).  

GWAS is a powerful approach in identifying susceptibility genes responsible for 

common diseases. In comparison with candidate gene studies, GWAS is known to 

have several major advantages: 

 not limited to pre-defined set of candidate genes, 

 the ability to adjust and account for complex population substructures (e.g. 

principal component analysis using EIGENSTRAT), 

 fine mapping via imputation analysis,  

 serve as a replication dataset for proposed associations without having to 

perform additional genotyping experiments (Bertram, 2011).  

Since 2009, nine novel genetic loci (in addition to APOE ε4) have been unequivocally 

identified and confirmed by several large GWAS as associated with the risk of LOAD 

though large consortium efforts (Harold et al., 2009; Hollingworth et al., 2011; 

Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 2010).  
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These genes highlighted biological pathways: immune system function, cholesterol 

metabolism, synaptic cell membrane processes and endocytosis, which provide 

novel insights into the development of effective therapeutic treatments and more 

accurate diagnosis (Morgan, 2011). 

Despite recent success in identification of common variants associated with risk of 

LOAD, there is increasing evidence that a substantial fraction of the genetic variation 

contributing to AD risk remained unexplained (See Introduction 1.9).  

Insufficient power has meant a large number of early GWAS failed to generate any 

convincing results. From 2007 to 2009, there were ten published GWAS of AD 

performed by individual research teams reporting on nine distinct datasets. Although 

nearly all these studies confirmed the association with the APOE locus, collectively 

very few novel AD risk genes were identified, and nearly all these findings were not 

confirmed in independent samples (Sherva and Farrer, 2011).  

A cross-platform meta-analysis of four GWAS was performed in an effort to search 

for novel genetic associations (Chapter 3), as combining individually underpowered 

GWAS would increase power thus allowing identification of novel genetic risk factors 

associated with LOAD. A single SNP rs929156 located in exon 7 of TRIM15 gene 

showed a significant evidence of association with risk of LOAD (uncorr-p = 8.77x10-8), 

and the random effect meta-analysis of odds ratios was also found significant (p = 

0.03). The minor allele of this SNP was found to be risky with odds ratio 1.11 (95% CI 

1.01-1.22). 

 An approach was described in this study which may prove to be useful when larger 

datasets are utilized. In addition, a PERL script was written to automate the cross-

platform GWAS meta-analysis using Fisher’s combined probability test (Chapter 3).  

Given the hypothesis that GWAS signals may be attributable to multiple rare variants 

nearby (Dickson et al., 2010), it is imperative to determine whether the region 
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surrounding the GWAS SNPs harbours multiple rare variants which are associated 

with the disease.  

A next generation sequencing pipeline was described which can be applied to other 

studies which use the ABI SOLiD® next generation sequencing platform.  

Evolutionary conserved regions encompassing the SNP (rs929156) were enriched by 

LR-PCR and sequenced using ABI SOLiD® next generation sequencing (Chapter 4). 

A pooled DNA strategy using 150 samples (75 LOAD cases and controls) was 

employed, where each pool was estimated to provide ~80% power to detect a SNP 

with an allele frequency of ~1%, and >95% power to detect a SNP with allele 

frequency above 2%. 

SNP rs929156, which was found significantly associated with LOAD from the cross-

platform meta-analysis, did not however show significant evidence of association by 

analysing the NGS data (uncorr-p = 0.193). This is perhaps unsurprising as the 

number of samples sequenced by NGS is likely to be underpowered for a 

case/control study.  

With respect to SNP discovery, all 31 SNPs with documented allele frequency 

greater than 1% in the latest SNP databases (dbSNP#132 and HapMap#28 CEU 

population) were identified. All of which exhibited identical alternative alleles as 

documented in the database. With the exception of a single SNP, the remaining 14 

SNPs showed a compelling correlation coefficient (96.6%) of allele frequency in 

comparison to the allele frequency quoted in the HapMap database (CEU population, 

release 28).  

Ten high quality novel rare variants were identified after in-depth quality control 

measures. Four of which have also been discovered by the 1000 genome project, 

suggesting these SNPs are likely to be genuine (The 1000 Genomes Project 

Consortium, 2010).    
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Genotyping of the remaining novel rare variants using alternative genotyping 

methods (e.g. TaqMan® genotyping assay, Sanger sequencing) are required to 

confirm if they are genuine SNPs, and worthy of further investigations.  

Three common SNPs (rs41272591, rs9380156 and rs6905949) with MAF greater 

than 5% showed significant (p < 0.05) evidence of association with LOAD. The top 

two SNPs were validated using TaqMan® genotyping assays with allele frequency 

similar to those estimated by NGS. Genotyping of an independent sample cohort (90 

LOAD cases and 91 controls) however failed to achieve significance (p = 0.89).  

As a pilot study, the NGS study has only a limited power to detect an association: ~ 

80% power to detect common variants if OR > 3 and rare variants if OR > 4 

estimated using QUANTO (v 1.2.4).  

None of the rare variants were found to be significantly associated with LOAD, which 

is likely the result of lack of power. The odds ratios for these high quality rare variants 

were found to be less than 4, consistent with the power calculation.   

Interestingly, a coding change (H33Y) (located at chr6: 30131558) was found only in 

cases (with MAF = 1.33%) and absent in controls, and predicted to be ‘probably 

damaging’ by Polyphen-2. Provided with sufficient power, this association may prove 

to be genuine.  

In Chapter 5, bioinformatic analyses were undertaken to investigate genetic variants 

influencing human life-span using late-onset Alzheimer’s disease GWAS data with 

documented AAD.  

As age is one of the biggest risk factor in Alzheimer’s disease, it is important to 

understand whether LOAD genes are directly associated with the disease or 

indirectly by allowing successful ageing.   
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The ten most promising LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, 

MS4A6A, CD33, CD2AP and EPHA1) identified through recent large GWAS (Harold 

et al., 2009; Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri 

et al., 2010) were tested for association with human ageing in a merged dataset 

(from ARUK and GERAD consortia) using the most significant SNPs found in 

previous studies.  

The results of the analysis provided compelling evidence of association between the 

APOE locus (rs2075650) and human ageing (p = 5.27 x 10-4) as expected. The minor 

allele of this SNP was found to be overrepresented in individuals with a young AAD 

(MAF = 0.27; ≤ 89 years of age) in comparison to individuals with an old AAD (MAF = 

0.21; > 89 years of age). None of the other LOAD gene loci showed significant 

evidence of association (p < 0.05) with ageing, suggesting that these genes are likely 

to be genuine LOAD genes with no detectable effect on human ageing.   

A genome wide analysis was performed in an effort to search for novel genetic risk 

factors associated with human lifespan. No SNPs were found to be associated with 

human ageing with genome-wide level of significance after assessing all SNPs on 

the chip. Increasing statistical power by including more samples is paramount to 

enable detection of novel genetic associations with human ageing. Tan et al., 2010 

have shown that increasing sample age from nonagenarians to centenarians further 

increases the power to discover variants associated with human ageing. 

Furthermore, the chapter highlighted the importance of quality control procedures 

taking into account inter-chip and inter-cohort differences in an analysis; these 

differences may lead to spurious genome wide significant associations, which may 

pass all conventional QC filters (e.g. Hardy Weinberg Equilibrium p-value, minor 

allele frequency, genotyping rate threshold) and not be corrected for by principal 

component analysis.  
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Future perspective 

Late-onset Alzheimer’s disease is a multifactorial and complex disease affected by 

both environmental and genetic factors, where genetic factors are estimated to 

contribute as much as 76% of LOAD cases (Harold et al., 2009; van Es and van den 

Berg, 2009).   

The APOE gene found almost 20 years ago remains the single most outstanding risk 

factor (Corder et al., 1993; Hardy and Higgins, 1992), which has been estimated to 

account for ~25% of the risk of LOAD. The newly found LOAD genes (CLU, PICALM, 

CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP and EPHA1) were estimated to 

contribute to another ~30% of the population risk for the disease (Naj et al., 2011). 

However, these estimations are likely to be inflated, and the true proportions of the 

genetic predisposition accounted for by these genes are likely to be much lower 

(Sherva and Farrer, 2011). Additional genetic risk factors are likely to be found and 

replicated in the near future, where it has become increasingly evident that less 

frequent and rare variants are also playing a role (Manolio et al., 2009).  

TRIM15 acts as a potential LOAD candidate gene, and the association with LOAD 

remains to be confirmed through larger studies. TRIM15 encodes for a protein likely 

to be involved in the innate immune system, one of the pathways known to be 

involved in LOAD pathogenesis (Jones et al., 2010; McNab et al., 2010; Morgan, 

2011).  

Furthermore, genetic loci identified by GWAS are unlikely to be functional, and 

merely act as proxies in LD with functional variants. The advent of next generation 

sequencing technology, for the first time in human genetic research, enables 

identification and testing of novel functional variants at base-pair resolution with 

affordable costs (Bertram, 2011). With the improved understanding of pathways 

uncovered by genetic research in LOAD, it is hoped that in the not too distant future, 



 
General discussion 

231 
 

earlier diagnosis and better therapy targeting the root cause of the devastating 

disease will become available.  
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8. Appendices 

8.1 DNA samples sequenced by next generation sequencing.  

TRIM15 gene was sequenced in 150 samples (75 AD cases and controls) by ABI 

SOLiD® next generation sequencing. The study is described in Chapter 4.  

 

 

AD203 M390 L1 L67 AD203 M41 L11 L69

AD206 M392 L12 L68 AD208 M411 L12 L7

AD207 M393 L13 L69 AD209 M419 L13 L71

AD208 M394 L14 L7 AD210 M424 L15 L72

AD209 M395 L16 L71 AD211 M426 L16 L73

AD210 M396 L17 L72 AD212 M429 L17 L74

AD212 M397 L18 L74 AD213 M438 L18 L75

AD215 M398 L19 L75 AD216 M447 L19 L76

AD216 M400 L2 L77 AD218 M455 L2 L77

AD217 M401 L20 L80 AD219 M46 L21 L79

AD218 M41 L21 L83 AD221 M503 L22 L8

AD223 M410 L23 L85 AD222 M504 L23 L80

AD224 M411 L24 L86 AD223 M505 L25 L81

AD226 M419 L29 L87 AD224 M506 L28 L82

AD227 M424 L3 L88 AD225 M507 L29 L83

AD229 M426 L31 L9 AD226 M508 L3 L84

AD232 M429 L32 L91 AD232 M509 L31 L85

AD233 M438 L34 L92 AD233 M510 L32 L86

AD235 M441 L35 L95 M032 M511 L33 L87

AD236 M447 L38 L96 M050 M512 L35 L88

M004 M455 L4 N135 M111 M513 L38 L89

M005 M503 L41 N138 M123 M514 L4 L91

M021 M504 L46 N139 M125 M515 L41 L92

M022 M505 L47 N140 M325 M517 L44 L93

M026 M506 L49 N141 M38 M518 L47 L95

M050 M507 L50 N142 M385 M519 L49 L96

M053 M508 L51 N143 M388 M520 L50 N133

M070 M509 L53 N145 M389 M521 L51 N134

M102 M512 L54 N146 M390 M59 L53 N138

M106 M513 L55 N148 M392 M616 L54 N139

M111 M515 L56 N149 M393 M618 L56 N141

M125 M517 L59 N150 M394 M619 L6 N142

M32 M519 L6 N151 M395 M620 L62 N143

M325 M520 L60 N152 M396 M624 L63 N145

M38 M521 L61 N153 M397 M626 L64 N148

M385 M619 L62 N155 M398 M632 L65 N154

M388 M633 L64 N156 M400 M77 L67 N156

M389 L65 M401 L68

TRIM15 B

AD cases controlAD cases control

TRIM15 A
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8.2 Variant Classifier Input File 

High Quality SNPs identified in TRIM15 ‘A‘ and ‘B’ amplicons using next generation 

sequencing were annotated using Variant Classifier (Chapter 4). The input file for the 

bioinformatic tool is shown below. 

----------------------   VC_input.txt ------------------------- 

91 92 1 G 

252 253 1 A 

758 759 1 G 

966 967 1 C 

984 985 1 C 

1138 1139 1 C 

1150 1151 1 A 

1162 1163 1 T 

1181 1182 1 G 

1193 1194 1 T 

1220 1221 1 A 

1346 1347 1 C 

1399 1400 1 G 

1670 1671 1 A 

1735 1736 1 C 

1949 1950 1 A 

8111 8112 1 C 

8124 8125 1 A 

8232 8233 1 A 

8280 8281 1 A 

8297 8298 1 T 

8488 8489 1 A 

8500 8501 1 C 

8530 8531 1 T 

8656 8657 1 T 

8790 8791 1 G 

9031 9032 1 G 

9112 9113 1 T 

9334 9335 1 A 

9977 9978 1 C 

10175 10176 1 T 

10548 10549 1 T 

10677 10678 1 G 

10839 10840 1 T 

11888 11889 1 C 

11900 11901 1 - 
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12093 12094 1 A 

12309 12310 1 A 

12325 12326 1 A 

12634 12635 1 G 
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8.3 Amplification curve for TaqMan® genotyping of SNP rs4110518 

 

The diagram depicts fluorescence intensities for TaqMan® genotyping of SNP rs4110518. Each amplification curve corresponds to a 

dual scatter plot as shown in Figure 5.7 in Chapter 5. 
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8.4 PERL programs 

Respective specific utilities of each PERL script listed are described in Methods 

2.3.2. 

8.4.1 Determination of common SNPs between different chip platforms 

------------------ perl.pl ------------------- 
use strict; 

use warnings; 

use modules; 

 

my $filename1 = 'mydata.bim'; # input SNP file in PLINK format 

my $filename2 = 'SNPs.txt';   # a list of SNP from GWAS 

my $str = modules::readData($filename1, $filename2); 

 

------------------ modules.pm ----------------- 
package modules; 

 

use strict; 

use warnings; 

 

# readData subroutine 

sub readData { 

my $filename1 = $_[0]; 

my $filename2 = $_[1]; 

my @array; 

my %hash; 

my %hashtwo; 

open (OUT, ">results.txt") or die "Unable to open results.txt: $!\n"; 

open (FILE, "<$filename2") or die "Unable to open $filename2: $!\n"; 

my $count=0; 

while (<FILE>){ chomp; 

if (/^(\w+)/) {$hash{$1} ="unmatched";$hashtwo{$count}=$1;$count++;} } 

open (MYFILE, "<$filename1") or die "Unable to open $filename1: $!\n"; 

while (<MYFILE>) { chomp; 

@array = split(' ',$_); 

my $SNP = $array[1]; # it specifies the column where the SNP is 

located 

if ($hash{$SNP}) { 

# QT indexed SNPs looking for same SNPs in CC results 

$hash{$SNP} = "$_";  

foreach my $keys (sort {$a <=> $b} keys %hashtwo) { 

print "$hashtwo{$keys}\t$hash{$hashtwo{$keys}}\n"; 

print OUT "$hashtwo{$keys}\t$hash{$hashtwo{$keys}}\n";} 

close MYFILE; 

close FILE; 

close OUT;} 

 

1; 
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8.4.2 Calculation of number of independent tests 

------------------ number_independent_test.pl -------------- 
use strict; 

use warnings; 

use modules; 

 

my $filename1 = 'mydata.ld'; # .ld file from PLINK analysis 

my $str = modules::readData($filename1); 

 

------------------ modules.pm ------------------------------------------ 
package modules; 

use strict; 

use warnings; 

 

# readData subroutine 

sub readData { 

my $input1 = $_[0]; my @array; my $col1; my $col2; my %hash; 

open (MYFILE, "<$input1") or die "Unable to open $input1: $!\n"; 

my $count=0; my $count2=1; 

while (<MYFILE>) { chomp; @array = split("\t",$_); 

$col1=$array[0];$col2=$array[1]; 

if ($count==0) {$hash{$col1} = 1; $hash{$col2} = 1; 

} else { 

if (exists $hash{$col1} && exists $hash{$col2}){ 

if ($hash{$col1} == $hash{$col2}) { next; 

} else { 

if ($hash{$col1} > $hash{$col2}) { my $stringTemp = $hash{$col1}; 

foreach my $keys (keys %hash) { 

if ($hash{$keys}==$stringTemp) { 

$hash{$keys} = $hash{$col2}; 

}}} else { my $stringTemp = $hash{$col2}; 

foreach my $keys (keys %hash) { 

if ($hash{$keys}==$stringTemp) { $hash{$keys} = $hash{$col1}; 

}}} $count2 = $count2-1;}}  

elsif (exists $hash{$col1} || exists $hash{$col2}){ 

if (exists $hash{$col1}) { 

$hash{$col2} = $hash{$col1};} 

if (exists $hash{$col2}) { 

$hash{$col1} = $hash{$col2};}} else { 

$hash{$col1} = $count2+1; $hash{$col2} = $count2+1; $count2++;}} 

$count++;} 

close MYFILE; 

open (OUT, ">results.txt") or die "Unable to open results.txt: $!\n"; 

my %hashtwo; my $count3=0; 

foreach my $keys (sort {$hash{$b} <=> $hash{$a}} keys %hash) { 

$count3++; 

print OUT "$keys => $hash{$keys} => $count3\n"; 

$hashtwo{$hash{$keys}}=0; } 

# $hashtwo counts the number unique values from using $hashone  

my $counttwo=0; 

foreach my $keystwo (keys %hashtwo) { $counttwo++;} 

print "The number of LD clusters is: $counttwo\n"; 

print "Check [ results.txt ] for details of LD clusters"; 

close OUT;} 

 

1; 
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8.4.3 GWAS meta-analysis 

------------------ meta_analysis.pl --------------- 
use strict; 

use warnings; 

use modules; 

use Time::Local; 

 

# type in file name 

my $filename1 = 'test.txt'; 

 

# type in 'CC' for Case/Control analysis or 'QT' or Quantitative 

Trait analysis, the default is for Case/Control  

# analysis. NB: This parameter is for checking SNP 'flippers', 

failure to adjust the parameter for correct type of  

# analysis will result in incorrect output in the results file.  

my $analysis = 'CC'; 

 

# Do NOT edit after this line 

my $time = localtime; 

print "Analysis started: $time\n"; 

my $arrayRef = modules::readData($filename1); 

modules::printHeader($$arrayRef[1]); 

print "Writting results to file [results.txt]\n"; 

my $SNP = modules::analyzeData($$arrayRef[0],$$arrayRef[1],$analysis); 

$time = localtime; 

print "Analysis finished: $time\n"; 

 
------------------ modules.pm ----------------------------- 
package modules; 

use strict; 

use warnings; 

 

# readData subroutine 

sub readData { 

my $filename1 = $_[0]; my @arrayOne; my %hash; my $string; 

open (OUT, ">results.txt") or die "Unable to open results.txt: $!\n"; 

open (FILE, "<$filename1") or die "Unable to open $filename1: $!\n"; 

my $countAll=0; my $count=0; my $countProxy=0; my $totalProxy; 

my $fileTag; my $SNPID; my $string1; my $string2; my $string3; 

my $fileNo=0; 

while (<FILE>){ 

chomp; 

if (/^(\s+)(\S+)/) { 

if ($count==1) { $countAll++; @arrayOne = split(" ", $_); 

$SNPID = $arrayOne[2]; 

$totalProxy=$arrayOne[5];#TOTAL proxy 

$fileTag = $arrayOne[1]; 

$hash{$SNPID}The 1000 Genomes Project Consortium, 

=$countAll;#sequence 

$hash{$SNPID}{2}=$arrayOne[1];#file number 

$hash{$SNPID}{3}=$arrayOne[0];#chromosome number 

$hash{$SNPID}{4}=$arrayOne[3];#bp number 

$hash{$SNPID}{5}=$arrayOne[4];#p-value 

if ($arrayOne[1] > $fileNo) { 

$fileNo = $arrayOne[1]; }} 

if ($count==3 && $totalProxy ==0) {print "[Error1]\n";die;} #check 

file integrity 1 

if ($count==3) { 

@arrayOne = split(" ", $_); 
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if ($arrayOne[1] eq $SNPID) {} else {print "[Error2]\n";die;} #check 

file integrity 2 

$hash{$SNPID}{6}=$arrayOne[7];#odds ratio 

} if ($count>3) { 

my $proxyID=0; 

@arrayOne = split(" ", $_); 

if (scalar(@arrayOne)==7) { 

my $checkFile = checkFile($fileTag,$arrayOne[4]); 

$string1 = $arrayOne[0]; 

$string2 = $arrayOne[1]; 

$string3 = $arrayOne[2]; 

if ($checkFile==1) { 

$countProxy++; 

$proxyID = $arrayOne[0]; 

my $fileID = $arrayOne[4]; 

$hash{$SNPID}{7}{$fileID}{$proxyID}The 1000 Genomes Project 

Consortium, =$countProxy; #proxy count 

$hash{$SNPID}{7}{$fileID}{$proxyID}{2}=$arrayOne[1]; #proxy kb 

$hash{$SNPID}{7}{$fileID}{$proxyID}{3}=$arrayOne[2]; #proxy RSQ 

$hash{$SNPID}{7}{$fileID}{$proxyID}{4}=$arrayOne[5]; #proxy P-value 

$hash{$SNPID}{7}{$fileID}{$proxyID}{5}=$arrayOne[6]; #proxy OR 

$hash{$SNPID}{8}=1; #total proxy 

if ($fileID > $fileNo) { 

$fileNo = $fileID;}}}  

if (scalar(@arrayOne)==3) { 

@arrayOne = split(" ", $_); 

my $checkFile = checkFile($fileTag,$arrayOne[0]); 

if ($checkFile==1) { 

$countProxy++; 

$proxyID =$string1; #proxy ID 

my $fileID = $arrayOne[0]; 

$hash{$SNPID}{7}{$fileID}{$proxyID}The 1000 Genomes Project 

Consortium,  = $countProxy; #proxy count 

$hash{$SNPID}{7}{$fileID}{$proxyID}{2} = $string2; #proxy KB 

$hash{$SNPID}{7}{$fileID}{$proxyID}{3} = $string3; #proxy RSQ 

$hash{$SNPID}{7}{$fileID}{$proxyID}{4} = $arrayOne[1]; #proxy P-value 

$hash{$SNPID}{7}{$fileID}{$proxyID}{5} = $arrayOne[2]; #proxy OR 

$hash{$SNPID}{8}=1; #total proxy 

if ($fileID > $fileNo) { 

$fileNo = $fileID; 

}}}} $count++; } 

if (/^(\-)/) { $count=0; $totalProxy=0; $countProxy=0;}} 

my @array = (\%hash,\$fileNo); 

return \@array; close FILE; close OUT;} 

 

# checkFile subroutine 

sub checkFile { 

my $input1 = $_[0]; 

my $input2 = $_[1]; 

if ($input1==$input2) { 

return 0; 

} else { return 1; }} 

 

# analyzeData subroutine 

sub analyzeData { 

open (OUT, ">>results.txt") or die "Unable to open results.txt: $!\n"; 

my $hash = $_[0]; my $input = $_[1]; my $test = $_[2]; 

my $count1=1; my $maxFile = $$input-1; 

foreach my $key (sort {${$hash}{$a}The 1000 Genomes Project 

Consortium,  <=> ${$hash}{$b}The 1000 Genomes Project Consortium, } 

keys %{$hash}) { #key is the indexID 
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my $totalProxy = ${$hash}{$key}{8}; 

if (defined $totalProxy) { 

my $fileNo = ${$hash}{$key}{2}; 

my $indexPvalue = ${$hash}{$key}{5}; 

my $indexOR = ${$hash}{$key}{6}; 

my $indexCHR = ${$hash}{$key}{3}; 

my $proxyNo = ${$hash}{$key}The 1000 Genomes Project Consortium, ; 

print OUT "$count1\t$key\t$fileNo\t$indexCHR\t"; 

my %hash2; my %hash3; my $count=0; 

$hash3{$fileNo}=$indexPvalue; 

foreach my $fileID (keys %{${$hash}{$key}{7}}) { 

$count++; 

my $arrayRef = bestSNP(\%{${$hash}{$key}{7}{$fileID}});  

my $proxyID = $$arrayRef[0]; 

my $proxyKB = ${$hash}{$key}{7}{$fileID}{$proxyID}{2}; 

my $proxyRSQ = ${$hash}{$key}{7}{$fileID}{$proxyID}{3}; 

my $proxyPvalue = ${$hash}{$key}{7}{$fileID}{$proxyID}{4}; 

my $proxyOR = ${$hash}{$key}{7}{$fileID}{$proxyID}{5}; 

$hash2{$fileID}The 1000 Genomes Project Consortium,  = $count; 

$hash2{$fileID}{2} = $proxyPvalue; 

$hash2{$fileID}{3} = $proxyOR; 

$hash2{$fileID}{4} = $proxyID; 

$hash2{$fileID}{5} = $fileID; 

$hash2{$fileID}{6} = $proxyKB; 

$hash2{$fileID}{7} = $proxyRSQ; 

$hash3{$fileID}=$proxyPvalue; } 

my $fisherPvalue = getFisher(\%hash2,$indexPvalue); 

my $proxyCount = $$fisherPvalue[1]; 

foreach my $key2 (sort {$hash2{$a}The 1000 Genomes Project Consortium,  

<=> $hash2{$b}The 1000 Genomes Project Consortium, } keys %hash2) 

{ print OUT 

"$hash2{$key2}{4}\t$hash2{$key2}{5}\t$hash2{$key2}{6}\t$hash2{$key2}{

7}\t"; 

printSpace($maxFile,$proxyCount,1); # space 1 

} 

my $flipper = getFlipper(\%hash2,$indexOR,$test); # $test = "C/C" or 

"QT"  

$fisherPvalue = sprintf "%.2e" ,$$fisherPvalue[0]; 

print OUT "$fisherPvalue\t"; 

if ($flipper==0) {print OUT "YES\t"; } elsif ($flipper==1) { print 

OUT "NO\t";} else { print OUT "NA\t";} 

foreach my $key2 (sort keys %hash3) { 

for (my $emptySpace=1;$emptySpace<=$$input;$emptySpace++) { 

if (defined $hash3{$emptySpace}) { 

} else { 

$hash3{$emptySpace}="-";}}} 

foreach my $key3 (sort keys %hash3) { 

print OUT "$hash3{$key3}\t";# all proxy pvalue 

} print OUT "\n"; $count1++;}} close OUT;} 

 

# printSpace subroutine 

sub printSpace { 

my $input1 = $_[0]; 

my $input2 = $_[1]; 

my $input3 = $_[2]; 

if ($input1 != $input2) { 

my $DETA = $input1 - $input2; 

if ($input3 ==1) { 

for (my $count=0;$count<$DETA;$count++) { 

print OUT "-\t-\t-\t-\t";} 

} elsif ($input3 ==2) { 
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for (my $count=0;$count<$DETA;$count++) { 

print OUT "-\t";}}}} 

 

# printHeader subroutine 

sub printHeader { 

my $input1= $_[0]; 

open (OUT, ">results.txt") or die "Unable to open results.txt: $!\n"; 

print OUT "ClumpNo\tSNP\tF1\tCHR\t"; 

my $fileNo = $$input1; 

for (my $count=1;$count<$fileNo;$count++) { 

my $count2 = $count+1; 

print OUT "PROXY$count\tF$count2\tKB$count\tRSQ$count\t"; } 

print OUT "FISHER\tFLIPPER\t"; 

for (my $count=1;$count<=$fileNo;$count++) { 

print OUT "Pvalue$count\t"; } 

print OUT "\n"; close OUT;} 

 

# bestSNP subroutine 

sub bestSNP { 

my $hash =$_[0]; my $count =0; my $count2=0; my $Num; 

my $firstNum; my %hash2; 

foreach my $key (keys %{$hash}) {  

$count2++; $hash2{${$hash}{$key}{2}}=$key; } 

foreach my $key (sort {${$hash}{$a}The 1000 Genomes Project 

Consortium,  <=> ${$hash}{$b}The 1000 Genomes Project Consortium, } 

keys %{$hash}) { 

if ($count==0) { $firstNum = ${$hash}{$key}{2}; } 

if ($count>0) {  

$Num = ${$hash}{$key}{2}; $firstNum = compareKB($firstNum,$Num); } 

$count++; 

if ($count2 == $count) { 

my @array = ($hash2{$firstNum},$count); return \@array; } 

}} 

 

#getFisher subroutine 

sub getFisher { 

my $hash = $_[0]; my $indexPvalue = $_[1]; 

my $firstNum; my $Num; my $count=0; my $count2=0; 

foreach my $key (keys %{$hash}) { $count2++;} 

foreach my $key (sort {${$hash}{$a}The 1000 Genomes Project 

Consortium,  <=> ${$hash}{$b}The 1000 Genomes Project Consortium, } 

keys %{$hash}) { 

if ($count==0) { $firstNum = ${$hash}{$key}{2}; } 

if ($count>0) { 

$Num=${$hash}{$key}{2}; $firstNum = combineP($firstNum,$Num); } 

$count++; 

if ($count2 ==$count){ 

$firstNum = combineP($firstNum,$indexPvalue); 

my @array = ($firstNum,$count); return \@array; } 

}} 

 

# getFlipper subroutine 

sub getFlipper { 

my $hash = $_[0]; my $indexOR = $_[1]; my $test = $_[2]; my $Num; 

my $firstNum; my $count=0; my $count2=0; my $NAcheck=0; 

my $testCheck=0; 

foreach my $key (keys %{$hash}) { $count2++; } 

if ($indexOR == -9) { $NAcheck=1; } 

foreach my $key (keys %{$hash}) { 

if (${$hash}{$key}{3} == -9) { $NAcheck=1; }} 

if ($test eq 'CC') { # analysis check "CC" or "QT" 
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$testCheck=1; 

} elsif ($test eq 'QT') { 

$testCheck=2; 

} else { 

print "Unrecoginized analysis!";die;} 

foreach my $key (sort {${$hash}{$a}The 1000 Genomes Project 

Consortium,  <=> ${$hash}{$b}The 1000 Genomes Project Consortium, } 

keys %{$hash}) { 

if ($count==0) { $firstNum = ${$hash}{$key}{3}; } 

if ($count>0) { $Num=${$hash}{$key}{3}; 

if ($firstNum==-9 && $Num != -9) { $firstNum=$Num; 

} elsif ($firstNum == -9 && $Num == -9) { $firstNum = -9; 

} elsif ($firstNum != -9 && $Num == -9) { $firstNum = $firstNum; 

} else { if ($testCheck ==1) { $firstNum = compareOR($firstNum,$Num); 

} elsif ($testCheck ==2) { $firstNum = compareBETA($firstNum,$Num); } 

if ($firstNum ==0) { # '0' represent flipping effect 

return 0; }}} $count++; 

if ($count2 ==$count){ 

if ($firstNum==-9 || $indexOR == -9) { return 2; 

} else { if ($testCheck ==1) { 

$firstNum = compareOR($firstNum,$indexOR); 

} elsif ($testCheck ==2) { 

$firstNum = compareBETA($firstNum,$indexOR); } 

if ($firstNum ==0) { return 0; 

} elsif ($NAcheck ==0) { return 1; 

} else { return 2; 

}}}}} 

 

# compareBETA subroutine 

sub compareBETA { 

my $input1 = $_[0]; my $input2 = $_[1]; 

if ($input1 > 0 && $input2 >0) { return $input1; 

} elsif ($input1 <0 && $input2 <0) { return $input1; 

} else { return 0; }} 

 

# compareOR subroutine 

sub compareOR { 

my $input1 = $_[0]; my $input2 = $_[1]; 

if ($input1 > 1 && $input2 >1) { return $input1; 

} elsif ($input1 <1 && $input2 <1) { return $input1; 

} else { return 0;}} 

 

# combineP subroutine 

sub combineP { 

my $input1 = $_[0]; my $input2 = $_[1]; my $sum; my $result; 

$input1 = log(1/$input1); $input2 = log(1/$input2); 

$sum = $input1 + $input2; $result = 1/exp($sum); return $result;} 

 

# compareKB subroutine 

sub compareKB { 

my $input1 = $_[0]; my $input2 = $_[1]; 

my $a = abs($input1); my $b = abs($input2); 

if ($a > $b) { return $input2; 

} else { return $input1; }} 

 

1; 
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8.4.4 Plug-in for PLINK ‘gene report’ function 

------------------ gene_report_plugin.pl -------------- 
use strict; 

use warnings; 

use modules; 

 

my $filename1 = 'myfile.range.report'; # input PLINK gene report file 

‘.range.report’ is entered here 

my $str = modules::readData($filename1); 

------------------ modules.pm -------------------------- 
package modules; 

use strict; 

use warnings; 

 

sub readData { 

my $input1 = $_[0]; my @array; my $col1; 

my $col2; my %hash; 

open (MYFILE, "<$input1") or die "Unable to open $input1: $!\n"; 

open (OUT, ">results.txt") or die "Unable to open results.txt: $!\n"; 

print OUT "SNP\tCHR\tBP\tP\tBETA\tGENE\tLENGTH\tDIST\n"; 

while (<MYFILE>) { 

chomp; 

if (/^\s+.+rs/) { 

@array = split(' ',$_); 

$hash{3} = $array[2]; 

$hash{4} = $array[0]; 

$hash{5} = $array[12]; 

$hash{6} = $array[7]; 

$hash{7} = $array[3]; 

$hash{8} = $array[1]; 

print OUT "$hash{3}\t$hash{8}\t$hash{7}\t$hash{5}\t$hash{6}\t$hashThe 

1000 Genomes Project Consortium, \t$hash{2}\t$hash{4}\n"; } 

if (/^(\w+)/) { 

@array = split(' ',$_); 

$hash{1} = $array[0]; $hash{2} = modules::math($array[4]); 

}} 

close MYFILE; close OUT; } 

 

sub math { 

my $input1 = $_[0]; my $first_number; my $full_number; 

if ($input1 =~ m/^(\d+)(\.\d+)\w+/) { 

$first_number = $1-40; $full_number = $first_number.$2."kb"; 

} elsif ($input1 =~ m/^(\d+)\w+$/) { 

$first_number = $1-40; $full_number = $first_number."kb"; 

} else { die "Error in the length of the gene!"; 

} return $full_number;} 

 

1;  
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8.5 UCSC custom tracks input files 

Custom tracks input file for the TRIM15 ‘A’ amplicon (used in Chapter 4): 
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Custom tracks input file for the TRIM15 ‘B’ amplicon (used in Chapter 4): 

 


