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Abstract

Over the last ten years questions related to the safety of nanoparticles and their possible
toxic effects have become well-established. The government’s Health and Safety Laboratories
(HSL) at Buxton are currently attempting to determine their possible toxicity in the work-
place. It is their responsibility to establish what levels are exposure can be considered safe
in the workplace. This project is a CASE studentship with HSL and aims to start develop-
ing mathematical models relating to nanotoxicology. After reviewing the available literature,
three key mechanisms which are involved in the possible toxicity of nanoparticles emerge. One
mechanism is the oxidative stress they cause once they enter individual cells. The second
mechanism is the damage done to the surface of the lung if they are not successfully phagocy-
tosed on inhalation. Finally, the third mechanism is their propensity to aggregate both when
dispersed in the air or when they are found inside the body. These three topics are dealt with
in Parts I, II and III respectively.

There has been much concern over how carbon nanotubes (CNTs) may cause oxidative
stress. Oxidative stress occurs when there is an overload negatively charged species in the cell.
These are collectively known as Reactive Oxidative Species (ROS). ROS are always present
in a cell as they are the natural product of the metabolic pathways. By their reactivity, they
readily cause damage to other molecules in the cell, so every cell produces anti-oxidants in
order to control the concentration of ROS. However, when the concentration of ROS becomes
too high the concentration of anti-oxidants becomes depleted and the cell can become too
damaged to function. In this case it dies by necrosis. When a cell dies by necrosis is can
cause irritation and further damage to surrounding cells. Oxidative stress can also trigger the
immune response 8o that the cell dies by self-programmed apoptotic cell death which limits
this damage to surrounding cells. It is best to avoid unnecessary cell death, however, not
undergoing apoptosis risks a more damaging necrotic death.

Part I introduces develops models of Tumor Necrosis Factor-a (TNF-«) activated pathways.
This model consists of three signalling cascades. One pathway triggers apoptosis while a
second inhibits apoptosis. These two models are based on pre-existing models. This work
introduces a third pathway which activates Activator Protein-1 (AP-1). This pathway includes
two well-known ROS sensitive elements. These are the ROS-sensitive activation of the Mitogen-
Activated Protein Kinase (MAPK) cascade and the ROS-sensitive deactivation of the MAPK
phosphatases.

These three pathways are regulated by three sets of inhibiting reactions and inhibitors to



these inhibitors. The effect of these inhibitors is to introduce a time-lag between the initial
TNF-«a extracellular signal and the death of the cell by apoptosis. This time-lag is regulated
by the concentration of intracellular ROS and the concentration of anti-oxidants. Different
combinations of inhibitors can be switched on or off before running the model. The effectiveness
of the oxidative stress sensitive elements in regulating apoptosis can therefore be optimised
while different sets of inhibitors are active. Two qualitatively different types of solutions
are found. The cell can be either only transiently active, over a shorter period of time, or
persistently active, over a longer period of time. This could provide some guidance to biologists
investigation TNF-«a activation of the immune system.

On inhalation, CNTs have been found to reach the alveoli, where air exchange occurs in
the lung. The only mechanism available to remove debris in these delicate regions of the
lung are lung macrophages. Macrophages work by enclosing unwanted matter in an organelle
called a lysosome and then moving this debris away to where it can be cleared by cilia. Non-
organic material does not trigger a macrophage response as strongly as organic material, which
also triggers the immune system. The shape of fibrous material makes it more difficult for a
macrophage to successfully form a lysosome and to move the material away once it has been
engulfed. Frustrated phagocytosis releases harmful acids and enzymes which can damage
the alveoli causing oxidative stress. If debris cannot be removed, then dead cells may form
around the debris to protect the surrounding tissue, forming a granuloma. Both scarring from
frustrated phagocytosis and granuloma formation will impair the function of the lung.

In Part II, insight is gained on how a cell membrane can engulf an object with a high aspect
ratio. The mechanisms of phagocytosis are complex in terms of both cell signalling cascades
and the polymerisation and de-polymerisation of the actin network. In order to find a model
which takes into account the geometry of a cell as a whole, this picture has been simplified.
An energy minimisation approach is used where the surface of a cell is taken to be a surface
of rotation around an axis, which is taken to be the axis of a fibre.

In Chapter 4, the free energy is taken to be of a liquid drop, resting on a solid surface, in
vapour where only the surface and volume energies are considered. The surface tension is taken
to account for the tension in the lipid bilayer on the surface of the macrophage. In Chapter
5, the free energy is extended to also include a Helfrich or bending energy which specifically
takes into account the energy taken to bend a lipid bilayer.

It is assumed that, in order to conserve the limited resources of a macrophage, the shape
of a lipid membrane which has successfully engulfed a particle will be energetically stable
with regards to these surface, volume and bending energies as a macrophage reaches the final
stages of phagocytosis. This does not take into account the energy required to remodel the
cytoskeleton for the cell to reach this shape. However, the bending energy associated with cell
membranes of increasing length can be used to suggest the amount of energy required in this
dynamical process.

It is found that in Chapter 4, when no Helfrich energy is included in the energy minimi-
sation, the only limiting shape possible in the limit of increasing length to radius ratio of the

fibre is a sphere. When the Helfrich energy is included, three different boundary conditions
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are imposed. The first boundary condition sets the forces associated with the bending energy
to zero at the edge of the membrane. At the point of contact between the membrane and the
fibre, the forces reduce to that of a classical solid/liquid/vapour interface. The second bound-
ary condition is imposes the length of the droplet. This length can be incrementally increased
to find solutions of increasing length. Finally, a third boundary condition is imposed which
sets the contact angle of the membrane at the surface of the fibre to zero. By imposing these
three boundary conditions, a variety of membrane shapes were obtained. These results are
expected to be a useful guide to experimentalists observing different shapes of macrophages
under different conditions.

Part IIT in Section 7.1 pin-points frameworks of models which use concepts from polymer
physics to possibly predict the volume of an aggregate of CNTs and also to understand how
nanoparticles interact with chain-like protein. However, no new results are presented in Part
I11.
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Chapter 1

Introduction to Nanotoxicology

Over the last ten years, the question of whether, how and to what extent nanoparticles
can be considered toxic has been examined. The topics related to this question have been
developed in review papers such as [9, 63, 77, 112]. By summarising the discussion found in
these and other review papers, this section puts the aims of the mathematical models in this
thesis in context.

Nanoparticles, in the form of ultrafine particles [126], have always existed in the environ-
ment. Nanoscale oxides and colloids have existed in soil and water while ultrafine particles,
both naturally occurring and a product of exhaust fumes, can be found in the air. Since the
last quarter of the 20" century, technology has progressed to the point that materials can be
manipulated on an atomic scale. Nanoparticles are generally defined as particles whose length
scale in at least one dimension is 1-10 nm and which have a small size distribution within a
sample [9]. Any field of science is potentially controllable on a smaller scale than has previ-
ously been possible. Materials can be carefully designed to meet their desired purpose. For
this reason, the group of materials classed as nanoparticles is a very diverse group of mate-
rials and compounds united only by their size classification. The different compound classes
include carbonaceous nanomaterials such as carbon nanotubes, metal oxides, semiconductor
materials including quantum dots, colloids and nanopolymers such as dendrimers. They have
found extensive uses in electronics, cosmetics, sunscreen, paint among other uses listed in [55].
An inventory of products containing nanoparticles is listed on the website for the Project on
Emerging Nanotechnologies [1].

The review in [55] lists several remarkable properties of different types of nanoparticles. As
well as producing nanotechnologies of a uniquely small size, nanotechnology has also produced
materials with unique properties not shared with larger scaled materials which share the same
chemical make-up [9]. A prime example of this type of material is the carbon nanotube (CNT).
A single-walled carbon nanotube (SWCNT) can be imagined as a two dimensional lattice of
carbon molecules rolled up to form a cylinder with a nanoscale radius which is 10,000 times
finer than a human hair. A multiwalled carbon carbon nanotubes (MWCNT) is a concentric
assembly of several single-walled carbon nanotubes. CNTs are excellent thermal and electric

conductors. SWCNT have a strength-to-weight ratio 460 times that of steel. Fullerenes are



another example of a carbon-based nanoparticle. They are spherical lattices of carbon atoms
which are less stable and so less useful in commercial products than CN'TS. Since the discovery
of the fullerene in 1985 and the subsequent discovery of CNTs in 1991, CNTs are now mass
manufactured in factories that can produce up to 1,500 tonnes/year. As noted in [55], annual
production of SWCNT was expected to exceed 1,000 tonnes by 2011.

Metal oxides are another class of nanoparticle in mass production, especially zinc oxide
(Zn0O) and titanium oxide (7902). Titanium oxide is a photocatalyst which has been used
in solar cells, paints and coatings. Zinc and titanium oxide are widely used in products such
as sunscreens and bottle coatings, which make direct contact with consumers. Production of
metal oxides for skin care products is expected to be 1,000 tonnes a year in 2010.

The study of the potential toxicity of the different classes of nanotubes has lagged behind
the explosion of their manufacture and use in consumer products. The story of asbestos stands
as a cautionary tale of the damage that can be done if the usefulness of a new material delays
a proper investigation of its toxic effects [28]. Asbestos is now known to cause asbestosis
where the lung is significantly damaged and scarred and also, in rarer cases, mesothelioma, or
cancer of the lung lining. The example of asbestos is particularly pertinent [28] as CN'Ts share
its fibrous nature. CN'Ts can be likened to asbestos in terms of both high aspect ratio and
biopersistance, which is the inability of the body to break down its structure.

The government’s Health and Safety Executive (HSE) is responsible for setting the stan-
dards in all aspects of workplace safety from the management of toxic products to stress.
Research on workplace safety is carried out in Health and Safety Laboratory (HSL) at Buxton.
Evaluating the potential of nanotoxicity is one of their ongoing projects. This project is part
of a worldwide effort to tackle the many different aspects of this problem. The challenges of
evaluating the toxicity of nanoparticles are outlined in [63].

From 2006-2012 it has been envisioned that research effort is mainly concentrated on the
challenge of developing laboratory based methods which can reliably evaluate the risk posed by
nanoparticles in factories or to the consumer. For example, the work at HSL has been focused
in two directions. Firstly, cell death counts or cell assays are made while tissue samples are
exposed to nanoparticles. As a government laboratory, HSL needs to develop robust methods
to give a clear indication of potential toxicity before examining the possible mechanisms of
any potential toxicity in detail. Nanoparticles have a large surface to volume ratio, so that a
large proportion of atoms are on the surface of the particle. It may well be that considering
the total surface area, rather than the total mass per exposure may be a reliable enough way
to quantify their toxicity.

Secondly, HSL is attempting to establish guidelines on how to handle nanoparticles during
the manufacturing process in order to minimise the exposure of the workers to them. As
nanoparticles are handled in a factory setting, they may be released into the air to form
aerosols. The exposure pathway of primary concern is inhalation. Mathematical models of the
pattern of deposition of particles in the trachea, bronchae and alveoli are available. In order
to use these models, specific information on the dispersion of nanoparticles in air and their

aerodynamic diameter must be obtained. The picture of nanoparticles in air is complicated



by the observation that, due to their high surface area to volume ratio, they commonly form
aggregates, or loosely bonded groups of particles, in order to minimise their surface energy. HSL
is experimenting with different sampling methods to determine these factors. Protocols must
be developed and cost-effective equipment must be chosen in order to reliably test workplace
environments for exposure.

Referring back to the broader picture of the progress of nanotoxicology in [63], other re-
search groups around the world are also tackling questions on how to monitor the exposure
of nanoparticles to the general public and to start building and testing specific mechanisms
by which they could potentially be toxic. Models for predicting engineered nanomaterial be-
haviour in the body are expected to be ready for use by 2017. This puts into context the
scope of this thesis. The most time consuming task in this thesis has been to develop and
justify quantitative models related to potential mechanisms of nanoparticle toxicity. The re-
sults and properties of the models must be interesting and also mathematically and biologically
relevant without information on specific parameters or even specific mechanisms from exper-
imenal investigation. This work has been strongly guided by review papers from the major
nanotoxicology research groups around the world.

In the UK, the investigation into nanotoxicology is being led by Ken Donaldson and Vicki
Stone at Edinburgh Napier University. A commonly referenced review paper, [28], highlights
their specific interest in the pulmonary toxicity of CNTs on inhalation. Vicki Stone is the
editor-in-chief of “Nanotoxicology”, a dedicated journal which has been in print since 2007.
The first ever article of this journal [112] reviews the history of nanotoxicology up to 2007.
Two categories of mechanisms which emerge from [112] are oxidative stress and, in the light of
the asbestos experience, lung damage by high aspect ratio nanoparticles (HARN). There have
also been specific findings, such as the discovery that quantum dots can penetrate the outer
surface of the skin and the unique damage gold nanoparticles of a certain size can do to DNA.
However, a systematic understanding of risk, exposure and toxicokinetic data was considered
lacking.

Another research group of note is that of Andre Nel at the California Nanosystems Institute.
His widely cited review in Science |77] and his subsequent review in Nature |76], clearly discuss
the possible biochemical reactions of nanoparticles in the body which have been investigated
and discussed in hundreds of related and unrelated experimental papers. The discussion in
[77] provides a clear understanding of how nanoparticles could activate the immune response
by releasing damaging free radicals into the cell causing oxidative stress.

The discussion in [76] focuses on how the small size of a nanoparticle allows it to interact
with proteins, organelles and cell membranes. CN'Ts, for example, are very hydrophobic so, in
order to understand their biological interactions, the object of interest is not the nanoparticle
itself as much as the complex formed by the nanoparticle and proteins which have associated
themselves to it. A series of papers from the Centre of BioNano Interactions, Dublin headed
by Iseult Lynch have attempted to characterise this protein corona [59]. A pioneer in nanotox-
icology is Giinter Oberdérster at the University of Rochester, USA, who used his expertise in

the toxicity of airborne particles to open up the discussion of nanotoxicology [80].



The consistently reoccurring topics in the review papers mentioned and accompanying

research on nanoparticles have been
e Dermal Penetration - can they penetrate the skin?
e Uptake by cells via endocytosis - can they enter an individual cell?
e Oxidative Stress - do they cause ozidative stress?
e Fibrotic Response - do they cause a fibrotic response?
e Activation of Immune Response - do they otherwise trigger the immune system?
e Dispersion - what is the expected size of agglomerates found in air?
e Inhalation - where are they deposited in the lungs?

e Clearance via Phagocytosis - can they be cleared by the body’s frontline mechanism, phago-

cytosis?

e (Clearance by kidneys, liver lymphatic system - once in the blood stream, can they be

cleared?
e Biological Persistence - how long do they stay in the lungs or bloodstream?

e Bio-reactivity - can their biological interaction be characterised by their surface area, by

their associated protein corona or by their geometry?

A broad range of specialist knowledge will be required to answer these questions. In general,
new science is not expected to be needed to answer these questions. However, new applications
of known scientific approaches will be required. This can also be said about the development of
theoretical models of nanotoxicology. Once nanoparticles have been characterised and evidence
for specific temporal and spatial interactions has been found, then these findings can be used
to guide the choice of parameters and boundary conditions in any number of existing models
developed under the umbrella of mathematical biology.

Though there are not many models in the tradition of applied mathematics which incor-
porate nanoparticles, there has been much progress in simulating interactions and properties
computationally in silico. Recently, the oxidative stress potentials of a selection of metal ox-
ides have been found using quantum physics [11]. A molecular dynamics approach has also
been used to successfully model various nanoparticle interactions, including the permeation of

a nanoparticle through a lipid membrane, [17, 35].
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Intracellular Oxidative Stress



Chapter 2

Intracellular Oxidative Stress Model



2.1 Oxidative Stress as a Possible Mechanism of CNT Toxicity

The task of developing a model of intracellular oxidative stress in relation to nanoparticle
toxicity is motivated by two observations. Firstly, due to experimental investigations, such
as those reviewed in [9] and [80], it is now established that nanoparticles can penetrate cells.
Secondly, in many other review papers and reports such as [9, 28, 40, 108, 112], oxidative stress
is considered to be one of the primary mechanisms of toxicity.

The review articles cite experimental papers, [26, 62, 106, 107|. From observing the acti-
vated proteins, these papers suggest that CNTs indeed induce oxidative stress. Particles which
cause oxidative stress are commonly referred to as Reactive Oxidative Species (ROS). These
are particles on which there is a concentrated negative charge which can damage proteins inside
a cell and interfere with signalling pathways. It was noted in [84] and [85] that at least some of
the toxicity of CN'Ts could be attributed to iron present in the impurities which have not been
removed after manufacture. Through the iron-catalysed Haber-Weiss reaction, highly reactive
hydroxyl radicals (OH™) can be formed. Most CNTs do contain iron oxides and so it can
be assumed that, even if the biochemistry specific to the nanoparticle structure is unknown,
CNTs will induce oxidative stress. The oxidative stress potentials recently calculated in [11]
can indicate how the concentration of ROS is related to the concentration of certain metal
oxides inside a cell.

Additionally, the results from [26, 62, 106, 107| link the potential toxicity of CNTs with
well-known immune response pathways. Cytokines are signalling proteins which are used in
intercellular communication. Once a single cytokine binds with its receptor in the membrane
of a cell, many signalling cascades may be triggered. The key cytokine associated with CN'T-
induced oxidative stress was found to be NF-kB. It was also found that proteins associated
with TNF-a, such as NF-kB, the MAPK cascade and AP-1 are also activated.

These pathways are put into context by the discussion in Nel et al [77] where it was
suggested that every cell has a three tiered response to oxidative stress. This three tiered
response was summarised by the diagram reproduced here in Figure 2.1. In the lowest tier
are the anti-oxidants such as glutathione (GSH). This first tier response is controlled by the
transcription factor Nrf-2.These are produced continually by each cell to mop up the ROS
which are routinely produced by the metabolic pathways. However, if CNTs are present inside
a cell, there is an excess of ROS and anti-oxidants are depleted. At this stage, the next tier of
response is triggered. This tier contains the cytokine TNF-«, the transcription factors NF-xB
and AP-1 and their associated signalling proteins. These signalling cascades decide whether
or not a cell undergoes self-activated cell death, apoptosis, or risk an unmanaged form of cell
death, necrosis, which is more damaging to the surrounding tissue. If an apoptotic fate is
chosen, then the third tier of response is triggered. This tier contains the apoptotic pathways
triggered by the caspases.

The models in this chapter aim to capture the oxidative stress sensitive decision making
pathways in the middle tier. They feature TNF-a, NF-kB and AP-1. Mechanisms by which

anti-oxidants are upregulated are not included. It is assumed that the cell is in a state of



oxidative overload, much larger than that experienced during normal metabolism. The model
focuses on the oxidative stress elements of the pathways which are triggered once the this pool
of anti-oxidants is depleted.

The biological information contained within the construction of these models can be found
in Section 2.2. Full mathematical details of these models are in Section 2.3. The model
consists of three signalling pathways pathways which are referred to as the apoptotic, anti-
apoptotic and oxidative stress sensitive pathways. The main oxidative stress sensitive elements
are the activation of the MAPK kinases and the deactivation of the phosphatases, which act
to deactivate the MAPK kinases. These three pathways upregulate three sets of inhibitors and
inhibitors of these inhibitors. These inhibitors are upregulated by the anti-apoptotic pathway
and act to block the signal along the apoptotic and oxidative stress sensitive pathways. The
inhibitors of the inhibitors upregulated by the oxidative stress sensitive pathway act to “break
the brake” of apoptosis as described in [58].

Information detailing specific interactions in TNF-« activated pathways is readily available.
However, as these models was not developed in association with an experimental investigation,
detailed kinetic data is not available. It can be assumed that no reaction will have an anony-
mously fast or slow associated rate as all the reactions featured in the model occur at the
same temperature, inside one cell, outside of its nucleus. The model is complicated enough in
structure, that it is the structure of the model itself, rather than small variations in the rate
constants, which allows it to predict different types of response.

The analysis of these models in Section 2.4 focuses on the effectiveness of the oxidative stress
sensitive pathway in regulating the apoptotic response when the different sets of inhibitors are
set to be either active or inactive. This effectiveness is quantified by the change in the steady
state value of DNA fragmentation when the inhibitors of the inhibitors are active rather than
inactive.

The two types of response predicted by these models are a transient activation of the
caspases, where the apoptotic response is limited by the concentration of caspase proteins
inside a cell and a persistent activation, where the apoptotic response is less limited by the
concentration of proteins inside a cell. These cases are examined separately in Sections 2.4.2
and 2.4.4 respectively. These two cases can act as a guide to experimentalists interested
in establishing the pattern of oxidative stress sensitive caspase activation. The correlation
between the extent of apoptosis and the initial concentration of proteins in the apoptotic and
anti-apoptotic pathways was investigated in Sections 2.4.2.5 and 2.4.4.1. The method used in

the sensitivity analysis follows commonly found examples, such as those in [94].

2.2 Overview of Oxidative Stress Model with Literature Review

TNF-« is a cytokine which is secreted into the tissue fluid in response to a variety of
stressors. When it binds with a TNF-« receptor on the cell membrane it can trigger many
pathways simultaneously. One of these pathways triggers apoptosis by activating the caspases.

This pathway will be referred to as the apoptosis pathway. Another pathway activates the
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Figure 2.1: Three tier oxidative stress model from [77].

transcription factor NF-xB. This transcription factor can also upregulate a variety of anti-
oxidants and also proteins which inhibit the apoptosis pathway. However, its anti-oxidant
activity is not included in the current work. This second pathway will be referred to as the
anti-apoptosis pathway. The apoptosis pathway is the centre pathway in Figure 2.5 while the
anti-apoptosis pathway is on the right. The role of the apoptosis and anti-apoptosis pathways in
jointly governing the fate of an individual cell has been discussed at length (|2, 5, 48, 109, 123]).
The processes involved in the apoptosis and anti-apoptosis pathways can be found in Sections
2.2.2.

If nanoparticles cause oxidative stress, the cell’s response to ROS inside the cell should
also be considered. In [85] it is suggested that anti-oxidant treatment can afford near complete
protection against cell death in the event of simulation by TNF-« in certain cell types. The
work presented here introduces a third, oxidative stress sensitive, pathway. This is the pathway
on the left hand side of Figure 2.5. Activating this pathway is generally thought to trigger
apoptosis, so it will be referred to as the pro-apoptotic pathway.

Full discussion on the biological basis of the pro-apoptosis pathway can be found in Section
2.2.3. A recent paper [19] reviews various mechanisms by which oxidative stress is thought
to regulate apoptosis. Review and discussion papers [3, 58, 74, 85| discuss ways in which
TNF-a activates Jun -N-terminal kinase (JNK) which is an activator of the transcription
factor Activator Protein-1 (AP-1). This activation is ROS sensitive due to the ROS sensitive
activation of ASK1, a protein upstream to AP-1 and the ROS sensitive deactivation of the
phosphatases, which inhibit protein upstream from AP-1. The mathematical description of
the pro-apoptosis pathway can be found in Section 2.3.4.

The interaction between the specific proteins in these three pathways can be referred to
as “cross-talk”. The key outputs of the three pathway model are the concentration of DNA
fragmentation, which indicates the extent of apoptosis, and the concentration of Reactive

Oxidative Species (ROS), which indicates the extent of necrosis.



2.2.1 Summary of Existing Model

The apoptotic and anti-apoptotic pathways are the subject of mathematical models re-
viewed in [124]|. The models investigate the role of TNF-a and NF-xB in apoptosis. Of the
models reviewed Cho et al, [18], together with Rangamani and Sirovich, [89], are the most
relevant to this problem. The apoptosis and anti-apoptosis pathways, as they appear in the
current model, can be found in Sections 2.3.2 and 2.3.3. The apoptotic and anti-apoptotic
pathways are the middle and right-hand side pathways respectively in Figures 2.5 and 2.6.
This section introduces the mathematical framework used to build the final three pathway
model. Justification for the choice of proteins which form these pathways is given in Section
2.2.

In both the apoptotic and anti-apoptotic pathways, a complex of proteins forms, which
then breaks up, activating one protein, which can then continue to activate the apoptotic or
pro-apoptotic pathways. These reactions follow simple mass law kinetics. A template model

of a complex of two proteins can be given as

() = —kima (H)ma(t) + kams (L), (2.1)
ma(t) = —kimi(t)ma(t) + koms(t) + ksms(t), (22)
ms(t) = kimy(t)ma(t) — kams(t) — ksms(t), (2.3)
a(t) = kama(t), (2.4)

where my and mo combine to form the complex mg which then activates mq to form my.
The three rate constants are k1, the association constant, ko, the diassociation constant and ks,
the activation constant. In the apoptosis pathway the formation of the death complex activates
the initiators of cell death, the caspases. In the anti-apoptosis complex, the formation of a
second complex leads to the activation of NF-x which induces the inhibitor of apoptosis ¢-IAP.
In [89] the structure of this model was revised slightly with reference to available literature.

The rate constants listed in [18] were used to guide the choice of rate constants in the
current model which are listed in Table 2.2. These rate constants are the only available source
of kinetic data available. The mathematical models reviewed in [124] also use the rate constants
introduced in [18].

In [18], a set of rate constants was found which minimised the sensitivity of the model
outputs to perturbations in these rate constants of up to 20% in the rate constants using
experimental data as a reference. Full details can be found in [18].

The work in [18] revealed that if each of the rate constants ki, k2 and k3 in the template
model above were perturbed then the rate constant to which the output of their model was most
sensitive to was k1. It was then found that of all of the association constants in their model, the
rate of association of TNF-a and TNF-Receptor 1 (TNFR1) was the once which most altered
steady state values on perturbation. As the association, disassociation and activation constants
not involved in the TNF-a/TNFRI1 activation were much less sensitive to perturbation, all

association, diassociation and activation constants were given the same value. The values of
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the constants in the model were chosen to minimise the sensitivity of the steady state values
to perturbations in k.

The signalling pathways in [18] branch off downstream from the TNF-a/TNFR1 complex
at the TNF-a/TNFR1/TRADD complex. It is the extent of activation of
TNF-a/TNFR1/TRADD which then determines the extent of apoptosis. The extent of acti-
vation of TNF-a/TNFR1/TRADD is determined by both the initial concentration of TNF-«
and the value of k1. In the current model, the protein which initiates the signalling cascade
is taken to be TRADD. This simplifies the model so that the outputs are less sensitive to
the value of k; and more dependent on the initial concentration of TRADD. This simplifies
the analysis of the final model as the strength of the extracellular signal can be quantified
as the initial concentration of TRADD rather than as a non-linear combination of the initial
concentrations of TNF-«, TNFR1, TRADD and k.

2.2.2 Overview of Apoptosis and Anti-Apoptosis Pathways

TNF-« is a cytokine which is central to many aspects of the immune response. A good
review of the signalling pathways of TNF-« can be found in [2] which includes a brief overview
of the apoptosis, AP-1 and NF-xkB pathways considered here. TRADD is a mediator of the
TNF-a extracellular signal via TNFR1 to all three of these pathways. Figure 3 in [123] indicates
the extent of proteins that can be associated with just two of the branches of the TNF/TNFR1
signalling pathway though not all these proteins are vital to the propagation of the extracellular
signal.

Further details on the apototic pathway used in the current model can be found in Section
2.3.3 and those for the anti-apototic pathway can be found in Section 2.3.2. Coloured terms
indicate interactions with the oxidative stress sensitive pathway which are discussed below in
Section 2.2.3.

2.2.2.1 Apoptosis Pathway

TNF-a (Tumour Necrosis Factor-a) induced apoptosis is mediated by the caspase cascade.
If TNF-a/TNFR1 binds with TRADD (TNF-« associated death domain), which then allows
for the binding of FADD (fas associated death domain), the complex is able to bind to caspase-8
and activate it. Caspase-8 can then activate the DNA damage effector, which for the TNF-
« pathway is caspase-3 or caspase-7. This effector can then enter the nucleus and induce
DNA fragmentation. DNA fragmentation is itself a complicated biological process which is
summarised in [18] by one step. Here DNA fragmentation is simply a component of the

pathway with a given concentration.

2.2.2.2 Anti-Apoptosis Pathway

The activation of NF-xB is well studied [109]. In its unactivated state NF-xB is held in
the cytoplasm by IxB. To free NF-xB, so that it can enter the nucleus to promote protein

synthesis, [kB must be phosphorated to form [xkB-P. Phosphorylation refers to the addition

11



of a phosphate group (POy4) to a protein. The phosphorylation of 1B is done by activated
IKK (IxB-kinase). NF-xB’s most potent activator is TNF-a. Intracellular proteins bind with
TNF-a/TNFRI1 to form a complex which can activate IxB-kinase (IKK). To release NF-xB,
IxB must also be ubiquinated. However, it can be assumed that phosphorylation rather than
ubiquitination (the degradation of a protein), is the rate limiting step so unbiquitination is not
included in this model.

NF-kB upregulates a variety of proteins including anti-oxidants, cell repair proteins and
inhibitors of apoptosis such as ¢-IAP, FLIP and XIAP. The upregulation of a protein, such as
NF-kB and AP-1, can be broken down into several stages and, like DNA fragmentation, is a
complicated process. However, for the purpose of the current model, it will be modelled as a
single step.

There are a variety of possible interactions between caspases and inhibitors of apoptosis
which are discussed in detail in [96]. It is known that c-IAP binds to activated caspase-3 and

it is this interaction which is the only example of cross-talk in the model found in [18].

2.2.3 Overview of Oxidative Stress Sensitive Pathway

The model for the third pathway attempts to combine several different elements. Firstly,
TNF-a activates the MAPK cascade in a ROS sensitive way. This means that the third
pathway does not activate immediately, like the other two pathways, but only activates when
the concentration of ROS is suffiently high. The interaction between ROS, the anti-oxidants,
which reduce the concentration of ROS, the MAPK cascade and AP-1 is summarised in Figure
2.2.

Prolonged AP-1 activation leads to the release of proteins (Bidj) which release caspases
from inhibitor protein c-IAP. Another inhibitor protein (FLIP) regulated by NF-xB has been
found to inhibit MAPK. This inhibitor can be itself inhibited by ITCH. Like Bidj, ITCH is
also released after prolonged AP-1 activation. The two sets of inhibitors and the inhibitors of
these inhibitors are summarised in Figure 2.3.

When caspase-3 is released from c-IAP by Bidj, it is free to be reactivated and to continue
apoptosis. This means that the capases will be activated twice. The activation of the oxidative
stress sensitive pathway is delayed until the concentration of ROS is high enough. The time
delay between the initial and secondary activation will depend on the degree of oxidative stress
within the cell while the extent of apoptosis due to the secondary activation will depend on

the initial concentrations of the proteins involved especially TRADD.

2.2.3.1 Production of ROS

It is also important to consider how ROS are produced and contribute to cell death as well
as being clear on possible interactions not included in the current model.

An event associated with the onset of apoptosis is an oxidative burst when the mitochondrial
membrane is depolarised [84]. A certain increase in the concentration of ROS is associated

with apoptosis and does not necessarily indicate necrosis. In this model, this is captured by
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linking DNA fragmentation with an increase in the concentration of ROS.

There is enough evidence from literature to be confident that ROS mediate JNK activation
by both activating third tier MAPKs and deactivating the MAPK phosphatases which leaves
the MAPKSs persistently activated. In this way they can be considered to be part of the cross-
talk between the apoptotic and oxidative stress sensitive pathways. The question of whether
ROS can also be produced downstream from JNK, independently of apoptosis, is more open
[74, 85, 121]. In the current model the production of ROS by JNK has been allowed to allow
the self-activation of JNK. In [74] it was suggested that there may not be a single molecular
mechanism to account for this. If JNK produces ROS, then this may suggest that it plays a
part in necrosis. This possibility has been discussed in [85]. However, in the current model,
the ROS produced by JNK is taken to be minimal.

It was noted in [84] and [85] that at least some of the toxicity of CNTs could be attributed to
iron present in the impurities which have not been removed after manufacture. Electron leakage
from the electron transport chain causes formation of the superoxide radical (O5 ). Through the
iron-catalysed Haber-Weiss reaction, highly reactive hydroxyl radicals (OH™) can be formed.
Most CNTs do contain iron oxides and so it can be assumed that, even if the biochemistry
specific to the nanoparticle structure is unknown, CNTs will induce oxidative stress. The
oxidative stress potentials recently calculated in [11]| can indicate how the concentration of
ROS is related to the concentration of certain metal oxides inside a cell.

In this model, any toxins within the cell which may cause oxidative stress are represented
by a single variable. If the concentration of this variable is set to zero then the concentration
of ROS inside the cell is taken as the baseline amount associated with apoptotic death. If ROS
is increased beyond a threshold level, this indicates a necrotic death.

Necrosis is a term used to describe cell death by means other than apoptosis. There may
be forms of self-programmed cell death, other than apoptosis, which could be identified by
some form of signalling cascade |23, 84|. However, in the current model, the extent of necrosis
is quantified by concentration of ROS inside the cell in the way that apoptosis is quantified by
DNA fragmentation.

There is emerging evidence that RIP (Receptor-Interacting Protein) may play some role
in necrosis, which is discussed in detail in [23] and references therein, and ROS may have a
further role as messengers of cell death. However, no attempt to capture these complexities

has been made in the current model.

2.2.3.2 Production of Anti-Oxidants

Two key anti-oxidants upregulated by NF-xB are the ferritin heavy chain (FHC) and Man-
ganese Superoxide Dismutase (Mn-SOD). FHC sequesters free iron which catalyses the Haber-
Weiss reaction. Mn-SOD catalyses the superoxide radical (O3 ) into hydrogen peroxide (H2O2).
This antioxidant action suppresses the activation of JNK [74, 84]. All anti-oxidants are ac-
counted for in a single variable. They are not continuously produced in the cell but are given

an initial concentration which is depleted as ROS as produced.
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2.2.3.3 AP-1 Activation by the ROS-sensitive MAPK Cascade

This section discusses the oxidative stress sensitive activation of AP-1 as summarised in
Figure 2.2. JNK is a kinase from the MAPK pathway. JNK activates c-Jun which, together
with ¢-Fos, forms the transcription factor AP-1. AP-1 is another major transcription factor,
apart from NF-xB, which is activated by TNF-« signalling. Through JNK, AP-1 is thought to
mediate TNF-« apoptosis while NF-£B, in its anti-apoptotic capacity, is thought to deactivate
JNK.

The activation of JNK by TNF-« occurs through the second and third tier MAP kinases
(MAPKSs). The third tier (the MAP3Ks) involved in this pathway include MEKK1 and ASK1.
TRAF2 acts as the mediator between TNF-a/TNFR1 and these kinases. In [16, 19, 42] it
is suggested that TRAF2 binds with a complex of ASK1 and thioredoxin. ROS can then
disassociate the thioredoxin from the TRAF2/ASK1 complex.

Activated MEKK1 and ASK1 are able to activate the second tier of kinases, MKK4 and
MKKY7, which are in turn able to activate JNK which leads to the formation of AP-1. In this
model, the third and second tier kinases have been combined into a single variable, MAP2K in
Figure 2.2, as any interactions which may differentiate between them have not been included.

The possibility that JNK may mediate apoptosis independently of the caspases by inter-
acting with members of the Bel-2 family [74] is ignored. The signalling pathways involved are
not yet clear and are largely dismissed in the discussion in [58]. However, this mechanism is
looked at in detail in the more recent review paper [19].

There is no activation complex in the oxidative stress sensitive pathway. The form of MAPK
activation follows from the discussion given in [43]. The total number of activated (M APK})
and unactivated (M APK,) MAPKs for each tier is conserved as one tier activates the next
so that the term for the unactivated MAPK can be substituted out. The resulting terms in
the MAPK pathway are the subject of a separate model which can be found in Appendix
A. Unlike the activating complexes in the other signalling pathways, MAPK proteins are not
deactivated after they activate the next protein in the cascade. This means that MAPKs stay
activated until they are deactivated by the action of the phosphatases.

There is evidence that there is a positive feedback loop between JNK activation and ROS in
the cell. Two possible mechanisms are included in the present model. Firstly, the ROS sensitive
activation of MAP2K and, secondly, the ROS sensitive deactivation of the phosphatases. Once
the anti-oxidants are depleted, these ROS sensitive elements regulate when the interactions
indicated by the blue arrrows in Figure 2.2 occur.

There is an implied cycle in which ROS releases ASK1 from its inhibitor thioredoxin, ASK1
is then free to trigger the activation of JNK and JNK-mediated apoptosis produces ROS, which
then further activates ASK1. In this model, the role of ASK1 is taken by the variable MAP2K
which activates JNK directly.

In |74] and [84] studies were quoted suggesting that the deactivators of MAPK kinases, the
JNK phosphatases, are themselves deactivated by ROS. Deactivating phosphatases leaves the
MAPKSs in a persistently activated state.
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Figure 2.2: AP-1 activation by MAPK casade and ROS where labels correspond to those of the
complete network in Figure 2.5. Interactions in blue occur after the pool of anti-oxidants is depleted.

An initial analysis of a mathematical model of the MAPK cascade can be found in Ap-
pendix A. It was found that a self-inhibition term is not sufficient to describe anti-oxidative
action. A self-inhibition term assumes an infinitely large pool of anti-oxidants. If the pool of
anti-oxidants in finite, then a higher concentration of ROS will deplete this pool faster. In this
case the model is consistent with the hypothesis in [58] that the speed of MAPK activation
dependent on the concentration of ROS. The sensitivity of the speed of MAPK cascade activa-
tion is also facilitated by ROS-sensitive MAP2K activation via Thioredoxin and ROS-sensitive

phosphatase deactivation.

2.2.3.4 NF-x£B inhibition of caspase-3 and AP-1

Some of the IAPs (inhibitor of apoptosis proteins) activated by NF-xB have been found
to have dual roles, inhibiting both the caspases and the activation of JNK. FLIP is a protein
which was first identified as an inhibitor of caspase-8. There is now evidence 73] that it is also
an inhibitor of the second tier kinase, MKK7. Anti-oxidants such as Gadd453, upregulated
by NF-xB have also been shown to inhibit JNK activation |74, 85]. In [103] it was suggested
that their main target may be the MKK4 kinase. However, in this model FLIP is taken to be
representative of all possible interactions between proteins upregulated by NF-£B, which may
inhibit the activation of JNK.

Prolonged activation of JNK may also lead to release and modification of proteins, such
as Bidj, from the mitochondria that are able to inhibit the inhibition of the caspases by IAPs
[58, 85]. This has been described in [58] as ‘breaking the brake’ of apoptosis.

The discussion in [73] also suggests that prolonged activation of AP-1 can lead to the
upregulation of proteins, such as ITCH, that can inhibit proteins such as FLIP. This allows

these MAPK proteins to be reactivated, allowing for further activation of AP-1 in a positive
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feedback loop.

2.2.4 Alternative FLIP/ITCH interaction

A clear limitation of the model is that the activation of the MAPK pathway is only effective
in inducing apoptosis when there are enough upstream proteins to reactivate the caspase-3 once
it is released, otherwise the oxidative stress sensitive pathway will not increase the steady state
concentration of DNA fragmentation.

If the cell death complex rather than caspase-3 is inhibited, then reactivation on release
is not necessary. Once the death domain is released then it is immediately free to activate
caspase-8. FLIP is a well-established inhibitor of the cell death complex, which in the current
model is taken to consist of TRADD and FADD. TRADD and FADD carry the molecular
death domain which can activate caspase-8. FLIP is a catalytically inactive homologue of
caspase-8, which can bind onto the death complex, preventing the activation of caspase-8.

There is growing evidence of the particular importance of the death domain/FLIP interac-
tion. Review papers [116] suggest that the role of FLIP may have a clinically significant role
in the progression of cancer and cardiovascular disease. The role of JNK in the fine-tuning of
FLIP expression is discussed in detail in [4] and [53]. The JNK induced inhibitor of FLIP was
taken to be ITCH which can ubiquitinate the caspase-like domain of FLIP.

Figure 2.4 summarises this alternative set of inhibitor interactions where there are two
points where the anti-apoptotic pathway inhibits the apoptotic pathway. Figure 2.6 is the

complete network diagram of the alternative version of the model.
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2.3 Intracellular Oxidative Stress Model

The variables and the ODEs associated with each of the three pathways are listed separately
in Sections 2.3.2-2.3.4. Rate constants are discussed in Section 2.3.1. The discussion in each
section summarises the information introduced in the literature review in Section 2.2. There
are two main versions of this model. in In Model version A, as summarised in Figure 2.5, FLIP
inhibits the MAPK cascade. However, model version B, as summarised in Figure 2.6, FLIP
instead inhibits the death complex. The differences in model version A and B are summarised
in Table 2.3.

The convention that the notation A/B refers to a complex formed by the association of
protein A with protein B is used. All variables of the form m, have units of [uM]. Note that
the mass action laws used are of a very simple form. Discussion in some experimental papers
may suggest more complicated terms. However, because of the large number of variables in the
model and because the same level of information is not available for all parts of the network,
simple mass-action laws and the MAPK model given in [43] are assumed to be sufficient to
give some insight on the workings of the signalling network as a whole.

The initial conditions given in this section are provisional. In following sections the ef-
fectiveness of the oxidative stress sensitive pathway is optimised by allowing certain initial
conditions to vary. The initial conditions for TRAF2 (mg), FADD (m3), caspase-8 (m5) and
caspase-3 (mqg) are reset in Sections 2.4.2 and 2.4.4 after further discussion.s

Figures 2.5 and 2.6 are network diagrams of the two versions of the model. All proteins are
originally found unbound and unactivated (white boxes). The proteins then bind together to
form complexes (circles), which eventually break apart to release the individual proteins and
either activated IKK (IKK*) or activated caspase-8 (caspase-8*). The extent of apoptosis is
given by the amount of DNA fragmentation (m21) while the extent of necrosis is given by the
concentration of ROS (ma4).

In the equations that follow, terms which correspond to the same arrow on the network
diagram are underlined together. For each reaction step there is often a forward rate of

association and a backward rate of disassociation.

2.3.1 Rate Constants

As noted in [18] and [89], there is more information on the role of proteins in the TNF-«
signalling cascade than the relative rates at which they react or their relative initial concen-
trations inside the cell. The focus in the current model is therefore on how the structure of
the model effects the key outputs of the model rather than seeing how the key outputs of the
model are effected by choosing more extreme values for the rate constants. Where possible,
the constants found in [18] are used. As discussed previously in Section 2.2.1, [18]| provides
generalised rates of association, disassociation, activation and also a rate of transcription of
c¢-TAP. Otherwise, reasonable estimates of the rate constants were made to meet the aims of
the model.

The constants ki-k5 in Table 2.2 are given the same relative values as the corresponding
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Apoptotic Pathway

TRADD+FADD+caspase-8— TRADD/FADD /caspase-8 — TRADD+FADD-+caspase-8*
caspase-8*+caspase-3— caspase-8* /caspase-3— caspase-8 caspase-3*

caspase-3* — DNA fragmentation

NF-x B activation

TRADD+TRAF2+RIP-1+1KK— TRADD/TRAF2/RIP-1/IKK— TRADD+TRAF2+RIP-1-+IKK*
NF-#B/IkB+IKK* — NF-xB/IxB/IKK* — NF-xB+1xB-P+IKK
NF-xB — ¢-IAP+FLIP

AP-1 activation

Thioredoxin/MAP2K+TRADD /TRAF2— Thioredoxin/MAP2K /TRADD/TRAF2
— Thioredoxin+ TRADD+TRAF2+MAP2K*

MAP2K* — JNK*

JNK*+4c-Fos— AP-1

AP-1— Bidj+ITCH

Caspase-3* Inhibition

c-IAP-+caspase-3* — c-IAP/caspase-3*
Bidj+c-TIAP /caspase-3* — Bidj/c-IAP /caspase-3* — Bidj+c-IAP+caspase-3*

MAP2K* Inhibition by FLIP (Model A)

FLIP+MAP2K* — FLIP/MAP2K*
ITCH+FLIP/MAP2K* — ITCH/FLIP/MAP2K* — ITCH+FLIP+MAP2K*

Death Complex Inhibition by FLIP (Model B)

FLIP+TRADD/FADD— FLIP/TRADD/FADD
ITCH+FLIP/TRADD/FADD— ITCH/FLIP/TRADD/FADD

Table 2.1: Complete list of interactions in intracellular oxidative stress model.
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Constant | Role Value Units
k1 default association constant 1 puM—ts™1
ko default disassociation constant 0.04 s71
ks default rate of reaction 2 uM—1s1
ky rate of upregulation of proteins by NF-xkB and AP-1 0.5 51
ks rate DNA fragmentation 2 51
ke default activation rate in ROS sensitive pathway 1 51
kr rate of activation of MAP2K by ROS 1 51
ks disassociation constant for the activation of first tier

MAPK by ROS 10% puM?
kg rate of MAPK deactivation by phosphatases koo exp(—kq ms2) s71
k9o maximum value of kg 5 s71
kq exponential decay constant for kg 0.05 uM—1!
k1o rate of binding of c¢-Fos to JNK 50 s71
k11 disassociation constant for the binding of ¢-Fos to AP-1 1 pM/?
k12 rate of production of ROS by fragmented DNA 0.5 51
k13 rate of removal of ROS by anti-oxidants 1.5 uM—1s1
k14 rate of production of ROS by nanoparticles in cell 0 puMs=1

Table 2.2: Table of rate constants. The derivation of rate constants ki-ks is described in [18].

constants in [18]. The values are relative as, for reasons of clarity, their values have been
divided by the value of k; given in [18]. The constants determining the dynamics of the third
MAPK pathway should not be too different from those of the other pathways, keeping within
the aims of this model. Any interesting behaviour of the model should be due to the signalling
network rather than extreme choices of initial or rate constants. For this reason, the rate of
MAPK activation kg is taken to have the same value as the main association constant of the
other pathways, k.

The activation of MAP2K* by ROS is modelled as a Hill function where k7 is the activation
rate and kg is the rate of disassociation. It is assumed that ROS act as enzymes which activate
Thioredoxin using a limited number of activation sites. The binding of c¢-Fos to c¢-Jun is also
modelled using a Hill function. This is consistent with the assumption used in the current model
that the availability of c-Jun limits the activation of AP-1 rather than the availability of c-Fos.
k1o is large due the large initial concentration of c-Fos required to sustain the activation of the
oxidative stress sensitive pathway. The rate of removal of ROS by anti-oxidants, k13, is set to
be slightly higher than most other rates as it has to be large enough to suppress the activation
of the MAPK cascade. Finally, the default rate of production of ROS by nanoparticles within
the cell is 0. When k14 = 0, ROS is only produced as a result of apoptosis, setting the minimum
concentration of ROS over which the cell may die by necrosis.

ko is a special rate of reaction, which is not in fact a constant, but a function of ROS (mgs).

It is discussed in detail in Section 2.3.4. The value of constants k9y and kg4, 5 and 0.05 in kg
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Constant | Interaction Model A | Model B
bind 4 inhibition of caspase-3* by c-IAP 1 1
bindpg release of caspase-3 by Bid]
bind¢ inhibition of MAP2K* by FLIP
bindp release of MAP2K* by ITCH
bindg | inhibition of TRADD/FADD by FLIP
bindr | release of TRADD/FADD by ITCH
krprip FLIP production by NF-xB

1
0
0
1
1
1

(= i en B e N e e

Table 2.3: Constants which switch interactions on and off and can be given the value 0 or 1. The rate

of production of FLIP (ms4) is allowed to be a continuous value.

Label Description Colour
A ROS activation of AP-1 magenta
B ROS sensitive phosphatases blue
C caspase-3*/c-IAP/Bidj interactions
D MAP2K/FLIP/ITCH interactions red
E death complex/FLIP/ITCH interactions | cyan

Table 2.4: Interactions in the pro-apoptotic pathway.

can be adjusted to adjust the sensitivity of the oxidative stress sensitive pathway to ROS.

In the investigation of this model, specific rate constants are occasionally allowed to vary.
These specific rates are koo, kg and ks. kg and kg will be varied by orders of magnitude, while kgg
will only vary by a few units. The results of the model will mainly be investigated by switching
the interactions in Table 2.3 on or off. Interactions will be switched on or off depending on
whether model version A or B is being investigated. The relative rate of production of FLIP,
krprrp will also be important when investigating the MAP2K*/FLIP/ITCH interaction in
Section 2.4.2.4.

Colour-coding is used to distinguish terms which mediate certain stress sensitive responses
as given in Table 2.3.1. Interactions labelled A and B refer to terms which mediate the oxidative
stress sensitive activation of the MAPK cascade. The remaining interactions refer to the three

sets of inhibiting interactions and the inhibition of thee inhibitors.

2.3.2 Anti-Apoptotic Pathway

The components of the anti-apoptotic pathway are listed in Table 2.5. In this pathway
NF-xB (mq2) is activated and the caspase-3 (mg) inhibitor, c-IAP (mg2), is upregulated. NF-
kB is initially bound to IkB. When IKK (mg) is activated it phosphorylates IkB to form
IxB — P (m11). NF-£B is then free to upregulate c-IAP (ma2).

The crosstalk between the apoptotic and anti-apoptotic pathways where activated caspase-3

(mgp) is captured by c-IAP (mg3) to form caspase-3/c-IAP (mog) is referred to at the ‘anti-
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Symbol Component Initial Value [pM]

mi(t) TRADD (Extracellular Signal) 20
ma(t) TRAF2 10 (provisional)
m3(t) TRADD/TRAF2 0
ma(t) RIP-1 10
ms(t) TRADD/TRAF2/RIP-1 0
me(t)  IKK 10
mz(t) TRADD/TRAF2/RIP-1/IKK 0
ms(t)  IKK* 0
mo(t) NF-xB/IxB 10
mio(t) NF-rB/IkB/IKK* 0
mi1(t) IxkB-P 0
mi2(t) NF-xB 0
moa(t) cIAP 0
maa(t) FLIP 0

Table 2.5: Components of the Anti-Apoptotic Pathway

apoptotic flux’. This leads to the following system of ODEs:

m1 = —kimimg + koms — kymimas + kamig + ksmey, (2.5)
e = —kimimse + komg + kymy, (2.6)
mz = kimimg — komg — kymgmy + kams — kimgmay + kamas, (2.7)
myg = —kimgmg + koms + ksmr, (2.8)
ms = kimzmy — koms — kimsmeg + komy, (2.9)
me = —kimsmg+ komy + ksmy, (2.10)
my = kimsmg — komr — ksme, (2.11)
mg = kgmy — kimgmg + komig + k3mio, (2.12)
mg = —kimgmg + komio, (2.13)
mig = kimgmg — komig — ksmio, (2.14)
i = ksmao, (2.15)
iz = ksmig — kamig — kamag, (2.16)
Moy = kamio — binda (kz3magmaz) 4 kamas, (2.17)
mss = kamia — binde (kimsamas) + kamse — bindg (kimsamia) + kamss.  (2.18)

2.3.3 Apoptotic Pathway

The components of the anti-apoptotic pathway are listed in Table 2.3.3. In this pathway
caspase-3 is activated and initiates apoptosis. The death complex TRADD/FADD (m14) bind
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Symbol  Component Initial Value [pM]
miz(t) FADD 10 (provisional)
mia(t) TRADD/FADD (death complex) 0
mis(t)  caspase-8 10 (provisional)
mie(t) TRADD/FADD)/caspase-8 0
mi7(t) caspase-8* 0
mig(t) caspase-3 10 (provisional)
mig(t) caspase-8* /caspase-3 0
mao(t)  caspase-3* 0
ma1(t) Fragmented DNA 0
mao3(t)  caspase-3* /c-IAP 0

Table 2.6: Components of the Apoptotic Pathway

to caspase-8 (mq5) and activate it, which in turn activates caspase-3 (mig). This leads to the

following system of nonlinear ODEs:

m13

M14

mis
mie
mi7
718
mig
mao
ma1

o3

—kimimag + kamia + k3mas,

kymimis — kemig — kymiamas + kamag — bind g (kymsamyy) + komss

ksmsg,

—kimiamis + komig + k3mas,

kimiamis — kamig — k3mase,

ksmig — k1migmay + komas,

—ki1maigmar + komag + ;

kimigmir — kamig — k3mag,

kamig — ksmog — bind 4 (kzmagmaz) + kamas,

ksmao,

bind 4 (]€377’L20m22) — k‘gng -

2.3.4 Oxidative Stress Sensitive Pathway

The components of the oxidative stress sensitive or pro-apoptotic pathway are listed in
Table 2.7. The conserved quantities for the MAPKs are given in Table 2.8. The ROS sensitive

elements are colour-coded with reference to Table 2.3.1. In model version A interaction C is

active while in model version B interaction D is active. It is assumed that none of the inhibitors

c¢-IAP, FLIP or ITCH are re-usable so once the complex they are part of breaks up they do

not re-enter the model.
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ROS and Anti-Oxidants

The rate of production of ROS (ms3) by apoptosis is set to be proportional to DNA
fragmentation (mg;). The proportionality constant kja is set to be quite small so that the
levels of ROS do not get large enough to slow down solving the ODEs on MATLAB. For the
same reason, the rate of removal of ROS by anti-oxidants (ms4), k13, is taken to be relatively
high. The oxidative stress pathway will not be in a state of sustained activation until the
anti-oxidants are depleted.

The rate of production of ROS by nanoparticles k14, is initially set to zero to examine
the behaviour of the model if ROS is produced by apoptosis and AP-1 only. This sets the
minimum expected rate of increase of ROS, consistent with an apoptotic response. ki4 can
then be increased by orders of magnitude. If the concentration of ROS increases much faster
than the concentration of DNA fragmentation, then this may be considered a necrotic response.

The distinction between a necrotic and apoptotic response can be defined arbitrarily.

ROS activation of MAPKs

As TNF-a induces ROS by apoptosis after the initial activation of the caspases, this suggests
that there is also a secondary activation of JNK. This second activation of JNK is held-off until
the pool of anti-oxidants is depleted. The interactions which occur on the sustained activation
of AP-1 are listed in Table 2.3.1 and are the interactions with blue arrow in Figures 2.2 and
2.3. Interactions A and B, relating to the activation of the oxidative stress sensitive pathway,
are summarised in Figure 2.2 while interactions C and D, relating to inhibitor proteins which
are produced by the oxidative stress pathway, are summarised in Figure 2.3.

The ROS sensitive activation of AP-1 (magenta) is mediated by the Thioredoxin/MAP2K
complex (ma4) binding with TRADD/TRAF2 (mg3). These proteins are taken to associate and
disassociate at the same rate as the complexes in the apoptotic and anti-apoptotic pathways.
The rate of activation of the resulting TRADD/TRAF2/Thioredoxin/MAP2K (mgs5) complex
by ROS does not use the law of mass action. The rate at which it can activate the MAPK
complex is taken to have a maximum due to the limited number of ROS-sensitive sites on the
complex. The ROS-dependent contribution to the rate of MAP2K activation by ROS is written
as a Hill function. As ROS is not a protein, it difficult to say whether it acts cooperatively or
non-cooperatively so n, ky and ks can be chosen to set the time-scale and rate at which the
secondary activation of the kinases occurs. Typically, n = 2 and kg = 1 so that the rate of
activation will quickly plateau as the concentration of ROS increases.

The concentration of unactivated MAP2K is set by the initial concentration of Thiore-
doxin/MAP2K (mg4) while the concentration of unactivated JNK is set by the choice of Ca7
in Table 2.8. JNK* (mg7) binds with c-Fos to form AP-1. Again a Hill function is used for
the rate of activation of AP-1 (mgg) to limit the maximum rate of activation. This activation

must be steady and sustained over time in order for the activation of the MAPK pathway as a
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whole to be sustained over time and not too dependent on the concentration of c-Fos. In the
current model the power of concentration used is n = 1/2 and the disassociation constant ki; is
large and the intitial concentration of c-Fos is large and will decrease to zero. The c-Fos/JNK*
interaction should not switch off too suddenly in time as c-Fos decreases.

The role of c-Fos is to limit the extent to which the MAPK pathway can be reactivated.
For example, when the MAPK pathway is reactivated by ITCH, ITCH continually released
MAP2K* from FLIP. However, some of the released MAP2K* will be deactivated by the
phosphatases. It will take time for the concentration of MAP2K* to increase. ITCH is produced
by AP-1, and the amount of AP-1 available is limited by the initial concentration of c¢-Fos.

The deactivation of MAPKs by phosphatases (blue) is ROS sensitive. When msy = 0,
k9 = 5 which is large enough to rapidly deactivate the MAPK pathway. It will decrease
gradually with time if there is no independent source of oxidative stress in the cell, so the only
source of ROS is apoptosis. This rate is small, so if there is any independent source of oxidative

stress the phosphatases will rapidly deactivate.

¢-IAP /Bidj

As the MAPK pathway is activated, Bidj (ms1) is released by AP-1 (m3p) which binds to
the caspase-3*/c-IAP complex (ma3) and breaks it up. Caspase-3 is free to be reactivated by
any available caspase-8* so it can continue apoptosis. The crosstalk between the pro-apoptotic
and anti-apoptotic pathways where Bidj releases caspase-3 (m1g) from the resulting caspase-

3/c-IAP/Bidj complex (msz) is referred to as the ‘pro-apoptotic flux.’

FLIP/ITCH

In model version A, FLIP (mgs), which has been transcribed by NF-xB, binds with
MAP2K* (mgg), inhibiting the pro-apoptotic pathway. Once AP-1 (mgg) has been reactivated,
it can transcribe ITCH (mg7), which can release MAP2K* (msg), allowing for the further ac-
tivation of AP-1. It is assumed that being bound to FLIP does not de-phosphorylate and so
deactivate MAP2K.

In model version B FLIP (ms35) inhibits the death complex (mi4). ITCH (mg7) can ubig-

uitinate FLIP in the same way, releasing the death complex so that it can activate caspase-8

(mas).

25



Symbol  Component Initial Value [pM]

ma4(t) Thioredoxin/MAP2K 1
mas(t) TRADD/TRAF2/Thioredoxin/MAP2K 0
mag(t) MAP2K* 0
mar(t)  JNK* 0
mog(t) c-Fos 10
mgg(t) AP-1 0
mso(t)  Bidj 0
ma1(t) caspase-3* /c-IAP/Bidj 0
msa(t) ROS 20
ma3(t)  Pool of Anti-Oxidants 0
mas(t)  MAP2K*/FLIP 0
mag(t) ITCH 0
mar(t) MAP2K*/FLIP/ITCH 0
mss(t) TRADD/FADD/FLIP 0
mag(t) TRADD/FADD/FLIP/ITCH 0

Table 2.7: Components of the Oxidative Stress Sensitive Pathway

The resulting system of non-linear ODEs is therefore

mos = —kimamog + kamas, (2.30)
. mh
thos = kimamaos — kamos — krmos— 22—, (2.31)
mpo + kg
mn
Thzﬁ = k771125# — bindc (k1m3477126) + /<:2m35, (2.32)
myy + kg
4+ ksmsg — kgmog, (233)
1/2
. Mag
oy = kemao(1 —mar/Cor) — kiomar— 7 — komoz, (2.34)
Moy + k11
/2
mog = —kiomar 1/ 28 (2.35)
ng + kll
ml/2
g = kiomer—p 2 — kymag — kamag (2.36)
Mog + kll
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1mM30
masy
m32
m33
ma3s
m36
ma7
M38

m3g

Constant ‘ MAPK ‘ Value ‘ Units,
Cor |JNK | 1 | pM

Table 2.8: Concentration of unactivated MAPK proteins.

kqymag — bind g (k1msomes) + kamsy,

bindpg (k1msomas) — kamsy — ksmai,

k1omo1 — k13mazamas + k14,

—k13msomas,

binde (kymsgamas) — kamsgs — bindp (k1masmass) + kamar,

k4m29 — bindD (k:lm35m36) + k2m37 — bindF (]{,‘l’rn/ggﬂ'l;g(;) + ]{‘277139,

bind p (k1m35m36) — kamay — k3masy,

bindg (kymsgamig) — kamsg — bind g (kymsgsmsg) + kamso,

bind]:‘ (111 171387”36) — k‘z’fl’lg,g) — k;ﬂl’L;jg.
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Figure 2.5: Network diagram of all variables in the oxidative stress model A.
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Figure 2.6: Network diagram of all variables in the oxidative stress model B.
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2.4 Method of Investigation

The model as a whole is complex. The results of both oxidative stress model A and oxidative
stress model B for a given set of initial conditions can be summarised by the key outputs given
in Table 2.4. The effectiveness of the pro-apoptotic flux can be measured by the increase in
steady state DNA fragmentation (Amg;) when the inhibitors of the inhibitors, Bidj and ITCH
are switched on to when they are switched off. Ames; is found by running the model twice,
once when the inhibitors of the inhibitors are switch off, to find maj (off), and once when the
inhibitors of the inhibitors are switched off, to ma;(on).

The sensitivity of the model to oxidative stress can be measured by the timing of the second
activation of the caspases AT. AT has not been dealt with an a quantitative way but will
be demonstrated by plotting numerical results. This sensitivity has been incorporated into
the pro-apoptotic pathway by the five key elements summarised in Table 2.3.1. It is possible
to assign a quantitative value to AT if two peaks in the activity of caspase-3* (mgg) can be
resolved. AT is then the time lapsed between the occurrence of the two peaks.

The aim of this investigation is to understand maximise the effectiveness of the oxidative
stress sensitive pathway. This is done by maxmising the relative amount of DNA fragmentation
due to the activation of the oxidative stress sensitive pathway which is Amag; /ma;(off). As
discussed in Section 2.2.1, it has been assumed that the rate constants in this model are the
same for association, disassociation and activation reactions. The aim of this investigation is
to understand how Amyg; /mo; (off) is maximised when the initial concentrations of the proteins
in the pathway are varied.

The value of Ama; is determined by the initial concentrations of the proteins of the apop-
totic and survival pathways, as will be demonstrated by the sensitivity analysis in Sections
2.4.2.5 and 2.4.4.1. The initial concentrations determine the concentration of caspases bound
by inhibitors after the initial activation of the caspases. The value of Ameo; is largely deter-
mined by the peak concentrations of caspase-3/c-IAP (ma3) and death-complex/FLIP (mgsg).

When ITCH and Bidj are induced the proteins are released. Whether the concentrations
of ¢-IAP /caspase-3 and death-complex/FLIP decrease to zero over the second activation of
the caspases depends on whether the pro-apoptotic pathway stays activated for long enough.
The pro-apoptotic pathway can remain activated while the supply of MAPK, either bound to
Thioredoxin (mao4) or FLIP (msg), is not depleted. The initial concentration of c-Fos (mag),
which is required to form AP-1 (mag), is also a limiting factor. It will take longer to produce
the required amount of Bidj and I'TCH to reactivate the pathway if the concentration of ROS
is small. In this case, the rate of activation of MAP2K* (mgg) is low and phosphatases remain
activated.

Model versions A and B have been previously introduced in Section 2.3. In model version A,
FLIP acts on MAP2K while in model version B FLIP acts on the death complex. These versions
have been investigated separately. For both model A and model B, solutions which maximise
Amaq /mai (off) are found by varying selected initial conditions. Elements of the model which

change Ameg; /maj (off) and the sensitivity of the model to ROS are found to be separate and are
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Output | Description

maj (off) | Value of DNA fragmentation at steady state when bindp = 0 and bindp = 0
mai(on) | Value of DNA fragmentation at steady state when bindg = 1 and bindp =1
Amsa; | Increase in DNA fragmentation as a consequence of ROS dependent activation of caspases
ma1 (on)-may (off)
AT Difference in time between the initial and second activation of the caspases

mai1(00) | Steady state concentration of DNA fragmentation

Table 2.9: Key outputs of the intracellular oxidative stress model. The definitions of bindg and bindp
can be found in Table 2.3. Parameter bindp acts to switch the caspase-3/Bidj interactions off or on
while bindp acts to switch the MAP2K*/ITCH interaction off or on.

investigated separately. The investigation aims to give a qualitative introduction to the range
of results which are possible using the structure of the three pathway model using illustrative
examples.

Model A is investigated in Section 2.4.2. Initially, before considering the full version of
Model A, in which two pairs in inhibitors and inhibitors of inhibitors are active, we look at
a simplified model where only one such pair is active. So rather than both the caspase-3*/c-
IAP/Bidj interactions and the MAP2K* /FLIP /ITCH interactions being active, Section 2.4.2.1
considers the case when only the caspase-3*/c-IAP /Bidj interaction is active. This simplified
model is used to investigate the maximisation of Amsgj/mae;(off) in Section 2.4.2.2 and the
consequences of phosphatase deactivation in Section 2.4.2.3.

In Section 2.4.2.4 the ROS sensitive FLIP/MAP2K* interaction is examined. A simple
sensitivity analysis for the apoptotic and survival pathways can be found in Section 2.4.2.5.
Model B is investigated in Section 2.4.4 and a sensitivity analysis is included in Section 2.4.4.1.
Results for model A are summarised in Section 2.4.3 and those for model B are summarised in
Section 2.4.5.

In order for activation of the pro-apoptotic flux to be decisive regarding the survival of
the cell the the greatest possible proportion of DNA damage must be due to the secondary
activation of the caspases so that Ama;/mai(off) is maximised. For both versions of the
model, the maximum value of Amg;/ma;(off) will largely depend on the initial concentrations
of caspase-8 (mq5) and caspase-3 (mys).

The range in the value of Ama;/mai(off) and the response of this value to levels of ROS in
the cell are qualitatively different depending on whether it is chosen that FLIP inhibits caspase-
3 (Model A) or MAP2K* (Model B). If FLIP inhibits MAP2K*, then Amag;/maj(off) can be
inhibited by FLIP is a ROS dependent way. However, if FLIP inhibits the death complex then
both Amsg; and moj (off) vary more strongly with m4(0). In this case, Amag;/ma(off) can be
much larger and increase over a greater range of m;(0) than if FLIP does not inhibit the death

complex.

31



2.4.1 Numerical Method

All results have been found by using the MATLAB ODE solver ode45 using the default
settings. A non-stiff solver was chosen as the rate constants in Table 2.2 were chosen to all
be of a similar order of magnitude. In order to find Ams;, a MATLAB program was written
which runs the model twice in order to find both mo;(off) and mg;(on). When maximising

Ameg1 /maj (off), the output function of this program was

y = —Ama /may (off), (2.46)

while selected initial concentrations were taken to be the input variables. The MATLAB
minimisation function fminsearch was used to minimise the output function. fminsearch uses
the Nelder-Mead algorithm which is capable of finding the minimum of a single cost function

which is dependent on many independent input variables.

2.4.2 Model A
2.4.2.1 Example

Referring to Table 2.3, this section presents typical results for the case

bindy, =1, bindg =1,
binde =0, bindp =0,
bindg =0, bindp =0,

so that interaction D in Table 2.3.1, the MAP2K/FLIP/ITCH interaction, is switched off.

Initial conditions are as given in Section 2.3 apart from
m1(0) =20, my3=13.58, my5 =0.13 and myg = 1.38. (2.47)

The rate of transcription of FLIP (msgy) is switched off as kppyp = 0. The initial conditions for
mq3, mi5 and mqg are those which maximise the value of Ama;/mo;(off) for the given initial
condition of m1. The particular relevance of these initial conditions is discussed more fully in
Section 2.4.2.2. In this section they are used as an example. For this example the constants
related to phosphatase action are kgg = 3 and kg = 0.5.

The results for the key outputs, DNA damage and ROS, can be found in Figure 2.7.
When bindg = 1, and Bidj acts as an inhibitor of the ¢-IAP inhibition of caspase-3*, then
Amgy > 0. When bindg = 0, then in Figure 2.7(a), moj (00) = 0.487, whereas when bindg = 1,
ma (00) = 1.186 so that Amsg;/maj(c0) = 1.44. This happens to be the largest possible value
of maj /ma1(c0) found using model version A.

In this case, the concentration of ROS is that when it is assumed that DNA fragmentation
acts as the only source of ROS, so that ROS increase at a rate proportional to mo;. The
concentration of ROS in Figure 2.7(b) is the concentration of ROS when there are no anti-
oxidants in the cell to decrease its concentration, and also no other sources of ROS which will

increase its concentration. It is a baseline ROS concentration.
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A threshold value of DNA fragmentation (mg;) can be defined above which it can be
assumed that the cell has stopped functioning and has died by apoptosis. Similarly, a threshold
value of ROS (mg2) can be defined above which it can be assumed that the cell has died by
necrosis. If the threshold value of DNA fragmentation lies between the two steady state values
of DNA fragmentation in Figure 2.7(a), then the decision of whether or not a cell dies by
necrosis is sensitive to oxidative stress. In order for the oxidative stress sensitive pathway to
be activated, ROS must be present inside the cell. However, this does not the cell’s death
is necrotic. As the solution for ROS in Figure 2.7(b) was found when there is no source of
oxidative stress in the cell other than DNA fragmentation, and ki4 in Table 2.2 is zero, then
the threshold of ROS concentration for death by necrosis must lie above the concentrations
shown. The timing of the activation of the oxidative stress pathway is important. For example,
if the threshold for necrosis is reached before that for apoptosis then the cell dies by necrosis.

Results from the apoptotic pathway in Figures 2.8(a) and 2.8(b) show how DNA fragmen-
tation in Figure 2.7(a) increases as upstream proteins such as caspase-8* and TRADD /FADD
(myy4) are depleted. Similarly, Figure 2.8(c) shows that NF-xB (m;2) is activated as upstream
proteins TRADD/TRAF2/RIP-1 (ms5) and NF-kB/Ix B/IKK* (mjo) are activated. NF-xB
transcribes c-IAP (ma2), which forms c¢-IAP /caspase-3 (ma3). This cascade is plotted in Figure
2.8(d). The concentration of caspase-3* (mg) is not featured as its concentration is always
O(1072). As it is activated, caspase-3* is rapidly either converted to DNA fragmentation or
bound to ¢-IAP. The decrease in concentration of c-IAP /caspase-3 as Bid] is activated is plotted
in Figure 2.9(a). Figure 2.9(b) indicates how the MAPK pathway is initially activated by the
TNF-« signal and then deactivated by the phosphatases. As the phosphatases are deactivated
by ROS then the MAPK kinases are reactivated, leading to the production of Bidj in Figure
2.9(a). The activation of the MAPK pathway is accompanied by the decrease in concentration
of TRADD/TRAF2/Thioredoxin/MAP2K (mgs) in Figure 2.9(c) and c-Fos (mag) in Figure
2.9(d).
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Figure 2.7: Results of model when m4(0) = 20, my3 = 13.58, m15 = 0.13, m1s = 1.38 against time.
Referring to Table 2.3, bind4 = 1, bindg = 1 bindg = 0, bindp = 0, bindg = 0 and bindr = 0 so that

FLIP is not active.
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Figure 2.8: Results of model when m4(0) = 20, my3 = 13.58, m15 = 0.13, m1s = 1.38 against time.

Referring to Table 2.3, bind4 = 1, bindg = 1 bind¢ = 0, bindp = 0, bindg = 0 and bindr = 0 so that
FLIP is not active.
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Referring to Table 2.3, bind4 = 1, bindg = 1 bind¢ = 0, bindp = 0, bindg = 0 and bindr = 0 so that
FLIP is not active.
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2.4.2.2 Maximisation of the Amount of ROS dependent Apoptosis

If ¢-IAP alone acts as the inhibitor of the apoptotic pathway, then there is a maximum
value Amg1/mai(off) which can be found by varying the initial conditions of caspase-8 (mis)
and caspase-3 (m13). The value of Amg; increases as the maximum value of caspase-3*/c-IAP
(ma3) increases. However, once released from c-IAP, the caspase-3 needs to be re-activated.
Amegy is limited by the amount of upstream activators, my4, mig and my7, available to re-
activate caspase-3.

The optimal choice of caspase-8 (mj5) and caspase-3 (mq3) is found using a MATLAB
optimisation function such as fminsearch. Allowing other initial conditions and rate constants
to be free variables in this optimisation problem may also vary the value of Amgi/mo;(off).
This method has been described in Section 2.4.1. However, fminsearch will not necessarily find
a well-defined minimum. For example, if the the initial condition of FADD (m13) or the rate of
production of c-IAP are increased, then Amg;/mai(off) will always increase fractionally, even
if FADD and c-IAP are already very large. For this reason, it is best to limit the number of
initial conditions to be optimised to those which logically will have the most effect.

Figure 2.10 relates to a solution which optimises Amsg; when mq(0) = 65 in the case that the
rate of transcription of FLIP is set to zero. In this case, Amg; = 5.75 and mag; (off) = 22.33.
Figures 2.10(a) and 2.10(b) demonstrate how increasing or decreasing the initial conditions
m15(0) and m1g(0) move the solution away from this optimal value of Amsg;.

Figure 2.10(c) demonstrates how maj(on) and maj (off) are dependent on mq(0). As mq(0)
is increased from 0, then the value of moj(off) increases until it starts to reach a plateau.
Amg; > 0 only when moj(off) is close to this plateau. Increasing m; further increases the
concentration of excess upstream activators which could re-activate caspase-3 once it is released.
Increasing my past the point where moj(off) plateaus increases the value of Amgp until the
maximum value of Ames; is reached.

The dependence of the relative activation of the apoptotic, survival and oxidative stress sen-
sitive pathways is summarised in Figure 2.10(d). The relative activation of the survival pathway
is indicated by the maximum concentration of TRADD /TRAF2/RIP-1 (ms). For the apop-
totic pathway, this value was taken to be the maximum concentration of TRADD /FADD (m14)
while, for the oxidative stress sensitive pathway, the chosen variable was
TRADD/TRAF2/Thioredoxin/MAP2K (mg5). The relative activation of the apoptotic path-
way increased faster than that of the survival pathway. A smaller percentage of caspase-3*
is inhibited by c-IAP as mq(0) is increased, so that Ama;/maj(off) decreases as mi(0) is in-
creased. Figure 2.11 summarises results when Amyg; is maximised for the range of m;(0) given.
Again, the rate of increase of maj (off) is faster than that of Ama;.

A solution for which Amagy/mo;(off) is to be maximised was found by allowing FADD
(m13), caspase-8 (my5) and caspase-3 (mjg) to be free parameters in the optimisation. As
discussed above, the role of the initial concentration of caspase-8 and caspase-3 in determining
the value of Ameo; is clear. Including the other protein in the apoptosis pathway, FADD, in

the optimisation results in a much larger maximum value of Amg;/mo;(off) than in possible
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when only caspase-8 and caspase-3 are included in the optimisation. This solution was used
as an example solution in 2.4.2.1.

As demonstrated in Figure 2.12, Amg; and mo (off) increase when 0 < mo1(0) < 12 and
only change in O(10~2) when m; > 12. Referring to Table 2.3, when the transcription of FLIP
(mgy4) is switched on, kprrp # 0. When kprrp # 0, FLIP is produced at the expense of c-IAP
(mag2) which inhibits apoptosis and increases the value of maj (off).
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2.4.2.3 Role of Phosphatases and Anti-Oxidants in Oxidative Stress Sensitive
Pathway

When the production of FLIP is set to zero then, referring to Table 2.6 the sensitivity of
the oxidative stress sensitive pathway is determined by the choice of phosphatase deactivation,
the choice of the disassociation constant kg in the ROS-sensitive activation of MAP2K and the
initial concentration of anti-oxidants (mss). The rate associated with phosphatase deactivation
is a function of ROS (ms2) defined as

k?g(m;),g) = k?go exp(k:d mgg). (24:8)

As koo is increased the reactivation of apoptosis in Figure 2.13(a) is slowed down. As
the concentration of MAP2K* in Figure 2.13(b) is decreased then the rate of Bidj production,
which is proportional to AP-1, is decreased. The rate at which caspase-3 is released from c-IAP
is also slowed down so that, after its initial ROS-independent increase, DNA fragmentation
only increases slowly. Figure 2.13(c) shows how increasing kg can dramatically decrease the
time a solution reaches its final steady state.

If the pool of anti-oxidants has a non-zero steady state, then, when the rate constant
associated with the anti-oxidants ki3 is sufficiently large, there will be no secondary activation
of the caspases until it is depleted. In the current model k13 = 1.5. Notice that in Figure
2.13(d), when mgs = 100 then ma;(c0) is smaller than when mgs < 100. This is because anti-
oxidants increase the time over which the oxidative stress sensitive pathway must be activated
in order to release all the inhibited caspase-3. When ms3 < 100, the supply of c¢-Fos (msg) is
depleted after constant reactivation of MAP2K* before enough Bidj is produced to release all
the caspase-3 bound to c-TAP.

Increasing the disassociation constant kg can slightly increase the rate of re-activation when
phosphatase deactivation is slow. This is demonstrated in Figure 2.14. Increasing kg broadens
out the peak in MAP2K* by slowing down its initial release from
TRADD/TRAF2/Thioredoxin/MAP2K. So a larger value of kg increases the sensitivity of
MAP2K activation to ROS. For this reason it is generally taken that for model version A,
ks = 10* as given in Table 2.2. However, it was found a smaller value of kg increases the sen-
sitivity of the MAP2K* /FLIP/ITCH interaction to ROS which is explored in Section 2.4.2.4.
For model version B, as discussed in Section 2.4.4, ks = 107 to ensure that MAP2K* can reach

its maximum steady state concentration.
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2.4.2.4 Role of FLIP in Oxidative Stress Sensitive Pathway

In Sections 2.4.2.1 and 2.4.2.3, the FLIP/MAP2K* inhibition, interaction D in Table 2.6,
has been switched off and the rate of production of kryrp in Table 2.3 is set to zero. The
production of FLIP diverts the signal in the anti-apoptotic pathway away from inhibiting
c-IAP to inhibiting MAP2K so that Amsgj/mei(mid) will decrease. However, the resultant
FLIP/MAP2K* interaction is ROS dependent. Referring to Table 2.2, it is found to be depen-
dent on the maximum rate of phosphatase deactivation of MAP2K and JNK, kg, the rate of
ROS production by nanoparticles, k14 and the relative rate of FLIP production, krrrp. Here,
it is assumed that kg from (2.48) is constant.

The initial concentration of Thioredoxin/MAP2K (ma4) in Section 2.3.4 is lower than those
for other intermediatary proteins. This has been done so that the FLIP/MAP2K* interaction
can be effective in switching Amsp on or off for small values of kpprp. If mayg(0) is small then a
smaller concentration of FLIP is required to delay the activation of the oxidative stress sensitive
pathway. This means that the ROS sensitive inhibition of the oxidative stress pathway is not

at the expense of a much larger value of mg; (off) due to a smaller concentration of c-IAP.

140 bind =0 |+

08F

06

0 0.05 0.1 0.15 0.2 025 038 085
kFUP

(a) kg = 10%

Figure 2.15: Steady state DNA fragmentation (ms1) against kpp;p in the case that bindg = 1,
bindp =1 or bindp =0, kg9 = 0 and k14 = 0.

Firstly, set koo = 0, k14 = 0 and krrrp = b and find ma;(0c0) using the initial conditions
introduced in (2.47) in the case that the constants in Table 2.3 have the value

bind4 =1, bindg =1,
bindg =1, bindp =0,
bindg =0, bindr =0,

so that the ITCH/FLIP interaction is switched off but the FLIP/MAP2K* interaction is
switched on. The same results can be found in the case that bindp = 1. The results are

given in Figure 2.15 where in Figure 2.15(a) the disassociation constant kg = 10* and in
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Figure 2.15(b) kg = 1. These results show that there is a minimum value of kpr;p at which
the FLIP/MAP2K* interaction alone is sufficient to prevent the reactivation of the MAPK
cascade. When bindp = 0, the value of kpprp is small, while when bindp = 1 the value is
much larger. When kg = 1 the rate of decrease of ma1(00) as kpprp is decreased is sharper than
when kg = 10*. When kg is larger the activation of the MAPK pathway is less FLIP/ITCH
dependent and more ROS dependent.

When bindp = 1 and kg = 10%, the range of kpprp over which mg;(00) decreases is
0.28 < kprrp < 0.34, while when kg = 1 this range is 0.18 < kprrp < 0.30. Solutions for
different variables for which krprp falls in this range are plotted in Figures 2.16-2.19. Figure
2.16 shows how the activation of the MAPK pathway is delayed as kpr;p is increased. This
delays the release of caspase-3 from caspase-3* /c-IAP (ma3), as shown in Figure 2.16. In Figure

2.18, the concentration of MAP2K*/FLIP (mss5) increases in time until the concentration of
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activated FLIP is exhausted. Figure 2.19 shows how when FLIP is exhausted, the concentration
of DNA fragmentation again increases. The steady state concentration of DNA fragmentation
in Figure 2.19 also decreases with kpprp. This is because the prolonged activation of the
MAPK pathways has exhausted the initial supply of c¢-Fos (mag).

The concentration of MAP2K*/FLIP increases as long as the MAPK pathways remain
unactivated. The concentration of FLIP is large enough that all available MAP2K* are imme-
diately inhibited by FLIP before they can activate JNK (mag7). As the concentration of FLIP
is decreased, the concentration of MAP2K* is increased. This allows ITCH to be upregulated
and the activation feedback loop between MAP2K* and AP-1 brings the MAP2K pathway
to steady state. The maximum concentration of MAP2K* increases as kprrp increases, as
the concentration of MAP2K /FLIP when this feedback loop is activated is larger as kprrp is

decreased.
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Figure 2.16 indicates how the initial activation of MAP2K* is sharper when kg = 1 than
when kg = 10%. The initial peak in FLIP in Figure 2.19 is also sharper when kg = 1 than when
ks = 10* as the initial activation of M AP2K* is slower. In order to isolate the activity of the
ITCH/FLIP/MAP2K* interaction from that of the ROS-dependent disassociation of MAP2K*

from Thioredoxin, kg = 1 for the remaining results in this section.
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Figure 2.20: Selection of results when binde = 1, bindp = 1, kprrp = 0.24, koo = 3 and ky4 # 0.

If k9o # 0 then instead of being inhibited by FLIP, MAP2K* can be deactivated by phos-
phatases. Figure 2.20 summarises the behaviour of the model as the rate of production of ROS
by nanoparticles, k14, is increased and kgp = 3. When k14 is below a certain value, for a given

krprp and kg, Amg; = 0.
As ky4 increases, then the phosphatases will deactivate more rapidly. Figures 2.20(b) and
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2.20(c) show how FLIP will decrease more rapidly to form more MAP2K*/FLIP as ki4 is
increased. So as ki4 is increased more MAP2K* is stored by being bound to FLIP than
is deactivated by the phosphatases. If more MAP2K is stored the oxidative stress pathway
reactivates more quickly, as already discussed.

Figure 2.21(b) indicates how the minimum value of MAP2K* after the initial activation
and deactivation of the MAPK cascade increases with k14. If the minimum value of MAP2K*
increases then this also means that the oxidative stress reactivates faster.

If the oxidative stress pathway is reactivated too slowly, the supply of c-Fos, required to
form AP-1 (mag), is depleted. Figures 2.21(c) and 2.20(a) show how the supply of c-Fos is
depleted before moj(0c0) reaches its maximum possible value.

It was chosen that kg is an exponentially decaying function with ROS (mg2). So if kg is
increased, it will take a longer and longer time for the oxidative stress pathway to reactivate
for a given ki4.

For each k9o and kpprp there is a minimum value of ki4 for which Ams; > 0. Figure
2.22(a) indicates that as k14 is increased, Amg; will reach its maximum possible value. Figure
2.22(a) also indicates how, as koo is increased, the minimum value of kj4 for which Amg; > 0
increases.

Figure 2.22(b) plots the values of k14 for which ms1(500) = 1.38 (to within an error of 10~2)
when krrrp = 0.22, 0.24, 0.26 and 0.28 and kg9 = 1. m; = 1.38 is the maximum possible
value of DNA fragmentation (mg;1) at steady state when kpprp ~ 0.25. As kg increases then
the corresponding value of k14 also increases. A small increase in kpprp also increases the
corresponding value of k14. The spread in k14 for a given kgg also increases with krprp.

Figure 2.22(a) shows that the range in k14 over which 0 < Amg; < 1.38 is small. Figure
2.22(a) also shows that the range in k14 over which 0 < Amg; < 1.38 do not overlap for values
of koo given. The sensitivity of the model to ROS depends strongly on kgg. However, 2.22(b)
suggests that the sensitivity of the model to variation in kpp;p will decrease if kgg is smaller.
As kg is chosen to decay exponentially, any difference in the value of k14 required to see a
reactivation of the oxidative stress sensitive pathway will increase as kgg is increased.

The results in Figure 2.21 are strongly dependent on the form of kg in Table 2.2. However,
they do demonstrate the idea that the FLIP/ITCH and phosphatase interactions can act
together ensure that there is not a second activation of the caspases if there is not a threshold
amount of ROS inside the cell. They also act to control the speed of this second activation of

the caspases.
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2.4.2.5 Sensitivity Analysis for Model Version A

The oxidative stress sensitive elements of the model as listed in Table 2.3.1 ensure that the
rate at which the oxidative stress sensitive pathway activates is determined by the concentration
of ROS. These mechanisms have been discussed in the preceeding sections. However, it is the
initial concentrations of the proteins and their associated rate constants which determine the
maximum possible value of Amsy. This section sets out to establish whether the value of
Ameg; is more sensitive to the strength of the extracellular signal and so m1(0), or the initial
concentrations of other proteins in the model. If the extent of DNA fragmentation is more
sensitive to the intracellular proteins rather than the extracellular signal then there is no
quantitative dependence between the extent of DNA fragmentation and extracellular signal.
Given a minimum concentration, the extracellular signal only has a switch-like effect.

The aim of the sensitivity analysis in this section and also in Section 2.4.4.1 is to establish
how inputs to the model, in the form of initial concentrations of proteins, correlation to outputs,
in the form of Amsg;. This has been done by finding the relevant product moment coefficients
[94]. This is a common method, of which there are many variations.

Two simple methods were used to quantify the sensitivity of Ame; to perturbations in the
initial protein concentrations and reaction constants. Initial concentrations of proteins which

are to be perturbed will be referred to by their index ¢ in (2.49).
m = [m1, Mg, M4, Me, My, M13, M15, M8, M24]. (2.49)

Their unpertubed values are those given in Section 2.4.2.1. The vector of rate constants
which were perturbed in the sensitivity analysis is defined in Appendix B. These are the rate
constants which are not associated with the MAPK activation cascade. Rate constants which
are varied will be referred to by their index j in K. The unperturbed rate constants are those
in Table 2.2.

In the first method, all of either the selected initial protein concentrations or selected rate
constants are varied over n runs. Initial concentrations of proteins which are varied will be
referred to by their index ¢ in (2.49). The vector of rate constants which were varied in the
sensitivity analysis is defined in Appendix B. Perturbed rate constants will be referred to by
their index 5 in K.

Over n runs for each initial condition, m;, in the vector m, and rate constant, Kj, in

the vector K, a random number r,; and s,; is chosen from a continuous uniform distribution
U[-0.25,0.25] so that

Mni = mi(1+ 1), (2.50)
Knj = Kj(1+5nj)- (251)

The output from each run is ¢, = Amai/maj (off). A Pearson correlation coefficient coefficent

pi or p; can be found for each initial condition in m and rate constant in K respectively so
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that

pi = Cor(Mpi,qn), (2.52)
pj = Cor (f(nj,qn). (2.53)

The i at which |p;| is a maximum indicates the initial condition to which Amgq/moq(off) is
most sensitive to. Similarly, the j at which |p;| is a maximum indicates the rate constant to
which Amegq /mai(off) is most sensitive to. p is the product moment correlation coefficient as
defined in many books such as [94] which measures the correlation between an input and an
output in a model. The results of this sensitivity analysis can be found in Figure 2.23 when
n =722

In the second method, each of these initial concentrations and rate constants are in turn
increased then decreased by 25%. The results of this perturbation test can be found in Figure
2.24.

The results in Figure 2.23(b) for perturbing the initial concentrations suggest that Amay /mai (off)
is most sensitive to small changes in initial condition ¢ = 8 or caspase-3 (m13(0)). The max-
imum value of mag;(c0) is determined by the initial condition of caspase-3. If there is excess
caspase-8*, then increasing mig(0) will increase Amg;. The second most significant corre-
lation was between Amagi/maj(off) and N&-B/Ik B (mg(0)). If this initial concentration is
increased, then the maximum value of c-TAP (mg2) will increase. This will increase the per-
centage of caspase-3 bound to ¢-IAP, decreasing moj (off) and increasing Amg;. Figure 2.24(a)
confirms that increasing the initial concentration of either caspase-3 or Nx-B/Ix B will increase
Amay /may (off).

The results of the sensitivity analysis with respect to the initial concentrations of the
proteins in the apoptotic and anti-apoptotic pathways show that the extent of apoptosis is
controlled by the conditions inside the cell rather than the extracellular signal. The extra-
cellular signal acts as a switch, where, above a certain concentration, it does not determine
the extent of apoptosis. The organism does not have to tightly regulate the concentration of
extracellular signal is order to ensure an apoptotic response.

The results for perturbing the rate constants in Figure 2.23(d) suggest that Ama; /maj (off)
is most sensitive to small changes in rate constant Koy. Increasing Ky increases the rate at
which caspase-3* converts into DNA damage. If Ky is decreased then mo(off) will increase
and Amg; will decrease, as less caspase-3* will be captured by c-IAP (mg2). The results
from the perturbation analysis in Figure 2.24(b) suggest that perturbations in Ky could also
cause perturbations in Amaj /moj (off). This is the rate at which caspase-3* binds with ¢-IAP
(mag). If this is increased then moq (off) will decrease and Amsg; will increase. However, in
the sensitivity analysis the correlation between Ko and Amg;/maj(off) is lost when all rate

constants and initial concentrations are made perturbed over a series of solutions.
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Figure 2.23: Results of sensitivity analysis on apoptotic and survival pathways in model version

A. p; correlates perturbations of initial concentration (2.49) and Amai/mo;(off) whereas for p; this

correlation is with rate constants (Appendix B).

A(Qutput)

(a) A(Output) against 4.

A(Qutput)
b b

N
o

'
«

20 25

[=]
[3.]
-
=
-
3]

(b) A(Output) against j.
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or decreasing a single initial condition ¢ (2.49) or a single rate constant j (Appendix B) and the

unperturbed value of Amg;/mai(off). A(Output)=perturbed-unperturbed.
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2.4.3 Summary of Model A

When apoptotsis is inhibited by c-IAP, the consequence of the condition that caspase-3
has to be reactivated once it is released is that Amse; has a limited maximum value. It was
found that if Ama;/moi(off) is maximised then the value of Amg;/ma;(off) is invariant for
all m1(0) > 12. The initial concentration of the extracellular signal has relatively little effect
on the steady state concentration of DNA fragmentation. Whether this additional amount of
DNA fragmentation is oberved or not can be made to be strongly dependent on the levels of
ROS in the cell. This can be done by varying kqg, kg and kg. Varying kg by orders of magnitude
determines the sharpness of the activation of the MAPK pathway. The order of magnitude of
ks makes a big difference to the timing and rate of the reactivaton of the MAPK pathways
after their initial deactivation. kgy was used to fine tune this reactivation once kg and k4 are
set.

The FLIP inhibition of MAP2K* and the deactivation of MAP2K by the ROS sensitive
phosphatases can act together to form a very ROS sensitive mechanism. In this mechanism, a
sudden reactivation of the MAPK pathway and increase in DNA fragmentation will be observed
when the concentration of ROS exceeds a certain level. FLIP acts to capture MAP2K* before it
is deactivated by the action of the phosphatases. The relative amount of MAP2K* captured and
deactivated depends on the maximum concentration of FLIP relative to the rate of phosphatase
deactivation kg(mg2). If mass is smaller and kg is larger, then more MAP2K* is wasted by being
deactivated by the phosphatases, and so Ameo; will be smaller.

For the initial conditions introduced in Section 2.4.2.1, ma; (off) does not vary much with
m1(0), as demonstrated in Figure 2.12. This means that the concentration of ROS dependent
on apoptosis is also approximately the same. As a result, the FLIP/MAP2K* mechanism is
sensitive to the ROS produced by nanoparticles inside the cell.

The role of kgg and k14 in the ROS sensitive FLIP /MAP2K* mechanism is clearer when kg
is small. In this case the activation of MAP2K is close to a step function with respect to ROS.
All the MAPK are activated at approximately the same time as the activation peak is sharp.
If the activation peak is broader, then kg will decrease in value over the period that MAP2K
is activated, so the increase in Ameo; will k14 will not be so sharp.

If the initial concentration and rate constants in the survival and apoptosis pathways are
subject to perturbations from a mean value, to stimulate the environment inside a cell, then
Amaq /mai (off) is particularly sensitive to only one intitial concentration, that of caspase-8, and
one rate constant, the rate at which caspase-3 converts in DNA fragmentation. The results
reflect the insensitivity of Ama;/mai(off) to TRADD when the initial concentration of TRADD
has exceeded a certain value. In this case the extracellular signal acts as a switch rather than

having a qualitative effect on the results.
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2.4.4 Model B

The difference between model A and model B, as defined in Table 2.3.1 is the in model
A FLIP inhibits MAP2K*, while in model B FLIP inhibits TRADD/FADD (m;4), which is
commonly referred to as the death complex. When FLIP inhibits the death complex, rather
than MAP2K*, the behaviour the model captures is qualitatively different. The ROS dependent
elements are the ROS dependent acitivation of AP-1 and the ROS sensitive phosphatases, which
are interactions A and B in Table 2.3.1. The inhibition of the death complex by FLIP allows,
for certain choices in initial conditions of FADD (m;3), caspase-8 (m15) and caspase-3 (m1sg),
for Amgj/mo1(mid) to be much greater and for it to increase with a much greater rate as
a function of (m1(0)). As TRADD/FADD (mi4) does not have to be reactivated once it is
released from FLIP (ms4) by ITCH (msg). Ameoy is only limited by the amount of caspase-3
(myg) inside the cell.

The rate of increase of ma; (off) with m(0) can be optimised by maximising the increase in
this value for a jump in mq(0). In a numerical optimisation using the MATLAB fminsearch,
the difference in Amg;, when m;(0) = 20 and m;(0) = 30, was maximised by allowing the
initial concentrations of TRAF2 (msg), FADD (m13), caspase-8 (mi5) and caspase-3 (mg)
to be free variables. In Section 2.4.2, TRAF2 (m2) was not included in the corresponding
maximisation problem. However, in this case, the death complex (mi4) is the target of the
cross-talk between the pathways so the concentration of TRAF2 (ms) will have an immediate
effect on the concentration of the death complex (m14) and so the strength of the cross-talk.
In this section, the rate of production of FLIP in Table 2.3 is constant, krpr;p = 1 and does
not vary from this value in this section.

The results of this optimisation found that if
TTLQ(O) == 017, mld(()) == 007, m15(0) =4.22 and mlg(O) = 3853, (254)

then moj (off) = 34.57 and Amg; = 32.38. Clearly these values are much larger than those
found for model version A. These initial conditions are used to find the results in this section.
In Figure 2.25, these initial conditions ensure that there is an almost linear correspondence
between the initial concentration of TRADD (m;(0)) and Amg;. The value of mo; (off) when
the FLIP/ITCH interactions are switched off, and so bindg = 0, is almost constant with
respect to m1(0). This is not the case when the c-IAP/Bidj interaction is switched off in
model A, as demonstrated in Figure 2.14(a). As the concentration of DNA fragmentation is
continually increasing until it reaches steady state, other sources of ROS, as defined by k14 are
not considered here. Hence k14 would have to be very large to make an ohservable difference
to the results.

As Amg; is so large, then the phosphatases will quickly deactivate. A smaller kg could
be chosen for the phosphatases to deactivate more slowly. However, as the action of the
phosphatases were investigated extensively for model version A, the ROS sensitive activation
of MAP2K* will be considered the dominant ROS sensitive mechanism in the oxidative stress

sensitive pathway.
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The form of phosphatase deactivation are taken to be those in Table 2.2. In Figure 2.26, the
results show that increasing kg by order of magnitude can slow down the rate at which DNA
fragmentation reaches its maximum value by making the rate at which MAP2K* is released
from TRADD/TRAF2/Thioredoxin/MAP2K more sensitive to ROS. As kg is increased, the
speed at which MAP2K activates increases. Figure 2.26(b) also shows that the final steady
state value of mog, as well as the speed of activation, is also adjusted by kg. The remaining
results in this section are those in the case that kg = 107. This is the largest value of kg in
Figure 2.25(a) for which the steady state value is not decreased due to the depletion of c-Fos
(mag). By choosing this value of kg, the MAPK pathway is more sensitive to ROS. As the
FLIP/ITCH reaction will not be regulating the activation of the MAPK pathway in model B,
a larger value of kg will allow the activation of the MAPK pathway to be regulated by ROS.

Results from an example solution of model version B can be found in Figures 2.27 and
2.28. Figure 2.27(a) shows that the MAP kinases activate slowly. The amount of FADD
(m13(0)) is small so that maximum concentration of TRADD/FADD /FLIP (msg) will also
be small. Figure 2.27(c) indicates that as the MAP kinases activate, the concentration of
TRADD/FADD/FLIP decreases and the concentration of free TRADD /FADD increases. The
time taken to reach steady state is longer than that for model version A, as the maximum
concentrations of proteins in Figure 2.26 are small. The law of mass action states that the
speed of a reaction is proportional to the concentration of the reactants.

The survival pathway in Figure 2.28(b) is activated once only. However, the apoptotic
pathway in Figure 2.28(c) is activated twice. After it is deactivated by FLIP, it is reactivated
by ITCH, once the MAP pathway reactivates. The survival pathway and oxidative stress
pathways are not continually reactivated by TRADD. The initial concentration of TRAF2
(mg) is small and the protein is soon depleted. This ensures that the extracellular signal is not
wasted activating the anti-apoptotic pathway, maximising the value of Amao;.

The solution reaches steady state when the concentration of caspase-3 in Figure 2.28(a) has
decreased to zero. As the concentration of caspase-3 decreases, the concentration of my also
decreases. As caspase-8 does not need to be reactivated, as is the case for caspase-3 in model

version A, the apoptosis pathway can be continually activated by the extracellular signal.
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2.4.4.1 Sensitivity Analysis for Model Version B

The sensitivity analysis for model version B follows the method used in Section 2.4.2.5.
The number of runs in this case is, n = 332. The number of runs in this case is different then
that in Section 2.4.4.1. However, in both cases n is of a similar order of magnitude to make
the results in this section comparable to those in Section 2.4.4.1. The results of the stochastic
sensitivity analysis can be found in Figure 2.29 and those for perturbing initial concentrations
and rate constants can be found in Figure 2.30.

The two initial concentration whose values correlate strongly with Amsg; are TRADD
(m1(0)) and FADD (my3). If either of these initial concentration increase then the value of
Amoy increases. Correlation between the other initial concentrations and Ameo; is minimal. If
either TRADD (m1(0)) and FADD (m;3) are increased then Ama; is increased as this increases
the peak concentration of the death complex. If the peak concentration of the death complex
in increased then mo; (off) is increased, increasing Amo;.

If the value of Amag; correlates most strongly with extracellular signal, the results of this
sensitivity analysis suggest in Figure 2.29(b) that, when FLIP is the main inhibitor of apoptosis,
variation in conditions inside the cell do not significantly influence the decision whether or not
a cell undergoes apoptosis. This decision is mainly influenced by the concentration of the
extracellular signal. However, the initial concentration of FADD has a moderate influence
on this decision which suggests that its concentration inside the cell might still be tightly
controlled.

In Figure 2.29(d), the only significant correlation between rate constants and Amg; was
found for Kj6. This is the reaction constant which converts TRADD/FADD /caspase-8 into
caspase-8*, TRADD and FADD. If the rate of this reaction is increased, then the reaction cas-
cade by which death complex TRADD/FADD (m14) activates the caspases will be faster than
the rate at which TRADD/FADD (m4) is inhibited by FLIP. FLIP will have less opportunity
to inhibit the death cascade, so that the maximum concentration of
TRADD/TRAF2/FADD/FLIP (msg) will be smaller. This means that if K¢ is increased,
ma1 (off) will be larger.

If each of the initial concentrations are increased or decreased by 25% then, as for the
case where all initial concentration ¢ and rate constants j are stochastic, the output only
significantly changes when m1(0) or m;3(0) is increased or decreased. This can be observed in
Figure 2.30(a). An decrease in either decreases the perturbed value of Amg; and, to a lesser
extent, an increase in either increases the perturbed value of Amso;.

Results in Figure 2.30(b) suggest that the three rate constants which have a significant
ability to change Amo; are Kig, K14 and Kio. As previously discussed, increasing the value
of K¢ decreases the amount of time the death complex is available to be inhibited by FLIP.
Increasing the rate constant K4 increases the rate at which TRADD/TRAF2/FADD (mq4)
binds to caspase-8 (mi5). Increasing the rate constant K9 increases the rate at which TRADD
(my) binds to FADD (mg3). Both these rate constants increase the speed of the signal down
the apoptotic pathway. The death complex is formed further upstream than FLIP, so if the
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speed of the apoptotic pathway is increased then the concentration of the death complex will
be well past its maximum by the time the concentration of FLIP is a maximum. This will
decrease the maximum concentration of inhibited death complex death complex/FLIP (mss).
However, any correlation between K14 and K15 and Ams; is lost when all initial concentrations
© and rate constants j are made stochastic. Their value of p; is not significantly large in Figure
2.29(d). The rate of the reactions, whose rate constants are K14 and Kjs, are proportional
to the concentrations of the two associating species. However, the reaction with rate constant
K is self-activating. It is reasonable that the correlation of Kig with Amsg; is more robust
than those with K74 and K9 as the rate of this reaction is less depedent on other randomly

varying factors.
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Figure 2.29: Results of sensitivity analysis on apoptotic and survival pathways in model version B.
pi correlates perturbations of initial concentration, r,;, with Amg; whereas for p; this correlation is
between s, and rate constants (Appendix B).
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Figure 2.30: A(Output) is the difference between value of Ams; obtained when increasing or decreas-
ing a single initial condition 7 (2.49) or a single rate constant j (Appendix B) and the unperturbed

A(Qutput)

(a) A(Output) against .

value of Amg;. A(Output)=perturbed-unperturbed.
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2.4.5 Summary of Model B

When apoptosis is inhibited by FLIP, Amsg; is only limited by the initial concentration
of caspase-3 inside the cell and the concentration of the extracellular signal. The apoptotic
pathway can be continually reactivated until either caspase-3 is depleted or the pro-apoptotic
pathway is deactivated. The oxidative stress pathway acts to slow down the rate of increase of
DNA fragmentation. By choice of rate constants, this rate is dependent on the rate at which
ROS act to disassociate activated MAP2K from Thioredoxin. The anti-apoptotic pathway
is prevented from being continually reactivated by a relatively small initial concentration of
TRAF2. When this is depleted the survival pathway can no longer be activated by TRADD.

Model B illustrates the case where the inhibition of the death complex allows the rate of
activation of the apoptosis pathway to be set by the rate of activation of the oxidative stress
sensitive pathway. A concentration of TRADD/FADD (mj4) complex is initially formed and
rapidly inhibited by FLIP. As the oxidative stress sensitive pathway is activated, it is released
by ITCH. The rate at which it is released by I'TCH is dependent on the concentration of ITCH
and so the steady state concentration of AP-1 in the oxidative stress sensitive pathway.

During the period over which the oxidative stress sensitive pathway is activated the con-
centration of TRADD/FADD is almost constant as the rate at which is released from FLIP
by I'TCH is similar to the rate at which it binds to caspase-8. This causes the concentration
of mo; to increase at a steady rate over the period the oxidative stress pathway is activated.
Therefore, the results in this section show how the model can be used to produce results in-
dicating a sustained and steady response to an extracellular signal rather than the sharper
response typical of model A.

When the initial concentration and rate constants in the survival and apoptosis pathways
are subject to perturbations from a mean value to stimulate the environment inside a cell,
Amegy is only particularly sensitive to two initial concentrations and one rate constant. The
initial concentration it is most sensitive to is that of TRADD, highlighting the sensitivity of
model version B to the extracellular signal. The other initial concentration was that of FADD,
which plays a similar role to caspase-3 in model version A. If FADD is increased then Amoq
will increase. The rate constant is that which activates TRADD /FADD /caspase-8. Increasing
this rate constant, speeds up the rate of reaction down the apoptotic pathway, decreasing the

opportunity for FLIP to bind with the death complex.
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2.5 Extensions to Immune Response Model

In [107] the effects after the inhalation of CNTs on the lung were studied. The results
of this study, along with those of connected studies are summarised in [120]. The observable
responses in the lungs on the inhalation of CNTs were found to be direct damage of cells,
the formation of granulomas and finally interstitial fibrosis and thickening of the extracellular
matrix. The form of the inflammatory response was found to be marked by a rapid induction
of proinflammatory cytokines, including TNF-a and other proinflammatory cytokines such as
IL-1. Results in [107] show that after a week, the concentration of these cytokines has returned
to normal levels while the concentration of Transforming Growth Factor (TGF)-f is greatly

increased.

Activated Activated
Smad?2 Smad3

o

Figure 2.31: TGF-3 activation cascade where Smad?7 can inhibit the activation of Smad3 by ALK-5.

B

co-activators

TGF-G can refer to any protein within the TGF-8 superfamily. Like TNF-q, it is an
extracellular protein which, in its unactivated form, is found in the extracellular matrix bound
to the latency-associated protein. The review paper [114] discusses in detail how mechanical
strain on the lung increases the rate of matrix turnover, via integrins and TGF-3, which
in turn changes the mechanical properties of the lung. TGF-( is otherwise induced when
the epithelium is damaged to attract macrophages and fibroblasts to the site of injury which
will then release more TGF-3. Considering the fibrous nature of CNTs and the formation
of granulomas, which are a common result of failed phagocytosis, the sustained elevation in
the concentration of TGF-3 may well be strongly linked to the difficulty of clearing CNTs by
macrophages.

The details of TGF-G dependent interactions within a cell are complex and cell dependent.
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However, the key elements are well known and are illustrated in Figure 2.31. TGF-/3 binds to
a receptor complex, consisting of one TGF-£ type I (ALK5) and one TGF-g type IT (TSRII)
receptor. ALKS is activated by TSRII. R-Smads such as Smad2 and Smad3 can then be
activated. The activated R-Smads can then bind with Smad4 which allow them to, together
with cofactors, upregulate target genes. Smad7 inhibits the activation of Smad2/3 by the
ALK-5 receptor. The Smad3/4 complex induces the expression of Smad7, though only with
the cooperation of AP-1 and Spl transcription factors. Smad3 is essential for the induction
of specific genes such as type 1 collagen and connective tissue growth factor (CTGF) which
contribute to a TGF-3 induced fibrotic response.

In terms of the three pathway model of oxidative stress in this chapter, there is scope to
add a pro-fibrosis pathway which is activated by TFG-3. The aim of the three pathway model
is to investigate how a cell decides whether to survive, die by necrosis or die by apoptosis. A
TFG-p activated pathway adds another option of a fibrotic response where a cell does not die
but collagen and other extracellular material.

Specific interactions between TGF-( activated proteins and the apoptotic, anti-apoptotic
and pro-apoptotic pathways in Chapter 2 can be found in the literature, some of which are
listed below.

e Increased activation of TGF- inhibitor Smad7 when AP-1 is activated [56], [128].

e Binding of activated c-Jun with Smad3 hindering upregulation of pro-fibrotic genes [56],
[122].

e Upregulation of Smad7 by NF-xB [6], [122].

e Activation of TAK1 (TGF-flI-activated kinase 1) by TGF-8. TAKI1 can activate IKK

causing a transient activation of NF-xB in a similar way to TNF-«, [97].

e TGF-3 mediated induction of FLIP which can then inhibit activated caspase-8 and ac-
tivated second tier MAPKs, inhibiting both the anti-apoptotic and pro-apoptotic path-
ways, |97].

The cell signalling network suggested by these interactions is complex. The scope can be
simplified by considering interactions known in specific cell types of interest. Many of the
principles used to investigate the three pathway model can be used and developed if another
signalling pathway is added. In this case, the model will be a four pathway model with
apoptotic, anti-apoptotic, pro-apoptotic and pro-fibrotic pathways. The key inputs will be the
extracellular signals for apoptosis and fibrosis as well as the specific stressors on an individual
cell, intracellular oxidative stress and mechanical strain. The four pathway model will then

decide the balance between survival, apoptosis, necrosis and a fibrotic response.
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2.5.1 Chapter Summary

After it was established that a key mechanism of nanoparticle toxicity is often taken to be
mediated by the reactive oxidative species (ROS) they produce once inside a cell, a wide-ranging
literature review of oxidative stress pathways was undertaken. The outcome of this literature
review is the model presented in Section 2.1. The structure of the intracellular oxidative stress
sensitive model in Section 2.3 contains many oxidative stress sensitive elements. The complete
picture can seem complicated.

The model attempts to answer the question of what a oxidative stress sensitive apoptotic
response looks like, given the discussion in many review papers such as [58] and [85]. This
model is a numerical representation of all the elements discussed. However, no fine tuning of
the model has been attempted. For example, parameters could be chosen so that the time
delay between the initial and secondary activation of the caspases, AT, could be made either
sensitive or insensitive to the extracellular signal m4(0). However, this would only be justified
if the model was used to interpret experimental results.

Results capturing specific behaviours associated with the model are found in Section 2.4.
These behaviours are qualitatively different depending on which pairs of inhibitor and inhibiti-
tor of inhibitor interactions are switched on. The inhibitor and inhibitor interactions are listed
in Table 2.3.1 which indicates the colour-coding in the mathematical model in Section 2.3. In
Section 2.4.2 the consequence of the caspase-3*/Bidj/c-IAP interaction was investigated, while
in Section 2.4.4 the interaction under investigation was death complex/ITCH/FLIP.

Only one set of initial conditions is used in each of Sections 2.4.2 and 2.4.4. In Section
2.4.2 these initial conditions maximised the Ameop, increase in DNA fragmentation due to the
oxidative stress sensitive pathway. In Section 2.4.4, the increase in the value of Ameo; when
m1(0) was increased from 20 to 30 was maximised. The initial conditions were chosen to
highlight how the outputs of the model are qualitatively different when different interactions
are switched on.

Typical results in the case when only the c¢-IAP/Bidj interactions are switched on can
be found in Sections 2.4.2.1, 2.4.2.2 and 2.4.2.3. If ¢-IAP/Bidj and MAP2K/FLIP/ITCH
interactions are both in play then the model is sensitive to ROS in a different way to when
only the ¢-IAP/Bidj are in play. Observations for this case can be found in Section 2.4.2.4.

Generally, when the cross-talk between the anti-apoptotic pathway and the apoptotic path-
way targets caspase-3, then the requirement that caspase-3 is to be reactivated results in a
transient activation. A minimum concentration of extracellular signal acts to switch on the
immune response but has little control over the value of Ams;. In [60] it was discussed how the
assumption that extracellular signal has a switch-like effect on the immune response of a cell
can be used to build a model of an ensemble of cells. The MAP2K/FLIP/ITCH interaction
acts to change the shape of this response, making the reactivation of the apoptosis pathway
sharper.

The activation of the oxidative stress sensitive pathway by interactions A and B in Table

2.3.1 do not rely on inter-pathway cross-talk. It was chosen that the rate at which the phos-
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phatases deactivate the MAPK pathway decreases as an exponential function with ROS, so
that there is a clearly observable point at which there are no longer effective. The rate at
which MAP2K* is released from Thioredoxin was taken to be a Hill function with respect to
ROS (ma32). This sets a maximum rate of activation of MAP2K*, however the rate at which
this maximum is reached does depend on ROS. This dependence is more observable for larger
orders of magnitude of kg.

The picture is further complicated when the MAP2K* /FLIP /ITCH interaction is also in-
cluded. The MAP2K*/FLIP/ITCH interaction delays the second activation of the caspases.
This delay increases with the maximum phosphatase deactivation rate kgg and decreases with
the rate of increase of ROS due to intracellular oxidative stress ki14. kg determines the range
of values of krpprp, the relative rate of FLIP production, for which the activity of [ITCH can
not inhibit FLIP inhibition.

The range of interactions acting on the MAPK pathway allow for a variety of possible
steady state values of AP-1. The steady state value of AP-1 determines the rate at which
Bidj and ITCH are produced, and so that rate at which DNA fragmentation ms; reaches its
maximum value.

Alternatively, if the TRADD/FADD/FLIP/ITCH interactions the only pair of inhibitors
switched on, then Section 2.4.4 suggests that the apoptosis pathway can remain activated
for a long time. Its rate of activation being dependent on its sensitivity to ROS. However,
the apoptotic and pro-apoptotic pathways are not continually activated as there activation
depends on the availability of TRAF2 (ms2) and its initial concentration is chosen to be small.
In this case, for a range of extracellular signal, the extent of apoptosis is a linear function
of extracellular signal. The MAP2K/FLIP/ITCH interaction is not switched on so that the
response is simpler than that in Section 2.4.2. As the increase in apoptosis is slow, then
this version of the model may be a good starting point when adding on other cell signalling
pathways, such as those for the fibrotic response.

The factors which determine Amo; were found to be separate to those which determine
the speed of activation of the oxidative stress sensitive pathway. The maximum possible value
of Ameo; is determined by the initial conditions and rate constants of the apoptosis and anti-
apoptosis pathways. The sensitivity of Ama; to these initial conditions and rate constants was
investigated in Sections 2.4.2.5 and 2.4.4.1. These results highlighted the observation that,
when the ¢-IAP/Bidj interaction is switched on, the extent of DNA fragmentation is limited
by the concentration of caspase-8 inside the cell. When the ITCH/FLIP /death complex inter-
action is switched on the extent of DNA fragmentation is mainly limited by the extracellular
signal from outside the cell.

The work in this chapter demonstrates how known and accepted oxidative stress sensitive
interactions can be used to construct a model. Though there is much discussion on the mecha-
nisms involved in oxidative stress pathways, constructing a numerical model has not previously
been attempted. This model is very speculative and serves as an initial attempt of this prob-
lem. Any final mathematical model for these complex interactions would require significant

scientific collaboration. However, the initial response from the sponsors of this project at the
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Health and Safety Laboratory (HSL), in Buxton, has been favourable.

The hypothesis suggested by this model is that the activation of the apoptotic pathway can
be either transient or persistent. The activation is expected to be transient when the target of
inhibition of the apoptosis pathway is activation caspase-3 and persistant when the target is
the death complex, TRADD/FADD.

When the target of the inhibition of the apoptotic pathway by the anti-apoptotic pathway
is activated caspase-3 (mgg), then the reactivation of caspase-3 after it is released is limited by
the initial concentration of caspase-8 (mj5). The maximum possible value of Ameg; is found
by maximising the peak concentration of activated caspase-3 captured by c¢-IAP (mg3) while
leaving enough caspase-8 to reactivate the caspase-3 which is later released. The consequence
of this limitation is that when the target of inhibition of the apoptotic pathway is activated
caspase-3, the activation of the caspases can only be transient.

However, if the target of inhibition is TRADD/FADD (mj4) then no such balance is re-
quired. Aslong as there is a large enough initial concentration of both caspase-8 and caspase-3,
the extracellular signal can continually activate the apoptotic pathway. It was found that the
sensitivity of Ameo; to the extracellular signal was maximised when the concentration of the
activated proteins was low but the activation persisted over a long period of time.

It will be of interest to see how if any of the results of the model reflect further experimental
observations. For this to be possible, the relative concentration of intracellular proteins and
the timing of the activation of the MAP kinases needs to be determined when a cell is under
different levels of oxidative stress. It will also be useful to understand which proteins are
most depleted over the course of response. This will indicate which pathways are most active
over the course of oxidative stress and which pathways limit the activation of the apoptotic,
anti-apoptotic and oxidative stress sensitive pathways.

Much experimental work has already been done to collect time series data on the concen-
tration of a particular protein of interest within a single cell. For example, [41] reviews studies
on the expression of genes which transcribe transcription factors such as NF-xB which are
known to oscillate over time.

If the mechanisms by which the apoptotic, survival and oxidative stress sensitive signalling
cascades are assumed to interact are found to be valid, then further work could be done to
include the signalling pathway which activates the fibrotic response, as has been discussed in
Section 2.5. A model linking the oxidative stress and fibrotic response will answer questions
on what causes a fibrotic, apoptotic or necrotic response to dominate when a cell is under both

mechanical and oxidative stress.
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Part 11

Pulmonary Toxicity of CNTs
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Chapter 3

Review of the Pulmonary Toxicity of
CNTs

Research on the toxicity of CNT on inhalation into the lungs has been spurred on by
the fact that most of the unregulated exposure to CNTs will be regular inhalation of CNTs
during their handling in the workplace. These nanoparticles will be unpurified and will not
be designed for human contact. Metal oxides in cosmetics and sunscreens, on the other hand,
will be tested for safety by the manufacturer before being brought to the market place. On
the discovery that asbestos causes damage to the lung in a way unprecedented by superficially
similar materials, research was done to build a new fibre toxicity paradigm to account for this.
A fibre toxicity paradigm was constructed which highlighted the importance of a high surface
area to mass ratio, a high aspect ratio and a chemical structure which is not quickly broken
down by the body. These three factors are shared by CNTs, spurning on the research on their
pulmonary toxicity.

The question of whether CNTs are toxic to lungs is complex. An important part of the work
in constructing mathematical models on previously untackled topics is to clearly establish what
is known and what is quantifiable. The literature review contained in this section presents a
comprehensive introduction to the issues at hand as well as justification of the modelling
approach taken.

Before any further discussion specific to CNTs is possible, some biological ground needs to
be covered. The anatomy of the lungs is introduced in Section 3.1. The steps a macrophage
must take to phagocytose a particle are outlined in Section 3.2. Key observations relating CN'Ts
to pulmonary toxicity are summarised in Section 3.3. Visual evidence of the phagocytosis of
fibres is given in a series of images in Section 3.4 along with discussion on the investigation of
the phagocytosis of high aspect ratio particles. The rationale of how the length of a fibre can
be toxic once it is deposited in the lung is summarised in Figure 3.1.

With this background knowledge in place, Section 3.5 introduces the mathematical con-
structs used in the mathematical models in Chapters 4 and 5. A constant mean curvature
model is introduced in Section 3.5.1. This model takes into account volume and surface en-

ergies only. The Helfrich energy is introduced in Section 3.5.2 with additional details given
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Figure 3.1: Paradigm for the role of long fibres and biopersistence relating to the toxicity of CNTs.
Diagram taken from [28].

in Section 3.5.5. It has been used to measure the bending energy associated with a flexible
membrane such as the lipid bilayer of a macrophage. Experimental justification for the use
of the Helfrich energy is given in Section 3.5.3, while a justification using the theory of liquid
crystals can be found in Section 3.5.4. The general conclusion to the phagocytosis models in
Chapters 4 and 5 is found at the end of Chapter 5 in Section 6.8.

3.1 Introduction to the Anatomy of the Respiratory Zone

Figure 3.2 is a diagram of the anatomy of the lungs which is familiar to many. The surface
of the lung is called the pleura which consists of a thin layer of cells called the mesothelial
lining. The trachea is the airway joining the lungs to the throat which divides into the left and
right main stem bronchae. Each of these bronchae continue to subdivide into bronchi and then
smaller bronchioles. The respiratory bronchioles are the final generation of airways in the lung.
The respiratory bronchioles are capped by alveolar ducts which themselves bud into alveolar
sacs. Each of the alveolar ducts leads into 3-5 alveolar sacs. This structure can be summarised
by Figure 3.3(a). The delicate nature of this region can be appreciated by studying a prepared
cross-section of the respiratory zone as in Figure 3.3(b). Adjacent alveolar ducts and sacs
form a complicated, interconnected network. The alveoli are the lung parenchyma where air
exchange takes place. The alveolar septum divides one alveoli from another.

The alveolar sac walls are made up of a layer simple squamous epithelial cells called type
I pneumocytes. Alveolar cell walls are approximately only one cell thick to allow for gas
exchange. Type II pneumocytes bulge out from the cell wall and produce surfactant, a lipid rich
liquid which reduces the surface energy inside the alveoli which prevents them from collapsing.

Respiratory macrophages can also be found inside the alveoli. There are no cilia in the alveolar

72



Right main

stem bronchus Trachea

Right lobes
Laft main
stem
branchus
branchi

A e Bronchioles

Fii

v‘-‘—«- Diaphragm

S
o 13

7— Lelt lobes

— Pleura

Pleural
fluid

Alveoli

Figure 3.2: A traditional diagram of the anatomy of the lungs. Image publicly available.

regions so macrophages are the only mechanism available for the removal of debris.

The alveoli are encased by a network of capillaries. Between the lung epithelial and capillary
endothelial cells is the f matrix (ECM). The molecules found in the ECM largely determine
the mechanical properties of the respiratory zone. As is the case for the ECM in most of the
body’s tissues, the three major components of the ECM are collagen, elastin and the tissue
fluid specific to the lung called the ground substance.

Collagen and elastin are key connective and load bearing molecules in the body. In the
lung, they serve to support the weight of the lung as well as to support the structure of the
lung as it cyclically stretches in normal or tidal breathing. Scanning electron micrographs
(SEM) of the human lung can be found in [118]. The lung was treated so that all but the
collagen network was washed away. Figure 3.4(a) is an electron micrograph of the remaining
collagen network. The surface of the lung and the pleura (P) which surrounds the lung are
clearly visible in micrographs A and B. Bundles of collagen fibres can be observed running
approximately parallel to the alveolar entrances (AE) in micrograph D. These bundles are
made up of individual collagen fibrils. The collagen fibres extend from one AE to another.
Some also branch off into the alveolar septa. Figure 3.4(b) contains SEMs of collapsed and
inflated lungs. In the collapsed lung the collagen fibres are wavy, while in the inflated lungs
the collagen fibres at the alveolar entrances are straight. Most of the inextensibility of collagen
is taken to be the result of straightening the wavy structure of the collagen fibres, while the
material itself is fairly inextensible.

An established pathway to exposure of the organs to foreign material is the migration of
particles trapped in the lung by passing through the pleura. As observed in [30], ‘black spots’
in the chest wall are commonly found in city dwellers, where exposure to soot particles has led
to them passing out of the lungs and into the abdominal cavity.

Integrins are believed to serve as a mechanotransduction device which means that they
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Figure 3.3: Anatomy of the Parenchyma. Images publicly available.

can activate various cellular processes in response to mechanical stress. In [113] and [114]
it is described how mechanical forces can induce direct secretion of various growth factors
that accelerate the remodelling of the matrix. For example, the force-mediated release of
transforming growth factor-beta (TGF-3) increases the upregulation of the procollagen gene
which would then increase the production of collagen. The cells and ECM of the alveolar
tissues live in a dynamic balance that results in a continuous remodelling of the matrix with a
rapid synthesis of collagen in the normal lung of 10% of total collagen per day, 40% of which is
immediately downgraded. Mechanical forces and the resulting chemical signals from the ECM
are expected to play an important role in regulating such an environment.

Both the structure and functionality of the lung depend on the health of its most delicate
parts which are routinely exposed to debris in the air. If the inner surfaces of the lung are not
cleared effectively, damage will be done to the epithelium of the alveoli. Due to the dynamic
environment of the lung, continual damage, mechanical stress and inflammation may trigger
self-perpetuating fibrotic conditions. Though currently poorly understood [102, 115], these

conditions leave the interior of the lung scarred and function impaired.

3.2 Introduction to Phagocytosis

All cells have some ability to phagocytose, or engulf, small particles. Phagocytes are those
cell types which can ingest larger particles of 1ym or more in diameter. Two important groups
of phagocytes are macrophages and neutrophils. Macrophages are all purpose clearers of debris,
while neutrophils are more specialised in clearing microbial infection. Alveolar macrophages
are the immune system’s first line of defence on the lung’s surface.

The four main phases of phagocytosis are attachment, ingestion, digestion and disposal.

Firstly, macrophages must distinguish foreign substances or damaged cells from healthy cells.
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Figure 3.4: Images taken from [118].

They have surface receptors which recognise structures specific to certain pathogens or damaged
cells. They also carry receptors for opsonins, which are antibodies. They belong to a group
of proteins found in blood called complement which tag, or opsonise, a pathogen to aid its
removal.

Actin is a protein which polymerises to form rod-like structures or microfilaments which
are mostly concentrated just underneath the cell membrane, giving the cell shape. Of the
three types of cytoskeletal filaments, they are the most dynamic and most active in phagocy-
tosis. After the particle’s attachment to the macrophage the cell starts to physically engulf
it. By polymerising and depolymerising actin forms protrusions in the cell membrane called
pseudopodia which form a cup-like structure around the particle. An above average number of
mitochondria provide the chemical energy for such work. The pseudopodia advance over the
particle surface until it closes, forming a vesicle called a phagosome.

After the particle has been ingested, the macrophage will then attempt to break up the
particle or digest it. Macrophages contain vesicles called lysosomes which are full of enzymes
which break chemical bonds, known as hydrolytic enzymes. One of the effects of these enzymes
is to increase the pH and create a toxic environment in the phagosome containing the particle.

NADPH is an enzyme which reduces oxygen to produce the superoxide anion. The superox-
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ide anion is very unstable and produces a cascade of secondary Reactive Oxidative Species
(ROS). This mechanism of producing toxic oxygen metabolites is known as the respiratory
burst. Lysosomes also contain enzymes which specifically target microbes and bacteria but are
ineffective in breaking down CNTs.

Frustrated phagocytosis of fibres deposited on the surface of the lungs by alveolar
macrophages has emerged as a key mechanism of toxicity. Macrophages are unable to engulf
longer fibres which causes leakage of cytoplasmic enzymes and results in cell death. The natural
consquence of damage to cells is the release of the toxic contents of the phagosomes which
cause further damage to other cells. The ROS may contribute to the loss of epithelial integrity,
allowing various surface proteins and possibly even macrophages and the fibres themselves
inside the lung tissue. Even if frustrated phagocytosis does not kill the macrophages it does
stimulate an inflammatory response and so the upregulation of cytokines such as TNF-q,
which is linked with self-programmed cell death (apoptosis). The inflammatory response can
also trigger fibrosis or the formation of scar tissue which damages the tiny and delicate airways
of the lungs.

If the cell manages to die in a controlled way by apoptosis the acidic contents of the lysosome
are not released. The macrophage can dispose of the indigested material by emptying it into
the surrounding medium. It could also store the material within itself until it dies. Alveolar
macrophages are often pushed out of the body with mucus from the lung. However, unsuccessful
phagocytosis often leads to the acidic and toxic contents being released, causing damage to
nearby tissue. The scarring caused by pH 4 acid is a common symptom of asbestosis, the
chronic condition caused by prolonged exposure to asbestos.

Even if macrophages are successful in engulfing a fibre they have been shown to have
difficulty moving and clearing the fibre out of the lung. Long fibres may interact with several
macrophages, which may not then be able to act in concert. The inability of the macrophages
to clear the lung surface might then trigger a granulomatous response where a collection of
immune cells wall off the foreign substance. Like fibrosis, a granulomatous response will impede
the function of the lung.

The information in this section can be found in many immunology textbooks such as |50].

3.3 Factors Relating to the Pulmonary Toxicity of CNTs

The question of whether CNTs are toxic on inhalation can be broken down into a series of
more specific concerns. The pattern of deposition of inhaled CNTs in terms of lung anatomy
needs to be understood. This may be different from the distribution of CN'Ts some time after
exposure. The distribution of CNTs will depend on the degree of aggregation or agglomeration
of them as they enter the lungs. The observed reaction of the lungs to exposure in terms of
inflammation, fibrosis or granuloma formation can possibly be linked to the failure of alveolar
macrophages to phagocytose the CN'Ts because of their size and shape. It could also be due
to the triggering of particular proteins which form part of a cell’s immune response.

Key papers such as [80] allowed the summary in [40] to state that the ability to enter the
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lung interstitium from the airspaces is a fundamental property of nanoparticles.

CNTs do not hit any surface of the lung as single fibres [28]. They form loose aggregates in
the air which can take the shape of tangled balls of fibres. They are also commonly found in
the form of nanoropes, where they twist together to form a fibre with a larger diameter [57].

Findings from [67] and [107] show that on inhalation SWCNTs are deposited into the
alveolar region of the lungs. In [67] and [107] it is also suggested how the SWCNTs are deposited
depends on how well dispersed they are before inhalation. Samples of well dispersed nanotubes
were quickly incorporated into the interstitium and the interstitial fluid. This was found to have
the effect of increasing the thickness and collagen content of the alveolar wall. If the sample of
SWCNTs were less well dispersed, the agglomerates deposited on the lung epithelium quickly
formed granulomatous lesions. Granulomatous lesions are areas of especially fibrous material
which serve to isolate potentially harmful contents of that area from nearby cells. In [67] is
was reported that the inflammatory response to SWCNT is unusual. It is characterised by a
brisk acute phase followed by the early onset of lung fibrosis.

The discussion in [30] put into context the conclusion of [92| that 2-6 weeks following
inhalation, CNTs cause subpleural fibrosis. In contrast, carbon black, which is made of the
same material as CN'Ts, was not found in the pleura. Many papers have tried to conclusively
prove or disprove whether the pathogenic behaviour of a fibre is length dependent. In [87]
this was attempted by counting the number of granulomas and morphonuclear leukocytes,
which are a type of white blood cell after exposing the mesothelial lining of the body cavity
to samples of predominantly short or predominantly long fibres by injection. The pathogenic
response jumped significantly if long fibres were present in the sample.

The pleura are not a common site of damage, even for smokers and coal miners. The natural
defences of the lungs, the cilia and macrophages, tend to move particles towards the throat
and mouth. Asbestos is the only known material to cause mesothelial cancer and siginificant
scarring of the pleura. Due to their irregular shape, it is now suggested [30] that fibrous
particles get lodged inside the sensitive pleural tissue, rather than pass through it. Over time
this will cause irritation and damage.

In |7] the toxicity of glass microfibres to alveolar macrophages was assessed. The glass
microfibres were grouped into samples of five different lengths: 33, 17, 7, 4, and 3um. The
averaged fibre diameter ranged from 0.35 to 0.75um for the shortest to the longest samples
respectively. Lucigenin Chemiluminescence (LC) was measured as an index of cell viability.
Also Lactate Dehydrogenase (LDH) release was measured. LDH is an enzyme released when
a cell is under toxic stress. The results show that the fibres do negatively effect the viability
of macrophages and induce a toxic stress response in a dose dependent manner. Also, the
17 and 33um samples were significantly more toxic than the 7, 4, and 3 pm samples. The
results indicated a cut-off length above which the glass fibre became sigificantly more toxic.
The conclusions in [7] suggested that frustrated phagocytosis could be the cause of the length
dependent toxicity. The results in [7] agree well with results referenced in [29] which show that
marked increased in toxicity is expected when the fibre length is larger than 8-10um.

In [31] the rate of phagocytosis of vitreous (a type of glass) fibres by either alveolar or
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peritoneal macrophages was compared. A key difference between alveolar and peritoneal
macrophages is their size. Alveolar macrophages were found to have an average diameter
of 13pum, while peritoneal macrophages are slightly smaller with an average diameter of 11um.
Alveolar macrophages could only completely phagocytose fibres with an average length of
Sum, while the average length completely phagocytosed by peritoneal macrophages was only
Tum. The longest fibres completely phagocytosed by alveolar were 24um and for peritoneal
macrophages the longest fibres were 20pum.

In [7] and [29] fibres longer than 10um were found to be markedly more toxic to alveolar
macrophages, this being the average diameter of the macrophages measured in [31]. This
suggests that macrophages cannot successfully phagocytose a fiber if they have to significantly
extend their length.

The investigation in [129] used only two lengths for their samples of glass fibre: 7 and
17pm. Their work focused on the activity of the cyotkines TNF-a and NF-«B in response
to the exposure of alveolar macrophages to the glass fibres. Though their activation was also
dose-dependent, the activation of TNF-a and NF-xB was higher for longer fibres. In [129] it
was hypothesised that each attempt to phagocytose a fibre is associated with the respiratory
burst, discussed in Section 3.2, which releases ROS. The presence of longer fibres would result
in repeated frustrated phagocytic events which would generate a larger concentration of ROS.
NF-kB is known to be activated by high concentrations of ROS and to stimulate inflammatory
cytokines such as TNF-a.

In the investigations [104| and [105], the toxicity of glass microfibres on alveolar macrophages
was assessed using cell magnetometry. Due to their relatively high iron content cells can be
magnetised and their magnetic field strength can be recorded. The magnetic field strength
can again be recorded after a period of exposure to glass fibres. The time taken for the mag-
netic field to decay was taken to be a measure of the health of the cell’s cytoskeleton. The
polymerisation and depolymerisation of a healthy cytoskeleton can rapidly move the cell’s iron
oxide particles and the cell would demagnetise. A slow rate of decay of the magnetic field was
linked to high activation of LDH, indicating that the cytokine response of the cell could well
be caused by the physical damage done in its attempt to phagocytose a long fibre. The results
clearly show how the glass fibres decreased the cell’s viability in a dose dependent way.

The studies so far have focused on the consequences of a particle’s size and geometry on
its toxic effect. More specific biological interactions have also been suggested. It was found
in [95] that, despite being a non-organic material, CNT did become coated with complement
proteins which would attract phagocytic cells. This opsonisation of CNTs would make their
phagocytosis easier. However, [51] suggests that increased opsonisation may also trigger an
increased inflammatory response.

Fibroblasts are activated fibrocytes which, when activated, produce many of the compo-
nents of the ECM such as collagens, elastic fibre and glycoproteins. Experimental work noted
in the review of pulmonary toxicity and medical applications of carbon nanotubes [108] sug-
gests that lung fibroblasts may be uniquely sensitive to SWCNTs and increase their rate of
collagen production by 70%. In [117] the toxicity of SWCNTS in lung fibroblasts was compared
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to the toxicity of active carbon, carbon black, MWCNT and carbon graphite. SWCN'Ts were
found to be the most toxic of these groups. In particular, they were found to induce changes in
cell shape and detach cells from their substrate before the cells underwent apoptosis/necrosis.

The study of toxicity of SWCNTs on human fibroblasts found in [117] suggests that the
deformation of the cells exposed to SWCN'Ts, and the observed upregulation of various proteins
related to the shape and structure of the cell, was not due a direct chemical interaction of
the SWCNTs and the cell’s signalling network. Instead a mechanism was suggested where a

SWCNT close to the cell membrane caused disruption due to its hydrophobicity.

3.4 Geometry of the Phagocytosis of a Fibre

Several images of macrophages attempting to phagocytose fibres can be found in the liter-
ature. The shape of a macrophage is difficult to define due to the number of microvilli on its
surface which can be appreciated in Figure 3.5(a). Pseudopodia are clearly visible in Figure
3.5(b). Figure 3.6(a) is a rare image of a macrophage internalising a fibre-like polystyrene par-
ticle. The surface is quite smooth as the microvilli have been recruited to engulf the particle.

The macrophage itself has been significantly stretched.

(a) Images taken from [105] of alveolar (b) Images taken from [78] of alveolar
macrophages exposed to microglass fibres macrophages exposed to stonewool fibres,
taken by a Scanning Electron Microscope taken by a SEM. The microvilli on the
(SEM). The microvilli on the surface of surface of the macrophages are clearly
the macrophages are clearly visible. visible. Images show how actin protru-

sions help the cells wrap around the fibre.

Figure 3.5: Images of alveolar macrophages.

In some images the microvilli are not so prominent. From Figures 3.6(b) and 3.7(a) it can
be observed that macrophages which have fairly successfully engulfed a fibre are approximately
axisymmetric with respect to the fibre. They also have a shape reminiscent of a constant mean
curvature droplet shape. This suggests that the effect of macrophage shape is dominated by the
cell membrane, while actin remodelling is more important in the energy intensive re-modelling

process. In Figure 3.7(b) especially, the effect of increasing fibre length can be clearly seen.
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A macrophage is able to engulf several of the smaller (7um) fibres successfully. However,
the shape of the macrophage does not change significantly from its original approximately
spherical shape in its attempt to phagocytose the longer 17um fibres. This image also suggests
the importance of the role of the thickness of the fibres. The macrophages were able to bend
some of the smaller fibres which may have made the phagocytosis easier. The longer fibres are
also thicker and bend less easily, though there is some evidence of the macrophages attempting
to bend the fibres. The close-up of the fibre surface in Figure 3.7(a) suggests that there is

almost a zero contact angle between the cell membrane and the fibre.

(a) A Scanning Electron Microscope (b) Immunofluorescent micrographs
(SEM) image taken from [15] of a taken from [105] of alveolar macrophages
macrophage internalising a long, thin exposed to microglass fibres.

particle. Scale bar=5um.

Figure 3.6: Images of alveolar macrophages internalising high aspect ratio particles.

Detailed investigations on the role of size of particle on phagocytosis commonly limit them-
selves to spherical particles. However, [14] and [15] focus on the effect of shape on phagocytosis.
The investigation in |14]| used particles with six geometric shapes. One sample were prolate
ellipsoids with a major axis of 2-6um and an aspect ratio of 1.3-3. Another sample were ellip-
tical disks with a major axis of 3-14um and an aspect ratio of 1.3-3. The dimensions of these
particles are fairly close to the definition of a fibre set by the World Health Organisation which
was stated previously. A key finding in [14] was that the success of a macrophage internalising
a particle was less dependent on its overall size then its shape at the point of first contact.
Series A in Figure 3.9(b) illustrates the successful internalisation of an elliptical disk after an
initial attachment by the macrophage at the disk’s pointed end. Series B shows the result of
an initial attachment along the flat part of the disk. The cell spread along the disk but there
is no internalisation. This spreading is also illustrated in series B of Figure 3.9(a).

Actin polymerisation is the principal mechanism by which macrophages push the membrane
leading edge to enclose the disk in a phagosome, as discussed in Section 3.2. Initially an actin
cup is formed which then transforms into an actin ring which is then pushed along the particle
in a uniform and organised way. When macrophages attached to particles along their pointed

end, they exhibited an actin cup and ring, while macrophages attaching to the flat end did not.
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(a) Tmages taken from [7] of alveolar (b) Tmages taken from [129] of alveolar
macrophages exposed to microglass fi- macrophages exposed to microglass fibres
bres, taken by a SEM. taken using light microscopy.

Figure 3.7: Images of alveolar macrophages exposed to microglass fibres.

It was suggested that as actin remodelling is a metabolically intensive process, phagocytosis
is only successful when the actin ring is is only required to be gradual. The first third of the
particle takes twice as much time to internalise as the second two thirds due to this remodelling.
When an actin cup or ring does not form the macrophage spreads in an unsynchronised way
and does not successfully engulf the particle. In [14]| an angle 2 is defined which quantifies the
difficulty of phagocytosis for a particle of approximately elliptical geometry as

0 S
0= ([ rO®)on 3.)

where k() is the curvature and ds/df is the angular gradient of the arc length s. k() can
be found using the standard curvature for an ellipse. 8 = 0 is defined as the point of contact.
These parameters are illustrated in Figure 3.8. It was found experimentally that the rate
of successful phagocytosis decreases sharply if € is greater than 45°. The rates of successful
phagocytosis increased as ) decreased.

The purpose of [15] was to demonstrate a shape which was almost completely impossible to
phagocytose. The result was a worm-like shape illustrated in series B of the images in Figure
3.9(a) which had approximately twice the diameter of the macropahges. No internalisations of
the worm-like shapes were captured by time-lapse video microscopy. Successful internalisations
of worm shapes were found to be about 6 times less likely than for spheres with the same volume
of 3um3. This figure increased to 20 when the volumes of the worm-like shapes and spheres
was only 1um?. The shape of the particle is even more important when the volume of the

shape is smaller.
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Figure 3.8: Tllustration of parameters in (3.1) taken from [14].

Figure 3.6(a) is an image of a worm shape internalised by a macrophage. The cell shape
is completely distorted and shows considerable tension along the cell membrane. The shape
is not at all close to that of a constant mean curvature shape. The final image of successful
internalisation of a spherical particle in series A of Figure 3.9(a) shows that, while the volume of
the macrophage might have slightly increased it has retained its near spherical shape. Spherical
particles are clearly easier to phagocytose than worm-shaped particles.

Note that despite their extremely elongated geometry all the fibres in series A of Figure
3.9(b) seem to have been engulfed by the macrophages. However, there is no evidence that all
the fibres were actually successfully phagocytosed and a proper phagosome was formed. Note
that the images of macrophages engulfing longer fibres, for example in Figure 3.7(b), resemble
that of the unphagocytosed elliptical disk in series B of Figure 3.9(b). So, while the cells may
have successfully engulfed the fibre, the fibre is not necessarily phagocytosised as a lysosome
has not been formed.

Figure 3.10 is an image of asbestos fibres on the lung’s surface which demonstrates the

relative scale of the size of the fibres and the size of the components of the lung.

3.5 Mathematical Models of Phagocytosis

Available mathematical models on phagocytosis are limited. There have been some at-
tempts to model the action of actin on both a molecular level and from a continuum mechanics
perspective. The ‘Polymerisation Rachet Model” quantifies the force exerted on the load, usu-
ally the cell membrane, using thermodynamic principles. In the ‘Polymerisation Rachet Model’
it is assumed that at some point the load will diffuse forward from the tip of the actin filament,
creating a gap large enough for monomers to attach themselves to the actin tip, preventing
backward diffusion. A good introduction can be found by reading the review [69] and an earlier

paper which includes a comprehensive appendix [70]. A detailed model, using the principles of
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(a) Tmages taken from [15]. Time-lapse video microscopy clips at 0, 1, 2, 3,
4 and 32 min after initial attachment of alveolar macrophages to opsonised
particles. Series A illustrates the phagocytosis of a spherical particle, while
in series B the particle has a worm-like shape. Scale bar 5pum.

(0 min 1 min

(b) Images taken from [14]. Time-lapse video microscopy clips spanning 39
mins. In series A the phagocytosis was successful, while in series B it was
not. Scale bar 10pm.

Figure 3.9: Time-lapse video microscopy clips of the phagocytosis of particles with different geometries.

83



Figure 3.10: A SEM image taken from [29] of the airways of a rat that had been inhaling a cloud of
asbestos fibres. The airways are shown on the smallest scale possible. A are openings into the alveoli

and T is a portion of bronchial epithelium. Asbestos fibres can be seen free and partially phagocytosed
(M).

continuum mechanics can be found in [45], where quantitive results specific to the phagocytosis

of small spherical particles were also presented.

3.5.1 Constant Mean Curvature Curvature Model

These models of phagocytosis do not attempt to take into account the geometry of a
particle and the macrophage as a complete cell. The geometry of a cell engulfing a fibre can
be simplified to a surface of rotation, where the axis of rotation corresponds to the axis of the
fibre it is engulfing. Chapter 4 presents an introductory model to this problem. In this model
a cell is simply a rotationally symmetric drop of an incompressible, homogenous liquid with a
constant surface tension.

The models of phagocytosis employed in this thesis aim to understand possible shapes a
macrophage might adopt in order to engulf a long fibre with a small radius. It does not attempt
to model phagocytosis as a dynamical process. It is the shape of a macrophage as it engulfs a
fibre which is the aspect of phagocytosis most relevant to the question of the toxicity of CN'Ts
on inhalation.

A droplet’s shape is the result of an equilibrium between the forces associated with the

surface tension, A, and the pressure difference across its surface A, is defined as
A, = external pressure — internal pressure . (3.2)

Consider the molecules on the surface of the liquid. When inside a liquid a molecule feels
equal forces in all directions but on the surface the attractive inter-molecular force is only

felt from inside the liquid. The molecules are drawn inside the liquid by this surface tension,
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causing the surface to bend to minimise the surface area and so the surface free energy. When
a drop is at equilibrium the surface and pressure forces are balanced for a given volume.
The shape of a rotationally symmetric droplet with a given surface tension A and pressure
difference across the surface A, can be found by solving the Laplace-Young equation which is
Ap

e = 2 X mean curvature. (3-3)

The Laplace-Young equation is derived by minimsing the surface and volume energy of a drop.
For a surface which is a solution of (3.3) there are two degrees of freedom which allow the
choice of the angle between the droplet and fibre surface at two coordinates. The contact angle
of the droplet surface with the surface of the fibre is fixed by the wettability of a particular
solid by a particular liquid as determined by the solid-vapour, solid-liquid and liquid-vapour
interfacial energies as derived in Apprendix C.2.

Droplets which form on thin fibres have been investigated experimentally. The problem of
fluids forming drops around wires of much greater length than the droplet has long interested
experimentalists. The work of Carroll in [12] introduced a model for an axisymmetric droplet
on a fibre. Whether this model corresponded to observations of droplets forming on a fibre was
subsequently investigated in [13, 64, 65]. It was found that for a rotational symmetric “barrel
shaped” droplet, the droplet had to be of a minimum value as determined by the radius of the
fibre. For smaller volumes, the droplet rolled up to form a “clam shaped” droplet which did
not encircle the fibre. The study in [12] did not take into account the disjoining pressure, or
the very short range pressure caused by the Van der Waal forces between the surface of the
fibre and the droplet. Instead of focusing on the macroscopic description of the droplet shape,
Brochard [10] investigated the role of this disjoining pressure in the spreading of a thin film
along a cylinder.

The question answered in Chapter 4 is whether an axisymmetric droplet of a given surface
tension and volume can engulf a cylinder of a certain length, L, and radius, p, as its volume is

increased.

3.5.2 The Helfrich Energy

The constant curvature droplet model in Chapter 4 can be taken a step further by enclosing
the droplet in a lipid bilayer. Lipid bilayers are the main component of a cell membrane. A
single lipid molecule is composed of a hydrocarbon chain which is hydrophobic and a hydrophilic
headgroup. A lipid bilayer is formed when two sheets of lipids are arranged so that their
hydrophobic components are pointing inwards and their hydrophilic headgroups are left on the
upper and lower surface. Figure 3.11 is a diagram of such a lipid bilayer. A cell membrane is
soft and incredibly flexible and can conform to extreme curvatures.

In [44] Helfrich introduced the idea that a shape which a lipid bilayer adopts has a bending
energy, the energy cost of bending a cell membrane into a specific shape. He suggested that this
could be quantified by the Willmore energy. The Willmore energy is proportional to the mean

curvature, H, squared integrated over the surface of a shape. The proportionality constant is
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Figure 3.11: A diagram of a lipid bilayer.

k., the bending constant, which is a physical property of a particular lipid bilayer. Helfrich
introduced a term called spontaneous curvature, cg, to account for a cell’s own ability to change
its shape in response to stimuli which was incorporated into the form of the Willmore energy
so that

Helfrich Energy = / (1/2)k. (H — ¢p)*dS = / EydS. (3.4)

The Helfrich energy is an often used measure to include bending energy for a variety
of purposes. Its use in [54] demonstrates a more numerically intensive use of the Helfrich
energy, while in [24], the results from its use are more analytically tractable. As the geometry
of a surface of rotation is a simple three dimensional geometry which can be mapped to a
two dimensional geometry, the results are analytically tractable, allowing for a more detailed
discussion of the results.

The Laplace-Young equation of the constant mean curvature model (3.3) can be derived

by minimising the surface and volume free energy, which can be written as

F=[ AV + [ AS. (3.5)
f 2w

The total free energy when including the Helfrich energy can now be written as the sum of

Helfrich, volume and surface energies so that

F:/ (1/2)l<:c(H—co)2dS—|—/ ApdV+/ S, (3.6)

where the physical interpretation of the Lagrange parameters are that A, is the osmotic pres-
sure difference between the outer and inner media already defined in (3.2) and A is the tensile
stress.

It is proposed that as a macrophage phagocytoses a fibre, it has only a limited amount of
available energy. The shape of its lipid membrane should be close to one that can be found by
solving the Euler-Lagrange equations of the free energy (3.6). The role of actin is not taken
into account. It could be assumed that actin is responsible in moving a lipid membrane from
one configuration to another, but any stable configuration of a macrophage’s membrane should

be close to minimising the bending energy with minimal support from actin.
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Rotationally symmetric shapes of closed fluid membranes which are solutions to the Euler-
Lagrange equations of the free energy (3.6) were computed and discussed in [25]. In this
thesis, they are referred to as solutions of the Helfrich boundary value problem. The boundary
conditions for the Helfrich boundary value problem are constructed to avoid singularities in
the Euler-Lagrange equations at the axis and maximum radius of the rotationally symmetric
shape. There are no remaining degrees of freedom.

The solutions to the Helfrich boundary value problem have been used as a guide to find
energetically stable shapes which do not have a continuous surface but sit on the surface of a
fibre. As the minimum radius is no longer the axis of rotation, some of the parameters of the
solution are now free to be chosen to reflect the physical problem at hand.

The 90° contact angle reflects observations that a macrophage forms a blob around a
fibre such as those in Figure 3.7(b). The 0° contact angle reflects the observation that the
macrophage may also spread itself along the fibre as demonstrated in Figure 3.7(a). For both
of these contact angles it was investigated how a cell membrane may lengthen along the axis
of the fibre, while maintaining a constant volume.

The boundary conditions in Section 6.6 were chosen to investigate how a cell may increase
its length under the constraint of constant volume where the contact angle is not fixed. Alter-
natively, the boundary conditions in Section 6.7 were chosen so that the membrane is parallel
to the surface of the fibre so that the contact angle is zero.

Experimental evidence of the validity of the Helfrich energy to find energetically stable
membrane conformations is discussed in Section 3.5.3. A physical justification of the form of
the Helfrich energy with reference to elastic continuum theory is found in Section 3.5.4. The

role of Gaussian curvature with respect to edge effects is dealt with in Section 3.5.5.

3.5.3 Experimental Observations of Vesicles

The axisymmetric shapes found by minimising the Helfrich energy are used as a guide to
help understand the various shapes and behaviours exhibited by living cell membranes. There
has been some experimental work comparing the shapes and shape transitions of pure lipid
bilayers to those predicted theoretically.

In [49] the behaviour of vesicles made of pure synthetic bilayers made out of dimyris-
toylphosphatidylcholine (DMPC) was observed. In Helfrich’s theoretical paper [25] the min-
imum curvature energy shapes are parametrised by their surface area to volume ratios. The
surface area to volume ratios of the vesicles in [49] were controlled by temperature variations.

The shapes predicted by the Helfrich energy were indeed observed. As the temperature
was increased the surface area increased so the surface area to volume ratio was greater than
that of a sphere. In this case, the condition in the theoretical paper [25] that the vesicle or
cell is easily deformable is met. Two major transitions were observed in [49] on heating an
approximately spherical vesicle. The vesicle could either become a prolate or oblate ellipsoid.
On heating Figure 3.12 shows that a prolate ellipsoid can form a pear shape which then buds
to form a secondary vesicle. The budding may never take place and instead the vesicle may

alternate between a pear and dumbell shape as illustrated in Figure 3.13. As the surface area
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of the vesicle increases the oblate ellipsoid will become a discocyte which is pinched in along
its z-axis. Figure 3.14 illustrates how a discocyte transitions into a stomacyte on heating.
A stomacyte is an approximately spherical vesicle with an internal vesicle. These sequence
of the phase transitions qualitatively agree with [25]. As the normalised volume decreases,
the axisymmetrical shapes found on minimising the Helfrich energy move down either the
prolate or oblate branches. The prolate ellipsoids form pear shapes which may bud and the
oblate ellipsoids form discocytes and possibly stomacytes for very low volumes. These shape
transitions depend strongly on the spontaneous curvature cg.

The emphasis in the papers [27] and [49] was to observe the minimum energy shapes as
the surface area to volume ratio increased to its experimental limit. They provide interesting
insights on how a cell might form an interior or exterior secondary vesicle as it becomes more
deformable. However, this chapter is less concerned with these limit shapes and more concerned

with how ellipsoidal vesicles alter to engulf a fibre.

e

Figure 3.12: A prolate ellipsoid transforms into a pear shape which then buds to form an exterior

secondary vesicle as the temperature is increased. The images are of synthetic DMPC vesicles in water
taken from [49].

Assuming that a cell can be modelled as a pure lipid bilayer enclosing a homogeneous liquid
requires some justification. Figure 3.15 is a cartoon of a cell membrane which highlights the
three-layered structure of the cell membrane. The protein bilayer is sandwiched in between the
cytoskeleton in the interior of the cell and the glycocalix which contains receptor and binding
proteins. Some of the biological complexity of the cell membrane can be grasped by reading the
review papers [66] and [93]. In [93] it was stated that the bending stiffness of a red blood cell
membrane is roughly equal to that of a synthetic DMPC bilayer used in the experimental paper
[49]. This is surprising as a cell membrane is much more complex then a pure DMPC bilayer
as it also contains additional proteins, cholesterol and is coupled to the cell’s cytoskeleton. In
[93] Sackmann allows complex biological interactions which create bending moments along the
lipid bilayer to be accounted for by spontaneous curvature. This includes the adsorption of

proteins and a change in the surface charge density due a change in the ion concentration.
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Figure 3.13: A prolate ellipsoid has become a dumbell shape with increased temperature. It then

alternates between having a pear and dumbell shape. The images are of synthetic DMPC vesicles in
water taken from [49].

Figure 3.14: An oblate ellipsoid has become a discocyte with increased temperature which then curls

round to form a stomacyte with an interior secondary vesicle as the temperature is further increased.

The images are of synthetic (DMPC) vesicles in water taken from [49].
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Figure 3.15: A cartoon of the three-layered structure of a cell membrane taken from [93].
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3.5.4 Helfrich Energy vs. Shell Theory: a discussion of the physical justi-
fiability of the Helfrich Energy

When drawing-up a model for a system in stationary equilibrium there are always two
approaches: either the energy of a system can be defined or a force balance equation can be
written down. The energy equation can be minimised using the Euler-Lagrange method which
would then result in the implied force balance for a minimum energy equilibrium. Alternatively,
the forces can be quantified and balanced which may then be integrated to find the associated
energy. lIdeally, a force balance equation and its associated energy equation would both be
open to physical interpretation and not be a mathematical invention.

Over a decade ago, three attempts at using the Helfrich energy to find axisymmetric surfaces
were separately developed and their mutual consistency was questioned in a series of papers,
as summarised in [47]. In [130] the Helfrich energy was minimised for a general curvature and
then mean and Gaussian curvatures specific to the geometry were later substituted in. In [99]
the free energy in terms of Helfrich energy and Lagrange parameters was first written down
in an axisymmetric geometry and minimised with respect to (wrt) arclength to find the shape
equations. Lastly, [25] found these shape equations with respect to the radius as outlined in
Section 5.2.

As can be appreciated from the discussion in Section 5.3, the terms of the Euler-Lagrange
equation associated with the Helfrich energy are not easily interpreted as identifiable forces
acting on an area element of the cell membrane. The shapes which result from the minimisation
of the Helfrich energy match the range of shapes observed experimentally. This will be discussed
in more detail in Section 3.5.3.

However, these shapes can also be obtained using shell theory whose starting point is the
balance of forces, tension, moments and torques. The results possible using this alternative
approach elicits the question of which approach is more physically justifiable. The physical
justification of the Helfrich approach lies in the theory of liquid crystals. Liquid crystals are
fluids whose molecules have a regular ordering. A lipid bilayer can be thought of as two layer
of a smectic crystal whose molecules are aligned in one direction as illustrated in Figure 3.11.

Elastic continuum theory [21] ignores the molecular details of a liquid crystal but instead
accounts for the ordering of a liquid crystal by considering three possible deformations. These
deformations have been labelled twists, bends and splays. A splay refers to a deformation
where a force is applied along the length of the molecule so that it acts as a cantilever. When
molecules are twisted, they are deformed in the perpendicular direction. Bends are only possible
for liquid crystals if they have multiple layers and are effectively three dimensional so they are
irrelevant for lipid bilayers. If n = [n, n,], the direction a given molecule points, is written as
a function of the two dimensional x — y plane covered by the extent of the liquid crystal then

the terms related to the the splay deformation are

Ong and %

A L (3.7)
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and the twist terms are
Ony ong
— and

O oy’
as defined in [36]. In [36] Frank then postulates that the free energy can be written as linear

(3.8)

and quadratic combinations of these terms which can then be integrated over the volume of
the liquid crystal. As stated in [44] and [21], the deformation should be rotationally symmetric
for x and y. This requirement allows only quadratic terms in the free energy. Additionally, in

Helfrich [44] specifies that the rotation of the vector field n is zero or

ong  On,
Tl (3.9)

so that there is no circulation in the vector field n as this vector field defines a surface. From

the terms listed exhaustively in [36], the remaining terms are a quadratic splay energy

1 (0, | Ony\’
Esplay = 5 < Oz + ay) (310)

and a saddle splay energy
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As the principle curvatures in this simple parameter space are
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The term (3.10) can be generalised to Egpqy = (1/2)(2H)?. Esaddie splay measures the difference
between the curvatures in two perpendicular directions and so can be linked to the Gaussian
curvature. Like the Gaussian term to be discussed in Section 3.5.5, its related Euler-Lagrange
equation is identically zero and it can only be considered for boundary conditions. In [44]
Helfrich took the step of using this bending energy for large deformations, rather than for
the close to planar case commonly used for liquid crystals. In conclusion, the Helfrich energy
makes some attempt to account for the molecular structure of lipid membranes when used as
a free energy term.

Shell theory assumes that a thin shell remains a simple, homogenous two-dimensional
surface whose third dimension is infinitesimally small. The governing shape equations are
derived by first considering the balance of tensions, torques and momenta on an area element
over which there is a pressure difference. These shape equations involve the principal curvatures
and are derived for the general and axisymmetric case in [71]. In [8] and [88] standard shell
theory was applied to model axisymmetric cell membranes. A particular strain energy function
was chosen which implied that the tensions are isotropic. Also it was taken that bending

moments acting on the cell membrane can be generalised to

m = Eg (H—-H")P, (3.13)
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where H is the mean curvature and H is the resting mean curvature. Here Ep is the scalar
bending modulus, quantifying a membrane’s resistence to bending, and P is the elasticity tan-
gential projection operator. The term (3.13) defines a material which has a curvature elasticity
and is capable of "remembering" its original curvature, like an elastic band “remembers" its
original length. The term (3.13) is a moment which the cell membrane is expected to exert on
itself to return to its resting shape. However, a cell membrane is very soft and any tautness
is due to the pressure difference across it. However, in order for the cell to be deformable the
pressure inside the cell must be decreased.

An alternative isotropic bending moment was used in [34], given here as
m = EgH, (3.14)

so that the bending moments are simply proportional to the mean curvature.

The traditional applications of thin shell theory are found in civil and mechanical engi-
neering. The cell membrane model set out in [8] and [88] is similar to that of the buckling of
a axisymmetric shape. The scale of a dome used in a building make the assumptions of shell
theory justifiable. It is suitable to model such a dome homogenous across its thickness. How-
ever, it might be expected that a small-scaled object such as a vesicle might be more sensitive
to the ordering of the molecular scale. There is some need to test the assumptions used in
applying thin shell theory to cell membranes more thoroughly.

Without a physically justifiable energy function associated with the shape equations derived
from shell theory the question of which shape is most stable for a given volume to surface area
ratio cannot be answered. On the other hand the are results, such as the ones in [27], which do
suggest that the observed transformations of simple lipid vesicles can be mapped onto phase

diagrams derived using the Helfrich energy.

3.5.5 Gaussian Constant of Rigidity

A complete quadratic expansion of the free energy in terms of the principal curvatures
would include the Gaussian curvature as well as the mean curvature. The mean curvature is
defined in (4.6) as

H = kpin + kmazs (3.15)

where ki, and k4, are the principal curvatures. In the same notation, the Gaussian curvature
is
G = kninkmaz- (3.16)

The Helfrich energy defined in(3.4) can then be extended so that
Ey = (1/2)k.H? + kK, (3.17)

where k. is the bending constant and k. is the Gaussian curvature constant of rigidity. The
terms proportional to k. are associated with the liquid crystal saddle-splay term in (3.11) and

arise from the resistance of a thin film to bending in two orthogonal directions at the same time.
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Lipid bilayers are usually modelled as two-dimensional liquids. As liquids cannot experience
shear forces there is a physical justification for their omission in Chapter 5 where they are not
considered.

Even if terms proportional to k. were included in the variational problem (5.4) the resulting
terms would cancel each other out leaving the Euler-Lagrange equations unchanged. This was
mentioned when Helfrich introduced the Helfrich energy in [44] and can be verified for the
axisymmetrical case presented in [25].

The Gauss-Bonnet theorem tells us that the integration of Gaussian curvature over a surface
reduces to the integration of the geodesic curvature over the boundary of the surface only so
k. appears only in boundary conditions. Details of the Gauss-Bonnet theorem can be found
in [81]. In the review of cell membrane models [98], the Gaussian term is neglected as it is
constant for shapes of the same topology. Very broadly speaking, shapes with the same number
of holes share the same topology. All cell on a fibre boundary value problem solutions will
share the same topology.

Some numerical work on modelling lipid membranes of different geometries, [79] and [119],
reveals that the Gaussian curvature constant primarily effects the leaf-like curling of the mem-
brane at the open edges. The changes in shape when the Gaussian curvature constant was
non-zero is localised to the edges. If the interest is in the overall shape of the membrane there

is some justification to take the Gaussian constant to be zero.

3.6 Chapter Summary

In this chapter is was established that frustrated phagocytosis of inhaled particles is a
mechanism by which nanoparticles, and CNTs in particular, can be toxic. It was found that
phagocytosis is more likely to be frustrated when the particles have a larger aspect ratio while
having a smaller volume. As CNTs can be described as fibrous while having a small volume, the
problem of frustrated phagocytosis is even more relevant to this particular type of nanoparticle.
It was found that successful phagocytosis of a particle of high aspect ratio was more likely when
the contact angle between the cell membrane of the macrophage and the particle was small.
In the review of available mathematical models of phagocytosis, it was found that they were
more concerned about the dynamics of phagocytosis at a molecular, rather than a cellular
scale. In order to quantify the feasibility of the phagocytosis of a fibre, it was proposed that
the geometry of a cell engulfing a fibre is simplified to that where the cell membrane of the
macrophage is an axisymmetric surface of rotation where the axis of rotation corresponds to
the axis of the fibre. The free energy of this system is the linear sum of the surface and volume
free energies, with the possible inclusion of the Helfrich energy which takes into account the
energy required to bend a lipid bilayer. The shape of this surface in the case of successful
phagocytosis is the solution of this energy minimisation problem. In Chapter 4 the free energy
is the sum of the surface and volume free energies only, while in Chapters 5 and 6 the energy

minimisation problem is extended to include the Helfrich energy.
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Chapter 4

Constant Curvature Droplet Model

94



4.1 Chapter Summary

Following on from the discussion in Section 3.5.1, this chapter presents an introductory
model of a cell engulfing a fibre. The question to be answered is whether an axisymmetric
droplet of a given volume and constant mean curvature can engulf a cylinder of a certain length,
L, and radius, R, as its volume is increased. The longitudinal profile of the droplet can be
found in Figure 4.1(a). The increase in volume can be thought of as being due to condensation
where the mass of the droplet slowly increases while the density remains constant. The increase
in volume is incremental so that the drop is always at an energetically stable state. It will be
discussed in Section 4.6 how the shape of the droplets change as volume is increased. A range
of examples of droplet profiles can be found in Figure 4.3.

The basis of the model is the Laplace-Young equation which is

Ap

—- = 2 X mean curvature. (4.1)

A
This equation relates the physical properties of surface tension, A, and pressure difference

across a droplet surface, A,, to a geometrical property of the shape called the mean curvature.
The mean curvature for a surface of revolution is re-derived in Section 4.2. The forces and free
energy terms associated with the mean curvature are discussed and expanded on in Section
4.4. The boundary conditions originally given in [12]| are presented in Section 4.5.1 and the
surface area (S), volume (V) and length (Z) of a drop with these boundary conditions are
given in Section 4.5.2. The ODE used to find the profile of the axisymmetric drop is re-derived
in Sections 4.5.3 and 4.5.4.

Constant mean curvature droplets are a classical feature of physics. They have been in-
cluded in this thesis as a limiting case of the Helfrich energy minimisation problem when the
bending constant, k. = 0, so that no energy is required to bend the lipid bilayer of the engulfing
cell. This chapter serves as an introduction to Chapters 5 and 6. The limited range of solutions
in this chapter can be compared to the more varied range of solutions in Chapter 6.

The content in the following sections is original material developed from this problem.
Section 4.6 introduces the boundary conditions required to solve the problem of a drop engulfing
a fibre of finite length. Sections 4.7-4.9 investigate these solutions so that the engulfment
problem can be solved numerically in Section 4.11. Section 4.7 looks at constant mean curvature
solutions in general while Section 4.8 looks at the expected solutions in the limit that the radius
of the fibre is asymptotically small. It is found that the range of possible solutions could be
categorised. In Section 4.9 these groups are parametrised with respect to n and cos6, the
normalised maximum radius of the droplet and the cosine of the contact angle of the droplet
with the fibre. The boundary problem set up in Section 4.5.1 is solved in Section 4.11. The

results are interpreted using the knowledge gained from the preceeding sections.

4.2 Mean curvature of an Axisymmetric Drop

This section breifly introduces the concept of mean curvature, H, by first defining the

shape operator following [81] and [83]. Firstly, a surface must be defined. A coordinate patch
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x : D — R3 maps an open set D of R? onto R3. This mapping is required to be continuous
and one-to-one. For a patch to be a proper patch its inverse function is also required to be
one-to-one. Roughly speaking, a surface in R3 can be defined as a subset, M, of R3 for which
a proper patch exists for every small region of M. Let a curve be in infinitely differentiable
map « : I — R3 of on open interval I = (a,b) of real line R into R3, parameterised by its
arclength .

An infinite number of curves cross a point p on this surface. The curvature of each curve

a(t) at p is the scalar value

k(é) =U - &, (4.2)

where U (p) is the noral to the surface and ~denotes differentiation wrt arclength ¢. As the

tangent and the normal are perpendicular to eachother we have
a-U =0, (4.3)
which can be differentiated to give
U-t=-U-a=8(aq)- . (4.4)

This expression introduces the shape operator S(c&), as defined in [81] and [83].
It can be found that the shape operator will have principal directions at any point p which

are orthogonal eigenvectors e; and es of the shape operator
S(e1) = kmazer and  S(e2) = kmines. (4.5)

The eigenvalues have been labelled ki, and ke, as it can be shown that the eigenvalues of
the shape operator are the extremal values of curvature at that point. The mean curvature is
defined as

kmz’n + kmax

H = e, (4.6)

4.3 Mean Curvature of an Axisymmetric Surface of Revolution

An axisymmetric drop is a surface of revolution around an axis of rotation, which we take
to be the z axis in Figure 4.1(a). It is best parametrised in cylindrical coordinates where
coordinate = and angle w are defined in Figures 4.1(a) and 4.1(b). There general form of

location of each point on the surface of the droplet is therefore
z(w,z) = (zcosw, rsinw, z(x)) . (4.7)

This surface is an example of a two-dimensional space mapped onto a three-dimensional space.
As illustrated in Figure 4.1(c), the function z(z) can be expressed in terms of ¢(z), the

angle between the normal at x(w,x) and the cylinder axis. The following differential relations
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(a) Diagram of the longitudinal cross-section of axisymmetric droplet on which the
coordinates x and z, an element of arclength dl and ¢(z) are indicated.

(b) Diagram of coordinates perpendicular
to the axis of rotation, parametrised by z
and w.

Figure 4.1: Diagrams of contact angle 0 at the solid/liquid/air boundary point. Illustrated for 0 < /2.
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can be written down

dx = cos¢(x)dl, (4.8)
dz = sin¢(x)dl, (4.9)
dzg) = tan¢(x). (4.10)

Equation (4.10) can be used to find a pair of tangent vectors by differentiating along the

w- and z- parameter curves. These tangent vectors are

x, = (—xsinw,zcosw,0),

x; = (cosw,sinw,tanq). (4.11)
It can be verified that x, - £, = 0. These two tangent vectors are perpendicular to each
other. It can be shown that these are the tangent vectors along the principal directions for

a axisymmetric surface of revolution. In order to find the principal curvatures the second

derivatives and normal vector field must also be found. The second derivatives are

Tow = (—zcosw,—xsinw,0), (4.12)
Tpyw = (o, 0, cosw_2¢(x)cwx)> : (4.13)
dx
The outward-pointing normal vector field can be found to be
Ty X Ty . . .
U = Ty X 24| = (—sin ¢(z) cos w, — sin ¢(x) sinw, cos p(x)) . (4.14)

From (4.2) and (4.4) the principal curvatures can be found to be

w) " Lw CLww d
kmaz = S(m ) < = v = COSgbﬁ, (415)
Ty - Ly Ty, Ty dx
and U )
b, = e SO (4.16)
Ty Ty T

Looking at the shape of a droplet whose length is much longer than its maximum radius, it
would be expected that the principal direction of the maximum curvature (smallest radius of
curvature) is given by the tangent perpendicular to the length of the cylinder. The direction
of the minimum curvature (largest radius of curvature) is then parallel to the axis of rotation.
In notation found in [44], which will be used from now on, the principal curvatures for an

axisymmetric surface of rotation are

sin ¢
G = (4.17)
— cosa®
Cm = cosqbdx. (4.18)

The principal directions of curvature for ¢,, are the meridians and those for ¢, are the parallels.
¢p is defined by parameters found in Figure 4.1(c). Substituting in (4.8) it is found that

do

Cm = —

m dl 9

so that ¢, expresses the rate of change of ¢ with arclength.

(4.19)
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4.4 Forces and the Energy for Droplet Model

The Laplace-Young equation in (4.1) can now be given in the form found in Carroll’s work

[12], namely,

A
7” = Cm + ¢p, (4.20)

where A is the surface tension, or interfacial energy, and A, is the pressure difference across
the surface. For a liquid drop to be at an equilibrium the Laplace-Young pressure must be
constant. A simple derivation which clarifies the relationship between these physical and
geometrical properties can be found in Appendix C.1. The radii of curvature in this derivation
do not relate to those of an axisymmetric drop. It is the Laplace pressure which causes smaller
droplets with smaller radii of curvature to coalesce to form larger droplets with a larger radii
of curvature.
In [12], (4.20) is integrated to find the surface forces

A,  sing(z) d¢

5 = . +cos¢>(x)@ (4.21)
1d .
= -0 (xsin @), (4.22)
MK = dzsing — (1/2)A,% (4.23)
(4.24)
where K is a constant of integration. The forces in (4.23) can be labelled as

fi = Axsing, (4.25)
fo o= —(1/2)A% (4.26)
fz = MK, (4.27)

so that f3 = fi + fo. Equation (4.23) can be re-arranged to give an expression for ¢, which

has two independent parameters, K and A,/2A,

A, K
From the form of ¢, and ¢, in (4.17)-(4.18), the following relation can be drawn
dey _em =6 (4.29)

dz x
The known term for ¢, in (4.28) can be substituted into (4.29) to find an expression for ¢, in

terms of the parameters K and A,/2A,

A, K
Note that if K = 0 then (4.28)-(4.30) are constants and so are each the radius of the resulting

sphere.
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The dimensions of the surface tension and pressure difference infer the dimensions of K so
that

_ [Energy]
By = S (4.31)
_ [Energy]
A = 7[L2] , (4.32)
K = [L]. (4.33)

It can be checked that the forces (4.25)-(4.27) have the dimension of [Energy]/[L]. f2 can be
recognised as the pressure force and fi can be recognised as the capillary force integrated over
the surface of the drop. Finally, f3 is mnet force over the drop surface.
By solving (4.28) and (4.30) it is found that

K = (1/2)2%(cp — cm). (4.34)

So as x — oo then ¢, — ¢, — 0, where ¢, = ¢, is the condition for a sphere.

The force conservation equation (4.23) can also be obtained through the minimisation of
the surface and volume energy and the energy associated with the force (4.27). Here A and A,
act as surface area and volume Lagrange multipliers. By their dimensions given in (4.31) and
(4.32) together with the integrals for surface and volume (4.43) and (4.44), the surface and

volume energy is given by

/ Ads — / A,dV = / {A%msz(m — Ayma? tan qs(:c)} dz. (4.35)

The energy term associated with f3, defined in (4.27), is
—QWAK/tancb(x)dx = —271)\K/dz. (4.36)

This term associates an energy cost to an increase in length. The complete free energy term

is then
F= / {A%COSZ(@ — Apra?tan ¢(z) — 27K tan qb(x)} dz. (4.37)

Minimising the energy terms in (4.37) would then result in (4.23). The negative sign preceeding
the A, term ensures that the signs in (4.37) and (4.23) are the same. A larger value of K would
decrease the length of the droplet. As the length would be expected to be small if generally
¢p > ¢ and larger if ¢, > ¢, this assumption is consistent with the definition of K in (4.34).

The obvious physical interpretation of the energy term (4.36) is the free energy associated
with the solid /liquid interfacial tension, ysr, and the solid /vapour interfacial tension, vgy, as

defined in Appendix C.2. Such an energy term is expected to take the following form

/QWR (vsz — vsv) dz. (4.38)

Thus K can be given the physical interpretation of the radius of the fibre, R, multiplied by a

ratio so that

K=-R (W) . (4.39)
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4.5 Boundary Conditions and Parametrisation for a Droplet on
a Fibre

4.5.1 Boundary Conditions for a Droplet on a Fibre

The relations (4.28) and (4.30) have two independent parameters which allow ¢,(z) and
cm(x) to be fixed at two points. The first point can be chosen to be at the maximum radius

of the droplet. ¢ is chosen to make the solution symmetric about its mid-length so that
Tmaz =1 at @) =m/2, (4.40)

where [ is the maximum radius of the droplet. The second point can be chosen to fix the

contact angle at the surface of the fibre, 8 so that

Tmin =R at  @(R)=m/2—0. (4.41)
A typical solid/liquid/air phase boundary point with contact angle 6 is sketched in Figure
4.2(a).
4.5.2 Surface Area, Volume and Length

The physical properties of the droplet are its surface area, .S, volume, V', and length Z which

are found by integration. The surface element for a cylinder of revolution is by definition

2w

cos ¢(x)

Surface area can be found by integrating the surface element given in (4.42) and length can be

ds = |x, X Xz|drdw =

da. (4.42)

found by integrating (4.10). The relevant integrals are listed here for easy reference:

l—e
S = 47r/R cos:fzb(:v)dx’ (4.43)
l—e
vV = 27r/ 2% tan ¢(z)dz, (4.44)
llje
Z = 2/ tan ¢(z)dz. (4.45)
R

Equations (4.43)-(4.45) will have a value of 0o at 4, = [, as boundary conditions (4.40) will
set cos ¢(I) = 0. When integrating (4.43)-(4.45) numerically, the upper bound on x must be
x = | — ¢, keeping the boundary conditions (4.40) and (4.41). It would be possible to avoid
this singularity by writing these equations as radius as a function of length so that z(z). In

this case

L
X = 2/ = arctang(z)dz. (4.46)
0

However, singularities occur if sin(¢(z)) = 0 for 0 < z < L, which must then be taken into
account. Singularities in both (4.45) and (4.46) can be avoided by matching the solutions of
(4.45) to those of (4.43) as © — | — € and using (4.43) to find z(z) for | — e < x < [. However,
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the limitation of only finding the solution for z in the range R < z < | — € where ¢ = 10™* has
been accepted.
The key ODE to be solved to obtain these quantities is

dz
P tan ¢(z), (4.47)

which will be referred to as the profile equation.
The profile of the droplet can be found by plotting x, the radius of the droplet from the

axis of rotation, against z(x), the length of the droplet. The boundary conditions on z(x) are

Z
2(l—€)=0 and z(R)= 3 (4.48)
so that the radius of the droplet decreases as its length is said to increase. If ¢p(R) = 7/2
or —m/2, there is also a singularity at * = R so that x must be integrated in the region

R—e<z<l—e

4.5.3 The Droplet Model for Arbitrary Contact Angle

The constants in (4.23) can be generalised to

zsing = K22 4+ Ko, (4.49)
where A
K, = Tf and Ky =K. (4.50)

The boundary condtions (4.40) and (4.41) can be substituted in to find the constants K3
and Ko such that

l — Rcost lcosd — R
Kl = W and KQ = RZW (451)
By factorising, the profile equation (4.47) can be written as
: 2
dz _ sin ¢ _ x° 4+ aRl . (4.52)
dz 1—sin?¢  [(12 —22) (22 — a2R?)] /
where loosd — R | K
_ sy 2 (4.53)

T T " Rcost RIK,
4.5.4 Normalisation of Droplet Model for Arbitary Contact Angle

Set n =1/p and m = R/p where R is the radius of the fibre and x,,;, = p is the minimum
radius of the droplet. When the droplet sits on the surface of the fibre then p = R and m = 1.

We make the following normalisations:
x=p% and z=pZ. (4.54)
The normalised boundary conditions (4.40) at the mid-length of the drop are now
Tmaz =m and  ¢(n) =m/2 (4.55)
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and the boundary conditions at the surface of the fibre (4.41) are now
Tmin=m and  ¢(m) =7/2— 6. (4.56)

The constant (4.53) can also be written as

ncosf —m
=

= 4.57
n — mcosf (457)
and principle curvatures ¢, (4.17) and ¢y, (4.18) can now be written as
n—mcos n ncosf —m
9 T T2 2 + 72 2 _m2 (4.58)
n—mcosf n ncos —m
m T TR m? T ® -mE (4.59)
Finally, (4.52) can be written in the normalised form
d3 =2
7,::7:_ 7+ amn -, (4.60)
a2 = 22) (3 — (am)?)]"

which is the form of the general profile equation (4.47) which will be repeatedly referred to in
this chapter. The surface area, length and volume of the can be normalised in the same way,
as can the length of the fibre L, so that

S = p’S, (4.61)
Vv o= pV, (4.62)
z = pz, (4.63)
L = pL. (4.64)

From now on all variables are assumed to be normalised in this way and the ~ form is implied.

4.6 The Fibre Engulfment Problem

The next step is to consider what happens to the shape and contact angle of the droplet as
it engulfs a cylinder of finite length. Instead of looking at models of a boundary moving with
time, it is simpler to start with considering the series of static solutions. This is consistent
with the case where vapour slowly condenses onto a fibre, forming a droplet so that rate at
which the volume increases is slow enough for the surface tension to maintain the shape of the
drop. The relevant contact angle is the dynamic contact angle 6p, for which the leading edge
of the droplet is expected to be moving at a constant speed. Alternatively, the drop might
be allowed to reach equilibrium between incremental increases in its volume. In this case, the
stationary contact angle, 8 should be used. For either case, §p and 0 can both be labelled
as the critical contact angle .. For more detail see Appendix C.2.

It can be expected that the droplet will engulf the fibre as its volume increases. The
problem to be solved is, therefore, how a drop engulfs a fibre of a finite length L and radius 1
as its volume increases, where it is assumed that that these parameters have been normalised

as discussed in Section 4.5.4. The steps by which a drop is taken to engulf a fibre are as follows.
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(a) Contact angle between the surface of
the droplet (dotted line) and the length
of the fibre, 0, at critical volume V; where
z=L.

(b) Contact angle between the surface of
the droplet (dotted line) and the cross-
section of the fibre, 0, at critical volume

Vit where z = L.

Figure 4.2: Diagrams of contact angle 0 at the solid/liquid/air boundary point. Tllustrated for § < /2.

104



Region 1

Figure 4.3(a) is a sketch of a droplet in this region. The minimum radius of the droplet is
the radius of the fibre and the contact angle is the critical contact angle .. Define V' =V} to
be volume at which the length of the drop is the same as the length of the fibre and the contact
angle is the critical contact angle. At small volumes 0 < V' < V7, a droplet’s length Z is smaller
than the length of the fibre. As its volume increases, the length of the droplet increases. The
normalised maximum droplet height n is the only free parameter in the boundary conditions.

The boundary conditions for this region can be summarised as

Trmaz =N at o(n) =7/2, (4.65)
Tonin = 1 at (1) =m/2 -0, (4.66)
Z=1 at V=VI, (4.67)
Z <L when 0<V <V (4.68)

Region 11

At the critical volume, V; the droplet reaches the end of the fibre Z = L. At this point the
leading edge of the droplet is pinned at that point so its length is fixed as shown in Figure
4.2(a). The normal is not defined at the corner so the contact angle is no longer fixed. An
increase in volume results in an increase in contact angle. A sketch of a droplet in this region
is in Figure 4.3(b). At the critical volume Vs the contact angle has increased by 7/2 so that
0 = 0.+ w/2. When 0 = 6.+ 7/2 the angle between the droplet and the radius of the fibre is

the critical angle, 8.. The boundary conditions in this region can be summarised as

Tmag =N at o(n) =7/2, (4.69)
Tomin, = 1 at (1) =m/2 -0, (4.70)
Z =1L when 0. <0 <6.+4m/2, (4.71)
and V<V <V, (4.72)

V=V and 0=0.+m/2. (4.73)

Region 111

Figure 4.3(d) is a sketch of a droplet in this region. A droplet at critical volume V77 is illustrated
in Figure 4.2(b). The contact angle between the droplet and the fibre cross-section is 6. so
that the leading edge of the droplet can move down the end surface of the fibre as the volume
is perturbed. The point of engulfment occurs when V' = Vj; as volume is decreased from Vi
to Virr. This point has to be defined slightly differently for long and short fibres. When fibres
are short, engulfment will be of type S while when fibres are long, engulfment will be of type
L.

For short fibres, a point of engulfment of type S is reached by decreasing x,;, while 0 is

fixed until part of the droplet surface rests on the surface of the fibre as shown in Figure 4.3(c).

105



If a point on the surface of the droplet is given by the coordinates [z(x), | as defined in Figure

4.1(a) then at the point of engulfment of type S we have

2(Xmin) = LJ/2, (4.74)
2(1) = L/2. (4.75)

Tmin cannot be decreased after a solution has reached this point.

When the fibre is long, engulfment is of type L. The leading edge of the droplet can move
down the cross-section of the cylinder unhindered. As the only possible limiting shape is that
of a sphere as x,,;, — 0, the variables € and x,,;, are no longer independent. For this reason,
a series of numerical solutions are found for which z,;, is decreased, while ¢(min) is fixed,
until &, = € where € < 1. At X, = € a point of engulfment of type L is reached.

The free parameters are now x,,;, < 1 and contact angle. The boundary conditions for

this region are

Timaz =N at o(n) =m/2, (4.76)
€ < Tmin < 1 at O (Tmin) = 0 + /2, (4.77)
Z =1L when Vire >V > Vg, (4.78)

As xmin — 0, Section 4.8 will show that the only possible limit shape is a sphere, which has
a smaller volume than any other mean curvature shape of the same length. For this reason, if

the leading edge of the droplet moves down the end surface of a fibre, the volume will decrease.

4.7 Delaunay Constant Mean Curvature Surfaces

Firstly, consider the profile equation (4.47) written in terms of sin ¢(z)
dz B sin ¢

—_——_ 4.79
dx (1 — sin? gb) 1/2 ( )

Recall the geometrical meaning of the z and x co-ordinate axes illustrated in diagram (4.1(c)).
The plot of the profile equation z(x) is the cross-section of the droplet.

The force balance equation (4.49) can be re-written as an equation for sin ¢(x)

K A,
i S ) 4.
sin ¢(z) . + N (4.80)
If A
A 4.81
P=gy (4.81)
then (4.80) can be substituted into the profile equation so that
2
dz pr- + K (4.82)

dr (22 — (pa2 —I—K)Q)I/Q.
The denominator of the profile equation is real only when —1 < sin(¢) < 1. The denomi-

nator is quadratic in z so the values of  for which sin? ¢ = 1 are given by

2% = (pz® 4+ K)?, (4.83)
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(a) Shape of droplet on the fibre in
region I with boundary conditions
(4.65)-(4.68).

(c) Shape of droplet on the fibre at
V' = Vi1 for short fibres.

T

I ]
by
(b) Shape of droplet on the fibre in

region /I with boundary conditions
(4.69)-(4.72).

=

(d) Shape of droplet on the fibre
in Region III for long fibres at the
point which the contact angle begins
to change.

(e) Shape of droplet on the fibre at
V = Vi1 for long fibres.
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or
» _ 2(1—2pK) + 2yT— 4K
(2p)?

x (4.84)

The positive solutions for x are therefore

1+ I—4pK

N (4.85)

r4 —

The solutions x_ and x4 are the minimum and maximum possible droplet radii allowed for
any set of parameters p and K.

When ¢ = 0 the rate of change of the length of the droplet with radius changes sign. The
surface of the droplet folds over itself and so it is labelled a turning point. If the contact angle
is obtuse so that sin ¢(R) < 0 then there must be a turning point in the solution of z(z) so
that the boundary conditions at the maximum radius (4.40) are to be met. From the definition
of the maximum curvature c,, when sin ¢ changes sign then ¢, will also change sign.

From the profile equation (4.82), a turning point will occur when

[—K
xr = S (4.86)

d?z 1 do
dz? ~  cos2¢dx’ (4.87)

if this is real.

When the second derivative of z(z),

is zero there is a point of inflection in the solution. From the definitions of ¢, in terms of ¢

this can be re-written as

d*z 1
— == . 4.88
dz? cos? ¢cm(:1:) (4.88)
From the definition of ¢, (z) given in (4.30), an inflection point will occur when
K
T =] 4.89
» (4.89)

if this is real. Clearly, the condition for a turning point (4.86) and the condition for an inflection
point (4.89) cannot both be true so any solution of the profile equation can have either a turning
or inflection point, not both.

From (4.85), (4.86) and (4.89) the following observations can be met. There are no real
solutions of (4.85) for 4pK > 1. When 4pK = 1 then 4y = z_ and the solution is that of a
cylinder. While 1 > 4pK > 0 then by (4.86) inflection point solutions are expected. 4pK < 0
is consistent with the condition for turning point solutions (4.89). (4.28) and (4.30) show that
when K = 0 the solution is that of a sphere where ¢, and ¢, are constant. (4.85) confirms
that when K = 0 Zyn, = 0 and x4, = 1/p as expected where the radius of the sphere is
1/c, = 1/p. These observations confirm well-known properties of surfaces with constant mean

curvature called Delaunay surfaces [72].
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If the solution has an inflection point, there is a minimum in the function ¢(z). The value

of sin ¢ at which an inflection point occurs is

sin ¢; = 24/ Kp. (4.90)

As an inflection point occurs when 1 > 4pK > 0 then 1 > 2y/pK > 0 so ¢(x) will be acute.

4.7.1 An Example Turning Point Solution

For an example of a turning point solution, set the contact angle § = . The boundary
conditions (4.41) and (4.40) are now

&(R) = —7/2 at z =R, (4.91)
o(l) =7/2 at x =1 (4.92)

These boundary conditions can be substituted into (4.60) in Section 4.5.3 to find the profile

equation

dz z2 — Rl
= \/(12 s RZ)‘ (4.93)

Equation (4.93) changes sign at sing = 0 when x? = RI, which is the turning point. The

solution to the profile equation is plotted in Figure 4.4(b).

4.7.2 An Example Inflection Point Solution

For an example of a turning point solution, set the contact angle & = 0. The boundary
conditions (4.41) and (4.40) are now

d(R)=m7/2 at r =R, (4.94)
o(l)=7/2 at x =1 (4.95)

These boundary conditions can be substituted into (4.60) in Section 4.5.3 to find the profile

equation
d 2+ RI
& Tt . (4.96)
dz V(2 = a2) (22 = R?)

In this case there is an inflection point when 22 = RI. The solution to the profile equation is

plotted in Figure 4.4(a).

4.8 The Asymptotic Limit ¢ = p/l — 0 for Contact Angle 6 =0

Increasing the volume increases the maximum height, | and so decreases the ratio of the
radius of the fibre p to the radius of the droplet [. The asymptotic limit where e = p/l — 0 can
be investigated and is relevant when considering small bundles of CNTs which have negligable
radius. The results from this section show that in the limit ¢ — 0 the solution is a sphere and

corrections of O(e) add inflection or turning points to the solution.
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(a) Solution of (4.96) with inflection point. (b) Solution of (4.93) with turning point. The
The boundary conditions are given by equa- boundary conditions are given by (4.40) and
tions (4.40) (4.41), where 6 = 0, [ = 1 and (4.41), where 0 =7, I =1 and R = 0.3.
R=03.

Figure 4.4: Examples solutions of (4.93) and (4.96).

4.8.1 The Asymptotic Limit € = p/l for an Inflection Point Solution

Scale z(z) and x by the maximum length [ so that

2(z) = 1f(9), (4.97)
x = lg. (4.98)

To find the asymptotic expansion of z(z) and x of an inflection point solution these normali-

sations are substituted in (4.96) so that

d 2
a4 gt (4.99)
g [(1-g?) (g? =)
Using the following asymptotic expansion,
flg) = folg) +efilg) + -, (4.100)
to zero order in €, (4.99) is reduced to
dfo g
_— == 4.101
oy (4.101)
This can be integrated to find the normalised length to leading order so that
fo=—V1—g24corl=(fo—c)?+g" (4.102)

This is a spherical solution. When ¢ = 0 the boundary conditions fp(0) =1 and fy(1) = 0 are

met. The first order equation is

dfr 1
_—= 4.103
dg  g\/1—g2 ( )
which has the solution
1
fi = —arctanh [ —| . (4.104)
V1-—g?
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From the shape of the plot of (4.104) in Figure 4.5 it can be seen how this first order
correction adds a turning point to the solution. The first order solution decreases the length
for small radius so that the maximum length is not at the minimum radius. Higher order terms

are of a similar shape.

0 0.z 0.4 06 0.8 1

Figure 4.5: Plot of f1(g) given in (4.104) against g.

4.8.2 The Asymptotic Limit € = p/l — 0 for an Turning Point Solution

Substitution of (4.97)-(4.98) into (4.93) results in

d__ g (4.105)

dg [1-g?) (g2 -

The zero order solution is the same as (4.102) and the first order solution has the opposite sign

of (4.104). This term and higher order terms in f add an inflection point to the solution.

4.9 Types of Solutions in Terms of n and cosf

In this section let the boundary condition at the surface of the fibre (4.56) be m =1 as it
is for Region I and II solutions defined in Section 4.6. The solutions of the normalised droplet
model for an arbitary contact angle introduced in Section 4.5.4 will have turning points when
an < 0 and inflection points when an > 0. For reference, the value of the parameter a (4.57)

in terms of n and cos @ is again stated below

ncosf —1
= 4.106
“ n — cos ( )

Let x¢; refer to the point at which there is either a turning or inflection point. It is useful
to quantify the relative placement of the turning or inflection point along the z-axis. This is

done by defining

2 _ 2
Fy = i Tmin_ (4.107)
Tmaz ~ Tmin
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Parameters x%m Z%Z x%lax
w p (5 —w)? | lwlw—1/p)| | v’
a RI (aR)? laRI| 12
amn (am)? lamn| n?

Table 4.1: Miminum z,,;, and maximum z,,4, possible radii of solutions and also radius of turning

or inflection point xzy;.

Type | Bounds on Constants | Bounds on cosf and n
1 Ky <0 1>n>cosf
Ky >0
2 K;>0 1/cosf >n >1
Ky <0
3 K1 >0 n>1/cosf
Ko >0
4 K1 <0 n < cosf
Ky <0

Table 4.2: Types of solutions found for solutions parametrised by n and cos6. K; and K, are defined
in (4.49) and (4.51). If K1 K> < 0 then the resulting solution may have a turning point, and otherwise
it may have an inflection point.

and ) )
Fy = e i (4.108)
Limaz ~ Tmin

It can be checked that 7 + F5 = 1 so F} indicates at what fraction of the maximum radius
the turning or inflection point occurs without having to use terms containing square roots.
Four groups of solutions can be found. These groups, which are parametrised by K; and
Ky defined in (4.51), are presented in Table 4.2. By 4.49, if KjK5 < 0 then sin ¢ can change
sign and the solution may have a turning point. If K1 Ko > 0 then sin ¢ cannot change sign and
the solution may have an inflection point. Solution types 1 and 2 are turning point solutions
while types 3 and 4 are inflection point solutions. Type 1 and type 2 solutions will be discussed

in Section 4.9.1 and type 3 and type 4 solutions will be discussed in Section 4.9.2.

4.9.1 Turning Point Solutions

The turning point occurs when ¢ = /—an which has been plotted as a function of n in
Figure 4.7. \/—an increases as n increases. As n — oo we have an =~ ncos@: for large n,

an is directly proportional to n. Figure 4.7 plots /—an and n against n for contact angle
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@ = 120°. The plot demonstrates how an monotonically increases with n. The following
discussion indicates how cosf determines whether \/—an < 1 < n or 1 < /—an < n when
n > 1. These results are summarised in Table 4.3 with example solutions given in Figure 4.9.

Type 1 solutions from Table 4.2 will correspond to choices of n and cosf for which the

inequality
1>mn>cosb (4.109)

is true, so that K1 < 0. » > 1 holds in the normalised model in Section 4.5.4 and so type 1

solutions can be disregarded in the fibre engulment problem.

Type 2 solutions correspond to solutions when Ko < 0, or when 1 —ncosf > 0. This is
always true when the contact angle § > 7/2 and cos < 0. When cosf > 0 type 2 turning

point solutions can be found when

>n>1 4.110
cos 0 " ( )

is true. When cos€ > 0 and (4.110) are true, |an| = n when n = 1 and |an| = 0 when
n = 1/cosf, so the turning point will never occur in the region when 1 < x4 < nif n > 1.

Type 2 solutions for which cosé > 0 correspond to Group 1 solutions in Table 4.3.

When cos@ < 0 and (4.110) are true, then |an| = n when n = 1. Note that

j—z = (n — cos )% (cos (1 — ncos 0) + ncos B(n — cos h)) . (4.111)
When cosf < 0, both terms on the right hand side of (4.111) are always negative so an will
become increasingly negative as n increases. As n increases from 1 the turning point will move
away from the surface of the fibre. Type 2 solutions for which cosf < 0 correspond to Group
2 solutions in Table 4.3.

As n is increased then the increase in maximum thickness n — 1 will ensure an increase in

length. Now from (4.107) we have

- a2, 1
Fy= g Tmin 0T as - . (4.112)
Taz — Tmin n®—1

As n increases, less of the droplet doubles back over itself as the turning point moves relatively
closer t0 Tyn. Increasing the maximum radius of the droplet also moves the turning point

closer to the radius of the fibre and both factors work together to increase its length.

4.9.2 Inflection Solutions

The inflection point occurs when z = y/an which has been plotted as a function of n in
Figure 4.8. /an increases as n increases. Figure 4.8 plots y/an and n against n for contact
angle # = 60°. The plots demonstrates how an monotonically increases with n and v/—an < 1
for small n. The following discussion indicates how cos @ determines whether \/—an < 1 < n
or 1 < y/—an < n when n > 1. These results are summarised in Table 4.3.
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Type 4 solutions will correspond to the case where K; < 0 and Ko < 0 so
n < cosf, (4.113)
which are only possible for n < 1 which are irrelevant to the normalised model in Section 4.5.4.

Type 3 solutions will correspond to the case where K7 > 0 and K9 > 0 when n > 1 and
1

n>——7 (4.114)
If n <1 then cosf > 0.
When n =1/ cos then a = 0. From (4.111) and the inequalities
cos (1 —ncosf) +ncosf(n — cosf), (4.115)
= cosf(1+n?) —2ncos?, (4.116)
> cosf(1—n)? >0, (4.117)

it is clear that a will increase with n. When an = 1 the inflection point is at the surface of the
fibre. The equation an = 1 where a is given in (4.57) is a quadratic equation in n and can be
solved for n to find

B 1+sind

ni = (4.118)

cos 6
where n_ < 1 belongs to type 4 solutions and n4+ > 1 belongs to type 3 solutions. If 1 <n < ny
then y/an < 1 and the solution is a Group 3 solution in Table 4.3. Otherwise, if ny < n, then

it is a Group 4 solution.

The inflection point occurs when x; = y/an and the corresponding value of ¢; is given by

tan ¢; = 2an _ 2van (4.119)

V(2 —an)(an —a?) (n—a)

Note that this has a maximum at

1 +siné

4.12
cos ( 0)

Nmax =

From (4.118) it is known that when tan ¢; is a maximum, the inflection point is at the surface
of the fibre. Substituting (4.120) into (4.119) leads to
cos 0

t i(Mmaz) = £——. 4.121
an 6i(mas) =+ (1121)

Now define the inflection angle to be the value 6; = 7/2 — ¢; so tan ¢; = tan(w/2—6;) = cot 0;.
By (4.121) when the inflection point is at the surface of the fibre §; = 6 as required by the
boundary conditions.

The limit of tan ¢; for large n is 2y/an/n — 0. As n — oo the value of ¢; — 0. ¢; =0 is
effectively the condition for a turning point. Figure 4.6 clearly shows that the maximum value
of ¢; is the contact angle and ¢; decreases with increasing n. It can be shown to tend to 0° for

extremely large n.
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Now consider

2

2

—— -1
F= i Tmin ST, (4.122)
Linaz — Timin n®—1

so when n — oo the inflection point will move towards the minimum radius as the inflection

point angle tends to 7/2. The solution tends to the same spherical limit which was found in

Section 4.8.

As n increases, the maximum droplet thickness n — 1 also increases, which will increase the

droplet length. Initially, ¢;(z) also increases with n which will also increase the droplet length.

However, when n > Nynae, ¢i(x) will decrease with n which will slow the increase in droplet

length. A smaller contact angle 6 will allow a larger minimum angle so smaller contact angles

will allow longer droplets for a given n.

o0

szl

s

o

20

40

sis] 30 100

Figure 4.6: Plot of ¢; (degrees), ¢(z) at the point of inflection as defined by (4.121), against n for
contact angle 0 = 80°. ¢, is a maximum when ¢; = 90 — 0 and n = (1 4 sinf)/ cos 6.

50

401

307

207

— (a2

Figure 4.7: Plot of v/—an and n against n turning point solutions for § = 120° and cos# < 0. Turning
points are found when z = \/—an. Note that as n increases the ratio /an/n — 0 and at n = 1 we

have an = 1.
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Figure 4.8: Plot of /an and n against n for inflection point solutions for contact angle § = 60°.
Inflection points are found when = /an. Note that as n increases the ratio /an/n — 0 and at n =1

we have an = 0.

4.10 Solutions in the Limit that m — 0

In Region III, a series of solutions is found for decreasing values of m. In Region III all

solutions are turning point solutions. If m # 1, then (4.112) is

2 2 2
Fy = i Tmn SR (4.123)
Limaz — Tinin nT—m

Using (4.57) in the limit of m — 0 then clearly Fi — 0. So as m is decreased then z? =~

cos@mn. When m = 0 this corresponds to the solution of a sphere where x4 = 0. Note
that x4, and so Fj, also decreases as cos decreases. Therefore as F; decreases, more points
are required to find smooth numerical solutions. This will be discussed in more detail in the

following discussion.

4.11 Solving the Boundary Value Problem

Constant mean curvature droplets can be used to find numerical solutions to the fibre
engulfment problem introduced in Section 4.6. A fibre is engulfed by a droplet by perturbing
the volume to move solutions through Region I, to Region II and then to Region III. Critical
volumes are found when the solution moves from one region to another.

It is assumed that the wettability of the surface of the fibre by the droplet is relatively high
and so the contact angle is acute. This is consistent with the assumption that a cell will not
easily engulf an object which is very hydrophobic. A droplet which forms on a fibre with an
acute contact angle is called a barrel drop and has been investigated in papers such as [12] and
[64]. These droplets have points of inflection and have been successfully modelled by inflection
point solutions.

There is therefore some physical justification to use inflection point solutions in Region I.
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Bounds on cos ¢ Bounds on n Order of turning/

inflection points,
Tmin and Tmag
Group 1 cosf >0 1<n<1/cos@ vV—an <1l<n
Group 2 cosf <0 all n 1< y/—an<n
Group 3 cosf >0 1/cosf <n < (1+sinf)/cosf van <1l<n
Group 4 cosf >0 (14+sinf)/cosf <n 1 <yan<n

Table 4.3: Summary of the results of Sections 4.9.1 and 4.9.2. If \/—an is real then the solution has
an inflection point and if \/an is real then the solution has a turning point. An example of a solution

from each group can be found in Figure 4.9.

28 28
24 24
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(a) Group 1: § =70°, n =25 (b) Group 2: § =120° n = 2.5
6
1.2 5
115 4
%
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=
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S o
3 M 3
o
105 5
1 1 L L L
0 005 0.1 0 2 4 6
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(c) Group 3: 0 =120 n = 1.2 (d) Group 4: 0 =70 n =6

Figure 4.9: Examples profiles corresponding to solutions types summarised in Table 4.3.
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When the contact angle is variable in Region II, both inflection and turning point solutions
will be required while only turning point solutions are useful in Region III.

Solutions of the boundary value problem were found by minimising the output function
y=2/2—L/2, (4.124)

where Z = z(@min) and L is the length of the fibre. The minimisation was done using the
MATLAB program fzero using the default settings. The algorithm uses a combination of
bisection, secant and inverse quadratic interpolation methods. The input parameter to this
minimisation problem is either n or #, the required contact angle. The other boundary condi-
tions from Section 4.5.4 are fixed. Z is found by integrating (4.60) between the limits z,;,, to
Tmae Using the MATLAB solve ode45. The option ‘Refine’ was increased from a default value
of 4 in order to increase the number of points required to find a smooth solution when Fi, as
defined in (4.107) is small. The default number of points in a solution is multiplied by a factor
of ‘Refine’.

Now the critical volumes defined in Section 4.6 can be found. To increase the volume in
Region I, the parameter n must be increased as the contact angle is fixed to the dynamic
contact angle, 6., and also m = 1. As the contact angle is increased in region II, an n must be
found for every contact angle 6, which will ensure that Z = L.

For solutions in Region III, § = 6. + /2 is fixed. Initially m is decreased in steps of 1072

where for each solution a value of n is found for which Z = L. If a solution is found such that

for
2(Tmin) = L/2, (4.125)
z(xg) < LJ2, (4.126)
vp < 1, (4.127)

then for those values of L/2 and 6., engulfment is of type S. The values of m and n which
correspond to this point of engulfment can be determined more accurately by allowing m and

n to be free parameters while minimising the output vector y = [y1, y2, y3] where

i = 2(Tmin) — L/2, (4.128)
y2 = z(zgp) - L/2, (4.129)
ys = zp—L (4.130)

The point p = [zg, z(zg)] is the point on the solution curve closest to the point g = [1, z(1)].
As the function to be minimised is a vector rather than a scalar, the MATLAB program fsolve
was used instead of fzero. If a point of engulfment of type S is not reached then engulfment is

of type L.

4.11.1 Results and Discussion

All results are parameterised by the contact angle 6. and the length of the fibre L. Crit-

ical volumes are normalised using the volume of a sphere whose radius is L/2 so that Vj =
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(4/3)m(L/2)3. Figure 4.10 contains examples of series of solutions in Regions I, IT and III for
0. = 45°, 10° and 80° when L/2 = 8. The solutions in Figures 4.10 and 4.12 show the process
of the cell engulfing the ends of the fibre. Examples of solutions at V = V7, Vir and Virr can
be found in Figure 4.11.

Numerical solutions for V7 and Vir can be found in Figure 4.13. As L is increased and 6, is
decreased then V77 /Vj tends to 1. In this sense it can be said that the solutions at Vi; approach
a spherical limit. As L is increased, then V;/V} also tends to 1. However, when the contact
angle 6. is small, there is a minimum in V; w.r.t. L. From Figure 4.14, it can be observed that
ZTmaz 18 roughly linearly proportional to L. So as L is increased then F} decreases as previously
discussed. So as F7 decreases, the normalised volume of the solution tends to 1. In this sense
the solutions for V; and Vj; tend to the spherical limit as L is increased.

Figure 4.12(a) is a much less smooth solution than that in Figure 4.12(b). The consequence
of the lack of smoothness in solutions is that the numerically obtained critical volumes do not
vary smoothly with L or 6.. Both these solutions were found in the case that the MATLAB
parameter ‘Refine’ was set to the default value for ode45, which is 4. However, Figure 4.15
indicates that even significantly increasing the value of ‘Refine’ does not make the numerically
found values of Vi vary any more smoothly with L or . when engulfment is of type L and
Zmin = 1072, The results in this chapter were found in the case that ‘Refine’= 4. Only results
not effected by the lack of smoothness of the numerical solutions of the profile equation (4.60)
have been included.

Figure 4.16 shows solutions of Vij; where x,, = 0.1. 2y is large enough for Vi to vary
smoothly with L and 6.. As L is increased and 0. is decreased Vijr tends to 1. Figure 4.17
indicates how the volume of a solution in Region III varies with @p,n. AS Tpmin is decreased
then the volume of the solution also tends to 1. In Section 4.10 it was discussed how F} — 0
as Tmin — 0. In this sense, the solution tends to the spherical limit as x,,;, is decreased.

Results relating to engulfment of type S are found in Figure 4.18. No minimum limit was
imposed on Xy, The lack of smoothness in these plots has previously been discussed. They
have been included to demonstrate the general properties of these solutions. As in the case for
engulfment of type L, x4, inicreases approximately linearly with L. x,,;, also decreases as L
increases. The trends in Z,u, and x4 both ensure that F} decreases as L is increased and

so the normalised volume tends to 1 as L is increased.

4.12 Summary

The results of this investigation can be summarised by two points. For droplets whose

mean curvature is constant,

e the choice in boundary conditions of normalised maximum radius n and contact angle
indirectly control the volume of the droplet by determining the placement of points on
the droplet surface where the rate of change of length z with radius z is a minimum,

which are points of inflection, or zero, which are turning points.
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e for a given volume, the type of solution which has the maximum length is the sphere. So
by the constant mean curvature model, it is predicted that CNTs will be phagocytosed

by macrophages which can be described as perturbations of a sphere.
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gle 6. = 80°.

Figure 4.10: Example cell on fibre solutions when L = 8. Key: blue - Region I solutions for which
V < Vi, red - solution for which 6 = 90°, black - solution at V' = V;; and green - solutions in Region

II1
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Figure 4.11: Examples of solutions at which V' = V;, V;; and Vj;.
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(b) Cell engulfing fibre solutions for L/2 = 1

(a) Cell engulfing fibre solutions for L/2 = 12
for 6 =0, 15, 30, 45, 60, 75 and 90.

for 0 =0, 5, 10, 15.

Figure 4.12: Example cell engulfing fibre solutions of type S. For a given fibre length, 2, will

decrease as 0 increases. Note that for the longer fibre the solution is much less smooth.
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(c) Critical volumes V; and Vj; against 6.

Figure 4.13: Numerical solutions for V; and V;;.
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Figure 4.14: Boundary condition Z,,,, as required for critical volumes V; and Vj;.
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Figure 4.15: Numerical solutions for V7;; when engulfment is of type L and ,,;, = 1072 when the

numerical integration was done using the MATLAB solver ode45. Results indicate a lack of smoothness

numerical results for z and z. ‘Refine’ is the parameter controlling the number of points in the numerical

solution which makes little difference to the numerical results.
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Chapter 5

Introduction to the Helfrich Energy

Minimisation Problem
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5.1 Chapter Summary

The Helfrich energy minimisation problem as outlined in [25] is reviewed in Sections 5.2-
5.4. The remaining sections of this chapter present analytical results, which will be referred to
when discussing the numerical solutions in Chapter 6. Though plots of numerical solutions to
the Helfrich boundary value problem are provided in this Chapter to demonstrate the accuracy
of the analytical solutions, full details of how to obtain these analytical solutions will be found
in Section 6.3.

The free energy associated with a cell membrane is minimised in Section 5.2. A discussion
of the forces implied in the resulting Euler-Lagrange equations can be found in Section 5.3.
The boundary conditions of the Helfrich energy minimisation problem are set out in Section
5.4. An introduction to the cell on a fibre boundary value problem is given in Section 5.5
while the normalisation for both the Helfrich boundary value problem and the cell on a fibre
boundary problem is given in Section 5.6. The boundary conditions for both the Helfrich
boundary value problem and the cell on a fibre boundary problem ensure that the solutions
are symmetric about the mid-length. The form of the Helfrich energy used ensures that the
solutions are axisymmetric surfaces of rotation.

Analytical solutions found for the Helfrich boundary value problem are given in Sections
5.7-5.11 which have not been found elsewhere. The parameters A, and X for a spherical solution
are found in Section 5.8 for any value of spontaneous curvature c¢g. Leading order polynomial
solutions for the Helfrich boundary value problem are given in Section 5.9. These solutions
are valid when the mean curvature at the axis of rotation  is asymptotically close to that of
a sphere

k=143, (5.1)

so that § is small in the case when ¢y = 0. These analytical solutions are used to provide
initial estimates when numerical solutions for the cell on a fibre problem are found in Chapter
6. These analytical solutions are compared to the solutions found by numerical methods.

In Chapter 6 it will be seen how branchlines of solutions to the Helfrich or cell on a fibre
boundary value problems are formed by perturbing certain parameters. These branchlines of
solutions end when no further solutions of acceptable error can be found. This numerical error
arises from the use of approximations to the Euler-Lagrange equations at s = 0 and s = 1/2
given in Section 5.4. In Section 5.9.1 it is checked whether the conditions at the singularity at
the maximum radius are consistent with the leading order solutions found in Section 5.9. The
consequences of numerical error to the leading order solutions is accounted for in Section 5.9.2.
Including this numerical error in the analytical solutions improves the fit of the analytically
derived boundary conditions with the numerically found solutions.

Numerically calculated higher order corrections to the the leading order solutions found
in Section 5.10 were found to be consistent with what can be deduced analytically. Finally,
Section 5.11 shows how when the absolute value of spontaneous curvature is small, ¢ dependent
terms up to O(0) cancel so that the leading order solutions for ¢y = 0 are still applicable.

Finally, the Euler-Lagrange equations were examined as a dynamical system in Section
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5.13. The discussion in this section is referenced heavily in the discussion of the numerical

solutions of the cell on a fibre boundary value problem in Chapter 6.

5.2 Minimisation of the Helfrich Energy

As in the previous chapter, the cell is modelled as a surface of revolution around an axis
of rotation. From (4.42) and (4.44) in Chapter 4 we can write

ds = coggﬁg(gx) dzx = 271—'%(1 B (Cpx2))71/2dx7 (52)
dV = ma?tan¢(x)dr = mepa®(1 — (cpr))_l/de. (5.3)

Equations (5.2)-(5.3) and (4.17)-(4.18) can be used to write the free energy of a cell membrane

F:/ (1/2)kc(cm—l—cp—co)2d5—l—/ ApdV+/ AdS, (5.4)

as
dc,

2
TI'/IE(l _ (cpx)Q)_1/2 {kc (mdfc + 2¢, — co> + Apze, + 2>\} dz, (5.5)

where ¢, is eliminated from (5.4) by using the relation

dep _em—cp (5.6)

dx T

This relation is identical to (4.29) but has been given here for convenience. In this chapter it
will be referred to as the symmetry condition. The terms proportional to k. in (5.5) are the

Helfrich energy Ep, which is

/EH dr = /(1/2)1% (2cp + x% — 00)2 (1 - (fo)l/? da. (5.7)

The Euler-Lagrange equation of the Helfrich energy minimisation problem is

oF d OF
e (5.8)
Ocp, dx Oc,
This integral is minimised w.r.t. ¢y(z) or ¢(z). The partial derivatives in (5.8) are
OEn 23, dey, 2
9e, = 7 R 2¢cp, + &= (5.9)
(1 — (xcp) )
2 d
n e 9%, + 122 — ¢ (5.10)
N 1/2 dx
(1 — (xcp)

and
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iaEH d T

de
— - _9r 277 _
iz 96, 27Tdac RNTE (20pm+x T cm:) (5.11)
(1 — (wep) >

2rx dep 2d2cp
(- )2vz<“d$+x(mz+”%‘% o1
— QJCp >
) d
_ T (2cpa? + 2252 6096> (5.13)
(1 — (zc )2) / e
4
2 2 dcp d
mepr(cpr + 27 5E) <26px +$2£ _ CO:C) _ (5.14)

(1 - (xcp)2> i

The lines (5.10), (5.12) and (5.13) can be combined and re-arranged to find

2 dc de
-2 UL 1
Wu—@@%m<¢v+M>’ o1

where by differenting (5.6) we have

dc? 1 (de, dc Cm — C
_r _ (P _TTm)_Tm P 5.16
dz? T (dm dx > z2 (5.16)
1 de,,
= _-Zm 1
x dx (5.17)
The terms in (5.14) are also be re-arranged to find
QTr—Cp:ES em (em + ¢p — co) (5.18)
— m \Cm —C0) - '
(1= (wep)?)* ’
Writing the Euler-Lagrange equation (5.8) in terms of ¢, and ¢, results in
(zep)(ke/2) (em +cp — 00)2 — (wep)ke (em + cp — co) em
dc dem
—(1-— (xcp)2)kcd—; - (1- (xcp)z)kc% = 0. (5.19)

The force associated with the surface energy term has been found in the previous section to
be (4.25) and that for the volume energy was found to be (4.26). Recalling that xzc, = sin ¢,
these terms can be added to (5.19) so that the balance of forces associated with the Helfrich

energy variation problem is

2 sin ¢(ke/2) (cm + ¢p — €0)* — T8I0 Pkelm (¢ + ¢p — €o) + x50 GA + (1/2) A2

d m
— cos? qukc% — cos? qb:ckcdd% = 0. (5.20)

The bending constant k. has dimension of [Energy| so it can be checked that each term in

(5.20) has dimensions of force [Energy|/|L]. xsin @A is the well-known term for the capillary
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force where X is the curvature-independent tension. The other terms are forces associated with

curvature-dependent tensions which have been defined in [44] as

0% = ke(em+cp—co)?, (5.21)

o = kg (cm + cp — C0) Cm, (5.22)
d dem,

o = —cos qﬁkcﬁ — cos gbk:ci. (5.23)
dz dz

In (5.20) the tensions (5.21)-(5.23) have been resolved along the axis of rotation which has
been labelled the z-axis. For the forces associated with o™° and ¢%" the direction of this
force is tangent to the surface as shown Figure 5.1(a). For ¢! the direction of this force is
perpendicular to the surface and is resolved along the z-axis as shown Figure 5.1(b).

In Helfrich’s paper [44] 0% is labelled as an isotropic tension while c%" is labelled as a
directed tension. The force associated with the tension o? is identified as a torque. In (5.20), the

directed tension is offset to some extent by the isotropic tension, resulting in a new combined

term
Onet — (1/2)01'50 + Odir, (524)
= (1/2)cpr ((cp — co) 4 cm) ((cp — co) — cm) (5.25)
= (1/2)cpz ((cp — c0)? — c?n) . (5.26)

The net tension can be interpreted as a kind of shear term associated with the cell membrane
being bent in the two perpendicular principal curvature directions. The spontaneous curvature
appears as a correction to the principal curvature ¢,. A positive spontaneous curvature would
favour a larger value of ¢,. This would result in a flatter cell profile with a smaller average
radius corresponding to a prolate shape. A negative spontaneous curvature would favour a

more curved oblate profile.
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. Fe
2 ?
z-axis r’; z-axis ¢ ¢
(a) Diagram of a force tangential to the (b) Diagram of a force perpendicular to
surface F' and its component along the the surface F' and its component along
z-axis F, = Fsin ¢(x). the z-axis F, = F cos ¢(x).

Figure 5.1: Sketches of how the forces associated with the tensions (5.21)-(5.23) acting on the surface

z(x) (dotted line) are resolved along the z-axis.

5.3 Integration of Forces to find Length and Surface Area

The forces can be integrated w.r.t. x by arranging (5.20) and using the symmetry condition
(5.6) as

kccilc—; = z(1- (:z:cp)Q)_l {(1/2)kecp((cp — o) — c2) + Aep + (1/2)A,}  (5.27)
_ kCCm; @ (5.28)

dey — em—¢p
-2 (5.29)

The Weierstrass excess function of the Euler-Lagrange equation (5.8) is always positive
(Appendix C.3) indicating that any given function for ¢,(z) and ¢, (x) will have a larger or
equal energy to the solutions found by solving the Euler-Langrange equations (5.28) and (5.29).

The Euler-Langrange equation is always a minimiser rather than a maximiser.
Solutions at k. =0

When the bending constant k. is set to zero only the surface and volume energy terms in (5.4)
remain. The governing equation is
Ap

N = Cm + ¢p. (5.30)

These constant mean curvature solutions have been investigated in depth in the previous

chapter.
Solutions as k. — oo

The limits of (5.28) and (5.29) are now

IR (RN I (LGRS e N L 1
% - Cm;%' (5.32)
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The first term in (5.31) is the net tension (5.26), which acts tangentially to the surface, resolved
along the z-axis. The other terms are an expression of (5.23), the tension acting perpendicularly

to the surface.

By (5.2), the surface area for a unit sphere ¢y =1 and 0 <z < 1is

! 2rx

An assumption first established in [44] is that a bilayer does not stretch and so the surface
area, S is fixed. To enforce this assumption it is convenient to write the second-order problem
as a third order problem w.r.t. ds. At this point the surface area element (5.2) can be scaled

so that the surface area of a sphere with unit radius is 1. Therefore we can write
2\1/2
de = £(2/x) (1 — (zcp)?) '~ ds. (5.34)

In this way x is a function of s. It is convenient to define a new variable f = z(s)? so that

df _ dz _ L anl/2
T = 2xds =4(1—(zc)) . (5.35)

The resulting third order problem is

%?::iU—ﬂ@ABMM%—wﬁwm+%MM%+mﬂm}
F2(1 = f2) 2 (em — )/ f, (5.36)
% = +2(1 - fcf,)l/Q(cm —cp)/f, (5.37)
d
d—]; = L4(1 - fe2)Y2 (5.38)

These equations will be referred to repeatedly throughout Part IT as the Euler-Lagrange equa-
tions. All solutions for the shape of a cell membrane will be found using (5.36)-(5.38), using
different boundary conditions are appropriate.

Note that there is a choice of sign in (5.36)-(5.38) from (5.34) and the surface area to be
S = Spmag- After integrating (5.36)-(5.38) numerically to find f(s) and ¢,(s), length of the fibre
2(Smaz), and volume of the droplet V(spqz) can be found by integrating numerically again.
The integrals (4.44) and (4.45) for volume and length and be re-written in terms of ¢,, f and
ds as defined in (5.34) so that

2(Smaz) = 2/08mw cp(s)ds, (5.39)
w%g_m%mﬁwwm. (5.40)

The profile of the droplet is the radius, x(s) = /f(s) plotted against the length, z(s). It

is very important to bear this geometry in mind throughout the reading of Chapters 5 and 6.
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5.4 The Helfrich Boundary Value Problem

The Helfrich boundary value problem (HBP) is the boundary value problem set out in [44]
where there is no fibre at the axis of rotation. Firstly, the surface area of a biological cell does
not change significantly as it changes shape so the total surface area can be normalised to a
constant value of sp,q; = 1. The normalisation of (5.36)-(5.38) is discussed in Section 5.6. We
choose the convention that s = 0 when x = x5, Boundary conditions must also be chosen
to avoid singularities in (5.36)-(5.38).

5.4.1 Singularity at f =0 when ¢(z) =0
The right-hand sides of equations (5.36) and (5.37) are finite if the boundary condition
f(0)=0 when ¢,(0)=cp(0)==r (5.41)

is set.
In the limit s — 0, (5.36)-(5.38) are

% = % [Cp ((Cp - 00)2 — C%) +2X¢p, + Ap] , (5.42)
% = % [Cp ((Cp — o) — c?n) + 2Xep + Ap] : (5.43)
% =4 (5.44)

which are derived in Appendix C.4. If ¢,(0) = ¢,,(0) then tan¢(0) = 0 which implies that
¢(0) = 0. The surface of the shape is perpendicular to the axis of rotation, avoiding a corner

at that point.

5.4.2 Singularity at fc; =1 when ¢ = £7/2

There is a singularity in (5.36) when fcg = 1 at which point there is either a maxima or a
minima in f. The singularities occur when ¢(s) = +7/2 so that the tangent to the surface is
parallel to the axis of rotation. (5.36) is finite at fcg = 1 if at that point

ep((cp — CO)Q - 67271) +2(A/ke)ep + (Ap/ke) = 0. (5.45)

The limit of (5.36) can be any value depending on the parameters chosen. Take s = s* when
fcf, =1 and

dem
= 4
7 =%, (5.46)
The values of ¢, (s), ¢,(s) and f(s) around this point are found by making the following Taylor
expansions
* * dZCm *\ 2
emls) = emls”) 4705 = 5+ (12 T (5 — 57 4+ (547
* d2cp *\ 2
als) = epls™) +(1/2) TP (5 = 572 4o (549
* d2f *\ 2
F8) = F) 4 (/) S Sl (5= 57 4 (5.9

135



These Taylor expansions can be used to perturb the solution away from the singularity. The
second derivatives required for the Taylor expansion are given in Appendix C.5.

Recall that for constant mean curvature surfaces ¢(s) = m/2 ensures that the solution is
symmetric around this point. The Euler-Lagrange equations require an additional condition
so that (5.36)-(5.38) are at a stationary point and so symmetric at ¢(s) = 7/2. Referring to
(5.47)-(5.49) this condition is

f=1 and =0 at s*=1/2 (5.50)

The maximum radius will be at a singularity. Take the maximum radius to be z;,4., = [ at

which point s = s*. By the definition of ¢, in (4.17) we have

f(s*) =12, cp(s) = - (5.51)

At the singularity fcg = 1 we have ¢ = /2, so that cos¢ = 0. Also when ¢ = 7/2,
dx/d¢ = 0, so the value of ¢, is the limit

cos ¢

Cm = Whimfc%—d, (552)

which is not necessarily zero.

Singularities are therefore expected at both s = 0 and s = 1/2. The boundary values can
be perturbed away from s = 0 using (5.42)-(5.44) and from s = 1/2 using (5.47)-(5.49). The
solutions can then be integrated towards each other to be matched at some intermediate point.

This is discussed in detail in Section 6.3.

5.5 Cell on a Fibre Boundary Value Problem

The boundary conditions at the maximum radius are the same as for the Helfrich boundary
value problem (5.51). In this section we define how the boundary conditions on the surface
of the fibre relate to the well known definition of a contact angle. The value of f(0) now has
a minimum value which is the radius of the fibre, r. The angle of the cell surface can be set
at a given contact angle as for the droplet model in Chapter 4. A homogeneous liquid is only
at an equilibrium on a surface for a given contact angle at the three phase (liquid/solid/air)
boundary. However, in this case, the surface is not defined by an air/liquid boundary but the
membrane of the cell so this the condition on the contact angle is not necessary to ensure that
the cell model is at a physically justifiable equilibirum. For any contact angle 6, the boundary

condition at x = T, are

_ sinw/2 -0

f(0)=fo=R? when ¢,(0)= 0 (5.53)

There is no singularity at ., so the choice of ¢,,(0) is independent from ¢,(0). There are
twelve different individual boundary value problems in Sections 6.5, 6.6 and 6.7 which are best

understood in context. The aims of these boundary conditions are summarised in Section 6.1.
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5.6 Normalisation of the Helfrich Problem

The surface area S of a cell will be treated as fixed. The variables in (5.36)-(5.38) can be

non-dimensionalised according to

s = 83 (5.54)
Cm = QCrm, (5.55)
& = Bé, (5.56)
;o= Af, (5.57)

where we now find «, # and 7. The term (1 — fcz%)l/ 2 = sin ¢ is dimensionless from which it

is known that
752 = 1. (5.58)

Equations (5.38) can be used to find
v =25, (5.59)

while equation (5.37) implies that ¢,, and ¢, have the same normalisation. The normalised

variables are therefore

s = S5, (5.60)
ecm = STV26,, (5.61)
o = S7V%, (5.62)
f o= Sf (5.63)

Ak, = S732A, (5.64)
Mk, = ST\ (5.65)

Also, by (5.39) and (5.62), the length of the fibre can be normalised so that
Z=5"1%2. (5.66)

Once a solution is found which satisfies the required boundary conditions, its surface area can
be scaled to 1.

In Section 5.3 is was stated that the surface area element (5.2) was normalised so that a
sphere with a unit radius had a surface area of 1. Therefore, if a solution of the Helfrich ODEs
is a sphere and has a surface area of 1, the radius of the sphere (r9) would also be 1. The
maximum possible volume of a shape found as a solution to the Helfrich ODEs (5.36)-(5.38)
is the volume of a unit sphere or V; = (47/3)r3. The volume plotted in the numerical results

in Section 6.4 is the normalised volume found by the integral
1
Vo = V/Viphere = (3/2) / F(s)ep(s)ds. (5.67)
0
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This is the integral (5.40) normalised by V;. In general, any reference to volume can be taken
as a reference to this normalised volume. Similarly, the Helfrich energy can be normalised by

the Helfrich energy of a sphere
Eno = /1 Mds (5.68)
0 (2-c)

This normalisation is particularly useful as it allows the Helfrich energy of shapes with different
¢p to be compared. The length of a sphere given by the integral (5.39) will give a value of
2rg and does not need any further normalisation. As length, volume and Helfrich energy have

been non-dimensionalised no units of measurement are used in Chapters 5 and 6.
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5.7 Constant Mean Curvature Solutions

In this section we write the solutions for a sphere in terms of parameters c,,, ¢, and f in order
to clarify how the variables in Chapter 4 relate to those in this chapter and also in Chapter 6.

If the boundary conditions in (5.41) are written as

5(0) = a 5.69
cm(0) = a, (5.70)
then (5.38) can be integrated to find

df o\ 1/2

— = £(1- 5.71

Voo s o), 5.71)
1

f = ?(1—(23(1%5)?). (5.72)

As the convention f(0) = 0 has been adopted, we have
f(1/2) = £2 — o2 (5.73)

For a normalised sphere a = 1, so f = —1 will give f(1/2) = 1, which is consistent with
boundary condition (5.50).

In Chapter 4 the surfaces of rotation all had constant mean curvature. As discussed in the
beginning of Section 5.3, if only the terms associated with forces perpendicular to the surface
are used in (5.36)-(5.38) the solutions have constant mean curvature. The resulting system of

ODEs in terms of ¢, ¢, and f is

dem

— = F2(1 — f2) 2 (cm — cp)/f, (5.74)
d

% = £2(1— f) 2 (em — )/, (5.75)
ﬁ _ _pa2N\1/2

o= - [ (5.76)

5.8 Spherical Solution Parameters

A solution for a sphere has known values of parameters A, and A. This provides a known
set of parameters from which further parameters can be found numerically. Ap, and Ay are
the values of A, and A for a spherical solution when ¢ = 0. Ap. and A, are the values of A,
and A for a spherical solution as a function of ¢y. By (6.29) it is also known that there is a
solution for a sphere when

Ape = (12 — 2¢p) (5.77)

and (5.45) are true, which can be solved for ¢y = 0 to find

Ao = —6, (5.78)
Apy = 12. (5.79)



When ¢y # 0, then

Apc = _2)\(:0 — 200 (580)
and (5.45) become
0 =2\ + Ape — 2¢0 + 2, (5.81)
which implies
e = Ao + 2¢0 — /2. (5.82)

This has a maximum at A, = 2, which is also the point where the normalised Helfrich energy
(5.68) is singular.
5.9 Helfrich Boundary Problem Solutions when ¢y =0

The solutions of ¢,,, ¢, and f in Section 5.8 for a normalised sphere can be used to write

cm, ¢p and f asymptotic expansions in 6 << 1 where
cm(0) = ¢p(0) =1+4. (5.83)

Solutions can be said to be close to a spherical solution when 2\ + A, ~ 0 so define € as

€ = 2Xcpo + Ay, (5.84)
where
cmo = 149, (5.85)
cpo = 146, (5.86)
fo = 4(s—s?). (5.87)

Take ¢,0, cpo and fo to be leading order terms in asymptotic expansions given here as

Cm = Cmo+ €Cm1 + ECma + ..., (5.88)
cp = Cpotecp+ et (5.89)
f= fotehi+elfat. ... (5.90)

Equation (5.90) follows from the solution for f in (5.72) in the case when curvature is constant.
When 4 is small, then the solutions found are such that e is of the same order of magnitude.
It will be shown how € and § are proportional to each other. However, initially it is necessary
for both terms to be defined separately. The solutions in this section can be compared to
corresponding numerical solutions in order to understand how errors in the numerical solutions
arise.

If § = 0 then the solution will be that of a sphere. The term (5.87) is the solution (5.72)
in the case that the boundary conditions for a unit sphere have been imposed. When ¢g = 0,
a solution for a sphere requires A = —6 and A, = 12. By (5.84), € = 0, and there will be no
O(€) expansions to ¢, ¢, and f. If [6] > 0 then there will be O(e) correction terms to the

leading order terms.
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The parameters A and A, can also be written as asymptotic expansions with respect to e

so that

A= Aobed 4o,
Ap = Ap()+€Ap1+"‘-

(5.91)
(5.92)

Taking Ao and Apy as unknowns, the known leading order terms in ¢,,, ¢, and f are now used

to find them. The conditions required to meet the required boundary conditions to O(42) are

then discussed. Finally, the resulting solutions are compared to the corresponding numerical

solutions. Full details on obtaining numerical solutions can be found in Section 6.3. By (5.42)-

(5.44), when s << 1,

e
Cml1 = st

€
Cp]_ ~ 15.

To find ¢ and ¢, for all sin 0 < s < 1, then (5.90) can be used to write (5.37) as

dept 1—2s
ds  2(s— 82)(Cm1 1),

which suggests a solution of the form
Cm1*Cp1:7(8*82).

So, for large s, (5.93)-(5.94) can be written as

Cml = « (s - 52) ,
Cpl = B (S - 52) )
vy = a-—0.

If cp(c}z7 — ¢2)) is expanded as a series in €, then we have

ep((cp — 00)2 - an) = 2¢(cp1 — em1) + 0(62)-

Write (5.36) using (5.97) and (5.98) so that

dcm 261—Cm1) 1—2s
ds ( 11—25 _62(5—52)(07”1_cpl)—i_O(E)7
demi  2(8—a)(s —s%) 4+ 2X8(s — s?) + € (1 =2s)(a—p)
ds 1-2s 2 '
Then if
a = e, B = Boe
and

2(80 — ag)(s — s2) + 2X000(s — s2) +1 = (1 — 25)% + O(e),
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we have

demt . (060 - 60)

15 = e(1—2s) <1 B ) ) (5.105)
d _

% = (1 -25) 20 5 bo (5.106)

Equation (5.104) is satisfied when
2(ao — Bo) + 22000 = —4. (5.107)

By (5.97) and (5.105) we have
ap— 38 =0 (5.108)

and by (5.98) and (5.106) we have
30(0 - ﬂo = 2. (5109)

The three conditions, (5.107)-(5.109) are all true if the three unknowns are

3
o = . (5.110)
1
fo = 7 (5.111)
Ao = —6. (5.112)

The leading order term for A, \g, is the same as the value of A required for a spherical solution.

The leading order term for A, can be found by solving
2X0 + Apo =0 (5.113)

to find
Apo =12, (5.114)

so that the X\ and A, dependent terms cancel to O(e). The values for ag and fy are consistent
with the limiting values of (5.36) and (5.37) given in (5.42) and (5.43) at f = 0, and also
the condition (5.45) at fc2 = 1, where A, and \ are given by (5.80)-(5.82). Using the initial
conditions (5.85)-(5.86) and quadratic solutions (5.97)-(5.98) it is expected that at s = 1/2 we

have

p(1/2) =~ 1+5+%, (5.115)
em(1/2) =~ 1+5+i’—g. (5.116)

By (5.86), ¢,(0) =146 at s = 0 so that (5.84) is
€ =2Xcp(0) + A, = —125 + O(5?). (5.117)
The boundary conditions at s = 1/2 require that

cplch — o) + 2hep + A, = 0. (5.118)
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Using known solutions (5.115) and (5.116), with (5.117) to convert € to §, we know that

cp(cf) — &) = 120(s — s*) + 0(6?), (5.119)
2Xcp + A = —120 +360(s — %) + 2M10 + A1 + O(62). (5.120)

If
2\ + Ay =0, (5.121)

then at s = 1/2 the required boundary condition (5.118) is met to O(4?) so that
cplch = ) + 2X¢p + Ap = O(67). (5.122)

A1 balances O(6%) terms in ¢, and ¢, as will be discussed in Section 5.10.1. Their value can

be calculated from the numerical solutions in Figure 5.2 so that

5 3 43
= 242 = 12
M 6 100 50’ (5.123)
86
Al = ——. 124
1 = (5.124)

The method used to find a numerical solution to the Euler-Lagrange equations is given in

detail in Section 6.3. In summary, the leading order solutions for the Helfrich boundary value

1285 -5.94

123 -5.96

1225 5.98

122 6

12,15 1 -6.02
<]:L e

12.1 ] -5.04

12,05 ] -6.06

12 1 -6.08

1105 1 6.1

By 005 g 005 o Ry 005 ﬁ0 0.05 o
(a) Numerically calculated value of A, (b) Numerically calculated value of A
against 9. against 4.

Figure 5.2: Dependence of A, and A on 4.

problem described in (5.4) are

cm = 14+06—95(s—s%) +0(6%), (5.125)
cp = 14+6—35(s—s%) +0(5?), (5.126)
f = 4(s—s%)+0(0), (5.127)
A, = 124 0(5), (5.128)
A = —6+0(9), (5.129)
e = —120+0(5%). (5.130)
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These solutions have been plotted against the numerically calculated solutions of ¢,,, ¢, and
f in Figure 5.3. The solutions are still reasonably accurate when § = 0.1 is relatively large.
Deviation between numerical and analytical solutions is greatest near s = 1/2. At s = 1/2,
the solutions to the Euler-Lagrange equations (5.36)-(5.38) are matched to Taylor expansions
of the Euler-Lagrange equations as discussed in Section 5.4.2. The Euler-Lagrange equations
are expanded to O(s?) and therefore there will be some loss of accuracy when the solutions to

the Taylor expansions are matched to the solutions of the Euler-Lagrange equations.

— numerical solution

1o E ~ 7 O(B) solution
1051

0957

08r

0 0.1 02 03 04 05 ] 0.1 0.2 03 04 05
s ]

(a) Numerical solutions to ¢, ¢, and f. (b) Numerical and leading order analyti-
cal solution to ¢,,.

1.1 T T T T 1
— numerical solution —numerical solution -

~ T TO[3) solution 1 ~ Q1] solution

1.05

1.04

1.03

1.02

0 0.1 02 03 04 05 0 0.1 02 03 04 05

(¢) Numerical and leading order analyti- (d) Numerical and leading order analyti-
cal solution to ¢, cal solution to f

Figure 5.3: Numerical and leading order solutions to ¢,,, ¢, and f when § = 0.1.

5.9.1 Polynomial Solutions in the Limit of fcf7 =1

In this section it is checked that the asymtotic solutions found in Section 5.9 match the
Taylor expansion of the Euler-Lagrange equations at s = 1/2 to leading order. The second
order derivatives of the Euler-Lagrange equations are listed in Appendix C.5 while the boundary

conditions for the Helfrich boundary value problem at s = 1/2 are given in full in Section 5.4.2.
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When s = 1/2, the boundary condition (5.45) and the remaining terms in the Euler-

Lagrange equations ensure that

dc dem dc

T as = s (5.131)
dc dem
T = ds (5.132)

are true. If the solution is to meet the boundary conditions at s = 1/2 smoothly, the sec-
ond order derivatives have to meet the same proportionality conditions as the leading order

polynomial solutions, so that

d’c, d%cp, d’c,

ds2 | ds2 | ds?’ (5.133)
d?c, dcp,
3 2 = ge (5.134)

The second order derivatives contain many terms. It is not clear how solutions for ¢,,, ¢, and f
found by the Taylor expansion smoothly match the values of ¢,,, ¢, and f found by integrating

the FEuler-Lagrange equations. This will be established in the following discussion. We can

write
2
d=c, _
ds?
d?c, . d*em
ds? ds?

fl(cp7 Cm, f) + gl(cpa Cm, fa Apa /\)7

fQ(Cpa Cm, f) + gQ(Cpa Cm, f’ Ap’ )‘)7

where, using the terms in Appendix C.5,

fl(Cpa cms f)
f?(cpa Cmy, f)
gl(cpv C’m7 f7 Apa )\)

gQ(Cpa Cm, f: Ap> )‘)

- _f22(3fcpc3n —¢p — 20m),

- ]?2(3fcpc$n — ey + em — fcl),
- i;@V%+AM%
f22(_2>\fcp + 2\ fem).

(5.135)

(5.136)

(5.137)
(5.138)
(5.139)

(5.140)

Assume that the leading order corrections to cpo, cp0 and fy at s = 1/2 are also of O(d) so that

p(1/2)
¢m(1/2)
f(1/2)
From (5.41) expect that B = 3A. If

= 1+6+64+0(8%),
= 14+6+6B+0(5?),
= 1+46C+0(6).

F(1/2)cp(1/2)* =1+ 0(6%),

then C' = —2 — 2A. Using the estimates (5.141)-(5.143) and expanding as a series in ¢

fl(cpycmaf) = 16A6+O(52)3
faep,em, f) = —16A5+0(57),
92(Cpy ms [, Ap, A) = 4NAS+ O(57).
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So by proportionality conditions (5.133)-(5.134) and (5.145)-(5.147) we have

91(cp, Cms [, Ap, ) = —8A5 + 0(67), (5.148)
2Aep(1/2)f + Apf = —4A5 +O(6?), (5.149)
—12(1 + A)5 = —4A5+0(6%). (5.150)
3
= - 151
A . (5.151)
Using the leading order solutions to ¢, and ¢,, (5.125) and (5.126), we have
9
em(1/2) = 1+6+ 0, (5.152)
p(1/2) = 1445+ 25, (5.153)

so that the value of A found is consistent with this result. By the relation C = —2 — 2A which
ensures f(1/2)c,(1/2)? = 1 to leading order in § we have

F1)2) =1 %5. (5.154)

However, from the known solution to f in (5.127) we know that f(1/2) = 1. This will be

discussed further in Section 5.10.

5.9.2 Accounting for Numerical Error in Solutions

Numerical errors arise due to the approximations made when perturbing the solutions of
the Euler-Lagrange equations away from the singularities at s = 0 and s = 1/2. Full details
on how to find a solution to the Helfrich boundary value problem numerically can be found
in Section 6.3. When § << 1 the error in the numerical solutions can be expressed explicitly
in the solutions found in Section 5.9. For solutions close to that of a sphere, so 6 << 1, the

numerically calculated solutions to € and ¢,(0) can be used to find that
e=—126 +n, (5.155)

which is plotted in Figure 5.4(a). n represents a numerical error which prevents the numerically
found values for ¢, as defined in (5.84), from matching that found analytically in Section 5.9.
For small 4,  can be found as a constant of proportionality.

Cm, ¢p and f can now be written in terms of 6 and 7 so that

_ I U]
em(1/2) = 146 54+16+0(52), (5.156)
¢)(1/2) — 1+5—5Z+%+0(52), (5.157)
f(1/2) = 1—5%—g+0(52), (5.158)

where the O(n) term for f(1/2) is again found by requiring f(1/2)c,(1/2)? = 1. In Figure 5.4,

is used to correct the fit between the numerically found proportionality constants to (s —s?) for
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cm and ¢, and those expected analytically from (5.125) and (5.126). When § < O(10™%), then
7 is of the same order of magnitude. If n is included when numerical solutions are compared to
those found in the preceeding work the error of fit is O(107%) or O(4?) so that the analytical
solutions are valid to leading order. When § = 0 the terms (5.137)-(5.140) relating to the

boundary conditions at fcg = 1 are dependent on 7 only so we have

filepem, f) = —n+0@0?), (5.159)
folepems f) = n+0(p?), (5.160)

1
91(Cpy Cmy £, Apy A) = 577+O(n2), (5.161)
92(Cps e [, Ap, A) = =30+ O(n?), (5.162)

which meet the conditions (5.134) and (5.133). Also, when 6 = 0 and s = 1/2, use (5.157)-

(5.156) to write
1

ep(cy = i) = =0+ 0(n’), (5.163)
so that the condition (5.45) implies
1
2Xep + Ap = —n+ O(n?). (5.164)

4
This is true when 2\ + A, =7, which is consistent with (5.155).

5.10 Corrections Terms to Helfrich Boundary Value Problem

Figure 5.3 gives an example of numerical solutions for ¢,,, ¢, and f together with leading
order solutions (5.125)-(5.127). The known leading order solutions (5.125)-(5.127) were sub-
stracted from the numerical solutions to ¢,,, ¢, and f. The remaining terms were fitted to a
quadratic polynomial wrt s, the coefficients of which were fitted to a polynomial function wrt

0. These numerically obtained correction terms were found to be of the form
(AS + B6?*)s*(s — 1), (5.165)

where the coefficients for the correction terms in Figure 5.5 were found to depend quadratically
on 6 for ¢,, and ¢, and linearly on ¢ for f. A and B were found for 100 solutions where
0 < § < 0.1. The average value of these coefficients A and B are given in Table 5.1.

The known analytically deduced and numerically calculated solutions for ¢, ¢, and f, as

asymptotic expansions in 4, of the form

Cm = Cm0+ 0Cm1 + 0%Cma + O(6%), (5.166)
cp = Cpo+dcpr + 6%y + 0(8°), (5.167)
f = fotdfi+ifa+0(8), (5.168)
are
cm = 14+6—95(s— %) —14.56%(s — s2)2 + O(6%), (5.169)
cp = 1+4+06-35(s— 5% —046%(s — 55>+ 0(8°), (5.170)
f = 4(s—s%) —8(s — %) — 4.76%(s — s%)2 + O(6%). (5.171)
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Al B
¢m | 0 | =145
¢ | 0| —04
=8| —47

Table 5.1: Average value of A and B for 0 < 6 < 0.1.

The results suggest that there are unknown O(§) and O(6?) terms for f and unknown
O(6?) terms for ¢, and ¢,. Note that if the known leading order term (5.127) and calculated

correction term are used to write
f=46(s — s%) —80s%*(s — 1)2 + O(6?), (5.172)

then the expected boundary condition f(1/2) given in (5.154) will be met.

5.10.1 Correction terms for c,, and ¢,
If the numerically calculated terms for ¢y, and cp2, (5.169)-(5.170), are approximated by

cm2 = —126%(s —s%)?, (5.173)
cp2 = 0, (5.174)
then there is no O(§?) term in dc,/ds, showing that the numerical results can be accounted

for.
If f is given by (5.172), then (5.95) is

% _ (1-2s)(1—4d(s —282)_)(2—5?;5(;9 5_2;)2) —126%(s — 32)2)’ (5.175)
_ (1—25)(1 —44(s ;52)_)(2;?;5(;9 ;;)2))(1 +26(s — 52)). (5.176)
For small §
i;ggz:zz;, = (14 26(s — s2))(1 + 26(s — 5%) + O(82), (5.177)
= 1+46(s — 5%) + 0(6%). (5.178)
We also have
(1 —45(s — %)) (1 +46(s — s*) + 0(6%)) = 1+ 165%(s — 5%) + O(6%), (5.179)
so that, for small 4,
% = —35(1 — 2s)(s — 5%) (1 + 165%(s — %) + O(8?)) , (5.180)

so the O(6%) terms cancel out. The numerically calculated correction terms can also be shown

to be consistent with what can be deduced numerically. If ¢,2 « (s — 32)2 then depa/ds

148



(1 — 2s)(s — s2). Only terms of this form will be considered to find the correction term in
(5.171). As above, it is approximated that as ¢,2 ~ 0. Use (5.171) to make the approximation
1df

_op2\1/2

. ~ (1 —2s)(1 —46(s — s2)), (5.181)

so that
1 1
(1—2s)(1—46(s—s2))  1—2s

From known O(d) terms

(1+46(s — 8%)) + O(6?). (5.182)

(s — c2) + 2h¢p + Ay & —125(1 — 25)* + O(6%), (5.183)

so one O(d?) term in dc,,/ds which is proportional to (1 — 2s)(s — s?) will arise by the multi-
plication of O(J) terms in (5.182) and (5.183). So far, we know that

Cma = —246%(s — %)% + 0(5?), (5.184)

where the remaining O(6%) arises from the multiplication of the O(6°) term in (5.182) and the
as yet unknown O(62) term in (5.183).
Now if

cm = 14+8-95(s—s%) + As%(s — %), (5.185)
cp = 14+06—35(s—s?)+ Bé*(s —s%)?, (5.186)

then by multiplication

cp(cg —c2) = 120(s — 5%) +246%(s — %) + (2B — 24)6%(s — 5%)* (5.187)
— 1086%(s — s%)?, (5.188)

2Xep + Ay = (8 —30(s — %) + B&?*(s — 5%)%)(—12 + 20)\1), (5.189)
(5.190)

where, A = —6 + d\1, A, = 12+ A, and Ay + 20 = 0. O(6?) terms from (5.187) and
(5.189) can be arranged to give

6%(s — %) ((24 — 6A1) — (108 + 10B + 24)(s — 5%)) . (5.191)

Using the numerically calculated value of A; ~ 5/6 from (5.123) and the values of A and B in
Table 5.1 it is found that

6%19(s — 5%) (1 — 4(s — s%)) = 6219(s — s?)(1 — 2s)?, (5.192)

which is the unknown O(62) term in (5.183). Multiplying this with the O(6°) term in (5.182)
leaves
6219(s — s%)(1 — 2s), (5.193)

so that
Cma = —240%(s — 5%)% 4+ 9.56%(s — s%)? = —14.56%(s — %)% (5.194)

In this way, numerically calculated information on O(8?) terms can be checked to be reasonable.
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5.11 Helfrich Boundary Value Problem Solutions when ¢y # 0

If
0 < Jeo| << 1, (5.195)

then the ¢y dependent terms in (5.36) cancel using the known polynomial solutions for ¢y = 0,
so that (5.125) and (5.126) are also solutions in this case. Using the ¢y dependent terms for
A, and A, (5.80) and (5.82) we have

2A+ A, =20 — ¢} (5.196)
For a sphere where ¢, = 1 the remaining co-dependent terms are
—2c2c + epch = —2¢o + ¢, (5.197)

which cancel with (5.196). If ¢ is small and ¢, and ¢, are given by the polynomial solutions
(5.125) and (5.126) then using (5.196) we have

2Xcp + Ay = 2¢0 — 2+ (200 + 4cg — c2)(6 — 35(s — 52)), (5.198)
and (5.197) is now
—2612)60 + cpct = —2co + & — 4co(6 — 35(s — %)) + dcg + O(5?). (5.199)

Again all ¢y dependent terms cancel to O(62).
Referring to Appendix C.5, when f = ¢, = ¢, =1 then

d?c, 9

ﬁ —2(200 —Cy — 2)\0 — Apc) = 0, (5200)
d*cp, 9

3 = 2020 -6 2k~ Ap) =0, (5.201)

so the boundary conditions at fczz7 = 1 are consistent with that of a sphere when ¢y # 0.

5.12 Chapter Summary

This chapter introduces the Helfrich energy minimisation problem. The boundary con-
ditions for the Helfrich boundary value value problem have been introduced. The Helfrich
boundary value problem has previously been solved in [25]. The boundary conditions for the
Helfrich energy cell on a fibre problem are also introduced. In this way the energy minimisation
problem is used as a model of phagocytosis in axisymmetric geometry.

Analytical solutions of the Helfrich boundary value problem in Section 5.9 provide initial
estimates to parameters when finding numerical solutions. By comparing these analytical
solutions and corresponding numerically found solutions, it is found that the numerical error
mainly arises from the use of Taylor expansion at s = 1/2. This error increases as solutions

are perturbed away from the spherical solution until no further solutions can be found.
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By investigating the dynamics of the Fuler-Lagrange equations, qualitative types of solu-
tions have been identified. The value |c,, — ¢p| may increase rapidly as f decreases or ¢, and
¢p may be wave-like, depending on the value of (1 — fcg)l/Q. Section 5.11 indicates that when
lco| << 1, ¢p dependent terms are expected to cancel. However, in Section 5.13 it was shown
that when |co| > 1 then ¢y dependent terms can result in sharp maxima and minima in ¢y,.

By assuming that the shape of a cell membrane minimises a free energy which is the sum
of the surface, volume and Helfrich energies, as defined in (5.4), it is found that this model
of phagocytosis of a fibre predicts a range of possible observations. The curvatures c,, and c,
could be found to be approximately constant apart from when f is small, or they could be
found to be slowly varying across the surface of the cell. A large spontaneous curvature could
result in localised areas of the cell where ¢, and ¢, change rapidly. In the following chapter,
solutions to the cell on a fibre problem will be investigated using a range of different boundary
conditions. It will be noted which types of solution allow different boundary conditions to be

met.
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5.13 Examination of Euler-Lagrange Equations as a Dynamical

System

It is worthwhile examining the Euler-Lagrange equations (5.36)-(5.38) as a dynamical sys-
tem and understand the role of the terms which appear in them. f will determine the resulting
shape of the cell. The shape of a cell will be greatly determined by the placement of turning
points, when ¢, = 0, and inflection points, when ¢,, = 0 as has been discussed for droplets of
constant mean curvature in Chapter 4. Whether or not boundary conditions are met at s =0
and s = 1/2 will also be determined by the dynamics of the Euler-Lagrange equations.

Two regimes have been identified to write down toy models which do not contain singular-

ities. These regimes are

Regime A (1— f)/2~1 f=e¢, (5.202)
Regime B (1— f2)'?~e fr1, (5.203)

where € << 1.

Regime A is discussed in Section 5.13.1 and regime B is discussed in Section 5.13.2. In
Regime A it is found that |c,, — ¢p| increases sharply as f — 0. For convenience, this type
of behaviour is referred to as divergence dominated behaviour. In Regime B it is found that
solutions of ¢,, and ¢, oscillate with s and there is an attractive steady state. Conclusions
from this investigation are summarised in Section 5.13.3. This brief analysis will be useful in
interpreting numerical solutions for the cell on a fibre problem. The plots have been obtained

by integrating the equations referenced in each caption using ode45 on default settings.

5.13.1 Eigenvalues of Reduced Euler-Lagrange Equations close to s = 0 and
f 0

When f is close to zero the terms which dominate are those which ensure constant mean
curvature so that the Fuler-Lagrange equations approximate the constant mean curvature
system Section 5.7.

Take f~eand 1 — fc]% ~ 1 so that (5.36) and (5.37) reduce to

dem

5 = F2(1/€)(em — ¢p), (5.204)

de,

Ts +2(1/€)(cm — ¢p). (5.205)
When (5.204) has a negative sign the eigenvalues of the stationary point are 73 = —2 and

72 = 0 and so this point is unstable. As the system is integrated up from f = 0, ¢, and ¢,
converge so that ¢, — ¢, — 0 as shown in Figure 5.6(a). If (5.204) has a positive sign the
eigenvalues are vy, = 2 and 72 = 0 and ¢, — ¢, — 00 as shown in Figure 5.6(b). The boundary
condition at s = 0 for a Helfrich boundary value problem, as given in Section 5.4.1, requires
that, when f = 0, we have ¢,, = ¢,. However, this toy model suggests that this will not be

possible if the Euler-Lagrange equations can be approximated by (5.204) and (5.205).
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(a) Solutions where (5.204) has a positive sign (b) Solutions where (5.204) has a negative sign
and f is decreasing, ¢,,(0) =1, ¢,(0) = 2 and and f is increasing, ¢, (0) =1 —1072, ¢,(0) =
e=10"" 1+102 and e = 10~ L.

Figure 5.6: Numerical solutions of ¢, and ¢, in regime B where ¢, and ¢, either converge or diverge.

5.13.2 Eigenvalues of Reduced Euler-Lagrange Equations close to s = 1/2
and fc ~ 1

This section investigates the dynamics of the Fuler-Lagrange equations when f 6127 ~ 1. The

sole stationary point of the Fuler-Lagrange equations occurs when

fo =1 (5.206)
ep((cp—co)> =)+ 2\, + A, = 0. (5.207)
—~— ~—
shear terms surface term  volume term

Equation (5.207) consists of three terms. The surface and volume terms arise from the surface
and volume energies in the Helfrich minimisation problem. The first set of terms are here
referred to as the shear terms with reference to (5.26) and accompanying discussion. These
three sets of terms determine the dynamics of the Euler-Lagrange equations when fc% ~ 1.
The dynamics arising from the surface and volume terms will be investigated separately to
those arising from the shear terms. Finally, the resultant dynamics when all terms contribute

to the dynamics in the limit fcf, ~ 1 are investigated.
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Surface and Volume Terms

In the case where |¢p|, |cm| and |co| << ||, |Ap] the shear terms in (5.36) can be disregarded.
Take f ~ 1 and /1 — fc2 = e so that, for decreasing s, the Euler-Lagrange equations (5.36)-
(5.38) reduce to

dep,
iizziﬁfmmg, (5.208)
dc
dikgp i26 (Cm — Cp) . (5209)

The eigenvalues for the stationary point of (5.208)-(5.209) when the negative signs are chosen
are
Y+ =€F Ve + de (5.210)

When A = 0 the eigenvalues are 0 and 2¢ and so the stationary point is repulsive. When
€2 4 4e) < 0, then the eigenvalues with have an imaginary part. Oscillations in the solutions
for ¢, and ¢, are expected near the stationary point as in the example in Figure 5.7.

If X <0, the 2X¢, term now increases ¢, — ¢, while the symmetry condition, (5.209), acts
to decrease this difference. These opposing factors result in oscillations in ¢,, and ¢,. If ¢g > 0
then the frequency of oscillation will also depend on ¢g. If A, =0 and ¢, << ¢, then (5.208)
and (5.209) reduce to

dem
— = 2, (5.211)
d
% = $2ecp, (5.212)
50 d2 d2
Cm c
2 = dedem and KQP = de)cy, (5.213)

whose solutions are oscillating sine and cosine functions when A\ < 0. The physical interpreta-

tion of a negative surface tension is that the free energy increases with increasing surface area.

This idea is consistant with a negative surface energy causing undulations in the solutions.
By the eigenvalue (5.210), the stationary point is unstable for decreasing s but can be stable

when (5.208)-(5.209) both change sign so that s is increasing. In this case the eigenvalues are
Y+ = —€t V€2 + de. (5.214)

This means that perturbations close to the boundary condition at fclz, = 1 correspond to larger
changes further away as the undulations increase in amplitude as shown in Figure 5.7.
The frequency of these undulations increase as |\| increases as shown in Figure 5.8. There

are two values of ¢, at which (5.38) is at a stationary point

— )2+ 2, + A
C%=i¢%@ f +2hcp By (5.215)

Cp

As the amplitude of undulations in ¢, are bigger than those in ¢,, then the maximum and

minimum values of ¢, will be largely determined by the boundary conditions at fc?J = 1.
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(a) Solutions where (5.208) has a positive sign (b) Solutions where (5.208) has a negative sign
and f is increasing, ¢,(0) = 10, ¢,,(0) = —1 and f is decreasing, ¢,(0) = 141072, ¢,,,(0) =
and e = 1071, 1—-10"2 and e = 1071,

Figure 5.7: ¢,,(0) =1, ¢,(0) =2, A = —10, A, = —Ac,(0). Solutions to toy model where surface and
volume terms dominate, (5.208)-(5.209).

However, even if the undulations in ¢, have a smaller amplitude, they are significant as they

results in undulations in fc]%.
Shear Terms

Instead of looking at the surface and volume terms as in (5.208), (5.216)-(5.217) have only
the shear terms to approximate (5.36)-(5.38) in the case where |cpl, |cim| and |co| >> ||, |A,],

dem,

= tey((ep = o)’ = ). (5.216)
S

dc

ch +2¢€ (e, — ¢p) - (5.217)

Take cgp = 0 so that at the stationary point is at ¢,,s = ¢ps. The eigenvalues of (5.216)-(5.217)

when the positive sign is chosen are

v+ = (2, +€) £ /(2 +e)2. (5.218)

The eigenvalues are zero and negative and ¢, — ¢, — 0 as f increases. If the signs of (5.216)-
(5.217) are reversed then the eigenvalues will be zero and positive and ¢, — ¢, — 00 as f
decreases. The shear term therefore contributes to the same convergent and divergent be-
haviour as the torque terms in Section 5.13.1 as can be observed in Figure 5.9. If ¢y # 0 then

when taking the positive sign in (5.216)-(5.217) the eigenvalues are

21
vt = —% — 64—0 + Z\/Cé — dect — 16eco + 4e€2, (5.219)
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Figure 5.8: Numerical solutions for ¢,, when ¢,(0) =1+ 1072 and ¢,,(0) = 1 — 1072 where (5.208)

has a positive sign. Frequency of undulations decrease as X increases.

where at the stationary point ¢, = ¢, = %co. When € = 0 the stationary point is attractive
and real and will be attractive and real as long as O(e) << 1.

There is a maximum or a minimum in ¢,, when either ¢, = 0, or (¢, — co)? = c%,. There is
a maximum or a minimum in ¢, when ¢, = ¢;,. In Figures 5.9, 5.10 and 5.11 are examples of
how a solution may reach a stationary point. In Figure 5.9(a) there is neither a maximum nor

a minimum in ¢, or ¢,. As ¢ = 0, the stationary point ¢, = ¢, will be reached as long as

d d
ep(0)em(0) > 0, cm(O)% lieo< 0, and cp(o)ﬁ ls—o< 0. (5.220)
In Figure 5.11(a), initial conditions are such that
dc de
cp(0)em(0) < 0, cm(o)d—;” ls=0>0, and cp(o)d—sp ls=0< 0. (5.221)

The initial gradient in ¢,,, moves ¢, off away form ¢,. However, one minimum in ¢, and a
minimum and a maximum in ¢, allow the solution to reach steady state. The minimum in
¢m occurs when ¢, = 0, then there is a minimum in ¢, when ¢,;, = ¢, and, finally, there is a
maximum in ¢, when (c, — cp)? = ¢2,. Solutions which can reach steady state can be simpler.
For example, the steady state in Figure 5.10(a) is reached after only one minimum in ¢, and
no minima in ¢,,. The steady state in Figure 5.10(b) is reached after only one minima in ¢,
when (¢, — ¢p)? = ¢, and no maxima or minima in c,.
Whether or not a solution reaches the stationary point for a given set of initial conditions
depends on whether or not the solution reaches the limit where ¢y + ¢, — ¢, = 0 so that
% = % and ccllcj; = Ci:; =0. (5.222)
If a solution reaches this limit, in Figure 5.11(b), for example, then the solution cannot reach

any further maxima or minima which may eventually allow the solution to reach steady state.
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The value of € also changes the solution for an given set of initial conditions. For example,
compare Figures 5.11(a) and 5.11(b) with 5.11(c) and 5.11(d).

0957
0.0f
0.85¢ S
- _.Cp
0 05 1 15 2
5 5
(a) (5.216) has a positive sign and f is in- (b) (5.216) has a negative sign and f is de-
creasing, ¢,,(0) = 10, ¢,(0) = 1, ¢g = 0 and creasing, ¢,(0) =1—1073, ¢,(0) =1+ 1073,
e=10""1 cop=0and e =10"1.

Figure 5.9: Numerical solutions to ¢,, and ¢, from (5.216)-(5.217). Shear terms allow ¢,, and ¢, to
either converge or diverge.

Surface, Volume and Shear Terms

The surface, volume and shear elements can be combined to give

dem,

— £ (ep((ep — c0)? — €2) + Ap + 2Xcp) | (5.223)
de
d—sp = £2e(cm —cp)- (5.224)

For the positive case and when ¢y = 0 (5.223)-(5.224) eigenvalues

v+ = —(emep +€) £ \/(cmcp + €)% — 2¢(cp + cm)? 4 deX + BecZ, (5.225)

where ¢, and ¢, satisfy (5.215). If ¢y # 0 then the eigenvalues are

vt = —(cmep +€) £ \/(cmcp +€)2 — 2e(cp + em)? + 4e\ + 8ecy(cp — o) + 2ec3.  (5.226)

If ¢, = O(1), ¢ = O(1), ¢o = O(1) and XA = O(10), as suggested in the discussion of parameters
in Section 5.8, then whether 4 have imaginary parts will depend on A. If |¢o| >> 1, the
frequency of these undulations will also depend strongly on co.

co dependent terms serve to dampen the undulations in ¢, and ¢, when A < 0. For ¢,
and ¢, to oscillate then (dcy,/ds)(dcy/ds) < 0. In Figure 5.12, the contribution to the initial
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(a) (5.216) has a positive sign and f is increas- (b) (5.216) has a negative sign and f is de-
ing, ¢, (0) = —4, ¢,(0) = =1, ¢¢ = —1 and creasing, ¢, (0) = —1, ¢,(0) = —4, ¢ = —1
e=1. and e = 1.

Figure 5.10: Numerical solutions to ¢,, and ¢, from (5.216)-(5.217), demonstrating extrema in ¢, and

Cp-

rate of change of ¢, by the shear terms (C) has the same sign as the contribution from the
surface and volume terms (B), so the combined solution has a minimum in ¢,,. In Figure 5.13,
however, this is not the case so in the combined solution there is no minimum or maximum
in ¢, or ¢,. In Figure 5.14, the contribution to the initial rate of change of c¢,, by the shear
terms (C) has the opposite sign to the contribution from the contribution from the surface and
volume terms. In this case, there is both a maximum and minimum in ¢,, due to a minimum
in ¢, when both shear, surface and volume terms are used, while when the shear terms only
are used, there is only a minimum in ¢,;, and maximum.

When cpc, > 0, ¢g dependent terms will dampen the undulations in ¢,, and ¢, less than
when coc, < 0. The values on the z- and y- axes in Figure 5.15(b) are chosen in order to
compare the amplitude of undulations in ¢, when ¢y = +a?. When |cy| is large enough,
undulations in ¢, and ¢, will be completely dampened if coc, < 0, while several extrema will
still be observed when cpc, < 0. In Figure 5.15(b), the sign rather than the magnitude of ¢

has the greatest effect on the solution.

5.13.3 Implications for Boundary Value Problem Solutions

Comparing the observations in Sections 5.13.1 and 5.13.2 leads to the conclusion that the
type of solution obtained for ¢, and ¢, in regime A when fcf, << 1 is very different from
that observed in regime B when fcfo ~ 1. Solutions obtained in regime A show “divergence
dominated” behaviour while solutions obtained in regime B show “wave dominated” or “wave-

like” behaviour. The terms in quotes will be used to describe numerical solutions as a short
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hand way to reference the observations in this section.

For ¢, and ¢, to oscillate when fcfj ~ 1, then A < 0. When ¢,, and ¢, oscillate, for each
extremum in ¢, there is an extremum in ¢,. Whether ¢y > 0 or ¢y < 0 will also determine
the dynamics of the Euler-Lagrange equations. Wave behaviour is more evident when cyc, > 0
and less evident when cpc, < 0. If the amplitude of their undulations is small, they are not
moving towards or away from a stationary point. When ¢,, and ¢, oscillate their mean value is
approximately constant. This mean value can be chosen to maximise the length of a solution.
In this way, undulations in ¢, and ¢, provide an extra degree of freedom in the numerical
optimisation when searching for cell on a fibre solutions of a certain length and certain fibre
radius.

The increase of |¢;, —¢p| as f — 0 highlights possible difficulties in finding solutions which
meet the boundary conditions at f = 0 as given in Section 5.4.1. However, the boundary
conditions at f c?, = 1 given in Section 5.4.2 could be easily met as a conseqence of the dynamical
behaviour of the Euler-Lagrange equations if ¢,(1/2)¢,(1/2) > 0. The boundary conditions
are met when the Euler-Lagrange equations are at an attractive stationary point.

The cp-dependent shear terms allow an extremum in ¢,, without a corresponding extremum
in ¢p. This allows for a greater flexibility in possible solutions.

These observations are useful as broad outlines. The examples in this section also indicate
the possible complexity of solutions to the Helfrich and cell on a fibre boundary value problems.
Different elements of the dynamics of the Kuler-Lagrange equations will be useful to find
solutions which meet the required conditions for the cell on a fibre problems in Chapter 6.

Similarly, these observations can be used to understand how a membrane may look like
when certain terms of the free energy dominate. When A < 0, then undulations in the surface
serve to increase the surface area. When f is small and A, is large, so that the volume term
dominates, |cp, — ¢p| tends to rapidly increase. The rate of this increase may be too large to
be representative a real membrane. The only solution for which |¢,, — ¢,| does not rapidly
decrease under these conditions is that of a sphere. This is appropriate as when A, is large the
free energy is minimised by minimising the volume. For a given surface area, the shape with
the smallest volume is a sphere. Finally, a non-zero value of cg alters the solution in a variety
of ways. It can act to alter solutions which show undulations in ¢, and ¢, or rapid increases
in |¢pm — ¢pl. These types of solutions have already been discussed. A type of solution which is
only found when ¢ is non-zero are those demonstrated in Figures 5.11(a) and 5.11(b). There

is sharp change in ¢, and so the rate of change of ¢.
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(a) (5.216) has a positive sign and f is increas- (b) (5.216) has a negative sign and f is de-
ing, ¢n(0) = —2, ¢,(0) = 1, ¢ = —1 and creasing, ¢, (0) = =2, ¢,(0) =1, ¢g = 1 and
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(c) (5.216) has a positive sign and f is increas- (d) (5.216) has a negative sign and f is de-
ing, ¢, (0) = =2, ¢,(0) = 1, ¢¢ = —1 and
e=1.

creasing, ¢, (0) = =2, ¢,(0) =1, ¢o = 1 and
e=1.

Figure 5.11: Numerical solutions to ¢,, and ¢, from (5.216)-(5.217), demonstrating the effect of the
choice of €. Solutions Figures 5.11(c) and 5.11(d) can never reach steady state.
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(a) ¢, against s. (b) ¢, against s.

Figure 5.12: Numerical solutions to ¢, and ¢p, A = —1, ¢,(0) = 1, ¢,,(0) = ¢p(0) — ¢ and ¢y = 1.
A - (5.223)-(5.224). B - (5.208)-(5.209). C - (5.216)-(5.217). In all figures, where there is a choice in
sign, the positive sign is chosen. cyc,(0) > 0 and so shear terms can be said to co-operate with the
undulations from the surface term.

0 05
0 5 10 15 20 0 5 10 15 20
5 5
(a) ¢ against s. (b) ¢, against s.
Figure 5.13: Numerical solutions to ¢,, and ¢,, A = —1, ¢,(0) = 1, ¢,,(0) = ¢,(0) — ¢ and ¢ = —1.

A - (5.228)-(5.224). B - (5.208)-(5.209). C - (5.216)-(5.217). In all figures, where there is a choice in
sign, the positive sign is chosen. cyc,(0) > 0 and so shear terms cannot be said to co-operate with the
undulations from the surface term.
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(a) ¢, against s. (b) ¢, against s.
Figure 5.14: Numerical solutions to ¢,, and ¢y, A = —1, ¢,(0) =1, ¢, (0) = —(¢p(0) —¢o) and ¢g = —1.
A - (5.223)-(5.224). B - (5.208)-(5.209). C - (5.216)-(5.217). In all, where there is a choice in sign,

the positive sign is chosen. Minimum in shear terms allows the shear terms to co-operate with the
undulations from the surface term.

e, -G,

(a) (¢m — Cms) against s when co = 2, — (¢ —

(b) (¢m — cms) against s when ¢g =5, — (¢ —
Cms) against s when ¢y = —2.

Cms) against s when ¢g = —5.

Figure 5.15: Numerical solutions to ¢, from (5.223)-(5.224), where the positive sign is chosen, A =
—60, ¢,(0) = 1 and ¢,,(0) = ¢,(0) — ¢o. Term for ¢;,s given in (5.215). Sign of ¢,(0)cy determines
how much the undulations arising from the surface term are damped by ¢y dependent terms. When
¢p(0)co > 0 the undulations are less damped than otherwise.
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Chapter 6

Numerical Solutions to the Helfrich

Energy Minimisation Problem

6.1 Summary of Phagocytosis Models

Section 6.3 contains details of the computational scheme used to find the numerical solutions
of the Helfich boundary value problem (HBVP) in Section 5.4. The boundary value problem
was solved as a shooting problem where ¢,,, ¢, and f are perturbed away from the boundary
conditions and matched at an intermediate point. The matching error is minimised using the
MATLAB optimisation function fsolve where certain unknown parameters are variables of this
optimisation problem.

Results for the HBVP can be found in Section 6.4. Sections 6.5-6.7 contain detailed dis-
cussion, numerical schemes and results from the three cell on a fibre boundary value problems.
Section 6.5 looks at the zero momentum boundary value problem where boundary term of the
first variation in energy is set identically to zero. Section 6.6 looks at cell on a fibre solutions
where the length of a cell is increased under the contraint of constant volume. Finally, Section
6.7 looks solutions where the cell membrane is parallel to the fibre surface and the contact
angle between the fibre surface and the cell membrane is zero. Conclusions and observations
relating to each boundary condition are included at the end of each section. Section 6.8 brings
together these conclusions and generalises the observation made for each boundary condition.

The two key parameters of the solutions presented in these sections are the spontaneous
curvature cg, which is the self-induced curvature of the membrane, and the square of the fibre
radius, o = R2. It is convenient to refer to the square of the fibre radius due to the variable
f = 22 in the Euler-Lagrange equations.

The parameters of interest of the cell on a fibre solutions found are length, volume and
Helfrich energy. The Euler-Lagrange equations have been de-dimensionalised in Section 5.6 so
no units are in use.

All boundary conditions in this Chapter include the fundamental cell on a fibre boundary
condition in Section 5.5. Additional details on the construction of the solutions can be found

at the beginning of the corresponding sections.
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The discussion of numerical results in Sections 6.5-6.7 uses the analytical insight gained in
the previous chapter to understand the results, even if analytical solutions are not available.
A section which the reader is advised to be particularly familiar with is Section 5.13.

In its strictly correct use, the term divergent indicates that |c¢;, — ¢p| — oo. However, it
has been used in this current work to summarise the observation that for some solutions there
is a rapid increase of |¢,, — ¢,| as f — 0. Solutions such as this are referred to as “divergent”
solutions. Solutions can otherwise be “wave-like” or “undulating”.

If solutions are wave-like, then the spontaneous curvature will have a noticable effect on
the frequency of the oscillations. If |¢g| is large then maxima and minima may arise due to the
shear terms, as introduced in Section 5.13, and further demonstrated for HBVPs in Section
6.4.3.

166



6.2 Inflection Points, Turning Points and Types of Solution

There are five types of solution to the HBVP: spheres, oblate spheroids, prolate spheroids,
discocytes and dumbells. The types of solution and their relationship with volume is sum-
marised in Figure 6.1. Examples of numerical solutions of a prolate spheroid and a dumbell
solution can be found in Figure 6.3. For these solutions ¢, and ¢, monotonically decrease over
the interval 0 < s < 1/2. Examples of numerical solutions of a oblate spheroid and a discocyte
solution can be found in Figure 6.2. Some observations on how these types of solutions relate
to choice of boundary conditions will now be made. Full details of the boundary conditions of
the HBVP can be found in Section 5.4. They will be discussed in the context of the analytical

solutions to the perturbation of a sphere given in Section 5.9.

Sphere
-
=)
g

Prolate Ellipsoid 2__“ Oblate Ellipsoid
&
=
o
=
&,
=
=

Durmbell Discocyte

Figure 6.1: Profiles of dumbells and discocytes available solutions on their axis of rotation (dotted

line). Shapes of dumbells and discocytes are similar, however, their orientation to the axis of rotation

is different.

By (4.17) and (4.18) and the discussion in Chapter 4, a turning point occurs when ¢, =0
and an inflection point occurs when ¢, = 0. From
d(fep)
ds
it is found that when there is either a turning or an inflection point, by the Euler-Lagrange

equations, focf)o = sin® ¢ is an extremum. By the leading order terms, (5.125)-(5.127), of the

=4(1—- ch)l/Qcpcm, (6.1)

solutions found in Section 5.9 we can write

focio = 4(s — 5% (1 + i(s - 52))2 , (6.2)
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Sphere k=1
Oblate spheroid 0<kr<l
Discocyte k<0

Prolate spheroid | 1 < kK < Kmaz

Dumbell K > Kmax

Table 6.1: Types of Helfrich Boundary Problem solutions as defined by k = ¢,(0) = ¢, (0).

if this is differentiated wrt S so that
d (fOCZQ;()) € 2 3e 9
— = 4(1-2 1+ —(s— 1+ —(s— .
u (=29 (14 56- ) (14 56- ). (6.3

= 4(1 —25)cpoCmo, (6.4)

then the result is found to be consistent with (6.1).

Whether a solution with Helfrich boundary conditions is oblate, prolate or spherical depends
on the value of ¢,,(0) or ¢,(0) at the axis of rotation which is represented by the variable &,
defined here as

k = ¢p(0) = ¢ (0). (6.5)

For Helfrich boundary solutions close to a spherical solution, ¢,, and ¢, will increase or
decrease monotonically depending on the signs of €, as defined in (5.84), and J, as defined in
(5.85) and (5.86). If & < 0, then by the leading order solutions found in Section 5.9, (5.125)-
(5.127), € > 0, which implies that ¢, > ¢,. The curvature along the length of the fibre is greater
than around the radius. This causes the profile to be flattened along the axis of rotation so
that the solution is an oblate spheroid.

For small §, there will be neither a turning nor an inflection point so that the resulting
shape is an oblate spheroid. An example oblate spheroid solution can be found in Figures 6.3(a)
and 6.3(b). However, when 6 = O(1), when the asymptotic solutions in Section 5.9 are not
longer applicable. As the faster changing variable, ¢,,, crosses zero there will be an inflection
point. Then when the slower changing variable, ¢,, crosses zero there will be a turning point.
The resulting shape is referred to in [25] as a discocyte. Example discocyte solutions can be
found in Figures 6.3(c) and 6.3(d).

If 6 > 0, then ¢, > ¢, and € < 0. In this case ¢, is always smaller than ¢, and the
profile is stretched along the axis of rotation. In this case, the solution is that of a prolate
spheroid. Example prolate spheroid solutions can be found in Figures 6.2(a) and 6.2(b). As &
is increased, and the rate of decrease of ¢, over the interval 0 < s < 1/2 increases, there will
be a Kmag for which ¢,(1/2) = 0. Solutions for which ¢,,(1/2) < 0 are referred to in [25] as a
dumbell. It will be discussed in detail in Section 6.3.2 how the consequence of the boundary
condition ¢,(1/2) < 0 is an additional singularity which results in a maximum in f when
0 < s < 1/2. Example dumbell solutions can be found in Figures 6.2(c) and 6.2(d). The value
of Kmaer depends on spontaneous curvature cg. Figure 6.1 demonstrates how the discocytes

and dumbells are similar in shape but have a different orientation to the axis of rotation.
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6.3 Computational Details in Finding Numerical Solutions for
the Helfrich Boundary Value Problem

Details on how to find prolate and oblate spheroids can be found in Section 6.3.1. This
section introduces the general method used to find all Helfrich boundary value and cell on a
fibre solutions. Details on how the additional numerical challenge of finding a dumbell solution
was dealt with can be found in Section 6.3.2. These two sections should indicate the general
method used to find cell on a fibre solutions. Further information on the numerical methods

used to find cell on a fibre solutions can be found in the corresponding sections.

6.3.1 Spheroid Solutions

Numerical solutions which meet the boundary conditions given in Section 5.4.1 and 5.4.2
can be found in [25] where unknown parameters are listed. To find numerical solutions to the
HBVP introduced in Section 5.4 the boundary conditions must first be perturbed away from
the singularities at f(0) = 0 and f(1/2)c2(1/2) = 1 using the appropriate approximations to
the full Euler-Lagrange equations (5.36)-(5.38). The Euler-Lagrange equations can then be
used to integrate the solutions away from the singularities using the MATLAB solver ode45.
Parameters which minimise this matching error can be found by solving the corresponding
optimisation function numerically. This optimisation is done using the MATLAB program
fsolve from the optimisation toolbox. In this way, the Helfrich boundary value problem is
solved using the shooting method. A general introduction to the shooting method can be
found in [90].

The correct approximations of the Euler-Lagrange equations close to the singularity at
f = 0 were given in Section 5.4.1 to be (5.42)-(5.44). The approximations of the Euler-
Lagrange equations close to the singularity at fc, = 1 are given by the Taylor expansions
(5.47)-(5.49) and the complete expressions can be found in Appendix C.5. In the case when

co = 0 (5.47)-(5.49) are given here as a reference:

cm(s) = cm(s") + (s —s") (6.6)
* * * *\2

L (em(sY) (s ))(4Cp(8}(c§:§8 ) +3 = cm(s7)"+23) (559 (67)

o) = ) 4 R BTIN (69

f(s) = f(s) —den(sh)ep(s) (s — s7)° (6.9)

Equation (6.9) is generally independent of ¢.

¢m and ¢, must be of the same sign at fc, = 1, so that perturbing the boundary conditions
of ¢p, ¢, and f away from fc, = 1 will decrease f. This is consistent with the assumption that
the singularity occurs when f is at a maximum. The negative sign must be chosen in (5.38)
when integrating the solution away from the singularity at fc, = 1, as f can only increase
or decrease monotonically for an spheroidal solution. The positive sign can then be chosen to

integrate away from the singularity at f = 0. After the solutions are perturbed away from the
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singularites at fc, = 1 and f = 0 they can then be matched at some intermediate point. For
the shape to be symmetric around the mid-length when s* = 1/2 we have v = 0 by (5.50).
Define a value € so that if
e>1— f(s)cp(s)?, (6.10)

then the solution can be said to be close to a singularity and a Taylor expansion must be used
to integrate further. e must be as small as possible while being large enough for ¢;,, ¢, and f to
have only real and no imaginary parts when the Euler-Lagrange equations are integrated close
to the singularity. It was found that 10~ is a good value for e for which the numerical errors
were small. € must be large enough to move the solution sufficiently away from the singularity
so that integrating (5.36)-(5.38) does not lead to numerical errors.

The singularity at f = 0 as discussed in Section 5.4.1 will now be referred to as point P
while the singularity fc, = 1 as discussed in Section 5.4.2 for the boundary will now be referred
to as point R as indicated in Figure 6.3(b).

For spheres, oblate spheroids and prolate spheroids, which only have singularities at s = 0
and s = 1/2, there are five degrees of freedom which uniquely define the boundary conditions

of a particular solution. These are

cp spontaneous curvature, (6.11)
K cp(0) and ¢,,(0), (6.12)
A, osmotic pressure, (6.13)
A surface tension, (6.14)
B f(1/2). (6.15)

It is best not to allow ¢y to be a free variable as small changes in ¢y alter the solution of
the Euler-Lagrange equations more than small changes in the other free variables (6.13)-(6.12)
do. The parameter ¢y is assumed to be fixed for any given branch of solutions. If A, and
A are fixed, then there is one degree of freedom left in the boundary conditions at the axis
of rotation given in Section 5.4.1. A useful parameter to define is the value of the principal
curvatures at the axis of rotation (6.12), as it determines whether the spheroid solution is
oblate or prolate. There remains a degree of freedom in the boundary conditions in Section
5.4.2 when f(1/2)c,(1/2)* = 1. The remaining parameter is defined in (6.15) to be the value
of fats=1/2.

The Euler-Lagrange equations are solved using the shooting method, where unknown pa-
rameters in the boundary conditions are varied in order for the solutions for ¢,,, ¢, and f to be
matched at an intermediate point. Either co and A, or ¢p and & are fixed while the remaining
parameters were used as variables in order to minimise the matching error numerically. A new
solution is found using the variables of a known solution as initial estimates, while perturbing
the value of one of the fixed parameters. In this way a series of solutions can be found.

The difference between the solutions integrated from point P at s = 0 and point @ at

s = 1/2 at s = s, using the Euler-Lagrange equations (5.36)-(5.38) is the output of the
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function to be minimised which is

Ri1 = [emt(sm) — cm—(5m),
Cp+(3m) - cp—(sm)v
f-‘r(sm) - f—(sm)] (6'16)

This vector will be referred to as the residual of the optimisation problem. A vector of this type
will be referred to as the residual and clearly states what is minimised in each optimisation.
Cm+(8), cpt(s) and fy(s) are the solutions to ¢, ¢, and f found by integrating away from
point P. The solution is initially perturbed away from the boundary conditions at s = 0 to
s = € by the Euler-Lagrange equations in this limit. Solutions for the interval € < s < sy, are
found by integrating the Euler-Lagrange equations (5.36)-(5.38) using the inbuilt MATLAB
function ode45. This solver uses the Runga-Kutta method and e was typically given the value
1073. An acceptable numerical error to this optimisation problem was taken to be when all
components of the residual are of O(107°) or less.

This optimisation is done using MATLAB function fzero with the default settings. An
accurate solution depends less on the settings associated with fzero then on a good choice of
initial conditions. The best way of finding a good solution is my making the perturbation to the
fixed parameter sufficiently small. The value of this perturbation was usually 10~2. When this
does not result in a sufficiently small error in the optimisation problem, then the perturbation
was reduced to 1073. However, if this smaller perturbation did not result in a good solution
to the optimisation problem, then no further attempts at finding a further solution was made.
In certain cases, it is found that the matching error is improved when the optimisation is run
several times, using the parameters found in the previous optimisation as initial estimates for
the next optimisation.

cm—(8), cp—(s) and f_(s) are the solutions to ¢,,, ¢, and f found when integrating away
from point R. The Taylor expansion in Sections 5.4.2 was used to perturb the boundary
conditions from s = 1/2 to s = 1/2 — e. The Euler Lagrange equations were then integrated
numerically over the interval 1/2 — e > s > s,,. For a good solution to the minimisation
problem, any change in s,, in the range 0.25 < s, < 0.75 does not change the value of the
residual.

In this minimisation problem there are four unknowns and three matching conditions.
Typically the final absolute value of the residuals was between O(107%) and O(10~%) where a
smaller value is reflected in more continuous values of ¢, ¢, and f. One a solution is found,
the a single fixed parameter, co, k, A, is perturbed and the next solution is found. The
magnitude of this perturbation was fixed at ¢ = 1072, The end of a solution branch is taken
to occur when there is a sudden jump in the absolute value of the residual. Typically, the
absolute value of the residual after the jump will be O(1073). The jump in error is sudden,

clearly indicating the end of the solution branch.
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6.3.2 Dumbell Solutions

Dumbell solutions have an additional singularity at the point when f is at its maximum.
From (5.38) it is clear that at this point fc, = 1. The singularity unique to dumbell solutions
will be referred to as point ). These points are indicated in Figure 6.3(d).

As prolate spheroids are perturbed away from a spherical solution by increasing x and

min

mun decreases. The

finding the other parameters using fsolve, the minimum value of ¢, ¢
transition point between prolate spheroid and dumbell solutions is when ¢™" = 0 at point
R. The singularity is at a point of inflection. As the second order terms are identically zero
the Taylor series used to perturb the boundary conditions away from the singularity must be
extended to the fourth order. The effect of further increasing s is to increase the distance
along the z-axis between the point ) and point R.

For dumbell solutions ¢, = 0 at some point between the points () and R so at ) we have
cm€p > 0 while at R we have ¢, < 0. From (6.9), it is clear that point () is a maximum
in f and R is a minimum in f. The signs in (5.36)-(5.38) must be chosen so that f increases
between point P and ) and decreases between () and R.

Generally, for prolate spheroids and dumbells ¢,, and ¢, have a maximum value when s = 0
and decrease in value over the interval 0 < s < (1/2). As & is increased, the minimum value
of ¢, and ¢, decreases. Prolate spheroids are found when ¢, |min > 0 while dumbell solutions
are found when ¢, |min < 0. The rate of change of ¢, is generally larger than that for ¢,. For
the numerical solutions in the current work, ¢, is always positive.

By (6.9), if ¢y, (0)c,(0) < 0 then f is increased when it is perturbed away from its boundary
condition at point P. The solutions for f and ¢, by integrating the Euler-Lagrange equations
then tend towards a singularity f(smocp(smo)? = 1 where s,,0 # (1/2). At this point ¢, (smo)
is negative so by (6.9), f(smo) is @ maximum. For dumbells, the point at which the solutions
found by integrating away from points P and R cannot be matched at an arbitrary point, but
at this singularity.

Dumbell solutions must be matched at two points: once between point P and ) and
then between Q and R. This means that there are six matching conditions to fill which
must correspond to six degrees of freedom. Again, numerical solutions are easier to find if
spontaneous curvature cg is fixed. Whether the solution is a dumbell or not depends on the
value of k defined in (6.12). By Table 6.1, dumbell solutions are found when x > Kpep. If
k is allowed to be a free variable, small perturbations in k close to K = Kipae will shift the
corresponding solution from being a prolate spheroid to being a dumbell, which is difficult to
account for numerically. For this reason x and cg are fixed while A,, A and f(1/2) are allowed
to be free variables of the optimisation problem.

Two further independent parameters can be defined at point Q. These are

C'  maximum value of f(s), (6.17)

v limit of €™ at point Q. (6.18)

C is the value of f at point Q). At point R, the limiting gradient of ¢, is fixed as zero in order
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for the resulting shape to be symmetric around the mid-length. However, this condition is not
necessary for dumbell solutions.

The choice of the third parameter is determined by the following method used to find the
solution. This method is original to this work. If the third singularity, at point @), occurs at

s = S$mo then the solutions of (5.36)-(5.38) must be matched at points s¢; and seo where

€< S8 < Smo, (6.19)
Smo < Se2 < (1/2—c¢), (6.20)

so that, for 0 <n < 1,
Smo = 1 (Se2 — Se1) - (6.21)

The Euler-Lagrange equations will only be used to find ¢, ¢, and f across the intervals
€ < s < sq and saq < s(1/2 —€). If the parameters (6.13)-(6.12) are well chosen then
Smo — Se1 << 1 and s¢; — s;0 << 1. The integration of ¢, ¢, and f between s and seo
can be found using appropriate Taylor expansions. This avoids the problems associated with
finding solutions which are invariant when the signs in (5.36)-(5.38) are changed in the region
Se1 < S8 < S¢a.

Good starting values for parameters Ay, A and f(1/2) for the dumbell branch can be found
as follows. The boundary condition at s = 1/2, (5.45), requires that the value of ¢,, at point
Ris

Cm = :t\/Q)\+Ap/Cp+(Cp*CO>2. (6.22)

For an spheroid solution the positive sign in (6.22) must be chosen at point R. The prolate
spheroid branch ends when a real value of (6.22) cannot be found. &, defined in (6.12), is the
parameter which moves the solutions along the prolate spheroid branch line. The best way to
find the first point on the dumbell branch line is to fit the parameters A,, A and f(1/2) to a
polynomial solution with respect to k. The polynomial solutions of A,, X and f(1/2) can be
extended until a & is found for which (6.22) is real again. For the dumbell branch the negative
sign in (6.22) must be chosen.

The problem of accurately finding a dumbell solution is divided into two optimsation prob-
lems. Initially, a residual consisting of three conditions is used to find the three parameters A,
A and f(1/2). The accuracy of the final dumbell solution relies strongly on these parameters.
Then a second optimisation programme is run to find the remaining three free variables.

Cm, ¢p and f are integrated away from the singularities at point P and point R using the
method given in Section 6.3. For the first optimisation, ¢y, cp+ and fi are integrated over
the interval € < s < (1/2 —€). Similarly, ¢p—, ¢p— and f_ are integrated over the interval
(1/2 —€) < s < e. The value of s is then determined by finding the smallest s for which

Real (fych,) < 10710, (6.23)
The value of s.o is then determined by finding the largest s for which

Real (f_clz,_) < 10710, (6.24)
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Typically, sc1 — se2 < 1072 so the values of cp at s = s¢1 and s = s will be approximately the
same. As f and ¢, are related by fc,— ~ 1, this is also true for f.

As there are three unknowns, three matching conditions are required at s = s,,,0. Solutions
cannot be found between s.; and s.o are not found using Taylor expansions. The required
parameters, (6.17) and (6.18) are not included in the minimisation problem as degrees of

freedom. However, as S¢1 — Seo is 80 small,

Cp+(8e1) ~ cp—(Se2) and fi(sea1) = [-(se2). (6.25)

Close to sy,0, the values of f and ¢, will almost be constant so their difference across the break
in the solution can simply be minimised. As f and ¢, are related by fc,— ~ 1, it is enough to
do this for only for the more slowly varying variable, f.

Across the interval s.; < s < 8¢9 ¢, can be approximated as a linear function. The solutions
to ¢, on either side of point @ can be fitted to one continuous polynomial, z(s). It is best
to fit a linear polynomial only to values of ¢,, very close to the singularity. The difference
between values of ¢, at either side of the singularity and their fitted linear function can then
be minimised.

The residual for the first optimisation can now be defined as

Ra = [2(sm1) — cm+(5e1),
$(3m2) — Cm— (862)7

f+(se1) = f-(se2)]- (6.26)

Once this residual is minimised by varying the parameters Ap,, A and f(1/2), the values
of the other parameters can be found. Firstly, the value s,,0 at which the singularity at point
Q@ occurs is found as accurately as possible. As discussed, the singularity occurs at the point
when the positive sense of (6.22) is true. sy, is found by using the numerical solutions to
¢p and f to find the right hand side of (6.22) and fitting a linear polynomial y(s) to it. The
value of s at which this polynomial solution equals x(s) was taken to be s,,0. The calculated
value of s;,0 can then be used to find n using (6.21). The term (6.17) is the value of a linear

polynomial fit of f when s = s,,0. (6.18) is found by using the simple approximation

A Cm(562) - Cm(‘sﬁl). (6.27)
Se2 — Sel

The parameters Ay, A\, f(1/2), f(Smo), v and 7 are now used as free variables to minimise

the residual

Rs = [cmi(sa1) — cmit(sa),
Cpr(Se1) —  Cppa(ser),
fr(sa) — fr+(sa),
cm—(Se2) — Cm——(5e2),
Cp7(852) - Cp**(SEZ)v
f-(se2) — f-—(se)], (6.28)
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where | denote solutions on integration from point s = € to s and _ are solutions on
integration from point (1/2 — €) to se2. Se1 and se2 are determined by the same method as in
the previous case. The parameter, 7, is used to find s,,9. Taylor expansions are used to find
solutions denoted by 4 and __.

The magnitude of (6.28) found using initial estimates for the free parameters from the first
optimisation were found to be O(107%). This value was not improved by further optimisation.
The success of finding a dumbell solution relies on good initial guesses and a well chosen
residual to find the first three parameters. The dumbell solution branch for a given spontaneous
curvature cy was continued by increasing x by O(1073) until the magnitude of (6.28) suddenly

increased to O(1073). At this point, no further attempts to find further solutions was made.
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Figure 6.2: Example prolate solutions when ¢y = 0.
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Figure 6.3: Example oblate solutions when c¢g = 0.
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6.4 Numerical Results from the Helfrich Boundary Value Prob-

lem

How the stability of HBVP solutions depends on A, is examined in Section 6.4.1. Phase
diagrams relating «, A, length and volume can be found in Section 6.4.2. Finally, specific
examples which illustrate the observations in Section 6.4.2 are given in Section 6.4.3. In Section
6.4.3, the types of solutions found for extremely positive and negative x are described. The
solutions in Section 6.4.3 are examples of the sharp maxima and minima in ¢, which were

introduced in the case of the reduced Fuler-Lagrange equations in Section 5.13.

6.4.1 Stability of Solutions with respect to Osmotic Pressure, A,

The Euler-Lagrange equations find shapes which set the first variation of the free energy
(5.4) to zero. The form of the second and third variations in free energy for this problem can
be found in [130] and [131]. The range of possible shapes which are symmetrical about their
mid-length are illustrated in Figure 6.1. For a given surface area, spherical shapes are those
shapes with the maximum volume. The critical osmotic pressure A, is the critical pressure
at which there is a phase transition from either an oblate or a prolate spheroid to a sphere. It

can be written in terms of ¢ as

Ape = 2k, [6 — co] . (6.29)

This result can be found in [130] and again in more detail in [131].

What is observed in the numerical solutions, is that as the osmotic pressure of an oblate or
prolate spheroid solution is perturbed towards A, its volume increases and its Helfrich energy
decreases as it reaches the limiting shape of a sphere. In Figure 6.4(a), the spherical limit is
reached when ¢,(0) and f(1/2) no longer change. The values of A, at which this occurs when
co is clearly effected by numerical error. Once a solution has reached the limit of a sphere,
further perturbations to A, cannot move the solution away from the spherical limit.

In practice, this means that if the volume of a sphere is decreased, while surface area is
constant, then the solution will be a so-called spheroid. When A, = A, the second variation
in free energy is zero. In [131], the third variation in the Helfrich free energy functional (5.4)

was found. It indicated that there is a critical spontaneous curvature,
coe = —1.2. (6.30)

This critical spontaneous curvature determines whether an oblate or a prolate spheroid is the
stable solution when the normalised volume, Vj, as defined in (5.67) is Vy < 1. When ¢y < ¢,
it is expected that the oblate spheroids are stable and the prolate spheroids are unstable.
Conversely, when cg > cq. it is expected that the prolate spheroids are stable and the oblate
spheroids are unstable. As the volume of a shape continues to decrease, the shapes deform
as summarised in Figure 6.1. Prolate spheroids transition into dumbell solutions and oblate

spheroids transition into discocytes.
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The expected results for stability are found to be describe numerically calculated results
for Ero and ¢g. A useful way to compare the Helfrich energy of solutions which have different
spontaneous curvature is the normalised Helfrich energy defined in (5.68).

Figure 6.5(a) demonstrates how the normalised Helfrich energy is a minimum at A, = Ay..
In Figure 6.5(b), the normalised Helfrich energy of oblate spheroids is less than that of prolate
spheroids when ¢y = 0. It is also shown that, for Vj < 0.94, the normalised Helfrich energy
of oblate spheroids is greater than that of prolate spheroids when ¢y = —4, which generally
supports the analysis in [130] and [131]. Further results for the dependence of the normalised
Helfrich energy on volume can be found in Figure 6.9.

The value of A, 4+ 2Ac,(0) along the solution branch of spherical solutions in Figure 6.4(b)
does not change. In this example cg > co.. When A, < Ap. then A, + 2X¢,(0) < 0 whereas
when A, > Ay then Ay, +2Ac,(0) > 0. In Figure 6.5(b), the opposite is true. By the analysis
in Section 5.9 and discussion in Section 6.2, if A, + 2Xc¢,(0) < 0 then solutions will be prolate
solutions and oblate solutions otherwise. When ¢y > coe; Ap < Ape will result in a prolate
solution while A, > A, will result in an oblate solution. For ¢y < co., the converse is true.
The observations in the previous discussions imply that the most energetically stable solutions,
whether oblate or prolate, will be found when A, < A,.. The membranes will deform from a

spherical shape as osmotic pressure is decreased.

6.4.2 Overview of Helfrich Boundary Value Solutions

The parameters in Figure 6.6 were found by perturbing ~ rather than A, so both energet-
ically stable and unstable solutions could be found. Solutions were found by perturbing & in a
positive or negative direction until there was a sudden increase in error. HBVP solutions were
found for which —12 < ¢y < 22. For what will be termed mid-range solutions, spontaneous
curvature lies in the range —4 < ¢p < 1. This is the range in spontaneous curvature in [25].
In the current work, the additional HBVP solutions found are referred to as very positive
spontaneous curvature solutions, where 2 < ¢g < 20 and very negative spontaneous curvature
solutions where —12 < ¢y < 2.

Table 6.1 summarises the types of possible solutions in terms of x. The break in solutions
in the prolate branch (k = 2) is due the difficulty of finding numerical solutions over the
jump between prolate spheroids and dumbell solutions. Oblate spheroid solutions where k <
—2.5 cannot be found by perturbing away from a spherical solution. A separate set of initial
conditions for the minimisation problem was found by trial and error. These solutions give a
more complete picture of the range of possible solutions to the HBVP solutions.

Figure 6.6(a) is a plot of A, against s for some mid-range values of ¢y. The key thing to
notice in Figure 6.6(a) is that when ¢y < co. A, is increasing with x while for ¢y > cq. it is
decreasing with «. The pressure is below the critical pressure for the oblate spheroid branch
when ¢y < co. and for the prolate spheroids when c¢g > ¢g.. In [130] and [131], the second and
third variations of the free energy were only calculated for small deformations of a sphere so
these observations are only true close to k = 1. In Figure 6.6(b), the trend for ¢g = 6 shows

a discontinuity at x = 1.1. It was found that when k 2> 1.1, generally no solutions are found
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when ¢y < 16. For the cases when ¢y = 6 and 7 the solver managed to find solutions past this
point. When ¢y > 16, the prolate branch is again extended. Solutions such as these, for which
|k| =~ O(10), are discussed in Section 6.4.3. Solutions such as these are made possible by the
co dependent terms.

From the preceeding discussion, the volume of a vesicle is expected to be at a maximum
when it is a sphere. All the plots of volume against x in Figure 6.7 clearly a show a maximum
in the volume when k = 1. The plots become more distinct for extreme values of k. Some of
the oblate solutions also have minima in volume. When ¢y = 20, the prolate branch also has
a minimum so that the volume of the solutions is always close to 1.

Figure 6.8(a) shows that the normalised Helfrich energy is at minimum when x = 1 for all
values of cy. As ¢y decreases this minima is flattened as the variations in ¢, and ¢, are small
relative to c¢g.

A plot of normalised Helfrich energy against volume should indicate whether prolate or
oblate solutions are more stable for a given volume. This is plotted in Figure 6.9 for mid-range
values of —4 < ¢y < 1. They confirm that oblate solutions are more stable when ¢y < c¢g. and
prolate solutions are more stable when cg > ¢, for shapes close to the spherical solution. The
obvious deviations from this result when ¢g = —1, —2 and —4 correspond to oblate spheroid
solutions which occur before the minimum in volume in Figure 6.7(a).

As these solutions are to be used to provide initial estimates to solve the cell on a fibre
boundary value problem introduced in Section 5.5, the length of the vesicle along the axis of
rotation is of interest. Figure 6.10(a) includes solutions with negative length. These solutions
fulfill the boundary conditions set out in Section 5.4. However, they have no physical meaning
as they cannot be used to plot a continuous profile. Figure 6.10(b) illustrates three separate
trends in volume and length in the prolate branch of solutions. In the examples where ¢y = 6
and 20 there is a maximum in length. When ¢y = 6 the volume then decreases with length

while when ¢y = 20 it then increases.

6.4.3 Specific Examples

Individual solutions when ¢y = —12, —2, 6 and 20 can be found in Figures 6.11-6.14. For
each solution branch, the solutions with the maximum and minimum values of k are plotted,
along with a third solution. These figures and the discussion in this section aim to familiarise
the reader with the full range of the Helfrich boundary value problem solutions obtained. It
is especially important to note how when || is large then sharp minima and maxima can be
observed in ¢,, due to the shear terms introduced in Section 5.13. Some of the solutions of
the cell on a fibre boundary value problem will also have these maxima and minima, allowing
certain boundary conditions to be met.

When ¢y = —12 the HBVP solution which has the most negative value of « is found. This is
the discocyte solution in Figure 6.11(a). Solutions of negative length are found when ¢y = —2,
—1 and 0. An example of such a solution can be found in Figure 6.12(a) when ¢y = —2. An
example of a dumbell solution is also given here.

Examples of solutions along the solution branch parameterised by ¢g = —12, 6 and 20
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are of interest as they contain solutions at extreme values of k. When ¢y = —12, there is a
sharp maximum in ¢y and when ¢y = 6 and 20 there is a sharp maximum. Despite being very
different from spheroid solutions, solutions for which there is a sharp minimum ¢,, are still
oblate while solutions for for which there is a sharp minimum ¢, are still prolate.

The solution in Figure 6.11(b), when x < 0 is very different than the oblate solutions in
Figure 6.2. In the interval 0.1 < s < 0.5, we have ¢, ~ 1 and ¢;,, = 1. The boundary condition
¢p(0) = ¢,,(0) is met by the presence a sudden maximum in ¢,,. A less sharp maximum can
also be observed when ¢y = —2 in Figure 6.12(b). These solutions can be compared. The
solution when cg = —12 is longer than that when ¢y = —2 as the turning point is closer to
x = 0 and less of the solution turns over itself. In fact the solution when ¢y = —2 is negative.
Generally length increases when k is decreased. Referring to Figures 6.7(c) and 6.10(c), such
solutions for in which ¢, is a maximum account for the solutions which increase in length and
volume after a minimum in volume as s decreases. The solutions which have a maximum in
¢m are discocyte solutions as they have one turning and one inflection point.

Similarly, when x > 0 the example solutions in Figures 6.13 and 6.14 have minima. These
minima are sharper when x is greater. In these solutions, there are at least two points of
inflection which move closer to x = 0 as k increases, which has the effect of decreasing the
length. In both cases, length is decreased when k is increased. Referring to Figure 6.10(b),
when c¢g = 6, as the length of these solutions increases, their volume decreases. In contrast,
when ¢y = 20, as the length of these solutions increases, their volume gradually increases.

These results show that when s is increased not only solutions in which ¢, crosses zero
once, the dumbell solutions, can be found, but solutions in which ¢,, crosses zero twice can
also be found. For these solutions there is no additional singularity. For very large x, such
as in Figure 6.13(d) when c¢p = 6, ¢, also crosses zero twice which results in two turning
points. However, when ¢y = 20 solutions there were no turning points in the prolate solutions.
Whether both dumbell solutions and solutions with two inflection points can be found for the
same co has not been investigated.

The sharp maxima and minima in these solutions can be compared to those in Figures 5.10
and 5.11 in Section 5.13. These sharp minima and maxima are only found in solutions when
|co| >> 1 when the shear terms are of similar magnitude to the terms proportional to 1/f. In
this case, the minima and maxima do not reflect minima and maxima in ¢, due to oscillations

arising from the surface terms.
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6.5 Zero Momentum Boundary Condition

The boundary conditions given in Section 5.5 are necessary for a solution well-behaved
around the singularities. However, as the shape of a vesicle engulfing a fibre is not completely
enclosed, additional boundary conditions can be introduced to account for edge effects. The
simplest case to consider is to set the contact potential between the cell membrane and fibre
to zero and to set the Gaussian bending constant defined in Section 3.5.5 to zero.

By the argument that the energy minimisation is done with respect to e where ¢, = ¢y +e€n,
so that [ Eg(z,cp, ép)dz > [ Ey(x,cpo, épo)dz and n = 0 at end-points, the boundary term

arising from the minimisation of the Helfrich energy,

OEy
o¢,

s=1
oy (6.31)
is usually set to zero. Only solutions of the energy minimisation problem which are symmetric

about their mid-length are considered in this chapter. This condition implies that

OEy,  OFg

8C'p }3:0 - an ‘s:l’ (632)

so that (6.31) is met even if 1 does not vanish at the boundaries. The terms at s = 0 and
s =1 cancel each other out. Recalling that the Euler-Lagrange equations can be shown to be

equivalent to Newton’s second law in generalised co-ordinates, a term of the form

OEn dey, 2
— (2 T o) — .
5% <C”+‘””dx CU) 0~ (ee,)?) 2 (6.33)

is referred to as a generalised momentum. How it can be interpreted to represent a generalised

form of a particular physical property at a boundary varies between specific examples.
Refer to the balance of forces, (5.20) in Section 5.2, associated with the Helfrich energy
minimisation problem. If it is enforced that

s=1

em +¢p —Co|,_g =0, (6.34)

then forces tangential to the surface dependent on ¢, ¢, and ¢g, 0**° and o®" are set to
zero at the surface of the fibre. The remaining force acting tangentially to the surface is
the capillary force, so that the forces to balance along the contact line reduce to those for a
droplet without a lipid bilayer membrane. Details how forces at a solid/liquid/vapour interface
balance are given in Appendix C.2. There are no edge effects specific to the lipid bilayer. The
terms perpendicular to the surface remain, but as they are perpendicular to the edge of the
membrane, they can be assumed to play little role in the balance of forces at the liquid/solid
point of contact.

If the curvature of the solution at s = 0 and s = 1 plays no role in the balance of forces
between the edge of the membrane and the surface of the fibre. This is preferable as forces
arising from the bending energy of a lipid membrane along a continuous surface will be very

different to the forces associated with a free edge of a lipid membrane.
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The condition (6.34) will be referred to as the zero momentum boundary condition for the
cell on a fibre problem. It ensures that the generalised momentum is equal to zero at the

boundaries s = 0 and so, by symmetry about the mid-length, s = 1.

6.5.1 Implementation of Zero Momentum Boundary Condition

To explore solution to the zero momentum boundary condition, two approaches were taken.
For each value of spontaneous curvature ¢ = 1, 0, —1, —2 and —4 a set of solutions parame-
terised by volume was found. The solutions parameterised by volume can be compared to the
HBVP solutions of the same volume. Solutions of this type can only be found for a limited
range of fp. These solutions answer the question of how a cell membrane adjusts its shape on
engulfing a fibre when it cannot adjust its volume.

Solutions parameterised by length can be found for a wide range of values of fy. Solutions
of this type were found for ¢ = —12 < ¢y < 3. These solutions answer the question of how far
a cell membrane can extend down the length of a fibre when it is free to change its volume as
necessary. The only limitation to extending length in this case is the condition that the solution
meets the zero momentum boundary condition at the surface of the fibre. It is observed that
co dependent terms, the shear terms in Section 5.13, play an important role in the resulting

solutions.

6.5.2 Zero Momentum Boundary Problem Solutions Parameterised by Vol-

ume

For each spontaneous curvature ¢y, the possible solutions to the zero momentum boundary

problem can be parametrised by their volume V and
£(0) = fo = R?, (6.35)

where R is the radius of the fibre. The data given in [127] suggests that a fibre is significantly
toxic when its radius is in the micron range. Using the data for the diameter of an alveolar
macrophage given in [31], it can be found that for these fibres the relative radii of the cell
and fibre is approximately 0.1. For these reasons the radius of a fibre has been set at either
R = 0.01'/2 or R = 0.001/2. For each value of fy and spontaneous curvature ¢y a set of zero
momentum solutions were found with the maximum possible range in volume.

Solutions are found by minimising a residual using MATLAB optimisation functions as
described in Section 6.3.1. ¢g, V and fy are fixed for each optimisation. The five variables in

this optimisation, or degrees of freedom are

A, osmotic pressure, (6.36)

A surface tension, (6.37)

B £(1/2), (6.38)
c¢m(0) ¢ at fibre surface, (6.39)
cp(0) ¢, at fibre surface. (6.40)
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For these five unknowns there are five conditions so that a solution to the zero momentum

boundary value problem minimises the residual

R4 =[m+(sm) — cm—(sm), (6.41)
i (5m) = Cp(5m), (6.42)
fi(sm) = f-(sm), (6.43)

v — V, (6.44)
cm(0)  +  ¢(0) — co). (6.45)

The first three conditions and corresponding notation were the matching conditions introduced
in Section 6.3.1. The fourth condition minimises the difference between the value of a fixed
parameter V' and that of the volume of a particular solution v. The fifth condition ensures
that the zero momentum boundary (6.34) condition is met.

It is expected that the solution to the Helfrich boundary value problem where 2x = ¢
would provide a good initial estimate for the unknown parameters (6.13)-(6.15). As the values
of cg chosen to represent the possible range of spheroid solutions have been chosen to be
co = —4, —2, —1, 0 and 1, the initial estimates are taken from oblate rather prolate spheroid
solutions when x < 1. Estimates for the two additional parameters (6.39)-(6.40) can be found

by assuming that if the radius of a fibre R is small then

So(R) = Ff, (6.46)
em(0) = K+ Z(/ﬂ(cg — 2kco) + 28X + Ap)so(R), (6.47)
p(0) = K+ i(,@(cg — neo) + 26\ + A,)so(R), (6.48)

f(0) = R2 (6.49)

In this case ¢, (0) and ¢,(0) are not independent. The variable sg is only used to find ¢,,(0)
and ¢,(0) and is not counted towards the surface area of the solution. For this cell on a fibre
problem, there is no singularity at s = 0 so Fuler-Lagrange equations only can be used to find
Cm+, cp+ and fi. As for the Helfrich boundary value problem, there remains a singularity at
s = 1/2. Solutions are perturbed away from this point as described in Section 6.3.1.

A solution branch can be found by either perturbing the value of V. Alternatively, a new
set of initial estimates can be obtained from a Helfrich boundary value solution for a slightly
larger or smaller value of k. In this case the solutions can also be parameterised by the value of
k from the Helfrich boundary value solution from which the initial estimates of the parameters
were derived. Both methods were used together in order to find sets of solutions which had

the greatest range in V for each value of spontaneous curvature cg.

6.5.2.1 Results for Zero Momentum Boundary Condition Parameterised by Vol-

ume

The normalised radius of the fibre was taken to be either R = 0.01Y/2 or R = 0.001'/2,

about an order of magnitude smaller than the maximum radius of a Helfrich boundary condition
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profile, so by (6.35) fo = 0.01 or fy = 0.001.
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Figure 6.15: Dependence of parameters of zero momentum solution on the curvature at x = 0, &, of
the Helfrich boundary problem solution used to provide initial estimates. Parameters fixed for this set

of solution are ¢o = —2 and f, = 0.01.

Consider a set of solutions for which fy and ¢y are fixed and the zero momentum solutions
are parameterised by x. Figure 6.15(a) indicates that there are solutions of the zero momentum
cell on a fibre problem for which |¢;,(0) — ¢,(0)| is a minimum. The values of x for which
lem (0) — ¢p(0)] is @ minimum are referred to as kg. The values of Ky are given in Tables 6.2
and 6.3 along with the values of ¢,(0), ¢,,(0) and V.

One kg occurs when 2kg = c¢g. This is the x at which the Helfrich boundary value problem

itself meets the zero momentum condition. When ¢y = —2 and —4 there is another value of
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ko for which |¢,(0) — ¢,(0)| is of a similar value to |¢;,(0) — ¢,(0)|min. This is possible as, by
Figures 6.7(a) and 6.15(c), there is a minimum in volume when & is negative. Two Helfrich
boundary value problems have the same volume. The values of ¢,,,(0) and ¢,(0) from the zero
momentum solutions found for the second value of k¢ are similar to those of ¢,(0) and ¢, (0),
respectively, found for the first value of k. These results in Tables 6.2 and 6.3 indicate that the
initial estimates of the free parameters do effect the final solution to the optimisation problem.

The values of the parameters A\, A, and f(1/2) found for the zero momentum solutions
when ¢y = —1 are plotted with those found for the Helfrich boundary condition solutions in
Figure 6.23. These parameters for these two sets of solutions are approximately equal when
k = kg. When k = kg the zero momentum solution can be said to be closest to the original
Helfrich boundary value problem solution.

It was found that the sign of ¢,,(0) of a cell on a fibre solution is the same as that of 2k —cg.
For example see Figure 6.16. See, for example, Figure 6.15(a) in the case that ¢g = —2. As
¢m — ¢p of a cell on a fibre solution increases as f — f(0), then ¢,(0) will be of the opposite
sign of 2k — ¢g. Whether or not ¢, and ¢, crosses zero in the solution determines the number
of turning and inflection points.

All oblate spheroids have one turning point. However if ¢,(0) is positive then there are
at least two turning points in the zero momentum solutions. For example, see Figure 6.16.
By the equation for length (5.39) this results in the zero momentum solution being longer
than the Helfrich boundary value solution of the same volume. If ¢,(0) is negative then the
zero momentum solution has only one turning point. As ¢,, — ¢, increases for small f, ¢,(0)
will be much more negative than the corresponding Helfrich boundary value problem so its
length will be smaller than the Helfrich boundary value problem. For example, in Figures
6.17(a)-6.17(b), solutions for which ¢,(0) > 0 have two turning points which are evident in
their solution profiles.

In Figure 6.15(b) zero momentum solutions are longer than HBVP solutions when x < ¢y/2
as expected. From Tables 6.2 and 6.3, when k = ¢¢/2 and ¢y = —2 or —4, the first value of ky,
¢p(0) > ¢,,(0). For the second value of kg ¢,(0) < ¢, (0). By Figure 6.15(b), the length of the
solution at the second value of kg is much smaller than the corresponding Helfrich boundary
problem solution.

Generally, when k is negative enough, turning points are unavoidable. The length of a zero
momentum solution derived from a HBVP solution of a very negative value of x will always
be smaller than that HBVP solution. In Figure 6.15(b) this is true whether ¢,,(0) > ¢,(0)
or ¢,(0) < ¢,(0). There is only one s for which the difference in length between the zero
momentum and corresponding HBVP solutions is a minimum.

The results for the zero momentum boundary condition solutions are summarised in Figures
6.19-6.22. Each figure summarises results for a value of spontaneous curvature cg. Where there
are two possible solutions for a given volume, the longer solution, is used. The information in
these figures is discussed in the following paragraphs.

These observations in ¢,(0) and ¢, (0) explain aspects of the results in Figures 6.18-6.22.

When k = ko the difference in volume between the zero momentum and Helfrich boundary
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problem solutions is a minimum. When s > kg the Helfrich boundary problem solution is
longer, while when k < kg the zero momentum solution is longer. The volumes of the zero
momentum solutions when s = kg are listed in Tables 6.2 and 6.3.

What can be clearly observed in Figures 6.18-6.22 is that the zero momentum solutions are
longer than the HBVP solutions when volume is small.

The plots in the top left of Figures 6.19-6.22 shows that if a zero momentum solution is
perturbed away from a solution where ¢,,(0) — ¢,(0) is a local minimum then the value of
(1 — focp(0)2)/2 decreases rapidly to 0. This is made possible by the values of ¢,(0) and ¢,,(0)
which are plotted in the bottom row of Figures 6.19-6.22. By the discussion in Section 5.13,
if a Helfrich boundary value solution is perturbed then when f — 0, |¢,, — ¢p| will increase.
However ¢cg = O(1) so ¢y, + ¢, must be O(1). It was found that for some of the solutions
(1- fcg)l/ 2 i small when f is small which slows down the increase of |, — ¢pl.

By the plots in the top right in Figures 6.19-6.22 it is also found that as (1 — foc,(0)%)"/2

decreases for zero momentum solutions then the value of
e = cp(0) ((cp(0) = €0)? — cm(0)?) + 2X¢,p(0) + A, (6.50)

increases so that the solutions are not tending to the boundary conditions in Section 5.4.2
required for a well behaved solution at fc,f7 = 1. If the boundary condition (5.45) is not zero
then the solution is not well-behaved numerically and cannot be used as a possible profile for
a cell membrane. This limits the range of Helfrich boundary solutions which can be used as
initial profiles to find zero momentum cell on a fibre solutions. Solutions which do meet the
boundary conditions for f cf, = 1 in Section 5.4.2 at both the fibre surface and at the maximum
radius of the solution are discussed in Section 6.7.

The Helfrich energy of each solution is plotted on the mid-right of Figures 6.19-6.22, while
the length of each solution is plotted on the mid-left of Figures 6.19-6.22. As is the case for
all spheroids, the Helfrich energy of the HBVP solutions decreases as their volume decreases.
For oblate spheroids, their length decreases as volume is decreased. The length and Helfrich
energy of the zero momentum boundary value solutions are small perturbations of the length
and Helfrich energy of these HBVP solutions. Their length increases with volume and their
Helfrich energy decreases with volume.

The difference in Helfrich energy between the HBVP solutions and that of the zero mo-
mentum solutions is not obviously a minimum when k = kg. The Helfrich energy of a zero
momentum solution is always slightly larger than that of the Helfrich boundary value solution
of the same volume. When the zero momentum boundary conditions are implemented, a cell

on a fibre solution is less energeticall favourable than a Helfrich boundary value solution.
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co | Ko | ¢p(0) | cm(0) | Vo
0 0 -1.21 | 1.21 | 0.90
-11-0.51]-0.41 | -0.59 | 0.80
1105 |-27| 3.7 |0.97
21 -1 |-0.68 ] -1.32 | 0.72
-2 1 -4.71-1.38 | -0.62 | 0.71
-4 1 -2 |1-2.00 1 -1.99 | 0.69
-4 1-321-198 | -2.02 | 0.69

Table 6.2: Values for x for given ¢y together with values of ¢,(0) and ¢,,(0) for cell on a fibre solution
where fo = 0.001.

co | Ko | ¢p(0) | em(0) | Vo
0 0 |-038 1| 0.38 | 0.90
-11-0.51-0.47 | -0.52 | 0.80
11051 051 | 049 |0.97
-2 -1 |-0.85] -1.15 | 0.72
-2 1-48 1| 1.32 | -3.32 | 0.73
41 -2 1-2.02 ] -1.98 | 0.69
-4 1-321-1.79 | -2.21 | 0.69

Table 6.3: Values for k¢ for given ¢y together with values of ¢,(0) and ¢, (0) for cell on a fibre solution
where fo = 0.01.
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Figure 6.22: Plots associated with cell on a fibre solutions derived from Helfrich boundary problem
solutions where ¢g = —4. When fy = 0, parameters from Helfich boundary problem solutions have
been used.
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6.5.3 Numerical Scheme for Zero Momentum Boundary Problem Solutions
Parameterised by Length

For a range of values of spontaneous curvature in the range —12 < ¢y < 3 a separate
series of solutions was found. To find the solutions in this section, a zero momentum boundary
condition was found by the method in Section 6.5.1. Again oblate spheroids provided initial
estimates of the required parameters. Oblate spheroids of maximum length, for which k =1
were used for this. This zero momentum solution was then perturbed in two directions, that
of increasing fp and of increasing length. The solution branch is extended for increasing values
of fo and L until the error suddenly increases by a few order of magnitude.

Solutions of increasing fo are found by minimising the residual

Rs = [cm+(sm) — cm—(5m), (6.51)
cilm) = cpr(om), (6.52)
f(sm) = filsm), (6.53)
v — V, (6.54)
cm(0) 4+ ¢(0) — col, (6.55)

while keeping fo and ¢q fixed for each optimisation. The free variables for this problem are
A, osmotic pressure, (6.56)
A surface tension, (6.57)
B f(s) at f(1/2)cy(1/2)% =1, (6.58)
em/(0) cm at fibre surface, (6.59)
cp(0) ¢p at fibre surface. (6.60)

For each of the solutions found by perturbing fy, the length can be extended. This was

done by minimising the residual

Re = [em+(5m) — cm—(sm), (6.61)
Crlsm) = cpilom), (6.62)
fe(sm) = f4+(sm), (6.63)

I - L (6.64)
cm(0)  +  ¢(0) — co), (6.65)

where L is incrementally increased by 1072 between each optimisation and [ is the length of

the solution tested. In this case, the degrees of freedom are

Ay osmotic pressure, (6.66)

A surface tension, (6.67)

B f(s) at f(1/2)cy(1/2)% =1, (6.68)
cm(0) ¢m at fibre surface, (6.69)
cp(0) ¢p at fibre surface. (6.70)

208



L is increased until the absolute magnitude of the residual suddenly increases from O(10~%) to

O(1073). The maximum length solution is the longest solution for which the error is O(1078).

6.5.4 Results for Zero Momentum Boundary Problem Solutions Parame-
terised by Length

Zero momentum cell on a fibre solutions of the greatest length for fixed values of sponta-
neous curvature c¢g and f(0) = fy were found. Example results from these maximum length
solutions have been plotted in Figures 6.24-6.26. The range in spontaneous curvature for which
results were found can be subdivided into three groups: ¢y < —1, —1 < ¢ < 2 and 2 < ¢p.
Solutions with an acceptably small residual of O(10~%) were found when —1 < ¢y < 2. How-
ever, they were discounted true solutions to the zero momentum boundary value problem as
numerical error dominated the relationship between length and fy. Zero momentum boundary
value problem solutions for these mid-range values of spontaneous curvature for a smaller range
in fo are described in detail in Section 6.5.2. The length of solutions in each of the remaining
groups is plotted in Figure 6.24, while their volume and Helfrich energy are plotted in Figures
6.25 and 6.26.

The solutions of greatest length can be found when ¢g > 1.5. The length of the solutions
did not depend strongly on ¢g but increased with fy.

Finding zero momentum solutions with an acceptably small residual for ¢y > 2.7 was not
possible using parameters from an spheroid HBVP solution. Dumbell HBVP solution have
been used to find a limited range of dumbell cell on a fibre solutions which are discussed in
Section 6.6.5. These solutions do not necessarily meet the zero momentum boundary condition.

When ¢y < —1 the length of the solutions depends more closely on fy than ¢g as is the case
when ¢y > 1.5. However, when ¢y < —1 the length of the solutions decreases with fp, rather
than increases. The range of fp for which zero momentum solutions can be found does depend
on cy.

When ¢g > 1.5 volume decreases with length, which is the trend for prolate spheroids while
when ¢y < —1 volume increases with length which is the trend for oblate spheroids.

The Helfrich energy for these two sets of solutions depends on both ¢y and fp. It increases
as fo increases. However, for any value of fy the solution for which |cg| is greatest had the
smallest Helfrich energy.

When ¢y < —1 and ¢g > 1.5 then it is found that cos¢ = (1 — f(0)c,(0)%)1/2 is O(1072),
A,/A > T1and A, < 0. If these zero momentum boundary problem solutions were perturbations
of a sphere, then by Sections 5.9 and 5.11, it would be expected that cos ¢ = (1— f(0)c,(0)?)1/2
is O(1), Ap/A =~ —2 and A, > 0. For the zero momentum boundary value problem solutions,
the cp terms are of leading order. In Figure 6.27 ¢, = ¢, = 1 for 0.1 $ s < 1 and ¢, — ¢
increases rapidly when s — 0.

A solution where ¢, and ¢, are mostly constant does not allow much freedom to meet
the required boundary conditions. When fj is increased, the zero momentum solutions when
|co| > 2 adapt by including a maximum in ¢,, in the solution. For example, the result of

increasing fo when cg = —4 can be observed by comparing Figure 6.27 and 6.28. The maximum
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Length

(a) co = —2, —4, —8 and —12. (b) ¢o = 2.3, 2.5 and 2.7.

Figure 6.24: Length of maximum possible length of zero momentum solution against fq.

occurs when

ep((ep —co)? — c2) + 2X¢ep + A, B 2(1 — fcg)l/Q(cm —¢p)
(1= )7 7

= 0. (6.71)

The point at which this occurs can be observed in Figure 6.28(c). |co| is large enough for
second term not to dominate the behaviour of the solutions for small s. In this way, if |cg| = 2,
then solutions where the leading order terms are c¢g dependent result in cell on a fibre solutions
where length> 2.

HBVP solutions for which there is a maximum or minimum in ¢y were discussed in Section
6.4.3. As is the case in this section, a larger value of |¢y| helped extend the range of possible
solutions. It was found that when |cg| is large enough then oblate and prolate solutions could
be found for larger values of |k|. The role of ¢y dependent terms in producing maxima and
minima in ¢,, and ¢, is discussed in Section 5.13. The maximum in ¢,, occurs approximately
at the same point when ¢, = 0, which by the discussion in Section 5.13, results in an extremum

in ¢, in the case where shear terms dominate in Section 5.13.

6.5.5 Conclusions

The results in this section examine zero momentum cell on a fibre solutions in two ways.
In Section 6.5.2 these results are parameterised by volume. These results suppose that a cell is
pierced by a fibre, so that it has to quickly adjust its membrane until it reaches equilibrium at
the point the zero momentum boundary condition is met. The differences in length and Helfrich
energy between the original HBVP solutions are not large. These values tended towards those
of the HBVP as fi decreased. However, valid cell on a fibre solutions for ¢g = —1 and ¢y = —2

were only found for a limited range in volume as some solutions tended towards a singularity
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(a) co = —2, —4, —8 and —12. (b) ¢o = 2.3, 2.5 and 2.7.

Figure 6.25: Volume of maximum possible length zero momentum solution against fo.

in cp,.

The length and Helfrich energy of the HBVP and zero momentum solutions are most similar
when for the HBVP solution 2k = ¢g. In this case the solution does not have to greatly adjust
to meet the zero momentum boundary condition. If 2k > 2k then the length of the zero
momentum solution is smaller than that of the corresponding HBVP. If 2k < 2k then the
length of the zero momentum solution is greater than that of the corresponding HBVP solution.
However, the general trend for both HBVP and zero momentum solutions is for the length to
increase with volume which is the general trend for oblate spheroids.

In Section 6.5.3, the zero momentum solutions are parameterised by length. The results can
be divided into three groups by spontaneous curvature. For very negative values of spontaneous
curvature ¢y < —1 the length of a solution can be significantly extended (by more than 0.01)
for a limited range in fy. The length of this maximum length solution then decreases with fjy.
No solutions of the cell on a fibre boundary value problem were found for mid-range values
of spontaneous curvature —1 < ¢y < 2. As for solutions for which ¢y < —1, the length of
zero momentum solutions for ¢y > 2 can be significantly extended. In this case, the length of
maximum length solutions for very positive values of spontaneous curvature ¢y > 2 increases,
rather than decreases, with fy. If |cg| > 2 then spontaneous curvature adds another degree of
freedom which allows zero momentum boundary conditions have a length L > 2.

However, the range in possible fy of zero momentum solutions for ¢y ~ 2 is very small.
Prolate HBVP solutions which are not spheroids occur only when 1 < x < 1.5. When ¢ 2 2,
the initial estimates used to solve for a zero momentum solution must be taken from a dumbell
solution. Dumbell solutions have an additional singularity and are discussed in Section 6.3.2.
Cell on a fibre solutions with an additional singularity can be found. However, solutions of

this type which obey the zero boundary value condition may not be. Some results for these
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(a) co = —2, —4, —8 and —12. (b) ¢o = 2.3, 2.5 and 2.7.

Figure 6.26: Helfrich Energy of maximum possible length zero momentum solution against fq.

solutions can be found in Section 6.6.5.
The results in Sections 6.5.2 and 6.5.3. In Section 6.5.2, the aim was to find series of

solutions with the greatest range in volume for a limited range of fj, while in Section 6.5.3 the
aim was to find series of solutions with the greatest range in length and fo. In Section 6.5.2,
solutions were only found for mid-range values of —4 < ¢y < 1. In Section 6.5.3 solutions were
found for more negative and also for positive values of ¢y. It was found that for positive cg
and for ¢y < —2, zero momentum solutions could be found for a greater range in fj.

The different numerical schemes find solutions which met the zero momentum boundary
condition in different ways. These can be discussed in context of the terminology in Section
5.13. In Section 6.5.2, then (1 — fcf))l/2 — 0 as s — 0 in order to control |c,, — ¢,| as f
decreased. In Section 6.5.3, the zero momentum boundary condition is met by the solution
displaying maxima in ¢, due to cp-dependent shear terms. This is only possible for larger
values of |cg|. These shear terms allowed zero momentum boundary value solutions to be

found when fo = O(107!). In both cases, the solutions are dominated by a rapid increase of

|em — ¢p| when f is small.
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Figure 6.27: ¢,,, ¢, and f against s for maximum length solution to maximum length zero momentum

solutions when ¢y = —4, fo = 1073, L = 1.62 and V = 0.99. No maximum or minimum in ¢,, and Cp-
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6.6 Cell Enclosing and Cell Lengthening on Fibre Conditions

The aim of this section is to find the solutions of maximum length for given values of
spontaneous curvature, cg and fy = R? where R is the fibre radius. In Section 6.5.3, the length
of solutions were extended under the constraints of the zero momentum boundary condition.
Section 6.6.1 investigates other possible constraints for a cell lengthening on fibre problem.
Section 6.6.2 gives details on the final cell lengthening on fibre problem where the length
of solutions are maximised under the constraint of constant volume. The results of the cell
lengthening on fibre solutions for a wide range of spontaneous curvature and fy are given in
Section 6.6.3. Further observations on these solutions can be found in Section 6.6.4. It was
observed that the sign and magnitude of ¢y plays a key role in determining the range of cell
lengthening solutions. In Section 5.13, ¢g was found to effect the frequency of the undulations

resulting from the surface, or A dependent, terms.

6.6.1 Initial Investigation

If the radius of the fibre is small, then the constraint that the membrane must be perpen-
dicular to the fibre surface approximates a solution by which a cell membrane has completely
enclosed the fibre. This is an approximation to the cell engulfing fibre solution investigated
in Chapter 4. If a cell membrane is perpendicular to the surface of a fibre then the fixed

parameters must be

cp spontaneous curvature, (6.72)
f(0) = fo R?, (6.73)
cp(0) =0 ¢p at fibre surface. (6.74)

There are four remaining degrees of freedom which are

6.75
6.76
6.77
6.78

A, osmotic pressure,
A surface tension,
B f(1/2),

cm(0) ¢ at fibre surface.

(6.75)
(6.76)
(6.77)
(6.78)

A starting cell engulfing fibre solution can be found using parameters from a HBVP and

minimising the residual

Rz = [emi(sm) — cm—(sm),
cpt(Sm) —  cp—(Sm),
f+(sm) — f=(sm)s
v — V] (6.79)

The first three conditions are the usual matching conditions first introduced in Section 6.3.
The fourth condition minimises the difference between the volume of the solution, v and the

volume of the corresponding HBVP solution, V.
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For all results in this section, the HBVP was taken to be that for k = 1 as it was found to
maximise the length of results in Section 6.6.3.

The length of the solution can be maximised as was done in Section 6.5.3. Let L be a fixed
parameter and [ the length of the solution tested. Solutions of increasing length can be found

by minimising the residual

Rg = [cm+(sm) — cm—(sm),
cpt(Sm) — cp—(Sm),
fesm) — [=(sm),
I — 1, (6.80)

when L is incrementally increased by 1072.

If ¢,(0) is not fixed then there are five degrees of freedom. For an additional constraint,
it is set that as solutions solutions are extended in length, their volume must be constant. If
volume is to be fixed then the residual (6.80) is extended so that

Ro = [cmt(sm) — cm—(sm),
Cplsm) — Cpm(om),
felsm) = f=(sm),
I — L,
v — VI (6.81)

As an experiment, solutions for which ¢,(0) and volume are both free parameters are also

extended in length.

6.6.1.1 Results

Figure 6.29 shows how the constraint of volume limits the maximum possible length of the
solution less than that of fixed ¢,(0). However, when both volume and ¢, (0) are free then the
maximum length is slightly larger still.

In all solutions in Figure 6.29 the parameters do not vary much from A,/\ ~ —2. Figure
6.29 shows that if ¢,(0) = 0, then at some point both A, and A change signs. If A > 0 then,
by discussion in Section 5.13, the solution cannot have wave-like behaviour. The numerical
solutions of ¢, ¢, and f in Figure 6.30 for the maximum length solution in this case show
that the solution is dominated by divergent behaviour. However, when ¢,(0) is a free variable,
we have A < 0 for all solutions found. The numerical solutions for ¢,,, ¢, and f in Figure 6.31
show undulating behaviour.

When volume is allowed to vary, Figure 6.32(b) shows that it does not vary much from 1.
However, when volume is allowed to vary a set of solutions with a greater range of length are
found. The Helfrich energy for all three sets of solutions of increasing lengths show a minimum
in Helfrich energy as plotted in Figure 6.32(a). Solutions with the least Helfrich energy were

found when no constraints on ¢,(0) or volume were imposed.
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Results in this section and those in Section 6.5.3 suggest that, for a cell on a fibre solution,
when a boundary condition is imposed at s = 0 solutions where ¢,,, and ¢, diverge as f — 0
dominate. In order to meet these boundary conditions, the range of solutions found is very
limited. In order investigate a broader range of cell on a fibre solutions, a constraint on volume

only and not ¢, is imposed in Section 6.6.2.

6.6.2 Final Cell Lengthening on Fibre Problem

The constraint on cell lengthening solutions chosen to be investigated for a range of fy and

co in Section 6.6.3 is that of constant volume, so that the fixed parameters are

co spontaneous curvature, (6.82)
f(0) = fo R?, (6.83)
V=1  Volume of solution. (6.84)

In the constant curvature model in Chapter 4, the only possible way for a cell to engulf
a fibre was to increase its volume. Including the bending energy in the energy minimisation
problem allows a greater flexibility in solutions. Solutions to this optimisation problem model
a macrophage adjusting its shape to spread along a fibre when it is not possible for the cell to
greatly change its volume.

There are five degrees of freedom which are taken to be

A, osmotic pressure, (6.85)

A surface tension, (6.86)

B £(1/2), (6.87)
cm(0) ¢ at fibre surface, (6.88)
cp(0) ¢, at fibre surface. (6.89)

Sets of cell lengthening on fibre solutions are found for fp in the range 0.01 < fy < 0.1 and
co in the range —12 < ¢y < 12. An initial cell on a fibre solution for a given ¢q is taken to be
a cell enclosing fibre solution where ¢,(0) = 0 when fy = 0.01. Details are found in Section

6.6.1. Taking cg, fo and V to be fixed over an optimisation, the residual

Rio = [Cin(sm) C?n(sm)v
cp(sm) = ch(sm),
Flsm) = f(sm),

v — V], (6.90)

is minimised while fj is incrementally increased by 10~2 between optimisations. These solutions
are referred to as the minimum length solutions for fixed fy and ¢y. The parameters from these

solutions provide the initial value of L and the initial estimates for (6.75)-(6.78) which minimise

217



the residual

Rii = [ct (sm) — 2 (sm),
cp(sm) — hlsm),
fl(sm) - fQ(Sm)a
v — 'V,
I~ 1. (6.91)

v is the volume of the solution tested and [ is its length. V remains fixed while L is incrementally
increased by 10~2 between optimisations, until there is a sudden increase in the absolute value
of the residual from O(1078) to O(1073). The longest solution, for which the error in the
residual is O(1078) is referred to as the maximum length solution. There are five degrees of

freedom and five contraints for each optimisation.

6.6.3 Dependence of Length, Volume and Helfrich Energy on Fibre Radius
and ¢

In Figure 6.33(a) the function of contact angle has a minimum wrt length. This indicates
that the length of a solution will not always decrease is contact angle is decreased.

In Figure 6.33(b), the Helfrich energy also has a minimum. It could be assumed that the
length of a solution will increase as a way to minimise its energy until the solution reaches
this minimum in Helfrich energy. This suggests that, under the constraint of constant volume,
the most energetically stable solution is not necessarily the longest possible solution. Defining
solutions of minimum Helfrich energy to be the end point solutions of the cell lengthening on
fibre problem is less arbitrary than simply stretching the capacities of an optimisation function.

The dependence of contact angle and Helfrich energy on length of the solution changes with
fo- In the example in Figure 6.33(a), increasing fo has the effect of decreasing the length of
the solution which minimises Helfrich energy. How Helfrich energy and length depend on fy
and cg is discussed in detail in the following discussion.

The maximum length solutions and the length of the original cell engulfing fibre solutions
for a range of ¢y and fj are plotted in Figure 6.34. When ¢g > 0, this length decreases smoothly
with fo when 0.1 2 fo 2 0.4. At some point when fy < 0.1 there is a maximum in length.
This maximum length also decreases smoothly as cg increases. These observations are also
true when ¢y < 0 with an additional observation that at some fy the length of the solution
suddenly decreases. The value of fy at which this switch occurs decreases as ¢y decreases.

The maximum possible length of solution found for each ¢y in Figure 6.34 are plotted in
Figure 6.6.3. For these solutions fj is inversely proportional to ¢g. The maximum possible
length inceases as ¢y becomes more negative and as fj increases. This suggests that, for these
solutions, length increases as wave-like behaviour is more dominant.

Figures 6.35 and 6.36 plot the Helfrich energy of the solutions corresponding to those in
Figure 6.34. When ¢y < 0 the Helfrich energy decreases with length, while when ¢y > 0 the

Helfrich energy increases. When ¢y < 0, the solution with the minimum Helfrich energy does
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not correspond to the solution with the maximum length as there is a minimum in the Helfrich
energy as discussed above.

Figure 6.38 shows how (%ma./R) decreases with fy. The ratio of maximum radius over
minimum radius (Zpe./R) is determined by the value of fy rather than ¢g. For any given
piece of information on the comparative size of the radius of a macrophage relative to the
radius of a fibre, the best value of fy to use for this boundary condition can be picked. For
example information relating to Figures 6.38(a)-6.38(b) suggests that x,,4./R &~ 10, which
corresponds to the longest cell lengthening on a fibre solutions for which length over fibre
radius is L/ R ~ 100.

If no constraints are put on the contact angle at the fibre surface a smaller choice of fibre
radius will result in a larger aspect ratio. Solutions of this type suggest that it is possible for
a cell membrane to phagocytose a long fibre, even if the extra structural support provided by

the actin filaments just inside the membrane surface are not considered.
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Figure 6.29: A, and X for solutions of increasing length when fy = 0.1 and ¢y = 0. When boundary
conditions are imposed on ¢,(0), A, and X in Figure 6.29(a) change significantly to produce solutions

of longer length.
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Figure 6.30: Solution of maximum length, L = 1.89, found when ¢,(0) = 0 and volume is a free
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Figure 6.31: Solution of maximum length, L = 2.14, found when ¢,(0) is a free variable and volume
is fixed, fo = 0.1 and ¢y = 0.
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Figure 6.35: Helfrich energy of solutions in Figure 6.34. Black line (dashed line) - Helfrich energy of
minimum length solution in that set. Coloured line (solid line) - Helfrich energy of maximum length

solution in that set.
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(a) Positive spontaneous curvature cy.

Figure 6.36: Helfrich energy of solutions in Figure 6.34. Black line (dashed line) - Helfrich energy of

minimum length solution in that set. Coloured line (solid line) - Helfrich energy of maximum length

solution in that set.
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Figure 6.37: Comparison of length and Helfrich energy for maximum length and minimum Helrich
energy solutions as parameterised by c¢g and fy. Black line - Solution with minimum Helfrich energy.

Coloured line - Solution with maximum length.
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6.6.4 Dependence of Free Parameters on Fibre Radius and ¢

Figures 6.42 and 6.43 demonstrate how, for fixed ¢g and fy = 0.09, the free parameters vary
as the length of a solution is increased. The maximum length depends on cq in an approximately
linear way. A and A, vary comparatively little compared to the boundary conditions of ¢,,
and ¢, at s = 0 and s = 1. The difference between ¢,,(0) and ¢,(0) increase as |cg| increases.
The length of a maximum length solution increases linearly as ¢,(0) increases.

By Figure 6.39(a), it is clear that the maximum possible length of all solutions found for a
given ¢q increases as ¢g becomes more negative. The maximum length solution found in this
section is found when cp = —12 where L = 2.37. The numerical solutions for ¢, ¢, and f from
the maximum length solution when ¢y = 12 for 0.01 < fy < 0.5 are plotted in Figure 6.44,
while these results for ¢yp = —12 are plotted in Figure 6.45. In Figure 6.44, ¢, undulates, while
in Figure 6.45 ¢, has one very shallow minimum. The plot of the initial conditions f(0)c,(0)?
show that f(0)c,(0)% a2 0.8. In Section 5.13.2, it was discussed that when fc% ~ 1 the Euler-
Lagrange equations are dominated by wave-like rather than divergent behaviour. The reason
that ¢, has fewer undulations when ¢y = —12 than when ¢y = 12 can be found in Section 5.13.
A negative spontaneous curvature minimises the undulations induced when A < 0 and ¢, > 0.
If ¢, does not undulate then its integral, and so the length of the resulting shape, will be larger
than if it did undulate. For this reason, the maximum length solution of all solutions when
co = —12 is larger than that when ¢ = 12.

An example of a solution when ¢y = —12 is found in Figure 6.44, the extremum in ¢, would
not occur without the extremum in c,. However, the first extremum in ¢, in Figure 6.45 occurs
as ¢, monotonically increases. This feature acts to prevent ¢, from causing a further extremum
in ¢, and so maximises length. It also has the effect of increasing the difference |¢,(0) — ¢, (0)].
As in the examples in Sections 6.4.3 and 6.5.3, a ¢y adds a degree of freedom which allows a
solution to be found where there is a maximum or minimum in ¢y without an accompanying

maximum or minimum in c¢,.

When ¢y < 0 the length of the maximum length solutions suddenly decreases with fy. At
this point, Figure 6.40 shows how the value of f(0)c,(0)? suddenly increases to ~ 1. If a

solution is to be well behaved when f 012, =1, the solution must meet the boundary condition
cp(0)((cp(0) — 0)? — cm(0)?) + 2Xcp(0) + A, = 0. (6.92)

Figure 6.41 suggests that as f(0)c,(0)> — 1 then ¢,(0)((cp(0) — c0)? — ¢ (0)?) + 2Ae,(0) +
A, — 0. The boundary conditions at s = 0 for these solutions are approaching the boundary
conditions in Section 5.4.2 which are necessary to avoid at singularity when fclz, = 1. Cell
lengthening on fibre solutions for which f(0)c,(0)? ~ 1 and ¢,(0)((cp(0) — c0)? — em(0)?) +
2X¢p(0) + A, = 0 are used an initial estimates to find find solutions of zero contact angle in
Section 6.7.

It was found that when L was increased, the solutions found by the optimisation function
were such that ¢, tends to decrease while ¢, monotonically increases as f decreases. Solutions

which force ¢,(0) to become greater while fj is small will push the boundary conditions at
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s = 0 towards the limit f(0)c,(0)®> = 1. As ¢,(0) does not have to increase as much when fo
is larger, more maximum length solutions are found for larger fo.

The toy model in Section 5.13.2 attempts to capture the dynamics of the Euler-Lagrange
equations when f c% ~ 1. When s is decreasing and c,,c, < 0 then the conditions fcg ~ 1 and
cp(0)((cp(0) — c0)? — ¢m(0)?) + 2Acy(0) + A, & 0 correspond to an attractive steady state in
the toy model.

1/2 is fixed at €. In

At the attractive steady state in the toy model ¢, = ¢, and (1 — fcg)
the full Euler-Lagrange equations (5.36)-(5.38), steady state occurs when (1 — chQ,)l/2 =0 and
the limit of the first term in (5.36) is zero so that generally, ¢, # c,. It is therefore not clear
how the attractive steady state of in the toy model in Section 5.13.2 relates to the stationary
point in the Euler-Lagrange equations. If (1 — fc]%)l/2 is small then the full Euler-Lagrange
equations will approximate the toy model. The ¢, ¢, and f will generally tend towards the
condition ¢,(0)((cp(0) — c0)? — ¢m(0)?) +2Acp(0) + A, = 0. However, as (1 — fcz%)l/2 — 0, then
a comparison between the toy model and the full Euler-Lagrange equations is no longer valid.

Nonetheless, it was found that when no boundary conditions where imposed on ¢, and ¢,
for the cell on a fibre problem, the boundary conditions found for ¢, ¢, and f are consistent
with those given in Section 5.4.2, which are necessary to avoid a singularity at fcg =1, and
also with the conditions for an attractive steady state in the toy model in Section 5.13.2.

An explanation for this can be found by referring to the analytical solutions for the pertur-
bation of a sphere in Section 5.9. These solutions also have the property that they are invariant
to the direction of integration. Integrating away from the boundary conditions at s = 0 results
in the same solution as when integrating away from the boundary conditions at s = 1/2. For
a randomly selected range of parameters this is not the case. For a solution to be invariant
to the direction of integration towards and away from a potential singularity at fcf, =1, then
Cm, Cp and f at fcg = 1 must approximately meet the condition (5.45). In this way, requiring
that a numerical solution to the full Fuler-Lagrange equations indirectly imposes the condition
that when fc}% = 1 then (5.45) must also be met.

Figure 6.45 demonstrates that when ¢y < 0, solutions are found for which ¢,,(0) < 0 while
¢p(0) > 0. As there are no restrictions on the specific values of ¢,,(0) and ¢,(0), the numerical
solution will tend to such a stationary point at s = 0.

In Figure 6.34(b), it can be seen that the value of fy for which there is the sudden change
in solution is decreased for more negative co. This has been observed when cyc, < 0, co acts
to decrease the frequency of undulations in ¢,, and ¢,. Generally, a solution is pulled to the
singularity. If cocp, > 0 then the undulations can act as another degree of freedom in order to
avoid |¢y, (0) — ¢p(0)| from being too large so that the steady state can be avoided. This allows
a longer solution to be found when spontaneous curvature is positive.

The change in A, /X across the sudden decrease in length of the cell lengthening solutions
plotted in Figure 6.47 can be compared to the change in A,/\ across the sudden decrease
in length of the maximum length zero momentum solution plotted in Figure 6.27. This ratio
does not change sign for cell lengthening solutions but it does for zero momentum solutions.

This indicates that, though the jump in zero momentum solutions indicates a change from a
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divergence dominated solution to an undulation dominated solution, all constant volume cell
lengthening solutions are undulation dominated.

The observable change in solution across the jump in parameters can be appreciated by
comparing the numerical solution of ¢,,, ¢, and f in Figures 6.44 and 6.45 with Figure 6.46.
There are no undulations in ¢, in Figure 6.46 and the solution is more dominated by the
increase of |c,, — ¢p| rather than their undulation. For larger fo, the constraint in volume

prevents wave-dominated solutions from being found.

0 -12
0 005 01 015 02 025 03 035 04 045 05 “

Figure 6.40: f(0)c,(0)? = sin? ¢(s) of each maximum length solution as parameterised by co and fo.
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Figure 6.41: ¢,(0)((¢,(0) — c0)? — ¢ (0)?) 4+ 2Ac, (0) + A, of each maximum length solution as param-
eterised by ¢y and fo. When this is zero, the boundary condition at f(0)c,(0)? = 1 in Section 5.4.2 is
met.
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(a) Numerical solutions for ¢, ¢, and f

against s.

Figure 6.44: Maximum length solution ¢y = 12 when fy = 0.09. Generally coc, > 0 so undulations in

¢m and ¢, dominate solution.
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Figure 6.45: Maximum length solution ¢o = —12 when fy = 0.09. Generally ¢oc, < 0 so undulations
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Figure 6.46: Maximum length solution ¢y = —12 when fy = 0.20 when ¢, (0)((¢,(0)—co)?—cn(0)?) <<
1 so f(0)c,(0)? ~ 1.
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6.6.5 Cell on a Fibre Dumbell Solutions

Dumbell solutions which have been introduced in Section 6.2 can be used to find a cell on
a fibre solution. Details on how dumbell solutions are found numerically are in Section 6.3.1.
Cell on a fibre dumbell solutions share the same boundary and matching conditions at points
p and q as the HBVP dumbell solutions. The boundary conditions at point p when s = 0 are
replaced by the cell on a fibre boundary condition in Section 5.5 only.

For each optimisation the fixed parameters are fy and ¢y and the free parameters are

A, osmotic pressure, (6.93)

A surface tension, (6.94)

B f(s) at f(1/2)cy(1/2)% =1, (6.95)
em(0) cm at fibre surface, (6.96)
cp(0) ¢p at fibre surface, (6.97)

which are constrained by minimising the dumbell residual (6.26). Once a solution which
minimises this residual is found, solutions of increasing length can be found by adding a

constraint on length so that

Ri2 = [2(5m1) — cm(Sm1),
z(Sm2) — cm(Sm2),
flsm1) = flsm2),
I — 1), (6.98)

where L is a fixed parameter and [ is the length of the current solution. L can be perturbed
by steps of 1073 to find solutions of increasing length.

Parameters relating to three sets of cell on a fibre dumbell solutions are found in Figure
6.48 while four examples of these solutions can be found in Figure 6.49. It was found that cell
on a fibre dumbell solutions were easier to find when fo = O(1072) rather than fy = O(1071).
Figure 6.48(d) demonstrates that there is at least one cell on a fibre dumbell solution which is
also a zero momentum solution when ¢, (0) + ¢,(0) — ¢o = 0. Of these solutions, the solution
with the greatest length was found when cp = 3 and fy = 0.005 where L = 3.8. Contact
angle and volume are primarily dependent on fy while the Helfrich energy depends primarily
on spontaneous curvature.

The results relating to zero momentum cell on a fibre solutions in Section 6.5.3 show that
the solutions with the greatest length were found when ¢y =~ 3. These solutions used parameters
from prolate spheroid HBVP solutions as initial conditions for the minimisation problem. The
cell on a fibre dumbell solutions are another example of the use of a prolate HBVP to find a

cell on a fibre solution.

6.6.6 Conclusions

In Section 6.6.1 it was found that imposing if the boundary condition ¢,(0) = 0 is imposed

on the surface of the fibre then the solutions resemble those found in Section 6.5. If no boundary
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condition other than that for the length to increase while volume is constant reveals whose
length and Helfrich energy depend strongly on fy and ¢y. These solutions were chosen to be
the focus of the investigation.

When spontaneous curvature is negative there is a decrease in Helfrich energy as length
increases until a minimum is reached. This shows that it can be energetically favourable for
the length of a cell on a fibre to increase in length until this minimum in Helfrich energy is
reached. The kinetic, surface, gravitational and dissipation energies were used to model the
speed of a spreading droplet in a time dependent system in [39]. In addition to these energies,
the Helfrich energy could be used to account for bending energy. If Helfrich energy decreases
with length, then by the laws of energy conservation, this energy could then be converted to
kinetic energy so the membrane can further extend itself along the fibre.

The maximum length of these solutions falls between the range of the maximum lengths of
the zero momentum boundary condition solutions for very negative spontaneous curvature in
Figure 6.24(a) and the lengths of the zero momentum boundary condition solutions for very
positive spontaneous curvature in Figure 6.24(b). By discussion in Section 5.13, when cyc, > 0,
co dependent terms will dampen the oscillations in ¢,, and ¢, less than when coc, < 0. The
solution of greatest length for all ¢y and fy was found when ¢y = —12. This can be explained
by the observation that when cg is negative the undulations in ¢,, and ¢, are dampened. If ¢,
monotonically increases rather than undulates, then, by (5.39), longer solutions are possible.

When spontaneous curvature is in the range —12 < ¢p < 2 then there is a sudden decrease
in length, Helfrich energy and associated parameters as fp is increased. The discussion in
Section 5.13.2 suggests that the Euler-Lagrange equations are attracted to the point where
fc?) = 1. When cpc, > 0, the wave-like behaviour of ¢,, and ¢, prevents the solutions of the
Euler-Lagrange equation from being attracted to this point. When fcf, ~ 1 then the contact
angle is approximately zero. Zero contact angle solutions are investigated further in Section
6.7.

Cell lengthening solutions can also be found which have two singularities where fc% = 1.
These solutions are similar in structure to the dumbell solutions to the Helfrich boundary
value problem introduced in Section 6.3.2. Such cell on a fibre dumbell solutions have the
greatest length of all the cell lengthening solutions found. They can also be found to meet the
zero momentum boundary condition when ¢y ~ 3. However, due to the numerical difficulty
of finding cell on a fibre dumbell solutions they do not make a good candidate for systematic

investigation.
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Figure 6.49: Radius against length of four cell on a fibre dumbell solutions, fo = 0.05, ¢ = 3.

Solutions indicate how placement of maxima in f changes as length of solution is increased.
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6.7 Zero Contact Angle Boundary Condition

Images and accompanying discussion in Section 3.4 suggest that, a cell is expected to spread
along the fibre so that its contact angle with the fibre surface is zero. This is reasonable to
assume as in order to spread along the fibre, part of the cell surface will be attached to the
surface of the fibre by actin filaments.

The results for the cell lengthening on fibre solutions in Section 6.6, with particular reference
to Figure 6.33, show that if volume is kept constant, for a set of solution of increasing length,
Helfrich energy generally decreases with length as the contact angle between the membrane and
fibre decreases. For these results there is some link between increased length and decreasing
contact angle.

Solutions for which the contact angle is exactly zero, so that f(0)c,(0)?> = 1 at the fibre
surface are referred to as zero contact angle solutions. f(0)c,(0)2 = 1 at both the fibre surface,
when s = 0, and the maximum radius, when s = 1/2. The boundary condition (5.45) from
Section 5.4.2 is also met at both s = 0 and s = 1/2 to avoid a singularity in the Euler-
Lagrange equations. Such zero contact angle solutions have been found by using solutions
found in Section 6.6 as initial conditions.

A range of different solutions where found. However, as fp was decreased two limiting sets
of solutions were found. When fj = 0.1 then solutions were found with two extrema in ¢, and
two inflections points when ¢,, = 0. These solutions were very similar in shape for a range of
negative spontaneous curvatures. When fy < 1072 then another set of solutions were found
which are referred to as spherical cap solutions. For these solutions ¢, ~ ¢, ~ 1 except when

f is very small and ¢, — ¢, rapidly increases. These solutions have one inflection point.

6.7.1 Numerical Details

The discussion in this section assumes familiarity with Sections 5.4.2 and 6.3.1. A zero

contact angle solution is found by perturbing boundary conditions

F(0)ep(0)* =1, f=fo=R? s* =0, v#0  (6.99)

and

=0 , (6.100)

over the interval 0 < s < e using the Taylor expansion in Section 5.4.2. The Euler-Lagrange

em(0) = \/Cp(o)((cp(o) “e)? — em(0)2) 1 226, (0) + A,

equations are used to integrate over the interval ¢ < s < s,,. At s = 1/2, the boundary
conditions in Section 5.4.2 are met. The Taylor expansion in Section 5.4.2 is used to perturb
the boundary conditions over the interval (1/2) > s > (1/2 — €), and the Euler-Lagrange
equations are used to integrate over the interval (1/2 —€) > s > sp,.

At s =0, (6.100) is negative and so by the discussion in Section 6.3, it is a minimum in f.
At s = 1/2, (6.100) is positive and so by the discussion in Section 6.3, it is a maximum in f.
At s =0, the limit of dep,/ds can be any value while when s = 1/2 it must be zero to ensure

symmetry about the mid-length.
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As e¢pep < 0at s = 0 and ¢ep > 0 at s = 1/2, by discussion in Section 5.13, the
stationary point at s = 0 is attractive in the direction of s decreasing while the stationary
point at s = 1/2 is attractive in the direction of s increasing. As solutions are perturbed from
their boundary conditions, they are perturbed away from a unstable stationary point, towards
a stable stationary point. The dynamics of the Euler-Lagrange equations favours the finding
of such a zero contact angle solution.

The parameters of cell lengthening solutions where f(0)c,(0)> ~ 1 and
p(0) ((cp(0) = c0)® — ¢ (0)?) = 0, as described in Section 6.6, provide initial esimates for
the required parameters.

For each value of spontaneous curvature ¢j = —12, —11, —10, =9, =8, =7, —6, =5, —4
and —2 a solution for which ¢,(0) ((cp(O) — o) — cm(0)2> +2Xcp(0) + Ap =~ 0 is used to find
a set of solutions. Each set of solutions are therefore parameterised by cj.

For each optimisation fy only is fixed. The numerical difficulty is finding a zero contact

angle solution demands that all remaining parameters

JANS osmotic pressure, (6.101)
A surface tension, (6.102)
f(1/2)  maximum value of f, (6.103)
v limit of €2 at f = fo, (6.104)
cp spontaneous curvature co, (6.105)
must be allowed to be free variables in the optimisation problem for which
Riz = [emi(sm) — cm—(sm),
et (sm) = cp—(sm),
fi(sm) = fe(sm)], (6.106)

is minimised. Between each optimisation, fy can be incrementally decreased.
A solution of greater length can be found by incrementally increasing the fixed parameter

L over a set of solutions which minimise the residual

Riz = [emi(sm) — cm—(sm),
pi(sm) — cp—(sm),
filsm) = fr(sm)],

I~ 1, (6.107)

where [ is the length of the current solution. Solutions were accepted when the magnitude of
the residual was O(10~7) — O(107%).

6.7.2 Results

Figure 6.50 plots ¢y and Helfrich energy against fy for all solutions. Figure 6.50(a) is an
example of how generally there is not a smooth trend between fj and the parameters (6.101)-

(6.105), or between fj and length and volume. ¢ largely depends on the value of ¢f. However,
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there is a smooth trend between fo and Helfrich energy as this depends more on the numerical
solutions of ¢, ¢, and f than the parameters.

Numerical error in a HBVP solution or a cell on fibre solution mainly arises due to the
approximation of the Euler-Lagrange equations to a Taylor expansion which has to be made
at fcf) = 1. The magnitude of the residuals to be minimised depend strongly on ¢, the distance
over which the Taylor expansion is used to find solutions to ¢,,, ¢, and f. € cannot be too
large or too small. The zero contact angle boundary value problem has two singularities. One
of which occurs when f is small, when the divergence terms dominate and so the error cannot
be adjusted by adjusting A, and A. The two singularities, one of which occuring for small f
result in fewer good solutions being available.

Profiles of solutions in Figures 6.51 and 6.52 demonstrate the range possible solutions which
can be found within a dataset. Cell spreading solutions of this type are varied and are not
simply small perturbations of a solution which can be defined by, for example, the number of
oscillations of ¢, and c,,.

In each set of solutions, two solutions are of particular interest. One is the solution with the
maximum length. The other is the zero contact angle solution which has a smallest possible

value of fy.

6.7.2.1 Summary of Maximum Length Solutions

Parameters of maximum length solutions obtained for each ¢jj are summarised in Figures
6.53 and 6.55. Figure 6.41 indicates that there are many possible cell lengthening solutions
for each value of cp, from which a zero contact angle solution can be obtained. Whether
a zero contact angle solution is possible to obtain from a given set of starting conditions is
limited by the ability of the solver used to tackle this numerically challenging problem. For this
reason, the results should be taken to represent a sample of possible solutions. It should not
be assumed that for the given value of ¢y, the maximum length solution found is the longest
possible solution would could be found if all possible permutations of starting parameters were
tried. However, clear trends in values and parameters associated with these solutions have
been observed which are helpful in understanding these solutions.

Figure 6.54(a) indicates that fy decreases with ¢g for all solutions. The maximum length
solutions for ¢ = —12, —10, —9, —7, —6 and —5 (open circles) also show a clear linear trend
between ¢y and volume and a clear linear trend between fy and volume which is indicated
in Figures 6.53(a) and 6.53(c). The length of these solutions is ~ 0.3 and has little variation
between solutions. However, Figure 6.54(b) does indicate a slight positive trend between length
and cp, which results in a negative trend between length and fy. Helfrich energy, A and A, in
Figures 6.53(d), 6.55(a) and 6.55(b), also show linear trends with volume.

The values of the same parameters for the remaining solutions (filled circles), where there
are no clear trends with volume, are more scattered. They indicate that a variety of different
solutions, with different features, are possible over the same range in fy and ¢y. Figure 6.50(b)
indicates that Helfrich energy depends more closely on fy than on length, so there is no

straightforward relationship between length and Helfrich energy, which was found for the cell
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lengthening solutions.

6.7.2.2 Example Maximum Length Solutions

Once a zero contact angle solution is found, further solutions were found by decreasing the
fixed value of fy. For each value of fy, solutions were increased in length while keeping fo
constant. Example solutions in the cases where ¢j = —6 and ¢ = —12 can be found in Figure
6.56. When ¢ is more negative, and so, by Figure 6.50, ¢y is generally more negative, the
solutions found are more varied and have more oscillations in fcf,. By discussion in Section
5.13, when cpc, is more negative, the frequency of oscillation increases. This increases the
difficulty of meeting boundary conditions at s = 0.

Results for maximum length solutions where L > 2.9 (open circles) are found in Figures
6.57 which show all these solutions to be very similar in shape. For these solutions, c,, does
change sign twice, on either side of a maximum, so that the solutions have two inflection points.
The boundary conditions vary little between these solutions at s = 1/2. ¢,(0) increases slightly
as fo decreases, which is expected as |, — ¢p| tends to increase as f — 0. This explains how
cp(0) manages to increase when fy is deceased, so that the boundary condition f(0)c,(0)? =1
is met.

As ¢,(0) is larger when fy is smaller, length is increased slightly as fy is decreased, see
Figure 6.54(c). When fj is decreased, Figure 6.54(a) shows that ¢ is more negative. Also
when c¢g is more negative, by discussion in Section 5.13, oscillations are flattened so that the
average value of dc,/ds is greater. This allows the boundary condition f(0)c,(0)? = 0 to be

met for small values of fp.

Summary of Spherical Cap Solutions

Cell spreading solutions were found when fy = 1072, 1073, 1074, 107>, 1076 and 1077,
When fyo = 0.01, two types of solution were found. Solutions of one type have a length L ~ 3
while another group of solutions have a more varied length.

The cluster of solutions with the greatest length in Figure 6.58(a) demonstrate a small
range in the values of their volume, A\ and f,4;. These solutions all have a positive value of
co- These solutions can be used to find the zero contact angle solutions with very small values
of fo in Figures 6.59(a) and 6.59(b).

Figure 6.59(b) demonstrates that, even for very small fp, these solutions are numerically
well-behaved where there are no discontinuous jumps in ¢, (s), ¢y(s) or f(s) and that these
solutions are real and have no imaginary parts. As fo — 0, it is found that ¢g — 2 so that
(1—cp)?> —1 — 0 while 2X\+ A, — 0. Figure 6.59(c) shows that the length of the solution does
increase as fo and s; decreases.

The solutions are tending to the limit that ¢, ~ 1 and ¢, ~ 1 over the interval s > st
for smaller and smaller values of s'. Over the interval s < s, c¢p rapidly increases while ¢,

rapidly decreases. The value of —A,/\ tends to 2 as fy is decreased. From Section 5.8 it
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is known that —A,/\ = 1 for a spherical solution to the HBVP. In this zero contact angle
solution A, ~ 19 and A =~ 9.5 while for a spherical solution these parameters are A, = 12 and
A = —6. However, when s > s; there are enough similarities between this zero contact angle
solutions and a solution for a sphere to refer to these zero contact angle solutions as spherical
cap solutions. Spherical cap solutions are such that their shape is approximately that of a
sphere except close to the fibre surface when ¢,, and ¢, rapidly change in order to meet the
zero contact angle condition.

Figure 6.58 indicates that zero contact angle solutions where ¢y < 0 and fy = 0.01 are
possible to find. These solutions have a smaller length, volume and fy,4; than those for which
co > 0. The length and volume of these solutions tends to decrease with increasing cq. Figure
6.60 is an example of such a solution when ¢y = —13.9. The sharp maximum in ¢, and
associated minimum in ¢, similar to that found in solutions in Sections 6.4.3 and 6.5.3, results
in two turning points and one point of inflection which reduces the length of the solution. By
discussion in Section 5.13, when |cg| is too large, it is expected that sharp maxima and minima
will arise from the shear terms. These extra maxima and minima may explain why solutions

with a similar value of ¢y were not found when fy < 0.01.

6.7.3 Conclusions

A limited range of zero contact angle solutions were found due to the increased numerical
difficulty of the optimisation problem. The lengths of zero contact angle solutions found depend
strongly on fo and ¢, indicating that this boundary condition may be less useful in finding
cell engulfing fibre solutions then the boundary conditions previously found in Section 6.5 and
6.6. In order to find a range of zero contact angle solutions the spontaneous curvature was
included as a variable in the residual minimisation problem. However, two interesting sets of
solutions were identified.

In Section 6.7.2.1, a set of cell spreading solutions was found in which all solutions had a
normalised length of approximately 3. These solutions were found for fy in the range 0.01 <
fo < 0.2 and where ¢y < 0. For these solutions there are approximately linear relationships
between cg, fo and volume where fy decreases as with increasing cg. Their solutions for ¢,
and ¢, are very similar with only small adjustments to the height and depth of the maxima
and minima. These solutions were characterised by two points of inflection.

If fo < 0.01 then the range of possible solutions in terms of spontaneous curvature length
and volume decreases. As fy is decreased from any set of initial conditions the solutions will
tend towards that of a spherical cap solution. In Section 6.7.2.2 it was found that, for spherical
cap solutions, ¢g tends to 2. The length of the spherical cap solution also increased as fy was
decreased. The solution of maximum length was found when fo = 10~7 and L = 3.27. This is
the longest cell on a fibre solution in this chapter.

If fo is decreased from any set of initial conditions the solutions will tend towards that of
a spherical with a rapid increase of |¢,, — ¢p| at small f. These limiting solutions have been
called spherical cap solutions. The length of these solutions increases as fy decreases while

co tends to the value of 2. The solution of maximum length was found when fy = 1077 and
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L =3.27.
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Figure 6.50: ¢y and Helfrich energy against fy for all zero contact angle solutions found in each data
set. There is no straightforward relationship between ¢y and fy. However, the relationship between

Helfrich energy and fj is much simpler.
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(c) fo=0.07 (d) fo=0.3

Figure 6.91: ¢,,, ¢, and f against surface area where cf; = 8. Plots indicate the range in solutions in

terms of maxima and minima in ¢,, and ¢, as fo is varied.
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Figure 6.52: Radius against length of solutions in Figure 6.51. Turning points occur when ¢, = 0 and

points of inflection when ¢, = 0.
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Figure 6.53: Trends in parameters relating to the solution of maximum length in each set and volume.
Solutions denoted by o refer to the maximum length solutions where ¢§ = —12, —10, -9, -7, —6
and —5 for which certain linear trends with volume are evident. Solutions denoted by * refer to the

maximum length solutions where ¢j = —11, —8, —6, —4 and —2.
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Figure 6.54: Trends in parameters relating to the solution of maximum length in each set. Dependence
of length on ¢y and fj. Solutions denoted by o refer to the maximum length solutions where cf; = —12,

—10, —9, —7, —6 and —5 while solutions denoted by * refer to maximum length solutions where
¢y = —12, —10, -9, -7, —6 and —5.
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Figure 6.56: Results for maximum length solutions for ¢j = —6 and ¢ = —12 for a range of fo. When

co is more negative, there are more maxima and minima in ¢,, and ¢, when f; is small.
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= —12, —10, —9, —7 and —5 where L > 2.9.

These are the solutions denoted with an ’o’ in Figure 6.53.
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Figure 6.58: Summary of parameters relating to solutions where fo = 0.01. Two groups of solutions

emerge where L > 2 or L < 2.
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Figure 6.60: An example of a solution with fy = 0.01, ¢ = —13.9 and L = 1.06 which indicates that

solutions when fy = 0.01 can be very different from those in Figure 6.59.
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6.8 General Conclusions to Helfrich Energy Minimisation Prob-

lem

The results of the constant mean curvature droplet model in Chapter 4, summarised in
Section 4.11, indicate that the limitation of the droplet model is that the only solutions available
in the case that z,,;, = 0 are spherical solutions. Imposing boundary conditions which force
cell engulfing fibre solutions away from this limit increase the numerical error associated with
the integration to find the solutions.

Assuming that a cell engulfing a fibre is spherical does not correspond with any of the
experimental results reviewed in Chapter 3. By including the Helfrich energy to the surface
and volume free energies in the energy minimisation problem, a greater range of spheroid
solutions are available for which x,,;, = 0. This allows for a greater range of cell on a fibre
solutions.

The analysis contained in Sections 5.9-5.11 on polymer solutions and Section 5.13 on the
Fuler-Lagrange equations as a dynamical system provide the context required to understand
the numerical solutions of the cell engulfing fibre solutions in Sections 6.4-6.7. Section 5.13
suggests that numerical solutions may either be dominated by ¢, and ¢, diverging as f — 0
or by or by ¢, and ¢, undulating so that the solution is dominated by wave-like solutions.
The wave-like behaviour is typical of a HBVP solution as ¢, and ¢, cannot diverge in order
to meet the condition ¢,,(0) = ¢,(0). If A < 0 then ¢, and ¢, should be wave-like, while when

A > 0 divergence of ¢, and ¢, as f — 0 will be more dominant.

6.8.1 Review of Results

The HBVP solutions in Section 6.4 have a much larger range in spontaneous curvature,
cp, and curvature at * = 0, x than those found in [25]. The analytical solutions to the
Euler-Lagrange equations in Sections 5.9-5.11 were used to find initial estimates of the free
parameters before using MATLAB optimisation tools to minimise the appropriate residual.
The range in x was extended by finding an alternative set of initial estimates, which were not
found on perturbing away from the known spherical solutions. In [25] the range in spontaneous
curvature is —4 < ¢g < 1, while in the current work the range in spontaneous curvature is
—12 < ¢y < 20.

The five versions of cell on a fibre solutions introduced in this chapter are the zero mo-
mentum solutions in Section 6.5, cell engulfing fibre solutions and cell lengthening on fibre
solutions in Section 6.6 and the zero contact angle solutions in Section 6.7. Cell on a fibre
dumbell solutions are discussed in Section 6.6.5. The results show that the length, volume and
Helfrich energy of all these solutions depend on spontaneous curvature cg and the radius of
the fibre R, where f(0) = fo = R?. The observations for each of the boundary conditions are
different in each case.

The zero momentum solutions in Section 6.5 were investigated in two ways. In Section
6.5.2, solutions were found for which a HBVP solution was used as an initial estimate of the

parameters. A zero momentum solution of the same volume was then found. Solutions of this
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type were only found for very small values of fy but their length and Helfrich energy did not
vary greatly from that of the corresponding HBVP solution.

In Section 6.5.3, zero momentum solutions were also investigated to find solutions of max-
imum possible length for a given value of fy and ¢y. Solutions were only found when |co| > 2
and fo < O(1071). Here A > 0 and the solutions were dominated by ¢, and ¢, diverging when
5 $ 0.1 while ¢, = ¢, =& 1 when s 2 0.1. Maxima in ¢, due to ¢y dependent shear terms, as
defined in Section 5.13, gave another degree of freedom which allowed the boundary conditions
at the surface of the fibre to be met.

Cell engulfing fibre and cell lengthening on fibre solutions were investigated in Section 6.6.
Cell engulfing fibre solutions fixed the contact angle of the membrane with the fibre to 90° by
fixing ¢,(0) = 0. It was found that if ¢,(0) is fixed while the length of the solution is increased
then solutions where A > 0 will be found. However, when ¢,(0) is free then A < 0 for the
solutions found. These solutions could be extended further than those when A < 0. For this
reason, solutions where ¢,(0) is a free variable were investigated in Sections 6.6.3 and 6.6.4.

In Sections 6.6.3 and 6.6.4 cell lengthening on fibre solutions were found for a wide range
of ¢y and fy. The solutions of greatest length were found when ¢y = —12, when L = 2.37, as
the spontaneous curvature term acts to reduce the frequency of the oscillations of the solutions
as had been discussed in Section 5.13. When only the volume of a solution is restricted, the
remaining restrictions on the length of a solution are due to the dynamics of the Euler-Lagrange
equations. The value of ¢g, in part, determines the dynamics of the Euler-Lagrange equations.

Cell lengthening on fibre solutions were found for which the Helfrich energy decreased
smoothly as length was increased. This result suggests that the bending energy favours the
phagocytosis of long fibres. For increasingly negative values of ¢y and increaging values of fg,
there is a point where maximum possible length of such solutions suddenly decreases. The
attraction of the Euler-Lagrange equations to a point where fcg = 1 can limit their flexibility
to meet set boundary conditions.

The longest zero momentum solutions were dominated by divergence in ¢, and ¢, while
the longest cell lengthening solutions were dominated by wave-like behaviour. The results for
the zero momentum and cell engulfing cell solutions in Sections 6.5 and 6.6 suggest that, when
the values of ¢, (0) or ¢,(0) are fixed, wave-dominated solutions may be more difficult to find,
so that the solutions found are dominated by divergence rather than wave-like behaviour.

The zero contact angle solutions of maximum length in Section 6.7 have a normalised
length of ~ 3, where length is the normalised length defined in (5.66), which is scaled by the
square root of the surface area. The numerical solutions to ¢,,, ¢, and f of all zero contact
angle solutions whose length is approximately 3 are similar in terms of the placement of their
two inflection points. The value of fy for these solutions can be adjusted by changing the
spontaneous curvature. The zero contact angle solutions also indicate that a variety of zero
contact angle solutions can be found when fy is small, fo = 0.01. However, if fj is an order of
magnitude smaller than this, then only solutions with two inflection points and L ~ 3 can be
found.

Finally, cell on a fibre dumbell solutions can be found. These solutions have the greatest
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length of all the types of solutions as they use the parameters of prolate dumbells as initial
estimates. In Section 6.6.5, solutions with lengths of up to 3.8 were found. However, imposing
any kind of volume restriction or boundary condition on these solutions is difficult from a
numerical point of view. These solutions were only found for very small values of fy. If ¢g =3
then the special case of a cell on a fibre solution which meets the zero momentum boundary

condition can be found.

6.8.2 Role of ¢y and f, in Determining Length

It is not simple to compare the results of the different boundary conditions directly as
the solutions have very different properties and can be used for different purposes. When
zero momentum solutions are parameterised by volume in Section 6.5.2, the lengths of the
zero momentum solutions did not differ greatly from the HBVP solutions of the same volume.
However, all cell lengthening solutions in Section 6.6 have the same volume of 1. Implementing
the zero momentum boundary condition does not itself greatly increase or decrease the length
of a solution, compared to HBVP solutions of the same volume.

Solutions for a range of fy were found using zero momentum and cell lengthening boundary
conditions in Sections 6.5.3 and 6.6. In Section 6.5.3 the length of the solutions was extended
under the condition that the zero momentum boundary condition (6.34) was met. In Section
6.6, this condition was that volume was to remain constant. Length varies significantly with
fo for zero momentum solutions where cg < —1 and ¢g > 1.5. However, the range in fj is very
small.

The cell lengthening boundary condition test the flexibility of the Euler-Lagrange equations
to find solutions of increasing length for fixed values of ¢y and fy. Solutions of the zero
momentum boundary conditions show how the zero momentum boundary condition limits this
flexibility by imposing an extra condition at the boundary.

The maximum possible lengths of the cell lengthening and zero contact angle solutions can
also be compared. For both these cases, for the maximum possible length solutions, fy and
co are inversely proportional. However, for the cell lengthening solutions, maximum possible
length decreases with cg, while for zero contact angle solutions there is a slight increase in
length as cp increases.

co plays a different role in determining length than in cell lengthening solutions than in zero
contact angle solutions. In cell lengthening solutions, the increase in freqency of oscillation
when ¢g < 0, as opposed to cg > 0, allows the solution to avoid tending towards a point where
fclzJ = 1 at s = 0 so that the solution is longer. However, all zero contact angle solutions
have the boundary condition fcg = 1 when s = 0 so longer solutions can be found when these
oscillations are damped. For example, the zero contact angle solution of maximum length is
found when ¢y > 0.

The boundary conditions which produced solutions of the greatest length were the zero
contact angle solutions and zero momentum cell on a fibre dumbell solutions. The maximum
possible length of the zero contact angle solutions is limited. As fy is decreased, length increases

and the shape tends to that of a sphere will a sharp inflection on the fibre surface. There is a
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limit to how sharp the inflection point can be allowed to be, and so which numerical solutions
can be accepted as cell on a fibre solutions. A sharp inflection point as is effectively a neat
crease in the membrane which is not expected in a lipid bilayer.

The zero momentum cell on a fibre solution is an example of a cell on a fibre solution for
which has an additional singularity, as is found in a dumbell HBVP solution. The lengths of
these dumbell solutions are limited only by the numerical difficulty of finding solutions of this
type. The choice in fy is also limited, as longer solutions can only be found for very small fy.

A cell on a fibre dumbell solution which met the zero momentum solution was found. This
was the longest solution featured in the numerical results in this chapter where L = 3.8, co = 3
and L/R = 17. This suggests that very long fibres may be phagocytised by disk-like cells
which have a dip in radius at the mid-length. Increasing the number of singularities in the
solution, and so finding a shape where there are a number of maxima in f, may be a way to

find increasingly longer solutions to the cell on a fibre problem.

6.8.3 General Conclusion

The effect of two key prescribed parameters fp, the radius of the fibre squared and cg,
the spontaneous curvature on the length of the resulting cell on a fibre solution depend on
the boundary conditions used. The sign and magnitude of ¢y plays an important role in
determining how a solution meets the required boundary conditions. Spontaneous curvature is
a concept which accounts for the natural curvature of a cell membrane due to proteins within
the cell membrane and the cytoskeleton just inside the cell membrane. If the spontaneous
curvature is non-zero, then the cell membrane has a curvature when no force is applied. If a
cell membrane has a spontaneous curvature where |cy| >> 1, then the cell membrane could be
described as stiff. Finding an experimental method of quantifying the spontaneous curvature
of a cell membrane and validating it as a reasonable concept would be a very useful step in
relating solutions in the current work to observations of macrophages engulfing a fibre.

In Sections 6.5 and 6.6 solutions of the longest length were found when |co] >> 1. In
Section 6.7 the spontaneous curvature of solutions was adjusted in order to find cell on a fibre
solutions with a given value of fy. The longest solutions in this section were found when ¢y ~ 3.
A dumbell cell on a fibre solution can only be found when ¢y > 2.5.

A macrophage must be able to somehow “know” how to adjust its spontaneous curvature
in order to engulf a fibre of a given dimension successfully. If a macrophage has to significantly
change its spontaneous curvature by re-arranging its cytoskeleton or activating or de-activating
proteins within its membrane, then phagocytosis will require energy which is not accounted for
in the Helfrich energy. In this way, spontaneous curvature provides insight to both the shape
of a cell on a fibre solution, and also the energy required for a cell to acheive that shape.

In order for a cell to effectively phagocytose a fibre the membrane may be parallel to the
fibre surface, a constraint investigated in the zero contact angle solutions. Also, a cell may not
be able to rapidly change its volume, which is a constraint investigated in the cell lengthening
on fibre solutions.

The question of how to account for the dynamics involved in phagocytosis can itself lead
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to many different avenues of investigation. If length is to increase with time, then the Helfrich
energy of solutions of increasing length would be an important property of the solutions.
Phagocytosis may be the result of a solution reaching an energy minima.

It is not clear how the forces associated with the Helfrich energy variation problem are ap-
plicable when the edge of the membrane is in contact with the surface of the surface. Solutions
where the surface forces dependent on curvature are set to zero may give a more realistic idea
of how the shape of a cell adjusts as it phagocytoses a fibre.

The problem of modelling a cell phagocytosing a fibre by minimising the Helfrich energy
can be tackled by a variety of approaches. Different constraints on a cell on a fibre solution
result in solutions with very different properties in terms of length, volume, Helfrich energy
and shape. The question to be answered is what feature of a cell on a fibre solution is most
important to fix in the boundary conditions. The most appropriate cell on a fibre boundary
conditions could then be chosen to reflect experimental observations. Comparing the images
of fibres phagocytosed by macrophages in Section 3.4 to the results of this chapter, it appears
likely that the zero contact angle spherical cap solutions in Section 6.7.2.2 best describe the

profile of these macrophages.
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Chapter 7
Concluding Remarks

Section 7.1 of this chapter describes how mathematical models concerning different areas of
biology and physics to those in Parts I and II can be applied to the question of nanotoxicology.

Section 7.6 is a general conclusion which breifly summarises the work contained in the thesis.

7.1 Part III - Further Modelling Possibilities

In parts I and II, the possible mechanisms of nanoparticle toxicity investigated were oxida-
tive stress and frustrated phagocytosis. Following a literature review, it is found that there is
a another key mechanism which is due to the tendency of nanoparticles to form loosely bonded
groups or agglomerates. The high surface to volume ratio of nanoparticles in general and the
hydrophobicity of CNTs in particular means that they are likely to to aggregate.

Findings from [67] and [107] show that on inhalation SWCNTSs are deposited into the alveo-
lar region of the lungs. In [67] and [107] it is also suggested that how the SWCNTs are deposited
depends on how well dispersed, or how aggregated, they are before inhalation. Samples of well
dispersed nanotubes are quickly incorporated into the interstitium and the interstitial fluid.
This was found to have the affect of increasing the thickness and collagen content of the alve-
olar wall. If the samples of SWCNTs were less well dispersed, the agglomerates deposited on
the lung epithelium quickly formed granulomatous lesions. Granulomatous lesions are areas
of especially fibrous material which serve to isolate potentially harmful contents of that area
from nearby cells. In [67] it was reported that an unusual, and possibly unique, inflammatory
response to SWCN'T characterised by a brisk acute phase inflammatory response followed by
an early onset of lung fibrosis.

Nanotubes are expected to become airborne during the manufacturing process. Filters are
set up by HSL at the manufacturing plants to monitor their number. However, the filters do
not measure the size of individual agglomerates but measure their cumulative concentration
over a number of hours. If the average agglomerate size is a key indicator of how an individual
agglomerate will interact with the lung on inhalation, then understanding what affects the size
distribution of a sample of airborne nanotubes is important.

As there are no significant experimental results to suggest models, the challenge of this
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thesis is to find frameworks for models which have a specific nanoparticle application but do
not rely on a set of experimentally found parameters. In Chapter 2 this was done by using
established mechanisms from literature reviews to assemble a model and then to investigate
and categorise the results of this model. Chapters 4, 5 and 6 do this by introducing specific
boundary conditions to find shapes of an appropriate geometry. In both these cases, sets of
qualitatively different results were obtained which could help explain a range of behaviour that
could potentially be observed experimentally.

There are several different modelling ideas relating to the agglomeration and dispersal of
nanoparticles [75]. Looking at dispersed nanoparticles in air as an aerosol is an established way
of looking at the nanoparticle problem [100]. Aerosol science examines how small solid particles
distribute themselves in air. Aerosols of this type are commonly referred to as ultrafine aerosols.
As particles become smaller, the most observable macroscopic consequence of Brownian motion
is not diffusion but agglomeration. Agglomerated particles will form on a smaller timescale
than they will diffuse over any significant distance. The rate of collision between particles
increases as they get smaller. So aggregation is the most important mechanism, over diffusion

and gravitational deposition, which effects the concentration of ultrafine aerosols.

7.2 Macroscale Models

The aggregation of ultrafine aerosols can be examined on many scales. The size distribution
of a number of particles can be modelled using the mean field Smoluchowski and Becker-Déring
equations, while the free energy of a single agglomerate can be evaluated using concepts from
polymer physics.

The standard form of a system of Smoluchowski equations is as follows [125]. A cluster com-
posed of r fundamental units has a time-dependent concentration of ¢,(t). For an aggregation
only model the law of mass action suggests equations of the form

r—1 00
de, 1
E = 5 § Qs pr—sCsCr—s — bs,rfscr - g Qp sCrCs — br,sCr+57 (71)
s=1 s=1

where a, s are the aggregation rate coefficients while b, s are the fragmentation rate coefficients.

Note that the equation of the monomer concentration is

dey
dt

00
== a1sc16s + by sCor1. (7.2)
s=1

The aggregation and fragmentation rates can be chosen to encapsulate the particular phys-
ical properties of the aerosol in question. The forward (aggregation) rate coefficients can be
calculated by considering the particle flux and the probability of collision. This depends on the
density, diameter and the Stokes-Einstein diffusion coefficient of the particles. The backward
(fragmentation) rates correct for the forward rates, moving the population of aggregates back
to a size distribution which minimises the free energy.

A comprehensive introduction to aerosol dynamics can be found in [38]. The mean free

path of an ideal gas at ambient pressure is &~ 68nm. Single nanoparticles will have a smaller
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maximum dimension than the mean free path of gas (large Knudsen number). In the con-
tinuum limit, when there are a large number of particles, and at large Knudson number, the
Smoluchowski collision frequency and the Stokes-Finstein diffusion coefficent are commonly
used to find a typical collision frequency (3;;. Define 3;; as

2T

pi= (0 ran) x (012 +07%) . (13)

Stokes-Einstein Diffusion Coefficient Smoluchowski Collision Frequency

where the diameter of a particle dy ~ v*/3 and gas viscosity is p. Van der Waals forces can be
specifically included by using an effective diameter, d, rather than the actual diameter dy so
that

d= /doo exp(V(z)/kT) /x2dx, (7.4)

0
where U(z) is the potential energy. The form of the Van der Waals potential is dependent on
the shape and size of the agglomerate as well as the chemical properties of the material. An
appropriate form for this potential can be found in books such as [61].

For a cluster with a large number of nanoparticles, it is useful to define a fractal number d

such that
R d
M:A(), (75)
ap()

where N, is the number of particles in an aggregate and a,0 is the radius of a single unit particle.
R is a statistically determined value of the radius of an aggregate with [V, particles. Knowing
the fractal number allows the collision frequency to be adjusted, so that in the continuum
regime for N,, >> 1000,

_2kT 1 1 1/d 1/d
B =, <v3/d +v]1./d> (040} (7.6)

A variant of the Smoluchowski equations are the Becker-Doring equations where only like-
wise are allowed to aggregate to clusters and only monomers are allowed to deaggregate from
clusters. This model assumes that only monomers are mobile enough to be affected by Brow-
nian motion. This allows the system of ODEs to be written in the limit where r is a continous
variable so that the concentration of particles of all sizes is a continuous variable ¢(r,t). This
reduces the system to a two-dimensional PDE. Analysis has shown [125] that the solution will
approximate to the fundamental solution to a diffusion equation, the heat kernel. The size of
the most frequently occuring aggregate will increase in size with time.

A wealth of knowledge can be used to construct a set of Smoluchoswki or Becker-Doring
equations. However, without specific information available, it is difficult to find a way to
make these equations specifically represent nanoparticle aerosols in a qualitative fashion. One
way would be to extend the range in size of agglomerate which is allowed to aggregate and
deaggregate to larger clusters in the Becker-Déring equations. This assumes that nanoparticles

are small enough that the movement of small aggregates are dominated by Brownian motion.
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However, as approximations are used to convert the Becker-Déring equations into a solvable
PDE, this modification does not result in any qualitatively different behaviour.

If specific information is not available then concentrating on the free energy of a population
of nanoparticles may be more worthwhile. In [32] it was shown that it was possible to specif-
ically account for the entropy of mixing in a variant of Becker-Déring equations. The rate of
fragmentation increased as the free energy relating to the entropy of mixing increased so that
the rate of fragmentation acts to bring the mxiture back to equilibrium. The free energy of the
entropy of mixing decreases as the concentration of different sized particles equalise. In general,
it is difficult to incorporate specific free energies into a system of aggregation-fragmentation
equations.

The free energy of a gas [82] can be given as

where po(T) is the chemical potential given only in terms of temperature while Z(N,V,T) is
the partition function. Using the common virial form of the partition function [46] results in

the expansion

logZ =N (1 +1og(V/N) + (1/2)B1(N/V) + > (1/(n+ 1))ﬁn(N/V)”> : (7.8)
2

which is the term for an ideal gas plus corrections for monomer particles proportional to (1
and corrections accounting for interactions between n-particles proportional to §,. In an ideal
gas there are no interactions between the ideal point particles or particles and the gas. If
forces between particles are attractive then the free energy will decrease from that of an ideal
gas, while if forces between particles are negative then the free energy will increase. The
strength of interaction depends both on the Van der Waal forces between particles and also
their geometry and orientation. The specific interaction between cylinders was derived in [82].
Though nanoparticles are not stiff cylinders, these concepts can be applicable to quantify their

ensemble free energy.

7.3 Models of Adsorption of Polymers onto a Surface

The question of how polymers are absorbed onto a curved surface is relevant to the question
of how nanoparticles form a protein corona around proteins. This question is discussed in [59]
and related papers. A protein which has been found to remain attached to nanoparticles over
a long period of time is the apoliprotein A-1. The function of this protein is to wrap around
and so transport cholesterol [37]. Like many spherical nanoparticles, cholesterol is hydrophobic
and its diameter is at the order of nanometres.

If nanoparticles with a high aspect ratio are treated as polymers, then their absorption
onto a spherical particle can be examined using the polymer brush model which is discussed
in [68]. The polymers are attached to the particle at one end and the average height from

the particle surface can be found by considering the energy balance between configurational
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entropy and repulsion between over-lapping chains. If polymers are stretched, then repulsion
will be at a minimum while the free energy contribution from entropy will be at a maximum.

It may be more appropriate to build a model from first principles using concepts from
polymer physics rather than try to apply an existing model which does not capture the specific
problem at hand. The conformation of polymers confined to a surface can be examined using
self consistent field theory, a good introduction to which can be found in [22]. For small spatial
variations and for a inhomogeneous potential, it is demonstrated that the statistical weight for
a polymer to proceed from a point r’ to r in N steps is given by the solution of the following

Schrodinger like equation
_9G _
ON
where 0G/ON is rate of change of the path of a polymer chain with N, the number of

—(a%/6)V2G + [U(r)/T] G. (7.9)

steps. If 0GON = 0 then the polymer is straight at that point. U(r) is the energy potential
experienced by the polymer. Full details can be found in [22].

The geometry in which this equation is solved and the form of the potential can be freely
chosen. Adsorption onto a surface can be accounted for by the choice of boundary conditions.
In [86] this equation was used to find the adsorption energy at which it was energetically
favourable for a polymer to attach itself onto the surface of a colloidal particle. In [110] this
problem was extended by allowing the polymers to have a finite length so that the chain ends
were given a separate density. The normalised density was found as an expansion in 1/R, where
1/R is the curvature of the curved surface. The Helfrich bending rigidity, Gaussian rigidity and
spontaneous curvature of the adsorbed layer of polymers were found in terms of this density
and also the excluded volume, bulk polymer density, adsorption energy and temperature. It
was found that longer chains has less effect on the curvature parameters than shorter polymers
but longer polymers allowed the density of absorbed polymers to increase. There is potential
to extend this model in order to investigate the these results in the limit of large R to reflect
the absorption of chain-like proteins onto spherical nanoparticles. In this way, the work in [86]
and [110] can be developed into further problems which can be solved analytically.

There is also scope for more numerical work. In [111], self consistent theory was used
to study phase transitions of semi-flexible polymers. Much like helical proteins, semi-flexible
polymers can bend but there is an energetic cost involved. The study in [33] looked at the
adsorption of polymers onto spherical and rod-like particles where all calculations were done
fully in spherical and cylindrical coordinates. The two elements in [111] and |33] can be
combined to answer the question of how semi-flexible proteins absorb onto nanoparticles. These
concepts may also be useful to answer the question of how semi-flexible nanoparticles absorb
onto highly curved surfaces such as alveoli in the lung. The resultant bending stiffness is likely
to determine how the nanoparticles alter the function of that area of the lung.

In [52] the question was investigated in a Monte Carlo simulation. If a semi-flexible polymer
is absorbed onto a curved surface then there is a minimum energy penalty as the polymer
cannot lie flat on the surface. The curved surface also restricts the configurational entropy of

the polymer so that the free energy is dominated by the bending energy.

268



7.4 Free Energy of an Individual Agglomerate

In order to calculate the fragmentation probability of a single aggregate using, for example,
Weibull statistics, the bond strength between nanoparticles must be known. As [101] notes,
this is still an unsolved task. For a given bending rigidity and surface energy the volume of the
aggregate can be found by minimising the free energy. The surface energy contribution will
decrease for a smaller surface area, while the bending energy contribution will tend to increase
for a smaller volume. A mean interaction energy between nanoparticles can also be included.

Taking 3 = 1/kT, the ensemble average of the free energy can be given generally as

Y Ee B9z

where ) indicates a summation over states.

The form of the partition function given in [111] for semi-flexible polymers in 1 dimension
is potentially very useful. The angle-dependent excluded-volume interaction between two seg-
ments of length Ldt and Ldt' and orientations u and u’, respectively, is given by v(u, u’)dtdt’,
where v(u,u’) = 2DL?|u x u/|. This refers back to results from [82] for liquid crystals. The

partition function for a number density of polymers p = n/V is of the form

Z=;Il/DhﬁmnmmmmJnapCma/w/ﬁg/mw@mwumvuxwo.

(7.11)
The probability density takes into account the semi-flexible property of the polymer

1 W 2
Pirs, w0.1]} o exp [—2}\7 RZ0 ( d;t(t) )] (7.12)
where
wi(t) = < il (7.13)

and k(t) acts as a bending constant. Full details of the coupled self-consistent field theory
equations can be found in [111] where a mean field interaction had also been included. The
numerical solutions of the resulting diffusion equations were found as expansions of the spherical
harmonic functions.

Solutions in two or three spatial dimensions are yet to be found. A surface term could
also be included which, for a spherical agglomerate, would depend on volume only. In [111],
the volume of the system and the number of polymers n is fixed per calculation, however, the
variation of free energy with n or V' could be explored to see how the energy of an agglomerate
of CNTs is minimised for a given number of polymers by varying volume. This information

would be very useful in the building of aggregation/fragmentation models.

7.5 Summary

The ideas in the preceeding sections offer substantial new avenues in developing mathe-

matical models which are qualitatively, as well as quantitatively, specific to the toxicity of
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nanoparticles. These models do not rely on external data in order to be relevant to this
question.

Section 7.3 suggests ways to investigate how nanoparticles adsorb onto curved surfaces
such as the inside of alveoli and how common proteins adsorb onto nanoparticles. Section 7.4
outlines a way in which to investigate the free energy of an individual aggregate. However,
it may be useful to follow the lead of research groups which have initially used a moleculer
dynamics approach to uncover specific interactions and behaviour which may then be suitable

for further mathematical modelling.

7.6 General Conclusion

The work in this thesis is a first attempt at identifying topics in nanotoxicology suitable
for mathematical modelling. The choice of models used is informed by information on specific
mechanisms associated with nanotoxicology. In Part I, the mechanism under consideration
was the oxidative stress induced by nanoparticles. The model which was developed focused on
the TNF-« activated apoptosis pathway and the role of NF-x B and AP-1 in controlling the
timing and extent of DNA fragmentation. In this model different pairs of inhibitors can be
switched on or off to produce qualitatively different results in terms of the extent to which and
speed at which DNA fragments. The activation of the pathways in the model can be referred
to as transient or persistent. Section 2.5 suggests extends to this model to include an oxidative
stress sensitive fibrotic response which will also be very relevant to the problem of nanotoxicity.

The mechanism under consideration under consideration in Part II was frustrated phago-
cytosis. Simple models of phagocytosis were constructed by minimising a given free energy of a
shape in axisymmetric geometry. An axisymmetric shape is assumed to approximate the shape
of a maxrophage as it phagocytoses a fibre. In Chapter 4, the free energy contains surface and
volume terms only, while in Chapter 6 the Helfrich bending energy was also included. The
length of solution depends strongly on the spontaneous curvature, cg. The process by which a
cell membrane attains a given spontaneous curvature can be assumed to be energy intensive.
Information of the free energy associated with a given solution in terms of surface, volume and
Helfrich energies also the spontaneous curvature should indicate the difficulty of a macrophage
engulfing a fibre for a given radius and length. The validity of the results in Part II may be
tested by comparing them with results from further experimental work.

Section 7.1 suggests ways in which polymer science can be used to assign a free energy
of aggregation for airborne nanoparticles, or to understand how protein coronas form around
nanoparticles. Self-consistent mean field theory is used as a basis for these models, then
extensive numerical work may yield relationships between free energy, number of nanoparticles,
volume and contact energy. These relationships will be useful to guide the choice of parameters
when constructing models where nanoparticles are inhaled or ingested.

The nature of the work in this thesis is very experimental and wide-ranging. This is a first
attempt at capturing the toxicity of nanoparticles in a numerical way and attempts to identify

what might be of particular interest. Whether the approaches introduced here are valid will
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become clearer once the experimental results relating to the toxicity of nanoparticles becomes

more quantifiable.
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Appendix A

MAPK Self Activation

The MAPK activation part of the pro-apoptotic pathway can be reduced to an independent

self-activating system. The three tiers of MAPK proteins is here reduced to just one, JNK

which activates c-Jun which then forms a dimer with c-Fos. The activation terms in (A.1) and

(A.2) follow those in [43]| and are discussed in Section A.1. Tt is assumed that the rate-limiting

step to form AP-1 is the availability of c-Jun rather than c-Fos so that c¢-Fos is not included

as a separate variable. The activation of AP-1 then stimulates the production of ROS which

act as messengers to activate JNK. The concentration of ROS is reduced by the presence of

anti-oxidants. When the level of anti-oxidants in the cell is high this can be modelled as self-

inhibition so that not separate variable for anti-oxidant concentration is included. The reduced

MAPK self-activating system can be given as

(0
Y2
Y3
Ya

k1ya(1 = y1/Ch) — ksy,

koy1 (1 — y2/C2) — kaya — kayn,
kaya — kays,

koys — ya — k1ya(1 — y1/Ch).

Variables represent the concentration of the following proteins:

y1(t

t

<
)

ys(t
4 (t

(t)
(t)
(t)
(t)

N

activated JNK MAPK protein,

c-Jun protein,

AP-1 transcription factor which is a dimer of c-Jun and c-Fos,

reactive oxidative species (ROS),

and the constants in (A.1)-(A.3) are defined by

kq
ko
k3

ROS-associated constant,
General activation constant,

General deactivation constant.
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A.1 Activation of JNK and c-Jun

The signal is mediated by the phosphorylation of the MAPKSs where each phosphorylated
tier can then phosphorylate the next tier. If the unphosphorylated kinase is written as a; and
an unphosphorylated kinase is written as a; then from [43] the rate of change of concentration

of a phosphorylated kinase can be written as
d; = Gai—10; — Ba;. (A.6)

It is assumed that there is some rate (; of spontaneous dephosphorylation and the reaction
constant of the phosphorylation is &;. If it is assumed that the total concentration of the kinase
is constant so C; = a; + a; there is no need for a separate variable for the de-phosphorylated

kinase. If a; = @;C; then the above equation can be written as
di = ;Q;—1 (1 — aZ/Cz) — ﬁlal (A?)

ROS are highly unstable [91] so k; is chosen to be asymototically larger than the general
activation rate constant, while in the presence of ROS the phosphatases are mostly de-activated
so they can be taken to be asymptotically smaller than the general activation rate.

The non-dimensionalised variables are then

-t
= A.

ko ks _ 5 - Yi
" gi= 2

ko ‘ ko
where € << 1. Note that the dimensions of k; and kg are the same as 1—y;/C; is a dimensionless
term. The resulting equation can be simplified by setting 1 = C; = Cy = C3 = Cy.
The normalised system of ODEs is

1 = ya(l—wy1) — ksyr, (A9
vo = eyr(l—y2) — eya — €, (A.10
Ys = €y2 — €ys, (A.11
Ya = eys—ys—ya(l—y1). (A.12

This system of ODEs will be solved by using the asymptotic expansion

Y1 = yo+eyn+ eyt eyiz o, (A.13)
Yo = Y0+ eyan + €Y+ Y3+, (A.14)
Ys = yso+eysi+€ys2+ Yzt oo, (A.15)
Yo = yao+eyar + € yaa + Yz + - (A.16)

The non-zero steady state of the non-dimensionalised model is

1 1 1
y1 =1, y2 =3, ys =5 and i = €5 (A.17)
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The dynamics associated with this model can be used to investigate the difference in the
activation of the MAPK pathway in the case of top-down activation via TNF-a compared
to bottom-up activation via increased ROS concentration. The limiting case of top-down
activation is when y;(0) = 1 and the JNK MAPK is initially maximally activated. When
y1(0) = 1, then y; decouples from y4 and (A.1) is a linear equation in y; allowing the exact
linear solution (A.22)-(A.23) to be found. This is given in Section A.2.

When y;(0) # 1 the y; and y4 do not decouple and exact analytical solutions are not
found. However, by considering yi1, y2, y3 and y4 as asymptotic expansions, approximate
solutions (A.73)-(A.74) in Section A.3 have been found which capture the dynamics of the
numerical solutions as they reach steady state.

It was found that when y;(0) = 1 solutions reached their steady state in the limit that
exp(—et) — 0 while when y;(0) = 1 solutions reached their steady state in the limit that
exp(—et/4) — 0. As demonstrated by comparing the z-axes in Figure A.1, bottom-up activa-
tion is slower than top-down activation. The fit of these approximate solutions to the numerical
solutions can be improved by addition of correction terms. Examples of results can be found
in Section A.5.

This model supports the hypothesis in [58] that, using the standard form of MAPK acti-
vation, the activation of the MAPK cascade via TNF-« is faster than that of activation via
ROS. However, this model does not support the hypothesis that the speed of activation of
the MAPK pathway is not sensitive to the initial concentration of ROS. The leading order
solutions to the model in this case show that, to leading order, the term responsible for the
activation of the components of the MAPK pathway is linearly independent from the initial
concentration of ROS.

In order for the model to be sensitive to the initial concentration of ROS, the pool of anti-
oxidants must be finite and the rate of anti-oxidant actions must be fast enough to inhibit the
activation of the MAPK pathway. Once this pool of anti-oxidants is depleted then the MAPK

pathway is allowed to activate.

A.2 Leading Order Solutions y; =1 and k3 =0
If the initial conditions of this self activating system are
y1(0) =1, y2(0) = A, y3(0) =B, and y4(0)=C. (A.18)

In this case, solutions can be found without using asymptotic expansions. Setting y; = 1
allows y2 to be only dependent on itself, so that for an initial condition y(0) = A, y2 can be

solved for using an integration factor to give

o = % (1 — exp(—2et)) + Aexp(—2et). (A.19)

The solution to (A.11) can then be found to be

1 1
ys =3 + (5 — A) exp(—2¢t) + D exp(—et). (A.20)
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Constants can be chosen to solve for y3(0) = Bso D =B —((1/2) - A)—-1/2=B+ A—1.
Then the solution to (A.4) is

€

Ya=5 +

2

choosing F so that y4(0) =

eexp(—2et) 1 eC exp(—et)
(1 —2¢) <§_ )+ 1—e¢

C.

The full set of solutions is therefore

N =
Y2 =
Yys =
+
Ya =
+

L,

1/2(1 — exp(—2et)) + A exp(—2et),

2

1(exp(—Zet) — exp(—et)) + %

Bexp(—et),

e%(exp(—%t) —exp(—et)) + %(1 — exp(—et))

eBexp(—et) + (C — eB) exp(—t),

+ FEexp(—t),

(1 — exp(—et))

(A.21)

(A.22)

(A.23)

where analytical solutions agree closely with the numerical solutions in Figure A.1(a). Notice

how the initial conditions are generally proportional to exp(—at), for some «, while the steady

state solutions are proportional to (1 — exp(—at)).

A.3 Leading Order Solutions y;(0) # 1 and k3 =0

For the case where y; and ys are coupled (y; # 1) solutions can be found in the form of

asymptotic expansions using iterative integration. In this case the initial conditions for ys and

y3 are again given as y2(0) = A and y3(0) = B. C and E are constants of integration which

can be chosen to fit initial conditions, y4(0) and y;(0).

In terms of the asymptotic expansion, if g9 = 0, then the leading order equations to be

solved are:

Y40
Va1
Y42

Y43

Y11
Y12
Y13

Y14

= Y40,
= Y41 — Y40Y11,
= Y42 — Y40Y12 — Y41Y11,

= Y43 — Y40Y13 — Y41Y12 — Y42Y11,

—2y40 + Y30,

—2ya1 + Yaoy11 + Y31,

—2y42 + Yaoy12 + Ya1y11 + Y32,

—2y43 + yaoy13 + yary12 + Ya2y11 + Y33,
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Y1 = —Y20, (A.32)
Y22 = —yo1 +y11(l —y20), (A.33)
Y23 = —yo2 +y12(1 — y20) — Y1121, (A.34)
Y2ua = —y23+y13(1 — y20) — Y12y21 — Y11Y22, (A.35)
and
Ysi = Y20 — Y30, (A.36)
Us2 = Y21 — Y31, (A.37)
Uss = Y22 — Y32, (A.38)
Usa = Y23 — Y33 (A.39)
By simple integration, the leading order terms for y4 and y; for are then
B
yo = 5+ Ce ™,
Bt C
o= 5 - 56—% + E. (A.40)

C and F are chosen to fit the initial conditions for y; and y4. In order for the asymptotic
solutions to fully meet the initial conditions for every order € constants would have to be
introduced in each term of the expansion. In order to simplify this, we see that the initial
conditions only need to be fulfilled to leading order and so no further constants are to be
introduced.

The solutions for the terms in y; and y4 are closely related. Firstly, look in detail at the

differential equation for and solution to y41:

Ya1  +  2ys1 = Yaoy11 + Y31,

Yy = /(y4oy11 +yz1) e*dt e
(A.41)
Recall that this form of equation yields solutions of the form
_ 1 Ldf(t)  1d%f(t)
2t 2t
= - - = = — A42
e e = rw - ;00 50 (4.42)

As y40 has an exponential decay term, y4; will also have polynomial terms multiplied by
exponential decay terms. Taking y31 = (A — B)t, the full solution for y4; can then be found
to be

1, 1, 1 1 1
— (A-B)(ot— )+ —B%— B4 - BE
Ya1 ( )(2 22) T 53 g P T e b
1 1 1
+ e <430t2 ~BCt+ EC’t> +e 20 (A.43)
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The exponential decay terms will decrease to zero in a few seconds and so are not significant

at long timescales. In this case

Y40
Y11

Ya1

The find the next order term for y1, y12,

Y12

Y12
Y12

The factor 1/2 from the polynomial

of 1/2 found from the difference between the two terms in ¢jo.

Q

B/2,
(Bt)/2,

(B%t)/23. (A.44)

the terms not dependent on y3¢ are

Y41 — Y4011,

(B/2%)(5 — 1),

—2%(1/2)32752. (A.45)

integration has been kept separate from the factor

y1o2 is effectively found by

integrating y11 and multiplying the result by 1/4. Following this example, crunching the

numbers for the highest orders of ¢ for the next few terms in y; gives

e = s (1/3)BE1-1/2),
pu = o (1DBY/6 - 1/3)
s = —%(1/5)3%5(—1/24 +1/12 4+ 1/4). (A.46)
For y4
yo = g B(1-1/2),
ys = §B%um—vw
Yas = _5935754(—1/24 +1/12 + 1/4). (AA47)

The expansion terms of y; can be put back together to find

" (etB) — zi(etB) /2+ 5

1
(6tB)3/3 + ?

DN |

"2l =

1
75

:

%

1 —exp(—etB/4)) +

( tB) /6 —

(etB)*/12 — 2—

(exp(—etB/4) — 1).

—(etB) /244 o5 ! 5 (etB)® /120

- (etB)? /60,

(12(6153) - i(etB) /2+ o LBy /6 - 7(953) /24 + io(etB) /120>

(etB)*/3 + —= 57 (etB) /12 — 217(etB)5/60>

(A.48)

This solution fits the steady state conditions.

For y4 we have
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y = B <1+212(Bet) (Bt /2 + o L (Bet)? /6 - —(Bet) /24)

2
4 %B <214(Bet)2 + %(Bet)?’ /3 28(3675)4/12) ,
~ %B(z ~ exp(—etB/4)) + iB(exp(—etB/él) _). (A.49)

The steady state condition is not quite fulfilled as the solution when ¢t — oo depends on B.
However, a term of this kind should capture the dynamics of y4 as it reaches the steady state
so that

~ % (1 — exp(—et/4)). (A.50)

The important outcome of this method is to establish that the solution will reach steady

Ya

state on a timescale of O(et/4), as shown in Figure A.1. The factor of 1/4 arises from a factor
of 1/2 in the integration of y4 and another factor of 1/2 arising from the difference between
Yai and yy(;_1)y1; which originates in the leading order terms. Finding this factor correctly is
the key step in finding the correct leading order solution when y;(0) # 1.

Using the approach discussed above in the case that y;; = E the method above results in

the terms
yn = E,
1 1 2
Y12 = 22BEt—?B
Y13 = —*BQEtQ—*(?’/Q)Bth,
1
Y4 = —6(1/3)B3Et3+ 1 i (A.51)
and
1 1,
CZV ?BE_?Bu
L L3
Y2 = 273 Et—2—63 3t,
1 1
e —¥(1/2)B3Et2—¥234t2. (A.52)

Gathering terms for y; gives

- 6E< 212(BT) 21 (BT) /2+21 (BT) /6>

4 %B <—22(BT)+ 2—143(BT> /2+ L (BT) >
~ e(EeXp(—etB/4)—iBexp(—etB/él)). (A.53)

Together with the —(1/2)Ce™2! term in yi1, the term proportional to E fulfills the initial

condition to first order for 3; to order €2. The other term suggests some kind of correction to
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the leading order solution found previously. Its contribution to the initial condition could be
set to zero with the introduction of another constant.

For y4 we have
2 (1 1,2
Ys =€ _ZBE exp(—etB/4) + §BB exp(—etB/4) | . (A.54)

The method works less well here. However, it is clear that the timescale over which the solution
will reach steady state is still O(et/4).
Now to find solution to 9 as it approaches steady state. The known solution to y; can be

used to write

Y20 =

Y21 = —/A,

- //A+/y11(1—A),

m = [ [[a- ] [ma-2+ [pea-2+ [w [

o [J [ o f fo o ] o]
# [t foe fwo= [on ([ [a+ [ma-2),

(A.55)

The terms are proportional to either A or (1 — A). The terms proportional to A can be
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regrouped. The terms proportional to (1 —

e faeff
v fufaaf fufase [ [ fnfac
cfufaef fufasef [ fnfa-

(< fonf f-e fou f 152 o] f -

)

o fatf fof e [ o o)

s fu o fufase] [ [
Cofuffasef o e o] ]

= Aexp(—et)+62/y1At—63//ylAt+e4///y1At
=& [naep+e [ [ [nae
= e[ [ [naer

")

= Aexp(—et) + eA/(l —exp(—et/4))(1 —exp(et)) —

EQA//(l —exp(—et/4))(1 — exp(et)) + - - .

Similarly, ys can be derived from the known solution of ys so that

y3 = Bexp(— /y2—€//y2+

) have been set aside for clarity. For yo we have

(A.56)

(A.57)

(A.58)

Exact solutions are not possible to find. However, by the preceeding analysis, the following

approximate solutions will capture the leading order behaviour in €, well as meet the initial

conditions and tend to the correct steady state. These approximate solutions are

Al

Y2

Y3

Y4

1
= 1—exp(—eBt/4) — 6506_% + eE exp(—eBt/4),

= — (1 —exp(—eBt/4)) + Aexp(—et),

(1 — exp(—eBt/4)) + Bexp(—et),

N =N =
—_

= & (1 — exp(—eBt/4)) + eCe % + %B exp(—et).

B
- EQZE exp(—eBt/4).
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The leading order analytical and numerical solutions are shown in Figure A.1(b).

Very simple terms are written down in (A.60) and (A.61) for yo and y3 to capture the decay
in initial conditions and the timescale at which yo and ys reach steady state. If the assumed
analytical solution is taken away from the numerical solution then the resulting solution will
be zero at ¢ = 0 and at steady state. Solutions of this kind can be approximated to terms of

the form exp(—nt)(1 — exp(—mt)) which are expected to arise from the non-linear terms.

A.4 Leading Order Solutions k3 = €

Including the dephosphorylation rate constant changes the steady state of the system.

The non-zero steady state solutions can be found from the following simultaneous equations:

ya(l—y1) =y = 0, (A.64)
eyi(1—y2) —ey2 —?yp = 0, (A.65)
€yp —eys = 0, (A.66)

eys —ys —ya(l —21) = 0. (A.67)

Firstly, y4 can be given in terms of y; by using (A.64). Note that yo = y3 by (A.66) then yo
can be found in terms of y; by using (A.65). Note that y4 = €Yy which results in the equation

—2Y3e® + (—2Y; — 3Y )2 4 (Vi — Y — 5V )e + (Y — 2Y7P) = 0. (A.68)
The first four terms of the steady state are then found to be
€+ —€. (A.69)

By substituting all the terms in (A.67) for terms dependent on y; the first four terms of the

steady state can be found to be
y1(c0) =1 — 2! — 32 — €2, (A.70)
From the known steady states of y; and y4, the steady states of y3 and o can be found to be
y3(00) = ya(oc0) = = — —€ — —€“ — —¢€”. (A.71)

From looking at the first few terms in the expansion of y; including the extra terms it is

clear that the solution would be
yp=1-— (261 — 36 — 1€°) (1 — exp(—et)) . (A.72)

It is a simple exponential decay term as the decay is proportional to its concentration. New
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(a) Numerical (solid line) and analytical (dashed line) solu-
tions y1(0) = 1, y2(0) = 0.01, y3(0) = 0.01, y4(0) = 0.01,
ks =0 and e = 0.1.

¥y

Va ]

vl

—,

concentration

o1 f T

o] = 1 1 1 1 1
o 50 100 150 200 250 300
tirme

(b) Numerical (solid line) and leading order (dashed line) an-
alytical solutions y;(0) < 1, k3 = 0, ¢ = 0.1, y1(0) = 0.01,
y2(0) = 0.5, y3(0) = 0.5, y4(0) = 0.5.

Figure A.1: Numerical Solutions for de-activated case k3 = 0
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leading order solutions can be found by modifying the known solutions:

1
Y2

Y3

Ya

1+ (—261 — 3% — 163) (1 — exp(—et)),
1/2(1 — exp(—2et)) + A exp(—2et)

1
< 46 86 166 >( exp(—et)),

%(exp(—Qet) —exp(—et)) + %(1 — exp(et)) + Bexp(—et)

<_i€ _ 92 _ 3163> (1 —exp(—et)),

e%(exp(—%t) —exp(—et)) + %(1 —exp(et)) + Bexp(—et) + Cexp(—2t)

17

——€" 4+ -+ — 1-— — .
( 46 86 166 ) ( exp(—et))

A.5 Fitting solutions when y;(0) < 1

(A.73)

(A.74)
(A.75)

The fit between the assumed analytical and the numerical solutions can be improved by

introducing correction terms which do not change the solutions at ¢ = 0 or at steady state.

A.5.0.1 y;1(0)=1 and k3 = €2

In this case, a slightly different selection of correction terms was used. The numerical

and final fitted solutions for y; and y4 are plotted in Figure A.2. The numerical and leading

order solutions fitted with the correction terms are shown in Figure A.2 for initial conditions
y1(0) = 1, y2(0) = €A, y3(0) = €A where A = 0.112 and ¢ = 1072. Figure A.2 demonstrates
how y; and y4 tend to a steady state solution when k3 > 0.
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Figure A.2: Numerical solutions and leading order solutions with fitted correction terms (ana-
Iytical) for initial conditions y;(0) = 1, y2(0) = €A, y3(0) = €A and y4(0) = €24, A = 112 and
e=10"2
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Appendix B

Rate Constants for Sensitivity Analysis

This section serves as a reference to Sections 2.4.2.5 and 2.4.4.1. The vector K is placed in

the model in Section 2.3 as follows:

J1
J4
Js
J3
J7
J3g
Jg
Jio
Jn
Ji2
Jis
Ji4
Jis
Ji6
Jir
Jis

Ko (ksmao) ,

=

11 (kama2) ,

Kig (kimimasz) — K13 (kama4),

=

K6 (ksmaig) ,

Kig (ksmag) ,

K3 (k3miamayg) — Koy (kamsg) ,

14 (kimiamas) — K5 (kamas) ,

(
(
(
(
(
K7 (kimagmar) — Kis (kamag) ,
(
(
(k3m20m22) Ko (kamas),
(
(

kimamaa) — Kog (kamas) ,

vs i ve I o B ve i vl ov B ov B vs B vs)
LT e = S U N

r\r\/\/\/\/—\/—\/\/\
M e v v i N e i N e L N e N N e

o

where the rate of reaction have been written in terms of fluxes the J; which appear in Sections

2.3.2 and 2.3.3.
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Appendix C

Further Details on the Helfrich

Minimisation Problem

C.1 Laplace Pressure

The Laplace pressure can be derived by conserving energy in order to demonstrate its
physical interpretation. For a drop to maintain equilibrium the total work done on the droplet’s
surface must be zero. The work done on a surface area by a pressure difference across that

surface area is

oW = A, S du, (C.1)
= excess pressure X surface area x displacement. (C.2)
The displacement is perpendicular to the surface.

The surface tension reduces the free energy of the surface so that we can write

SE = ~48S, (C.3)

= surface tension x change in surface area. (C4)
For a curvature of the 2D surface in 3D space in Figure C.1, this can be written as
0F = ((z +dz) (y + dy) —zy). (C.5)

Let the principle directions of curvature be along the  and y axis and let the radii of curvature
be r1 and 79 respectively. If both r1 and 79 increase incrementally by du then there will be a
corresponding incremental increase in surface area. The increase in r; by du can be used to
derive how a point on the surface moves along the z-axis by similar triangles see Figure (C.1)
so that

T+ 0x x
r+ou 1y (C.6)
<1+ (150u> xr = xz+0x. (C.7)
1
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The same principal can be used along the y-axis so that

ou
<1+>y:y+(5y. (C.8)
T2
The free energy due to the surface tension is therefore:

0E = y((z+dz)(y + dy) —zy), (C.9)

() (1) ). e
(oo (2 L) 22 ) e

! ) + W) . (C.12)

T2 rira

I

2
A~

)

<

(%)

N
7~
=

+

\

The free energy from the surface tension and the work due to the pressure difference across

the surface is now equated so that

W = JF, (C.13)
A,Sou = ~Séu <1+1>. (C.14)

T2

The change in 71 and r9, du, can be taken to be the distance the surface is displaced by the

work done by the excess pressure. This results in the well known Laplace-Young Equation

1 1
v < + > : (C.15)
1 T2

5N = 2 X mean curvature. (0-16)

*@D @D
Il

Generally, the energy conservation equation is

0W = —pressure inside the drop — pressure outside the drop (C.17)
+ surface tension, (C.18)
W = —A,dV +~dA. (C.19)
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Figure C.1: Diagram of a small element of a surface and the resulting size of the surface element when
the radius of curvature is increased.

C.2 Physics of Contact Angles

When a liquid is dropped onto a solid surface the equilibrium angle, 0 of the forces at
the solid/liquid /vapour interface are resolved by the Young Equation which balances the solid-
vapour interfacial energy, vsr, the solid-vapour interfacial energy, vsy and the liquid-solid

interfacial energy, v. This balance of forces can be written as
0 =7sv —ysz — ycosOp. (C.20)

The wettability of a particular surface with a given liquid can be measured by 6 with 0
increasing as wettability decreases. If g > 7 for water then the surface is hydrophobic. The
dynamic contact angle , 0p is defined as the angle for which the three-phase boundary point
has constant velocity V. This is because the loss in energy due to viscous forces generally
balances that of the rate of change in energy F'V. This is discussed in [20] alongside a general

derivation from energy conservation principals.
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Hydrophobic Hydrophilic
Drop Drop

Figure C.2: Diagram of the contact angle of a drop on a solid surface. Image publicly available.

C.3 Weierstrass E-Function

The Weierstrauss E-Function can be used to determine whether the Euler-Lagrange equa-

tion minimises or maximises the Helfrich energy. It can be defined as

0
E(x, cp, cp,q) = f(@,¢p,¢p) — [, 0p,q) — (& — q)ai;(m7cp7Q)'

The Helfrich energy can be written in terms of  and ¢,(z) only so that

Ey = /w (1- (:ccp)Q)_l/zf(x,cp,c'p)dx,

. de 2
fx,cp,ép) = (xd; +2¢, — co) dx,
S0
E(x, Cp, ép: q) =
dep ’ 2
= x%—i—%p—co — (xq +2¢, — )
de
—2x (d:)f — q> (xq + 2¢p — o),
de,\ 2 dc
= 22 ((d;) — q2> + 22 (d; - q) (2¢p — ¢o)
d
-2z (df: — q> (xq + 2¢p, — o)
dc 2
v ( dx q) 20
If f is written with respect to s, then
) f oy —1/2 dc 2
f(s,cp,ép) = (2 (1 — fcp) disp +2¢p, —co
and

) f2 —1 (dc 2
E(S,CP,CP,Q):Z(l—fCI%) di{:_q ZO

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

The Euler-Lagrange equation of the Helfrich energy is found to be always always a minimiser

of Helfrich energy.
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C.4 The Limit of the Euler-Lagrange Equations when f =0

By Hopital’s Rule limit of (5.37) at f = 0 when ¢, — ¢, =0 is

dc c c
lim —2 = 2lim ——2 31
flg%) ds fli% (C.31)
dem _ dﬁ
— 9.ds i ds_ (C.32)
ds
1 dep  dey
= i C.33
2" ds ds . ( )
de, 1de,,
- _ -m .34
ds 3 ds’ C.34)
(C.35)
where at f =0 we have f =4. As
dem ~1/2
Lo (1 1) eplh — )+ 20 kedep + (Bp/ke)}
de,
s (C.36)
then (C.34) can be substituted into (C.36) to find
dey, 3
% = 1% [(cp — o)’ — c,zn} +2Xcp + Ap. (C.37)

The correct limits as f — 0 for (5.36)-(5.38) have now been obtained.

C.5 Higher Order Differential Terms of the Euler-Lagrange Equa-
tions
In this section contains full details of the second order terms in the Taylor expansion (5.47)-

(5.49) in Section 5.4.2. The only stationary point of the third order system given in (5.36-5.38)

is at f 012J =1 when c,(c2 — %) + A, + 2)\c, = 0. The second order derivatives are

P
e, _ o —dep, — fA, — fc3, — Afcpcoem + 6 fepc?, + 6eg
a2 7
—2fepcd —4fA 2em + 2f Aem,
- 2< fepg =47 C”f;rfcoc R > (C.38)
d2cp _ Tc, + 2co — fcpcg +3fcpc?n —2fXep — fA, + 8en
ds? IZ ’
—10¢,, — 8
. (f) (C.39)
d*f
) = —8cmCp. (C.40)
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