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Abstract

The Nikolaevskiy equation is considered as a simple model exhibiting spatiotemporal chaos
due to the coupling of finite-wavelength patterns to a long-wavelength mode (Goldstone
mode). It was originally proposed as a model for seismic waves and is also considered as
a model for various physical phenomena, including electroconvection, reaction-diffusion sys-
tems and transverse instabilities of travelling fronts for chemical reactions. This equation has
attracted the attention of several researchers due to its rich dynamical properties and phys-
ical applications. We are interested in studying this equation closely by means of numerical
computations and asymptotic analysis.

In this thesis we reinstate the dispersive terms, in contrast to most research regarding
the Nikolaevskiy equation, and study the effect on the stability of spatially periodic solu-
tions, which take the form of travelling waves. It is shown that dispersion can stabilise the
travelling wave solutions, which emerge at the onset of instability of the spatially uniform
state. The secondary stability plots exhibit high sensitivity on the degree of dispersion and
can sometimes be remarkably complicated. Dispersive amplitude equations are derived: nu-
merical simulations manifest behaviour similar to the non-dispersive case but there is a drift
of the pattern with a certain speed.

Another aspect of this thesis is analysing systems similar to the Nikolaevskiy equation,
where they incorporate a Goldstone mode and possess the same symmetries. We conclude
that such systems share with the Nikolaevskiy equation the fact that roll solutions are un-
stable at the onset of instability. We also study the amplitude equations of these systems
numerically and deduce that statistical measures of their solutions depend on the ratio of the
curvatures of the dispersion relation near the finite-wavelength and long-wavelength modes.
Finally, we consider a system coupling a Swift-Hohenberg equation to a large-scale mode.
The result of this study shows that there can be stable stationary wave solutions, in contrast

to the Nikolaevskiy equation.
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Chapter

Introduction

In the last few decades spatiotemporal chaos has started to attract considerable attention.
The Nikolaevskiy equation is considered as a simple pattern forming-dissipative model with
finite-wavelength instability exhibiting chaos directly at onset. Although it is a simple model,
there are still some unanswered questions regarding the behaviour of the system, which
is strongly influenced by the presence of a long-wavelength Goldstone mode (growth rate
vanishes at zero wavenumber for any value of the bifurcation parameter). Our motivation is
to understand the properties of the solution by means of analytical and numerical approaches.
Before we introduce our work, some background information about the Nikolaevskiy equation

and some related pattern forming systems will be presented, in addition to a literature review.

1.1 Background

The main pattern forming partial differential equation (PDE) studied in this thesis is the
Nikolaevskiy equation. Throughout the thesis other models will be present which are the
Ginzburg-Landau, Swift-Hohenberg and Kuramoto-Sivashinsky equations. This section will
be devoted to presenting the Nikolaevskiy equation in addition to these equations, with brief

descriptions and some main properties.

1.1.1 The Nikolaevskiy equation

In 1989 V. N. Nikolaevskiy [45] proposed a model for longitudinal seismic waves as follows:

v - ortly
7""07 E p+1 p+17 (11)
where v is the displacement velocity and Ap,y; are constants. In reviewing the literature,
0%u Ou
a standard rescaled form is considered where only the dissipative terms 922 and 920 and
x

A

the destabilising term ——
ox

are kept and the other spatial derivatives are ignored. Equation
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(1.1) then becomes
ou  Ou 02 02 \?
ot "o T oa2 [“(”aﬁ)]“’ (12)

and is known as the Nikolaevskiy equation (see for example [14, 79]). In numerical simula-
tions, this PDE is generally solved in some finite domain 0 < z <1 with periodic boundary
conditions. Furthermore, » and [ are the free parameters of the problem.

An equivalent form of (1.2) was also used in some studies; for example, [22, 62, 68]. This

6 [(06\?  0° 92\ 2
at+<ax> =2 " a2

The only difference between (1.2) and (1.3) is the nonlinear term. However, by differentiating

form is

o. (1.3)

(1.3) with respect to x and putting 2¢, = u we obtain (1.2). Thus the two equations are
equivalent, and it is a personal choice to consider either one of them. It is worth mentioning
that (1.3) is similar to the Kuramoto-Sivashinsky equation [8, 41| with an additional term
involving the sixth spatial derivative, and this may be a reason for preferring this form over
(1.2). In this thesis we study (1.2), and we refer to it as “the Nikolaevskiy equation”.

The Nikolaevskiy equation has Galilean symmetry: = — x + V¢, u — u + V (where
Vs a constant)l, which implies that the spatial average of u may be set to zelro. This
is because CZ/O udxr = 0, and therefore the spatial average of u: (u) = ;/0 udx is a
constant, which can be chosen to be zero. This is since the addition of a constant to a
solution of the Nikolaevskiy equation corresponds to transforming to a moving frame of
reference. Moreover, the Galilean symmetry will lead to the existence of a large-scale mode,
corresponding to wavenumbers near zero, in the weakly nonlinear regime. In addition to the
previous symmetry, (1.2) satisfies the space translation symmetry: x +— z+constant and the
time translation symmetry: ¢ — t+constant. Both of these symmetries mean that any shift
in space or time will give the same behaviour as a solution to (1.2). The final symmetry
we have is the reflection symmetry:  +— —x and u +— —u. This kind of symmetry is only
satisfied if the equation consists of even spatial derivatives, and thus it applies to (1.2). On
the other hand, (1.1) involves both odd and even derivatives, and consequently, the reflection
symmetry is broken.

In attempting to characterise the behaviour of the solution of (1.2) we first consider a
linearised version of this equation around the steady state solution v = 0. Then we calculate

ikz+At wwhere k is the wavenumber and ) is the growth rate. After

solutions proportional to e
substituting in (1.2) and linearising, we obtain the dispersion relation which behaves as
follows: for small positive r there exists a narrow band of unstable wavenumbers centred

at the critical wavenumber (see the solid line in figure 1.1). In addition to this, we have a

stable but slow neutral mode near k = 0 (large-scale mode). If » = 0, then we have neutral



Chapter 1: Introduction 3

Figure 1.1: The growth rate of the linear Nikolaevskiy equation for » = 0.05 (solid line),
r = 0 (dashed line) and r = —0.05 (dotted line).

stability at the critical wavenumber (dashed line in figure 1.1). If r is negative, then all
modes are linearly damped and the steady state solution is stable as shown in figure 1.1
(dotted line). Hence r is the stability control (bifurcation) parameter, where the solution
u = 0 becomes unstable as r increases through zero. Therefore, we are interested in studying
the properties of the solution just beyond the onset of instability; that is, when r is small.
Thus we introduce the notation

r=e < 1.

This notation is consistent with |14, 40, 47, 48, 79]|. However, a considerable amount of the
literature uses € instead of r in (1.2); for example, [52, 68, 72, 80]. Therefore, the research

done using € may seem different from our results; nevertheless, they are indeed equivalent.

1.1.2 Pattern forming systems
1.1.2.1 The Ginzburg-Landau equation

The Ginzburg-Landau equation |3, 16| is given as follows:

0A 02A

oa N . 2
5T A+<1+1G)8X2 (14 1ib)|Al*A.

Here A(X,T) is a complex amplitude with slow space and time scales: X = ez and T = €2t.
The coefficients a and b are real. The Ginzburg-Landau equation arises as an amplitude
equation describing the slow time and space scales near the onset of pattern formation close
to the threshold of the first instability. If the system undergoes supercritical bifurcation
with translation and reflection symmetries and finite-wavelength instability (occurring with
a nonzero wavenumber), then the Ginzburg-Landau equation is an appropriate amplitude

equation exemplifying the modulation of waves [43, 53]. If a and b are both nonzero, then
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the envelope A will take the form of a travelling wave. On the other hand, if @ and b are
both zero then the unstable modes are waves growing in time and stationary in space.

It is important to stress that in the case of long-wavelength instability, corresponding
to wavenumber near zero, the Ginzburg-Landau equation is no longer valid. Depending on
the symmetries of the model and the linear dispersion relation, the nonlinear dynamics are
governed by different order parameter equations [42|. This case also arises in the Nikolaevskiy
equation where finite-wavelength instability is coupled to a large-scale mode. This will result

in a different amplitude equation from the known Ginzburg-Landau equation [40)].

1.1.2.2 The Swift-Hohenberg equation

The Swift-Hohenberg equation is a widely studied pattern forming system. It is considered as

a simple model PDE for pattern formation. It was originally derived by Swift and Hohenberg

[59] as a model for thermal convection. The Swift-Hohenberg equation has also been related

to various physical contexts. Some of these applications are lasers [38], flame fronts [25],

magnetoconvection [15], Rayleigh-Bénard convection [59] and optical bistability [65, 66].
The Swift-Hohenberg model is defined by the PDE

9 9 \?
a—t}: [r—(l—i—ax?) ]w—st—w3,

where 7 is the convection parameter and s > 0 since we have the symmetry: w — —w and
s — —s. Unlike the Nikolaevskiy equation the sixth spatial derivative does not appear in this
equation. Furthermore, this equation has different nonlinear terms than the Nikolaevskiy
equation: here the nonlinear terms are proportional to w? and w?.

The stability analysis of the steady state solution w = 0 shows that for small  the long-
wavelength modes are all damped. Moreover, there exists a band of unstable wavenumbers
corresponding to finite-wavelength instability [5] (see figure 1.2). This will lead to the for-
mation of roll solutions and thus the Swift-Hohenberg equation can be reduced, by the usual
scaling for the weakly nonlinear analysis, to the Ginzburg-Landau equation, which describes
the modulation of rolls [16]. The stability of rolls will be given by the Eckhaus stability
condition [73].

1.1.2.3 The Kuramoto-Sivashinsky equation

Another widely known pattern forming system is the Kuramoto-Sivashinsky equation

v Ov 0%v ot

This equation was proposed by Kuramoto and Tsuzuki [36] as a model for phase dynamics

in reaction-diffusion systems. In addition to this, Sivashinsky [55] derived this equation to
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model small thermal diffusive instabilities in laminar flame fronts. This equation arises also
among other physical applications including chemical reaction waves [81], plasma ion mode
instabilities |37], fluctuations in liquid films on inclines |57|, propagation of combustion fronts
in gases [56] and others.

There is another form of the Kuramoto-Sivashinsky equation known as the damped or

stabilised Kuramoto-Sivashinsky equation |5, 16, 19, 41, 77|, which may be rescaled to the

o v 92 \”

Here r is the stability control parameter. The damped Kuramoto-Sivashinsky equation is

form

used to exhibit the transition from periodic stationary states to spatiotemporal chaos as r
approaches 1 [19]. Note that for » = 1, both forms of the Kuramoto-Sivashinsky equation
given in (1.4) and (1.5) are equivalent (by rescaling) and so we can consider any form in this
case.

The damped Kuramoto-Sivashinsky equation shares the same linear terms as the Swift-
Hohenberg equation; however, the nonlinear term is different. Therefore, they both have
the same dispersion relation. Figure 1.2 represents the growth rate of the linearised damped
Kuramoto-Sivashinsky equation. As shown in the figure, the zero solution is unstable to per-
turbations with finite wavenumbers. Therefore, similarly to the Swift-Hohenberg equation,
rolls exist and the damped Kuramoto-Sivashinsky equation can be reduced to the Ginzburg-
Landau equation [16] leading to the Eckhaus instability [41].

The Swift-Hohenberg and damped Kuramoto-Sivashinsky equations are both pattern
forming systems exhibiting finite-wavelength instability. Therefore, by using the well-known
scaling for pattern forming systems, they can both be reduced to the Ginzburg-Landau
equation for small r. In contrast, the Nikolaevskiy equation has an anomalous scaling,
which leads to coupled amplitude equations different from the Ginzburg-Landau equation.
This is due to the Galilean invariance responsible for the appearance of a large-scale mode

significantly changing the behaviour of the solution.

1.2 Pattern forming systems coupled to a large-scale mode

In the Nikolaevskiy equation there is a coupling between finite-wavelength instability and
a large-scale neutral mode. The mode interaction strongly affects the nonlinear behaviour,
although the large-scale mode is (slowly) linearly damped, as shown in figure 1.1. Due to this
coupling, the system destabilises dramatically, and the steady spatially periodic patterns are
replaced with a spatiotemporally chaotic state (see for example figure 1.3). The influence of

the large-scale mode on the dynamics of the solution was also studied in different contexts.
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Figure 1.2: Dispersion relation of the Swift-Hohenberg and damped Kuramoto-

Sivashinsky equations as a function of the wavenumber k£ with r = 0.1.

An interesting example of such coupling appears in a system of the complex Swift-Hohenberg
equation coupled to a Goldstone mode for flame fronts [25], where they found that the strong
coupling modifies the stability of travelling waves. In particular, the travelling wave patterns
are destabilised and this leads to the transition to spatiotemporal chaos. Another coupled
Swift-Hohenberg equation and a Goldstone mode was presented and studied in |51]. Due to
this coupling, the periodic patterns are unstable to zigzag instability and a chaotic behaviour
arises. Lega et al. [38] discovered that the coupling of the Swift-Hohenberg model for lasers
to a large-scale mode leads to the appearance of higher order instabilities. Moreover, this also
results in the shrinkage of the Busse balloon [9] for the stability of travelling wave solutions.
The influence of the coupling of the neutral mode on the Swift-Hohenberg equation will
be investigated in this thesis. The stability analysis reveals a new type of modulational

instability of waves.

1.3 Previous work on the Nikolaevskiy equation

In this section we shall introduce previous research concerning the Nikolaevskiy equation

(1.2) in terms of theoretical and numerical results in addition to applications.

1.3.1 Numerical simulations

There have been extensive numerical simulations performed regarding the Nikolaevskiy equa-
tion. These simulations exhibit chaotic dynamics in both space and time as r increases
through zero. In particular, immediately after the instability onset, the system becomes
“turbulent” [32] even at extremely small values of r [71]. The spatially uniform stationary

state directly transforms to dynamical chaos, which is called soft-mode turbulence |68, 70].



Chapter 1: Introduction 7

! e i nmn T
450 0 5 0 50 10 15

X

Figure 1.3: Space-time numerical simulation of the solution of the Nikolaevskiy equation

with r = 0.05.

This is due to the interaction of the finite-wavelength and long-wavelength instabilities. The
neutral mode destabilises the stationary spatially periodic patterns resulting from the finite-
wavelength instability, and thus all roll solutions are unstable in sufficiently large domains
[72].

A typical example of a numerical solution showing the evolution of chaotic disturbances
of the Nikolaevskiy equation for positive r (r = 0.05) is displayed in figure 1.3. Here the total
integration time of the simulation is 1000, the number of grid points is 512 and the domain
size is | = 1007 allowing fifty rolls in the domain. A cosine wave with small amplitude
and wavenumber k£ = 1 plus small random noise is used as the initial data. The numerical
simulation is carried out using a pseudo-spectral scheme for spatial discretisation [21, 67] and
a second-order exponential time differencing method for time integration [13] (the Matlab
code is given in appendix B). As exhibited in the simulation, immediately after onset, the
rolls become unstable as they are replaced with a chaotic state where there is no development
of arranged structures.

The numerical simulations performed regarding the Nikolaevskiy equation revealed the
spatiotemporal chaotic state of the solution. This raised the interest in trying to explain
this kind of behaviour analytically. Thus reducing the Nikolaevskiy equation to amplitude

equations helps answer this question.
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1.3.2 Amplitude equations and properties

In order to obtain information about the complicated dynamics of the solution of (1.2) near a
bifurcation point, it should be reduced to amplitude equations describing slow modulations in
space and time of the envelope of the finite-wavelength pattern. These equations are derived
using an expansion of the solution of the full equation in the control parameter. Specifically,
this involves writing the leading-order term as a product of a pattern and a slowly varying
amplitude. Moreover, the space and time variables are replaced with slower scales to allow
the development of self-consistent amplitude equations. After substituting the asymptotic
expansion of the solution in (1.2) and equating coefficients of higher harmonics along with
solvability conditions we obtain the required amplitude equations.

The scaling used to derive these equations must be tested against numerical computa-
tions. This scaling is different from the conventional case where the pattern forming system
with finite-wavelength instability is described at onset by the usual Ginzburg-Landau equa-
tion [43, 53]. There were several attempts before the right scaling was achieved because
it is not a straightforward case. Indeed, the numerical computations, which are needed to
confirm the correct scaling, should be done near the onset in a large domain to contain all
of the unstable modes. Also because of the slow evolution of the solution the computations
need to be done over a long period of time. Therefore, due to these expensive computations,
the data were limited; and therefore the scaling was controversial.

One of the first analytical attempts to find the amplitude equations was in [39]. Malomed
derived coupled generalized Ginzburg-Landau equations for the slowly varying amplitude of
the rolls and the real neutral mode. Due to the symmetry features of (1.2) (Galilean in-
variance), an equation for the large-scale mode is included [12]. These amplitude equations
predicted the existence of a finite range of stability of rolls. This result is in fact wrong be-
cause it was shown later that all steady spatially periodic patterns are unstable [40, 72]. This
contradiction arises since the equations found in [39] are not asymptotically self-consistent:
they do not result from a systematic expansion in the powers of small . Furthermore, these
equations need to be supplemented with higher-order correction terms. Therefore, some
terms are omitted from the dispersion relation, which gives a wrong result regarding the
stability of rolls.

Calculating the root mean square (rms) of the solution of (1.2) (averaged over a long
time) against the value of the supercriticality parameter 7 is a sufficient way for finding the
correct scaling. In [32] and [71] it was suggested that the rms of w is scaled as 1 and 1/2
power of r, respectively. These results are inaccurate since in [32] the domain size is small,

which may not contain all of the unstable modes. Moreover, the rms of u is calculated for
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large values of r (0.05 < r < 1.2) and in this case the exponent has not yet converged to the
correct value. On the other hand, the result in [71] was established for a single value of r,
which is not enough to conclude a general result for the scaling.

Finally, a successful attempt to reduce (1.2) to asymptotically consistent coupled ampli-
tude equations was conducted in [40]. The amplitude equations capturing the dynamics of

3/4

(1.2) show that the amplitude of the solution is scaled as r>/*. This scaling is different from

the usual Ginzburg-Landau equation where the amplitude of the solution is scaled as ri/2,
This anomalous scaling has been tested against numerical computations, in particular, to
the rms of the solution of (1.2). The result found in [40] is that the rms of u is proportional
to 34 for 0.01 < 7 < 0.1, and later in [62] the same result was found for a wider range
in 7 (0.001 < r < 0.1). If » > 0.1, the amplitude equations found in [40] are no longer
valid to describe the behaviour of the solution of (1.2). This is because when r = 0.1 the
long-wavelength and finite-wavelength instabilities become indistinguishable. Therefore, as r
increases the Nikolaevskiy chaos becomes similar to the Kuramoto-Sivashinsky chaos where
the long-wavelength instability is dominant [52, 62] (see figure 2.1 given later in chapter 2).

The amplitude equations found in [40] stimulated further investigations. In particular,
the scaling used to derive these equations was closely considered by [47, 79|, where they
extracted the large-scale mode and the slowly varying amplitude from the calculated solution
of (1.2) by using Fourier filters. Then they computed the time-averaged rms of both modes
for 1075 < r < 0.04. The result shows that the scaling of the complex amplitude is consistent
with [40]. In contrast, the large-scale mode has a different scaling from [40]. This difference
suggests adding extra r-dependent terms to the amplitude equations found in [40]. Thus
the modified amplitude equations provide a better representation of the Nikolaevskiy chaos
according to [47, 79]. It seems that the estimated rms of the large-scale mode is very close to
the result found in [40]|. Therefore, adding the higher order correction terms to the amplitude
equations are not necessary.

Another important aspect of the amplitude equations [40] is the numerical simulations.
This should be done in order to test whether they exhibit the Nikolaevskiy chaos or not.
Simulations performed in [40] show similar behaviour to the Nikolaevskiy dynamics even
for small r [52]. The latter investigated these equations closely by means of numerical
computations of the complex amplitude and the large-scale mode. It was found that the
simulations reveal the chaotic structure of these two modes. In particular, regarding the
pattern amplitude we have a co-existence of spatiotemporal chaos and an amplitude-death
state, where |A| is approximately equal to zero in a thin region in the central domain.
Correspondingly, the large-scale mode also shows a chaotic state but incorporated with a

single-front state in the middle of this dynamical chaos. Analogous behaviour to the single-
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front state is observed in the Nikolaevskiy equation close to the onset of instability. A further
investigation was done in [47, 48] for small and large domains where statistical measures of
the two states were calculated along with some important features. One of the significant
results drawn from this study is that there is a random movement of the single-front and
the amplitude-death state if the domain size is small. In addition, the structure of these two

states strongly depends on the domain size.

1.3.3 Higher dimensional amplitude equations

All of the above research, which has been done regarding the Nikolaevskiy equation, is for
the one-dimensional case. Regarding higher dimensions, Fujisaka et al. [22] extended the
amplitude equations found in [40] to the two-dimensional case. These equations have an extra
higher-order viscosity term, which is important for stabilising the high-wavenumber modes in
the simulations. In these equations the bifurcation parameter is scaled out, and thus they are
computationally less expensive than the two-dimensional Nikolaevskiy equation. Numerical
calculations in the two-dimensional system show that the solution of these equations remains
finite. According to [22], the scaling used in the one-dimensional case is also valid for the

two-dimensional case.

1.3.4 The damped Nikolaevskiy equation

Another way to study the dynamics of the solution of the Nikolaevskiy equation is to add
an extra free parameter. This will be beneficial in that we can control this parameter and
reduce it to reach the Nikolaevskiy chaos. Therefore, we can study the transition from
regular stable solutions to spatiotemporal chaos occurring at onset as we reduce the extra
parameter. Adding terms which cause the neutral mode to be linearly damped will achieve
this goal.

In [14] damping terms were added to (1.2) and a detailed study for different degrees
of damping was conducted. The transition from ordered stable rolls to chaos at onset was
observed from numerical simulations as the damping was reduced to zero. By studying
the stability of rolls analytically and numerically, the result revealed that strong damping
reduces the Nikolaevskiy equation to a modified Ginzburg-Landau equation, which describes
the dynamics of the solution. This leads to the existence of an Eckhaus-like [18, 28| stability
region. On the other hand, weak damping destabilizes the rolls. This means that there is a
critical value of damping, above which stable rolls exist for a fixed value of 7. The last roll
solutions losing stability, as damping is reduced, lie in a small cusp close to the marginal

stability curve.
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Different damping terms were added to the Nikolaevskiy equation in [70]. In this study
a single generic dispersion relation was found for the stability of rolls for different scaling
ranges and explanation of crossing over between them. The damping terms considered in
[14, 70] give equivalent results. This is because by rescaling the two versions of the damped
Nikolaevskiy equations we can find the corresponding result in both studies. Note that the

aforementioned cusp of stability was not discovered in |70].

1.3.5 The dispersive Nikolaevskiy equation

The original Nikolaevskiy model [45] consists of odd and even spatial derivatives. As men-
tioned earlier, most of the existing studies consider only the even derivatives up to the sixth
order. As we already know, adding extra terms to the Nikolaevskiy equation gives the op-
portunity to study the influence on the solution as we vary the coefficients and progressively
reduce them to reach the Nikolaevskiy chaos. In addition to this, it is expected that these
extra terms will lead to the existence of travelling wave solutions, due to the broken reflection
symmetry. Therefore, similarly to the Kuramoto-Sivashinsky equation [31], if dispersion is
strong we expect stable travelling wave solutions.

Beresnev and Nikolaevskiy [6] reinstated some odd derivatives and concluded that dis-
persion either destabilises the rolls or does not have any effect on the solution. This result
is not accurate and needs to be reconsidered since it is based on insufficient numerical cal-
culations and ambiguous evidence. We will see later that dispersion has a strong influence
on the solution, in fact it stabilises the rolls. In [39] some of the odd derivatives were
taken into account. The stability of travelling wave patterns resulting from the oscillatory
finite-wavelength instability, after adding a dispersive term, was investigated. This was done
by reducing the dispersive Nikolaevskiy equation to coupled generalised Ginzburg-Landau
equations for the amplitude of travelling waves and the large-scale mode. These equations
consist of the correct terms with some wrong coefficients and some extra terms, which should
have been balanced out. Therefore, as with the non-dispersive Nikolaevskiy equation, these
equations are not asymptotically self-consistent. As a consequence, the stability range of the
travelling wave solutions is not accurate.

Numerical simulations of the dispersive Nikolaevskiy equation show the change of the
chaotic state of the Nikolaevskiy equation to the periodic structure as the dispersion in-
creases [34]. The conclusion which can be drawn is that there exists a threshold value of
the dispersion coefficient, depending on r, above which stable travelling wave solutions exist

[34].
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1.3.6 Exact solutions of the Nikolaevskiy equation

The Nikolaevskiy equation admits exact travelling wave solutions [34]. The numerical sim-
ulation of the perturbed exact solution shows that throughout the simulation this solution
retains its shape; and thus is stable. Although there is an exact stable solution of (1.2), it
is of limited value and cannot describe the Nikolaevskiy chaos. In the numerical simulations
we have spatiotemporal chaos (see figure 1.3) and this cannot be described by the exact
travelling wave solutions mentioned. Therefore, this kind of solution is not considered in our

study.

1.3.7 Applications

The Nikolaevskiy equation is a widely studied PDE due to its rich dynamical properties
and physical applications. It was originally proposed for modelling longitudinal seismic
waves in viscoelastic media [45]; afterwards researchers have shown an increased interest in
applications of this equation. One of the applications is that the Nikolaevskiy equation is
considered as a simple model for finite-wavenumber pattern formation coupled to a neutral
mode arising from continuous symmetry (Galilean symmetry) [40, 72]. Significant research
has been devoted to applying the Nikolaevskiy equation to many physical phenomena. Some
examples of these applications include electroconvection [2, 26, 29, 49, 50, 60, 69], reaction-
diffusion systems [23, 58, 61, 63, 64], transverse instabilities of travelling fronts for chemical
reactions [14], laser ablation [1] and acoustic stimulation of oil wells [44]. In this subsection,
a brief discussion of some of these physical models will be presented.

The soft-mode turbulent behaviour of the Nikolaevskiy equation and electroconvection of
homeotropically aligned nematic liquid crystals are similar |2, 29, 60, 69]. In electroconvec-
tion in liquid crystals the system undergoes supercritical bifurcation. Moreover, amplitude
equations and experiments show that the coupling of finite-wavelength patterns with a Gold-
stone mode leads to a direct transition to a chaotic state (soft-mode turbulence). This result
was found in a 2-dimensional model [26, 50| and in 3-dimensional systems [49]. Furthermore,
some experimental results were performed by [29, 60].

The Nikolaevskiy equation is also relevant to another physical phenomenon where it is
considered as a phase equation for reaction-diffusion systems [23]. Tanaka [61, 63] derived
the Nikolaevskiy equation from a certain class of oscillatory reaction-diffusion systems. This
was achieved by considering a nonlocal Ginzburg-Landau equation [64] and a phase reduc-
tion technique |35]. This nonlocal Ginzburg-Landau phase equation for reaction-diffusion
systems [58, 64] is considered qualitatively similar to the Nikolaevskiy equation in terms of

the dispersion relation.
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1.4 Aims

This thesis has the aim of assessing the influence of dispersion on solutions of the Nikolaevskiy
equation. Prior studies regarding the dispersive Nikolaevskiy equation only considered the
effect of adding one dispersive term. Moreover, the numerical calculations either produce
conflicting conclusions or not enough to generate general results. Furthermore, the secondary
stability of travelling wave solutions calculated analytically is not an accurate result. Due
to this lack of investigation of the dispersive Nikolaevskiy equation, we aim to study this
equation closely. First, we shall reinstate two of the dispersive terms to the Nikolaevskiy
equation (1.2). Then we shall study the influence of dispersion on the dynamics of travelling
wave solutions for different degrees of dispersion. This will be done in order to observe
the transition to the Nikolaevskiy chaos as dispersion is reduced. The research consists of
the secondary stability plots of travelling wave solutions computed numerically. These plots
will give a general idea of what to expect in the asymptotic results. This study will also
include the theoretical effort to study the stability of travelling wave solutions within the
framework of reduced self-consistent amplitude equations, which will be done by using a
weakly nonlinear analysis. In addition to this, we shall perform numerical simulations of the
dispersive Nikolaevskiy equation. These results have been published in Physical Review E
in 2010 |54].

The amplitude equations of the Nikolaevskiy equation were derived in [40] and closely
investigated by [47, 48, 52]. Moreover, the numerical simulations of these equations mani-
fest some interesting behaviour. This motivates two separate investigations regarding these
equations. First, we consider a generalised form of the amplitude equations and investigate
it numerically. This form consists of the same amplitude equations found in [40] with a
general coefficient for the diffusion term in the first equation. The original coefficient of the
diffusion term is 4, and this is related to the ratio of curvatures of the dispersion relation
curve near the finite-wavelength and long-wavelength modes. Thus these generalised ampli-
tude equations correspond to a system of pattern formation with the same symmetries as
the Nikolaevskiy equation and a dispersion relation that is similar but does not necessarily
have the same ratio of curvatures. The second investigation considers adding dispersion to
the Nikolaevskiy equation and deriving the amplitude equations. Dispersion will result in
the appearance of an advection term. Therefore, we analyse numerically the influence of
dispersion on these equations and compare the result with the original amplitude equations.

A system coupling a Swift-Hohenberg equation and a Burgers’ equation describing the
interaction of finite-wavelength and large-scale modes will be introduced. These coupled

equations have similar symmetries to the Nikolaevskiy equation. Due to the similarity of
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these coupled equations to the Nikolaevskiy equation, we are interested in investigating
whether the symmetries will lead to the same features of the solution or not. This research
will include a systematic study of the secondary stability of wave solutions by means of

analytical and numerical computations along with numerical simulations.

1.5 Thesis structure

This thesis is organised into six chapters. First, we present in chapter 2 a description of
the Nikolaevskiy equation with no dispersion, where we introduce the main properties of the
equation already given in the literature. This includes the dispersion relation, the secondary
stability of roll solutions and the amplitude equations. In addition to this, the power spec-
trum will be studied and compared to that of the Kuramoto-Sivashinsky equation. Chapter
3 is devoted to studying systems similar to the Nikolaevskiy equation in terms of the stabil-
ity of wave solutions and amplitude equations. Indeed, the amplitude equations (generalised
version) will be closely examined through numerical computations. Dispersion will be added
to the Nikolaevskiy equation in chapter 4, then the effect will be investigated in detail by
means of analytical and numerical results. This is done for different magnitudes of disper-
sion. In addition to this, the dispersive Nikolaevskiy equation is reduced to similar amplitude
equations for the non-dispersive case with an extra advection term and the effect of this term
on the amplitude equations is analysed numerically. A coupled system of PDEs similar to the
Nikolaevskiy equation is introduced in chapter 5. A detailed study of the secondary stability
of roll solutions calculated analytically and numerically will be given and compared to the
Nikolaevskiy equation. The last chapter (chapter 6) summarises the findings of this thesis
and discusses some of the unanswered questions. In the appendix, we present an overview of
the numerical methods used throughout this thesis. These are the Fourier spectral, exponen-
tial time differencing and exponential time differencing Runge-Kutta methods. In addition
to this, we present three of the numerical codes used in this thesis. Specifically, these codes
consist of the numerical solution of the Nikolaevskiy equation with dispersion, the numerical
solution of the amplitude equations and the numerical calculation of the secondary stability

of rolls for the Nikolaevskiy equation with dispersion.



Chapter

The Nikolaevskiy equation with no

dispersion

2.1 Introduction

Before we proceed with our investigation of the Nikolaevskiy equation with dispersion we
shall introduce more detailed background information concerning this equation with no dis-
persion, which provides significant aspects and properties of the solution. The results pre-
sented here are a review of previous work carried out regarding the Nikolaevskiy equation.

The Nikolaevskiy equation is written in the form

ou o2 92 \? Ou
o= o2 [“ - (1 + w) “] ~ o (2.1)

We impose spatial periodicity in the numerical simulations presented later. As mentioned
in the previous chapter, the Nikolaevskiy equation possesses the Galilean, space translation,
time translation and reflection symmetries.

In the following sections we shall begin by introducing the dispersion relation and the
stability of the zero solution (§2.2). We will then go on to calculate the stationary periodic
solutions along with their stability analysis in §2.3. Afterwards, we reduce the Nikolaevskiy
equation to coupled amplitude equations describing the behaviour of the solution near the
onset of instability in §2.4. We end our investigation, in §2.5, by setting out an example
of numerical simulation of the Nikolaevskiy equation as well as computing numerically the
power spectrum of (2.1) for different values of the parameter r. A final discussion will be

given at the end of this chapter (§2.6).

15
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2.2 Dispersion relation

The first thing we need to do, in order to study the properties and behaviour of solutions of

the Nikolaevskiy equation, is to linearise around the stationary state « = 0. This yields

du o2 9 \?
o~ a2 | e Ul

ikz+At

Considering the evolution of the Fourier modes e , implies the dispersion relation

A=k [r— (1-#)7].

Figure 2.1 represents the growth rate A of the linear modes for the Nikolaevskiy equation,
where r =1, 0.5, 0.2, 0.1, 0.05, 0.01 and -0.05 (solid curves from top to bottom). The dashed
curve is the dispersion relation of the Kuramoto-Sivashinsky equation (1.5) for » = 1, for
comparison. If r < 0, the growth rate is linearly damped for all modes and hence all initial

perturbations decay. On the other hand, if » > 0 a band of unstable wave numbers, satisfying

V1=V <k<a/1+/r,

appears in addition to a neutrally stable mode near k& = 0. We will see later that this weakly
damped mode plays a significant role in the dynamics of the solution because it couples
nonlinearly with the modes in the vicinity of £ = 1. Moreover, this mode will result in the
appearance of a large-scale mode in the weakly nonlinear analysis.

We also notice that when 7 is small, the wavenumbers of the pattern and large-scale modes
are well separated, in contrast with the case when r is large. The latter case gives a linear
dispersion relation reminiscent of that for the Kuramoto-Sivashinsky equation [52, 62|. This
result is also confirmed by the numerical calculations of the full nonlinear equation presented
in §2.5.2 in terms of the power spectrum.

It is of particular interest to analyse the solution to the Nikolaevskiy equation just beyond
the onset of pattern formation and describe the interaction of the pattern and large-scale

modes. Therefore, we introduce the expression

where € < 1. This implies that the existing band of instability around k& = 1 has the width

2. This suggests the slow space and

of order € and the maximum growth rate is of order e
time scales X = ex and T = €%t in the weakly nonlinear regime, which we will use to analyse

the stability of roll solutions in the next section.
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Figure 2.1: Dispersion relation A(k) of the Nikolaevskiy equation, where the values of r

(solid curves from top to bottom) are: 1, 0.5, 0.2, 0.1, 0.05, 0.01 and -0.05.

The dashed curve corresponds to the Kuramoto-Sivashinsky equation (1.5)

for r = 1.

2.3 Stationary periodic solutions and their stability

This section will give an account of calculating the stationary periodic solutions (sometimes
we refer to these by the term “rolls”) of (2.1) and their stability. In particular, we review the
work done by [40, 72| and present it within the framework of weakly nonlinear analysis as

in [40].

2.3.1 Roll solutions

To find the roll solutions, we construct a weakly nonlinear expansion of u as follows:
_ 2 3 4
U= €Uy + €“ug + €ug + € ug + - . (2.2)

The appropriate rescaling of the time ¢ is T = €2t (since T is related to the maximum growth
rate, which is of O(€?)). This will result in replacing the partial derivative % by 623%. Here
r=e€.

For solutions with wavenumber k = 14¢q, taken from the unstable band of the dispersion
relation, we set u; = A(T)ei(lJrEq)m + c.c. Note that the c.c. denotes the complex conjugate
of the previous term and A is a complex amplitude of the pattern with finite-wavelength
modes. From substituting (2.2) in (2.1), we find that all terms of O(e) are balanced.

At O(€?) the resulting equation is

—68; (1 + ;;) i ug + 1A%+ 4 ¢ o =0,

1+eq)x

This yields ug = —%GAQeQi(Heq)x + c.c. Terms proportional to e+ do not appear in us

because any such term is absorbed in u;.
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Now we evaluate the coefficients of €3, which are given by

52 9?2 \? A2 9 .
Ay C1gag2 4 20 O gt g
8902( +8x2> U3+< + 49" + 36 +8T> e + c.c

+ <_19iqA2621(1+eq)33 + i

3 12A3e3i(1+6®$> +c.c. =0.

Due to the presence of forcing terms proportional to eFi(lteq)z

, we need to impose a solvability
condition in order to avoid the occurrence of secular terms in the solution us. Therefore, the

coefficients of el(€97 should vanish and thus we obtain the amplitude equation

dA A2
i P B L .
T ( ? 36) (23)

It is apparent that this equation represents a supercritical pitchfork bifurcation because of
the negative coefficient of | A|2. Moreover, the steady states are A = 0, and A = +6+/1 — 4¢2.

This means that rolls have the real amplitude

apg = 61 —4 2,
and so they exist for ¢> < 1/4 [40, 72].
It is worth noting that the linear part of the amplitude equation (2.3) can be deduced
directly from the growth rate A\ = k? [r — (1 — k2)2} by simply replacing r by € and k by

1 + €g, where the slow temporal scale is T = €%t.

2.3.2 Stability of roll solutions

Having calculated the roll solutions, we next analyse their stability by adding perturbations.

Thus we introduce the weakly nonlinear expansion [40]
u = €lag + a(X, T)]ei(1+eq)r e+ ef (X, T)+--- .

Here f is a large-scale mode resulting from the neutral mode near £ = 0. For algebraic
consistency, we choose a = b + ic, with separate scalings for b and ¢. Then by considering
coefficients of successive powers of O(€) and linearising, we obtain from solvability conditions
three amplitude equations. Because these equations are linear, we can arbitrarily set b =
O(1). Accordingly, by considering the orders of ¢ and f in the weakly nonlinear expansion,
we can then choose ¢ = O(e~'/%) and f = O(e'/*). Moreover, the space and time variables
are replaced with the consistent slow space and time scales X = €¥/4z and T = €¥/2¢. These
particular scales are chosen to balance important terms appearing in the following amplitude

equations. After several algebraic steps, the resulting linear amplitude equations [40] are

oc d2%c

ar ~ ‘Yaxz o)

of _ #f ., 9

or — oaxz ““ox
2

o _ 0% o

oT 0X2 X
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Proceeding with the stability analysis of rolls, we write the previous equations as follows:

0 0?2
<3T_4a x2> = —aof,

0 0? ob
<8T_6X2>f = a0y
0 9?2 Jdc
(aT_48 X?)b = Yy

Then we combine them into the following:

o PN(o PN 0%
or —oxz2)\or  “oxz) ¢T " P1%gx2

iLX+oT

After substituting ¢ = ce in the previous equation, we obtain the dispersion relation

03 +90%L% + 240 L* + 16L° — 16¢qa3L? = 0. (2.4)

Note that, unlike L, ¢ has an odd power and thus we expect different behaviours for positive
and negative gq.

We begin by considering the two limiting cases, of small and large L. If L is small,
then 03 + 902L? 4 240 L* — 16ga2L? ~ 0. Thus 03 ~ 16a2qL?, and to leading order in L:
o= 02/3L2/3 and hence 05’/3 = 16a(2)q. This means that if 0 < ¢ < 1/2, we have a positive
real eigenvalue (stationary instability). On the other hand, if —1/2 < ¢ < 0, we have a
complex conjugate pair of eigenvalues with positive real parts (oscillatory instability). Thus
we conclude that all rolls are unstable in the limit of small L.

Now if L is large, then 02 + 902L? + 240 L* 4+ 16 L% ~ 0. This implies o0 ~ —L? or —4L?
(twice). Thus all rolls are stable to large-L disturbances. After concluding that rolls are
unstable, now we consider general L for completeness regarding the stability analysis of rolls
(monotonic and oscillatory instability boundaries).

To calculate the monotonic instability boundary for stationary periodic solutions, we put
o =0in (2.4), which implies

L = adq.
Consequently, if 0 < ¢ < 1/2, the instability is stationary and there is a band of unstable
modes having 0 < L < L. = (a2q)"/*.

Regarding the oscillatory instability boundary for rolls, we set o = iQ2 in (2.4). Then we
obtain from comparing the real and imaginary parts

03 —240L* = 0,

16 16
Q° - §L4 + Eagq = 0.

Combining these equations to eliminate 2 implies

14— _2a%q
25
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Hence if —1/2 < ¢ < 0, rolls undergo Hopf bifurcation if L = Ly = (_2;§q>1/4 and we
have a band of unstable disturbances, satisfying 0 < L < Ly.

To summarise, all small-amplitude stationary periodic solutions of the Nikolaevskiy equa-
tion are unstable [40, 72|. Indeed, this result also applies to rolls having wavenumber close
to the marginal stability curve or close to the critical value [14, 70]. In addition to this, the
growth rate of the instability of rolls is of order €3/2, which is faster than that of the original

rolls. This is shown in the numerical simulation of the Nikolaevskiy equation in figure 1.3,

where rolls are slowly growing and then suddenly become unstable.

2.4 Amplitude equations

This section is devoted to reducing the Nikolaevskiy equation to coupled amplitude equations,
which describe the solution near the onset of pattern formation [40]. We already expect
an equation for the large-scale mode among these equations, due to the Galilean invariance
[12]. It is worth mentioning that the scaling used to derive these equations was controversial.
Moreover, several attempts were made before the correct scaling was discovered in [40]. In
particular, different scalings based on inaccurate numerical calculations were suggested in
[32, 71] in addition to inconsistent amplitude equations [39], which produce a wrong result
regarding the stability of rolls. Here we introduce the self-consistent amplitude equations
presented in [40] as well as numerical justification for the unusual scaling used to derive these
equations [40, 62].

First, we introduce the slow time scale T' = €t along with the slow space scale X = ex.
The relative scalings of X and T are responsible for the appearance of the diffusion term in
the amplitude equations. The coupling term in the amplitude equation for the large-scale

3/2

mode will appear if u is of order €°/<. Therefore, we introduce the expansion

u=e2AX,T)e + c.c. + Fug + € uz + Sug + - - . (2.5)

At O(€?), a solvability condition implies that up = f(X,T'). Here f is an arbitrary large-scale
function, chosen at this particular order, so that the leading coupling term appears in the
amplitude equation for A.

After equating coefficients of successive powers of O(el/ 2) and from solvability conditions,

the governing amplitude equations are

0A 0?A .
T = A—|—4—8X2 —1ifA, (2.6)
of  9*f OlAP

aT ~ 9X2  9X
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Note that the bifurcation parameter r does not appear in these amplitude equations. On the
other hand, regarding the Nikolaevskiy equation r cannot be scaled out. Thus it is easier to
study these amplitude equations rather than the Nikolaevskiy equation, which is numerically
challenging when 7 is small.

From these equations we can conclude that the amplitude of the solution is scaled as
r3/4 which is different from the usual Ginzburg-Landau scaling where the amplitude of the

solution is scaled as r1/2

. Due to this anomalous scaling, numerical computations should be
carried out to find the range in r where this scaling is valid. In particular, the scaling should
be tested against the rms of the solution of (2.1). Numerical computations achieved in [40]
demonstrate that the rms of u is proportional to r3/4 for 0.01 < r < 0.1. Another study
confirms that this scaling is also valid in a wider range in 7: 0.001 < r < 0.1 [62].

The amplitude equations (2.6) and (2.7) were closely investigated by [47, 79|, where it
was concluded that the amplitude equations can be improved by adding extra r-dependent
terms to them. This observation is based on extracting the rms of A and f from numerical
simulations of the full Nikolaevskiy equation for 107 < r < 0.04. The result shows that
the scaling of the complex amplitude is consistent with [40], presented here. On the other
hand, the large-scale mode f is scaled as 7’7/8, which is very close to the scaling used in
[40]. Therefore, according to [47, 79|, the modified amplitude equations provide a better
representation of the Nikolaevskiy equation.

In summary, we have reduced the Nikolaevskiy equation to self-consistent amplitude
equations [40]. In addition, if » > 0.1, the above amplitude equations are no longer valid for
describing the behaviour of the solution of (2.1). As we have mentioned earlier, when r > 0.1
the Nikolaevskiy chaos resembles that of the Kuramoto-Sivashinsky equation in which the

long-wavelength instability is dominant.

2.5 Numerical calculations

This part is dedicated to introducing a numerical simulation of the Nikolaevskiy equation
showing the spatiotemporal chaos of the solution for a small value of the control parameter
r. In addition to this, we calculate the time-averaged power spectrum for several values of
r and compare the result to the Kuramoto-Sivashinsky equation. In particular, we discuss

when the power spectrum of the two equations is similar.

2.5.1 Numerical simulation

This subsection is concerned with presenting a typical example of a numerical simulation of

the Nikolaevskiy equation. In the numerical code, used to generate figure 2.2, we employ
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Figure 2.2: Numerical simulation of (2.1) with » = 0.15 exhibiting the evolution of a

spatiotemporal chaotic state.

a Fourier pseudo-spectral scheme [21, 67] with a second-order exponential time differencing
method [13], the Matlab code is given in appendix B. The initial data are a small amplitude

cosine wave (see (2.2)) with wavenumber 1:

u=12ey/1 — 4¢?% cos z,

plus small random noise (¢ = 0). The parameter values are as follows: r = 0.15, the time
step is 0.01, the number of Fourier modes is 512, the domain size is [ = 507 /e and the
maximum time of the simulation is 150/r. Note that the domain size and the maximum
time are related to the slow space and time scales given in §2.3.1 also the number of Fourier
modes is enough to produce an accurate solution. As shown in figure 2.2, we have initially
the formation of a regular pattern which suddenly becomes unstable and is replaced with a
spatiotemporal chaotic state. Indeed, the pattern becomes unstable on a shorter time scale

than its formation, which is consistent with the analysis in §2.3.

2.5.2 Power spectrum

In this subsection we are interested in another aspect of characterising the Nikolaevskiy
chaos: the time-averaged power spectrum s(k) = (|ax|?) [34, 47, 62, 79]. Here i denotes
the spatial Fourier transform of uy in (2.1) and (.) denotes the long-time average. We begin
by calculating the power spectrum for different values of r after initial transients. This will
be achieved by using the same numerical code as in figure 2.2, where the initial condition

is a small amplitude cosine wave plus small random noise. Moreover, the number of grid
51.2mw

€

and

points is 2048 and the time step is 0.02/r. Furthermore, the domain size is [ =
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Figure 2.3: The log-log plot of the time-averaged power spectrum of the Nikolaevskiy
equation as a function of the wavenumber k£ and different values of r (solid
curves). The curves from top to bottom correspond to the following values of

1.2
r: 1, 0.5, 0.1, 0.05, 0.01 and 0.005, where | = > T The dashed curve is the

power spectrum of the Kuramoto-Sivashinsky equation (1.5).

the simulation is performed over a time period of 20000/r, which are related to the slow
space and time scales X and T (all choices are similar to [47, 79]). We note that the domain
size is large enough to give a universal form for s(k)/l independent of the value of [ [62].

l
In addition to this, since the number of Fourier modes in the unstable band is 26—, then by
T
51.2w

choosing the domain size [ = we guarantee that the number of Fourier modes will
remain the same for any value of r [47].

In figure 2.3, s(k)/l is plotted for various values of r, specifically, the solid curves from
top to bottom correspond to the following values of 7: 1, 0.5, 0.1, 0.05, 0.01 and 0.005. The
dashed curve is the power spectrum of the Kuramoto-Sivashinsky equation (1.5) for r = 1,
for comparison. Regarding the Nikolaevskiy equation, the graph exhibits the dependence of
the power spectrum on 7. Specifically, when r is small there is a distinct gap between the
two modes kK = 0 and k£ = 1. This shows that there is a significant scale separation between
these two modes and the interaction between them leads to the Nikolaevskiy chaos. However,
when r is large (r > 0.1), the peaks broaden and merge and the dominant modes occur near
k = 1. As shown in the figure, this case is qualitatively similar to the Kuramoto-Sivashinsky
equation [62, 78|, where chaos arises from the dominant unstable long-wavelength modes.

It can be concluded that just beyond the onset of instability of the zero solution the inter-
action of the neutral and finite-wavelength modes is strong; and this leads to the Nikolaevskiy

chaos.
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2.6 Discussion

To summarise this chapter, it can be concluded that close to the onset of instability of
spatially periodic solutions, the Nikolaevskiy equation exhibits an interesting type of spa-
tiotemporal chaos. This unusual case, different from most pattern forming systems, is due
to the presence of a large-scale mode. In addition to this, there is a strong scale separation
between the long-wavelength and finite-wavelength instabilities. This leads to exceptional
scalings of the pattern and large-scale modes. Further investigation regarding the Niko-
laevskiy equation will be carried out in the following chapters, where we shall examine the

amplitude equations and add dispersion.



Chapter

The generalised amplitude equations

3.1 Introduction

In this chapter we shall generalise the results regarding the Nikolaevskiy equation in terms
of the stability of rolls and amplitude equations. In particular, the results are applicable
to any system having a similar dispersion relation to that of the Nikolaevskiy equation and
with the same symmetries.

Regarding the Nikolaevskiy equation, the ratio of curvatures of the dispersion curve near
k=0and k = 1is 4 (see the dashed line in figure 1.1). This is because the second derivative

of the dispersion relation is
N (k) = 2(r — 1) + 24k* — 30%%,

and therefore, for r = 0, the curvatures at £ = 0 and k£ = 1 are -2 and -8, respectively.
We shall consider a general equation that has the same symmetries as the Nikolaevskiy
equation with a similar dispersion relation; but that does not necessarily have the same ratio
of curvatures near kK = 0 and k£ = 1. Therefore, to study the stability of rolls for this system,
we need to replace 4 by a general positive number, namely n. This analysis will be presented
in §3.2. It is worth mentioning that an example of such a system is given in chapter 5, and
the results introduced here are applicable to it.

Afterwards, in §3.3, we study the amplitude equations which were derived by Matthews
and Cox [40] to describe the Nikolaevskiy chaos:

0A 02A .
67T = A+4W—1f14,
of  O*f  9lAP
or  0X2 90X’

where X € [0,[] with periodic boundary conditions (here [ is different from the previous

chapter). We shall study these amplitude equations numerically with general n instead of 4.

25
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For the special case n = 4, these equations were studied for a relatively small system size
[, which is the only free parameter, by [52|. Then they were closely analysed by [47, 48] for
different values of [. Therefore, we introduce briefly the results in §3.3.1, where we show the
strong [-dependence of the behaviour and dynamics of these amplitude equations.

Also in §3.3.2, we perform numerical simulations for a generalised version of the amplitude
equations with n instead of 4. This will be done for different values of n and fixed [. We will
describe how the numerical results of the amplitude equations depend on n.

Finally, the conclusions drawn from this study are given at the end of the chapter in §3.4.

3.2 Stability of rolls

In this section we shall analyse the stability of rolls for systems similar to the Nikolaevskiy
equation. Before we do this, we first recall the result for the Nikolaevskiy equation. As de-
scribed in §2.3.2, we add perturbations (a(X, T)el!*<D% {c.c.) to the rolls (age D% 1c.c.),
both of order ¢; and replace a by b+ ic for algebraic consistency. Since we are interested in
analysing the stability of rolls we can derive linear amplitude equations. Consequently, we
arbitrarily set b = O(1), and thus ¢ = O(e~/4), f = O(e*/*) and replace the space and time
variables with the consistent slow space and time scales: X = e3/4*z and T = €3/2t. Then we

apply a weakly nonlinear analysis to obtain the following linear amplitude equations:

Ooc d%c

ar ~ ‘lgxz o)

of _ &f , o
ar — axz ““ax
o _ 4<52b_2 30)
or ~ “\axz “ax)-

Here ag = 6(1 — 4¢%)'/? and r = €. For details regarding the derivation of these equations,
see §2.3.2.

Now we generalise the amplitude equations by replacing 4 by n (n > 0) as follows:

Oc d%c

671—1 - naXQ_QOf’
of _ #f ., b
ar ~ ax2 “Yox’

o _ b, dc
or ~— "\aox2  “ox )

Here ag = 6(1 — ng®)'/?, and therefore rolls exist if ¢> < 1/n.
Having generalised these equations, we next study the stability of rolls. We already know
that the result for the Nikolaevskiy equation is that all rolls at onset are unstable [40, 72];

we determine below whether this conclusion remains true for general values of n or not.
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To analyse the stability of rolls, we combine the generalised amplitude equations into the
following:
9 —82 9 n—az : ¢ = —4nad —820
or —ox2)\or  "oxz) °T TTMiHxe

iLX+4oT

After substituting ¢ = ce in the previous equation, we then obtain the following

dispersion relation:
o3+ (2n + 1)0*L* + n(n + 2)oL* + n?L5 — 4nadqL? = 0. (3.1)

Since the power of g is odd, we expect different behaviours for positive and negative ¢ and
this is not the case with L (even powers).

First, we consider small-L disturbances, therefore we have o3 + (2n + 1)02L? + n(n +
2)oL* — 4na2qL? ~ 0 which implies 03 ~ 4na3qL?. Therefore, to leading order in L we get
o= 02/3L2/3 and hence 03/3 = 4naq. If 0 < q < 1/y/n, we get a positive real eigenvalue
(stationary instability). On the other hand, if —1/y/n < ¢ < 0, we get a complex conjugate
pair of eigenvalues with positive real parts (oscillatory instability). This implies that all
rolls are unstable to small-L disturbances provided that a%q # 0; and the growth rate of
instability increases as n becomes large.

Regarding the case of large L, we have 03 + (2n + 1)02L? + n(n + 2)o L* + n?L% ~ 0;
and therefore 0 ~ —L? or —nL? (twice). Thus we clearly have stability of rolls for large-L
disturbances.

Having established our main result, which is that all rolls remain unstable for general
values of n, we next provide more details of the instability for general L. Firstly, we calculate
the monotonic instability boundary by substituting o = 0 in (3.1):

Lt = 4L3q.

n

This shows that if 0 < ¢ < 1/4/n, then we have a stationary bifurcation if L = L, =

n
Secondly, we calculate the oscillatory instability boundary by substituting o = i€ in

4 2 1/4
( aoq) and there is a band of unstable disturbances having 0 < L < L..

(3.1); and from comparing the real and imaginary parts we get

Q3 —n(n+2)QL* = 0,

2
2 n 4

S+ 1 +2n—|—1

2
aoq =

In order to eliminate €2 we combine these equations as follows:

4_ 2@%(]
(n+1)%
Therefore, if —1/4/n < ¢ < 0 we have oscillatory instability with Hopf bifurcation if

L _(__2a8q \"
¢ (n+1)2 '
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Moreover, there is a band of unstable wavenumbers: 0 < L < L..

In conclusion, systems similar to the Nikolaevskiy equation will have the same property
that rolls are unstable at onset [40, 72|. In view of this conclusion, it is important to
emphasise that it is only valid if a3q is not small; since if agq is small, then from (3.1) we
get stable rolls. Thus if g or aZ are small, the analysis needs to be closely investigated as
done later in §5.8. Unlike the Nikolaevskiy equation, there might be similar systems having
a thin region of stability around k£ = 1 as with the system given in chapter 5 or near the

marginal stability curve, for example the damped Nikolaevskiy equation [14].

3.3 Amplitude equations

In this section we are going to present a general version of the amplitude equations in [40]
(presented in §2.4). These equations are

0A 0?A

of  9*f AP
T ~— 9X2 90X (3:3)

In these equations we have replaced the coefficient of the diffusion term (in the first equation)
by n (n = 4 for the Nikolaevskiy equation).

In the following subsections we introduce some of the significant behaviour exhibited
by the amplitude equations (3.2) and (3.3) for two cases: first for the special case n = 4
and then for general n, by means of numerical simulations. The amplitude equations of the
Nikolaevskiy equation were studied in [47, 48, 52], which show universal dynamical features
in A and f that are highly dependent on the domain size. A brief description of these results
is given in §3.3.1. The amplitude equations with general n have not previously been explored.

Therefore, we consider this case for different values of n in §3.3.2.

3.3.1 Special case n =14

In this subsection we shall numerically integrate (3.2) and (3.3) for n = 4 (as the amplitude
equations of the Nikolaevskiy equation) in a finite system 0 < X < [ with periodic boundary
conditions. In addition, we give a brief overview of the results given in [47, 48, 52]. In the
numerical code we use a pseudo-spectral scheme (for spatial discretisation) [21, 67] and an
exponential time differencing fourth-order Runge-Kutta method (for time stepping) [13, 30].
The simulations are carried out over a long time (up to 7" = 10000-100000) and the long-time
averages of |A|? and f are calculated after initial transients. For details refer to appendix C.

First we begin by simulating (3.2) and (3.3) with random initial conditions (A = 0 and

f = 0 both plus small random noise of order 0.01) as given in figure 3.1 and [ = 150.



Chapter 3: The generalised amplitude equations 29

The temporal evolution of |A| in figure 3.1(a) (upper figure) shows that after a while the
simulation settles into a thin region in the central domain where |A| is approximately equal
to zero (amplitude-death state). Moreover, there is a spatiotemporal chaos in the other
parts of the domain (see figure 3.1(b), where |A| (solid curve) is plotted at the end of the
simulation). This is also exhibited in the time average (|A|?) in figure 3.1(c), where it is
calculated after 5000 time units in order to capture the amplitude-death state. On the other
hand, regarding f the numerical simulation in figure 3.1(a) (lower figure) settles into a state
where f decreases linearly in the middle of the domain (single-front state) and is chaotic
in the other parts (see the dashed curve in figure 3.1(b)). The single-front state of f is
illustrated in the time average (f) in figure 3.1(c), which is calculated after 5000 time units.

It can be concluded from the previous simulation that there is an amplitude-death state
of A incorporated with a single-front state of f; however, it takes some time to settle into
these states. Moreover, the time averages (|A|?) and (f) should be calculated after the fronts
are in the middle of the domain in order to capture their profiles. Therefore, in the following
simulations, we shall change the initial condition for f to be a sine wave, which locates
the domain in the neighbourhood of X = [/2. Namely, we choose the initial conditions
A =0and f =—10sin (27(X —{/2)/l) (both plus small random noise of order 0.01) as in
[52]. These initial conditions are a suitable choice since they capture the fronts soon after
the beginning of the simulation and locate them in the middle of the domain, which is an
advantage for calculating the time average.

We have seen in the simulation of (3.2) and (3.3) that there is a coexistence of an
amplitude-death state and a single-front state for A and f, respectively (see figure 3.1). The
position of these two structures fluctuates slightly due to spatiotemporal chaos [47, 48, 52].
Although the temporal movement of the front is shown in the simulation of (3.2) and (3.3), it
was not taken into account in [52]. On the other hand, the numerical simulations performed
in [47, 48] considered tracking the front and it was concluded that the displacement of the
front is strong for small domains and is almost stationary for large domains. Since we use
relatively small domain sizes in our numerical simulations, we need to shift A and f for
averaging purposes so that the front centre (with f = 0) lies at the middle of the domain
in order to capture the profiles of the long-time averages of |A|?> and f. This will be done
by determining the displacement of the front and aligning it so that it is in the middle of
the spatial domain [47, 48]. Specifically, we consider the region close to the middle of the
domain (five grid points from the right and left of the middle of the domain) and calculate
where f is immediately above and below zero. Afterwards, by shifting the grid points, we
position the front so that this region, where f crosses zero, is in the centre of the domain.

Figure 3.2 shows the front displacement about X = /2 during the simulation of (3.2) and
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Figure 3.1: Numerical simulations of (3.2) and (3.3), where [ = 150, n = 4 and random

initial conditions. The temporal evolutions of |A| and f are shown in grey
scale plots in (a) (from top to bottom) while |A| (solid curve) and f (dashed

curve) are plotted in (b) at the end of the simulation. (c) exhibits the time
averages: (|A|?) and (f).

(3.3), where n = 4 and [ = 150. As exhibited in the figure, the front is not stationary and
the shifting with time is strong. Note that in the numerical simulations we shall position
the front in the middle of the domain; and therefore (.) denotes the long-time front-tracking
average; and we will refer to it by the term “time average”. Also note that we aligned the
fronts in the middle of the domain in figure 3.1.
After setting the suitable initial conditions and taking into account the displacement of
the front, we now numerically simulate (3.2) and (3.3) for n = 4 and [ = 150 to observe the
properties of the solution. In figure 3.3, the temporal evolutions of |A| and f are plotted

in (a) (from top to bottom) while |A| (solid curve) and f (dashed curve) are plotted in
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Figure 3.2: The front displacement about X = [/2 during the simulations of (3.2) and

(3.3), where [ = 150 and n = 4 (see the text for details).

(b) at the end of the simulation. Figure 3.3 (c) exhibits the time-averaged profiles (|A|?)
and (f). As shown in the simulation of |A| (the solid curve in figure 3.3(b)), there is a
spatiotemporal chaotic state incorporated with a small region of an amplitude-death state
in the central domain where |A| vanishes. This is also shown in the time average (|A[?),
where it is approximately equal to zero for a small range in the centre of the domain and
the chaotic state occurs when (|A|?) ~ 5. On the other hand, the simulation of f in figure
3.3(b) (dashed curve) also exhibits spatiotemporal chaos with a single-front state in the
central domain where f decreases linearly. The time average (f) has a negative sharp slope
((fx) =~ —3.6) in the central domain and the maximum of (f) is approximately 24.24 (see
figure 3.3(c)). Moreover, in the chaotic state of f, the corresponding (f) has a positive slope
((fx) =~ 0.35).

We shall denote the slope of the front within the chaotic regions by (fx) = m; and the
slope of the front in the middle of the domain by (fx) = —mg. Note that the two lines on
the right and left in figure 3.3(c) have approximately the same slope and we shall consider
mq to be the slope of the line on the left hand side.

To examine the robustness of the coexistence of the two fronts for A and f, we perform
some simulations with different domain sizes. This will be done in order to find out whether
the amplitude-death and single-front structures will still appear in the numerical simulations.
We choose the domain sizes 100 and 200 as given in figures 3.4(a) and (b), respectively. In
the simulations we obtain the same behaviour for A and f as with domain size [ = 150 (same
initial conditions), where the chaotic state of (|A|?) fluctuates about 5 and the maximum of
(f)/1 is approximately the same for { = 100, { = 150 and [ = 200. It can be concluded that
the two fronts of A and f appearing in the simulations are robust in all domains.

The coexistence of spatiotemporal chaos and amplitude-death state is also found in the
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Figure 3.3: Numerical simulations of (3.2) and (3.3), where [ = 150 and n = 4. The initial
conditions are A = 0 and f = —10sin (27(X —1/2)/1), both plus random

noise. The temporal evolutions of |A| and f are shown in grey scale plots
in (a) (from top to bottom) while |A| (solid curve) and f (dashed curve) are

plotted in (b) at the end of the simulation. (c) exhibits the time averages:
(|A]?) and (f).

Nikolaevskiy equation itself near the onset of instability [52]. In figure 3.5 we calculated the
time average of the solution of the Nikolaevskiy equation between the times 3500 and 4500,
where [ = 1507, r = 0.01 and the initial condition is u = —10€?sin (27 (z — 1/2)/l) with small
perturbations. This particular initial condition is taken from the asymptotic expansion of u
(see (2.5)):

un~ EPAX,T)e® + ce. + EF(X,T),

where 7 = €2 and A = 0 and f = —10sin (27(X —1/2)/I) (the same as in the numerical

simulations of (3.2) and (3.3)). In this figure we notice that the global structure of (u) is



Chapter 3: The generalised amplitude equations 33

6 20 6 40
15 30
5 5
10 rww 20
4 4
. 5 N 10
N_ ~ N_ ~
<3 b 0 <3 S0
-5 -10
2 2
-10 -20
1 1
-15 -30
0 -20 . 0 . -40 .
0 50 100 0 50 100 0 100 200 0 100 200
X X X X
(a) (b)

Figure 3.4: The time averages (|A|?) and (f) calculated for n = 4 and (a) [ = 100 and (b)
I = 200. The initial conditions are A = 0 and f = —10sin (27(X —1/2)/])

(both plus small random noise of order 0.01).
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Figure 3.5: The time average of the solution of the Nikolaevskiy equation calculated be-

tween the times 3500 and 4500 for [ = 1507 and » = 0.01.

reminiscent of (f). In particular, in some regions (u) has a steep negative slope, where there
are no small-scale oscillations (A is very small) and in other domains, (u) has a positive
slope. This is shown in figure 3.5 in the neighbourhood of x = 275. Note that the time
average of u is evaluated without tracking the front since it is calculated for a relatively
short time.

The amplitude equations of the Nikolaevskiy equation were closely examined by [47, 48]
for different domain sizes. In particular, they considered three different separate domain
sizes. In the first case of small domains, [ < 220, it was concluded from this study that the

mid-front slope of (f) is independent of I and the slope in the chaotic region increases slowly
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with [. In addition, the maximum value of (f)/l is almost fixed, and the front translates over
a long time. In addition to this, regarding A, as [ is increased the size of the amplitude-death
regions remains approximately the same with (|A|?) ~ 5 in the chaotic domains.

For intermediate domains, [ < 560, regarding the time average (f), the front becomes
wider and less steep as [ is increased and the slope in the chaotic region continues to in-
crease. The drifting of the front becomes weaker with increasing . The amplitude of chaotic
fluctuations of A and f decrease. Finally, the amplitude-death state of (| A|?) becomes wider.

In large domains, [ 2 560, the front is stationary and the maximum value of (f) and
the slope of the chaotic regions saturate at fixed values and the front profile expands as we
increase [. Moreover, the front slope decays with I. The amplitude-death state of {|A|?)
grows in width with [ while the amplitude of fluctuations decays.

Throughout this subsection we considered the domain sizes 100, 150 and 200, which are
considered “small” domains (I < 220) according to [47, 48]. For comparison, the results in
[47, 48] were calculated for longer times. Despite this, our results seem to be similar.

In the simulations given in the next subsection, we shall change the value of n and fix [,

and then repeat the simulations for a different value of [.

3.3.2 General n

In this subsection we shall again numerically integrate (3.2) and (3.3) but for different values
of n in a finite domain as given in appendix C. The initial conditions are fixed as before:
A=0and f=—10sin (2n(X —1/2)/l) (both plus small random noise of order 0.01). This
is because if we choose different initial conditions it might take a longer time until the two
fronts of A and f are in the middle of the domain. The time averages (|A[?) and (f) are
calculated with 7" = 50000-100000, after initial transients. As above, for averaging purposes,
the profiles are shifted at each time step so that the front is at the centre of the spatial domain.
The simulations will be performed for two values of the domain sizes (150 and 200) and n
will range from 1 to 10.

After repeating the simulations of (3.2) and (3.3) for different values of n ranging from 1
to 10 in a domain length of 150, we have plotted the time averages (f) and (JA|?) in figure
3.6. In the numerical simulations for n = 1 and n = 2, the amplitude-death and single-front
structures of A and f (respectively) do not appear, although it seems that there is an initial
formation of them (see figures 3.6(a) and (b)). If we increase n to 3, the amplitude-death
state for A and the single-front state for f can be seen through the time averages as shown
in figure 3.6(c). Similarly, if we choose other values of n, the global structures of A and f

are still present (see figures 3.6(d)—(j)). As we increase n, the amplitude-death state of A



Chapter 3: The generalised amplitude equations 35

widens and the amplitude of fluctuations decreases.

Regarding f, we have collected data from figure 3.6 as shown in figure 3.8 (“* 7). The
data collected are m; and mo, which are the slope of the front within the active region and
the slope of the front in the middle of the domain, respectively (see figures 3.8(a) and (b)).
In addition to this, we have also calculated the maximum value of (f)/l as shown in figure
3.8(c). As n increases from 3 to 10, the changes in m;, mg and maxz({f)/l) are exhibited
in these figures; and we clearly have two regimes separated by n =~ 5. For n < 5, the slope
m of the active region increases as a function of n and the slope of the middle domain ms
decreases. The latter will result in making the front wider and less steep. Regarding the
maximum value of (f)/l, it increases with n. Figure 3.9(a) presents the differences between
the time averages (f) for n = 3 (solid curve) and n = 5 (dashed curve). As n increases from
3 to 5, max(({f)) increases and the middle of the front widens slightly to the left. Moreover,
the slope of the two lines on the left and right increases.

On the other hand, if n > 5, ma decreases with increasing n and similarly to the previous
case as we increase n the time-averaged profile (f) (in the middle of the domain) widens and
becomes less steep (see figure 3.9(b)). The slope m; and the maximum value of (f)/I also
decrease as functions of n. Figure 3.9 exhibits the differences between two profiles of (f)
for n = 5 (solid curve) and n = 9 (dashed curve). As shown in the figure, when n changes
from 5 to 9 the profile of (f) becomes smaller and the middle part widens slightly to the left.
Furthermore, the slope of the two lines on the right and left changes (decreases).

We have repeated the simulations for the same values of n with a different domain size,
namely | = 200 as exhibited in figure 3.7. The data collected from these figures are shown
in figure 3.8 (“o”). The result is close to the previous case (I = 150) except that we have
two regimes for n < 4.5 and n > 4.5.

To summarise, regarding the generalised amplitude equations, we observed universal
features in the numerical simulations for a wide range of n for a relatively small domain size.
These features are the amplitude-death and the single-front states for A and f, respectively.

The behaviour and the dynamics of these two fronts are strongly influenced by n.
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Figure 3.9: Plot of the time average (f) for two values of n: (a) n = 3 (solid curve) and
n =5 (dashed curve) and (b) n =5 (solid curve) and n = 9 (dashed curve),
where [ = 150.

3.4 Discussion

In this chapter we studied a system, similar to the Nikolaevskiy equation, with coupling
between finite-wavelength instability and a large-scale mode and with the same symmetries.
We considered two different aspects: the stability of rolls and the amplitude equations. These
two results are applicable to this system by including a positive parameter n, which takes the
value n = 4 in the Nikolaevskiy equation. It was found that all roll solutions are unstable at
onset for all values of n provided that the wavenumber is not close to the marginal stability
curve nor close to the critical wavenumber.

Regarding the amplitude equations, a state of amplitude-death and single-front is found
to arise in the numerical simulations for a wide range of n. This is similar to the case of the
amplitude equations of the Nikolaevskiy equation (n = 4). For relatively small system sizes,
this state is strongly influenced by the coefficient of the diffusion term in the first amplitude
equation (n). It seems that if n is small the amplitude-death and single-front structures
are not clear; however, as we increase n they become more distinguishable. In addition, the

statistical measures of these structures depend on the values of n.
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The Nikolaevskiy equation with

dispersion

4.1 Introduction

For the control parameter r > 0, numerical simulations of the Nikolaevskiy equation exhibit
a sudden onset of complicated dynamics as shown in figure 1.3. In order to understand the
behaviour of solutions of the Nikolaevskiy equation, extra terms will be introduced in this
chapter, which will give us the opportunity of progressively decreasing them in order to reach
the Nikolaevskiy chaos. The extra terms chosen are dispersive terms, which are precisely the
third and fifth spatial derivatives.

The original Nikolaevskiy model [45] includes dispersive terms; however, the following
studies either did not pay them attention or did not produce adequate results. One of
the studies regarding dispersion was carried out by Kudryashov and Migita [34]|, where
they found that adding dispersion leads to stable periodic waves by means of numerical
simulations. In addition to this, the amplitude equations of the Nikolaevskiy equation with
dispersion were presented in [39]. However, they are asymptotically inconsistent and do not
produce accurate results regarding the stability of travelling wave solutions. Therefore, the
research conducted regarding adding dispersion to the Nikolaevskiy equation is insufficient
and needs a close investigation.

One of the key aspects of this chapter is to investigate the effect of adding dispersion
to the Nikolaevskiy equation on the stability of rolls (which, due to the dispersive terms,
take the form of travelling waves). This chapter will consist of systematic expansions and
numerical computations. We shall vary the degree of dispersion to reach the circumstance in
which the rolls are stable, and then reduce the dispersion to observe the chaotic state related

to the non-dispersive equation.

40
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Another point of interest is deriving the amplitude equations of the dispersive Niko-
laevskiy equation describing slow modulations in space and time; and examining the influ-
ence of dispersion on these equations through numerical computations. The latter will be
performed in a fixed domain size with various values of dispersion.

This chapter will be divided into nine main sections. In the next section (§4.2), the
Nikolaevskiy equation with dispersion will be presented along with some significant features.
Section 4.3 will be devoted to calculating the secondary stability of rolls numerically and
presenting some plots for certain values of o and . Then in the next three sections we
will investigate the secondary stability of rolls analytically for different degrees of dispersion.
In particular, §4.4 will include the derivation of the coupled amplitude equations, using a
weakly nonlinear analysis, for the case of strong dispersion. Moreover, there will be numerical
simulations of the governing amplitude equations. Afterwards, intermediate dispersion will
be introduced in §4.5 and analysed because the previous section suggests different scaling
for small values of the dispersion parameters. Section 4.6 then deals with weak dispersion
and will be divided into two subsections, according to the wavenumber of the travelling
waves: in one case the basic travelling waves have wavenumber close to the critical value and
in the other close to the marginal stability curve. The amplitude equations characterising
the behaviour of the solution regarding weak dispersion will be presented in §4.7 along
with numerical simulations. In §4.8 the analytical results will be tested against numerical
simulations of the Nikolaevskiy equation with dispersion. Finally, an overview of the findings
will be given at the end of this chapter in §4.9. Note that the terms “travelling wave” and

“roll” will be used interchangeably in this chapter.

4.2 The Nikolaevskiy equation with dispersion

The Nikolaevskiy equation with dispersion is written as

ou, ou_ P (PN
ot “ax* 0x2 " 0z2

where a and 3 are the dispersion coefficients. This equation is similar to the original model

Pu Pu

proposed by Nikolaevskiy [45] , with spatial derivatives up to the sixth order. In the numerical
simulations we shall impose spatial periodicity. Similarly to the non-dispersive Nikolaevskiy
equation, (4.1) has Galilean symmetry: x — aH—Vt,lu — u+V (V is a constant). This means
that the spatial average of u, which is (u) = le/ udz, may be set to zero (as in chapter
1). In contrast, the reflection symmetry: z — —(;L‘, u — —u is no longer valid because of
the presence of the dispersive terms. However, we have the symmetry: z — —z, u — —u,

a+— —a, 8 +— —f, thus we need to consider only 5 > 0 or « > 0. In this chapter we shall
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consider the case 8 > 0.
The starting point for the theoretical analysis of (4.1) is to linearise around the steady

ikz+At

state u = 0, then add spatially periodic perturbations e , which implies the dispersion

relation

A= B2 [r = (1= B)°] + i (K28 — @) = A + i
Therefore, the perturbations are in the form of travelling waves with phase speed

Ai
c= _? = k2(a - kQB);

and group velocity
0N
ok

v =

E*(3cc — 5BK?).

The stability of the zero solution is determined by the sign of the real part of A, and thus
we have the same growth rate as the non-dispersive Nikolaevskiy equation (see figure 1.1).
For r > 0, there exists a band of unstable (growing) wavenumbers in the vicinity of £ = 1 and
a weakly damped large-scale mode near k = 0. The latter will result in the appearance of a
large-scale mode in the weakly nonlinear regime, which will significantly affect the dynamics
of the solution. We are interested in studying the stability of travelling wave solutions just

beyond the onset of finite-wavelength instability. Therefore, we introduce the expression

r=¢ery (e<1).

Note that 79 is added to allow potential supercritical and subcritical bifurcations (depending
on the sign of ra).

Before proceeding with deriving the governing amplitude equations, which indicate the
stability of travelling waves, we first calculate the secondary stability plots. This will be

done in order to ascertain the main features of the stability of rolls.

4.3 Secondary stability of travelling waves calculated numeri-

cally

In the next two subsections there will first be an explanation of the method for calculating
the stability of travelling wave solutions numerically. Afterwards, the stability diagrams will

be found for fixed values of « and £.

4.3.1 Numerical method

To calculate the secondary stability of rolls for a fixed value of the parameters, we first

compute the travelling roll solution @(z,t) = f(z), where z = x — ¢t and ¢ is the speed of
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the waves. Then we substitute in (4.1), which yields

df d? f dif dof a3 f d f df
CLtU-ngE gt e tegs s I =0 (4.2)

This equation is a formula for the phase speed ¢ and f. If we imagine that f is known, to

7T

d
find ¢, multiply (4.2) by d—f and integrate from 0 to [ = =& with respect to z. This implies

dz Yz da? T Tdzdet T dzdeS | Vdzded | Udzdd

—/Olf<jl£>2dz:0. (4.3)

This equation can be simplified by using integration by parts. First, we find the second

df &*f df _
/ dz dzzd [(dz) ]0_0'

This is because f is periodic and thus it follows that f/(0) = f/(1). Now we calculate the

l
/ [ (df) - )dfd2f+2dfd4f+dfd6f+ dfd3f+ af & f
0

term

third term:
4 3 7! I 1270 33
/dfdf _ [dfdf} [ e,

dz dz4 dzd23), Jo dz%2d3
_/ldzfd?’fdz
o dz?dz3
l
RISy +/ld2fd3fd
dz? , Jo A2 d3 %

/l d2f d3f
—5——=dz
o dz?dz3

/ df d*f f

dz dz*

This implies f d4fd = 0; and similarl ﬁdfs—fd = 0. Also we have
PUES | dz a2~ Yl dzd8 T we Hav

l 3 ! 5 ! 3£\ 2
df d° f df d° f da’ f .
/0 Oé@@d = —/ Oé< ) / /B%ﬁd _/0 B <dz3 dZ. Accordlngly, after
applying integration by parts, (4.3) can be reduced to

ORI

Thus if f(z) is known, the corresponding speed ¢ may be found from
1 2
o [oEh? - (b + 1] =

fo (&)

After finding the formula for the phase speed, we now calculate the roll solution @. First,

= (4.4)

we obtain a numerical approximation to f(z) by using the truncated Fourier series

N/2

§ : ,anemkz.

—N/2+1

|
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Equation (4.2) can be rewritten as
Lf+N(f) =

where the linear terms are

. af Jdif d°f  &f df
L l—-r)—5+2—+—=
/= “dz + )d2+d4+d6+ +ﬂdz5’

. . df 1 d .o . : :
and the nonlinear term is N(f) = — p ( f*). The linear terms are easily found in
spectral space

N/2
Lf(z)= Z L(nk)t,e™
—N/2+1

where

L(nk) = icnk 4 n?k> [r—(1- n2k2)2] —ian’k? +1pn°k>.
On the other hand, the quadratic term is calculated using a pseudo-spectral scheme by trans-
forming first to physical space and then carrying out the multiplication before transforming
back to spectral space. Given the Fourier coefficients u,, we denote by v, the corresponding

coefficients of the nonlinear term so that
N/2

§ : ﬂnemkz'

—N/2+1

The coupled equations of the unknowns are thus
L(nk)t, + v, =0 forn=-N/2+1,--- ,N/2,

and ¢ is given in (4.4). The travelling wave solution is invariant under translation, so to
provide a unique solution we may also fix the phase of f(z); we do so by setting Su; = 0.
By using the fsolve tool in Matlab we can approximate the values of %y,.

After calculating the roll solutions, we determine their stability by adding a perturbation

u(z,t), and therefore from (4.1) we obtain

o 92 2\’ A o . ou
Hlata) = —&ﬁ[ <1+82> (@+a) +agz(@+a)+ b x(ut+a)—ag
O o0 ou
u@x u8$ u@x

Since @ is a solution of (4.1), then

ou_ | (.9
ot~ oz | 02

We ignore the term ugu because we linearise in %. Since this equation is separable, then @

+ @4_/8@_*@_"@_"@
ute 95 “or "oz ‘oz

53 (4.5)

can be written as e“*U(z). Moreover, 4 is 27 /k-periodic in z and thus @ takes the form

N/2
i = 6Ut—i-lpz § : Unemkz’

—N/2+1
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where we may restrict attention to perturbations with wavenumber in the range —k/2 < p <
k/2, because if p is outside this interval we obtain the same perturbation by a shift of index

in the sum. Substituting the Fourier series of @ and @ in (4.5) and dividing by e?*+1P* gives

N/2 N/2 N/2 N/2
Z (a—iEKn)vnemkz = Z L(nk —I—p)vnemkz— Z T Z 1Ky U e ™R
~N/2+1 —N/2+1 —N/2+1 ~N/2+1
N/2 N/2
o Z Uneinkz Z imkﬂmeimkz,
~N/2+1 —N/2+1

where L(nk +p) = K2[r — (1 — K2)?] —iaK? +i8K? and K, = p+ nk. The last two sums

can be rearranged as follows:

N/2 N/2 N/2
Z (0 — iEKn)vnei"kz = Z L(nk —l—p)vneinkz — Z elnkz ZiKmvmﬂn,m
_N/2+1 —N/2+1 —N/2+1 m
N/2
— Z elnkz Zimkvn_mﬂm.
—N/2+1 m

Here m ranges over an appropriate set of values determined by n and subsequently maz(—N/2+
1,n—N/2) <m < min(N/2,n+ N/2—1). Equating the coefficients of e™** for —N/24+1 <
n < N/2 gives

(o0 —icKy)v, = L(nk + p)v, — Z 1K Uy —m — Z imkvy,—pUom -

m

These equations can be rewritten as the eigenvalue problem

ovy = E ApmUm. -
m

The eigenvalues of this system are computed numerically, for a large number of samples of p
taken from [—k/2,k/2], and we determine the largest real part among all eigenvalues. This
value will identify whether the original travelling waves are stable or unstable. Note that
the numerical code of this scheme is given in appendix D.

In the next subsection we provide some stability graphs based on the above method.

4.3.2 Secondary stability graphs

We shall begin by finding the stability plots in the (k,7) plane. This will be done by fixing «
and S, then for a fixed value of  we take samples in k between /1 — /7 and /1 + /7 (i.e.

inside the marginal curve). We begin by choosing small positive values of 7 up to 0.9. This is
because if r > 0.9, then the dispersion relation of the Nikolaevskiy equation is qualitatively
similar to the Kuramoto-Sivashinsky equation (see figure 4.1). On the other hand, if » < 0

all travelling waves are linearly stable (see figure 1.1). Now we use the Matlab code, as in
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-0.5

104
Figure 4.1: The real part of the dispersion relation of the Nikolaevskiy equation with

dispersion where r = 0.9 (solid line). The dotted line is the dispersion relation

of the Kuramoto-Sivashinsky equation (1.5) for » = 0.9.

appendix D, to calculate the maximum real part of the growth rates of the disturbances
to the rolls. If this value is negative, then the rolls are stable. Accordingly, the stability
region for travelling waves is found. Note that the number of samples in k and p is sufficient
to not miss any small region of stability. We usually take 200 samples of k in the relevant
interval. Then for each k we usually take 300 samples in p (perturbation wavenumber), where
—k/2 < p < k/2. Note that in some instances we had to increase the number of samples for
k or p; for example, for very small values of r we increased the number of samples in p. The
number of Fourier modes is N = 16. Table 4.1 shows the modulus of the seven Fourier modes
of the roll solution of (4.1) for N = 16 and a =40, =5, r = 0.9 and k = 1. As shown in
the table, after the fifth Fourier mode the other modes are very small. After checking several
examples, we found that the number of Fourier modes chosen here is sufficient.

In the next part we shall generate a series of plots for different parameter values in order
to explore the characteristics of the stability region of rolls. The rationale for our choice of
parameter values will be explained at the end of §4.4 after the analytical work.

The first case considered in finding the stability diagrams is setting f = 0 and changing
a. Note that (4.1) is invariant under (o, u,z) — (—a, —u, —x) when 8 = 0, so we need
to consider only a > 0. If « is small (o = 1/2), the stable region in (k,r) space seems to
be a narrow strip with an upper bound (see figure 4.2(a)). For r > 0.0078, all travelling
wave solutions are unstable. If o becomes large (o = 2), this strip becomes larger and
wider such that for » > 0.22 all rolls are unstable as exhibited in figure 4.2(b). For larger
values of a (o = 5), the stable region becomes wider, the upper bound disappears and a
symmetrical Eckhaus-like stability region is present for » < 0.0002 (see figure 4.2(c)). Figure

4.2 illustrates the three different stability regions, where the stable region lies within the



Chapter 4: The Nikolaevskiy equation with dispersion 47

|a1| = 1.6121 x 101

|| = 2.5517 x 10°

|uz| = 2.0076 x 10~*

|tg| = 4.0102 x 1073

lus| = 1.5213 x 10~*

ltg| = 3.5265 x 1076

7| = 6.1425 x 1078

Table 4.1: The modulus of the seven Fourier modes of the roll solution of (4.1) for oo = 40,
B=5r=09and k=1.

dashed curves. In this figure we notice that an Eckhaus-like stability region is apparent
(for small 7) only for large values of « because it is hard to find it numerically for small a.
Moreover, the shrinkage of the stable region as we decrease « is consistent with the fact that
for the non-dispersive Nikolaevskiy equations all roll solutions are unstable [14, 40, 70, 72].

Now we set instead o = 0 and vary § as displayed in figure 4.3. Similarly to the previous
case, we need to consider only 8 > 0. For 8 = 2, the travelling waves are stable for small
values of 7. Moreover, the stable region is narrow and ends at r =~ 0.065, because all rolls
are unstable if » > 0.065, see figure 4.3(a). If § is larger, namely 5 = 10, the stable region
ends at r =~ 0.09 and another stable region appears at r ~ 0.6 and continues at least as far
as 0.9 as exhibited in figures 4.3(b) and (c). Similar comments apply for a larger value of
(8 = 20) but here an Eckhaus-like stability region is present at the bottom of the curve (see
figures 4.3(d) and (e)). Note that again this Eckhaus-like stability region cannot be found
numerically for small 3.

Now fix @ = 2 and take 8 = 0, § = 3/4 and 8 = 2, as shown in figure 4.4 for § = 0
and # = 2. When = 0 the stable region is a narrow strip bounded from above where rolls
are unstable if » > 0.22 (figure 4.4(a)). This stable region disappears if instead we choose
B = 3/4. If B = 2, the stable region is present but it is wider and shorter than in the case
B = 0 where stable rolls exist if 7 < 0.0029 (figure 4.4(b)).
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(a) a=1/2and 8 =0.
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(¢c) a=5and 8 =0.
Figure 4.2: The secondary stability of travelling wave solutions of (4.1) calculated numeri-
cally for (a) a = 1/2, (b) @« =2 and (c) @ = 5, where § = 0. The stable region
lies inside the dashed curves and the marginal curve is given by r = (1 — k?)2.

Note that the stable region in (c) continues at least up to » = 0.9 and an

Eckhaus-like stability region is visible for small r.

Now we set = 10 and take « = 0, « = 22 and a = 40. If o« = 0, then the stable region
occupies two independent areas as displayed in figure 4.5(a). Specifically, the lower stable
region is bounded from above by r = 0.22 and the upper stable region is bounded from below
by r = 0.294. When a = 22 there is no stable region. If & = 40, then two stable regions
are present and the lower of the two has an Eckhaus-like stability region for » < 0.001 (see
figures 4.5(b) and (c)).

Examples of complicated stability regions arise when we set & = 40 and vary 3 as shown
in figure 4.6. For § = 5, an Eckhaus-like stability region is valid for » < 0.001 (see figure
4.6(a)). Moreover, the stable region continues at least as far as r = 0.9. As /3 becomes large
(8 = 5.5) the stable region splits into several parts (see figure 4.6(b)). When § = 6 we have

instability for very small values of r (r < 0.039) and the stable region splits into as many as
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Figure 4.3: The secondary stability of travelling wave solutions of (4.1) calculated numeri-
cally for (a) 8 =2, (b) § =10 and (d) 5 = 20, where a = 0. The stable region
lies inside the dashed curves and the marginal curve is given by r = (1 —k?)2.

Note that (c) is a close up of (b) and similarly (e) is a close up of (d).

five parts in a horizontal cross-section (see figure 4.6(c)). Finally, if 8 = 10 the stable region

covers two parts as exhibited in figure 4.6(d).
In the previous calculations, » and k are the free system parameters and « and 5 are
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(a) a=2and 8 =0. (b) a=2and g =2.

Figure 4.4: The secondary stability of travelling waves of (4.1) calculated numerically for
(a) 8 =0and (b) 8 = 2, where a = 2. The stable region lies inside the dashed

curves and the marginal curve is given by r = (1 — k).

fixed. Accordingly, the stable region was found in the (k,r) plane. Next, we are interested
in calculating the stability graphs in the (k, «) plane for fixed r and 8 and the (k, 8) plane
for fixed r and «. This is done in order to examine the effect of dispersion on the stability
of rolls for a fixed r.

The first graph we present is for fixed » = 0.01 and S = 0. This choice of r implies
that rolls exist if 0.9487 < k < 1.0488. We already know that for v = 0 there are no stable
travelling wave solutions (non-dispersive Nikolaevskiy equation). Moreover, as « increases
we obtain for small » an Eckhaus-like stability region. These predictions agree with figure
4.7(a), where the stable region exists for a > 0.563. On the other hand, if we take r = 0.1,
then rolls exist for 0.8269 < k < 1.1473 and the stable region exists for a > 1.515 (see figure
4.7(b)). It can be concluded from these two graphs that when we increase r, the critical
value for «, to allow stable travelling wave solutions, increases.

Now if @ = 40 and r = 0.1, then rolls exist for 0.8269 < k < 1.1473. From figure 4.6
when 7 = 0.1, we expect that for small values of 8 there is one stable region and afterwards
it splits into several parts for larger 5. This result is exhibited in figure 4.7(c), where the
structure of the stability region changes for large values of .

After presenting several numerical stability graphs, for fixed values of the dispersion
coefficients, we conclude that it is possible to observe an Eckhaus-like stability region near
the bottom of the marginal curve. In addition to this, various choices for dispersion manifest
different topologies where the secondary stability regions can be complicated. We are unable
to draw any significant general conclusions about the form of the secondary stability plots,

limiting ourselves to some specific examples. In the sections that follow we shall consider
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Figure 4.5: The secondary stability of travelling waves of (4.1) calculated numerically for

(a) @ = 0 and (b) a = 40, where 8 = 10. The stable region lies inside the

dashed curves and the marginal curve is given by r = (1 — k?)2. Note that

(b) is the same as (c) but with higher values of r.

investigating some cases of the previous results by means of asymptotic expansions.

4.4 Strong dispersion: «, = O(1)

In this section and the following two sections we shall investigate analytically the effect,

on the stability of travelling waves, of adding dispersion to the Nikolaevskiy equation. We

already expect that dispersion stabilises the spatially periodic solution as demonstrated in

§4.3 by means of numerical calculations. The most straightforward circumstance in which

to analyse the secondary stability of the travelling wave solutions arises when the dispersion

parameters o and [ are each O(1). To differentiate it from later sections, we shall characterise

this case as strong dispersion.

We begin by applying a weakly nonlinear regime on (4.1), thus we introduce the appro-
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The secondary stability of travelling wave solutions of (4.1) calculated numer-
ically for (a) f =5, (b) 8 =5.5, (c) f =6 and (d) 8 = 10, where a = 40.

The stable region lies inside the dashed curves and the marginal curve is given

Figure 4.6:

by r = (1 — k?)2. Note that the stable region in (a) continues at least up to

r = 0.9. To clarify the stability regions in (b) we indicate them by “s”.

priate expansion for u

uw=eui + €us + Sug + tug + -, (4.6)

with r = €?ry, X = ex, T = €’t and 7 = et. The large time scale T is related to the growth
rate A\, and therefore near the wavenumber k£ = 1, T should have the same order as r. The
specific order of the large space scale X is necessary in order to balance diffusion terms
appearing later in the amplitude equations. Finally, 7 is related to the O(1) group velocity,
which explains why it has the same order as X.

From substituting (4.6) in (4.1) with the above scaling and considering successive orders

in €, it turns out that at O(e) u; = A(X,T,7)el®=) 4 c.c, where A is a slowly varying

complex amplitude and the phase speed of the waves is ¢ = a — 8. Proceeding to the next
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Figure 4.7: The secondary stability of rolls of (4.1) calculated numerically for fixed r and
B or « as indicated under each figure. The stable region lies inside the dashed

curves and the two vertical lines indicate the existence region of rolls.

order, the coefficient of €!(*=<t) yields

0A 0A

or =0

In order to satisfy this solvability condition we need to choose A = A(T, &) where £ = X —vt
is a coordinate moving at the group velocity of the waves (v = 3o — 5f3). According to the
new scaling we have

iA?
36(1 +i(a — 53)/6)

ug = — @) L ce+ f(X,T,7).

f stands for a slow varying real function chosen to appear at this order to balance terms
arising at O(e3).

After straightforward calculations, the corresponding amplitude equations which come

from solvability conditions are
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0A 1—i(a—58)/6, 5 . 0?A

— = — Al A+ 4 3a—108)] — —ifA

of _  9AP

or o
The second amplitude equation suggests, since A = A(T, ), the natural choice of f = f(T,¢).
Therefore, —vg—g = —%—’?2 and hence vf = |A|?> + K(T), for some as yet unknown K (7).

Thus from the asymptotic expansion of u and since (u) = 0, we have (f) = 0. This implies

f o= lARAP

J ; by substituting this in the governing equation we obtain the nonlocal

Ginzburg-Landau equation

dA 1—i(a—58)/6, o  .(|A?) —|A]? . 9’A
— = — A — A+ 4 3a—108)| = 4.7
From this equation, by substituting A = age!%¢, the amplitude of rolls is given by
ap =6 (r2 — 4q2)1/2 (14 35 (a— 55)2)1/2 . (4.8)

—(lA2)+1AP

J imposes the constraint that v should not be

It is worth mentioning that f =
zero. Therefore, the scaling used in this section breaks down when v is small; in particular,

this is the case when « and [ are both small.

Now we simplify (4.7) by substituting A = A, T = roT and € = ‘/77725, where
a1 = m. This implies the complex Ginzburg-Landau equation (CGLE) but with an

additional term involving ({|A|?) — |A|?)A as follows:

A . . 0%A ,
SF At id((|A?) — |AP)A+ (1 + 1a)8—§2 — (14 ib)|AJ?A, (4.9)
where
_ 3a—108
= =0
-«
b= ——,
J = 36-}—(5/3—0[)2
—

Note that for simplicity, we have dropped the hats on the variables in this equation.
Similar equations to (4.9), including a nonlocal nonlinear term, were also derived and
analysed for electrical and magnetic systems [17, 20|, reaction diffusion systems [58, 64|,
dissipative systems [33] and convection in a rotating cylindrical annulus [46]. In electrical
and magnetic systems, the nonlocal CGLE was analysed in terms of the stability of spatially
periodic solutions and the result shows that there are Eckhaus and modified Eckhaus sta-
bility regions for periodic solutions [20]. In addition to this, in reaction diffusion systems,

the stability analysis of plane-wave solutions of the nonlocal CGLE revealed new types of
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instability different from the conventional CGLE [64]. In dissipative systems the analysis
shows that there are stable travelling and standing waves for the nonlocal CGLE |33].

Due to the similarity of (4.9) to the CGLE, it possesses the same plane-wave solutions
[3, 75, 76], which have the form A = Qel@T+4€) - Here the real amplitude satisfies Q% =
1—¢? and w = ¢*(b — a) — b. To study the stability of the plane-wave solution we put
A= [1+n(T,€)]Qe@T+9) and linearise in the perturbation n, which yields

2
g; — (1+1ia) (gg’; 4 ziqu) = (14 B)QA(n* + 1) +idQ? ((n +n*) — (n* + ).

Now upon setting n(T, &) = R(T)e'"s + S*(T)e L€ and equating the coefficients of /¢ and

e L€ we have respectively

O (1 +i)L(LR + 29R) — (14 D)Q*(R + 8) —1dQ*(R + 5),
g% = —(1 —ia)L(LS — 2¢S) — (1 —ib)Q*(R+ S) + dQ*(R + S).

After putting R = Re* and S = Se* two equations are obtained, and in order to have
a nontrivial solution the determinant of the matrix of the coefficients of R and S should
be zero. This gives an eigenvalue problem for A\. We analyse it by seeking long-wavelength

instabilities; expanding in powers of the perturbation wavenumber L gives
A==2igla—b—d)L+L*Q (-1 —a(b+d) +¢° [3+2(b+d)? +a(b+d)]) + O(L?).

It is apparent from this equation that the solution has long-wavelength oscillatory insta-

bility if

@ (B3+20b+d)?*+alb+d) >1+alb+d),

and since

14+ab+d) <3+20b+d)?+alb+d),

then the stability is determined by the following cases:

i. If 14+a(b+d) >0, then 3+2(b+d)?+a(b+d) > 0. Thus we have stability for a band

of wavenumbers satisfying

1+a(b+d)

< 2 2
S <= 3 a2 T a(b 1 d)

<L (4.10)

ii. If 14+ a(b+ d) <0, then we have instability for any 0 < ¢? < 1.

Choosing a = b = d = 0 recovers the usual GLE for A; and correspondingly (i) illustrates
the Eckhaus stability (¢> < 1/3) [18, 28, 74].
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Figure 4.8: Diagram showing the sign of 1+ a(b+ d) in («, 5) parameter space. Regions
with “s” correspond to stable plane waves with wavenumber given by (4.10).

The other regions with “u” mean that all plane waves are unstable.

From conditions (i) and (ii) it is concluded that the stability of the solution to (4.9) is
determined by the sign of 1+ a(b + d). Using this fact we next determine where, in (a, 3)
parameter space, cases (i) or (ii) apply. Figure 4.8 captures the graph of § against « for
the solution of the equation 1+ a(b+ d) = 0. When crossing each of the curves, the sign of
1+ a(b+ d) changes. The notations “s” and “u” represent when 1+ a(b+ d) is positive and
negative, respectively. Therefore, the region with the “s” sign corresponds to the existence
of stable wave solutions with wavenumber satisfying (4.10). On the other hand, the region
with the “u” sign corresponds to unstable waves. Because (4.1) has reflection symmetry
with respect to x, u, @ and §, only the upper half of the graph is presented.

Now that we have predicted the stability of the plane-wave solutions, we present some
simulations of the initial value problem for (4.9). The numerical scheme used is pseudo-
spectral for spatial discretisation [21, 67| combined with a second-order exponential time

differencing method for time integration 13|, a similar Matlab code is given in |75]. The

domain size is | = 64w and the initial condition is a travelling wave with wavenumber
q= 2"7” (n is the number of waves in the box) plus random noise. Our first choice is a = 10,

B = 2.6 and ¢ = 0.875 (case (i)). These travelling waves are predicted to be unstable. In
figure 4.9(a) a transient behaviour followed by a state close to stable plane waves with a
different wavenumber is present. The second choice is the same as the previous one but with
g = 0.3125 waves (case (i) with stability). Figure 4.9(b) illustrates the stability of these
waves. The final choice is @ = 8.4, = 2.6 and ¢ = 0.625 waves (case (ii)). The simulation

shown in figure 4.9(c) exhibits the evolution of a chaotic state where the simulation never
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Figure 4.9: Space-time numerical simulations of the amplitude equation (4.9) where the
real value of A is plotted as a function of £ and T'. The values of «, 5 and the
wavenumber of the initial condition (plane wave plus small-amplitude random

noise) are given under each figure.

settles down, and is persistently time dependent. The numerical simulations produced results
which corroborate the findings of the previous theoretical approach.

Now we go back to figure 4.8 where the stability analysis for travelling wave solutions
is summarised. This figure illustrates the existence of stable roll solutions for appropriate
fixed values of a and B (not both zero) in the limit » — 0. This result is consistent with
the secondary stability plots found in §4.3. As far as the strong dispersion is concerned,
the analysis corresponds to the lower part of the stability plots; for example, when o = 5
and 8 = 0 figure 4.2(c) exhibits an Eckhaus-like stability region for small r. This is already
predicted from the analysis given in this section, since o and f lie in the stable region in
figure 4.8. Another example of such agreement of the analysis with the secondary stability

plots arises when o = 40 and = 6. As shown in figure 4.6(c), for small r there are no
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Figure 4.10: Same as figure 4.8. The secondary stability pictures in §4.3 are generated
according to these values of o and 3 indicated by “=*”. These values were
chosen in order to show trends for « = 0, § = 0 and along a cross section

through each of the regions marked “u”. (b) is a close up of (a).

stable travelling wave solutions. This is also confirmed by the stability analysis illustrated in
figure 4.8, where a and 3 are taken from the unstable region. The values of @ and 3 chosen
for the secondary stability plots in §4.3 are given in figure 4.10, for the sake of comparison
between the stability plots and the asymptotic analysis. By comparing the two analyses, we
found that they are consistent in the limit of small r.

This section leads to the conclusion that a band of stable wavenumbers can exist for
appropriate large o and 5. However, this analysis breaks down when v is small (o and
are both small). In addition, the analysis predicts that stable rolls persist down to «, 8 = 0.
This conflicts with the fact that for « = 8 = 0 all roll solutions are unstable at onset;
and therefore this contradiction for small « and 8 needs to be resolved. This motivates an

investigation of intermediate dispersion with a, 8 = O(e¥/4) in the next section.

4.5 Intermediate dispersion: a, 3 = O(e/*4)

The previous analysis shows that stable travelling wave solutions can exist if & and [ are
of O(1). For small o and f, different scaling must be considered. Namely, we adapt the
scaling first used in [72] for the non-dispersive case and then extended in [14] for the damped
Nikolaevskiy equation. Therefore, set X = €34z, T = €¥/2t, 7 = /%, o = ¢3/*& and
B8 =e 43 . The ultimate justification for having chosen the scaling for o and g follows from

balancing extra terms (generated by dispersion) with the leading-order terms appearing in the
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amplitude equations in [14]. This scaling is discovered after several experiments. Regarding
T, it is related to ¢ = & — /3 and therefore it should have the same order as o and 3. The
scalings of X and T were chosen to balance diffusion with advection terms in the following
amplitude equations.

Applying a weakly nonlinear analysis on (4.1) gives
u = €lag + el/za(X, T)]eiM +c.c. + 67/4f(X7 T)+---,

where M = (1 + eq)z + €'/*)(X,T) — ér — €'/ *0qT, © = 3& — 53 and ag = 6\/@
(travelling wave solutions exist if ro > 4¢?). a(X,T) is the amplitude of disturbances to
the pattern and f(X,T) is a large-scale mode. Both a and f, at their particular orders, are
necessary to balance terms appearing in the following amplitude equations. Here (1 + eq)z
gives the spatial variation of the rolls. Moreover, —¢7 corresponds to the waves travelling
with phase speed ¢ = €3/4¢. Also —e'/46¢T represents the rescaled group velocity (v = 3/ 49)
of the envelope of the waves. Finally, the term €'/%i(X,T) is a phase that will evolve
dynamically according to some amplitude equations that arise from solvability conditions.
After substituting the asymptotic expansion of u in (4.1), the amplitude equations will

appear from solvability conditions at successive powers of O(el/ 4). These amplitude equa-

tions are

0 _ Py 00

or ~ ‘ox2

af 0’ f 8a

= 2L g,

oT 0X? 0X

da Pa (00 2 g2 0a

— = — — | - — —V==.

aT ox2 " \ox “ox ~ "ox

O

Note that the o and 5 terms are represented in these equations only through the terms v —= X
and () These represent advection of the pattern envelope at the rescaled group velocity

0X’
0. In addition, the rescaled group velocity of the large-scale mode f is 0, and hence no

corresponding term appears in the second equation.

In order to study the stability of the roll solutions, we reduce the above amplitude
equations to a nonlinear phase equation. This is done first by writing these equations as
follows:

o D
<8T ~toxe +“ax> o=

0 02 Oa
<6T_6X2>f = 205w

i_4fi+Ai _ 4 72_8 o
or ~ “ox2 "Vax ) T T\ ax Wiy
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and then combining them into the following equation:

B 2 o\ [0 0 , [ O 924
<(9T_46X2+”ax> (M_aﬂ)¢__16“° (a;ﬁq) ax? (4.11)

iLX+oT

Linearising this equation and putting ¢ = e gives the dispersion relation

03+ 9020 + 240 L* + 16 L® — 16a3qL? — 9?0 L? — 9*L* +i9(20* L+ 100 L3 +8L°%) = 0. (4.12)

Before studying the dispersion relation for general L, it is helpful to consider the two limiting
cases, of small and large L. If L is small, then o ~ 16a(2)qL2. Thus to leading-order in L,
o= 02/3L2/3 with 03/3 = 16a2q. This shows that all rolls are unstable if L is small. On
the other hand, if L is very large, then we have 0% 4+ 902L? + 240L* + 16L5 ~ 0. Thus
o = {—4L? —4L? —L*} which shows that for large-L disturbances, travelling waves are
stable. It can be concluded that if agq = 0, then all roll solutions are unstable at onset. The
rest of the section provides more details of the instability for general L.

In order to find the marginal stability boundary we set ¢ = i{2 and substitute it in the
dispersion relation (4.12). After comparing the real and the imaginary parts, the following

is obtained:

Q% — 240L* + 9%QL% + 20LO% — 8 L° = 0,
16 16 02 10

02— LY+ —ddg+ —L%>+ —=0LQ = 0.
g v Tgatt gttt gy 0

Eliminating € between these two equations gives

16a¢® — 2500L"% +-2100L8a2q + 384 L*apq® — 20002 L' — 40* LB — 4402 L8 a2q + 0* L?agq® = 0.

(4.13)

In this equation L and ¥ appear at even powers and thus we can restrict our attention to

positive L and © with no loss of generality. Regarding ¢, both odd and even powers occur,

hence different behaviours for positive and negative g are expected, which already applies to
the non-dispersive case [72].

For the case of no dispersion [40, 72| (details in §2.3.2), there is monotonic instability

of the waves if 0 < ¢ < @ with unstable modes satisfying 0 < L < (a2q)"/*. In addition,

oscillatory instability of the rolls occurs when —\/2—6 < q < 0 with unstable disturbances

having 0 < L < (—Z%a%q)l/‘l.

It is convenient to rewrite (4.13) free from ro by substituting a2 = 36(ro —4¢?), ¢’ = \/%,

?
3/8*
T2

L'=£;and o' = The resulting equation is
T2
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Figure 4.11: Predicted secondary stability boundaries of spatially periodic solutions of
(4.11) with no dispersion. We have monotonic stability on the right and

oscillatory on the left.

3 12 14

— 5002010 — LB 4 18900L/%¢ — T5600L% ¢ + 1244161 ¢'* — 995328 L/*¢

+1990656L"¢'® — 625" — 3960/ °L/°¢/ + 15840"*L'°¢'* + 3240/° L ¢

14

— 259202 L2 ¢"* + 518402 L% + 186624¢"> — 2239488¢"° + 89579524

— 11943936¢"7 = 0. (4.14)

Figures 4.11 and 4.12 illustrate the stability boundaries of travelling waves according to
(4.14) with v = 0 and v/ = 5, respectively. The single curve in figure 4.11 (0 < ¢ < @)
gives a single curve for v’ # 0 in figure 4.12. On the other hand, the Hopf curve (o = +i2)
for v/ = 0 and —‘/Q—E < q < 0 splits into two curves when v # 0. Moreover, as v’ increases,
the gap between these two curves increases likewise. The lower of these two curves is not
relevant for determining the stability boundary because as it is crossed, only one of the
three eigenvalues (real part) changes its sign; it is only by crossing the upper curve that the
solution gains stability.

The stability analysis of intermediate dispersion shows that all rolls are unstable provided
that a%q is not small. This means that if ¢ or ag are small, then the scaling used here is no
longer valid. This motivates two separate investigations for small ¢ and a3, which will be

done in the next section.

4.6 Weak dispersion: «a, 3 = O(e)

In the next two subsections, the two cases |q| < 1 and |a3| < 1 will be investigated. The

first case represents the region particularly close to the critical wavenumber & = 1 and the
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Figure 4.12: Same as figure 4.11 but with dispersion (v = 5). The left hand side of the
stability boundaries of (4.11) splits into two and the region below the upper
boundary is unstable. Thus the lower curve is not relevant in determining

the stability of travelling waves; it is shown here for completeness.
second is the region particularly close to the marginal stability curve.

4.6.1 Close to the critical wavenumber k£ =1

As has already been emphasised, the analysis in the previous section breaks down in the
limit ¢ — 0, where the wavenumber of the rolls is 1 4+ €g. So in this subsection we seek to
address the question of the stability of rolls with k even closer to 1, k = 1 4 €2q. Then the
distinguished balance occurs for smaller values of  and S, namely o = e& and 8 = eB .
Upon setting ¢ = & — B,r =€y, d=3a—58, X =ex, T = et and 7 = et (same
scaling employed by [14, 72| in the non-dispersive case) and also applying a weakly nonlinear

analysis on (4.1), we have
u = €[6y/r2 + 62a(X, T)]eiM +c.c. + e3f(X’ T4 ---,

for M = (1+ €q)z + ep(X,T) — ér + e(—dq + 2 (& — 58))T. The extra terms involving &
and B correspond to nonlinear effects of the finite roll amplitude on the speed of the rolls,
which also arise from (4.7).

Finally, the amplitude equations are achieved at O(e*) and O(€®) by applying solvability

conditions as follows:
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o %Y oY

ar ~ ‘oxr /T Tax

g—; — 45?(‘2-24@” <§;’/’(>2 v%—t“)l/Qg)J; o
+6r1/2< 8q+232r2+128(:);2 + (103 — 36 )8X> g;/’(.

Unlike the previous case (in §4.5), in the third equation & and B appear not only through
the rescaled group velocity term 9, but also through the term 105 — 3a.

Combining these amplitude equations yields the phase equation

0,9 .0 0 4,0 JO0N(o_ o v =
or ~ “ox2 "Vax ") \or " Yox2 "Vax ) \or ox2 )V T

O Y 22 * 0 a%p

To answer the stability question, the previous equation is linearised and solutions propor-

— 57610~

iLX+oT

tional to e are found, which implies the dispersion relation

03 +902L? 4 240 L* + 16 L° + 528r2 L% — 576r9qL? + 82ro0 L? — 5681y L* + 21902 — 020 L2
— L*% +i(2ro00 L 4 360roSL3 + 80L° + 1000 L3 + 200°L + 2ry0L3) = 0. (4.16)
In analysing (4.16), first large L is considered which gives the same result as in §4.5 where

all eigenvalues have a negative real part. On the other hand, if L is small, we choose

o = 01L + 02L? + ---. Then substituting in (4.16) and equating the coefficients of L? and

L3, gives
7‘20% — 288roq + 2647“% +irevo; = 0,
sz + 82r901 + 4rooi09 + 2iretoy + 21@0% — %01 + 2ired + 36017“23 = 0.
Correspondingly, we obtain
o1 = % (—if) + \/—132 + 1152¢q — 10567"2) , (4.17)
o = 0108 o1 7, 418)

\/—v2 +1152¢ — 105619 2 T2
For the case of no dispersion, we have monotonic instability if ¢ > 1"2 If g < 12r2, then
o1 is purely imaginary in this case and thus o3 is the only applicable condition for stability.
Thus if ¢ < %TQ rolls are unstable to an oscillatory instability. Figure 4.13 captures the
stability boundaries of (4.15); and this recovers the result obtained by Tribelsky and Velarde
[72].
To find the criterion for stability of (4.15) with dispersion, o is considered which shows

that travelling wave solutions are unstable as long as ¢ > r2+ 1152 The 1152 term indicates
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Figure 4.13: The stability boundaries of (4.15) for no dispersion, where the right hand
side curve R is the monotonic instability and the left hand side curve T is

. . - r_ g A
the oscillatory instability. Also ¢’ = = and L' = L

that these rolls are stabilised towards the oscillatory instability by the presence of dispersion.
Otherwise if ¢ < %rg + %;2, then oy is purely imaginary, and stability is determined by o2
given by (4.18); and in this case we have

ST24q 4 1115 — 1803 LT (4.19)
_ - — —¢q, '
V02 — 1152¢ + 10561y 2 T2

a consideration of which shows that these rolls are made more unstable to the long-wavelength

02

oscillatory instability in the presence of dispersion.
Now we consider general values for L and find the oscillatory instability boundary, so we
put o =i2 in (4.16). Comparing the real and imaginary parts yields
Q% — 82190 L% — 24QL* — 2r00 L3 + 20Q%L + 0°QL? — 80L° — 360r,3L° = 0,

9L20? + 2902 — 16L° — 528r5 L + 576r9qL* + 568roL* + L10% 4 100QL% 4 210 LQ = 0.
Combining these two equations gives

(—439200L'%7y — 8109542L8r2 — 21513415 L% + 45409950 L4r5 — 18616052r5 L?

— 930384073 ¢ + 13022208¢%r3 — 43740074 L% 3% + 5092272073 L?q — 604800L5 o

— 13058496 LOqra — 54473544L%r3q + 20000L*? — 3981312¢%*r3L* — 33965568¢%r5 L2
+ 218618475 — 324007552 — 1968300L* 3213 — 2952450r2 L5 52 — 597196873¢%)

+ 45(9L% + 2r9)ro (34215 + 1259r2 L2 — 288qr2 — 864qroL? + 1004L%ro + 240L5)

+ (19088L8ry — 410943 L? — 1122973 L* + 53280 L*r2q + 12672L5qry + 6040835 L2q
+ 5760r5¢ + 1600LY° — 10368r5 L?¢* — 524015 4 43850L573)?

— 451y BLA (g + 4L%)%0% 4 2L2 (5ry + L2) (19 + 4L%)%0* = 0.
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We eliminate 3 from this equation by setting ¢’ = ;L, L' = \/LrE’ o = \%—2, B = \/% and

v = \/%, which is more convenient for the subsequent analysis. This implies

(—439200L'"" — 8109542L"° — 21513415L'% + 45409950L"* — 18616052L">

— 93038404 + 13022208¢"% — 437400L'%8'* + 50922720L"* ¢’ — 604800L"%¢’

— 13058496 L/%¢ — 544735441 ¢ + 20000L"** — 3981312¢'2L"* — 33965568¢ > L'

+ 2186184 — 324008'% — 1968300L'* 8> — 2952450L/° 3"* — 5971968¢"°)

+45(9L'% + 2)B'(342 + 1259L"* — 288¢' — 864¢'L'* + 1004L"* + 240L'%)v/

+ (19088L"% — 41094L"* — 11229L"* + 53280L"*¢' + 12672L'%¢ + 60408L'*¢' + 57604’
+1600L""" — 10368L"%¢"* — 5240 + 43850L'° )0’

—458' L (1 + 4020 + 2L (5 + L) (1 + 41?0 = 0.

Proceeding with the stability analysis for general-L’ disturbances is rather intricate and
therefore instead we consider special cases. First, we assume that 3/ = 0 and draw the
stability boundaries in the (¢/, L’) plane for different values of o’ as displayed in figure 4.14.
In order to understand the change in the stability boundaries as o’ becomes large, we begin
by investigating small o’ (hence small v') in the L' = 0 limit. We already know from the

aforementioned analysis, in particular (4.17), that the right-hand stability curve (labelled

R) intersects the ¢’-axis at ¢, = 12 + 1”1,522. In addition, for small v' and from (4.19) the

left-hand stability curves intersect the ¢’-axis at + O(v'?). This shows that near

144 18\/7
the point (194147 0) the left stability boundary T in figure 4.13 splits into two curves (see figure

4.14) and each moves in the opposite direction an amount proportional to o’. We shall label

the furthest right of these curves, which intersects the ¢’-axis at ¢/ ~ % + 12%, by T and
ignore the far left curve (see figure 4.14). This is because by crossing the latter only one real
part of the eigenvalues changes its sign and hence it does not affect the stability. With the
increase in o', ¢ moves to the right more rapidly than ¢/,. Eventually, for sufficiently large
o', ¢_ = ¢/ and thus all rolls become unstable in the limit L’ = 0. On the other hand, if o/
is large, o9 &~ +(—72¢' + 171)—1— 921 72¢' and hence ¢’ halts at }i}l However, ¢/, continues to
move to the right and this results in the appearance of a stability region in the limit L' = 0.
In fact, for sufficiently large o/, some rolls are stable to disturbances for all L'.

Figure 4.14 illustrates the stability boundaries for different values of o/ with 8/ = 0. In
this figure, when o’ becomes large the right stability curve R moves to the right. Then at the
value o, = 5.7 a stable region appears (see figure 4.14(f)). Afterwards, for any value of o/
greater than 5.7 the stable region becomes clearer. Therefore, the critical value above which

stable rolls exist is o, ~ 5.7. Since o = a'+/7, then the stability condition reads 7 < (a/al.)?.

If we apply this result to a = 1/2 and 8 = 0, we obtain stability of rolls for < 0.0077. This
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exhibits remarkably good agreement with the secondary stability plot given in figure 4.2(a),
where the stable region is delimited from above by r ~ 0.0078.

If instead we set o/ = 0, a broadly similar result to the previous case is discovered, as
shown in figure 4.15. It illustrates that for small 5’ there are no stable rolls and then they
are stabilised for sufficiently large /. As can be seen in figure 4.15, the two curves R and T
intersect the ¢’-axis and then coalesce. Afterwards, they both lift off from the ¢’-axis as we
increase B’ and then reattach to the ¢’-axis when (.. & 5.0607 as exhibited in figure 4.15(h).
Therefore, 3 > 5.0607 will result in the appearance of a stable region.

After calculating the critical values of dispersion for stability, in what follows we shall
consider another special case. This case involves setting & = 1 and B =0 (o = €& and
8= 63) with small-L disturbances. Then the stability of travelling wave solutions will be
examined as 7o is varied (r = €2r3). This will be done in order to compare the analytical
result with some of the secondary stability plots found in §4.3. It follows from (4.17) that

@2
1152>

rolls are unstable if ¢ > %rg + % If ¢ < %rg + then oy is purely imaginary and
hence o9 must be considered. As far as (4.19) is concerned, if ¢ < 0, then there is at least one
positive value for o9; and hence instability. Similarly, taking ro > %q gives instability. In
addition to the previous conditions, the sign of oo must be inspected to answer the stability
question for rolls. Figure 4.16(a) illustrates the following graphs ¢ = Hrs + % (solid line),
q =0, ¢ = 2Lrs (dashed line) and o2 = 0 (dotted lines). The areas under the solid line and
above the dashed line are unstable (see figure 4.16(a)). Moreover, crossing the line ¢ = 0
does not change the sign of the eigenvalues of o and hence does not affect the stability.
Therefore, it is apparent that the stable region lies between the dashed and solid lines. To
find precisely this region, a small value for ro is fixed and the two graphs of o9 are plotted
against g. It is found that the sign of the eigenvalues of o3 is negative for the range of ¢ lying
between the dotted lines in the upper and lower parts of the graph and between the dotted
and the solid lines for a small range of intermediate values of ry. For example, if ro = 0.01,
figure 4.17 shows that both values of the two roots of g2 are negative approximately when
0.0087 < ¢ < 0.0158. This lies within the area between the dotted lines in the lower part of
the graph in figure 4.16(a).

Although the solid and dotted lines in figure 4.16(a) appear almost parallel, for large ro
they are not (see figure 4.16(b)). This is because they have the slopes % and approximately
%, respectively.

The previous analysis raises the question whether the stable region for rolls is infinite or
not. In other words, what happens if rs is large. For this we consider large o with ¢ = O(r2),

because figure 4.16(a) suggests that stable rolls lie in some region around a straight line in

(g, 72) parameter space. In this limit, from o7, we have instability if ¢ > %Tg. Also o9 can
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Figure 4.14: The stability boundaries of travelling waves according to (4.15) for 5/ = 0
and different values for o’ as shown below each figure. Note that the far left
curve does not affect the stability but is included for completeness. See the

text for more details.

be written as oo = 2 — Z—zq—l—O(rQ_l/Q). Thus the stability condition for large 9 and small-L
disturbances is given by

91 < 11

—r —r

1442 =15 1"

This implies that for small & and 5 (O(e)) there can be a narrow region of stable travelling

waves in the vicinity of £k = 1. In addition, there is no upper limit on the size of 2, allowing
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Figure 4.15: Same as figure 4.14 but here instead o’ = 0 and the different values for 5’

are given below each figure.

stable rolls.

On the question of stability of travelling wave solutions, this study found that if the
wavenumber is close to the critical value then stable rolls exist. To be more specific, we have
considered each dispersive term separately and found that there is a critical value where the
system is unstable if dispersion is less than this value. On the other hand, with dispersion
above this value, rolls gain stability.

For weaker dispersion than the scaling used here, namely if o and 3 are of order €2,
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Figure 4.16: The graphs of o2 = 0 (dotted lines), ¢ = %T2+% (solid line) and ¢ = %rz
(dashed line). Travelling wave solutions are stable inside the region marked
with asterisks; for details refer to the text. (b) is the same as (a) but with
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Figure 4.17: The two graphs of oo = 0 (dotted and dashed lines) against ¢ with ro = 0.01,
where the solid line is the vertical asymptote of 0o = 0. The rolls are stable

in the interval in ¢ where both roots of oy are negative.

we have calculated separately the amplitude equations and found that there is no effect
of dispersion. This is because dispersive terms do not appear in the amplitude equation;
and hence we have the same result as the Nikolaevskiy equation, which is that all rolls are
unstable. The current findings add substantially to our understanding of the transition to

the Nikolaevskiy chaos as the dispersion is reduced.
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4.6.2 Close to the marginal curve

In this subsection we consider the second case in which the analysis in §4.5 breaks down:
the region close to the marginal stability curve (by using the same scaling in [14] in the
non-dispersive case). Correspondingly, the right and left marginal stability boundaries will
be denoted by ki (¢) and k;,(e). For convenience, we set ro = 1, without losing general-
ity. From substituting the expansion ki = ko + €k1 + €2ko + €3ks + - -+ into the equation
k? [e2 — (1 - k2)?] = 0, we obtain kit = 1+ le — 262 = L3 +---. We now choose the
wavenumber k = kit F €2k, which is very close to the marginal stability boundary.

Applying a weakly nonlinear analysis on (4.1) and using the same scaling as in §4.6.1,
gives

uw=e2dy + a(X,T))e™ + cc+ Ef(X,T) + -,

where M = kx 4+ — ¢ér F %f)T. The roll solution satisfies dp? = 144k. After considerable

algebra, we obtain the linear amplitude equations for perturbations to the travelling waves

o 621[) 4 QOa L O
ar = toxz Tt g ax ax
of _ f . da

ar ~ oxz gy

ba _ 00 oa
oT — “oxz T*ax T Vax

Combining these equations yields
o o 0 2 0\ 52 0%

oT 0X? 0X 0X? 0X?2’
In addition, perturbations proportional to ¥ = e

ILX+0T give the dispersion relation

(0 +4L% +i0L +4L)(0 +4L? + 0L — 4L) (0 + L?) F 8dp*L* = 0. (4.20)

To approach both sides of the marginal curves, we consider the limit dg — 0. Thus the
roots of (4.20) are —L? + O(dp?) and 4L(F1 — L) — i9L 4+ O(do?) and this means that all
travelling waves are unstable sufficiently close to the boundary. Afterwards, we fix a nonzero
value of dy and . Then for small L we have 0® ~ £8dy?L?, and thus to leading-order in
L,o= 02/3L2/3 which implies 03/3 = +8dy2. This shows that these rolls are unstable for
small-L disturbances. Therefore, unlike the case of the damped Nikolaevskiy equation [14],
where a narrow region of stable rolls exists close to the marginal curve, near the marginal

stability boundary all rolls are unstable.

4.7 Amplitude equations with dispersion

In this section we shall derive the amplitude equations which describe slow modulations in

space and time of solutions of the Nikolaevskiy equation with dispersion, in particular for
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weak dispersion. To derive these equations, we use a weakly nonlinear analysis and hence
we set a = ed, § = 63, ¢ =a —B, v = 3(34—53, X = ez and T = €2t (same scaling
as in weak dispersion). Therefore, by substituting in (4.1) and considering coefficients of

successive powers of O(e'/?) we get
u=eAX, T 4 ce + Ef(X,T) - 63%14262“:”7&) +ece 4

The self-consistent amplitude equations then appear from solvability conditions at 0(67/ 4

and O(e*) (respectively) as follows:

0A 02?A . 0A
87T = T2A+4W_1fA_U67X’
of _ 9*f  9lAP

ar — 9X%* 90X’
By setting T = roT, X = —r;/QX, f=—f/r, A= r2_3/4A* and 7 = r2_1/21§ we can
eliminate 7o and obtain the same equations but with v instead of —0. The latter shows that
the behaviour of these amplitude equations is essentially the same for positive and negative

v; and thus we can restrict our attention to positive ¥. The rescaled amplitude equations are

0A %A . 0A
of _ *f 9lAP
or — 9X?2 98X (422)

Note that for simplicity, we have written the variables in these new equations without the
bars.

The amplitude equations (4.21) and (4.22) are the same as in [40] but with an extra
advection term resulting from dispersion. In the absence of dispersion, numerical investi-
gations have been carried out in [47, 48, 52| for different domain sizes. Moreover, we have
numerically simulated these equations but with a general coefficient of the diffusion term (in
the first equation) in §3.3.2. We are interested in investigating the influence of dispersion
on the properties of the solution to these equations. In the next subsection we shall perform
numerical calculations regarding these equations for different values of v with a fixed domain

size.

4.7.1 Numerical results

This subsection is dedicated to numerically simulating (4.21) and (4.22) in a finite domain
(I = 150) for various values of v. The numerical code is pseudo-spectral [21, 67], and employs
an exponential time differencing fourth-order Runge-Kutta method for time integration [13,
30] (see appendix C). The initial conditions are A = 0 and f = —10sin (27(X —1/2)/1)

with small perturbations [52]. We have seen in §3.3.1, in the numerical simulations of the
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amplitude equations with no dispersion, that there is a coexistence of an amplitude-death
state and a single-front state for A and f, respectively. Moreover, these states fluctuate
during the simulations due to spatiotemporal chaos [47, 48, 52|. For the amplitude equations
(4.21) and (4.22), we have an extra term involving v, therefore we expect the front to move
with a certain speed. Figure 4.18(a) is a numerical simulation of (4.21) and (4.22) with
v = 0.2 demonstrating the temporal evolutions of |A| and f (from top to bottom). Similarly
to the case of v = 0, there are chaotic fluctuations. In addition, there are amplitude-
death and single-front structures; however, they are drifting with some speed. We are going
to compute the speed of the front for various values of v. As it is hard to calculate the
speed from such figures, we shall position the front in the middle of the domain during
the simulation (as in §3.3) and then calculate the speed of the front from the graph of the
displacement of the front about X = [/2 (see figure 4.19). The plots presented in figure 4.19
are not straight lines, therefore the speed is estimated by the slope of the graph calculated
from two points away from initial transients.

It is worth mentioning that it is very difficult to track the front (aligning it in the middle
of the spatial domain) by using our numerical code, especially for long-time simulations. As
we increase v, the speed of the front also increases; and therefore this problem becomes more
severe in contrast with the case of v = 0. Either we lose the front in the beginning of the
simulation or after a period of time as exhibited in figure 4.18(b) for v = 0.4. The reason
why sometimes the code might not be able to track the front is that it positions the front in
the middle of the domain by using the values where f is immediately above and below zero
and it might confuse them with values of f very close to zero. As a result the front is no
longer in the middle of the domain, as in figure 4.18(b). For larger values of v, the numerical
simulation is carried out in a short time (see for example figure 4.19(j)). This is because in
this case the speed of the front increases and it is difficult to position the front in the middle
of the domain for a long-time simulation. Another important point is that the maxz((f)) will
not be calculated because we need simulations to be done for a long time in order to allow
the front to settle; and again the code might not be suitable for this procedure.

We have done several numerical simulations of (4.21) and (4.22) in a domain of size 150
for different values of v ranging from 0.05 to 0.5. The plots of the displacement of the front
about X = [/2 are given in figure 4.19. The graph of the total shifting of the front fluctuates
owing to the spatiotemporal chaos of the amplitude equations in addition to the influence of
the advection term involving v. We have estimated the speed of the front from these graphs
(ignoring initial transients) and plotted the result in figure 4.20. As shown in the graph there
is an almost linear relationship with a positive slope between the speed of the front and the

value of v. Indeed, the graph is close to a straight line with slope 0.066.
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Figure 4.18: Numerical simulations of (4.21) and (4.22) exhibiting the temporal evolutions
of |A| and f (from top to bottom) in grey scale plots with (a) v = 0.2 and
(b) v = 0.4. (a) is an example of a numerical simulation without tracking
the front, while in (b) the front is positioned in the middle of the domain.
However, after a while the front is no longer in the centre of the domain, due

to a breakdown of our simple front-tracking algorithm.
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Figure 4.19: The front displacement about X = /2 during the simulations of (4.21) and
(4.22), where [ = 150 and for different values of v as indicated under each

graph.
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Figure 4.20: The asterisks stand for the speed of the front of f, calculated from figure
4.19, against, different values of v for [ = 150. The solid line has the slope
0.066.

In conclusion, the amplitude equations of the dispersive Nikolaevskiy equation exhibit
a similar behaviour to the non-dispersive equation, where there are amplitude-death and
single-front states. However, these fronts drift with a certain speed depending on the value
of v. We have estimated the speed of the front for different values of v through numerical
simulations in a fixed domain size. The result of these calculations indicates that there is an

almost linear relationship between the front speed and v.

4.8 Numerical simulations

After analysing the dispersive Nikolaevskiy equation, for three degrees of dispersion in §4.4,
§4.5 and §4.6, we now carry out numerical simulations to validate these asymptotic results.
The simulations were developed using a pseudo-spectral method [21, 67] with a second-
order exponential time differencing [13] for the time derivative (the Matlab code is given in
appendix B). The initial condition is a travelling wave with wavenumber k plus small random

noise and domain size %. In particular, the initial data for strong dispersion are given by
u(wo) = 2€ [(rg — 4¢°) (36 + (o — 56)2)] 1z cos(kx) = by cos(kx),

plus small random noise. Here the amplitude is taken from (4.8). For the intermediate
dispersion: by = 126@ , and finally for the weak dispersion we have by = 12¢,/r2.
Figure 4.21 illustrates in order (a) strong, (b) intermediate and (c)—(e) weak dispersion.
The values of «, 8, r and k are chosen in the simulations to correspond to travelling waves
predicted to be unstable according to the asymptotic analysis. For the sake of comparison

2

with the analytical results we assume that » = €“ro, where ro = 1 unless otherwise stated.

Figure 4.21(a) demonstrates the case of strong dispersion, where & = 2 and § = 1 are
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chosen with wavenumber £ = 1 and 7 = 0.01. The stability analysis of (4.9) predicts that
the rolls are unstable, since & = 2 and § = 1 lie in the unstable region in figure 4.8. The
numerical simulation agrees with this asymptotic result.

In figure 4.21(b) an example of intermediate dispersion is simulated, where o = 2€%/4
and 8 =¢34 r=€e?and k = 14¢q for ¢ = 0.2 and € = 0.1. It is known from the asymptotic
result in §4.5 that o and 8 being O(e3/4) with wavenumber k = 1+ eq will result in unstable
travelling wave solutions. This agrees with the simulations shown in figure 4.21(b).

Regarding weak dispersion with wavenumber k& = 1+¢2¢, the effect of only one dispersive
term has been studied in §4.6. In figures 4.21(c) and (d) we simulate rolls with parameter
values taken from this analysis with 7 = 0.01 and € = 0.1. In particular, in figure 4.21(c)
we choose a = 2¢, § = 0 and ¢ = 0.87 and this results in unstable rolls as shown in the
simulation. Similarly, in figure 4.21(d), we have o = 0, § = 5¢ and ¢ = 2.5 which also produce
unstable rolls in the simulation. These two simulations support the predictions given in §4.6,
since the parameter values of these two simulations are chosen from the unstable region in
figures 4.14(b) and 4.15(g), respectively.

Figure 4.21(e) represents weak dispersion with fixed values of dispersion, namely o = ¢
and B = 0. The wavenumber is k = 1 4 €2q and r = €215, where € = 0.25, ¢ = 0.02 and
rg = 0.04. These values of 72 and ¢ lie in the unstable region given in figure 4.16(a), and
this is confirmed by the numerical result in figure 4.21(e).

The finding to emerge from this section is that the stability analysis agrees with the
numerical computations. We have performed several numerical simulations with parameter
values taken from the stability analysis of three degrees of dispersion. Indeed, the parameter
values correspond to rolls predicted to be unstable in the asymptotics; and the simulations

exhibit consistency with this analysis.
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Figure 4.21: Snap shots of the numerical simulations of (4.1) with parameter values as
indicated under each graph corresponding to (a) strong, (b) intermediate

and (c)—(e) weak dispersion. The snap shots are taken at two different times

as given in the insets.

(d) a=0, 8=0.5,7=0.01 and k = 1.025.
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4.9 Discussion

In this chapter we examined the stability of travelling wave solutions to the dispersive Niko-
laevskiy equation. We found that dispersion stabilises the spatially periodic solutions at
onset of pattern formation. This result was achieved by calculating the secondary stability
plots numerically and by an asymptotic treatment of three particular scalings in € for the
dispersion coefficients. For weaker dispersion than these scalings, namely if o and § are of
order €2, dispersion does not have any effect on the stability of waves. This is because after
applying a weakly nonlinear analysis on (4.1), we found that dispersion does not appear in
the leading-order amplitude equations. In this case (4.1) possesses the same property as the
non-dispersive Nikolaevskiy equation, which is that all travelling wave solutions are unstable.

In the case of strong dispersion («, 5 = O(1)), the result relates to the numerical stability
plots found in the (k,r) plane if r is small and o and 3 are fixed. Accordingly, we have two
circumstances: either all rolls are unstable at the bottom of the diagram, or there is an
Eckhaus-like symmetrical region of stability for small values of . The ratio of the width
of this stable region to the width of the existence region of rolls is different from the usual
Eckhaus case.

In the other case of weak dispersion, the analytical result can be interpreted as giving
information about the upper part of the stability diagrams in the (k,r) plane for fixed o and
B. It was concluded that there can be a narrow region of stability near wavenumber k = 1.

The asymptotic results provide some information about the secondary stability plots.
However, the numerical results revealed the complicated nature of these plots, highly depen-
dent on the degree of dispersion, which cannot be fully explained by the asymptotics. This
is because in the numerical calculations, finite-wavelength instabilities may be present, in
contrast to the analytical methods where only long-wavelength instabilities are included.

The dispersive amplitude equations show similar behaviour to the non-dispersive equa-
tions. This behaviour is manifested through the coexistence of amplitude-death and single-
front structures; however, dispersion makes the fronts drift with a certain speed. We con-
cluded from numerical simulations that there is a linear relation between this speed and the
group velocity.

Finally, the numerical simulation of the dispersive Nikolaevskiy equation with waves
predicted to be unstable in the analytical results revealed the spatiotemporal chaotic state
of the solution. This behaviour is similar to that found in the non-dispersive Nikolaevskiy

equation (32, 40, 71].
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Other Nikolaevskiy-like systems

5.1 Introduction

In this chapter we introduce a system of coupled partial differential equations similar to
the Nikolaevskiy equation, and with the same symmetries. This system, which consists of
modified Swift-Hohenberg and Burgers’ equations, again describes the interaction of finite-
wavelength and large-scale modes. We want to discover whether the solution of this system
will have the same qualitative behaviour as the Nikolaevskiy equation. We are interested
in investigating what features of the solution of the Nikolaevskiy equation will follow from
the symmetries. We already expect the symmetries to lead to a generalised form of the
amplitude equations in [40].

The coupled system we are going to study, which has certain properties given later, is

0 0 02 \?
%—Fua—: = [T_<1+8ac2> ]w—st—w?’, (5.1)
ou ou 9%u ow

Here = € [0,[] with periodic boundary conditions in the numerical simulations. These equa-
tions have Galilean symmetry: z — = + Vi, u — v+ V and w — w (V is a constant)
and reflection symmetry: x* — —zx, u — —u and w +— w. Furthermore, we have another
symmetry: s - —s and w — —w; and hence we can restrict our attention to the case s > 0.
On the other hand, we need to consider the full range of values for b # 0. The restriction
b # 0 is because when b = 0 and u = 0, we only have the Swift-Hohenberg equation. Note
that the coefficient of the viscous diffusion term in (5.2) (o) is always [l)ositive. Finally, the
spatial average of u may be set as zero. This is because from (5.2) o /0 udx = 0; and hence
1 l
(uy = 7 /0 udxr = constant. Thus in view of the Galilean symmetry of the system, this

constant may be set to zero by transforming to a moving frame of reference.
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Note that (5.1) is the Swift-Hohenberg equation with an additional nonlinear term involv-
ing w. In addition, omitting the nonlinear term involving w in (5.2) gives Burgers’ equation.
Other coupled systems involving a Swift-Hohenberg equation coupled to a Goldstone mode
(some terms are similar to our system) have been studied in a different context. These studies
include stability analysis and numerical computations. Golovin et al. [25] studied a system
of the complex Swift-Hohenberg equation coupled to a Goldstone mode for flame fronts. It
was concluded that strong coupling destabilises the travelling wave solutions, which leads to
the transition to dynamical chaos. Another example of such coupling was also considered in
[51], where the coupling resulted in the zigzag instability of periodic patterns and a chaotic
behaviour arises. In addition to these results, the coupling of the Swift-Hohenberg model
for lasers to a large-scale mode leads to the appearance of higher order instabilities [38] and
the shrinkage of the Busse balloon [9] for the stability of travelling wave solutions.

The major goal of this chapter is to analyse the effect of the coupling between the Swift-
Hohenberg equation and a Goldstone mode on the stability of stationary roll solutions for
small r. This will be done by a combination of analytical and numerical calculations. Due
to the qualitative similarities of (5.1) and (5.2) with the Nikolaevskiy equation, we shall use
the same scalings in the asymptotic procedure. However, in the Nikolaevskiy equation we
have only one variable which represents both the pattern and large-scale modes, whereas in
this system we have two variables, namely w and u. Due to the coupling between (5.1) and
(5.2), both u and w have large-scale aspects and pattern-scale variations. However, we shall
see later, in the weakly nonlinear analysis, that the pattern is the dominant term in w and
the large-scale mode is the dominant term in wu.

This chapter is divided into nine sections. In §5.2, we introduce the dispersion relation,
then we will be concerned with calculating the roll solutions of (5.1) and (5.2) in §5.3. In
§5.4 we shall find the amplitude equations representing slow modulations in space and time
of patterns out of equilibrium. In §5.5, there will be numerical calculations of the secondary
stability of rolls, supported by numerical simulations (§5.6). Afterwards, in §5.7 and §5.8, we
shall study the secondary stability of stationary rolls with two different scalings in order to
compare the theory with the secondary stability plots. Conclusions drawn from this study

and comparisons with the Nikolaevskiy equation will be given at the end of this chapter

(85.9).

5.2 Dispersion relation

In this section we linearise the system (5.1) and (5.2) in order to study the stability of the

tkx+At

zero solution v = 0 and w = 0. Then for modes proportional to e , we obtain two
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Figure 5.1: The growth rate of the instability: A; (solid line) and A2 (dashed line) plotted

against the perturbation wavenumber for » = 0.01 and ¢ = 0.1.

dispersion relations

Moo= = (1-k?)?

Ao = —ok?,

corresponding, respectively, to infinitesimal disturbances in w and w (which decouple).

Figure 5.1 represents the growth rates A; and Ag for r = 0.01 and ¢ = 0.1. As shown
in this figure there exists a band of wavenumbers centred around k. = 1 experiencing linear
growth; and thus if » > 0, Ay will result in instability. On the other hand, there is a slowly
decaying mode (Goldstone mode) near k = 0 for Ay, which never gives rise to instability.
Consequently, r. = 0 is a threshold value for the onset of instability, where patterns grow as
r exceeds zero.

The dispersion relation is qualitatively similar to the one for the Nikolaevskiy equation
in these respects, thus we next examine whether the nonlinear behaviour is qualitatively the

same as the Nikolaevskiy equation; for example, that all rolls are unstable at onset.

5.3 Roll solutions

In this section we intend to calculate the roll solutions near the onset of pattern formation
with wavenumber close to 1. This will be done without considering the spatial modulations
of the rolls.

Now we introduce the weakly nonlinear expansions, where r = €?ry (e < 1)

w = ew +wy + w4

u = eu1+62u2+63U3+~-.
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From substituting these equations in (5.1) and (5.2), respectively, we obtain at O(e)

owy 92 \?
m*(”w) w =0,

aul 82'&1

ot~ 7 ox2

From this it follows that wy is of the form A(T)el1T¢D* 4+ c.c. The complex amplitude A(T)
evolves on the slow time scale T' = €2, since the growth rate \; is of order €. In addition,
uq is chosen to be a large-scale mode, which also evolves with T: w; = u1 (7). Note that
(u) = e{ur) + O(e?) = eus + O(€?) and hence, since (u) = 0, we set u; = 0.

At the next order we obtain the two equations

dw 0% \? .
24 <1 + ) wy 4 sA2H0FDT Lo 4 25(A7 = 0,

ot Ox?
2
% — aaau; —ipAZA0tedE L o = Q.
x
Therefore, we choose
sA° 2i(14€q)z 2
wy = ——g-e DT 4 c.e. — 25| A7,
142
Uy = %em(lﬂqn + c.c.
o

Note that wo contains both pattern (eF2(1+¢0)?) and large-scale (|A|?) contributions. On

eF2i1+€d)¥) hecause of the constraint (u) = 0.

the other hand, ug contains only the pattern (
Thus the leading term in w and w is the pattern.
The amplitude equation then appears at O(e3) (from (5.1)) from a solvability condition
as follows:
DA

38s* b
A2 _ _ 2
5T (ro —4q°)A + ( 3+ 9 40) AlAl~. (5.3)

This equation shows that the equilibrium amplitude of the rolls is given by |A[? = a%, where

ag g - 4(]2
0o — D )
2 . 2
D - 3_ 38s n i _ 1080 — 152s 0’—}-9().
9 4o 360

It is worth mentioning that in the Swift-Hohenberg equation, if |s| is sufficiently small
(or is zero) we then have supercritical rolls. However, rolls become subcritical for large
enough s2, in particular when s? > 27/38 [5, 24, 27|. In the present case, there is a similar
trend, from (5.3) if the coefficient of A|A|? is negative, then it produces supercritical rolls
and subcritical rolls if it is positive. Unlike the Swift-Hohenberg equation, there is a new
parameter combination, b/, which affects the direction of bifurcation and the stability of

the rolls.
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Figure 5.2: Plot of 9b/0 = 4(38s® — 27). The region above the curve is where D > 0,

which is the supercritical case.

In the subcritical case, rolls are unstable at onset to amplitude disturbances. By contrast,
in the supercritical case rolls are stable at onset to amplitude disturbances. Hence we only

need to study the supercritical case to examine what happens to these rolls for more general

3852 b )
— — < 0, or, equivalently,
9 4o

D > 0. Figure 5.2 shows where in (b/0, s) parameter space D > 0, in other words where

9b/o > 4(38s% — 27). If s > /27/38 ~ 0.8429, then we can choose only positive values of b

disturbances. In such a case, from (5.3) we assume —3 +

(since o > 0).
In conclusion, in the stability analysis of rolls we need to consider the case D > 0 and since

ro — 4q?
i S 0, it follows that supercritical rolls exist only for wavenumbers satisfying

5.4 Amplitude equations

In §5.3 we found the roll solutions near the onset of pattern formation, whereas in this section
we are interested in characterising the dynamics of the solution of (5.1) and (5.2); and thus
we calculate amplitude equations, which accommodate modulation of the pattern envelope.
Due to the presence of the Galilean symmetry in (5.1) and (5.2), we expect the amplitude
equation for the rolls to be coupled to a large-scale mode [40].

To find the amplitude equations we consider using the same scaling as in [40], in which
the pattern, which is modulated by the envelope A(X,T), is of order ¢3/2 and the large-scale

2ry and the temporal and spatial scales are replaced

mode is of order €. Furthermore, = €
with the slow variables T = €2t (the same order as the growth rate A;) and X = ex. This
particular scaling is necessary to balance the diffusion term in the amplitude equations.

After applying this scaling to (5.1) and (5.2) in a weakly nonlinear regime, we find from
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successive powers of O(e'/?) that

. A2
w = A’ + ce + 63(—%62”” +ce —2s|AP)+-- -, (5.4)
ibA? .
u = €f+ SPL e L ooql (5.5)
o

Here A and f appear at leading-orders in w and u, respectively. They both remain at the
same order as they were originally in [40]. We will examine these scalings later in this section
by means of numerical calculations.

The self-consistent amplitude equations, which arise from solvability conditions at 0(67/ 2)

from (5.1) and O(e?) from (5.2), respectively, are

0A 0?A
aiT = 7’2A+4W — lfA,
of _ f  9lAP
ar = “axz T"ax

These equations are the same as those found in [40] but with different coefficients in the

equation for f because of the parameters appearing in (5.2). In fact, by rescaling we can

eliminate ro and b by taking 7' = T, X = 7‘;/2X, f=f/roand A= Ay |b]r2_3/2. Then we

have
0A 0?A |
87T = A+4m — lfA,
of _ 9 bolAP

or — “ox® o 0x
Note that for simplicity, we have dropped the hats on the variables in these new equations.
The last term in the second equation is either positive or negative depending on the sign of
b. We next show that the sign of this term does not affect the behaviour of the solution.

Consider the case of b < 0, then we have

0A %A |
aiT = A + 4@ — lfA,
of _ 2 f 9AP

ar ~ %ax?” ax -

Let A= A* and f = —f. Hence we obtain

DA . %A .
or — ATioxr A
of _ 9 0lAP
or — “ox? " ox

Therefore, by rescaling we can change the sign of the last term in the second equation. Hence
the behaviour of the solution of the amplitude equations in the two cases is essentially the

same and does not depend on b. Therefore, the amplitude equations can be written (with
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no loss of generality) as

0A 0?4 |
aiT = A —+ 4@ — 1.][‘147
of _ 2 f 9AP

- = 0= - .
or 0X?2 0X
In these equations, we cannot remove o by rescaling; however, we can eliminate it from

the second equation by choosing X =0712X and A = 0= /4A. Thus we obtain

DA - 4924 -

af 82f 8[[1\2

- = —=— — —. 5.7
or 0X?2 90X (5.7)

In the special case o = 1, we obtain the same behaviour as the Nikolaevskiy equation (see
[40, 47, 48, 52]). In the general case, (5.6) and (5.7) are identical to those in §3.3, where n
is equivalent to 4/0 (refer to (3.2) and (3.3)). Detailed numerical simulations have already
been given in §3.3.

After finding the amplitude equations, we now calculate the rms of w using (5.1) and
(5.2) for b = —10, s = 0.8 and ¢ = 10. This will be done in order to validate the scaling used
to derive the amplitude equations. We calculate the rms of w averaged over 5000-150000
time units in a box of length 2007 and ignore initial transients. It appears that for small
7 (0.001 < 7 < 0.4) w is almost proportional to r3/4 (see figure 5.3). This means that the

3/2 Therefore, the amplitude equations are verified for 0.001 < r < 0.4,

pattern is of order ¢
and this result is compatible with the Nikolaevskiy equation for 0.001 < r < 0.1 [40, 62].

From this example we checked that the scaling used to derive the amplitude equations is
valid. However, in our system there are several parameters and it is difficult to conclude a
general result. We can say that for some values of the parameters these equations are valid
and in some cases they are not; for example, when the parameters result in stable rolls.

In this section we have found the amplitude equations which describe the dynamics once
rolls have become unstable; however, these equations do not capture the rolls themselves
(see numerical simulations in §3.3). This is because the rolls are of O(e) (§5.3) and thus
the scaling used here is not appropriate for studying the stability of rolls, whereas these
equations can be used to describe the rolls after they become unstable and time dependent.

The correct scaling for finding the amplitude equations which characterise the stability of

rolls will be presented in §5.7 after examining the secondary stability problem numerically.

5.5 Secondary stability of rolls calculated numerically

The first step in analysing the stability of stationary wave solutions of (5.1) and (5.2) is cal-

culating the secondary stability boundaries numerically for some samples of the parameters.
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Figure 5.3: Log-log plot of the rms of w averaged over 5000-150000 time units, where
b= —10, s = 0.8, 0 = 10. The dashed line has the slope 3/4.

The numerical code (details given in §4.3.1) first calculates the roll solution with fixed values
of the parameters in (5.1) and (5.2) and wavenumber k. Next, it linearises about the roll
solution, for perturbations with wavenumber p, where —% <p< % Afterwards, it finds the
maximum value of the real part of all growth rates of the perturbations. If the maximum
value is negative, then the original roll solution is considered to be stable. According to this
numerical calculation we first find the secondary stability plots in the (k,r) plane for fixed
b, s and 0. To generate these plots we fix a value of 7 > 0 and take enough samples in k
between W and m in order to find the stable region, if it exists. Similarly, we
find the secondary stability plot in the (k,s) plane for fixed b, o and r. In the following
examples, the number of samples for k and p is 200 and 800, respectively; and the number
of Fourier modes used to represent the rolls, and the perturbations, is 12. We have checked
that this resolution is sufficient so as not to miss any small stable region.

The first examples we introduce in the (k,r) plane are for (b = —1, s = 0 and o = 2),
(b=—-1,s=0and o0 =10) and (b =1, s = 0.2 and 0 = 1). These are displayed in figures
5.4(a)—(c), where the lower part of the secondary stability boundary is a half Eckhaus-like
stable region. To be precise, the stable region is a right-hand side of an Eckhaus-like stable
region for b > 0 and a left-hand side for b < 0, for small r.

The stability regions in figures 5.4(a)—(c) seem to be similar and we shall now illustrate
the types of instabilities presented in figure 5.4(c) (b =1, s = 0.2 and 0 = 1) as an example.
Accordingly, we plot the growth rate (real part) of the perturbation against the wavenumber
p for different values of k£ and r (see figure 5.5). In each graph we fix a value of r and plot
for three values of k taken from the stable and unstable regions in figure 5.4(c). The dashed

and dotted curves, in figure 5.5, correspond to values of k taken from the unstable region in
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Figure 5.4: The secondary stability region for rolls of (5.1) and (5.2) calculated numeri-

cally for b, s and o as given under each graph. The stable region is enclosed

by the dashed curves and the marginal stability curve is r = (1 — k2)? (solid

curve). When b < 0 the dashed curve on the left hand side is an oscillatory

instability boundary and the dashed curve on the right hand side is a mono-

tonic instability boundary, and

vice versa for b > 0. Note that in (e) the

stable band does not extend down to r = 0, where all rolls are unstable for

r < 0.0021.
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Figure 5.5: The real part of the growth rate of the perturbation plotted against the
wavenumber p for b = 1, s = 0.2, ¢ = 1. The dashed curve corresponds
to the first value of k, the dash-dotted curve corresponds to the second value
of k and the dotted curve corresponds to the third value of k. The dashed

and the dotted curves exhibit long-wavelength instability.

figure 5.4(c) and the dash-dotted curve corresponds to k taken from the stable region. As
shown in figure 5.5, the growth rate of the perturbation with wavenumber £k taken from the
stable region in figure 5.4(c) (dash-dotted curve) is negative for all values of p. On the other
hand, there is a band of unstable wavenumbers when k is chosen from the unstable region in
5.4(c) (dashed and dotted curves); and this is a long-wavelength instability. In particular, we
have monotonic instability regarding the dashed curves and oscillatory instability regarding
the dotted curves.

Another example, exhibited in figure 5.4(d), is for b = —5, s = 0.1 and ¢ = 1. The
stable region is a narrow strip, which becomes wider when r > 0.15. In figure 5.6, the
growth rate (real part) of the perturbation is plotted against p for different values of r and
k. Again we have a fixed value of r in each graph, and we plot for three different values
of k taken from the stable and unstable regions in figure 5.4(d). The dashed and dotted

curves correspond to values of k taken from the unstable region in figure 5.4(d). In addition,
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Figure 5.6: The real part of the growth rate of the perturbation plotted against the
wavenumber p for b = —5, s = 0.1, 0 = 1. The dashed curve corresponds to
the first value of k, the dash-dotted curve corresponds to the second value of
k and the dotted curve corresponds to the third value of k. The dashed and
the dotted curves exhibit long-wavelength instability in (a) and (b). On the
other hand, in (c) the dashed curve exhibits long-wavelength instability and
the dotted curve exhibits finite-wavelength instability.

the dash-dotted curve corresponds to k chosen from the stable region in 5.4(d). The dashed
curve exhibits long-wavelength instability in figures 5.6(a)—(c) (oscillatory instability). On
the other hand, the dotted curve exhibits long-wavelength instability in figures 5.6(a) and
(b) and finite-wavelength instability in figure 5.6(c) (all are monotonic instability).

The final example in the (k,7) plane is for b = —10, s = 0.8 and o = 10 (see figure
5.4(e)). In this figure, there is a region of stable rolls for » > 0.0021. Beyond this value as
we increase r the stable region becomes wider.

After providing some regions of stability in the (k,r) plane, we now calculate the domain
of stability in the (k,s) plane for » = 0.01 and fixed values for b and o. In this case the
value of s is limited by the condition s? < 35 (b/c + 12) (see figure 5.2). In addition, rolls
exist if 0.9487 < k < 1.0488. Accordingly two plots are given in figure 5.7 for b = —5
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Figure 5.7: The secondary stability region for rolls of (5.1) and (5.2) calculated numeri-
cally for r = 0.01, where b and o are indicated under each graph. The stable
region is bounded by the dashed curves and the solid curve is the marginal
stability curve. When b < 0 the dashed curve on the left hand side is an
oscillatory instability boundary and the dashed curve on the right hand side
is a monotonic instability boundary, and vice versa for b > 0. Note that the

stable region is delimited from above by s = 0.37 and s = 0.9105 in (a) and
(b), respectively.

and ¢ = 1, and for b = 4 and ¢ = 2. In figure 5.7(a) we must choose the values of s
such that s < %\/% ~ 0.6438, because if s > %\/%, then rolls become subcritical. In
figure 5.7(a), the stable region becomes a narrow strip with an upper bound, where rolls
are unstable if s > 0.37. The stable region in figure 5.7(b) is also a narrow strip bounded

by s = % 133 =~ 0.9105. We cannot go further than this value of s because rolls become

subcritical if s > %\/ﬁ

In the previous examples we have illustrated stability regions in the (k,r) and (k,s)
planes. Unfortunately, given the number of parameters in the problem, the secondary stabil-
ity plots found here are only indicative and do not allow us to draw many general conclusions
about the secondary stability problem. Indeed, as we change the values of the parameters,
different topologies of the stability regions occur, which are challenging to describe ana-
lytically. Later in §5.7 and §5.8 we attempt to investigate the secondary stability of rolls
analytically. An important observation from these plots is that near the marginal stability
curve r = (1 — k2)2 there are no stable rolls. In addition to this, a half Eckhaus-like stable
region may appear for small values of .

In the following section we illustrate some numerical simulations of (5.1) and (5.2) with

parameter values taken from the secondary stability plots.
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5.6 Numerical simulations

Having calculated the secondary stability diagrams numerically, here we perform some nu-
merical simulations of (5.1) and (5.2) with certain values of the parameters. In particular,
we test the results illustrated in figures 5.4 and 5.7. The numerical code used here employs
a pseudo-spectral method for spatial discretisation |21, 67| and an exponential time differ-
encing fourth-order Runge-Kutta method [13, 30] for time stepping. The initial conditions

for w and u are

w = 2eagpcos (kz),
2b 2

u = 2% sin (2kz),
20

plus small random noise for both and a2 = ro/D (D = %ﬂs%‘k% and 7o = 1). The
initial conditions are chosen from the dominant terms in the weakly nonlinear analysis in
§5.3. The domain size is | = 500 and r = €2. The values of k are selected from the regions
which are expected to be stable or unstable in figures 5.4 and 5.7. For each simulation in
figures 5.8-5.12, w (which represents the pattern) is plotted.

Figure 5.8 provides an example of numerical simulations with b= —1, s =0, 0 =2 and
r = 0.1. The wavenumber is taken from either the stable or unstable region in figure 5.4(a).
In figures 5.8(a) and (c) the wavenumber is chosen from the unstable region in figure 5.4(a);
and the numerical simulations are in agreement with this stability graph. In addition, the
unstable rolls are eventually replaced by rolls with wavenumber from the band of stability, as
can be seen in figures 5.8(a) and (c), which exhibits the Eckhaus instability. In figure 5.8(b)
we have a numerical simulation of rolls with wavenumber selected from the stable region in
figure 5.4(a); also we have consistency with the secondary stability plot. A similar result is
given in figure 5.9, where the parameter values are taken from figure 5.4(c) (b =1, s = 0.2,
o =1 and r = 0.5). The similarities between the numerical simulations in figures 5.8 and
5.9 are due to the fact that the parameter values are selected from figures 5.4(a) and (c),
respectively, which have similar stability regions.

In the next example we choose b = =5, s = 0.1, 0 = 1 and r = 0.4. If the wavenumbers
are chosen from the unstable region in figure 5.4(d), then the simulations in figures 5.10(a)
and (c) for £ = 0.7 and k£ = 1.1, respectively, exhibit extremely complicated behaviour of
the time dependent solution. On the other hand, if we choose a wavenumber predicted to
be stable in figure 5.4(d), then the simulation in figure 5.10(b) illustrates stable rolls.

If we fix b= —10, s = 0.8, 0 = 10 and r = 0.1 and select unstable wavenumbers from
figure 5.4(e), this results in instability in the simulations (see figures 5.11(a) and (c)). These

simulations show similar behaviour to the Nikolaevskiy chaos in which there is no formation
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of an arranged structure (see figure 1.3). If we choose k from the stable region in figure
5.4(e), then the numerical simulation gives stable rolls as can be seen in figure 5.11(b).

The final simulations we have are presented in figure 5.12, where b =4, s = 0.2, 0 = 2 and
r = 0.01 (the parameter values are taken from figure 5.7(b)). In figures 5.12(a) and (c) the
simulations exhibit unstable rolls and this agrees with figure 5.7(b) since the wavenumbers
are taken from the unstable region. Also the simulation in figure 5.12(b) is consistent with
the result in figure 5.7(b). This is because the wavenumber is predicted to be stable from
figure 5.7(b) and the simulation shows the stability of rolls. In the unstable case, rolls do
not settle down and are persistently time dependent. This behaviour is different from the
extremely chaotic state exhibited in figure 5.10.

It can be concluded from the previous graphs that for certain values of the parameters
the system (5.1) and (5.2) exhibits a similar behaviour to that of the Nikolaevskiy equation.
Now we are going to move to the next step, which is analytically investigating the stability of
roll solutions of (5.1) and (5.2) and examining how the result is applicable to the secondary

stability plots.

5.7 Secondary stability of stationary rolls

Now we derive nonlinear amplitude equations and then we use them to study the stability

of rolls. Therefore, we apply a weakly nonlinear analysis on (5.1) and (5.2) and introduce

4 2

the slow temporal and spatial variables T = €%/t and X = €¥/*z (r = €?*r). This scaling
is motivated by |72|, which was also used in [14] and §4.5 in the same framework as here.
As is always the case, this scaling is appropriate to allow the development of asymptotically
self-consistent amplitude equations.

Now we substitute this scaling of time and space with the following expansions in (5.1)

and (5.2)

w = ew1+e5/4w2+63/2w3-|----,
u = 6u1+e5/4uQ+63/2u;;+~-.
1/4

After taking into account coefficients of powers of ¢/* and applying solvability conditions,

this leads to the following:

w = elag+e?a(X,T)eM +ce+---,

.bQ )
u = 67/4f+6214ﬂe21M+c.c.+---,
o

where M = (1 + eq)x + ¢'/%)(X,T). The amplitude is given by a? = % where D =

1080 —152s520+9b

T (as in §5.3). In addition, a(X,T) represents disturbances to the amplitude of
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Figure 5.12: Same as figure 5.8 with parameter values b =4, s = 0.2, 0 = 2 and r = 0.01.
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the pattern, ¢¥(X,T') represents corresponding disturbances to the phase of the pattern and
f(X,T) is a large-scale mode. From the expansions of w and u, the pattern and large-scale
modes are the leading terms in w and u, respectively.

The coupled amplitude equations appear at O(e''/4), O(e!3/4) and O(€?) (from solvability

conditions) as follows:

o _ O,
or ~ ‘oxz )
af 0% f Oa
ar = “axz T Mpx
da 0%a 4 o _8a oY
or — “ox® "\ox “Wox
These equations are similar to the amplitude equations in [14, 40, 54| but with the absence of
damping and dispersion. In fact by taking b = —1 and o = 1 we obtain the same equations
(see §4.5).
In order to study the stability of rolls, we first write the above amplitude equations as
follows:
0 0?
0 0? da
<8T - 8X2> ;o= gy
B L o\ 2 o
(87_’ — 46X2> a = —4CLO <a)() - 8& aX
Then we reduce them to the following nonlinear phase equation:
9 2\ (8 0” o 8%y
Z g I G — 16ba2 - }
(aT ax2> <8T "ax2> ¥ = 16bag <8X + > ox? (5:8)

Linearising this equation and putting 1) = el AT gives the dispersion relation

A3 4 (0 +8)A2L? + (80 + 16)AL* + 160 L5 + 16badqL? = 0. (5.9)

It is useful for the following analysis to note that L appears at even powers and thus
we can restrict our attention to positive L. However, for ¢ and b this is not the case (odd
powers occur), hence we need to consider all possible values.

In order to study the stability of rolls we need to consider the dispersion relation (5.9) for
general L. Before proceeding to this, we shall begin by considering the two limiting cases of
small and large L, which provide helpful information about the stability. If L is small, then
A3 ~ —16ba3qL?. Thus to leading-order in L, A = A2/3L2/3 and hence Ag’/g = —16badq.
This means that we expect stationary instability if bg < 0 and oscillatory instability if bg > 0.

This analysis shows that rolls are unstable to small-L disturbances, provided a3q is not small.
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However, we will see in the next section that some rolls are stable with wavenumber close to
1 and with certain values of the parameters.

On the other hand, if L is sufficiently large, then we have A% 4 (o + 8)A?L? + (8o +
16)AL* +160L% ~ 0. Thus A ~ —oL? or —4L? (twice), which shows that rolls are stable to
large-L disturbances (since o > 0).

Now we provide more information about the stability by considering general L and finding
the secondary stability boundaries. Firstly, we find the oscillatory instability boundary, thus
we set A = i) and substitute in the dispersion relation (5.9). After comparing the real and

imaginary parts, the following is obtained:

Q3 — (80 +16)QL* = 0,
0 160L*  16bagq

0.
oc+8 o+38
Eliminating € between these two equations gives
2badq — (o +4)*L* = 0. (5.10)
Therefore
4 2bqad
(o +4)%
When b > 0, there is oscillatory instability of rolls with 0 < ¢ < \/;2 with unstable
1/4
disturbances satisfying 0 < L < (((2;:‘572‘)2) . On the other hand, if b < 0, then there is

2\ 1/4
oscillatory instability to disturbances having 0 < L < ((ileSJZ) , Where —@ < qg<0.
Thus the stability of rolls with a particular wavenumber depends on the sign of b.
Secondly, we find the monotonic instability boundary. Hence let A = 0 and substitute in

the dispersion relation (5.9), then we obtain

oL* + badq = 0. (5.11)
Thus
A — —bgag
—

T2

Therefore, if b < 0, then the monotonic instability exists if 0 < ¢ < g with the

—bqa%
o

1/4
unstable disturbances 0 < L < ( ) . If b > 0, then we have monotonic instability

if _\/2772 < g < 0 with unstable disturbances satisfying 0 < L < (%qa%) 1/4. Here also the
result depends on b. Table 5.1 summarises the monotonic and oscillatory instability regions
for b < 0 and b > 0.

Note that these results agree with the Nikolaevskiy equation when b = —1 and ¢ = 1
(see §2.3.2).
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— /)2 <q <0

0<q</r2/2

o

b<0 oscillatory instability monotonic instability
2\ 1/4 o2\ 1/4
for 0.< L < (22505 for 0 < I < (=24
b>0 monotonic instability oscillatory instability

(o+4)?

100

for 0 < L < (iqa%)lﬂl 2bgag )1/4

for()<L<<

Table 5.1: The instability regions of (5.8) for b < 0 and b > 0.
In (5.10) and (5.11), it is useful to put ap = bor%/z, L= L’rg’/s and q = q’r;/Q to obtain

a general result, which does not depend on r3. Then these equations can be rewritten as

20b3q — (0 +4)2L" = 0,

oL +bbyq = 0.

Accordingly, the monotonic and oscillatory instability boundaries are shown in (¢’, L’) pa-
rameter space in figures 5.13 and 5.14. The values of the parameters are s = 0.2 and o = 1,
where b = —1 and b = 1 in figures 5.13 and 5.14, respectively. As can be seen in these
two figures, when b changes sign the two instability boundaries (monotonic and oscillatory)
exchange places, which is also the case in the numerical secondary stability plots in §5.5.
Furthermore, for small-L’ disturbances rolls are unstable regardless of the values of b and o.
Also for large-L’ disturbances, where rolls are stable, the result does not depend on the val-
ues of b and o. By contrast the instability boundaries for general L’ are affected by the sign
of b. If b < 0, then the position of the instability boundaries is the same as the Nikolaevskiy
equation.

In conclusion, the stability analysis in this section predicts that all rolls are unstable at
onset, provided that a%bq # 0. This result is universal, meaning that it is insensitive to the
parameter values b, s and o; this also applies to the Nikolaevskiy equation [72]. In addition
to this, the result agrees with that of chapter 3 for systems similar to the Nikolaevskiy
equation. However, this analysis is strictly valid only if a2bq is not small; if a2bq is small,
then the scaling used here needs to be reconsidered. In the next section we investigate the
case of small a%bq by considering the situation of ¢ being small. We will see that some rolls

with wavenumber close to 1 with certain choices of the parameters are stable. We are not
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Figure 5.13: The stability boundaries of rolls according to (5.8) with b= —1, s = 0.2 and
o = 1. We have monotonic instability on the right and oscillatory on the

left.
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Figure 5.14: The stability boundaries of rolls according to (5.8) with b =1, s = 0.2 and
o = 1. We have oscillatory instability on the right and monotonic on the

left.

going to study the case of a3 being small, since the secondary stability diagrams calculated
numerically, in §5.5, provide us with the fact that there are no stable rolls close to the

marginal stability curve.

5.8 Secondary stability of stationary rolls with wavenumber

close to the critical value

In the previous section we found that all rolls with wavenumber k£ = 1 + eq are expected to

be unstable. However, this prediction is no longer valid for wavenumbers much closer to 1,
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when ¢ in this expression is small. Thus in this section we investigate the stability of such
rolls by considering a different scaling which was originally used in [72], and then in [14, 54|
(see also §4.6.1). Accordingly, the wavenumber is k = 1 + €2q.

First, we introduce the following expansions, which provide a distinguished balance in

the weakly nonlinear regime

w = elag+a(X,T))eM +ce + -,

b 2
u = 6214&6211‘/[—{—C.C.—|—63f(X,T)—|—'--’
o

36ro0

with X = ez and T = €*t. In addition, the amplitude is now given by a3 = 1080155520595

and M = (1 + 2¢)x + e(X,T).
After substituting these expansions in (5.1) and (5.2), the system is solved at successive

powers of O(e). Subsequently, the amplitude equations result from solvability conditions as

follows:
o 0%
or 4aX2 I
of  o*f da
ar ~ “axz T 2wgx
da 0% A 2 8 4.\ o
ar ~‘ox2 e 0(3}() _2T2a+4“°< 1T oxz T o7’ “)ax'

Unlike the amplitude equations found in [14, 54], the term involving fx does not arise in
the third equation, which results from (5.1). This is because in the Nikolaevskiy equation we
had only one variable (u), which contains both the pattern and large-scale modes. Therefore,
the term wu,, in the Nikolaevskiy equation, and the particular order of f will result in the
appearance of the term fy in the third amplitude equation in [14, 54]. On the other hand, in
(5.1) and (5.2) we have two variables w and u, where in the expansion of u, f appears at one
of the leading-orders. Moreover, the third amplitude equation results from (5.1), which does
not have the term wu,. Therefore, the term fx will not arise in the third amplitude equation.
Other than this missing term, the other ones found in [14, 54| appear in our equations.

The next step in studying the stability of stationary waves is to combine these amplitude

equations into the nonlinear phase equation

o N[0 a0 , O 9%
(aT N 4ax2> (aT “laxe t 27“2) <8T B "ax2> V= 16bay 5 5%

0? 8 0%y
+8ba3< ~oxz T ont 2> X7 (5.12)

Then we linearise and seek solutions proportional to e!“X+AT to obtain the dispersion relation
AP+ (8 + 0)A2L? + 2r9A? + 8(2 + o) AL* + 2r9(4 + 0)AL? + 160 L° + 8roo L* + 8ba3 L*

64
+ 16bagqL? + 2—752ba§L2 =0. (5.13)
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In this equation we can restrict attention to positive L. However, we must consider positive
and negative values for ¢ and b.

In the following analysis, we investigate the stability of stationary wave solutions ac-
cording to (5.13). Before answering the stability question for general L, it is instructive to
consider the two cases of large and small-L disturbances. For large-L disturbances, we have
stability (the same as in §5.7).

Before giving details of the analysis regarding small-L disturbances, we elucidate the
result in figure 5.15, which shows where rolls are expected to be unstable for b < 0 and b > 0
for small L. Let L be small, expand A = AjL + AyL? + --- and substitute in (5.13). Thus

we obtain
I 2a9+/—6r2b(27q + 4a%s?)
1 = 9T2 )
A = 2baj(27q + 4s%af) o +4
2 27r2 2

From Ay, if b(27q + 4a3s?) < 0, then the rolls are unstable. Since b is allowed to take

either sign, then we have two cases. If b < 0, then the rolls are unstable (b(27q +4a3s?) < 0)

2.2 2.2
dags dags

provided that ¢ > —=%-. If b > 0, then b(27¢+4a3s?) < 0 (unstable rolls) only if ¢ < —=>.

Otherwise, if b(27q + 4a3s?) > 0, then A; is purely imaginary and hence we need to

2.2
consider As. At the borderline case ¢ = —4(;#78, Ay = —“TH, which will result in stability.
2.2
Let us consider first the case b < 0, so that ¢ < —4‘12073 . As we decrease ¢, Ao increases

because b(27q + 4a2s?) > 0. Correspondingly, A2 will change its sign and thus the rolls

2.2
dags

will develop instability. On the other hand, let b > 0 and ¢ > ——3—. If we increase g,

then As increases because b(27q + 4a3s?) > 0. Ultimately, again A will change its sign for

sufficiently large ¢; and thus we get instability. In conclusion, if b(27q + 4as?) > 0, then

7‘% (o+4) 7’% (o+4)
4bag 417‘1(2)

2.2
dag

rolls are unstable if b < 0 and ¢ < — 278 +

2.2
daj

orif b >0 and ¢ > — 273 +

This result is illustrated in figure 5.15.

After predicting that all rolls are stable to disturbances for large L and that some are
stable for small L, we now consider general L to find the stability boundaries. To calculate
the oscillatory instability boundary let A = iQ2 and substitute in (5.13), therefore we obtain
from the real and imaginary parts

Q3 —8(0 +2)QL* — 2ry(4+ 0)QL? = 0,
(2ry + (o + 8)LH)0? — 160 L° — 8ryo L* — 8badL* — 16balqL* — %s%agﬁ = 0.

Eliminating  between these two equations gives

— 8640 L1 — 432r90 L? + 108bai L? + 216balq + 32s%bag — 10802 L4 — 129615 L% — 1728 L*

— 21673 — 54130 — 2Tre0?L? = 0. (5.14)
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Figure 5.15: Diagram showing for small-L disturbances where the rolls are unstable ac-

cording to (5.12) for the two cases of (a) b < 0 and (b) b > 0.

It is convenient to eliminate ro from the previous equation by introducing b3 = a?/rs,

L' =L/\/rs and ¢’ = q/rs. Thus (5.14) may be rewritten in the form
¢ =A+BL?+CL"=q\(L), (5.15)

where the parameters are given by

452 o +4
A -0
T 4bb%
B (0+8)72*-16 1
B 8bbZ 2’
4 2
c = et
2bb?

This equation gives the oscillatory stability boundary of the rolls.
For calculating the monotonic instability boundary, let A = 0 and substitute in (5.13),
which implies

8
20L* + 190 L* + balL? 4 2badq + ?7821)&3 = 0.

Similarly to (5.15), this equation can also be rescaled as follows:

¢ =A+BL?+CL* =, (L), (5.16)
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but here

45%b2
27

bbg +o
C20b2
= (o

bb2’

N
I

i
Il

Depending on all of the aforementioned analysis we are now interested in finding the
domain of stability for general L’. Therefore, we must study the properties of the oscillatory
and monotonic instability boundaries. We begin by considering large and small-L" distur-
bances. We already know that if L’ is large, then all rolls are stable and the oscillatory

instability boundary satisfies

so  ifb>0
qp(L') —

00 ifb<0,

whereas for the monotonic instability boundary we have

(

00 ifb<0
G (L) —

—oc0 ifb>0.

This means that when b > 0, the oscillatory instability boundary will point to the right
and the monotonic instability boundary will point to the left, and vice versa for b < 0 (see
figure 5.16). Note that this result agrees with the previous scaling in §5.7 (middle parts
of figures 5.13 and 5.14). On the other hand, for small L’ rolls are stable provided that

252 252

_452760 Z{;gl <q < _4l72078 for b < 0 (see figure 5.15(a)). If b > 0, then rolls are stable if
2.2 2p2

_41’5373 <q < _43’27[’0 ZTJgg (see figure 5.15(b)).

Now we consider general L’ and examine the shape of the stability boundaries, which will

result in determining the condition for a stable interval to exist. To do this, first suppose that

212
b < 0, thus in (5.15) the point of intersection with the ¢’-axis is ¢’ = —48271’0 Zb—‘”l%l

(negative).
Moreover, B and C' are negative and therefore the oscillatory instability boundary is a curve
similar to the dashed curve in figures 5.16(a), (b) and (c). Now in (5.16) the monotonic

212
instability boundary intersects the ¢’-axis at the point ¢ = _427(; 0 (negative), which lies to

the right of the oscillatory instability boundary. In addition, C is positive, and hence if B is
positive we obtain a curve similar to the solid curve in figure 5.16(a). On the other hand, if

B is negative we obtain a curve similar to the solid curves in figures 5.16(b) and (c).
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If instead b > 0, by considering the point of intersection with the ¢’-axis in (5.15) and
(5.16), the monotonic instability boundary is now on the left of the oscillatory instabil-
ity boundary. Indeed, the point of intersection with the ¢’-axis is always negative for the
monotonic instability boundary and either positive or negative for the oscillatory instability
boundary. In addition, in (5.15), C' is positive and therefore if B is positive we obtain a curve
similar to the dashed curve in figure 5.16(d). By contrast, if B is negative we obtain a curve
similar to the dashed curves in figures 5.16(e) and (f). In (5.16), B and C are negative, and
hence we obtain a curve similar to the solid curve in figures 5.16(d), (e) and (f).

It is convenient to summarise the results by sketching all possible types of stability
boundaries; and these are demonstrated in figure 5.16. In all cases we need to consider the
minimum and the maximum values of ¢ on these boundaries, by using (5.15) and (5.16), in
order to find the stable region. We are going to give the condition of stability first for b < 0.
In the straightforward case, in figure 5.16(a) the band of stability lies between the minimum
and the maximum points of the right and left instability boundaries. This region simply lies

452b2 43%3). On the

between the points of intersection with the ¢’-axis (—=—572 + ZTJ% <q < ——

other hand, if we want to find the stable region in figures 5.16(b) and (c), then we need to
calculate the minimum value of the monotonic instability boundary curve and the maximum
value of the oscillatory instability. The latter is given by the point of intersection of the
oscillatory instability with the ¢’-axis. If the minimum value of the monotonic instability is
greater than the point of intersection of the oscillatory instability with the ¢’-axis, then the
stable region exists (see figure 5.16(b)). On the other hand, if the minimum value of the
monotonic instability is less than the point of intersection of the oscillatory instability with
the ¢’-axis, then there is no stable region, as shown in figure 5.16(c).

To summarise, either the stable region is clear, as in figure 5.16(a), or does not exist
(see figure 5.16(c)) or needs to be calculated as in figure 5.16(b). The result is similar when
b > 0, which is illustrated in figures 5.16(d)—(f). It can be concluded that regardless of the
sign of b, we have three cases of instabilities, as demonstrated in figure 5.16. We shall refer
to the type of stability boundary exhibited in figure 5.16(a) as “type (a) stability boundary”
and the type of stability boundary shown in figure 5.16(b) as “type (b) stability boundary”
and so on.

After studying the stability of rolls, we now provide some examples to clarify the analysis.
The first example given is of type (c) stability boundary. Let b = —10, s = 0.8 and ¢ = 10
(see figures 5.17(a)—(c)). Therefore, from the previous analysis we expect rolls to be stable
for large L’ and the stable region for small L' exists if —2.0012 < ¢’ < —1.9845. However,
from (5.16) B and C have different signs and so we expect that this region may not be

valid for general L’. Therefore, we need to calculate the minimum value of the monotonic



Chapter 5: Other Nikolaevskiy-like systems

(d) (e) (f)

Figure 5.16: General plots which are indicative of the possible forms of the stability
boundaries of rolls regarding (5.12), where the stable region lies between
the dashed and solid lines. Here the solid curves represent the monotonic
instability boundaries and the dashed curves represent the oscillatory insta-
bility boundaries. Graphs (a)—(c) correspond to the case b < 0 and graphs
(d)—(f) correspond to the case b > 0. In each of the two cases we have three

forms of the stability boundaries.
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instability boundary, which is ¢ = —3.1706 when L' = 2.2322. This means that in the region

—2.0012 < ¢’ < —1.9845 some rolls are unstable. Hence for general L’ there are no stable

rolls, and this is demonstrated in figures 5.17(a)—(c).

On the other hand, if we change the sign of b (b = 10), then we get type (d) stability

boundary where the stable region lies between the two points of intersection with the ¢’-axis.

This implies that rolls are stable for general L’ if —0.1731 < ¢’ < 0.0186. This is confirmed

by the shape of stability boundary in figure 5.17(d).

We now give some examples with s = 0 and ¢ = 1. First, in figures 5.17(e)—(g), we

choose b = —5, then for small L’ the stable region exists for —0.4375 < ¢’ < 0. However,

this is a type (b) stability boundary and we need to calculate the minimum point of the

monotonic instability boundary, which is ¢ = —0.0754 when L’ = 0.6814. Thus the stable

region for general L' is —0.4375 < ¢’ < —0.0754. If instead we take b = —1, from figure
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5.17(h), the stable region lies between the points of intersections with the ¢’-axis (type (a)
stability boundary). Thus the stable region exists for —3.4375 < ¢’ < 0.

The final two examples we take, to cover all types of stability boundaries, are for a fixed
s =1 (see figures 5.17(i) and (j)). In this case we must choose positive values of b to get
supercritical rolls (see figure 5.2). Let b = 20 and o = 4, then the stable region for small L’ is
—5.3333 < ¢’ < —5.3306. The minimum value of the oscillatory instability boundary occurs
at the point ¢’ = —6.6146 and L' = 2.3184, whereas the maximum value of the monotonic
instability boundary is the point ¢ = —5.3333 and L’ = 0. This implies that there are no
stable rolls, and this is shown in figure 5.17(i) (type (f) stability boundary). If we choose
b = 40 and o = 5, then the stable region for small L’ exists for —0.1905 < ¢’ < —0.1467;
and this is a type (e) stability boundary (see figure 5.17(j)). Therefore, the stable region for
general L’ is valid when —0.1905 < ¢’ < —0.1519.

In conclusion, the theoretical results found here agree with the stability diagrams in
§5.5 for small r, where the numerical plots are covered by all types of stability boundaries
found in this section. Indeed, figures 5.4(a)-(c) correspond to type (a) and (d) stability
boundaries. The stability analysis reflects on the lower part of these plots, which are a half
Eckhaus-like stable region. Moreover, the secondary stability plots are expected to develop
long-wavelength instability (see figure 5.5). On the other hand, in figure 5.4(d) we have
type (b) stability boundary and the secondary stability plots are expected to develop long-
wavelength and finite-wavelength instabilities (see figure 5.6). Finally, figure 5.4(e) is a type
(c) stability boundary, which predicts that there are no stable rolls. This agrees with figure

5.4(e) for small r, since in this figure the stable region exists for r > 0.0021.



Chapter 5: Other Nikolaevskiy-like systems

109

— 54 5 -~ r3
~—__ stable stable ~~_ stable
~_ ~—
\\\ 44 4 N
~ \\
\\ N
~ ~ L,
N N
R 3 N
\ A
J /
K L A
\ \

£ 21 \
\ \[[!

| \

1y 14 |

|
T T T T T T ‘ T T T T T T T T T T T T
-300 -250 -200 -150 -100 =50 2 0 2 4 6 8 10 12 14 40 0 -20 10
/ / /
q q q

(a) b= —10, s = 0.8, o = 10.

(c) b=—10, s =0.8, o = 10.

~_ 10 stable oy
\\
~_ stable
\\
~ 0.8
~
~
~
N
\\ 0.6
N
\ L

\\ Loa

\

\
\ Foz

\

|
\ 0

8 7 6 -5 -4 3 2 1 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01  0.02
/ /
q q

e 54 ~—_
~~ ~_ 16
T~a stable T~o stable
=~ ~ 1.4
~ 4 ~
~ ~
\\ \\ 1.24
~N ~N
N N
N N
IA I,
\A \03
] \ 1
\ *f
\ \
i, 04‘7
DZL
|
T T T T T T T T ‘
-2,500 -2,000 -1,500 -1,000 -500 0 -300 -200 -100 0
/ /
q q
(g) b=—-5,s=0,0=1. (h)yb=-1,s=0,0=1.
129 P
-
-
stable 1.0 -
7
Ve
s
084 /
/
L 044
/
/
p+
|
]
|
T T ‘ T T
1.0 0.5 0 0.5 1.0
/
q

(j) b=40, s=1and 0 = 5.

() b=—5,5=0,0=1.

stable -

(i) b=20,s=1and o = 4.

Figure 5.17: The stability boundaries obtained from (5.12) with parameter values as in-

dicated under each figure. The dashed curves represent the oscillatory in-

stability boundary and the solid curves represent the monotonic instability

boundary.



Chapter 5: Other Nikolaevskiy-like systems 110

5.9 Discussion

In this chapter we found that the nonlinear behaviour of the Swift-Hohenberg equation is
strongly influenced by the coupling with the Goldstone mode. This result was achieved
through asymptotic and numerical calculations.

After applying a weakly nonlinear regime to (5.1) and (5.2) and using the same scaling
as the Nikolaevskiy equation, we derived amplitude equations for chaotic dynamics, which
are similar to those found in [40]. However, they depend on the value of the diffusion term
(0) in (5.2) and we know from chapter 3 that this can significantly influence the behaviour
of the solutions.

The secondary stability plots were calculated numerically. Due to the numerous param-
eters in (5.1) and (5.2) which control the stability, it is difficult to construct general plots
covering all possible cases. Instead, some plots were generated for specific values of the pa-
rameters. The secondary stability diagrams were compared to some numerical simulations,
which provide remarkably good agreement. Furthermore, some of the simulations manifest
features similar to the Nikolaevskiy chaos.

In our analytical treatment of the secondary stability of rolls we concluded that, for small
enough r, all rolls are predicted to be unstable, expect those with wavenumber close to 1;
for such rolls there may be a thin region of stability. This result agrees with the secondary
stability plots calculated numerically.

Our analysis of the stability of rolls reveals stability boundaries different from those
present in the Nikolaevskiy equation. By carefully considering all possible values of the
parameters we found three types of stability boundaries, regardless of the sign of b. Type (a)
and (b) stability boundaries predict that stable rolls exist. By contrast, this type of stability
boundary is not present in the Nikolaevskiy equation, since all rolls are unstable at onset.
On the other hand, also we have type (c) stability boundary which predicts that all rolls
are unstable at onset, and this agrees with the Nikolaevskiy equation. To summarise, for
certain values of the parameters, stable rolls may be observed, in contrast to the Nikolaevskiy

equation.



Chapter

Conclusions

The current study set out to analyse the Nikolaevskiy equation, which satisfies continuous
symmetries and represents a coupling between finite-wavelength instability and a Goldstone
mode. Moreover, it has rich dynamical properties and is considered as a simple model
exhibiting spatiotemporal chaos. Therefore, studying this equation sheds light on our under-
standing of such systems exhibiting chaos and complexity. We studied a dispersive version
of this equation in addition to similar systems with the same symmetries and possessing the
property that finite-wavelength patterns are coupled to a large-scale mode. The results are
corroborated by numerical calculations in addition to asymptotic treatments of this equation
and similar models.

In chapter 3 we generalised the instability of all roll solutions of the Nikolaevskiy equation
at onset to any model having the same symmetries with coupling between finite-wavelength
patterns and a Goldstone mode; and this result is only applicable to wave solutions of
such systems with wavenumbers neither close to the marginal stability curve nor close to
the critical wavenumber. Furthermore, we also generalised the amplitude equations of the
Nikolaevskiy equation by replacing the coefficient of the diffusion term in these equations
by a general positive variable n. We concluded from numerical simulations, in relatively
small domains, that the behaviour of these general amplitude equations is analogous to
amplitude equations of the Nikolaevskiy equation. This behaviour is manifested through
a concurrent existence of amplitude-death and single-front states. However, the statistical
measures of these states are highly dependent on the value of n. This research has thrown
up a question in need of further investigation, which is about examining these amplitude
equations analytically and exploring how the result is applicable to full numerical simulations
of Nikolaevskiy-like PDEs.

The key point of this study is the Nikolaevskiy equation with dispersion. In contrast

to most studies of the Nikolaevskiy equation, we restored the dispersive terms and studied
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the influence on the behaviour and properties of the solution in chapter 4. Indeed, the
research consists of analysing the stability of travelling wave solutions for different degrees
of dispersion through asymptotic expansions. One of the significant findings to emerge from
this research is that the instability of all spatially periodic solutions at the onset of pattern
formation in the non-dispersive version is modified by the presence of dispersion. To be
more specific, there exists an Eckhaus-like stability region near the onset of instability if
the dispersion is sufficiently strong. However, the ratio of the width of this stable region to
the width of the existence region of rolls is not the same as the usual Eckhaus case. On the
other hand, concerning weak dispersion there is a thin region of stability in the vicinity of the
critical wavenumber. The asymptotic results agree well with the secondary stability diagrams
computed numerically. Furthermore, the numerical stability results show the complicated
nature of the secondary stability boundaries, which sensitively depend on the magnitude of
the dispersive terms. In fact, rolls predicted to be stable by the asymptotics may turn out to
be unstable when the full numerical calculation is performed. This is because the asymptotics
concern only long-wavelength instabilities and other finite-wavelength instabilities may arise.

Another investigation point, considered in chapter 4, is the amplitude equations of the
dispersive Nikolaevskiy equation. This produced results showing that these equations are
similar to the non-dispersive case where there are amplitude-death and single-front states
manifested through numerical simulations. However, these structures drift with a certain
speed depending on the group velocity, which results from dispersion. We deduced from
several numerical simulations done for these amplitude equations, with different values of
the group velocity, that there is an almost linear relationship between the front speed and
the group velocity. Further studies are suggested on this topic where the results could be
achieved analytically and compared to the numerical calculations. In addition to this, more
advanced numerical simulations are encouraged, in order to observe other statistical measures
regarding the dispersive amplitude equations.

A system coupling a Swift-Hohenberg equation to a large-scale mode, which exhibits
the same symmetries as the Nikolaevskiy equation, was studied in chapter 5 by means of
numerical and asymptotic approaches. The result of this analysis shows that the Swift-
Hohenberg equation is strongly influenced by the coupling with the Goldstone mode. It
was expected that the symmetries might force all rolls to be unstable at onset; however, we
found that this is not the case with this system. Indeed, there can be stable stationary wave
solutions of this system with wavenumber close to the threshold. The numerical stability
diagrams show different topologies corresponding to different parameter values; and therefore
it is difficult to draw general conclusions from these graphs. Moreover, these graphs are not

fully explained by the asymptotic results, which involve only long-wavelength instabilities.
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The Nikolaevskiy equation is a very rich model and there are many unanswered questions
that should be addressed; therefore further studies on this topic are recommended. One of
the significant issues for future research is to consider a two-dimensional version of the
Nikolaevskiy equation. Another research interest is applying this equation to other physical
phenomena than the known ones. Another open question includes focusing on explaining the
numerical behaviour of the Nikolaevskiy equation presented in this thesis, as the analytical
results are strictly valid only close to the threshold. Finally, performing further numerical

simulations with different boundary conditions is proposed as a future research topic.



Appendix

Numerical schemes

In this section we introduce numerical schemes used in this thesis to solve the Nikolaevskiy
equation and other related systems. We shall present the Fourier spectral method for spatial
discretisation along with the exponential time differencing (ETD) method or the exponential
time differencing Runge-Kutta (ETDRK) method for time integration of a general nonlinear
partial differential equation (PDE). Note that we always impose periodic boundary condi-
tions.

Consider the nonlinear PDE whose solution varies in time and space:

ou  0™u

Here F'is the nonlinear term. In order to solve this system accurately we spatially discretise it
by using the Fourier spectral method [7, 10, 21, 67|, where the error decreases exponentially as
we increase the resolution. This will result in a system of coupled ODEs (ordinary differential

equations) in time ¢:

Bn _ o+ F(u,t), (A1)
dt
where the discrete Fourier transform of u is
N/2
u = Z TGS
—N/2+1

Here k = 27 /1, for some domain length [, and ¢ = (ink)™, which is represented by a diagonal
matrix in the Fourier basis. This matrix consists of real values for dissipative systems and
imaginary values for dispersive systems.

The nonlinear term F is calculated, using the pseudo-spectral procedure, by transforming
first to physical space and then carrying out the multiplication before transforming back to
spectral space. This is done using the Matlab commands fft and ifft, where fft is the fast
Fourier transform and ifft is the inverse fast Fourier transform. The fft reduces the number

of operations from O(N?) (for the discrete Fourier transform) to O(N log N) [11].
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The system of ODEs (A.1) is coupled through the nonlinear term and the linear part
is diagonal. If the differentiation matrix (resulting from discretisation) has a wide range of
eigenvalues for all Fourier modes or if the system has a spatial derivative higher than the
second order, then it is more likely to be stiff. This means that the solution consists of slow
and fast components. For example, in the dispersive Nikolaevskiy equation the nonlinear
part (uuz) evolves on a long time scale while uggzez, results in a rapid linear decay of the
high-wavenumber modes and wuz., causes a rapid linear oscillation of the high-wavenumber
modes. Therefore, the dispersive Nikolaevskiy equation is considered stiff; and this also
applies to the Nikolaevskiy equation with no dispersion. As a remedy for this problem we
need to consider a numerical method with a small step size to cover the range of different
time scales of the solution. This results in increasing the number of integration steps and
this generates an accumulation of the error. Therefore, we need a procedure that handles
the stiffness without requiring a small step size.

For simplicity we shall drop the hats from the variables in (A.1) and write the “n-th”
equation as follows:

du

I = cu+ F(u,t).

One of the methods for solving such a stiff ODE, where the linear part is responsible for
stiffness and the nonlinear term evolves on a longer time scale than the linear part, is the ETD
method [13]. This scheme permits using a large time step which in turn does not affect the
stability (magnification of the error as the calculation proceeds); however, it influences the
accuracy. In order to maintain good stability and accuracy we shall consider a higher order
ETD scheme which is the ETD2 scheme [4, 13] as a numerical solution for the Nikolaevskiy
equation together with the spectral approach.
The formula of the ETD2 method is given by

Uns1 = Une + {[(ch + 1)e" — 2ch — 1) F,, 4+ (—e" + ch 4+ 1)F,_1}/(h).

Here h is the time step. For some modes we might have ¢ = 0 and in this case we cannot
use this scheme directly, since we then divide by zero. Instead we use the limiting form
of these coefficients as ¢ — 0. This circumstance actually arises for the zero modes in the
Nikolaevskiy equation. A similar case appears for modes with |ch| < 1; and in this situation
we replace the coefficients with their Taylor series.

Another suitable numerical solution for stiff systems is the ETDRK method [13]. Unlike
the high-order ETD (multistep) scheme, the ETDRK method does not require the calculation
of the previous nonlinear term. In addition to this advantage, it is more accurate, with larger

stability regions than the multistep schemes [13]. In some numerical calculations (presented



Appendix A: Numerical schemes 116

in this thesis) we shall consider the exponential time differencing fourth-order Runge-Kutta
ETD4RK method for better accuracy and stability along with the pseudo-spectral method.
The ETD4RK formula [4, 13, 30] is given as follows:

an = upe™? 4+ (M2 —1)F(un,ty)/c,
by = une? 4 (eM? — 1)F(an,tn + h/2)/c,
en = ane™? 4 (eM? = 1)(2F (by,tn + h/2) — F(un, tn))/c,
Upi1 = Une™ + {F(up,t,)[—4 — hc+ e(4 — 3ch + h2c?)]
+2(F (an, tn + h/2) + F(by, ty + h/2))[2 + he + (=2 4 he)

+F(Cpytn + h)[—4 — 3he — h2c% + e (4 — he)]} /2.

As with the ETD2 scheme, for some modes we might have ¢ = 0 or |ch| < 1 and in this
case we replace the coefficients by their limit as ¢ — 0 if ¢ = 0 and by their Taylor series if
lch| < 1.

To summarise, the Nikolaevskiy equation is considered as a stiff system since it consists of
spatial derivatives up to the sixth order in conjunction with a nonlinear term. Therefore, after
spatially discretising it we use the ETD2 method in order to generate numerical simulations.
In addition to this, we also use the ETD4RK method for the related amplitude equations

and systems similar to the Nikolaevskiy equation.
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Numerical code for simulating the

Nikolaevskiy equation with dispersion

This Matlab code numerically simulates the Nikolaevskiy equation with dispersion (4.1) and
also with no dispersion (1.2) (a similar code is found in [75]). Note that for the Nikolaevskiy
equation with no dispersion we set the parameters alpha and beta, in the code, to zero. Also
note that the parameter values should be changed accordingly to generate the numerical

simulations given in this thesis.

% Set equation coefficients

q=0;

epsilon = 0.1;

r = epsilon”2*r2;
alpha = 2;

beta = 1;

% Set system parameters

n = 50; % Winding number for ’tw’ initial condition no. of waves

K = l+epsilon*q; % wave no.

L = 2*n*pi/K; % Domain size or length of the box it should be a multiple of
% $2*pi$

Tmax = 1000; % Simulation time

N = 512; % Number of grid points

dT = 0.05; % Time step (choose between 0.01 and 0.05)

dps = 1000; % Number of stored times

ic = tw’; % Initial condition: choose ’zero’, ’tw’, ’uniform’ or ’pulse’
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% Whether to continue simulation from final values of previous simulation

co = 0;

% Calculate some further parameters

nmax = round(Tmax/dT) ;

X = (L/N)*(-N/2:N/2-1)7;

nplt = floor(nmax/dps);

% Define initial conditions

if co ==

Tdata = zeros(1,dps+1);

if strcmp(ic, ’zero’)

U = zeros(size(X)) + 10~ (-2)*randn(size(X));

elseif strcmp(ic, ’tw’)

U = 2*epsilon*sqrt (r2-4*q~2)*sqrt (36+(5*beta-alpha) ~2)*cos (K*X) . ..
+10~(-2) *randn(size(X));

elseif strcmp(ic, ’uniform’)

U = ones(size(X)) + 0.0l*randn(size(X));

elseif strcmp(ic, ’pulse’)

U = sech((X+10).72) + 0.8*sech((X-30)."2) + 10~ (-2)*randn(size(X));

else

error(’invalid initial condition selected’)

end

Tdata(1l) = 0;

else

U = Udata(:,end);

starttime = Tdata(end);

Tdata = zeros(1l,dps+1);

Tdata(l) = starttime;

disp(®  CARRYING OVER...’)

end

U = U-mean(U) ;

% Set wavenumbers and data arrays

k = [0:N/2-1 0 -N/2+1:-1]2*(2%pi/L);

k2 = k.*k; k2(N/2+1) = ((N/2)*(2%pi/L))"2;

Udata = zeros(N,dps+1);

U_hatdata = zeros(N,dps+1);

U_hat = fft(U);
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Udata(:,1) = U;

U_hatdata(:,1) = U_hat;

% Compute exponentials and nonlinear factors for ETD2 method
cU = (-1+r)*k2 +2*k2.72-k2.~3-alpha*ixk2.*xk+tbetaxi*k2."2.xk;
expU = exp(dT*cU);

nlfacU = (exp(dT*cU).*(1+1./cU/dT)-1./cU/dT-2)./cU;

nlfacUp = (exp(dT*cU).x(-1./cU/dT)+1./cU/dT+1)./cU;
nlfacU(1) = 3%dT/2;

nlfacUp(1) = -dT/2;

% Solve PDE

dataindex = 2;

for n = 1:nmax

T = Tdata(1l) + nx*dT;
U = real(ifft(U_hat));
U2 = U.%U;

U2hat = ££t(U2);
dU2hat = -ixk.*U2hat/2;
% Find nonlinear component in Fourier space
nlU = dU2hat;
% Setting the first values of the previous nonlinear coefficients
if n ==
nlUp = nlU;
end

% Time-stepping

U_hat = U_hat.*expU + nlfacU.*nlU + nlfacUp.*nlUp;
nlUp = nlU;
U_hat(1) = 0;

% Saving data

if mod(n,nplt) ==

U = real(ifft(U_hat));

Udata(:,dataindex) = U;

U_hatdata(:,dataindex) = U_hat;

Tdata(dataindex) = T;

dataindex = dataindex + 1;
plot(X,U);axis([-L/2,L/2,-1.4,1.4]) ;drawnow;

end
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% Commenting on time elapsed

if mod(n,floor(nmax/10)) ==

outp = strcat(’ n= ’, num2str(n), ’> completed’); disp(outp);

end

end

% Plot evolution

figure(’position’, [200 200 300 350])

surf (X,Tdata,real(Udata).?)

view(0,90), shading interp, axis tight
xlabel(’x’,’fontname’,’courier’,’fontsize’, 20,’color’,[0.6 0.6 0.6])
ylabel(’t’,’fontname’, ’courier’,’fontsize’, 20,’color’,[0.6 0.6 0.6],...

‘rotation’, 0)
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Numerical code for simulating the

amplitude equations

This code simulates the generalised amplitude equations (3.2) and (3.3) (n = 4 for the
Nikolaevskiy equation). It also simulates the amplitude equation of the Nikolaevskiy equation

with dispersion (4.21) and (4.22).

% modified by SM Cox from...
% AK Kassam and LN Trefethen, July 2002

% Spatial grid and initial condition:

N = 1024;

Le= 150;

rval = 1; % ALWAYS set to 1

vval = 0; % group velocity parameter

nval=4; % the coefficient of A_XX (nval=4 for the Nikolaevskiy equation)

x = Lex(1:N)’/N;

A = 0.01*rand(N,1);

% f = 0.01*xrand(N,1);

f = -10*sin(2*pi*(x-Le/2)/Le)+0.01*rand(N,1);
v = £fft(4);

w = £fft(£f);w(1)=0;

% Precompute various ETDRK4 scalar quantities:

(=3
]

0.02; % time step

bt
1]

[0:N/2-1 O -N/2+1:-1]°*2*pi/Le; % wave numbers
antialias = (abs(k)>=2/3*N/2%2*pi/Le);

antialias(N/2+1)=1;
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=

(@]

[are
I

rval-nvalxk. 2-vval*ix*k; % Fourier multipliers for A
LO2 = -k."2; % Fourier multipliers for f
L = [LO1;L02];

E = exp(h*L); E2 = exp(h*L/2); % exponentials

M = 16; % no. of points for complex means
r = exp(2ixpix((1:M)-.5)/M); % roots of unity

LR = h*L(:,ones(M,1)) + r(ones(2xN,1),:);

Q = h*x(mean( (exp(LR/2)-1)./LR ,2))

f1 = h*(mean( (-4-LR+exp(LR).*(4-3*LR+LR."2))./LR."3 ,2));

f2 = h*x(mean( (4+2xLR+exp (LR) .*(-4+2*LR)) ./LR."3 »2));

£3 = hx(mean( (-4-3*LR-LR."2+exp(LR).*(4-LR))./LR."3 ,2));

pspec = zeros(N,1);

tmax =1000;

b=100; % the average is calculated after this time unit
Z=b/h;

dps=1000;

nmax = round(tmax/h); nplt = floor((tmax/dps)/h);

g = -i*k; arewethereyet = waitbar(0,’please wait...’);
Aave=0;fave=0;

AA=zeros(N,dps+1) ;AA(:,1)=ifft(v) ;tt2=zeros(1,dps+1);
ff=zeros(N,dps+1);ff(:,1)=real (ifft(w));
tt=(1:nmax) *h;

shiftv=zeros(nmax,1);

% first loop

for n 1:2
t = nxh;
Ais = ifft(v);fis = real(ifft(w));

Nv

-ixfft(Ais.*fis);

Nw

g.*xfft(abs(Ais)."2);

vw=[v;w]; Nt=[Nv;Nw];

a = E2.%xvw + Q.*Nt; al=a(1:N); a2=a(N+1l:end);

Ais = ifft(al);fis = real(ifft(a2));

Nal= -ixfft(Ais.*fis);Na2= g.*fft(abs(Ais)."2);Na=[Nal;Na2];
b = E2.%xvw + Q.*Na; bl=b(1:N); b2=b(N+1:end);

Ais = ifft(bl);fis = real (ifft(b2));

Nbil= -ixfft(Ais.*fis);Nb2= g.*fft(abs(Ais)."2);Nb=[Nbl;Nb2];
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c = E2.xa + Q.*x(2*%Nb-Nt); cl=c(1:N); c2=c(N+1:end);
Ais = ifft(cl);fis = real(ifft(c2));
Ncl= -ixfft(Ais.*fis);Nc2= g.*fft(abs(Ais).~2);Nc=[Nc1l;Nc2];
vw = E.*xvw + Nt.*xf1 + (Nat+Nb).*f2 + Nc.*f3;
v=yw(1:N) ;w=vw(N+1:end);
v(antialias)=0;
w(antialias)=0;
if (max(isnan(real(v)))==1) break,end
if (max(isnan(imag(v)))==1) break,end
if (max(isnan(real(w)))==1) break,end
if (max(isnan(imag(w)))==1) break,end
% pspec(1l) is the long-time average of |v_0|~2/length (square of zero mode)
fphys=real (ifft(w)); [YYY,III]=min(abs(fphys((N/2-5):(N/2+5))));
shiftv(n)=(III-1-5)*Le/N;
w=exp (i*k*(III-1-5)*Le/N).*w;
v=exp (ixk*(III-1-5)*Le/N).*v;
Aabs2=abs(ifft(v));
pspec = pspec+((abs(v))."2)/nmax/Le;
if mod(n,nplt)==0
A=ifft(v); AA(:,n/nplt+1)=A;
f=real (ifft(w)); ff(:,n/nplt+1)=£f;
tt2(n/nplt+1)=n*h;
figure(2),plot(x,f,x,Aabs2),shg
end
waitbar (n/nmax,arewethereyet)
end
% the average is calculated in the second loop
for n = Z+1:nmax
t = nxh;
Ais = ifft(v);fis = real(ifft(w));
Nv

-ixfft(Ais.*fis);

Nw

g.*xfft(abs(Ais)."2);

vw=[v;w]; Nt=[Nv;Nw];

a = E2.%xvw + Q.*Nt; al=a(1:N); a2=a(N+1l:end);
Ais = ifft(al);fis = real(ifft(a2));

Nal= -ixfft(Ais.*fis);Na2= g.xfft(abs(Ais)."2);Na=[Nal;Na2];
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b = E2.*%vw + Q.*Na; bl=b(1:N); b2=b(N+1:end);
Ais = ifft(bl);fis = real(ifft(b2));
Nbl= -ixfft(Ais.*fis);Nb2= g.*fft(abs(Ais).~2);Nb=[Nbl;Nb2];
c = E2.xa + Q.*(2*%Nb-Nt); cl=c(1:N); c2=c(N+1l:end);
Ais = ifft(cl);fis = real(ifft(c2));
Ncl= -ixfft(Ais.*fis);Nc2= g.*fft(abs(Ais).~2);Nc=[Ncl;Nc2];
vw = E.xvw + Nt.*xf1 + (Nat+Nb).*f2 + Nc.*f3;
v=yw(1:N) ;w=vw(N+1:end);
v(antialias)=0;
w(antialias)=0;
if (max(isnan(real(v)))==1) break,end
if (max(isnan(imag(v)))==1) break,end
if (max(isnan(real(w)))==1) break,end
if (max(isnan(imag(w)))==1) break,end
% pspec(1l) is the long-time average of |v_0|~2/length (square of zero mode)
fphys=real (ifft(w)); [YYY,III]=min(abs(fphys((N/2-5):(N/2+5))));
shiftv(n)=(III-1-5)*Le/N;
w=exp (i*k*(III-1-5)*Le/N) . *w;
v=exp (ixk*(III-1-5)*Le/N).*v;
Aabs2=abs (ifft(v));
Aave=Aave+abs (ifft(v)."2) ;fave=fave+treal (ifft(w));
pspec = pspec+((abs(v))."2)/nmax/Le;
if mod(n,nplt)==0
A=ifft(v); AA(:,n/nplt+1)=A;
f=real (ifft(w)); ff(:,n/nplt+l)=£f;
tt2(n/nplt+1)=n*h;
% The plot of |A| (solid curve) and f (dashed curve) at the end of the
% simulation
figure(2),plot(x,f,’--?,x,Aabs2, black’) ,shg
set (gca,’FontSize’,13)
xlabel(’X’,’FontSize’,20, ’Interpreter’,’latex’)
end
waitbar(n/nmax,arewethereyet)
end
Aave=Aave/(nmax-Z) ;fave=fave/(nmax-Z) ;

close(arewethereyet);
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% Plot results:

% The temporal evolutions of |A| and f in grey scale plots (from top to bottom)
figure(1l),clf (1)

view(2), colormap(gray);

subplot(2,1,1)

surf(tt2,x,abs(AA)), shading interp, lighting phong, axis tight
xlabel(’$T$’, ’FontSize’,16,’Interpreter’,’latex’)

ylabel (°$X$’, FontSize’,16, ’Interpreter’,’latex’)

view(2), colormap(gray);

subplot(2,1,2)

pcolor(tt2,x,ff), shading flat,

colormap(gray)

xlabel(’$T$’, ’FontSize’,16,’Interpreter’,’latex’)

ylabel (’$X$’,’FontSize’,16, ’Interpreter’,’latex’)

shg

figure(3),clf(3)

subplot(1,2,1)

plot(x,Aave, ’black?’)

x1im( [0 Lel)

set (gca,’FontSize’,13)

xlabel (°$X$’, FontSize’,20, ’ Interpreter’,’latex’)

ylabel (’$\langle|A|~2\rangle$’, ’FontSize’,20, ’Interpreter’,’latex’)
subplot(1,2,2)

plot(x,fave, ’black?’)

x1im([0 Lel)

set (gca,’FontSize’,13)

xlabel (°$X$’, FontSize’,20, ’Interpreter’,’latex’)
ylabel(’$\langle f \rangle$’,’FontSize’,20,’Interpreter’,’latex’)
shg

% The front displacement about X=Le/2 during the simulation
figure(4),clf(4)

plot (tt,cumsum(shiftv),’black’),shg

set (gca,’FontSize’,13)

xlabel (°$T$’, FontSize’,20, ’ Interpreter’,’latex’)

ylabel(’?,’FontSize’,20,’Interpreter’,’latex’)



Appendix

Numerical code for calculating the

secondary stability of rolls

In this part we introduce the numerical code used in Matlab to calculate the secondary

stability of rolls (§4.3) for the Nikolaevskiy equation with dispersion (4.1).

% set the parameters

global N rval alp beta basic_wavenumber k;

N = 16;

rval = 0.1; % r

alp = 1; % alpha

beta = 2; % beta

% calculate the minimum and maximum values for the wavenumber
wvalmin=sqrt (1-sqrt(rval));

wvalmax=sqrt (1+sqrt(rval));

% how many steps to take to get from min to max wavenumber
nwvals = 200;

% set the list of wavenumbers

wvals = linspace(wvalmin,wvalmax,nwvals);

for jct = l:nwvals

% find the rolls

basic_wavenumber=wvals(jct);

Le = 2xpi/basic_wavenumber;

x = (0:N-1)’/N*2*pi/basic_wavenumber;
k = [0:N/2-1 0 -N/2+1:-1]’*basic_wavenumber;
u = 2*(sqrt(36+(alp-5/2*beta) ~2)*sqrt(rval)*cos(basic_wavenumber*x). ..
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+rval*sin(2*basic_wavenumber*x)) ;
v = £fft(u) ;vinO=v(2:end/2) ;vinri=[real(vin0) ;imag(vin0)];
% option to display output
options=optimset(’Display’,’iter?’);
% option to display output
options=optimset(’Display’,’off’,’TolFun’,1le-10);
[v,fval]l = fsolve(@myfun,vinri,options); 7% Call optimizer
v=v(1l:end/2)+i*v(end/2+1:end);
v=[0;v;0;conj(v(end:-1:1))];
% compute the phase speed
cnumer01 = 0.5xixk.*fft(real (ifft(v))."2);
cnumer02 = ix*k.x*v;
cnumer03 = -(k."2).*v;
cnumer06 = -ix*x(k."3).*v;
cnumer04 = fft(real(ifft(cnumer01)) .*real(ifft(cnumer02)));
cnumer05 = fft(real(ifft(cnumer03))."2);
cnumer07 = fft(real(ifft(cnumer06))."2);
cdenom01 = fft(real(ifft(cnumer02))."2);
cphase = (cnumer04(1)+alp*cnumer05(1)-beta*cnumer07(1))/cdenom01(1);
% compute the stability
gonetozero = 0;
if (gonetozero == 0)
vfinal = [v(N/2+2:end)’ v(1:N/2)°’]1/N;
extra_bit = zeros(N-1,N-1);
for ict = -(N/2-2):(N/2-2)
extra_bit = extra_bit+diag(vfinal(ict+N/2)*ones(N-1-abs(ict),1),ict);
end
% set the perturbation wavenumber
maxeig = -10.0;
for p = linspace(-pi/Le,pi/Le,300)
wavenumbers = [-(N/2-1):(N/2-1)]’*2*pi/Le+p;
linear_terms = wavenumbers. 2.*(rval-1+2*wavenumbers. 2 ...
- wavenumbers. 4)-alp*i*wavenumbers.”3 ...
+i*cphase*wavenumbers+beta*i*wavenumbers."5;
stability_matrix = diag(linear_terms)-diag(wavenumbers)*i*extra_bit;

eigenvalues = eig(stability_matrix);
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[eii,ii] = sort(-real(eigenvalues));
eigenvalues = eigenvalues(ii);
firstfew = eigenvalues(1:5);

[maxff,ifff] = max(real(firstfew));

if (maxff>maxeig)

maxeig = maxff;

eigis = firstfew(ifff);

end

end

% output columns are:

% r

disp([num2str(rval) ’
num2str (basic_wavenumber,8) ° > num2str(maxeig,8)

num2str (cphase,8)

else

% here the solution has gone to the trivial state
disp([num2str(rval) ?

num2str (basic_wavenumber) °’ > num2str(-999)1)

end

end

alpha beta k max(Re(eigenvalue))

This code uses the following function:

function F = myfun(vinri)

global N rval alp beta basic_wavenumber k;

vin =

vinri(l:end/2)+i*vinri(end/2+1:end);

v = [0;vin;0;conj(vin(end:-1:1))];

% COMPUTE THE PHASE SPEED

cnumerO1

0.5*i*k.*fft(real (ifft(v))."2);

cnumer02 = i*k.*v;

cnumer03 = -(k."2) .%*v;

cnumer06 = -ix(k."3) .*v;

cnumer04 = fft(real(ifft(cnumer01)) .*real (ifft(cnumer02)));

cnumer05 = fft(real(ifft(cnumer03))."2);

cnumer07 = fft(real(ifft(cnumer06))."2);

cdenom01 = fft(real(ifft(cnumer02))."2);

cphase

= (cnumer04(1)+alp*cnumer05(1)-beta*cnumer07(1))/cdenom01(1);

eigenvalue

> num2str(alp) ° > num2str(beta)

> num2str(eigis)])

> num2str(alp) ° > num2str(beta)
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g = -0.5i%k;
linear_terms = k. 2.x(rval-1+2%k.~2-k."4)-alp*ixk. 3+beta*ixk. 5+i*cphasex*k;

nonlinear_term = g.*fft(real(ifft(v))."2);

nik linear_terms.*v+nonlinear_term;

Fri = nik(2:end/2);
F = [real(Fri);imag(Fri)];

F(end/2+1) = imag(v(2));
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